
Rational ® IIBM Rational Test RealTime

User Guide

Version 7.0.0

Windows, UNIX, and Linux

GI11-6755-00

���

Rational ® IBM Rational Test RealTime

User Guide

Version 7.0.0

Windows, UNIX, and Linux

GI11-6755-00

���

Before using this information, be sure to read the general information under Notices on page 291

7th edition (May 2006)

This edition applies to version 7.0.0 of IBM Rational Test RealTime and to all subsequent releases and modifications until
otherwise indicated in new editions. This edition replaces GI-6350-00.

© Copyright International Business Machines Corporation 2001, 2006. All rights reserved.
© Copyright Rational Software Corporation 2001, 2003. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

© Copyright IBM Corp. 2001, 2006 i

Table Of Contents

Preface ...1
About Rational software from IBM......................................1
Contacting IBM Customer Support2

Downloading the IBM Support Assistant...................2
Installing, migrating, configuring3
Example projects ...3
Target deployment technology overview...........................4

Key Capabilities and Benefits4
Downloading Target Deployment Ports.....................5
Obtaining New Target Deployment Ports..................5
Reconfiguring a TDP for a compiler or JDK...............5

Configuring target deployment ports..................................6
Determining target requirements.................................6
Retrieving data from the target platform..................10
Troubleshooting target deployment ports................15

Using the TDP Editor ...16
Using the TDP Editor ...16
Launching the TDP Editor...16
Opening a Target Deployment Port...........................17
Creating a Target Deployment Port...........................17
Editing Customization Points18
Updating a Target Deployment Port18
Using a Post-generation Script....................................19

Profiling with runtime analysis..................21
Runtime analysis overview ...21
Code coverage ...22

How Code Coverage Works22
Information Modes ...22
Coverage types ..23
Filtering coverage types ...47
Test by test analysis mode...48
Reloading a report ..48
Resetting a report ..48
Coverage source report ..48
Coverage rates report ...49
Code Coverage Dump Driver50
Cleaning code coverage report files...........................50

Memory profiling for C and C++50
How Memory Profiling for C and C++ Works50
Memory Profiling Results for C and C++.................51
Memory Profiling Error Messages51
Memory Profiling Warning Messages.......................53
Memory Profiling User Heap in C and C++55
Using the Memory Profiling Viewer58
Checking for ABWL and FMWL errors58

Memory profiling for Java ...59
How Memory Profiling for Java works.....................59
Memory Profiling results for Java..............................59

JVMPI technology... 61
Performance profiling .. 62

Performance Profiling Results.................................... 62
Performance Profiling SCI Dump Driver 63
Using the performance profiling viewer 63
Applying performance profile filters 64
Editing performance profile filters 64

Runtime tracing... 65
How Runtime Tracing works 65
UML sequence diagram overview............................. 66
Tracing a test node ... 67
Step-by-step tracing.. 67
Using sequence diagram triggers 68
Applying sequence diagram filters 69
Adding UML notes to source code............................ 69
Viewing UML sequence diagrams............................. 70
Advanced runtime tracing .. 75

Trace Probes for C... 77
How Trace Probes work .. 78
Using Probe Macros ... 78
Trace Probe output modes .. 79
Traces Probes and System Testing for C................... 79
Customizing the USER output mode........................ 80

Profiling shared libraries ... 82
Checking with static analysis....................83
Static metrics.. 83

How the static metrics tool works 83
Viewing Static Metrics ... 84
Halstead Metrics ... 87
V(g) or Cyclomatic Number 88

Code review... 88
How the code review tool works 88
Configuring code review rules................................... 89
Running a code review .. 89
Viewing code review results....................................... 89
Ignoring a rule on a portion of code.......................... 90
Understanding code review reports.......................... 90

Testing software components...................93
Component Testing for C .. 93

How Component Testing for C Works 93
Component Testing for C Overview 94
Writing a Test Script... 96
Viewing Reports ... 126

Component Testing for C++ ... 128
Overview.. 128
How Component Testing for C++ Works 129
C++ testing overview... 129
C++ test reports... 135

Component Testing for Ada ... 140

ii

Component Testing for Ada overview................... 140
Writing a test script.. 142
Viewing reports .. 168

Component Testing for Java... 170
How Component Testing for Java works 171
Java testing overview .. 171
Java test reports .. 180

System Testing for C.. 183
Agents and Virtual Testers 183
System Testing for C Test Scripts 191
Understanding System Testing for C Reports....... 214
Advanced System Testing .. 216

Using the graphical user interface..........219
GUI Philosophy .. 219
Configurations and settings ... 219

Propagation Behavior of Configuration Settings.. 220
Configuration Settings Structure............................. 220
Selecting Configurations... 221
Modifying Configurations.. 221

Creating tests and applications.. 222
Creating a new project... 222
Creating a runtime analysis application node 222
Creating a component test .. 223
Creating a system test.. 226
Viewing a static metrics diagram 228
Specifying advanced component test options....... 228

Working with projects ... 230
Project overview... 230
Troubleshooting a project ... 231
Refreshing the asset browser.................................... 232
Manually creating an application or test node...... 232
Creating an external command node...................... 233
Creating a group... 233
Deleting a node... 234
Opening a report .. 234
Creating a source file folder 235
Using assembler source files 235
Unloadable libraries... 236
Using shared libraries.. 236
Viewing node properties .. 237
Renaming a node.. 237
Adding files to a project .. 237

Importing files .. 238
Importing files from a Microsoft Visual Studio
project... 238
Importing files from a makefile 238
Importing sub-projects .. 239
Importing a data table (.csv file) 240

Editing code and test scripts... 241
Creating a text file .. 241
Opening a text file .. 241
Finding text in the text editor................................... 242
Replacing text in the text editor............................... 242
Locating a line and column in the text editor........ 243
Text editor syntax coloring....................................... 243
Commenting code in the text editor 244

Running tests and applications.. 244
Building and Running a Node................................. 244
Selecting Build Options for a Node......................... 245
Excluding a Node from a Build 245

Excluding a Node from Instrumentation246
Cleaning Up Generated Files....................................246
Debug mode ..246
Setting environment variables..................................246

Viewing reports...247
Report Viewer ...247
Exporting reports to HTML247
Understanding Reports ...248
Setting the zoom level..249
Displaying a report summary header249

Monitoring the test process...249
About the test process monitor249
Changing Curve Properties250
Custom Curves..250
Event markers..251
Setting the time scale..251
Adding a metric ..251

Customizing tools ...252
Custom tools overview..252
Customizing the Tools menu....................................254

Using the command line interface255
Running a Node from the Command Line.....................255
Command Line Runtime Analysis for C and C++........256
Command Line Runtime Analysis for Java....................257
Command Line Component Testing for C, Ada and C++258
Command Line Component Testing for Java258
Command Line System Testing for C259
Command line examples ...259
Command Line Tasks ..261

Setting Environment Variables.................................261
Preparing an Options Header File262
Preparing a Products Header File............................263
Instrumenting and Compiling the Source Code ...263
Compiling the TDP Library264
Compiling the Test Harness......................................265
Linking the Application...265
Running the Test Harness or Application..............266
Troubleshooting Command Line Usage.................266
Splitting the trace dump file267
Opening Reports from the Command Line268

Using source code insertion269
Estimating Instrumentation Overhead269

Code Coverage Overhead ...269
Memory and Performance Profiling and Runtime
Tracing..270
Memory Profiling Overhead.....................................270
Performance Profiling Overhead270
Runtime Tracing Overhead.......................................270

Reducing Instrumentation Overhead..............................271
Limiting Code Coverage Types................................271
Instrumenting Calls (C Language)271
Optimizing the Information Mode271

Generating SCI Dumps..271
Explicit Dump ...271
Dump on Signal ..272
Instrumentor Snapshot ..272

Chapter 8. Working with other
development tools....................................273

iii

Working with configuration management273
Working with IBM Rational ClearCase...................273
Working with IBM Rational ClearQuest.................274
Customizing source control tools.............................274

Working with Eclipse C/C++ Development Tools.......274
Test RealTime plugin for Eclipse overview............275
Enabling runtime analysis tools on an Eclipse
project..275
Managing configurations in Eclipse276
Managing configuration settings in Eclipse276
Running a project with Test RealTime in Eclipse..277
Viewing runtime analysis reports in Eclipse..........277
Test RealTime preferences in Eclipse.......................277

Working with IBM Rational Rose RealTime...................278
Using Test RealTime with Rose RealTime.............278
Collecting dump data in Rose RealTime.................279
Viewing results from Rose RealTime280
Advanced Rose RealTime integration280
Troubleshooting Rose RealTime Integration..........282

Working with IBM Rational TestManager......................283
Installing and configuring the TestManager
integration ..283
Associating test nodes to test cases..........................284
Accessing Test RealTime test nodes and group
nodes ...284
Viewing results in TestManager...............................285
Submitting a ClearQuest defect from TestManager285
Troubleshooting the TestManager integration285

Working with Microsoft Visual Studio286
Configuring Microsoft Visual Studio integration..286
Configuring Microsoft Visual Studio integration..288

Notices ...291
Glossary...295
Index...301

© Copyright IBM Corp. 2001, 2006 1

Preface

Thank you for using IBM Rational Test RealTime!

This information center contains extensive information on a broad range of subjects that will help
you enhance your software testing experience with IBM Rational Test RealTime.

Implementing a practical, effective and professional testing process within your organization has
become essential because of the increased risk that accompanies software complexity. The time and
cost devoted to testing must be measured and managed accurately. Very often, lack of testing
causes schedule and budget over-runs with no guarantee of quality.

• Critical trends require software organizations to be structured and to automate their test
processes. These trends include:

• Ever increasing quality and time to market constraints;

• Growing complexity, size and number of software-based equipment;

• Lack of skilled resources despite need for productivity gains;

• Increasing interconnectedness of critical and complex embedded systems;

• Proliferation of quality & certification standards throughout critical software markets,
including the avionics, medical, and telecommunications industries.

IBM Rational Test RealTime provides a full range of answers to these challenges by enabling full
automation of system and software test processes.

Test RealTime is a complete test and runtime analysis tool set for embedded, real-time and
networked systems created in any cross-development environment. Automated testing, code
coverage, memory leak detection, performance profiling, UML tracing, code review - with Test
RealTime you fix your code before it breaks.

Test RealTime covers runtime analysis and software testing, all in a fully integrated testing
environment.

For more information about Rational Test RealTime, visit the product Web site at:

http://www.ibm.com/software/awdtools/test/realtime

About Rational software from IBM

Rational software from IBM helps organizations create business value by improving their software
development capability. The Rational software development platform integrates software
engineering best practices, tools, and services. With it, organizations thrive in an on demand world
by being more responsive, resilient, and focused. Rational's standards-based, cross-platform
solution helps software development teams create and extend business applications, embedded
systems and software products. Ninety-eight of the Fortune 100 rely on Rational tools to build
better software, faster. Additional information is available at
http://www.ibm.com/software/rational.

The entire documentation set for Test RealTime is provided as a full-featured online help system.

2 IBM Rational Test RealTime User Guide

Depending on the operating system you are using, this documentation was designed to be viewed
with either:

• Microsoft's HTML Help browser for Windows.

• Mozilla Firefox 1.0 or later on UNIX operating systems or any other Java-enabled web browser.

Both environments provide contextual-help from within the application, a full-text search facility,
and direct navigation through the Table of Contents and Index panes on the left-hand side of the
Help window.

Contacting IBM Customer Support

If you have questions about installing, using, or maintaining this product, contact IBM Customer
Support as follows:

The IBM software support Internet site provides you with self-help resources and electronic
problem submission. The IBM Software Support Home page for Rational products can be found at:

http://www.ibm.com/software/rational/support/

Voice Support is available to all current contract holders by dialing a telephone number in your
country (where available). For specific country phone numbers, go to:

http://www.ibm.com/planetwide/

Note When you contact IBM Customer Support, please be prepared to supply the following
information:

• Your name, company name, ICN number, telephone number, and e-mail address

• Your operating system, version number, and any service packs or patches you have applied

• Product name and release number

• Your PMR number (if you are following up on a previously reported problem)

Downloading the IBM Support Assistant

The IBM Support Assistant (ISA) is a locally installed serviceability workbench that makes it both
easier and simpler to resolve software product problems. ISA is a free, stand-alone application that
you download from IBM and install on any number of machines. It runs on AIX, (RedHat
Enterprise Linux AS), HP-UX, Solaris, and Windows platforms.

ISA includes these features:

• Federated search

• Data collection

• Problem submission

• Education roadmaps

For more information about ISA, including instructions for downloading and installing ISA and
product plug-ins, go to the ISA Software Support page:

http://www.ibm.com/software/support/isa/

© Copyright IBM Corp. 2001, 2006 3

Chapter 1. Installing, migrating, configuring

Full instructions for installing IBM Rational Test RealTime are included in the IBM Rational Test
RealTime Installation Guide, which is supplied on the product CD or as part of the download.

Example projects

IBM Rational Test RealTime is provided with a range of example projects aimed at demonstrating
most of the features of the product. You may use them to familiarize yourself with those features.
Do not hesitate to review and manipulate the source files and scripts provided in these examples.

Most examples are designed to run directly with a default Configuration.

 To access open an example project:

1. From the Start page, click Examples on the left side of the page. This opens the Examples page.

2. Click any of the example projects to open them in the product.

Example Language Description

BaseStation C C/C++ Main sample project covering most test and runtime analysis
features. This sample is used for the C and C++ tutorial.

BaseStation Java Java Main sample project covering most test and runtime analysis
features. This sample is used for the Java tutorial.

Broadcast Server C/C++ A sample that demonstrates the use of System Testing for C with
C++ code and multithreaded components. This example is provided
as is. Usage of System Testing with C++ is not supported.

Chained List C++ This sample shows how to test chained lists with Component Test
for C++.

ABWL Check
Frequency

C This sample demonstrates the Memory Profiling manual check
feature for checking ABWL and MFWL errors. See Checking for
ABWL and FMWL errors for more information.

Data Pool C This project shows how to incorporate data tables in .csv format in
your tests. See Importing a Data Table (.csv File).

Enum Ada Ada A project that demonstrates Component Testing for Ada for testing
enum types.

EuroDollarMidlet
J2ME

Java This sample shows how to use Component Testing for Java on J2ME
(Java 2.0 Micro Edition) applications.

Generic Ada Ada A sample demonstrating how to test generic units in Ada. See
Testing Generic Compilation Units.

Histogram Ada Ada This project demonstrates array handling and overriding
ENVIRONMENT statements with Component Test for Ada.

Philosopher C A sample C application for Runtime Analysis in a multithreaded
environment (Windows only)

4 IBM Rational Test RealTime User Guide

Dinner Party C++ A Component Testing for C++ sample application in a
multithreaded environment with class inheritance (Windows only).

Shape C++ A simple class inheritance example for Component Testing for C++.

Shape Ada Ada This example demonstrates Component Testing on object-oriented
Ada.

Shared Library C++ This sample demonstrates how to use shared library files in your
applications. See Using shared libraries for more information.

Stack C A simple example project on a stack application for System Testing
for C.

Stub Ada Ada A simple example project demonstrating the usage of stubs with
Component Testing for Ada. See Stub simulation Ada.

Stub C C A simple example project demonstrating the usage of stubs with
Component Testing for C. See Stub Simulation in C.

Task Ada Ada A simple example project demonstrating how to test Ada tasks with
Component Testing for Ada.

Add C An extremely short example to help you to develop new TDPs.

Template Cpp C++ An example of Component Testing for C++ on C++ templates

Testing Ada Ada This sample demonstrates how to test various variable types in Ada.

Testing C C This sample demonstrates how to test various variable types in C.

Test Suite Ada Ada Use this sample to validate any changes made to an Ada Target
Deployment Port.

Test Suite C C Use this sample to validate any changes made to a C Target
Deployment Port.

Target deployment technology overview

Rational's target deployment technology is a versatile, low-overhead technology enabling target-
independent tests and run-time analysis despite limitless target support. Used by all Test
RealTime features, the Target Deployment Port (TDP) technology is constructed to accommodate
your compiler, linker, debugger, and target architecture. Tests are independent of the TDP, so tests
don't change when the environment does. Test script deployment, execution and reporting remain
easy to use.

Key Capabilities and Benefits

• Compiler dialect-aware and linker-aware, for transparent test building.

• Easy download of the test harness environment onto the target via the user's IDE, debugger,
simulator or emulator.

• Painless test and run-time analysis results download from the target environment using JTAG
probes, emulators or any available communication link, such as serial, Ethernet or file system.

• Powerful test execution monitoring to distribute, start, synchronize and stop test harness
components, as well as to implement communication and exception handling.

• Versatile communication protocol adaptation to send and receive test messages.

• XML-based TDP editor enabling simple, in-house TDP customization

 5

Downloading Target Deployment Ports

Target Deployment technology was designed to adapt to any embedded or native target platform.
This means that you need a particular TDP to deploy Test RealTime to your target.

A wide array of TDPs has already been developed by Rational to suit most target platforms. You
can freely download available TDPs from the following page:

http://www.ibm.com/developerworks/rational/library/4015.html

Alternatively, from the Help menu, select Download Target Deployment Ports.

Downloaded TDPs can be freely used an modified with the TDP Editor.

Obtaining New Target Deployment Ports

If there is no existing TDP for your particular target platform, you have two options:

• You can choose to create, unassisted, a TDP tailored for your embedded environment. This
requires extensive knowledge of your development environment and the product. This also
requires some knowledge of the scripting language Perl.

• Rational can provide Professional Services and create a tailored TDP for you.

To create a TDP, see the Target Deployment Guide provided with the TDP Editor. The Target
Deployment Guide provides an overview and detailed information on setting up a TDP, and using
the TDP Editor.

For IBM Professional Services, please contact IBM via one of these methods:

• Contact your IBM Sales Representative directly.

• If you don't know your Sales Representative, contact IBM Rational Customer Support via this
link:
http://www.ibm.com/software/rational/support/

Reconfiguring a TDP for a compiler or JDK

During installation of IBM Rational Test RealTime:

• on Windows: A local Microsoft Visual Studio compiler and JDK are located, based on registry
settings. Only the compiler and JDK located during installation will be accessible within Test
RealTime.

• on Unix platforms: The user is confronted by two interactive dialogs. These dialogs serve to
clarify the location of the local GNU compiler and (if present) local JDK. Only the GNU
compiler and JDK specified within these dialogs will be accessible within Test RealTime.

 To make a different compiler or JDK accessible in Test RealTime :

1. From the Tools menu, select the Target Deployment Port Editor and Start.

2. In the TDP Editor, from the File menu, select Open.

3. Open the .xdp file corresponding to the new compiler or JDK for which you would like to
generate support

4. From the File menu, select Save.

5. Close the TDP Editor

 To update an existing project to use the newly supported compiler or JDK:

1. Open the existing project in Test RealTime.

2. From the Project menu, select Configuration.

6 IBM Rational Test RealTime User Guide

3. In the Configurations window, click New.

4. In the New Configuration window, select the newly supported compiler or JDK in the
dropdown list and click OK.

5. In the Configurations window, click Close.

Configuring target deployment ports

This section covers the Target Deployment Port (TDP) technology used by IBM Rational Test
RealTime to support embedded target platforms.

This chapter is intended for advanced users of the product. Advanced knowledge of the target
compiler, platform, development and test environment are required for Target Deployment Port
customization tasks. Knowledge of Perl scripts is also required.

Determining target requirements

The following tables lists the minimum requirements that your development environment must
provide to enable use of each feature of Test RealTime:

• C, C++ and Ada requirements

• Java requirements

C, C++ and Ada Requirements

The following table lists the requirements for each feature of the product.

Comp.
Testing
for C
and
Ada

Comp.
Testing
for
C++

System
Testing
for C

#VT=1

System
Testing
for C

#VT>1

Code
Coverage

Runtime
Tracing

Memory
Profiling

Perf.
Profiling

Data
Retrieval
Capability

R R R R R R R R

Free Data
Space

 S S S S

Free Stack
Space

 S S S S

Mutex R M M M M

Thread Self
and
PrivateData

 R M M M

Clock
Interface

 R R R

Heap
Management

 R R R

High Speed
Link

 R

Task
Management

 M R M M M

BSD Sockets R

 7

Ada N/A N/A N/A N/A N/A N/A

• R: Mandatory requirement. If this requirement is unavailable, then it may not be possible to
use the product on the platform.

• S: Required only for stand alone use of a Runtime Analysis feature. If you are not using a
Component Testing feature, these requirements are not mandatory.

• M: Required only if the application under test is a multi-threaded application running on a
preemptive multi-tasking mechanism.

Note Only the Component Testing for C and Ada and Code Coverage features support the
Ada language. System Testing for C can, however, be used to send messages to an Ada-
written application if C bindings exist for that feature.

 Java Requirements

The following table lists the requirements for each feature of the product.

 Comp.
Testing for Java Code Coverage Runtime

Tracing
Mem.

Profiling

Perf.

Profiling

Data
Retrieval
Capability

R R R R R

Free Data
Space

 S S S S

Free Stack
Space

 S S S S

Thread
Adaptation

 R R R

Clock
Adaptation

 R

JVMPI
Support

 R

Heap
Settings

 R

• R: Mandatory requirement. If this requirement is unavailable, then it may not be possible to
use the product on the platform.

• For stand alone: Required for stand alone use of a runtime analysis feature - i.e. used without
Component Testing for Java.

Data Retrieval Capability

Test programs or instrumented applications need to generate a text file on the host - this is how
information is gathered to prepare Test RealTime reports.

The Target Deployment Port gathers this report data by obtaining the value of a (char *) global
variable, containing regular ASCII codes, from the application or test driver running on the target
machine.

This retrieval can be accomplished in whichever way is most practical for the target. It could be
through file system access, a socket, specific system calls or a debugger script. Most known
environments allow at least some form of I/O.

At least one form of data retrieval capability is required.

8 IBM Rational Test RealTime User Guide

Free Data Space

All runtime analysis tools are based on Rational Source Code Insertion (SCI) technology. The
overhead introduced by this technology is dependent both on the selected instrumentation level
and on code complexity.

The Code Coverage feature requires the most free data space. The overhead for default Code
Coverage levels (procedure/method entries and decisions) typically increases code size by 25%.
Runtime Tracing, Memory Profiling and Performance Profiling introduce a significantly lower
overhead (about 16 bytes per instrumented file).

The Component Testing features of Test RealTime do not typically require additional free memory
because it is rare for the entire application to be run on the target.

Free Stack Space

The stack size should not be optimized for the requirements of the original application. The Test
RealTime instrumentation process adds a few bytes to the stack and inserts calls to the TDP
embedded runtime library.

Since, based on experience, it is difficult to identify stack overflow, the user should assume that
each instrumented function requires, on average, an extra 30 bytes for local data.

Mutex

This customization is required by all runtime analysis tools of the product if the application under
test uses a preemptive scheduling mechanism. A mutual exclusion mechanism is required to
ensure uninterrupted operation of critical sections of the Target Deployment Port.

Thread Self and Private Data

It must be possible to retrieve the current identifier of a thread, and it must be possible to create
thread-specific data (e.g. pthread_key_create for POSIX).

Time management

A clock interface is not necessary for the Component Testing for C and Ada, for C++, Memory
Profiling and Performance Profiling features, but it is required for Performance Profiling and
System Testing for C. The goal is to read and return a clock value (Performance Profiling) and to
provide time out values (System Testing for C).

If you are using Performance Profiling and System Testing for C with Component Testing and the
clock interface does exist, then Component Testing indicates time measurements for each function
under test and the Runtime Tracing feature timestamps all messages.

Heap Management

This customization is required by Memory Profiling and System Testing for C only.

Both Memory Profiling and System Testing for C need to allocate memory dynamically.

Memory Profiling also tracks and records memory heap usage, based on the standard malloc and
free functions. However, it can also handle user-defined or operating system dependent memory
usage functions, if necessary.

High-Speed Link

For Runtime Tracing On-the-Fly only.

To use the Runtime Tracing feature without a testing feature, a high-speed link between the host
and target machine is required in order to take full advantage of the On-the-Fly tracing mode. This
is because Runtime Tracing-instrumented code "writes a line" to the host for each entry point and
exit point of every instrumented function. This means that as the application is running, a

 9

continuous flow of messages is written to the host. Understandably, a 9600 bit rate, for example,
would not be sufficient for use of the Runtime Tracing feature with an entire application.

Note that the Code Coverage, Memory Profiling and Performance Profiling features store their
data in static target memory, and data is only sent back to the host at specified flush points (with
the Runtime Tracing feature, static memory is also flushed when it becomes full). Technically, a
Memory Profiling, Performance Profiling, and Code Coverage instrumented application can run
for weeks without seeing a growth in consumed memory; nothing need be sent to the host until a
user-defined flush point is reached.

Task Management

Runtime analysis features require task management capabilities when they are used to monitor
multi-threaded applications.

When the System Testing feature for C executes more than one virtual tester, full task management
capabilities must be available. In other words, System Testing for C should be able to start a task,
stop a task, and get the status of a task.

BSD Socket Compliance

When the System Testing feature for C executes more than one virtual tester, the target must be
BSD socket compliant. This is necessary because System Testing for C uses TCP/IP sockets to
enable communication between System Testing Agents and the System Testing Supervisor, as well
as to enable virtual tester RENDEZVOUS synchronization.

If, in fact, the target host is BSD socket-compliant, then it is guaranteed that you can address the
Data Retrieval Capability and the High-Speed Link requirements.

Thread Adaptation

This is required by all Java runtime analysis tools except Memory Profiling for Java.

The waitForThreads method must wait for the last thread to terminate before dumping results and
exiting the application.

On J2ME platforms, this method is empty.

Clock Adaptation

This customization is required for the Performance Profiling feature

• The getClock method must return the clock value, represented as a long.

• The getClockUnit method must return an array of bytes representing the clock unit.

JVMPI Support

The Java Virtual Machine (JVM) must support the JVM Profiler Interface (JVMPI) technology used
for memory monitoring.

This is required for Memory Profiling for Java.

Heap Settings

This customization is part of the JVMPI support settings.

If available, the dynamic memory allocation required by the feature is made through standard
malloc and free functions.

If the use of such routines is not allowed on the target, fill JVMPI_SIZE_T, jvmpi_usr_malloc and
jvmpi_usr_free types and functions with the appropriate code.

10 IBM Rational Test RealTime User Guide

Determining target architecture support

If your target can be used in Standard or User Mode, then it is fully supported by Test RealTime.

However, if your target can only be used in Breakpoint Mode, then you must ask yourself the
following questions to determine if your target platform has enough data retrieval capability to be
supported by Test RealTime:

• Does this debugger provide access to symbols?

• Is there a command language?

• Is there a way to run commands from a file?

• Can a command file be executed automatically when the debugger starts, either from a
particular filename or from an option of the command line syntax.

• Is there a command to stop the debugger? (The execution process must be blocked until
execution is terminated and the trace file is generated.)

• Is there a way to set software breakpoints?

• Is there a way to log what happens into a file?

• Is there a way to dump the contents of a variable in any format, or to dump a memory buffer
and log the value?

• Can the debugger automatically run other debugger commands when a breakpoint is reached,
such as a variable dump and resume; or, alternatively, does the debugger command language
include loop instructions?

If the answer to any of these questions is "No", then no data retrieval capability exists. Therefore,
test and runtime analysis feature execution on the target machine will not be possible with Test
RealTime.

Retrieving data from the target platform

Data Retrieval is accomplished through the association of the Target Deployment Port library
functions with an execution procedure.

The following examples demonstrate the Standard, User, and Breakpoint Modes, based on a simple
program which writes a text message to a file named "cNewTdp\\atl.out".

 Standard Mode Example: Native
#define RTRT_FILE FILE *

RTRT_FILE usr_open(char *fileName)

 { return((RTRT_FILE)(fopen(fileName,"w"))); }

void usr_writeln(RTRT_FILE f,char *s)

 { fprintf(f,"%s",s); }

void usr_close(RTRT_FILE f)

 {fclose(f) ;}

char atl_buffer[100];

void main(void)

{

RTRT_FILE f ;

strcpy(atl_buffer,"Hello World ");

f=usr_open("cNewTdp\\atl.out");

usr_writeln(f,atl_buffer);

usr_close(f);

}

Execution command : a.out

 11

When executing a.out, cNewTdp\atl.out will be created, and will contain "Hello World".

 User Mode Example: BSO-Tasking Crossview

Source code of the program running on the target:
#define RTRT_FILE int

RTRT_FILE usr_open(char *fName) { return(1); }

void usr_writeln(RTRT_FILE f,char *s) { _simo(1,s,80); }

void usr_close(RTRT_FILE f) { ; }

char atl_buffer[100];

void main(void)

{

 RTRT_FILE f ;

 strcpy(atl_buffer,"Hello World");

 f=usr_open("cNewTdp\\atl.out");

 usr_writeln(f,atl_buffer);

 usr_close(f);

}

Execution command from host:
xfw166.exe a.out -p TestRt.cmd

Content of TestRt.cmd:
1 sio o atl.out

r

q y

In this example, usr_open and usr_close functions are empty. Priv_writeln uses a BSO-Tasking
function, _simo, which allows to send the content of the s parameter on the channel number 1 (an
equivalent of a file handle).

On another side, on the host machine, the Crossview simulator (launched by the xfw166.exe
program) is configured by the command

1 sio o atl.out

indicating to the simulator running on the host, that any character being written on the channel
number 1 should be logged into a file name atl.out

The next command is to run the program, and quit at the end.

The original needs, which was to have cNewTdp\atl.out file be written on the host has to
completed by a script on the host machine, consisting in moving the atl.out generated in the
current directory into the cNewTdp directory. The complete execution step would be in Perl:

SystemP("xfw166.exe a.out -p TestRt.cmd");

If (! -r atl.out) { Error…. return(1);}

move("atl.out","cNewTdp/atl.out");

Breakpoint-Mode :

In all the breakpoint mode examples, the usr_ functions are empty.

 Breakpoint Mode Example: Keil MicroVision

Source code of the program running on the target:
#define RTRT_FILE int

RTRT_FILE usr_open(char *fName) { return(1); }

void usr_writeln(RTRT_FILE f,char *s) {;}

void usr_close(RTRT_FILE f) { ; }

char atl_buffer[100];

void main(void)

12 IBM Rational Test RealTime User Guide

{

RTRT_FILE f ;

strcpy(atl_buffer,"Hello World");

f=usr_open("cNewTdp\\atl.out");

usr_writeln(f,atl_buffer);

usr_close(f);

}

Execution command from host:
uv2.exe -d TestRt.cmd

Content of TestRt.cmd:
load a.out

func void out(void) {

int i=0;

while(atl_buffer[i]) printf("%c",atl_buffer[i++]);

printf("\n");

}

bs usr_writeln,"out()"

bs usr_close

reset

log > Tmpatl.out

g

exit

In this example, all the usr_ functions are empty. The intelligence is deported into the TestRt.cmd
script which a command file for the debugger.

It first loads a.out executable program. It then defines a function, which prints the value of
atl_buffer in the MicroVision command window. Then it sets two breakpoints. The first one in
usr_writeln, and the second one in usr_close. When usr_writeln is reached, the program halts, and
the debugger automatically runs his out() function, which print the value of atl_buffer into its
command window. When usr_close is reached, the program halts.

Then, the debugger scripts resets the processor, and logs anything that happens in the debugger
command window into a file named Tmpatl.out. It then starts the execution, (which finally halts
when usr_close is reached as no action is associated with this breakpoint) and exits.

The final result is contained into Tmpatl.out, which should be cleanup by the host (a little decoder
in Perl for example) to give the final expected cNewTdp\atl.out file containing "Hello World". The
global execution step in Perl would be:

SystemP("uv2.exe -d TestRt.cmd") ;

Decode and clean Tmpatl.out and write the results in

cNewTdp\atl.out

Decode_Tmpatl.out_Into_Final_Intermediate_Report();

 Breakpoint Mode Example: PowerPC-SingleStep

Source code of the program running on the target:
#define RTRT_FILE int

RTRT_FILE usr_open(char *fName) { return(1); }

void usr_writeln(RTRT_FILE f,char *s) { _simo(1,s,80); }

void usr_close(RTRT_FILE f) { ; }

char atl_buffer[100];

void main(void)

{

RTRT_FILE f ;

strcpy(atl_buffer,"Hello World");

 13

f=usr_open("cNewTdp\\atl.out");

usr_writeln(f,atl_buffer);

usr_close(f);

}

Execution command from host:
simppc.exe TestRt.cmd

Content of TestRt.cmd:
debug a.out

break usr_close

break usr_writeln -g -c "read atl_buffer >> Tmpatl.out"

go

exit

As in the previous example, all the usr_ functions are empty. The intelligence is deported into the
TestRt.cmd script which a command file executed when the SingleStep debugger is launched.

It first loads the executable program, a.out by the debug command.

Then it sets a breakpoint at usr_close function, which serves as an exit-point, then set a breakpoint
in the usr_writeln function. The -g flag of the break commmand indicates to continue the execution,
whilest the -c specifies a command that should be executed before continuing. This command
(read) writes the value of the atl_buffer variable into Tmpatl.out.

The SingleStep debugger then starts the execution. When it stops, it means than usr_close has been
reached. It then executes the exit command, to terminate the debugging session.

The final result is contained into Tmpatl.out, and should be cleaned-up by the host (a little decoder
in Perl for example) to produce the final expected cNewTdp\atl.out file containing "Hello World".

Based on the "Hello World" program, we should now focus on automating the execution step and
having atl.out being written.

Retrieving Data from the Target Host

All test and runtime analysis tools of the product must be able to retrieve the value of a global (char
*) variable from an application running on the target machine and then write that value to a text
file on the host machine. (The variable will contain only ASCII values).

This retrieval may be the result of a specific program running on the target, of an adapted
execution procedure on the host, or both.

To perform data retrieval, the program generated or instrumented by the product is linked with
the Target Deployment Port data retrieval functions and type definition.

For example, in the C language, the type definition and data retrieval functions are:
#define RTRT_FILE <Type>

RTRT_FILE priv_init(char *fName); /* fName: file name to be
written on the host */

RTRT_FILE priv_open(char *fName); /* fName: file name to be
written on the host */

void priv_writeln(RTRT_FILE f,char *data); /* data is the data that
should be printed in the file */

void priv_close(RTRT_FILE f); /* Close the host file */

These data retrieval functions are called by the Target Deployment Port library. Depending on the
nature of the target platform, some or all of these routines may be empty.

Never ending applications

When designing embedded and real-time software, it is frequent to have applications which are
designed to loop indefinitely and do not exit.

14 IBM Rational Test RealTime User Guide

A good method for data retrieval for this type of application can be as follows:

• Set the usr_init routine to only return 0.

• Set the usr_open routine to open the file in append mode and return the handle of the file.

• Set the usr_write to write the buffer s into the file f.

• Set the usr_close routine to close the file f.

• Set the atexit function to NONE

• Use the On Function Return setting in the Snapshot page of the General Runtime Analysis
settings (or the -DUMPRETURNING option from the Instrumentor command line) from a
function which is reachable but not executed frequently. The best is to setup a dedicated
function which is executed on demand.

For this type of application, it can be useful to close the output file at the end of each dump in order
to use the file for reporting in Studio even if the application is still running. To do this, compile the
files with the following compiler option:

-D_ATCPQ_RESET=_ATCPQ_CLOSE

Target System Categories

Target platforms can be classified into three categories, characterized by their data-retrieval
method:

• Standard Mode

• User Mode

• Breakpoint Mode

Standard Mode

This kind of target system allows use of a regular FILE * data type and of the fopen, fprintf and
fclose functions found in the standard C library. Such systems include, for example, all UNIX or
Windows platforms, as well as LynxOS or QNX.

If the standard C library is usable on the target, use these regular fopen/fprintf/fclose functions
for TDP data retrieval. This is by far the easiest data retrieval option.

• If your target system is compliant with the Standard Mode category, data retrieval is assured.

User Mode

On User Mode systems, the standard C library calls described above are not available but other calls
that send characters to the host machine are available. This could be a simple putchar-like function
sending a character to a serial line, or it could be a method for sending a string to a simulated I/O
channel, such as in the case of a microprocessor simulator.

• If your target system is using an operating system, there are usually functions that enable
communication between the host machine and the target. Therefore, data retrieval capability is
assured.

• If your target system allows use of a standard socket library, User Mode is always possible -
thus data retrieval is assured.

Breakpoint Mode

On breakpoint mode systems, no I/O functions are available on the target platform. This is usually
the case with small target calculators, such as those used in the automotive industry, running on a
microprocessor simulator or emulator with no operating system.

If no communication functions are available on the target platform, the best alternative is to use a
debugger logging mechanism, assuming one exists.

 15

Note In breakpoint mode, some compilers and linkers ignore empty functions and
remove them from the final a.out binary. As the debugger must use these routines to set
breakpoints, you must ensure that the linker includes these functions - any associated
symbols must be in the map file. Currently, all of the priv_ functions for C and C++
contain a small amount of dummy code to avoid this issue; however, you might need to
add dummy code for Ada.

When using breakpoint mode it is necessary to implement a debugger script to perform the
following actions in the given order:

• Download the executable on the target.

• Set three break points: priv_exit, priv_close, and priv_writeln.

• Start the execution

• Each time the priv_writeln break point is reached, dump the atl_buffer and resume.

• Quit the debugger when any other break point is reached.

Troubleshooting target deployment ports

If you are experiencing problems related to implementing a TDP on a particular target, the
following troubleshooting guide might help you to find a solution.

If a problem persists, do not hesitate to contact IBM Customer support for help.

Problem Solution

In breakpoint mode, the priv_exit breakpoint is
never reached

The priv_exit breakpoint is only reached when
problems are found by the TDP. See Breakpoint
mode in Target system categories.

When using Runtime Analysis tools alone, no results
are produced and the atl_obstools_dump function
is never reached.

This usually occurs when the application never ends
or when the entry point is not a main function.

When using Runtime Analysis tools alone, no results
are produced and the application uses a custom exit
function instead of the standard function.

Add the following line to the ANA ?
#pragma attol exit_instr =
"exit","<ExitFunction>"

See Never ending applications.

When using Runtime Analysis tools alone, no results
are produced and the application does not use main
as an entry point.

When using main as an entry point, the
instrumentor automatically adds a call to the dump
at the end of this procedure.

If you do not use main as an entry point or if this file
has not been instrumented then this call is not
generated. The solution is the same as for an
application which never exits. See Never ending
applications.

When using Runtime Analysis tools alone, no results
are produced although the atl_obstools_dump
function is reached.

Check that in the Initialized global variable
support and checks section of the TDP the
initialization is supported.

If not then unset
RTRT_VARIABLE_INIT_SUPPORTED.

Check that memory is reintialized to 0 before
execution. If not then set
 RTRT_RAM_SET_RAMDOMLY.

When using Runtime Analysis tools alone, no results
are produced and in breakpoint mode, the
priv_close breakpoint is never reached.

The priv_close breakpoint is executed at the end of
the execution to close the result file. If however
atexit is not set to NONE, then priv_close is not
explicitly called.

16 IBM Rational Test RealTime User Guide

If the exit function does not perform the call, change
the TDP to set atexit to NONE.

When I collect coverage data for a component test,
either:

• The viewer shows coverage for ATU.h, and
each trace has a call to ATU.h, or

• The viewer shows the source code, even for
all included files.

The #line x statements are not generated properly
by the compiler in the .i file. Find the compiler
option to properly generate these #lines during the
preprocessing phase.

I cannot tell whether my compiler is supported. We have never encountered any problems
 supporting any C compiler whatsoever with target
deployment port technology.

This, however, is not true for all C++ compilers. For
example, Borland C++ is not supported.

There is no TDP for Memory Profiling for Java Memory Profiling for Java uses the JVMPI
mechanism provided by the JVM and does not rely
on target deployment port technology. If JVMPI is
not available, for example with J2ME, there is no
way to perform memory analysis.

In this case, there are two options:

- Implement your own JVMPI mechanism on the
target JVM.

- Implement another means of tracking memory
usage on the target

Using the TDP Editor

Using the TDP Editor

The TDP Editor provides a user interface designed to help you customize and create unified Target
Deployment Ports.

The TDP Editor is made up of 4 main sections:

• A Navigation Tree: Use the navigation tree on the left to select customization points.

• A Help Window: Provides direct reference information for the selected customization point.

• An Edit Window: The format of the Edit Window depends on the nature of the customization
point.

• A Comment Window: Lets you to enter a personal comment for each customization point.

In the Navigation Tree, you can click on any customization point to obtained detailed reference
information for that parameter in the Help Window. Use this information to customize the TDP to
suit your requirements.

Launching the TDP Editor

The TDP Editor provides a user interface designed to help you customize and create unified Target
Deployment Ports (TDP).

Please refer to the Target Deployment Guide, accessible from the Help menu of the Target
Deployment Port Editor, for information about customizing Target Deployment Ports and using
the editor.

 17

 To run the TDP Editor from Windows:

1. From the Windows Tools menu, select Target Deployment Port Editor and Start.

Updating a Target Deployment Port

The Target Deployment Port (TDP) settings are read or loaded when a Test RealTime project is
opened, or when a new TDP is used.

If you make any changes to a TDP with the TDP Editor, these will not be taken into account until
the TDP has been reloaded in the project.

 To reload the TDP in Test RealTime :

1. From the Project menu, select Configurations.

2. Select the TDP and click Remove.

3. Click New, select the TDP and click OK.

Opening a Target Deployment Port

Target Deployment Ports can be viewed and edited with the TDP Editor supplied with Test
RealTime.

 To start the TDP Editor:

1. In Test RealTime, from the Tools menu, select TDP Editor and Start.

or

2. From the command line, type tdpeditor.

 To open a TDP:

1. From the File menu, select Open.

2. In the targets directory, select an .xdp file and click Open.

Creating a Target Deployment Port

To create a new Target Deployment Port (TDP), the best method is to make a copy of an existing
TDP that requires minimal modifications.

Naming Conventions

By convention, the TDP directory name starts with a c for the C and C++ languages, ada for the
Ada language or j for Java, followed by the name of the development environment, such as the
compiler and target platform.

The name of the .xdp file generally follows the same convention.

The name of the top-level node can be a user-friendly name, as it is to be displayed in the Test
RealTime GUI.

 To create a new TDP:

1. In the TDP Editor, from the File menu, select New.

1. In the Language Selection box, select the language used for this TDP.

The TDP Editor uses this information to create a template, which already contains most of the
information required for the TDP.

18 IBM Rational Test RealTime User Guide

2. Right click the top level node in the tree-view pane, which contains the name of the TDP.
Select Rename. and enter a new name for this TDP. This name identifies the TDP in the Test
RealTime GUI and can be more explicit than the TDP filename (see Naming Conventions).

3. As a good practice, in the Comment section, enter contact information such as your name and
email address. This makes things easier when sharing the TDP with other users.

 To save the new TDP:

1. From the File menu, select Save As.

2. Save your new TDP with a filename that follows the naming conventions described above. The
actual location of the .xdp file is not relevant. The TDP Editor automatically creates a directory
with the same name as the .xdp file and saves the .xdp file at that location.

Editing Customization Points

Use the Navigation Tree on the left to select customization points. A Target Deployment Port can
be subdivided into four primary sections:

• Basic Settings: This section specifies default file extensions, default compilation and link flags,
environment variables and custom variables required for your target environment. This
section allows you to set all the common settings and variables used by Test RealTime and the
different sections of the TDP. For example, the name and location of the cross compiler for
your target is stored in a Basic Settings variable, which is used throughout the compilation,
preprocessing and link functions. If the compiler changes, you only need to update this
variable in the Basic Settings section.

• Build Settings: This section configures the functions required by the Test RealTime GUI
integrated build process. It defines compilation, link and execution Perl scripts, plus any user-
defined scripts when needed. This section is the core of the TDP, as it drives all the actions
needed to compile and execute a piece of code on the target. All files related to the Build
settings are stored in the TDP cmd subdirectory

• Library Settings: This section describes a set of source code files as well as a dedicated
customization file (custom.h), which adapt the TDP to target platform requirements. This
section is definitively the most complex and usually only requires customization for
specialized platform TDPs (unknown RTOS, no RTOS, unknown simulator, emulator, etc.).
These files are stored in the TDP lib subdirectory.

• Parser Settings: This section modifies the behavior of the parser in order to address non-
standard compiler extensions, such as for example, non-ANSI extensions. This section allows
Test RealTime to properly parse your source code, either for instrumentation or code
generation purposes. The resulting files are stored in the TDP ana subdirectory.

 To edit a customization point

1. In the Navigation Tree, select the customization point that you want to edit.

2. In the Help Window, read the reference information pertaining to the selected customization
point. Use this information fill out the Edit window.

3. As a good practice, enter any remarks or comments in the Comments window.

After making any changes to a TDP, you must update the TDP in Test RealTime to apply the
changes to a project.

Updating a Target Deployment Port

The Target Deployment Port (TDP) settings are read or loaded when a Test RealTime project is
opened, or when a new Configuration is used.

 19

If you make any changes to the Basic Settings of a TDP with the TDP Editor, any project settings
that are read from the TDP will not be taken into account until the TDP has been reloaded in the
project.

 To reload the TDP in Test RealTime:

1. From the Project menu, select Configurations.

2. Select the TDP and click Remove.

3. Click New, select the TDP and click OK.

Using a Post-generation Script

In some cases, it can be necessary to make changes to the way the TDP is written to its directory
beyond the possibilities offered by the TDP editor.

To do this, the TDP editor runs a post-generation Perl script called postGen.pl, which can be
launched automatically at the end of the TDP directory generation process.

 To use the postGen script:

1. In the TDP editor, right click on the Build Settings node and select Add child and Ascii File.

2. Name the new node postGen.pl.

3. Write a perl function performing the actions that you want to perform after the TDP directory
is written by the TDP Editor.

