
Rational ® IIBM Rational Test RealTime

Reference Manual

Version 7.0.0

Windows, UNIX, and Linux

GI11-6756-00

���

Rational ® IBM Rational Test RealTime

Reference Manual

Version 7.0.0

Windows, UNIX, and Linux

GI11-6756-00

���

Before using this information, be sure to read the general information under Notices on page 377

7th edition (May 2006)

This edition applies to version 7.0.0 of IBM Rational Test RealTime and to all subsequent releases and modifications until
otherwise indicated in new editions. This edition replaces GI-6349-00.

© Copyright International Business Machines Corporation 2001, 2006. All rights reserved.
© Copyright Rational Software Corporation 2001, 2003. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

i

Table Of Contents

Table Of Contents ..i
Preface ...1
About Rational software from IBM......................................1
About online documentation ..2
Testing tool script languages3
Component Testing for C ..3

C test script language..3
BEGIN ..6
COMMENT...7
DEFINE STUB ... END DEFINE.......................................8
ELEMENT ... END ELEMENT..10
ENVIRONMENT ... END ENVIRONMENT11
FAMILY ..12
FORMAT ..13
HEADER ..15
IF ... ELSE ... END IF ...16
INCLUDE ...17
INITIALIZATION ... END INITIALIZATION.....................18
NEXT_TEST ..19
SERVICE ... END SERVICE ..20
SIMUL ... ELSE_SIMUL ... END SIMUL21
STUB..22
TERMINATION ... END TERMINATION24
TEST ... END TEST ...25
USE..26
VAR, ARRAY and STR ..27
VAR, ARRAY and STR <expected> Parameter.............29
VAR, ARRAY and STR <variable> Parameter...............32
VAR, ARRAY and STR <initialization> Parameter.........33

Command line interface ...36
C Source Code Parser - attolstartC37
C Test Script Compiler - attolpreproC40
C Test Report Generator - attolpostpro..........................44

Component Testing for C++..46
C++ test driver script (.otd)..46

CALL ..49
CHECK...50
CHECK EXCEPTION...51
ON ERROR..52
PRINT ..54
PROC...55
PROLOGUE...57
PROPERTY ...58
RUN ...59
STUB..60
TEST CASE ...62
TEST CLASS ...63
TEST SUITE ..65
REQUIRE...66
Native Code ...67

C++ contract check script (.otc)69
CLASS and SINGLE CLASS ...72
INVARIANT ..74
STATE..75
TRANSITION ... TO ...77
WRAP ..78

Command line interface... 79
C++ Test Report Generator - atopospro........................ 80
C++ Test Script Compiler - atoprepro............................ 81
C++ Source Code Parser - atostart 82
Target Deployment Port options 87

Component Testing for Ada ... 89
Ada test script language... 89

BEGIN.. 91
COMMENT .. 92
DEFINE STUB ... END DEFINE 93
ELEMENT ... END ELEMENT 94
ENVIRONMENT ... END ENVIRONMENT.................... 95
EXCEPTION .. 96
FAMILY.. 97
HEADER.. 98
IF ... ELSE ... END IF... 99
INCLUDE ... 100
INITIALIZATION ... END INITIALIZATION 101
NEXT_TEST .. 102
SERVICE ... END SERVICE.. 103
SERVICE_TYPE.. 104
SIMUL ... ELSE_SIMUL ... END SIMUL...................... 105
STUB ... 106
TERMINATION ... END TERMINATION...................... 108
TEST ... END TEST... 109
VAR, ARRAY, and STR... 110
VAR, ARRAY and STR <expected> Parameter 111
VAR, ARRAY and STR <initialization> Parameter 113
VAR, ARRAY and STR <variable> Parameter 116

Command line interface... 117
Ada Source Code Parser - attolstartADA 118
Ada Test Script Compiler - attolpreproADA................. 121
Ada Test Script Compiler - attolpostproada................. 125
Ada Link File Generator - attolalk 127
Ada Unit Maker - attolchop .. 129

Component Testing for Java ... 131
Java test primitives.. 131

assertEquals().. 133
assertNotNull()... 135
assertNull() .. 136
assertSame() ... 137
assertTrue() ... 138
createTimer() ... 139
fail().. 140
timerReportElapsedTime()... 141
timerStart()... 142
verify() .. 143
verifyApproxEquals() ... 145
verifyElapsedTime()... 147
verifyEquals()... 148
verifyGreaterThan() ... 151
verifyGreaterThanEquals() .. 153
verifyLogfail() ... 155
verifyLogMessage() ... 156
verifyLowerThan().. 157
verifyNotNull() .. 160
verifyNull().. 161
verifySame() .. 162
verifyTrue() .. 163

Command line interface... 164

ii

JVMPI Agent ..165
Java Source Code Parser - startjava168
Java Test Report Generator - javapostpro...................170
StubSequence..171
TestSynchroStub..172

C System Testing ...172
System Testing driver script (.pts)172

ADD_ID ..175
CALL ..176
CALLBACK ... END CALLBACK177
CASE ... IS ... WHEN OTHERS... END CASE.............179
CHANNEL ..180
CLEAR_ID..181
COMMENT...182
COMMTYPE ..183
DECLARE_INSTANCE ..184
DEF_MESSAGE ..185
END..186
ERROR ..187
EXCEPTION ... END EXCEPTION..............................188
EXIT ...189
FAMILY ..190
FLUSH_TRACE ...191
FORMAT ..192
HEADER ..193
IF...THEN...ELSE ...194
INCLUDE ...195
INITIALIZATION ... END INITIALIZATION...................196
INSTANCE ... END INSTANCE197
INTERSEND ..198
INTERRECV ..199
MATCHED ...200
MATCHING ..201
MESSAGE ...202
MESSAGE_DATE..203
NIL..204
NONIL ..205
NOTMATCHED..206
NOTMATCHING ..207
NO_MESSAGE ..208
PAUSE ...209
PRINT ..210
PROC ... END PROC...211
PROCSEND...212
RENDEZVOUS ..214
RESET ...215
SCENARIO ... LOOP ... END SCENARIO216
SEND ...217
SHARE...218
TERMINATION ... END TERMINATION219
TIME...220
TIMER ..221
TRACE_ON..222
TRACE_OFF..223
VAR..224
VIRTUAL CALLBACK ..226
VIRTUAL PROCSEND...228
WAITTIL ...229
WHILE ... END WHILE...230
WTIME ...231
ATL_OCCID ...232
ATL_TIMEOUT ..233
ATL_NUMINSTANCE ..234

System Testing supervisor script (.spv)234
COPY ...238
CHDIR..239
DELETE ...240
DO..241
ENDOF...242
ERROR ..243
EXECUTE ..244
EXIT ...245
HOST ...246

IF ... THEN ... ELSE ... END IF.................................... 247
INCLUDE ... 248
MEMBERS... 249
MKDIR ... 250
PAUSE... 251
PRINT .. 252
PRINTLN ... 253
RMDIR ... 254
UNSET... 255
STATUS... 256
SHELL ... 257
SET.. 258
STOP ... 259
TRACE ... FROM... 260
WHILE ... 261
Variables.. 262
TIMEOUT... 263
RENDEZVOUS.. 264

Command line interface... 265
System Testing Supervisor - atsspv 266
System Testing Load Report Generator - atsload 268
System Testing Report Generator - atsmerge............. 269
System Testing Script Compiler - atspreproC 271
Virtual Tester ... 275

Runtime and static analysis reference ...277
Command line interface .. 277

C and C++ Instrumentation Launcher - attolcc 278
C and C++ Instrumentor - attolcc1 and attolccp 283
Ada Instrumentor - attolada ... 291
Ada Metrics Generator - metada 295
Java Instrumentor - javi ... 296
Java Instrumentation Launcher - javic 300
Java Instrumentation Launcher for Ant........................ 302
TDF Splitter - attsplit .. 305
Code Coverage Report Generator - attolcov 306
Trace Probe Processor - parsecode.pl 309

Trace probe macros .. 310
atl_start_trace().. 311
atl_recv_trace().. 312
atl_select_trace() ... 313
atl_send_trace()... 314
atl_dump_trace().. 315
atl_end_trace()... 316
atl_format_trace() .. 317

Instrumentation pragmas.. 317
Code review rules... 319
User interface reference...........................325
Command line interface .. 325

Graphical User Interface - studio 326
Trace Receiver - trtpd .. 328
Dump File Splitter - atlsplit... 330
Uprint Localization Utility - uprint 331
Test Process Monitor - tpm_add.................................. 332

Configuration settings reference...................................... 334
User interface preferences ... 350
GUI elements ... 354
GUI macro variables... 361
UML sequence diagrams.........Erreur ! Signet non défini.
File types .. 363
Environment variables... 364
Notices...368

1

Preface

This manual contains advanced reference material for using IBM Rational Test RealTime command
line tools and test script languages.

Implementing a practical, effective and professional testing process within your organization has
become essential because of the increased risk that accompanies software complexity. The time and
cost devoted to testing must be measured and managed accurately. Very often, lack of testing
causes schedule and budget over-runs with no guarantee of quality.

• Critical trends require software organizations to be structured and to automate their test
processes. These trends include:

• Ever increasing quality and time to market constraints;

• Growing complexity, size and number of software-based equipment;

• Lack of skilled resources despite need for productivity gains;

• Increasing interconnectedness of critical and complex embedded systems;

• Proliferation of quality & certification standards throughout critical software markets,
including the avionics, medical, and telecommunications industries.

IBM Rational Test RealTime provides a full range of answers to these challenges by enabling full
automation of system and software test processes.

Test RealTime is a complete test and runtime analysis tool set for embedded, real-time and
networked systems created in any cross-development environment. Automated testing, code
coverage, memory leak detection, performance profiling, UML tracing, code review - with Test
RealTime you fix your code before it breaks.

Test RealTime covers runtime analysis and software testing, all in a fully integrated testing
environment.

For more information about Rational Test RealTime, visit the product Web site at:

http://www.ibm.com/software/awdtools/test/realtime

About Rational software from IBM

Rational software from IBM helps organizations create business value by improving their software
development capability. The Rational software development platform integrates software
engineering best practices, tools, and services. With it, organizations thrive in an on demand world
by being more responsive, resilient, and focused. Rational's standards-based, cross-platform
solution helps software development teams create and extend business applications, embedded
systems and software products. Ninety-eight of the Fortune 100 rely on Rational tools to build
better software, faster. Additional information is available at
http://www.ibm.com/software/rational.

2

About online documentation

The entire documentation set for Test RealTime is provided as a full-featured online help system.

Depending on the operating system you are using, this documentation was designed to be viewed
with either:

• Microsoft's HTML Help browser for Windows.

• Mozilla Firefox 1.0 or later on UNIX operating systems or any other Java-enabled web
browser.

Both environments provide contextual-help from within the application, a full-text search facility,
and direct navigation through the Table of Contents and Index panes on the left-hand side of the
Help window.

Finding Information

There are several ways of navigating through the online help system to find information. These are
available through the Navigation Pane at the left of this window.

• Using the Navigation Pane: The navigation pane is the frame on the left of this window which
contains the Contents, the Index and the Search facilities.

On the Windows platform, click the button in the Windows Help browser to hide or show the
Navigation Pane.

On UNIX platforms, use the Hide Navigation Pane or Show Navigation Pane links at the top
of the Help page.

• Contents: The Contents tab displays books and pages that represent the categories of
information in the online Help system. When you click a book, it opens the first page of its
content. To expand or reduce book's contents, click the or buttons to the left of the book.
When you click pages , you select topics to view in the right-hand pane of the HTML Help
viewer.

• Index: The Index tab displays a multi-level list of keywords and keyword phrases. These terms
are associated with topics in the Help system and they are intended to direct you to specific
topics according to your way of working. Keywords are cross-referenced with synonyms to
provide multiple ways to locate information. To open a topic in the right-hand pane associated
with a keyword, select the keyword and then click Display. If the keyword is used with more
than one topic, a Topics Found dialog opens so you can select a specific topic to view.

• Search: The Search tab enables you to search for words in the Help system and locate topics
containing those words. Full-text searching looks through every word in the online Help to
find matches. When the search is completed, a list of topics is displayed so you can select a
specific topic to view.

Documentation Updates

For the most recent product information, please visit the product support section of the IBM Web
site:

http://www.ibm.com/software/awdtools/test/realtime

For documentation updates, visit the following section:

http://www.ibm.com/software/rational/support/documentation/

3

Chapter 1. Testing tool script languages

This section contains advanced reference material for using IBM Rational Test RealTime test script
languages, component test and system test command line tools

Component Testing for C

C test script language

Component Testing for C uses its own simple language for test scripting.

This section describes each keyword of the C test script language, including:

Syntax

• Functionality and rules governing its usage

• Examples of use

Notation conventions

Throughout this guide, command notation and argument parameters use the following standard
convention:

Notation Example Meaning

BOLD BEGIN Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } {<filenames>} Series of values

[{ }] [{<filenames>}] Optional series of variables

| on | off OR operator

C test script keywords are case insensitive. This means that STUB, stub, and Stub are interpreted
the same way. The keyword others is an exception, and must always be expressed in lower case.

For conventional purposes however, this document uses upper-case notation for the C test script
keywords in order to differentiate from native source code.

Split statements

C test script statements may be split over several lines in a .ptu test script. Continued lines must
start with the ampersand ('&') symbol to be recognized as a continuation of the previous line. No
tabs or spaces should precede the ampersand.

Statements must be shorter than 2048 characters, although this limit may be lower on some
platforms.

4

Language identifiers

A C test script identifier is a text string used as a label, such as the name of a TEST or a STUB in a
.ptu test script.

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

• 0-9

• _ (underscore)

Spaces are not valid identifier characters.

Note that identifiers starting with a numeric character are allowed. The following statement, for
example, is syntactically correct:
TEST 1

...

END TEST

C test script identifiers are case sensitive. This means that LABEL, label, and Label are three
different identifiers.

C test script structure

The C test script language allows you to structure tests to:

• Describe several test cases in a single test script,

• Select a subset of test cases according to different Target Deployment Port criteria.

Test script filenames must contain only plain alphanumerical characters.

Basic structure

A typical C Component Testing .ptu test script looks like this:
HEADER add, 1, 1

<variable declarations for the test script>

BEGIN

SERVICE add

 <local variable declarations for the service>

 TEST 1

 FAMILY nominal

 ELEMENT

 VAR variable1, INIT=0, EV=0

 VAR variable2, INIT=0, EV=0

 #<call to the procedure under test>

 END ELEMENT

 END TEST

END SERVICE

All instructions in a test script have the following characteristics:

• All statements begin with a keyword.

• Statements are not case sensitive (except when C expressions are used).

• Statements start at the beginning of a line and end at the end of a line. You can, however, write
an instruction over several lines using the ampersand (&) continuation character at the
beginning of additional lines. In this case, the ampersand must be the very first character on
that line; no spaces or tabs should precede it.

5

• Statements must be shorter than 2048 characters, although this limit may be lower on some
platforms.

Structure statements

The following statements allow you to describe the structure of a test.

• HEADER: For documentation purposes, specifies the name and version number of the module
being tested, as well as the version number of the tested source file. This information is
displayed in the test report.

• BEGIN: Marks the beginning of the generation of the actual test program.

• SERVICE: Contains the test cases related to a given service. A service usually refers to a
procedure or function. Each service has a unique name (in this case add). A SERVICE block
terminates with the instruction END SERVICE.

• TEST: Each test case has a number or identifier that is unique within the block SERVICE. The
test case is terminated by the instruction END TEST.

• FAMILY: Qualifies the test case to which it is attached. The qualification is free (in this case
nominal). A list of qualifications can be specified (for example: family, nominal, structure) in
the Tester Configuration dialog box.

• ELEMENT: Describes a test phase in the current test case. The phase is terminated by the
instruction END ELEMENT. The different phases of the same test case cannot be dissociated
after the tests are run, unlike the test cases introduced by the instruction NEXT_TEST.
However, the test phases introduced by the instruction ELEMENT are included in the loops
created by the instruction LOOP.

The three-level structure of the test scripts has been deliberately kept simple. This structure allows:

• A clear and structured presentation of the test script and report

• Tests to be run selectively on the basis of the service name, the test number, or the test family.

The C Test Script Language keywords are not case sensitive. This means that STUB, stub, and Stub
are equivalent. For conventional purposes however, this document uses upper-case notation for the
C Test Script Language keywords in order to differentiate from native source code.

6

BEGIN

Purpose

The BEGIN instruction marks the beginning of the test program.

Syntax

BEGIN

Description

BEGIN marks the beginning of the C code generation.

The BEGIN instruction is mandatory and must be located before any other Component Testing
instruction for C, except a HEADER instruction.

If the BEGIN keyword is not found, a warning message is generated and a BEGIN instruction is
implicitly created before the first occurrence of a SERVICE instruction.

7

COMMENT

Purpose

The COMMENT instruction adds a textual comment to the test report.

Syntax

COMMENT [<text>]

Argument

<text> is an optional text string to be displayed.

Description

The COMMENT instruction is optional and can be used anywhere in the test script.

The position of the COMMENT instruction in the test script defines the position in which the
comments appear in the test report.

• Within an ELEMENT block: the comment appears just before the variable state descriptions.

• After a TEST instruction: the comment appears in the test header, before the variable
descriptions.

• After a SERVICE instruction: the comment appears in the service header, before the test
descriptions.

• Outside a SERVICE block: the comment appears in the service header following the
declaration, before the test descriptions.

Example
TEST 1

FAMILY nominal

COMMENT histogram computation for a black image

ELEMENT

8

DEFINE STUB ... END DEFINE

Purpose

The DEFINE STUB and END DEFINE instructions delimit a simulation block consisting of stub
definition functions, variables or procedure declarations.

Syntax

DEFINE STUB <stub_name> [<stub_dim>]

END DEFINE

<stub_name> is the mandatory name of a simulation block.

<stub_dim> is an optional maximum number of stub call descriptions for a test scenario. By default,
its value is 10.

Description

Defining stubs in a test script is optional.

Using the stub definitions, the C Test Script Compiler generates simulation variables and functions
for which the interface is identical to that of the stubbed variables and functions.

The purpose of these simulation variables and functions is to store and test input parameters,
assign values to output parameters, and if necessary, return appropriate values.

Definitions of functions must be in the form of ANSI prototypes for C.

Stub parameters describe both the type of item used by the calling function and the mode of
passing. The mode of passing the parameter is specified by adding the following before the
parameter name:

• in for input parameters

• out for output parameters

• inout for input/output parameters

• no for parameters that you do not want to test

Additionally, when using the _in or _inout parameters, you can add an optional _nocheck
parameter before the _in or _inout parameter (see the Example paragraph). This allows the
parameters to be sent to the stub without being checked.

The parameter mode is optional. If no parameter mode is specified, the _in mode is assumed by
default.

A return parameter is always deemed to be an output parameter.

Global variables defined in DEFINE STUB blocks replace the real global variables.

DEFINE STUB / END DEFINE blocks must be located after the BEGIN instruction and outside
any SERVICE block.

Example

An example of the use of stubs is available in the StubC example project installed with the
application.
BEGIN

DEFINE STUB Example
 #int open_file(char _in f[100]);

 #int create_file(char _in f[100]);

9

 #int read_file(int _in fd, char _out l[100]);

 #int write_file(int fd, char _in l[100]);

 #int write(int fd, char _nocheck _in l[100]);

 #int close_file(int fd);

END DEFINE

DEFINE STUB Example
#int foo1 (int _in param1)

#{

{int foo1_b ;

foo1_b = 10 ;}

#}

END DEFINE

10

ELEMENT ... END ELEMENT

Purpose

The ELEMENT and END ELEMENT instructions delimit a test phase or ELEMENT block.

Syntax

ELEMENT

END ELEMENT

Description

The ELEMENT instruction is mandatory and can only be located within a TEST block. If absent, a
warning message is generated and the ELEMENT block is implicitly declared before the first
occurrence of a VAR, ARRAY, STR, or STUB instruction.

The block must end with the instruction END ELEMENT. If absent, a warning message is
generated and it is implicitly declared before the next ELEMENT instruction, or the END TEST
instruction.

The ELEMENT block contains a call to the service under test as well as instructions describing the
initializations and checks on test variables.

Positioning of VAR, ARRAY, STR or STUB instructions is irrelevant, with respect to the test
procedure call since the Test Compiler separates these instructions into two parts:

• The test initializer (described by INIT) is generated with the ELEMENT instruction.

• The test of the expected value (described by EV) is generated with the END ELEMENT
instruction.

Example
 TEST 1

 FAMILY nominal

 ELEMENT

 VAR x1, init = 0, ev = init

 VAR x2, init = SIZE_IMAGE-1, ev = init

 VAR y1, init = 0, ev = init

 VAR y2, init = SIZE_IMAGE-1, ev = init

 ARRAY image, init = 0, ev = init

 VAR histo[0], init = 0, ev = SIZE_IMAGE*SIZE_IMAGE

 ARRAY histo[1..SIZE_HISTO-1], init = 0, ev = 0

 VAR status, init ==, ev = 0

 #status = compute_histo(x1,y1,x2,y2,histo);

 END ELEMENT

 END TEST

11

ENVIRONMENT ... END ENVIRONMENT

Purpose

The ENVIRONMENT instruction defines a test environment declaration, that is, a default set of
test specifications.

Syntax

ENVIRONMENT <name> [(<param> { , <param> })]

END ENVIRONMENT

<name> is a mandatory identifier that provides a unique environment name.

<param> is an optional identifier.

Description

The test environment defines a general context. Variables which are declared within a context can
be overwritten by a TEST statement.

Every environment can contain parameters. The declared parameters can be used in initialization
and expected value expressions. These parameters are initiated by the USE instruction.

The END ENVIRONMENT instruction marks the end of an environment declaration.

<name> specifies an environment name that is referenced in the USE instruction.

An environment must be defined after the BEGIN instruction.

Each environment is visible in the block in which it has been declared and in any blocks included
in this block, after its declaration.

An environment can only contain VAR, ARRAY, STR, FORMAT or STUB instructions and
conditional generation instructions. If it is empty, a warning message is generated.

An environment is activated by the USE instruction that defines its scope and its priority.
ENVIRONMENT blocks are executed in the reverse order of their respective USE instruction.

Note If the USE instruction follows directly the ENVIRONMENT block, the first
occurrence of the ENVIRONEMENT overrides the later, or local ones.

After generating the initializations and the tests of an ELEMENT block, visible environments are
included in order of priority, at every END ELEMENT instruction, in order to complete the
initializations and tests.

The scope of an ENVIRONMENT block is important insofar as only "visible" environment blocks
apply, and use clauses can be out of scope.

Example
ENVIRONMENT compute_histo

 VAR x1, init = 0, ev = init

 VAR x2, init = SIZE_IMAGE-1, ev = init

 VAR y1, init = 0, ev = init

 VAR y2, init = SIZE_IMAGE-1, ev = init

 ARRAY histo, init = 0, ev = 0

 VAR status, init ==, ev = 0

END ENVIRONMENT

12

FAMILY

Purpose

The FAMILY instruction groups tests by families or classes.

Syntax

FAMILY <family_name> { , <family_name>}

Argument

<family_name> is a mandatory identifier indicating the name of the test family. Typically, you could
specify nominal, structural, or robustness families.

Description

The FAMILY instruction appears within TEST blocks, where it defines the families to which the
test belongs.

When you run the test sequence, you can request that only tests of a given family are executed.

A test can belong to several families. In this case, the FAMILY instruction contains a <family_name>
list, separated by commas.

The FAMILY instruction must be located before the first ELEMENT block of the TEST block and
must be unique in the TEST block.

The FAMILY instruction is optional. If it is omitted, a warning message is generated and the test
belongs to every family.

Example
 TEST 1

 FAMILY nominal

 COMMENT histogram computation on a black image

 ELEMENT

13

FORMAT

Syntax

FORMAT <variable> = [<new type>[#<display directive> [<size>]]

FORMAT <type> = <new type>[#<display directive> [<size>]]

FORMAT <field> = <new type>[#<display directive> [<size>]]

Description

The FORMAT instruction allows you to modify the type of the tested element, where:

• <variable> is a variable.

• <type> is a simple C type declared by typedef; in this case, the new type will be applied to all
variables of this type.

• <field> is a member of a structure or a C union; in this case, the new type will be applied to all
the members of this field.

The <new type> is an abstract C type.

The optional <display directive> is one the following suffixes for integers only:

• #h for hexadecimal display,

• #b for binary display,

• #u for unsigned decimal display,

• #d for signed decimal display,

and with the following possibilities for floating variables:

• #f to display without an exponent,

• #e to display with an exponent.

For integers, <size> is the number of bits to be displayed. For floating variables, <size> is the
number of the number of digits after the decimal point.

Associated Rules

The FORMAT statement is optional and must be located after the BEGIN statement.

The FORMAT definition can be replaced by an optional <format> parameter in a VAR statement.

It is applicable immediately, only in the block in which it is declared.

<variable> follows standard C syntax rules. <type> is a C identifier used in typedef, struct or union
instructions. <format> is an abstract C type.

If the change is to be applied to array elements, you can use an abstract C type to describe the new
modified variable, field, or type.

A format cannot be empty. It must contain either the abstract C type or the display directive.

In the display directive, the size is optional. The size must be a multiple of 8 for the integers. The
default values for this size are the following:

• For integers, the number of bits of the abstract type if it is given, or if it is not, the number of
bits of the type or the variable whose printing format is modified

• For #f, 6 digits after the decimal point and for #e, 2 digits after the decimal point

Example
#char x;

14

#char t[10];

FORMAT t = int -- t is an array of integers

FORMAT x = int#h8 -- display in hexa, only 8 bits

FORMAT y = #b -- display in binary without modifying the type

FORMAT z = short#u -- display in unsigned decimal

FORMAT f1 = #f -- displays for example 3.670000

FORMAT f1 = #f4 -- displays for example 3.6700

FORMAT f1 = #e4 -- displays for example 0.36700E1

15

HEADER

Purpose

The HEADER instruction specifies the name and version of the module under test as well as the
version number of the test script.

Syntax

HEADER <module_name>, <module_version>, <test_plan_version>

<module_name>, <module_version> and <test_plan_version> are character strings with no restrictions,
except for versions beginning with a dollar sign ('$'). These instructions must be followed by an
identifier.

Description

This information contained in the HEADER keyword is reproduced in the test report header to
identify the test sequence.

The module and test script versions can be read from the environment variables if they are
identifiers beginning with a dollar sign ($).

The HEADER instruction is mandatory, but its arguments are optional. It must be the first
instruction in the test program. If it is absent, a warning message is generated.

Example
HEADER histo, 01a, 01a

BEGIN

16

IF ... ELSE ... END IF

Syntax

IF <condition> { , <condition> }

ELSE

END IF

Description

The IF, ELSE and END IF statements allow conditional generation of the test program.

These statements enclose portions of script that are included depending on the presence of one of
the conditions in the list provided to the C Test Compiler by the -define option.

The <condition> list forms a series of conditions that is equivalent to using an expression of logical
ORs.

The IF instruction starts the conditional generation block.

The END IF instruction terminates this block.

The ELSE instruction separates the condition block into 2 parts, one being included when the other
is not.

Associated Rules

This block of instructions can appear anywhere in the test program.

<condition> is any identifier. You must have at least one condition in an IF instruction.

This block can contain any scripting or native language.

IF and END IF instructions must appear simultaneously.

The ELSE instruction is optional.

The generating rules are as follows:

• If at least one of the conditions specified in the IF instruction's list of conditions appears in the
list associated with the -define option, the first part of the block is included.

• If none of the conditions specified in the IF instruction appears in the list associated with the -
define option, then the second part of the block is included (if ELSE is present).

The IF...ELSE...END IF block is equivalent to the following block in C:
#if defined(<condition>) { || defined(<condition>) } ...

...

#else

...

#endif

Example
IF test_on_target

 VAR register, init == , ev = 0

ELSE

 VAR register, init = 0 , ev = 0

END IF

17

INCLUDE

Syntax

INCLUDE CODE <file>

INCLUDE PTU <file>

Description

The INCLUDE specifies an external file for the C Test Compiler to process.

When an INCLUDE instruction is encountered, the C Test Compiler leaves the current file, and
starts pre-processing the specified file. When this is done, the C Test Compiler returns to the
current file at the point where it left.

Including a file with the additional keyword CODE lets you include a source file without having to
start each line with a hash character ('#').

Including a file with the additional keyword PTU lets you include a test script within a test script.
In this case, included .ptu test scripts must not contain BEGIN or HEADER statements.

Associated Rules

The name of the included file can be specified with an absolute path or a path relative to the
current directory.

If the file is not found in the current directory, all directories specified by the -incl option are
searched when the preprocessor is started.

If it is still not found or if access is denied, an error is generated.

The instruction INCLUDE CODE <file> inserts the entire file into the generated source code. A
workaround to this is to use the following line in C:
 ##include "<file>"

Example
INCLUDE CODE file1.c

INCLUDE CODE ../file2.c

INCLUDE PTU /usr/foo/test/file3.ptu

18

INITIALIZATION ... END INITIALIZATION

Syntax

INITIALIZATION

END INITIALIZATION

Description

The INITIALIZATION and END INITIALIZATION statements let you provide native code that
is integrated into the generation as the first native instructions of the test program (first lines of
main).

In some environments, such as if you are using a different target machine, this provides a way to
initialize the target.

Associated Rules

An INITIALIZATION block must appear after the BEGIN instruction or between two SERVICE
blocks.

This block can only contain native code. This code must begin with '#' or '@'.

There is no limit to the number of INITIALIZATION blocks. On generation, they are concatenated
in the order in which they appeared in the test script.

19

NEXT_TEST

Syntax

NEXT_TEST [LOOP <nb>]

where:

• <nb> is an integer expression strictly greater than 1.

Description

The NEXT_TEST instruction allows you to repeat a series of test contained within a previously
defined TEST block.

It contains one more ELEMENT block. It does not contain the FAMILY instruction.

For this new test, a number of iterations can be specified by the keyword LOOP.

The NEXT_TEST instructions can only appear in a TEST ... END TEST block.

The main difference between a NEXT_TEST block and an ELEMENT block is when you use an
INIT IN statement within a test block:

• If the INIT IN is in a TEST block, there will be a loop over the entire TEST block, without
consideration of the ELEMENT blocks that it might contain.

• If the INIT IN is inside a NEXT_TEST block however, the loop will not affect the ELEMENT
blocks within other TEST blocks

Example
SERVICE COMPUTE_HISTO

int x1, x2, y1, y2 ;

int status ;

T_HISTO histo;

 TEST 1

 FAMILY nominal

 ELEMENT

...

 END ELEMENT

 NEXT_TEST LOOP 2

 ELEMENT

20

SERVICE ... END SERVICE

Syntax

SERVICE <service_name>

END SERVICE

Description

The SERVICE instruction starts a SERVICE block. This block contains the description of all the
tests relating to a given service of the module to be tested.

The <service_name> parameter flags the tested service in the test report, and is therefore usually the
name of this service (although this is not obligatory).

The END SERVICE instruction indicates the end of the service block.

Associated Rules

The SERVICE instruction must appear after the BEGIN instruction.

The <service_name> parameter can be any identifier. It is obligatory.

Example
BEGIN

SERVICE COMPUTE_HISTO

int x1, x2, y1, y2 ;

int status ;

T_HISTO histo;

 TEST 1

 FAMILY nominal

21

SIMUL ... ELSE_SIMUL ... END SIMUL

Purpose

The SIMUL, ELSE_SIMUL, and END SIMUL instructions allow conditional generation of test
script program.

Syntax

SIMUL

ELSE_SIMUL

END SIMUL

Description

Code enclosed within a SIMUL block is conditionally generated depending on the status of the
Simulation setting in Test RealTime.

The SIMUL instruction starts the conditional generation block.

The END SIMUL instruction terminates this block.

The ELSE_SIMUL instruction separates this block into two parts, one being included when the
other is not, and vice versa.

This block of instructions can appear anywhere in the test program and can contain both scripting
instructions or native code.

The SIMUL and END SIMUL instructions must appear as a pair. One cannot be used without the
other.

The ELSE_SIMUL instruction is optional.

When using Test RealTime in the command line interface, use the -nosimulation option to
deactivate the simulation setting in the C Test Script Compiler.

When using the Test RealTime user interface, select or clear the Simulation option in the
Component Testing for C tab of the Configuration Settings dialog box.

The generating rules are as follows:

• If Simulation is enabled => the first part of the SIMUL block is included.

• If Simulation is disabled => the second part of the block (ELSE_SIMUL) is included if it exists.
If there is no ELSE_SIMUL statement, then the SIMUL block is ignored.

Example
SIMUL

 #x = 0;

ELSE_SIMUL

 #x = (type_x *) malloc (sizeof(*x));

END SIMUL

...

SIMUL

VAR x , INIT = 0 , EV = 1

VAR p , INIT = NIL , EV = NONIL

ELSE_SIMUL

VAR x , INIT = 0 , EV = 0

VAR p , INIT = NIL , EV = NIL

END SIMUL

22

STUB

Purpose

The STUB instruction for C describes all calls to a simulated function in a test script.

Syntax

STUB [<stub_name>.] <function> [<call_range> =>] ([<param_val> {,
<param_val> }]) [<return_val>] {, [<call_range> =>] ([<param_val>
{, <param_val> }]) [<return_val>] }

Description

The following is described for every parameter of this function and for every expected call:

• For _in parameters, the values passed to the function; these values will be stored and then
tested during execution,

• For _out parameters and, where appropriate, the return value, the values returned by the
function; these values will be stored in order to be returned during execution,

• For _inout parameters, both the previous two values are required,

• For _no parameters, any parameter is ignored.

The optional <call_range> describes one or several successive calls as follows:
<call_num> =>

<call_num> .. <call_num> =>

others =>

where <call_num> is the number of the stub call. The keyword others describes any further calls
that have not been described. Moreover, this key word allows to not check the sub call number. A
<call_num> value of 0 means that there are no calls.

If no call <call_range> is specified, then the others => call range applies.

<function> is the name of the simulated function. It is obligatory. You must previously have
described this function in a DEFINE STUB ... END DEFINE STUB block. You can specify in which
stub (<stub_name>) the declaration was made.

<param_val> is an expression describing the test values for _in parameters and the returned values
for _out parameters. For _inout parameters, <param_val> is expressed in the following way:

(<in_param_val>, <out_param_val>)

<return_val> is an expression describing the value returned by the function if its type is not void.
Otherwise, no value is provided.

You must give values for every _in, _out and _inout parameter; otherwise, a warning message is
generated. You must not give a value for any _no parameters; otherwise, a warning message is
generated.

<param_val> and <return_val> are expressions that can contain:

• Numeric (integer or floating-point), character, or character string literal values. Strings can be
delimited by single or double inverted commas

• Constants which can be numeric, characters, or character strings

• Constants defined in the test script

• Variables belonging to the test program or the module to be tested

• C functions

• The keyword NIL to designate a null pointer

23

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where In is the current index of the nth dimension of the
parameter and Jm the current number of the subtest generated by the test scenario's mth INIT
IN, INIT FROM or LOOP; the I and I1 variables are therefore equivalent as are J and J1; the
subtest numbers begin at 1 and are incremented by 1 at each iteration

• An expression with one or more of the above elements combined using any of the C operators
(+, -, *, /, %, &, |, ^, &&, ||, <<, >>) and casting, with all required levels of parentheses, and
conforming to C rules of syntax and semantics, the + operator being allowed to concatenate
character string variables

• For arrays and structures, a list of expressions between braces ('{' and '}') or brackets ('[' and ']')
with, where appropriate:

• For an array element, part of an array or a structure field, its index, interval or name followed
by '=>' and by the value of the array element, common to all elements of the array portion or
structure field

• The keyword others (written in lower case) followed by '=>' and the default value of any array
elements or structure fields not yet mentioned.

You must describe at least one call in the STUB instruction. There can be several descriptions,
separated by commas (','). STUB instructions can appear in ELEMENT or ENVIRONMENT
blocks.

Type Modifier '@' Syntax

In a STUB definition you can use a @ before a type modifier to indicate that this type modifier
should be used when generating variable that test the correct execution of STUBs. For example:
DEFINE STUB Example

#void ConstParam (@const int _in *a);

END DEFINE

Without the @ symbol, the variables are of const int type and therefore are not modified by the test
harness.

Example
STUB open_file ("file1")3

STUB create_file ("file2")4

STUB read_file (3,"line 1")1, (3,"line 2")1, (3,"")0

STUB write_file (4,"line 1")1, (4,"line 2")1

STUB close_file 1=>(3)1, 2=>(4)1

24

TERMINATION ... END TERMINATION

Syntax

TERMINATION

END TERMINATION

Description

The TERMINATION and END TERMINATION instructions delimit a block of native code that is
integrated into the generation process as the last instructions to be executed (last lines of main).

In certain environments (for example, a different target machine), these instructions terminate
execution on the target machine.

Associated Rules

A TERMINATION/END TERMINATION block must appear after the BEGIN instruction and
outside any SERVICE block.

This block can only contain native code. This code must begin with '#' or '@'.

There is no limit to the number of TERMINATION blocks. They are concatenated at generation.

25

TEST ... END TEST

Syntax

TEST <test_name> [LOOP <nb>]

END TEST

Description

The TEST instruction starts a TEST block. This block describes the test case for a service. It
contains one more ELEMENT blocks specifying the test.

In the test report, the <test_name> parameter flags the test within the SERVICE block. Tests are
usually given numbers in ascending order.

A number of iterations can be specified for each test with the optional LOOP keyword.

The TEST LOOP statement can generate graph metric results in a .rtx file. To do this, you must set
the environment variable ATURTX to True. The produced .rtx graph can be viewed in the Test
RealTime Graphic Viewer.

The END TEST instruction marks the end of the TEST block.

Associated Rules

The TEST and END TEST instructions can only appear in a SERVICE block.

<test_name> is obligatory. If it is absent, the Test Compiler generates an error message.

<nb> is an integer expression strictly greater than 1.

Example
SERVICE COMPUTE_HISTO

int x1, x2, y1, y2 ;

int status ;

T_HISTO histo;

 TEST 1

 FAMILY nominal

 ELEMENT

26

USE

Purpose

The USE instruction activates a test environment that is defined using the ENVIRONMENT
instruction.

Syntax

USE <name> [(<expression> { , <expression> })]

Description

The position of the USE instruction determines which tests are affected by the environment used:

• If USE occurs outside a SERVICE block, the instructions contained in this environment are
applied to all subsequent ELEMENT blocks.

• If USE occurs within a SERVICE block and outside a TEST block, the instructions contained in
this environment are applied to all subsequent ELEMENT blocks of this SERVICE block.

• If USE occurs within a TEST block and outside an ELEMENT block, the instructions contained
in this environment are applied to all subsequent ELEMENT blocks of this TEST block.

• If USE occurs within an ELEMENT block, the instructions contained in this environment will
only be applied to this block.

Because the USE instruction can appear at these four different levels, four priority levels are
created from "outside a SERVICE block" (the lowest priority) to "inside an ELEMENT block" (the
highest priority).

Within the same priority level, the last USE instruction is the one with the highest priority.

Testing is completed according to these priority rules, and on the basis that variables tested several
times are included in the environment with the highest priority.

This is also true for every element of arrays described in extended mode.

If the environment it references takes parameters, the USE instruction must initialize these
parameters using C expressions.

Associated Rules

The USE instruction can appear after BEGIN and outside an ENVIRONMENT block, after the
definition of the environment it references.

<name> is the name of an environment declared by the ENVIRONMENT instruction.

<expression> must be an expression that conforms to C syntax and semantics.

Example
ENVIRONMENT compute_histo

 VAR x1, init = 0, ev = init

 VAR x2, init = SIZE_IMAGE-1, ev = init

 VAR y1, init = 0, ev = init

 VAR y2, init = SIZE_IMAGE-1, ev = init

 ARRAY histo, init = 0, ev = 0

 VAR status, init ==, ev = 0

END ENVIRONMENT

USE compute_histo

27

VAR, ARRAY and STR

Purpose

The VAR, ARRAY, and STR instructions declare the test of a simple variable, a variable array or a
variable structure.

Syntax

VAR <variable>, [<format>], <initialization>, <expected_value>

ARRAY <variable>, [<format>], <initialization>, <expected_value>

STR <variable>, [<format>], <initialization>, <expected_value>

where:

• <variable> is a variable

• <format> optionally defines the format of the variable.

• <initialization> is a Component Testing initialization parameter for C

• <expected value> is a Component Testing expected_value parameter for C

Description

Use the VAR, ARRAY, and STR instructions to declare a variable test. During test execution, if the
value of the variable is out of the bounds specified in the <expected_value> expression, the test is
Failed.

The usage of VAR, ARRAY or STR does not change the behavior of the test, but each keyword
specify how the result is displayed in the test report. Use:

• VAR: for simple variables.

• ARRAY: for variable arrays.

• STR: for variable structures.

If you use a VAR statement to test an array or structure, the report lists each element of the array or
structure.

If you use a STR in an ENVIRONMENT block, then all elements of the structure are shown in the
report, regardless of whether the test passes or fails. If the STR is in an ELEMENT block, then only
the failed elements of the structure are displayed.

The VAR, ARRAY, and STR instructions must be located in an ELEMENT or an
ENVIRONMENT block.

Note Expressions must not use '--' or '++' operators, as these may be interpreted as
comments in some environments.

The optional <format> parameter allows you to modify the type of the tested element. This
parameter uses the same syntax as a the FORMAT statement. See FORMAT for more information.

In addition the following formats are available in a VAR, ARRAY, or STR statement only:

• pointer: Initialize and test as a pointer.

• string_ptr: Initialize as a pointer and test as a string.

• string: Initialize and test as a string.

Example
#char *ar;

#char *ar1;

28

#char ar2[50];

#unsigned char t;

VAR t, #h, init=200, ev =init -- display as hexadecimal

VAR ar1,string_ptr, init ="defg", ev =INIT -- init as a pointer and
test as a string

VAR ar2,string, init ="defgh", ev =INIT -- init and test as a string

VAR ar,pointer#b, init =0x12345678, ev =NONIL -- init and test as a
pointer and display in binary

29

VAR, ARRAY and STR <expected> Parameter

Purpose

In this documentation, the Component Testing <expected value> parameters for C specify the
expected value of a variable.

Syntax

EV = <exp>

EV = <exp> , DELTA = <delta>

MIN = <exp>, MAX = <exp>

EV IN { <exp>, <exp>, ... }

EV (<variable>) IN { <exp>, <exp>, ... }

EV ==

where:

• <exp> can be any of the expressions of the Initialization Parameters, plus the following
expressions:

• <delta> is the acceptable tolerance of the expected value and can be expressed:

• <variable> is a C variable

Description

The <expected value> expressions are used to specify a test criteria by comparison with the value of
a variable. The test is considered Passed when the actual value matches the <expected value>
expression.

The EV value is calculated during the preprocessing phase, not dynamically during test execution.

An acceptable tolerance <delta> can be expressed:

• As an absolute value, by a numerical expression in the form described above

• As a percentage of the expected value. Tolerance is then written in the form <exp>%.

Expected values can be expressed in the following ways:

• EV = <exp> specifies the expected value of the variable when it is known in advance. The value
of variable is considered correct if it is equal to <exp>.

• EV = <exp>, DELTA = <tolerance> allows a tolerance for the expected value. The value of
variable is considered correct if it lies between <exp> - <tolerance> and <exp> + <tolerance>.

• MIN = <exp> and MAX = <exp> specify an interval delimited by an upper and lower limit. The
value of the variable is considered correct if it lies between the two expressions. Characters
and character strings are treated in dictionary order.

• EV IN { <exp>, <exp>, ... } specifies the values expected successively, in accordance with the
initial values, for a variable that is declared in INIT IN. It is therefore essential that the two lists
have an identical number of values.

• EV (<variable>) IN is identical to EV IN, but the expected values are a function of another
variable that has previously been declared in INIT IN. As for EV IN, the two lists must have an
identical number of values.

• EV == allows the value of <variable> not to be checked at the end of the test. Instead, this value
is read and displayed. The value of <variable> is always considered correct.

30

Expressions

The initialization expressions <exp> can be among any of the following values:

• Numeric (integer or floating-point), character, or character string literal values. Strings can be
delimited by single or double quotes

• Native constants, which can be numeric, characters, or character strings

• Variables belonging to the test program or the module to be tested

• C or Ada functions

• The keyword NIL to designate a null pointer

• The keyword NONIL, which tests if a pointer is non-null

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where In is the current index of the nth dimension of the
parameter and Jm the current number of the subtest generated by the test scenario's mth INIT
IN, INIT FROM or LOOP; the I and I1 variables are therefore equivalent as are J and J1; the
subtest numbers begin at 1 and are incremented by 1 at each iteration

• A C or Ada expression with one or more of the above elements combined using any operators
and casting, with all required levels of parentheses, the + operator being allowed to
concatenate character string variables

• For arrays and structures, any of the above-mentioned expressions between braces ('{}') for C,
including when appropriate:

• For an array element, part of an array or a structure field, its index, interval or name followed
by '=>' and by the value of the array element, common to all elements of the array portion or
structure field

• For structures you can test some fields only, by using the following syntax:

• {<value>,,<value>}

• The keyword others (written in lower case) followed by '=>' and the default value of any array
elements or structure fields not yet mentioned.

• The pseudo-variable INIT, which copies the initialization expression

Additional Rules

EV with DELTA is only allowed for numeric variables.

MIN = <exp> and MAX = <exp> are only allowed for alphanumeric variables that use
lexicographical order for characters and character strings.

MIN = <exp> and MAX = <exp> are not allowed for pointers.

Only EV = and EV == are allowed for structured variables.

In some cases, in order to avoid generated code compilation warnings, the word CAST must be
inserted before the NIL or NONIL keywords.

Example
VAR x, ..., EV = pi/4-1

VAR y[4], ..., EV IN { 0, 1, 2, 3 }

VAR y[5], ..., EV(y[4]) IN { 10, 11, 12, 13 }

VAR z.field, ..., MIN = 0, MAX = 100

VAR p->value, ..., EV ==

ARRAY y[0..100], ..., EV = cos(I)

ARRAY y, ..., EV = {50=>10,others=>0}

STR z, ..., EV = {0, "", NIL}

31

STR *p, ..., EV = {value=>4.9, valid=>1}

32

VAR, ARRAY and STR <variable> Parameter

Description

In the current documentation, the Component Testing <variable> parameter for C is a conventional
notation name for a C variable under test. The syntax of the <variable> parameter allows you to
specify the upper and lower boundaries of the range of the test for each dimension of the array:

[<lower> .. <upper>]

where:

• <lower> is lower boundary for acceptable values of <variable>

• <upper> is the upper boundary for acceptable values of <variable>

Associated Rules

<variable> can be a simple variable (integer, floating-point number, character, pointer or character
string), an element of an array or structure, part of an array, an entire array, or a complete
structure.

If no test boundaries have been specified for a variable array, all array elements are tested.
Similarly, if one of the fields of a variable structure is an array, all elements of this field are tested.

The variable must have been declared in advance.

Example
VAR x, ...

VAR y[4], ...

VAR z.field, ...

VAR p->value, ...

ARRAY y[0..100], ...

ARRAY y, ...

STR z, ...

STR *p, ...

33

VAR, ARRAY and STR <initialization> Parameter

Purpose

In this documentation, the Component Testing <initialization> parameters for C specify the initial
value of the variable.

Syntax

INIT = <exp>

INIT IN { <exp>, <exp>, ... }

INIT (<variable>) WITH { <exp>, <exp>, ... }

INIT FROM <exp> TO <exp> [STEP <exp> | NB_TIMES <nb> | NB_RANDOM
<nb>[+ BOUNDS]]

INIT ==

where:

• <exp> is an expression as described below.

• <nb> is an integer constant that is either literal or derived from an expression containing native
constants

• <variable> is a C variable

Description

The <initialization> expressions are used to assign an initial value to a variable. The initial value is
displayed in the Component Testing report for C.

The INIT value is calculated during the preprocessing phase, not dynamically during test
execution.

Initializations can be expressed in the following ways:

• INIT = <exp> initializes a variable before the test with the value <expression>.

• INIT IN { <exp> , <exp> , ...} declares a list of initial values. This is a condensed form of writing
that enables several tests to be contained within a single instruction.

• INIT (<variable>) WITH { <exp> , <exp> , ...} declares a list of initial values that is assigned in
correlation with those of the variable initialized by an INIT IN instruction. There must be the
same number of initial values.

The INIT IN and INIT (<variable>) WITH expressions cannot be used with for arrays that were
initialized in extended mode or for structures.

• INIT FROM <lower> TO <upper> allows the initial value of a numeric variable (integer or
floating-point) to vary between lower and upper boundary limits:

• STEP: the value varies by successive steps

• NB_TIMES <nb>: the value varies by a number <nb> of values that are equidistant between the
two boundaries, where <nb> >= 2

• NB_RANDOM <nb>: the value varies by generating random values between the 2 boundaries,
including, when appropriate, the boundaries, where <nb> >= 1

The INIT FROM expression can only be used for numeric variables.

The STEP syntax cannot be used when the same variable is tested by another VAR, ARRAY or STR
statement.

34

• INIT == allows the variable to be left un-initialized. You can thus control the values of
variables that are dynamically created by the service under test. The initial value is displayed
in the test report as a question mark (?).

An initialization expression can still be used (INIT == <expression>) to include of expected value
expression when using the INIT pseudo-variable is used. See Expected_Value Expressions.

Expressions

The initialization expressions <exp> can be among any of the following values:

• Numeric (integer or floating-point), character, or character string literal values. Strings can be
delimited by single or double quotes

• Native constants, which can be numeric, characters, or character strings

• Variables belonging to the test program or the module to be tested

• C or Ada functions

• The keyword NIL to designate a null pointer

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where In is the current index of the nth dimension of the
parameter and Jm the current number of the subtest generated by the test scenario's mth INIT
IN, INIT FROM or LOOP; the I and I1 variables are therefore equivalent as are J and J1; the
subtest numbers begin at 1 and are incremented by 1 at each iteration

• A C or Ada expression with one or more of the above elements combined using any operators
and casting, with all required levels of parentheses, the + operator being allowed to
concatenate character string variables

• For arrays and structures, any of the above-mentioned expressions between braces ('{}') for C
or brackets ('[]') for Ada, including when appropriate:

• For an array element, part of an array or a structure field, its index, interval or name followed
by '=>' and by the value of the array element, common to all elements of the array portion or
structure field

• For structures you can test some fields only, by using the following syntax:

• For C: {<value>,,<value>}

• For all languages: [<fieldname> => <value>, <fieldname> => <value>]

• The keyword others (written in lower case) followed by '=>' and the default value of any array
elements or structure fields not yet mentioned

• For INIT IN and INIT WITH only, a list of values delimited by braces ('{}') for C composed of
any of the previously defined expressions

Additional Rules

Any integers contained in an expression must be written either in accordance with native lexical
rules, or under the form:

• <hex_integer>H for hexadecimal values. In this case, the integer must be preceded by 0 if it
begins with a letter

• <binary_integer>B for binary values

The number of values inside an INIT IN parameter is limited to 100 elements in a single VAR
statement.

The number of INIT IN parameters per TEST LOOP block is limited to 7.

The number of INIT IN parameters per TEST block is limited to 8.

35

Example
VAR x, INIT = pi/4-1, ...

VAR y[4], INIT IN { 0, 1, 2, 3 }, ...

VAR y[5], INIT(y[4]) WITH { 10, 11, 12, 13 }, ...

VAR z.field, INIT FROM 0 TO 100 NB_RANDOM 3, ...

VAR p->value, INIT ==, ...

ARRAY y[0..100], INIT = sin(I), ...

ARRAY y, INIT = {50=>10,others=>0}, ...

STR z, INIT = {0, "", NIL}, ...

STR *p, INIT = {value=>4.9, valid=>1}, ...

36

Command line interface

The Component Testing for C feature of Test RealTime provides a unique, fully automated, and
proven solution for applications written in C, dramatically increasing test productivity.

37

C Source Code Parser - attolstartC

Purpose

When creating a new Component Testing test campaign for C, the C Source Code Parser creates a
C test script template based on the analysis of the source code under test.

Syntax

attolstartC <source_file> <test_script> [{<-option>}]

attolstartC <source_file> -metrics [{<-option>}]

attolstartC @<option file >

where:

• <source under test> this required parameter is the name of the source file to be tested.

• <test script> is the name of the test script that is generated

• <options> is a list of options as defined below.

• <option file> is the name of a plain-text file containing a list of options.

Description

The C Source Code Parser analyzes the source file to be tested in order to extract global variables
and testable functions.

Each global variable is automatically declared as external, if this has not already been done at the
beginning of the test script. Then, an environment is created to contain all these variables with
default tests. This environment has the name of the file (without the extension).

For each function under test, the generator creates a SERVICE which contains the C declaration of
the variables to use as parameters of the function.

Parameters passed by reference are declared according to the following rule:

• char* <param> causes the generation of char <param>[200]

• <type>* <param> causes the generation of <type> <param> passing by reference

It is sometimes necessary to modify this declaration if it is unsuitable for the tested function, where
<type>* <param> can entail the following declarations:

• <type>* <param> passing-by-value,

• <type> <param> passing-by-reference,

• <type> <param>[10] passing-by-reference.

File names can be related or absolute.

If the generated file name does not have an extension, the C Source Code Parser automatically
attaches .ptu or the extension specified by the ATTOLPTU environment variable. This name may
be specified relatively, in relation to the current directory, or as an absolute path.

If the test script cannot be created, the C Source Code Parser issues a fatal error and stops.

If the test script already exists, the previous version is saved under the name <generated test
script>_bck and a warning message is generated.

When the -metrics option is specified, the Source Code Parser produces static metrics for the
specified source files. In this case, no other output is produced.

 Options

Options can be in any order. They may be upper or lowercase and can be abbreviated to their
shortest unambiguous number of characters.

38

If attolstartC is invoked without parameters, the binary returns a list of options. Some of those
options are deprecated and listed only for legacy purposes.

 Included Files

-insert

With this option the source file under test is included into the test script with an #include directive,
ensuring that all the internal functions and variables (declared static) are visible to the test script.
The C Source Code Parser adds the #include directive before the BEGIN instruction and after any
#includes added by the -use option.

-use=<file used>{[,<file used>]}

This option gives the C Source Code Parser a list of header files to include in the test script before
the BEGIN instruction. This avoids declaring variables or functions that have already been
declared in a C header file of the application under test.

The C Source Code Parser adds the #include directive before the BEGIN instruction. Then, for each
file, an environment is created, containing all variables with a default test. This environment has
the name of the included file.

By default, no files are included in the test script.

 Integrated Files

-integrate=<additional file>{[,<additional file>]}

This option provides a list of additional source files whose objects are integrated into the test
program after linking.

The C Source Code Parser analyzes the additional files to extract any global variables that are
visible from outside. For each global variable the Parser declares an external variable and creates a
default test which is added to an environment named after the corresponding additional file.

By default, any symbols and types that could be exported from the source file under test are
declared again in the test script.

 Simulated Files

-simulate=<simulated file>{[,<simulated file>]}

This option gives the C Source Code Parser a list of source files to simulate upon execution of the
test. List elements are separated by commas and may be specified relatively, in relation to the
current directory, or as an absolute path.

The Parser analyzes the simulated files to extract the global variables and functions that are visible
from outside. For each file, a DEFINE STUB block, which contains the simulation of the file's
external global variables and functions, is generated.

By default, no simulation instructions are generated.

Static Metrics

-metrics=<output directory>

Generates static metrics for the specified source files. Resulting .met static metric files are produced
in specified <output directory>. When the -metrics option is used, no other action is performed by
the Source Code Parser.

-one_level_metrics

For use with the -metrics option only. When the -metrics option is used, by default, the calculation
of static metrics is applied to the specified source files, and extended to any files included in those
source files. Use the -one_level_metrics option to ignore included files when calculating static
metrics.

-restrict_dir_metrics <directory>

39

For use with the -metrics option only. Use the the -restrict_dir_metrics option to calculate static
metrics of the specified source files, extended to any files included in those source files but limited
to those files located in the specified <directory>.

 Other Options

-studio_log

This option is for internal usage only.

 Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

40

C Test Script Compiler - attolpreproC

Purpose

The C Test Script Compiler tool pre-processes a .ptu test script and converts it into a native source
code test harness.

Syntax

attolpreproC <test_script> <generated_file> [<target_directory>]
{[<-options>]}

attolpreproC @<option_file>

where:

• <test_script> is a required parameter that specifies the name of the test program to be
generated.

• <generated_file> is a required parameter that specifies the name of the test harness that is
generated from the test script.

• <target_directory> is an optional parameter. It specifies the location where Component Testing
for C will generate the trace file. By default, the trace file is generated in the workspace
directory.

• <options> is a set of optional command line parameters as specified in the following section.

• <option_file> is the name of a plain-text file containing a list of options.

Description

Options can be in any order. They may be upper or lowercase and can be abbreviated to their
shortest unambiguous number of characters.