Example

Here is a possible template for the postGen.pl script file:
sub postGen

{

 $d=shift;

the only parameter passed to this function is the path to the
target directory

here any action to be taken can be added

}

1;

The parameter $d contains <tdp_dir>/<tdp_name>, where <tdp_dir> is a chosen location for the TDP
directory (by default, the targets subdirectory of the product installation directory), and
<tdp_name> is the name of the current TDP directory

© Copyright IBM Corp. 2001, 2006 21

Chapter 2. Profiling with runtime analysis

The runtime analysis feature set of Test RealTime allows you to closely monitor the behavior of
your application for debugging and validation purposes. Each feature instruments the source code
providing real-time analysis of the application while it is running, either on a native or embedded
target platform.

Runtime analysis overview

The runtime analysis tools of IBM Rational Test RealTime allow you to closely monitor the
behavior of your application for debugging and validation purposes.

These features use source code insertion to instrument the source code providing real-time analysis
of the application while it is running, either on a native or embedded target platform.

• Memory Profiling analyzes memory usage and detects memory leaks.

• Performance Profiling provides performance load monitoring.

• Code Coverage performs code coverage analysis.

• Runtime Tracing draws a real-time UML Sequence Diagram of your application.

• Contract Check (for C++ only) verifies behavioral assertions during execution of the code and
produces a Contract Check sequence diagram.

Each of these runtime analysis tools can be used together with any of the automated testing
features providing, for example, test coverage information.

Note SCI instrumentation of the source code generates a certain amount of overhead, which
can impact application size and performance. See Source Code Insertion Technology for
more information.

Here is a basic rundown of the main steps to using the runtime analysis feature set.

 To use the runtime analysis tools:

1. From the Start page, set up a new project. This can be done automatically with the New
Project Wizard.

2. Follow the Activity Wizard to add your application source files to the workspace.

3. Select the source files under analysis in the wizard to create the application node.

4. Select the runtime analysis tools to be applied to the application in the Build options.

5. Use the Project Explorer to set up the test campaign and add any additional runtime analysis
or test nodes.

6. Run the application node to build and execute the instrumented application.

7. View and analyze the generated analysis and profiling reports.

The runtime analysis tools can be run within a test by simply adding the runtime analysis setting to
an existing test node.

22 IBM Rational Test RealTime User Guide

The runtime analysis tools for C and C++ can also be used in an Eclipse development environment.

Code coverage

Source-code coverage consists of identifying which portions of a program are executed or not
during a given test case. Source-code coverage is recognized as one of the most effective ways of
assessing the efficiency of the test cases applied to a software application.

The Code Coverage feature brings efficient, easy-to-use robust coverage technologies to real-time
embedded systems. Code Coverage provides a completely automated and proven solution for C,
C++, Ada and Java software coverage based on optimized source-code instrumentation.

How Code Coverage Works

When an application node is executed, the source code is instrumented by the Instrumentor
(attolcpp, attolcc1, attolada or javi). The resulting source code is then executed and the Code
Coverage feature outputs an .fdc and a dynamic .tio file.

These files can be viewed and controlled from the Test RealTime GUI. Both the .fdc and .tio files
need to be opened simultaneously to view the report.

Of course, these steps are mostly transparent to the user when the test or application node is
executed in the Test RealTime GUI or Eclipse (for C and C++).

Information Modes

The Information Mode is the method used by Code Coverage to code the trace output. This has a
direct impact of the size of the trace file as well as on CPU overhead.

You can change the information mode used by Code Coverage in the Coverage Type settings.
There are three information modes:

• Default mode

• Compact mode

• Hit Count mode

Default Mode

When using Default or Pass mode, each branch generates one byte of memory. This offers the best
compromise between code size and speed overhead.

Compact Mode

The Compact mode is functionally equivalent to Pass mode, except that each branch needs only
one bit of storage instead of one byte. This implies a smaller requirement for data storage in
memory, but produces a noticeable increase in code size (shift/bits masks) and execution time.

Hit Count Mode

In Hit Count mode, instead of storing a Boolean value indicating coverage of the branch, a specific
count is maintained of the number of times each branch is executed. This information is displayed
in the Code Coverage report.

Count totals are given for each branch, for all trace files transferred to the report generator as
parameters.

In the Code Coverage report, branches that have never been executed are highlighted with asterisk
'*' characters.

 23

The maximum count in the report generator depends on the machine on which tests are executed.
If this maximum count is reached, the report signals it with a Maximum reached message.

Coverage types

The Code Coverage feature provides the capability of reporting of various source code units and
branches, depending on the coverage type selected.

By default, Code Coverage implements full coverage analysis, meaning that all coverage types are
instrumented by source code insertion (SCI). However, in some cases, you might want to reduce
the scope of the Code Coverage report, such as to reduce the overhead generated by SCI for
example.

Branches

When referring to the Code Coverage feature, a branch denotes a generic unit of enumeration. For
each branch, you specify the coverage type. Code Coverage instruments each branch when you
compile the source under test.

Coverage Levels

The following table provides details of each coverage type as used in each language supported by
the product

Coverage Level Languages

Block coverage C Ada C++ Java

Call coverage C Ada

Condition coverage C Ada

ATC coverage Ada

Function, unit or method
coverage

C Ada C++ Java

Link files Ada

Templates C++

Additional statements C Ada C++ Java

 To select a coverage level:

1. Right-click the application or test node concerned by the Code Coverage report.

2. From the pop-up menu, select Settings.

3. In the Configuration list, expand Code Coverage and select Instrumentation Control.

4. Select or clear the coverage levels as required.

5. Click OK.

Ada coverage

Block coverage

When analyzing Ada source code, Code Coverage can provide the following block coverage types:

• Statement blocks

• Statement and decision blocks

• Statement, decision, and loop blocks

24 IBM Rational Test RealTime User Guide

• Asynchronous transfer of control (ATC) blocks

Statement blocks (or simple blocks)

Simple blocks are the main blocks within units as well as blocks introduced by decisions, such as:

• then and else (elsif) of an if

• loop...end loop blocks of a for...while

• exit when...end loop or exit when blocks at the end of an instruction sequence

• when blocks of a case

• when blocks of exception processing blocks

• do...end block of the accept instruction

• or and else blocks of the select instruction

• begin...exception blocks of the declare block that contain an exceptions processing block.

• select...then abort blocks of an ATC statement

• sequence blocks: instructions found after a potentially terminal statement.

A simple block constitutes one branch. Each unit contains at least one simple block corresponding
to its body, except packages that do not contain an initialization block.

Decision coverage (implicit blocks)

An if statement without an else statement introduces an implicit block.
-- Function power_10

-- -block=decision or -block=implicit

function power_10 (value, max : in integer) return integer is

 ret, i : integer ;

begin

 if (value == 0) then

 return 0;

 -- implicit else block

 end if ;

 for i in 0..9

 loop

 if ((max /10) < ret) then

 ret := ret *10 ;

 else

 ret := max ;

 end if ;

 end loop ;

 return ret;

end ;

An implicit block constitutes one branch.

Implicit blocks refer to simple blocks to describe possible decisions. The Code Coverage report
presents the sum of these decisions as an absolute value and a ratio.

Loop coverage (logical blocks)

A for or while loop constitutes three branches:

• The simple block contained in the loop is never executed: the exit condition is true immediately

• The simple block is run only once: the exit condition is false, and then true on the next iteration

 25

• The simple block run at least twice: the exit condition is false at least twice, then finally true)

A loop...end loop block requires only two branches because the exit condition, if it exists, is tested
within the loop:

• The simple block is played only once: the exit condition is true on the first iteration, if the
condition exists

• The simple block is played at least twice: the exit condition false at least once and then finally
true, if the condition exists

In the following example, you need to execute the function try_five_times() several times for 100 %
coverage of the three logical blocks induced by this while loop.

-- Function try_five_times

function try_five_times return integer is

 result, i : integer := 0 ;

begin

 -- try is any function

 while (i < 5) and then (result <= 0) loop

 result := try ;

 i := integer'succ(i);

 end loop ;

 return result;

end ; -- 3 logical blocks

Logical blocks are attached to the loop introduction keyword.

Asynchronous transfer of control (ATC) blocks

This coverage type is specific to the Ada 95 asynchronous transfer of control (ATC) block statement
(see your Ada documentation).

The ATC block contains tree branches:

• Control immediately transferred: The sequence of control never passes through the block then
abort /end select, but is immediately transferred to the block select/then abort.

• Control transferred: The sequence of control starts at the block then abort/end select, but
never reaches the end of this block. Because of trigger event appearance, the sequence is
transferred to the block select/then abort.

• Control never transferred: Because the trigger event never appears, the sequence of control
starts and reaches the end of the block then abort/end select, and was never transferred to the
block select/then abort.

In the following example, you need to execute the compute_done function several times to obtain
full coverage of the three ATC blocks induced by the select statement:

function compute_done return boolean is

 result : boolean := true ;

begin

 -- if computing is not done before 10s ...

 select

 delay 10.0;

 result := false ;

 then abort

 compute;

 end select;

 return result;

end ; -- 3 logical blocks

Code Coverage blocks are attached to the Select keyword of the ATC statement.

26 IBM Rational Test RealTime User Guide

Call coverage

When analyzing Ada source code, Code Coverage can provide coverage of function, procedure, or
entry calls.

Code Coverage defines as many branches as it encounters function, procedure, or entry calls.

This type of coverage ensures that all the call interfaces can be shown to have been exercised for
each Ada unit (procedure, function, or entry). This is sometimes a pass/fail criterion in the
software integration test phase.

Condition Coverage

Basic Conditions

Basic conditions are operands of logical operators (standard or derived, but not overloaded) or,
xor, and, not, or else, or and then, wherever they appear in ADA units. They are also the
conditions of if, while, exit when, when of entry body, and when of select statement, even if these
conditions do not contain logical operators. For each of these basic conditions, two branches are
defined: the sub-condition is true and the sub-condition is false.

A basic condition is also defined for each when of a case statement, even each sub-expression of a
compound when, that is when A | B: two branches.

-- power_of_10 function
 -- -cond

Function power_of_10(value, max : in integer)

is

 result : integer ;

Begin

 if value = 0 then

 return 0;

 end if ;

 result := value ;

 for i in 0..9 loop

 if (max > 0) and then ((max / value) < result) then

 result := result * value;

 else

 result := max ;

 end if ;

 end loop;

 return result ;

end ; -- there are 3 basic conditions (and 6 branches).

-- Near_Color function

Function Near_Color (color : in ColorType) return ColorType

is

Begin

 case color is

 when WHITE | LIGHT_GRAY => return WHITE ;

 when RED | LIGHT_RED .. PURPLE => return RED ;

 end case ;

End ; -- there are 4 basics conditions (and 4 branches).

Two branches are enumerated for each boolean basic condition, and one per case basic condition.

Forced Conditions

A forced condition is a multiple condition in which any occurrence of the or else operator is
replaced with the or operator, and the and then operator is replaced with the and operator. This

 27

modification forces the evaluation of the second member of these operators. You can use this
coverage type after modified conditions have been reached to ensure that all the contained basic
conditions have been evaluated. With this coverage type, you can be sure that only the considered
basic condition value changes between both condition vectors.

-- Original source : -- -
cond=forceevaluation

 if (a and then b) or else c then

-- Modified source :

 if (a and b) or c then

Note This replacement modifies the code semantics. You need to verify that using this
coverage type does not modify the behavior of the software.

 Example
procedure P (A : in tAccess) is

begin

 if A /= NULL and then A.value > 0 -- the evaluation of A.value
will raise an

 -- exception when using forced
conditions

 -- if the A pointer is nul

 then

 A.value := A.value - 1;

 end if;

end P;

Modified Conditions

A modified condition is defined for each basic condition enclosed in a composition of logical
operators (standard or derived, but not overloaded). It aims to prove that this condition affects the
result of the enclosing composition. To do that, find a subset of values affected by the other
conditions, for example, if the value of this condition changes, the result of the entire expression
changes.

Because compound conditions list all possible cases, you must find the two cases that can result in
changes to the entire expression. The modified condition is covered only if the two compound
conditions are covered.

-- State_Control state --
-cond=modified

Function State_Condtol return integer

is

Begin

 if ((flag_running and then (process_count > 10))

 or else flag_stopped)

 then

 return VALID_STATE ;

 else

 return INVALID_STATE ;

 end if ;

End ;

-- There are 3 basic conditions, 5 compound conditions

-- and 3 modified conditions :

-- flag_running : TTX=T and FXF=F

-- process_count > 10 : TTX=T and TFF=F

-- flag_stopped : TFT=T and TFF=F, or FXT=T and FXF=F

-- 4 test cases are enough to cover all the modified conditions :

28 IBM Rational Test RealTime User Guide

-- TTX=T

-- FXF=F

-- TFF=F

-- FTF=F or FXT=T

Note You can associate a modified condition with more than one case, as shown in this
example for flag_stopped. In this example, the modified condition is covered if the two
compound conditions of at least one of these cases are covered.

Code Coverage calculates cases for each modified condition.

The same number of modified conditions as boolean basic conditions appear in a composition of
logical operators (standard or derived, but not overloaded).

Multiple Conditions

A multiple condition is one of all the available cases of logical operators (standard or derived, but
not overloaded) wherever it appears in an ADA unit. Multiple conditions are defined by the
concurrent values of the enclosed basic boolean conditions.

A multiple condition is noted with a set of T, F, or X letters, which means that the corresponding
basic condition evaluates to true or false, or it was not evaluated, respectively. Such a set of letters
is called a condition vector. The right operand of or else or and then logical operators is not
evaluated if the evaluation of the left operand determines the result of the entire expression.

-- State_Control Function --
-cond=compound

Function State_Control return integer

is

Begin

 if ((flag_running and then (process_count > 10))

 or else flag_stopped

 then

 return VALID_STATE ;

 else

 return INVALIDE_STATE ;

 end if ;

End ;

-- There are 3 basic conditions

-- and 5 compound conditions :

-- TTX=T <=> ((T and then T) or else X) = T

-- TFT=T

-- TFF=F

-- FXT=T

-- FXF=F

Code Coverage calculates the computation of every available case for each composition.

The number of enumerated branches is the number of distinct available cases for each composition
of logical operators (standard or derived, but not overloaded).

Unit coverage

Unit Entries

Unit entries determine which units are executed and/or evaluated.
-- Function factorial

-- -proc

function factorial (a : in integer) return integer is

 29

begin

 if (a > 0) then

 return a * factorial (a - 1);

 else

 return 1;

 end if;

end factorial ;

One branch is defined for each defined and instrumented unit. In the case of a package, the unit
entry only exists if the package body contains the begin/end instruction block.

For Protected units, no unit entry is defined because this kind of unit does not have any statements
blocks.

Unit Exits and Returns

These are the standard exit (if it is coverable), each return instruction (from a procedure or
function), and each exception-processing block in the unit.

-- Function factorial

-- -proc=ret

function factorial (a : in integer) return integer is

begin

 if (a > 0) then

 return a * factorial (a - 1);

 else

 return 1;

 end if ;

end factorial ; -- the standard exit is not coverable

-- Procedure divide

procedure divide (a,b : in integer; c : out integer) is

begin

 if (b == 0) then

 text_io.put_line("Division by zero");

 raise CONSTRAINT_ERROR;

 end if ;

 if (b == 1) then

 c := a;

 return;

 end if ;

 c := a / b;

exception

 when PROGRAM_ERROR => null ;

end divide ;

For Protected units, no exit is defined because this kind of unit does not have any statements
blocks.

In general, at least two branches per unit are defined; however, in some cases the coding may be
such that:

• There are no unit entries or exits (a package without an instruction block (begin/end),
protected units case).

• There is only a unit entry (an infinite loop in which the exit from the task cannot be covered
and therefore the exit from the unit is not defined).

30 IBM Rational Test RealTime User Guide

The entry is always numbered if it exists. The exit is also numbered if it is coverable. If it is not
coverable, it is preceded by a terminal instruction containing return or raise instructions; otherwise,
it is preceded by an infinite loop.

A raise is considered to be terminal for a unit if no processing block for this exception was found in
the unit.

Link files

Link files are the library management system used for Ada Coverage. These libraries contain the
entire Ada compilation units contained by compiler sources, the predefined Ada environment and
the source files of your projects. You must use link files when using Code Coverage in Ada for the
Ada Coverage analyzer to correctly analyze your source code.

You can include a link file within another link file, which is an easy way to manage your source
code.

Link File Syntax

Link files have a line-by-line syntax. Comments start with a double hyphen (--), and end at the end
of the line. Lines can be empty.

There are two types of configuration lines:

• Link file inclusion: The link filename can be relative to the link file that contains this line or
absolute.
<link filename> LINK

• Compilation unit description: The source filename is the file containing the described
compilation unit (absolute or relative to the link filename). The full unit name is the Ada full
unit name (beware of separated units, or child units).
<source filename> <full unit name> <type> [ada83]

The <type> is one of the following flags:

• SPEC for specification

• BODY for a body

• PROC for procedure or function

Use the optional ada83 flag if the source file cannot be compiled in Ada 95 mode, and must be
analyzed in Ada 83 mode.

Generating a Link File

The link file can be generated either manually or automatically with the Ada Link File Generator
(attolalk) tool. See the Rational Test RealTime Reference Manual for more information about
command line tools.

Sending the Link File to the Instrumentor

The loading order of link files is important. If the same unit name is found twice or more in one (or
more) loaded link files, the Instrumentor issues a warning and uses the last encountered unit.

Included link files are analyzed when the file including the link file is loaded.

In Ada, Code Coverage loads the link files in the following order:

• By default, either adalib83.alk or adalib95.alk is loaded. These files are part of the Target
Deployment Port.

• If you use the -STDLINK command line option, the specified standard link file is loaded first.
See the Rational Test RealTime Reference Manual for more information

• The link file specified by the ATTOLCOV_ADALINK environment variable is loaded.

 31

• The link files specified by the -Link option is loaded.

Now, you can start analyzing the file instrument.

Loading A Permanent Link File

You can ask Code Coverage to load the link file at each execution. To do that, set the environment
variable ATTOLCOV_ADALINK with the link filename separated by ':' on a UNIX system, or ';' in
Windows. For example:

ATTOLCOV_ADALINK="compiler.alk/projects/myproject/myproject.alk"

A Link file specified on the command line is loaded after the link file specified by this environment
variable.

Additional Statements

Terminal Statements

An Ada statement is terminal if it transfers control of the program anywhere other than to a
sequence (return, goto, raise, exit).

By extension, a decision statement (if, case) is also terminal if all its branches are terminal (i.e., if,
then and else blocks and non-empty when blocks contain a terminal instruction). An if statement
without an else statement is never terminal, since one of the blocks is empty and therefore transfers
control in sequence.

Potentially Terminal Statements

An Ada statement is potentially terminal if it contains a decision choice that transfers control of the
program anywhere other than after it (return, goto, raise, exit).

Non-coverable Statements

An Ada statement is detected as being not coverable if it is not a goto label and if it is in a terminal
statement sequence. Statements that are not coverable are detected by the feature during the
instrumentation. A warning is generated to signal each one, which specifies its location source file
and line. This is the only action Code Coverage takes for statements that cannot be covered.

Note Ada units whose purpose is to terminate execution unconditionally are not evaluated.
This means that Code Coverage does not check that procedures or functions terminate or
return.

Similarly, exit conditions for loops are not analyzed statistically to determine whether the loop is
infinite. As a result, a for, while or loop/exit when loop is always considered non-terminal (i.e.,
able to transfer control in its sequence). This is not applicable to loop/end loop loops without an
exit statement (with or without condition), which are terminal.

C coverage

Block coverage

When running the Code Coverage feature on C source code, Test RealTime can provide the
following coverage types for code blocks:

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

Statement Blocks (or Simple Blocks)

Simple blocks are the C function main blocks, blocks introduced by decision instructions:

• THEN and ELSE FOR IF

32 IBM Rational Test RealTime User Guide

• FOR, WHILE and DO ... WHILE blocks

• non-empty blocks introduced by switch case or default statements

• true and false outcomes of ternary expressions (<expr> ? <expr> : <expr>)

• blocks following a potentially terminal statement.
/* Power_of_10 Function */ /* -block
*/

int power_of_10 (int value, int max)

{

 int retval = value, i;

 if (value == 0) return 0; /* potentially terminal statement */

 for (i = 0; i < 10; i++) /* start of a sequence block */

 {

 retval = (max / 10) < retval ? retval * 10 : max;

 }

 return retval;

} /* The power_of_10 function has 6 blocks */

/* Near_color function */

ColorType near_color (ColorType color)

{

 switch (color)

 {

 case WHITE :

 case LIGHT_GRAY :

 return WHITE;

 case RED :

 case PINK :

 case BURGUNDY :

 return RED;

 /* etc ... */

 }

} /* The near_color function has at least 3 simple blocks */

Each simple block is a branch. Every C function contains at least one simple block corresponding to
its main body.

Decisions (Implicit Blocks)

Implicit blocks are introduced by an IF statement without an ELSE or a SWITCH statement
without a DEFAULT.

/* Power_of_10 function */

/* -block=decision */

int power_of_10 (int value, int max)

{

int retval = value, i;

if (value == 0) return 0; else ;

for (i =0;i <10;i++)

{

retval = (max / 10) < retval ? retval * 10 : max;

}

return retval;

}

/* Near_color function */

 33

ColorType near_color (ColorType color)

{

switch (color)

{

case WHITE :

case LIGHT_GRAY :

return WHITE;

case RED :

case PINK :

case BURGUNDY :

return RED;

/* etc ... with no default */

default : ;

}

}

Each implicit block represents a branch.

Because the sum of all possible decision paths includes implicit blocks as well as statement blocks,
reports provide the total number of simple and implicit blocks as a figure and as a percentage.
Code Coverage places this information in the Decisions report.

Loops (Logical Blocks)

A typical FOR or WHILE loop can reach three different conditions:

• The statement block contained within the loop is executed zero times, therefore the output
condition is True from the start

• The statement block is executed exactly once, the output condition is False, then True the next
time

• The statement block is executed at least twice. (The output condition is False at least twice, and
becomes True at the end)

In a DO...WHILE loop, because the output condition is tested after the block has been executed,
two further branches are created:

• The statement block is executed exactly once. The output is condition True the first time.

• The statement block is executed at least twice. (The output condition is False at least once, then
true at the end)

In this example, the function try_five_times () must run several times to completely cover the
three logical blocks included in the WHILE loop:

/* Try_five_times function */

/* -block=logical */

int try_five_times (void)

{

int result,i =0;

/*try ()is afunction whose return value depends

on the availability of a system resource, for example */

while (((result = try ())!=0)&&

(++i <5));

return result;

} /* 3 logical blocks */

34 IBM Rational Test RealTime User Guide

Call coverage

When analyzing C source code, Code Coverage can provide coverage of function or procedure
calls.

Code Coverage defines as many branches as it encounters function calls.

Procedure calls are made during program execution.

This type of coverage ensures that all the call interfaces can be shown to have been exercised for
each C function. This may be a pass or failure criterion in software integration test phases.

You can use the -EXCALL option to select C functions whose calls you do not want to instrument,
such as C library functions for example.

Example
/* Evaluate function */

/* -call */

int evaluate (NodeTypeP node)

{

 if (node == (NodeTypeP)0) return 0;

 switch (node->Type)

 {

 int tmp;

 case NUMBER :

 return node->Value;

 case IDENTIFIER :

 return current value (node->Name);

 case ASSIGN :

 set (node->Child->Name,

 tmp = evaluate (node->Child->Sibling));

 return tmp;

 case ADD :

 return evaluate (node->Child) +

 evaluate (node->Child->Sibling);

 case SUBTRACT :

 return evaluate (node->Child) -

 evaluate (node->Child->Sibling);

 case MULTIPLY :

 return evaluate (node->Child) *

 evaluate (node->Child->Sibling);

 case DIVIDE :

 tmp = evaluate (node->Child->Sibling);

 if (tmp == 0) fatal error ("Division by zero");

 else return evaluate (node->Child) / tmp;

 }

} /* There are twelve calls in the evaluate function */

Condition coverage

When analyzing C source code, Test RealTime can provide the following condition coverage:

• Basic Coverage

• Forced Coverage

 35

Basic Conditions

Conditions are operands of either || or && operators wherever they appear in the body of a C
function. They are also if and ternary expressions, tests for for, while, and do/while statements
even if these expressions do not contain || or && operators. Two branches are involved in each
condition: the sub-condition being true and the sub-condition being false.

Basic conditions also enable different case or default (which could be implicit) in a switch to be
distinguished even when they invoke the same simple block. A basic condition is associated with
every case and default (written or not).

There are 4*2 basic conditions in the following example:
/* Power_of_10 function */

/* -cond */

int power_of_10 (int value, int max)

{

 int result = value, i;

 if (value == 0) return 0;

 for (i = 0; i < 10; i++)

 {

 result = max > 0 && (max / value) < result ?

 result * value :

 max;

 }

 return result ;

}

There are at least 5 basic conditions in this example:
/* Near_color function */

ColorType near_color (ColorType color)

{

 switch (color)

 {

 case WHITE :

 case LIGHT_GRAY :

 return WHITE;

 case RED :

 case PINK :

 case BURGUNDY :

 return RED;

 /* etc ... */

 }

}

Two branches are enumerated for each condition, and one per case or default.

Forced Conditions

Forced conditions are multiple conditions in which any occurrence of the | | and && operators has
been replaced in the code with | and & binary operators. Such a replacement done by the
Instrumentor enforces the evaluation of the right operands. You can use this coverage type after
modified conditions have been reached to be sure that every basic condition has been evaluated.
With this coverage type, you can be sure that only the considered basic condition changed between
the two tests.

/* User source code */ /* -
cond=forceevaluation */

 if ((a && b) || c) ...

36 IBM Rational Test RealTime User Guide

/* Replaced with the Code Coverage feature with : */

 if ((a & b) | c) ...

/* Note : Operands evaluation results are enforced to one if different
from 0 */

Note This replacement modifies the code semantics. You need to verify that using this
coverage type does not modify the behavior of the software.
int f (MyStruct *A)

{

 if (A && A->value > 0) /* the evaluation of A->value
will cause a program error using

 forced conditions if A
pointer

 is null */

 {

 A->value -= 1;

 }

}

Modified Conditions

A modified condition is defined for each basic condition enclosed in a composition of | | or &&
operators. It aims to prove that this condition affects the result of the enclosing composition. To do
that, find a subset of values affected by the other conditions, for example, if the value of this
condition changes, the result of the entire expression changes.

Because compound conditions list all possible cases, you must find the two cases that can result in
changes to the entire expression. The modified condition is covered only if the two compound
conditions are covered.

/* state_control function */

int state_control (void)

{

 if (((flag & 0x01) &&

 (instances_number > 10)) ||

 (flag & 0x04))

 return VALID_STATE;

 else

 return INVALID_STATE;

}

In this example, there are 6 basic conditions (FALSE and TRUE of each), 5 compound conditions,
and 3 modified conditions :

• flag & 0x01 : TTX=T and FXF=F

• nb_instances > 10 : TTX=T and TFF=F

• flag & 0x04 : TFT=T and TFF=F, or FXT=T and FXF=F

Therefore the 4 following test cases are enough to cover all those modified conditions :

• TTX=T

• FXF=F

• TFF=F

• TFT=T or FXT=T

Note You can associate a modified condition with more than one case, as shown in this
example for flag & 0x04. In this example, the modified condition is covered if the two

 37

compound conditions of at least one of these cases are covered.

Code Coverage calculates matching cases for each modified condition.

The same number of modified conditions as Boolean basic conditions appears in a composition of
 | | and && operators.

Multiple Conditions

A multiple (or compound) condition is one of all the available cases for the || and && logical
operator's composition, whenever it appears in a C function. It is defined by the simultaneous
values of the enclosed Boolean basic conditions.

A multiple condition is noted with a set of T, F, or X letters. These mean that the corresponding
basic condition evaluated to true, false, or was not evaluated, respectively. Remember that the right
operand of a || or && logical operator is not evaluated if the evaluation of the left operand
determines the result of the entire expression.

/* state_control function */

/* -cond=compound */

int state_control (void)

{

 if (((flag & 0x01) &&

 (instances_number > 10)) ||

 (flag & 0x04))

 return VALID_STATE;

 else

 return INVALID_STATE;

}

In this example, there are 3 basic conditions and 5 compound conditions :

• TTX=T <=> ((T && T) || X) = T

• TFT=T

• TFF=F

• FXT=T

• FXF=F

Code Coverage calculates every available case for each composition.

The number of enumerated branches is the number of distinct available cases for each composition
of || or && operators.

Function coverage

When analyzing C source code, Test RealTime can provide the following function coverage:

• Procedure Entries

• Procedure Entries and Exits

Procedure Entries

Inputs identify the C functions that are executed.
/* Factorial function */

/* -proc */

int factorial (int a)

{

 if (a > 0) return a * factorial (a - 1);

 else return 1;

38 IBM Rational Test RealTime User Guide

}

One branch is defined per C function.

Procedure Entries and Exits (Returns and Terminal Statements)

These include the standard output (if coverable), and all return instructions, exits, and other
terminal instructions that are instrumented, as well as the input.

/* Factorial function */

/* -proc=ret */

int factorial (int a)

{

 if (a > 0) return a * factorial (a - 1);

 else return 1;

} /* standard output cannot be covered */

/* Divide function */

void divide (int a, int b, int *c)

{

 if (b == 0)

 {

 fprintf (stderr, "Division by zero\n");

 exit (1);

 };

 if (b == 1)

 {

 *c = a;

 return;

 };

 *c = a / b;

}

At least two branches are defined per C function.

The input is always enumerated, as is the output if it can be covered. If it cannot, it is preceded by a
terminal instruction involving returns or an exit.

In addition to the terminal instructions provided in the standard definition file, you can define
other terminal instructions using the pragma attol exit_instr.

Note The last bracket '}' in a function after a return statement is always displayed in red in the
coverage report, even if the function reports 100% coverage.

Additional statements

Terminal Statements

A C statement is terminal if it transfers program control out of sequence (RETURN, GOTO,
BREAK, CONTINUE), or stops the execution (EXIT).

By extension, a decision statement (IF or SWITCH) is terminal if all branches are terminal; that is if
the non-empty THEN ... ELSE, CASE, and DEFAULT blocks all contain terminal statements. An IF
statement without an ELSE and a SWITCH statement without a DEFAULT are never terminal,
because their empty blocks necessarily continue program control in sequence.

Potentially Terminal Statements

The following decision statements are potentially terminal if they contain at least one statement
that transfers program control out of their sequence (RETURN, GOTO, BREAK, CONTINUE), or
that terminates the execution (EXIT):

 39

• IF without an ELSE

• SWITCH

• FOR

• WHILE or DO ... WHILE

Non-coverable Statements in C

Some C statements are considered non-coverable if they follow a terminal instruction, a
CONTINUE, or a BREAK, and are not a GOTO label. Code Coverage detects non-coverable
statements during instrumentation and produces a warning message that specifies the source file
and line location of each non-coverable statement.

Note User functions whose purpose is to terminate execution unconditionally are not
evaluated. Furthermore, Code Coverage does not statically analyze exit conditions for loops
to check whether they are infinite. As a result, FOR ... WHILE and DO ... WHILE loops are
always assumed to be non-terminal, able to resume program control in sequence.

C++ coverage

Block coverage

When analyzing C++ source code, Code Coverage can provide the following block coverage types:

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

Statement Blocks

Statement blocks are the C++ function or method main blocks, blocks introduced by decision
instructions:

• THEN and ELSE FOR IF, WHILE and DO ... WHILE blocks

• non-empty blocks introduced by SWITCH CASE or DEFAULT statements

• true and false outcomes of ternary expressions (<expr> ? <expr> : <expr>)

• TRY blocks and any associated catch handler

• blocks following a potentially terminal statement.
int main () /* -BLOCK */

{

 try {

 if (0)

 {

 func ("Hello");

 }

 else

 {

 throw UnLucky ();

 }

 }

 catch (Overflow & o) {

 cout << o.String << '\n';

 }

 catch (UnLucky & u) {

 throw u;

40 IBM Rational Test RealTime User Guide

 } /* potentially terminal statement */

 return 0; /* sequence block */

}

Each simple block is a branch. Every C++ function and method contains at least one simple block
corresponding to its main body.

Decisions (Implicit Blocks)

Implicit blocks are introduced by IF statements without an ELSE statement, and a SWITCH
statements without a DEFAULT statement.

/* Power_of_10 function */

/* -BLOCK=DECISION or -BLOCK=IMPLICIT */

int power_of_10 (int value, int max)

{

 int retval = value, i;

 if (value == 0) return 0; else ;

 for (i = 0; i < 10; i++)

 {

 retval = (max / 10) < retval ? retval * 10 : max;

 }

 return retval;

}

/* Near_color function */

ColorType near_color (ColorType color)

{

 switch (color)

 {

 case WHITE :

 case LIGHT_GRAY :

 return WHITE;

 case RED :

 case PINK :

 case BURGUNDY :

 return RED;

 /* etc ... with no default */

 default : ;

 }

}

Each implicit block represents a branch.

Since the sum of all possible decision paths includes implicit blocks as well as simple blocks,
reports provide the total number of simple and implicit blocks as a figure and a percentage after
the term decisions.

Loops (Logical Blocks)

Three branches are created in a for or while loop:

• The first branch is the simple block contained within the loop, and that is executed zero times
(the entry condition is false from the start).

• The second branch is the simple block executed exactly once (entry condition true, then false
the next time).

• The third branch is the simple block executed at least twice (entry condition true at least twice,
and false at the end).

 41

Two branches are created in a DO/WHILE loop, as the output condition is tested after the block
has been executed:

• The first branch is the simple block executed exactly once (output condition true the first time).

• The second branch is the simple block executed at least twice (output condition false at least
once, then true at the end).
/* myClass::tryFiveTimes method */ /* -BLOCK=LOGICAL
*/

int myClass::tryFiveTimes ()

{

 int result, i = 0;

 /* letsgo () is a function whose return value depends

 on the availability of a system resource, for example */

 while (((result = letsgo ()) != 0) &&

 (++i < 5));

 return result;

} /* 3 logical blocks */

You need to execute the method tryFiveTimes () several times to completely cover the three logical
blocks included in the while loop.

Method coverage

Inputs to Procedures

Inputs identify the C++ methods executed.
/* Vector::getCoord() method */ /* -PROC

*/

int Vector::getCoord (int index)

{

if (index >= 0 && index < size) return Values[index];

else return -1;

}

One branch per C++ method is defined.

Procedure Inputs, Outputs and Returns, and Terminal Instructions

These include the standard output (if coverable), all return instructions, and calls to exit(), abort(),
or

terminate(), as well as the input.
/* Vector::getCoord() method */ /* -PROC=RET */

int Vector::getCoord (int index)

{

if (index >= 0 && index < size) return Values[index];

else return -1;

}

/* Divide function */

void divide (int a, int b, int *c)

{

if (b ==0)

{

fprintf (stderr, "Division by zero\n");

exit (1);

};

42 IBM Rational Test RealTime User Guide

if (b ==1)

{

*c =a;

return;

};

*c =a /b;

}

At least two branches per C++ method are defined. The input is always enumerated, as is the
output if it can be covered. If it cannot, it is preceded by a terminal instruction involving returns or
by a call to exit(), abort(), or terminate().

Potentially Terminal Statements

The following decision statements are potentially terminal if they contain at least one statement
that transfers program control out of its sequence (RETURN, THROW, GOTO, BREAK,
CONTINUE) or that terminates the execution (EXIT).

• IF without an ELSE

• SWITCH, FOR

• WHILE or DO...WHILE

Template instrumentation

Code Coverage performs the instrumentation of templates, functions, and methods of template
classes, considering that all instances share their branches. The number of branches computed by
the feature is independent of the number of instances for this template. All instances will cover the
same once-defined branches in the template code.

Files containing template definitions implicitly included by the compiler (no specific compilation
command is required for such source files) are also instrumented by the Code Coverage feature
and present in the instrumented files where they are needed.

For some compilers, you must specifically take care of certain templates (for example, static or
external linkage). You must verify if your Code Coverage Runtime installation contains a file
named templates.txt and, if it does, read that file carefully.

• To instrument an application based upon Rogue Wave libraries , you must use the -
DRW_COMPILE_INSTANTIATE compilation flag that suppresses the implicit include
mechanism in the header files. (Corresponding source files are so included by pre-processing.)

• To instrument an application based upon ObjectSpace C++ Component Series , you must use
the -DOS_NO_AUTO_INSTANTIATE compilation flag that suppresses the implicit include
mechanism in the header files. (Corresponding source files are so included by pre-processing.)

• Any method (even unused ones) of an instantiated template class is analyzed and
instrumented by the Instrumentor. Some compilers do not try to analyze such unused
methods. It is possible that some of these methods are not fully compliant with C++ standards.
For example, a template class with a formal class template argument named T can contain a
compare method that uses the == operator of the T class. If the C class used for T at
instantiation time does not define an == operator, and if the compare method is never used,
compilation succeeds but instrumentation fails. In such a situation, you can declare an ==
operator for the C class or use the -instantiationmode=used Instrumentor option.

 43

Additional Statements

Non-coverable Statements

A C++ statement is non-coverable if the statement can never possibly be executed. Code Coverage
detects non-coverable statements during instrumentation and produces a warning message that
specifies the source file and line location of each non-coverable statement.

Java coverage

Block coverage

When analyzing Java source code, Code Coverage can provide the following block coverage:

• Statement Blocks

• Statement Blocks and Decisions

• Statement Blocks, Decisions, and Loops

Statement Blocks

Statement blocks are the Java method blocks, blocks introduced by control instructions:

• THEN for IF and ELSE for IF, WHILE and DO ... WHILE blocks

• non-empty blocks introduced by SWITCH CASE or DEFAULT statements

• true and false outcomes of ternary expressions (<expr> ? <expr> : <expr>)

• TRY blocks and any associated catch handler

• blocks following a potentially terminal statement.

 Example
public class StatementBlocks

{

 public static void func(String _message)

 throws UnsupportedOperationException

 {

 throw new UnsupportedOperationException(_message);

 }

 public static void main(String[] args)

 throws Exception

 {

 try {

 if (false)

 {

 func("Hello");

 }

 else

 {

 throw new Exception("bad luck");

 }

 }

 catch (UnsupportedOperationException _E)

 {

 System.out.println(_E.toString());

 }

 catch (Exception _E)

44 IBM Rational Test RealTime User Guide

 {

 System.out.println(_E.toString());

 throw _E ;

 } //potentially terminal statement

 return ; //sequence block

 }

}

Each simple block is a branch. Every Java method contains at least one simple block corresponding
to its main body.

Decisions (Implicit Blocks)

Implicit blocks are introduced by IF statements without an ELSE statement, and a SWITCH
statement without a DEFAULT statement.

 Example
public class MathOp

{

 static final int WHITE=0;

 static final int LIGHTGRAY=1;

 static final int RED=2;

 static final int PINK=3;

 static final int BLUE=4;

 static final int GREEN=5;

 // power of 10

 public static int powerOf10(int _value, int _max)

 {

 int result = _value, i;

 if(_value==0) return 0; //implicit else

 for(i = 0; i < 10; i++)

 {

 result = (_max / 10) < result ? 10*result : _max ;

 }

 return result;

 }

 // Near color function

 int nearColor(int _color)

 {

 switch(_color)

 {

 case WHITE:

 case LIGHTGRAY:

 return WHITE ;

 case RED:

 case PINK:

 return RED;

 //implicit default:

 }

 return _color ;

 }

}

Each implicit block represents a branch.

 45

Since the sum of all possible decision paths includes implicit blocks as well as simple blocks,
reports provide the total number of simple and implicit blocks as a figure and a percentage after
the term decisions.

Loops (Logical Blocks)

Three branches are created in a FOR or WHILE loop:

• The first branch is the simple block contained within the loop, and that is executed zero times
(the entry condition is false from the start).

• The second branch is the simple block executed exactly once (entry condition true, then false
the next time).

• The third branch is the simple block executed at least twice (entry condition true at least twice,
and false at the end).

Two branches are created in a DO/WHILE loop, as the output condition is tested after the block
has been executed:

• The first branch is the simple block executed exactly once (output condition false the first time).

• The second branch is the simple block executed at least twice (output condition false at least
once, then true at the end).

 Example
public class LogicalBlocks

{

 public static int tryFiveTimes()

 {

 int result, i=0;

 while (((result=resourcesAvailable())<= 0)

 && (++i < 5));

 // while define 3 logical blocks

 return result;

 }

 public static int resourcesAvailable()

 {

 return (_free_resources_++);

 }

 public static int _free_resources_=0;

 public static void main(String[] argv)

 {

 //first call: '0 loop' block is reach

 _free_resources_=1;

 tryFiveTimes();

 //second call: '1 loop' blocks are reach

 _free_resources_=0;

 tryFiveTimes();

 //third call: '2 loops or more' blocks are reach

 _free_resources_=-10;

 tryFiveTimes();

 }

}

46 IBM Rational Test RealTime User Guide

Method coverage

Inputs to Procedures

Inputs identify the Java methods executed.

 Example
public class Inputs

{

 public static int method()

 {

 return 5;

 }

 public static void main(String[] argv)

 {

 System.out.println("Value:"+method());

 }

}

One branch per Java method is defined.

Procedure Inputs, Outputs and Returns, and Terminal Instructions

These include the standard output (if coverable), all return instructions, and calls to exit(), abort(),
or terminate(), as well as the input.

 Example
public class InputsOutputsAndReturn

{

 public static void method0(int _selector)

 {

 if (_selector < 0)

 {

 return ;

 }

 }

 public static int method1(int _selector)

 {

 if(_selector < 0) return 0;

 switch(_selector)

 {

 case 1: return 0;

 case 2: break;

 case 3: case 4: case 5: return 1;

 }

 return (_selector/2);

 }

 public static void main(String[] argv)

 {

 method0(3);

 System.out.println("Value:"+method1(5));

 System.exit(0);

 }

}

 47

At least two branches per Java method are defined. The input is always enumerated, as is the
output if it can be covered.

Potentially Terminal Statements

The following decision statements are potentially terminal if they contain at least one statement
that transfers program control out of its sequence (RETURN, THROW, GOTO, BREAK,
CONTINUE) or that terminates the execution (EXIT).

• IF without an ELSE

• SWITCH, FOR

• WHILE or DO...WHILE

Additional statements

Non-coverable Statements in Java

A Java statement is non-coverable if the statement can never possibly be executed. Code Coverage
detects non-coverable statements during instrumentation and produces an error message that
specifies the source file and line location of each non-coverable statement.

The Code Coverage Viewer allows you to view code coverage reports generated by the Code
Coverage feature. Select a tab at the top of the Code Coverage Viewer window to select the type of
report:

• A Source Report, showing the source code under analysis, highlighted with the actual coverage
information.

• A Rates Report, providing detailed coverage rates for each activated coverage type.

You can use the Report Explorer to navigate through the report. Click a source code component in
the Report Explorer to go to the corresponding line in the Report Viewer.

You can jump directly to the next or previous Failed test in the report by using the Next Failed Test
or Previous Failed Test buttons from the Code Coverage toolbar.

You can jump directly to the next or previous Uncovered line in the Source report by using the
Next Uncovered Line or Previous Uncovered Line buttons in the Code Coverage feature bar.

When viewing a Source coverage report, the Code Coverage Viewer provides several additional
viewing features for refined code coverage analysis.

 To open a Code Coverage report:

1. Right-click a previously executed test or application node

2. If a Code Coverage report was generated during execution of the node, select View Report
and then Code Coverage.

Filtering coverage types

Depending on the language selected, the Code Coverage feature offers (see Coverage Types for
more information):

• Function or Method code coverage: select between function Entries, Entries and exits, or None.

• Call code coverage: select Yes or No to toggle call coverage for Ada and C.

• Block code coverage: select the desired block coverage method.

• Condition code coverage: select condition coverage for Ada and C.

Any of the Code Coverage types selected for instrumentation can be filtered out in the Code
Coverage report stage if necessary.

48 IBM Rational Test RealTime User Guide

 To filter coverage types from the report:

1. From the Code Coverage menu, select Coverage Type.

2. Toggle each coverage type in the menu.

Alternatively, you can filter out coverage types from the Code Coverage toolbar by toggling the
Code Coverage type filter buttons.

Test by test analysis mode

The test by test analysis mode allows you to refine the coverage analysis by individually selecting
the various tests that were generated during executions of the test or application node. In Test-by-
Test mode, a Tests node is available in the Report Explorer.

When test by test analysis is disabled, the Code Coverage Viewer displays all traces as one global
test.

 To toggle Test-by-Test mode:

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu, select Test-by-Test.

 To select the Tests to display in Test-by-Test mode:

1. Expand the Tests node at the top of the Report Explorer.

2. Select one or several tests. The Code Coverage Viewer provides code coverage information for
the selected tests.

Reloading a report

If a Code Coverage report has been updated since the moment you have opened it in the Code
Coverage Viewer, you can use the Reload command to refresh the display:

 To reload a report:

1. From the Code Coverage menu, select Reload.

Resetting a report

When you run a test or application node several times, the Code Coverage results are appended to
the existing report. The Reset command clears previous Code Coverage results and starts a new
report.

 To reset a report:

1. From the Code Coverage menu, select Reset.

Coverage source report

You can use the standards keys (arrow keys, home, end, etc.) to move about and to select the
source code. The Code Coverage source report displays covered and uncovered lines of code
colors. You can change these colors in the Code Coverage report preferences.

Note In C source files, the last bracket '}' in a function after a return statement is always
displayed as uncovered in the coverage report, even if the function reports 100% coverage.

Hypertext Links

The Source report provides hypertext navigation throughout the source code:

 49

• Click a plain underlined function call to jump to the definition of the function.

• Click a dashed underlined text to view additional coverage information in a pop-up window.

• Right-click any line of code and select Edit Source to open the source file in the Text Editor at
the selected line of code.

Macro Expansion

Certain macro-calls are preceded with a magnifying glass icon.