Source File Under Test

-source=<source file>

This option specifies the name of the source file being tested, allowing the Test Script Compiler to:

• Maintain the source file name in the table of correspondence files so that the Test Report
Generator can display this name in the header of the results obtained file.

• Establish the list of include files in the tested source file.

The name of the tested source file may be specified with a relative or absolute directory in a syntax
recognized by the operating system, or, in UNIX, by an environment variable.

By default, the list of include files in the tested source file and the source file name are not
displayed in the Results Obtained file.

Condition Definition

-define=<ident>[=<value>] {[,<ident>[=<value>]}

This option specifies conditions to be applied when the Test Script Compiler starts. These
conditions allow you to define C symbols that apply conditions to the generation of any IF ... ELSE
... END IF blocks in the test script.

If the option is used with one of the conditions specified in the IF instruction, the IF ... ELSE block
(if ELSE is present) or the ELSE ... END IF block (if ELSE is not present) is analyzed and generated.
The ELSE ... END IF block is eliminated.

If the option is not used or if none of the conditions specified in the IF instruction are satisfied, the
ELSE ... END IF block is analyzed and generated.

All symbols defined by this option are equivalent to the following line in C

41

-define <ident> [<value>]

By default, the ELSE ... END IF blocks are analyzed and generated.

Specifying Tests, Families, and Services

-test=<test>{[,<test>]} | -extest=<test>{[,<test>]}

This option specifies a list of tests to be executed.

Use -test to only generate the source code related to the specified tests, and -extest to specify the
tests for which you do not want to generate source code.

Both -test and -extest cannot be used together.

By default, all tests are selected.

-family=<family>{,<family>} | -exfamily=<family>{,<family>}

Use -family to only generate the source code related to the specified families, and -exfamily to
specify the families for which you do not want to generate source code.

Both -family and -exfamily cannot be used together.

By default, all families are selected.

-service=<service>{[,<service>]} | -
exservice=<service>{[,<service>]}

Use -service to only generate the source code related to the specified services, and -exservice family
to specify the services for which you do not want to generate source code.

Both -service and -exservice cannot be used together.

By default, all services are selected.

Test Script Parsing

-fast | -nofast

The -fast option tells the C Test Script Compiler to analyze only those tests that you want to
generate. This setting considerably speeds up the Test Script Compiler when you use the -service,-
exservice,-family, -exfamily,-test, or -extest options.

The -fast option is selected by default.

If you want a full test script analysis, this option can be de-selected using the -nofast option.

-noanalyse

This option disables the native language parser.

By default, native language lines are analyzed. This option enables you to disable this parsing.

-noedit

This option limits unit test code generation to the initialization of variables, making it possible to
generate tighter code for special purposes such as debugging. If you specify the -noedit option, you
cannot generate a test report.

By default, code is generated normally.

-nopath

Use this option if you do not want to generate long pathnames on the open and close execution
trace file call, and on the Target Deployment Port header file include directive. This can be useful,
for example, to preserve memory on embedded targets.

By default, full pathnames are generated.

-nosimulation

42

This option determines the conditional generation related to simulation in the source file generated
by the Test Script Compiler. Blocks delimited by the keywords SIMUL ... ELSE_SIMUL ... END
SIMUL can be included in the test scripts.

See SIMUL blocks in the C Test Script Language Reference.

-restriction=ANSI | KR | NOEXCEPTION | NOIMAGE | NOPOS | SEPAR

This option lets you modify the behavior of test script parser.

• ANSI enables C native code to be analyzed according to the ANSI standard (C only).

• KR enables C native code to be analyzed according to the KERNIGHAN & RITCHIE version 2
standard (C only).

• noexception: tells the Test Script Compiler to skip EXCEPTION blocks when generating a test
harness. This allows the use of compilers that do not implement exception handling. By
default, EXCEPTION blocks are generated in the test program.

• noimage: initialization, expected, and obtained values display as integers instead of character
strings. By default, reports are generated with IMAGE attributes.

• nopos: modifies the way enumerated variables are displayed in the test report by not
generating any POS or IMAGE attributes. Initialization and expected values are displayed as
they are written in the test script, whereas obtained values do not appear (although they are
tested). Use this option to save memory on restricted target platforms. By default, reports are is
generated with IMAGE attributes.

• separ: modifies the format of the generated test program. In place of a main procedure
including a sub-procedure for each service, the C Test Script Compiler generates one separate
procedure for each service. With this restriction, the Test Script Compiler generates several
compilation units and avoids overflow errors on compilation. By default, code is generated
normally.

Several -restriction options can be used on the same command line. The ANSI and KR parameters,
however, cannot be used together.

Other options

-STUDIO_LOG

This option is for internal usage only.

Using an Option File

@<parameter file>

This syntax allows the compiler to pass options to the preprocessor through a file. The parameter
file name can be written in absolute or relative format.

The format of the file must follow these rules:

• One or more options can occur per line.

• Each option must follow the same syntax as the command line version, with the character that
usually introduces the option being '-' under UNIX and '/' under Windows.

• You may not use both an option file and command line options.

By default, no file is taken into account.

If the option file is not found, a fatal error is generated and the preprocessor stops.

Example
attolprepro C add.ptu Tadd.cpp -service=add -test=1,2,3 -family=nominal

attolprepro CPP @add.opt

In this case, the parameter file add.opt would contains:

43

add.ptu Tadd.cpp

-service=add

-test=1,2,3

-family=nominal

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

These codes help you decide on a course of action once the Test Script Compiler has finished test
execution. For example, if the return code in the command file shows there have been incorrect
tests, you can save certain files in order to analyze them later.

All messages are sent to the standard error output device.

44

C Test Report Generator - attolpostpro

Purpose

The C Test Report Generator processes a trace file produced during test execution, and generates a
test report.

Syntax

attolpostpro <trace_filename> <report_filename> [<options>]

attolpostpro @<option file>

where:

• <trace_filename> specifies the root (filename without extension) of the trace file that is
generated when the program runs.

• <report_filename> specifies the name of the .rod compact report file produced by the Test
Report Generator.

• <options> can be any of the optional parameters specified below.

• <option_file> is the name of a plain-text file containing a list of options.

Description

The Test Report Generator uses <trace_filename> to find the names of both the .rio trace file and the
.tdc table of correspondence file that are generated by the Test Script Compiler.

If <report_filename> is provided without an extension, the Test Report Generator attaches .rod.

If either <trace_filename> or <report_filename> are omitted, the Test Report Generator produces an
error message and terminates.

If the either <trace_filename>.rio or <trace_filename>.tdc do not exist, cannot be read, or contain
synchronization errors, the Test Report Generator produces an error message and terminates.

If the Test Report Generator cannot create the .rod compact report file, generation of the report is
terminated. If the file already exists, the newly generated file replaces the existing report.

The .rod compact report file is an intermediate low-footprint format that can be stored on remote
targets. The .rod files must be converted to the .xrd report file format to be displayed by the Test
RealTime GUI with the rod2xrd command line tool.

Options

Options can be in any order. They may be upper or lowercase and can be abbreviated to their
shortest unambiguous number of characters.

-cio=<coverage result file>

This option allows you to insert coverage results in the report file. This option must be used only in
conjunction with the Code Coverage feature.

-compare[=strict]

This option lets you compare the results from two test runs. A trace file generated during the first
run has a .rio extension, and the one generated during the second run has a .ri2 extension.

When making a comparison, the Test Report Generator generates the test report from:

• The .tdc table of correspondence file

• The .rio trace file generated during the first run

• The .ri2 trace file generated during the second run

The same root name is used for the names of the three files.

45

When comparing values, a variable will only be deemed correct if the two obtained values are the
same as the expected value, or within the specified validity interval for that variable. With the
compare=strict option, the two results must have the same value.

-ra[=test | error]

This option specifies the form of the output report generated by the Test Report Generator.

Use -ra with no parameter, to display ALL test variables and mark any variables that are incorrect
for a given test. This option is used by default.

Use the -ra=test option to display ALL test variables, with incorrect variables marked. This option
provides a comprehensive display of variables for an incorrect test, which can prove useful in a
complex test environment.

Use -ra=error to to display only erroneous test variables.

For both -ra=test and -ra=error, if no errors are detected in the test, only general information about
the test is produced.

-va=eval | noeval | combined

This option lets you specify the way in which initial and expected values of each variable are
displayed in the test report.

Use -va=eval if you want the test report to show the initial and expected value of each variable
evaluated during execution of the test. This is only relevant for variables whose initial or expected
value expressions are not reducible in the test script.

Note: For arrays and structures in which one of the members is an array, the initial values are not evaluated. For
the expected values, only incorrect elements are evaluated.

Use -va=noeval if you want the test report to show the initial and expected values described in the
test script.

The -va=combined option combines both eval and noeval parameters. For each variable, the
Report Generator includes the initial and expected values described in the test script, as well as the
initial and expected values evaluated during execution, if these values differ.

By default, the -va=eval parameter is used.

-studio_log

This option is for internal usage only.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

46

Component Testing for C++

C++ test driver script (.otd)

Component Testing for C++ uses its own simple language for test driver scripting.

This section describes each keyword of the C++ test driver script language, including:

Syntax

• Functionality and rules governing its usage

• Examples of use

Notation conventions

Throughout this guide, command notation and argument parameters use the following standard
convention:

Notation Example Meaning

BOLD BEGIN Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } {<filenames>} Series of values

[{ }] [{<filenames>}] Optional series of variables

| on | off OR operator

C++ test driver script keywords are case insensitive. This means that STUB, stub, and Stub are
interpreted the same way.

For conventional purposes however, this document uses upper-case notation for the C++ test
driver script keywords in order to differentiate from native source code.

Split statements

C++ test driver script statements may be split over several lines in an .otd test script. Continued
lines must start with the ampersand ('&') symbol to be recognized as a continuation of the previous
line. No tabs or spaces should precede the ampersand.

Statements must be shorter than 2048 characters, although this limit may be lower on some
platforms.

Language identifiers

A C++ test script identifier is a text string used as a label, such as the name of a TEST or a STUB in
an .otd test script.

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

• 0-9

• _ (underscore)

47

Spaces are not valid identifier characters.

Note that identifiers starting with a numeric character are allowed. The following statement, for
example, is syntactically correct:
TEST CASE 1

{

..

}

C++ test driver script identifiers are case sensitive. This means that LABEL, label, and Label are
three different identifiers.

C++ test driver script structure

A Component Testing for C++ test driver script (.otd script) describes a test driver. Its purpose is to
stimulate the tested classes by creating objects and calling their methods. It provides different ways
to check that the objects behavior is the one that was expected.

When executed, the script is translated into a C++ source by Component Testing for C++.
Furthermore, it instruments the source code under test whenever the STUB, CHECK STUB, or
CHECK METHOD statements are used.

Order is meaningful for INCLUDE and native statements. RUN may appear only once in a C++
Test Driver script. Other entities are not ordered: for instance, a TEST CLASS can forward-
reference a STUB.

Note A C++ Test Driver script is made both of statements and instructions. Instructions are
ordered: their relative position is meaningful. Statements have no order: they have a
declarative nature.

Basic structure

A typical Component Testing .otd test script structure could look like this:
TEST CLASS TestAnyPhilosopher (Philosopher_type)

{

TEST CLASS TestNominal (Philosopher_type)

{

PROLOGUE

{

// Actions to be performed when entering this test class.

}

TEST CASE AssignForks

{

// CHECK statements

}

EPILOGUE

{

// Actions to be performed when leaving this test class.

}

RUN

{

// Runs the test cases

}

}

RUN

{

// Runs the test class

48

}

All instructions in a test script have the following characteristics:

• All statements begin with a keyword.

• Statements are not case sensitive (except when C expressions are used).

• Statements start at the beginning of a line and end at the end of a line. You can, however, write
an instruction over several lines using the ampersand (&) continuation character at the
beginning of additional lines. In this case, the ampersand must be the very first character on
that line; no spaces or tabs should precede it.

• Statements must be shorter than 2048 characters, although this limit may be lower on some
platforms.

Structure statements

The following statements allow you to describe the structure of a test.

• TEST CLASS: Describes an object test class, which is one of the structuring entities of a C++
test driver script. Test classes can appear at the root-level of a C++ Test Driver Script and in
test classes.

• PROLOGUE: Defines native code that is to be executed whenever the surrounding test class
execution begins. This code is executed before any other of the test class' components.

• TEST CASE: Describes an object test case, which is the smallest testing structure in a
hierarchical C++ test driver script. Test cases appear in test classes and test suites.

• EPILOGUE: Defines native code that is to be executed whenever the execution of the
surrounding test class ends. This code is executed after other test class components.

• RUN: Defines the behavior of the surrounding test class.

49

CALL

Purpose

The CALL instruction calls a procedure defined with a PROC statement.

Syntax

CALL <procedure name> [(<actual parameter> [(, <actual
parameter>)])] ;

Arguments

<procedure_name> is a valid procedure name, defined within a test class or test suite, or in an
inherited test class.

<actual_parameter> is an optional list of parameters that must conform to the expected procedure
parameter list.

Description

A CALL instruction can be located within a TEST CASE or PROC block.

Example
TEST CLASS TestA {

 PROC InitArray (array, length)

 {

 #{

 for (int i = 0; i<length; i++)

 array[i].init ();

 }#

 }

 TEST CASE tc1 {

 #Array<int> ia (50);

 CALL InitArray (ia, 49);
}

}

50

CHECK

Purpose

The CHECK instruction evaluates the Boolean value of a native expression.

Syntax

CHECK [<comment>] (<native expression>);

Arguments

<comment> is an optional string that appears in the test results.

<native expression> is a valid C++ expression, which may be converted into a Boolean.

Location

TEST CASE, PROC, STUB, CHECK STUB

Description

The CHECK instruction evaluates the native expression. If the result of the check is TRUE, the
result of the corresponding test is Passed. Otherwise, an error is generated. The result of the error
handling is specified with the ON ERROR keyword.

Example
TEST CLASS TestA {

 TEST CASE tc1 {

 CHECK (s.empty ());

 }

 RUN { tc1; }

}

51

CHECK EXCEPTION

Purpose

The CHECK EXCEPTION statement checks that an exception is raised within a block.

Syntax

CHECK EXCEPTION (<native type> [<native parameter name>]) ((
{ <on exception item>}) | ;)

Arguments

<native type> is the C++ type of the expected exception.

<native parameter name> is the optional name of the exception. It may also be used in <on exception
item>.

<on exception item> may be a COMMENT, a PRINT or a native-code statement.

Description

The CHECK EXCEPTION statement specifies that the exception of type <native type> is expected
to be raised in the current C++ Text Script Language block (test case or proc). If this exception is
not raised in the block, an error is generated.

Only one CHECK EXCEPTION may occur per block. A CHECK EXCEPTION can be located in a
TEST CASE or PROC block.

Example
TEST CASE TC1 {

 CHECK EXCEPTION (DivideByZeroException) {

 PRINT "ok";

 }

 #b = 1; c = 0;

 #a = b / c;

}

52

ON ERROR

Syntax

ON ERROR [{ <error item> }] <error action>;

Location

C++ Test Driver Script, TEST CLASS, TEST SUITE, TEST CASE, PROC

Description

The ON ERROR statement defines the behavior of the test driver when an error occurs.

ON ERROR applies to the current scope level, and to nested scopes, unless another ON ERROR
statement has been defined. The general rule is that the most nested ON ERROR statement is
applied.

Note An error can be raised by any instruction of a TEST CASE or a PROC, and by native code from a
PROLOGUE or EPILOGUE.

ON ERROR does not apply to stubs. There is always an implicit ON ERROR CONTINUE behavior
in stubs

<error item> may be one of the following entities:

• COMMENT

• PRINT

• Native statement

This block is executed when an error occurs.

<error action> is a keyword which defines the behavior of the test driver when an error occurs:

• CONTINUE : The execution continues just as if no error occurred. If the error comes from an
unexpected exception raised by native code, the execution continues after the native code,
except for an error in a PROLOGUE block. Since it is the default behavior, this on-error action
should only be specified to override another on-error action.

• EXIT : The execution of the test driver stops at the error point.

• BYPASS : The execution of the rest of the current test case or procedure is skipped.

• BYPASS <test class name> | <test suite name> | <test case name> | <proc name> : The
execution of the rest of the referred entity is skipped.

Example
ON ERROR CONTINUE;

TEST CLASS A {

 ON ERROR EXIT;

 TEST SUITE A1 {

 ON ERROR BYPASS A;

 TEST CASE A1a {

 ON ERROR CONTINUE;

 CHECK (false); // this leads to an error but
execution continues

 PRINT "ok"; // this instruction is executed

 }

 TEST CASE A1b {

 CHECK (false); // this leads to an error

53

 // execution resumes after TEST CLASS A
 PRINT "ko"; // this instruction is never executed

 }

 }

 TEST CASE A2 {

 CHECK (false); // this leads to an error -- the test driver
exits

 PRINT "ko"; // this instruction is never executed

 }

 RUN { A1; A2; }

}

TEST CLASS B {

 TEST CASE B1 {

 ON ERROR BYPASS;
 CHECK (false); // this leads to an error -- execution resumes after B1

 PRINT "ko"; // this instruction is never executed

 }

 TEST CASE B2 {

 CHECK (false); // this leads to an error but execution
continues

 PRINT "ok"; // this instruction is executed

 }

 RUN { B1; B2; B1; }

}

RUN { B; A; A.A2; }

In this example, the execution is: B1 (aborted), B2, B1 (aborted), A1a, A1b (A is aborted), A2
(exited).

54

PRINT

Syntax

PRINT (<expression> [(, <expression>)]);

Location

C++ Test Driver Script, TEST CASE, PROC, STUB, CHECK STUB, PROLOGUE, EPILOGUE, ON
ERROR, CHECK EXCEPTION

Description

The PRINT instruction outputs dynamic comments to the traces file. These comments are
displayed in the UML sequence diagrams and test reports produced by Component Testing for
C++.

<expression> is a valid C++ expression whose type must be handled by the Target Deployment Port
(handled types are scalar types, floating types, strings and pointers). <expression> is evaluated on
execution.

A PRINT instruction may generate an error when the evaluation of one of the arguments raises an
unexpected exception. Use the CHECK EXCEPTION statement to specify exceptions.

Example

Execution of the following test displays the string: "Adding element 12 at position 3". This string is
displayed as a note in the sequence diagram and in a tab in the test report.
TEST CASE tc1 {

pos = s.push(I);

PRINT ("Adding element ", I, " at position ", pos);

CHECK (!s.full ());

}

55

PROC

Syntax

PROC <procedure name> [(<formal parameter> [(, <formal
parameter>)])]

[REQUIRE (<native expression>)]

<procedure item>

[ENSURE (<native expression>)]

Location

TEST CLASS, TEST SUITE

Description

The PROC statement defines a procedure.

Note Procedures can be called with the CALL statement.

<procedure name> is a C++ Test Script Language identifier. It is visible in the surrounding test class
or test suite, in sub-test classes or sub-test suites, and in inheriting test classes.

<formal parameter> is a C++ Test Script Language identifier. It has no type: it is replaced into the
procedure by an actual parameter. Thus it can refer to a C++ type as well a C++ constant or a C++
variable.

<native expression> is a C++ expression that can be evaluated to a Boolean. The REQUIRE
expression is evaluated before execution of the procedure. The ENSURE expression is evaluated
after execution of the procedure. If any of these optional expressions is False, the evaluation leads to
an error in the caller's context.

<procedure item> may be one the following entities:

• CHECK EXCEPTION

• CHECK

• CHECK PROPERTY

• CALL

• CHECK STUB

• CHECK METHOD

• ON ERROR

• COMMENT

• PRINT

• Native statement

Order is meaningful, except for CHECK STUB, CHECK METHOD, and ON ERROR statements.

The ON ERROR statement may only appear once.

Example
TEST CLASS TestA {

 PROC InitArray (array, length)

 REQUIRE (length>30 && length<array.length())

 {

 #{

56

 for (int i = 0; i<length; i++)

 array[i].init ();

 }#

 }

 ENSURE (array[0].initialized())

}

57

PROLOGUE

Syntax

PROLOGUE { <prologue item>* }

Location

TEST CLASS | TEST SUITE

Description

The PROLOGUE statement defines native code that is to be executed whenever the surrounding
test class execution begins. This code is executed before any other of the test class' components.

The PROLOGUE statement may appear at most once in a test class. In an object-context, a prologue
can be compared to a constructor.

<prologue item> may be one of the following entities:

• COMMENT

• PRINT

• Native statement

Order is meaningful. The native code can be made of declarations and instructions. Variables
declared in prologue are visible from every component of the surrounding test class.

Note If the native code raises an exception, the prologue generates an error, handled by the
ON ERROR local block. Even if the ON ERROR statement is CONTINUE, the whole TEST
CLASS or TEST SUITE is skipped, including its EPILOGUE.

Example
TEST CLASS ATest
{

 PROLOGUE {
 #Stack s(20);
 #s.fill ();

 }

TEST CASE tc1 {

 CHECK (!s.full ());

}

RUN {

 tc1;

}

}

58

PROPERTY

Syntax

PROPERTY <property name> [(<parameter> [(, <parameter>)])]
{ ((<native expression>))}

Location

TEST CLASS, TEST SUITE

Description

The PROPERTY statement associates a global state, defined by the conjunction of <native
expression>, to a name. This name is visible in the TEST CLASS where the property is defined.

Note The occurrence of a property may be checked with the keyword CHECK PROPERTY.

<native expression> is a valid C++ expression that may be evaluated to a Boolean.

Example
TEST CLASS TestA {

 PROPERTY Empty { (s.count() == 0) }

 TEST CASE tc1 {

 CHECK PROPERTY Empty;

 }

 RUN { tc1; }

}

59

RUN

Syntax

RUN { <run item> }

Location

TEST CLASS, OTD Script

Description

The RUN statement defines the behavior of the surrounding test class.

<run item> may be one of the following entities:

• Test class name

• Test suite name

• Test case name

These names refer to a component defined in the surrounding test class or in an inherited test class.
Order is meaningful. They can refer to a nested item (the nesting sequence is specified with the list
of identifiers, from the most-surrounding to the most-nested one, separated by a dot).

The RUN statement can be located either within a TEST CLASS or at the root level of a C++ Test
Driver Script:

• When used in a TEST CLASS, the RUN statement defines the behavior of the surrounding
TEST CLASS.

• When used at the root level of a script, the RUN statement defines which entities are to be run
when the script is executed. The RUN items can refer to any entity of the script.

Only one RUN statement is allowed at the root of a script or within each TEST CLASS.

The RUN statement is not allowed in included scripts.

RUN items are executed sequentially.

Example
TEST CLASS ATest
{

TEST CASE tc1 {

 #s.push (i);

 CHECK (!s.full ());

}

TEST CASE tc2 {

 #s.pop ();

 CHECK (!s.empty ());

RUN {

 tc1; tc2; tc2; tc1;

}

}

60

STUB

Syntax

STUB <stub name> : <native routine signature>

[REQUIRE (<require native expression>)]

{<stub item>... <stub item>}

[ENSURE (<ensure native expression>)]

Location

C++ Test Driver Script

Description

The STUB statement defines a stub for a function or method. A stub defines or replaces the initial
routine.

Note The use of stubs requires instrumentation.

<stub name> is a unique C++ Test Script Language identifier.

<native routine signature> is a C++ signature matching the routine to stub. Unlike WRAP signatures,
the signature must be complete; the return type and parameters (type and name) must be specified.
If the routine is a class member or belongs to a namespace, its name must be qualified. If the
routine is a template function or a template class member, the usual template<...> prefix must be
used. If it is a generic template, any instance of this template is stubbed. If it is a template
specialization, only the corresponding instance is stubbed.

<require native expression> is a C++ expression that can be evaluated to a Boolean. It is evaluated
before the stub execution. It can refer to:

• The global variables defined in the test script.

• The stubbed routine's parameters.

<ensure native expression> is a C++ expression which can be evaluated to a Boolean. It is evaluated
after the stub execution. It can refer to:

• The global variables defined in the test script.

• The stubbed routine's parameters.

• The _ATO_result variable that contains the routine return value, if any. Its type is that of the
routine return type. Its value may be undefined if no value is returned (because an exception
was thrown, or a return without a value is executed, or the function implicitly returns).

• The _ATO_in_exception Boolean variable, which is True if the post-condition is executed
because an exception has been thrown. This variable is available only if the Target Deployment
Package is configured to support exceptions.

If one of these expressions is False, the stub is failed but not the CHECK STUB, which could still
have been defined to ensure the stub is called.

<stub item> may be one the following entities:

• CHECK

• COMMENT

• PRINT

• Native statement

The "..." zone is optional and is replaced by the code provided through the CHECK STUB
statement. If not specified, it is implicitly defined at the end of the STUB block.

61

You cannot define several stubs for the same method. However you can define a stub for each
instance of a template function or a template class member.

If a statement of the STUB generates an error, the stub is declared failed, but its execution
continues (there is always an implicit ON ERROR CONTINUE in stubs).

An error in a STUB does not imply an error in the TEST CASE containing the corresponding
CHECK STUB. The CHECK STUB statement only checks that the stub is called, not that its
execution is correct.

Example
STUB ModifyCell : int IntArray::Modify (int Cell)

REQUIRE (Cell != 128)

{

 #int Nb = random(10000);

 ... // this part is completed by the code of CHECK STUB

 #return (Nb);

}

In this example, a number Nb is randomly chosen. If no additional code is provided by a CHECK
STUB, then this number is returned. If a CHECK STUB is provided, assign the expected return
value to Nb on a case-by-case basis.

62

TEST CASE

Syntax

TEST CASE <test case name> { <test case item>}

Location

TEST CLASS, TEST SUITE

Description

The TEST CASE statement describes an object test case, which is the smallest testing structure in a
hierarchical C++ Test Driver Script. Test cases appear in test classes and test suites.

<test case name> is a C++ Test Script Language identifier.

<test case item> may be one of the following entities:

• ON ERROR

• CHECK EXCEPTION

• CHECK

• CHECK PROPERTY

• CHECK METHOD

• CHECK STUB

• CALL

• COMMENT

• PRINT

• Native statement

CALL, CHECK, CHECK PROPERTY, COMMENT, PRINT as well as Native statements are ordered
(they are executed sequentially). Other entities are not (they have a global effect on the test case).

ON ERROR and CHECK EXCEPTION may appear only once.

Example
TEST CLASS A {

 TEST CASE 1 {

 CHECK (x == 1);

 #do_something ();

 CHECK PROPERTY ok;

 }

 RUN {

 1;

 }

}

63

TEST CLASS

Syntax

TEST CLASS <test_class_name> [<formal_parameter> [,
<formal_parameter>]] [: <parent_class>] [<actual_parameter> [,
<actual_parameter>]] { <test_class_item>}

Location

C++ Text Driver Script, TEST CLASS

Description

The TEST CLASS statement describes an object test class, which is one of the structuring entities of
a C++ Test Driver Script. Test classes can appear at the root-level of a C++ Test Driver Script and in
test classes.

<test class name> is a C++ Test Script Language identifier.

<formal parameter> is a C++ Test Script Language identifier. It has no type: it is replaced into the test
class by an actual parameter. Thus it can refer to a C++ type as well a C++ constant or a C++
variable.

<actual parameter> is a C++ actual parameter.

<parent class> is a valid test class that is defined in the same scope that contains the TEST CLASS.
All entities of a parent class are inherited. This mean that they are available just as if they were
defined in <test class name> itself. The entities defined in the current test class with the same name
as in the parent class are said to override, or replace, the entities defined in the parent class.

<test class item> may be one of the following entities:

• TEST CLASS

• TEST SUITE

• TEST CASE

• ON ERROR

• PROPERTY

• PROC

• PROLOGUE

• EPILOGUE

• RUN

A test class scope has no order, so these entities can appear in any order. However ON ERROR,
EPILOGUE, PROLOGUE, and RUN may appear only once. The execution of a TEST CLASS
without a RUN statement will execute the class' PROLOGUE and EPILOGUE only.

Example
TEST CLASS AdvancedTest (T) : BasicTest
{

 PROLOGUE {
 #Stack s (20);

 }

 PROPERTYInitial { (s.count == 0) }

 PROPERTYFinal { (s.count == 1) }
TESTCASE tc1 {

 CHECK PROPERTY Initial;

64

 #s.push (1);

 CHECKPROPERTY Final;

 }

 RUN{

 tc1;

 }

 }

65

TEST SUITE

Syntax

TEST SUITE <test suite name> { <test suite item>}

Location

OTD script, TEST CLASS, TEST SUITE

Description

The TEST SUITE statement describes an Object test suite, which is one of the structuring entities of
an C++ Test Driver Script. Test suites can appear at the root-level of a C++ Test Driver Script, in
test classes, and in test suites.

<test suite name> is a C++ Test Script Language identifier.

<test suite item> may be one of the following entities:

• TEST SUITE

• TEST CASE

• ON ERROR

• PROPERTY

• PROC

• PROLOGUE

• EPILOGUE

All entities but TEST CASE are not ordered in a test suite scope. However, ON ERROR,
EPILOGUE, and PROLOGUE may appear only once. The test cases and test suites of a test suite are
executed sequentially.

Example
TEST SUITE ChargeTest {

 TEST CASE Test1

 {

 /... */

 }

 TEST SUITE Test2

 {

 TEST CASE SubTest2a

 {

 /... */

 }

 TEST CASE SubTest2b

 {

 /... */

 }

 }

}

66

REQUIRE

Syntax

REQUIRE <native expression>

Location

WRAP, STUB, PROC

Description

The REQUIRE statement describes a method pre-condition. It can be used in a WRAP, STUB or
PROC block.

Note The information below pertains to the use of REQUIRE within a WRAP block. For
more information about using the REQUIRE and ENSURE statement within a STUB or
PROC block, please refer to the STUB and PROC.

<native expression> is a C++ Boolean expression (or an expression that can be converted into a
Boolean), which can use:

• Any of the public or protected class members.

• The method parameters (with the names used in the signature or in the method definition).

• Any of the global variables declared in the file where the method is defined.

The following symbols cannot be used in the <native expression> parameter of the REQUIRE
statement:

• Local variables

• Macros

Evaluation

The <native expression> parameter of the REQUIRE statement is evaluated before any code of the
method is executed (local variables are not pushed yet).

Warning: you can call methods in <native expression>, but you must ensure that these calls do not
modify the object's state by writing to any field. You can ensure this by calling const methods only.

Example

C++ source code example:
class Stack {

 int count;

 Stack () : count(0) {}

 void push (void *);

 void *pop ();

};

OTC code example:
CLASS Stack {

 WRAP pop
REQUIRE (count > 0)

}

67

Native Code

Syntax

<single-line C++ code>

C++# <single-line C++ code>

#{ <multiple-line C++ code> }#

C++#{ <multiple-line C++ code> }#

Location

C++ Test Driver Script, PROLOGUE, EPILOGUE, TEST CASE, PROC, STUB, CHECK EXCEPTION

Description

<single-line C++ code> and <multiple-line C++ code> are made of one or several C++ statements.
They must conform to the syntax expected by the host compiler and must be relevant to the current
context.

Macros may be used, but it is recommended to define them only at the root-level of the C++ Test
Driver Script.

Native code is copied as is in the generated test driver source.

Only global declarations are allowed inside the C++ Test Driver Script.

Inside a PROLOGUE statement, the declaration's scope is that of the surrounding structure (TEST
CLASS or TEST SUITE). Elsewhere, the scope is local (visible from the declaration to the end of the
C++ Test Script Language block).

the sequence #} is different from }#:

• }# ends a multiple-line native code block started by #{.

• #} is a single-line native code made with the character "closing brace."

Warning: The use of return, goto, or any other jump instruction is not allowed in native code. If
jump instructions are used, unexpected results will occur.

Native code may generate an error when it raises an unexpected exception. Use the CHECK
EXCEPTION statement to specify exceptions.

Example
##include <myclass.h>

#{

 static int counter;

 extern void initialize (MyClass &);

 static const int MAX=200;

}#

TEST CLASS A {

 ON ERROR EXIT;

 PROLOGUE {

 #MyClass mc;

 #initialize (mc);

 #for (counter=0; counter < MAX; counter++) {

 }

 TEST CASE 1 {

 #void *temp;

 #temp = mc.create ();

68

 #mc.unref (temp);

 CHECK mc.empty ();

 }

 TEST CASE 2 {

 #{

 void *temp[MAX];

 for (int i = 0; i<counter; i++)

 {

 temp[i] = mc.create ();

 }

 for (int i = 0; i<counter; i++)

 {

 mc.unref (temp[i]);

 }

 CHECK mc.empty ();

 }#

 }

 EPILOGUE {

 #} //end of for

 }

}

RUN {

 A.1;

 A.2;

}

In this example, a loop is defined around the components of the test class A. The loop starts in
PROLOGUE, and ends in EPILOGUE. The execution of test class A will run nothing, because there
is no RUN statement in this test class. However, the two test cases may be run separately, as it is
shown in the above example.

The execution sequence is: A.PROLOGUE, A.1 (200 times), A.EPILOGUE, A.PROLOGUE, A.2 (200
times), A.EPILOGUE.

69

C++ contract check script (.otc)

Component Testing for C++ uses its own simple language for describing contracts.

This section describes each keyword of the C++ contract check language, including:

Syntax

• Functionality and rules governing its usage

• Examples of use

Notation conventions

Throughout this guide, command notation and argument parameters use the following standard
convention:

Notation Example Meaning

BOLD BEGIN Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } {<filenames>} Series of values

[{ }] [{<filenames>}] Optional series of variables

| on | off OR operator

C++ test driver script keywords are case insensitive. This means that STUB, stub, and Stub are
interpreted the same way.

For conventional purposes however, this document uses upper-case notation for the C++ contract
check script keywords in order to differentiate from native source code.

Split statements

C++ contract check script statements may be split over several lines in an .otc contract check script.
Continued lines must start with the ampersand ('&') symbol to be recognized as a continuation of
the previous line. No tabs or spaces should precede the ampersand.

Statements must be shorter than 2048 characters, although this limit may be lower on some
platforms.

Language identifiers

A C++ contract check identifier is a text string used as a label, such as the name of a TEST or a
STUB in an .otc contract check script.

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

• 0-9

• _ (underscore)

Spaces are not valid identifier characters.

Note that identifiers starting with a numeric character are allowed. The following statement, for
example, is syntactically correct:
CLASS 1

70

{

..

}

C++ test driver script identifiers are case sensitive. This means that LABEL, label, and Label are
three different identifiers.

C++ contract check script structure

A C++ Contract Check Script (.otc script) describes assertions for a set of classes. Each C++ class
can be associated to a Contract Check CLASS block. When built, the script instruments the source
code under test.

The scripts, being descriptions, are made of statements only. As a consequence, the order of
execution is irrelevant. There is no hierarchical structure.

The Contract Check CLASS block describes assertions for a C++ class.

Note The evaluation of the contract should not have any side effects. The contract
evaluation does not alter the state of the corresponding system. For more specific
information refer to REQUIRE, ENSURE, INVARIANT and STATE sections.

Basic structure

A typical Component Testing .otc contract check script structure looks like this:
CLASS VCR {

 STATE Empty {

 (media_present() == false)

}

 STATE Loaded {

 (media_present() == true)

 (mode () == m_stop;)

 }

 STATE Playing {

 (media_present() == true)

 (mode() == m_play || mode() == m_pause)

 }

 TRANSITION Empty TO Loaded;

 TRANSITION Loaded TO Playing;

 TRANSITION Playing TO Loaded;

 TRANSITION Playing TO Empty;

 TRANSITION Loaded TO Empty;

}

All instructions in a test script have the following characteristics:

• A CLASS block contains all the assertions for a C++ class.

• All statements begin with a keyword.

• Statements are not case sensitive (except when C expressions are used).

• Statements start at the beginning of a line and end at the end of a line. You can, however, write
an instruction over several lines using the ampersand (&) continuation character at the
beginning of additional lines. In this case, the ampersand must be the very first character on
that line; no spaces or tabs should precede it.

• Statements must be shorter than 2048 characters, although this limit may be lower on some
platforms.

71

Inheritance

Contracts are divided into several semantic parts:

• State machine

• List of invariants

• Pre-conditions

• Post-conditions

Each of these parts can be inherited in separate ways in derived classes, unless a matching part has
been found in the derived class.

If you specify invariants for a class, they override the invariants defined for any base class.
Similarly, a state machine description for a class overrides any state machine definition inherited
from a base class.

If a class inherits from several base classes for which a class contract is defined, but does not define
any invariant, the base class's invariants are merged. Similarly, if no state transition is defined, a
state-transition is maintained for every sub-object inheriting a tested base class.

If you want to define a contract for a class, but not all of its base classes are associated to a contract,
then you should use invariants and state transitions with care, because the methods inherited from
the non-tested classes are not instrumented. In this situation, define a contract, even empty, for
every base class of the class you want to test. A warning is generated during the instrumentation if
such a case is encountered.

72

CLASS and SINGLE CLASS

Syntax

[SINGLE] CLASS <native class signature> { <class assertions>* }

Location

C++ Contract Check Script

Description

The CLASS statement introduces a block describing assertions for a specific C++ class. This block is
called a class contract. Assertions described in a CLASS statement also apply to derived classes,
unless the SINGLE keyword is used.

Use SINGLE CLASS to describe assertions only for the <native class signature> class.

<native class signature> is a qualified C++ class name. It can refer to template classes.

For instances of template classes, the signature must follow the pattern:

template<> class_name<actual_parameters>

Note: The template<> sequence may be omitted in order to comply with deprecated usage, but it is
best to specify it.

For template classes with generic parameters, the signature must follow the pattern:

template<formal_parameters> class_name

Note: The template<...> sequence may be omitted, but in that case it is not possible to use the
formal parameters in the nested WRAP signatures).

<class assertions> can be one of the following:

• WRAP

• INVARIANT

• STATE

• TRANSITION

Example

C++ source code example:
class A {

 class B {

 // ...

 };

 // ...

};

template<class T,int N> class C

{

 // ...

};

C++ Contract Check Script example:
CLASS A

{

 INVARIANT (/*...*/);
// ...

}

73

CLASS A::B

{

 // ...

}

CLASS template<class T,int N> C

{

 // ...

}

CLASS template<> C<char*,255>

{

 // ...

}

}

74

INVARIANT

Syntax

INVARIANT <native expression>;

Location

CLASS

Description

The INVARIANT statement describes a condition that should be always true in an object life, that
is, whenever one of its method can be called. It appears in a CLASS block.

<native expression> is a C++ Boolean expression (or an expression that can be converted to a
Boolean).

The following symbols can be used in <native expression>:

• Any of the class members.

• Any of the global variables declared in every file where a method of the class (or a method of descendant if it
is not a single class contract) is defined.

The following symbols cannot be accessed in <native expression>:

• Local variables of any methods.

• Macros: Global variables that are not defined in at least one file where a method of the class (or one of its
descendants, if it is not a single class contract) is defined.

Evaluation:

<native expression> is evaluated at the end of the execution of the class constructors (except the
implicitly defined copy constructor), at the beginning of the class destructors, and both at the
beginning and the end of other non-static non implicitly defined methods.

Warning: You can call methods in <expr>, but you must ensure that these calls do not modify the
object's state (that is, they do not write to any field). You can ensure this by calling const methods
only. If you want the compiler to check this, see the ATO_AC_STRICT_CHECKING Target
Package option.

Example

C++ source code example:
class Stack {

 int count;

 Stack () : count(0) {}

 void push (void *);

 void *pop ();

};

C++ Contract Check Script code example:
CLASS Stack {

 INVARIANT (count >= 0);

}

75

STATE

Syntax

STATE <state name> { (<native expression>)}

Location

CLASS

Description

The STATE statement describes a state for the current class, which is defined by the conjunction of
one or several Boolean expression.

STATE by itself does not generate any source code instrumentation. STATE should be used along
with the TRANSITION statement.

<state name> is a C++ Test Script Language identifier.

<native expression> is a C++ Boolean expression (or an expression that can be converted to a
Boolean).

The following symbols can be used in <native expression> :

• Any of the class members.

• Any of the global variables declared in every file where a method of the class (or a method of
descendant if it is not a single class contract) is defined.

The following symbols cannot be accessed in <native expression>:

• Local variables of any methods.

• Macros.

• Global variables that are not defined in at least one file where a method of the class (or one of
its descendants if it is not a single class contract) is defined.

Evaluation

<native expression> may be evaluated at the end of the execution of class constructors (except for
implicitly defined copy constructors), at the beginning of class destructors, and both at the
beginning and the end of other non-static non-implicitly defined methods.

Warning: You can call methods in <native expression>, but you must ensure that these calls do not
modify the object's state by writing to any fields. You can ensure this by using const methods only.
If you want the compiler to check this, see the ATO_AC_STRICT_CHECKING TDP option.

Example

C++ source code example:
class Stack {

 int count;

 Stack () : count(0) {}

 void push (void *);

 void *pop ();

};

C++ Contract Check Script code example:
CLASS Stack {

 STATE Empty { (count == 0) }

76

STATE NotEmpty { (count > 0) }

}

77

TRANSITION ... TO

Syntax

TRANSITION <state name> TO <state name>;

Location

CLASS

Description

The TRANSITION statement describes a transition between two states an object can execute during
its life.

<state name> is a valid state name defined with the STATE keyword.

Transitions are checked between two state evaluations. States are evaluated at the end of the
execution of class constructors (except for implicitly-defined copy constructor), at the beginning of
class destructors, and both at the beginning and the end of other non-static non-implicitly defined
methods.

All states are evaluated after an object has been created (when leaving a constructor).
Consequently, the initial state must be described in a non-ambiguous way: one - and one only -
state must occur when leaving a constructor.

Once a state has been determined, only authorized states (according to the defined transitions) are
checked. Ambiguity must not occur when choosing the next state.

States are always reflexive. This means that a transition from a state to itself is implicitly defined.
There must be no ambiguity between one state and any other state that can be reached through a
single transition.

Example

C++ source code example:
class Stack {

 int count;

 int capacity;

 Stack () : count(0) {}

 void push (void *);

 void *pop ();

};

C++ Contract Check Script code example:
CLASS Stack {

 STATE Empty { (count == 0) }
STATE NotEmpty { (count > 0) (count < capacity) }
STATE Full { (count == capacity) }

 TRANSITION Empty TO NotEmpty;

 TRANSITION NotEmpty TO Full;

 TRANSITION Full TO NotEmpty;

 TRANSITION NotEmpty TO Empty;

}

78

WRAP

Syntax

WRAP <native method signature> <WRAP assertions>

Location

CLASS

Description

The WRAP statement describes pre- and post-conditions for a method.

<native method signature> refers to an existing method within the class.
The return type may be omitted.
The parameters names may be omitted if the WRAP assertions do not refer to the parameters.
The parameters list may be omitted if the method is not overloaded and if the WRAP assertions do
not refer to the parameters.

<WRAP assertions> is made of either one or several REQUIRE or ENSURE statements.

Wraps can be defined for any method of the class, whatever its access specifiers may be.

Wraps cannot be associated to an inherited method, defined in a base class. If you want to do so,
define a WRAP in a contract associated with the base class.

If the method is virtual, and the WRAP does not belong to a SINGLE CLASS, the wrap definition
also applies to any redefinition of the method, unless a specific wrap has been defined for the
redefinition in a daughter class.

Example

C++ source code:
class A {

int f ();

char *g (int); // overloaded method

void g(void *); // overloaded method

};

C++ Contract Check Script code:
CLASS A {

WRAP f /OK */

REQUIRE (/*... */)

ENSURE (/... */)

WRAP g /ambiguous -> error */

/... */

WRAP g(int) / OK */

/... */

WRAP g(void *p) / OK */

/... */

}

79

Command line interface

80

C++ Test Report Generator - atopospro

Purpose

The C++ Test Report Generator processes a trace file produced during test execution, and generates
a test report that can be viewed in the GUI.

Syntax

atopospro -ots {<ots files>} -tdf <tdf file> -xrd <xrd file>

where:

• <ots files> is a list of .ots intermediate files generated by the C++ Test Script Compiler.

• <tdf file> is the .tdf dynamic trace file generated during the execution of the application under
test.

• <xrd file> is the .xrd report file to be generated by the Report Generator.

Example
atopospro -ots script.ots contract1.ots contract2.ots -tdf bar.tdf -xrd
report.xrd

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

1 Abnormal termination

All messages are sent to the standard error output device.

81

C++ Test Script Compiler - atoprepro

Purpose

The C++ Test Script Compiler compiles the .otd C ++ Test Driver Script and .otc C++ Contract
Check Scripts into C++ source code.

Syntax

atoprepro [<OTD Script>]|[<OTC Scripts>] -G C++ -O <cpp file> -OTI
<oti file> -TDF <tdf file>

where:

• <otd script> is an .otd C++ Test Driver Script file.

• <otc scripts> is a set of one or more .otc C++ Contract Check Script files.

• <cpp file> is the name of the .cc or .cpp source file to be generated by Component Testing for C++ and linked to
the application under test.

• <oti file> is the name of the .oti instrumentation file to be generated. This file is used by the C++ Instrumentor.

• <tdf file> is the .tdf dynamic trace file to be generated during the execution of the application under test.

Options

The C++ Source Code Parser supports the following options:

-E <number of errors>

Specifies the maximum number of error messages that can be displayed by the C++ Test Script
Compiler. The default value is 30.

-NODLINE

Deactivates the generation of #line statements. This can be useful in environments where the
generated source code cannot use the #line mechanism. By default #line statements are generated.

-NOPATH

This option tells the C++ Test Script Compiler not to use the full path to the TDP from the
$ATLTGT environment variable before the name of TP.h in the #include directive.

This option is useful for embedded targets when compilation of the generated source does not
occur on the same host as the C++ test compilation.

-STUDIO_LOG

This option is for internal usage only.

Example
atoprepro script.otd contract1.otc contract2.otc -G C++ -O app.cc -OTI
foo.oti -TDF bar.tdf -E 60

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

1 Abnormal termination

All messages are sent to the standard error output device.

82

C++ Source Code Parser - atostart

Purpose

The C++ Source Code Parser takes a set of C++ source files containing classes to generate template
.otd C++ Test Driver Scripts and .otc C++ Contract Check Scripts to fully cover the application
under test.

Syntax

atostart {[-i] <source file>} <options>

atostart {<source file>} -metrics <options>

where:

• <tested file> is the list of files containing classes to be tested. If no class if specified with the
option -test_class, the tested classes will be either the classes defined in a file under test, or the
classes for which a method is defined in a tested file.

• <options> is a series of command line options. See the section Options.

If a tested file is specified with option -i, this file will be included by the generated .otd script. As a
consequence everything defined in this tested file will be available in the script (especially types,
classes, static variables, and functions). This option is ignored if you choose not to generate an .otd
C++ Test Driver Script.

Description

The tested files and additional files (see option -integrate) are parsed by the integrated C++
analyzer. A candidate classes list is automatically deduced from the content of tested files (this list
can be viewed in the header of the generated .otd and .otc scripts). If no -test_class or -
do_not_test_class option is used, then all the candidate classes will have generated code to test
them.

The C++ Source Code Parser generates only one .otd C++ Test Driver Script that contains all
classes under test. It also generates two files associated to this test script: a .dcl declaration file
(declaring and including every resource needed to compile the test script) and a .stb stub file
(containing stub declarations deduced from used but not defined entities found in the parsed files).

The C++ Source Code Parser generates one .otc C++ Contract Check Script per encountered .h file
defining a class.

When the -metrics option is specified, the Source Code Parser produces static metrics for the
specified source files.

Options

The C++ Source Code Parser supports the following options:

{-integrate <additional file>}

Specifies additional files or directories to be analyzed. These files do not contain any classes under
test, but they do contain code which is to be linked with the tested application. Basically, this
option tells the C++ Source Code Parser which files not to stub.

Three types of additional files or directories are supported :

• body files: Only the entities defined within the file are considered defined.

• header files: Every declaration within the file is considered as having a matching definition in
a non-provided body file or in a library. Use additional header files when linking to code for
which the source is not available.

83

• directories: Every declaration found in a file belonging to an additional directory is considered
as having a matching definition in a non-provided body file or in a library (an additional
directory can be viewed as a collection of additional header files).

Note A header file is recognized as such from its content, and not from its extension. A
header file does not contain any definition, other than inline functions, and template
functions, or else it is considered as a body file.

This option is ignored when no .otd generation is required. This option can be used more than once
to specify multiple files.

{-insert|-i <included file>}

Specifies included files. These are source files which, instead of being compiled separately during
the test, are included and compiled with the .otd test driver script.

In most cases, you do not have to specify files to be included. Header files are automatically
considered as included files, even if they are not specified as such.

Source files under test should be specified as included when:

• The file contains the class definition of a class you want to test

• A function or a variable definition depends upon a type which is defined in the file under test
itself

• You need access in your test script to a static variable or function, defined in the file under test

This option is ignored when no .otd generation is required. This option can be used more than once
to specify multiple files.

-o|-otd <test script>

Specifies the name of the generated .otd script. Two associated files are also generated with the
same name, but with extension .dcl and .stb. If the filename extension of <test script> is not .otd,
then a warning is issued.

This option is ignored when no .otd generation is required.

-otc <test script>

Specifies the name of the generated .otc script. If the filename extension of <test script> is not .otc,
then a warning is issued.

This option is ignored when no .otc generation is required.

-otcdir <OTC directory>

Specifies the directory where .otc files are to be generated.

This option is ignored when no .otc generation is required.

-opp <compiler option file>

Specifies the name of the Target Deployment Port C++ parser option file. This file is searched for in
/ana subdirectory of the current Target Deployment Port (see ATLTGT environment variable), and
should not include any path.

If this option is not provided, the default filename atl.opp will be searched for.

-hpp <compiler configuration file>

Specifies the name of the Target Deployment Port C++ parser configuration file. This file is
searched for in /ana subdirectory of the current Target Deployment Port (see ATLTGT
environment variable), and should not include any path.

84

If this option is not provided, the default filename atl.hpp will be searched for.

{-test_class|-tc <class under test>}

Specifies the classes to be explicitly tested. The classes must belong to the candidate classes. This
option cannot be used simultaneously with the options -do_not_test_class (-dtc).

This option can be used more than once to specify multiple classes.

{-do_not_test_class|-dtc) <excluded class>}

Specifies the classes, among the candidate classes, which should not be tested. This option cannot
be used simultaneously with the options -test_class (-tc).

This option can be used more than once to specify multiple classes.

-test_struct

Specifies whether structs and unions should be treated as classes, and therefore should be
considered as potential tested classes. This option is not significant when -test_class option is used
(you can specify structs or unions as classes to be tested).

-test_method|-tm <method name> <line>

Specifies the methods to be explicitly tested. <method_name> is the fully qualified name of the
method (fully qualified class name with method name, without return values or parameters).
<line> is the line number of the method. For example:
-test_method "class::method1" "50" "class::method2" "70"

This option can be used more than once to specify multiple methods.

-test_class_prefix <prefix>

Specifies the prefix used to name the generated test classes. By default, atostart uses 'Test'.

-test_each_instance

By default, a template class is tested as a generic template class. Use this option if you want to
generate a specific test for each found instance of a template class.

{-force_template <template instance>}

This option forces the instantiation of the specified templates classes. Use it if no automatic
template instantiation occurs while parsing the code. This option is useful only in conjunction with
-test_each_instance option.

This option can be used more than once to specify multiple templates.

-overwrite

By default, the Test Template Generator creates a backup file of every file it overwrites. Use this
option if you really intend to overwrite these files without backing up them.

-ignore_line_directives

85

Usually the generator parse #line directives, so that you can use your own preprocessor instead of
the built-in preprocessor. If required, deactivate this setting with the -ignore_line_directives
option. This can be useful when parsing automatically generated code.

This option is ignored when no .otd generation is required.

{-I<include directory>}

This option specifies directories where included files are to be searched for. You can use the option
-I- to introduce the system includes: only directories specified after -I- will be looked up when the
include directives use angular brackets (#include <…>).

This option can be used more than once to specify multiple directories.

{-D<macro>[=<value>]}

 This option adds a predefinition for <macro> to <value>.

This option can be used more than once to specify multiple macros.

-E

This options generates preprocessing output to standard output. This option is mainly for
debugging purpose.

-include={relative|absolute|copy}

This option specifies how #include directives should be generated in the test script. When relative is
chosen, includes use relative path to the directory where the generated script is put. When absolute
is chosen, absolute paths are generated. When copy is chosen, the way files are included in the test
script is the same as they are included in the tested files, you should in this case ensure that the test
script is generated in the same directory than the source files.

This option is ignored when no .otd generation is required.

-no_otc

This option deactivates .otc script generation. Use this option if you only want an .otd test driver
script.

-no_otd

This option deactivates .otd script generation. Use this option if you only want an .otc Contract-
Check script.

Note If no candidate class is found, nothing will be generated.

-studio_log

This option is for internal usage only.

Static Metrics Options

-metrics <output directory>

Generates static metrics for the specified source files. Resulting .met static metric files are produced
in specified <output directory>. When the -metrics option is used, no other action is performed by
the Source Code Parser.

-one_level_metrics

86

For use with the -metrics option only. When the -metrics option is used, by default, the calculation
of static metrics is applied to the specified source files, and extended to any files included in those
source files. Use the -one_level_metrics option to ignore included files when calculating static
metrics.

-restrict_dir_metrics <directory>

For use with the -metrics option only. Use the the -restrict_dir_metrics option to calculate static
metrics of the specified source files, extended to any files included in those source files but limited
to those files located in the specified <directory>.

This option can be used more than once to specify multiple directories.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

1 End of execution with error

All messages are sent to the standard error output device.

87

Target Deployment Port options

Common Options

The following options pertain to the Component Testing for C++ feature.

Option Description

ATO_CAST_PRINT_BUFFER_SIZE

This macro defines the size of the buffer devoted to the PRINT
instruction. This buffer must be large enough to contain the output of
a single PRINT instruction. If memory is an issue, you can set this
value to 0. In that case, a single PRINT instruction will result in
several notes in the graphical report, one per argument.

C++ Test Driver Script Options

The following options pertain only to C++ Test Driver Scripts.

Option Description

ATO_USE_CAST

Usually ATL_YES, this macro can be set to ATL_NO if you are not using
C++ Test Driver scripting. In this case, the Target Deployment Package
object is smaller, and the compiler requires less memory to compile
instrumented files.

ATO_CAST_STOP_ON_ERROR

When this macro is set to ATL_YES, a function named ATL_Breakpoint
is called whenever an error occurs in the C++ Test Driver Script. In this
case, you must provide this function, either by defining it in custom.h or
by defining a macro naming your own breakpoint function in custom.h.
You can thus set a breakpoint on this function and debug your test
application when an unexpected result is encountered.

ATO_CAST_DUMP_SUCCESS

By default the value is ATL_YES. This macro can be set to ATL_NO if
you do not want passed checks of your C++ Test Driver Script to be
added to the trace file. This may be important if trace file size is an issue.

ATO_CAST_MAX_INSTANCES

This macro defines the maximum number of instances you expect to be
used at the same time when running a C ++ Test Driver Script. An
instance is pushed in a stack when a TEST CLASS, TEST SUITE, or TEST
CASE is entered and when a PROC or a STUB is called. Note that stubs
can be recursive. The default value is 256. You can lower this value if
memory is an issue and you know how many instances are used at the
same time. You can increase it if your script is complex or if you use
many stubs that call themselves or each other.

C++ Contract Check Script Options

The following options pertain only to the C++ Contract Check Scripts.

Option Description

ATO_USE_AC

Usually ATL_YES, this macro can be defined to ATL_NO if you are not
using C++ Contract Check scripting. In this case, the Target Deployment
Package object is smaller, and the compiler requires less memory to
compile instrumented files and generated files.

ATO_AC_STOP_ON_ERROR

When this macro is set to ATL_YES, a function named ATL_Breakpoint is
called whenever an error occurs in the C++ Contract Check Script. In this
case, you must provide this function, either by defining it in custom.h, or
by defining a macro naming your own breakpoint function in custom.h.

88

You can thus set a breakpoint on this function and debug your test
application when an unexpected result is encountered.

ATO_AC_DUMP_SUCCESS

Usually ATL_YES, this macro can be defined to ATL_NO if you do not
want passed checks of your C++ Contract Check Script to be added to the
trace file. This may be important if the trace file size is an issue.

ATO_AC_FILE_NAME

This macro defines the default trace file name when executing the C++
Contract Check Script instrumented application. This name is used if you
have not provided the GetEnvironment macro or $ATO_TRACES or
$ATT_TRACES (%ATO_TRACES% or %ATT_TRACES% on Win32
platforms) environment variables, and if you are not using C++ Contract
Check scripting.

ATO_AC_STRICT_CHECKING

When this macro is set to ATL_YES, the invariants and states defined in
C++ Contract Check Scripts are enforced to be const. This implies that the
compiler ensures that they do not modify any field of the object, and that
they call only const methods. The default is ATL_NO because users often
omit to specify the const qualifier for methods that are actually const. If
ATL_NO is chosen, you must make sure that your invariants and state
evaluations do not modify your objects.

89

Component Testing for Ada

Ada test script language

The Ada test script language allows you to structure tests to:

• Describe several test cases in a single test script,

• Select a subset of test cases according to different Target Deployment Port criteria.

Test script filenames must contain only plain alphanumerical characters.

Basic structure

A typical Ada Component Testing .ptu test script looks like this:
HEADER add, 1, 1

<variable declarations for the test script>

BEGIN

SERVICE add

 <local variable declarations for the service>

 TEST 1

 FAMILY nominal

 ELEMENT

 VAR variable1, INIT=0, EV=0

 VAR variable2, INIT=0, EV=0

 #<call to the procedure under test>

 END ELEMENT

 END TEST

END SERVICE

All instructions in a test script have the following characteristics:

• All statements begin with a keyword.

• Statements are not case sensitive (except when Ada expressions are used).

• Statements start at the beginning of a line and end at the end of a line. You can, however, write
an instruction over several lines using the ampersand (&) continuation character at the
beginning of additional lines. In this case, the ampersand must be the very first character on
that line; no spaces or tabs should precede it.

• Statements must be shorter than 2048 characters, although this limit may be lower on some
platforms.

Structure statements

The following statements allow you to describe the structure of a test.

• HEADER: For documentation purposes, specifies the name and version number of the module
being tested, as well as the version number of the tested source file. This information is
displayed in the test report.

• BEGIN: Marks the beginning of the generation of the actual test program.

• SERVICE: Contains the test cases related to a given service. A service usually refers to a
procedure or function. Each service has a unique name (in this case add). A SERVICE block
terminates with the instruction END SERVICE.

90

• TEST: Each test case has a number or identifier that is unique within the block SERVICE. The
test case is terminated by the instruction END TEST.

• FAMILY: Qualifies the test case to which it is attached. The qualification is free (in this case
nominal). A list of qualifications can be specified (for example: family, nominal, structure) in
the Tester Configuration dialog box.

• ELEMENT: Describes a test phase in the current test case. The phase is terminated by the
instruction END ELEMENT. The different phases of the same test case cannot be dissociated
after the tests are run, unlike the test cases introduced by the instruction NEXT_TEST.
However, the test phases introduced by the instruction ELEMENT are included in the loops
created by the instruction LOOP.

The three-level structure of the test scripts has been deliberately kept simple. This structure allows:

• A clear and structured presentation of the test script and report

• Tests to be run selectively on the basis of the service name, the test number, or the test family.

91

BEGIN

Purpose

The BEGIN instruction marks the beginning of the Ada code generation. The BEGIN GENERIC
option is specifically for testing Ada generic packages.

Syntax

BEGIN [<parent_unit> [, <procedure>]]

BEGIN GENERIC(<generic_package>, <instance>) [, <procedure>]

where:

• <parent_unit> is the full name of the unit under test.

• <procedure> is the name of the generated separate procedure, by default ATTOL_TEST.

• <generic_package> is the name of a generic unit under test.

• <instance> is the name of the instanciated unit from the generic.

Description

The BEGIN instruction is mandatory and must be located after a HEADER statement, and before
any other Ada Test Script instruction.

By default, the Ada Test Script Compiler creates an independent compilation unit. To test private
elements of a package you must first generate a procedure.

The reference body to the separate procedure must be written in the parent unit package.

If a BEGIN keyword is not found in the test script, a warning message is generated and a BEGIN
instruction is implicitly created before the first occurrence of a SERVICE instruction.

To test a generic package, you need to generate the test driver separately and call it as a procedure
of the instance. Use the BEGIN GENERIC syntax to automatically generates a separate procedure
<procedure> of <generic_package>. This allows you to access the procedure
<instance>.<procedure_name>, which is generated by the Ada Test Script Compiler.

Note This technique also allows testing of private types within the generic package.

92

COMMENT

Purpose

The COMMENT instruction adds a textual comment to the test report.

Syntax

COMMENT [<text>]

where:

• <text> is an optional comment text string to be displayed.

Description

The COMMENT instruction is optional and can be used anywhere in the test script.

The position of the COMMENT instruction in the test script defines the position in which the
comments appear in the test report.

• Within an ELEMENT block: the comment appears just before the variable state descriptions.

• After a TEST instruction: the comment appears in the test header, before the variable
descriptions.

• After a SERVICE instruction: the comment appears in the service header, before the test
descriptions.

• Outside a SERVICE block: the comment appears in the service header following the
declaration, before the test descriptions.

Example
TEST 1

FAMILY nominal

COMMENT histogram computation for a black image

ELEMENT

93

DEFINE STUB ... END DEFINE

Purpose

The DEFINE STUB and END DEFINE instructions delimit a simulation block consisting of stub
definition declarations written in Ada.

Syntax

DEFINE STUB <stub_name> [<stub_dim>]

END DEFINE

where:

• <stub_name> is the mandatory name of a simulation block.

• <stub_dim> is an optional maximum number of stub call descriptions for a test scenario. By
default, its value is 10.

Description

Defining stubs in a test script is optional.

DEFINE STUB / END DEFINE blocks must be located after the BEGIN instruction and outside
any SERVICE block.

Using the stub definitions, the Ada Test Script Compiler generates simulation variables and
functions for which the interface is identical to that of the stubbed variables and functions.

The purpose of these simulation variables and functions is to store and test input parameters,
assign values to output parameters, and if necessary, return appropriate values.

All functions and procedures of the <stub_name> package are simulated, and stub definitions are
Ada declarations (beginning with '#') of functions, procedures, or assignment instructions.

Stub parameters describe both the type of item used by the calling function and the mode of
passing. The mode of passing the parameter is specified by adding the following before the
parameter name:

• in for input parameters

• out for output parameters

• in out for input/output parameters

• _no for parameters that you do not want to test

Additionally, when using the in or in out parameters, you can add an optional _nocheck
parameter before the in or in out parameter (see the Example paragraph). This allows the
parameters to be sent to the stub without being checked.

The parameter mode is optional. If no parameter mode is specified, the in mode is assumed by
default.

A return parameter is always deemed to be an output parameter.

Global variables defined in DEFINE STUB blocks replace the real global variables.

Example

An example of the use of stubs is available in the StubAda example project installed with the
application.

94

ELEMENT ... END ELEMENT

Purpose

The ELEMENT and END ELEMENT instructions delimit a test phase or ELEMENT block.

Syntax

ELEMENT

END ELEMENT

Description

The ELEMENT instruction is mandatory and can only be located within a TEST block. If absent, a
warning message is generated and the ELEMENT block is implicitly declared before the first
occurrence of a VAR, ARRAY, STR, or STUB instruction.

The block must end with the instruction END ELEMENT. If absent, a warning message is
generated and it is implicitly declared before the next ELEMENT instruction, or the END TEST
instruction.

The ELEMENT block contains a call to the service under test as well as instructions describing the
initializations and checks on test variables.

Positioning of VAR, ARRAY, STR or STUB related to the actual test procedure is irrelevant as the
Test Compiler separates these instructions into two parts:

• The test initialization (described by INIT) is generated with the ELEMENT instruction

• The test of the expected value (described by EV) is generated with the END ELEMENT
instruction

Example
 TEST 1

 FAMILY nominal

 ELEMENT

 VAR x1, init = 0, ev = init

 VAR x2, init = SIZE_IMAGE-1, ev = init

 VAR y1, init = 0, ev = init

 VAR y2, init = SIZE_IMAGE-1, ev = init

 ARRAY image, init = 0, ev = init

 VAR histo(0), init = 0, ev = SIZE_IMAGE*SIZE_IMAGE

 ARRAY histo(1..SIZE_HISTO-1), init = 0, ev = 0

 #compute_histo(x1,y1,x2,y2,histo);

 END ELEMENT

 END TEST

95

ENVIRONMENT ... END ENVIRONMENT

Purpose

The ENVIRONMENT instruction defines a test environment declaration, that is, a default set of
test specifications.

Syntax

ENVIRONMENT <name>

END ENVIRONMENT

<name> is a mandatory identifier that provides a unique environment name.

Description

The test environment defines a general context. Variables which are declared within a context can
be overwritten by a TEST statement.

The END ENVIRONMENT instruction marks the end of an environment declaration.

<name> specifies an environment name that is referenced in the USE instruction.

An environment must be defined after the BEGIN instruction.

Each environment is visible in the block in which it has been declared and in any blocks included
in this block, after its declaration.

An environment can only contain VAR, ARRAY, STR, FORMAT or STUB instructions and
conditional generation instructions. If it is empty, a warning message is generated.

An environment is activated by the USE instruction that defines its scope and its priority.
ENVIRONMENT blocks are executed in the reverse order of their respective USE instruction.

Note If the USE instruction follows directly the ENVIRONMENT block, the first
occurrence of the ENVIRONEMENT overrides the later, or local ones.

After generating the initializations and the tests of an ELEMENT block, visible environments are
included in order of priority, at every END ELEMENT instruction, in order to complete the
initializations and tests.

The scope of an ENVIRONMENT block is important insofar as only "visible" environment blocks
apply, and use clauses can be out of scope.

Example
ENVIRONMENT compute_histo

 VAR x1, init = 0, ev = init

 VAR x2, init = SIZE_IMAGE-1, ev = init

 ARRAY image, init = 0, ev = init

END ENVIRONMENT

96

EXCEPTION

Purpose

The EXCEPTION instruction describes the behavior of the test script if any exceptions are raised
during the execution.

Syntax

EXCEPTION <exception_name>

Description

This instruction can only appear in an ELEMENT block.

<exception_name> is the name of the exception under test.

This instruction must be unique in the block where it appears. If it is absent, the test shall not raise
any exception, otherwise, an error is generated.

Only exceptions raised by the procedure under test can be tested. Exceptions raised during the
initialization of the variables or during the test of the variables cannot be tested. They are
nevertheless detected and written in the test report.

Note Do not use the EXCEPTION statement simultaneously with any native exception
handling code, as this will create internal conflicts.

Example

In this example, the exception class is overflow.
ELEMENT

-- The test shall raise the overflow exception

EXCEPTION overflow

....

-- Using the ‘exception’ variable

VAR exception->ch1,

END ELEMENT

97

FAMILY

Purpose

The FAMILY instruction groups tests by families or classes.

Syntax

FAMILY <family_name> { , <family_name>}

Argument

<family_name> is a mandatory identifier indicating the name of the test family. Typically, you could
specify nominal, structural, or robustness families.

Description

The FAMILY instruction appears within TEST blocks, where it defines the families to which the
test belongs.

When you run the test sequence, you can request that only tests of a given family are executed.

A test can belong to several families. In this case, the FAMILY instruction contains a <family_name>
list, separated by commas.

The FAMILY instruction must be located before the first ELEMENT block of the TEST block and
must be unique in the TEST block.

The FAMILY instruction is optional. If it is omitted, a warning message is generated and the test
belongs to every family.

Example
 TEST 1

 FAMILY nominal

 COMMENT histogram computation on a black image

 ELEMENT

98

HEADER

Purpose

The HEADER instruction specifies the name and version of the module under test as well as the
version number of the test script.

Syntax

HEADER <module_name>, <module_version>, <test_plan_version>

<module_name>, <module_version> and <test_plan_version> are character strings with no restrictions,
except for versions beginning with a dollar sign ('$'). These instructions must be followed by an
identifier.

Description

This information contained in the HEADER keyword is reproduced in the test report header to
identify the test sequence.

The module and test script versions can be read from the environment variables if they are
identifiers beginning with a dollar sign ($).

The HEADER instruction is mandatory, but its arguments are optional. It must be the first
instruction in the test program. If it is absent, a warning message is generated.

Example
HEADER histo, 01a, 01a

BEGIN

99

IF ... ELSE ... END IF

Purpose

The IF, ELSE and END IF statements allow conditional generation of the test driver.

Syntax

IF <condition> { , <condition> }

ELSE

END IF

where:

• <condition> is an identifier sent by the -define option to the Ada Test Script Compiler.

Description

These statements enclose portions of script that are included depending on the presence of one of
the conditions in the list provided to the Ada Test Compiler by the -define option.

The <condition> list forms a series of conditions that is equivalent to using an expression of logical
ORs.

The IF instruction starts the conditional generation block.

The END IF instruction terminates this block.

The ELSE instruction separates the condition block into 2 parts, one being included when the other
is not.

Associated Rules

This block of instructions can appear anywhere in the test program.

<condition> is any identifier. You must have at least one condition in an IF instruction.

This block can contain any code written in Ada Test Script Language or native Ada.

IF and END IF instructions must appear simultaneously.

The ELSE instruction is optional.

The generation rules are as follows:

• If at least one of the conditions specified in the IF instruction's list of conditions appears in the
list associated with the -define option, the first part of the block is included.

• If none of the conditions specified in the IF instruction appears in the list associated with the -
define option, then the second part of the block is included (if ELSE is present).

Example
IF test_on_target

 VAR register, init == , ev = 0

ELSE

 VAR register, init = 0 , ev = 0

END IF

100

INCLUDE

Purpose

The INCLUDE statement specifies an external file for the Ada Test Compiler to process.

Syntax

INCLUDE CODE <file.ada>

INCLUDE PTU <file.ptu>

where:

• <file.ada> is the file name of an external Ada source file

• <file.ptu> is the file name of an Ada test script

Description

When an INCLUDE instruction is encountered, the Ada Test Compiler leaves the current file, and
starts pre-processing the specified file. When this is done, the Ada Test Compiler returns to the
current file at the point where it left.

Including a file with the additional keyword CODE lets you include a source file without having to
start every line with a hash character ('#').

Including a file with the additional keyword PTU lets you include an Ada test script within
another Ada test script. In this case, included .ptu test scripts must not contain BEGIN or
HEADER statements.

The name of the included file can be specified with an absolute path or a path relative to the
current directory.

If the file is not found in the current directory, all directories specified by the -incl option are
searched when the preprocessor is started.

If it is still not found or if access is denied, an error is generated.

Example
INCLUDE CODE file1.ada

INCLUDE CODE ../file2.ada

INCLUDE PTU /usr/tests/file3.ptu

101

INITIALIZATION ... END INITIALIZATION

Purpose

Specifies native Ada code to initialize the test driver

Syntax

INITIALIZATION

END INITIALIZATION

Description

The INITIALIZATION and END INITIALIZATION statements let you provide native Ada code
that is integrated as the first main statements of the test driver.

In some environments, such as when using a different target machine, this is a convenient way to
initialize the target.

An INITIALIZATION block must appear after the BEGIN instruction or between two SERVICE
blocks.

This block can only contain native Ada code. Each line of native code must be preceded with '#' or
'@'.

There is no limit to the number of INITIALIZATION blocks. Upon test driver generation, they are
concatenated in the order in which they appeared in the test script.

102

NEXT_TEST

Purpose

The NEXT_TEST instruction starts a TEST block that is linked to the previous test block.

Syntax

NEXT_TEST [LOOP <nb>]

where:

• <nb> is an integer expression strictly greater than 1.

Description

The NEXT_TEST instruction allows you to repeat a series of test contained within a previously
defined TEST block.

It contains one more ELEMENT block. It does not contain the FAMILY instruction.

For this new test, a number of iterations can be specified by the keyword LOOP.

The NEXT_TEST instructions can only appear in a TEST ... END TEST block.

The main difference between a NEXT_TEST block and an ELEMENT block is when you use an
INIT IN statement within a test block:

• If the INIT IN is in a TEST block, there will be a loop over the entire TEST block, without
consideration of the ELEMENT blocks that it might contain.

• If the INIT IN is inside a NEXT_TEST block however, the loop will not affect the ELEMENT
blocks within other TEST blocks

Example
SERVICE COMPUTE_HISTO

x1, x2, y1, y2 : integer ;

histo : T_HISTO ;

 TEST 1

 FAMILY nominal

 ELEMENT

 ...

 END ELEMENT

 NEXT_TEST LOOP 2

 ELEMENT

103

SERVICE ... END SERVICE

Purpose

A SERVICE block contains a common description for all tests related to a given service of the
module under test.

Syntax

SERVICE <service_name>

END SERVICE

where:

• <service_name> specified the tested service in the test report

Description

The SERVICE instruction starts a SERVICE block. This block contains the description of all the
tests relating to a given service of the module to be tested.

The <service_name> is usually the name of thes service under test, although this is not mandatory.

The END SERVICE instruction indicates the end of the service block.

Associated Rules

The SERVICE instruction must appear after the BEGIN instruction.

The <service_name> parameter can be any identifier. It is obligatory.

Example
BEGIN

SERVICE COMPUTE_HISTO

 # x1, x2, y1, y2 : integer ;

 # histo : T_HISTO ;

 TEST 1

 FAMILY nominal

104

SERVICE_TYPE

Purpose

The SERVICE_TYPE statement indicates the type of service tested.

Syntax

SERVICE_TYPE <type> {,<type>}

where:

• <type> is a user-defined service type identifier

Description

The SERVICE_TYPE instruction allows you to specify an identifier indicating the type of service
tested. This identifier is included in the test report.

You can use this functionality to specify whether a service is internal or external.

If SERVICE_TYPE is placed within a SERVICE ... END SERVICE block, it indicates the type of the
current SERVICE block.

If the SERVICE_TYPE statement is placed outside a SERVICE block, then it indicates the default
service type for all SERVICE blocks that do not contain a SERVICE_TYPE statement.

Example
SERVICE_TYPE internal, external

SERVICE count

 SERVICE_TYPE internal

 ...

END SERVICE

105

SIMUL ... ELSE_SIMUL ... END SIMUL

Purpose

The SIMUL, ELSE_SIMUL, and END SIMUL instructions allow conditional generation of test
driver.

Syntax

SIMUL

ELSE_SIMUL

END SIMUL

Description

Code enclosed within a SIMUL block is conditionally generated depending on the status of the
Simulation configuration setting in the Test RealTime GUI, or the -nosimulation command line
option of the Ada Test Script Compiler.

The SIMUL instruction starts the conditional generation block.

The END SIMUL instruction marks the end of the conditional block.

The ELSE_SIMUL instruction separates this block into two parts, one being included when the
other is not, and vice versa.

This block of instructions can appear anywhere in the test program and can contain both Ada Test
Script Language or native Ada code.

The SIMUL and END SIMUL instructions must appear as a pair. One cannot be used without the
other.

The ELSE_SIMUL instruction is optional.

When using the Test RealTime user interface, select or clear the Simulation option in the
Component Testing for Ada tab of the Configuration Settings dialog box.

The code generation rules are as follows:

• If Simulation is enabled => the first part of the SIMUL block is included.

• If Simulation is disabled => the second part of the block (ELSE_SIMUL) is included if it exists.
If there is no ELSE_SIMUL statement, then the SIMUL block is ignored.

Example
SIMUL

 #x := 0;

ELSE_SIMUL

 #x := 1;

END SIMUL

...

SIMUL

 VAR x , INIT = 0 , EV = 1

 VAR p , INIT = NIL , EV = NONIL

ELSE_SIMUL

 VAR x , INIT = 0 , EV = 0

 VAR p , INIT = NIL , EV = NIL

END SIMUL

106

STUB

Purpose

The STUB instruction for Ada describes all calls to a simulated function in a test script.

Syntax

STUB <stub_name> [<slice>] ([<param_val> {, <param_val> }])
[<return_val>] { ,[<slice>] ([<param_val> { , <param_val> }])
[<return_val>] }

Description

The following is described for every parameter of this function and for every expected call:

• For in parameters, the values passed to the function. These values are stored and tested during
execution.

• For out parameters and, where appropriate, the return value, the values returned by the
function. These values are stored in order to be returned during execution.

• For in out and in access parameters, both the previous two values are required.

• For no parameters, no expression is required.

<stub_name> is the name of the simulated procedure or function. It is obligatory. You must
previously have described this procedure or function in a DEFINE STUB block.

<param_val> is an expression describing the test values for in parameters and the returned values
for out parameters. If named, parameters can be in any order. For in out parameters, <param_val> is
expressed in the following way:
([IN =>]<in_param_val> , [OUT =>]<out_param_val>)

If you use the optional IN => and OUT => specifiers, you can invert the order of the parameters.

<return_val> is an expression describing the value returned by the function if its type is not void.
Otherwise, no value is provided.

You must give values for every in, out and in out parameter; otherwise, a warning message is
generated. The no parameters are ignored.

<param_val> and <return_val> are Ada expressions that can contain:

• Numeric (integer or floating-point), character, or character string literal values. Strings can be
delimited by single or double inverted commas.

• Constants, in the Ada sense of the word, which can be numeric, characters, or character strings

• Variables belonging to the test program or the module to be tested

• Ada functions

• The keyword NIL to designate a null pointer

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where In is the current index of the nth dimension of the
parameter and Jm the current number of the subtest generated by the test scenario's mth INIT
IN, INIT FROM or LOOP; the I and I1 variables are therefore equivalent as are J and J1; the
subtest numbers begin at 1 and are incremented by 1 at each iteration

• An Ada expression with one or more of the above elements combined using any of the Ada
operators and casting, with all required levels of parentheses, and conforming to Ada rules of
syntax and semantics

• For arrays and structures, aggregates between parentheses ('()') or brackets ('[]').

<param_val> can contain for an in value:

107

• The <-> expression to specify that the parameter should be ignored

• The <value> <-> <value> expression to specify a range of values for the parameter

<param_val> can contain for an out value or return value:

• The == expression to specify that the parameter should not be set

If are using one of the above expressions, you can specify the type of parameter by using the ==:
<type> syntax for the out and return value or <->: <type> for the in value.

<return_val> can also refer to an Ada exception name introduced by the following syntax:
[:<return_type>] RAISE <exception_name>

where :<return_type> is used to specify the function returned type in case of overloading.

You must describe at least one call in the STUB instruction. Several descriptions can occur
separated by commas.

STUB instructions can appear in ELEMENT blocks.

The <slice> expression can be used to specify the maximum number of calls to be recorded.

Example
STUB open_file ("file1")3

STUB create_file ("file2")4

STUB read_file 1..2 =>(3,"line 1",1)1,(3,"line 2",2<->3)1,

 & 4..7 =>(3,"",0)0

STUB write_file (4,"line 1")1, (4,"line 2")1

STUB close_file (3)1,(4)1, (<->) RAISE DEVICE_ERROR

108

TERMINATION ... END TERMINATION

Syntax

TERMINATION

END TERMINATION

Description

The TERMINATION and END TERMINATION instructions delimit a block of native code that is
integrated into the generation process as the last main statements to be executed.

In some environments, such as when using a different target machine, this is a convenient way to
exit the target.

Associated Rules

A TERMINATION ... END TERMINATION block must appear after the BEGIN instruction and
outside any SERVICE block.

This block can only contain native Ada code. Each line of native code must be preceded with '#' or
'@'.

There is no limit to the number of TERMINATION blocks. Upon test driver generation, they are
concatenated in the order in which they appeared in the test script.

109

TEST ... END TEST

Syntax

TEST <test_name> [LOOP <nb>]

END TEST

Description

The TEST instruction starts a TEST block. This block describes the test case for a service. It
contains one more ELEMENT blocks specifying the test.

In the test report, the <test_name> parameter flags the test within the SERVICE block. Tests are
usually given numbers in ascending order.

A number of iterations can be specified for each test with the optional LOOP keyword.

The TEST LOOP statement can generate graph metric results in a .rtx file. To do this, you must set
the environment variable ATURTX to True. The produced .rtx graph can be viewed in the Test
RealTime Graphic Viewer.

The END TEST instruction marks the end of the TEST block.

Associated Rules

The TEST and END TEST instructions can only appear in a SERVICE block.

<test_name> is obligatory. If it is absent, the Test Compiler generates an error message.

<nb> is an integer expression strictly greater than 1.

Example
SERVICE COMPUTE_HISTO

 # int x1, x2, y1, y2 : integer ;

 # histo : T_HISTO ;

 TEST 1

 FAMILY nominal

 ELEMENT

110

VAR, ARRAY, and STR

Purpose

The VAR, ARRAY, and STR instructions declare the test of a simple variable, a variable array or a
variable structure.

Syntax

VAR <variable>, <initialization>, <expected>

ARRAY <variable>, <initialization>, <expected>

STR <variable>, <initialization>, <expected>

where:

• <variable> is a variable

• <initialization> is an initialization parameter

• <expected value> is an expected parameter

Description

Use the VAR, ARRAY, and STR instructions to declare a variable test. During test execution, if the
value of the variable is out of the bounds specified in the <expected> expression, the test is Failed.

VAR, ARRAY or STR are synonymous and do not change the way in which the result displayed in
the test report.

• VAR: For simple variables.

• ARRAY: For variable arrays.

• STR: For variable structures.

If you use a VAR statement to test an array or structure, the report lists each element of the array or
structure.

The VAR, ARRAY, and STR instructions must be located in an ELEMENT or an
ENVIRONMENT block.

111

VAR, ARRAY and STR <expected> Parameter

Purpose

In conjunction with the VAR, ARRAY and STR keywords, the <expected value> parameters for Ada
specify the expected value of a variable.

Syntax

EV = <exp>

EV = <exp> , DELTA = <delta>

MIN = <exp>, MAX = <exp>

EV IN) <exp>, <exp>, ...)

EV (<variable>) IN) <exp>, <exp>, ...)

EV ==

where:

• <exp> can be any of the expressions of the Initialization Parameters, plus the following
expressions:

• <delta> is the acceptable tolerance of the expected value and can be expressed:

• <variable> is an Ada variable

Description

The EV expressions are used to specify a test criteria by comparison with the value of a variable.
The test is considered Passed when the actual value matches the <expected value> expression.

The EV value is calculated during the preprocessing phase, not dynamically during test execution.

An acceptable tolerance <delta> can be expressed:

• As an absolute value, by a numerical expression in the form described above

• As a percentage of the expected value. Tolerance is then written in the form <exp>%.

Expected values can be expressed in the following ways:

• EV = <exp> specifies the expected value of the variable when it is known in advance. The value
of variable is considered correct if it is equal to <exp>.

• EV = <exp>, DELTA = <tolerance> allows a tolerance for the expected value. The value of
variable is considered correct if it lies between <exp> - <tolerance> and <exp> + <tolerance>.

• MIN = <exp> and MAX = <exp> specify an interval delimited by an upper and lower limit. The
value of the variable is considered correct if it lies between the two expressions. Characters
and character strings are treated in dictionary order.

• EV IN) <exp>, <exp>, ...) specifies the values expected successively, in accordance with the
initial values, for a variable that is declared in INIT IN. It is therefore essential that the two lists
have an identical number of values.

• EV (<variable>) IN is identical to EV IN, but the expected values are a function of another
variable that has previously been declared in INIT IN. As for EV IN, the two lists must have an
identical number of values.

• EV == allows the value of <variable> not to be checked at the end of the test. Instead, this value
is read and displayed. The value of <variable> is always considered correct.

Expressions

The initialization expressions <exp> can be among any of the following values:

112

• Numeric (integer or floating-point), character, or character string literal values. Strings can be
delimited by single or double quotes

• Native constants, which can be numeric, characters, or character strings

• Variables belonging to the test program or the module to be tested

• Ada functions

• The keyword NIL to designate a null pointer

• The keyword NONIL, which tests if a pointer is non-null

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where In is the current index of the nth dimension of the
parameter and Jm the current number of the subtest generated by the test scenario's mth INIT
IN, INIT FROM or LOOP; the I and I1 variables are therefore equivalent as are J and J1; the
subtest numbers begin at 1 and are incremented by 1 at each iteration

• An Ada expression with one or more of the above elements combined using any operators and
casting, with all required levels of parentheses, the + operator being allowed to concatenate
character string variables

• For arrays and structures, any of the above-mentioned expressions between brackets ('[]') for
Ada, including when appropriate:

• For an array element, part of an array or a structure field, its index, interval or name followed
by '=>' and by the value of the array element, common to all elements of the array portion or
structure field

• For structures you can test some fields only, by using the following syntax:

• [<fieldname> => <value>, <fieldname> => <value>]

• The keyword others (written in lower case) followed by '=>' and the default value of any array
elements or structure fields not yet mentioned

• The pseudo-variable INIT, which copies the initialization expression

Additional Rules

EV with DELTA is only allowed for numeric variables.

MIN = <exp> and MAX = <exp> are only allowed for alphanumeric variables that use
lexicographical order for characters and character strings.

MIN = <exp> and MAX = <exp> are not allowed for pointers.

Only EV = and EV == are allowed for structured variables.

In some cases, in order to avoid generated code compilation warnings, the word CAST must be
inserted before the NIL or NONIL keywords.

Example
VAR x, ..., EV = pi/4-1

VAR y[4], ..., EV IN) 0, 1, 2, 3)

VAR y[5], ..., EV(y[4]) IN) 10, 11, 12, 13)

VAR z.field, ..., MIN = 0, MAX = 100

VAR p->value, ..., EV ==

ARRAY y[0..100], ..., EV = cos(I)

ARRAY y, ..., EV =)50=>10,others=>0)

STR z, ..., EV =)0, "", NIL)

STR *p, ..., EV =)value=>4.9, valid=>1)

113

VAR, ARRAY and STR <initialization> Parameter

Purpose

In conjunction with the VAR, ARRAY and STR keywords, the <initialization> parameters for Ada
specify the initial value of the variable.

Syntax

INIT = <exp>

INIT IN (<exp>, <exp>, ...)

INIT (<variable>) WITH (<exp>, <exp>, ...)

INIT FROM <exp> TO <exp> [STEP <exp> | NB_TIMES <nb> | NB_RANDOM
<nb>[+ BOUNDS]]

INIT ==

where:

• <exp> is an expression as described below.

• <nb> is an integer constant that is either literal or derived from an expression containing native
constants

• <variable> is an Ada variable

Description

The <initialization> expressions are used to assign an initial value to a variable. The initial value is
displayed in the Component Testing report for Ada.

The INIT value is calculated during the preprocessing phase, not dynamically during test
execution.

Initializations can be expressed in the following ways:

• INIT = <exp> initializes a variable before the test with the value <expression>.

• INIT IN (<exp> , <exp> , ...) declares a list of initial values. This is a condensed form of writing
that enables several tests to be contained within a single instruction.

• INIT (<variable>) WITH (<exp> , <exp> , ...) declares a list of initial values that is assigned in
correlation with those of the variable initialized by an INIT IN instruction. There must be the
same number of initial values.

• The INIT IN and INIT (<variable>) WITH expressions cannot be used with for arrays that were
initialized in extended mode or for structures.

• INIT FROM <lower> TO <upper> allows the initial value of a numeric variable (integer or
floating-point) to vary between lower and upper boundary limits:

• STEP: the value varies by successive steps

• NB_TIMES <nb>: the value varies by a number <nb> of values that are equidistant between the
two boundaries, where <nb> >= 2

• NB_RANDOM <nb>: the value varies by generating random values between the 2 boundaries,
including, when appropriate, the boundaries, where <nb> >= 1

• The INIT FROM expression can only be used for numeric variables.

• The STEP syntax cannot be used when the same variable is tested by another VAR, ARRAY or
STR statement.

114

• INIT == allows the variable to be left un-initialized. You can thus control the values of
variables that are dynamically created by the service under test. The initial value is displayed
in the test report as a question mark (?).

• An initialization expression can still be used (INIT == <expression>) to include of expected
value expression when using the INIT pseudo-variable is used. See Expected_Value
Expressions.

Expressions

The initialization expressions <exp> can be among any of the following values:

• Numeric (integer or floating-point), character, or character string literal values. Strings can be
delimited by single or double quotes

• Native constants, which can be numeric, characters, or character strings

• Variables belonging to the test program or the module to be tested

• Ada functions

• The keyword NIL to designate a null pointer

• Pseudo-variables I, I1, I2 ..., J, J1, J2 ..., where In is the current index of the nth dimension of the
parameter and Jm the current number of the subtest generated by the test scenario's mth INIT
IN, INIT FROM or LOOP; the I and I1 variables are therefore equivalent as are J and J1; the
subtest numbers begin at 1 and are incremented by 1 at each iteration

• An Ada expression with one or more of the above elements combined using any operators and
casting, with all required levels of parentheses, the + operator being allowed to concatenate
character string variables

• For arrays and structures, any of the above-mentioned expressions between brackets ('[]') for
Ada, including when appropriate:

• For an array element, part of an array or a structure field, its index, interval or name followed
by '=>' and by the value of the array element, common to all elements of the array portion or
structure field

• For structures you can test some fields only, by using the following syntax:

• [<fieldname> => <value>, <fieldname> => <value>]

• The keyword others (written in lower case) followed by '=>' and the default value of any array
elements or structure fields not yet mentioned

• For INIT IN and INIT WITH only, a list of values delimited by brackets ('[]') for Ada composed
of any of the previously defined expressions

Additional Rules

Any integers contained in an expression must be written either in accordance with native lexical
rules, or under the form:

• <hex_integer>H for hexadecimal values. In this case, the integer must be preceded by 0 if it
begins with a letter

• <binary_integer>B for binary values

The number of values inside an INIT IN parameter is limited to 100 elements in a single VAR
statement.

The number of INIT IN parameters per TEST LOOP block is limited to 7.

The number of INIT IN parameters per TEST block is limited to 8.

115

Example
VAR x, INIT = pi/4-1, ...

VAR y[4], INIT IN (0, 1, 2, 3), ...

VAR y[5], INIT(y[4]) WITH (10, 11, 12, 13), ...

VAR z.field, INIT FROM 0 TO 100 NB_RANDOM 3, ...

VAR p->value, INIT ==, ...

ARRAY y[0..100], INIT = sin(I), ...

ARRAY y, INIT = (50=>10,others=>0), ...

STR z, INIT = (0, "", NIL), ...

STR *p, INIT = (value=>4.9, valid=>1), ...

116

VAR, ARRAY and STR <variable> Parameter

Description

In conjunction with the VAR, ARRAY and STR keywords, the <variable> parameter for Ada is a
conventional notation name for an Ada variable under test.

Associated Rules

<variable> can be a simple variable (integer, floating-point number, character, pointer, character
string, ...), an element of an array or record, part of an array, an entire array, or a complete record.

If the variable is an array for which no test boundaries have been specified, all the array elements
are tested. Similarly, if the variable is a record of which one of the fields is an array, all elements of
this field are tested.

Brackets or parentheses can be used to index array variables.

The variable must have been declared in Ada before it is used in the .ptu test script.

Example
VAR x, ...

VAR y(4), ...

VAR z.field, ...

VAR p.value, ...

ARRAY y(0..100), ...

ARRAY y, ...

STR z, ...

STR p.all, ...

117

Command line interface

118

Ada Source Code Parser - attolstartADA

Purpose

When creating a new Component Testing test campaign for Ada, the Ada Source Code Parser
creates an Ada test script template based on the analysis of the source code under test.

When the -metrics option is specified, the Source Code Parser produces static metrics for the
specified source files.

Syntax

attolstartADA <source_under_test > <test_script> [{<-option>}]

attolstartADA @<option file >

where:

• <source under test> this required parameter is the name of the source file to be tested.

• <test script> is the name of the test script that is generated

• <options> is a list of options as defined below.

• <option file> is the name of a plain-text file containing a list of options.

Description

The Ada Source Code Parser analyzes the source file to be tested in order to extract global variables
and testable functions.

Each global variable is automatically declared as external, if this has not already been done at the
beginning of the test script. Then, an environment is created to contain all these variables with
default tests. This environment has the name of the file (without the extension).

For each function under test, the generator creates a SERVICE which contains the Ada declaration
of the variables to use as parameters of the function.

Parameters passed by reference are declared according to the following rule:

• char* <param> causes the generation of char <param>[200]

• <type>* <param> causes the generation of <type> <param> passing by reference

It is sometimes necessary to modify this declaration if it is unsuitable for the tested function, where
<type>* <param> can entail the following declarations:

• <type>* <param> passing-by-value,

• <type> <param> passing-by-reference,

• <type> <param>[10] passing-by-reference.

File names can be related or absolute.

If the generated file name does not have an extension, the Ada Source Code Parser automatically
attaches .ptu or the extension specified by the ATTOLPTU environment variable. This name may
be specified relatively, in relation to the current directory, or as an absolute path.

If the test script cannot be created, the Ada Source Code Parser issues a fatal error and stops.

If the test script already exists, the previous version is saved under the name <generated test
script>_bck and a warning message is generated.

Options

Options can be in any order. They may be upper or lowercase and can be abbreviated to their
shortest unambiguous number of characters.

119

Static Metrics

-metrics=<output directory>

Generates static metrics for the specified source files. Resulting .met static metric files are produced
in specified <output directory>. When the -metrics option is used, no other action is performed by
the Source Code Parser.

Included Files

-insert

With this option the source file under test is included into the test script with an #include directive,
ensuring that all the internal functions and variables (declared static) are visible to the test script.
The Ada Source Code Parser adds the #include directive before the BEGIN instruction and after
any #includes added by the -use option.

Additional Files

-integrate=<additional file>{[,<additional file>]}

This option provides a list of additional source files whose objects are integrated into the test
program after linking.

The Ada Source Code Parser analyzes the additional files to extract any global variables that are
visible from outside. For each global variable the Parser declares an external variable and creates a
default test which is added to an environment named after the corresponding additional file.

By default, any symbols and types that could be exported from the source file under test are
declared again in the test script.

Simulated Files

-simulate=<simulated file>{[,<simulated file>]}

This option gives the Ada Source Code Parser a list of source files to simulate upon execution of the
test. List elements are separated by commas and may be specified relatively, in relation to the
current directory, or as an absolute path.

The Parser analyzes the simulated files to extract the global variables and functions that are visible
from outside. For each file, a DEFINE STUB block, which contains the simulation of the file's
external global variables and functions, is generated.

By default, no simulation instructions are generated.

Header Files

-use=<file used>{[,<file used>]}

This option gives the Ada Source Code Parser a list of header files to include in the test script
before the BEGIN instruction. This avoids declaring variables or functions that have already been
declared in an Ada header file of the application under test.

The Ada Source Code Parser adds the #include directive before the BEGIN instruction. Then, for
each file, an environment is created, containing all variables with a default test. This environment
has the name of the included file.

By default, no files are included in the test script.

Other options

-studio_log

This option is for internal usage only.

Return Codes

After execution, the program exits with the following return codes

120

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

121

Ada Test Script Compiler - attolpreproADA

Purpose

The Ada Test Script Compiler tool pre-processes the Ada test script and converts it into a native
source test harness.

Syntax

attolpreproADA <test_script> <generated_file> [<target_directory>
] {[<-options>]}

attolpreproADA @<option_file>

where:

• <test_script> is a required parameter that specifies the name of the test program to be
generated.

• <generated_file> is a required parameter that specifies the name of the test harness that is
generated from the test script.

• <target_directory> is an optional parameter. It specifies the location where Component Testing
for Ada will generate the trace file. By default, the trace file is generated in the workspace
directory.

• <options> is a set of optional command line parameters as specified in the following section.

• <option_file> is the name of a plain-text file containing a list of options.

Description

Options can be in any order. They may be upper or lowercase and can be abbreviated to their
shortest unambiguous number of characters.

The Ada Test Script Compiler produces a series of .tdc, .ddt and .mdt files, which are required by
the Ada Test Report Generator.

Source File Under Test

-source=<source file>

This option specifies the name of the source file being tested, allowing the Test Script Compiler to:

• Maintain the source file name in the table of correspondence files so that the Test Report
Generator can display this name in the header of the results obtained file.

• Establish the list of include files in the tested source file.

The name of the tested source file may be specified with a relative or absolute directory in a syntax
recognized by the operating system, or, in UNIX, by an environment variable.

By default, the list of include files in the tested source file and the source file name are not
displayed in the Results Obtained file.

Condition Definition

-define=<ident>[=<value>] {[,<ident>[=<value>]}

This option specifies conditions to be applied when the Test Script Compiler starts. These
conditions allow conditional test harness generation as well as identifier definition for Ada.

The identifiers specified by the -define option apply conditions to the generation of any IF ... ELSE
... END IF blocks in the test script.

If the option is used with one of the conditions specified in the IF instruction, the IF ... ELSE block
(if ELSE is present) or the ELSE ... END IF block (if ELSE is not present) is analyzed and generated.
The ELSE ... END IF block is eliminated.

122

If the option is not used or if none of the conditions specified in the IF instruction are satisfied, the
ELSE ... END IF block is analyzed and generated.

All symbols defined by this option are equivalent to the following line in Ada
-define <ident> [<value>]

By default, the ELSE ... END IF blocks are analyzed and generated.

Specifying Tests, Families, and Services

-test=<test>{[,<test>]} | -extest=<test>{[,<test>]}

This option specifies a list of tests to be executed.

Use -test to only generate the source code related to the specified tests, and -extest to specify the
tests for which you do not want to generate source code.

Both -test and -extest cannot be used together.

By default, all tests are selected.

-family=<family>{,<family>} | -exfamily=<family>{,<family>}

Use -family to only generate the source code related to the specified families, and -exfamily to
specify the families for which you do not want to generate source code.

Both -family and -exfamily cannot be used together.

By default, all families are selected.

-service=<service>{[,<service>]} | -
exservice=<service>{[,<service>]}

Use -service to only generate the source code related to the specified services, and -exservice
family to specify the services for which you do not want to generate source code.

Both -service and -exservice cannot be used together.

By default, all services are selected.

Test Script Parsing

-fast | -nofast

The -fast option tells the Test Script Compiler to analyze only those tests that you want to generate.
This setting considerably speeds up the Test Script Compiler when you use the -service,-exservice,-
family, -exfamily,-test, or -extest options.

The -fast option is selected by default.

If you want a full test script analysis, this option can be de-selected using the -nofast option.

-noanalyse

This option disables the native language parser.

By default, native language lines are analyzed. This option enables you to disable this parsing.

-noedit

This option limits unit test code generation to the initialization of variables, making it possible to
generate tighter code for special purposes such as debugging. If you specify the -noedit option, you
cannot generate a test report.

By default, code is generated normally.

-nopath

Use this option if you do not want to generate long pathnames on the open and close execution
trace file call, and on the Target Deployment Port header file include directive. This can be useful,
for example, to preserve memory on embedded targets.

By default, full pathnames are generated.

123

-nosimulation

This option determines the conditional generation related to simulation in the source file generated
by the Test Script Compiler. Blocks delimited by the keywords SIMUL ... ELSE_SIMUL ... END
SIMUL can be included in the test scripts.

See SIMUL blocks in the Ada Test Script Language.

-restriction=ANSI | KR | NOEXCEPTION | NOIMAGE | NOPOS | SEPAR

This option lets you modify the behavior of test script parser.

• noexception: tells the Test Script Compiler to skip EXCEPTION blocks when generating a test
harness. This allows the use of compilers that do not implement exception handling. By
default, EXCEPTION blocks are generated in the test program.

• noimage: initialization, expected, and obtained values display as integers instead of character
strings. By default, reports are generated with IMAGE attributes.

• nopos: modifies the way enumerated variables are displayed in the test report by not
generating any POS or IMAGE attributes. Initialization and expected values are displayed as
they are written in the test script, whereas obtained values do not appear (although they are
tested). Use this option to save memory on restricted target platforms. By default, reports are is
generated with IMAGE attributes.

• separ: modifies the format of the generated test program. In place of a main procedure
including a sub-procedure for each service, the Test Script Compiler generates one separate
procedure for each service. With this restriction, the Test Script Compiler generates several
compilation units and avoids overflow errors on compilation. By default, code is generated
normally.

Several -restriction options can be used on the same command line. The ANSI and KR parameters,
however, cannot be used together.

Other options

-studio_log

This option is for internal usage only.

Using an Option File

@<parameter file>

This syntax allows the compiler to pass options to the preprocessor through a file. The parameter
file name can be written in absolute or relative format.

The format of the file must follow these rules:

• One or more options can occur per line.

• Each option must follow the same syntax as the command line version, with the character that
usually introduces the option being '-' under UNIX and '/' under Windows.

• You may not use both an option file and command line options.

By default, no file is taken into account.

If the option file is not found, a fatal error is generated and the preprocessor stops.

Example
attolprepro C add.ptu Tadd.cpp -service=add -test=1,2,3 -family=nominal

attolprepro CPP @add.opt

In this case, the parameter file add.opt would contains:
add.ptu Tadd.cpp

-service=add

124

-test=1,2,3

-family=nominal

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

These codes help you decide on a course of action once the Test Script Compiler has finished test
execution. For example, if the return code in the command file shows there have been incorrect
tests, you can save certain files in order to analyze them later.

All messages are sent to the standard error output device.

125

Ada Test Script Compiler - attolpostproada

Purpose

The Ada Test Report Generator processes a trace file produced during test execution, and generates
a test report.

Syntax

attolpostproada <trace_filename> <report_filename> [<options>]

attolpostproada @<option file>

where:

• <trace_filename> specifies the root (filename without extension) of the trace file that is
generated when the program runs.

• <report_filename> specifies the name of the .rod compact report file produced by the Test
Report Generator.

• <options> can be any of the optional parameters specified below.

• <option_file> is the name of a plain-text file containing a list of options.

Description

The Test Report Generator uses <trace_filename> to find the names of both the .rio trace file and the
.tdc, .ddt and .mdt files that are generated by the Test Script Compiler.

If <report_filename> is provided without an extension, the Test Report Generator attaches .rod.

If either <trace_filename> or <report_filename> are omitted, the Test Report Generator produces an
error message and terminates.

If any of the required files (.rio, .tdc, .ddt or .mdt) do not exist, cannot be read, or contain
synchronization errors, the Test Report Generator produces an error message and terminates.

If the Test Report Generator cannot create the .rod compact report file, generation of the report is
terminated. If the file already exists, the newly generated file replaces the existing report.

The .rod compact report file is an intermediate low-footprint format that can be stored on remote
targets. The .rod files must be converted to the .xrd report file format to be displayed by the Test
RealTime GUI with the rod2xrd command line tool.

Options

Options can be in any order. They may be upper or lowercase and can be abbreviated to their
shortest unambiguous number of characters.

-cio=<coverage result file>

This option allows you to insert coverage results in the report file. This option must be used only in
conjunction with the Code Coverage feature.

-ra[=test | error]

This option specifies the form of the output report generated by the Test Report Generator.

Use -ra with no parameter, to display ALL test variables and mark any variables that are incorrect
for a given test. This option is used by default.

Use the -ra=test option to display ALL test variables, with incorrect variables marked. This option
provides a comprehensive display of variables for an incorrect test, which can prove useful in a
complex test environment.

Use -ra=error to to display only erroneous test variables.

126

For both -ra=test and -ra=error, if no errors are detected in the test, only general information about
the test is produced.

-va=eval | noeval | combined

This option lets you specify the way in which initial and expected values of each variable are
displayed in the test report.

Use -va=eval if you want the test report to show the initial and expected value of each variable
evaluated during execution of the test. This is only relevant for variables whose initial or expected
value expressions are not reducible in the test script.

Note: For arrays and structures in which one of the members is an array, the initial values are not evaluated. For
the expected values, only incorrect elements are evaluated.

Use -va=noeval if you want the test report to show the initial and expected values described in the
test script.

The -va=combined option combines both eval and noeval parameters. For each variable, the
Report Generator includes the initial and expected values described in the test script, as well as the
initial and expected values evaluated during execution, if these values differ.

By default, the -va=eval parameter is used.

-studio_log

This option is for internal usage only.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

127

Ada Link File Generator - attolalk

Purpose

The Ada Link File Generator (attolalk) feature automatically generates link files. It uses file name
extensions that you allow or disallow, and on the file list found in the specified directories.

Syntax

attolalk [<options>] <link file name> <directory> [<directory> ...
<directory>]

where:

• <link file name> is the name of the generated link file. If attolalk cannot write this file a fatal
error is generated.

• <directory> is a directory name. If attolalk cannot read file from this directory, a fatal error is
generated.

• <options> is a set of optional command line parameters as specified in the following section.

Description

The Link File Generator requires that the LD_LIBRARY_PATH environment variable is set to the
/lib directory in the product installation directory.

File Extensions

A file extension is a character string of unconstrained positive length (greater than zero). A file
name matches an extension if its length is greater than the length of extension, and if the N last
characters of the file name are identical to the characters of the extension (N is the length of the
extension). For example, source.ada matches the .ada extension but not .1.ada extension.

Permitted and Forbidden Extensions:

Permitted and forbidden file extensions for the Link File Generator are specified by the
ATTOLALK_EXT and ATTOLALK_NOEXT environment variables and are separated by the ':'
character on UNIX systems and ';' on Windows. For example:
ATTOLALK_EXT=".ada:.a:.am"

ATTOLALK_NOEXT=".1.ada"

By default, the allowed extension list is ".ada:.ads:.adb" and the forbidden extension list is empty.
These default values are orverwritten by the value of the ATTOLALK_EXT variable.

Link File Generation

For each given directory, the contained file name list is loaded. Each file name is compared with
the allowed extensions. If a match is found, the file name is compared with forbidden extension. If
there is no match, the file is taken as an Ada source file. Each Ada source file is analyzed and may
produce one or more lines in the generated link file (with the syntax described above).

Command Line Parameters

Options can be in any order. They may be upper or lowercase and can be abbreviated to their
shortest unambiguous number of characters.

-r

Relative paths. With the -r option, all filenames are generated with relative paths.

-s

Silent mode. With the -s option, only errors are displayed.

-f

128

Force all Ada files. By default, the Link File Generator only analyzes Ada source files that were
changed since the last analysis. Use the -f option to force the analysis of all Ada source files,
regardless of when they were modified.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

129

Ada Unit Maker - attolchop

Purpose

The Instrumentor generates several compilation units in the same file. Some compilers require a
separate file for each compilation unit.

To achieve this, the Ada Unit Maker feature generates one file for each compilation unit found in a
specified Ada source file as the gnatchop command, provided with the GNAT Ada compiler, does.
You can choose the name of the generated files from several naming conventions.

Syntax

attolchop [<options>] <source file name>

where:

• <source file name> is the source file name to analyze. If this file cannot be read or contains
lexical or syntax errors, a fatal error is generated.

• <options> is a set of optional command line parameters as specified in the following section.

Description

The Ada Unit Maker feature can generate file names for Rational Apex or Gnat naming standards.
To choose the naming standard, either set the ATTOLCHOP environment variable to GNAT or
APEX or use the -n command line parameter. By default, the Ada Unit Maker uses the Gnat
naming convention.

Gnat Naming

The full compilation unit name is set to lower case and all dot characters (".") are replaced with
hyphens ("-"). The feature appends the .ads extension to the name if the unit is an extension or the
.adb extension if the unit is a body. The Krunch Gnat short name mode is not supported by the
Ada Unit Maker. Please refer to your Gnat documentation for further information.

Rational Apex Naming

The full compilation unit name is set to lower case; then the feature appends a .1.ada extension to
the filename if the unit is a specification, or a .2.ada extension if the unit is a body. Please refer to
your Apex documentation for further information.

Options

Options can be in any order. They may be upper or lowercase and can be abbreviated to their
shortest unambiguous number of characters.

-l

This option must be placed first if it is used. This tells the Ada Unit Maker feature to send the name
of the generated file, and no other messages, to the standard output.

-w

Overwrite. By default, the Ada Unit Maker produces an error if a filename already exists. Use the -
w option to overwrite any existing files.

-n APEX|GNAT

Naming standard. Use the -n option to select either the Rational Apex or Gnat naming convention.
This parameter overrides the default setting (Gnat) as well as the ATTOLCHOP environment
variable if set.

130

Return Codes

After execution, the program exits with the following return codes:

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of a fatal error

9 End of execution because of an internal error

All messages are sent to the standard error output device.

131

Component Testing for Java

Java test primitives

All the test primitives described here are available for both J2SE and J2ME versions of the JUnit
testing framework.

This section describes each method used by Component Testing for Java, including:

Syntax

• Functionality and rules governing its usage

• Examples of use

Notation Conventions

Throughout this guide, command notation and argument parameters use the following standard
convention:

Notation Example Meaning

BOLD BEGIN Language keyword

<italic> <string> Symbolic variables

[] [<option>] Optional items

{ } {<string>} Series of values

[{ }] [{<string>}] Optional series of variables

| on | off OR operator

JUnit Assert Primitives

Component testing for Java uses the standard assert test primitives provided by JUnit. Please refer
to documentation provided with JUnit documentation for further information.

Method Purpose

assertEquals() Checks that two values are equal

assertNotNull() Checks that an object is not null

assertNull() Checks that an object is null

assertSame() Checks that two object are actually the same

assertTrue() Checks that a condition is true

fail() Marks a test as Failed

Extended Primitives

Component Testing for Java extends the set of assert test primitives provided by JUnit with a
special set of verify primitives. These extended test methods are part of the TestCase class. User test
classes must derive from TestCase to use these primitives.

Method Purpose

verifyEquals() Checks that two values are equal

verifyNotNull() Checks that an object is not null

132

verifyNull() Checks that an object is null

verifySame() Checks that two object are actually the same

verifyTrue() Checks that a condition is true

verify() Checks that an exception is thrown

verifyApproxEquals() Checks that two variables have the same value within a given margin

verifyGreaterThan() Checks that a tested value is strictly greater than a reference value

verifyGreaterThanEquals() Checks that a tested value is greater or equal to reference value

verifyLowerThan() Checks that a tested value is strictly lower than a reference value

verifyLowerThanEquals() Checks that a tested value is lower or equal to reference value

verifyLogMessage() Logs a message in the test report

verifyLogfail() Marks a test as Failed with a message

Timer Primitives

Component Testing for Java provides multiple timer control primitives, allowing you to perform
basic performance testing.

Method Purpose

createTimer() Creates a timer

timerStart() Starts a timer

timerReportElapsedTime() Logs the elapsed time since a timer was started

verifyElapsedTime() Checks that the elapsed time for a timer is below a given value

133

assertEquals()

Purpose

Checks that two values are equal.

Syntax

assertEquals([<string>,] <val1>, <val2> [, <precision>])

where:

• <string> is an optional message

• <val1> and <val2> are two Java type values

• <precision> is an optional precision argument for Float or Double types

Description

The corresponding test result is Passed if the <val1> and <val2> are equal—within a given
<precision> margin if specified—and Failed if the condition is False.

Compared values may be of any Java type: Boolean, float, double, short, byte, char, int, long or object.
<val1> and <val2> must be of the same type.

An optional <string> message can be logged and displayed in the test report.

An optional <precision> argument specifies an acceptable margin for Float or Double values. By
default, <val1> and <val2> must be strictly equal.

If an exception is thrown in the assertEquals() method, the test is stopped.

Example

Boolean:
assertEquals("assert equals true", true, true);

assertEquals("assert equals false", true, false);

assertEquals(true, true);

assertEquals(true, false);

Float:
float val1;

float val2;

val1 = 1;

val2 = 1;

assertEquals("assert equals true", val1, val2, 0.1);

val2 = 3;

assertEquals("assert equals false", val1, val2, 0.1);

float val1;

float val2;

val1 = 1;

val2 = 1;

assertEquals(val1, val2,0.1);

val2 = 3;

assertEquals(val1, val2,0.1);

Double:
double val1;

double val2;

val1 = 1.05;

134

val2 = 1.05;

assertEquals("assert equals true", val1, val2,0.01);

val2 = 1.06;

assertEquals("assert equals false", val1, val2,0.0001);

double val1;

double val2;

val1 = 1.05;

val2 = 1.05;

assertEquals(val1, val2,0.01);

val2 = 1.06;

assertEquals(val1, val2,0.0001);

Short:
short val1 = 1;

short val2 = 1;

assertEquals("assert equals true short", val1,val2);

Byte:
byte val1 = 1;

byte val2 = 1;

assertEquals(val1,val2);

Char
char val1 = 'a';

char val2 = 'a';

assertEquals("assert equals true char", val1,val2);

Int
int val1 = 1;

int val2 = 1;

assertEquals("assert equals true int", val1,val2);

Long
long val1 = 1;

long val2 = 1;

assertEquals("assert equals true long", val1,val2);

Object
long val1 = 1;

long val2 = 1;

assertEquals("assert equals true Object", new Long(val1), new
Long(val2));

135

assertNotNull()

Purpose

Checks that an object is not null.

Syntax

assertNotNull([<string>,]<object>)

where:

• <string> is an optional message

• <object> is a Java object

Description

The corresponding test result is Passed if <object> is not null, and Failed if the condition is False.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in the assertNotNull() method, the test is stopped.

Example
Object one_obj = new Long(10);

assertNotNull("assert not null passed", one_obj);

Object one_obj = new Long(10);

assertNotNull(one_obj);

136

assertNull()

Purpose

Checks that an object is not null.

Syntax

assertNull([<string>,]<object>)

where:

• <string> is an optional message

• <object> is a Java object

Description

The corresponding test result is Passed if <object> is null, and Failed if the condition is False.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in the assertNull() method, the test is stopped.

Example
Object one_obj = null;

assertNull("assert null passed", one_obj);

Object one_obj = null;

assertNull(one_obj);

137

assertSame()

Purpose

Checks that two object are actually the same.