Click the magnifying glass icon to expand the macro in a pop-up window with the usual Code
Coverage color codes.

Hit Count

The Hit Count tool-tip is a special capability that displays the number of times that a selected
branch was covered.

Hit Count is only available when Test-by-Test analysis is disabled and when the Hit Count option
has been enabled for the selected Configuration.

 To activate the Hit Count tool-tip:

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu select Hit. The mouse cursor changes shape.

3. In the Code Coverage Viewer window, click a portion of covered source code to display the
Hit Count tool-tip.

Cross Reference

The Cross Reference tool-tip displays the name of tests that executed a selected branch.

Cross Reference is only available in Test-by-Test mode.

 To activate the Cross Reference tool-tip:

1. In the Code Coverage Viewer window, select the Source tab.

2. From the Code Coverage menu select Cross Reference. The mouse cursor changes shape.

3. In the Code Coverage Viewer window, click a portion of covered source code to display the
Cross Reference tooltip.

Comment

You can add a short comment to the generated Code Coverage report by using the Comment
option in the Misc. Options Settings for Code Coverage. This can be useful to distinguish different
reports generated with different Configurations.

Comments are displayed as a magnifying glass symbol at the top of the source code report. Click
the magnifying glass icon to display the comment.

Coverage rates report

From the Code Coverage Viewer window, select the Rates tab to view the coverage rate report.

Select a source code component in the Report Explorer to view the coverage rate for that particular
component and the selected coverage type. Select the Root node to view coverage rates for all
current files.

Code Coverage rates are updated dynamically as you navigate through the Report Explorer and as
you select various coverage types.

50 IBM Rational Test RealTime User Guide

Code Coverage Dump Driver

In C and C++, you can dump coverage trace data without using standard I/O functions by using
the Code Coverage Dump Driver API contained in the atcapi.h file, which is part of the Target
Deployment Port

To customize the Code Coverage Dump Driver, open the Target Deployment Port directory and
edit the atcapi.h. Follow the instructions and comments included in the source code.

Cleaning code coverage report files

Code Coverage produces reports on each execution of the application under test. After many
executions, the .tio coverage report files can become quite large and take up a lot of disk space.

You can use the -CLEAN option with the attolcov command to remove unused and obsolete traces
and to regain some space without losing your execution history.

You can use the -MERGETESTS command line option to merge all the specified .tio coverage
report files together.

 To clean the .tio coverage report files:

1. Run the following command line:
attolcov <oldfiles.tio> -clean=<newfile.tio> -mergetests

where <oldfiles.tio> is a list of old .tio coverage report files and <newfile.tio> is the new .tio
coverage report file.

Memory profiling for C and C++

Run-time memory errors and leaks are among the most difficult errors to locate and the most
important to correct. The symptoms of incorrect memory use are unpredictable and typically
appear far from the cause of the error. The errors often remain undetected until triggered by a
random event, so that a program can seem to work correctly when in fact it's only working by
accident.

That's where the Memory Profiling feature can help you.

• You associate Memory Profiling with an existing test node or application code.

• You compile and run your application.

• The application with the Memory Profiling feature, then directs output to the Memory
Profiling Viewer, which provides a detailed report of memory issues.

Memory Profiling uses Source Code Insertion Technology for C and C++.

Because of the different technologies involved, Memory Profiling for Java is covered in a separate
section.

How Memory Profiling for C and C++ Works

When an application node is executed, the source code is instrumented by the C or C++
Instrumentor (attolcpp or attolcc1). The resulting source code is then executed and the Memory
Profiling feature outputs a static .tsf file for each instrumented source file and a dynamic .tpf file.

These files can be viewed and controlled from the Test RealTime GUI. Both the .tsf and .tpf files
need to be opened simultaneously to view the report.

Of course, these steps are mostly transparent to the user when the test or application node is
executed in the Test RealTime GUI or Eclipse (for C and C++).

 51

Memory Profiling Results for C and C++

After execution of an instrumented application, the Memory Profiling report provides a summary
diagram and a detailed report for both byte and memory block usage.

A memory block is a number of bytes allocated with a single malloc instruction. The number of
bytes contained in each block is the actual amount of memory allocated by the corresponding
allocation instruction.

 Summary diagrams

The summary diagrams give you a quick overview of memory usage in blocks and bytes.

Where:

• Allocated is the total memory allocated during the execution of the application

• Unfreed is the memory that remains allocated after the application was terminated

• Maximum is the highest memory usage encountered during execution

 Detailed Report

The detailed section of the report lists memory usage events, including the following errors and
warnings:

• Error messages

• Warning messages

Memory Profiling Error Messages

Error messages indicate invalid program behavior. These are serious issues you should address
before you check in code.

List of Memory Profiling Error Messages

• Freeing Freed Memory (FFM)

• Freeing Unallocated Memory (FUM)

• Freeing Invalid Memory (FIM)

• Late Detect Array Bounds Write (ABWL)

• Late Detect Free Memory Write (FMWL)

• Memory Allocation Failure (MAF)

52 IBM Rational Test RealTime User Guide

• Core Dump (COR)

Freeing Freed Memory (FFM)

An FFM message indicates that the program is trying to free memory that has previously been
freed.

This message can occur when one function frees the memory, but a data structure retains a pointer
to that memory and later a different function tries to free the same memory. This message can also
occur if the heap is corrupted.

Memory Profiling maintains a free queue, whose role is to actually delay memory free calls in order
to compare with upcoming free calls. The length of the delay depends on the Free queue length
and Free queue threshold Memory Profiling Settings. A large deferred free queue length and
threshold increases the chances of catching FFM errors long after the block has been freed. A
smaller deferred free queue length and threshold limits the amount of memory on the deferred free
queue, taking up less memory at run time but providing a lower level of error detection.

Freeing Unallocated Memory (FUM)

An FUM message indicates that the program is trying to free unallocated memory.

This message can occur when the memory is not yours to free. In addition, trying to free the
following types of memory causes a FUM error:

• Memory on the stack

• Program code and data sections

Freeing Invalid Memory (FIM)

An FIM message indicates that the program is trying to free allocated memory with the wrong
instruction.

This message can occur when the memory free instruction mismatches the memory allocation
instruction.

For example, a FIM occurs when memory is freed with a free instruction when it was allocated
with a new instruction.

Late Detect Array Bounds Write (ABWL)

An ABWL message indicates that the program wrote a value before the beginning or after the end
of an allocated block of memory.

Memory Profiling checks for ABWL errors whenever free() or dump() routines are called, or
whenever the free queue is actually flushed.

This message can occur when you:

• Make an array too small. For example, you fail to account for the terminating NULL in a string.

• Forget to multiply by sizeof(type) when you allocate an array of objects.

• Use an array index that is too large or is negative.

• Fail to NULL terminate a string.

• Are off by one when you copy elements up or down an array.

Memory Profiling actually allocates a larger block by adding a Red Zone at the beginning and end
of each allocated block of memory in the program. Memory Profiling monitors these Red Zones to
detect ABWL errors.

 53

Increasing the size of the Red Zone helps Test RealTime catch bounds errors before or beyond the
block at the expense of increased memory usage. You can change the Red Zone size in the Memory
Profiling Settings.

The ABWL error does not apply to local arrays allocated on the stack.

Note Unlike IBM Rational PurifyPlus, the ABWL error in the Test RealTime Memory
Profiling tool only applies to heap memory zones and not to global or local tables.

Late Detect Free Memory Write (FMWL)

An FMWL message indicates that the program wrote to memory that was freed.

This message can occur when you:

• Have a dangling pointer to a block of memory that has already been freed (caused by retaining
the pointer too long or freeing the memory too soon)

• Index far off the end of a valid block

• Use a completely random pointer which happens to fall within a freed block of memory

Memory Profiling maintains a free queue, whose role is to actually delay memory free calls in order
to compare with upcoming free calls. The length of the delay depends on the Free queue length
and Free queue threshold Memory Profiling Settings. A large deferred free queue length and
threshold increases the chances of catching FMWL errors. A smaller deferred free queue length and
threshold limits the amount of memory on the deferred free queue, taking up less memory at run
time but providing a lower level of error detection.

Memory Allocation Failure (MAF)

An MAF message indicates that a memory allocation call failed. This message typically indicates
that the program ran out of paging file space for a heap to grow. This message can also occur when
a non-spreadable heap is saturated.

After Memory Profiling displays the MAF message, a memory allocation call returns NULL in the
normal manner. Ideally, programs should handle allocation failures.

Core Dump (COR)

A COR message indicates that the program generated a UNIX core dump. This message can only
occur when the program is running on a UNIX target platform.

Memory Profiling Warning Messages

Warning messages indicate a situation in which the program might not fail immediately, but might
later fail sporadically, often without any apparent reason and with unexpected results. Warning
messages often pinpoint serious issues you should investigate before you check in code.

List of Memory Profiling Warning Messages

• Memory in Use (MIU)

• Memory Leak (MLK)

• Potential Memory Leak (MPK)

• File in Use (FIU)

• Signal Handled (SIG)

Memory in Use (MIU)

An MIU message indicates heap allocations to which the program has a pointer.

54 IBM Rational Test RealTime User Guide

Note At exit, small amounts of memory in use in programs that run for a short time are not
significant. However, you should fix large amounts of memory in use in long running
programs to avoid out-of-memory problems.

Memory Profiling generates a list of memory blocks in use when you activate the MIU Memory In
Use option in the Memory Profiling Settings.

Memory Leak (MLK)

An MLK message describes leaked heap memory. There are no pointers to this block, or to
anywhere within this block.

Memory Profiling generates a list of leaked memory blocks when you activate the MLK Memory
Leak option in the Memory Profiling Settings.

This message can occur when you allocate memory locally in some function and exit the function
without first freeing the memory. This message can also occur when the last pointer referencing a
block of memory is cleared, changed, or goes out of scope. If the section of the program where the
memory is allocated and leaked is executed repeatedly, you might eventually run out of swap
space, causing slow downs and crashes. This is a serious problem for long-running, interactive
programs.

To track memory leaks, examine the allocation location call stack where the memory was allocated
and determine where it should have been freed.

Memory Potential Leak (MPK)

An MPK message describes heap memory that might have been leaked. There are no pointers to
the start of the block, but there appear to be pointers pointing somewhere within the block. In
order to free this memory, the program must subtract an offset from the pointer to the interior of
the block. In general, you should consider a potential leak to be an actual leak until you can prove
that it is not by identifying the code that performs this subtraction.

Memory in use can appear as an MPK if the pointer returned by some allocation function is offset.
This message can also occur when you reference a substring within a large string. Another example
occurs when a pointer to a C++ object is cast to the second or later base class of a multiple-inherited
object and it is offset past the other base class objects.

Alternatively, leaked memory might appear as an MPK if some non-pointer integer within the
program space, when interpreted as a pointer, points within an otherwise leaked block of memory.
However, this condition is rare.

Inspection of the code should easily differentiate between different causes of MPK messages.

Memory Profiling generates a list of potentially leaked memory blocks when you activate the MPK
Memory Potential Leak option in the Memory Profiling Settings.

File in Use (FIU)

An FIU message indicates a file that was opened, but never closed. An FIU message can indicate
that the program has a resource leak.

Memory Profiling generates a list of files in use when you activate the FIU Files In Use option in
the Memory Profiling Settings.

Signal Handled (SIG)

A SIG message indicates that a system signal has been received.

Memory Profiling generates a list of received signals when you activate the SIG Signal Handled
option in the Memory Profiling Settings.

 55

Memory Profiling User Heap in C and C++

When using Memory Profiling on embedded or real-time target platforms, you might encounter
one of the following situations:

• Situation 1: There are no provisions for malloc, calloc, realloc or free statements on the target
platform.

Your application uses custom heap management routines that may use a user API. Such
routines could, for example, be based on a static buffer that performs allocation and free
actions.

In this case, you need to customize the memory heap parameters RTRT_DO_MALLOC and
RTRT_DO_FREE in the TDP to use the custom malloc and free functions.

In this case, you can access the custom API functions.

• Situation 2: There are partial implementations of malloc, calloc, realloc or free on the target,
but other functions provide methods of allocating or freeing heap memory.

In this case, you do not have access to any custom API. This requires customization of the
Target Deployment Port. Please refer to the Target Deployment Guide provided with the TDP
Editor.

In both of the above situations, Memory Profiling can use the heap management routines to detect
memory leaks, array bounds and other memory-related defects.

Note Application pointers and block sizes can be modified by Memory Profiling in order to
detect ABWL errors (Late Detect Array Bounds Write). Actual-pointer and actual-size refer
to the memory data handled by Memory Profiling, whereas user pointer and user-size refer
to the memory handled natively by the application-under-analysis. This distinction is
important for the Memory Profiling ABWL and Red zone settings.

Target Deployment Port API

The Target Deployment Port library provides the following API for Memory Profiling:
void * _PurifyLTHeapAction (_PurifyLT_API_ACTION, void *,
RTRT_U_INT32, RTRT_U_INT8);

In the function _PurifyLTHeapAction the first parameter is the type of action that will be or has
been performed on the memory block pointed by the second parameter. The following actions can
be used:

typedef enum {

 _PurifyLT_API_ALLOC,

 _PurifyLT_API_BEFORE_REALLOC,

 _PurifyLT_API_FREE

} _PurifyLT_API_ACTION;

The third parameter is the size of the block. The fourth parameter is either of the following
constants:

#define _PurifyLT_NO_DELAYED_FREE 0

#define _PurifyLT_DELAYED_FREE 1

If an allocation or free has a size of 0 this fourth parameter indicates a delayed free in order to
detect FWML (Late Detect Free Memory Write) and FFM (Freeing Freed Memory) errors. See the
section on Memory Profiling Configuration Settings for Detect FFM, Detect FMWL, Free Queue
Length and Free Queue Size.

A freed delay can only be performed if the block can be freed with RTRT_DO_FREE (situation 1)
or ANSI free (situation 2). For example, if a function requires more parameters than the pointer to
de-allocate, then the FMWL and FFM error detection cannot be supported and FFM errors will be
indicated by an FUM (Freeing Unallocated Memory) error instead.

56 IBM Rational Test RealTime User Guide

The following function returns the size of an allocated block, or 0 if the block was not declared to
Memory Profiling. This allows you to implement a library function similar to the msize from
Microsoft Visual 6.0.

RTRT_SIZE_T _PurifyLTHeapPtrSize (void *);

The following function returns the actual-size of a memory block, depending on the size requested.
Call this function before the actual allocation to find out the quantity of memory that is available
for the block and the contiguous red zones that are to be monitored by Memory Profiling.

RTRT_SIZE_T _PurifyLTHeapActualSize (RTRT_SIZE_T);

 Examples

In the following examples, my_malloc, my_realloc, my_free and my_msize demonstrate the four
supported memory heap behaviors.

The following routine declares an allocation:
void *my_malloc (int partId, size_t size)

{

 void *ret;

 size_t actual_size = _PurifyLTHeapActualSize(size);

 /* Here is any user code making ret a pointer to a heap or

 simulated heap memory block of actual_size bytes */

 ...

 /* After comes Memory Profiling action */

 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0);

 /* The user-pointer is returned */

}

In situation 2, where you have access to a custom memory heap API, replace the "..." with the actual
malloc API function.

For a my_calloc(size_t nelem, size_t elsize), pass on nelem*elsize as the third parameter of the
_PurifyLTHeapAction function. In this case, you might need to replace this operation with a
function that takes into account the alignments of elements.

To declare a reallocation, two operations are required:
void *my_realloc (int partId, void * ptr, size_t size)

{

 void *ret;

 size_t actual_size = _PurifyLTHeapActualSize(size);

 /* Before comes first Memory Profiling action */

 ret = _PurifyLTHeapAction (_PurifyLT_API_BEFORE_REALLOC, ptr, size,
0);

 /* ret now contains the actual-pointer */

 /* Here is any user code making ret a reallocated pointer to a heap
or

 simulated heap memory block of actual_size bytes */

 ...

 /* After comes second Memory Profiling action */

 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0);

 /* The user-pointer is returned */

}

To free memory without using the delay:
void my_free (int partId, void * ptr)

{

 /* Memory Profiling action comes first */

 void *ret = _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0, 0);

 57

 /* Any code insuring actual deallocation of ret */

}

To free memory using a delay:
void my_free (int partId, void * ptr)

{

 /* Memory Profiling action comes first */

 void *ret = _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0, 1);

 /* Nothing to do here */

}

To obtain the user size of a block:
size_t my_msize (int partId, void * ptr)

{

 return _PurifyLTHeapPtrSize (ptr);

}

Use the following macros to save customization time when dealing with functions that have the
same prototypes as the standard ANSI functions:

#define _PurifyLT_MALLOC_LIKE(func) \

void *RTRT_CONCAT_MACRO(usr_,func) (RTRT_SIZE_T size) \

{ \

 void *ret; \

 ret = func (_PurifyLTHeapActualSize (size)); \

 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0); \

}

#define _PurifyLT_CALLOC_LIKE(func) \

void *RTRT_CONCAT_MACRO(usr_,func) (RTRT_SIZE_T nelem, RTRT_SIZE_T
elsize) \

{ \

 void *ret; \

 ret = func (_PurifyLTHeapActualSize (nelem * elsize)); \

 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, nelem *
elsize, 0); \

}

#define _PurifyLT_REALLOC_LIKE(func,delayed_free) \

void *RTRT_CONCAT_MACRO(usr_,func) (void *ptr, RTRT_SIZE_T size) \

{ \

 void *ret; \

 ret = func (_PurifyLTHeapAction (_PurifyLT_API_BEFORE_REALLOC, \

 ptr, size, delayed_free), \

 _PurifyLTHeapActualSize (size)); \

 return _PurifyLTHeapAction (_PurifyLT_API_ALLOC, ret, size, 0); \

}

#define _PurifyLT_FREE_LIKE(func,delayed_free) \

void RTRT_CONCAT_MACRO(usr_,func) (void *ptr) \

{ \

 if (delayed_free) \

 { \

 _PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0, delayed_free);
\

 } \

 else \

 { \

58 IBM Rational Test RealTime User Guide

 func (_PurifyLTHeapAction (_PurifyLT_API_FREE, ptr, 0,
delayed_free)); \

 } \

}

Using the Memory Profiling Viewer

Memory Profiling results for C and C++ are displayed in the Memory Profiling Viewer. Memory
Profiling for Java uses the Report Viewer.

Error and Warning Filter

The Memory Profiling Viewer for C and C++ allows you to filter out any particular type of Error or
Warning message from the report.

 To filter out error or warning messages:

1. Select an active Memory Profiling Viewer window.

2. From the Memory Profiling menu, select Errors and Warnings.

3. Select or clear the type of message that you want to show or hide.

Reloading a Report

If a Memory Profiling report has been updated since the moment you have opened it in the
Memory Profiling Viewer, you can use the Reload command to refresh the display:

 To reload a report:

1. From the View Toolbar, click the Reload button.

Resetting a Report

When you run a test or application node several times, the Memory Profiling results are appended
to the existing report. The Reset command clears previous Memory Profiling results and starts a
new report.

 To reset a report:

1. From the View Toolbar, click the Reset button.

Checking for ABWL and FMWL errors

By default, Memory Profiling checks for ABWL and FMWL errors whenever the routines are
called, or whenever the free queue is actually flushed.

In some cases, it might be desirable to manually specify when to check for ABWL and FMWL
errors, and on which functions.

By using the ABWL and FMWL check frequency setting you can order a check on:

• Each time the memory is dumped (by default).

• Each time a manual check macro is encountered in the code.

• Each function return.

The checks can be performed either on all memory blocks or only a selection of memory blocks.

Specifying a manual check

To indicate where you want an ABWL or FMWL check to occur in your source code, you insert an
_ATP_CHECK() macro at the corresponding location. The syntax for the macro is:

 59

#pragma attol insert _ATP_CHECK(@RELFLINE)

Each time this macro is encountered during execution, Memory Profiling checks for ABWL and
FMWL errors on the specified blocks. The @RELFLINE parameter allows navigation from the
Memory Profiling report to the corresponding line in the source code.

Selecting blocks to check

To create a selection of blocks that you specifically want to verify, you create a list in your source
code using the _ATP_TRACK() macro variable. The syntax for this macro is:

#pragma attol insert _ATP_TRACK(<pointer>)

 Example

A sample demonstrating how to use this feature is provided in the ABWL Check Frequency
example project. See Example projects for more information.

Memory profiling for Java

Run-time memory problems are among the most difficult errors to locate and the most important
to correct. The symptoms of incorrect memory use are unpredictable and typically appear far from
the cause of the error. The issue often remain undetected until triggered by a random event, so that
a program can seem to work correctly when in fact it's only working by accident.

That's where the Memory Profiling feature can help you get ahead.

• You associate Memory Profiling with an existing test node or Application code.

• You compile and run your application.

• The application with the Memory Profiling feature, then directs output to the Memory
Profiling Viewer, which provides a detailed report of memory issues.

The Java version of Memory Profiling differs from other programming languages, among other
aspects, by the way memory is managed by the Java Virtual Machine (JVM). The technique used is
the JVMPI Agent technology for Java.

How Memory Profiling for Java works

When an application node is executed, the source code is executed. The Memory Profiling for Java
feature uses the JVMPI mechanism to monitor the application. JVMPI outputs a dynamic .jpt file.

The .jpt file is split into a .tpf file and a .txf file, which can be viewed and controlled from the Test
RealTime GUI. Both the .tpf and .txf files need to be opened simultaneously to view the report.

Of course, these steps are mostly transparent to the user when the test or application node is
executed in the Test RealTime GUI.

Memory Profiling results for Java

After execution of an instrumented application, the Memory Profiling report displays:

• In the Report Explorer window: a list of available snapshots

• In the Memory Profiling window: the contents of the selected Memory Profiling snapshot

Report explorer

The Report Explorer window displays a Test for each execution of the application node or for a test
node when using Component Testing for Java. Inside each test, a Snapshot report is created for
each Memory Profiling snapshot.

60 IBM Rational Test RealTime User Guide

Method snapshots

The Memory Profiling report displays snapshot data for each method that has performed an
allocation. If the Java CLASSPATH is correctly set, you can click blue method names to open the
corresponding source code in the Text Editor. System methods are displayed in black and cannot
be clicked.

Method data is reset after each snapshot.

For each method, the report lists:

• Method: The method name. Blue method names are hyperlinks to the source code under
analysis

• Allocated Objects: The number of objects allocated since the previous snapshot

• Allocated Bytes: The total number of bytes used by the objects allocated by the method since
the previous snapshot

• Local + D Allocated Objects: The number of objects allocated by the method since the
previous snapshot as well as any descendants called by the method

• Local + D Allocated Bytes: The total number of bytes used by the objects allocated by the
method since the previous snapshot and its descendants

Referenced objects

If you selected the With objects filter option in the JVMPI Settings dialog box, the report can
display, for each method, a list of objects created by the method and object-related data.

From the Memory Profiling menu, select Hide/Show Referenced Objects.

For each object, the report lists:

• Reference Object Class: The name of the object class. Blue class names are hyperlinks to the
source code under analysis.

• Referenced Objects: The number of objects that exist at the moment the snapshot was taken

• Referenced Bytes: The total number of bytes used by the referenced objects

Differential reports

The Memory Profile report can display differential data between two snapshots within the same
Test. This allows you to compare the referenced objects. There are two diff modes:

• Automatic differential report with the previous snapshot

• User differential report

Differential reports add the following columns to the current Memory Profiling snapshot report:

• Referenced Objects Diff AUTO: Shows the difference in the number of referenced objects for
the same method in the current snapshot as compared to the previous snapshot

• Referenced Bytes Diff AUTO : Shows the difference in the memory used by the referenced
objects for the same method in the current snapshot as compared to the previous snapshot

• Referenced Objects Diff USER: Shows the difference in the number of referenced objects for
the same method in the current snapshot as compared to the user-selected snapshot

• Referenced Bytes Diff USER: Shows the difference in the memory used by the referenced
objects for the same method in the current snapshot as compared to the user-selected snapshot

 To add or remove data to the report:

1. From the Memory Profiling menu, select Hide/Show Data.

2. Toggle the data that you want to hide or display

 61

 To sort the report:

1. In the Memory Profiling window, click a column label to sort the table on that value.

 To obtain a differential report:

1. From the Memory Profiling menu, select Diff with Previous Referenced Objects.

 To obtain a user differential report:

1. In the Report Explorer, select the current snapshot

2. Right-click another snapshot in the same Test node and select Diff Report.

JVMPI technology

Memory Profiling for Java uses a special dynamic library, known as the Memory Profiling Agent,
to provide advanced reports on Java Virtual Machine (JVM) memory usage.

Garbage Collection

JVMs implement a heap that stores all objects created by the Java code. Memory for new objects is
dynamically allocated on the heap. The JVM automatically frees objects that are no longer
referenced by the program, preventing many potential memory issues that exist in other languages.
This process is called garbage collection.

In addition to freeing unreferenced objects, a garbage collector may also reduce heap
fragmentation, which occurs through the course of normal program execution. On a virtual
memory system, the extra paging required to service an ever growing heap can degrade the
performance of the executing program.

JVMPI Agent

Because of the memory handling features included in the JVM, Memory Profiling for Java is quite
different from the feature provided for other languages. Instead of Source Code Insertion
technology, the Java implementation uses a JVM Profiler Interface (JVMPI) Agent whose task is to
monitor JVM memory usage and to provide a memory dump upon request.

The JVMPI Agent analyzes the following internal events of the JVM:

• Method entries and exits

• Object and primitive type allocations

The JVMPI Agent is a dynamic library —DLL or lib.so depending on the platform used— that is
loaded as an option on the command line that launches the Java program.

During execution, when the agent receives a snapshot trigger request, it can either an
instantaneous JVMPI dump of the JVM memory, or wait for the next garbage collection to be
performed.

Note Information provided by the instantaneous dump includes actual memory use as well
as intermediate and unreferenced objects that are normally freed by the garbage collection.
In some cases, such information may be difficult to interpret correctly.

The actual trigger event can be implemented with any of the following methods:

• A specified method entry or exit used in the Java code

• A message sent from the Snapshot button or menu item in the graphical user interface

• Every garbage collection

The JVMPI Agent requires that the Java code is compiled in debug mode, and cannot be used with
Java in just-in-time (JIT) mode.

62 IBM Rational Test RealTime User Guide

Performance profiling

The Performance Profiling feature puts successful performance engineering within your grasp. It
provides complete, accurate performance data—and provides it in an understandable and usable
format so that you can see exactly where your code is least efficient. Using Performance Profiling,
you can make virtually any program run faster. And you can measure the results.

Performance Profiling measures performance for every component in C , C++ and Java source
code, in real-time, and on both native or embedded target platforms. Performance Profiling works
by instrumenting the C, C++ or Java source code of your application. After compilation, the
instrumented code reports back to Test RealTime after the execution of the application.

• You associate Performance Profiling with an existing test or application code.

• You build and execute your code in Test RealTime .

• The application under test, instrumented with the Performance Profiling feature, then directs
output to the Performance Profiling Viewer, which a provides a detailed report of memory
issues.

Performance Profiling Results

The Performance Profiling report provides function profiling data for your program and its
components so that you can see exactly where your program spends most of its time.

Top Functions Graph

This section of the report provides a high level view of the largest time consumers detected by
Performance Profiling in your application.

Performance Summary

This section of the report indicates, for each instrumented function, procedure or method
(collectively referred to as functions), the following data:

• Calls: The number times the function was called

• Function (F) time: This value indicates the total time spent executing the function, exclusive of
any calls to its descendants.

• Function+descendant (F+D) time: The total time spent executing the function and any of its
descendants (any other functions called by this function).

Note that since each of the descendants may have been called by other functions, it is not
enough to simply add the descendants' F+D to the caller function's F. In fact, it is possible for

 63

the descendants' F+D to be larger than the calling function's F+D. The following example
demonstrates three functions a, b and c, where both a and b each call c once:

function F F+D

a 5 15

b 5 15

c 20 20

The F+D value of a is less than the F+D of c. This is because the F+D of a (15) equals the F of a
(5) plus one half the F+D of c (20/2=10).

• F Time (% of root) and F+D Time (% of root): Same as above, expressed in
percentage of total execution time

• Average F Time: The average time spent each time the function was executed.

• Min F+D: The minimum time spent executing the function and any of its
descendants.

• Max F+D: The maximum time spent executing the function and any of its
descendants.

Note: The Min and Max values are optional, because their calculation uses a large amount of
memory. To calculate these values, you must first activate the option in the Configuration
Settings for the corresponding node.

Performance Profiling SCI Dump Driver

In C and C++, you can dump profiling trace data without using standard I/O functions by using
the Performance Profiling Dump Driver API contained in the atqapi.h file, which is part of the
Target Deployment Port

To customize the Performance Profiling Dump Driver, open the Target Deployment Port directory
and edit the atqapi.h. Follow the instructions and comments included in the source code.

Using the performance profiling viewer

The product GUI displays Performance Profiling results in the Performance Profiling Viewer.

Reloading a report

If a Performance Profiling report has been updated since the moment you have opened it in the
Performance Profiling Viewer, you can use the Reload command to refresh the display:

 To reload a report:

1. From the View Toolbar, click the Reload button.

Resetting a report

When you run a test or application node several times, the Performance Profiling results are
appended to the existing report. The Reset command clears previous Performance Profiling results
and starts a new report.

 To reset a report:

1. From the View Toolbar, click the Reset button.

64 IBM Rational Test RealTime User Guide

Exporting a report to HTML

Performance Profiling results can be exported to an HTML file.

 To export results to an HTML file:

1. From the File menu, select Export

Applying performance profile filters

Filters allow you to streamline a performance profile report by filtering out specific events. Use the
Filter List dialog box to specify how events are to be detected and filtered.

The export and import facilities are useful if you want to share and re-use filters between Projects
and users.

 To access the Filter List:

1. From the Performance Profile Viewer menu, select Filters or click the Filter button in the
Perfomance Profile Viewer toolbar.

 To create a new filter:

1. Click the New button

2. Create the new filter with the Event Editor.

 To modify an existing filter:

1. Select the filter that you want to change.

2. Click the Edit button.

3. Modify the filter with the Event Editor.

 To import one or several filters:

1. Click the Import button.

2. Locate and select the .xlf file(s) that you want to import.

3. Click OK.

 To export a filter event:

1. Select the filter that you want to export.

2. Click the Export button.

3. Select the location and name of the exported .xlf file.

4. Click OK.

Editing performance profile filters

Use the Filter Editor to create or modify filters that allow you to hide or show routines in the
performance profile report, based on specified filter criteria.

By default, routines that match the filter criteria are hidden in the report. Use the Invert filter
option to invert this behaviour: only routines that match the filter criteria are displayed.

Routine filters can be defined with one or more of the following criteria:

• Name: Specifies the name of a routine as the filter criteria.

 65

• Calls > and Calls <: The number times the function was called is greater or lower than the
specified value.

• F Time > and F Time <: Function time greater or lower than the specified value.

• F+D Time > and F+D Time <: Function and descendant time greater or lower than the
specified value.

• F Time (%) > and F Time (%) <: Function time, expressed in percentage, greater or lower than
the specified value.

• F+D Time (%) > and F+D Time (%) <: Function and descendant time, expressed in percentage,
greater or lower than the specified value.

• Average > and Average <: The average time spent executing the function greater or lower than
the specified value.

 To define a routine filter:

1. In the Name box, specify a name for the filter.

2. Click More or Fewer to add or remove a criteria.

3. From the drop-down criteria box, select a criteria for the filter, and an argument.
Arguments must reflect an exact match for the criteria. Pay particular attention when referring
to labels that appear in the sequence diagram since they may be truncated.
You can use wildcards (*) or regular expressions by selecting the corresponding option.

4. Add or remove a criteria by clicking the More or Fewer buttons.

5. Click Ok.

Runtime tracing

Runtime Tracing is a feature for monitoring real-time dynamic interaction analysis of your C, C++
and Java source code. Runtime Tracing uses exclusive Source Code Insertion (SCI) instrumentation
technology to generate trace data, which is turned into UML sequence diagrams within the Test
RealTime GUI.

In Test RealTime, Runtime Tracing can run either as a standalone product, or in conjunction with a
Component Testing or System Testing test node.

• You associate Performance Profiling with an existing test or application code.

• You build and execute your code in Test RealTime.

• The application under test, instrumented with the Runtime Tracing feature, then directs output
to the UML/SD Viewer, which a provides a real-time UML Sequence Diagram of your
application's behavior.

How Runtime Tracing works

When an application node is executed, the source code is instrumented by the C, C++ or Java
Instrumentor (attolcc1, attolccp or javi). The resulting source code is then executed and the
Runtime Tracing feature outputs a static .tsf file for each instrumented source file as well as a
dynamic .tdf file.

These files can be viewed and controlled from the Test RealTime GUI. Both the .tsf and .tdf files
need to be opened simultaneously to view the report.

Of course, these steps are mostly transparent to the user when the test or application node is
executed in the Test RealTime GUI or Eclipse (for C and C++).

66 IBM Rational Test RealTime User Guide

UML sequence diagram overview

The lifeline of an object is represented in the UML/SD Viewer as shown below.

The instance creation box displays the name of the instance. For more information about UML
sequence diagrams, see the UML sequence diagram reference.

 Example

Below is an example of object lifelines generated by Runtime Tracing from a C++ application.

In this C++ example:

• Functions and static methods are attached to the World instance.

• Objects are labelled with obj<number>:<classname>

• The black cross represents the destruction of the instance.

• Constructors are displayed as green arrow actions.

• Destructors are the blue arrows.

• Return messages are dotted red lines.

• Other functions and methods are black.

• The main() is a function of the World instance called by the same World instance.

 To jump to the corresponding portion of source code:

1. Double-click an element of the object lifeline to open the Text Editor at the corresponding line
in the source code.

 To jump to the beginning or to the end of an instance:

1. Right-click an element of the object lifeline.

 67

2. Select Go to Head or Go to Destruction in the pop-up menu.

 To filter an instance out of the UML sequence diagram:

1. Right-click an element of the object lifeline.

2. Select Filter instance in the pop-up menu.

Tracing a test node

When Runtime Tracing is activated with a Component Testing or System Testing test node,
monitoring a UML sequence diagram of the execution from Runtime Tracing is a matter of
including Runtime Tracing in the Build options of an existing test node.

If however you are using Runtime Tracing on its own, you need to create an application node in
the Project Explorer, and associate it with the source files that you want to monitor.

 To engage the runtime tracing option:

1. From the Build toolbar, click the Options button.

2. In the options list, select Runtime Tracing.

3. Click anywhere outside the options list to close it.

Next time you run a Make command on the selected test node, a Runtime Tracing UML sequence
diagram will be produced simultaneously with the standard test output.

 To view runtime tracing output:

1. Runtime Tracing output is displayed, with the UML/SD Viewer, in the same UML sequence
diagram as the standard test's graphical output.

Step-by-step tracing

When tracing large applications, it may be useful to slow down the display of the UML sequence
diagram. You can do this by using the Step-by-Step mode.

 To activate Step-by-Step mode:

1. From the UML/SD Viewer menu, select Display Mode and Step-by-Step.

 To select the type of graphical element to skip over:

1. In the UML/SD Viewer toolbar, click the button.

2. Select the graphical elements that will stop the Step command. Clear the elements that are to
be ignored.

 To step to the next selected element:

1. Click the Step button in the UML/SD Viewer toolbar or press F10.

 To skip to the end of execution:

1. Click the Continue button in the UML/SD Viewer toolbar. This will immediately display the
rest of the UML sequence diagram.

 To restart the Step-by-Step display:

1. Click the Restart button in the UML/SD toolbar.

68 IBM Rational Test RealTime User Guide

 To de-activate Step-by-Step mode

1. From the UML/SD Viewer menu, select Display Mode and All.

Using sequence diagram triggers

Sequence Diagram triggers allow you to predefine automatic start and stop parameters for the
UML/SD Viewer. The trigger capability is useful if you only want to trace a specific portion of an
instrumented application.

Triggers can be inactive, time-dependent, or event-dependent.

 To access the Trigger dialog box:

1. From the UML/SD Viewer menu, select Triggers or click the Trigger button in the UML/SD
Viewer toolbar.

Start and end of runtime tracing:

The Runtime Tracing start is defined on the Start tab:

• At the beginning: Runtime Tracing starts when the application starts.

• On time: Runtime Tracing starts after a specified number of microseconds.

• On event: Runtime Tracing starts when a specified event is detected. One or several events
must be specified with the Event Editor.

The Runtime Tracing end is defined on the Stop tab:

• Never: Runtime Tracing ends when the application exits.

• On time: Runtime Tracing ends after a specified number of seconds.

• On event: Runtime Tracing ends when a specified event is detected. One or several events
must be specified with the Event Editor.

 To create a new trigger event:

1. Click the New button

2. Create the new trigger event with the Event Editor.

 To modify an existing trigger event:

1. Select the trigger event that you want to change.

2. Click the Edit button.

3. Modify the trigger event with the Event Editor.

 To import one or several trigger events:

The import facility is useful if you want to reuse trigger events created in another Project.

1. Click the Import button.

2. Locate and select the file(s) that you want to import.

3. Click OK.

 To export a trigger event:

The export facility allows you to transfer trigger events.

1. Select the trigger event that you want to export.

2. Click the Export button.

 69

3. Select the location and name of the exported .tft file.

4. Click OK.

Applying sequence diagram filters

Filters allow you to streamline a sequence diagram by filtering out specific event types. Use the
Viewer's Filter List dialog box to specify how events are to be detected and filtered.

The export and import facilities are useful if you want to share and re-use filters between Projects
and users.

 To access the Filter List:

1. From the UML/SD Viewer menu, select Filters or click the Filter button in the UML/SD
Viewer toolbar.

 To create a new filter:

1. Click the New button

2. Create the new filter with the Event Editor.

 To modify an existing filter:

1. Select the filter that you want to change.

2. Click the Edit button.

3. Modify the filter with the Event Editor.

 To import one or several filters:

1. Click the Import button.

2. Locate and select the .tft file(s) that you want to import.

3. Click OK.

 To export a filter event:

1. Select the filter that you want to export.

2. Click the Export button.

3. Select the location and name of the exported .tft file.

4. Click OK.

Adding UML notes to source code

You can manually add your own notes inside your source code in order to make them display in
the UML sequence diagram when runtime tracing is enabled. To do this, you must insert the
following line, called an instrumentation pragma, in your C or C++ source code:

#pragma attol att_insert_ATT_USER_NOTE("Text")

This can be done automatically with the text editor.

 To manually set the syntax coloring mode:

1. In a C or C++ source file, place your cursor at the line where you want a UML note to be
displayed in the UML sequence diagram.

2. In the toolbar, click Add Note . This inserts the instrumentation pragma line in the source
code:

70 IBM Rational Test RealTime User Guide

3. Replace "Text" with a meaningful string that will be displayed in the note.

Viewing UML sequence diagrams

The UML/SD Viewer renders sequence diagram reports as specified by the UML standard.

UML sequence diagram can be produced directly via the execution of the SCI-instruction
application when using the Runtime Tracing feature.

The UML/SD Viewer can also display UML sequence diagram results for Component and System
Testing features.

Navigating through UML Sequence Diagrams

There are several ways of moving around the UML sequence diagrams displayed by the UML/SD
Viewer:

• Navigation Panel: Click and drag the Navigation button in the lower right corner of the
UML/SD Viewer window to scroll through a miniature navigation pane representing the
entire UML sequence diagram.

• Free scroll: Press the Control key and the left mouse button simultaneously. This displays a
compass icon, allowing you to scroll the UML sequence diagram in all direction by the moving
the mouse.

• Report Explorer: The Report Explorer is automatically activated when the UML/SD Viewer is
activated. The Report Explorer offers a hierarchical view of instances. Click an item in the
Report Explorer to locate and select the corresponding UML representation in the main
UML/SD Viewer window.

Some elements in the sequence diagram provide links to the corresponding line in the source code.
For example, if you click a message in a sequence diagram, the text editor opens the corresponding
source file in the text editor.

Note If the source file is already open, it is not brought forward.

Time stamping

The UML/SD Viewer displays time stamping information on the left of the UML sequence
diagram. Time stamps are based on the execution time of the application on the target.

You can change the display format of time stamp information in the UML/SD Viewer Preferences.

The following time format codes are available:

• %n - nanoseconds

• %u - microseconds

• %m - milliseconds

• %s - seconds

• %M - minutes

• %H - hours

These codes are replaced by the actual number. For example, if the time elapsed is 12ms, then the
format %mms would result in the printed value 12ms. If the number 0 follows the % symbol but
precedes the format code, then 0 values are printed to the viewer - otherwise, 0 values are not
printed. For example, if the time elapsed is 10ns, and the selected format code is %0mms %nns,
then the time stamp would read 0ms 10ns .

Note To change the format code you must press the Enter key immediately after
selecting/entering the new code. Simply pressing the OK button on the Preferences window
will not update the time stamp format code.

 71

Coverage bar

In C, C++ and Java, the coverage bar provides an estimation of code coverage.

Note The coverage bar is unrelated to the Code Coverage feature. For detailed code
coverage reports, use the dedicated Code Coverage feature.

When using the Runtime Tracing feature, the UML/SD Viewer can display an extra column on the
left of the UML/SD Viewer window to indicate code coverage simultaneously with UML sequence
diagram messages.

The UML/SD Viewer code coverage bar is merely an indication of the ratio of encountered versus
declared function or method entries and potential exceptions since the beginning of the sequence
diagram.

If new declarations occur during the execution the graph is recalculated, therefore the coverage bar
always displays a increasing coverage rate.

 To activate or disable coverage tracing with a Java application:

1. Before building the node-under-analysis, open the Memory Profiling settings box.

2. Set Coverage Tracing to Yes or No to respectively activate or disable code coverage tracing for
the selected node.

3. Click OK to override the default settings of the node

 To hide the coverage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Hide Coverage.

 To show the coverage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Coverage.

Memory usage bar

When using the Runtime Tracing feature on a Java application, the UML/SD Viewer can display
an extra bar on the left of the UML/SD Viewer window to indicate total memory usage for each
sequence diagram message event.

The memory usage bar indicates how much memory has been allocated by the application and is
still in use or not garbage collected.

In parallel to the UML sequence diagram, the graph bar represents the allocated memory against
the highest amount of memory allocated during the execution of the application.

This ratio is calculated by subtracting the amount of free memory from the total amount of
memory used by the application. The total amount of memory is subject to change during the
execution and therefore the graph is recalculated whenever the largest amount of allocated
memory increases.

A tooltip displays the actual memory usage in bytes.

 To activate or disable coverage tracing with a Java application:

1. Before building the node-under-analysis, open the Memory Profiling settings box.

2. Set Coverage Tracing to Yes or No to respectively activate or disable coverage tracing for the
selected node.

3. Click OK to override the default settings of the node

72 IBM Rational Test RealTime User Guide

 To hide the memory usage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Hide Memory Usage.

 To show the memory usage bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Memory Usage.

Thread bar

When using the Runtime Tracing feature on C, C++ and Java code, the UML/SD Viewer can
display an extra column on the left of its window to indicate the active thread during each UML
sequence diagram event.

Each thread is displayed as a different colored zone. A tooltip displays the name of the thread.

Click the thread bar to open the Thread Properties window.

 To hide the thread bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Hide Thread Bar.

 To show the thread bar:

1. Right-click inside the UML/SD Viewer window.

2. From the pop-up menu, select Show Thread Bar.

Thread properties

The Thread Properties window displays a list of all threads that are created during execution of
the application. Threads are listed with the following properties:

• Colour tab: As displayed in the Thread Bar.

• Thread ID: A sequential number corresponding to the order in which each thread was created.

• Name: The name of the thread.

• State: Either Sleeping or Running state.

• Priority: The current priority of the thread.

• Since: The timestamp of the moment the thread entered the current state.

Click the title of each column to sort the list by the corresponding property

Thread Properties Filter

By default, the Thread Properties window displays the entire list of thread states during execution
of the program.

 To switch the Thread Properties Filter:

1. Click Filter to display reduce the display to the list of threads created by the application.

2. Click Unfilter to return the full list of thread states.

Filtering sequence diagram events

Use the Event Editor to create or modify event triggers or filters for UML sequence diagrams:

 73

• Filters: Specified events are hidden or shown in the UML sequence diagram.

• Start triggers: The UML/SD Viewer starts displaying the sequence diagram when a specified
event is encountered. If no event matches the output of the application, the diagram will
appear blank.

• Stop triggers: The UML/SD Viewer stops displaying the sequence diagram when a specified
event is encountered.

Events can be related to messages, instances, notes, synchronizations, actions or loops.

 To define an event or filter:

1. Specify a name for the event.

2. Select the type of UML element you want to define for the event and select Activate. Several
types of elements can be activated for a single filter or trigger event.

3. Click More or Fewer to add or remove line to the event criteria.

4. From the drop-down criteria box, select a criteria for the filter, and an argument.

5. Arguments must reflect an exact match for the criteria. Pay particular attention when referring
to labels that appear in the sequence diagram since they may be truncated.

6. You can use wildcards (*) or regular expressions by selecting the corresponding option.

7. Click the button to enable or disable case sensitivity in the criteria.

8. You can add or remove a criteria by clicking the More or Fewer buttons.

9. Click Ok.

Message Criteria

• Name: Specifies a message name as the filter criteria.

• Internal message: Considers all messages other than constructor calls coming from any
internal source, as opposed to those messages coming from the World instance.

• From Instance: Considers all messages other than constructor calls prior to the first message
sent from the specified object

• To Instance: Considers out all messages other than constructor calls if any message is sent to
the specified object

• From World: Considers all messages received from the World instance

• To World: Considers all messages sent to the World instance

Instance Criteria

• Name: Specifies an instance name as the filter criteria

• Instance child of: Specifies a child instance of the specified class.