Syntax

assertSame([<string>],<object1>,<object2>)

where:

• <string> is an optional message

• <object1> and <object2> are two Java objects

Description

The corresponding test result is Passed if <object1> and <object2> refer to the same object, and Failed
if the condition is False.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in the assertSame() method, the test is stopped.

Example
Object one_obj = new Long(10);

Object other=one_obj;

assertSame("assert Same passed", one_obj,other);

Object one_obj = new Long(10);

Object other=one_obj;

assertSame(one_obj,other);

138

assertTrue()

Purpose

Checks that a condition is true.

Syntax

assertTrue([<string>,]<Boolean>)

where:

• <string> is an optional message

• <Boolean> is a Boolean condition

Description

The corresponding test result is Passed if the assertTrue() condition is True and Failed if the
condition is False.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in the assertTrue() method, the test is stopped.

Example
assertTrue("Should be true",true);

assertTrue("Should be failed",false);

assertTrue(true);

assertTrue(false);

139

createTimer()

Purpose

Creates a timer.

Syntax

createTimer(<string>)

where:

• <string> is a message

Description

Several timers can be created. When a timer is created, createTimer() returns an identification
number for the timer (integer) for use with other timer-related functions.

Timers must be started with the timerStart() method.

The <string> message is logged and displayed in the test report.

If an exception is thrown in a createTimer() method, an error is logged and the test continues.

Example
int timer1, timer2, timer3;

int any = 10;

timer1 = createTimer("first timer created");

timer2 = createTimer("second timer created");

timer3 = createTimer("third timer created");

140

fail()

Purpose

Marks a test as Failed.

Syntax

fail([<string>])

where:

• <string> is an optional message

Description

The corresponding test result is Failed if the Fail() method is encountered.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in the Fail() method, the test is stopped.

Example
 verifyLogMessage("test fail");

 fail();

 verifyLogMessage("test fail");

 fail("test fail");

141

timerReportElapsedTime()

Purpose

Logs the elapsed time since a timer was started.

Syntax

timerReportElapsedTime(<timer_id>, <string>)

where:

• <timer_id> is an integer timer identification number

• <string> is a message to be logged with the elapsed time value

Description

The elapsed time of the timer identified as <timer_id> is logged and displayed in the test report
with a <string> message.

The time unit is specified by the current Target Deployment Port. By default, the elapsed time is
returned in milliseconds.

Timers must be started with timerReportElapsedTime() before an elapsed time can be calculated.

If an exception is thrown in a timerReportElapsedTime() method, an error is logged and the test
continues.

Example
int timer1, timer2, timer3;

int any = 10;

timer1 = createTimer("first timer created");

timer2 = createTimer("second timer created");

timer3 = createTimer("third timer created");

//then start the timers.

timerStart(timer1,"Start 1");

timerStart(timer2,"Start 2");

timerStart(timer3,"Start 3");

//Report time.

long val1, val2, val3;

val2 = 100;

val3 = 1000;

val1 = 10000;

verifyLogMessage("Timer report");

timerReportElapsedTime(timer1,"report 1 ");

timerReportElapsedTime(timer2,"report 2 ");

timerReportElapsedTime(timer2,"report 2 ");

142

timerStart()

Purpose

Starts a timer.

Syntax

timerStart(<timer_id>,<string>)

where:

• <timer_id> is in an integer timer identification number

• <string> is a string message

Description

Starts the timer identified as <timer> and logs the message provided in <string>.

Timers must be created with createTimer() before being started. Several timers can run
simultaneously.

If an exception is thrown in a timerStart() method, an error is logged and the test continues.

Example
 int timer1, timer2, timer3;

 int any = 10;

 timer1 = createTimer("first timer created");

 timer2 = createTimer("second timer created");

 timer3 = createTimer("third timer created");

 //then start the timers.

 timerStart(timer1,"Start 1");

 timerStart(timer2,"Start 2");

 timerStart(timer3,"Start 3");

143

verify()

Purpose

Checks that an exception is thrown.

Syntax

verify(<exception>)

where:

• <exception> is a throwable exception

Description

Verifies that an exception compatible with the specified <exception> is thrown during the test.

The corresponding test result is Passed if the exception in thrown or Failed if not.

If an exception is thrown in a verify() method, an error is logged and the test continues.

Example
public void WillThrowRTE()

{

 verifyLogMessage("RTE in next call");

 throw new RuntimeException("Exception Message");

}

public void testException1()

{

 verifyLogMessage("Check true for RTE");

 Throwable tosee= new RuntimeException("Exception Runtime ");

 verify(tosee);

 WillThrowRTE();

}

public void testException2()

{

 verifyLogMessage("Check true for RTE");

 Throwable tosee= new Exception("Exception");

 verify(tosee);

 WillThrowRTE();

}

public void testException3()

{

 verifyLogMessage("Check true for RTE");

 Throwable tosee= new Throwable();

 verify(tosee);

 WillThrowRTE();

}

public void testException4()

{

 verifyLogMessage("Check false for RTE");

 Throwable tosee= new ArithmeticException("Throwable");

 verify(tosee);

 WillThrowRTE();

}

144

public void testException5()

{

 verifyLogMessage("Check false for RTE");

 Throwable tosee= new ClassCastException("Throwable");

 verify(tosee);

 WillThrowRTE();

}

public void testException6()

{

 verifyLogMessage("Check false for RTE");

 Throwable tosee= new ClassCastException("Throwable");

 verify(tosee);

 //Do not call anything.

}

145

verifyApproxEquals()

Purpose

Checks that two variables have the same value within a given margin.

Syntax

verifyApproxEquals([<string>,] <variable1>, <variable2>,
<precision>)

where:

• <string> is an optional message

• <variable1> and <variable2> are two Java type variables

• <precision> is a precision argument

Description

The corresponding test result is Passed if the assertApproxEquals() condition is True and Failed if
the condition is False.

Compared variables may be of any Java type: Boolean, float, double, short, byte, char, int, long or
object. <variable1> and <variable2> must be of the same type.

An optional <string> message can be logged and displayed in the test report.

The <precision> argument specifies an acceptable margin.

If an exception is thrown in a verifyApproxEquals() method, an error is logged and the test
continues.

Example

Char:
char valc1 = 'a';

char valc2 = 'e';

verifyApproxEquals("verify approx char passed", valc1,valc2, 10);

Byte:
byte valb1 = 5;

byte valb2 = 10;

verifyApproxEquals("verify approx byte passed", valb1,valb2, 10);

Short:
short val1 = 1;

short val2 = 5;

verifyAproxEquals("verify approx short passed", val1,val2, 10);

Int:
int vali1 = 1;

int vali2 = 20;

verifyApproxEquals("verify approx int passed", vali1,vali2, 20);

Long:
long vall1 = 1;

long vall2 = 20;

verifyApproxEquals("verify approx long passed", vall1,vall2, 20);

Float:
float valf1 = 1;

146

float valf2 = 20;

verifyApproxEquals("verify approx float passed", valf1,valf2, 20);

Double:
double vald1 = 1;

double vald2 = 20;

verifyApproxEquals("verify approx double passed", vald1,vald2, 20);

147

verifyElapsedTime()

Purpose

Checks that the elapsed time for a timer is below a given value.

Syntax

verifyElapsedTime(<timer_id>, <value>, <string>)

where:

• <timer_id> is an int timer identification number

• <value> is a long expected time

• <string> is a message to be logged with the elapsed time value

Description

The corresponding test result is Passed if the elapsed time of the timer identified as <timer_id> is
lower or equal to the expected time <value>, and Failed if the condition is False.

The result is logged and displayed in the test report with a <string> message.

The time unit is specified by the current Target Deployment Port. By default, the elapsed time is
returned in milliseconds.

Timers must be started with timerStart() before an elapsed time can be calculated.

If an exception is thrown in a verifyElapsedTime() method, an error is logged and the test
continues.

Example
int timer1, timer2, timer3;

int any = 10;

timer1 = createTimer("first timer created");

timer2 = createTimer("second timer created");

timer3 = createTimer("third timer created");

//then start the timers.

timerStart(timer1,"Start 1");

timerStart(timer2,"Start 2");

timerStart(timer3,"Start 3");

//Report time.

long val1, val2, val3;

val2 = 100;

val3 = 1000;

val1 = 10000;

verifyLogMessage("Timer report");

timerReportElapsedTime(timer1,"report 1 ");

timerReportElapsedTime(timer2,"report 2 ");

timerReportElapsedTime(timer2,"report 2 ");

//then some verifys.

verifyLogMessage("Timer verifys");

verifyElapsedTime(timer1,val1,"ellapsed 1 with 10000");

verifyElapsedTime(timer1,val2,"ellapsed 1 with 100");

verifyElapsedTime(timer1,val3,"ellapsed 1 with 1000");

148

verifyEquals()

Purpose

Checks that two values are equal.

Syntax

verifyEquals([<string>,]<Boolean1>,<Boolean2>)

verifyEquals([<string>,] <val1>, <val2> [, <precision>])

verifyEquals([<string>,] <vector1>, <vector2> [, <precision>])

where:

• <string> is an optional message

• <Boolean1> and <Boolean2> are two Boolean conditions

• <val1> and <val2> are two Java type values

• <vector1> and <vector2> are two vectors

• <precision> is an optional precision argument for Float or Double types

Description

The corresponding test result is Passed if the verifyEquals() condition is True and Failed if the
condition is False..

Compared values may be of any Java type: Boolean, float, double, short, byte, char, int, long, object or
vectors. <val1> and <val2> must be of the same type.

An optional <string> message can be logged and displayed in the test report.

An optional <precision> argument specifies an acceptable margin for Float or Double values. By
default, <val1> and <val2> must be strictly equal.

If an exception is thrown in a verifyEquals() method, an error is logged and the test continues.

Example

Char:
 char valc1 = 'a';

 char valc2 = 'a';

 verifyEquals("verify equals true char", valc1, valc2);

 valc2 = 'b';

 verifyEquals("verify equals false char", valc1, valc2);

Short:
 short val1 = 1;

 short val2 = 1;

 verifyEquals("verify equals true short", val1, val2);

 val2 = 2;

 verifyEquals("verify equals false short", val1, val2);

Byte:
 byte b1 = 1;

 byte b2 = 1;

 verifyEquals("verify byte equals true", b1, b2);

 b2 = 2;

 verifyEquals("verify byte equals false", b1, b2);

149

Int:
 int i1 = 1;

 int i2 = 1;

 verifyEquals("verify equals int true", i1, i2);

 i1= 2;

 verifyEquals("verify equals int false", i1, i2);

Long:
 long l1 =1;

 long l2 =1;

 verifyEquals("verify equals long true", l1, l2);

 l1 = 2;

 verifyEquals("verify equals long false", l1, l2);

Object:
 long l1 =1;

 long l2 =1;

 verifyEquals("verify equals object true", new Long(l1), new Long(l2));

 l1 = 3;

 verifyEquals("verify equals object false", new Long(l1), new Long(l2));

Double:
 double vald1 = 1;

 double vald2 = 1;

 verifyEquals("verify equals true double", vald1, vald2);

 vald2 = 2;

 verifyEquals("verify equals false double", vald1, vald2);

Float:
 float valf1 = 1;

 float valf2 = 1;

 verifyEquals("verify equals true float", valf1, valf2);

 valf2 = 2;

 verifyEquals("verify equals false float", valf1, valf2);

Vector:
Vector vec_int = new Vector();

Vector same_vec = new Vector();

Vector vec_int2_length = new Vector();

Vector vec_char = new Vector();

for (int i = 0;i<3;i++)

 {

 vec_int.addElement(new Integer(i));

 same_vec.addElement(new Integer(i));

 vec_int2_length.addElement(new Integer(i));

 vec_char.addElement(new Character((char)i));

 }

vec_int2_length.addElement(new Integer(500));

Vector another = new Vector();

another.addElement(new Character('a'));

another.addElement(new Character('b'));

verifyLogMessage("Check Vector true and false");

verifyEquals("verify equal vector should be true", vec_int, same_vec);

verifyEquals("verify equal vector should be false for length", vec_int,
vec_int2_length);

150

verifyEquals("verify equal vector should be false, not the same",
vec_int, vec_char);

151

verifyGreaterThan()

Purpose

Checks that a tested value is strictly greater than a reference value.

Syntax

verifyGreaterThan([<string>,] <reference_value>, <tested_value>)

where:

• <string> is an optional message

• <reference_value> and <tested_value> are two Java type values

Description

The corresponding test result is Passed if the <tested_value> is strictly greater than <reference_value>,
and Failed if the condition is False.

Compared values may be of any numeric Java type: Boolean, float, double, short, byte, char, int or long.
<reference_value> and <tested_value> must be of the same type.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifyGreaterThan() method, an error is logged and the test
continues.

Example

Char:
char valc1 = 10;

char valc2 = 20;

verifyGreaterThan("verify greater char true", valc1,valc2);

Byte:
byte valb1 = 10;

byte valb2 = 20;

verifyGreaterThan("verify greater byte true", valb1,valb2);

Short:
short val1 = 10;

short val2 = 20;

verifyGreaterThan("verify greater short true", val1,val2);

Int:
int vali1 = 10;

int vali2 = 20;

verifyGreaterThan("verify greater int true", vali1,vali2);

Long:
long vall1 = 10;

long vall2 = 20;

verifyGreaterThan("verify greater long true", vall1,vall2);

Float:
float valf1 = 10;

float valf2 = 20;

verifyGreaterThan("verify greater float true", valf1,valf2);

Double:

152

double vald1 = 10;

double vald2 = 20;

verifyGreaterThan("verify greater double true", vald1,vald2);

153

verifyGreaterThanEquals()

Purpose

Checks that a tested value is greater or equal to reference value.

Syntax

verifyGreaterThanEquals([<string>,] <reference_value>,
<tested_value>)

where:

• <string> is an optional message

• <reference_value> and <tested_value> are two Java type values

Description

The corresponding test result is Passed if the <tested_value> is greater than <reference_value> or
equals <reference_value>, and Failed if the condition is False.

Compared values may be of any numeric Java type: Boolean, float, double, short, byte, char, int or long.
<reference_value> and <tested_value> must be of the same type.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifyGreaterThanEquals() method, an error is logged and the test
continues.

Example

Char:
char valc1 = 10;

char valc2 = 20;

verifyGreaterThanEquals("verify greater char true", valc1,valc2);

Byte:
byte valb1 = 10;

byte valb2 = 20;

verifyGreaterThanEquals("verify greater byte true", valb1,valb2);

Short:
short val1 = 10;

short val2 = 20;

verifyGreaterThanEquals("verify greater short true", val1,val2);

Int:
int vali1 = 10;

int vali2 = 20;

verifyGreaterThanEquals("verify greater int true", vali1,vali2);

Long:
long vall1 = 10;

long vall2 = 20;

verifyGreaterThanEquals("verify greater long true", vall1,vall2);

Float:
float valf1 = 10;

float valf2 = 20;

verifyGreaterThanEquals("verify greater float true", valf1,valf2);

154

Double:
double vald1 = 10;

double vald2 = 20;

verifyGreaterThanEquals("verify greater double true", vald1,vald2);

155

verifyLogfail()

Purpose

Marks a test as Failed with a message.

Syntax

verifyLogfail(<string>)

where:

• <string> is a message

Description

The corresponding test result is Failed if the verifyLogfail() method is encountered.

The <string> message is logged and displayed in the test report.

If an exception is thrown in a verifyLogfail() method, an error is logged and the test continues.

Example
verifyLogfail("Log message with fail");$

156

verifyLogMessage()

Purpose

Logs a message in the test report.

Syntax

verifyLogMessage(<string>)

where:

• <string> is a message

Description

The <string> message is logged and displayed in the test report.

If an exception is thrown in a verifyLogMessage() method, an error is logged and the test
continues.

Example
verifyLogMessage("Hello World");$

157

verifyLowerThan()

Purpose

Checks that a tested value is strictly lower than a reference value.

Syntax

verifyLowerThan([<string>,] <reference_value>, <tested_value>)

where:

• <string> is an optional message

• <reference_value> and <tested_value> are two Java type values

Description

The corresponding test result is Passed if the <tested_value> is strictly lower than <reference_value>,
and Failed if the condition is False.

Compared values may be of any numeric Java type: Boolean, float, double, short, byte, char, int or long.
<reference_value> and <tested_value> must be of the same type.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifyLowerThan() method, an error is logged and the test continues.

Example

Short:
short val1 = 21;

short val2 = 20;

verifyLowerThan("verify lower true short", val1,val2);

Byte:
byte valb1 = 21;

byte valb2 = 20;

verifyLowerThan("verify lower true byte", valb1,valb2);

Char:
char valc1 = 21;

char valc2 = 20;

verifyLowerThan("verify lower true char", valc1,valc2);

Int:
int vali1 = 21;

int vali2 = 20;

verifyLowerThan("verify lower true int", vali1,vali2);

Long:
long vall1 = 21;

long vall2 = 20;

verifyLowerThan("verify lower long true", vall1,vall2);

Float:
float valf1 = 21;

float valf2 = 20;

verifyLowerThan("verify lower float true", valf1,valf2);

Double:
double vald1 = 21;

158

double vald2 = 20;

verifyLowerThan("verify lower double true", vald1,vald2);

verifyLowerThanEquals()

Purpose

Checks that a tested value is lower or equal to reference value.

Syntax

verifyLowerThanEquals([<string>,] <reference_value>,
<tested_value>)

where:

• <string> is an optional message

• <reference_value> and <tested_value> are two Java type values

Description

The corresponding test result is Passed if the <tested_value> is lower than <reference_value> or equals
 <reference_value>, and Failed if the condition is False.

Compared values may be of any numeric Java type: Boolean, float, double, short, byte, char, int or long.
<reference_value> and <tested_value> must be of the same type.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifyLowerThanEquals() method, an error is logged and the test
continues.

Example

Char:
char valc1 = 10;

char valc2 = 20;

verifyLowerThanEquals("verify lower char true", valc1,valc2);

Byte:
byte valb1 = 10;

byte valb2 = 20;

verifyLowerThanEquals("verify lower byte true", valb1,valb2);

Short:
short val1 = 10;

short val2 = 20;

verifyLowerThanEquals("verify lower short true", val1,val2);

Int:
int vali1 = 10;

int vali2 = 20;

verifyLowerThanEquals("verify lower int true", vali1,vali2);

Long:
long vall1 = 10;

long vall2 = 20;

verifyLowerThanEquals("verify lower long true", vall1,vall2);

Float:
float valf1 = 10;

159

float valf2 = 20;

verifyLowerThanEquals("verify lower float true", valf1,valf2);

Double:
double vald1 = 10;

double vald2 = 20;

verifyLowerThanEquals("verify lower double true", vald1,vald2);

160

verifyNotNull()

Purpose

Checks that an object is not null.

Syntax

verifyNotNull([<string>,]<object>)

where:

• <string> is an optional message

• <object> is a Java object

Description

The corresponding test result is Passed if <object> is not null, and Failed if the condition is False.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifyNotNull() method, an error is logged and the test continues.

Example
 Object one_obj = null;

 verifyNotNull("verify not null failed", one_obj);

161

verifyNull()

Purpose

Checks that an object is not null.

Syntax

verifyNull([<string>,] <object>)

where:

• <string> is an optional message

• <object> is a Java object

Description

The corresponding test result is Passed if <object> is null, and Failed if the condition is False.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifyNull() method, an error is logged and the test continues.

Example
Object one_obj = null;

verifyNull("verify null passed", one_obj);

162

verifySame()

Purpose

Checks that two object are actually the same.

Syntax

verifySame([<string>],<object1>,<object2>)

where:

• <string> is an optional message

• <object1> and <object2> are two Java objects

Description

The corresponding test result is Passed if <object1> and <object2> refer to the same object, and Failed
if the condition is False.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifySame() method, an error is logged and the test continues.

Example
Object one_obj = new Integer(10);

Object another = one_obj;

verifySame("verify same passed",another,one_obj);

Object one_obj = new Long(10);

Object other=one_obj;

assertSame(one_obj,other);

163

verifyTrue()

Purpose

Checks that a condition is true.

Syntax

verifyTrue([<string>,]<Boolean>)

where:

• <string> is an optional message

• <Boolean> is a Boolean condition

Description

The corresponding test result is Passed if the verifyTrue() condition is True and Failed if the
condition is False.

An optional <string> message can be logged and displayed in the test report.

If an exception is thrown in a verifyTrue() method, an error is logged and the test continues.

Example
verifyTrue("verify 1 true", true);

verifyTrue("verify 2 false", false);

verifyTrue(true);

verifyTrue(false);

164

Command line interface

165

JVMPI Agent

Purpose

The JVMPI Agent is a dynamic library that is part of the J2SE and J2ME virtual machine
distributions. The Agent ensure the memory profiling functionality when using the Memory
Profiling feature for Java.

Syntax

java -Xint -Xrunpagent[:<options>] <configuration>

where:

• <options> are the command line options of the JVMPI agent

• <configuration> is the configuration required to run the application

Description

Because of the garbage collector concept used in Java, Performance Profiling for Java uses the
JVMPI agent facility delivered by the JVM. This differentiates Memory Profiling for Java from the
SCI instrumentation technology used with other languages.

To run the JVMPI Agent from the command line, add the -Xrunpagent option to the Java
command line.

The JVMPI Agent analyzes the following internal events of the JVM:

• Method entries and exits

• Object and primitive type allocations

The JVMPI Agent retrieves source code debug information during runtime. When the Agent
receives a snapshot trigger request, it can either execute an instantaneous JVMPI dump of the JVM
memory, or wait for the next garbage collection to be performed.

Note Information provided by the instantaneous dump includes actual memory use as well
as intermediate and unreferenced objects that are normally freed by the garbage collection.

The actual trigger event can be implemented with any of the following methods:

• A specified method entry or exit used in the Java code

• A message sent from the Snapshot button or menu item in the graphical user interface

• Every garbage collection

The JVMPI Agent requires that the Java code is compiled in debug mode, and cannot be used with
Java in just-in-time (JIT) mode.

Options

The following parameters can be sent to the JVMPI Agent on the command line.

-H_Cx=<size>

-H_Ox=<size>

Specifies the size of hashtables for classes (-H_Cx) or objects (-H_Ox) where <size> must be 1, 3, 5
or 7, corresponding respectively to hashtables of 64, 256, 1024 or 4096 values.

-JVM <prefix>

By default, the Agent waits for the virtual machine (VM) to be fully initialized before it starts
collecting data. This usually relates to the spawning of the first user thread. With the -JVM option,
data collection starts on the first memory allocation, even if the VM is not fully initialized.

-N_O

166

With the -N_O option, the Agent only counts the number of allocated objects and ignores any
further object data. The existence of the objects after garbage collection cannot be verified. Use this
option to reduce Performance Profiling overhead or to obtain a quick summary.

-D_O_N

Delete Object No. By default, the Agent only collects and presents method data on the latest call to
that method. Any further calls to the method replaces existing call data.

Use the -D_O_N option to display all referenced objects.

-D_GC

This option requests a JVMPI dump after each garbage collection

-D_PGC

When using a dump request method, this option makes the Agent wait until the next garbage
collection before performing the dump.

-D_M[[<method>,<class>,<mode>],[,<method>,<class>,<mode>]]

Activates "Dump Method" mode.

Use this option to perform a snapshot on entry or exit of the specified methods, where <mode> may
be 0 or 1:

• 0 performs the method dump upon exit

• 1 performs the method dump on entry

<class> must be the fully qualified name of a class, including the entire package name.

-O_M[[<method>,<class>],[<method>,<class>]]

Activates "Observe Method" mode.

Use this option to store the call stack when the specified methods are called. The stack is loaded
from 0 to 10 (max).

-U_S=[<name>]

User name

This option adds the name of the user to the JVMPI dump data. The name must be specified
between brackets ("[]").

-D_U=[<string>]

This option specifies a start date that is used by the JVMPI dump data. The stringr must be
specified between brackets ("[]").

-F_M[[<method>,<class>],[<method>,<class>]]

Filter mode.

Use this option to produce JVMPI data only on the specified method(s). All other methods are
ignored.

-H_N=[<hostname>]

Hostname.

Use this option to specify a hostname for the JVMPI Agent to communicate with the graphical user
interface on the local host. The hostname must be specified between brackets ("[]").

-P_T=[<port_number>]

Port number. Use this option to specify a port number for the JVMPI Agent to communicate with
the graphical user interface on the local host. The port number must be specified between brackets
("[]").

-OUT=[<filename>]

Output filename.

167

This option specified the name of the trace dump file produced by the JVMPI Agent. Use the Dump
File Splitter on this output file to produce a .tsf static trace file for the GUI Memory Profiling
Viewer.

Example

The following example launches the JVMPI Agent by dumping the exportvalues and exportvalues2
methods of the com.rational.Th class:
java -Xint -Xrunpagent:-JVM-
D_M[[exportvalues,com.rational.Th,0],[exportvalues2,com.rational.Th,0]] -
classpath $CLASSPATH Th

168

Java Source Code Parser - startjava

Purpose

The Source Code Parser for Component Testing for Java analyzes a set of Java source files that
contain classes, and produces a test harness template and metrics.

When the -metric option is specified, the Source Code Parser produces static metrics for the
specified source files.

Syntax

startjava <java source files> <options>

where:

• <java source file> is the list of files containing classes to be tested.

• <options> is a series of command line options. See the section Options.

Description

The Java source files are parsed by the integrated Java analyzer. A candidate classes list is
automatically deduced from the content of source files.

The Metric Generator generates one metric file for each source file in the <java source file> list.

The Source Code Parser generates only one Java test driver script that contains all classes under
test. It also generates stub file containing stub declarations for classes specified in the –stub option.

Options

-J2SE | -J2ME

Specifies the Java target testing framework. The default framework is J2ME.

-classpath <val>

Sets the EDGCLASSPATH value to <val>. EDGCLASSPATH is the environment variable used by
the parser to search for Java classes.

-typical

With this option, all used classes are stubbed.

-pref <prefix>

Use this option to change the prefix of generated test class names. The default prefix is Test.

-metric

Generates a .met static metric files for each specified Java class. When the -metrics option is used,
no other action is performed by the Source Code Parser.

-odir <output directory>

Specifies the directory where results files are to be generated.

-test_class|-tc <java classes>

Specifies the classes to be explicitly tested. List of classes could be specified by giving Java source
file or class names.

-test_method|-tm <method name> <line>

Specifies the methods to be explicitly tested. <method_name> is the fully qualified name of the
method (fully qualified class name with method name, without return values or parameters).
<line> is the line number of the method. For example:
-test_method "package.class.method1" "50" "package.class.method2" "70"

-o <file name>

169

Specifies the name of the generated test. This option is ignored when no test generation is required
(see option –test_class).

-stub_class | -sc <java classes>

Specifies the classes to be explicitly stubbed. List of classes could be specified by giving Java source
file or class names.

-studio_log

This option is for internal usage only.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

1 Abnormal termination

All messages are sent to the standard error output device.

170

Java Test Report Generator - javapostpro

Purpose

The Java Test Report Generator processes a trace file produced during test execution, and generates
a test report that can be viewed in the Test RealTime GUI.

Syntax

javapostpro -tsf<trace files> -tdf<dynamic trace file> -xrd<report
file>

where:

• <trace files> is a series of input .tsf and .tdf intermediate files produced during execution of the
test driver

• <dynamic trace file> is the input .tdf dynamic trace file produced during execution of the test
driver

• <report file> is the output .xrd test report file to be generated

Description

The -tsf option takes a list of generated .tsf static trace files. However, in Component Testing for
Java, the .tdf dynamic trace files may contain structural data as well as trace data. Therefore, the
.tdf file must be specified both in the -tsf option and the -tdf option.

If a specified .tsf or .tdf file does not exist, cannot be read, or contains synchronization errors, the
Test Report Generator produces a fatal error message.

If the Test Report Generator cannot create the .xrd report file, generation of the report is
terminated. If the file already exists, the newly generated file replaces the existing report.

Example
javapostpro -tsf testClass1.tsf testClass2.tsf testDriver.tdf -tdf
testDriver.tdf -xrd report.xrd

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

1 Abnormal termination

All messages are sent to the standard error output device.

171

StubSequence

The test of stub sequences is made with the use of the object StubSequence. This object can be
loaded with the sequence which will have to be verified. Then the comparison is made with the use
of the corresponding method of the object TestSynchroStub.

Example
public void teststub3()

{

 PasStub another = new PasStub();

 another.call1();

 StubSequence testof = new StubSequence(this);

 verifyLogMessage("verify one enter method");

 testof.addEltToSequence(new StubbedOne().getClass() , "methodone",
StubInfo.ENTER) ;

 verifyEquals("Test single
sequence",TestSynchroStub.isSeqRespected(testof),true);

}

public void teststub4()

{

 PasStub another = new PasStub();

 another.call1();

 StubSequence testof = new StubSequence(this);

 testof = new StubSequence(this);

 testof.addEltToSequence(new StubbedOne().getClass() ,
"methodone",StubInfo.ENTER) ;

 testof.addEltToSequence(new StubbedTwo().getClass() ,
"m1",StubInfo.ENTER) ;

 testof.addEltToSequence(new StubbedTwo().getClass() ,
"m1",StubInfo.EXIT) ;

 verifyLogMessage("Check true for stub calls");

 verifyEquals("Test single
sequence",TestSynchroStub.isSeqRespected(testof),true);

}

172

TestSynchroStub

It is possible to test if a Stub has been declared failed. To do this the corresponding method of the
class TestSynchroStub has to be used.

Example
public void testStubFail()

{

 StubbedThree st = new StubbedThree();

 st.call();

 verifyLogMessage("Check fail call from stub");

 verifyEquals("Test single
sequence",TestSynchroStub.areStubfail(this),true);

}

C System Testing

System Testing driver script (.pts)

This section describes each System Testing driver script instruction, including:

Syntax

• Functionality and rules governing its usage

• Examples of use

 Notation Conventions

Throughout this guide, command notation and argument parameters use the following standard
convention:

Notation Example Meaning

BOLD ADD_ID Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } {<filenames>} Series of values

[{ }] [{<filenames>}] Optional series of variables

| on | off OR operator

System test script keywords are case sensitive. All keywords must be entered in upper case.

For conventional purposes however, this document uses upper-case notation for the supervisor
 script keywords in order to differentiate from native source code.

Split statements

Statements may be split over several lines in a .spv supervisor script. Continued lines must start
with the ampersand ('&') symbol to be recognized as a continuation of the previous line. No tabs or
spaces should precede the ampersand.

Statements must be shorter than 2048 characters, although this limit may be lower on some
platforms.

173

Identifiers

A supervisor script identifier is a text string used as a label, such as the name of a message type.

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

• 0-9

• _ (underscore)

Spaces are not valid identifier characters.

System Testing keywords and identifiers are case sensitive. This means that LABEL, label, and
Label are three different identifiers.

System Testing for C helps you solve complex testing issues related to system interaction,
concurrency, and time and fault tolerance by addressing the functional, robustness, load,
performance and regression testing phases from small, single threads or tasks up to very large,
distributed systems.

Test script filenames must contain only plain alphanumerical characters.

Basic structure

A typical System Testing .pts test driver script looks like this:
HEADER "Registering", "1.0", "1.0"

SCENARIO basic_registration

FAMILY nominal

-- The body of my basic_registration test

END SCENARIO

SCENARIO extented_registration

FAMILY robustness

SCENARIO reg_priv_area

 -- The body of my reg_priv_area test

END SCENARIO -- reg_priv_area

SCENARIO reg_pub_area LOOP 10

 -- The body of my reg_pub_area test

END SCENARIO -- reg_priv_area

END SCENARIO

The overall structure of a C system test script must follow these rules:

• A test script always starts with the HEADER keyword.

• A test script is composed of one or several scenarios.

• All statements begin with a keyword.

• Statements are not case sensitive (except when C expressions are used).

• Statements start at the beginning of a line and end at the end of a line. You can, however, write
an instruction over several lines using the ampersand (&) continuation character at the
beginning of additional lines. In this case, the ampersand must be the very first character on
that line; no spaces or tabs should precede it.

• Statements must be shorter than 2048 characters, although this limit may be lower on some
platforms.

Structuring statements

The basic structuring statements are:

174

• HEADER: Specifies the name of the test script, the version of the tested system, and the
version of the test script. This information will be included in the test report.

• SCENARIO: Indicates the beginning of a SCENARIO block. A SCENARIO block ends with an
END SCENARIO statement. A SCENARIO block can be iterated multiple times using to the
LOOP keyword.

• FAMILY: Qualifies the scenario and all its sub-scenarios. The FAMILY attribute is optional. A
list of qualifiers can be given such as: FAMILY nominal, structural.

Each scenario can be split into sub-scenarios.

175

ADD_ID

Syntax

ADD_ID(<channel_identifier>, <connection_identifier>)

Description

The ADD_ID instruction dynamically adds the value of a connection identifier to a communication
channel identifier.

A communication channel is a logical medium that integrates (multiplexes) the same type of
connection between the virtual tester and remote applications under test.

When opening a connection with your communication API, you must dynamically link the
connection identifier with a channel identifier.

You must declare a channel identifier with the CHANNEL instruction.

C connection identifiers must be compatible with C communication channels.

Example
...

COMMTYPE ux_inet IS integer_t

CHANNEL ux_inet: ch

...

SCENARIO First

...

#integer_t id;

CALL socket(AF_UNIX, SOCK_STREAM, 0) @@ id

ADD_ID(ch, id)

....

176

CALL

Syntax

CALL <identifier> (<arguments>) [@ [<expected_expr>] @
[<return_var>]]

Description

The CALL instruction lets you call a specific interface routine. This routine may be a function or a
procedure.

You can check a function's return values for interface routine calls.

The @ character is a separator.

<expected_expr> gives the expected return value of the function.

<return_var> gives the variable in which the return value of the function is stored.

If <return_var> is specified, the return value is stored in <return_var>.

The CALL instruction can be used in a PROC, SCENARIO, INITIALIZATION, TERMINATION,
or EXCEPTION blocks.

Example
#int return_val;

#int V_in;

#int V1_out, V2_out;

SCENARIO TEST_1

FAMILY nominal

...

CALL API_function(V_in, REF(@0@V1_out),&1@0@V2_out)@1@return_val

...

177

CALLBACK ... END CALLBACK

Purpose

The CALLBACK instruction dynamically recalls message reception and links a connection
identifier value to a communication channel identifier.

Syntax

CALLBACK <message_type>: <msg> ON <commtype>: <id> [<n>]

END CALLBACK

<message_type> is a message type previously declared in a MESSAGE statement.

<msg> is the output parameter of <message_type> that must be initialized in the callback if a
message is received.

<commtype> is the type of communication used for reading messages previously declared in a
COMMTYPE statement.

<id> is the input connection parameter on which a message must be read.

Description

Callbacks are declared in the first part of the test script, before the first scenario.

<commtype> must be declared with the COMMTYPE instruction.

<message_type> must be declared with the MESSAGE instruction.

You can declare only one callback per combination of message and communication type.

Message reception in the CALLBACK statement must never be blocked. If no message is received,
you must exit the block using the NO_MESSAGE instruction.

Use of both a NO_MESSAGE and MESSAGE_DATE statement is mandatory within the callback
or a procedure called from a callback.

If the C <message_type> contains unions, you can define for each union the display and comparison
field. The system implicitly defines a structured variable, named as ATL_ followed by the name of
the <message_type>. You can specify which field to use by specifying select attribute for the union.

Freeze Mode

Freeze mode is a blocking mode in which the CALLBACK waits for a message to be received. To use
freeze mode, you must use only one CALLBACK block throughout the entire test script, messages
can be read in freeze mode. In this mode, the ATL_TIMEOUT macro specifies the maximum wait
delay for a message. The value of ATL_TIMEOUT is calculated from a WTIME expression used in
the WAITTIL statement. The ATL_TIMEOUT macro is an integer and uses the time unit defined
in the Target Deployment Port. By default, the time unit is a hundredth of second.

Example
typedef enum { e_name, e_id, e_balance } client_kind_t;

typedef struct {

client_kind_t kind;

union {

char name[50];

int id;

float balance;

} my_union;

} client_info_t;

178

COMMTYPE socket IS socket_id_t

CHANNEL socket: ch

MESSAGE client_info_t: msg

CALLBACK client_info_t: info ON socket: id

 CALL read(id, &info, sizeof(client_info_t))@@ret

 IF (ret == 0) THEN

 NO_MESSAGE

 END IF

 MESSAGE_DATE

 VAR ATL_client_info_t.my_union.select, INIT=info.kind

END CALLBACK

179

CASE ... IS ... WHEN OTHERS... END CASE

Syntax

CASE <expression> IS

WHEN <constant1> => <instructions>

WHEN <constant2> => <instructions>

WHEN <constant3> => <instructions>

WHEN OTHERS => <instructions>

END CASE

Description

The CASE instruction allows you to choose one of several sets of instructions according to the
value of an expression.

The CASE instruction may appear in a PROC, SCENARIO, INITIALIZATION, TERMINATION
or EXCEPTION block.

The list of options for the expression begins after IS and ends in END CASE.

WHEN identifies the different constant expressions that cause a specific process to be carried out.
This process is defined by the instructions following the => symbol.

OTHERS processes all the values of expression that have not been explicitly processed in the
CASE. This instruction set is optional.

<expression> must take an integer value.

Example
##define ACK 0

##define NACK 1

#int choice;

SCENARIO TEST_1

FAMILY nominal

CALL ApiGetChoice(choice)

CASE (choice) IS

WHEN ACK => CALL ApiAcknowledge()

WHEN NACK => CALL ApiReset()

...

WHEN OTHERS => CALL Api_DefaultMsg()

END CASE

...

180

CHANNEL

Syntax

CHANNEL <communication_type>: <channel> {[, <channel>]}

Description

The CHANNEL instruction allows you to declare a set of communication channels.

You must declare the <communication_type> with the COMMTYPE instruction.

Each <channel> variable identifies a new type of communication channel. A communication
channel is a logical medium that integrates (multiplexes) the same type of connection among
virtual testers and remote applications under test.

Use the CHANNEL instruction at the beginning of the test script, before the first scenario.

Example
#typedef int inet_id_t;

COMMTYPE ux_inet IS inet_id_t WITH MULTIPLEXING

CHANNEL ux_inet: ch_1, ch_2, ch_3

CHANNEL ux_inet: ch_out

181

CLEAR_ID

Syntax

CLEAR_ID(<channel_identifier>)

Description

The CLEAR_ID instruction clears a communication channel.

The communication channel has no more links with remote applications under test.

You must declare a communication channel with the CHANNEL instruction.

Example
...

COMMTYPE ux_inet IS integer_t

CHANNEL ux_inet: ch

...

SCENARIO First

...

#integer_t id;

CALL socket(AF_UNIX, SOCK_STREAM, 0) @@ id

ADD_ID(id,ch)

...

CLEAR_ID(ch)

....

182

COMMENT

Syntax

COMMENT

Description

The COMMENT instruction allows you to add comments to the results file by inserting text.

Its use in test scenarios is optional.

The position of the COMMENT instruction in the test program defines the position in which the
comment appears in the test report.

The COMMENT instruction may appear in a PROC, SCENARIO, INITIALIZATION,
TERMINATION or EXCEPTION block.

In the command line interface, you can deactivate the processing of comments by adding the -
NOCOMMENT option to the C Test Script Compiler command line.

Example
SCENARIO TEST_1

FAMILY nominal

COMMENT calling connection confirmation

CALL api_trsprt_connectionCF()

...

183

COMMTYPE

Syntax

COMMTYPE <identifier> IS <connection_id_type> [WITH MULTIPLEXING]

Description

The COMMTYPE instruction defines a type of communication. The C connection identifies the
communication type.

The C <connection_id_type> must be a typedef, as defined in the interface file, an included file, or in
the test script.

You can define the communication type as being able to multiplex connections for the read
operation, using the multiplexing option.

You must use the COMMTYPE instruction at the beginning of the test script, before the first
scenario.

Example
...

#typedef int inet_id_t;

COMMTYPE ux_inet IS inet_id_t WITH MULTIPLEXING

#typedef struct { int key; int id; } msgqueue_id_t;

COMMTYPE ux_msgqueue IS msgqueue_id_t

....

184

DECLARE_INSTANCE

Syntax

DECLARE_INSTANCE <instance> {[,<instance>]}

Description

The DECLARE_INSTANCE instruction allows you to define the set of the instances described in
the test script.

A DECLARE_INSTANCE instruction takes effect after you have declared it.

<instance> may be any identifier. The DECLARE_INSTANCE must have at least one instance
name passed by parameter.

Example
HEADER "DEMO SOCKET", "1.0", "2.4"

DECLARE_INSTANCE client, server

SCENARIO Main

 ...

END SCENARIO

185

DEF_MESSAGE

Syntax

DEF_MESSAGE <message>, EV= <cmp_expression>

Description

The DEF_MESSAGE instruction allows you to define a reference <message> variable. In order to
do this, you must define the reference values with <cmp_expression>.

The message variable is the reference event variable initialized by the DEF_MESSAGE instruction.
It has to be declared by the MESSAGE instruction.

Associated Rules

The DEF_MESSAGE instruction can appear in a PROC, SCENARIO, INITIALIZATION,
TERMINATION, or EXCEPTION block.

You may partially define a reference message. The undefined <cmp_expression> fields are not used
to compare incoming messages.

Interface File
typedef struct {

int type;

struct {

char app_name[8];

unsigned char class_name;

} data;

char userdata[100];

} message_t;

Example
MESSAGE message_t: msg

SCENARIO first

DEF_MESSAGE msg, EV= { code=>ConnectCF,

& data=>{ app_name=>"ATCMKD" }}

186

END

Syntax

END <block>

Description

The END instruction delimits an instruction block.

You use it to end the following:

• A callback: END CALLBACK

• A procedure: END PROC

• A message sending procedure: END PROCSEND

• An initialization block: END INITIALIZATION

• A termination block: END TERMINATION

• An exception block: END EXCEPTION

• A scenario: END SCENARIO

• An instance block: END INSTANCE

• A CASE instruction: END CASE

• An IF instruction: END IF

• A WHILE instruction: END WHILE

Example
INSTANCE tester1, tester2:

PROC clean1

...

END PROC

 ...

END INSTANCE

INITIALIZATION

...

END INITIALIZATION

SCENARIO TEST1

...

END SCENARIO

187

ERROR

System Testing Test Script Language.

Syntax

ERROR

Description

When an unexpected output value for a function or a WAITTIL causes a problem, the current
scenario halts as a result. You may terminate the scenario deliberately with the ERROR instruction.

After an ERROR instruction, the EXCEPTION block is executed on the next scenario at the same
level, if there is one.

Example
#int sock;

...

SCENARIO Main

SCENARIO Test1

...

IF (sock==-1) THEN

ERROR

END IF

...

END SCENARIO

SCENARIO Test2

...

CALL ...

...

END SCENARIO

END SCENARIO

In the above example, you can stop the Test1 scenario with the ERROR instruction. The virtual
tester then proceeds to Test2 scenario.

188

EXCEPTION ... END EXCEPTION

Syntax

EXCEPTION [<proc>([<arg> { [, <arg>]}]]

END EXCEPTION

Description

The EXCEPTION instruction or block deletes a specific environment by executing the set of
instructions or the procedure <proc>. END EXCEPTION marks the end of the EXCEPTION block.

Associated Rules

An EXCEPTION block or instruction applies to the set of scenarios at its level.

It does not apply to subscenarios of these scenarios.

The EXCEPTION instruction or block is optional.

A maximum of one EXCEPTION block may occur in a scenario.

The EXCEPTION instruction is only executed if a scenario terminates with an error.

It does not matter where the EXCEPTION instruction is placed among scenarios in a given level.

Example
#int sock;

EXCEPTION

CALL close (sock)

...

END EXCEPTION

...

SCENARIO Main

...

END SCENARIO

189

EXIT

System Testing Test Script Language.

Syntax

EXIT

Description

This instruction lets you exit from the virtual tester. It causes all scenarios to terminate.

After an EXIT, the virtual tester terminates. For an EXIT instruction, the end of execution code of
the virtual tester process is -1.

The scenario in which the EXIT instruction was executed is deemed incorrect.

Example
#int sock;

...

SCENARIO Main

SCENARIO Test1

...

IF (sock==-1) THEN

COMMENT stop tester

EXIT

END IF

...

END SCENARIO

SCENARIO Test2

...

CALL ...

...

END SCENARIO

END SCENARIO

190

FAMILY

System Testing Test Script Language.

Syntax

FAMILY <family> {[, <family>]}

Description

The FAMILY instruction allows you to group tests by families or classes.

This instruction appears just once at the beginning of a SCENARIO block, where it defines the
family or families to which the scenario belongs.

When starting tests, you can request to execute only tests of a given family.

The <family> parameter indicates the name of the test family. You can define the following families:
nominal, structural, robustness.

A test can belong to several families: in this case, the FAMILY instruction contains a <family> list,
separated by commas.

<family> can be any identifier. You must have at least one family name.

The FAMILY instruction is optional. If omitted, the test belongs to every family.

Example
SCENARIO Test_1

FAMILY nominal

COMMENT ...

...

END SCENARIO

191

FLUSH_TRACE

System Testing Test Script Language.

Syntax

FLUSH_TRACE

Description

The FLUSH_TRACE instruction dumps the execution traces stored in the circular buffer to the .rio
file.

This instruction is taken into account only when the -TRACE=CIRCULAR test compiler option is
set.

The FLUSH_TRACE instruction can be used in a PROC, SCENARIO, INITIALIZATION,
TERMINATION, or EXCEPTION block. You may not use FLUSH_TRACE in a CALLBACK or
PROCSEND block.

Example
SCENARIO one

 (...)

 FLUSH_TRACE

 (...)

END SCENARIO

192

FORMAT

System Testing Test Script Language.

Syntax

FORMAT <variable> = <format>

FORMAT <type> = <format>

FORMAT <field> = <format>

Description

This FORMAT instruction modifies the way a variable, type, or field of a structure is tested and
printed. All formats of the same type is modified.

The new format is defined in C.

A format can also specify a print mode in binary or hexadecimal, using the options #B and #H.

The FORMAT instruction is optional. You may use it at the beginning of the test script or in a
block of instructions, depending on the required scope. However, FORMAT statements that apply
to data contained in a CALLBACK or PROCSEND block must be located before:

• any CALLBACK or PROCSEND block

• any PROC statements that contain DEF_MESSAGE or SEND instructions

Example
SCENARIO first

#char buffer[100];

#typedef struct {

int ax_register;

int bx_register;

int cx_register;

#} 8088_register_t;

FORMAT buffer = unsigned char[50]

FORMAT 8088_register_t.ax_register = #B

FORMAT 8088_register_t.bx_register = #H

END SCENARIO

193

HEADER

System Testing Test Script Language.

Syntax

HEADER <test_name>, <version>, <test_plan_version>

Description

This instruction allows you to define a standard header at the beginning of the test script. The
information contained in this header enables you to identify a list of scenarios.

The headers can be strings or environment variables.

<test_name> is the name for the test script.

<version> is the version of the system tested.

<test_plan_version> is the test script version.

This instruction must appear before the first instruction block and strings must be enclosed in
double-quotes (" ").

Example
HEADER "DEMO SOCKET", $VERSION, "2.4"

INITIALIZATION

...

END INITIALIZATION

SCENARIO Main

....

END SCENARIO

194

IF...THEN...ELSE

System Testing Test Script Language.

Syntax

IF <condition> THEN

ELSE

END IF

Description

This is a control statement. The simplest form of an IF instruction begins with the keyword IF, is
followed by a Boolean expression, and then the keyword THEN. A set of instructions follows.
These instructions are executed if the expression is true. The last END IF marks the end of the set
of instructions.

Other actions can be executed depending on the value of the condition. Add an ELSE block,
followed by the set of instructions to be executed if the condition is false.

IF may be placed anywhere in the test program.

THEN must be placed at the end of a line.

ELSE must be on its own line.

END IF must be on its own line.

Example
HEADER "DEMO SOCKET RPC","1.0a", "2.5"

#int sock;

INITIALIZATION

...

IF (sock==-1) THEN

ERROR

ELSE

CALL listen(sock,5)

...

END IF

...

END INITIALIZATION

SCENARIO Main

....

195

INCLUDE

System Testing Test Script Language.

Syntax

INCLUDE <string>

Description

The INCLUDE instruction lets you include scenarios in the current test script.

Its use in test scenarios is optional.

The INCLUDE instruction may appear in any scenario as long as the scenario does not contain any
primary instructions. <string> is the name of the file to be included. The system searches for files in
the current directory and then searches the list of paths passed on to the Test Script Compiler.

Example
SCENARIO Test_1

FAMILY nominal

INCLUDE "../common/initialization"

INCLUDE "scenario_1_and_2"

SCENARIO scenario_3

COMMENT call connection

CALL api_trsprt_connexionCF()

CALL ...

END SCENARIO

END SCENARIO

196

INITIALIZATION ... END INITIALIZATION

Syntax

INITIALIZATION [<proc> ([<arg> { , <arg> }])]

END INITIALIZATION

Description

The INITIALIZATION instruction initializes a specific environment by executing a set of
instructions or the procedure <proc>. END INITIALIZATION marks the end of the
INITIALIZATION block.

An INITIALIZATION block or instruction applies to the set of scenarios at its level. It does not
apply to sub-scenarios.

The INITIALIZATION instruction or block is optional.

A maximum of one INITIALIZATION block or instruction may occur at a given scenario level.

This instruction is executed before every scenario at the same level.

The INITIALIZATION instruction may appear anywhere among scenarios at a given level.

Example
...

INITIALIZATION

CALL socket (AF_INET, SOCK_DGRAM, 0)@@ds

...

FD_ADD(ds,SOCKAPI)

END INITIALIZATION

...

197

INSTANCE ... END INSTANCE

Syntax

INSTANCE <instance>{[,<instance>]}:

END INSTANCE

Description

An INSTANCE ... END INSTANCE block allows you to specify associated declarations or the
instructions.

When the INSTANCE ... END INSTANCE block is located before the top-level scenarios, it gives
global declarations to the test script for all the specified instances.

At the block or nested scenario level, it gives instructions or local declarations to the wrapping
block or scenario.

You may not nest instance blocks.

You cannot mix declarations and instructions in the same instance block.

Instance blocks containing instructions follow instance blocks containing declarations.

Example
HEADER "DEMO SOCKET", $VERSION, "2.4"

DECLARE_INSTANCE client, server

INSTANCE server:

 #static int var_c_time ;

END INSTANCE

INITIALIZATION

 INSTANCE server:

 var_c_time = 0;

 END INSTANCE

END INITIALIZATION

SCENARIO Principal

...

INSTANCE client:

 #int connectStatus ;

END INSTANCE

...

INSTANCE server:

 var_c_time = TIME(globalTime);

END INSTANCE

END SCENARIO

198

INTERSEND

Syntax

INTERSEND(<integer>, <identifier>)

INTERSEND(<string>, <identifier>)

<identifer> is the unique identifier of a virtual tester to which the message is to be sent.

<integer> is a 32-bit integer value.

<string> is a string-type value.

Description

The INTERSEND statement allows the virtual tester to send a simple message to another virtual
tester. The other virtual tester receives the incoming message with the INTERRECV statement.

The message can be either an integer or a string.

<identifier> is <instance_name>_<occid> or <test_script.rio>_<occid>

The default value for <occid> is 0.

Example
INSTANCE JUPITER:

 INTERSEND("How many messages did you receive from SUT?" , "SATURN_0"
)

 INTERRECV(&transmitted_int)

END INSTANCE

INSTANCE SATURN:

 INTERRECV(buffer, 1024)

 INTERSEND(2 , "JUPITER_0")

END INSTANCE

199

INTERRECV

Syntax

INTERRECV(<integer_pointer>)

INTERRECV(<string_pointer>, <buffer size>)

<integer_pointer> indicates the memory location of a 32-bit integer message.

<string_pointer> points to a static or allocated memory zone containing the incoming message.

<buffer size> is the size of the memory zone starting at <string_pointer>.

Description

The INTERRECV statement allows the virtual tester to receive a simple message sent by an
INTERSEND statement from another virtual tester.

Received messages are stored in static or allocated memory zone indicated by <integer_pointer> or
<string_pointer>.

The message can be either an integer or a string. However if the message type expected by the
INTERRECV mismatches the actual message type sent by INTERSEND, System Testing for C
attempts to convert the message.

Example
INSTANCE JUPITER:

 INTERSEND("How many messages did you receive from SUT?" , "SATURN_0"
)

 INTERRECV(&transmitted_int)

END INSTANCE

INSTANCE SATURN:

 INTERRECV(buffer, 1024)

 INTERSEND(2 , "JUPITER_0")

END INSTANCE

200

MATCHED

Syntax

MATCHED(<ref_msg> {[, <channel>)]})

Description

<ref_msg> is a reference message variable declared with the MESSAGE instruction and initialized
with the DEF_MESSAGE instruction.

<channel> is a communication channel declared with the CHANNEL instruction and initialized by
the ADD_ID instruction.

MATCHED is a function that returns a Boolean value. It returns true if one of the messages
received during a WAITTIL matches the reference message <ref_msg>. If you specify a channel, it
returns true only if the matching message was received on this channel.

It returns true if at least one received message has the same values as those defined for the
reference message.

MATCHED is only meaningful when used in a WAITTIL instruction or in control statements
following a WAITTIL, such as IF, WHILE, or CASE.

The MATCHED return value changes when you reuse it in a WAITTIL statement.

Example
...

CHANNEL ux_socket: ch

SCENARIO Main

DEF_MESSAGE msg_1, EV={100,10}

DEF_MESSAGE msg_2, EV={200,20}

...

WAITTIL(MATCHED(msg_1) && MATCHED(msg_2,ch),WTIME==10)

...

IF (MATCHED(msg_1,ch)) THEN

...

201

MATCHING

Syntax

MATCHING(<ref_msg> {[, <channel>)]})

Description

MATCHING is a function that returns a Boolean value. It returns true if the last message received
during a WAITTIL matches the reference message <ref_msg>. If you specify a channel, it returns
true only if the matching message was received on this channel.

<ref_msg> is a reference message variable declared with the MESSAGE instruction and initialized
with the DEF_MESSAGE instruction.

<channel> is a communication channel declared with the CHANNEL instruction and initialized by
the ADD_ID instruction.

It returns true if the last received message has the same values as those defined for the reference
message.

Associated Rules

MATCHING is only meaningful when used in a WAITTIL instruction and in control statements
following a WAITTIL, such as IF, WHILE, or CASE.

The MATCHING return value changes when you reuse it in a WAITTIL.

Example
...

CHANNEL ux_socket: ch

SCENARIO Main

DEF_MESSAGE msg_1, EV={100,10}

DEF_MESSAGE msg_2, EV={200,20}

...

WAITTIL(MATCHING(msg_1) || MATCHING(msg_2,ch),WTIME==10)

...

IF (MATCHING(msg_1,ch)) THEN

...

202

MESSAGE

Syntax

MESSAGE <message_type>: <ref_msg> {[, <ref_msg>]}

Description

The MESSAGE instruction allows you to declare a list of reference messages <ref_msg> of the
<message_type> type.

<message_type> is in C and must be defined by a typedef in the interface file, an included file, or the
test script.

You must use the MESSAGE instruction at the beginning of the test script, before the first scenario.

The reference messages are global variables. After a WAITTIL instruction, the reference messages
used contains the value of the last received message.

Interface file
typedef struct {

int code;

int flight_number;

struct {

char flight_name[8];

unsigned char class_name;

} data;

} aircraft_data_t;

Example
MESSAGE aircraft_data_t: air_msg

SCENARIO first

DEF_MESSAGE air_msg, EV= {code => FlightReport }

WAITTIL(MATCHING(air_msg), WTIME == 100)

...

IF (air_msg.flight_number == 321) THEN

...

203

MESSAGE_DATE

Syntax

MESSAGE_DATE

Description

The MESSAGE_DATE instruction marks the date the user receives the message.

For instance, this date may be the moment a message is present in a reception queue or when a
message has been read and decoded. This instruction must appear once in a callback or in a
procedure called in a callback.

The MESSAGE_DATE instruction must be used in a callback.

Example
COMMTYPE socket IS socket_id_t

CHANNEL socket: ch

MESSAGE client_info_t: msg

CALLBACK client_info_t: info ON socket: id

CALL read(id, &info, sizeof(client_info_t))@@ret

IF (ret == 0) THEN

NO_MESSAGE

END IF

MESSAGE_DATE

END CALLBACK

204

NIL

Syntax

NIL

Description

NIL is a macro that represents the value of a null pointer and can be used in any C expression.

Example
...

SCENARIO Main

CALL free_object(@NIL@object)

...

END SCENARIO

205

NONIL

Syntax

NONIL

Description

NONIL is a macro that represents the value of a non-null pointer and can be used in any C
expression.

NONIL is useful in a CALL or a VAR instruction. In these two cases, it verifies that the pointer
does not have a null value.