Note Criteria

• All: Considers all notes

• Name: Specifies a note name

• All message notes: Considers any note attached to a message

• All instance notes: Considers any note attached to an instance

• Instance child of: Specifies a note attached to an instance of the specified class

• Note on message named: Considers a note attached to a specified message

74 IBM Rational Test RealTime User Guide

• With style named: Considers a note with the specified style attributes

Synchronization Criteria

• All: Considers all synchronization events

• Name: Specifies a synchronization name

Action Criteria

• All: Considers all actions

• Name: Specifies an action name

• From Instance: Considers an action performed by the specified object

• From World: Considers all actions performed by the World instance

• Instance child of: Specifies an action performed by an instance of the specified class

• With style named: Considers an action with the specified style attributes

Loop Criteria

• All: Considers all loops

• Name: Specifies a loop name

Boolean Operators

• All Except expresses a NOT operation on the criteria

• Match All performs an AND operation on the series of criteria

• Match Any performs an OR operation on the series of criteria

Finding text in a sequence diagram

The UML/SD Viewer has an extensive search facility that allows users to locate specific UML
sequence diagram elements by searching for a text string.

 To search for a text string inside the UML/SD Viewer:

1. Click inside a UML/SD Viewer window to activate it.

2. From the Edit menu, select Find menu item. The Find dialog box opens.

3. Type your search criteria in the Find dialog box.

4. Click the Find Next button.

5. If a string corresponding to the search criteria is found in the UML/SD Viewer, the string is
highlighted and the following message is displayed: Runtime Tracing has finished searching
the document.

6. Click OK.

Search Options

• Forward and Backward specifies the direction of the search.

• The Search into option allows you to specify type of object in which you expect to find the
search string.

• The Find dialog box accepts either UNIX regular expressions or DOS-like wildcards ('?' or '*').
Select either wildcard or reg. exp. in the Find dialog box to select the corresponding mode.

 75

Exporting a sequence diagram to a text file (.csv)

The UML/SD Viewer can generate sequence diagram results in a .csv text file. A .csv file is a text
file presented as a table. You can import these results into a text editor, a spreadsheet application or
use them to operate a file diff comparison for non-regression evaluation.

You can specify the format used to generate the .csv text file in the Data table preferences.

 To generate a .csv text file from a sequence diagram:

1. After running an application or test node with Runtime Tracing, open a sequence diagram.

2. From the Runtime Trace menu, select Generate CSV.

3. In the Generate CSV window, specify the name of the text file.

4. Select Generate columns header to insert a line with column titles at the top of the file.

5. In the Columns list, select the sequence diagram elements that you want to export to the text
file. Use the Up and Down buttons to change the order.

6. In the Additional Filters list, select any sequence diagram elements that you want to filter out
of the report.

7. Click Preview to see how the table will appear in a spreadsheet application. The CSV Preview
window is limited to the first 100 lines. Click Close to exit the preview.

8. Click OK.

Advanced runtime tracing

Multi-thread support

Runtime Tracing can be configured for use in a multi-threaded environment such as Posix, Solaris
and Windows.

Multi-thread mode protects Target Deployment Port global variables against concurrent access.
This causes a significant increase in Target Deployment Port size as well as an impact on
performance. Therefore, select this option only when necessary.

Multi thread settings:

These settings are ignored if you are not using a multi-threaded environment. To change these
settings, use the Build Settings > Target Deployment Port build dialog box.

• Maximum number of threads: This value sets the size of the thread management table inside
the Target Deployment Port. Lower values save memory on the target platform. Higher values
allow more simultaneous threads.

• Record and display thread info: When selected, the UML Sequence Diagram displays a note
each time a new thread is created and each time a thread's schedule is changed.

 To access the multi-thread build settings:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select Build > Target Deployment Port build.

4. Set the Multi-threaded application and Maximum number of threads settings.

5. Select Runtime Analysis > Runtime Tracing > Runtime options.

6. Set Record and display thread info to Yes or No.

7. When you have finished, click OK to validate the changes.

76 IBM Rational Test RealTime User Guide

Partial trace flush

When using this mode, the Target Deployment Port only sends messages related to instance
creation and destruction, or user notes. All other events are ignored. This can be useful to reduce
the output of trace.

When Partial Trace Flush mode is enabled, message dump can be toggled on and off during trace
execution.

The Partial Trace Flush settings are located in the Runtime Tracing Settings.

 To enable Partial Trace Flush from the Node Settings:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select Runtime Analysis > Runtime Tracing > Runtime options.

4. Set the Partial Runtime Tracing flush setting to Yes or No to activate or disable the mode.

5. When you have finished, click OK to validate the changes.

 To toggle message dump from within the source code:

1. To do this, use the Runtime Tracing pragma user directives:

• _ATT_START_DUMP

• _ATT_STOP_DUMP

• _ATT_TOGGLE_DUMP

• _ATT_DUMP_STACK

See the Reference Manual for more information about pragma directives.

 To control message dump through a user signal (native UNIX only):

This capability is available only when using a native UNIX target platform.

Under UNIX, the kill command allows you to send a user signal to a process. Runtime Tracing can
use this signal to toggle message dump on and off.

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Runtime Tracing Control.

5. Set the Partial Runtime Tracing flush setting to Yes or No to activate or disable the mode.

6. When you have finished, click OK to validate the changes.

Note By default, the expected signal is SIGUSR1, but you can change this by setting the
ATT_SIGNAL_DUMP environment variable to the desired signal number. See the
Reference Manual for more information about environment variables.

Trace item buffer

Buffering allows you to reduce formatting and I/O processing at time-critical steps by telling the
Target Deployment Port to only output trace information when its buffer is full or at user-
controlled points.

This can prove useful when using Runtime Tracing on real-time applications, as you can control
buffer flush from within the source-under-trace.

 77

 To activate or de-activate trace item buffering:

1. In the Project Explorer, click the Open Settings... button.

2. Select one or several nodes in the Configuration pane.

3. Select the Runtime Analysis node and the Runtime Tracing node.

4. Select Runtime Tracing Control.

5. Set the Buffer trace items setting to Yes or No to activate or disable the mode.

6. Set the size of the buffer in the Items buffer size box.

7. When you have finished, click OK to validate the changes.

A smaller buffer optimizes memory usage on the target platform, whereas a larger buffer improves
performance of the real-time trace. The default value is 64.

Flushing the Trace Buffer through a User Directive

It can be useful to flush the buffer before entering a time-critical part of the application-under-trace.
You can do this by adding the _ATT_FLUSH_ITEMS user directive to the source-under-trace.

Note See Runtime Tracing pragma directives in the Reference Manual to control Target
Deployment Port buffering from within the source code.

Splitting trace files

During execution, Runtime Tracing generates a .tdf dynamic file. When a large application is
instrumented, the size of the .tdf file can impact performance of UML/SD Viewer.

Splitting trace files allows you to split the .tdf trace file into smaller files, resulting in faster display
of the UML Sequence Diagram and to optimize memory usage. However, split trace files cannot be
used simultaneously with On-the-Fly tracing.

When displaying split .tdf files, Runtime Tracing adds Synchronization elements to the UML
sequence diagram to ensure that all instance lifelines are synchronized.

 To set Split Trace mode:

1. In the Project Explorer, select the highest level node from which you want to activate split
trace mode.

2. Click the Open Settings... button.

3. Select Runtime Analysis and the Runtime Tracing settings.

Select Trace Control.

Set the Size (Kb) of each split .tdf. The default size is 5000 Kb.

Specify a File Name Prefix for the split .tdf filenames. The prefix is followed by a 4-digit
number that identifies each file.

4. Click OK.

Note The total size of split .tdf files is slightly larger than the size of a single .tdf file,
because each file contains additional context information.

Trace Probes for C

The Trace Probes feature of Test RealTime allows you to manually add special probe C macros at
specific points in the source code under test, in order to trace messages.

78 IBM Rational Test RealTime User Guide

Upon execution of the instrumented binary, the probes record information on the exchange of
specified messages, including message content and a time stamp. Probe trace results can then be
processed and displayed in the UML/SD Viewer.

The use of C macros offers extreme flexibility. For example, when delivering the final application,
you can leave the macros in the final source and simply provide an empty definition.

How Trace Probes work

The first step is to manually add specific macros to your C source code.

When the test or application node is executed, the Probe Processor produces an instrumented
source file. which is functionally identical to the original, but which generates extra message
tracing results.

The resulting source code is then executed and the Trace Probe feature outputs a .rio output file for
each probe instance.

A .tsf static trace file is generated during instrumentation, and the .rio output file is processed and
transformed into a .tdf file. These files can be viewed and controlled from the Test RealTime GUI.
Both the .tsf and .tdf files need to be opened simultaneously to view the UML sequence diagram
report.

Of course, these steps are mostly transparent to the user when the test or application node is
executed in the Test RealTime GUI.

Using Probe Macros

Before adding probe macros to your source code, add the following #include statement to each
source file that is to contain a probe:

#include "atlprobe.h"

The atl_start_trace() macro must be called before any probe activity can occur; for example, it can
be placed at the start of the application.

The atl_end_trace() macros must be called after all probe activity has ended; for example, when the
application terminates.

Other macros must be placed inside the source code, at locations that are relevant for the messages
that you want to trace.

The following probe macros are available:

• atl_dump_trace()

• atl_end_trace()

• atl_recv_trace()

• atl_select_trace()

• atl_send_trace()

• atl_start_trace()

• atl_format_trace()

Please refer to the section on Probe Macros in Reference for a complete definition of each probe
macro.

 To activate the Trace Probe feature:

1. In the Project Browser, select the application or System Testing node on which you want to use
the feature.

2. Click Settings and open the Probe control box.

 79

3. Set Probe enable to Yes, select the correct output mode in Probe Settings and click OK.

4. Edit the source code under test to add the trace probe macros, including the #include line.

5. Set up your trace probes within your application source files.

 To read the trace probe output:

1. From the File menu, select Open and File.

2. In the file selector, select Trace Files (*.tsf, *.tdf) and select the .tsf and .tdf files produced after
the execution of the application under test.

3. Click OK.

Trace Probe output modes

By default, the message traces are written to the .rio output file. However, in some cases, this may
not be practical, therefore the Trace Probe feature can be configured to send trace information to a
temporary buffer before writing to a file.

To change the way traces are stored, specify the trace mode as specified in the Probe Control
Settings:

• DEFAULT: In this mode, the message traces are written directly to the .rio output file.

• FIFO: Binary format traces are directed to a temporary first-in first-out memory buffer before
writing to the .rio file when the atl_dump_trace macro is encountered. This mode is intended
for embedded or realtime applications which may not be able to access a filesystem when
running.

• FILE: Binary format traces are written to a low footprint temporary file before writing to the
.rio file when the atl_dump_trace macro is encountered. This mode is intended for embedded
or realtime applications which may not have enough memory or processing power to
continuously write to the .rio file. In this case for example, a second application could be set up
to read the file and generate the .rio result file.

• USER: Uses methods, described in a user-defined probecst.c file to direct traces to a user-
defined format before writing to the .rio file when the atl_dump_trace macro is encountered.
See Customizing the USER output mode for more information.

• IGNORE: Use this setting to ignore trace probe macros on compilation. In this case, the binary
is compiled without instrumentation.

When FIFO, FILE or USER are selected, the traces must be flushed to the .rio file with a specific
atl_dump_trace macro placed in a source file.

Use the DEFAULT output mode whenever possible. In most other cases, the FIFO or FILE should
be enough and can be optimized using parameters provided in the Reference section.

Only use USER mode if none of the other settings are practical for your application. Using the
USER output mode requires that you rewrite your own probecst.c and probecst.h using the files
provided with the product as a template. See Customizing the USER output mode for more
information.

When using the USER mode, you must specify the location of the user-defined probecst.c and
probecst.h files in the USER custom files directory setting. See Probe control settings for details.

Traces Probes and System Testing for C

You can use Trace Probes to produce a System Testing .pts test script based on probe activity.

When a probed application is executed, the .rio result file is processed, which produces a .pts test
script for System Testing for C.

80 IBM Rational Test RealTime User Guide

The Script generation flags setting allows you to specify the command line arguments that will be
used to generate the .pts test script. The available flags are:

-accuracy=<time>

-polling=<time>

These values express the desired accuracy and polling intervals to be used in the .pts test script,
where <time> is expressed in milliseconds (ms).

You can edit and reuse this script in later tests to replay the exact same data exchanges in a System
Testing for C test node.

Customizing the USER output mode

The USER output mode for Trace Probes requires that you rewrite user-defined probecst.c and
probecst.h based on the files provided with the product.

Only use the USER mode if the DEFAULT, FIFO or FILE modes are not practical for your
application.

To rewrite your own routines, make a copy of the probecst.c and probecst.h that are provided with
the product and use them as a template. These files are located in the following directory located in
the installation directory of the product:

/lib/probe/probecst/fifo

Note These are the files that are used for the FIFO output mode, therefore ensure that any
changes that you make are performed on copies of these files.

The implementation delivered in the FIFO mechanism is based on a circular buffer. The
instrumented application sends traces to the intermediate storage buffer, by using the
atl_write_probe function. The traces can then be read by the atl_read_probe function.

You can modify this file to adapt the probe mechanism to your application and platform.

For example, when using USER mode, the main probed application may store messages in binary
format in a shared memory or pipe, whereas a dedicated "dump application" can be written to read
the shared memory or pipe and to generate the .rio result file.

By using this method, the probed application can still run with minimal overhead while another
process generates the .rio result file either on the fly or after the execution of the probed
application.

Whichever storage mechanism you use, it is important that the dump application runs within the
same hardware architecture as the main application to avoid misalignment or little-big endian
problems.

When using the USER mode, you must specify the location of the user-defined probecst.c and
probecst.h files in the USER custom files directory setting. See Probe control settings for details.

The probecst.c file contains definitions for the Trace Probe macro functions. These are detailed
below. For the usage and syntax of the Trace Probe macros, please refer to the Reference section.
For each function, the probecst.c file contains comments that should help you to rewrite each of
these functions.

The following functions must be executed during the execution of the probed application:

• atl_create_probe

• atl_end_probe

• atl_write_key

• atl_write_probe

The following functions can be executed when the probed application ends or after the application
has finished in a dedicated dump application:

 81

• atl_open_probe

• atl_close_probe

• atl_read_probe

atl_start_trace

The atl_start_trace function executes atl_create_probe. It must be called before any other macros,
once for each instance. Its role is to open, create and initialize the intermediate storage media used
to keep messages in the intermediate binary format.

atl_end_trace

The atl_start_trace function executes atl_end_probe. It must be called at the end of the application,
once for each instance. Its role is to close the intermediate storage media used to keep messages in
the intermediate binary format.

atl_send_trace and atl_recv_trace

The atl_send_trace and atl_recv_trace functions execute atl_write_probe in order to dump the
message to the intermediate storage media.

It is important that the .rio result file retains the message sequence. Therefore, ensure that data is
recorded in the execution order.

atl_write_probe

The role of the atl_write_probe function is to record the following data:

• The complete message, the length of the message is provided to help.

• The date of the event.

• An internal code.

• The key format.

If your USER mechanism required the use of intermediate storage, the atl_dump_trace must be
called after the atl_end_trace macro.

atl_dump_trace()

This macro can be either part of the probed application or part of a dedicated dump program that
would be executed after the main application, depending on what is practical in your application.

The atl_dump_trace() macro executes, for each instance,

• atl_open_probe,

• atl_read_probe for each recorded message, and

• atl_close_probe.

atl_open_probe

The role of the atl_open_probe function is to reopen the intermediate storage and point to the first
recorded message.

atl_close_probe

The role of the atl_close_probe function is to close, destroy or free the memory of the intermediate
storage.

82 IBM Rational Test RealTime User Guide

atl_read_probe

The role of the atl_read_probe function is to retrieve the following data from the intermediate
storage:

• The message as it was recorded during the execution.

• A timestamp of the message.

• An internal code.

• The key format of the message.

atl_select_trace

The role of the atl_select_trace function is to execute atl_write_key in the API. The code of this
function must not be customized. It must be copied from the original probecst.c without any
change.

Profiling shared libraries

In order to perform runtime analysis on a shared library, you must create an application node
containing both a small program that uses the library, and a reference link to the library.

After the execution of the application node, the runtime analysis results are located in the
application node.

 To profile a shared library:

1. Add the library to your project as described in Using library nodes.

2. Create an empty application node:

3. Right-click a group or project node and select Add Child and Application from the popup
menu.

4. Enter the name of the application node

5. Inside the application node, create a source file containing a short program that uses the
shared library.

6. Link the application node to the shared library:

7. Right-click the application or test node that will use the shared library and select Add Child
and Reference from the popup menu.

8. Select the library node and click OK.

9. Select the application node, click the Settings button, and set the Build options to include the
runtime analysis tools that you want to use.

10. Build and execute the application node.

Example

An example demonstrating how to use Runtime Analysis tools on shared libraries is provided in
the Shared Library example project. See Example projects for more information.

© Copyright IBM Corp. 2001, 2006 83

Chapter 3. Checking with static analysis

The static analysis features of IBM Rational Test RealTime allow you to measure the complexity of
your source code and to check the adherence to coding guidelines.

These tools are able analyze the source code providing without compiling or running the
application.

• Static metrics provide statistic indicators of code complexity.

• Code review performs in-depth verification of the source code against a set of rules that
implement best practices, coding guidelines, and standards.

These static analysis features can be used together with any of the automated testing features and
runtime analysis features.

Here is a basic rundown of the main steps to using the runtime analysis feature set.

 To use the static analysis features:

1. From the Start page, set up a new project. This can be done automatically with the New
Project Wizard.

2. Follow the Activity Wizard to add your application source files to the workspace.

3. Select the source files under analysis in the wizard to create the application node.

4. Select the runtime analysis tools to be applied to the application in the Build options.

5. Use the Project Explorer to set up the test campaign and add any additional runtime analysis
or test nodes.

6. Run the application node to build and execute the instrumented application.

7. View and analyze the generated analysis and profiling reports.

The runtime analysis options can be run within a test by simply adding the runtime analysis
setting to an existing test node.

Static metrics

Statistical measurement of source code properties is an extremely important matter when you are
planning a test campaign or for project management purposes. Test RealTime provides a Metrics
Viewer, which displays detailed source code complexity data and statistics for your C, C++, Ada,
and Java source code.

How the static metrics tool works

Metrics are updated each time a file is modified. Static metrics can be computed each time a node is
built, but can also be calculated without executing the application.

The metrics are stored in .met metrics files alongside the actual source files.

84 IBM Rational Test RealTime User Guide

Viewing Static Metrics

Use the Metrics Viewer to view static testability measurements of the source files of your project.
Source code metrics are created each time a source file is added to the project.

 To compute static metrics without executing the application:

1. In the Project Browser, select a node.

2. From the Build menu, select Options or click the Build Options button in the toolbar.

3. Clear all build options. Select only Source compilation and Static metrics.

4. Click the Build toolbar button.

 To open the Metrics Viewer:

1. Right-click a node in the Asset Browser of the Project Explorer.

2. From the pop-up menu, select View Metrics.

 To manually open a report file:

1. From the File menu, select Open... or click the Open icon in the main toolbar.

2. In the Type box of the File Selector, select the .met Metrics File file type.

3. Locate and select the metrics files that you want to open.

4. Click OK.

Report Explorer

The Report Explorer displays the scope of the selected nodes, or selected .met metrics files. Select a
node to switch the Metrics Window scope to that of the selected node.

Metrics Window

Depending on the language of the analyzed source code, different pages are available:

• Root Page - File View: contains generic data for the entire scope

• Root Page - Object View: contains object related generic data for C++ and Java only

• Component View: displays detailed component-related metrics for each file, class, method,
function, unit, procedure, etc...

The metrics window offer hyperlinks to the actual source code. Click the name of a source
component to open the Text Editor at the corresponding line.

Static metrics

The Source Code Parsers provide static metrics for the analyzed C and C++ source code.

File Level Metrics

The scope of the metrics report depends on the selection made in the Report Explorer window.
This can be a file, one or several classes or any other set of source code components.

• Comment only lines: the number of comment lines that do not contain any source code

• Comments: the total number of comment lines

• Empty lines: the number of lines with no content

• Source only lines: the number of lines of code that do not contain any comments

• Source and comment lines: the number of lines containing both source code and comments

• Lines: the number of lines in the source file

 85

• Comment rate: percentage of comment lines against the total number of lines

• Source lines: the total number of lines of source code and empty lines

File, Class or Package, and Root Level Metrics

These numbers are the sum of metrics measured for all the components of a given file, class or
package.

• Total statements: total number of statement in child nodes

• Maximum statements: the maximum number of statements

• Maximum level: the maximum nesting level

• Maximum V(g): the highest encountered cyclomatic number

• Mean V(g): the average cyclomatic number

• Standard deviation from V(g): deviation from the average V(g)

• Sum of V(g): total V(g) for the scope.

Root level file view

At the top of the Root page, the Metrics Viewer displays a graph based on Halstead data.

On the Root page, the scope of the Metrics Viewer is the entire set of nodes below the Root node.

Halstead Graph

The following display modes are available for the Halstead graph:

• VocabularySize

• Volume

• Difficulty

• Testing Effort

• Testing Errors

• Testing Time

See the Halstead Metrics section for more information.

Metrics Summary

The scope of the metrics report depends on the selection made in the Report Explorer window.
This can be a file, one or several classes or any other set of source code components.

Below the Halstead graph, the Root page displays a metrics summary table, which lists for for the
source code component of the selected scope:

86 IBM Rational Test RealTime User Guide

• V(g): provides a complexity estimate of the source code component

• Statements: shows the number of statements within the component

• Nested Levels: shows the highest nesting level reached in the component

• Ext Comp Calls: measures the number of calls to methods defined outside of the component
class (C++ and Java only)

• Ext Var Use: measures the number of uses of attributes defined outside of the component class
(C++ and Java only)

 To select the File View:

1. Select File View in the View box of the Report Explorer.

2. Select the Root node in the Report Explorer to open the Root page.

Note With C and Ada source code, File View is the only available view for the Root page.

 To change the Halstead Graph on the Root page:

1. From the Metrics menu, select Halstead Graph for Root Page.

2. Select another metric to display.

Object view

Root Level Summary

At the top of the Root page, the Metrics Viewer displays a graph based on the sum ofdata.

On the Root page, the scope of the Metrics Viewer is the entire set of nodes below the Root node.

File View is the only available view with C or Ada source code. When viewing metrics for C++ and
Java, an Object View is also available.

Two modes are available for the data graph:

• Vocabulary

• Size

• Volume

• Difficulty

• Testing Effort

• Testing Errors

• Testing Time

 87

See the Halstead Metrics section for more information.

Metrics Summary

Below the Halstead graph, the Root page displays a metrics summary table, which lists for each
source code component:

• V(g): provides a complexity estimate of the source code component

• Statements: shows the total number of statements within the object

• Nested Levels: shows the highest statement nesting level reached in the object

• Ext Comp Calls: measures the number of calls to components defined outside of the object

• Ext Var Use: measures the number of uses of variables defined outside of the object

Note The result of the metrics for a given object is equal to the sum of the metrics for the
methods it contains.

 To select the Object View:

1. Select the Root node in the Report Explorer to open the Root page.

2. Select Object View in the View box of the Report Explorer.

 To switch the object graph mode:

1. From the Metrics menu, select Object Graph for Root Page.

2. Select ExtVarUse by ExtCompCall or Nested Level by Statement.

Halstead Metrics

Halstead complexity measurement was developed to measure a program module's complexity
directly from source code, with emphasis on computational complexity. The measures were
developed by the late Maurice Halstead as a means of determining a quantitative measure of
complexity directly from the operators and operands in the module.

Halstead provides various indicators of the module's complexity

Halstead metrics allow you to evaluate the testing time of any C/C++ source code. These only
make sense at the source file level and vary with the following parameters:

Parameter Meaning

n1 Number of distinct
operators

n2 Number of distinct
operands

N1 Number of operator
instances

N2 Number of operand
instances

When a source file node is selected in the Metrics Viewer, the following results are displayed in the
Metrics report:

Metric Meaning Formula

n Vocabulary n1 + n2

88 IBM Rational Test RealTime User Guide

N Size N2 + N2

V Volume N * log2
n

D Difficulty n1/2 *
N2/n2

E Effort V * D

B Errors V / 3000

T Testing
time

E / k

In the above formulae, k is the stroud number, which has an arbitrary default value of 18. With
experience, you can adjust the stroud number to adapt the calculation of the estimated testing time
(T) to your own testing conditions: team background, criticity level, and so on.

When the Root node is selected, the Metrics Viewer displays the total testing time for all loaded
source files.

V(g) or Cyclomatic Number

The V(g) or cyclomatic number is a measure of the complexity of a function which is correlated
with difficulty in testing. The standard value is between 1 and 10.

A value of 1 means the code has no branching.

A function's cyclomatic complexity should not exceed 10.

The Metrics Viewer presents V(g) of a function in the Metrics tab when the corresponding tree
node is selected.

When the type of the selected node is a source file or a class, the sum of the V(g) of the contained
function, the mean, the maximum and the standard deviation are calculated.

At the Root level, the same statistical treatment is provided for every function in any source file.

Code review

Automated source code review is a method of analyzing code against a set of predefined rules to
ensure that the source adheres to guidelines and standards that are part of any efficient quality
control strategy. Test RealTime provides an automated code review tool, which reports on
adherence to guidelines for your C source code.

Among other guidelines, the code review tool implements rules from the MISRA-C:2004 standard,
Guidelines for the use of the C language in critical systems.

How the code review tool works

When an application or test node is built, the source code is analyzed by the code review tool. The
tool checks the source file against the predefined rules and produces a .crc report file that can be
viewed and controlled from the Test RealTime GUI.

Of course, these steps are mostly transparent to the user when the test or application node is built
in the Test RealTime GUI.

Code review can be performed each time a node is built, but can also be calculated without
executing the application.

 89

Configuring code review rules

The code review tool uses a set of predefined rules that you can either disable or set the severity
level to Warning or Error.

By default all rules are enabled and produce either an error or a warning in the code review report.
You can save multiple customized rule policies.

The default rule policy is located in the <installation directory>/plugins/Common/lib/confrule.xml
file.

Note All new projects use the default rule configuration file. When you make any changes
to the policy, a new policy file is automatically saved in the project folder.

 To disable or set the severity level of code review rules:

1. Select a node in the Project Explorer pane and click the Settings button.

2. In the Configuration Settings list, select Code Review.

3. Select the Rule configuration setting and click Edit . This opens the Rule Configuration
window.

4. On the left, select the rule that you want to configure. Rules are grouped into categories. When
a rule is selected, its description is displayed on the right.

5. On the right, select the severity level:

• Disabled: The selected rule is ignored and is not displayed in the code review report.

• Warning: When any non-compliances are found, a warning is displayed in the code review
report.

• Error: When any non-compliances are found, an error is displayed in the code review report.

6. Select Show only the first occurrence to only show the first occurrence of a non conformance
in a file.

7. Select OK to save the current configuration or Save As to create a new rule configuration file.

Running a code review

You can use the code review tool on any test or application node or a single source file. The code
review tool is run on the source code whenever you build the file.

 To enable the code review tool on a source file, test or application node:

1. In the Project Browser, select the node that you want to review.

2. Select Build > Options from the menu or click the Settings button and select Build > Build
options.

3. Select Code Review.

 To perform a code review without compiling and executing the application:

1. In the Project Browser, select the node that you want to check.

2. Select Build > Options from the menu or click the Settings button and select Build > Build
options.

3. Clear all build options except Code Review.

4. Click the Build toolbar button.

Viewing code review results

The GUI displays code review results in the Report Viewer.

90 IBM Rational Test RealTime User Guide

Reloading a Report

If a code review report has been updated since the moment you have opened it in the report
viewer, you can use the Reload command to refresh the display:

 To reload a report:

1. From the View Toolbar, click the Reload button.

Exporting a Report to HTML

Code review results can be exported to an HTML file.

 To export results to an HTML file:

1. From the File menu, select Export and Export Project Report in HTML files format.

2. In the HTML Export Configuration window, select Code Review.

3. Specify an output directory and click Export.

Ignoring a rule on a portion of code

In some cases, it can be useful to temporarily ignore a rule non-conformance on a short portion of
source code, while providing a justification of why you are allowing the non-conformance.

You can justify a non-conformance in the source code, for a specified number of lines and for the
first or all occurrences of the error, by adding the following pragma lines to your source code:

• #pragma attol crc_justify: ignores the first occurrence of a specified non conformance

• #pragma attol crc_justify_all: ignores all occurrences of a specified non conformance

You must provide an explanation of why you are ignoring the rule. The justification text is
included in the code review report.

 To justify a rule discrepancy on a portion of code:

1. Open the source file in the text editor and locate the lines of code that you want the rule to
ignore.

2. Before the portion of code, add the following line:
#pragma attol crc_justify (<rule>[,<lines>],"<text>")

to justify the first non-conformance encountered, or
#pragma attol crc_justify_all (<rule>,<lines>,"<text>")

to justify all non conformances, where:

• <rule> is the name of the code review rule (for example: "Rule M8.5").

• <lines> is the number of lines. By default the pragma only applies to the next line.

• <text> is the justification of why the rule is ignored here.

 Example

The following example causes all non-conformances to the rule M8.5 in the 3 next lines to be
ignored and explained in the code review report.

#pragma attol crc_justify_all (Rule M8.5, 3, "Rule M8.5 does not apply
to the 3 following lines")

Understanding code review reports

The Code Review report lists the rules that produced and error or a warning.

 91

Report explorer

The Report Explorer window displays a list of rules that were broken for each source file and
function. You can use there elements in this view to navigate through the report.

Report summary

At the top of the Code Review report a summary provides information about the general
configuration, the date and the number of analyzed files.

It also lists the number of errors and warnings that were encountered.

Code review details

The code review report lists the rules for which errors or warnings were detected. It also provides
information about the location of the error. You can click the title to go directly to the
corresponding line in the source code.

© Copyright IBM Corp. 2001, 2006 93

Chapter 4. Testing software components

The test features provided with Test RealTime allow you to submit your application to a robust test
campaign. Each feature uses a different approach to the software testing problem, from the use of
test drivers stimulating the code under test, to source code instrumentation testing internal
behavior from inside the running application.

• Component Testing for C and Ada performs black box or functional testing of software
components independently of other units in the same system.

• Component Testing for C++ uses object-oriented techniques to address embedded software
testing.

• Component Testing for Java uses the JUnit framework to address J2ME and J2SE software
testing.

• System Testing for C is dedicated to testing message-based applications.

These test features each use a dedicated scripting language for writing specialized test cases. Test
RealTime's test features can also be used together with any of the runtime analysis tools.

 To use a component test feature:

Here is a rundown of the main steps to using the Test RealTime test features:

1. Set up a new project in Test RealTime. This can be done automatically with the New Project
Wizard.

2. Follow the Activity Wizard to add your application source files to the workspace.

3. Select the source files under test with the Test Generation Wizard to create a test node. The
Wizard guides you through process of selecting the right test feature for your needs.

4. Develop the test cases by completing the automatically generated test scripts with the
corresponding script language and native code.

5. Use the Project Explorer to set up the test campaign and add any additional runtime analysis
or test nodes.

6. Run the test campaign to builds and execute a test driver with the application under test.

7. View and analyze the generated test reports.

Component Testing for C

The Component Testing for C feature of Test RealTime provides a unique, fully automated, and
proven solution for applications written in C, dramatically increasing test productivity.

How Component Testing for C Works

When a test node is executed, the Component Testing Test Compiler (attolpreproC) compiles both
the test scripts and the source under test. This preprocessing creates a .tdc file. The resulting source
code generates a test driver.

94 IBM Rational Test RealTime User Guide

If any Runtime Analysis tools are associated with the test node, then the source code is also
instrumented with the Instrumentor (attolcc1) tool.

The test driver, TDP, stubs and dependency files all make up the test harness.

The test harness interacts with the source code under test and produces test results. Test execution
creates a .rio file.

The .tdc and .rio files are processed together the Component Testing Report Generator
(attolpostpro). The output is the .xrd report file, which can be viewed and controlled in the Test
RealTime GUI.

Of course, these steps are mostly transparent to the user when the test node is executed in the Test
RealTime GUI.

Component Testing for C Overview

Component Testing for C interacts with your source code through the C Test Script Language. The
Rational Test RealTime Reference Manual contains full reference information about each of these
languages.

Testing with Component Testing for C is as simple as following these steps:

• Set up your test project in the GUI

• Write a .ptu test script

• Run your tests

• View the results.

Upon execution, Component Testing compiles both the test scripts and the source under test, then
instruments the source code if necessary and generates a test driver.

The test driver, TDP, stubs and dependency files make up a test harness.

The test harness interacts with the source code under test and produces test results.

Both the instrumented application and the test driver provide output data which is displayed
within Test RealTime.

Integrated, Simulated and Additional Files

When creating a Component Testing test node for C and Ada, the Component Testing wizard
offers the following options for specifying dependencies of the source code under test:

• Integrated files

• Simulated files

• Additional files

Integrated Files

This option provides a list of source files whose components are integrated into the test program
after linking.

The Component Testing wizard analyzes integrated files to extract any global variables that are
visible from outside. For each global variable the Parser declares an external variable and creates a
default test which is added to an environment named after the file in the .ptu test script.

By default, any symbols and types that could be exported from the source file under test are
declared again in the test script.

 95

Simulated Files

This option gives the Component Testing wizard a list of source files to simulate—or stub—upon
execution of the test.

A stub is a dummy software component designed to replace a component that the code under test
relies on, but cannot use for practicality or availability reasons. A stub can simulate the response of
the stubbed component.

The Component Testing parser analyzes the simulated files to extract the global variables and
functions that are visible from outside. For each file, a DEFINE STUB block, which contains the
simulation of the file's external global variables and functions, is generated in the .ptu test script.

By default, no simulation instructions are generated.

Additional Files

Additional files are merely dependency files that are added to the Component Testing test node,
but ignored by the source code parser. Additional files are compiled with the rest of the test node
but are not instrumented.

For example, Microsoft Visual C resource files can be compiled inside a test node by specifying
them as additional files.

You can toggle a source file from under test to additional by using the Properties Window dialog
box.

Testing shared libraries

In order to test a shared library, you must create a test node containing the .ptu component test
script that uses the library, and a reference link to the library.

After the execution of the test node, the runtime analysis and component test results are located in
the application node.

 To test a shared library:

1. Add the library to your project:

2. Right-click a group or project node and select Add Child and Library from the popup menu.

3. Enter the name of the Library node

4. Right-click the Library node and select Add Child and Files from the popup menu.

5. Select the source files of the shared library.

6. Run the Component Testing wizard as usual on the source file of your library. This creates a
test node containing the test scripts and the source file.

7. Delete the source file from the test node.

8. Create a reference to the shared library in the test node:

9. Right-click the application or test node that will use the shared library and select Add Child
and Reference from the popup menu.

10. Select the library node and click OK.

11. Build and execute the test node.

 Example

An example demonstrating how to test shared libraries is provided in the Shared Library example
project. See Example projects for more information.

96 IBM Rational Test RealTime User Guide

Writing a Test Script

When you first create Component Testing for C test node with the Component Testing Wizard,
Test RealTime produces a .ptu test script template based on the source under test.

To write the test script, you can use the Text Editor provided with Test RealTime.

Component Testing for C uses the C Test Script Language. Full reference information for this
language is provided in the Reference section.

Test Script Structure

The C Test Script Language allows you to structure tests to:

• Describe several test cases in a single test script,

• Select a subset of test cases according to different Target Deployment Port criteria.

Test script filenames must contain only plain alphanumerical characters.

A typical Component Testing .ptu test script looks like this:
HEADER add, 1, 1

<variable declarations for the test script>

BEGIN

SERVICE add

 <local variable declarations for the service>

 TEST 1

 FAMILY nominal

 ELEMENT

 VAR variable1, INIT=0, EV=0

 VAR variable2, INIT=0, EV=0

 #<call to the procedure under test>

 END ELEMENT

 END TEST

END SERVICE

All instructions in a test script have the following characteristics:

• All statements begin with a keyword.

• Statements are not case sensitive (except when C expressions are used).

• Statements start at the beginning of a line and end at the end of a line. You can, however, write
an instruction over several lines using the ampersand (&) continuation character at the
beginning of additional lines. In this case, the ampersand must be the very first character on
that line; no spaces or tabs should precede it.

• Statements must be shorter than 2048 characters, although this limit may be lower on some
platforms.

Structure statements

The following statements allow you to describe the structure of a test.

• HEADER: For documentation purposes, specifies the name and version number of the module
being tested, as well as the version number of the tested source file. This information is
displayed in the test report.

• BEGIN: Marks the beginning of the generation of the actual test program.

• SERVICE: Contains the test cases related to a given service. A service usually refers to a
procedure or function. Each service has a unique name (in this case add). A SERVICE block
terminates with the instruction END SERVICE.

 97

• TEST: Each test case has a number or identifier that is unique within the block SERVICE. The
test case is terminated by the instruction END TEST.

• FAMILY: Qualifies the test case to which it is attached. The qualification is free (in this case
nominal). A list of qualifications can be specified (for example: family, nominal, structure) in
the Tester Configuration dialog box.

• ELEMENT: Describes a test phase in the current test case. The phase is terminated by the
instruction END ELEMENT. The different phases of the same test case cannot be dissociated
after the tests are run, unlike the test cases introduced by the instruction NEXT_TEST.
However, the test phases introduced by the instruction ELEMENT are included in the loops
created by the instruction LOOP.

The three-level structure of the test scripts has been deliberately kept simple. This structure allows:

• A clear and structured presentation of the test script and report

• Tests to be run selectively on the basis of the service name, the test number, or the test family.

Using native C statements

In some cases, it can be necessary to include portions of C native code inside a .ptu test script for
one the following reasons:

• To declare native variables that participate in the flow of a scenario. Such statements must be
analyzed by the Component Testing Parser.

• To insert native code into a scenario. In this case, the code is ignored by the parser, but carried
on into the generated code.

Analyzed native code

Lines prefixed with a # character are analyzed by Component Testing Parser.

Prefix statements with a # character to include native C variable declarations as well as any code
that can be analyzed by the parser.

#int i;

#char *foo;

Variable declarations must be placed outside of Component Testing Language blocks or preferably
at the beginning of scenarios and procedures.

Ignored native code

Lines prefixed with a @ character are ignored by the parser, but copied into the generated code.

To use native C code in the test script, start instructions with a @ character:
@for(i=0; i++; i<100) func(i);

@foo(a,&b,c);

You can add native code either inside or outside of C and Ada Test Script Language blocks.

Automatically updating a .ptu test script

Changes that are made during the development process can sometimes impact the test script, for
example when new functions are added after the test script was generated.

You can update a .ptu test script to automatically add new elements to SERVICES and INCLUDE
blocks to reflect changes that were made to the source code. An update does not remove or modify
any existing statements.

For the update to work, you must not edit any generated comment lines that start with %c or %d in
the test script. The update command only works with .ptu test scripts that were generated with the
Test RealTime 7.0.0 component test wizard that contain these %c and %d comment lines.

98 IBM Rational Test RealTime User Guide

 To update a .ptu test script

1. In the Project Explorer, right-click the .ptu test script that you want to update.

2. From the pop-up menu, select Update.

3. Edit the .ptu test script.

Testing variables

One of the main features of Component Testing for C is its ability to compare initial values,
expected values and actual values of variables during test execution. In the C Test Script Language,
this is done with the VAR statement.

The VAR statement specifies both the test start-up procedure and the post-execution test for simple
variables. This instruction uses three parameters:

• Name of the variable under test: this can be a simple variable, an array element, or a field of a
record. It is also possible to test an entire array, part of an array or all the fields of a record.

• Initial value of the variable: identified by the keyword INIT.

• Expected value of the variable after the procedure has been executed: identified by the
keyword EV.

Declare variables under test with the VAR statement, followed by the declaration keywords:

• INIT = for an assignment

• INIT == for no initialization

• EV = for a simple test.

It does not matter where the VAR instructions are located with respect to the test procedure call
since the C code generator separates VAR instructions into two parts :

• The variable test is initialized with the ELEMENT instruction

• The actual test against the expected value is done with the END ELEMENT instruction

Many other forms are available that enable you to create more complex test scenarios.

Using C Expressions

Component Testing for C allows you to define initial and expected values with standard C
expressions.

All literal values, variable types, functions and most operators available in the C language are
accepted by Component Testing for C.

 Example

The following example demonstrates typical use of the VAR statement
HEADER add, 1, 1

#with add;

BEGIN

SERVICE add

 # a, b, c : integer;

 TEST 1

 FAMILY nominal

 ELEMENT

 VAR a, init = 1, ev = init

 VAR b, init = 3, ev = init

 VAR c, init = 0, ev = 4

 #c := add(a,b);

 99

 END ELEMENT

 END TEST

END SERVICE

Testing intervals

You can test an expected value within a given interval by replacing EV with the keywords MIN
and MAX.

You can also use this form on alphanumeric variables, where character strings are considered in
alphabetical order ("A"<"B"<"C").

 Example

The following example demonstrates how to test a value within an interval:
 TEST 4

 FAMILY nominal

 ELEMENT

 VAR a, INIT in {1,2,3}, EV = INIT

 VAR b, INIT = 3, EV = INIT

 VAR c, INIT = 0, MIN = 4, MAX = 6

 #c = add(a,b);

 END ELEMENT

 END TEST

Testing tolerances

You can associate a tolerance with an expected value for numerical variables. To do this, use the
keyword DELTA with the expected value EV.

This tolerance can either be an absolute value (the default option) or relative (in the form of a
percentage <value>%).

You can rewrite the test from the previous example as follows:
 TEST 5

 FAMILY nominal

 ELEMENT

 VAR a, INIT in {1,2,3}, EV = INIT

 VAR b, INIT = 3, EV = INIT

 VAR c, INIT = 0, EV = 5, DELTA = 1

 #c = add(a,b);

 END ELEMENT

 END TEST

or
 TEST 6

 FAMILY nominal

 ELEMENT

 VAR a, INIT in {1,2,3}, EV = INIT

 VAR b, INIT = 3, EV = INIT

 VAR c, INIT = 0, EV = 5, DELTA = 20%

 #c = add(a,b);

 END ELEMENT

 END TEST

100 IBM Rational Test RealTime User Guide

Initializing without testing

It is sometimes difficult to predict the expected result for a variable; such as if a variable holds the
current date or time. In this case, you can avoid specifying an expected output.

 Example

The following script show an example of an omitted test:
 TEST 7

 FAMILY nominal

 ELEMENT

 VAR a, init in {1,2,3}, ev = init

 VAR b, init = 3, ev = init

 VAR c, init = 0, ev ==

 #c = add(a,b);

 END ELEMENT

 END TEST

Testing expressions

To test the return value of an expression, rather than declaring a local variable to memorize the
value under test, you can directly test the return value with the VAR instruction.

In some cases, you must leave out the initialization part of the instruction.

 Example

The following example places the call of the add function in a VAR statement:
 TEST 12

 FAMILY nominal

 ELEMENT

 VAR a, init in {1,2,3}, ev = init

 VAR b, init(a) with {3,2,1}, ev = init

 VAR add(a,b), ev = 4

 END ELEMENT

 END TEST

In this example, you no longer need the variable c.

All syntax examples of expected values are still applicable, even in this particular case.

Declaring parameters

ELEMENT blocks contain specific instructions that describe the test start-up procedures and the
post-execution tests.

The hash character (#) at the beginning of a line indicates a native language statement written in C.

This declaration is introduced after the SERVICE instruction because it is local to the SERVICE
block; it is invalid outside this block.

It is only necessary to declare parameters of the procedure under test. Global variables are already
present in the module under test or in any integrated modules, and do not need to be declared
locally.

Initial and Expected Value settings

The Initial and Expected Value settings are part of the Component Testing Settings for C dialog box
and describes how values assigned to each variable are displayed in the Component Testing report.
Component Testing allows three possible evaluation strategy settings.

 101

Variable Only

This evaluation strategy setting generates both the initial and expected values of each variable
evaluated by the program during execution.

This is possible only for variables whose expression of initial or expected value is not reducible by
the Test Compiler. For arrays and structures in which one of the members is an array, this
evaluation is not given for the initial values. For the expected values, however, it is given only for
Failed items.

Value Only

With this setting, the test report displays for each variable both the initial value and the expected
value defined in the test script.

Combined Evaluation

The combined evaluation setting combines both settings. The test report thus displays the initial
value, the expected value defined in the test script, and the value found during execution if that
value differs from the expected value.

Arrays

Testing Arrays

With Component Testing for C, you can test arrays in quite the same way as you test variables. In
the C Test Script Language, this is done with the ARRAY statement.

The ARRAY statement specifies both the test start-up procedure and the post-execution test for
simple variables. This instruction uses three parameters:

• Name of the variable under test: species the name of the array in any of the following ways:

• To test one array element, conform to the C syntax: histo[0].

• To test the entire array without specifying its bounds, the size of the array is deduced by
analyzing its declaration. This can only be done for well-defined arrays.

• To test a part of the array, specify the lower and upper bounds within which the test will be
run, separated with two periods (..), as in: histo[1..SIZE_HISTO]

• Initial value of the array: identified by the keyword INIT.

• Expected value of the array after the procedure has been executed: identified by the keyword
EV.

Declare variables under test with the ARRAY statement, followed by the declaration keywords:

• INIT = for an assignment

• INIT == for no initialization

• EV = for a simple test.

It does not matter where the ARRAY instructions are located with respect to the test procedure call
since the C code generator separates ARRAY instructions into two parts :

• The array test is initialized with the ELEMENT instruction

• The actual test against the expected value is done with the END ELEMENT instruction

To initialize and test an array, specify the same value for all the array elements.

You can use the same expressions for initial and expected values as those used for simple variables
(literal values, constants, variables, functions, and C operators).

Use the ARRAY instruction to run simple tests on all or only some of the elements in an array.

102 IBM Rational Test RealTime User Guide

Testing Arrays with C Expressions

To initialize and test an array, specify the same value for all the array elements. The following two
examples illustrate this simple form.