Example
...

SCENARIO Main

CALL alloc_object() @ NONIL @ object

VAR object, VA = NONIL

...

END SCENARIO

206

NOTMATCHED

System Testing Test Script Language.

Syntax

NOTMATCHED(<ref_msg> [, <channel>])

Description

NOTMATCHED is a function that returns a Boolean value. It returns true if one of the messages
received during a WAITTIL does not match the reference message <ref_msg>. If you specify a
channel, it returns true only if the non-matching message was received on this channel.

<ref_msg> is a reference message variable declared with the MESSAGE instruction and initialized
with the DEF_MESSAGE instruction.

<channel> is a communication channel declared with the CHANNEL instruction and initialized by
the ADD_ID instruction.

It returns true if at least one received message has a value different from those defined for the
reference message.

NOTMATCHED is only meaningful when used in a WAITTIL instruction or in control statements
following a WAITTIL, such as IF, WHILE, or CASE.

The NOTMATCHED return value changes when reused in a WAITTIL.

Example
...

CHANNEL ux_socket: ch

SCENARIO Main

DEF_MESSAGE msg_1, EV={100,10}

DEF_MESSAGE msg_2, EV={200,20}

...

WAITTIL(WTIME==10, NOTMATCHED(msg_1))

...

IF (NOTMATCHED(msg_1,ch)) THEN

...

207

NOTMATCHING

System Testing Test Script Language.

Syntax

NOTMATCHING(<ref_msg> [, <channel>])

Description

NOTMATCHING is a function that returns a Boolean value. It returns true if the last message
received during a WAITTIL does not match the reference message <ref_msg>. If you specify a
channel, it returns true only if the non-matching message was received on this channel.

<ref_msg> is a reference message variable declared with the MESSAGE instruction and initialized
with the DEF_MESSAGE instruction.

<channel> is a communication channel declared with the CHANNEL instruction and initialized by
the ADD_ID instruction.

It returns true if the value of the last received message differs from the values specified for the
reference message.

NOTMATCHING is only meaningful when used in a WAITTIL instruction or in control
statements following a WAITTIL, such as IF, WHILE, or CASE.

The NOTMATCHING return value changes when reused in a WAITTIL.

Example
...

CHANNEL ux_socket: ch

SCENARIO Main

DEF_MESSAGE msg_1, EV={100,10}

DEF_MESSAGE msg_2, EV={200,20}

...

WAITTIL(WTIME==10, NOTMATCHING(msg_2,ch))

...

IF (NOTMATCHING(msg_2,ch)) THEN

...

208

NO_MESSAGE

Syntax

NO_MESSAGE

Description

The NO_MESSAGE instruction is used to exit the callback if no message has been received.

This instruction has to appear once in a callback or in a procedure called in a callback.

The MESSAGE_DATE instruction must be used in a callback.

Example
COMMTYPE socket IS socket_id_t

CHANNEL socket: ch

MESSAGE client_info_t: msg

CALLBACK client_info_t: info ON socket: id

CALL read(id, &info, sizeof(client_info_t))@@ret

IF (ret == 0) THEN

NO_MESSAGE

END IF

MESSAGE_DATE

END CALLBACK

209

PAUSE

System Testing Test Script Language.

Syntax

PAUSE [<duration>]

<duration> is an integer specifying the length of the delay in multiples of 10ms by default.

Description

PAUSE introduces a delay in the execution of the supervisor script. It does not delay any other
processes that are running on the machine.

The PAUSE instruction does not appear in generated reports.

<duration> is the duration of the delay in multiples of the time unit. By default the time unit is 10ms
and can be customized in the TDP.

Example

In the following example, the first PAUSE statement introduces a delay of 200ms before resuming
the execution of the script. The second PAUSE statement pauses the script for 1840ms.
#int hp = 3;

#int ds = 5;

PROC init (int sock_type)

...

PAUSE 20

...

END PROC

SCENARIO Main

...

CALL init(AF_UNIX)

PAUSE (hp+ds)*23

...

END SCENARIO

210

PRINT

System Testing Test Script Language.

Syntax

PRINT <identifier>, <expression>

Description

The PRINT instruction prints the value of <expression> in the generated reports. The identifier
names the value.

<expression> must be a C integer expression.

The same identifier can be used in different PRINT instructions.

Example
#int hp = 3;

#int ds = 5;

TIMER time

PROC init (int sock_type)

...

PRINT SockTypeValue, sockType

...

END PROC

SCENARIO Main

...

CALL init(AF_UNIX)

PRINT HpDs, (hp+ds)*10

PRINT elapsedTime, TIME (time)

...

END SCENARIO

211

PROC ... END PROC

System Testing Test Script Language.

Syntax

PROC <arg> {[, <arg>]}

END PROC

Description

The PROC instruction lets you define a local procedure inside a scenario. A procedure can take
parameters defined as data types.

Any previously defined global variables declared in the test script are visible in the PROC block.
Variables declared locally to a procedure block are only visible within that procedure.

Procedure parameters take basic data: int, char, and float as well as any data types defined by the a
typedef statement.

Procedures must be located at the beginning of the test script file, before the highest-level
scenarios.

Procedures can be called from any scenario.

Procedures do not return any parameters.

Example
#int hp,ds;

PROC init (int sock_type)

...

CALL gethostbyname (serv_name)@@hp

CALL socket (sock_type, SOCK_DGRAM, 0)@@ds

...

END PROC

SCENARIO Main

...

CALL init(AF_UNIX)

...

END SCENARIO

212

PROCSEND

Syntax

PROCSEND <message_type>: <msg> ON <commtype>: <id>

END PROCSEND

Description

The PROCSEND instruction allows you to define a message-sending procedure. The SEND
statement uses this instruction.

<message_type> is declared with the MESSAGE instruction.

<msg> is the input parameter of <message_type> that describes the message to be sent.

<commtype> is the communication method for sending messages.

Use the <id> formal input parameter to specify the connection on which a message has to be sent.

You must declare the message-sending procedure in the first part of the test script, before the first
scenario.

Declare <commtype> with the instruction COMMTYPE.

Declare <message_type> with the instruction MESSAGE.

You only need to declare one message-sending procedure a message and communication type pair.

If the structured C <message_type> contains unions, you should declare the field of the union that
you want to use. For this purpose, a structured variable is implicitly defined. Its name adds ATL_
before the name of the <message_type>. An attribute selected for each union lets you define the
field.

Example
typedef enum { e_name, e_id, e_balance } client_kind_t ;

typdef struct {

 client_kind_t kind ;

 union {

 char name[50];

 int id ;

 float balance ;

 } my_union

} client_info_t;

COMMTYPE socket IS socket_id_t

CHANNEL socket: ch

MESSAGE client_info_t: msg

#socket_id_t id;

PROCSEND message_t: msg ON appl_comm: id

...

CALL socket (sock_type, SOCK_DGRAM, 0) @ 0

...

END PROCSEND

SCENARIO Principal

 ...

 ADD_ID(ch,id)

 ...

SEND (msg,ch)

...

213

END SCENARIO

214

RENDEZVOUS

System Testing Test Script Language.

Syntax

RENDEZVOUS <identifier>

Description

The RENDEZVOUS instruction allows you to synchronize several virtual testers. A rendezvous
name is the <identifier>following the keyword.

When the scenario is executed, the RENDEZVOUS instruction stops the execution until all virtual
testers have reached the rendezvous point, thereby validating the rendezvous.

When the rendezvous is valid, the scenario resumes the execution.

A RENDEZVOUS identifier does not appear more than one time in a scenario.

Example
SCENARIO Connection

RENDEZVOUS begin

...

215

RESET

System Testing Test Script Language.

Syntax

RESET <identifier>

Description

The RESET instruction lets you reset the <identifier> timer.

Declare the timer identifier with the TIMER instruction.

You may use a timer identifier only once in the same block. The timer immediately restarts after
being reset.

Example
TIMER time

SCENARIO Connexion

...

RESET time

...

END SCENARIO

216

SCENARIO ... LOOP ... END SCENARIO

System Testing Test Script Language.

Syntax

SCENARIO <scenario> [LOOP <iteration_factor>]

END SCENARIO

Description

This instruction allows you to define a scenario block. This is the highest level of instruction.

<scenario> is the name of the scenario.

The optional LOOP keyword lets you state the identifier's scenario <iteration_factor>.

Associated Rules

Scenarios at the same level must have different names.

A scenario that contains other scenarios can only include FAMILY and SCENARIO statements.

<scenario> must begin with an upper or lower case letter and may contain letters, numbers,
underscores, and dollar signs.

<iteration_factor> must be a positive integer.

Example

The Jn variable (n is the nesting level of the scenario that starts at 1) gives the current scenario
iteration number.
SCENARIO principal LOOP 10

 FAMILY nominal, robustness

 ...

 SCENARIO number_one

 ...

 SCENARIO number_one_two LOOP 10

 CALL ...

 PRINT iteration_number_one_two, J3

 END SCENARIO

 ...

 END SCENARIO

 SCENARIO number_two LOOP 5

 ...

 CALL ...

 PRINT iteration_number_two, J2

 PRINT global_iteration, J1

 ...

 END SCENARIO

END SCENARIO

217

SEND

System Testing Test Script Language.

Syntax

SEND (<message>, <channel>)

Description

The SEND instruction allows you to send a <message> on a specific <channel>. It calls the message-
sending procedure associated with the message and communication types.

The SEND instruction may be located in a PROC, SCENARIO, INITIALIZATION,
TERMINATION, or EXCEPTION block.

Example
CHANNEL appl_comm: appl_ch

#message_t msg;

SCENARIO TEST_1

FAMILY nominal

...

SEND(msg, appl_ch)

218

SHARE

System Testing Test Script Language.

Syntax

SHARE <identifier>

Description

The SHARE instruction allows you to specify global static variables declared in a test script.

This allows all instances of the same test script, to share these variables in multi-thread
environments.

Associated Rules

The SHARE instruction must be at the beginning of a test script, before the first block.

The identifier is the name of the global static variable declared at the beginning of the test script.

Example
#static int id_Connection;

#static int Synchro;

#static int buffer;

SHARE Synchro

SCENARIO Test1

FAMILY nominal

...

219

TERMINATION ... END TERMINATION

System Testing Test Script Language.

Syntax

TERMINATION [<proc>([<type identifier>]{ , type identifier })]

END TERMINATION

Description

The TERMINATION instruction deletes a specific environment by executing a set of instructions
or the procedure <proc>. END TERMINATION marks the end of the TERMINATION block.

A TERMINATION block or instruction applies to the set of scenarios on its level. It does not apply
to sub-scenarios.

The TERMINATION instruction or block is optional. A maximum of one TERMINATION block
or instruction may occur at a given scenario level. The TERMINATION instruction is only
executed when a scenario terminates without errors.

You may place a TERMINATION instruction anywhere among scenarios at the same level.

Example
#int sock;

TERMINATION

 ...

 CALL close (sock)

 ...

END TERMINATION

...

SCENARIO Main

 ...

END SCENARIO

220

TIME

System Testing Test Script Language.

Syntax

TIME (<identifier>)

Description

The TIME instruction gives the value of the identifier timer.

The timer <identifier> must be declared by a TIMER instruction.

The TIME instruction can only appear in a C expression (analyzed or not).

Example
#static int id_connexion;

#static int Synchro;

#static int buffer;

TIMER globalTime

SCENARIO TEST_1

FAMILY nominal

#unsigned long C_var_Time = TIME (globalTime);

...

PRINT time, TIME (globalTime)

END SCENARIO

221

TIMER

System Testing Test Script Language.

Syntax

TIMER <identifier>

Description

The TIMER instruction lets you define a timer (which automatically starts after being defined).

A timer <identifier> can be declared once in the same block. The scope of an identifier is its
definition block. For example, an identifier declared in an exception block can only be used in this
block. However, you may use an identifier declared in the global block in all the other blocks.

Example
#static int id_connexion;

#static int Synchro;

#static int buffer;

TIMER globalTime

PROC dummy

TIMER procTime

END PROC

SCENARIO TEST_1

FAMILY nominal

#unsigned long C_var_Time = TIME (globalTime);

...

PRINT time, TIME (globalTime)

END SCENARIO

222

TRACE_ON

System Testing Test Script Language.

Syntax

TRACE_ON

Description

The TRACE_ON instruction stores execution traces in the circular buffer.

This instruction is taken into account only when the -TRACE=CIRCULAR option is set.

Associated Rules

The TRACE_ON instruction can be used in PROC, SCENARIO, INITIALIZATION,
TERMINATION, or EXCEPTION blocks, but not in CALLBACK or PROCSEND blocks.

Example
SCENARIO one

 ...

 TRACE_ON

 ...

END SCENARIO

223

TRACE_OFF

System Testing Test Script Language.

Syntax

TRACE_OFF

Description

The TRACE_OFF instruction turns off storage of execution traces in the circular buffer.

This instruction is taken into account only when the -TRACE=CIRCULAR option is set.

Associated Rules

The TRACE_OFF instruction can be used in PROC, SCENARIO, INITIALIZATION,
TERMINATION, or EXCEPTION blocks, but not in CALLBACK or PROCSEND blocks.

Example
SCENARIO one

 ...

 TRACE_OFF

 ...

END SCENARIO

224

VAR

System Testing Test Script Language.

Syntax

VAR <variable>, INIT= <expression> | EV= <expression>

Description

This instruction allows you to initialize or check a variable. The first statement performs the
initialization. The second statement compares the contents of the variable with the expression.

<variable> is a message or a variable that has previously been declared in native language. It may
be any basic or structure type expression.

<expression> is in C and takes the following form:
cmp_expression::= C_CPP__lang_exp

{cmp_init {,cmp_initialization}}

[attol_init {,attol_init}]

cmp_init::=Constant=>C_CPP_lang_exp |

 Constant1 .. Constant2=>C_CPP_lang_exp |

 C_CPP_lang_exp

field_name =>C_language_expression

When controlling a numeric value (VAR ... EV=), you can check a range of values with one of
following syntaxes:
VAR <variable>, EV= [<expr_min> ..]

VAR <variable>, EV= [.. <expr_max>]

VAR <variable>, EV= [<expr_min> .. <expr_max>]

This indicates that the value should be greater than <expr_min>, less than <expr_max>, or between
the two expressions.

The VAR instruction may appear in a PROC, SCENARIO, INITIALIZATION, TERMINATION
or EXCEPTION block.

The keyword OTHERS in a <expression> that represents ranges in an array or fields in a structure
that have not been previously specified.

The identifiers I1, I2, ... I20 are reserved to access different dimensions of an array. For a three-
dimensional matrix, I1 represents the index for the first dimension, I2 the index for the second
dimension, and I3 the index for the third dimension.

Example
SCENARIO Main

#int matrix[3][3];

#struct {

char name[30];

char color[20];

double size;

} object;

long x;

CALL compute(matrix)

VAR matrix, EV=[[1, 1, 1], [2, 2, 2], [1, 1, 1]]

-- OR

VAR matrix, EV=[2 => [2, 2, 2], OTHERS =>[1,1,1]]

-- multiplication table:

225

VAR matrix, INIT= I1 I2

VAR object, INIT=[name => "car", color => "rouge",

& size => 2.50]

VAR object, INIT=[size => 0.10, OTHERS => "orange"]

VAR x, EV=[11..28]

END SCENARIO

226

VIRTUAL CALLBACK

C++ only.

The VIRTUAL keyword modifies the CALLBACK statement, allowing it to handle messages using
C++ inheritance.

Syntax

VIRTUAL CALLBACK <message_type>: <msg> ON <commtype>: <id> [<n>]

END CALLBACK

Description

The CALLBACK instruction dynamically recalls message reception and adds a connection
identifier value to a communication channel identifier.

<message_type> is a message type, previously declared with a C++ typedef statement. Syntax using
<message_type>* is not allowed.

<msg> is the output parameter of <message_type> that must be a polymorphic C++ class, which
means that it must contain at least one virtual method.

<commtype> is the type of communication used for reading messages.

<id> is the input connection parameter on which a message must be read.

Because a single VIRTUAL CALLBACK can read several message types, the implicit choice of a
CALLBACK may be ambiguous. The following rules apply:

• If a CALLBACK exists for a given <message type>, System Testing chooses it.

• If not, and if the message type is actually a virtual class, then System Testing chooses the
VIRTUAL CALLBACK with the closest type in terms of path in the inheritance diagram of
<message_type>.

• If more than one VIRTUAL CALLBACK can be chosen by following the above rules, the
CALLBACK is ambiguous and System Testing produces an error.

Example
class high_level_message

{

 public:

 char from[12];

 char applname[12];

 virtual int get_type(){return 0;}

};

class ack : public high_level_message

{

 public:

 int get_type(){return ACK;}

};

class negack : public high_level_message

{

 public:

 int get_type(){return NEG_ACK;}

};

class data : public high_level_message

227

{

 public:

 char userdata[MAX_USERDATA_LENGTH];

 int length;

 int get_type(){return DATA;}

};

#typedef high_level_message * pt_ high_level_message;

VIRTUAL CALLBACK pt_ high_level_message: msg ON appl_comm: id

 CALL get_message (&id, &msg, 0) @@ errcode

 MESSAGE_DATE

 IF (errcode == err_empty) THEN

 NO_MESSAGE

 END IF

 IF (errcode != err_ok) THEN

 ERROR

 END IF

END CALLBACK

This VIRTUAL CALLBACK allows you to read high_level_message, ack, negack and data
message types, as shown on the following lines:
MESSAGE data : a_data

MESSAGE ack : my_ack

MESSAGE negack : my_neg_ack

MESSAGE high_level_message : hm

DEF_MESSAGE my_ack, EV={}

WAITTIL (MATCHING(my_ack), WTIME==300)

 DEF_MESSAGE a_data, EV={}

WAITTIL (MATCHING(a_data), WTIME==300)

228

VIRTUAL PROCSEND

For C++ only.

The VIRTUAL keyword modifies the PROCSEND statement, allowing it to handle messages
using C++ inheritance.

Syntax

VIRTUAL PROCSEND <message_type>: <msg> ON <commtype>: <id>

END CALLBACK

Description

The PROCSEND instruction allows you to define a message-sending procedure using C++ classes.

<message_type> is a message type, previously declared with a C++ typedef statement. Syntax using
<message_type>* is not allowed.

<msg> is the output parameter of <message_type> that must be a polymorphic C++ class, which
means that it must contain at least one virtual method.

<commtype> is the type of communication used for reading messages.

<id> is the input connection parameter on which a message must be read.

Associated Rules

Because a single VIRTUAL PROCSEND can read several message types, the implicit choice of a
PROCSEND may be ambiguous. The following rules apply:

• If a PROCSEND exists for a given <message type>, System Testing chooses it.

• If not, and if the message type is actually a virtual class, then System Testing chooses the
VIRTUAL PROCSEND with the closest type in terms of path in the inheritance diagram of
<message_type>.

• If more than one VIRTUAL PROCSEND can be chosen by following the above rules, the
PROCSEND is ambiguous and System Testing produces an error.

Example
VIRTUAL PROCSEND pt_high_level_message : msg ON appl_comm : id_stack

CALL send_message (msg) @ err_ok

END PROCSEND

This VIRTUAL PROCSEND example allows you to send high_level_message, ack, negack et data
message types, as shown on the following lines:
MESSAGE data : a_data

MESSAGE ack : my_ack

MESSAGE negack : my_neg_ack

MESSAGE high_level_message : hm

VAR a_data, INIT={applname=>"SATURN",userdata=>"Hello Saturn!"}

 SEND(a_data , appl_ch)

VAR my_ack, INIT={applname=>"SATURN"}

 SEND(my_ack , appl_ch)

VAR my_neg_ack, INIT={applname=>"SATURN"}

SEND(my_neg_ack , appl_ch)

229

WAITTIL

System Testing Test Script Language.

Syntax

WAITTIL (<passed_expr>, <failed_ expr>)

Description

This instruction waits for several events and/or a timer.

<passed_expr> is a parameter that contains a Boolean expression. If this expression is true, the
waiting process is disabled and the test sequence continues.

<failed_ expr> is a parameter that contains a Boolean expression. If this expression is true, the
waiting process is disabled and it ends with an error.

The expressions <passed_expr> and <failed_expr> can only use global variables.

When <failed_ expr> is true, the execution of the scenario containing the WAITTIL is interrupted.
The next scenario at the same level is then executed.

To use this instruction, you need to take the following actions:

• Declare a type of communication with the COMMTYPE instruction.

• Declare a communication channel with the CHANNEL instruction.

• Declare the reference messages with the MESSAGE instruction.

• Write a callback for a non-blocking read of communication and message type.

• Define the expected values for each reference message with the DEF_MESSAGE instruction.

• Associate the identifier of a communication connection with the ADD_ID instruction.

• Use the four comparison operators, MATCHING, MATCHED, NOTMATCHING,
NOTMATCHED, and the timer WTIME. Also use the && (logical and) and || (logical or)
operators.

Example

The following lines are from the Basestation sample application delivered with the product.
#int tt; /* global var */

PROC con (int timeout)

VAR tt, INIT=timeout;

 DEF_MESSAGE mResponse, EV={command=>cmd_connection_established}

 WAITTIL (MATCHING(mResponse,BaseStation), WTIME>tt)

END PROC

230

WHILE ... END WHILE

Syntax

WHILE (condition)

END WHILE

Description

The instruction WHILE is a control structure. All the instructions between WHILE and END
WHILE is executed if the condition is true.

Example
#int i = 0;

SCENARIO Main

CALL api1_func...

WHILE (i<100)

CALL api_val(i)

VAR i, INIT=i+1

END WHILE

...

END SCENARIO

terations

231

WTIME

System Testing Test Script Language.

Syntax

WTIME

Description

WTIME is a macro that acts as a timer in a WAITTIL instruction.

The value of WTIME is reset to zero before every WAITTIL. The value is a multiple of the time
unit. By default the time unit is 10ms and can be customized in the TDP.

You can assign parameters to the timer's unit of time in the Target Deployment Port.

Example
...

SCENARIO Acknowledge

...

WAITTIL (MATCHING (OK), WTIME == 1000)

END SCENARIO

232

ATL_OCCID

Description

ATL_OCCID is a macro that returns the value of the occurrence identification number (OCCID)
that uniquely identifies a virtual tester.

You can change the occurrence identification number of a virtual tester by adding the -
OCCID=<number> parameter to the command line of the generated virtual tester.

By default, the value of ATL_OCCID within a test script is 0.

Example
HEADER "Client", "1.0", "3.0"

SCENARIO Main

 ...

 PRINT occnumber, ATL_OCCID

 ...

END SCENARIO

233

ATL_TIMEOUT

Description

The value of ATL_TIMEOUT is calculated from a WTIME expression used in the WAITTIL
statement. The ATL_TIMEOUT macro is an integer and uses the time unit defined in the Target
Deployment Port. By default, the time unit is a hundredth of second.

234

ATL_NUMINSTANCE

System Testing Test Script Language.

Description

ATL_NUMINSTANCE is a macro that returns the index number of an executed instance,
according to the order defined in the DECLARE_INSTANCE instruction.

Note The number returned by ATL_NUMINSTANCE is the index number +1. For
example, the first instance returns 2, the fourth instance returns 5.

Example
HEADER "Client", "1.0", "3.0"

DECLARE_INSTANCE client, server

SCENARIO Main

 ...

 PRINT instanceNum, ATL_NUMINSTANCE

 ...

END SCENARIO

System Testing supervisor script (.spv)

When using the System Testing tool, the machine running Test RealTime runs a supervisor process.

This section describes each supervisor script instruction, including:

Syntax

• Functionality and rules governing its usage

• Examples of use

 Notation Conventions

Throughout this guide, command notation and argument parameters use the following standard
convention:

Notation Example Meaning

BOLD ADD_ID Language keyword

<italic> <filename> Symbolic variables

[] [<option>] Optional items

{ } {<filenames>} Series of values

[{ }] [{<filenames>}] Optional series of variables

| on | off OR operator

System test script keywords are case sensitive. All keywords must be entered in upper case.

For conventional purposes however, this document uses upper-case notation for the supervisor
 script keywords in order to differentiate from native source code.

Split statements

Statements may be split over several lines in a .spv supervisor script. Continued lines must start
with the ampersand ('&') symbol to be recognized as a continuation of the previous line. No tabs or
spaces should precede the ampersand.

235

Statements must be shorter than 2048 characters, although this limit may be lower on some
platforms.

Identifiers

A supervisor script identifier is a text string used as a label, such as the name of a message type.

Identifiers are made of an unlimited sequence of the following characters:

• a-z

• A-Z

• 0-9

• _ (underscore)

Spaces are not valid identifier characters.

System Testing keywords and identifiers are case sensitive. This means that LABEL, label, and
Label are three different identifiers.

Supervisor script structure

System Testing manages the simultaneous execution of Virtual Testers distributed over a network.
The supervisor script language allows you to create a supervisor process to:

• Set up target hosts to run the test

• Launch the virtual testers, the system under test and any other tools.

• Synchronize virtual testers during execution

• Retrieve the execution traces after test execution

Note When using the Test RealTime graphical user interface, the .spv supervisor scripts are
generated automatically. Experienced users can edit these files manually. See System Testing
supervisor

Test script filenames must contain only plain alphanumerical characters.

Basic structure

A typical System Testing .spv supervisor script looks like this:
HOST machine_1 IS localhost

HOST machine_2 IS 193.256.6.2(10098)

HOST machine_3 IS $HOSTNAME

COPY local_file machine_2:remote_file

DO machine_1:program

All instructions in a test script have the following characteristics:

• All statements begin with a keyword.

• Statements are not case sensitive.

• Statements start at the beginning of a line and end at the end of a line. You can, however, write
an instruction over several lines using the ampersand (&) continuation character at the
beginning of additional lines. In this case, the ampersand must be the very first character on
that line; no spaces or tabs should precede it.

• Statements must be shorter than 2048 characters, although this limit may be lower on some
platforms.

Supervisor script instructions are sequential. There is no hierarchical structure in the script.

• COPY

236

• CHDIR

• DELETE

• DO

• ENDOF

• ERROR

• EXECUTE

• EXIT

• HOST

• IF ... THEN ... ELSE ... END IF

• INCLUDE

• MEMBERS

• MKDIR

• PAUSE

• PRINT

• PRINTLN

• RMDIR

• UNSET

• STATUS

• SHELL

• SET

• STOP

• TRACE ... FROM

• WHILE

Environment variables

System Testing supervisor scripts may read and write environment variables on the System Testing
Supervisor machine and on target machines.

Precede an environment variable name with a dollar sign ($) to substitute the environment variable
by its value within a statement.

To force a variable to refer to the environment of the System Testing Supervisor machine, precede
the environment variable with the 'at' sign (@) instead of the dollar sign.

Example
HOST machine IS $HOSTNAME

-- show the contents of the target home directory

DO machine: ls $HOME

-- show the contents of the local home directory

SHELL ls $HOME

Expressions

System Testing Supervisor Script Language.

237

Supervisor scripts may contain integer expressions only.

You may use expressions in variable assignments, IF instructions, and WHILE instructions.

Expressions may contain the following operators:

Operator Description

== Equals

!= Does not equal

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

+ Plus

- Unary or binary minus

* Multiply

/ Divide

% Modulo

! Negation

&& Logical AND

|| Logical OR

ENDOF See ENDOF

STATUS See STATUS

Expressions may be nested with parentheses. Operators obey the following ascending order of
priority:

• &&, ||

• ==, !=

• >, >=, <, <=

• +, Unary or binary -

• *, /, %

• !, ENDOF, STATUS

Example
HOST machine IS 193.6.2.1

EXECUTE proc_1 IS machine:program

i = 1

 -- declaration of i

j = (i + 3 2) + (i <= 2)

 -- declaration of j

PRINTLN j

238

COPY

System Testing Supervisor Script Language.

Purpose

The COPY instruction transfers a binary or ASCII file from the System Testing Supervisor machine
to a target machine, or the opposite.

Syntax

COPY [<hostname>:]<source> [<hostname>:]<destination> [/ASCII]

where:

• <source> is the absolute or relative filename of the file to be copied.

• <destination> is the absolute or relative path to which <source> is to be copied.

• <hostname> is the optional name of the source or destination machine.

Description

When the <hostname> is not specified, the filename refers to a local file on the System Testing
Supervisor machine. When a <hostname> is specified, the filename refers to a file on the
corresponding remote host.

COPY instructions can only transfer files from the System Testing Supervisor machine to a remote
machine, or from a remote machine to the System Testing Supervisor machine. Transfers from one
remote machine to another must be performed using two COPY instructions.

By default, transfers are in binary mode. If you specify the keyword /ASCII, the transfer is
performed in character mode, which insures that text files are correctly copied between different
types of machines. In binary mode, the target file's access permissions are updated so that the file is
executable.

A filename may contain environment variables that are local to the System Testing Supervisor
machine or that are defined on the remote machine. For more information, refer to the section on
Environment variables.

If the file to be copied does not exist or is read-protected, you will receive an error message (see
ERROR).

Path and filenames may contain long quoted pathnames, such as "C:\Program
Files\Rational\Test RealTime\".

Example
HOST target_1 IS antares

...

COPY localfile target_1:$HOME/file.bin

COPY target_1:remotefile localfile /ASCII

...

239

CHDIR

System Testing Supervisor Script Language.

Purpose

The CHDIR instruction changes the current working directory of the System Testing Supervisor
machine or of a target machine.

Syntax

CHDIR [<hostname>:] <directory>

where:

• <hostname> is an optional logical name of a target machine (see HOST)

• <directory> is the relative or absolute path of a directory

Description

When supervisor execution starts, the working directory of the System Testing Supervisor machine
is the current directory of the shell that runs the System Testing Supervisor.

When the script starts, the working directory of the target machine is the directory where the Agent
has been started.

The <directory> path may contain local environment variables from the System Testing Supervisor
machine, or remote environment variables defined on the target machine. For more information,
refer to the section on Environment variables.

If the operation fails, you will receive an error message (see ERROR).

The <directory> path may contain long quoted pathnames, such as "C:\Program
Files\Rational\Test RealTime\".

Example
HOST target IS workstation.domain.com

CHDIR localdir

CHDIR $ATS_DIR

CHDIR target:$HOME

CHDIR target:/tmp/project

SET DIR=C:\tmp

CHDIR $DIR

240

DELETE

System Testing Supervisor Script Language.

Purpose

The DELETE instruction deletes a local or remote file.

Syntax

DELETE <filename>

where:

• <filename> is a local or remote file to be deleted.

Description

<filename> may be specified with an absolute or relative path, or as <hostname>: <filename>, where
<hostname> is a remote host running a System Testing Agent daemon.

The filename may contain environment variables that are local to the System Testing Supervisor
machine or that are defined on the remote machine. For more information, refer to the section on
Environment variables

If the file to be deleted does not exist or is write-protected, you will receive an error message. (See
ERROR.)

Path and filenames may contain long quoted pathnames, such as "C:\Program
Files\Rational\Test RealTime\".

Example
HOST target_2 IS 123.4.56.7(10098)

DELETE target_2:$DIR/../remote_file

DELETE local_file

241

DO

System Testing Supervisor Script Language.

Purpose

The DO instruction executes a program on a remote machine and waits for the end of its execution.

Syntax

DO [<process> IS] <hostname>: <program> [<parameters>]

where:

• <process> optionally assigns a process name to the program

• <hostname> is the name of the remote machine as defined by a HOST instruction

• <program> is the name of the program to execute

• <parameters> is a set of optional parameters that can be sent to <program>

Description

DO is a blocking instruction that waits for the program to end.

The field <hostname> is mandatory and must specify a remote machine.

You can give a logical name to a program by including the clause <process> IS. You can then form
expressions with the ENDOF and STATUS operators.

A process name may only appear once in a supervision script, otherwise you will receive an error
when the scenario does not execute. If <process> IS is not present, the ENDOF and STATUS
operators cannot be used.

While the program runs, all logs sent to the standard and error outputs are redirected to the
supervisor, except if you have set TRACE OFF.

If the program does not start or does not have execution permission, an error message is produced.
(See ERROR.)

Note If a logical process name is used in a DO instruction within a WHILE loop, the name
refers not to a single process, but a group of processes. (See the ENDOF and STATUS
operators.)

Example
HOST remote IS 192.3.2.1

DO process_1 IS remote: ls /tmp -l

i = 1

WHILE i < 10

DO group IS remote:program

i = i + 1

END WHILE

-- the variable group refers to a group of 9

-- executions of the process called program

242

ENDOF

System Testing Supervisor Script Language.

Purpose

ENDOF is a Boolean function that tests whether <process> has ended or not. ENDOF is true if the
execution of <process> has ended.

Syntax

ENDOF (<process>)

<process> is a logical process name, defined with an EXECUTE statement.

Description

You can use the ENDOF function in expressions analyzed by the supervisor.

ENDOF is a non-blocking operator.

If an unknown process identifier is specified, an error is generated during analysis of the
supervision script before it is executed.

Note If an EXECUTE instruction is placed inside a WHILE loop, the process identifier
denotes a group of processes. In this case, an ENDOF expression with this process identifier
is true when all the processes associated with the identifier have ended.

Example
...

i = 1

WHILE i < 10

 EXECUTE proc_group IS machine:program

 i = i + 1

END WHILE

...

IF ENDOF (proc_group) THEN

 PRINT "end of execution of all processes"

END IF

243

ERROR

System Testing Supervisor Script Language.

Purpose

The ERROR instruction indicates to the supervisor whether or not execution of a scenario should
be interrupted if an error occurs.

Syntax

ERROR [ON | OFF]

Description

Use ERROR ON to interrupt execution of the supervision script if an error is detected.

Use ERROR OFF to ignore errors and continue execution of the supervision script.

In both cases, you will still receive an error message through the standard output.

The use of ERROR in supervision scripts is optional. ERROR ON is the default setting.

You may use ERROR ON and ERROR OFF several times in the same supervisor script.

Example
...

COPY localfile_1 target:file_1

ERROR OFF

DELETE localfile_1

ERROR ON

...

ERROR OFF

EXECUTE target:file_1

ERROR ON

244

EXECUTE

System Testing Supervisor Script Language.

Purpose

The EXECUTE instruction executes the program <program_name> on the <hostname> defined by a
previous HOST instruction.

Syntax

EXECUTE [<process> IS] <hostname>: <program> [<parameters>]

where:

• <process> optionally assigns a process name to the program

• <hostname> is the name of the remote machine as defined by a HOST instruction

• <program> is the name of the program to execute

• <parameters> is a set of optional parameters that can be sent to <program>

Description

EXECUTE is a non-blocking instruction that asynchronously starts the <program> on <hostname>,
and then returns.

The field <hostname> is mandatory and must specify a remote machine.

You can assign a logical name to the <program> by adding the optional <process> IS statement. You
can use this logical name to form expressions with the ENDOF and STATUS operators.

Any logical process name must be unique to a supervision script, otherwise it will generate an
error when the scenario execution fails.

If no logical process name is assigned to the program execution, the ENDOF and STATUS
operators will generate an error during the analysis of the supervisor script.

While <program> is running, all logs normally sent to the standard and error outputs are redirected
to the supervisor, except if you have used a TRACE OFF statement.

If the <program> file is missing or does not have execution permission, an error is generated.

Note If a logical process name is used in an EXECUTE instruction within a WHILE loop,
the name refers not to a single process, but a group of processes. (See the ENDOF and
STATUS operators).

Example
HOST remote IS 192.3.2.1

EXECUTE process_1 IS remote: ls /tmp -l

EXECUTE remote: myFoo

i = 1

WHILE i < 10

 EXECUTE group IS remote:program

 i = i + 1

END WHILE

-- the variable group refers to a group of 9

-- executions of the process called program

245

EXIT

System Testing Supervisor Script Language.

Purpose

The EXIT instruction stops execution of the supervision script.

Syntax

EXIT ["<message>"]

<message> is a an optional character string delimited by double-quotes (").

Description

Stopping the supervisor causes all processes started by agents to stop as well.

The optional <message> is printed as an information message.

Note If you need to include a double-quote in the message, use \".

Example
HOST remote IS 192.6.2.1

...

IF (i = 3) THEN

 EXECUTE remote: ls /tmp -l

ELSE

 EXIT "Exit on incorrect value of \"i\""

END IF

246

HOST

System Testing Supervisor Script Language.

Purpose

The HOST instruction assigns a logical machine name to a target machine.

Syntax

HOST <logical_name> IS <address> [(<port_number>)]

<logical_name> is the identifier of the target machine.

<address> is the network address of the target machine

<port_number> is the network port to which the target machine's Agent is assigned.

Description

Executing a HOST instruction opens a connection with an agent on the target machine.

Logical machine names are used in CHDIR, COPY, DO, DELETE, EXECUTE, MKDIR, RMDIR,
SET, TRACE and UNSET instructions to refer to target machines.

The host <address> may be:

• a hostname (for example: workstation.domain.com),

• an alias (for example: workstation),

• or an IP address (for example: 155.22.9.3).

The TCP/IP port number is optional. It helps specify the port used by the target machine's agent
that listens for connection demands. By default, the port used by the supervisor is the one specified
by the ATS_PORT environment variable, or 10000.

A logical machine name must be unique within the supervision script. If the System Testing
Supervisor machine cannot connect to the agent, the supervisor produces an error message and
terminates, regardless of any ERROR statement.

Example
HOST machine_1 IS localhost

HOST machine_2 IS 193.256.6.2(10098)

HOST machine_3 IS $HOSTNAME

COPY local_file machine_2:remote_file

DO machine_1:program

247

IF ... THEN ... ELSE ... END IF

System Testing Supervisor Script Language.

Purpose

The IF ... END IF statement allows you to define a conditional behavior based on the result of an
expression.

Syntax

IF <expression> THEN

ELSE

END IF

<expression> is a Boolean expression. See Expressions.

Description

IF defines the Boolean expression.

Instructions following the THEN keyword are executed if the expression is true.

Instructions following ELSE are executed if the expression is false.

END IF marks the end of the of the IF statement.

Example
HOST machine IS 193.6.2.1

DO prepro IS machine:preprocessing.exe

IF (STATUS (prepro) == 0) THEN

 PRINTLN "preprocessing OK"

ELSE

 PRINTLN "preprocessing FAILED"

 EXIT

END IF

248

INCLUDE

System Testing Supervisor Script Language.

Purpose

The INCLUDE instruction allows you to nest supervision scripts.

Syntax

INCLUDE "<filename>"

<filename> is the absolute or relative file name of an included supervision script, delimited by
double quotes (").

Description

There is no limit to the levels of nested INCLUDE commands.

If an infinite loop of included files is detected during analysis, you will receive an error message
and the execution will fail.

INCLUDE instructions may appear anywhere in a supervision script, including inside a structured
IF or WHILE instruction.

There is no default file extension. If the filename has an extension, you must state it in the
INCLUDE instruction.

Example
HOST machine_1 IS 193.6.2.1

INCLUDE "included_file.spv"

...

DO test_1 IS machine_1:test_1

249

MEMBERS

System Testing Supervisor Script Language.

Purpose

The MEMBERS instruction lets you declare the number of members awaited at a given
rendezvous.

Syntax

MEMBERS <rendezvous> <number>

where:

• <rendezvous> is the rendezvous identifier

• <number> is a positive integer representing the number of members to wait for

Description

MEMBERS lets you synchronize virtual testers with the RENDEZVOUS instructions or with other
applications with the rendezvous Target Deployment Port.

A <rendezvous> identifier must be unique within the supervision script. If not, an error message is
produced and the scenario execution fails.

Example
...

MEMBERS beginning 3

...

EXECUTE machine_1:test1

EXECUTE machine2:test2

...

RENDEZVOUS beginning

250

MKDIR

System Testing Supervisor Script Language.

Purpose

The MKDIR instruction creates a new directory on the System Testing Supervisor machine or on a
target machine.

Syntax

MKDIR [<hostname>:] <directory>

where:

• <hostname> is an optional logical name of a target machine (see HOST)

• <directory> is the relative or absolute path of a directory

Description

The directory path name may contains local environment variables of the System Testing
Supervisor machine, or remote environment variables defined on the target machine.

If the operation fails, the script returns an error message.

Example
HOST target IS workstation.domain.com(10098)

MKDIR ../localdir

MKDIR target:$HOME/tmp

251

PAUSE

System Testing Supervisor Script Language.

Purpose

You may use the PAUSE instruction to delay script execution.

Syntax

PAUSE <duration>

<duration> is an integer specifying the length of the delay in seconds.

Description

The PAUSE instruction introduces a delay in the execution of the supervisor script. PAUSE does
not delay any other processes that are already running on the machines.

<duration> is expressed in seconds. It may be an integer constant or an integer expression.

Example
DELAY = 25

...

PAUSE 3

...

PAUSE DELAY

252

PRINT

System Testing Supervisor Script Language.

Purpose

The PRINT instruction prints <argument> to the supervision script execution log file without a
carriage return or line feed.

Syntax

PRINT <argument>

where:

• <argument> is a string or a variable that points to a string

Description

The PRINT instruction does not cause a carriage return or line feed after printing the value of
<argument>.

<argument> can be a string constant, delimited by quote double-quotes, or a variable integer value
used in the scenario.

If <argument> uses an unknown variable, the scenario execution exits with an error message.

Example
var_i = 25

PRINT "value of var_i "

PRINT var_i

253

PRINTLN

System Testing Supervisor Script Language.

Purpose

The PRINTLN instruction prints <argument> to the supervision script execution log file with a
carriage return or line feed.

Syntax

PRINTLN [<argument>]

<argument> is an optional string or identifier that is to be printed.

Description

The value of <argument> can be a string constant, delimited by double-quotes, or a variable integer
value used in the scenario.

If you provide no argument, the instruction causes a carriage return or line feed.

If <argument> uses an unknown variable, the scenario execution exits with an error message.

Example
var_i = 25

PRINTLN "value of var_i "

PRINTLN var_i

254

RMDIR

System Testing Supervisor Script Language.

Purpose

The RMDIR instruction deletes a directory from the System Testing Supervisor machine or from a
target machine.

Syntax

RMDIR [<hostname>:] <directory>

where:

• <hostname> is an optional logical name of a target machine (see HOST)

• <directory> is the relative or absolute path of a directory

Description

The directory path name may contain local environment variables of the System Testing Supervisor
machine or remote environment variables defined on the target machine. For more information,
refer to the section on Environment variables.

If the operation fails, the script returns an error message.

The <directory> path may contain long quoted pathnames, such as "C:\Program
Files\Rational\Test RealTime\".

Example
HOST target IS antares.tlse.fr(10098)

RMDIR ../localdir

RMDIR target:$HOME/tmp

255

UNSET

System Testing Supervisor Script Language.

Syntax

UNSET [<hostname>:] <env_var>

where:

• <hostname> is the logical name of the target machine (See HOST.)

• <env_var> is the name of the environment variable

Purpose

The UNSET instruction deletes an environment variable from the System Testing Supervisor
machine or from the target machine.

Description

Hostname is the logical name on a target machine as defined in the HOST instruction. If you do not
specify a hostname, the UNSET instruction deletes a local variable.

When you execute the UNSET instruction, the environment variable deletes until the end of the
execution, or until you reset it.

Example
HOST target IS workstation(10098)

...

SET LOCAL_TMP_DIR=/tmp

SET target:REMOTE_TMP_DIR=$TMPDIR

...

UNSET LOCAL_TMP_DIR

UNSET target:REMOTE_TMP_DIR

...

256

STATUS

System Testing Supervisor Script Language.

Purpose

STATUS is an integer operator that retrieves the code returned by a remote process when it
terminates.

Syntax

STATUS (process)

where:

• <process> is a logical process identifier

Description

The execution of a STATUS expression does not block execution of the scenario.

Applying STATUS to an ongoing process always returns a zero value. We recommend you use the
STATUS operator in conjunction with ENDOF.

Note If you place an EXECUTE or DO instruction inside a WHILE loop, the process
identifier denotes a group of processes. In this case, a STATUS expression returns a binary
result or code from all the processes in the group. For example, if ten processes terminate
with a return code of 0 and one process terminates with the return code of 1, the STATUS
operator returns the value 1.

Example
EXECUTE proc_1 IS machine:foo0098

WHILE !ENDOF(proc_1)

PAUSE 1

END WHILE

j = STATUS (proc_1)

IF j != 0 THEN

 PRINT "incorrect termination of program -> "

 PRINTLN j

 EXIT

END IF

257

SHELL

System Testing Supervisor Script Language.

Syntax

SHELL command

Purpose

The SHELL instruction executes a command by the System Testing Supervisor machine.

Description

SHELL commands block execution of the supervision script until the command is complete.

The command's execution log is not recorded in the supervision script execution log.

Example
...

SHELL ls /tmp -l ...

258

SET

System Testing Supervisor Script Language.

Purpose

The SET instruction sets an environment variable on either the System Testing Supervisor machine
or the target machine.

Syntax

SET [<hostname>:] <env_var> << <expression>

SET [<hostname>:] <env_var> = <string>

<hostname> is the logical name of the target machine,

<env_var> is the name of the environment variable,

<expression> is a numerical expression,

<string> is a text string.

Description

<hostname> must be previously declared with a HOST instruction. If you do not specify a
hostname, the SET instruction sets a local environment variable on the supervisor machine.

The environment variable is set when the SET instruction executes. It keeps its value until the end
of the execution, or until it resets.

The string from the equal sign (=) to the end of the line belongs to the expression.

To evaluate an expression and assign it to the variable, use the << symbol. The expression may
contain variables.

Example
HOST target IS workstation(10098)

...

SET LOCAL_TMP_DIR=/tmp

SET target:REMOTE_TMP_DIR << $TMPDIR

SET target:NUMVALUE <<i+2

259

STOP

System Testing Supervisor Script Language.

Syntax

STOP <process>

where:

• <process> is the identifier of a process

Purpose

The STOP instruction stops a process began with the EXECUTE instruction.

Example
HOST target IS antares

EXECUTE server IS machine:server

...

STOP server

260

TRACE ... FROM

System Testing Supervisor Script Language.

Syntax

TRACE ON | OFF [FROM <host_name>]

Purpose

The TRACE instruction enables or disables execution traces from the machine specified by
host_name, where this name was defined by a HOST instruction.

The traces are consolidated into the supervisor log file.

The keyword ON enables traces.

The keyword OFF disables traces.

Description

If the clause FROM host_name is not present, all traces from all machines are enabled or disabled.

If the clause FROM host_name is present, traces from machine host_name are enabled or disabled.

If you specify an unknown host name, you will receive an error when scenario execution fails.

By default, traces follow the HOST instruction.

Example
HOST machine_1 IS 193.5.4.3

HOST machine_2 IS remote

TRACE OFF FROM machine_1

261

WHILE

System Testing Supervisor Script Language.

Syntax

WHILE expression

instructions

END WHILE

Purpose

The WHILE instruction creates an execution loop.

Example
HOST machine IS 193.6.2.1

EXECUTE proc_1 IS machine:program

i = 1

WHILE !ENDOF (proc_1)

 PAUSE 1

 i = i + 1

END WHILE

j = STATUS (proc_1)

PRINT "execution time: "

PRINTLN i

PRINT "return code: "

PRINTLN j

262

Variables

System Testing Supervisor Script Language.

A supervision script may contain integer variables only.

The system implicitly declares variables the first time they appear. The variable must first appear
in an assignment instruction.

A variable must have a different name from any logical hostname defined in a HOST instruction,
from any logical process name defined in an EXECUTE instruction, and from any RENDEZVOUS
name. Otherwise, you will receive an error when scenario execution fails.

Variable names must begin with an upper or lowercase letter or with an underscore (_), followed, if
necessary, by a series of letters, digits, or underscore characters.

Variable names are case sensitive. For example, the variable Aa5 is different from the variable aA5.

Example
HOST machine IS 193.6.2.1

EXECUTE proc_1 IS machine:program

i = 1

-- declaration of i

WHILE !ENDOF (proc_1)

 PAUSE 1

 i = i + 1

END WHILE

j = STATUS (proc_1)

 -- declaration of j

PRINT "execution time "

PRINTLN i

PRINT "return code "

PRINTLN j

263

TIMEOUT

System Testing Supervisor Script Language.

Syntax

TIMEOUT <integer>

Purpose

The TIMEOUT instruction lets you define the time to wait for a rendezvous.

The value is measured in seconds.

Description

You may use only one TIMEOUT instruction in a test script.

The default value is 300 seconds (5 minutes).

Example
HOST machine_1 IS 193.5.4.3

HOST machine_2 IS remote.domain.fr

TIMEOUT 40

RENDEZVOUS phase_1

264

RENDEZVOUS

System Testing Supervisor Script Language.

Purpose

The RENDEZVOUS instruction synchronizes virtual testers and other processes.

Syntax

RENDEZVOUS <rendezvous>

<rendezvous> is a rendezvous identifier, previously declared by a MEMBERS statement.

Description

When the scenario reaches a RENDEZVOUS statement, the script is halted until all declared
members arrive at the rendezvous. When the rendezvous is met by all members, the supervisor
orders all processes to resume.

RENDEZVOUS identifiers must be unique in the script, including from logical process names or
variable names, otherwise you will receive an error when execution fails.

If the rendezvous does not occur before the end of the timeout delay, you will receive an error. The
default delay is five minutes. You can modify the delay with the TIMEOUT instruction.

Example
...

MEMBERS test1_test2 3

EXECUTE machine_1:test1

EXECUTE machine_2:test2

RENDEZVOUS test1_test2

265

Command line interface

266

System Testing Supervisor - atsspv

Purpose

The System Testing Supervisor executes .spv supervisor script files.

Syntax

atsspv <spv_script> <options>

where:

• <spv_script> is the .spv supervisor script to execute

• <options> is a series of command line options. See the section Options.

Description

System Testing manages the simultaneous execution of Virtual Testers distributed over a network.
When using System Testing, the job of the Supervisor is to:

• Set up target hosts to run the test

• Launch the Virtual Testers, the system under test and any other tools.

• Synchronize Virtual Testers during execution

• Retrieve the execution traces after test execution

The System Testing Supervisor uses an .spv supervisor deployment script to control System
Testing Agents installed on each distributed target host. Agents can launch either applications or
Virtual Testers.

While the agent-spawned processes are running, their standard and error outputs are redirected to
the supervisor.

Note You must install and configure the agents on the target machines before execution.

The Supervisor generates traces during analysis and execution. These traces are displayed on the
screen and written to a log file named as <spv_script>.lis.

Confirmation telnet interface

You can check that the System Testing Agent is correctly configured by using the telnet interface.
Launch a telnet session to the computer on which the Agent is running, on the System Testing port
(by default 10000) and type Jef <username> after the welcome prompt. If everything is correct, the
exchange should look like this:
> telnet <computer> 10000

210 hello, please to meet you.

> Jef <username>

The answer should provide the status of the user on the computer.

 Options

The options can be in any order. They may be upper or lower case and written in an incomplete
form, provided the selected option is clear.

-CHECK

This option specifies that the scenario is to be analyzed but not executed. This allows you to check
for errors in the .spv script.

-NOLOG

Disables supervisor output of error messages and warnings to the screen. Traces are still written to
the .lis log file.

267

-STUDIO_MACH=localhost

By default, the supervisor uses the IP address 127.0.0.1 to connect to the Test RealTime graphical
user interface. Use -STUDIO_MACH= localhost to resolve problems when the supervisor fails to
connect.

-STUDIO_LOG

This option is for internal usage only.

 Return Codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

268

System Testing Load Report Generator - atsload

Purpose

The Load Report Generator produces a report describing messages and execution time.

Syntax

atsload -SEPARATOR='<sep_string>' [-TITLE] <rdd file> {[, <rdd
file>]}

where:

• <rdd_file> is an .rdd output file generated by the Report Generator.

• <sep_string> is the separator string.

• <options> is a set of optional parameters among those described below.

Description

The System Testing Load Report Generator tool processes .rdd file of a virtual tester from the
Report Generator and produces the following output:

• TITLE: The optional header for each column of the report.

• SCENARIO: total execution time

• SEND: timestamp of a SEND message relative to the beginning of the SCENARIO

• MESSAGE: timestamp of a WAITTIL relative to the beginning of the SCENARIO

• PRINT: value of the numeric parameter

You can use the Load Report Generator to compare between several virtual testers. Data is
presented in columns, separated by a separator string. Each column represents a particular virtual
tester.

There must be one .rdd file for each virtual tester.

Optional Parameters

-TITLE

This option adds a TITLE line to the report, containing the name of the virtual tester for each
column.

-STUDIO_LOG

This option is for internal usage only.

Example
atsload -SEPARATOR=':' vt1.rod vt2.rod vt2.rod

Return Codes

After execution, the program exits with the following return codes:

Code Description

0 End of execution with no errors

7 End of execution due to a fatal error

9 End of execution due to an internal error

All messages are sent to the standard error output device.

269

System Testing Report Generator - atsmerge

Syntax

atsmerge <file> {[, <file>]} [<options>]

where:

• <file> lists the .rio intermediate result files generated during the virtual tester execution phase
and the .tdc correspondence table files generated during compilation.

• <options> is a list of options described below.

Description

The system generates a .rod result file for each .rio file, which is saved in the rio directory. The .rod
filename uses the .rio filename with a .rod extension.

If one of the files cannot be found, the Report Generator produces a fatal error. The Report
Generator does not support spaces in a filename.

The Report Generator produces a warning message each time it encounters any incorrect data.

If the report contains any synchronization errors between the .tdc and the .rio file, the Report
Generator produces a fatal error.

Options

The options can be in any order. They may be upper or lower case and written in an incomplete
form, provided the selected option is clear.

-TIME

This option enables you to merge reports that do not contain structure instructions. Structural
instructions are beginning and ending block instructions (scenario, initialization, exception,
termination).

If the .rio and .tdc files come from different test scripts, the -TIME option is enabled.

-RDD = <RDD report filename>

This option enables you to specify the output report filename.

By default, the report is names atsrdd.rdd and generated in the current directory.

-RA [=ERR | =TEST]

This option specifies the form of the report generated.

With -RA = TEST, only variables that are in a failed test are displayed.

With -RA = ERR, no variables are displayed.

In both cases, if the test is correct, only general information on this test is displayed.

The default option is -RA (with no parameters), which provides a full report of all variables for
each test.

-VA =EVAL | NOEVAL | COMBINE

This option lets you specify the way in which initial and expected values of each variable is
displayed in the test report.

• With -VA = EVAL, the initial, expected value of each variable evaluated during execution is
displayed in the report. This option is only visible for variables whose initialization or
expected value is not reduced in the test script.

Note: For structures in which one of the fields is an array, this evaluation is not given for the
initial values. For expected values, it is only given for incorrect elements.

270

• With -VA = NOEVAL, for each variable, the report generator displays in the test report the
initial and expected values described in the test script.

• Use -VA = COMBINE to combines the previous two options, that is, for each variable, the
report generator displays in the test report the initial and expected values described in the test
script as well as the initial and expected values evaluated during execution.

By default -VA = EVAL is used.

-SUMMARY | NOSUMMARY

This option produces a summary of the test execution in the test report.

This option gives a quick overview of the execution of the set of test scenarios. It only summarizes
the execution of the test scenarios.

The default option is -NOSUMMARY.

-COMMENT | -NOCOMMENT

In the System Testing Language, the COMMENT keyword displays a comment in the test report.
You can use -NOCOMMENT to disable these comments, and -COMMENT to make them visible.

By default comments are displayed.

-STUDIO_LOG

This option is for internal usage only.

Log File

-LOG | -NOLOG

With the -LOG option, errors found during analysis of .rio and .tdc files are displayed on screen.
Use the -NOLOG option to disable this behavior.

By default the -LOG option is used.

Example
atsmerge fic01.rio fic02.rio fic01.tdc fic02.tdc ...

Return Codes

After execution, the program exits with the following return codes:

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

271

System Testing Script Compiler - atspreproC

The System Testing Script Compiler preprocesses the Test Script and converts it into a native
source test harness.

Syntax

atspreproC <test script> <interface_file> {[,<interface_file>]}
<file name> [<options>]

where:

• <test script> is the test script to be compiled.

• <interface file> lists interface files that contain event structure definitions, includes for interface
prototypes, and their types. These files may have any extension.

Note If read access to these files is denied, System Testing for C produces a fatal error.

• <file name> is the name of the C code file generated from the test script. If you do not specify
an extension, the system uses the ATS_SRC environment variable extension, or the default
extension .c.

• <options> is a set of optional parameters among those described below.

Description

If you do not specify an extension, the system uses the ATS_PTS environment variable extension
or the default .pts extension.

If an input file is absent or read access is denied, System Testing for C produces a fatal error.

After execution, the code is generated in the code.c file. If it is not possible to create the file, you
will receive a fatal error.

If the Report Generator detects incorrect tests, System Testing for C produces a warning message.

If the report detects a synchronization error between the .tdc and the .rio file, System Testing for C
produces a fatal error.

Optional Parameters

Options can be in any order. They may be upper or lowercase and can be abbreviated to their
shortest unambiguous number of characters.

-ALLOCATION[=STACK | =DYNAMIC]

This option allows you to specify the method for allocating the work of the test program in the
compiler.

If this option is present, the test program uses only allocated data on the execution stack
(=STACK).

By default, the work context is global static data.

-BUFSIZE=<size>

This option sets the size of the trace buffer in kilobytes. The trace buffer is only used with the -
TRACE option.

The default buffer size is 10KB.

-DEFINE=<list of conditions>

This option lets you specify the conditions to apply during test compilation. This option is
equivalent to compiler option -D.

You can specify particular conditions or give them a value (-define=condition=value). Symbols
defined with this option are equivalent to the following line in C:

272

#define <symbol> [<value>]

-FAMILY=<family> {[,<family>]} | -EXFAMILY=<family> {[,<family>]}

-FAMILY specifies the only test families that are to be explicitly executed. Any other test families
are ignored.

-EXFAMILY explicitly specifies the families that are to be ignored. All other families are executed.

-FAMILY and -EXFAMILY cannot be used together. The test compiler generates a warning
message if no scenarios are generated.

By default, all test families are executed.

-SCN=<scenario> {[,<scenario>]} | -EXSCN=<scenario>
{[,<scenario>]}

-SCN specifies the only scenarios that are to be explicitly executed. Any other scenarios are
ignored.

-EXSCN explicitely specifies the scenarios that are to be ignored. All other scenarios are executed.

-SCN and -EXSCN cannot be used together.

To specify a sub-scenario, name the set of scenarios in which it is included and separate with full
stops. If you exclude a scenario that contains sub-scenarios, all its sub-scenarios are also excluded.

The test compiler generates a warning message if no scenarios are generated.

-FAST | -NOFAST

The -FAST option tells the test compiler to analyze only those scenarios that you want to generate.
This option accelerates execution of the test compiler if you use a selection option. The option is
useful when using -SCN, -EXSCN, -FAMILY, -EXFAMILY.

The -NOFAST option disables this behavior.

By default, the -FAST option is used.

-INCL=<directory> {[,<directory>]}

This option lists directories where included files are located. Using this option enables you to:

• Establish the list of include files in the tested source file

• Execute the INCLUDE instructions

• Execute the C #include instruction

The system first searches the current directory, next in the directories specified with the -INCL
option, and finally the default C system files directory.

-LANG=C

This option allows you to select the language of the generated code. You can generate C virtual
testers.

By default, virtual testers are generated in C.

-LOG | -NOLOG

With the -LOG option, the system displays and stores errors found during the analysis of interface
files and test script. The name of the log file is the name of the test script with the .lis extension.

If you select -NOLOG, these errors are not displayed.

By default, the -LOG option is used.

-NOCOMMENT

Use this option to deactivate the processing of COMMENT statements in order to improve
performance issues.

-NOTSHARED

273

This option allows you to disable sharing of global static data between instances. When using this
option, you must apply different names to all global variables within a test script. No local variable,
constant, or function parameter should have the same name as a global static variable in the test
script.

This used only by the -ALLOCATION and -THREAD options.

By default global variables of the test script are shared by all instances.

-STD_DEFINE=<standard definitions file>

This option provides the C parser with a C source file describing the characteristics of the compiler
used.

If the specified file cannot be found, the test compiler stops and you will receive a fatal error.

By default, no compiler characteristics are specified.

-THREAD [=<function name>]

This option allows you to create a test function with a name other than main.

If <function name> is omitted, the function name becomes the source file name appended with
_start.

By default, the generated function is called main.

-TRACE=CIRCULAR | ERROR | SCN | TIME

The test compiler uses a buffer to store the result of the test script execution. This buffer is saved on
disk each time selected events (ERROR, SCN, TIME) occur. This option reduces the size of the
virtual tester execution file. It is most useful during an endurance test.

• -TRACE=CIRCULAR tells the virtual tester to use a circular buffer to store execution traces.
The circular buffer stores the execution traces in memory. Traces are flushed into the .rio file
only after virtual tester execution or if explicitly requested in the test script (see the
FLUSH_TRACE keyword).

• -TRACE=ERROR saves the buffer each time a test script error occurs.

• -TRACE=SCN has the same functionality as the ERROR parameter, and additionally saves
scenario begin and end marks.

• -TRACE=TIME has the same functionality as the SCN parameter; and additionally saves timed
events (WAITTIL and PRINT).

These options generate incomplete reports - some information is filtered - but the report always
includes plan test errors.

If the buffer is too small, some traces are lost and the generated report is incomplete. You can
change buffer size with the -BUFSIZE option.

-STUDIO_LOG

This option is for internal usage only.

-SPVGEN

This option is for internal usage only.

Example
atsprepro gen.pts interface.h code -EXSCN=Main.send.test_1,
Main.receive.test_1

Return Codes

After execution, the program exits with the following return codes

Code Description

274

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

275

Virtual Tester

Syntax

<virtual tester> [-INSTANCE=<instance>] [-OCCID=<id_number>] [-
RIO=<trace_file>]

Description

Virtual testers are multiple contextual incarnations of a single .pts System Testing test script.

One virtual tester can be deployed simultaneously on one or several targets, with different test
configurations. A same virtual tester can also have multiple clones on the same target host
machine.

Deployment of virtual testers is controlled by either the GUI or a System Testing .spv supervisor
script when running in the command line interface. Do not edit .spv scripts when using the GUI.

System Testing for C generates virtual testers from a test script according to the declared instances.

Note A System Testing Agent for C must be installed and running on each target host
before deploying virtual testers to those targets.

Following the execution architecture and constraints needed to comply, the System Testing Script
Compiler provides several ways to generate the virtual testers.

Options

Virtual testers can take the following command line options:

-INSTANCE=<instance>

If the .pts test script contains DECLARE_INSTANCE instructions, this option specifies which
behavioral instance the virtual tester is to initiate. By default, the virtual tester generates all
behaviors contained in the test script, but on execution, only one instance is adopted.

If no instances are selected even though instances do exist in the test script, the virtual tester stops
with a fatal error message.

-RIO=<trace_file>

This syntax specifies the name of the execution trace file to be generated by the virtual tester.

If you do not define a trace filename, the name <virtual tester>.rio will be used.

-OCCID=<occurrence_id_number>

This allows you to specify the occurrence identification number to use in the virtual tester identifier
when using communication between virtual testers. See the INTERSEND and INTERRECV
statements for more information.

-STUDIO_LOG

This option is for internal usage only.

277

Chapter 2. Runtime and static analysis reference

The command line interface allows you to integrate Test RealTime runtime analysis tools into your
build process.

Command line interface

The command line interface allows you to integrate Test RealTime runtime analysis tools into your
build process.

278

C and C++ Instrumentation Launcher - attolcc

Purpose

The Instrumentation Launcher instruments and compiles C and C++ source files. The
Instrumentation Launcher is used by Memory Profiling, Performance Profiling, Runtime Tracing
and Code Coverage, as well as the Component Testing Contract Check feature for C++.

Syntax

attolcc [{<-options>}] [{<-settings>}] -- <compilation_command>

attolcc --help

where:

• <compilation_command> is the standard compiler command line that you would use to
launch the compiler if you are not using the product

• "--" is the command separator preceded and followed by spaces

• <options> is a series of optional parameters

• <settings> is a series of optional instrumentation settings

Description

The Instrumentation Launcher fits into your compilation sequence with minimal changes.

The Instrumentation Launcher is suitable for use with only one compiler and only one Target
Deployment Port. To view information about the driver, run attolcc with no parameters.

The attolcc binary is located in the /cmd directory of the Target Deployment Port.

Note Some Target Deployment Ports do not have an attolcc binary. In this case, you must
manually run the instrumentor, compiler and linker.

General Options

The Instrumentation Launcher accepts all command line parameters for either the C or C++
Instrumentor, including runtime analysis feature options. This allows the Instrumentation
Launcher to automatically compile the selected Target Deployment Port.

In addition to Instrumentor parameters and Code Coverage parameters, the following options are
specific to the Instrumentation Launcher. Command line options can be abbreviated to their
shortest unambiguous number of characters and are not case-sensitive.

--HELP

Type attolcc --help to list a comprehensive list of options, including those of the instrumentor, for
use with the instrumentation launcher.

-VERBOSE | -#

The -VERBOSE option shows commands and runs them. The "-#" option shows commands but
does not execute them.

-TRACE

-MEMPRO

-PERFPRO

These options activate specific instrumentation for respectively the Runtime Tracing, Memory
Profiling and Performance Profiling runtime analysis feature.

-OTIFILE=<file>[{,<file>}]

Runtime and static analysis reference

279

When using the Contract Check capability of Component Testing for C++, the -OTIFILE option
allows you to specify one or several Component Testing .oti instrumentation files for C++. These
files are generated by the C++ Test Compiler and contain the Component Testing instrumentation
rules for C++.

-AUTO_OTI

When using the Contract Check capability of Component Testing for C++, this option specifies that
Component Testing instrumentation files (.oti) for C++ are to be searched and loaded from the
directory specified with option -OTIDIR, or in current directory if this option is not used. .oti files
are searched according to the source file names. For instance, if class A is found in file myfile.h, the
.oti searched will be myfile.oti. An information message is issued for each .oti file loaded
automatically.$

-FORCE_TDP_CC

This option forces the Instrumentation Launcher to attempt to compile the Target Deployment Port
even if the link phase has not yet been reached before the TP.o or TP.obj is built.

-NOSTOP

This option forces the initial command to resume when a failure occurs during preprocessing,
instrumentation, compilation or link. This means that the build chain is not interrupted by errors,
but the resulting binary may not be fully instrumented. Use this option when debugging
instrumentation issues on large projects.

Each error is logged in an attolcc.log file located in the directory where the error occurred.

Code Coverage Options

The following parameters are specific to the Code Coverage runtime analysis feature. These
options do not activate Code Coverage. To activate Code Coverage, use the Code Coverage Level
options (-PROC, -CALL, -COND and -BLOCK).

-PASS | -COUNT | -COMPACT

Pass mode only indicates whether a branch has been hit. The default setting is pass mode.

Count mode keeps track of the number of times each branch is exercised. The results shown in the
code coverage report include the number of hits as well as the pass mode information.

Compact mode is equivalent to pass mode, but each branch is stored in one bit, instead of one byte
as in pass mode. This reduces the overhead on data size.

-COMMENT | -NOCOMMENT

The comment option lets the user associate a comment string with the source in the code coverage
reports and in Code Coverage Viewer.

By default, the Instrumentation Launcher sends the preprocessing command as a comment. This
allows you to distinguish the source file that was preprocessed and compiled more than once with
distinct options.

Use -NOCOMMENT to disable the comment setting.

Metrics Options
-metrics=<output directory>

Generates static metrics for the specified source files in the specified <output directory>. This option
replaces the metcc command line tool, which is deprecated.

-one_level_metrics

By default, the calculation of static metrics is applied to the specified source files, and extended to
any files included in those source files. Use the -one_level_metrics option to ignore included files
when calculating static metrics.

280

-restrict_dir_metrics <directory>

Use the the -restrict_dir_metrics option to calculate static metrics of the specified source files,
extended to any files included in those source files but limited to those files located in the specified
<directory>.

-studio_log

This option is for internal use only.

Instrumentation Settings

The instrumentation settings apply to the compilation of the Target Deployment Port Library.

The 0 or 1 values for many conditional settings mean false for 0 and 1 for true.

Compiler Settings
--cflags=<compilation flags>

--cppflags=<preprocessing flags>

--include_paths=<comma separated list of include paths>

--defines=<comma separated list of defines>

Enclose the flags with quotes ("") if you specify more than one. These flags are used while
compiling the Target Deployment Port Library

By default, the corresponding DEFAULT_CPPFLAGS, DEFAULT_CFLAGS,
DEFAULT_INCLUDE_PATHS and DEFAULT_DEFINES from the <ATLTGT>/tp.ini or
<ATLTGT>/tpcpp.ini file are used

General Settings
--atl_multi_threads=0|1

To be set to 1 if your application is multi-threads (default 0).

--atl_threads_max=<number>

Maximum number of threads at the same time (default 64).

--atl_multi_process=0|1

To be set to 1 if your application uses fork/exec to run itself or another instrumented application
(default 0). Traces files are named atlout.<pid>.spt.

--atl_buffer_size=<bytes>

Size of the Dump Buffer in bytes (default 16384).

--atl_traces_file=<file-name>

Name of the file that is flushed by execution and to be split (default atlout.spt).

Memory Profiling Settings
--atp_call_stack_size=<number of frames>

Number of functions from the stack associated to any tracked memory block or to any error
(default 6).

--atp_reports_fiu=0|1

File In Use detection and reporting (default 1)

--atp_reports_sig=0|1

POSIX Signal detection and reporting (default 1).

--atp_reports_miu=0|1

Runtime and static analysis reference

281

Memory In Use detection and reporting, ie: not leaked memory blocks (default 0).

--atp_reports_ffm_fmwl=0|1

Freeing Freed Memory and Late Detect Free Memory Write detection and reporting (default 1).

--atp_max_freeq_length=<number of tracked memory blocks>

Free queue length, ie: maximum number of tracked memory blocks whom actual free is delayed
(default 100).

--atp_max_freeq_size=<bytes number>

Sets the free queue size, ie: the maximum number of bytes actually unfreed (default 1048576 =
1Mb)

--atp_reports_abwl=0|1

Late Detect Array Bounds Write detection and reporting (default 1).

--atp_red_zone_size=<bytes number>

Size of each of the two Red Zones placed before and after the user space of the tracked memory
blocks (default 16).

Performance Profiling Settings
--atq_dump_driver=0|1

Enable the Performance Profiling Dump Driver API atqapi.h (default 0).

Code Coverage Settings
--atc_dump_driver=0|1

Enablesthe Coverage Dump Driver API apiatc.h (default 0).

Runtime Tracing Settings
--att_on_the_fly=0|1

If set to 1, implies that each tdf lines are flushed immediatly in order to be read on-the-fly by the
UML/SD Viewer in Studio (default 0).

--att_item_buffer=0|1

Enable Trace Buffer (not Dump Buffer) if set to 1 (default 0).

--att_item_buffer_size=<bytes>

Maximum number of recorded Trace elements before Trace Buffer flush (default 100).

--att_partial_dump=0|1

Partial Message Dump is on if set to 1 (default 0).

--att_signal_action=0|1|2

• 0 means no action when handling a signal (default)

• 1 means toggling dump of messages

• 2 means only flushing the current call stack

--att_record_max_stack=0|1

Display largest call stack length in a note (default 1).

--att_timestamp=0|1

If enabled, record and display time stamp (default 0).

--att_thread_info=0|1

If 1 record and display thread information (default 1).

282

Component Testing for C++ Contract Check Settings
--atk_stop_on_error=0|1

Call breakpoint function on assertion failure (default 0).

--atk_dump_success=0|1

By default (0), only failed assertions are reported. If enabled, both failed and passed assertions are
reported.

--atk_report_reflexive_states=0|1

Trace unchanged states (default 1).

Example
attolcc -- cc -I../include -o appli appli.c bibli.c -lm

attolcc -TRACE -- cc -I../include -o appli appli.c bibli.c -lm

Return codes

The return code from the Instrumentation Launcher is either the first non-zero code received from
one of the commands it has executed, or 0 if all commands ran successfully. Due to this, the
Instrumentation Launcher is fully compatible with the make mechanism.

If an error occurs while the Instrumentation Launcher - or one of the commands it handles - is
running, the following message is generated:
ERROR : Error during C preprocessing

All messages are sent to the standard error output device.

Runtime and static analysis reference

283

C and C++ Instrumentor - attolcc1 and attolccp

Purpose

The two SCI Instrumentors for C and C++ insert functions from a Target Deployment Port library
into the C or C++ source code under test. The C and C++ Instrumentors are used for:

• Memory Profiling

• Performance Profiling

• Code Coverage

• Runtime Tracing

Syntax

attolcc1 <src> <instr> <def> [{<-options>}]

attolccp <src> <instr> <hpp> <opp> [{<-options>}]

where:

• <src> Preprocessed source file (input)

• <instr> Instrumented file (output)

• <def> Standard definitions file the C Instrumentor only. This file is searched in the $ATLTGT
directory.

• <hpp> and <opp> are the parser option files for the C++ Instrumentor only. This file is searched
in the $ATLTGT directory.

The attolcc1 binary is for the C language. The attolccp binary is for C++.

The <src> input file must have been preprocessed beforehand (with macro definitions expanded,
include files included, #if and directives processed).

When using the C Instrumentor, all arguments are functions. When using the C++ Instrumentor,
arguments are qualified functions, methods, classes, and namespaces, for example: void
C::B::f(int).

Description

The SCI Instrumentor builds an output source file from an input source file, by adding special calls
to the Target Deployment Port function definitions.

The Runtime Analysis tools are activated by selecting the command line options:

• -MEMPRO for Memory Profiling

• -PERFPRO for Performance Profiling

• -TRACE for Runtime Tracing

• -PROC , -CALL, -COND and -BLOCK for Code Coverage (code coverage levels).

Note that there is no -COVERAGE option; the following rules apply for the Code Coverage
feature:

• If no code coverage level is specified, nor Runtime Tracing, Memory Profiling, or Performance
Profiling or C++ Component Testing Contract Check, then the default is to have code coverage
analysis at the -PROC and -BLOCK=DECISION level.

• If no code coverage level is specified while one or more of the aforementioned features are
selected, then code coverage analysis is not performed.

Detailed information about command line options for each feature are available in the sections
below.

284

The C Instrumentor (attolcc1) supports preprocessed ANSI 89 or K&R C standard source code
without distinction. The ANSI 99 standard is not supported.

The C++ Instrumentor (attolccp) accepts preprocessed C++ files compliant with the ISO/IEC
14882:1998 standard. Depending on the Target Deployment Port, attolccp can also accept the C
ISO/IEC 9899:1990 standard and other C++ dialects.

Both C and C++ versions of the Instrumentor accept either C or C++-style comments.

Attol pragmas start with the # character in the first column and end at the next line break.

The <def> and <header> parameters must not contain absolute or relative paths. The Code Coverage
Instrumentor looks for these files in the directory specified by the ATLTGT environment variable,
which must be set.

You can select one or more types of coverage at the instrumentation stage.

When you generate reports, results from some or all of the subset of selected coverage types are
available.

General Options
-FILE=<filename>[{,<filename>}] | -
EXFILE=<filename>[{,<filename>}]

-FILE specifies the only files that are to be explicitly instrumented, where <filename> is a C (when
using attolcc1) or C++ (when using attolccp) source file. All other source files are ignored. Use this
option with multiple C or C++files that can be found in a preprocessed file (#includes of files
containing the bodies of C or C++ functions, lex and yacc outputs, and so forth).

-EXFILE explicitely specifies the files that are to be excluded from the instrumentation, where
<filename> is a C (when using attolcc1) or C++ (when using attolccp) source file. All other source
files are instrumented. You cannot use this option with the option -FILE. Files that are excluded
from the instrumentation process are still analyzed. Any errors found in those files are still
reported.

<filename> may contain a path (absolute or relative from the current working directory). If no path
is provided, the current working directory is used.

-FILE and -EXFILE cannot be used together.

-IGNORE=<filename>[{,<filename>}]

-IGNORE explicitely specifies the files that are to be ignored both by preprocessing and
instrumentation, where <filename> is a C or C++ source file. All other source files are instrumented.
Files that are ignored are not analyzed. Use this option to avoid errors that may occur with a file
using the -EXFILE option.

<filename> may contain a path (absolute or relative from the current working directory). If no path
is provided, the current working directory is used.

-UNIT=<name>[{,<name>}] | -EXUNIT=<name>[{,<name>}]

-UNIT specifies code units (functions, procedures, classes or methods) whose bodies are to be
instrumented, where <name> is a unit which is to be explicitly instrumented. All other functions
are ignored.

-EXUNIT specifies the units that are to be excluded from the instrumentation. All other units are
instrumented. Functions, procedures, classes or methods that are excluded from the
instrumentation process with the -EXUNIT option are still analyzed. Any errors found in those
units are still reported.

-UNIT and -EXUNIT cannot be used together.

Note These options replace the -SERVICE and -EXSERVICE options from previous releases
of the product.

Runtime and static analysis reference

285

-RENAME=<function>[,<function>]

For the C Instrumentor only. The -RENAME option allows you to change the name of C functions
<function> defined in the file to be instrumented. Doing so, the f function will be changed to
_atu_stub_f. Only definitions are changed, not declarations (prototypes) or calls. Component
Testing for C can then define stubs to some functions inside the source file under test.

-NOFULLPATHKEY

Identifies source files based only on the filename instead of the complete path. Use this option to
consolidate test results when a same file can be located in different paths. This can be useful in
some multi-user environments that use source control. If you use this option, make sure that the
source file names used by your application are unique.

-NO_DATA_TRACE

C++ only. Excludes from instrumentation structures or classes that do not contain methods. This
reduces instrumentation overhead.

-REMOVE=<name>[,<name>]

This option removes the definition of the function (or method) <name> in the instrumented source
code. This allows you to replace one or several functions (or methods) with specialized custom
functions (or methods) from the TDP.

-NOINSTRDIR=<directory>[,<directory>]

Specifies that any C/C++ function found in a file in any of the <directories> or a sub-directory are
not instrumented.

Note You can also use the attol incl_std pragma with the same effect in the standard
definitions file.

-NOINSPECTDIR=<directory>[,<directory>]

Specifies directories excluded from inspection of variables found in include files. Use this option to
avoid the inspection of variables from 3rd party libraries.

-INSTANTIATIONMODE=ALL

C++ only. When set to ALL, this option enables instantiation of unused methods in template
classes. By default, these methods are not instantiated by the C++ Instrumentor.

-DUMPCALLING=<name>[{,<name>]]

-DUMPINCOMING=<name>[{,<name>}]

-DUMPRETURNING=<name>[{,<name>}]

These options allow you to explicitly define upon which incoming, returning or calling functions
the trace dump must be performed. The -DUMPCALLING function is for the C language only.
Pleaser refer to General Runtime Analysis Settings in the User Guide for further details.

-NOPATH

Disables generation of the path to the Target Deployment Package directory in the #include
directive. This lets you instrument and compile on different computers.

-NOINFO

Prohibits the Instrumentor from generating the identification header. This header is normally
written at the beginning of the instrumented file, to strictly identify the instrument used.

-NODLINE

Prohibits the Instrumentor from generating #line statements which are not supported by all
compilers. Use this option if you are using such a compiler.

-TSFDIR[=<directory>]

Not applicable to Code Coverage (see FDCDIR). Specifies the destination <directory> for the .tsf
static trace file which is generated following instrumentation for each source code file. If
<directory> is not specified, each .fdc file is generated in the corresponding source file's directory. If

286

you do not use this option, the .tsf directory is the current working directory (the attolcc1 or
attolccp execution directory). You cannot use this option with the -TSFNAME option.

-TSFNAME=<name>

Not applicable to Code Coverage (see FDCNAME). Specifies the .tsf file name <name> to receive
the static traces produced by the instrumentation. You cannot use this option with the -TSFDIR
option.

-NOINCLUDE

This option excludes all included files from the instrumentation process. Use this option if there are
too many excluded files to use the -EXFILE option.

Code Coverage Options

The following parameters are specific to the Code Coverage runtime analysis feature.

-PROC[=RET]

-PROC instruments procedure inputs (C/C++ functions). This is the default setting.

The -PROC=RET option instruments procedure inputs, outputs, and terminal instructions.

-CALL

Instruments C/C++ function calls.

-BLOCK=IMPLICIT | DECISION | LOGICAL

The -BLOCK option alone instruments simple blocks only.

Use the IMPLICIT or DECISION (these are equivalent) option to instrument implicit blocks
(unwritten else instructions), as well as simple blocks.

Use the LOGICAL parameter to instrument logical blocks (loops), as well as the simple and
implicit blocks.

By default, the Instrumentor instruments implicit blocks.

-NOTERNARY

This option allows you to abstract the measure from simple blocks. If you select simple blocks
coverage, those found in ternary expressions are not considered as branches.

-COND[=MODIFIED | =COMPOUND | =FORCEEVALUATION]

MODIFIED or COMPOUND are equivalent settings that allow measuring the modified and
compound conditions.

FORCEEVALUATION instruments forced conditions.

When -COND is used with no parameter, the Instrumentor instruments basic conditions.

-NOPROC

Specifies no instrumentation of procedure inputs, outputs, or returns, and so forth.

-NOCALL

Specifies no instrumentation of calls.

-NOBLOCK

Specifies no instrumentation of simple, implicit, or logical blocks.

-NOCOND

Specifies no instrumentation of basic conditions.

-COUNT

Specifies count mode.

-COMPACT

Specifies compact mode.

Runtime and static analysis reference

287

-EXCALL=<filename>

For C only. Excludes calls to the C functions whose names are listed in <filename> from being
instrumented. The names of functions (identifiers) must be separated by space characters, tab
characters, or line breaks. No other types of separator can be used.

-FDCDIR=<directory>

Specifies the destination <directory> for the .fdc correspondence file, which is generated for Code
Coverage after the instrumentation for each source file. Correspondence files contain static
information about each enumerated branch and are used as inputs to the Code Coverage Report
Generator. If <directory> is not specified, each .fdc file is generated in the directory of the
corresponding source file. If you do not use this option, the default .fdc files directory is the
working directory (the attolccl execution directory). You cannot use this option with the -
FDCNAME option.

-FDCNAME=<name>

Specifies the .fdc correspondence file name <name> to receive correspondence produced by the
instrumentation. You cannot use this option with the -FDCDIR option.

-NOCVI

Disables generation of a Code Coverage report that can be displayed in the Code Coverage Viewer.

-METRICS

Provides static metric data for compatibility with old versions of the product. Use the static metrics
features of the Test Script Compiler tools instead. By default no static metrics are produced by the
Instrumentors.

-NOSOURCE

Replaces the generation of the colorized viewer source listing by a colorized viewer pre-annotated
report containing line number references.

-COMMENT=<comment>

Associates the text from either the Instrumentation Launcher (preprocessing command line) or
from the source file under analysis and stores it in the .fdc correspondence file to be mentioned in
Code Coverage reports. In the Code Coverage Viewer, a magnifying glass appears next to the
source file, allowing you to display the comments in a separate window.

Memory Profiling Specific Options

The following parameters are specific to the Memory Profiling runtime analysis feature.

-MEMPRO

Activates instrumentation for the Runtime Tracing analysis feature.

-NOINSPECT=<variable>[,<variable>]

Specifies global variables that are not to be inspected for memory leaks. This option can be useful
to save time and instrumentation overhead on trusted code.

Performance Profiling Specific Options

The following parameters are specific to the Performance Profiling runtime analysis feature.

-PERFPRO[=<os>|<process>]

Activates instrumentation for the Runtime Tracing analysis feature.

The optional <os> parameter allows you to specify a clock type. By default the standard operating
system clock is used.

The <process> parameter specifies the total CPU time used by the process.

The <os> and <process> options depend on target availability.

288

Runtime Tracing Specific Options

The following parameters are specific to the Runtime Tracing analysis feature.

-TRACE

Activates instrumentation for the Runtime Tracing analysis feature.

-NO_UNNAMED_TRACE

For the C++ Instrumentor only. With this option, unnamed structs and unions are not instrumented.

-NO_TEMPLATE_NOTE

For the C++ Instrumentor only. With this option, the UML/SD Viewer will not display notes for
template instances for each template class instance.

-BEFORE_RETURN_EXPR

For the C Instrumentor only. With this option, the UML/SD Viewer displays calls located in return
expressions as if they were executed sequentially and not in a nested manner.

Component Testing Options for C++

The following parameters are specific to Component Testing for C++.

-OTIFILE=<filename>[{,<filename>}]

Name of one or several Component Testing .oti instrumentation files for C++. These files contain
rules for Component Testing instrumentation for C++ (they are generated by the C++ Test Script
Compiler).

-AUTO_OTI

If this option is specified, Component Testing .oti instrumentation files for C++ will be searched
and loaded in the directory specified with option -OTIDIR, or in current directory if this option is
not used. .oti files are searched according to the source file names. For instance, if class A is found
in file myfile.h, the .oti searched will be myfile.oti. An information message is issued for each .oti
file loaded automatically.

-OTIDIR=[<directory>]

This option specifies, when option -AUTO_OTI is active, which directory is to be searched. If no
directory is specified (i.e. -OTIDIR= is specified), .oti files will be searched in the same directory as
the source file they are matching.

-BODY=MAP_FILE|NAME_CONV|INLINE

This option specifies where generated methods body should be generated.

Use INLINE to generate method bodies in each instrumented source file as inline routines. This is
the default, since there is little chance that the generated code cannot be accepted by a compiler,
except with template classes on some compilers.

Use NAME_CONV to generate routine bodies in the .cpp, .cc or .C file whose name matches the .h
file that contains the class definition of the generated method.

Use MAP_FILE when you provide a map file with the option -MAPFILE. This generates method
bodies according to the map file.

-MAPFILE=<filename>

When you add the -BODY=MAP_FILE option, this option must be provided. The -MAPFILE
option specifies a user-created map file, describing where the methods of each class are to be
generated.

This file must have the following format:
<source file>

 <class name>

 <class name>

Runtime and static analysis reference

289

 ...

<source file>

 <class name>

 ...

 ...

Note that the character before a class name MUST be a tabulation.

For example:
a.cpp

 A

b.cpp

 B

This specifies that class A methods bodies have to be generated in file a.cpp, and B methods bodies
have to be generated in file b.cpp.

-NO_OTC

-NO_OTD

These options specify that Component Testing instrumentation rules for C++ issued from,
respectively, an .otc contract check test script, or an .otd test driver script should be ignored.

-SHOWINFO

This option activates a diagnosis for each signature analysis. Usually, analysis of ill-formed
signatures is silent. This option allows you to find ignored signatures

Note A signature is a string describing a class, a method, or a function, and is used in .otc
and .otd files.

-NOWARNING

This option deactivates the warning display for signature analysis. The Instrumentor's signature
analyzer accepts any non-ambiguous signature, and more permissive than most compilers.
Warnings indicates signatures that which are accepted by the instrumentor, but would be rejected
by compilers.

-INSTR_CONST

Usually a C++ const method cannot modify any field of the this object. That's why the const
methods are not checked for state changes, and are only evaluated once for invariants. But in some
cases, the this object may change even if the method is qualified with const (by assembler code or by
calling another method with casting the this parameter to a non-const type).

There may also be pointers fields to objects which logically belong to the object, but the C++
compiler does not guarantee that these pointed sub-objects are not modified. Use this option if the
source code contains such pointers.

-MTSUPPORT

Use this option if your application is multi-threaded and objects are shared by several threads. This
will ensure the specificity of each object for state evaluation.

Note To use multi-thread support in the product, you must also compile the Target
Deployment Port with multi-thread support.

-STUDIO_LOG

This option is for internal usage only.

Return Codes

After execution, the program exits with the following return codes

Code Description

290

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

Runtime and static analysis reference

291

Ada Instrumentor - attolada

Purpose

The source code insertion (SCI) Instrumentor for Ada inserts functions from a Target Deployment
Port library into the Ada source code under test. The Ada Instrumentor is used for Code Coverage
only.

Syntax

attolada <src> <instr> [<options>]

where:

• <src> is the source file (input)

• <instr> is the instrumented output file

Description

The Instrumentor builds an output source file from an input source file, by adding special calls to
the Target Deployment Port function definitions.

The Ada Instrumentor (attolada) supports Ada83 and Ada95 standard source code without
distinction.

You can select one or more types of coverage at the instrumentation stage (see the User Guide for
more information).

When you generate reports, results from some or all of the subset of selected coverage types are
available.

Options
-PROC [=RET]

-PROC alone instruments procedure, function, package, and task entries. This is the default setting.

The -PROC=RET option instruments both entries and exits.

-CALL

Instruments Ada functions or procedures.

-BLOCK [=IMPLICIT | DECISION | LOGICAL | ATC]

This option specifies how blocks are to be instrumented.

• The -BLOCK option alone instruments simple blocks only.

• Use the IMPLICIT or DECISION option to instrument implicit blocks (unwritten else
instructions), as well as simple blocks.

• Use the LOGICAL parameter to instrument logical blocks (loops), as well as the simple and
implicit blocks.

• Use the ATC parameter to extend the instrumentation to asynchronous transfer control (ATC)
blocks.

By default, the Instrumentor instruments implicit blocks.

-COND [=MODIFIED | COMPOUND | FORCEEVALUATION]

When -COND is used with no parameter, the Instrumentor instruments basic conditions.

• MODIFIED or COMPOUND are equivalent settings that allow measuring the modified and
compound conditions.

• FORCEEVALUATION instruments forced conditions.

292

-NOPROC

Disables instrumentation of procedure inputs, outputs, or returns, etc.

-NOCALL

Disables instrumentation of calls.

-NOBLOCK

Disables instrumentation of simple, implicit, or logical blocks.

-NOCOND

Disables instrumentation of basic conditions.

-NOFULLPATHKEY

This option forces the product to ignore the full path of files. Use this option if you need to
consolidate test results when a same file can be identified with various paths, for example in a
multi-user development environment using source control.

-UNIT=<name>[{,<name>}] | -EXUNIT=<name>[{,<name>}]

-UNIT specifies Ada units whose bodies are to be instrumented, where <name> is an Ada unit
which is to be explicitly instrumented. All other functions are ignored.

-EXUNIT specifies the units that are to be excluded from the instrumentation. All other Ada units
are instrumented. Units that are excluded from the instrumentation process with the -EXUNIT
option are still analyzed. Any errors found in those files are still reported.

-UNIT and -EXUNIT cannot be used together.

-LINK=<filename>[{,<filename>]]

Provides a set of link files to the Instrumentor.

-STDLINK=<filename>

Provides a standard link file to the Instrumentor.

-FDCDIR=<directory>

Specifies the destination <directory> for the .fdc correspondence file, which is generated for Code
Coverage after the instrumentation for each source file. Correspondence files contain static
information about each enumerated branch and are used as inputs to the Code Coverage Report
Generator. If <directory> is not specified, each .fdc file is generated in the directory of the
corresponding source file. If you do not use this option, the default .fdc files directory is the
working directory (the attolccl execution directory). You cannot use this option with the -
FDCNAME option.

-FDCNAME=<name>

Specifies the .fdc correspondence file name <name> to receive correspondence produced by the
instrumentation. You cannot use this option with the -FDCDIR option.

-DUMPINCOMING=<name>[{,<name>}]

-DUMPRETURNING=<name>[{,<name>}]

These options allow you to explicitly define upon which incoming or returning function(s) the
trace dump must be performed. Please refer to General Runtime Analysis Settings in the User
Guide for further details.

-COMMENT=<comment>

Associates the text from either the Code Coverage Launcher (preprocessing command line) or from
you with the source file and stores it in the FDC file to be mentioned in coverage reports. In Code
Coverage Viewer, a magnifying glass is put in front of the source file. Clicking on this magnifying
glass, shows this text in a separate window.

-NOMETRICS

Saves the metrics basic data calculation time.

-RESTRICTION =NOEXCEPTION|NOGENERIC|CSMART

Runtime and static analysis reference

293

Use this option to set a restriction.

• NOEXCEPTION deactivates instrumentation of exception block branches encountered in the
source file. When this option is active, no coverage information is available on exception
blocks or on instructions contained in exception blocks.

• NOGENERIC deactivates the instrumentation using a generic Target Deployment Port call.
When this option is active, the generated source code may contain uninstrumentable calls. If
used with the -CALL option, this can generate compilation errors depending on your
application if, for example, you use private packages as well as private sub-packages.

• CSMART generates CSMART compliant code.

-NOSOURCE

Replaces the generation of the colorized viewer source listing by a colorized viewer pre-annotated
report containing line number references.

-NOCVI

Disables generation of a Code Coverage report that can be displayed in the Code Coverage Viewer.

-METRICS

Provides static metric data for compatibility with old versions of the product. Use the static metrics
features of the Test Script Compiler tools instead. By default no static metrics are produced by the
Instrumentors.

-GENERATEDNAME = CHECKSUM | <filename>

-USERNAME = <NAME>

Use these options to add a package to the header of the generated file to store coverage traces. You
can specify the name of the generated package using one of the following three options:

• -GENERATEDNAME=CHECKSUM uses a checksum calculated on the instrumented file to
create a package name under the form ATC_<checksum>, where <checksum> has a maximum of
four letters.

• -GENERATEDNAME=<filename> uses the name of the file to be instrumented, this name is
transformed into an Ada identifier and prefixed by ATC_.

• -USERNAME=<username>: A name you choose freely by the user and provide on the
command line.

<File> is used without checking whether it is a valid Ada identifier.

By default, the -GENERATEDNAME=<FILE> option is used.

-PREFIX=<prefix>

You can prefix some instrumentations (name of the generated package, variables, etc.) if there are
any semantic ambiguities. Thus, packages generated by attolada can be recognized by giving them
a known prefix.

By default, no prefix is used.

Note The prefix you provide is used, without checking whether it is a valid Ada identifier.

-SPECIFICATION

Extends instrumentation of calls and conditions to source code inside package specifications.

-MAIN=<unit>[{,<unit>}]

Forces a trace dump at the end of the main unit of your application.

-EXCALL=<unit>[{,<unit>}]

Excludes from call instrumentation the calls to specified units or to functions or procedures inside
the specified units.

-ADA83 | -ADA95

294

Choose specifies the Ada language used by the Instrumentor. This language is applied to the
analyzed and generated file.

-INSTRUMENTATION=[COUNT|INLINE]

Specifies the Instrumentation Mode:

• COUNT: Default Pass mode, each branch generates in 32 bits for profiling purposes. This
offers the best compromise between code size and speed overhead.

• INLINE: Compact mode. functionally equivalent to Pass mode, except that each branch needs
only one bit of storage instead of one byte. This implies a smaller requirement for data storage
in memory, but produces a noticeable increase in code size (shift/bits masks) and execution
time.

By default, count mode is used, which is a compromise between the flow mode (everything is a call
to the Target Deployment Package) and the inline mode (when possible, the code is directly
inserted into the generated file).

-NOINFO

Asks the Instrumentor not to generate the identification header. This header is normally written at
the beginning of the instrumented file, to strictly identify the instrument used.

-STUDIO_LOG

This option is for internal usage only.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

Runtime and static analysis reference

295

Ada Metrics Generator - metada

Purpose

The Ada Metrics Generator produces .met static metric files for the specified source files.

Syntax

metada <source_file> [-output_dir=<output_directory>]

metada @<options_file>

where:

• <source_file> is the name of the source file to be analyzed.

• <output directory> is the absolute path of the location where the .met static metric file is to be
generated.

• <options_file> points to a plain text file containing a list of options.

Description

The Ada Metrics Calculator analyzes a specified Ada source file and produces a .met static metric
file, which can be opened with the Test RealTime GUI.

Note For other languages, the .met static metric files are produced by the C, C++ and Java
Source Code Parsers.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

3 End of execution with one or more warning messages

5 End of execution with one or more errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

296

Java Instrumentor - javi

Purpose

The SCI Instrumentor for Java inserts methods from a Target Deployment Port library into the Java
source code under test. The Java Instrumentor is used for:

• Performance Profiling

• Code Coverage

• Runtime Tracing

Memory Profiling for Java uses the JVMPI Agent instead of source code insertion (SCI) technology
as for other languages.

Syntax

javi <src> {[,<src>]} [<options>]

where:

• <src> is one or several Java source files (input)

Description

The SCI Instrumentor builds an output source file from each input source file by adding specific
calls to the Target Deployment Port method definitions. These calls are used by the product's
runtime analysis features when the Java application is built and executed.

The Runtime Analysis tools are activated by selecting the command line options:

• -MEMPRO for Memory Profiling

• -PERFPRO for Performance Profiling

• -TRACE for Runtime Tracing

• -PROC and -BLOCK for Code Coverage (code coverage levels).

Note that there is no -COVERAGE option; the following rules apply for the Code Coverage
feature:

• If no code coverage level is specified, nor Runtime Tracing, Memory Profiling, or Performance
Profiling, then the default is to have code coverage analysis at the -PROC and -
BLOCK=DECISION level.

• If no code coverage level is specified while one or more of the aforementioned features are
selected, then code coverage analysis is not performed.

Detailed information about command line options for each feature are available in the sections
below.

The Java Instrumentor creates the output files in a javi.jir directory, which is located inside the
current directory. By default, this directory is cleaned and rewritten each time the Instrumentor is
executed.

Although the Java Instrumentor can take several input source files on the command line, you only
need to provide the file containing a main method for the Instrumentor to locate and instrument all
dependencies.

The $CLASSPATH or $EDG_CLASSPATH environment variable must point to the native classes
required by the Instrumentor. Alternatively, you can specify one or several additional classpaths
by using the -CLASSPATH option of the Java Instrumentor. The -CLASSPATH option overrides
the $CLASSPATH and $EDG_CLASSPATH environment variables -in that order- during
instrumentation.

Runtime and static analysis reference

297

When using the Code Coverage feature, you can select one or more types of coverage at the
instrumentation stage (see the User Guide for more information). When you generate reports,
results from some or all of the subset of selected coverage types are available.

Options
-FILE=<filename>[{,<filename>}] | -
EXFILE=<filename>[{,<filename>}]

-FILE specifies the only files that are to be explicitly instrumented, where <filename> is a Java
source file. All other source files are ignored.

-EXFILE explicitely specifies the files that are to be excluded from the instrumentation, where
<filename> is a Java source file. All other source files are instrumented.

Files that are excluded from the instrumentation process with the -EXFILE option are still
analyzed. Any errors found in those files are still reported.

<filename> may contain a path (absolute or relative from the current working directory). If no path
is provided, the current working directory is used.

-FILE and -EXFILE cannot be used together.

-NOFULLPATHKEY

This option forces the product to ignore the full path of files. Use this option if you need to
consolidate test results when a same file can be identified with various paths, for example in a
multi-user development environment using source control.

-CLASSPATH=<classpath>

The -CLASSPATH option overrides the $CLASSPATH and $EDG_CLASSPATH environment
variables -in that order- during instrumentation.

In <classpath>, each path is separated by a colon (":") on UNIX systems and a semicolon (";") in
Windows.

-OPP=<filename>

The -OPP option allows you to specify an optional definition file. The <filename> parameter is a
relative or absolute filename.

-DESTDIR=<directory>

The -DESTDIR option specifies the location where the javi.jir output directory containing the
instrumented Java source files is to be created. By default, the output directory is created in the
current directory.

-PROC [=RET]

The -PROC option alone causes instrumentation of all classes and method entries. This is the
default setting.

The -PROC=RET option instruments procedure inputs, outputs, and terminal instructions.

-BLOCK=IMPLICIT | DECISION | LOGICAL

The -BLOCK option alone instruments simple blocks only.

Use the IMPLICIT or DECISION (these are equivalent) option to instrument implicit blocks
(unwritten else instructions), as well as simple blocks.

Use the LOGICAL parameter to instrument logical blocks (loops), as well as the simple and
implicit blocks.

By default, the Instrumentor instruments implicit blocks.

-NOTERNARY

This option allows you to abstract the measure from simple blocks. If you select simple block
coverage, those found in ternary expressions are not considered as branches.

298

-NOPROC

Specifies no instrumentation of procedure inputs, outputs, or returns, and so forth.

-NOBLOCK

Specifies no instrumentation of simple, implicit, or logical blocks.

-COUNT

Specifies count mode. By default, the Instrumentor uses pass mode. See the User Guide.

-COMPACT

Specifies compact mode. By default, the Instrumentor uses pass mode. See the User Guide.

-UNIT=<name>[{,<name>}] | -EXUNIT=<name>[{,<name>}]

-UNIT specifies Java units whose bodies are to be instrumented, where <name> is an Java package,
class or method which is to be explicitly instrumented. All other units are ignored.

-EXUNIT specifies the units that are to be excluded from the instrumentation. All other Java units
are instrumented.

-UNIT and -EXUNIT cannot be used together.

-DUMPINCOMING=<service>[{,<service>}]

-DUMPRETURNING=<service>[{,<service>}]

-MAIN=<service>

These options allow you to precisely specify where the SCI dump must occur. -MAIN is equivalent
to -DUMPRETURNING.

-COMMENT=<comment>

Associates the text from either the Code Coverage Launcher (preprocessing command line) or from
you with the source file and stores it in the FDC file to be mentioned in coverage reports. In Code
Coverage Viewer, a magnifying glass is put in front of the source file. Clicking this magnifying
glass shows this text in a separate window.

-NOCVI

Disables generation of a Code Coverage report that can be displayed in the Code Coverage Viewer.

-JTEST | -NOJTEST

The -JTEST option provides UML sequence diagram output for Component Testing for Java with
Test RealTime. -NOJTEST disables this output.

-NOCLEAN

When this option is set, the Instrumentor does not clear the javi.jir directory before generating new
files.

-FDCDIR=<directory>

Specifies the destination <directory> for the .fdc correspondence file, which is generated for Code
Coverage after the instrumentation for each source file. Correspondence files contain static
information about each enumerated branch and are used as inputs to the Code Coverage Report
Generator. If <directory> is not specified, each .fdc file is generated in the directory of the
corresponding source file. If you do not use this option, the default .fdc files directory is the current
working directory. You cannot use this option with the -FDCNAME option.

-FDCNAME=<name>

Specifies the .fdc correspondence file name <name> to receive correspondence produced by the
instrumentation. You cannot use this option with the -FDCDIR option.

-NO_UNNAMED_TRACE

With this option, anonymous classes are not instrumented.

-PERFPRO

Runtime and static analysis reference

299

This option activates Performance Profiling instrumentation. This produces output for a
Performance Profile report.

-TRACE

This option activates Runtime Tracing instrumentation. This produces output for a UML sequence
diagram.

-TSFDIR=<directory>

Specifies the destination <directory> for the .tsf static trace file, which is generated for Code
Coverage after the instrumentation of each source file. If <directory> is not specified, each .tsf static
trace file is generated in the directory of the corresponding source file. If you do not use this option,
the default .tsf static trace file directory is the current working directory. You cannot use this
option with the -TSFNAME option.

-TSFNAME=<filename>

Specifies the <name> of the .tsf static trace file that is to be produced by the instrumentation. You
cannot use this option with the -TSFDIR option.

-INSTRUMENTATION=[FLOW|COUNT|INLINE]

Choose specifies the instrumentation mode. By default, count mode is used, which is a
compromise between the flow mode (everything is a call to the Target Deployment Package) and
the inline mode (when possible, the code is directly inserted into the generated file).

Warning: Inline mode must be used only in pass mode. Do not use this option if you want to
know how many times a branch is reached.

-NOINFO

Asks the Instrumentor not to generate the identification header. This header is normally written at
the beginning of the instrumented file.

-STUDIO_LOG

This option is for internal usage only.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

300

Java Instrumentation Launcher - javic

Purpose

The Instrumentation Launcher provides a means of instrumenting and compiling Java source files
with minimal changes to your usual compilation sequence. The Instrumentation Launcher is used
by Performance Profiling, Runtime Tracing and Code Coverage.

Syntax

javic [<options>] -- <compilation_command>

where:

• <compilation_command> is the standard compiler command line that you would use to launch
the compiler if you are not using the product

• "--" is the command separator preceded and followed by spaces

• <options> is a series of optional parameters for the Java Instrumentor.

Description

The Instrumentation Launcher (javic) fits into your compilation sequence with minimal changes.

The Instrumentation Launcher is suitable for use with only one compiler and only one Target
Deployment Port. To view information about the driver, run javic with no parameters.

The javic (or javic.exe) binary is located in the cmd subdirectory of the Target Deployment Port.

The Java Instrumentation Launcher automatically sets the $ATLTGT environment variable if it is
not already set.

The $CLASSPATH or $EDG_CLASSPATH environment variable must point to the native classes
required by the Instrumentor. Alternatively, you can specify one or several additional classpaths
by using the -CLASSPATH option of the Java Instrumentor. The -CLASSPATH option overrides
the $CLASSPATH and $EDG_CLASSPATH environment variables -in that order- during
instrumentation.

Command line options can be abbreviated to their shortest unambiguous number of characters and
are not case-sensitive.

Customization

The javic (or javic.exe) binary is a copy of the perllauncher (or perllauncher.exe) binary located in
<InstallDir>/bin/<platform>/<os>.

The launcher runs the javic.pl perl script which is located in the cmd subdirectory and produces
the products.java file that contains the default configuration settings. These are copied from
<InstallDir>/lib/scripts/BatchJavaDefault.pl.

The javic.pl included with the product is for the Sun JDK 1.3.1 or 1.4.0 compiler. This script can be
changed in the TDP Editor, allowing you to customize the default settings, which are based on the
BatchJavaDefault.pl script, before the call to PrepareJavaTargetPackage.

Options

The Instrumentation Launcher accepts all command line options designed for the Java
Instrumentor (javi). The following additional options are specific to javic:

 --atl_threads_max=<number>

 Sets the maximum number of threads at the same time. The default value is 64.

 --atl_buffer_size=<bytes>

Runtime and static analysis reference

301

 Sets the size of the Dump Buffer in bytes. The default value is 16384.

 --address=<IPaddress>

 Address of the Socket Trace Receiver Host. The default address is 127.0.0.1.

 --uploader_port=<port number>

 Port number listened to by the Socket Trace Receiver Host. The default port number is 7777.

 --atl_run_gc_at_exit=0|1

 Set this setting to 1 to run finalizers invoking the Garbage Collector upon exit. 0 disables the
option. Default is 1.

 --atj_check_stub=0|1

 Check Component Testing for Java stubs. Default is 0.

 --atj_display_stub=0|1

 Display Component Testing for Java stubs in Runtime Tracing. Default is 0.

 --att_on_the_fly=0|1

 If set to 1, implies that each tdf lines are flushed immediately in order to be read on-the-fly by
Runtime Tracing. Default is 1.

 --att_partial_dump=0|1

 Partial Message Dump is on if set to 1 in Runtime Tracing. Default is 0.

 --att_timestamp=0|1

 If 1 record and display Time Stamp in Runtime Tracing. Default is 1.

 --att_heap_size=0|1

 Record and Display Current Heap Size in Runtime Tracing. Default is 1.

 --att_thread_info=0|1

 Record and Display Thread Information in Runtime Tracing. Default is 1.

 --att_record_max_stack=0|1

 Record and Display Max Stack in a note in Runtime Tracing. Default is 1.

Example

The following command launches Runtime Tracing instrumentation of program1.java and its
dependencies, then compiles the instrumented classes in the java.jir directory.
javic -trace -- javac program1.java

The following command launches Code Coverage instrumentation of program2.java and
program3.java, as well as their dependencies, and generates the instrumented classes in the
tmpclasses directory.
javic -proc=r -block=l -- javac program1.java program2.java -d tmpclasses

In this example, tmpclasses will contain the compiled TDP classes only if they are not already in
the TDP directory. The -d option creates these TDP .class files in the same location as the source
files. Make sure that you set a correct CLASSPATH when running the application.

302

Java Instrumentation Launcher for Ant

Purpose

The Java Instrumentation Launcher (javic) for Ant provides integration of the Java Instrumentor
with the Apache Jakarta Ant build utility.

Description

This adapter allows automation of the instrumented build process for Ant users by providing an
Ant CompilerAdapter implementation called com.rational.testrealtime.Javic.

The Java Instrumentation Launcher for Ant provided with the product supports version 1.4.1 of
Ant, but is delivered as source code, so that you can adapt it to any release of Ant. Source code for
the Javic class is available at:
<InstallDir>/lib/java/ant/com/rational/testrealtime/Javic.java

Javic uses the build.actual.compiler property to obtain the name of your Java compiler. When
using JDK 1.4.0, this name is modern. Please refer to Ant documentation for other values.

In some cases -opp=<file> and -destdir=<dir> can not be set in the Javi.options property:

• The .opp instrumentation file is automatically set in the -opp=<file> option by the Javic class if
and only if $ATLTGT/ana/atl.opp exists.

• The instrumented file repository directory, where the javi.jir subdirectory is created, is
automatically set by the Javic class if the destdir attribute is set in the javac task.

-classpath=<classpath> cannot be set in the Javi.options property.

The classpath used by the Java Instrumentor is a merge of the classpath attribute of the javac task
with the $CLASSPATH and $EDG_CLASSPATH contents.

$ATLTGT must point to the Java TDP directory, for example: <InstallDir>/targets/jdk_1.4.0. On
Windows platforms, this path must be provided in short-name DOS format.

Options

Options for the javic launcher require double quotes ("") on some platforms. For example:
-Djavi.settings="--att_on_the_fly=0"

The Launcher accepts the following options:

 --atl_threads_max=<number>

Sets the maximum number of threads at the same time. The default value is 64.

 --atl_buffer_size=<bytes>

Sets the size of the Dump Buffer in bytes. The default value is 16384.

 --address=<IPaddress>

Address of the Socket Trace Receiver Host. The default address is 127.0.0.1.

 --uploader_port=<port number>

Port number listened to by the Socket Trace Receiver Host. The default port number is 7777.

 --atl_run_gc_at_exit=0|1

Set this setting to 1 to run finalizers invoking the Garbage Collector upon exit. 0 disables the
option. Default is 1.

 --atj_check_stub=0|1

Check Component Testing for Java stubs. Default is 0.

 --atj_display_stub=0|1

Runtime and static analysis reference

303

Display Component Testing for Java stubs in Runtime Tracing. Default is 0.

 --att_on_the_fly=0|1

If set to 1, implies that each tdf lines are flushed immediately in order to be read on-the-fly by
Runtime Tracing. Default is 1.

 --att_partial_dump=0|1

Partial Message Dump is on if set to 1 in Runtime Tracing. Default is 0.

 --att_timestamp=0|1

If 1 record and display Time Stamp in Runtime Tracing. Default is 1.

 --att_heap_size=0|1

Record and Display Current Heap Size in Runtime Tracing. Default is 1.

 --att_thread_info=0|1

Record and Display Thread Information in Runtime Tracing. Default is 1.

 --att_record_max_stack=0|1

Record and Display Max Stack in a note in Runtime Tracing. Default is 1.

 To install the Javic class for Ant:

1. Download and install Ant v1.4.1 from http://jakarta.apache.org/ant/

2. Set ANT_HOME to the installation directory, for example: /usr/local/jakarta-ant-1.4.1.

3. Add $ANT_HOME/bin in your PATH

4. Compile and install the Javic class. In the ant directory, type:
ant

This adds the javic.jar to the $ANT_HOME/lib directory.

Example

The files for the following example are located in <InstallDir>/lib/java/ant/example.

The following command performs a standard build based on the build.xml file
ant

This produces the following output:
Buildfile: build.xml

clean:

cc:

 [javac] Compiling 1 source file

all:

BUILD SUCCESSFUL

Total time: 2 seconds

To perform an instrumented build of the same build.xml, without modifying that file:
ant -DATLTGT=$ATLTGT -Dbuild.compiler=com.rational.testrealtime.Javic -
Dbuild.actual.compiler=modern -Djavi.options=-trace -Djavi.settings="--
att_on_the_fly=0"

This produces the following output:
Buildfile: build.xml

clean:

 [delete] Deleting: Sample.class

cc:

 [javac] Compiling 1 source file

 [javi] Instrumenting 1 source file

304

 [javac] Compiling 1 source file

all:

BUILD SUCCESSFUL

Total time: 4 seconds

Runtime and static analysis reference

305

TDF Splitter - attsplit

Purpose

For use with Runtime Tracing. The .tdf splitter (attsplit) tool allows you to separate large .tdf
dynamic trace files into smaller—more manageable—files.

Syntax

attsplit [<options>] <tcf file> <tsf_file> <tdf file>

where:

• <tcf_file> is always $TESTRTDIR/lib/tracer.tcf

• <tsf_file> is the name of the generated .tsf static trace file

• <tdf file> is the name of the original .tdf dynamic trace file

Description

Trace .tdf files that contain loops cannot be split.

Options
-p <prefix>

Specifies the filename prefix for the split .tdf files. By default, split .tdf filenames start with att.

-s <bytes>

Sets the maximum file size for the split .tdf files. By default, the original .tdf dynamic trace file is
split into 1000 byte split .tdf files

Specifies

-v | -vw

Activates verbose mode (-v) or verbose mode for written files only (-vw).

-nt

Disables the writing of time information. By default, time information is written to the split .tdf
files.

-fopt <filename>

Uses a text file to pass options to the attsplit command line.

-studio_log

This option is for internal usage only.

306

Code Coverage Report Generator - attolcov

Purpose

The Report Generator creates Code Coverage reports from the coverage data gathered during the
execution of the application under analysis.

Syntax

attolcov {<fdc file>} {<traces>} [<options>]

where:

• <fdc files> The list of correspondence files for the application under test, with one file
generated for each source file during instrumentation

• <traces> is a list of trace files. (default name attolcov.tio)

• <options> represents a set of options described below.

Parameters can use wild-card characters ('*' and '?') to specify multiple files. They can also contain
absolute or relative paths.

Description

Trace files are generated when an instrumented program is run. A trace file contains the list of
branches exercised during the run.