ARRAY image, INIT = 0, EV = INIT

ARRAY histo[1..SIZE_HISTO-1], INIT = 0, EV = 0

You can use the same expressions for initial and expected values as those used for simple variables
(literal values, constants, variables, functions, and C operators).

 Example

The following example highlights the ARRAY instruction syntax for C:
HEADER histo, 1, 1

##include "histo.h"

BEGIN

SERVICE COMPUTE_HISTO

 #int x1, x2, y1, y2;

 #int status;

 #T_HISTO histo;

 TEST 1

 FAMILY nominal

 ELEMENT

 VAR x1, init = 0, ev = init

 VAR x2, init = SIZE_IMAGE-1, ev = init

 VAR y1, init = 0, ev = init

 VAR y2, init = SIZE_IMAGE-1, ev = init

 ARRAY image, init = 0, ev = init

 VAR histo[0], init = 0, ev = SIZE_IMAGE*SIZE_IMAGE

 ARRAY histo[1..SIZE_HISTO-1], init = 0, ev = 0

 VAR status, init = 0, ev = 0

 #status = compute_histo(x1, y1, x2, y2, histo);

 END ELEMENT

 END TEST

END SERVICE

Testing arrays with pseudo-variables

Another form of initialization consists of using one or more pseudo-variables, as the following
example illustrates:

TEST 3

 FAMILY nominal

 ELEMENT

 VAR x1, init = 0, ev = init

 VAR x2, init = SIZE_IMAGE•1, ev = init

 VAR y1, init = 0, ev = init

 VAR y2, init = SIZE_IMAGE•1, ev = init

 ARRAY image, init=(int)(100*(1+sin((float)(I1+I2)))), ev = init

 ARRAY histo[0..200], init = 0, ev ==

 ARRAY histo[201..SIZE_HISTO•1], init = 0, ev = 0

 VAR status, init ==, ev = 0

 #status = compute_histo(x1, y1, x2, y2, histo);

 END ELEMENT

END TEST

 103

I1 and I2 are two pseudo-variables which take as their value the current values of the array indices
(for image, from 0 to 199 for I1 and I2). You can use these pseudo-variables like a standard variable
in any C expression.

This lets you create more complicated test scripts in the case of very large arrays, where the use of
enumerated expressions is limited.

For multidimensional arrays, you can combine these different types of initialization and test
expressions, as the following example shows:

ARRAY image, init = {0 => I2, 1 => { 0 => 100, others => 0 },

& others => (I1 + I2) % 255 }

Testing large arrays

The maximum number of array elements that can be processed is 100. If you need to test an array
that contains more than 100 elements, then you must split the initialization of the array over two or
more initializations, as shown in the following example.

 Example

The following initiatialization produces a Too many INIT or VA values error:
#int a[200];

ARRAY a, init=

{1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,20,1,2,3,4,5,6,7,8,9,30,1,2,3,
4,

5,6,7,8,9,40,1,2,3,4,5,6,7,8,9,50,1,2,3,4,5,6,7,8,9,60,1,2,3,4,5,6,7,8
,9,

70,1,2,3,4,5,6,7,8,9,80,1,2,3,4,5,6,7,8,9,90,1,2,3,4,5,6,7,8,9,100,1,2
,3,

4,5,6,7,8,9,110,1,2,3,4,5,6,7,8,9,120,1,2,3,4,5,6,7,8,9,130,1,2,3,4,5,
6,

7,8,9,140,1,2,3,4,5,6,7,8,9,150,1,2,3,4,5,6,7,8,9,160,1,2,3,4,5,6,7,8,
9,

170,1,2,3,4,5,6,7,8,9,180,1,2,3,4,5,6,7,8,9,190,1,2,3,4,5,6,7,8,9,200}

, ev=init

Instead, use the following expression:
#int a[200];

ARRAY z [0..99],

init={1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,20,1,2,3,4,5,6,7,8,9,30,1
,2

,3,4,5,6,7,8,9,40,1,2,3,4,5,6,7,8,9,50,1,2,3,4,5,6,7,8,9,60,1,2,3,4,5,
6,

7,8,9,70,1,2,3,4,5,6,7,8,9,80,1,2,3,4,5,6,7,8,9,90,1,2,3,4,5,6,7,8,9,1
00}

, ev=init

ARRAY z [100..199],

init={1,2,3,4,5,6,7,8,9,110,1,2,3,4,5,6,7,8,9,120,1,2,3,4,5,6,7,8,9,13
0,

1,2,3,4,5,6,7,8,9,140,1,2,3,4,5,6,7,8,9,150,1,2,3,4,5,6,7,8,9,160,1,2,
3,

4,5,6,7,8,9,170,1,2,3,4,5,6,7,8,9,180,1,2,3,4,5,6,7,8,9,190,1,2,3,4,5,
6,

7,8,9,200}

, ev=init

104 IBM Rational Test RealTime User Guide

Testing arrays with lists

While an expression initializes all the ARRAY elements in the same way, you can also initialize
each element using an enumerated list of expressions between brackets ({}). In this case, you must
specify a value for each array element.

Furthermore, you can precede every element in this list of initial or expected values with the array
index of the element concerned followed by the characters "=>". The following example illustrates
this form:

ARRAY histo[0..3], init = {0 => 0, 1 => 10, 2 => 100, 3 => 10} ...

This form of writing the ARRAY instruction has the following advantages:

• It improves the readability of the list.

• It allows you to mix values without worrying about the order.

You can also use this form together with the simple form if you follow this rule: once one element
has been defined with its array index, you must do the same with all the following elements.

If several elements in an array are to take the same value, specify the range of elements taking this
value as follows:

ARRAY histo[0..3], init = { 0 .. 2 => 10, 3 => 10 } ...

You can also specify a value for all the as yet undefined elements by using the keyword others, as
the following example illustrates:

TEST 2

 FAMILY nominal

 ELEMENT

 VAR x1, init = 0, ev = init

 VAR x2, init = SIZE_IMAGE-1, ev = init

 VAR y1, init = 0, ev = init

 VAR y2, init = SIZE_IMAGE-1, ev = init

 ARRAY image, init = {others=>{others=>100}}, ev = init

 ARRAY histo, init = 0,

 & ev = {100=>SIZE_IMAGE*SIZE_IMAGE, others=>0}

 VAR status, init ==, ev = 0

 #status = compute_histo(x1, y1, x2, y2, histo);

 END ELEMENT

END TEST

Note The form {others => <expression>} is equivalent to initializing and testing all array
elements with the same expression.

You can also initialize and test multidimensional arrays with a list of expressions, as follows. In this
case, the previously mentioned rules apply to each dimension.

ARRAY image, init = {0, 1=>4, others=>{1, 2, others=>100}} ...

Note Some C compilers allow you to omit levels of brackets when initializing a
multidimensional array. The Unit Testing Scripting Language does not accept this non-
standard extension to the language.

Testing character arrays

Character arrays are a special case. Variables of this type are processed as character strings
delimited by quotes.

You therefore need to initialize and test character arrays using character strings, as the following
list example illustrates.

If you want to test character arrays like other arrays, you must use a format modification
declaration (FORMAT instruction) to change them to arrays of integers.

 105

 Example

The following list example illustrates this type of modification:
TEST 2

 FAMILY nominal

 FORMAT T_LIST.str[] = int

 ELEMENT

 VAR l, init = NIL, ev = NONIL

 VAR s, init = "myfoo", ev = init

 VAR l•>str[0..5], init == , ev = {'m','y','f','o','o',0}

 #l = push(l,s);

 END ELEMENT

END TEST

Testing arrays with other arrays

The following example illustrates a form of initialization that consists of initializing or comparing
an array with another array that has the same declaration:

TEST 4

 FAMILY nominal

 ELEMENT

 VAR x1, init = 0, ev = init

 VAR x2, init = SIZE_IMAGE•1, ev = init

 VAR y1, init = 0, ev = init

 VAR y2, init = SIZE_IMAGE•1, ev = init

 ARRAY image, init = extern_image, ev = init

 ARRAY histo, init = 0, ev ==

 VAR status, init ==, ev = 0

 #read_image(extern_image,"image.bmp");

 #status = compute_histo(x1, y1, x2, y2, histo);

 END ELEMENT

END TEST

Read_image and extern_image are two arrays that have been declared in the same way. Every
element from the extern_image array is assigned to the corresponding read_image array element.

You can use this form of initialization and testing with one or more array dimensions.

Testing arrays of union elements

When testing an array of unions, detail your tests for each member of the array, using VAR lines in
the ELEMENT block.

 Example

Considering the following variables:
#typedef struct {

int test1;

int test2;

int test3;

int test4;

int test5;

int test6;

} Test;

#typedef struct {

int champ1;

int champ2;

106 IBM Rational Test RealTime User Guide

int champ3;

} Champ;

#typedef struct {

int toto1;

int toto2;

} Toto;

#typedef union {

Test A;

Champ B;

Toto C;

} T_union;

#extern T_union Tableau[4];

The test must be written element per element:
TEST 1

FAMILY nominal

 ELEMENT

 VAR Tableau[0], init = {A => { test1 => 0, test2 => 0, test3 => 0,
test4 => 0,

& test5 => 0, test6 => 0} }, ev =
init

 VAR Tableau[1], init = {B => { champ1 => 0, champ2 => 0, champ3 =>
0} }, ev = init

 VAR Tableau[2], init = {B => { champ1 => 0, champ2 => 0, champ3 =>
0}} , ev = init

 VAR Tableau[3], init = {B => { champ1 => 0, champ2 => 0, champ3 =>
0}} , ev = init

 #ret_fct;

 END ELEMENT

END TEST -- TEST 1

Structured Variables

Testing structured variables

To test all the fields of a structured variable, use a single instruction (STR) to define their
initializations and expected values:

 TEST 2

 FAMILY nominal

 ELEMENT

 VAR l, init = NIL, ev = NONIL

 STR *l, init == , ev = {"myfoo",NIL,NIL}

 VAR s, init = "myfoo", ev = init

 #l = push(l,s);

 END ELEMENT

 END TEST

You can only initialize and test structured variables with the following forms:

• INIT =

• INIT ==

• EV =

• EV ==

 107

If a field of a structured variable needs to be initialized or tested in a different way, you can omit its
initial and expected values from the global test of the structured variable, and run a separate test
on this field.

The following example illustrates this:
TEST 4

 FAMILY nominal

 ELEMENT

 VAR l, init = NIL, ev = NONIL

 VAR *l, init == , ev = {,NIL,NIL}

 VAR s, init in {"foo","bar"}, ev = init

 VAR l->str, init ==, ev(s) in {"foo","bar"}

 #l = push(l,s);

 END ELEMENT

END TEST

Using field names, write this as follows:
VAR *l, init ==, ev = {next=>NIL,prev=>NIL}

Testing structured variables with C expressions

To initialize and test a structured variable or record, initialize or test all the fields using a list of
native language expressions (one per field). The following example (taken from list.ptu) illustrates
this form:

STR *l, init == , ev = {"myfoo",NIL,NIL}

Each element in the list must correspond to the structured variable field as it was declared.

Every expression in the list must obey the rules described so far, according to the type of field
being initialized and tested:

• An expression for simple fields or arrays of simple variables initialized using an expression

• A list of expressions for array fields initialized using an enumerated list

• A list of expressions for structured fields

Using Field Names in Native Expressions

You can specify field names in native expressions by following the field name of the structure with
the characters "=>", as follows:

TEST 3

 FAMILY nominal

 ELEMENT

 VAR l, init = NIL, ev = NONIL

 VAR *l, init == , ev = {str=>"myfoo",next=>NIL,prev=>NIL}

 VAR s, init = "myfoo", ev = init

 #l = push(l,s);

 END ELEMENT

END TEST

If you use this form, you do not have to respect the order of expressions in the list.

You can also use the position of the fields in the structure or record instead of the field names, on
the basis that the field numbers begin at 1:

VAR *l, init ==, ev = {3 => NIL, 2 => NIL, 1 => "myfoo"}

As with arrays, you can also use a range for field positions, as follows:
VAR *l, init ==, ev = {1 => "myfoo", 2..3 => NIL}

108 IBM Rational Test RealTime User Guide

Testing structured variables with other structured variables

You can initialize and test a structured variable or record using another structured variable or
record of the same type. The following example illustrates this form:

STR *l, init == , ev = l1

Each field of the structured variable will be initialized or tested using the associated fields of the
variable used for initialization or testing.

Omitting a Field’s Initial and Test Values

You can only initialize and test structured variables with the following forms:

• INIT =

• INIT ==

• EV =

• EV ==

If a field of a structured variable needs to be initialized or tested in a different way, you can omit its
initial and expected values from the global test of the structured variable, and run a separate test
on this field.

The following example illustrates this:
TEST 4

 FAMILY nominal

 ELEMENT

 VAR l, init = NIL, ev = NONIL

 VAR *l, init == , ev = {,NIL,NIL}

 VAR s, init in {"foo","bar"}, ev = init

 VAR l->str, init ==, ev(s) in {"foo","bar"}

 #l = push(l,s);

 END ELEMENT

END TEST

Using field names, write this as follows:
VAR *l, init ==, ev = {next=>NIL,prev=>NIL}

C Unions

If the structured variable involves a C union (defined using the union instruction) rather than a
structure (defined using the struct instruction), you need to specify which field in the union is
tested. The initial and test value only relates to one of the fields in the union, whereas, for a
structure, it relates to all the fields.

The list.c example demonstrates this if you modify the structure of the list, such that the value
stored at each node is an integer, a floating-point number, or a character string:

list1.h:
enum node_type { INTEGER, REAL, STRING };

typedef struct t_list {

 enum node_type type;

 union {

 long integer_value;

 double real_value;

 char * string_value;

 } value;

 struct t_list * next;

 struct t_list * prev;

 109

} T_LIST, * PT_LIST;

In this case, the test becomes:
HEADER list1, 1, 1

##include "list1.h"

BEGIN

SERVICE push1

 #PT_LIST l;

 #enum node_type t;

 #char s[10];

 TEST 1

 FAMILY nominal

 ELEMENT

 VAR l, init = NIL, ev = NONIL

 VAR t, init = my_string, ev = init

 VAR *l, init == ,

 & ev = {STRING,{string_value=>"myfoo"}, NIL,NIL}

 VAR s, init = "myfoo", ev = init

 #l = push1(l, t, s);

 END ELEMENT

 END TEST

END SERVICE

The use of string_value => indicates that the chosen field in the union is string_value.

If no field is specified, the first field in the union is taken by default.

Stub Simulation

Stub simulation is based on the idea certain functions are to be simulated and are therefore
replaced with other functions which are generated in the test driver. These generated functions, or
stubs, have the same interface as the simulated functions, but the body of the functions is replaced.

These stubs have the following roles:

• Store input values to simulated functions

• Assign output values from simulated functions

To be able to generate these stubs, the Test Script Compiler needs to know:

• The prototypes of the functions that are to be simulated

• the method of passing each parameter (input, output, or input/output).

When using the Component Testing Wizard, you specify the functions that you want to stub. This
automatically adds the corresponding code to the .ptu test script. On execution of the test,
Component Testing for C generates the stub in the test driver, which includes:

• a variable array for the input values of the stub

• a variable array for the output values of the stub

• a body declaration for the stub function

Function Prototypes

When generating a stub for a function, Test RealTime considers the first prototype of the function
that is encountered, which can be:

• The declaration of the function in an included header file.

• The declaration DEFINE STUB statement in the .ptu test script.

110 IBM Rational Test RealTime User Guide

This means that the declaration of the function contained in the DEFINE STUB statement is
ignored if the function was previously declared in a header file.

If an existing body of stubbed function is encountered, Test RealTime renames the existing body to
atl_stub_<function-name> and the stubbed version of the function is used in the test driver.

Passing Parameters

Passing parameters by pointer can lead to problems of ambiguity regarding the data actually
passed to the function. For example, a parameter that is described in a prototype by int *x can be
passed in the following way:

int *x as input ==> f(x)

int x as output or input/output ==> f(&x)

int x[10] as input ==> f(x)

int x[10] as output or input/output ==> f(x)

Therefore, to describe the stubs, you should specify the following:

• The data type in the calling function

• The method of passing the data

 Example

An example project called Stub C is available from the Examples section of the Start page. This
example demonstrates the use of stubs in Component Testing for C. See Example projects for more
information.

Stub Definition

The following simulation describes a set of function prototypes to be simulated in an instruction
block called DEFINE STUB ... END DEFINE:

HEADER file, 1, 1

BEGIN

DEFINE STUB file

 #int open_file(char _in f[100]);

 #int create_file(char _in f[100]);

 #int read_file(int _in fd, char _out l[100]);

 #int write_file(int fd, char _in l[100]);

 #int close_file(int fd);

END DEFINE

The prototype of each simulated function is described in ANSI form. The following information is
given for each parameter:

• The type of the calling function (char f[100] for example, meaning that the calling function
supplies a character string as a parameter to the open_file function)

• The method of passing the parameter, which can take the following values:

• _in for an input parameter

• _out for an output parameter

• _inout for an input/output parameter

These values describe how the parameter is used by the called function, and, therefore, the nature
of the test to be run in the stub.

• The _in parameters only will be tested.

• The _out parameters will not be tested but will be given values by a new expression in the stub.

• The _inout parameters will be tested and then given values by a new expression.

 111

Any returned parameters are always taken to be _out parameters.

You must always define stubs after the BEGIN instruction and outside any SERVICE block.

Modifying Stub Variable Values

You can define stubs so that the variable pointed to is updated with different values in each test
case. For example, to stub the following function:

extern void function_b(unsigned char * param_1);

Declare the stub as follows:
DEFINE STUB code_c

 #void function_b(unsigned char _out param_1);

END DEFINE

Note Any _out parameter is automatically a pointer, therefore the asterisk is not necessary.

To return '255' in the first test case and 'a' in the second test case, you would write the following in
your test script:

SERVICE function_a

SERVICE_TYPE extern

 -- By function returned type declaration

 #int ret_function_a;

 TEST 1

 FAMILY nominal

 ELEMENT

 VAR ret_function_a, init = 0, ev = 1

 STUB function_b (255)

 #ret_function_a = function_a();

 END ELEMENT

 END TEST -- TEST 1

 TEST 2

 FAMILY nominal

 ELEMENT

 VAR ret_function_a, init = 1, ev = 0

 STUB function_b ('a')

 #ret_function_a = function_a();

 END ELEMENT

 END TEST -- TEST 2

END SERVICE -- function_a

Simulating Global Variables

The simulated file can also contain global variables that are used by the functions under test. In this
case, as with simulated functions, you can simulate the global variables by declaring them in the
DEFINE STUB block, as shown in the following example:

DEFINE STUB file

 #int fic_errno; /* simulated global variable */

 #char fic_err_msg[100]; /* simulated global variable */

 #int open_file(char _in f[100]);

 #int create_file(char _in f[100]);

 #int read_file(int _in fd, char _out l[100]);

 #int write_file(int fd, char _in l[100]);

 #int close_file(int fd);

END DEFINE

112 IBM Rational Test RealTime User Guide

The global variables are created as if they existed in the simulated file. The global variables must be
initialized within the .ptu test script.

Stub Usage

Use the STUB statement to declare that you want to use a stub rather than the original function.
You can use the STUB instruction within environments or test scenarios.

This STUB instruction tests input parameters and assigns a value to output parameters each time
the simulated function is called.

The following information is required for every stub called in a scenario:

• Test values for the input parameters

• Return values for the output parameters

• Test and return values for the input/output parameters

• Where appropriate, the return value of the called stub

 Example

The following example illustrates use of a stub which simulates file access.
SERVICE copy_file

 #char file1[100], file2[100];

 #int s;

 TEST 1

 FAMILY nominal

 ELEMENT

 VAR file1, init = "file1", ev = init

 VAR file2, init = "file2", ev = init

 VAR s, init == , ev = 1

 STUB open_file ("file1")3

 STUB create_file ("file2")4

 STUB read_file (3,"line 1")1, (3,"line 2")1, (3,"")0

 STUB write_file (4,"line 1")1, (4,"line 2")1

 STUB close_file (3)1, (4)1

 #s = copy_file(file1, file2);

 END ELEMENT

 END TEST

END SERVICE

The following example specifies that you expect three calls of foo.
STUB STUB1.foo(1)1, (2)2, (3)3

...

#foo(1);

#foo(2);

#foo(4);

The first call has a parameter of 1 and returns 1. The second has a a parameter of 2 and returns 2
and the third has a parameter of 3 and returns 3. Anything that does not match is reported in the
test report as a failure.

Multiple stub calls

For a large number of calls to a stub, use the following syntax for a more compact description:
<call i> .. <call j> =>

You can describe each call to a stub by adding the specific cases before the preceding instruction,
for example:

 113

<call i> =>

or
<call i> .. <call j> =>

The call count starts at 1 as the following example shows:
 TEST 2

 FAMILY nominal

 COMMENT Reading of 100 identical lines

 ELEMENT

 VAR file1, init = "file1", ev = init

 VAR file2, init = "file2", ev = init

 VAR s, init == , ev = 1

 STUB open_file 1=>("file1")3

 STUB create_file 1=>("file2")4

 STUB read_file 1..100(3,"line")1, 101=>(3,"")0

 STUB write_file 1..100=>(4,"line")1

 STUB close_file 1=>(3)1,2=>(4)1

 #s = copy_file(file1,file2);

 END ELEMENT

 END TEST

Multiple stub calls

If a stub is called several times during a test, either of the following are possible:

• Describe the different calls in the same STUB instruction, as described previously.

• Use several STUB instructions to describe the different calls. (This allows a better
understanding of the test script when the STUB calls are not consecutive.)

The following example rewrites the test to use this syntax for the call to the STUB close_file:
STUB close_file (3)1

STUB close_file (4)1

No stub calls

To check that a STUB is never called, even if an ENVIRONMENT containing the STUB is used,
use the following syntax:

STUB write_file 0=>(4,"line")

No testing of the number of stub calls

If you do not want to test the number of calls to a stub, you can use the keyword others in place of
the call number to describe the behavior of the stub for the calls to the stub that are not yet
described.

For example, the following instruction lets you specify the first call and all the following calls
without knowing the exact number:

STUB write_file 1=>(4,"line")1,others=>(4,"")1

Sizing Stubs

For each STUB, the Component Testing feature allocates memory to:

• Store the value of the input parameters during the test

• Store the values assigned to output parameters before the test

A stub can be called several times during the execution of a test. By default, when you define a
STUB, the Component Testing feature allocates space for 10 calls. If you call the STUB more than
this you must specify the number of expected calls in the STUB declaration statement.

114 IBM Rational Test RealTime User Guide

In the following example, the script allocates storage space for the first 17 calls to the stub:
DEFINE STUB file 17

 #int open_file(char _in f[100]);

 #int create_file(char _in f[100]);

 #int read_file(int _in fd, char _out l[100]);

 #int write_file(int fd, char _in l[100]);

 #int close_file(int fd);

END DEFINE

Note You can also reduce the size when running tests on a target platform that is short on
memory resources.

Replacing Stubs

Stubs can be used to replace a component that is still in development. Later in the development
process, you might want to replaced a stubbed component with the actual source code.

 To replace a stub with actual source code:

1. Right-click the test node and select Add Child and Files

2. Add the source code files that will replace the Stubbed functions.

3. If you do not want a new file to be instrumented, right-click the file select Properties. Set the
Instrumentation property to No.

4. Open the .ptu test script, and remove the STUB sections from your script file.

Advanced Stubs

This section covers some of the more complex notions when dealing with stub simulations in
Component Testing for Ada.

Creating Complex Stubs in C

If necessary, you can make stub operation more complex by inserting native code into the body of
the simulated function. You can do this easily by adding the lines of native code after the
prototype, as shown in the following example:

DEFINE STUB file

#int fic_errno;

#char fic_err_msg[100];

#int open_file(char _in f[100])

{ errno = fic_errno; }

#int create_file(char _in f[100])

{ errno = fic_errno; }

#int read_file(int _in fd, char _out l[100])

{ errno = fic_errno; }

#int write_file(int fd, char _in l[100])

{ errno = fic_errno; }

#int close_file(int fd)

{ errno = fic_errno; }

END DEFINE

Excluding a Parameter from a Stub

Stub Definition

 115

You can specify in the stub definition that a particular parameter is not to be tested or given a
value. You do this using a modifier of type _no instead of _in, _out or _inout, as shown in the
following example:

DEFINE STUB file

 #int open_file(char _in f[100]);

 #int create_file(char _in f[100]);

 #int read_file(int _no fd, char _out l[100]);

 #int write_file(int _no fd, char _in l[100]);

 #int close_file(int fd);

END DEFINE

In this example, the fd parameters to read_file and write_file are never tested.

Note You need to be careful when using _no on an output parameter, as no value will be
assigned to it. It will then be difficult to predict the behavior of the function under test on
returning from the stub.

Stub Usage

Parameters that have not been tested (preceded by _no) are completely ignored in the stub
description. The two values of the input/output parameters are located between brackets as shown
in the following example:

DEFINE STUB file

 #int open_file(char _in f[100]);

 #int create_file(char _in f[100]);

 #int read_file(int _no fd, char _inout l[100]);

 #int write_file(int _no fd, char _in l[100]);

 #int close_file(int _no fd);

END DEFINE

...

 STUB open_file ("file1")3

 STUB create_file ("file2")4

 STUB read_file (("","line 1"))1, (("line 1","line 2"))1,

& (("line2",""))0

 STUB write_file ("line 1")1, ("line 2")1

 STUB close_file ()1, ()1

If a stub is called and if it has not been declared in a scenario, an error is raised in the report
because the number of the calls of each stub is always checked.

Functions Using _inout Mode Arrays

To stub a function taking an array in _inout mode, you must provide storage space for the actual
parameters of the function.

The function prototype in the .ptu test script remains as usual:
#extern void function(unsigned char *table);

The DEFINE STUB statement however is slightly modified:
DEFINE STUB Funct

#void function(unsigned char _inout table[10]);

END DEFINE

The declaration of the pointer as an array with explicit size is necessary to memorize the actual
parameters when calling the stubbed function. For each call you must specify the exact number of
required array elements.

ELEMENT

 STUB Funct.function 1 => (({'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h',

116 IBM Rational Test RealTime User Guide

'i', 0x0},

 & {'i', 'h', 'g', 'f', 'e', 'd', 'c', 'b', 'a', 0x0}))

 #call_the_code_under_test();

END ELEMENT

This naming convention compares the actual values and not the pointers.

The following line shows how to pass _inout parameters:
({<in_parameter>},{<out_parameter>})

Functions Containing Type Modifiers

Type modifiers can appear in the signature of the function but should not be used when
manipulating any passed variables. When using type modifiers, add @ prefix to the type modifier
keyword.

Test RealTime recognizes @-prefixed type modifiers in the function prototype, but ignores them
when dealing internally with the parameters passed to and from the function.

This behaviour is the default behaviour for the "const" keyword, the '@' is not necessary for const.

 Example

Consider a type modifier __foo
DEFINE STUB tst_cst

#int ModifParam(@__foo float _in param);

END DEFINE

Note In this example, __foo is not a standard ANSI-C feature. To force Test RealTime to
recognize this keyword as a type modifier, you must add the following line to the .ptu test
script:
##pragma attol type_modifier = __foo

Simulating Functions with Varying Parameters

In some cases, functions may be designed to accept a variable number of parameters on each call.

You can still stub these functions with the Component Testing feature by using the '...' syntax
indicating that there may be additional parameters of unknown type and name.

In this case, Component Testing can only test the validity of the first parameter.

 Example

The standard printf function is a good a example of a function that can take a variable number of
parameters:

int printf (const char* param, ...);

Here is an example including a STUB of the printf function:
HEADER add, 1, 1

#extern int add(int a, int b);

##include <stdio.h>

BEGIN

DEFINE STUB MulitParam

#int printf (const char param[200], ...);

END DEFINE

SERVICE add

 #int a, b, c;

 TEST 1

 FAMILY nominal

 ELEMENT

 VAR a, init = 1, ev = init

 117

 VAR b, init = 3, ev = init

 VAR c, init = 0, ev = 4

 STUB printf("hello %s\n")12

 #c = add(a,b);

 END ELEMENT

 END TEST

END SERVICE

Functions Using const Parameters

Functions using const parameters sometimes produce compilation errors when stubbed with Test
RealTime.

This is because the preprocessor generates variables that are used for testing calls to the STUBs.
These variables have the same type as the parameter to the function being stubbed: const int. These
const variables cannot be modified, causing the compilation errors.

To work around this problem, you can to indicate that type modifiers for a STUB parameter should
be used in the function definition, but not in the declaration of the variables used to control the
STUBs.

To do this, add an @ character as a prefix to the the type modifier. If your function takes a const
pointer, then you don't need the @ prefix:

This technique can be used with any type modifier.

 Example

Consider the following function:
extern int ConstParam(const int param);

To stub the function, you would normally write the following lines in the .ptu test script. These will
produce compilation error messages:

DEFINE STUB Example

#int ConstParam(const int _in param);

END DEFINE

Instead, use the following syntax to define the stub:
DEFINE STUB Example

#int ConstParam(@const int _in param);

END DEFINE

If your function takes a const pointer:
DEFINE STUB Example

#int ConstParam(const int _in *param);

END DEFINE

Simulating Functions with void* Parameters

When stubbing a function that takes void* type parameters, such as as fct_sim(double c, void
* d), the Source Code Parser generates incomplete code that might not compile.

Using void* _out means that the stub has to dereference a pointer to void, which is not possible.

When you are stubbing functions that take void* parameters, you must check and edit the .ptu test
script in order to specify the real type that the stub has to dereference.

 Example

Consider the following test script generated by the C Source Code Parser:
DEFINE STUB fct_sim_c

#int fct_sim(double _in c, void _inout d);

END DEFINE

118 IBM Rational Test RealTime User Guide

You should modify the .ptu script like this:
DEFINE STUB fct_sim_c

#int fct_sim(double _in c, unsigned char _inout d);

END DEFINE

Or, if testing the parameters is not required:
DEFINE STUB fct_sim_c

#int fct_sim(double _no c, unsigned char _no d);

END DEFINE

Simulating Functions with char* parameters

You can use Component Testing for C to stub functions that take a parameter of the char* type.

The char* type causes problems with the Component Testing feature because of the ambiguity built
into the C programming language. The char* type can represent:

• Pointers

• Pointers to a single char

• Arrays of characters of indeterminate size

• Arrays of characters of which the last character is the character \0, a C string.

By default, the product treats all variables of this type as C strings. To specify a different behavior,
you must use one of the following methods.

Pointers

Use the FORMAT command to specify that the test required is that of a pointer. For example:
HEADER charp, ,
#extern int CharPointer(char* pChar);
BEGIN

SERVICE CharPointer1

#char *Chars;
#int ret;

TEST 1

ELEMENT
FORMAT Chars = void*
VAR Chars, init = NIL, ev = init
VAR ret, init = 0, ev = 0

#ret = CharPointer(Chars);
END ELEMENT

END TEST -- TEST 1

END SERVICE -- CharPointer1

Pointers to a Single char

Define the type as _inout, as in the following example.
HEADER charp, ,
#extern int CharPointer(char* pChar);
BEGIN

SERVICE CharPointer1

#char AChar;
#int ret;

 119

TEST 1

ELEMENT
VAR AChar, init = 'A', ev = init
VAR ret, init = 0, ev = 'A'

#ret = CharPointer(&AChar);
END ELEMENT

END TEST -- TEST 1

END SERVICE -- CharPointer1

Arrays of Characters of Indeterminate Size

Use the FORMAT command to specify that the array is in fact an array of unsigned chars not
chars, as the product considers that char arrays are C strings. For example:

HEADER charp, ,
#extern int CharPointer(char* pChar);
BEGIN

SERVICE CharPointer1

#char Chars[4];
#int ret;

TEST 1

ELEMENT
FORMAT Chars = unsigned char[4]
ARRAY Chars, init = {'a','b','c','d'}, ev = init
VAR ret, init = 0, ev = 'a'

#ret = CharPointer(Chars);
END ELEMENT

END TEST -- TEST 1

END SERVICE -- CharPointer1

C strings

Use an array of characters in which the last character is the character '\0', a C string.
HEADER charp, ,
#extern int CharPointer(char* pChar);
BEGIN

SERVICE CharPointer1

#char Chars[10];
#int ret;

TEST 1

ELEMENT
VAR Chars, init = "Hello", ev = init
VAR ret, init = 0, ev = 'H'

#ret = CharPointer(Chars);
END ELEMENT

END TEST -- TEST 1

END SERVICE -- CharPointer1

120 IBM Rational Test RealTime User Guide

Environments

Testing Environments

When drawing up a test script for a service, you usually need to write several test cases. It is likely
that, except for a few variables, these scenarios will be very similar. You could avoid writing a
whole series of similar scenarios by factorizing items that are common to all scenarios.

Furthermore, when a test harness is generated, there are often side-effects from one test to another,
particularly as a result of unchecked modification of global variables.

To avoid these two problems and leverage your test script writing, the Test Script Language lets
you define test environments introduced by the keyword ENVIRONMENT.

These test environments are effectively a set of default tests performed on one or more variables.

Declaring environments

A test environment consists of a list of variables for which you specify:

• Default initialization conditions for before the test

• Default expected results for after the test

Use the VAR, ARRAY, and STR instructions described previously to specify the status of the
variables before and after the test.

You can only use an environment once you have defined it.

Delimit an environment using the instructions ENVIRONMENT <environment_name> and END
ENVIRONMENT. You must place it after the BEGIN instruction. When you have declared it, an
environment is visible to the block in which it was declared and to all blocks included therein.

 Example

The following example illustrates the use of environments:
HEADER histo, 1, 1

##include <math.h>

##include "histo.h"

BEGIN

ENVIRONMENT image

 ARRAY image, init = 0, ev = init

END ENVIRONMENT

USE image

SERVICE COMPUTE_HISTO

 #int x1, x2, y1, y2;

 #int status;

 #T_HISTO histo;

 #T_IMAGE image1;

 ENVIRONMENT compute_histo

 VAR x1, init = 0, ev = init

 VAR x2, init = SIZE_IMAGE?1, ev = init

 VAR y1, init = 0, ev = init

 VAR y2, init = SIZE_IMAGE?1, ev = init

 ARRAY histo, init = 0, ev = 0

 VAR status, init == , ev = 0

 END ENVIRONMENT

 USE compute_histo

 121

Specifying parameters for environments

You can specify parameters for environments.

Declare the parameters in the ENVIRONMENT instruction as you would for a service:
ENVIRONMENT compute_histo1(a,b,c,d)

 VAR x1, init = a, ev = init

 VAR x2, init = b, ev = init

 VAR y1, init = c, ev = init

 VAR y2, init = d, ev = init

 ARRAY histo[0..SIZE_HISTO?1], init = 0, ev = 0

 VAR status, init ==, ev = 0

END ENVIRONMENT

The parameters are identifiers, which you can use in variable status instructions, as follows:

• In initial or expected value expressions

• In expressions delimiting bounds of arrays in extended mode

The parameters are initialized when they are used:
USE compute_histo1(0,0,SIZE_IMAGE?1,SIZE_IMAGE?1)

The number of values must be strictly equal to the number of parameters defined for the
environment. The values can be expressions of any type.

Environment override

To provide more flexibility in using environments, you can override the initialization and test
specifications in an ENVIRONMENT block for one or more variables, one or more array elements,
or one or more fields of a structured variable by using either of the following:

• A new environment

• The instructions VAR, ARRAY, or STR in the ELEMENT block

The ENVIRONMENT concept greatly improves test robustness. You can use this approach to
group default initialization and test specifications with all the variables that are global to a module
under test, allowing you to check that unexpected global variables in tests on a service are indeed
not modified.

The following steps are used to handle environments:

• VAR, ARRAY and STR instructions are stored between ENVIRONMENT and END
ENVIRONMENT instructions.

• When the Test Compiler comes across the instruction USE, it determines the scope of the
environment that has been stored.

• At every END ELEMENT instruction, the Test Compiler browses through all visible
environments beginning with the most recently declared one. The test compiler then checks
every environment variable to see if it has been fully or partially tested. If it has only been
partially tested, the test compiler generates the necessary tests to complete the testing of the
variable.

This process means that:

• Tests linked to environments are always carried out last.

• The higher the environment's precedence, the earlier the tests it contains will be carried out.

 Example

The following example illustrates an override of an array element in two tests:
 TEST 1

 FAMILY nominal

122 IBM Rational Test RealTime User Guide

 ELEMENT

 VAR histo[0], init = 0, ev = SIZE_IMAGE*SIZE_IMAGE

 #status = compute_histo(x1,y1,x2,y2,histo);

 END ELEMENT

 END TEST

 TEST 2

 FAMILY nominal

 ELEMENT

 ARRAY image, init = {others => {others => 100}}, ev = init

 ARRAY histo[100], init = 0, ev = SIZE_IMAGE*SIZE_IMAGE

 #status = compute_histo(x1,y1,x2,y2,histo);

 END ELEMENT

 END TEST

In the first test, only histo[0] has an override. Therefore, all the default tests were generated except
for the test on the histo variable, which had its 0 element removed, and a test was generated on
histo[1..255].

In the second test, the override is more noticeable; the histo[100] element has been removed to
generate two tests: one on histo[0..99], and the other on histo[101..255].

Using Environments

The USE keyword declares the use of an environment (in other words, the beginning of that
environment's visibility).

The impact or visibility of an environment is determined by the position at which you declare the
environment's use with the USE statement.

The initial values and tests associated with the environment are applied as follows, depending on
the position of the declaration:

• To all the tests in a program

• To all the tests in a service

• To all the ELEMENT blocks of a particular test

• Within one ELEMENT block of a given test.

Advanced C Testing

Advanced C Testing

This section covers some of the more complex notions behind Component Testing for C.

Test Script Compiler Macro Definitions

You can specify a list of conditions to be applied when starting the Test Script Compiler. You can
then generate the test harness conditionally. In the test script, you can include blocks delimited
with the keywords IF, ELSE, and END IF.

If one of the conditions specified in the IF instruction is present, the code between the keywords IF
and ELSE (if ELSE is present), and IF and END IF (if ELSE is not present) is analyzed and
generated. The ELSE / END IF block is eliminated.

If none of the conditions specified in the IF instruction is satisfied, the code between the keywords
ELSE and END IF is analyzed and generated.

By default, no generation condition is specified, and the code between the keywords ELSE and
END IF is analyzed and generated.

 123

Testing Long Types

Test RealTime does not support 64-bit long types as standard. The long long and _int64 types do
not exist in the C Testing Language. However, a workaround does permit the use of long types
within a .ptu test script.

1. Locate the ana/atus_c.def file in the TDP directory and verify that the following customization
point exists.
#define _int64 long

If the line does not exist, you must add this customization point to the ana/atus_c.def file.

2. Locate the following line:
#pragma attol sizeof(long)=32

and replace the line with the two following lines:
#pragma attol sizeof(long)=64

#pragma attol sizeof(int)=64

If the line does not exist, you must add both lines to the ana/atus_c.def file.

3. Within the .ptu test script, append an L to the notation of initial and expected long values, and
use h64 to format the results. For example:
VAR MyVarLong, long#h64, init = 0xAAAAAAAAAAAAAAAAL, ev =
0x0FFFFFFFFFFFFFFFL

Testing Main Functions

You can use the Component Testing feature to test C language main functions. To do so, you must
rename those functions.

 Example
#ifdef ATTOL

int test_main (int argc, char** argv)

#else

int main (int argc, char** argv)

#endif

{

...

}

If you are running an runtime analysis feature on the Component Testing test node, you can also
use the -rename command line option to rename the main function name.

See the Instrumentor Line Command Reference section in the Rational Test RealTime Reference
Manual.

Testing Pointers against Pointer Structure Elements

To test pointers against structure elements which are also pointers, specify for each pointer the
variable it is pointing to.

For example, consider the following code:
typedef struct st_Test

{

 int a;

 int b;

 struct st_Test *Ptr1;

}st_Toto;

int FunctionTest (st_Toto *p_toto)

{

124 IBM Rational Test RealTime User Guide

 int res=0;

if (p_toto != 0)

{

 if(p_toto->Ptr1 == 0)

 {

 res = 1;

 }

}

else

{

 res = 2;

}

 return(res);

}

To test the pointer p_toto, write the following test script:
SERVICE TestFunction

SERVICE_TYPE extern

-- Tested service parameter declarations

 #st_toto *p_toto;

-- By function returned type declaration

 #int ret_TestFunction;

 ENVIRONMENT ENV_TestFunction

 VAR ret_TestFunction, init = 0, ev = init

 END ENVIRONMENT -- ENV_TestFunction

 USE ENV_TestFunction

 TEST 1

 FAMILY nominal

 ELEMENT

 STR *p_toto, init = { a => 0, b => 0, Ptr1 => NIL }, ev=
init

 STR *p_toto->Ptr1, init = {a=>2,b=>32, Ptr1=>NIL}, ev= init

 VAR ret_TestFunction, init = 0, ev = init

 #ret_TestFunction = TestFunction(p_toto);

 END ELEMENT

 END TEST -- TEST 1

FIN SERVICE -- TestFunction

Testing a String Pointer as a Pointer

Use the string_ptr keyword on a VAR line to work around the ambiguity of the C language
between arrays and pointers.

For example the following VAR line (supposing the declaration char* string;) will generate C code
that will copy the string into the memory location pointed by string.

VAR string, init = "foo", ev = init

-- This is the "traditional" way

Of course, if no memory was allocated to the variable, this is not possible.

The following alternative approach causes the string to point to the memory location containing
"foo". The string is then compared to "foo" using a string comparison function:

VAR string, string_ptr, init = "foo", ev = init

-- Note the additional field in the line

 125

This syntax allows you to initialize the variable to "NIL", and to compare its contents to a given
string after the test.

Initializing Pointer Variables while Preserving the Pointed Value

To initialize a variable as a pointer while keeping the ability to test the value of the pointed
element, use the FORMAT string_ptr statement in your .ptu test script.

This allows you to initialize your variable as a pointer and still perform string comparisons using
str_comp.

 Example:
TEST 1

FAMILY nominal

 ELEMENT

 FORMAT pointer_name = string_ptr

-- Then your variable pointer_name will be first initialized as a
pointer

 VAR pointer_name, INIT="l11c01pA00", ev=init

-- It is initialized as pointing at the string "l11c01pA00",

--and then string comparisons are done with the expected values using
str_comp.

Importing legacy component testing files

The file format of ATTOL UniTest and Test RealTime v2001A Component Testing for C and Ada is
not compatible with the current file format used by IBM Rational Test RealTime.

This means that any .prj, .cmp, and .ses files created with pre-v2002 versions of the product must
be imported and converted in order to be used in a current Test RealTime project.

The Import feature creates a new workspace with the updated Component Testing script files.

Note This problem only affects the Component Testing for C and Ada feature. You can use
previous Component Testing for C++ and System Testing tests in your current projects
without importing them.

1. From the File menu, select Import.

2. In the window Import V2001A Component Testing Files Into a New Workspace, select the
Add... button and then select those V2001A Component Testing files that you wish to import.
To import a complete UniTest or Test RealTime v2001A project, you must select all the .prj,
.cmp, and .ses files from that project.

3. Click the OK button

4. In the window Name Workspace, type in a name for the new workspace and click OK.

Limitations

This feature imports the session, project and campaign data from the old version of Component
Testing, including references to and from test scripts as well as tested and integrated source files.

After the importation, you must manually check and update the following items:

• Target Deployment Port: Use the TDP Editor to reconfigure any custom ATTOL Target
Package settings. The Target Deployment Guide contains advanced information about
upgrading from an old Target Package.

• Configuration Settings: The Import feature retrieves -D condition information and include
directories. Check the General, Build and Component Testing for C tabs of the Configuration
Settings dialog box to identify any other settings that need updating.

126 IBM Rational Test RealTime User Guide

• Service and Family parameters: These are not imported and require manual updating with the
Tester Configuration function.

Tester Configuration

The Tester Configuration dialog box allows you to configure the Component Testing test driver.

 To open the Tester Configuration dialog box:

1. In the Project Explorer, right-click a .ptu test script.

2. From the pop-up menu, select Tester Configuration.

Service/Test Tab

Use this tab to select one or several SERVICEs or TESTs as defined in the .ptu test script. During
execution, the Component Testing node plays the selected SERVICEs or TESTs.

Family Tab

Use this tab to select one or several families as defined in the .ptu test script. During execution, the
Component Testing node plays the selected families.

Viewing Reports

After test execution, depending on the options selected, a series of Component Testing for C test
reports are produced.

Understanding Component Testing Reports

Test reports for Component Testing are displayed in the Test RealTime Report Viewer.

The test report is a hierarchical summary report of the execution of a test node. Parts of the report
that have Passed are displayed in green. Failed tests are shown in red.

Report Explorer

The Report Explorer displays each element of a test report with a Passed , Failed symbol.

• Elements marked as Failed are either a failed test, or an element that contains at least one
failed test.

• Elements marked as Passed are either passed tests or elements that contain only passed tests.

Test results are displayed for each instance, following the structure of the .ptu test script.

Report Header

Each test report contains a report header with:

• The version of Test RealTime used to generate the test as well as the date of the test report
generation

• The path and name of the project files used to generate the test

• The total number of test cases Passed and Failed. These statistics are calculated on the actual
number of test elements listed in the sections below

Test Results

The graphical symbols in front of the node indicate if the test, item, or variable is Passed or Failed
:

• A test is Failed if it contains at least one failed variable. Otherwise, the test is considered Passed.

 127

You can obtain the following data items if you click with the pointer on the Information node:

• Number of executed tests

• Number of correct tests

• Number of failed tests

A variable is incorrect if the expected value and the value obtained are not identical, or if the value
obtained is not within the expected range.

If a variable belongs to an environment, an environment header is previously edited.

In the report variables are edited according to the value of the Display Variables setting of the
Component Testing test node.

The following table summarizes the editing rules:

Results Display Variable
All Variables

Display Variable
Incorrect Variables

Display Variable
Failed Tests Only

Passed test
Variable edited
automatically

Variable not edited Variable not edited

Failed test
Variable edited
automatically

Variable edited
automatically

Variable edited if
incorrect

The Initial and Expected Values option changes the way initial and expected values are displayed
in the report.

Understanding Component Testing UML Sequence Diagrams

During the execution of the test, Component Testing generates trace data this is used by the
UML/SD Viewer. The Component Testing sequence diagram uses standard UML notation to
represent both Component Testing results.

When using Component Testing for C with Runtime Tracing or other Test RealTime features that
generate UML sequence diagrams, all results are merged in the same sequence diagram.

You can click any element of the UML sequence diagram to open the test report at the
corresponding line. Click again in the test report, and you will locate the line in the .pts test script.

Comparing C Test Reports

The Component Testing comparison capability allows you to compare the results of the last two
consecutive tests.

To activate the comparison mode, select Compare two test runs in the Component Testing Settings
for C dialog box.

In comparison mode an additional check is performed to identify possible regressions when
compared with the previous test run.

The Component Testing Report displays an extra column named "Obtained Value Comparison"
containing the actual difference between the current report and the previous report.

Array and Structure Display

The Array and Structure Display option indicates the way in which Component Testing processes
variable array and structure statements. This option is part of the Component Testing Settings for C
dialog box.

128 IBM Rational Test RealTime User Guide

Standard Array and Structure Display

This option processes arrays and structures according to the statement with which they are
declared. This is the default operating mode of Component Testing. The default report format is
the Standard editing.

Extended Array and Structure Display

Arrays of variables may be processed after the keywords VAR or ARRAY, and structured
variables after the keywords VAR, ARRAY, or STRUCTURE:

• After a VAR statement, each element in the array is initialized and tested one by one. Likewise,
each member of a structure that is an array is initialized and tested element by element.

• After an ARRAY statement, the entire array is initialized and checked. Likewise, each member
of a structure is initialized and checked element by element.

• After a STRUCTURE statement, the whole of the structure is initialized and checked.

When Extended editing is selected, Component Testing interprets ARRAY and STRUCTURE
statements as VAR statements.

The output records in the unit test report are then detailed for each element in the array or
structure.

Note This setting slightly slows down the test execution because checks are performed on
each element in the array.

Packed Array and Structure Display

This command has the opposite effect of the Extended editing option. When Packed editing is
selected, Component Testing interprets VAR statements as ARRAY or STRUCTURE statements.

Array and structure contents are fully tested, only the output records are more concise.

Note This setting slightly improves speed of execution because checks are performed on
each array as a whole.

Component Testing for C++

Component Testing for C++ is a fully integrated feature of Test RealTime that uses object-oriented
techniques to address automated testing of C++ embedded and native software.

Object-oriented testing does not mean that the Component Testing for C++ feature is designed solely
for testing object-oriented languages. Whether the target application is object-oriented or not,
Component Testing for C++ adapts to the environment.

In fact, Component Testing for C++ can be used for:

• Software feature tests,

• Component integration tests,

• Software validation,

• Non-regression tests.

Overview

Basically, Component Testing for C++ interacts with your source code through a scripting
language called C++ Test Script Language. You use the Test RealTime GUI or command line tools to
set up your test campaign, write your test scripts, run your tests and view the test results. Object
Testing's mode of operation is twofold:

 129

• C++ Test Driver scripts describe a test harness that stimulates and checks basic I/O of the code
under test.

• C++ Contract Check scripts, which instrument the code under test, verifying behavioral
assertions during execution of the code.

Note: Contract Check is part of the Component Testing for C++ feature. However, contract
check scripts can also be used in application nodes, as a Runtime Analysis feature.

When the test is executed, Component Testing for C++ compiles both the test scripts and the source
under test, then instruments the source code and generates a test driver. Both the instrumented
application and the test driver provide output data which is displayed within Test RealTime.

How Component Testing for C++ Works

When a test node is executed, the Component Testing Test Compiler (atoprepro) compiles both the
test scripts and the source under test. This preprocessing creates an .ots file. The resulting source
code generates a test driver.

If any Runtime Analysis tools are associated with the test node, then the source code is also
instrumented with the Instrumentor (attolcpp) tool.

The test driver, TDP, stubs and dependency files all make up the test harness.

The test harness interacts with the source code under test and produces test results. Test execution
creates a .tdf file.

The .ots and .tdf files are processed together the Component Testing Report Generator (atopospro).
The output is the .xrd report file, which can be viewed and controlled in the Test RealTime GUI.

Of course, these steps are mostly transparent to the user when the test node is executed in the Test
RealTime GUI.

C++ testing overview

C++ test nodes

The project structure of the Rational Test RealTime GUI uses test nodes to represent your
Component Testing test harness.

Test nodes created for Component Testing for C++ use the following structure

• C++ Test Node: represents the Component Testing for C++ test harness

• <script>.otc: is the Contract-Check test script

• <script>.otd: is the test driver script

• <source>.cpp: is the source file under test

• <source>.cpp: is an additional source file

C++ contract check Script

The C++ Contract Check script allows you to test invariants and state charts as well as wraps for
each method of the class.

The Contract Check script is contained in an .otc file, whose name matches the name of the file
containing the class definition.

C++ Contract Check scripts are written in C++ Contract Check Language, which is part of the C++
Test Script language designed for Component Testing for C++.

A typical Contract Check .otc test script is structured as follows:
CLASS <class to wrap>

130 IBM Rational Test RealTime User Guide

{

 WRAP <method>

 REQUIRE <expression>

 ENSURE <expression>

 WRAP <method>

 REQUIRE <expression>

 ENSURE <expression>

}

See the Reference section for the semantics of the C++ Contract Check Language.

Note When an .otc contract check script is used in a test node, the related source files are always
instrumented even if they are displayed as not instrumented in Project Explorer.

Contract Check in a Component Test

You can use the Component Testing wizard to set up a test node and create the C++ contract-check
script templates or you can manually create a Component Testing for C++ test node to reuse
existing test scripts.

The .otc contract-check script must be executed before an .otd Test Driver script, therefore the
order in which both script types appear in the Test node is critical. This is important if you are
manually creating a test node.

Contract Check Runtime Analysis

C++ Contract Check scripts can also be used in a simple application node.

In this case, you can either copy the .otc contract from an existing C++ component test node, or you
can create an .otc contract check script manually.

The .otc contract-check script must be placed before any other item in the application node.

C++ Test Driver Script

The C++ Test Driver Script stimulates the source code under test to test assertions on a cluster of
classes.

The test driver script itself is contained in an .otd file and may call two optional files:

• A declaration file (.dcl) that contains C++ code that ensures the types, class, variables and
functions needed by your test script will be available in your code.

• A stub file (.stb) whose purpose is to define variables, functions and methods which are to be
stubbed.

Using a separate declaration and stub files is optional. It is possible to include all or certain
declarations and stubs directly within the test driver script file.

C++ Contract Check scripts are written in C++ Contract Check Language, which is part of the C++
Test Script Language designed for Component Testing for C++.

A typical Component Testing .otd test script looks like this:
INCLUDE "Test.dcl";

TEST CLASS TestClass1 {

 PROLOGUE {

 <Declarations of variables>

 <Actions to be performed before executing this test class.>

 }

 TEST CASE Test1 {

 #method_under_test();

 CHECK (expression_must_be_true == true);

 131

 }

 EPILOGUE {

 <Actions to be performed when leaving the test class>

 }

 RUN {

 Test1;

 }

}

RUN {

 TestClass1 (File<char*>);

}

See the Reference section for the semantics of the C++ test driver language.

You can use the Component Testing wizard to set up a test node and create the C++ Test Driver
script templates or you can manually create a Component Testing for C++ test node to reuse
existing test scripts.

An .otc contract-check script must be executed before an .otd Test Driver script, therefore the order
in which both script types appear in the Test node is critical. This is important if you are manually
creating a test node.

See the Reference section for the semantics of the C++ Contract Check Language.

Files and classes under test

Source Files

The Source under test are source files containing the code you want to test. These files must
contain either the definition of the classes targeted by the test, or method implementations of those
classes.

Note Source files can be either body files (.C, .cc, .cpp...) or header files (.h), but it is usually
recommended to select the body file. Specifying both header and body files as Source under
test is unnecessary.

When using a C++ Test Driver Script, the wizard generates:

• A template test driver script (.otd) to test each class defined in the Candidate classes box.

• Declaration (.dcl) and stub (.stb) files to make the environment of the source under test
available to the test script.

When using a C++ Contract Check script, the wizard generates:

• A template contract script (.otc) containing template code allowing you to add invariants and
state charts as well as empty wraps for each method of the class.

Note If a source under test is a header file (a file containing only declarations, typically a .h
file), the source file under test is automatically included in the C++ Test Driver script.

Candidate Classes

For source files containing several classes, you may only want to submit a restricted number of
classes to testing.

If no classes are selected, the wizard automatically selects all classes that are defined or
implemented in the source(s) under test as follow:

• The class is defined within the source file (i.e. the sequence class <name> { };).

• At least one of the methods of the class is defined within the source file (i.e. a method's body).

132 IBM Rational Test RealTime User Guide

Note Classes can only be selected if you have refreshed the File View before running the
Test Generation Wizard.

Using native C++ statements

In some cases, it can be necessary to include portions of C++ native code inside an .otc or .otd test
script for one the following reasons:

• To declare native variables that participate in the flow of a scenario. Such statements must be
analyzed by the Component Testing Parser.

• To insert native code into a scenario. In this case, the code is ignored by the parser, but carried
on into the generated code.

Analyzed native code

Lines prefixed with a # character are analyzed by Component Testing Parser.

Prefix statements with a # character to include native C++ variable declarations as well as any code
that can be analyzed by the parser.

#int i;

#char *foo;

Variable declarations must be placed outside of Component Testing Language blocks or preferably
at the beginning of scenarios and procedures.

Ignored native code

Lines prefixed with a @ character are ignored by the parser, but copied into the generated code.

To use native C++ code in the test script, start instructions with a @ character:
@for(i=0; i++; i<100) func(i);

@foo(a,&b,c);

You can add native code either inside or outside of C++ Test Script Language blocks.

Additional and included files

When creating a Component Testing test node for C++, the Component Testing wizard offers the
following options for specifying dependencies of the source code under test:

• Additional files

• Included files

Additional Files

Additional source files are source files that are required by the test script, but not actually tested.
For example, with Component Testing for C++, Visual C++ resource files can be compiled inside a
test node by specifying them as additional files.

Additional header files (.h) are not handled in the same way as additional body files (.cc, .C, or
.cpp):

• Body files: With a body file, the Test Generation Wizard considers that the compiled file will
be linked with your test program. This means that all defined variables and routines are
considered as defined, and therefore not stubbed.

• Header files: With a header file (a file containing only declarations), the Test Generation Wizard
considers that all the entities declared in the source file itself (not in included files) are defined.
Typically, you would use additional header files if you only have a .h file under test and a
matching object file (.o or .obj), but not the actual source file (.cc, .C, or .cpp).

You can toggle a source file from under test to additional by changing the Instrumentation property
in the Properties Window dialog box.

 133

Additional directories are directories that are declared to only contain additional source files.

Functions which are not located in an additional file or in a tested file are simulated by
Component Testing for C++.

Included Files

Included files are normal source files under test. However, instead of being compiled separately
during the test, they are included and compiled with the C++ Test Driver script.

Header files are automatically considered as included files, even if they are not specified as such.

Source files under test should be specified as included when:

• The file contains the class definition of a class you want to test

• A function or a variable definition depends upon a type which is defined in the file under test
itself

• You need access in your test script to a static variable or function, defined in the file under test

In most cases, you do not have to specify files to be included. The Component Testing wizard
automatically generates a warning message in the Output Window, when it detects files that
should be specified as included files. If this occurs, rerun the Component Testing wizard, and select
the files to be included in the Include source files section of the Advanced Options dialog box.

 To specify included files while creating a test node:

1. Select a valid C++ configuration and run the Component Testing wizard.

2. On the Test Script Generation Settings page (Step 3/5), expand Components Under Test and
<Test Name>. where <Test Name> is the name of the Test Node.

3. Scroll down the list to Included Files, select the value field and click the '...' button to enter a
list of files.

4. Enter any other advanced settings and continue with the Component Testing wizard.

 To specify additional files while creating a test node:

1. Select a valid C++ configuration and run the Component Testing wizard.

2. On the Test Script Generation Settings page (Step 3/5), select General and switch the Test
Mode setting to Expert Mode.

3. Expand Components Under Test and select Test Boundaries.

4. Under Additional Files or Directories, select the value field and click the '...' button to enter a
list of files or directories

5. Enter any other advanced settings and continue with the Component Testing wizard.

Declaration files

A declaration file (.dcl) ensures that the types, class, variables and functions needed by your test
script will be available in your code.

Using a separate .dcl file is optional, since it is merely included within the C++ Test Driver script. It
is possible to declare types, classes, variables and functions directly within an C++ Test Driver
script file.

Typically, .dcl files are created by the Component Testing Wizard and do not need to be edited by
the user. If you do need to define your own declarations for a test, it is recommended that you do
this within the Test Driver script. Declaration files appear in the Component Testing for C++ test
node.

134 IBM Rational Test RealTime User Guide

Declaration files must be written in C++ Test Script Language and contain native code declarations.
See the Test RealTime Reference Manual for details about the language.

Error Handling

An error may be generated by either native code or any of the following instructions in a test script:

• CHECK

• CHECK PROPERTY

• CHECK EXCEPTION

• CHECK STUB

• CHECK METHOD

• REQUIRE

• ENSURE

• Native statement

Refer to each of these keywords to see when the instructions generate an error.

Error handling behavior is specified with the keyword ON ERROR. According to the choice
specified by ON ERROR, the script may continue normal execution, skip the current block, or exit.

 Test Results

When no errors occur during execution of a C++ Test Script Language script, the script receives
Passed status. Otherwise, it is considered Failed.

When the test is completed, the errors appear in the Report Viewer or in the UML/SD Viewer as
red notes.

Template Classes

Component Testing for C++ supports assertions only for fully generic and fully specialized
template classes. Partial specializations are not supported.

A contract referring to a generic template class is applied to every instance of this template class,
unless a specific contract has been defined for an instance of this template class.

There may be a state machine description associated with the template class, and another with a
template specialization. In such a case, the latter applies to the specific template instance, and the
first applies to any other instance.

Same mechanism for invariant definition (There may be invariants associated with the template
class, and other invariants with a template specialization. In such a case, the latter ones apply to the
specific template instance, while the first one apply to any other instance.)

A wrap defined within a generic template class contract does not apply to specialization of the
associated method. If you want to test a method specialization, you must define a WRAP into the
contract associated to the class instance the method specialization belongs to.

It is not possible to define WRAPs for template methods within a non-template class.

Specialization

Specialized templates are templates for which some of the parameters are real. Full-specialization
of a template is an instance of the template (all parameters are real).

 Example
template <class T,int N> class C; // generic template, not a
specialization

template <class T> class C<T,2>; // partial specialization (not
supported by Component Testing for C++)

 135

template <> class C<char *,2>; // full-specialization

Note When using full-specializations, latest ISO/IEC C++ standards suggest using the
template prefix template<>.

Testing shared libraries

In order to test a shared library, you must create a test node containing the .otd component test
script that uses the library, and a reference link to the library.

After the execution of the test node, the runtime analysis and component test results are located in
the application node.

 To test a shared library:

1. Add the library to your project:

2. Right-click a group or project node and select Add Child and Library from the popup menu.

3. Enter the name of the Library node

4. Right-click the Library node and select Add Child and Files from the popup menu.

5. Select the source files of the shared library.

6. Run the Component Testing wizard as usual on the source file of your library. This creates a
test node containing the .otc and .otd test scripts and the source file.

7. Delete the source file from the test node.

8. Create a reference to the shared library in the test node:

9. Right-click the application or test node that will use the shared library and select Add Child
and Reference from the popup menu.

10. Select the library node and click OK.

11. Build and execute the test node.

 Example

An example demonstrating how to test shared libraries is provided in the Shared Library example
project. See Example projects for more information.

C++ test reports

Understanding Component Testing for C++ reports

Test reports for Component Testing for C++ are displayed in Test RealTime's Report Viewer.

The test report is a hierarchical summary report of the execution of a test node. Parts of the report
that have Passed are displayed in green. Failed tests are shown in red.

Report Explorer

The Report Explorer displays each element of a Test Verdict report with a Passed , Failed or
Undefined symbol:

• Elements marked as Failed are either a failed test, or an element that contains at least one
failed test.

• An Undefined marker means either that the test was not executed, or that the element
contains a test that was not executed AND all executed tests were passed.

• Elements marked as Passed are either passed tests or elements that contain only passed
tests.

Test results are displayed in two parts:

136 IBM Rational Test RealTime User Guide

• Test Classes, Test Suites and Test Cases of all the executed C++ Test scripts.

• Class results for the entire Test. Each class contains assertions (WRAP statement), invariants,
states and transitions.

Report Header

Each Test Verdict report contains a report header with:

• The path and name of the .xrd report file.

• A general verdict for the test campaign: Passed or Failed.

• The number of test cases Passed and Failed. These statistics are calculated on the actual number
of test elements (Test Case, Procedure, Stub and Classes) listed sections below.

Note The total number counts the actual test elements, not the number of times each
element was executed. For instance, if a test case is run 5 times, of which 2 runs have failed, it
will be counted as one Failed test case.

Test Script

Each script is displayed with a metrics table containing the number of Test Suite, Test Class, Test
Case, Epilogue, Procedure, Prologue and Stub blocks encountered. In this section, statistics reflect
the number of times an element occurs in a C++ Test script.

Test Results

For each Test Case, Procedure and Stub, this section presents a summary table of the test status.
The table contains the number of times each verification was executed, failed and passed.

For instance, if a Test Case containing three CHECK statements is run twice, the reported number
of executions will be six, the number of failed verifications will be two, and the number of passed
verifications will be four.

The general status is calculated as follows:

Condition Result Status

A verification fails Failed

A verification does not occur Undefined

All verifications pass on each execution Passed

 Tested Classes

Class results are grouped at the end of the report and sorted in alphabetical order.

For each class the report shows the general status of assertions (WRAP statement), invariants,
states and transitions.

The general status is computed as follows:

Condition Result Status

An assertion or invariant fails Failed

An assertion or invariant does not occur Undefined

All assertions or all invariants pass on each execution Passed

A state is not reached Not reached

A state has no exit transition Not fired

 137

When a class does not behave as expected, a table of violations is displayed. A violation is observed
at the exit of a state and can be one of the following:

• Multiple: means that several states were reachable at the same time,

• Illegal: means that no state was reachable.

The displayed table gives the number of times a violation has occurred for each state. The status of
this table is always Failed.

Understanding Component Testing for C++ UML Sequence Diagrams

During the execution of the test, Component Testing for C++ generates trace data this is used by
the UML/SD Viewer. The Component Testing for C++ sequence diagram uses standard UML
notation to represent both Contract-Check and Test Driver results.

• Class Contract-check sequence diagrams,

• Test Driver Sequence Diagrams.

Both types of results can appear simultaneously in the same sequence diagram. When using
Runtime Tracing with Component Testing for C++, all results are generated in the same sequence
diagram.

Illegal and multiple transitions

When dealing with state or transition diagrams, Component Testing for C++ adds a custom
observation state, which is both the initial state and error state. All user-defined states can make a
transition towards the initial/error state, and this state can transition towards all user-defined states.

At the beginning of test execution, the object is in the initial/error state.

During the test, the object is continuously tested to comply to the user-defined STATEs and
TRANSITIONs. There are three possible cases.

• The transition can be fired to a single state: the current state is set.

• The transition cannot be fired to any of the defined states: in this case, the state switches to the
observation state and Component Testing for C++ generates an ILLEGAL TRANSITION
note.

• The transitions can be fired to two or more states. In this case, the transition diagram is no
longer unambiguous. The state is set to the observation state and Component Testing for C++
generates a MULTIPLE TRANSITION.

When the state diagram is in the initial/error state, the transition is still continuously checked,
however all user defined states can be potentially fired.

Contract-Check sequence diagrams

The following example shows how a typical class contract is represented by Component Testing for
C++. C++ classes are represented as vertical lines, like object instances. The events related to the
class - method entry and exit, assertion and state chart checks - are attached to the class lifeline.

138 IBM Rational Test RealTime User Guide

Methods

For each class, methods are shown with method entry and exit actions:

• Method entry actions have a solid border,

• Method exit actions have a dotted border.

Contract-Checks

Pre and post-conditions, invariants and state verifications are displayed as Notes, attached to the
class instance, and contained within the method.

You can click a note to highlight the corresponding OTC Contract-Check script line in the Text
Editor window.

Illegal and Multiple Transitions

State or transition diagram errors are identified as ILLEGAL TRANSITION or MULTIPLE
TRANSITION Notes as shown in the following figure:

Test Driver Sequence Diagrams

The following example illustrates typical results generated by a Test Driver script:

 139

Instances

When using a Test Driver script, each of the following C++ Test Script Language keywords are
represented as a distinct object instance:

• TEST CLASS

• TEST SUITE

• TEST CASE

• STUB

• PROC

You can click an instance to highlight the corresponding statement in the Text Editor window.

Checks

Test Driver checks are displayed as Passed (" ") or Failed (" ") glyphs attached to the instances.

You can click any of these glyphs to highlight the corresponding statement in the Text Editor
window.

• CHECK

• CHECK PROPERTY

• CHECK STUB

• CHECK METHOD

• CHECK EXCEPTION

To distinguish checks that occur immediately from checks that apply to a stub, method or
exception, the three latter use different shades of red and green.

You can click an instance to highlight the corresponding statement in the Text Editor window.

Pre and Post-conditions

The following pre and post-condition statements are green (Passed) or red (Failed) actions
contained in STUB or PROC instances.

• REQUIRE

• ENSURE

Exceptions

Component Testing for C++ generates UNEXPECTED EXCEPTION Notes whenever an
unexpected exception is encountered. These notes will be followed by the ON ERROR condition.

Error Handling

Whenever a check and a pre- or post-condition generates an error, or an UNEXPECTED
EXCEPTION occurs, the ON ERROR condition is displayed as shown in the following diagrams.

140 IBM Rational Test RealTime User Guide

An ON ERROR BYPASS condition:

An ON ERROR CONTINUE condition:

Comments and Prints

COMMENT and PRINT statements generate a white note, attached to the corresponding instance.

Messages

Messages can represent either a RUN or a CALL statement, or a native code stub call, as shown
below:

Component Testing for Ada

The Component Testing feature of Test RealTime provides a unique, fully automated, and proven
solution for the Ada language, dramatically increasing test productivity.

Component Testing for Ada overview

Basically, Component Testing for Ada interacts with your source code through the Ada Test Script
Language. The Rational Test RealTime Reference Manual contains full reference information on
the Test Script Languages.

Testing with Component Testing for Ada is as simple as following these steps:

• Set up your test project in the GUI

• Write a .ptu test script

• Run your tests

• View the results.

 141

How Component Testing for Ada Works

When a test node is executed, the Component Testing Test Compiler (attolpreproADA) compiles
both the test scripts and the source under test. This preprocessing creates a .tdc file. The resulting
source code generates a test driver.

If any Runtime Analysis tools are associated with the test node, then the source code is also
instrumented with the Instrumentor (attolada) tool.

The test driver, TDP, stubs and dependency files all make up the test harness.

The test harness interacts with the source code under test and produces test results. Test execution
creates a .rio file.

The .tdc and .rio files are processed together the Component Testing Report Generator
(attolpostpro). The output is the .xrd report file, which can be viewed and controlled in the Test
RealTime GUI.

Of course, these steps are mostly transparent to the user when the test node is executed in the Test
RealTime GUI.

Integrated, simulated and additional Files

When creating a Component Testing test node for Ada, the Component Testing wizard offers the
following options for specifying dependencies of the source code under test:

• Integrated files

• Simulated files

• Additional files

Integrated Files

This option provides a list of source files whose components are integrated into the test program
after linking.

The Component Testing wizard analyzes integrated files to extract any global variables that are
visible from outside. For each global variable the Parser creates a default test which is added to an
environment named after the file in the .ptu test script.

Simulated Files

This option gives the Component Testing wizard a list of source files to simulate—or stub—upon
execution of the test.

A stub is a dummy software component designed to replace a component that the code under test
relies on, but cannot use for practicality or availability reasons. A stub can simulate the response of
the stubbed component.

The Component Testing parser analyzes the simulated files to extract the global variables and
functions that are visible from outside. For each file, a DEFINE STUB block is generated in the .ptu
test script.

By default, no simulation instructions are generated.

Additional Files

Additional files are merely dependency files that are added to the Component Testing test node,
but ignored by the source code parser. Additional files are compiled with the rest of the test node
but are not instrumented.

You can toggle instrumentation of a source file by using the Properties Window dialog box.

142 IBM Rational Test RealTime User Guide

Component Testing test selection

The Test Selection dialog box allows you to configure the Component Testing test driver.

 To open the Test Selection dialog box:

1. In the Project Explorer, right-click a .ptu test script.

2. From the pop-up menu, select Test Selection.

Service/Test Tab

Use this tab to select one or several SERVICEs or TESTs as defined in the .ptu test script. During
execution, the Component Testing node plays the selected SERVICEs or TESTs.

Family Tab

Use this tab to select one or several families as defined in the .ptu test script. During execution, the
Component Testing node plays the selected families.

Initial and expected value settings

The Initial and Expected Value settings are part of the Component Testing Settings for Ada dialog
box and describe how values assigned to each variable are displayed in the Component Testing
report. Component Testing allows three possible evaluation strategy settings.

Variable Only

This evaluation strategy setting generates both the initial and expected values of each variable
evaluated by the program during execution.

This is possible only for variables whose expression of initial or expected value is not reducible by
the Test Compiler. For arrays and structures in which one of the members is an array, this
evaluation is not given for the initial values. For the expected values, however, it is given only for
Failed items.

Value Only

With this setting, the test report displays for each variable both the initial value and the expected
value defined in the test script.

Combined evaluation

The combined evaluation setting combines both settings. The test report thus displays the initial
value, the expected value defined in the test script, and the value found during execution if that
value differs from the expected value.

Writing a test script

When you first create Component Testing for Ada test node with the Component Testing Wizard,
Test RealTime produces a .ptu test script template based on the source under test.

To write the test script, you can use the Text Editor provided with Test RealTime.

Component Testing for Ada uses the Ada Test Script Language. Full reference information for this
language is provided in the Rational Test RealTime Reference Manual.

Test Script Structure

The Ada Test Script Language allows you to structure tests to:

• Describe several test cases in a single test script,

• Select a subset of test cases according to different Target Deployment Port criteria.

 143

All instructions in a test script have the following characteristics:

• All statements begin with a keyword.

• Statements are not case sensitive.

• Statements start at the beginning of a line and end at the end of a line. You can, however, write
an instruction over several lines using the ampersand (&) continuation character at the
beginning of additional lines.

• Statements must be shorter than 2048 characters, although this limit may be lower on some
platforms.

The basic structure of a Component Testing .ptu test script for Ada looks like this:
HEADER add, 1, 1

<variable declarations for the test script>

BEGIN

SERVICE add

 <local variable declarations for the service>

 TEST 1

 FAMILY nominal

 ELEMENT

 VAR variable1, INIT=0, EV=0

 VAR variable2, INIT=0, EV=0

 #<call to the procedure under test>

 END ELEMENT

 END TEST

END SERVICE

Structure statements

The following statements allow you to describe the structure of a test.

• HEADER: For documentation purposes, specifies the name and version number of the module
being tested, as well as the version number of the tested source file. This information is
displayed in the test report.

• BEGIN: Marks the beginning of the generation of the actual test program.

• SERVICE: Contains the test cases related to a given service. A service usually refers to a
procedure or function. Each service has a unique name (in this case add). A SERVICE block
terminates with the instruction END SERVICE.

• TEST: Each test case has a number or identifier that is unique within the block SERVICE. The
test case is terminated by the instruction END TEST.

• FAMILY: Qualifies the test case to which it is attached. The qualification is free (in this case
nominal). A list of qualifications can be specified (for example: family, nominal, structure) in
the Tester Configuration dialog box.

• ELEMENT: Describes a test phase in the current test case. The phase is terminated by the
instruction END ELEMENT. The different phases of the same test case cannot be dissociated
after the tests are run, unlike the test cases introduced by the instruction NEXT_TEST.
However, the test phases introduced by the instruction ELEMENT are included in the loops
created by the instruction LOOP.

The three-level structure of the test scripts has been deliberately kept simple. This structure allows:

• A clear and structured presentation of the test script and report

• Tests to be run selectively on the basis of the service name, the test number, or the test family.

144 IBM Rational Test RealTime User Guide

Using native Ada statements

In some cases, it can be necessary to include portions of Ada native code inside a .ptu test script for
one the following reasons:

• To declare native variables that participate in the flow of a scenario. Such statements must be
analyzed by the Component Testing Parser.

• To insert native code into a scenario. In this case, the code is ignored by the parser, but carried
on into the generated code.

Analyzed native code

Lines prefixed with a # character are analyzed by Component Testing Parser.

Prefix statements with a # character to include native Ada variable declarations as well as any code
that can be analyzed by the parser.

#int i;

#char *foo;

Variable declarations must be placed outside of Component Testing Language blocks or preferably
at the beginning of scenarios and procedures.

Ignored native code

Lines prefixed with a @ character are ignored by the parser, but copied into the generated code.

To use native Ada code in the test script, start instructions with a @ character:
@for(i=0; i++; i<100) func(i);

@foo(a,&b,c);

You can add native code either inside or outside of Ada Test Script Language blocks.

Testing variables

One of the main features of Component Testing for Ada is its ability to compare initial values,
expected values and actual values of variables during test execution. In the Ada Test Script
Language, this is done with the VAR statement.

The VAR statement specifies both the test start-up procedure and the post-execution test for simple
variables. This instruction uses three parameters:

• Name of the variable under test: this can be a simple variable, an array element, or a field of a
record. It is also possible to test an entire array, part of an array or all the fields of a record.

• Initial value of the variable: identified by the keyword INIT.

• Expected value of the variable after the procedure has been executed: identified by the
keyword EV.

Declare variables under test with the VAR statement, followed by the declaration keywords:

• INIT = for an assignment

• INIT == for no initialization

• EV = for a simple test.

Component Testing for Ada allows you to define initial and expected values with standard Ada
expressions.

All literal values, variable types, functions and most operators available in the Ada language are
accepted by Component Testing for Ada.

It does not matter where the VAR instructions are located with respect to the test procedure call
since the Ada code generator separates VAR instructions into two parts :

 145

• The variable test is initialized with the ELEMENT instruction

• The actual test against the expected value is done with the END ELEMENT instruction

Many other forms are available that enable you to create more complex test scenarios.

Example

The following example demonstrates typical use of the VAR statement
HEADER add, 1, 1

#with add;

BEGIN

SERVICE add

 # a, b, c : integer;

 TEST 1

 FAMILY nominal

 ELEMENT

 VAR a, init = 1, ev = init

 VAR b, init = 3, ev = init

 VAR c, init = 0, ev = 4

 #c := add(a,b);

 END ELEMENT

 END TEST

END SERVICE

Testing Intervals

You can test an expected value within a given interval by replacing EV with the keywords MIN
and MAX.

You can also use this form on alphanumeric variables, where character strings are considered in
alphabetical order ("A"<="B"<="C").

 Example

The following example demonstrates how to test a value within an interval:
TEST 4

 FAMILY nominal

 ELEMENT

 VAR a, init in (1,2,3), ev = init

 VAR b, init = 3, ev = init

 VAR c, init = 0, min = 4, max = 6

 #c = add(a,b);

 END ELEMENT

END TEST

Testing Tolerances

You can associate a tolerance with an expected value for numerical variables. To do this, use the
keyword DELTA with the expected value EV.

This tolerance can either be an absolute value (the default option) or relative (in the form of a
percentage <value>%).

 Example

 TEST 5

 FAMILY nominal

146 IBM Rational Test RealTime User Guide

 ELEMENT

 VAR a, INIT in (1,2,3), EV = INIT

 VAR b, INIT = 3, EV = INIT

 VAR c, INIT = 0, EV = 5, DELTA = 1

 #c = add(a,b);

 END ELEMENT

 END TEST

or
 TEST 6

 FAMILY nominal

 ELEMENT

 VAR a, INIT in (1,2,3), EV = INIT

 VAR b, INIT = 3, EV = INIT

 VAR c, INIT = 0, EV = 5, DELTA = 20%

 #c = add(a,b);

 END ELEMENT

 END TEST

Testing expressions

To test the return value of an expression, rather than declaring a local variable to memorize the
value under test, you can directly test the return value with the VAR instruction.

In some cases, you must leave out the initialization part of the instruction.

 Example

The following example places the call of the add function in a VAR statement:
TEST 12

 FAMILY nominal

 ELEMENT

 VAR a, init = 1, ev = init

 VAR b, init = 3, ev = init

 VAR add(a,b), ev = 4

 END ELEMENT

FIN TEST

In this example, you no longer need the variable c. The resulting test report an Unknown status
indicating that it has not been tested.

All syntax examples of expected values are still applicable, even in this particular case.

Initializing without testing

It is sometimes difficult to predict the expected result for a variable; such as if a variable holds the
current date or time. In this case, you might want to avoid specifying an expected output but still
have the value of the variable initialized in the test script. To do this, use the EV == syntax.

 Example

In the following script a, b, and c are initialized, but only a and b are tested.
TEST 7

 FAMILY nominal

 ELEMENT

 VAR a, init in (1,2,3), ev = init

 VAR b, init = 3, ev = init

 VAR c, init = 0, ev ==

 #c = add(a,b);

 147

 END ELEMENT

END TEST

Declaring global variables for testing

The Target Deployment Ports for Ada do not provide any variables that can be used freely by the
tester.

To avoid having to modify the code under test, it is easier to add an extra C package, which is
actually just the spec part of the package, to provide a set of globally accessible variables. You can
do this directly in the .ptu test script.

Declaring Global Variables

Any code inserted between the HEADER and BEGIN keywords is copied into the generated code
as is. For example:

Header Code_Under_Test, 1.0, 1.0

 #With Code_Under_Test; -- only if Code_Under_Test is used within
My_Globals

 -- this context clause goes into the package My_Globals

 #package My_Globals is

 # Global_Var_Integer : Integer := 0;

 #end My_Globals;

 #with Code_Under_Test;

 #with My_Globals;

 -- these two context clauses go into the generated test harness

Begin

-- etc..

Note Any Ada instruction between HEADER and the BEGIN instruction must be
encapsulated into a procedure or a package. Context clauses are possible.

Accessing Global Variables

The extra global variable package is visible from within all units of the test driver.

Variables can be accessed like this:
#My_Globals.Global_Var_Integer := 1;

Variables can be accessed from a DEFINE STUB block for example:
Define Stub Another_Package

#with My_Globals;

#procedure some_proc (param : in out some_type) is

#begin

My_Globals.Global_Var_Integer := 2;

#end some_proc;

-- however, no "return" statement is possible within this block

End Define

Variables can be accessed in the ELEMENT blocks, just like any other variable:
VAR My_Globals.Global_Var_Integer, init = 0, EV = 1

Rational Test RealTime processes the .ptu test script in such a way that global variable package
automatically becomes a separate compilable unit.

Testing arrays

With Component Testing for Ada, you can test arrays in quite the same way as you test variables.
In the Ada Test Script Language, this is done with the ARRAY statement.

148 IBM Rational Test RealTime User Guide

The ARRAY statement specifies both the test start-up procedure and the post-execution test for
simple variables. This instruction uses three parameters:

• Name of the variable under test: species the name of the array in any of the following ways:

• To test one array element, conform to the Ada syntax: histo(0).

• To test the entire array without specifying its bounds, the size of the array is deduced by
analyzing its declaration. This can only be done for well-defined arrays.

• To test a part of the array, specify the lower and upper bounds within which the test will be
run, separated with two periods (..), as in: histo(1..SIZE_HISTO)

• Initial value of the array: identified by the keyword INIT.

• Expected value of the array after the procedure has been executed: identified by the keyword
EV.

Declare variables under test with the ARRAY statement, followed by the declaration keywords:

• INIT = for an assignment

• INIT == for no initialization

• EV = for a simple test.

It does not matter where the ARRAY instructions are located with respect to the test procedure call
since the Ada code generator separates ARRAY instructions into two parts :

• The array test is initialized with the ELEMENT instruction

• The actual test against the expected value is done with the END ELEMENT instruction

Testing an Array with Ada Expressions

To initialize and test an array, specify the same value for all the array elements. The following two
examples illustrate this simple form.

ARRAY image, init = 0, ev = init

ARRAY histo[1..SIZE_HISTO-1], init = 0, ev = 0

You can use the same expressions for initial and expected values as those used for simple variables
(literal values, constants, variables, functions, and Ada operators).

 Example
HEADER histo, 1, 1

#with histo; use histo;

BEGIN

SERVICE COMPUTE_HISTO

 # x1, x2, y1, y2 : integer;

 # histo : T_HISTO;

 TEST 1

 FAMILY nominal

 ELEMENT

 VAR x1, init = 0, ev = init

 VAR x2, init = SIZE_IMAGE•1, ev = init

 VAR y1, init = 0, ev = init

 VAR y2, init = SIZE_IMAGE•1, ev = init

 ARRAY image(1..200,1..200), init = 0, ev = init

 VAR histo(1), init = 0, ev = SIZE_IMAGE*SIZE_IMAGE

 ARRAY histo(1..SIZE_HISTO), init = 0, ev = 0

 #compute_histo(x1, y1, x2, y2, histo);

 END ELEMENT

 END TEST

 149

END SERVICE

Testing arrays with pseudo-variables

Another form of initialization consists of using one or more pseudo-variables, as the following
example illustrates:

 TEST 3

 FAMILY nominal

 ELEMENT

 VAR x1, init = 0, ev = init

 VAR x2, init = SIZE_IMAGE-1, ev = init

 VAR y1, init = 0, ev = init

 VAR y2, init = SIZE_IMAGE-1, ev = init

 ARRAY image, init=(int)(100*(1+sin((float)(I1+I2)))), ev = init

 ARRAY histo[0..200], init = 0, ev ==

 ARRAY histo[201..SIZE_HISTO-1], init = 0, ev = 0

 VAR status, init ==, ev = 0

 #status = compute_histo(x1, y1, x2, y2, histo);

 END ELEMENT

 END TEST

I1 and I2 are two pseudo-variables which take as their value the current values of the array indices
(for image, from 0 to 199 for I1 and I2). You can use these pseudo-variables like a standard variable
in any Ada expression.

This allows you to create more complex test scripts when using large arrays when the use of
enumerated expressions is limited.

For multidimensional arrays, you can combine these different types of initialization and test
expressions, as demonstrated in the following example:

ARRAY image, init = (0 => I2, 1 => (0 => 100, others => 0),

& others => (I1 + I2) % 255)

Testing Character Arrays

Character arrays are a special case. Variables of this type are processed as character strings
delimited by quotes.

You therefore need to initialize and test character arrays using character strings, as the following
list example illustrates.

If you want to test character arrays like other arrays, you must use a format modification
declaration (FORMAT instruction) to change them to arrays of integers.

 Example

The following list example illustrates this type of modification:
TEST 2

 FAMILY nominal

 ELEMENT

 VAR l, init = NIL, ev = NONIL

 VAR s, init = "foo", ev = init

 VAR l.str(1..5), init = "foo" , ev = ('f','o','o')

 #l := stack(s, l);

 END ELEMENT

END TEST

150 IBM Rational Test RealTime User Guide

Testing large arrays

The maximum number of array elements that can be processed is 100. If you need to test an array
that contains more than 100 elements, then you must split the initialization of the array over two or
more initializations, as shown in the following example.

 Example

The following initiatialization produces a Too many INIT or VA values error:
ARRAY a, init=

(1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,20,1,2,3,4,5,6,7,8,9,30,1,2,3,
4,

5,6,7,8,9,40,1,2,3,4,5,6,7,8,9,50,1,2,3,4,5,6,7,8,9,60,1,2,3,4,5,6,7,8
,9,

70,1,2,3,4,5,6,7,8,9,80,1,2,3,4,5,6,7,8,9,90,1,2,3,4,5,6,7,8,9,100,1,2
,3,

4,5,6,7,8,9,110,1,2,3,4,5,6,7,8,9,120,1,2,3,4,5,6,7,8,9,130,1,2,3,4,5,
6,

7,8,9,140,1,2,3,4,5,6,7,8,9,150,1,2,3,4,5,6,7,8,9,160,1,2,3,4,5,6,7,8,
9,

170,1,2,3,4,5,6,7,8,9,180,1,2,3,4,5,6,7,8,9,190,1,2,3,4,5,6,7,8,9,200)

, ev=init

Instead, use the following expression:
ARRAY z [0..99],

init=(1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,20,1,2,3,4,5,6,7,8,9,30,1
,2

,3,4,5,6,7,8,9,40,1,2,3,4,5,6,7,8,9,50,1,2,3,4,5,6,7,8,9,60,1,2,3,4,5,
6,

7,8,9,70,1,2,3,4,5,6,7,8,9,80,1,2,3,4,5,6,7,8,9,90,1,2,3,4,5,6,7,8,9,1
00)

, ev=init

ARRAY z [100..199],

init={1,2,3,4,5,6,7,8,9,110,1,2,3,4,5,6,7,8,9,120,1,2,3,4,5,6,7,8,9,13
0,

1,2,3,4,5,6,7,8,9,140,1,2,3,4,5,6,7,8,9,150,1,2,3,4,5,6,7,8,9,160,1,2,
3,

4,5,6,7,8,9,170,1,2,3,4,5,6,7,8,9,180,1,2,3,4,5,6,7,8,9,190,1,2,3,4,5,
6,

7,8,9,200}

, ev=init

Testing arrays with lists

While an expression initializes all the array elements in the same way, you can also initialize each
element by using an enumerated list of expressions between brackets "()". In this case, you must
specify a value for each array element.

Furthermore, you can precede every element in this list of initial or expected values with the array
index of the element concerned followed by the characters "=>". The following example illustrates
this form:

ARRAY histo[0..3], init = (0 => 0, 1 => 10, 2 => 100, 3 => 10) ...

This form of writing the ARRAY statement has several advantages:

• Improved readability of the list

• Ability to mix values without worrying about the order

You can also use this form together with the simple form if you follow this rule: once one element
has been defined with its array index, you must do the same with all the following elements.

 151

If several elements in an array are to take the same value, specify the range of elements taking this
value as follows:

ARRAY histo[0..3], init = (0 .. 2 => 10, 3 => 10) ...

You can also initialize and test multidimensional arrays with a list of expressions, as follows. In this
case, the previously mentioned rules apply to each dimension.

ARRAY image, init = (0, 1=>4, others=>(1, 2, others=>100)) ...

 Example

You can specify a value for all the as yet undefined elements by using the keyword others, as the
following example illustrates:

TEST 2

 FAMILY nominal

 ELEMENT

 VAR x1, init = 0, ev = init

 VAR x2, init = SIZE_IMAGE-1, ev = init

 VAR y1, init = 0, ev = init

 VAR y2, init = SIZE_IMAGE-1, ev = init

 ARRAY image, init = (others=>(others=>100)), ev = init

 ARRAY histo, init = 0,

 & ev = (100=>SIZE_IMAGE*SIZE_IMAGE, others=>0)

 VAR status, init ==, ev = 0

 #status = compute_histo(x1, y1, x2, y2, histo);

 END ELEMENT

END TEST

Testing arrays with other arrays

Component Testing for Ada is flexible enough to allow complex array comparisons. You can
initialize or compare an array with another array that shares the same declaration.

You can use this form of initialization and testing with one or more array dimensions.

 Example

The following example tests the two arrays read_image and extern_image, which have been
declared in the same way. Every element from the extern_image array is assigned to the
corresponding read_image array element.

TEST 4

 FAMILY nominal

 #read_image(extern_image,"image.bmp");

 ELEMENT

 VAR x1, init = 0, ev = init

 VAR x2, init = SIZE_IMAGE-1, ev = init

 VAR y1, init = 0, ev = init

 VAR y2, init = SIZE_IMAGE-1, ev = init

 ARRAY image, init = extern_image, ev = init

 ARRAY histo, init = 0, ev ==

 VAR status, init ==, ev = 0

 #status = compute_histo(x1, y1, x2, y2, histo);

 END ELEMENT

END TEST

Testing records

To test all the fields of a structured variable or record, use a single STR instruction to define the
initializations and expected values of the structure.

152 IBM Rational Test RealTime User Guide

The STR statement specifies both the test start-up procedure and the post-execution test for simple
variables. This instruction uses three parameters:

• Name of the variable under test: this can be a simple variable, an array element, or a field of a
record. It is also possible to test an entire array, part of an array or all the fields of a record.

• Initial value of the variable: identified by the keyword INIT.

• Expected value of the variable after the procedure has been executed: identified by the
keyword EV.

Declare variables under test with the STR statement, followed by the declaration keywords:

• INIT = for an assignment

• INIT == for no initialization

• EV = for a simple test.

It does not matter where the STR instructions are located with respect to the test procedure call
since the Ada code generator separates STR instructions into two parts :

• The variable test is initialized with the ELEMENT instruction

• The actual test against the expected value is done with the END ELEMENT instruction

Many other forms are available that enable you to create more complex test scenarios.

 Example

The following example demonstrates typical use of the STR statement:
--procedure push(l: in out list; s:string);

TEST 2

 FAMILY nominal

 ELEMENT

 VAR l, init = NIL, ev = NONIL

 STR l.all, init == , ev = ("myfoo",NIL,NIL)

 VAR s, init = "myfoo", ev = init

 #push(l,s);

 END ELEMENT

END TEST

Testing a Record with Ada Expressions

To initialize and test a structured variable or record, you must initialize or test all the fields using a
list of native language expressions (one per field). The following example illustrates this form:

STR l.all, init == , ev = ("myfoo",NIL,NIL)

Each element in the list must correspond to the structured variable field as it was declared.