You can select one or more coverage types at the instrumentation stage.

All or some of the selected coverage types are then available when reports are generated.

The Report Generator supports the following coverage type options:

-PROC[=RET]

The -PROC option, with no parameter, reports procedure inputs.

Use the RET parameter to reports procedure inputs, outputs, and terminal instructions.

-CALL

Reports call coverage.

-BLOCK[=IMPLICIT | DECISION | LOGICAL | ATC]

The -BLOCK option, with no parameter, reports statement blocks only.

• IMPLICIT or DECISION (equivalent) reports implicit blocks (unwritten else and default
blocks), as well as statement blocks.

• LOGICAL Reports logical blocks (loops, as well as statement and implicit blocks.

• ATC Reports asynchronous transfer control (ATC) blocks, as well as statement blocks, implicit
blocks, and logical blocks.

-COND[=MODIFIED|COMPOUND]

The -COND option, with no parameter, reports basic conditions only.

MODIFIED reports modified conditions as well as basic conditions.

COMPOUND reports compound conditions as well as basic and modified conditions.

Explicitly Excluded Options

Each coverage type can also be explicitly excluded.

-NOPROC

Procedure inputs, outputs, or returns are not reported.

Runtime and static analysis reference

307

-NOCALL

Calls are not reported.

-NOBLOCK

Simple, implicit, or logical blocks are not reported.

-NOCOND

Basic conditions are not reported.

Additional Options

The following options are also available:

-FILE=<file>{[,<file>]} | -EXFILE=<file>{[,<file>]}

Specifies which files are reported or not. Use -FILE to report only the files that are explicitly
specified or -EXFILE to report all files except those that are explicitly specified. Both -FILE and -
EXFILE cannot be used together.

-SERVICE=<service>{[,<service>]} | -
EXSERVICE=<service>{[,<service>]}

Specifies which functions, methods, and procedures are to be reported or not. Use -SERVICE to
report only the functions, methods and procedures that are explicitly specified or -EXSERVICE to
report all functions, methods, and procedures except those that are explicitly specified. Both -
SERVICE and -EXSERVICE cannot be used together.

-TEST=<test>{[,<test>]} | -EXTEST=<test>{[,<test>]}

Specifies which tests are reported or not. Use -TEST to report only the tests that are explicitly
specified or -EXTEST to report all tests except those that are explicitly specified. Both -TEST and -
EXTEST cannot be used together.

-OUTPUT=<file>

Specifies the name of the report file (<file>) to be generated. You can specify any filename extension
and can include an absolute or relative path.

-LISTING[=<directory>]

This option requires annotated listings to be generated from the source files. Annotated listings
carry the same name as their corresponding source files, but with the extension .lsc. The optional
parameter <directory> is the absolute or relative path to the directory where the listings are to be
generated. By default, a listing file is generated in the directory where its corresponding source file
is located.

-NOGLOBAL

Reports the results of each test found in the trace file, followed by a conclusion summarizing all the
tests. If a test has no name, it is identified as "#" in the report. A test is an execution of an
instrumented application, a TEST as defined for Component Testing for C and Ada, or a dump-on-
signal. By default, the report is not structured in terms of tests.

-BRANCH=COV

Reports branches covered rather than branches not covered. It does not affect listings, where only
branches not covered are indicated with the source code line where they appear.

-CLEAN=<file.tio>

Generates a new cleaned up .tio file that takes up less disk space. You can delete the original .tio
file after using this option.

-MERGETESTS

When using the -CLEAN option, merges previous results in order to produce a more compact file.

-SUMMARY=CONCLUSION | FILE | SERVICE

This option sets the verbosity of the summary:

308

• CONCLUSION reports only the overall conclusion.

• FILE reports only the conclusion for each source file, and the overall conclusion.

• SERVICE reports only the levels of coverage for each source file, each C function, and overall.
The list of branches covered or not covered is not included.

-STUDIO_LOG

This option is for internal usage only.

Return Codes

After execution, the program exits with the following return codes:

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

Runtime and static analysis reference

309

Trace Probe Processor - parsecode.pl

When using the Probe runtime analysis feature of the product, the Probe Processor takes C source
files and message definition files and generates a set of source files containing the message trace
functions called by the probe macros.

Syntax

parsecode.pl [<options>] {<msg_files> [,<msg_files>]} {<source>
[,<source>]}

where:

• <msg_files> are .h message type definition files

• <source> are probed C source files

• <options> is a set of optional parameters among those described below.

Definition

The Probe Processor is is only available for the C language.

The message traces are written to a .rio output file, one for each instance. The probed binary is
produced by compiling the atlprobe.c file, which is generated by the Probe Processor, and linked
to the application object files with the Target Deployment Port.

Optional Parameters
[-mode=DEFAULT|CUSTOM]

Default mode writes the .rio output file on-the-fly. In this case, the atl_dump_trace macro is not
required.

Custom mode allows the probes to write traces to a temporary location, such as memory, a stack or
a buffer file. In custom mode, the traces are flushed to the .rio file only when an atl_dump_trace
macro is encountered.

The I/O functions for probe trace output to the temporary location are defined in the probecst.c
source file delivered with the product. You can modify this file to adapt the probe mechanism to
your application and platform.

In custom mode, the compilation and link phase generates write operations from the probed
application and the probecst.c file, and read operations from the atlprobe.c, probecst.c files and the
TP.o Target Deployment Port file.

[-preopts=-INCL=<include directories>]

The -preopts option allows you to send a list of include directories specified with a C Test Script
Compiler -INCL option. See the C Test Script Compiler -INCL option.

[-outdir=<output directory>]

This option allows you to specify the target directory for the atlp.

[-accuracy=<time>]

This option expressed the desired accuracy to be used if you are generating a .pts test script for use
with System Testing for C, where <time> is expressed in milliseconds (ms).

[-polling=<time>]

This option expressed the desired polling interval to be used if you are generating a .pts test script
for use with System Testing for C, where <time> is expressed in milliseconds (ms).

[-studio_log]

This option is for internal usage only.

310

Trace probe macros

Trace Probes macros allow you to manually instrument your source code under test to add
message tracing capability to your test binary. This feature is only available for C.

Upon execution of the instrumented binary, the probes write trace information on the exchange of
specified messages to the .rio output file.

Please refer to the section about Trace Probes for C in the User Guide for more information about
using this feature.

Using Probe Macros

Before adding Trace Probe macros to your source code, add the following #include statement to
each source file that will contain a probe:
#include "atlprobe.h"

The atl_start_trace() and atl_end_trace() macros must be called respectively when the application
under test starts and terminates.

Other macros must be placed in your source code in locations that are relevant for the messages
that you want to trace.

Trace Probe macros

• atl_dump_trace()

• atl_end_trace()

• atl_recv_trace()

• atl_select_trace()

• atl_send_trace()

• atl_start_trace()

• atl_format_trace()

Runtime and static analysis reference

311

atl_start_trace()

Purpose

Initializes the environment of an instance trace. This macro must be executed before any other
probe macro. Ideally, it can be placed at the start of the application.

Syntax

atl_start_trace(<handle>, "<path>", <instance>, <size>)

where:

• <handle> is the handle of the media storage and the handle of the result file (.rio). It relates to
the instance name. This handle is used by other macros for all messages sent or received by
this instance. This parameter must be in a valid variable name format and a non existing
variable.

• <path> is the path to the .rio file to which the traces are to be written (with quotes ""). It can be
used to open the intermediate binary file.

• <instance> is the logical name of the life line showing messages sent or received by the
application instance. it could be the process/thread name or the layer name.

• <size> specifies the memory size used in bytes in FIFO or USER mode.

Example
int main(int argc, char** argv)

{

...

atl_start_trace(atl_client, "../res/", client, 0);

atl_start_trace(atl_serv, "../res/", serv, 0);

...

atl_end_trace(atl_client);

atl_end_trace(atl_serv);

...

}

312

atl_recv_trace()

Purpose

Traces the reception of message.

Syntax

atl_recv_trace(<handle>, <dist>, <msg>, <type>, <msgname>)

where:

• <handle> is the handle linked to an instance.

• <dist> is the identifier of the emitter of a message.

• <msg> is the message address to trace.

• <type> is the message type as defined in the header files.

• <msgname> is the logical name of the message traced in the report.

Example
atl_recv_trace(atl_client,f1,serv,t_cost,cost);

atl_send_trace

Runtime and static analysis reference

313

atl_select_trace()

Purpose

Specifies for a given union type, the field to use for a message instance.

Syntax

atl_select_trace(<handle>, <idx>, <rank>)

where:

• <handle> is the handle linked to an instance.

• <idx> is a union type name.

• <rank> is the rank of the field used in the union type, starting at 0 for the first rank.

Example
atl_recv_trace(atl_client,f1,serv,t_cost,cost);

atl_send_trace

314

atl_send_trace()

Purpose

Traces a message sent.

Syntax

atl_send_trace(<ctx>, <dist>, <msg>, <type>, <msgname>)

where:

• <handle> is the handle linked to an instance.

• <dist> is the identifier of the receiver of a message.

• <msg> is the message identifier.

• <type> is the message type as defined in the msg_type.h file.

• <msgname> is the name of the message traced in the report.

Example
atl_send_trace(atl_client,f1,serv,t_cost,cost);

Runtime and static analysis reference

315

atl_dump_trace()

Purpose

Writes traces from the custom location to the .rio result file, when FIFO, FILE or USER buffer
mode is selected in the Probe settings.

This macro is ignored in DEFAULT mode.

Syntax

atl_dump_trace()

Example
int main(int argc, char** argv)

{

...

atl_start_trace(atl_client, "../res/", client, 0);

atl_start_trace(atl_serv, "../res/", serv, 0);

...

atl_end_trace(atl_client);atl_end_trace(atl_serv);

atl_dump_trace();

...

}

316

atl_end_trace()

Purpose

Closes the trace environment of an instance. This macro must be executed before the application
terminates.

Syntax

atl_end_trace(<ctx>)

where:

• <handle> is the handle linked to an instance.

Example
int main(int argc, char** argv)

{

...

atl_start_trace(atl_client,"client.rio",client,1000);

atl_start_trace(atl_serv, "serv.rio", serv, 2000);

...

atl_end_trace(atl_client);

atl_end_trace(atl_serv);

...

}

Runtime and static analysis reference

317

atl_format_trace()

Purpose

This macro allows you to include a format file for the trace output.

Syntax

atl_format_trace(<file>)

where:

• <file> is the name of a format file, containing System Testing FORMAT instructions for C.

Example
int main(int argc, char** argv)

{

...

atl_start_trace(atl_client,"client.rio",client,1000);

atl_start_trace(atl_serv, "serv.rio", serv, 2000);

...

atl_format_trace("atl_format.hts");

...

atl_end_trace(atl_client);

atl_end_trace(atl_serv);

...

}

Instrumentation pragmas

The Runtime Tracing feature allows the user to add special directives to the source code under test,
known as instrumentation pragma directives. When the source code is instrumented, the
Instrumentor replaces instrumentation pragma directives with dedicated code.

Usage
#pragma attol <pragma name> <directive>

Example
int f (int a)

{

#pragma attol att_insert if (a == 0) _ATT_DUMP_STACK

 return a;

}

This code will be replaced, after instrumentation, with the following line:
/*#pragma attol att_insert*/ if (a == 0) _ATT_DUMP_STACK

Note Pragma directives are implemented only if the routine in which it is used is
instrumented.

Instrumentation Pragma Names
#pragma attol insert <directive>

replaced by the instrumentation to be:

318

/*#pragma attol insert*/ <directive>

if any of Code Coverage, Runtime Tracing, Memory Profiling or Performance Profiling is/are
selected.

#pragma attol atc_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol atc_insert*/ <directive>

if Code Coverage is selected.

#pragma attol att_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol att_insert*/ <directive>

if Runtime Tracing is selected.

#pragma attol atp_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol atp_insert*/ <directive>

if Memory Profiling is selected.

#pragma attol atq_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol atq_insert*/ <directive>

if Performance Profiling is selected.

Code Coverage, Memory Profiling and Performance Profiling Directives

The following macros are for use only with Memory Profiling and Performance Profiling.

_ATCPQ_DUMP(<reset>)

where <reset> is 1 if internal tables reset is wanted or 0 if not. This pragma can be automatically
inserted by clicking the Insert Dump button in the Text Editor toolbar.

_ATP_CHECK(@REFLINE)

This macro indicates a manual dump point in the source code for checking for ADWL or FMWL
errors when using Memory Profiling. The corresponding setting must be selected

The @REFLINE parameter is mandatory.

_ATP_TRACK(<pointer>)

This macro adds <pointer> to a list of selected memory blocks to check for ABWL or FMWL errors.
a manual dump point in the source code for checking for ADWL or FMWL errors when using
Memory Profiling.

Runtime Tracing Directives

When using this mode, the Target Deployment Package only sends messages related to instance
creation and destruction, or user notes. All other events are ignored. See Partial message dump for
more information about this feature.

_ATT_START_DUMP

_ATT_STOP_DUMP

These directives activate and deactivate the partial message dump mode.

_ATT_TOGGLE_DUMP

This directive toggles the dump mode on and off. _ATT_TOGGLE_DUMP can be used instead of
_ATT_START_DUMP and _ATT_STOP_DUMP.

Runtime and static analysis reference

319

_ATT_DUMP_STACK

When invoked, this directive dumps the contents of the call stack at that moment.

_ATT_FLUSH_ITEMS

When in Target Deployment Package buffer mode, this directive flushes the buffer. All buffered
trace information is dumped. Flushing the buffer be useful before entering a time-critical phase of
the trace.

_ATT_USER_NOTE(<text>)

This directive associates a text note to the function or method instance. <text> is a user-specified
alphanumeric string containing the note text of type char*. The length of <text> must be within the
maximum note length specified in the Runtime Tracing Settings dialog box. This pragma can be
automatically inserted by clicking the Add Note button in the Text Editor toolbar.

Code review rules

The code review tool covers rules from the lists the rules that produced and error or a warning.
Each rule can be individually disabled or assigned a Warning or Error severity by using the Rule
configuration window. Some rules also have parameters that can be changed.

MISRA-C 2004 rules

Among other guidelines, the code review tool implements most rules from the MISRA-C:2004
standard, "Guidelines for the use of the C language in critical systems".

Code
review
reference

MISRA-C: 2004
reference

Code review message

Code compliance

M1.1 Rule 1.1 ANSI C error: <error>

M1.1w Rule 1.1 ANSI C warning: <warning>

Language extensions

M2.1 Rule 2.1

Assembly language has not been isolated into a macro or function.

M2.2 Rule 2.2 Comments should only use the style /*...*/.

M2.3 Rule 2.3 The character sequence /* should not be used within a comment.

Documentation

M3.4 Rule 3.4 Use of #pragma <name> should always be encapsulated and
documented.

Character sets

M4.1 Rule 4.1 Only ISO C escape sequences should be allowed.

M4.2 Rule 4.2 Trigraphs '??x' should not be used.

Identifiers

M5.1.1 Rule 5.1 Identifiers <name> and <name> are identical in the first <value>
characters.
Note The number of characters can be specified.

M5.1.2 Rule 5.1 Identifiers <name> and <name> are ambiguous because of possible
character confusion.

M5.2 Rule 5.2 Identifier <name> in an inner scope hides the same identifier in an

320

outer scope : <location>.

M5.3 Rule 5.3 The typedef name <name> should not be reused. Name already found
in <location>.

M5.4 Rule 5.4 A struct and union cannot use the same tag name

M5.5 Rule 5.5 The static object or function <name> should not be reused. Static
object or function already found in <location>.

M5.7 Rules 5.6 and 5.7 The identifier <name> should not be reused. Identifier already found
in <location>.

Types

M6.3 Rule 6.3 The C language numeric type <name> should not be used directly but
instead used to define typedef.

M6.4 Rule 6.4 Bit fields should only be of type 'unsigned int' or 'signed int'.

M6.5 Rule 6.5 Bit fields of type 'signed int' must be at least 2 bits long.

Constants

M7.1 Rule 7.1 Octal constants and escape sequences should not be used.

Declarations and definitions

M8.1.1 Rule 8.1 A prototype for the function <name> should be declared before
defining the function.

M8.1.2 Rule 8.1 A prototype for the function <name> should be declared before calling
the function.

M8.2 Rule 8.2 The type of <name> should be explicitly stated.

M8.3 Rule 8.3 Parameters and return types should use the same type names in the
declaration and in the definition, even if basic types are the same.

M8.4 Rule 8.4 If objects or functions are declared multiple times their types should
be compatible.

M8.5.1 Rule 8.5 The body of function <name> should not be located in a header file.

M8.5.2 Rule 8.5 The memory storage (definition) for the variable <name> should not
be in a header file.

M8.6 Rule 8.6 Functions should not be declared at block scope.

M8.8.1 Rule 8.8 Declaration of <name> can not be found.

M8.8.2 Rule 8.8 Function <name> should only be declared in a single file. Redundant
declaration found at: <position>.

M8.8.3 Rule 8.8 Object <name> should only be declared in a single file. Redundant
declaration found at: <position>.

M8.9 Rule 8.9 The global object or function <name> should have exactly one external
definition. Redundant definition found in <location>.

M8.11 Rule 8.11 Global objects or functions that are only used within the same file
should be declared with using the static storage-class specifier.

M8.12 Rule 8.12 When a global array variable can be used from multiple files, its size
should be defined at initialization time.

Initialization

M9.1 Rule 9.1 Variables with automatic storage duration should be initialized before
being used.

M9.2 Rule 9.2 Nested braces should be used to initialize nested multi-dimension
arrays and nested structures.

M9.3 Rule 9.3 Either all members or only the first member of an enumerator list
should be initialized.

Runtime and static analysis reference

321

Arithmetic type conversions

M10.1 Rule 10.1 Implicit conversion of a complex integer expression to a smaller sized
integer is not allowed.

M10.1.1 Rule 10.1 Implicit conversion of an integer expression to a different signedness
is not allowed.

M10.2 Rule 10.2 Conversion of a complex floating expression is not allowed. Only
constant expressions can be implicitly converted and only to a wider
floating type of the same signedness.

M10.3 Rule 10.3 Type cast of complex integer expressions is only allowed into a
narrower type of the same signedness.

M10.4 Rule 10.4 Type cast of complex floating expressions is only allowed into a
narrower type of the same signedness.

M10.6 Rule 10.6 Definitions of unsigned type constants should use the 'U' suffix.

Pointer type conversions

M11.1 Rule 11.1 A function pointer should not be converted to another type of pointer.

M11.2 Rule 11.2 An object pointer should not be converted to another type of pointer.

M11.3 Rule 11.3 Casting a pointer type to an integer type should not occur.

M11.4.1 Rule 11.4 Casting an object pointer type to a different object pointer type should
not occur.

M11.4.2 Rule 11.4 Casting an object pointer type to a different object pointer type should
not occur, especially when object sizes are not the same.

M11.5 Rule 11.5 Casting of pointers to a type that removes any const or volatile
qualification on the pointed object should not occur.

Expressions

M12.1 Rule 12.1 Implicit operator precedence may cause ambiguity. Use parenthesis
to clarify this expression.

M12.3 Rule 12.3 The sizeof operator should not be used on expressions that contain
side effects.

M12.4.1 Rule 12.4 An expression that contains a side effect should not be used in the
right-hand operand of a logical && or || operator.

M12.4.2 Rule 12.4 The function in the right-hand operand of a logical && or || operator
might cause side effects.

M12.5 Rule 12.5 Parenthesis should be used around expressions that are operands of a
logical && or ||.

M12.6.1 Rule 12.6 Only Boolean operands should be used with logical operators (&&,
|| and !).

M12.6.2 Rule 12.6 The operator on a Boolean expression should be a logical operator (
&&, || or !).

M12.7 Rule 12.7 Bitwise operators should only use unsigned operands.

M12.8 Rule 12.8 The right-hand operand of a shift operator should not be too big or
negative.

M12.9 Rule 12.9 Only use unary minus operators with signed expressions.

M12.10 Rule 12.10 Do not use the comma operator

M12.13 Rule 12.13 The increment (++) or the decrement (--) operators should not be used
with other operators in an expression.

Control statement expressions

M13.1.1 Rule 13.1 Boolean expressions should not contain assignment operators.

322

M13.1.2 Rule 13.1 Boolean expressions should not contain side effect operators.

M13.3 Rule 13.3 The equal or not equal operator should not be used in floating-point
expressions.

M13.7 Rule 13.7 Invariant Boolean expressions should not be used.

Control flow

M14.1 Rule 14.1 Unreachable code.

M14.2 Rule 14.2 A non-null statement should either have a side effect or change the
control flow.

M14.3 Rule 14.3 A null statement in original source code should be on a separate line
and the semicolon should be followed by at least one white space and
then a comment.

M14.4 Rule 14.4 Do not use the goto statement.

M14.5 Rule 14.5 Do not use the continue statement.

M14.6 Rule 14.6 Only one break statement should be used within a loop.

M14.7.1 Rule 14.7 Only one exit point should be defined in a function.

M14.7.2 Rule 14.7 The return keyword should not be used in a conditional block.

M14.8.1 Rule 14.8 The switch statement should be followed by a compound statement
{}.

M14.8.2 Rule 14.8 The while statement should be followed by a compound statement {}.

M14.8.3 Rule 14.8 The do..while statement should contain a compound statement {}.

M14.8.4 Rule 14.8 The for statement should be followed by a compound statement {}.

M14.9.1 Rule 14.9 The if (expression) construct should be followed by a compound
statement {}.

M14.9.2.1 Rule 14.9 The else keyword should be followed by either a compound
statement or another if statement.

M14.9.2.2 Rule 14.9 The else keyword should be followed by a compound statement

M14.10 Rule 14.10 All if ... else if sequences should have an else block.

Switch statements

M15.1 Rule 15.1 A case or default statements should only be used directly within the
compound block of a switch statement.

M15.2 Rule 15.2 The break statement should only be used to terminate every non-
empty switch block.

M15.3.1 Rule 15.3 The switch statement should have a default clause.

M15.3.2 Rule 15.3 The default clause should be the last clause of the switch statement.

M15.4.1 Rule 15.4 A Boolean should not be used as a switch expression.

M15.4.2 Rule 15.4 A constant should not be used as a switch expression.

M15.5 Rule 15.5 At least one case should be defined in the switch.

Functions

M16.1 Rule 16.1 The function <name> should not have a variable number of
arguments.

M16.2.1 Rule 16.2 Recursive functions are not allowed. The function <name> is directly
recursive.

M16.2.2 Rule 16.2 Recursive functions are not allowed. The function <name> is recursive
when calling <name>.

M16.3 Rule 16.3 The function prototype should name all its parameters.

Runtime and static analysis reference

323

M16.4 Rule 16.4 The identifiers used in the prototype and definition should be the
same.

M16.5 Rule 16.5 Functions with no parameters should use the void type.

M16.6 Rule 16.6 The number of arguments used in the call does not match the number
declared in the prototype.

M16.7 Rule 16.7 Use the const qualification for parameter <name> which is pointer and
which is not used to change the pointed object.

M16.8 Rule 16.8 The return should always be defined with an expression for non-void
functions.

M16.9 Rule 16.9 Function identifiers should always use a parenthesis or a preceding
&.

M16.10 Rule 16.10 When a function returns a value, this value should be used.

Pointers and arrays

M17.4 Rule 17.4 Pointer arithmetic except array indexing should not be used.

M17.5 Rule 17.5 A declaration should not use more than two levels of pointer
indirection.

Structures and unions

M18.1 Rule 18.1 Structure or union types should be finalized before the end of the
compilation units.

M18.4 Rule 18.4 Do not use unions.

Preprocessing directives

M19.1 Rule 19.1 Only preprocessor directives or comments may occur before the
#include statements.

M19.3 Rule 19.3 Filenames with the #include directive should always use the
<filename> or "filename" syntax.

M19.4 Rule 19.4 A C macro should only be expanded to a constant, a braced initializer,
a parenthesised expression, a storage class keyword, a type qualifier,
or a do-while-zero block.

M19.5 Rule 19.5 Macro definitions or #undef should not be located within a block.

M19.6 Rule 19.6 Do not use the #undef directive.

M19.8 Rule 19.8 Missing argument when calling the macro.

M19.9 Rule 19.9 The preprocessing directive <name> should not be used as argument
to the macro.

M19.10 Rule 19.10 The parameter <name> in the macro should be enclosed in
parentheses except when it is used as the operand of # or ##.

M19.11 Rule 19.11 Undefined macro identifier in the preprocessor directive.

M19.12 Rule 19.12 The # or ## preprocessor operator should not be used more than once.

M19.13 Rule 19.13 The # and ## preprocessor operator should be avoided.

M19.14 Rule 19.14 Only use the 'defined' preprocessor operator with a single identifier.

M19.15 Rule 19.15 Header file contents should be protected against multiple inclusions

M19.16 Rule 19.16 Possible bad syntax in preprocessing directive.

M19.17 Rule 19.17 A #if, #ifdef, #else, #elif or #endif preprocessor directive has been
found without its matching directive in the same file.

Standard libraries

M20.1 Rule 20.1 <name> should not be defined, redefined or undefined.

M20.5 Rule 20.5 The variable <name> should not be used.

324

Parameter: List of forbidden variables

M20.6 Rule 20.6 The macro <name> should not be used.
Parameter: List of forbidden macros

M20.4 Rules 20.4, 20.7,
20.10, and 20.11

The library function <name> should not be used.

Parameter: List of forbidden library functions

M20.8 Rules 20.8, 20.9,
and 20.12

The header filename <name> should not be used.

Parameter: List of forbidden header filenames

Additional rules

In addition to the industry standard rules, Test RealTime provides some additional coding
guidelines.

Code
review
reference

Code review message

Identifiers

E5.1.3 Possible typing mistake between the variables <name> or <name> because of repeating
character.

Types

E6.3 The implicit 'int' type should not be used.

Declarations and definitions

E8.50 Use the const qualification for variable <name> which is pointer and which is not used to
change the pointed object.

Initialization

E9.4 The global variable <name> is not initialized.

Expressions

E12.51 Ternary expression ?: should not be used.

E12.52 The first operand of a ternary operator should be Boolean.

E12.53 The second and third operands of a ternary operator should have the same type.

E12.55 Expressions should not cause a side effect assignment.

Control flow

E14.9.2.2 The else keyword should be followed by a compound statement.

Switch statements

E15.10 The switch expression should not have side effects.

Functions

E16.50 The function <name> is never referenced.

325

Chapter 3. User interface reference

This section contains advanced reference material for general command line tools, configuration
settings and Test RealTime GUI components.

Command line interface

326

Graphical User Interface - studio

Purpose

The Test RealTime Graphical User Interface (GUI) is an integrated environment that provides
access to all of the capabilities packaged with the product.

Syntax

studio [<options>] [<filename>{ <filename>}]

studio <.jpt file> <.txf file> <.tpf file>

where:

• <filename> can be an .rtp project or .rtw workspace file, as well as source files (.c, .cpp, .h, .ada,
.java) or any report files that can be opened by the GUI, such as .tdf, .tsf, .tpf, .tqf, .xrd files.

• <jpt file> is a trace dump file created by Memory Profiling for Java.

• <txf file> and <tpf file> are Java Memory Profile report files generated from <jpt file>.

Description

The studio command launches the GUI.

When using Memory Profiling for Java from the command line, studio is also used to split the .jpt
output file into a .tpf and a .txf file when viewed for the first time. Once these files have been
generated, open them with the usual syntax.

Options
-r <node>

where <node> is a project node to be executed.

The -r option launches the GUI and automatically executes the specified node. Use the following
syntax to indicate the path in the Project Explorer to the specified node:
<workspace_node>{[.<child_node>]}

Nodes in the path are separated by period ('.') symbols. If no node is specified, the GUI executes the
entire project.

When using the -r option, an .rtp project file must be specified.

-html <directory>

where <directory> is an output directory for HTML reports.

When used with the -r option, the -html option directly outputs all reports in HTML format to the
specified directory.

-config <configuration>

where <configuration> is a valid Configuration name.

The -config option allows you to specify a particular Configuration which is used when the studio
GUI is opened. When combined with the -r option, you can build and execute any particular node
with any particular Configuration.

Example

The following command opens the project.rtp project file in the GUI, and runs the app_2 node,
located in app_group_1 of user_workspace:
studio -r user_workspace.app_group_1.app_2 project.rtp

The following example opens a UML sequence diagram created by Runtime Tracing.

327

studio my_app.tsf my_app.tdf

To open a Java Memory Profile report for the first time:
studio MyApp.jpt MyApp.txf MyApp.tpf

To open a Java Memory Profile report once the .txf an .tpf files have been generated:
studio MyApp.txf MyApp.tpf

328

Trace Receiver - trtpd

Purpose

The Trace Receiver is a graphical client that receives and splits trace dump data through a socket.

Syntax

trtpd [<options>] [<file> [,<file>]]

where:

• <file> is one or several dynamic trace output files

• <options> is a set of optional parameters

Description

If a set of user-defined I/O functions uses sockets in a customized Target Deployment Port (TDP),
the Trace Receiver can be used to receive the dump data and to split the trace files on-the-fly. Use
the Target Deployment Port Editor to customize the TDP.

The Trace Receiver uses its own graphical user interface to display reception and split progression.

To use the Trace Receiver, you must:

• Customize the TDP to produce trace buffer output through a socket by setting the
SOCKET_UPLOAD setting of the TDP to True

• Specify a delimiter character in the SOCKET_UPLOAD_DELIMITER setting of the TDP

The Runtime Trace Receptor uses the delimiter to find useful trace data and directs the output to
the trace file formats. If no filenames are provided, the following files are produced:

• testing.rio for Component Testing output to be processed by a Report Generator

• purifylt.tpf for Memory Profiling data

• quantifylt.tqf for Performance Profiling data

• attolcov.tio for Code Coverage data

• tracer.tdf for Runtime Tracing data

Options
-p|--port <number>

Port number. Specifies the decimal number of the port. The default port number is 7777.

-d|--delimiter <delimiter-byte>

Delimiter byte. Specified the decimal number of the delimiter byte. The default number is 94 ("^" in
ASCII).

-o|--oneshot

Oneshot. Exits the Trace Receiver when the first client closes.

Example

The following trace dump is sent to the socket, using the "^" character as a delimiter:
...

^TU "ms"

SF 1 1dch 9527b66bh

TI 1 1 5

TM 726h

329

HS 95fch

ME 3 1

NI 6 1

SF 2 10edh 72cbacbch

TM b68h

HS bea4h

^ ...

Use the following command line to receive and split the trace dump into the correct output file
formats.
trtpd --port 7778 --delimiter 95 -o c:\\temp\\coverage.tio

c:\\temp\\trace.tdf c:\\temp\\profiling.tqf

You can also launch the Trace Receiver with no parameters. In this case, default parameters are
assumed:
trtpd

330

Dump File Splitter - atlsplit

Purpose

The dump file splitter (atlsplit) tool separates the unique multiplexed trace data file generated by
the runtime analysis command line tools into specific trace files that can be processed by the
runtime analysis and test feature Report Generators.

Syntax

atlsplit <trace_file>

where:

• <trace_file> is the name of the generated trace file (atlout.spt)

Description

The dump file splitter actually launches a perl script. You must therefore have a working perl
interpreter such as the one provided with the product in the /bin directory.

Alternatively, you could use the following command line:
perl -I<installdir>/lib/perl <installdir>/lib/scripts/BatchSplit.pl
atlout.spt

where <install_dir> is the installation directory of the product.

The script automatically detects which test or runtime analysis feature were used to generate the
file and produces as many output files.

After the split, depending on the selected runtime analysis feature, the following file types are
generated:

• .rio test result files: process with C Test Report Generator, Ada Test Report Generator or System Testing
Report Generator

• .tio Code Coverage report files: view with Code Coverage Viewer

• .tdf Dynamic trace files: view with UML/SD Viewer

• .tpf Memory Profiling report files: view with Memory Profiling Viewer

• .tqf Performance Profiling report files: view with Performance Profiling Viewer

331

Uprint Localization Utility - uprint

Purpose

The Uprint is a utility that can help if you are experiencing localization issues with Test RealTime.

Syntax

uprint

uprint <hex_min>..<hex_max>

uprint --mimename

uprint --utf8 <string>

where:

• <hex_min> and <hex_max> specify a range of 16-bit unicode characters expressed in
hexadecimal notation.

• <string> is a character string encoded in the current locale.

Description

When used with no argument, uprint returns the following information about the current locale:

• Mib name

• mimeName

• Locale name

When used with a <hex_min>..<hex_max> argument, uprint also returns a list of locale-encoded
characters from <hex_min> to <hex_max>.

When used with the --utf8 option, uprint translates a specified locale-encoded <string> into a UTF-
8 compliant backslashed hexadecimal string for use in C or C++ source code.

When used with the --mimename option, uprint returns the name of the Unicode Mime encoding.

Example

The following command returns information about the current locale:
>uprint

Mib:111 mimeName:"ISO-8859-15" locale:"fr_FR@euro"

The following command translates the word "éric" into a UTF-8 compliant string:
>uprint --utf8 éric

\xc3\xa9\x72\x69\x63

332

Test Process Monitor - tpm_add

Purpose

Use the Test Process Monitor tool (tpm_add) to create and update Test Process Monitor databases
from a command line.

Syntax

tpm_add -metric=<metric> [-file=<filename>] [-user=<user>]
{[<value_field>]}

where:

• <metric> is the name of the metric.

• <filename> contains the name of the file under test to which the metric applies. This allows
metrics for several files to be saved within the same database.

• <user> is the name of the product user who performed the measured value.

• <value_field> are the values attributed to each field

Description

The Test Process Monitor (TPM) provides an integrated monitoring feature that helps project
managers and test engineers obtain a statistical analysis of the progress of their development effort.

Metrics generated by a test or runtime analysis feature are stored in their own database. Each
database is actually a three-dimensional table containing:

• Fields: Each database contains a fixed number of fields. For example a typical Code Coverage
database records.

• Values: Each field contains a series of values.

• Filenames: Values can be attributed to a filename, such as the name of the file under analysis.
This way, the TPM Viewer can display result graphs for any single filename as well as for all
files, allowing detailed statistical analysis.

Each field contains a set of values.

Note Although you specify a filename for the file under analysis, the TPM Viewer currently
only displays a unique FileID number for each file.

The TPM database is made of two files that use the following naming convention:
<metric>.<user>.<nb_fields>.idx

<metric>.<user>.<nb_fields>.tpm

where <nb_fields> is the number of fields contained in the database.

In the GUI, the Test Process Monitor gathers the statistical data from these database file and
generates a graphical chart based on each field.

There are 3 steps to using TPM:

• Creating a database for the metric

• Updating the database

• Viewing the results in the GUI

Creating a Database

Before opening the Test Process Monitor in the product, you must create a database.

Database files are created by using the tpm_add command line tool.

333

If you are using Code Coverage from the GUI, it automatically creates and updates a TPM code-
coverage database.

If you are using the product in the command line interface you can invoke tpm_add from your
own scripts.

 To create a new metric database with tpm_add:

1. Type the following command:
tpm_add -metric=<name> -file=<filename> <value1>[{<value2>... }]

where <name> is the name of the new metric and <value> represents the initial value of each
field in the database. <filename> is the name of the source file to which these values are related.

Updating a Database

The Test Process Monitor adds a record to the database each time it encounters an existing
database.

 To add a new record to this database:

1. Type the tpm_add command:
tpm_add -metric=<name> <value1>[{<value2>... }]

where <name> is the name of the new metric and <value> represents the initial value of each
field in the database. The number of values must be the consistent with the number of fields in
the table.

Note It is important to remain consistent and supply the correct number of fields for your
database. If you run the tpm_add command on an existing metric, but with a different
number of fields, the feature creates a new database.
tpm_add -metric=stats 5 -6 5.4 3 0

Viewing TPM Reports

Use the Test Process Monitor menu in the product to display database. Please refer to the User
Guide for further information.

Example

The following command creates a user metric called stats, made up of five fields, containing initial
values 1, 0.03, 0, 3 and -4.7.
tpm_add -metric=stats -file=/project/src/myapp.c 1 0.03 0 3 -4.7

The new database is contained in the following files:
stats.user.5.idx

stats.user.5.tpm

The following line adds a new record to the stats database, pertaining to the myapp.c source file:
tpm_add -metric=stats -file=/project/src/myapp.c 5 -6 5.4 3 0

The following line adds a new set of values to the stats database, this time related to the mylib.c
source file:
tpm_add -metric=stats -file=/project/src/mylib.c 5 -6 5.4 3 0

The metrics related to myapp.c and mylib.c are stored in the same database and can be viewed
either jointly or separately in the product Test Process Monitor Viewer.

If the following command is issued:
tpm_add -metric=stats -file=myapp.c 5 -6 3 0

A new database is created with four fields:

334

stats.user.4.idx

stats.user.4.tpm

Configuration settings reference

Each configuration has its own set of configuration settings which are applied on each node of the
test project. You can change these settings in the Configuration Settings dialog box.

The Configuration Settings provides access to the following settings families:

• General

• Build

• Runtime Analysis

• Testing

The actual settings available for each node depend on the type of node and the language of the
selected Configuration.

Build Settings

The Build settings are part of the Configuration Settings dialog box, which allows you to configure
settings for each node.

By default, the settings of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration. Overridden fields are displayed in bold.

Build options settings

• Target Deployment Port: This setting allows you to override the TDP of the entire
configuration for a specific node. Use this for example if you are mixing different languages or
compilers within a single project. Any child nodes will use the default Configuration Settings
from this Target Deployment Port, such as compilation flags.

• Build options: Build options allow you to specify how the test is built and executed. This is
also where you engage the Runtime Analysis tools. See Selecting Build Options for a Node.

• Environment variables: This section allows you to specify any environment variables that can
be used by the application under test. Click the "..." button to edit environment variables.
String values must be entered with quotes ("").
You can enter GUI macro variables as values for environment variables. These will be
interpreted by the GUI and replaced with the actual values for the current node. See GUI
macro variables.

• Ignored files (for Eclipse CDT only): Specifies a list of files that are ignored by the
instrumentor. Click the ... button and use the Add and Remove buttons to select the files to be
excluded.

• Instrumented files (for Eclipse CDT only): Specifies a list of files that are to be explicitly
instrumented. Any other files are ignored. Click the ... button and use the Add and Remove
buttons to select the files to be excluded.

Compiler settings

• Assembler flags: Specify any additional command line options to be sent to the assembler for
assembler source files.

• Preprocessor flags: Specific compilation flags to be sent to the Test Compiler.

335

• Compiler flags: Specify any additional command line options to be sent to the compiler.

• Preprocessor macro definitions: Specify any macro definition that are to be sent to both the
compiler preprocessor (if used) and the Test Compilers. Several generation conditions must be
separated by a comma ',' with no space, as in the following example:
WIN32,DEBUG=1

• Default include directories: Use this setting to specify include directories that are specific to the
current TDP (if you change the TDP, these directories will be lost). Click the ... button to create
or modify a list of directories for included files when the include statement is encountered in
source code and test scripts. In the directory selection box, use the Up and Down buttons to
indicate the order in which the directories are searched.

• User include directories: Use this setting to specify include directories that are independent of
the current TDP (if you change the TDP, these directories will be retained). Click the ... button
to create or modify a list of directories for included files when the include statement is
encountered in source code and test scripts. In the directory selection box, use the Up and
Down buttons to indicate the order in which the directories are searched.

• User link file (for Ada only): When using the Ada Instrumentor, you must provide a link file.
See Ada Link Files for more information.

• Boot class path (for Java only): Click the ... button to create or modify the Boot Class Path
parameter for the JVM.

• Class path (for Java only): Click the ... button to create or modify the Class Path parameter for
the JVM.

Linker settings

This area contains parameters to be sent to the linker during the build of the current node.

• Additional objects or libraries: A list of object libraries to be linked to the generated executable.
Enter the command line option as required by your linker. Please refer to the documentation
provided with your development tool for the correct syntax.

• Library path: Click the ... button to create or modify a list of directories for library link files. In
the directory selection box, use the Up and Down buttons to indicate the order in which the
directories are searched.

• Link flags: Flags to be sent to the linker.

• Test driver filename: The name of the generated test driver binary. By default, Test RealTime
uses the name of the test or application node.

• Build JAR file (for Java only): Specifies whether to build an optional .jar file.

• JAR file name (for Java only): If Build jar file is set to Yes, enter the name of the .jar file.

• Manifest file (for Java only): Specifies the name of an optional manifest file.

• Jar output directory (for Java only): Enter the location where the .jar file is generated. By
default this is the source code directory.

Execution settings

These settings apply to Component Testing and System Testing nodes only.

• Command line arguments: Specifies any command line arguments that are to be sent to the
application under test upon execution.

• Virtual machine arguments (for Java only): Specifies any command line arguments that are to
be sent to virtual machine upon execution.

• Java main class (for Java only): Specifies the main class for Java applications.

• Main procedure (for Ada only): Ada requires an entry point in the source code.

336

Target Deployment Port build settings

This area relates to the parameters of the Target Deployment Port on which is based the
Configuration:

• Output buffer size: Sets the size of the output buffer. A smaller output buffer can save memory
when resources are limited. A larger buffer improves performance.
The default setting for the output buffer is 1024 bytes.

• Time measurement: Selects between a real-time Operating system clock or a Process or task
clock for time measurement, if both options are available in the current Target Deployment
Port. Otherwise, this setting is ignored.

• Multi-threaded application: This box, when selected, protects Target Deployment Port global
variables against concurrent access when you are working in a multi-threaded environment
such as Posix, Solaris or Windows. This can cause an increase in size of the Target Port as-well-
as an impact on performance, therefore select this option only when necessary.

• Multi-processed application: When selected, this option produces a different output file for
each process in forked applications.

• Maximum number of threads: When the multi-thread option is enabled, this setting sets the
maximum number threads that can be run at the same time by the application.

• Override compiler flags: By default, the TDP is compiled with the build compiler flags. Use
this setting to override the Build compiler flags with specific flags for compiling the TDP.

• TDP output format: This setting specifies how the TDP is linked to the application.

• None: No TDP is generated. Use this setting if the TDP is already included in another section
of the application.

• Object file (.obj, .o): Default setting. Use this setting if your application does not use shared
libraries.

• Static library (.lib, .a): Use this setting to link the TDP as a static library.

• Dynamic library (.dll, .so): Use this setting to link the TDP as a dynamic library for most cases
when shared libraries are involved.

• Run garbage collector at exit (for Java only): This setting runs the JVM garbage collection
when the application terminates.

• Link flags for library format (for library nodes only): Link flags for generating the TDP as a
shared library or DLL.

• Use of unloadable libraries: Use the setting if your application uses shared libraries that can
be unloaded dynamically from memory. See Unloadable libraries for details.

• None: The application does not dynamically unload libraries during execution.

• This is an unloaded library: Select this if the selected node is a library node that can be
dynamically unloaded during execution.

• Uses unloaded libraries: Select this if the selected node is an application or test node that can
use unloadable libraries.

Host configuration settings

The Host Configuration area lets you specify any information about the machine on which the
Target Deployment Port is to be compiled.

• Hostname: The hostname of the machine. By default this is the local host.

• Address: The IP address of the local machine. By default this is 127.0.0.1. Leave this field blank
to dynamically retrieve the actual IP address of the machine each time this setting is used.

337

• System Testing agent TCP/IP port: The port number used by System Testing Agents. The
default is 10000.

• Socket upload port: The default value is 7777.

Directories settings

• Temporary: Enter the location for any temporary files created during the Build process

• Report: Specify the directory where test and analysis results are created.

Target Deployment Port data

The Target Deployment Port (TDP) Settings allow you to override the TDP used for a particular
node in the current Configuration. By default, the TDP used is that of the current Configuration.

• Name: Displays the name of the TDP.

• Directory: Specifies the TDP directory.

• Initial definition file: Points to the default .ini file in the TDP directory.

• Source file language: Specifies the language of the TDP.

• Object File Extension: Specifies the default extension for object files produced with the current
TDP.

• Dynamic library file extension: Specifies the file extension used for dynamic library files.

• Static library file extension: Specifies the file extension used for static library files.

• Binary file extension: Specifies the default extension for executable binaries produced with the
current TDP (for example: .exe).

• Source File Extension: Specifies the default extension for source files used with the current
TDP.

Source file information settings

The Source File Information settings are only available on the project node as they apply to how
Test RealTimePurifyPlus for Linux extracts source file information and dependency files to be
displayed in the Asset Browser view of the Project Explorer. These setting apply to the entire
project and cannot be overridden at the node level.

• Directories for include files: Specifies a list of include directories for the file tagging facility.

• Get struct definition like a class: Extracts struct definitions and display them as classes in the
Asset Browser.

CSV format settings

The CSV format settings allow you to specify options for importing a test data table from a .csv
table file. The default values are inherited from the local settings of your operating system. See
Importing a Data Table (.csv File) for more information.

• CSV separator: Specifies the character used to separate table columns.

• CSV decimal separator: Specifies the character used as a decimal separator.

• CSV thousand separator: Specifies the character used to mark thousands.

338

Runtime Analysis settings

The General Runtime Analysis settings are part of the Configuration Settings dialog box, which
allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration. Overridden fields are displayed in bold.

Selective instrumentation

By default, runtime analysis tools instrument all components of source code under analysis.

The Selective Instrumentation settings allow you to more finely define which units (classes or
functions) you want to instrument and trace.

• Instrument inline methods: Extends instrumentation to inline methods.

• Instrument included methods or functions: Extends instrumentation to included methods or
functions.

• Selective unit instrumentation: Click the ... button to access a list of units (classes and
functions) that can be explicitly selected for instrumentation. Click a unit to select or clear a
unit. Use the Select File and Clear File buttons to select and clear all units from a source file.

• Excluded files: Specifies a list of files that are parsed by the instrumentor, but are not
instrumented. Click the ... button and use the Add and Remove buttons to select the files to be
excluded.

• Excluded directories: Click the ... button and use the Add and Remove buttons to select the
files to be excluded.

Advanced options

• Identification header: Select this option to add an identification header to files generated by
the Instrumentor, including the command line used to generate the file, the version of the
product, date and operating system information.

• Full template instrumentation: By default unused methods within a template are ignored by
the Instrumentor. Set this option to Yes to analyze and instrument all template methods, even
if they are not used.

• Application includes system files: Set this option to Yes if the application includes system files
such as windows.h in Windows or pthread.h in UNIX.

• Additional instrumentor options: This setting allows you to add command line options for the
Instrumentor. Normally, this line should be left blank.

• Check internal data before use: Set this option to Yes if you are experiencing crashes of the
application when Runtime Analysis is engaged. This option improves compatibility but
increases memory usage.

Snapshot settings

In some case, such as with applications that never terminate or when working with timing or
memory-sensitive targets, you might need to dump traces at specifics points in your code.

• On function entry: Allows you to specify a list of function names, from your source code, that
will dump traces at the beginning of the function.

• On function return: Allows you to specify a list of function names, from your source code, that
will dump traces at the end of the function.

• On function call: Allows you to specify a list of function names, from your source code, that
will dump traces before the function is called.

339

For each tab, click the ... button to open the function name selection box. Use the Add and Remove
buttons to create a list of function names.

See Generating SCI Dumps for more information.

Static file storage

Depending on the runtime analysis feature, the product generates .tsf or .fdc temporary static data
files during source code instrumentation of the application under analysis.

• Code Coverage static file storage (.fdc): These settings apply to Code Coverage .fdc static trace
files:

• Build Directory: Select this option to use the current directory for all generated files.

• Other Directory: Select this option to define a specific directory.

• Source Directory: Select this option to use the same directory as the source under analysis.

• Use Single Temporary File (.fdc): By default, Code Coverage produces one .fdc file for each
instrumented source file. Select this option to use a single .fdc file for all instrumented source
files, and specify its location.

• FDC Directory or Name: When using the Use single temporary file (.fdc) option in the
previous setting, specify a location for the .fdc file.

• Memory Profiling, Performance Profiling, and Runtime Tracing storage: This setting applies to
Memory Profiling, Performance Profiling and Runtime Tracing .tsf static trace files.

• Build directory: Select this option to use the current directory for all generated files.

• Other directory: Select this option to define a specific directory.

• Source directory: Select this option to use the same directory as the source under analysis.

• Use single temporary file (.tsf): By default, Memory Profiling, Performance Profiling and
Runtime Tracing produces one .tsf file for each instrumented source file. Select this option to
use a single .tsf file for all instrumented source files, and specify its location.

• TSF directory or name: When using the Use single temporary file (.tsf) option in the previous
setting, specify a location for the .tsf file.

Code Coverage Settings

The Code Coverage settings are part of the Runtime Analysis node of the Configuration Settings
dialog box, which allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration. Overridden fields are displayed in bold.

Instrumentation control settings

You can use the Coverage Type settings to declare various types of coverage.

• Coverage level functions: select between function Entries, With exits, or None.

• Coverage Level Blocks: select the desired block code coverage type. Please see Selecting
Coverage Types for details on using each coverage type with each language.

You can combine, enable, or disable any of these coverage types before running the application
node. All coverage types selected for instrumentation can be filtered out in the Code Coverage
Viewer.

• Coverage level calls: select Yes or No to toggle call code coverage for Ada and C only.

• Coverage level conditions: select condition code coverage for Ada and C only.

340

• Ternary coverage (for C and C++ only): For C and C++, when this option is selected, Code
Coverage is extended to ternary expressions as statement blocks.

• Information Mode: This setting specifies the Instrumentation Modes to be used by Code
Coverage.

• Default (Optimized for Code Size and Speed): This setting uses one byte per branch to indicate
branch coverage.

• Compact (Optimized for Memory): This setting uses one bit per branch. This method saves
target memory but uses more CPU time.

• Report Hit Count: This adds information about the number of times each branch was
executed. This method uses one integer per branch.

• Ada specification (For Ada only): Selecting this option extends instrumentation to Ada
package specifications. Specifications can contain calls and conditions. In this case, the
specification file must be included in the application node.

• Excluded function calls: Specifies a list of functions to be excluded from the call coverage
instrumentation type, such as printf or fopen. Use the Add, Remove buttons to tell Code
Coverage the functions to be excluded.

• Generated package prefix (for Ada only): Add a new prefix to Ada packages if the default
Code Coverage prefix (atc_) generates conflicts.

• Generated package suffix (for Ada only): Specifies how Code Coverage names the
instrumented Ada packages:

• Select Standard to use the your package name as a suffix

• Select Short to reduce the size of the generated package name for compilers that have a
package name length limit.

Advanced Options

• Trace file name (.tio): this allows you to specify a path and filename for the .tio dynamic
coverage trace file.

• Key ignores source file path: Identifies source files based only on the filename instead of the
complete path. Use this option to consolidate test results when a same file can be located in
different paths. This can be useful in some multi-user environments that use source control. If
you use this option, make sure that the source file names used by your application are unique.

• Compute deprecated metrics: This setting is for compatibility with third party tools designed
for earlier versions of the product (before v2002.05). Set this to No in most cases.

• User comment: This adds a comment to the Code Coverage Report. This can be useful for
identifying reports produced under different Configurations. To view the comment, click the a
magnifying glass symbol that is displayed at the top of your source code in the Code Coverage
Viewer.

Memory Profiling settings

The Memory Profiling settings are part of the Runtime Analysis node of the Configuration
Settings dialog box, which allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration. Overridden fields are displayed in bold.

Instrumentation control

• Detect File in Use (FIU): When the application exits, this option reports any files left open. See
File in Use (FIU).

341

• Detect Memory in use (MIU): When the application exits, this option reports allocated memory
that is still referenced. See Memory in Use (MIU).

• Free Invalid Memory (FIM): This option activates the detection of invalid free memory
instructions. See Freeing Invalid Memory (FIM).

• Detect Signal (SIG): This option indicates the signal number received by the application forcing
it to exit. See Signal Handled (SIG).

• Detect Freeing Freed Memory (FFM) and Detect Free Memory Write (FMWL): Select Yes to
activate detection of these errors. See Freeing Freed Memory (FFM) and Late Detect Free
Memory Write (FMWL).

• Free queue length (blocks): specifies the number of memory blocks that are kept free.

• Free queue size (bytes): specifies the total buffer size for free queue blocks. See Freeing Freed
Memory (FFM) and Late Detect Free Memory Write (FMWL).

• Largest free queue block size (bytes): Specifies the size of the largest block to be kept in the free
queue.

• Detect Array Bounds Write (ABWL): Select Yes to activate detection of this error. See Late
Detect Array Bounds Write (ABWL).

• Red zone length (bytes) specifies the number of bytes added by Memory Profiling around the
memory range for bounds detection.

• Number of functions in call stack: specifies the maximum number of functions reported from
the end of the CPU call stack. The default value is 6.

• Line number link: Select Statement to link the line number in the report to the corresponding
allocation or free statement in the function. Select Function to link only to the function entry
and to improve performance.

Advanced options

• Trace File Name (.tpf): This setting allows you to specify a filename for the generated .tpf trace
file.

• Excluded global variables: Specifies a list of global variables that are not to be inspected for
memory leaks. This option can be useful to save time and instrumentation overhead on trusted
code. Use the Add and Remove buttons to add and remove global variables.

• Exclude variables from directories: Specifies a list of directories from which any variables
found in files are not to be inspected for memory leaks.

• Break on error: Use this option to break the execution when an error is encountered. The break
point must be set to priv_check_failed in debug mode.

• ABWL and FMWL check frequency: Use this to check for ABWL and FMWL errors:

• Each time the memory is dumped (by default).

• Each time a manual check macro is encountered in the code.

• Each function return.

These checks can be performed either on all memory blocks or only a selection of memory
blocks. See Checking for ABWL and FMWL errors for more information.

• Preserve block content: Set this setting to Yes to preserve the content of memory blocks freed
by the application. Use this setting to avoid application crashes with Memory Profiling is
engaged. However, reads to freed blocks of memory are no longer detected.

342

JVMPI (Java only)

• Object hashtable size: Specifies the size of hashtables for objects where <size> must be 64, 256,
1024 or 4096 values.

• Class hashtable size: Specifies the size of hashtables for classes where <size> must be 64, 256,
1024 or 4096 values.

• Generate snapshot: You can select one of the following options:

• On method entry, return, or snapshot button: Uses a specified method to perform snapshot or
the GUI snapshot button as specified in the Enable dump Snapshot button setting.

• After each garbage collection: Takes a snapshot each time the JVM garbage collector runs.

• Enable snapshot button: Specifies whether the manual snapshot button is enabled in GUI.

• Delay Snapshot until next Garbage Collection: Specify the trigger method.

• Hostname used by snapshot button: Use this option to specify a hostname for the JVMPI
Agent to communicate with the GUI.

• Port number used by snapshot button: Use this option to specify a port number for the JVMPI
Agent to communicate with the GUI.

• TPF file name (.tpf): Specifies the name of the Memory Profiling trace dump file produced by
the JVMPI Agent.

• TXF file name (.txf): Specifies the name of the Memory Profiling static trace dump file.

• Display only listed packages: Use this setting to filter out of the report the packages that do not
match the specified full package name (package and class).

• Display only listed classes: Use this setting to filter out of the report the classes that do not
match the specified full classes.

• Display only listed methods: Use the Add and Remove buttons to add and remove methods to
be listed by the Java Memory Profiling report.

• Display call stack for listed methods: Use this setting to list the methods for which the call
stack is to be displayed in the Java Memory Profiling report.

• Collect referenced objects: Sets the filter to be used with the Java Memory Profiling Report.

Performance Profiling settings

The Performance Profiling settings are part of the Runtime Analysis node of the Configuration
Settings dialog box, which allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration. Overridden fields are displayed in bold.

• Trace file name (.tqf): This box allows you to specify a filename for the generated .tqf trace file
for Performance Profiling.

• Compute min max times: This setting specifies whether you want to record minimum and
maximum function execution times. By default this setting is disabled because the option can
use a large amount of memory, which may cause issues on embedded systems.

Runtime Tracing settings

The Runtime Tracing Control settings are part of the Runtime Analysis node of the Configuration
Settings dialog box, which allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration. Overridden fields are displayed in bold.

343

Instrumentation Control

• Runtime Tracing file name (.tdf): This allows you to force a filename and path for the dynamic
.tdf file. By default, the .tdf carries the name of the application node.

• Show unnamed classes: For C++ only. When this option is disabled, unnamed class are not
instrumented.

• Show data classes: When this option is disabled, structures or classes that do not contain
methods are excluded from instrumentation. Disable this option to reduce instrumentation
overhead.

• Display one note for class templates: For C++ only. With this option, the UML/SD Viewer will
not display notes for each instance of template classes.

• Display return functions as sequence: For C only. With this option, the UML/SD Viewer
displays calls located in return expressions as if they were executed sequentially and not in a
nested manner.

Trace Control

• Split trace file: See Splitting trace files for more information on this setting.

• Maximum size (Kbytes): This specifies the maximum size for a split .tdf file. When this size is
reached, a new split .tdf file is created.