Every expression in the list must obey the rules described so far, according to the type of field
being initialized and tested:

• An expression for simple fields or arrays of simple variables initialized using an expression

• In Ada, an aggregate for fields of type record or array

Using Field Names in Native Expressions

As with arrays, you can specify field names in native expressions by following the field name of the
structure with the characters =>, as follows:

 TEST 3

 FAMILY nominal

 ELEMENT

 VAR l, init = NIL, ev = NONIL

 153

 VAR l.all, init == , ev = (str=>"myfoo",next=>NIL,prev=>NIL)

 VAR s, init = "myfoo", ev = init

 #l = push(l,s);

 END ELEMENT

 END TEST

When using this form, you do not have to respect the order of expressions in the list.

Testing a Record with Another Record

As with arrays, you can initialize and test a record using another record of the same type. The
following example illustrates this form:

STR l.all, init == , ev = l1.all

Each field of the structured variable will be initialized or tested using the associated fields of the
variable used for initialization or testing.

Testing Records with Discriminants

You can use record types with discriminants, with the following Ada restrictions:

• The initialization part must be complete.

• The evaluation can omit every field except discriminant fields.

Initialization and expected value expressions are Ada aggregates beginning with the value of the
discriminant.

Example

Ada example:
type rec (discr:boolean:=TRUE)

 case discr is

 when TRUE =>

 ch2:float;

 when FALSE =>

 ch3:integer;

 end case;

end record;

Test Script Sample:
#r1: rec(TRUE);

#r2: rec;

TEST 1

FAMILY nominal

 ELEMENT

 var r1, init = (TRUE, 0.0), ev ==

 var r2, init = (FALSE, 1), ev = (TRUE, 1.0)

 #func (r);

 END ELEMENT

END TEST

Testing Tagged Records

Component Testing for Ada supports tagged record types. As with other classic records, you can
omit a field in the initialization or evaluation part. You can also define tagged types with a
discriminant part. In such cases, the only limitation is that of the discriminant.

 Example

The following example illustrates tagged records. First, the source code:

154 IBM Rational Test RealTime User Guide

Package Items Is

 Type Item Is Tagged Record

 X_Coord : Float;

 Y_Coord : Float;

 End Record;

Procedure foo_test;

End Items;

With Items; Use Items;

Package Forms Is

 Type Point Is New Item With Null Record;

 Type Circle Is New Item With Record

 Radius : Float;

 End Record;

 Type Triangle Is New Item With Record

 A,B,C : Float;

 End Record;

 Type Cylinder Is New Circle With Record

 Height : Float;

 End Record;

End Forms;

Following is the associated test script:
HEADER Items, ,

#With Items; Use Items;

#With Forms; Use Forms;

BEGIN Items

#I : Item := (1.0,0.5);

#C : Circle := (0.0,1.0,13.5);

#T : Triangle;

#P : Point;

#Cyl : Cylinder;

SERVICE Compute_Items

 SERVICE_TYPE extern

 TEST 1

 FAMILY Nominal

 ELEMENT

 Var T, Init = (0.0,1.5,4.5,5.0,6.5), Ev = (I with A=>4.0, B=>5.0,
C=>6.0)

 Var P, Init = I, Ev = (Y_coord => 1.0, X_coord => 0.0)

 Var I, Init = (0.0,1.0), Ev = Item(C)

 Var P, Init = (I with NULL record), Ev = (Y_coord => 1.0, X_coord
=> 0.0)

 End Element

 END TEST -- Test 1

 TEST 2

 FAMILY Nominal

 ELEMENT

 Var I, Init = (2.0,3.0), Ev ==

 Var T, Init = (2.0,3.0,4.0,5.0,6.0), Ev = (I with A=>4.0, B=>5.0,
C=>6.0)

 Var Cyl, Init = (2.0, 3.0, 4.0, 5.0), Ev ==

 Var I, Init ==, Ev = Item(Cyl)

 END ELEMENT

 155

 END TEST -- Test 2

END SERVICE -- Compute_Items

No Test

You can only initialize and test records with the following forms:

• INIT =

• INIT ==

• EV =

• EV ==

If a field of a structured variable needs to be initialized or tested in a different way, you can omit its
initial and expected values from the global test of the structured variable, and run a separate test
on this field.

The following example illustrates this:
TEST 4

 FAMILY nominal

 ELEMENT

 VAR l, init = NIL, ev = NONIL

 VAR l.all, init == , ev = (next=>NIL,prev=>NIL)

 VAR s, init in ("foo","bar"), ev = init

 VAR l.str, init ==, ev(s) in ("foo","bar")

 #push(l,s);

 END ELEMENT

END TEST

Stub simulation

Stub simulation is based on the idea that subroutines to be simulated are replaced with other
subroutines generated in the test driver. These simulated subroutines are often referred to as stubs.

Stubs use the same interface as the simulated subroutines, only the body of the subroutine is
replaced.

Stubs have the following roles:

• Check in and in out parameters against the simulated subroutine. If there is a mismatch, the
values are stored.

• Assign out and in out parameters from the simulated procedure

• Return a value for a simulated function

To generate stubs, the Test Script Compiler needs to know the specification of the compilation units
that are to be simulated.

Passing parameters by pointer can lead to problems of ambiguity regarding the data actually
passed to the function. For example, a parameter that is described in a prototype by int *x can be
passed in the following way:

int *x as input ==> f(x)

int x as output or input/output ==> f(&x)

int x[10] as input ==> f(x)

int x[10] as output or input/output ==> f(x)

Therefore, to define a stub, you must specify the following information:

• The data type in the calling function

• The method of passing the data

156 IBM Rational Test RealTime User Guide

 Example

An example project called Stub Ada is available from the Examples section of the Start page. This
example demonstrates the use of stubs in Component Testing for Ada. See Example projects for
more information.

Defining stubs

The following example highlights the simulation of all functions and procedures declared in the
specification of file_io. A new body is generated for file_io in file <testname>_fct_simule.ada.

HEADER file, 1, 1

BEGIN

DEFINE STUB file_io

END DEFINE

You must always define stubs after the BEGIN instruction and outside any SERVICE block.

Simulation of Generic Units

You can stub a generic unit like an ordinary unit with the following restrictions:

Parameters of a procedure or function, and function return types of a type declared in a generic
unit or parameter of this unit must use the _NO mode.

For example, if you want to stub the following generic package:
GENERIC

 TYPE TYPE_PARAM is;

Package GEN is

 TYPE TYPE_INTO is;

 procedure PROC(x:TYPE_PARAM,y:in out TYPE_INTO,Z:out integer);

 function FUNC return TYPE_INTO;

end GEN;

Use the following stub definition:
DEFINE STUB GEN

procedure PROC(x: _NO TYPE_PARAM,y: _NO TYPE_INTO,Z:out integer);

function FUNC return _NO TYPE_INTO;

END DEFINE

You can add a body to procedures and functions to process any parameters that required the _NO
mode.

Note With some compilers, when stubbing a unit by using a WITH operator on the generic
package, cross dependencies may occur.

Separate Body Stub

It some cases, you might need to define the body stub separately, with a proprietary behavior.
Declare the stub separately as shown in the following example, and then you can define a body for
it:

DEFINE STUB <STUB NAME>

procedure My_Procedure(...) is separate ;

END DEFINE

The Ada Test Script Compiler will not generate a body for the service My_Procedure, but will expect
you to do so.

 157

Using Stubs

Range of Values of STUB Parameters

When using stubs, you may need to define an authorized range for each STUB parameter.
Furthermore, you can summarize several calls in one line associated with this parameter.

Write such STUB lines as follows:
STUB F 1..10 => (1<->5)30

This expression means that the STUB F will be called 10 times with its parameter having a value
between 1 and 5, and its return value is always 30.

You can combine this with several lines; the result looks like the following example:
STUB F 1..10 => (1<->5)30,

& 11..19 => (1<->5)0,

& 20..30 => (<->) 1,

& others =>(<->)-1

To check that a STUB is never called, even if an ENVIRONMENT containing the STUB is used,
use the the following syntax:

STUB F 0=>(<->)

Raise-exception Stubs

You can force to raise a user-defined (or pre-defined) exception when a STUB is called with
particular values.

The appropriate syntax is as follows:
STUB P(1E+307<->1E+308) RAISE STORAGE_ERROR

If the STUB F happens to be called with its parameter between 1E+307 and 1E+308, the exception
STORAGE_ERROR will be raised during execution of the application; the test will be FALSE
otherwise.

Suppose that the current stubbed unit contains at least one overloaded sub-program. When calling
this particular STUB, you will need to qualify the procedure or function. You can do this easily by
writing the STUB as follows:

STUB A.F (1<->2:REAL)RAISE STANDARD.CONSTRAINT_ERROR

The STUB A.F is called once and will raise a CONSTRAINT_ERROR if its parameter, of type
REAL, has a value between 1 and 2.

Compilation Sequence

The Ada Test Script Compiler generates three files:

• <testname>_fct_simule.ada for the body of simulated functions and procedures

• <testname>_var_simule.ada for the declaration of simulation variables

• <testname>_var_simule_B.ada for the body of test procedures

You must compile your packages in the following order:

• Simulated unit (specification)

• <testname>_var_simule.ada

• <testname>_var_simule_B.ada

• Test program

• <testname>_fct_simule.ada

158 IBM Rational Test RealTime User Guide

Replacing Stubs

Stubs can be used to replace a component that is still in development. Later in the development
process, you might want to replaced a stubbed component with the actual source code.

 To replace a stub with actual source code:

1. Right-click the test node and select Add Child and Files

2. Add the source code files that will replace the Stubbed functions.

3. If you do not want a new file to be instrumented, right-click the file select Properties. Set the
Instrumentation property to No.

4. Open the .ptu test script, and remove the STUB sections from your script file.

Sizing Stubs

For each STUB, the Component Testing feature allocates memory to:

• Store the value of the input parameters during the test

• Store the values assigned to output parameters before the test

A stub can be called several times during the execution of a test. By default, when you define a
STUB, the Component Testing feature allocates space for 10 calls. If you call the STUB more than
this you must specify the number of expected calls in the STUB declaration statement.

In the following example, the script allocates storage space for the first 17 calls to the stub:
DEFINE STUB file 17

 #int open_file(char _in f[100]);

 #int create_file(char _in f[100]);

 #int read_file(int _in fd, char _out l[100]);

 #int write_file(int fd, char _in l[100]);

 #int close_file(int fd);

END DEFINE

Note You can also reduce the size when running tests on a target platform that is short on
memory resources.

Multiple stub calls

For a large number of calls to a stub, use the following syntax for a more compact description:
<call i> .. <call j> =>

You can describe each call to a stub by adding the specific cases before the preceding instruction,
for example:

<call i> =>

or
<call i> .. <call j> =>

The call count starts at 1 as the following example shows:
 TEST 2

 FAMILY nominal

 COMMENT Reading of 100 identical lines

 ELEMENT

 VAR file1, init = "file1", ev = init

 VAR file2, init = "file2", ev = init

 VAR s, init == , ev = 1

 STUB open_file 1=>("file1")3

 STUB create_file 1=>("file2")4

 159

 STUB read_file 1..100(3,"line")1, 101=>(3,"")0

 STUB write_file 1..100=>(4,"line")1

 STUB close_file 1=>(3)1,2=>(4)1

 #s = copy_file(file1,file2);

 END ELEMENT

 END TEST

Several Calls to a Stub

If a stub is called several times during a test, either of the following are possible:

• Describe the different calls in the same STUB instruction, as described previously.

• Use several STUB instructions to describe the different calls. (This allows a better
understanding of the test script when the STUB calls are not consecutive.)

The following example rewrites the test to use this syntax for the call to the STUB close_file:
STUB close_file (3)1

STUB close_file (4)1

No Testing of the Number of Calls of a Stub

If you don't want to test the number of calls to a stub, you can use the keyword others in place of
the call number to describe the behavior of the stub for the calls to the stub not yet described.

For example, the following instruction lets you specify the first call and all the following calls
without knowing the exact number:

STUB write_file 1=>(4,"line")1,others=>(4,"")1

Advanced stubs

This section covers some of the more complex notions when dealing with stub simulations in
Component Testing for Ada.

Creating complex stubs

If necessary, you can make stub operation more complex by inserting native Ada code into the
body of the simulated function. You can do this easily by adding the lines of native code after the
prototype.

 Example

The following stub definition makes extensive use of native Ada code.
DEFINE STUB file

 #function open_file(f:string) return file_t is

 #begin

 # raise file_error;

 #end;

END DEFINE

Excluding a parameter from a stub

You can specify in the stub definition that a particular parameter is not to be tested or given a
value. This is done using a modifier of type no instead of in, out or in out.

Note You must be careful when using _no on an output parameter, as no value will be
assigned. It will then be difficult to predict the behavior of the function under test on
returning from the stub.

 Example

In this example, the f parameters to read_file and write_file are never tested.
DEFINE STUB file

160 IBM Rational Test RealTime User Guide

#procedure read_file(f: _no file_t; l:out string; res:out BOOLEAN);

#procedure write_file(f: _no file_t, l : string);

END DEFINE

Stubbing separate compilation units

It is possible to create stubs for separate compilation units, such as procedures or packages, even
for protected packages.

For the stubbing of a protected object to work, you must either:

• Stub the package containing the protected object, or

• A body exists for the package in which the protected body is declared as separate.

To stub a protected object you must use the following syntax:
DEFINE STUB SEPARATE(<package>) <compilation unit>

...

END DEFINE

If the compilation unit does contain an entry statement, the entry itself cannot be stubbed. In this
case you must define the entry body within the DEFINE STUB block as in the following example:

DEFINE STUB SEPARATE(<package>) <compilation unit>

entry body E1 ... is ...

END DEFINE

 Example

The following example is a .ptu test script implementing a stub of a separate compilation unit. It is
available in the StubAda example project provided with the product.

HEADER PARENT, ,

#With PARENT;

BEGIN

 DEFINE STUB package

 END DEFINE

 DEFINE STUB SEPARATE(package) MY_VALUE

 END DEFINE

 SERVICE SOMETHING

 SERVICE_TYPE extern

 -- Declaration of service's parameters

 #X : INTEGER;

 #Ret : INTEGER;

 TEST 1

 FAMILY nominal

 ELEMENT

 -- stub of the protected object "get"

 STUB My_Value.Get()2

 Var X, Init = 0, ev = Init

 Var Ret, Init = 0, ev = 2

 #Ret := PARENT.SOMETHING(X);

 END ELEMENT

 END TEST -- TEST 1

 END SERVICE -- SOMETHING

Stubbing generic units

You can stub generic units just as ordinary units by using the following syntax:
DEFINE STUB STUB_NAME < dimension>

 161

optional declarations

END DEFINE

The Unit Testing Ada Test Compiler generates a stub body for this unit to perform the desired
simulations.

Simulating functions with _inout mode arrays

To stub a function that takes an array in _inout mode, you must provide storage space for the
actual parameters of the function.

The function prototype in the .ptu test script remains as usual:
#extern void function(unsigned char *table);

The DEFINE STUB statement however is slightly modified:
DEFINE STUB Funct

#void function(unsigned char _inout table[10]);

END DEFINE

The declaration of the pointer as an array with explicit size is necessary to memorize the actual
parameters when calling the stubbed function. For each call you must specify the exact number of
required array elements.

ELEMENT

 STUB Funct.function 1 => (({'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h',
'i', 0x0},

 & {'i', 'h', 'g', 'f', 'e', 'd', 'c', 'b', 'a', 0x0}))

 #call_the_code_under_test();

END ELEMENT

This naming convention compares the actual values and not the pointers.

The following line shows how to pass _inout parameters:
({<in_parameter>},{<out_parameter>})

Stubbing functions with varying parameters

In some cases, functions may be designed to accept a variable number of parameters on each call.

You can still stub these functions with the Component Testing feature by using the '...' syntax
indicating that there may be additional parameters of unknown type and name.

In this case, Component Testing can only test the validity of the first parameter.

 Example

The standard printf function is a good a example of a function that can take a variable number of
parameters:

int printf (const char* param, ...);

Here is an example including a STUB of the printf function:
HEADER add, 1, 1

#extern int add(int a, int b);

##include <stdio.h>

BEGIN

DEFINE STUB MulitParam

#int printf (const char param[200], ...);

END DEFINE

SERVICE add

 #int a, b, c;

 TEST 1

 FAMILY nominal

162 IBM Rational Test RealTime User Guide

 ELEMENT

 VAR a, init = 1, ev = init

 VAR b, init = 3, ev = init

 VAR c, init = 0, ev = 4

 STUB printf("hello %s\n")12

 #c = add(a,b);

 END ELEMENT

 END TEST

END SERVICE

Stubbing a body separately

Under certain circumstances, it may be useful to define the body stub separately, with a
proprietary behavior.

To do this, declare the stub separately and then define a body for it.

 Example

In the following example, Component Testing for Ada will not generate a body for the service
My_Procedure, but will expect you to do so:

DEFINE STUB <STUB NAME>

procedure My_Procedure(...) is separate ;

END DEFINE

Advanced Ada testing

Advanced Ada testing

This section covers some of the more complex notions behind Component Testing for Ada.

Testing Internal Procedures and Internal and Private Variables

Black box testing is not sufficient as soon as you want to test the following:

• Internal procedures of packages

• Internal variables of packages

• Private type variables

For packages, you can test internal procedures via external procedures. However, it is sometimes
easier to test them directly.

You cannot modify or test internal variables with a black box approach. Internal variables are
generally tested via external procedures, but it is sometimes easier to modify and test them directly
also.

Private type variables are also a problem because their structure is not visible from outside the
package.

Testing Generic Compilation Units

Types and objects in a generic unit depend on generic formal parameters that are not known by the
Test Script Compiler. Therefore, Component Testing for Ada cannot directly test a generic
package.

To test a generic package, you must first instanciate the package and then call the instance. Such
instances must appear in compilation units or at the beginning of the test script (in any case before
the BEGIN statement), as follows:

WITH <generic>;

PACKAGE <instance> IS NEW <generic> (...);

 163

Depending on the nature of the source code under test, there are two ways to test an instanciation
of a generic package:

• If the code cannot contain a specific procedure for testing purposes and the test does not need
access to internal variables, then the test body can be generated as an external package. The
test body can view the instance under test through the use of a WITH instruction.

In the .ptu test script, after the generic instanciation, add the WITH <instance>; statement
before the BEGIN keyword. For example:

WITH <Generic_Package>;

PACKAGE <Instance> IS NEW <Generic_Package> (...);

WITH <Instance>;

BEGIN

where <Generic_Package> is the name of the generic unit under test, and <Instance> is the name
of the instanciated unit from the generic.

• If you need to test private types within the generic package and the test needs access to all
internal variables, then the test body must be part of the generic package as a specific test
procedure.

In the .ptu test script, specify the generic package, the instance package and the test procedure
on the BEGIN line. For example:

WITH <Generic_Package>;

PACKAGE <Instance> IS NEW <Generic_Package> (...);

BEGIN GENERIC(<Generic_Package>, <Instance>), <Procedure_Name>

where <Generic_Package> is the name of the generic unit under test, and <Instance> is the name
of the instanciated unit from the generic. The <Procedure_Name> parameter is not mandatory.
Component Testing uses Attol_Test by default.

This instruction generates the test body into <Procedure_Name> as a separate unit of the
Generic package as well as the WITH to this instance, as requested by the test body.

If specified, <Procedure_Name> must be part of the generic package as separate procedure.

 Example

Consider the following Ada compilation unit:
Generic

Type t is private ;

Procedure swap(x,y :in out t) ;

Procedure swap(x,y :in out t) is

Z :t ;

Begin

 Z := x ;

 X := y;

 Y := z;

End swap ;

With swap ;

Procedure swap_integer is new swap(integer) ;

You can test the swap_integer procedure just like any other procedure:
HEADER swap_integer,,

#with swap_integer;

BEGIN

SERVICE swap_integer

 #x,y:integer;

 TEST 1

 FAMILY nominal

164 IBM Rational Test RealTime User Guide

 ELEMENT

 VAR x , init = 1 , ev = 4

 Var Y , init=4 ,ev = 1

 #swap_integer(x,y) ;

 END ELEMENT

 END TEST

END SERVICE

Test Program Entry Point

Since ATTOL_TEST is a sub-unit and not a main unit, Component Testing for Ada generates a
main procedure at the end of the test program with the name provided on the command line.

Two methods are available to start the execution of the test program:

• Call during the elaboration of the unit under test.

• Call by the main procedure.

Call During the Elaboration of the Unit

In this case, you must add an additional line in the body of the unit tested:
PACKAGE <name>

...

END;

PACKAGE BODY <name>

...

 PROCEDURE ATTOL_TEST is SEPARATE;

BEGIN

...

 ATTOL_TEST;

END;

The package specification is not modified, but the test procedure is called at every elaboration of
the package. Therefore, you need to remove or replace this call with an empty procedure after the
test phase.

Call by the Main Procedure

In this case, you must add an additional line in the specification of the unit tested:
PACKAGE < name>

...

 PROCEDURE ATTOL_TEST;

...

END;

PACKAGE BODY <name> is

...

 PROCEDURE ATTOL_TEST is SEPARATE;

END;

Component Testing will then automatically generate a call to the ATTOL_TEST procedure in the
main procedure of the test program. The test will be executed during the execution of the main
program.

Limitations

Consider the following limitations:

• The unit under test must be of type package.

 165

• The root body of ATTOL_TEST (procedure ATTOL_TEST is separate) cannot appear inside a
generic package.

Testing Pointer Variables while Preserving the Pointed Value

To initialize a variable as a pointer while keeping the ability to test the value of the pointed
element, use the FORMAT string_ptr statement in your .ptu test script.

This allows you to initialize your variable as a pointer and still perform string comparisons using
str_comp.

 Example:
TEST 1

FAMILY nominal

 ELEMENT

 FORMAT pointer_name = string_ptr

-- Then your variable pointer_name will be first initialized as a
pointer

 VAR pointer_name, INIT="l11c01pA00", ev=init

-- It is initialized as pointing to the string "l11c01pA00",

--and then string comparisons are done with the expected values using
str_comp.

Testing Ada Tasks

As a general matter, Test RealTime Component Testing for Ada was designed for synchronous
programming. However, it is possible to achieve component testing even in an asynchronous
environment.

The important detail is that any task which might be producing Runtime Analysis information
(especially by calling stubbed procedures or functions) must be terminated when control reaches
the END ELEMENT instruction in the .ptu test script.

If the code under test does not provide select statements or entry points in order to request the
termination of the task, an abort call to the task might be necessary. For tasks who terminate after a
certain time (not entering a infinite loop), the tester might check the task’s state and sleep until
termination of the task. In the .ptu test script, this might read as follows:

#while not TaskX’Terminated loop

delay 1;

#end loop;

This instruction block is placed just before the END ELEMENT statement of the Test Script.

 Example

The source files and complete .ptu script for following example are provided in the
examples/Ada_Task directory.

In this example, the task calls a stubbed procedure. Therefore the task must be terminated from
within the Test Script. Two different techniques of starting and stopping the task are shown here in
Test 1 and Test 2.

HEADER Prg_Under_Tst, 0.3, 0.0

#with Pck_Stub;

BEGIN Prg_Under_Tst

DEFINE STUB Pck_Stub

#with Text_IO;

#procedure Proc_Stubbed is

#begin

166 IBM Rational Test RealTime User Guide

Text_IO.Put_Line("Stub called.");

#end;

END DEFINE

SERVICE S1

SERVICE_TYPE extern

 #Param_1 : duration;

 #task1 : Prioritaire;

 TEST 1

 FAMILY nominal

 ELEMENT

 VAR Param_1, init = duration(0), ev = init

 STUB Pck_Stub.Proc_Stubbed 1..1 => ()

 #Task1.Unit_Testing_Exit_Loop;

 #delay duration(5);

 #Task1.Unit_Testing_Wait_Termination;

 END ELEMENT

 END TEST -- TEST 1

 TEST 2

 FAMILY nominal

 ELEMENT

 VAR Param_1, init = duration(2), ev = init

 STUB Pck_Stub.Proc_Stubbed 1..1 => ()

 #declare

 # Task2 : T_Prio := new Prioritaire;

 #begin

 # Task2.Do_Something_Useful(Param_1);

 # Task2.Unit_Testing_Exit_Loop;

 # Task2.Unit_Testing_Wait_Termination;

 #end;

 END ELEMENT

 END TEST -- TEST 2

END SERVICE --S1

In the BEGIN line of the script, it is not necessary to add the name of the separate procedure
Attol_Test, as this is the default name;

The user code within the STUB contains a context clause and some custom native Ada instructions.

In both Test 1 and Test 2 it is necessary not only to stop the main loop of the task before reaching
the END ELEMENT instruction, but also the task itself in order to have the tester return.

Task1 and Task2 could run in parallel, however, the test Report would be unable to distinguish
between the STUB calls coming in from either task, and would show the calls in a cumulative
manner.

The entry points Unit_Testing_Exit_Loop and Unit_Testing_Wait_Termination can be considered
as implementations for testing purposes only. They might not be used in the deployment phase.

The second test is False in the Report, the loop runs twice. This allows to check that the dump goes
through smoothly.

Separate Compilation

You can make internal procedures and variables and the structure of private types visible from the
test program, by including them in the body of the unit under test with a separate Ada instruction.

You must add the following line at the end of the body of the unit tested:
PACKAGE BODY <name>

 167

...

 PROCEDURE Test is separate;

END;

Defining the procedure Test this way allows you to access every element of the specification and
also those defined in the body.

Generating a Separate Test Harness

Because of restrictions of the Ada language, Component Testing cannot generate a test harness
which is a separate of more than one package.

You can however generate the main test harness as a separate of one of the packages and declare
additional procedures as separates of other packages. This is done in the header of the .ptu test
script, as in the following example:

Header Code_Under_Test, 1.0, 1.0

 #separate (Second_Package);

 #procedure Something is

 #begin

 # -- here internal variables of Second_Package are

 # -- visible; private types can be accessed etc.

 # null;

 #end Something;

 #with Second_Package;

 -- this is to gain visibility on the package

 -- from within the test harness

Begin First_Package, Test_Entry_Point

-- this causes Test RealTime to generate a procedure

-- "Test_Entry_Point" as a separate of "First_Package" as

-- "main" procedure of the Test Harness

-- etc.

If the test script requires access to items from Second_Package, it can call the corresponding
procedure from within an ELEMENT block of this .ptu test script.

Element

 -- some VAR instructions here

 #Second_Package.Something;

 #-- here is the call to the tested procedure

End Element

Test Script Compiler Macro Definitions

You can specify a list of conditions to be applied when starting the Test Script Compiler. You can
then generate the test harness conditionally. In the test script, you can include blocks delimited
with the keywords IF, ELSE, and END IF.

If one of the conditions specified in the IF instruction is present, the code between the keywords IF
and ELSE (if ELSE is present), and IF and END IF (if ELSE is not present) is analyzed and
generated. The ELSE / END IF block is eliminated.

If none of the conditions specified in the IF instruction is satisfied, the code between the keywords
ELSE and END IF is analyzed and generated.

By default, no generation condition is specified, and the code between the keywords ELSE and
END IF is analyzed and generated.

168 IBM Rational Test RealTime User Guide

Unexpected Exceptions

The generated test driver detects all raised exceptions. If a raised exception is not specified in the
test script, it is displayed in the report.

When the exception is a standard Ada exception (CONSTRAINT_ERROR, NUMERIC_ERROR,
PROGRAM_ERROR, STORAGE_ERROR, TASKING_ERROR), the exception name is displayed
in the test report.

Unknown Values

In some cases, Component Testing for Ada is unable to produce a default value in the .ptu test
script. When this occurs, Component Testing produces an invalid value with the prefix
_Unknown.

Such cases include:

• Private values: _Unknown_private_value

• Function pointers: _Unknown_access_to_function

• Tagged limited private: _Unknown_access_to_tagged_limited_private

Before compiling you must manually replace these _Unknown values with valid values.

Test Iterations

You can execute the test case several times by adding the number of iterations at the end of
instruction TEST, for example:

TEST <name> LOOP <number>

You can add other test cases to the current test case by using the instruction NEXT_TEST:
TEST <name>

...

NEXT_TEST

...

END TEST

This instruction allows a new test case to be added that will be linked to the preceding test case.
Each loop introduced by the instruction LOOP relates to the test case to which it is attached.

Test cases introduced by the instruction NEXT_TEST can be dissociated after the tests are run.
With the ELEMENT structure, the different phases of the same test case can be dissociated.

Test phases introduced by the instruction ELEMENT can be included in the loops created by the
LOOP instruction.

Viewing reports

After test execution, depending on the options selected, a series of Component Testing for Ada test
reports are produced.

Understanding Component Testing reports

Test reports for Component Testing are displayed in the Report Viewer.

The test report is a hierarchical summary report of the execution of a test node. Parts of the report
that have Passed are displayed in green. Failed tests are shown in red.

Report Explorer

The Report Explorer displays each element of a test report with a Passed , Failed symbol.

 169

• Elements marked as Failed are either a failed test, or an element that contains at least one
failed test.

• Elements marked as Passed are either passed tests or elements that contain only passed tests.

Test results are displayed for each instance, following the structure of the .ptu test script.

Report Header

Each test report contains a report header with:

• The version of Test RealTime used to generate the test as well as the date of the test report
generation

• The path and name of the project files used to generate the test

• The total number of test cases Passed and Failed. These statistics are calculated on the actual
number of test elements listed in the sections below

Test Results

The graphical symbols in front of the node indicate if the test, item, or variable is Passed or Failed
:

• A test is Failed if it contains at least one failed variable. Otherwise, the test is considered Passed.

You can obtain the following data items if you click with the pointer on the Information node:

• Number of executed tests

• Number of correct tests

• Number of failed tests

A variable is incorrect if the expected value and the value obtained are not identical, or if the value
obtained is not within the expected range.

If a variable belongs to an environment, an environment header is previously edited.

In the report variables are edited according to the value of the Display Variables setting of the
Component Testing test node.

The following table summarizes the editing rules:

Results Display Variable
All Variables

Display Variable
Incorrect Variables

Display Variable
Failed Tests Only

Passed test
Variable edited
automatically

Variable not edited Variable not edited

Failed test
Variable edited
automatically

Variable edited
automatically

Variable edited if
incorrect

The Initial and Expected Values option changes the way initial and expected values are displayed
in the report.

Comparing Ada Test Reports

The Component Testing comparison capability allows you to compare the results of the last two
consecutive tests.

To activate the comparison mode, select Compare two test runs in the Component Testing for C
and Ada Settings dialog box.

In comparison mode an additional check is performed to identify possible regressions when
compared with the previous test run.

170 IBM Rational Test RealTime User Guide

The Component Testing Report displays an extra column named "Obtained Value Comparison"
containing the actual difference between the current report and the previous report.

Array and structure display

The Array and Structure Display option indicates the way in which Component Testing processes
variable array and structure statements. This option is part of the Component Testing Settings for C
dialog box.

Standard array and structure display

This option processes arrays and structures according to the statement with which they are
declared. This is the default operating mode of Component Testing. The default report format is
the Standard editing.

Extended array and structure display

Arrays of variables may be processed after the keywords VAR or ARRAY, and structured
variables after the keywords VAR, ARRAY, or STRUCTURE:

• After a VAR statement, each element in the array is initialized and tested one by one. Likewise,
each member of a structure that is an array is initialized and tested element by element.

• After an ARRAY statement, the entire array is initialized and checked. Likewise, each member
of a structure is initialized and checked element by element.

• After a STRUCTURE statement, the whole of the structure is initialized and checked.

When Extended editing is selected, Component Testing interprets ARRAY and STRUCTURE
statements as VAR statements.

The output records in the unit test report are then detailed for each element in the array or
structure.

Note This setting slightly slows down the test execution because checks are performed on
each element in the array.

Packed array and structure display

This command has the opposite effect of the Extended editing option. When Packed editing is
selected, Component Testing interprets VAR statements as ARRAY or STRUCTURE statements.

Array and structure contents are fully tested, only the output records are more concise.

Note This setting slightly improves the speed of execution because checks are performed on
each array as a whole.

Component Testing for Java

The Component Testing for Java feature of Test RealTime provides a unique, fully automated, and
proven solution for Java unit testing, dramatically increasing test productivity.

Component Testing for Java uses the standard JUnit testing framework for test harness
development. There are two ways of using the JUnit test harness:

• You use the Test RealTime GUI to set up your test campaign, write a JUnit test script, run your
tests and view the results

• You import an existing JUnit test harness into the Test RealTime GUI.

 171

How Component Testing for Java works

When a test node is executed, Test RealTime compiles both the .java test scripts and the source
under test. This preprocessing creates a .tsf file. The resulting source code generates a test driver.

If any Runtime Analysis tools are associated with the test node, then the source code is also
instrumented with the Java Instrumentor (javi) tool.

The test driver, TDP, stubs and dependency files all make up the test harness.

The test harness interacts with the source code under test and produces test results. Test execution
creates a .tdf file.

The .tsf and .tdf files are processed together the Component Testing Report Generator
(javapostpro). the output is the .xrd report file, which can be viewed and controlled in the Test
RealTime GUI.

Of course, these steps are mostly transparent to the user when the test node is executed in the Test
RealTime GUI.

Java testing overview

About JUnit

Rational Test RealTime uses JUnit as a standard framework for Component Testing for Java.

The current documentation assumes that you have basic knowledge and understanding of the
working principles of:

• JUnit

• Java 2 Platform, Standard Edition (J2SE)

• Java 2 Platform, Micro Edition (J2ME)

Component Testing for Java adapts JUnit to either the J2SE or J2ME framework via Target
Deployment Technology.

JUnit Overview

JUnit is a regression testing framework written by Erich Gamma and Kent Beck. JUnit is Open
Source Software, released under the IBM's Common Public License Version 0.5 and hosted on the
SourceForge website

Please refer to the JUnit documentation for further information about JUnit. More information on
JUnit can be found at the following locations:

http://junit.sourceforge.net

http://www.junit.org

JUnit for J2ME

Basic JUnit was originally written for the J2SE framework. Rational Test RealTime brings offers an
additional JUnit implementation for J2ME, referred to as JUnit for J2ME.

Test RealTime JUnit Extensions

Rational Test RealTime extends the JUnit assert primitives with a set of verify primitives.

The following UML model diagram demonstrates the basic structure of JUnit as well as how Test
RealTime extends the JUnit model.

172 IBM Rational Test RealTime User Guide

The main difference of the verify primitives is that failed verify tests do not stop the execution of
the test program.

The complete list of extended verify primitives can be found in the Reference section

Java test nodes

The project structure of the Rational Test RealTime GUI uses test nodes to represent your
Component Testing test harness.

Test nodes created for Component Testing for Java use the following structure

• Java Test Node: represents the Component Testing for Java test harness

• TestDriver.java: is the main test driver class

• Test<Class>.java: is the test class derived from the TestCase class

• <Class>.java: is the actual class under test.

In Component Testing for Java, all classes have the excluded from build tag except for the main
TestDriver.java class.

Note JUnit test harnesses that were manually imported into Test RealTime and not created
through the Component Testing wizard may not display the correct yellow icons. This is not
an issue as long as all files are excluded from the build except for the main test driver class.

 173

Java test harness

Component Testing for Java generates a full Java test harness based on JUnit-compliant classes for
J2SE and J2ME framework.

The Java test harness can be used for single thread component testing, using the following main
JUnit classes:

• TestSuite: This class is a container for multiple test classes derived from TestCase

• TestCase: The basic class that is derived into a series of user-defined test classes

• TestResult: This class returns the results of a given test class:

• Unexpected errors: unwanted exceptions

• Failed assertions: produced by the JUnit assert test primitives

• Failed verifications: produced by the extended verify test primitives

The list of extended verify test primitives can be found in the Reference section.

Please refer to the JUnit documentation for further information about JUnit assert primitives as
well as general JUnit documentation. This can be found at the official JUnit Web site:

http://junit.sourceforge.net

Test harness constraints

Component Testing for Java complies with most JUnit test cases. However, it introduces the two
following constraints:

• User test classes must derive from the TestCase class, or from a TestSuite that contains one or
several TestCase classes

• The test harness cannot be applied to multi-threaded Java components

You must be especially aware of these constraints when importing existing test cases into Rational
Test RealTime

Naming conventions

Test class names should be prefixed with Test, as in
Test<ClassUnderTest>

Where <ClassUnderTest> is the name of the class under test. This naming convention enables the
test class to use test class primitives.

Test method names must be prefixed with test, as in:
 test<TestName>

Where <TestName> is the name of the test.

Test class primitives

The test class defines the primitives that create and test the objects under test. The test class
primitives are:

• Creation of the objects under test: This primitive must create and initialize all the objects
under test.
void setUp() throws Exception

setUp:

• End of test: Use this primitive to insert any code that is required to end the test, such as to set
any setUp created objects to null.
void tearDown() throws Exception

tearDown:

174 IBM Rational Test RealTime User Guide

• Test Primitives: The test class must also define as many test<TestName> methods as there are
tests.

You can inject such a TestCase into a TestSuite. This way, The TestSuite automatically creates as
many TestCases as requires and executes a sequential run of all the tests.

Running a test

To run a series of tests, you must incorporate a main inside a TestCase or TestSuite class, build the
main, the TestSuite and TestClass, and execute the run.

In J2ME, these objects can be built in a midlet, which contains only TestSuite and TestCase, and
launches the run on the start app primitive. If the test case was generated by Test RealTime, you
must comment the main method that was automatically generated.

 Example

To test that the sum of two Moneys with the same currency contains a value which is the sum of
the values of the two Moneys, write:

public void testSimpleAdd() {

 Money m12EUR=new Money(12, "EUR");

 Money m14EUR=new Money(14, "EUR");

 Money expected= new Money(26, "EUR");

 Money result= m12EUR.add(m14EUR);

 assertTrue(expected.equals(result));

}

Java stub harness

Component Testing for Java supports the following verification methods for stubbed classes:

• Stub failure detection

• Stub sequence mechanism

Stub mechanism overview

The Component Testing for Java test harness provides a stub logging mechanism. The purpose of
this mechanism is to check that calls to a stubbed object are achieved in a correct order.

For each test, the enter, exit and fail methods of the stubbed objects are logged by the object
TestSynchroStub.

You can then query the TestSynchroStub object to:

• Compare the actual stub enter and exit sequence against an expected sequence as defined by
the StubSequence object

• Check for the presence of at least one fail method

Use the test harness assert or verify primitives to add the stub sequence or failure verification
results into a formal test report.

Stub sequence verification

Use the StubSequence object to test the stub sequence. This object can be loaded with the sequence
under test. The actual comparison is performed with the corresponding method of the object
TestSynchroStub.

The following example demonstrates how to verify the entry into a method
public void teststub3()

{

 NoStub another = new NoStub();

 175

 another.call1();

 StubSequence testof = new StubSequence(this);

 verifyLogMessage("verify one enter method");

 testof.addEltToSequence(new StubbedOne().getClass() , "methodone",
StubInfo.ENTER) ;

 verifyEquals("Test single
sequence",TestSynchroStub.isSeqRespected(testof),true);

}

This example shows how to verify the entry into methodone of the class StubbedOne and that the
method m1 of StubbedTwo has been successively entered and exited. This is part of the call stack of
the methods of stubbed objects.

public void teststub4()

{

 NoStub another = new NoStub();

 another.call1();

 StubSequence testof = new StubSequence(this);

 testof = new StubSequence(this);

 testof.addEltToSequence(new StubbedOne().getClass() ,
"methodone",StubInfo.ENTER) ;

 testof.addEltToSequence(new StubbedTwo().getClass() ,
"m1",StubInfo.ENTER) ;

 testof.addEltToSequence(new StubbedTwo().getClass() ,
"m1",StubInfo.EXIT) ;

 verifyLogMessage("Check true for stub calls");

 verifyEquals("Test single
sequence",TestSynchroStub.isSeqRespected(testof),true);

}

Stub failure detection

In the Component Testing for Java test harness, stubs can declare an error by use of the fail()
method.

To check for the existence of a stub error, use the following global call type:
 verify("Test single
sequence",TestSynchroStub.areStubfail(this),true);

The following example demonstrates the use of TestSynchroStub to test if a stub has been declared
failed.

public void testStubFail()

{

 StubbedThree st = new StubbedThree();

 st.call();

 verifyLogMessage("Check fail call from stub");

 verifyEquals("Test single
sequence",TestSynchroStub.areStubfail(this),true);

}

Using the TestCase class

To create a test case in the Component Testing for Java test harness, create a test class by deriving
from the TestCase of the test harness. Only classes derived from TestCase can use the test harness
services

• Create a derived class of TestCase:

• Create a constructor which accepts a String as a parameter and passes it to the superclass. This
string must carry the name of the test class, so as to call the correct method.

176 IBM Rational Test RealTime User Guide

• Override the method runTest(). This is the method that controls creation and handling of the
objects under test as well as the actual verification points: the verify and assert methods of the
TestCase class.

Adding test primitives

To add a new test, use the setup and teardown methods to create and configure objects under test.

Such objects belong to the test class. The setup method allows you to configure the objects under
test. The teardown frees the objects.

Running a test case

The most convenient way to invoke a test case is to use the constructor with the test name as an
argument. For example:

TestCase TestStocksObject = new TestStocks("testStocksValues");

TestCase TestStocksObject2 = new TestStocks("testStocksAmount");

This way, the TestCase object automatically call the public method name that was passed as an
argument with the run call.

To use this technique in J2ME, you must first create a runTest() method in the test class which will
call the correct function.

 Examples

The following series of examples shows how to test a simple class Stocks in the J2SE framework.
First, derive the test class from TestCase to check the arithmetic methods:

package examples;

import junit.framework.*;

import examples.Stocks.*;

public class TestStocks extends TestCase {

public TestStokcs(String name) {

super(name);

}

public void testStocks1() {

Stock first = new Stock(“Company,”Dollar”,100,1.25);

Stock second = new Stock(“Company,”Dollar”,250,1.25);

Stock added = new Stock(first + second);

//Display a message in the report.

verifyLogMessage("Check equals for the count of stocks");

verifyEquals("verify equals added count",

added.amountstocks(),

(first.amountstocks()+second.amountstocks()));

}

An equivalent implementation for J2ME would be:
import j2meunit.framework.*;

import examples.Stocks.*;

public class TestStocks extends TestCase {

public TestStocks(String name) {

super(name);

}

protected void runTest() throws java.lang.Throwable {

if(getTestMethodName().equals("testStocksAmount"))

testStocksAmount ();

else if(getTestMethodName().equals("testStocksValues"))

testStocksValues();

 177

}

This test class checks for a thrown exception:
public void testException3()

{

verifyLogMessage("Check true for RTE");

Throwable toverify= new Throwable("StocksError");

verify(toverify);

//This rate conversion will thow a StockError Exception.

Stock divided = new Stock(first.convertwithrate(0));

}

The following example demonstrates an object vector verification:
public void testAccounts()

{

 Vector RefAccountStocks = new Vector();

 RefAccountStocks .addElement(new
Stocks(“Company,”Dollar”,100,1.25));

 RefAccountStocks .addElement(new
Stocks(“Company2,”Dollar”,100,2.68));

 verifyLogMessage("Verify Equality for Accounts");

 verify("verify equal vector", RefAccountStocks, OtherAccountStocks
);

}

Component Testing for Java allows you to check timing between events by using the time method
of the TestCase class:

public void testTimerOnStocks()

{

 int idtimer1;

 idtimer1 = createTimer("first timer created");

 //then start the timers.

 timerStart(timer1,"Start 1");

 long val1;

//Unit is ms.

 val2 = 100;

 verifyLogMessage("Timer report Transaction");

 timerReportEllapsedTime(timer1,"First report of time before the
action");

 Stock dynamicalAccount = first.extractfromWebSite(second);

 verifyEllapsedTime(timer1,val1,"ellapsed 1 with 100");

}

In J2SE, run the tests by calling the run method of the test class:
TestResult result = TestStockObject.run() ;

TestResult result = new TestResult();

TestStockObject.run(result) ;

In J2ME, you run the test class by calling the run method of the object under test:
TestResult result = TestStockObject.run() ;

TestResult result = new TestResult();

TestStockObject.run(result) ;

178 IBM Rational Test RealTime User Guide

Using the TestResult class

The TestResult object is used to produce dynamic test results during the execution of a TestCase or
TestSuite. The TestResult class offers the same behavior in J2SE and J2ME.

TestResult provides the following methods:

• verifyCount(): Returns the number of failed verify calls during test execution.

• errorCount(): Returns the number of errors (unexpected exceptions) encountered during test
execution.

• failureCount(): Returns the number of failed assert calls during test execution.

Using the TestSuite class

After writing several simple test cases, you will need to group the individual test classes derived
from TestCase and run them together. This can be done with the TestSuite class.

There are three ways of constructing a TestSuite:

• By explicit calls to TestCase

• By test class (J2SE only)

• By creating the suite() method

A TestSuite can only contain objects derived from TestCase or a TestSuite that contains a
TestCase.

Construction by explicit calls to TestCase

You can add the explicit calls to the TestSuite instance by instance, as in the following example:
TestSuite suiteStocks = new TestSuite() ;

suiteStocks.addTest(new TestStocks("testStocksValues"));

suiteStocks.addTest(new TestStocks("testStocksAmount"));

You can also directly pass the test object. In this case, the TestSuite automatically builds all the test
classes from the public method names:

TestSuite suiteStocks = new TestSuite() ;

suiteStocks.addTest(TestStocks.class);

Such a TestSuite can be contained in another TestSuite.