• File name prefix: By default, split files are named as att_<number>.tdf, where <number> is a 4-
digit sequence number. This setting allows you to replace the att_ prefix with the prefix of
your choice.

• Automatic loop detection: Loop detection simplifies UML sequence diagrams by summarizing
repeating traces into a loop symbol. Loops are an extension to the UML sequence diagram
standard and are not supported by UML.

• Additional options: This setting allows you to add command line options. Normally, this line
should be left blank.

• Display maximum call level: When selected, the Target Deployment Port records the highest
level attained by the call stack during the trace. This information is displayed at the end of the
UML Sequence Diagram in the UML/SD Viewer as Maximum Calling Level Reached.

Runtime options

These settings allow you to set compilation flags that define how the Runtime Tracing feature
interacts with the Target Deployment Port. These are general settings for the Target Deployment
Port.

• Disable on-the-fly mode: When selected, this setting stops on-the-fly updating of the dynamic
.tdf file. This option is primarily for Target Deployment Ports that use printf output.

• Runtime tracing buffer and Partial Runtime Tracing flush: Please see Trace Item Buffer and
Partial Trace Flush for more information about these settings.

• Maximum buffer size (events): Maximum number of events recorded in the buffer before it is
flushed.

• User signal action: Specify an action to be performed when a user signal is detected: No action,
Flush call stack, Runtime Tracing on/off

• Record and display time stamp: This setting adds time stamp information to each element in
the UML sequence diagram generated by Runtime Tracing.

• Record and display heap size (for Java only): This setting enables the Heap Size Bar in the
UML sequence diagram produced by Runtime Tracing.

344

• Record and display thread info: This setting enables the Thread Bar in the UML sequence
diagram produced by Runtime Tracing.

Automated Testing settings

Component Testing Settings for C and Ada

The Component Testing settings are part of the Component Testing for C and Ada node of the
Configuration Settings dialog box, which allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration. Overridden fields are displayed in bold.

Test compiler

• Intermediate test result file name (.rio): Specifies the filename of the intermediate .rio file
produced during test execution.

• Continue test build despite warnings: Select this option to ignore warning during the test
compilation phase.

• Break on error: Select this option to call a breakpoint function whenever a test failure occurs in
a .ptu Test Driver script. To use this feature, you must set a breakpoint on the function
priv_check_failed (), located in the <target_deployment_port>/lib/priv.c, file. You can use this
option for debugging purposes.

• Authorize stubbing: This setting determines the conditional generation of code in the test
program when using SIMUL blocks in the .ptu test script.

• Allow stubbing of module functions: Set this option to Yes to allow stubbing of functions that
are in the same source file as the functions under test.

• Enable additional options: Set this option to Yes if you want to specify additional command
line options. In most cases this should be set to No.

• Additional options: Use this setting to specify extra command line options. In most cases this
should be empty.

• Test point name (for Ada only): Entry point for the test program. The default entry point is
ATTOL_TEST.

• Test point packages (for Ada only): List of packages containing the test program entry point.

Report generator

• Display variables: lets you select the level of detail of the Component Testing output report

• Displays initial and expected values: the way in which the values assigned to each variable are
displayed in the report. See Initial and Expected Values.

• Display arrays and structures: indicates the way in which Component Testing processes
variable array and structure statements. See Array and Structure Display for more
information.

• Generate report without coverage: This setting hides coverage information in the Component
Testing Report.

• Compare two test runs: This setting activates the comparison option. See Comparing C Test
Reports or Comparing Ada Test Reports.

• Enable additional options: Set this option to Yes if you want to specify additional command
line options. In most cases this should be set to No.

345

• Additional options: Use this setting to specify extra command line options. In most cases this
should be empty.

Component Testing for C++ settings

The Component Testing settings for C++ are part of the Configuration Settings dialog box, which
allows you to configure settings for each node in your workspace.

The Component Testing for C++ node settings lets you to customize the parameters for the
Component Testing for C++ feature of Test RealTime.

By default, the settings of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration. Overridden fields are displayed in bold.

Contract Check Options

These options are used by the C++ Contract-Check Script.

• Break on assertion failure: Select this option to call a breakpoint function whenever an
assertion fails in an .otc Contract Check script. To use this feature, you must set a breakpoint
on the function priv_check_failure (), located in the <target_deployment_port>/lib/priv.c,
file. You can use this option, for example, to debug your application when an assertion fails.

• Report only failed assertions: Select this option to hide passed assertions in the UML
Sequence Diagram generated by Component Testing for C++. Only failed assertions are
displayed. This option also reduces the size of the intermediate trace file.

• Trace unchanged states: Select this option to report states in UML Sequence Diagram
generated by Component Testing for C++ each time states are evaluated. If the option is
disabled, states are reported in UML Sequence Diagram only when they change. This affects
both trace size and UML Sequence Diagram display size, but has no impact on execution time.

• Check 'const' methods: Usually C++ const methods are not checked for state changes because
they cannot modify a field of the this object. Instead, const methods are only evaluated once for
invariants. In some cases, however, the this object may change even if the method is qualified
with const (by assembler code, or by calling another method that casts the this parameter to a
non-const type). There may also be pointer fields to objects which logically belong to the
object, but the C++ Test Script Compiler will not enforce that these pointed sub-objects are not
modified. Select this option only if your code contains such code implementations.

• Reentrant objects: Select this option if your application is multi-threaded and objects are
shared by several threads. This ensures granularity for state evaluation. This option has no
effect if multi-thread support is not activated in the Target Deployment Compilation Settings.

• Enforce 'const' assertions: When this option is selected, the compiler requires that invariant
and state expressions are constant. Disable this option if you do not use the const qualifier on
methods that are actually constant.

Testing Options

These options are used for the C++ Test Driver Script.

• Add #line directive into instrumented source file: This option allows use of #line statements in
the source code generated by Component Testing for C++. Disable this option in environments
where the generated source code cannot use the #line mechanism. By default #line statements
are generated.

• Application includes system files: Set this option to Yes if the application includes system files
such as windows.h in Windows or pthread.h in UNIX.

• Break on CHECK failure: Select this option to call a breakpoint function whenever a check
failure occurs in an .otd Test Driver script. To use this feature, you must set a breakpoint on

346

the function priv_check_failed (), located in the <target_deployment_port>/lib/priv.c, file.
You can use this option for debugging purposes.

• Test class friend of class under test: Set this setting to Yes if you want to the test to access any
private or protected members of the components under test.

• Instances stack size: This value defines the maximum level for C++ Test Driver Script calls
that you expect to reach when running an .otd Test Driver script. The C++ Test Driver Script
calling stack includes RUN, CALL and STUBs. The default value is 256 and should be large
enough for most cases. When using recursive stubs, you may need to increase this value.

• Display only failed CHECKs: Select this option to hide notes related to passed CHECK
statements in the UML Sequence Diagram generated by Component Testing for C++. Failed
checks are still displayed. The component testing report is not affected by this option. This
option also reduces the size of the intermediate trace file.

• Display all PRINT arguments in a single note: Select this option to display only one UML note
for all arguments of a PRINT statement in the Component Testing for C++ UML Sequence
Diagram. This option requires use of a PRINT buffer, which uses memory on the target
machine. Disable this option if memory on the target is an issue. In this case, Component
Testing for C++ generates one UML note for each argument of each PRINT statement.

• PRINT buffer size (bytes): With the previous option selected, this option defines the size, in
bytes, of the buffer devoted to the PRINT instructions during the execution. This buffer should
be large enough to handle the complete result of a PRINT instruction. You may have to
increase this value if your PRINT statements contain many arguments, or if arguments are
long strings.

Advanced options

This area specifies the path and filenames for the intermediate files generated by the Component
Testing for C++ feature during the test execution.

• Test driver file name: contains the location and name of a .cpp source file generated from the
C++ Test scripts by Component Testing for C++

• Contract check file name: contains the path and file name of a temporary .oti file created
during source code instrumentation by Component Testing for C++

• Test report file name (.xrd): contains the location and name of the .xrd report file generated by
Component Testing for C++

• Maximum test compilation errors displayed: Specifies the maximum number of error
messages that can be displayed by the C++ Test Script Compiler. The default value is 30.

Component Testing for Java settings

The Component Testing settings for Java are part of the Configuration Settings dialog box, which
allows you to configure settings for each node in your workspace.

The Component Testing for Java node settings lets you to customize the parameters for the
Component Testing for Java feature of Test RealTime.

By default, the settings of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration. Overridden fields are displayed in bold.

Test compiler settings

This area contains parameters to be sent to the linker during the build of the current node.

• Check stub: If selected, Component Testing for Java checks simulated classes. Use No to save
memory on the target platform.

347

• Display stub note: If the Check stub setting is set to Yes, this setting specifies whether to
display simulated stub class information in the Component Testing sequence diagram.

System Testing for C Settings

The Test Script Compiler settings are part of the System Testing node of the Configuration Settings
dialog box, which allows you to configure settings for each node.

By default, the settings of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration. Overridden fields are displayed in bold.

Test compiler

• Message definition files: Use the Add and Remove buttons to create a list of message definition
files. These are source files that define the structure declarations required by Virtual Testers.

• Generate virtual testers as threads: By default, virtual testers are generated as processes. Use
this setting with multi-threaded applications.

• Multi-thread entry point: Specifies the name of a main function to act as an entry point in
multi-threaded applications.

• Virtual Tester Memory Allocation Method: Allows you to allocate memory to the Virtual
Tester for internal data storage.

• Static - use global static variables for internal data storage. This allows the Virtual Tester to run
on systems that do not support dynamic memory allocation or that have limited execution
stacks.

• Stack - store internal data in a local variable of the main() function. Necessary memory is then
allocated on the execution stack.

• Heap - allocate memory through a Target Deployment Port dynamic allocation function,
which is configurable.

• Duplicate user-defined static global variables: When using multiple Virtual Tester threads, this
setting allows you to duplicate static global variables for each thread. This allows multiple
instances of a virtual tester to all run in the same process with their own variables.

• Use TDP thread launcher: Specify Yes if the current TDP supports launching virtual tester
threads. If not, then you must write a specific program to perform this task, and set this option
to No. See Launching virtual tester threads for more information.

• Additional options: Use this setting to specify extra command line options. In most cases this
should be empty.

• Trace Buffer Optimization: See Optimizing Execution Traces.

• Select Time stamp only to generate a normal trace file.

• Select Block start/end only to generate traces for each scenario beginning and end, all events,
and for error cases.

• Select Errors only to generate traces only if an error is detected during execution of the
application.

• Circular buffer: Select this option to activate the Circular Trace Buffer.

• Trace buffer size (Kbytes): This box specifies the size - in kilobytes - of the circular trace buffer.
The default setting is 10Kb.

Report generator settings

• Display initial and expected values: the way in which the values assigned to each variable are
displayed in the report. See Initial and Expected Values.

348

• Report generated form: This option specifies the form of the report generated.

� Full: provides a full report of all variables for each test.

� All failed test variables: All the variables that are in a failed test are displayed. If all
tests are passed, then the report is empty.

� Only failed variables: Only failed variables are displayed. If all tests are passed,
then the report is empty.

• Sort by time stamp: By default, the report is sorted by test script structure blocks. Select this
option to force the report to follow a fully chronological order.

Advanced for System Testing Settings

• RENDEZVOUS timeout (seconds): This specifies the timeout associated to RENDEZVOUS
statements.

• INTERRECV timeout (seconds): This specifies the timeout associated to inter-tester
communications.

• Agent target directory: Specifies the directory where system testing agent is located.

• Run without deployment: This allows you to launch the test execution without going through
the deployment phase.

• Compress trace data: This option performs internal compression of trace data. Select this for
hard real-time constraints. If you select NO, no compression of trace data is performed.

• Trace data buffer size (bytes): Specifies the size of the trace data buffer.

• On-the-fly tracing: This option enables on-the-fly tracing at Target Deployment Port level.

• On-the-fly tracing buffer size (bytes): This specifies the size of the trace buffer for on-the-fly
tracing. By default the buffer size is 4096 bytes.

Probe Control Settings

The Probe Control settings are part of the Configuration Settings dialog box, which allows you to
configure settings for each node.

By default, the settings of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration. Overridden fields are displayed in bold.

Probe Control Settings

• Probe enable: This setting enables or disables the Trace Probe feature as implemented with
System Testing for C. See Trace Probes.

• Probe settings: These settings allow you to select the Trace Probe output mode. See Trace
Probe output modes.

• USER custom files directory: Specifies the location of the user-defined probecst.c and
probecst.h files when the USER output mode is selected. See Customizing the USER output
mode.

• Message definition files: Use the Add and Remove buttons to create a list of message definition
files. These are source files that define the structure declarations required by Virtual Testers.

• Script generation flags: Use this setting to send command line arguments to the Probe
Processor for generating a .pts test script for use with System Testing for C. See Traces Probes
and System Testing for C.

349

External command settings

The External Command settings are part of the Configuration Settings dialog box, which allows
you to configure settings for each node.

Use the External Command setting to set a command line for External Command nodes. An
External Command is a command line that can be included at any point in your workspace.
External Commands can contain Test RealTime GUI macro variables, making them context-
sensitive. See the GUI Macro Variables chapter in the Reference Manual.

By default, the settings of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration. Overridden fields are displayed in bold.

Static Metric Settings

The Static Metric settings are part of the Configuration Settings dialog box, which allows you to
configure settings for each node.

Use the Static Metric settings to change any project settings related to the calculation of static
metrics.

By default, the settings of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration. Overridden fields are displayed in bold.

• One level metrics (for C, C++ and Java only) : By default, .met static metric files are produced
for source files as well as all dependency files that are found by the Source Code Parser. Set
One level metrics to Yes to restrict the calculation of static metrics only to the source files
displayed in the Project Browser. In Ada, this setting is ignored.

• Analyzed directories: This setting allows you to restrict the generation of .met metric files only
to files which are located in the specified directories.

• Generate metrics in source directories: By default, all .met files are generated in the project
directory, and use the same name as the source file. Select Yes on this setting to compute
metrics for source files that have the same name but are located in different directories. In this
case, each .met is generated in the source directory of each file.

• Additional options: Use this setting to specify extra command line options. In most cases this
should be empty.

Code Review settings

The Code Review settings are part of the Configuration Settings dialog box, which allows you to
configure settings for each node.

Use the Code Review settings to change any project settings related to the code review tool.

By default, the settings of each node of a project are inherited from those of the parent node. When
you override the settings of a parent node, changes are propagated to all child nodes within the
same Configuration. Overridden fields are displayed in bold.

• Rule configuration: This setting specifies the file containing the rules for the code review tool.
Click Browse ... to select another rule configuration file. Click the Edit button to edit the
rule configuration or to create a new rule configuration. See Configuring code review rules for
more information.

• Review included system files: Select Yes to extend code review to system files that are
#included in the source files.

350

User interface preferences

Rational Test RealTime has many Preference settings that allow you to configure various
components of the graphical user interface.

Report viewer preferences

The Preferences dialog box allows you to change the appearance of your Test and Runtime
Analysis reports.

 To choose Report Editor colors and attributes

1. Select the Report Viewer node:

Background color: This allows you to choose a background color for the Report Viewer
window.

2. Expand the Report Viewer node, and select Syntax Color:

Styles: This list allows you to select one or several styles that you want to change. To change
several styles at the same time, you can perform multiple selections in the style list.

Font: This allows you to change the font type and size for the selected style.

Text Color: This allows you to change the foreground and background colors for the selected
style. This opens a standard color palette.

Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

3. Click OK to apply your changes.

Connection Preferences

The Preferences dialog box allows you to customize Test RealTime.

The Connections node of the Preferences dialog box lets you set the network parameters for the
graphical user interface.

 To change network connection preferences:

1. In the Preferences dialog box, select the General node and Connections.

Allow remote connections: This allows external commands and tools to send messages to the
GUI over a network. For example, this enables the Runtime Tracing on-the-fly capability on
remote hosts.

For information only, the Current TCP/IP port is automatically selected by GUI.

2. Click OK to apply your changes.

Project preferences

The Project Preferences dialog box lets you set parameters for the Test RealTime project.

The Project preferences contain a main page and two additional pages:

• Source File Types

• TDP Directories

In the Preferences dialog box, select Project to change the project preferences.

• Automatic file tagging: Select this option to activate the Project Explorer's automatic parsing
mode, in which all source code and script components are automatically listed. If disabled,
you will have to manually refresh the File View each time you modify the structure of a file.

351

Note If the structure of a source files has changed since the last file refresh, metrics
calculation cannot be performed. This impacts the Component Testing Wizard, where the
Unit Selection view will be disabled.

• Compute static metrics for Component Testing Wizard: Select this option to ensure that static
metrics are recalculated whenever a file is added, modified or refreshed in the Project Explorer
window.

• Verbose output: Select this option to prompt the Test RealTime GUI to report detailed
information to the Output Window during execution. Use this option to debug any
compilation issues.

• Show report nodes in Project Explorer: Select this option to display test and runtime analysis
reports in the Project Browser once they have been successfully generated. Report nodes
appear inside their test or application nodes.

• Automatically compute relative paths in settings: Select this option to calculate the relative
path in configuration settings

The Project Preferences contains two additional pages:

• Source File Types

• TDP Directories

Source File Types

Use this page to specify any new file types that you want to use in Test RealTime projects.

Click the New button to add a new line. In the extension column, enter the file extension in
wildcard format, for example: *.asm. In the Description column, enter a description for the file
type, for example: Assembler source files.

TDP Directories

Use this page to specify where Target Deployment Ports are located. You can add multiple
directories. When Test RealTime looks for a TDP, directories are searched in the order defined in
this list.

Select to Use default Target Deployment Port directory to use the default directory only.

Data table preferences

The Data table preferences dialog box lets you specify how Test RealTime handles the import of
.csv data tables into the project by default.

These options define the default behavior, which can be overridden at the project or node level by
changing the data table settings in the General Settings.

The Project preferences contain a main page and two additional pages:

• CSV Decimal Separator: Specifies the character used as a decimal separator.

• CSV Separator: Specifies the character used to separate table columns.

• CSV Thousand Separator: Specifies the character used to mark thousands.

See Importing a Data Table (.csv File) for more information.

UML/SD viewer preferences

The Preferences dialog box allows you to change the appearance of the UML Sequence Diagram
reports.

352

 To choose UML sequence diagram preferences:

1. Select the UML/SD Viewer node:

Background: This allows you to choose a background color for the UML sequence diagram.

Panel: This allows you to choose a background color for panels in the UML sequence diagram.

Panel Background: This allows you to choose a background color for selected panels.

Coverage Bar: This allows you to choose a background color for the coverage bar.

Memory Usage: This allows you to choose a background color for the memory usage bar.

Print Page header: Select this option to print a page header.

Print Page footer: Select this option to print a page footer.

Display Page Breaks: When this option is selected, the UML/SD Viewer displays horizontal
and vertical dash lines representing the page size for printing.

Show tooltip in UML/SD Viewer: Use this option to hide or show the information tooltip in
the UML/SD Viewer.

Time Stamp Format: Use the editable box to select the format in which time stamps are
displayed in the UML/SD Viewer. See Time Stamping.

2. Expand the UML/SD Viewer node, and select Styles or Styles System Test:

Styles: This list allows you to select one or several styles that you want to change. To change
several styles at the same time, you can perform multiple selections in the style list.

Font: This allows you to change the font type and size for the selected style.

Text Color: This allows you to change the foreground and background colors for the selected
style. This opens a standard color palette.

Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

3. Click OK to apply your changes.

Editor preferences

The Preferences dialog box allows you to change the appearance of the source code and scripts in
the text editor.

 To choose editor report colors and attributes:

1. Select the Editor node.

Font: This allows you to change the general font type and size for Editor.

Global Colors: This is where you select background colors for text categorized as Normal,
Information or Error as well as the general background color. Click a color to open a standard
color palette.

Autodetect parenthesis and bracket mismatch - When this option is selected, the Error color is
used when the Editor detects a missing bracket "[]" or parenthesis "()".

Tabulation length: This specifies the tabulation length, which is equivalent to a number of
inserted spaces.

2. Expand the Editor node, and select Syntax Colors:

Elements: This list allows you to select one or several styles that you want to change. To
change several styles at the same time, you can perform multiple selections in the style list.

Text Color: This allows you to change the foreground and background colors for the selected
style. This opens a standard color palette.

353

Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

3. Click OK to apply your changes.

Memory Profiling viewer preferences

The Preferences dialog box allows you to change the appearance of your Memory Profiling reports
for C and C++.

 To choose Memory Profiling report colors and attributes:

1. Select the Memory Profiling Viewer node:

Background color: This allows you to choose a background color for the Memory Profiling
Viewer window.

2. Expand the Memory Profiling Viewer node, and select Styles:

Styles: This list allows you to select one or several styles that you want to change. To change
several styles at the same time, you can perform multiple selections in the style list.

Font: This allows you to change the font type and size for the selected style.

Text Color: This allows you to change the foreground and background colors for the selected
style. This opens a standard color palette.

Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

3. Click OK to apply your changes.

Code Coverage viewer preferences

The Preferences dialog box allows you to change the appearance of your Code Coverage reports.

 To choose Code Coverage report colors and attributes:

1. Select the Code Coverage Viewer node:

Background color: This allows you to choose a background color for the Code Coverage
Viewer window.

2. Expand the Code Coverage Viewer node, and select Styles:

Styles: This list allows you to select one or several styles that you want to change. To change
several styles at the same time, you can perform multiple selections in the style list.

Font: This allows you to change the font type and size for the selected style.

Text Color: This allows you to change the foreground and background colors for the selected
style. This opens a standard color palette.

Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

3. Click OK to apply your changes.

Performance Profiling viewer preferences

The Preferences dialog box allows you to change the appearance of your Performance Profiling
reports.

 To choose Performance Profiling report colors and attributes:

1. Select the Performance Profiling Viewer node:

Background color: This allows you to choose a background color for the Performance
Profiling Viewer window.

354

Automatic raise viewer on tree selection change: Specifies that the viewer is give focus when
an code review element is selected.

2. Expand the Performance Profiling Viewer node, and select Styles:

Styles: This list allows you to select one or several styles that you want to change. To change
several styles at the same time, you can perform multiple selections in the style list.

Font: This allows you to change the font type and size for the selected style.

Text Color: This allows you to change the foreground and background colors for the selected
style. This opens a standard color palette.

Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

3. Click OK to apply your changes.

Metrics viewer preferences

The Preferences dialog box allows you to change the appearance of the Static Metrics reports.

 To choose Metrics Viewer report colors and attributes:

1. Select the Metrics Viewer node:

Background color: This allows you to choose a background color for the Metrics Viewer
window.

Stroud number: This parameter modifies the results of Halstead Metrics.

2. Expand the Metrics Viewer node, and select Styles:

Styles: This list allows you to select one or several styles that you want to change. To change
several styles at the same time, you can perform multiple selections in the style list.

Font: This allows you to change the font type and size for the selected style.

Text Color: This allows you to change the foreground and background colors for the selected
style. This opens a standard color palette.

Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

3. Click OK to apply your changes.

GUI elements

When you launch the Test RealTime Graphical User Interface (GUI), you are first greeted with the
Start Page and a series of windows.

Start Page

When you launch the graphical user interface, the first element that appears is the Test RealTime
Start Page.

The Start Page is the central location of the application. From here, you can create a new project,
start a new activity and navigate through existing project reports.

The Start Page contains the following sections:

• Welcome: General information for first-time users of the product.

• Get Started: This section lists your recent projects as well as a series of sample projects
provided with Test RealTime.

355

• Activities: This section displays a series of new activities. Click a new activity to launch the
corresponding activity wizard. A project must be open before you can select a new activity.

• Examples: A set of sample projects for tutorial or demonstration purposes. You can use these
projects to get familiar with the product.

• Support: Links to Customer Support and online documentation.

 To reset the recent files list:

1. Select the Start page and click the Reset toolbar button.

2. Click the Reload toolbar button to reload the Start page.

Output Window

The Output Window displays messages issued by product components or custom features.

The first tab, labelled Build, is the standard output for messages and errors. Other tabs are specific
to the built-in features of the product or any user defined tool that you may have added.

To switch from one console window to another, click the corresponding tab. When any of the
Output Window tabs receives a message, that tab is automatically activated.

When a console message contains a filename, double-click the line to open the file in the Text
Editor. Similarly when a test report appears in the Output Window, double-click the line to view
the report.

Output Window Actions

Right-click the Output Window to bring up a pop-up menu with the following options:

• Edit Selected File: Opens the editor with the currently selected filename.

• Copy: Copies the selection to the clipboard.

• Clear Window: Clears the contents of the Output Window.

 To hide or show the Output Window:

1. From the View menu, select Other Windows and Output Window.

Project Explorer

The Project Explorer allows you to navigate, construct and execute the components of your project.
The Project Explorer organizes your workspace from two viewpoints:

• Project Browser: This tab displays your project as a tree view, as it is to be executed.

• Asset Browser: Source code and test script components are displayed on an object or
elementary level.

To change views, select the corresponding tab in the lower section of the Project Explorer window.

Project Browser

The Project Browser displays the following hierarchy of nodes:

• Projects: the Project Explorer's root node. Each project can contain one or more sub-projects.

• Results: after execution, this node can be expanded to display the resulting report sub-nodes
and files, allowing you to control those files through a CMS system such as Rational
ClearCase.

• Test groups: provide a way to group and organize test or application nodes into one or more
test campaigns

356

• Test nodes: these contain test scripts and source files:

• Test Scripts: for Component Testing or System Testing

• Source files: for code-under-test as well as additional source files

• Any other test related files

• Application nodes: represent your application, to which you can apply SCI instrumentation for
Memory Profiling, Performance Profiling, Code Coverage and Runtime Tracing. Application
nodes can also contain Contract Check scripts for C++.

• Library nodes: allow you to specify library files that can be used by any test or application
node.

• External Command nodes: these allow you to add shell command lines at any point in the
Test Campaign.

After execution of a test or applicationan application node, double-click the node to open all
associated available reports.

When you run a Build command in the Project Browser, the product parses and executes each
node from the inside-out and from top to bottom. This means that the contents of a parent node are
executed in sequence before the actual parent node.

Asset Browser

The Asset Browser displays all the files contained in your project. The product parses the files and
displays individual components of your source files and test scripts, such as classes, methods,
procedures, functions, units and packages.

Use the Asset Browser to easily navigate through your source files and test scripts.

In Asset Browser, you can select the type of Asset Browser in the Sort Method box at the top of the
Project Explorer window. Each view type can be more or less relevant depending on the
programming language used:

• By File: This view displays a classic source file and dependency structure

• By Object: Primarily for C++ and Java, this view type presents objects and methods
independently from the file structure

• By Directory: This is mostly relevant for Java and displays packages and components

Use the Sort button to activate or disable the alphabetical sort.

Double-click a node in the Asset Browser to open the source file or test script in the text editor at
the corresponding line.

 To switch Project Explorer views:

1. Click the Project Browser or Asset Browser tab.

 To hide or show the Project Explorer:

1. Right-click an empty area within the toolbar.

2. Select or clear the Project Window menu item.

or from the View menu, select Other Windows and Project Window.

Properties Window

The Properties Window box contains information about the node selected in the Project Explorer.
It also allows you to modify this information. The information available in the Properties Window
depends on the view selected in the Project Explorer:

357

• Project Browser

• Asset Browser

When relevant, the properties can use environment variables.

Project Browser

Depending on the node selected, any of the following relevant information may be displayed:

• Name: Is the name carried by the node in the Project Explorer.

• Exclude from Build: Excludes the node from the Build process. When this option is selected a
cross is displayed next to the node in the Project Explorer.

• Execute in background: Enables the build and execution of more than one test or application
node at the same time.

• Relative path: Indicates the relative path of the file.

• Full path: Indicates the entire path of the file.

• Instrumented: Indicates whether the source file is instrumented or not. You can select either
Yes or No.

Note The Instrumented property is ignored for Component Testing for C++ if the .otd test
script contains a CHECK METHOD statement or if an .otc contract check script is used. In
these cases, the source files are always instrumented.

Asset Browser

Select the type of Object View in the Sort Method box at the top of the Project Explorer window:
By Object, By Files, or By Packages. Depending on the sort method selected, and the type of object
or file, any of the following relevant information may be displayed:

• Name: is the name carried of the file, object or package.

• Filters (for folders): is the file extension filter for files in that folder. See Creating a Source File
Folder.

• Name: is the name carried of the file or package.

• Relative path: indicates the relative path of the file.

• Full path: indicates the entire path of the file.

 To open the Properties window:

1. In the Project Explorer, right-click a node.

2. Select Properties... in the pop-up menu.

 To hide or show the Properties window:

1. Right-click an empty area within the toolbar.

2. Select or clear the <object> Property menu item.

or from the View menu, select Other Windows and <object> Property.

Report Explorer

The Report Explorer allows you to navigate through all text and graphical reports, including:

• Test reports generated by Component or System Testing

• Memory Profiling, Performance Profiling and Code Coverage reports

358

• UML Sequence Diagram reports from the Runtime Tracing feature

• Metrics produced by the Metrics Viewer

The actual appearance of the Report Explorer contents depends on the nature of the report that is
currently displayed, but generally the Report Explorer offers a dynamic hierarchical view of the
items encountered in the report.

Click an item in the Report Explorer to locate and select it in the Report Viewer or UML/SD
Viewer window.

 To hide or show the Report Explorer:

1. Right-click an empty area within the toolbar.

2. Select or clear the Report Explorer menu item.

UML/SD Viewer Toolbar

The UML/SD Viewer toolbar provides shortcut buttons to commands related to viewing graphical
test reports and UML sequence diagrams.

UML/SD Viewer commands are only available when a UML sequence diagram is open.

• The Filter button allows you to define a sequence diagram filter.

• The Trigger button sets sequence diagram triggers.

The following buttons are only available when using the Step-by-Step mode.

• The Step button moves the UML/SD Viewer to the next selected event.

• The Select button allows you to select the type of event to trace.

• The Continue button draws everything to the end of the trace diagram.

• The Restart button restarts Step-by Step mode.

• The Pause button pauses the On-the-Fly display mode. The application continues to run.

The TDF file selector is only available when using the Split TDF File feature.

• Click the button to select a .tdf dynamic trace file from the list.

• Click the and buttons to select the previous or next file in the list.

 To hide or show a toolbar:

1. Right-click an empty area within the toolbar.

2. Select and clear those toolbars you want to display or hide.

3. Click OK.

 To hide or show a toolbar:

1. Right-click an empty area within the toolbar.

2. Select and clear those toolbars you want to display or hide.

Toolbars

The toolbars provide shortcut buttons for the most common tasks.

359

 To hide or show a toolbar:

1. Right-click an empty area within the toolbar.

2. Select and clear those toolbars you want to display or hide.

3. Click OK.

or from the View menu, select Toolbars and the toolbars that you want to display or hide.

Main Toolbar

The main toolbar is available at all times:

• The New File button creates a new blank text file in the Text Editor.

• The Open button allows you to load any project, source file, test script or report file
supported by the product.

• The Save File button saves the contents of the current window.

• The Save All button saves the current workspace as well as all open files.

• The Cut , Copy and Paste buttons provide the standard clipboard functionality.

• The Undo and Redo buttons allow you undo or redo the last command.

• The Find button allows you to locate a text string in the active Text Editor or report
window.

View Toolbar

The View toolbar provides shortcut buttons for the Text Editor and report viewers.

• The Choose zoom Level box and the Zoom In and Zoom Out buttons are classic Zoom
controls.

• The Reload button refreshes the current report in the report viewer. This is useful when a
new report has been generated.

• The Reset Observation Traces button clears cumulative reports such as those from Code
Coverage, Memory Profiling or Performance Profiling.

Build Toolbar

The build toolbar provides shortcut buttons to build and run the application or test.

• The Configuration box allows you to select the target configuration on which the test will be
based.

• The Build button launches the build and executes the node selected in the Project Explorer.
You can configure the Build Options for the workspace by selecting the Options button.

• The Stop button stops the build or execution.

• The Clean Parent Node button removes files created by previous tests.

• The Execute Node button executes the node selected in the Project Explorer.

Status Bar

The Status bar is located at the bottom of the main GUI window. It includes a Build Clock which
displays execution time, and the Green LED which flashes when work is in progress.

Text Editor Toolbar

The text editor toolbar provides shortcut buttons for editing source files and test scripts. Some
buttons may only be available when editing certain file types.

360

• The Comment (-- or //) button allows you to add the comment prefix for the corresponding
language to the selected lines.

• The Comment (-- or //) button removes the comment prefix for the corresponding language.

• The Add Test (T) button adds a TEST ... END TEST statement block to a .ptu test script.

• The Add Note button inserts the _ATT_USER_NOTE instrumentation pragma into your
source code to produce notes in the UML sequence diagram of the execution.

• the Insert Dump button inserts the _ATCPQ_DUMP instrumentation pragma into your
source code to introduce a manual trace dump when required for runtime analysis tools.

Report Viewer Toolbar

The Report toolbar eases report navigation with the Report Viewer.

Report Viewer commands are available when a Report Viewer window is open:

• The Previous Failed Test and Next Failed Test buttons allow you to quickly navigate through
the Failed items.

• The Failed Tests Only or All Tests button toggles between the two display modes.

Code Coverage Toolbar

The Code Coverage toolbar is useful for navigating through code coverage reports generated by
the Code Coverage tool.

These buttons are available when the Code Coverage viewer is active.

• The Previous Link and Next Link buttons allow you to quickly navigate through the Failed
items.

• The Previous Uncovered Line and Next Uncovered Line buttons allow you to quickly
navigate through the Failed items.

• The Failed Tests Only or All Tests button toggles between the two display modes.

• The F button allows you to hide or show functions

• The E button allows you to hide or show function exits

• The B button allows you to hide or show statement blocks

• The I button allows you to hide or show implicit blocks

• The L button allows you to hide or show loops.

UML/SD Viewer Toolbar

The UML/SD Viewer toolbar provides shortcut buttons to commands related to viewing graphical
test reports and UML sequence diagrams.

UML/SD Viewer commands are only available when a UML sequence diagram is open.

• The Filter button allows you to define a sequence diagram filter.

• The Trigger button sets sequence diagram triggers.

The following buttons are only available when using the Step-by-Step mode.

• The Step button moves the UML/SD Viewer to the next selected event.

• The Select button allows you to select the type of event to trace.

• The Continue button draws everything to the end of the trace diagram.

• The Restart button restarts Step-by Step mode.

• The Pause button pauses the On-the-Fly display mode. The application continues to run.

361

The TDF file selector is only available when using the Split TDF File feature.

• Click the button to select a .tdf dynamic trace file from the list.

• Click the Previous and Next buttons to select the previous or next file in the list.

Test process monitor toolbar

The test process monitor (TPM) toolbar is useful for navigating through TPM charts.

These buttons are available when a TPM window is open:

• The Clear button removes all curves from the chart.

• The Hide Event button hides the displayed event markers.

• The Floating Schedule button toggles the automatic location of new curves.

GUI macro variables

Some parts of the graphical user interface (GUI) allow you to specify command lines, such as in the
Tools menu or in User Command nodes.

To enhance the usability of this feature, the product includes a macro language, allowing you to
pass system and application variables to the command line.

Usage

Macro variables are preceded by $$ (for example: $$WSPNAME).

Macro functions are preceded by @@ (for example: @@PROMPT).

Environment variables are also accessible, and start with $ (for example: $DISPLAY).

When specifying a command line, variables and functions are replaced with their value.

In Windows, when long filenames are involved, it is necessary to add double quotes (" ") around
filename variables. For example:
"C:\Program Files\Internet Explorer\IEXPLORE.EXE" "$$NODEPATH"

Node variables are context-sensitive: the variable returned relates to the node selected in the File or
Test Browser. Multiple selections are supported. If a node variable is invoked when there is no
selection, no value is returned by the variables.

Macro variables and functions are case-insensitive. For clarity, they are represented in this
document in upper case characters.

Language Reference

• Global variables: not node-related, include Workspace and application parameters.

• Node attribute variables: general attributes of a node.

• Functions: return a value to the command line after an action has been performed.

Global Variables

Global variables always return the same value throughout the Workspace.

Environment Variable Description

$$PRJNAME Returns the name of the current .rtp Project file

362

$$PRJDIR Returns the directory name of the current .rtp Project file

$$PRJPATH Returns the absolute path of the current .rtp Project file

$$VCSDIR Returns the local repository for files retrieved from Rational ClearCase, as
specified in the ClearCase Preferences dialog box

$$CPPINCLUDES Returns the directory of C and C++ include files, as specified in the Directories
Preferences dialog box

$$PERL Returns the full command-line to run the PERL interpreter included with the
product

$$CLIPBOARD Returns the text content of the clipboard

$$VCSITEMS Returns a list of files managed by the CMS tool. If a single source file is selected,
$$VCSITEMS returns the absolute path of the file. If a group or test node is
selected, $$VCSITEMS returns a list of all files that must be registered in the
configuration database (test script and reports).

Node Attribute Variables

These variables represent the attributes of a selected node. If no node is selected, these variables
return an empty string.

Environment Variable Description

$$NODENAME Returns the name of the node. In the case of files, this is the node's short filename

$$NODEPATH Returns the absolute path and filename of the selected node

$$CFLAGS Returns the compilation flags

$$LDLIBS Returns the filenames of link definition libraries

$$LDFLAGS Returns the flags used for link definition

$$ARGS Returns all arguments sent to the command line

$$OUTDIR Returns the name of the product features output directory

$$REPORTDIR Returns name of the text report output directory

$$TARGETDIR Returns the absolute path to the current Target Deployment Port

$$BINDIR Returns the binary directory where the product is installed

$$OBJECTS Returns a list of .o or .obj object files generated by the compiler

$$TIO Returns the name of the current .tio trace file generated by Code Coverage

$$TSF Returns the name of the current UML/SD .tsf static file generated by Runtime
Tracing

$$TDF Returns the name of the current UML/SD .tdf dynamic file generated by
Runtime Tracing

$$TDC Returns the name of the current Code Coverage .tdc correspondence file

$$ROD Returns the name of the current .rod report file

$$FDC Returns the name of the current .fdc correspondence files for Code Coverage

Functions

Functions process an input value and return a result. Input values are typically a global or node
variable.

Environment Variable Description

@@PROMPT('<message>') Opens a prompt dialog box, allowing the user to enter a line of text.

363

The optional <message> parameter allows you to define a prompt message,
surrounded by single quotes (').

@@EDITOR(<filename>) Opens the product Text Editor.

@@OPEN(<filename>) Opens <filename>. <filename> must be a file type recognized by the product.
This is the equivalent of selecting Open from the File menu.

File types

This table summarizes all the file types generated and used by Test RealTime.

File Type Default
Extension Generated By Used By

Component Testing for
C++
Declaration Files

.dcl C++ Source code Parser* C++ Test Script Compiler

Component Testing for
Ada
Intermediate File

.ddt Ada Test Script Compiler Ada Test Report Generator

Code Coverage
Correspondence File .fdc

Instrumented application
(Code Coverage)

Code Coverage
Report Generator

System Testing .hts

Component Testing for
Ada
Intermediate File

.mdt Ada Test Script Compiler Ada Test Report Generator

Static Metrics File .met

C++ Source code Parser

C Source Code Parser

Ada Source Code Parser

Java Source Code Parser

GUI Metrics Viewer

Component Testing for
C++
Contract Check Script

.otc C++ Source code Parser* C++ Test Script Compiler

Component Testing for
C++
Test Driver Script

.otd C++ Source code Parser* C++ Test Script Compiler

Component Testing for
C++
Instrumentation File

.oti C++ Test Script Compiler C and C++ Instrumentor

Component Testing for
C++
Intermediate File

.ots C++ Test Script Compiler C++ Test Report Generator

System Testing for C Test
Script

.pts User System Testing
Script Compiler

Component Testing for C
and Ada Test Script .ptu C Source Code Parser* C Test

Script Compiler

System Testing for C
Result File

Component Testing for C
and Ada Result File

.rio

Test Driver
(System Testing for C)

Test Driver
(Component Testing for C
and Ada)

System Testing
Report Generator

C Test Report Generator

Ada Test Report Generator

Project File .rtp GUI GUI

364

Workspace File .rtw GUI GUI

Graphic Report .rtx
C Test Report Generator

Ada Test Report Generator
GUI Report Viewer

System Testing for C
Supervision Script .spv

User (via CLI) or
Virtual Tester Deployment
Wizard

System Testing for C
Supervisor

Target Output File .spt Target Deployment Port GUI

Component Testing for
C++
Stub Files

.stb C++ Source Code Parser* C++ Test Script Compiler

System Testing for C
Intermediate File

Component Testing for C
and Ada Intermediate File

.tdc

System Testing
Script Compiler

C Test Script Compiler

Ada Test Script Compiler

System Testing
Report Generator

C Test Report Generator

Ada Test Report Generator

UML/SD
Dynamic Trace File .tdf

Instrumented application
(Runtime Tracing,
Component Testing for C++
and Java)

GUI UML/SD Viewer

Code Coverage
Intermediate File .tio

Instrumented application
(Code Coverage)

Code Coverage
Report Generator

Memory Profiling for C
and C++
Dynamic Trace File

.tpf
Instrumented application
(Memory Profiling)

GUI Memory Profiling
Viewer

Performance Profiling
Dynamic Trace File .tqf

Instrumented application
(Performance Profiling)

GUI Performance Profiling
Viewer

Static Trace File .tsf

C++ Test Script Compiler

C and C++ Instrumentor

Java Test Report Generator

GUI UML/SD Viewer

Memory Profiling for Java
Dynamic Trace File .txf

Java Instrumented
application (Memory
Profiling)

GUI Memory Profiling
Viewer

Target Deployment Port
Customization File .xdp TDP Editor TDP Editor

XML Report File .xrd

C Test Report Generator
Ada Test Report Generator
C++ Test Report Generator
Java Test Report Generator

System Testing
Report Generator

GUI Report Viewer

* Indicates files that are generated test script templates. Use these files to write your own test
scripts.

 Environment variables

Mandatory environment variables

The following environment variables MUST be set to run the product:

• TESTRTDIR for the graphical user interface

365

• ATUDIR for Component Testing for C and Ada

• ATS_DIR for System Testing for C

• ATLTGT in the command line interface

Environment variable list

Environment Variable Description

TESTRTDIR A mandatory environment variable that points to the installation directory
of the product.

ATTOLSTUDIO_VERBOSE

Setting this variable to 1 forces the product GUI to display verbose
messages, including file paths, in the Build Message Window.

Runtime Analysis features

The Runtime Analysis Features use the following environment variables:

Environment Variable Description

ATLTGT A mandatory environment variable that points to the Target Deployment
Port directory when you are using the product in the command line interface.

When you are using the Instrumentation Launcher or the product GUI, you
do not need to set ATLTGT manually, as it is calculated automatically.

ATL_TMP_DIR

Indicates the location for temporary files. By default, they are placed in /tmp
for UNIX or the current directory for Windows.

ATL_EXT_SRC

This variable allows you to instrument additional files with filename
extensions other than the defaults (.c and .i). The .c extension is reserved for
C source files that require preprocessing, while .i is for already preprocessed
files. All other extensions supported by this variable are assumed to be of
source files that need to be preprocessed.

ATL_EXT_OBJ Lets you specify an alternative extension to .o (UNIX) or .obj (DOS) for object
files.

ATL_EXT_ASM Lets you specify more than .s extension for assembler source files when the
compiler offers an option to generate an assembler listing without compiling
it to the object file.

ATL_EXT_TMP_CMD Windows only. Lets you specify an alternative extension to the Windows
temporary options file. Defaults to ._@@.

ATL_EXT_SRCCP The variable lets you add C++ source file extensions (defaults are .C, .cpp,
.c++, .cxx, .cc, and .i) to specify the C++ source files to be instrumented.
Extensions .C to .cc in the list are reserved for source files under analysis.
 The .i extension is reserved for those to be processed, if the
ATL_FORCE_CPLUSPLUS variable is set to ON. Any other extension
implies that pre-processing is to be performed.

ATL_FORCE_CPLUSPLUS If set to ON, this variable allows you to force C++ instrumentation whether
the file extension is .c, .i, or any added extension.

Component Testing for C and Ada

Component Testing for C and Ada uses the following environment variables:

366

Environment Variable Description

ATUDIR Points to the /lib directory in the product installation directory.

ATUTGT Points to the Target Deployment Port directory for Component Testing for C and
Ada.

You can change default extensions for Component Testing for C and Ada through the use of
environment variables when the Test Script Compiler or Test Report Generator is started.

The following table summarizes these environment variables and the extensions they modify.

Environment Variable File Default extension

ATTOLPTU Test script .ptu

ATTOLTDC Table of correspondence file .tdc

ATTOLLIS List of errors .lis

ATTOLRIO Trace file .rio

ATTOLRO Test report .ro

ATTOLROD Unformatted test report .rod

ATTOLDEF Standard definitions file .def

ATTOLSMB Symbol table file .smb

The rule whereby a "2" is added to the extension of the .rio trace file when the -compare option is
used still applies if the default extension is changed in the ATTOLRIO environment variable.

System Testing for C

System Testing for C uses the following environment variable:

Environment Variable Description

ATS_DIR Points to the directory containing the System Testing binaries for C.

Test Process Monitor

The Test Process Monitor uses the following environment variables.

Environment Variable Description

ATTOL_TPM_ROOT This variable indicates the directory where Test Process Monitor databases are
located for a project. ATTOL_TPM_ROOT is a mandatory variable and must be
set when a project is created. It should be a shared directory accessible by all
users who work on a project.

ATTOL_TPM_USER This optional variable specifies the name of the user. If this variable is not set, the
Test Process Monitor uses the current user, if possible.

C and C++ Instrumentation Launcher

The Instrumentation Launcher uses the following additional variables:

Environment Variable Description

ATTOLBIN If set, this variable must contain the path to the Instrumentor binaries. If not, this

367

path is determined automatically from the PATH variable. This variable can be
useful if the Target Deployment Port has been moved to a non-standard location.

ATTOLOBJ If set, this variable points to a valid directory where the products.h file is
generated and the Target Deployment Port (TP.o or TDP.obj) is compiled. By
default, these files are generated in the current directory.

ATL_OVER_SET This variable must indicate the path to a copy of the BatchCCDefaults.pl file if
you want to change any Target Deployment Port compilation flags contained in
that file.

ATL_EXT_LIB Lets you specify additional alternative extensions for library files. By default .a or
.lib are used.

ATL_FORCE_C_TDP If set to ON, the tp.ini file is used instead of the tpcpp.ini file (used for C++
language). If the Target Deployment Port supports only C language, the tp.ini file
is always used.

ATL_OVER_SET As an alternative to using the --settings of the Instrumentation Launcher, you can
copy and modify the <InstallDir>/lib/scripts/BatchCCDefaults.pl file. In this
case, set ATL_OVER_SET to the directory and filename of the new copy of this
file.

Ada tools

The Ada Link File Generator and Ada Unit Maker use the following additional variables:

Environment Variable Description

ATTOLCHOP Selects the default naming convention. The following values can be used:

ATTOLCHOP="APEX" : for Rational Apex naming

ATTOLCHOP="GNAT" : for Gnat naming

All other values end with a fatal error. By default, Gnat naming is used.

ATTOLALK_EXT Specifies allowed extensions separated by the semicolon (':') character on UNIX
systems and (';') on Windows.

By default, the allowed extension list is ".ada:.ads:.adb"

ATTOLALK_NOEXT Specifies forbidden extensions separated by the ':' character on UNIX systems
and ';' on Windows.

By default, the forbidden extension list is empty.

LD_LIBRARY_PATH Specifies the location of libraries required by the Ada Link File Generator. By
default, these libraries are located in the /lib directory of the installation
directory.

368

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer
the products, services, or features discussed in this document in other countries. Consult your local
IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However,
it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program,
or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You
can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106
Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION
‘AS IS’ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions of
the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice

Any references in this information to non-IBM Web sites are provided for convenience only and do
not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

369

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including
this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Department BCFB
20 Maguire Road
Lexington, MA 02421
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore,
the results obtained in other operating environments may vary significantly. Some measurements
may have been made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore, some measurement
may have been estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to IBM, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBMís application programming
interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a
copyright notice as follows:

(c) (your company name) (year). Portions of this code are derived from IBM Corp. Sample
Programs. (c) Copyright IBM Corp. _enter the year or years_. All rights reserved.

Additional legal notices are described in the legal_information.html file that is included in your
Rational software installation.

Trademarks

AIX, ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearGuide, ClearQuest,
DB2, DB2 Universal Database, DDTS, Domino, IBM, Lotus Notes, MVS, Notes, OS/390, Passport
Advantage, ProjectConsole Purify, Rational, Rational Rose, Rational Suite, Rational Unified
Process, RequisitePro, RUP, S/390, SoDA, SP1, SP2, Team Unifying Platform, WebSphere, XDE,
and z/OS are trademarks of International Business Machines Corporation in the United States,
other countries, or both.

370

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product or service names may be trademarks or service marks of others.

����

Printed in USA

	IBM Rational Test RealTime Reference Manual
	Table Of Contents
	Preface
	About Rational software from IBM
	About online documentation
	Finding Information
	Documentation Updates

	Testing tool script languages
	Component Testing for C
	C test script structure
	BEGIN
	COMMENT
	DEFINE STUB ... END DEFINE
	ELEMENT ... END ELEMENT
	ENVIRONMENT ... END ENVIRONMENT
	FAMILY
	FORMAT
	HEADER
	IF ... ELSE ... END IF
	INCLUDE
	INITIALIZATION ... END INITIALIZATION
	NEXT_TEST
	SERVICE ... END SERVICE
	SIMUL ... ELSE_SIMUL ... END SIMUL
	STUB
	TERMINATION ... END TERMINATION
	TEST ... END TEST
	USE
	VAR, ARRAY and STR
	VAR, ARRAY and STR <expected> Parameter
	VAR, ARRAY and STR <variable> Parameter
	VAR, ARRAY and STR <initialization> Parameter
	C Source Code Parser - attolstartC
	C Test Script Compiler - attolpreproC
	C Test Report Generator - attolpostpro

	Component Testing for C++
	C++ test driver script structure
	CALL
	CHECK
	CHECK EXCEPTION
	ON ERROR
	PRINT
	PROC
	PROLOGUE
	PROPERTY
	RUN
	STUB
	TEST CASE
	TEST CLASS
	TEST SUITE
	REQUIRE
	C++ contract check script structure
	CLASS and SINGLE CLASS
	INVARIANT
	STATE
	TRANSITION ... TO
	WRAP
	C++ Test Report Generator - atopospro
	C++ Test Script Compiler - atoprepro
	C++ Source Code Parser - atostart
	C++ Test Driver Script Options
	C++ Contract Check Script Options

	Component Testing for Ada
	BEGIN
	COMMENT
	DEFINE STUB ... END DEFINE
	ELEMENT ... END ELEMENT
	ENVIRONMENT ... END ENVIRONMENT
	EXCEPTION
	FAMILY
	HEADER
	IF ... ELSE ... END IF
	INCLUDE
	INITIALIZATION ... END INITIALIZATION
	NEXT_TEST
	SERVICE ... END SERVICE
	SERVICE_TYPE
	SIMUL ... ELSE_SIMUL ... END SIMUL
	STUB
	TERMINATION ... END TERMINATION
	TEST ... END TEST
	VAR, ARRAY, and STR
	VAR, ARRAY and STR <expected> Parameter
	VAR, ARRAY and STR <initialization> Parameter
	VAR, ARRAY and STR <variable> Parameter
	Ada Source Code Parser - attolstartADA
	Ada Test Script Compiler - attolpreproADA
	Ada Test Script Compiler - attolpostproada
	Ada Link File Generator - attolalk
	Ada Unit Maker - attolchop

	Component Testing for Java
	Notation Conventions
	JUnit Assert Primitives
	Extended Primitives
	Timer Primitives
	assertEquals()
	assertNotNull()
	assertNull()
	assertSame()
	assertTrue()
	createTimer()
	fail()
	timerReportElapsedTime()
	timerStart()
	verify()
	verifyApproxEquals()
	verifyElapsedTime()
	verifyEquals()
	verifyGreaterThan()
	verifyGreaterThanEquals()
	verifyLogfail()
	verifyLogMessage()
	verifyLowerThan()
	verifyLowerThanEquals()
	verifyNotNull()
	verifyNull()
	verifySame()
	verifyTrue()
	JVMPI Agent
	Java Source Code Parser - startjava
	Java Test Report Generator - javapostpro
	StubSequence
	TestSynchroStub

	C System Testing
	Basic structure
	ADD_ID
	CALL
	CALLBACK ... END CALLBACK
	CASE ... IS ... WHEN OTHERS... END CASE
	CHANNEL
	CLEAR_ID
	COMMENT
	COMMTYPE
	DECLARE_INSTANCE
	DEF_MESSAGE
	END
	ERROR
	EXCEPTION ... END EXCEPTION
	EXIT
	FAMILY
	FLUSH_TRACE
	FORMAT
	HEADER
	IF...THEN...ELSE
	INCLUDE
	INITIALIZATION ... END INITIALIZATION
	INSTANCE ... END INSTANCE
	INTERSEND
	INTERRECV
	MATCHED
	MATCHING
	MESSAGE
	MESSAGE_DATE
	NIL
	NONIL
	NOTMATCHED
	NOTMATCHING
	NO_MESSAGE
	PAUSE
	PRINT
	PROC ... END PROC
	PROCSEND
	RENDEZVOUS
	RESET
	SCENARIO ... LOOP ... END SCENARIO
	SEND
	SHARE
	TERMINATION ... END TERMINATION
	TIME
	TIMER
	TRACE_ON
	TRACE_OFF
	VAR
	VIRTUAL CALLBACK
	VIRTUAL PROCSEND
	WAITTIL
	WHILE ... END WHILE
	WTIME
	ATL_OCCID
	ATL_TIMEOUT
	ATL_NUMINSTANCE
	Supervisor script structure

	Runtime and static analysis reference
	Command line interface
	C and C++ Instrumentation Launcher - attolcc
	Component Testing for C++ Contract Check Settings
	C and C++ Instrumentor - attolcc1 and attolccp
	Ada Metrics Generator - metada
	Java Instrumentor - javi
	Java Instrumentation Launcher - javic
	Java Instrumentation Launcher for Ant
	TDF Splitter - attsplit
	Code Coverage Report Generator - attolcov
	Trace Probe Processor - parsecode.pl

	Trace probe macros
	Using Probe Macros
	Trace Probe macros
	atl_start_trace()
	atl_recv_trace()
	atl_select_trace()
	atl_send_trace()
	atl_dump_trace()
	atl_end_trace()
	atl_format_trace()

	Instrumentation pragmas
	Instrumentation Pragma Names
	Code Coverage, Memory Profiling and Performance Profiling Di

	Code review rules
	MISRA-C 2004 rules
	Additional rules

	User interface reference
	Command line interface
	Graphical User Interface - studio
	Runtime Tracing Directives
	Trace Receiver - trtpd
	Dump File Splitter - atlsplit
	Uprint Localization Utility - uprint
	Test Process Monitor - tpm_add

	Configuration settings reference
	Build Settings
	Build options settings
	Compiler settings
	Linker settings
	Execution settings
	Target Deployment Port build settings

	Host configuration settings
	Directories settings
	Target Deployment Port data
	Source file information settings
	CSV format settings
	Runtime Analysis settings
	Selective instrumentation
	Advanced options
	Snapshot settings
	Static file storage
	Code Coverage Settings
	Memory Profiling settings
	Performance Profiling settings
	Runtime Tracing settings

	Automated Testing settings
	Component Testing Settings for C and Ada
	Component Testing for C++ settings
	Component Testing for Java settings
	System Testing for C Settings

	Probe Control Settings
	Probe Control Settings

	External command settings
	Static Metric Settings
	Code Review settings

	User interface preferences
	Report viewer preferences
	Connection Preferences
	Project preferences
	Data table preferences
	UML/SD viewer preferences
	Editor preferences
	Memory Profiling viewer preferences
	Code Coverage viewer preferences
	Performance Profiling viewer preferences
	Metrics viewer preferences

	GUI elements
	Start Page
	Output Window
	Output Window Actions

	Project Explorer
	Project Browser
	Asset Browser

	Properties Window
	Project Browser
	Asset Browser

	Report Explorer
	UML/SD Viewer Toolbar
	Toolbars
	Main Toolbar
	View Toolbar
	Build Toolbar
	Status Bar
	Text Editor Toolbar
	Report Viewer Toolbar
	Code Coverage Toolbar
	UML/SD Viewer Toolbar
	Test process monitor toolbar

	GUI macro variables
	Usage
	Language Reference
	Global Variables
	Node Attribute Variables
	Functions

	File types
	 Environment variables
	Mandatory environment variables
	Environment variable list
	Runtime Analysis features
	Component Testing for C and Ada
	System Testing for C
	Test Process Monitor
	C and C++ Instrumentation Launcher
	Ada tools

	Notices