Construction by test class

TestSuite suiteAllTests = new TestSuite() ;

suiteAllTests.AddTest(SuiteStocks);

suiteAllTests.AddTest(OthersTests.class);

Creating a suite() method

In J2ME, to be able to build a TestSuite from a test class, you cannot pass the class object as sole
argument. To resolve this, an extra suite() method is added to the test class, which returns a valid
TestSuite:

TestSuite suiteStocks = new TestSuite() ;

suiteStocks.addTest(new TestStocks().suite());

Running a TestSuite

In J2SE, you run a test suite exactly as you would run a test class, either by producing a TestResult
object, or by modifying the TestResult passed as a parameter, as in the following examples:

TestResult result = suiteAllTests.run(result);

TestResult result = new TestResult() ;

 179

suiteAllTests.run(result);

In J2ME, in order to save memory, the TestSuite destroys the last TestCase instance after each run.

Simulated and additional classes

When creating a Component Testing test node for Java, the Component Testing wizard offers the
following options for specifying dependencies of the source code under test:

• Simulated files

• Additional files

Simulated files

This option gives the Component Testing wizard a list of source files to simulate—or stub—upon
execution of the test.

A stub is a dummy software component designed to replace a component that the code under test
relies on, but cannot use for practicality or availability reasons. A stub can simulate the response of
the stubbed component.

See Java Stubs for more information about JUnit stub handling.

Importing a JUnit test campaign

JUnit is becoming an industry standard in the field of testing Java software.

Rational Test RealTime can import your existing JUnit test campaigns. This requires manually
building a new Java test node that contains:

• The classes under test

• The test classes derived from TestCase

• All other test harness components

After this, you must ensure that only the main test driver class is passed on to the Java compiler. To
do this, exclude all other classes from the build.

Test harness constraints

Component Testing for Java complies with most JUnit test cases. However, it introduces the two
following constraints:

• User test classes must derive from the TestCase class, or from a TestSuite that contains one or
several TestCase classes

• The test harness cannot be applied to multi-threaded Java components

You must be especially aware of these constraints when importing existing JUnit test classes into
Rational Test RealTime.

 To import an existing JUnit test harness:

1. In the Project Explorer, select the Project View and right-click the Project node.

2. From the pop-up menu, select Add Child and Component Testing for Java.

3. Enter the name of the new Java test node.

4. In the Project Explorer, right-click the Java test node.

5. From the pop-up menu, select Add Child and Files.

6. Locate and select the classes under test and the JUnit test classes.

7. Click OK.

180 IBM Rational Test RealTime User Guide

8. Exclude from the build all Java classes, except the main test driver class.

J2ME specifics

Component Testing for Java supports the Java 2 Platform Micro Edition (J2ME) through a
specialized version of the JUnit testing framework.

This framework requires that you manually perform the two following additional steps:

9. Create a test suite class Suite() that transforms a test class into a J2ME test suite.

10. Create a runTest() primitive that transforms the name of the test case into a relevant call to the
test function.

The objects under test must belong to the test class and must have been initialized in the setUp
method.

The following code sample is a runTest selection method for J2ME, which switches the correct test
method depending on the name of the test case:

protected void runTest() throws java.lang.Throwable {

if(getTestMethodName().equals("testOne"))

 testOne();

else if(getTestMethodName ().equals("testTwo"))

testTwo();

}

Building a test suite

The two following methods demonstrate how to build a test suite from a J2ME test case.
public Test suite() {

return new TestSuite(new TestOne().getClass(),new String[]
{"testOne"});

}

public static Test suite() {

TestSuite suite = new TestSuite();

suite.addTest(new TestMine().suite());

suite.addTest(new TestMine2().suite());

return suite;

}

Integration of objects under test

The objects under test must belong to the test class and must have been initialized in the setUp
method.

Java test reports

Understanding Java test reports

Test reports for Component Testing for Java are displayed in Test RealTime's Report Viewer.

The test report is a hierarchical summary report of the execution of a test node. Parts of the report
that have Passed are displayed in green. Failed tests are shown in red.

Report explorer

The Report Explorer displays each element of a Test Verdict report with a Passed or Failed
symbol:

 181

• Elements marked as Failed are either a failed test, or an element that contains at least one
failed test.

• Elements marked as Passed are either passed tests or elements that contain only passed
tests.

Test results are displayed in two parts:

• TestClasses, TestSuites and derived test cases of all the executed JUnit scripts.

• Class results for the entire Test.

Report header

Each Test Verdict report contains a report header with:

• The path and name of the .xrd report file.

• A general verdict for the test campaign: Passed or Failed.

• The number of test cases Passed and Failed. These statistics are calculated on the actual number
of test elements (Test Case, Procedure, Stub and Classes) listed sections below.

Note The total number counts the actual test elements, not the number of times each
element was executed. For instance, if a test case is run 5 times, of which 2 runs have failed, it
will be counted as one Failed test case.

Test script

Each script is displayed with a metrics table containing the number of TestSuite, TestClass and
derived test case encountered. In this section, statistics reflect the number of times an element
occurs in a JUnit script.

Test results

For each test case, this section presents a summary table of the test status. The table contains the
number of times each verification was executed, failed and passed.

For instance, if a Test Case containing three assert functions is run twice, the reported number of
executions will be six, the number of failed verifications will be two, and the number of passed
verifications will be four.

The general status is calculated as follows:

Condition Result Status

A verification fails Failed

All verifications pass on each execution Passed

Understanding Java component testing UML sequence siagrams

During the execution of the test, Component Testing for Java generates trace data this is used by
the UML/SD Viewer. The sequence diagram uses standard UML notation to represent JUnit test
results.

When using Runtime Tracing with Component Testing for Java, all results are generated in the
same sequence diagram.

The following example illustrates typical results generated by a JUnit test script:

182 IBM Rational Test RealTime User Guide

Instances

Each of the following classes are represented as a distinct object instance:

• TestSuite

• Derived test case classes

You can click an instance to highlight the corresponding statement in the Text Editor window.

Checks

JUnit assert and verify primitives are displayed as Passed (" ") or Failed (" ") glyphs attached to
the instances.

You can click any of these glyphs to highlight the corresponding statement in the Text Editor
window.

Exceptions

Component Testing for Java generates UNEXPECTED EXCEPTION Notes whenever an
unexpected exception is encountered.

Comments

Calls to verifyLogMessage generate a white note, attached to the corresponding instance.

Messages

Messages can represent either a run or a call statement as shown below:

 183

System Testing for C

System Testing for C is the first commercial automated feature dedicated to testing message-based
applications. Until now most of the projects developing real-time, embedded or distributed
systems spent a fair amount of resources building dedicated test beds. Project managers can now
save time and money by avoiding this costly, non-core-business activity.

System Testing for C helps you solve complex testing issues related to system interaction,
concurrency, and time and fault tolerance by addressing the functional, robustness, load,
performance and regression testing phases from small, single threads or tasks up to very large,
distributed systems.

With the System Testing tool, test engineers can easily design, code and execute virtual testers that
represent unavailable portions of the system under test - SUT - and its environment.

System Testing for C is recommended for testing:

• Telecommunication and networking equipment using standard protocols

• Aerospace equipment using standard or proprietary operating systems and a communication
bus

• Automotive Electronic Control Units (ECUs) or appliance systems

• Distributed applications based on message-oriented middleware

• Applications developed using Rational Rose RealTime

Agents and Virtual Testers

Virtual Testers are multiple contextual incarnations of a single .pts System Testing test script.

One Virtual Tester can be deployed simultaneously on one or several targets, with different test
configurations. A same virtual tester can also have multiple clones on the same target host
machine.

System Testing generates Virtual Testers from a test script according to the declared instances. The
System Testing Supervisor, which runs on the Test RealTime host computer, is in charge of
deploying and controlling remote Virtual Testers.

Note A System Testing Agent must be installed and running on each target host before
deploying Virtual Testers to those targets.

Following the execution architecture and constraints needed to comply, the Test Script Compiler
provides several ways to generate the Virtual Testers.

System Testing Agents

Installing System Testing Agents

When using Virtual Testers on remote target hosts, a daemon must be running on the target to act
as an interface between the virtual tester and the System Testing Supervisor. This daemon is
known as the System Testing Agent.

Note Always make sure that the version of the System Testing Agent matches the version
of Test RealTime. If you have upgraded from a previous version of Test RealTime, you must
also update all System Testing Agents on remote machines.

The installation directory of System Testing includes the following necessary agent files:

• atsagtd.bin: the agent executable binary for UNIX

• atsagtd.exe: the agent executable binary for Windows

• atsagtd: the agent launcher for UNIX when using inetd

184 IBM Rational Test RealTime User Guide

• atsagtd.sh: a UNIX shell script that starts atsagtd.bin

On Windows platforms, the ATS_DIR environment variable must be set to indicate the directory
where the atsagtd.exe and atsagtd.ini files are located. If the file cannot be found, only the current
user on the current computer will be authorized.

Installing the Agent

There are two methods for installing the System Testing Agent:

• Manual launch

• Inetd daemon installation

 To install a System Testing Agent for manual execution:

This procedure does not require system administrator access, but launching of the agent is not fully
automated.

1. Copy atsagtd.bin or atsagtd.exe to a directory on the target machine.

2. On the target machine, set the ATS_DIR environment variable to the directory containing the
agent binaries.

3. Add that same agent directory to your PATH environment variable.

Note You can add these commands to the user configuration file: login, .cshrc or .profile.

4. On UNIX systems, create an agent access file .atsagtd file in your home directory. On
Windows create an atsagtd.ini file in the agent installation directory. See System Testing
Agent Access Files.

5. Move the agent access file to your chosen base directory, such as the directory where the
Virtual Testers will be launched.

6. Launch the agent as a background task, with the port number as a parameter. By default, this
number is 10000.
atsagtd.bin <port number>&

atsagtd <port number>

 To install a System Testing Agent with inetd:

This procedure is for UNIX only. Launching agents on target machines is automatic with inetd.

With this method, the inetd daemon runs the atsagtd.sh shell script that initializes environment
variables on the target machine and launches the System Testing Agent.

1. Copy atsagtd.sh and atsagtd.bin to a directory on the target machine.

2. On the target machine, set the ATS_DIR environment variable to the directory containing the
agent binaries.

3. Add that same agent directory to your PATH environment variable.

Note You can add these commands to the user configuration file: login, .cshrc or .profile.

4. Log on as root on the target machine.

5. Add the following line to the /etc/services file:
atsagtd <port number>/tcp

The agent waits for a connection to <port number>. By default, System Testing uses port 10000.

Note If NIS is installed on the target machine, you may have to update the NIS server. You
can check this by typing ypcat services on the target host.

6. Add the following line to the /etc/inetd.conf file:
atsagtd stream tcp nowait <username> <atsagtd path> <atsagtd

 185

path>

where <username> is the name of the user that will run the agent on the target machine and
<atsagtd path> is the full path name of the System Testing Agent executable file atsagtd.

To reconfigure the inetd daemon, use one of the following methods:

• Type the command /etc/inetd -c on the target host.

• Send the SIGHUP signal to the running inetd process.

• Reboot the target machine.

In some cases, you might need to update the file atsagtd.sh shell script to add some environment
variables to the target machine.

Return to your user account and create an agent access file .atsagtd file in your home directory. See
System Testing Agent Access Files.

Troubleshooting the agent

To check the installation, type the following command on the host running Test RealTime:
telnet <target machine> <port number>

where <port number> is the port number you specified during the installation procedure. By
default, System Testing uses port 10000. The System Testing Agent should answer with the
following message:

210 hello, please to meet you.

After the connection succeeds, press Enter to close the connection or type the following command
to check that <username> is set up as a user:

Jef <username>

If the connection fails, try the following steps to troubleshoot the problem:

• Check the target hostname and port.

• Check the Agent Access File.

• Check the target hostname and port in the atsagtd.sh shell script.

• Check the /etc/services and /etc/inetd.conf files on the target machine.

• If you are using NIS services on your network, check the NIS configuration.

To see the current working directory, type the following command:
PWD

To close the connection, type:
QUIT

System Testing Agent Access Files

The .atsagtd (UNIX) or atsagtd.ini (Windows) agent access file is an editable configuration file that
secures access to System Testing Agents and contains a list of machines and users authorized to
execute agents on that machine, with the following syntax:

<computer name> <username> [#<comment>]

On Windows platforms, the System Testing Agent uses the ATS_DIR environment variable to
locate the atsagt.ini file.

A plus sign + can be used as a wildcard to provide access to all users or all workstations.

The minus sign - suppresses access to a particular user.

You can add comments to the agent access file by starting a line with the # character. Blank lines
are not allowed.

186 IBM Rational Test RealTime User Guide

 Example
This is a sample .atsagtd or atsagtd.ini file.

The following line allows access from user jdoe on a machine named
workstation

workstation jdoe

The following line allows access from all users of workstation

workstation +

The following allows access from jdoe on any host

+ jdoe

The following allows access to all users except anonymous from the
machine workstation

workstation +

workstation -anonymous

Configuring Virtual Testers

The Virtual Tester Configuration dialog box allows you to create and configure a set of Virtual
Testers that can be deployed for System Testing.

 To open the Virtual Test Configuration dialog box:

1. In the Project Explorer, right-click a .pts test script.

2. From the pop-up menu, select Virtual Tester Configuration.

Note The Virtual Tester Configuration box is also included as part of the System Testing
Wizard when you are setting up a new activity.

Virtual Tester List

Use the Virtual Tester List to create a New Virtual Tester, Remove or Copy an existing one.

Select a Virtual Tester in the Virtual Tester List to apply any changes in the property tabs on the
right.

General Tab

This tab specifies an instance and target deployment to be assigned to the selected Virtual Tester.

• VT Name: This is the name of the Virtual Tester currently selected in the Virtual Tester List.
The name of the virtual tester must be a standard C identifier.

• Implemented INSTANCE: Use this box to assign an instance, defined in the .pts test script, to
the selected virtual tester. This information is used for Virtual Tester deployment. Select
Default to specify the instance during deployment.

• Target: This specifies the Target Deployment Port compilation parameters for the selected
Virtual Tester.

• Configure Settings: This button opens the Configuration Settings dialog for the selected
Virtual Tester node.

Scenario Tab

Use this tab to select one or several scenarios as defined in the .pts test script. During execution, the
Virtual Tester plays the selected scenarios.

Family Tab

Use this tab to select one or several families as defined in the .pts test script. During execution, the
Virtual Tester plays the selected families.

 187

Debugging Virtual Testers

In some cases, you may want to observe how your system under test reacts when an error occurs
and the consequences of this error on the whole process, without stopping the Virtual Tester.

By default, when an error occurs in a block, the execution of the block is interrupted. To prevent
interruption, use the virtual tester debug mode.

You can statically activate the debug mode by compiling the generated Virtual Tester with the
ATL_SYSTEMTEST_DEBUG variable, as in the following example:

cc -c -I$ATLTGT/lib/ -DATL_SYSTEMTEST_DEBUG <source.c>

where $ATLTGT is the current TDP directory.

Deploying Virtual Testers

The Virtual Tester Deployment Table allows to deploy previously created Virtual Testers.

 To open the Virtual Tester Deployment Table

1. Make sure that Execution is selected in your Build options.

2. In the Project Explorer, right-click a System Testing node.

3. From the pop-up menu, select Deployment Configuration.

4. Select Advanced Options and click Rendezvous.

Note The Virtual Tester Deployment Table is also included in the System Testing
Wizard when you are setting up a new activity.

Virtual Tester Deployment Table

Use the Add, Remove or Copy buttons to modify the list. Each line represents one or several
executions of a Virtual Tester assigned to an instance, target host, and other parameters.

• Number of Occurrences: Specifies the number of simultaneous executions of the current line.

• Virtual Tester Name: Specifies one of the previously created Virtual Testers.

• Instance: Specifies the instances assigned to this Virtual Tester. If an instance was specifically
assigned in the Virtual Tester Configuration box, this cannot be changed. Select <all> only if
no INSTANCE is defined in the test script.

• Network Node: This defines the target host on which the current line is to be deployed. You
can enter a machine name or an IP address. Leave this field blank if you want to use the IP
address specified in the Host Configuration section of the General Settings.

Note If the IP address line in the Host Configuration settings is blank, then the Virtual
Tester Deployment Table retrieves the IP address of the local machine when generating the
deployment script.

Advanced Options

Click the Advanced Options button to add the following columns to the Virtual Tester
Deployment Table, and to add the Rendezvous... button.

• Agent TCP/IP Port: This specifies the port used by the System Testing Agents to communicate
with Test RealTime. By default, System Testing uses port 10000.

• Delay: This allows you to set a delay between the execution of each line of the table.

• First Occurrence ID: This specifies the unique occurrence ID identifier for the first Virtual
Tester executed on this line. The occurrence ID is automatically incremented for each number
of instances of the current line. See Communication Between Virtual Testers for more
information.

188 IBM Rational Test RealTime User Guide

• RIO filename: This specifies the name of the .rio file containing the Virtual Tester output, for
use in multi-threaded or RTOS environments.

Click the Rendezvous Configuration button to set up any rendezvous members.

File System Limitations

Deployment of the Virtual Testers results in the creation of an .spv deployment script. This script
contains file system commands, such as CHDIR. If you are deploying the test to a target platform
that does not support a file system, you must edit the .spv script manually.

For the .spv supervisor script to be generated, the Execution option must be selected in the Build
options.

Editing the Deployment Script

The System Testing Supervisor actually runs a script, which is automatically generated by
configuring Virtual Testers and deploying Virtual Testers.

In some cases, you will need to manually edit the script. To do this, you first have to generate an
.spv deployment script in your workspace.

 To generate a deployment script

1. Make sure that Execution is selected in your Build options.

2. In the Project Explorer, right-click a System Testing node.

3. From the pop-up menu, select Generate Deployment Script.

4. Enter a name for the generated script.

If you decide to manually maintain a deployment script, you must ensure that any pathnames and
other parameters remain up to date with the rest of the System Testing node.

For information on the .spv script command language, please refer to the Reference section.

Optimizing Execution Traces

Each Virtual Tester generates a trace file during its execution. This trace file is used to generate the
System Testing Report.

You may want to adapt the volume of traces generated at execution time. For example, each Virtual
Tester saves its execution traces in an internal buffer that you can configure.

To optimize execution trace output, use the Execution Traces area in the Test Script Compiler
Settings dialog box.

• By default, System Testing generates a normal trace file.

• Select Time stamp only to generate traces for each scenario begin and end, all events, and for
error cases. This option also generates traces for each WAITTIL and PRINT instruction. Use
this option for load and performance testing, if you expect a large quantity of execution traces
and you want to store all timing data.

• Select Block start/end only to generate traces for each scenario beginning and end, all events,
and for all error cases.

• Select Error only to generate traces only if an error is detected during execution of the
application. This report will be incomplete, but the report will show failed instructions as well
as a number of instructions that preceded the error. This number depends on the Virtual
Tester's trace buffer size. Use this option for endurance testing, if you expect a large quantity
execution traces.

 189

In addition to the above, you can select the Circular trace option for strong real-time constraints
when you need full control over the flush of traces to disk. If you want to still store a large amount
of trace data, specify a large buffer.

Setting Up Rendezvous Members

When you have used Rendezvous points in your .pts test script, it is necessary to indicate the
number of members that the supervisor must expect at each rendezvous.

The Rendezvous Members dialog box is an advanced option of the Virtual Tester Configuration.

 To specify the number of members for each rendezvous:

1. In the Project Explorer, right-click a System Testing node.

2. From the pop-up menu, select Deployment Configuration.

3. Select Advanced Options and click Rendezvous.

4. For each rendezvous encountered in the .pts test script, select a number of rendezvous
members.

5. Select AutoGenerate to automatically compute the number of members in each Rendezvous.
In some cases, such as when rendezvous are placed in an exception, this option cannot provide
correct information to the supervisor.

6. Click OK.

System Testing in a Multi-Threaded or RTOS Environment

When Virtual Testers must be executed as a threaded part of a UNIX or Windows process, or on
RealTime Operating Systems (RTOS) you must take several constraints into account:

• The Virtual Tester should be generated as a function and not a main program.

• You must consider the configuration of the Virtual Testers' execution.

There are memory management constraints:

• There is no dynamic memory allocation.

• Stacks are small.

• Virtual Testers share global data.

• Configuration of Virtual Tester execution.

Virtual Tester as a Thread or Task

When using a flat-memory RTOS model, the Virtual Testers can run as a process thread or as a task
in order to avoid conflicts with the application under test's global variables.

Moreover, the Target Deployment Port is fully reentrant. Therefore, you can run multiple instances
of a Virtual Tester in the same process. The system runs each process as a different process thread.

In this case, the Test Script Compiler generates the virtual tester source code without a main()
function, but with a user function.

To configure System Testing to run in multi-threaded mode, select the Not shared option in Test
Script Compiler Settings.

Multiple Instances of a Same Virtual Tester

Multiple instances of a same Virtual Tester can run simultaneously on a same target. In this case,
you need to protect the Virtual Tester threads in the same process against access to global
variables.

190 IBM Rational Test RealTime User Guide

The Not Shared setting in Test Script Compiler Settings allows you to specify global variables in
the test script that should remain unshared by separate Virtual Tester threads. When selected,
multiple instances of a Virtual Tester can all run in the same process.

You can share some global static variables in order to reuse data among different Virtual Testers by
using the SHARE command in the .pts test script. See the Rational Test RealTime Reference
Manual for information about the System Testing Language.

Launching virtual tester threads

In a multithreaded environment, there are two methods of starting the virtual tester threads:

• From a specially designed thread launcher program that you must write to include in your
project.

• From a TDP thread launcher if available.

TDP thread launcher from TDP

Some TDPs can launch the virtual tester threads without needing a special program. If your TDP
supports this method, the only requirement is to specify this in the Configuration settings of the
System Testing test node.

 To use the TDP thread launcher:

1. In the Project Explorer, click the Settings button.

2. Select a System Testing test node in the Project Explorer pane.

3. In the Configuration Settings list, expand System Testing and select Test Compiler.

4. Set the Use thread launcher from TDP setting to Yes.

5. When you have finished, click OK to validate the changes.

TDP thread launcher program

If the TDP does not contain a TDP thread launcher, the only way to start Virtual Tester threads is to
write a program, specifying:

• The name of the execution trace file

• The name of the instance to be started

To do this, use the ATL_T_ARG structure, defined in the ats.h header file of the Target
Deployment Port.

 Example

The following example is a sample program for launching virtual tester threads.
#include <stdio.h>

#include <sched.h>

#include <pthread.h>

#include <errno.h>

#include "TP.h"

extern ATL_T_THREAD_RETURN *start(ATL_PT_ARG);

int main(int argc, char *argv[])

{

 pthread_t thrTester_1,thr_Tester_2;

 pthread_attr_t pthread_attr_default;

 ATL_T_ARG arg_Tester_1, arg_Tester_2;

 int status;

 arg_Tester_1.atl_riofilename = "Tester_1.rio";

 191

 arg_Tester_1.atl_filters = "";

 arg_Tester_1.atl_instance = "Tester_1";

 arg_Tester_1.atl_occid = 0;

 arg_Tester_2.atl_riofilename = "Tester_2.rio";

 arg_Tester_2.atl_filters = "";

 arg_Tester_2.atl_instance = "Tester_2";

 arg_Tester_2.atl_occid = 0;

 pthread_attr_init(&pthread_attr_default);

 /* Start Thread Tester 1 */

 pthread_create(&thrTester_1,&pthread_attr_default,start,&arg_Tester_
1);

 /* Start Thread Tester 2 */

 pthread_create(&thrTester_2,&pthread_attr_default,start,&arg_Tester_
2);

 /* Both Testers are running */

 /* Wait for the end of Thread Tester 1 */

 pthread_join(thrTester_1, (void *)&status);

 /* Wait for the end of Thread Tester 2 */

 pthread_join(thrTester_2, (void *)&status);

 return(0);

}

An example demonstrating how to use System Testing for C on multithreaded applications is
provided in the Broadcast Server example project. See Example projects for more information.

System Testing for C Test Scripts

Flow control

Several execution flow instructions let you develop algorithms with multiple branches.

System Testing .pts test script flow control instructions include:

• Function calls

• Conditions

• Iterations

• Multiple Conditions

Function calls

The CALL instruction lets you call functions or methods in a test script and to check return values
of functions or methods.

For the following example, you must pre-declare the param1, param2, param4, and return_param
variables in the test script, using native language.

CALL function ()

-- indicates that the return parameter is neither checked nor stored
in a variable.

CALL function () @ "abc"

-- indicates that the return parameter to the function must be
compared with the string "abc", but its value is not stored in a
variable.

CALL function () @@return_param

-- indicates that the return parameter is not checked, but is stored
in the variable return_param.

CALL function () @ 25 @return_param

192 IBM Rational Test RealTime User Guide

-- indicates that the return parameter is checked against 25 and is
stored in the variable return_param.

Include Statements

To avoid writing large test scripts, you can split test scripts into several files and link them using
the INCLUDE statement.

This instruction consists of the keyword INCLUDE followed by the name of the file to include, in
quotation marks (" ").

INCLUDE instructions can appear in high- and intermediate-level scenarios, but not in the lowest-
level scenarios.

You can specify both absolute or relative filenames. There are no default filename extensions for
included files. You must specify them explicitly.

 Example
HEADER "Socket validation", "1.0", "beta"

INCLUDE "../initialization"

SCENARIO first

END SCENARIO

SCENARIO second

 INCLUDE "scenario_3.pts"

 SCENARIO level2

 FAMILY nominal, structural

 ...

 END SCENARIO

END SCENARIO

Conditions

The IF statement comprises the keywords IF, THEN, ELSE, and END. It lets you define branches
and follows these rules:

• The test following the keyword IF must be a Boolean expression in C or C++.

• IF instructions can be located in scenarios, procedures, or environment blocks.

• The ELSE branch is optional.

The sequence IF (test) THEN must appear on a single line. The keywords ELSE and END IF must
each appear separately on their own lines.

 Example
HEADER "Instruction IF", "1.0", "1.0"

#int IdConnection;

SCENARIO Main

 COMMENT connection

 CALL socket(AF_UNIX, SOCK_STREAM, 0)@@IdConnection

 IF (IdConnection == -1) THEN

 EXIT

 END IF

END SCENARIO

Iterations

The WHILE instruction comprises the keywords WHILE and END. It lets you define loops and
follows these rules:

• The test following the keyword WHILE must be a C Boolean expression.

 193

• The WHILE instructions can be located in scenarios, procedures, or environment blocks.

The sequence WHILE (test) and the keyword END WHILE must each appear separately on their
own lines.

 Example
HEADER "Instruction WHILE", "", ""

#int count = 0;

#appl_id_t id;

#message_t message;

SCENARIO One

FAMILY nominal

 CALL mbx_init(&id) @ err_ok

 VAR id.applname, INIT="JUPITER"

 CALL mbx_register(&id) @ err_ok

 VAR message, INIT={

& type=>DATA,

& applname=>"SATURN",

& userdata=>"hello world!"}

 WHILE (count<10)

 CALL mbx_send_message(&id,&message) @ err_ok

 VAR count, INIT=count+1

 END WHILE

 CALL mbx_unregister(&id) @ err_ok

 CALL mbx_end(&id) @ err_ok

END SCENARIO

Multiple Conditions

The multiple-condition statement CASE comprises the keywords CASE, WHEN, END, OTHERS
and the arrow symbol =>.

CASE instructions follow these rules:

• The test following the keyword CASE must be a C or C++ Boolean expression. The keyword
WHEN must be followed by an integer constant.

• The keyword OTHERS indicates the default branch for the CASE instruction. This branch is
optional.

• CASE instructions can be located in scenarios, procedures, or environment blocks.

 Example
HEADER "Instruction CASE", "", ""

...

MESSAGE message_t: response

SCENARIO One

...

 CALL mbx_send_message(&id,&message) @ err_ok

 DEF_MESSAGE response, EV={}

 WAITTIL(MATCHING(response),WTIME == 10)

 -- Checking the just received event type

 CASE (response.type)

 WHEN ACK =>

 CALL mbx_send_message(&id,&message) @ err_ok

 WHEN DATA =>

 CALL mbx_send_message(&id,&ack) @ err_ok

194 IBM Rational Test RealTime User Guide

 WHEN NEG_ACK =>

 CALL mbx_send_message(&id,&error) @ err_ok

 WHEN OTHERS => ERROR

 END CASE

END SCENARIO

Procedures

You can also use procedures to build more compact test scripts. The following are characteristics of
procedures:

• They must be defined before they are used in scenarios.

• They do not return any parameters.

A procedure begins with the keyword PROC and ends in the sequence END PROC. For example:
HEADER "Socket Validation", "1.0", "beta"

PROC function ()

...

END PROC

SCENARIO first

...

CALL function ()

...

END SCENARIO

SCENARIO second

SCENARIO level2

FAMILY nominal, structural

...

END SCENARIO

END SCENARIO

A procedure can call sub-procedures as long as these sub-procedures are located above the current
procedure.

Procedure blocks can take parameters. When defining a procedure, you must also specify the
input/output parameters.

Each parameter is described as a type followed by the name of the variable.

The declaration syntax requires, for each argument, a type identifier and a variable identifier. If
you want to use complex data types, you must use either a macro or a C or C++ type declaration.

 Example

In the following example, the argument to procedure function1 is a character string of 35 bytes.
The arguments to procedure function2 are an integer and a pointer to a character.

HEADER "Socket Validation", "1.0", "beta"

#typedef char string[35];

##define ptr_car char *

PROC function1 (string a)

...

END PROC

PROC function2 (int a, ptr_car b)

...

END PROC

SCENARIO first

...

CALL function1 ("foo")

 195

...

END SCENARIO

Adaptation layer

The adaptation Layer helps you describe communication between the Virtual Tester and the
system under test.

Many different means of communication allow your systems to talk with each other. At the
software application level, a communication type is identified by a set of services provided by
specific functions.

For example, a UNIX system provides several means of communication between processes, such as
named pipes, message queues, BSD sockets, or streams. You address each communication type with a
specific function.

Furthermore, each communication type has its own data type to identify the application you are
sending messages to. This type is often an integer (message queues, BSD sockets, ...), but sometimes
a structure type.

Data exchanged this way must be interpreted by all communicating applications. For this reason,
each type of exchanged data must be well identified and well known. By providing the type of
exchanged data to the Virtual Tester, it will be able to automatically print and check the incoming
messages.

• Basic Declarations

• Sending Messages

• Receiving Messages

• Messages and Data Management

• Communication Between Virtual Testers

Basic Declarations

COMMTYPE Instruction

For each communication type, there is a specific data type that identifies the application you are
sending messages to. In a test script, the COMMTYPE instruction is used to identify clearly this
data type, and then, the communication type.

The COMMTYPE instruction cannot handle basic types. Therefore, you must previously define the
type with a typedef statement.

For example, on UNIX systems, the data type for the BSD sockets is an integer. The COMMTYPE
instruction is therefore used as follows:

#typedef int bsd_socket_id_t;

COMMTYPE ux_bsd_socket IS bsd_socket_id_t

In the stack example provided with the product, the following line defines a new communication
type called appl_comm:

COMMTYPE appl_comm IS appl_id_t

MESSAGE Instruction

The MESSAGE instruction identifies the type of the data exchanged between applications. It also
defines a set of reference messages.

The type of the messages exchanged between applications using our stack example is message_t.

The following instruction also declares three reference messages:
MESSAGE message_t: ack, neg_ack, data

196 IBM Rational Test RealTime User Guide

CHANNEL Instruction

The CHANNEL instruction is used to declare a communication channel on a specific
communication type. Thanks to channels of communication, the user can easily manage a large
number of opened connections.

CHANNEL appl_comm: appl_channel_1, appl_channel_2

ADD_ID Instruction

A communication channel is a logical medium of communication that multiplexes several opened
connections of the same type between the Virtual Tester and applications under test. When
opening a new connection, it has to be linked to a communication channel, so that the Virtual
Tester knows about this new connection.

CALL mbx_init(&id) @ err_ok @ errcode

ADD_ID (appl_channel, id)

In this example, the function call to mbx_init opens a connection between the Virtual Tester and
the system under test. This connection is identified by the value of id after the call. The ADD_ID
instruction add this new connection to the channel appl_channel.

Sending Messages

PROCSEND Instruction

Event management provides a mechanism to send messages. This mechanism needs the definition
of a message sending procedure or PROCSEND for each couple communication type, message
type.

The PROCSEND instruction is then called automatically by the SEND instruction to sends a
message to the system under test (SUT).

In the following example, msg is a message_t typed input formal parameter specifying the
message to send. The input formal parameter id is used to know where to send the message on the
communication type appl_comm.

PROCSEND message_t: msg ON appl_comm: id

 CALL mbx_send_message (&id, &msg) @ err_ok

END PROCSEND

The sending is done by the API function call to mbx_send_message. The return code is treated to
decide whether the message was correctly sent. Another value than err_ok means that an error
occurred during the sending.

The script must have one PROCSEND for each message type and channel type pair used by any of
the SEND instructions.

The name of each PROCSEND in the generated C code is made up with the signature of the
message type and channel type for each PROCSEND found in the test script, as follows.

VAR Instruction

The instruction VAR allows you to initialize messages declared using MESSAGE instructions. This
message may also be initialized by any other C or C++ function or method:

VAR ack, INIT= { type => ACK }

VAR data, INIT= {

& type => DATA,

& applname => "SATURN",

& userdata => "hello world !" }

To learn all the nuts and bolts of the DEF_MESSAGE Instruction, see the Messages and Data
Management chapter.

 197

SEND Instruction

This instruction allows you to invoke a message sending on one communication channel .

It has two arguments:

• the message to send,

• the communication channel where the message should be sent.

The send instruction is as follows:
SEND (message , appl_ch)

In the previous figure, the SEND instruction allows the test program to send a message on a
known connection (see the ADD_ID instruction). If an error occurs during the sending of the
message, the SEND exits with an error. The scenario execution is then interrupted.

To send the message on the appropriate channel, the generated code calls the PROCSEND named
with the signature of the message type to be sent (first parameter) and the channel type to be used
(second parameter).

The message type is provided by the MESSAGE instruction. The channel type is provided by the
CHANNEL instruction.

Therefore, in the generated code, the SEND instruction calls the following function:
PROCSEND_message_t_appl_comm(message, appl_ch)

which corresponds to the following line in the test script:
PROCSEND message_t ... ON appl_comm

 Example

The following test script describes a simple use of our stack. First of all, some resources are
allocated and a connection is established with the communication stack (mbx_init). This
connection is made known by the Virtual Tester with the ADD_ID instruction. Then, the Virtual
Tester registers (mbx_register) onto the stack by giving its application name (JUPITER). The
Virtual Tester sends a message to an application under test (SATURN). Finally, the Virtual Testers
unregisters itself (mbx_unregister) and frees the allocated resources (mbx_end).

HEADER "SystemTest 1st example: sending a message","1.0",""

COMMTYPE appl_comm IS appl_id_t

MESSAGE message_t: message, ack, data, neg_ack

CHANNEL appl_comm: appl_ch

#appl_id_t id;

#int errcode;

PROCSEND message_t: msg ON appl_comm: id

 CALL mbx_send_message (&id, &msg) @ err_ok

END PROCSEND

SCENARIO first_scenario

FAMILY nominal

 COMMENT Initialize, register, send data

 COMMENT wait acknowledgement, unregister and release

 CALL mbx_init(&id) @ err_ok @ errcode

 ADD_ID(appl_ch,id)

 VAR id.applname, INIT="JUPITER"

 CALL mbx_register(&id) @ err_ok @ errcode

 VAR message, INIT={

& type=>DATA,

& applname=>"SATURN",

& userdata=>"hello Saturn!"}

198 IBM Rational Test RealTime User Guide

 SEND (message, appl_ch)

 CALL mbx_unregister(&id) @ err_ok @ errcode

 CLEAR_ID(appl_ch)

 CALL mbx_end(&id) @ err_ok @ errcode

END SCENARIO

Receiving Messages

CALLBACK Instruction

The event management provides an asynchronous mechanism to receive messages. This
mechanism needs the definition of a callback for each couple communication type, message type.

A procedre should do a non-blocking read for a specific message type on a specific communication
type.

The MESSAGE_DATE instruction lets you mark the right moment of the reception of messages.
The NO_MESSAGE instruction exits from the callback and indicates that no message has been
read.

The callback to receive messages from our system under test could be:
CALLBACK message_t: msg ON appl_comm: id

 CALL mbx_get_message (&id, &msg, 0) @@ errcode

 MESSAGE_DATE

 IF (errcode == err_empty) THEN

 NO_MESSAGE

 END IF

 IF (errcode != err_ok) THEN

 ERROR

 END IF

END CALLBACK

In this example, msg is an output formal parameter of the callback. Its type is message_t.

When multiple connections are used, the input formal parameter id is used to know where to read
a message on the communication type appl_comm.

The reading is done by the function call to mbx_get_message. The return code is stored into the
variable errcode. The value err_empty for the return code means that no message has been read.
Another value than err_ok or err_empty means that an error occurred during the reading. The
NO_MESSAGE and ERROR instructions make the callback to return.

The script must have one CALLBACK for each message type - channel type pair used by any
WAITTIL instructions.

The name of each CALLBACK in the generated C code is made up with the signature of the
message type and channel type for each CALLBACK found in the test script.

DEF_MESSAGE Instruction

The DEF_MESSAGE instruction defines the values of a reference message declared with the
MESSAGE instruction. A reference message is a set of field values as expected by the virtual tester
from the system under test. Any undefined fields are not compared to the receive message.

DEF_MESSAGE ack, EV= { type => ACK }

DEF_MESSAGE data, EV= {

& type => DATA,

& applname => "SATURN",

& userdata => "hello world !" }

To learn more about the DEF_MESSAGE Instruction, see the Messages and Data Management
chapter.

 199

WAITTIL Instruction

The WAITTIL instruction allows the test script to wait for events or conditions. WAITTIL is made
of two Boolean expressions: an expected condition, and a failure condition. The script execution
pauses until one of the two expressions becomes true.

In the following example, the WAITTIL instruction receives all the messages sent to the Virtual
Tester on a known connection. As soon as a received message matches the reference message ack,
the WAITTIL exits normally. Otherwise, if any message matching the reference message ack is
received during 3000ms (300 x 10ms, the default time unit), the WAITTIL exits with an error. The
scenario execution is interrupted.

WAITTIL (MATCHING(ack, appl_ch), WTIME == 300)

The time unit is configurable in the Target Deployment Port depending on the target platform.

To receive a message on the appropriate channel, the generated code calls a CALLBACK named
with the signature of the expected message type (first parameter) and the channel type (second
parameter).

The message type is provided by the MESSAGE instruction. The channel type is provided by the
CHANNEL instruction.

Therefore, in the generated code, the SEND instruction calls the following function:
CALLBACK_message_t_appl_comm(message, appl_ch)

which corresponds to the following line in the test script:
CALLBACK message_t ... ON appl_comm

If the channel parameter is omitted in the WAITTIL instruction, the generated code calls all
CALLBACK instructions that read the corresponding message type on all known channel types.

In the example given above, the status of the reference event variable ack is tested using the
function MATCHING() which identifies if the last incoming event corresponds to the content of
the variable ack. WTIME is a reserved keyword valuated with the time expired since the beginning
of the WAITTIL instruction.

The WAITTIL Boolean conditions are described using C or C++ conditions including operators to
manipulate events:

• MATCHING: does the last event match the specified reference event?

• MATCHED: did the Virtual Tester receive an event matching the specified event?

• NOMATCHING: is the last event different from the specified reference event?

• NOMATCHED: did the Virtual Tester receive an event different from the specified event?

The different combinations of these operators allow an easy an extensive definition of event
sequences:

-- I expect evt1 on channel1 before my_timeout is reached

WAITTIL (MATCHING(evt1, channel1), WTIME>my_timeout)

-- I expect evt1 then evt2 on one channel before my_timeout is reached

WAITTIL (MATCHED(evt1)&& MATCHING(evt2), WTIME>my_timeout)

-- I expect to receive nothing during my_time

WAITTIL (WTIME>my_time, MATCHING(empty_evt))

-- I expect evtA or evtB before my_timeout is reached

WAITTIL (MATCHING(evtA)||MATCHING(evtB), WTIME>my_timeout)

*

After the WAITTIL instruction, the value of these operators is available until the next call to
WAITTIL.

200 IBM Rational Test RealTime User Guide

 Example

The following test script describes a simple use of our stack. First of all, some resources are
allocated and a connection is established with the communication stack (mbx_init). This
connection is made known by the Virtual Tester with the ADD_ID instruction. Then, the Virtual
Tester registers (mbx_register) onto the stack giving its application name (JUPITER).

The Virtual Tester sends a message to an application under test (SATURN), and waits for the
acknowledgment sent back by the stack with the WAITTIL instructions. Finally, the Virtual Tester
unregisters (mbx_unregister) and frees the allocated resources (mbx_end).

HEADER "SystemTest 1st example: sending & receiving a
message","1.0",""

COMMTYPE appl_comm IS appl_id_t

MESSAGE message_t: message, ack, data, neg_ack

CHANNEL appl_comm: appl_ch

#appl_id_t id;

#int errcode;

PROCSEND message_t: msg ON appl_comm: id

CALL mbx_send_message (&id, &msg) @ err_ok

END PROCSEND

CALLBACK message_t: msg ON appl_comm: id

CALL mbx_get_message (&id, &msg, 0) @@ errcode

MESSAGE_DATE

IF (errcode == err_empty) THEN

NO_MESSAGE

END IF

IF (errcode != err_ok) THEN

ERROR

END IF

END CALLBACK

SCENARIO first_scenario

FAMILY nominal

COMMENT Initialize, register, send data

COMMENT wait acknowledgement, unregister and release

CALL mbx_init(&id) @ err_ok @ errcode

ADD_ID(appl_ch,id)

VAR id.applname, INIT="JUPITER"

CALL mbx_register(&id) @ err_ok @ errcode

VAR message, INIT={

& type=>DATA,

& applname=>"SATURN",

& userdata=>"hello Saturn!"}

SEND (message, appl_ch)

COMMENT Negative acknowledgment expected

COMMENT (Saturn is not running !)

DEF_MESSAGE ack, EV={type=>ACK}

WAITTIL (MATCHING(ack), WTIME==10)

CALL mbx_unregister(&id) @ err_ok @ errcode

CLEAR_ID(appl_ch)

CALL mbx_end(&id) @ err_ok @ errcode

END SCENARIO

 201

Messages and Data Management

The instruction VAR allows you to initialize and check the contents of simple or complex variables.

The process of initializing or checking variables is performed independently by the following two
sub-instructions:

VAR <variable> , INIT = <init_expr>

or
VAR <variable> , EV = <expec_expr>

This instruction allows you to initialize and check the contents of structured variables, such as
messages.

The field <variable> represents a variable or part of a structured variable.

<init_expr> and <expec_expr> let you describe the contents of structured variables using a simple
syntax.

To describe a sequence of fields at the same level in a structured variable, you enclose the sequence
in braces '{}' or brackets '[]' and separate the fields with a comma ','.

You can reference members of a structured variable in the following ways:

• Reference by name

• Reference by position

You cannot however mix both methods.

The System Testing report does not show VAR instructions relating to initializations. Only VAR
instructions relating to content checks on variables or messages are recorded in the test report.

The DEF_MESSAGE instruction allows you to define reference messages using the
DEF_MESSAGE instruction, using exactly the same syntax. The following examples are presented
using the VAR instruction, but are also applicable to DEF_MESSAGE.

The report does not show DEF_MESSAGE instruction as they appear in the test script, but only
when they are used within a WAITTIL instruction.

Reference by Name

You can describe the contents of a structure by naming each field in the structure. This is very
useful if you do not know the order of the fields in the declaration of the structure.

When referencing by name, a parameter is described by the name of the field in the structure
followed by the arrow symbol (=>) and the initialization or checking expression.

#typedef struct

{

int Integer;

char String [15];

float Real;

} block;

block variable;

VAR variable, INIT={Real=>2.0, Integer=>26, String=>"foo"}

You can omit the specification of structure elements by name if you know the order of the fields
within the structure. For the block type defined above, you can write the following VAR statement:

VAR variable, INIT={ 26, "foo", 2.0 }

 Reference by Position

You can describe the contents of an array by giving the position of elements within the array.

When referencing by position, define a parameter by giving the position of the field in the array
followed by the arrow symbol (=>) and the initialization or checking expression.

202 IBM Rational Test RealTime User Guide

Note that numbering begins at zero.
#int array[5];

VAR array, EV=[4=>5, 1=>12, 2=>-18, 5=>15-26, 3=>0, 0=>123]

You can use ranges of positions when referencing by position. These ranges are specified by two
bounds separated by the symbol double full-stop (..).

#typedef int matrix[3][150];

VAR matrix, EV= [

& 2=>[0..99=>1, 100..149=>2],

& 0=>[99..0=>2, 100..149=>1],

& 1=>[0..80=>-1, 81..149=>0]]

Note that the bounds of an interval can be reversed.

When referencing by position, you must reference an entire sequence at a given level.

 Partial Initialization and Checks

With a VAR instruction, you can partially initialize and check a structured variable.
#float array[10];

VAR array, INIT=[5..7=>2.1]

The array elements 5, 6 and 7 are initialized to 2.1. Other elements are not initialized.

 Multi-dimension Initialization and Checks

With a VAR instruction, you can initialize and check multi-dimension variables with judicious use
of bracket '[]' and brace '{}' separators.

The separators delimit the description of a structured variable to a given dimension. The absence of
separators at a given level indicates that the initialization or checking value is valid for all the sub-
dimensions of the variable.

In the following example:

• Ex. 1: The set of 300 integer values of the matrix variable are initialized to zero.

• Ex. 2: The 100 integer values contained in matrix[0] are initialized to 1, the 100 values of
matrix[1] are initialized to 2, and the 100 values of matrix[2] are initialized to 3.

• Ex. 3: Only the matrix[0][0] is initialized to zero.

• Ex. 4: Only the first 100 values of matrix[0] are initialized to zero.
#int matrix[3][100];

-- -Ex. 1- Global initialization

VAR matrix, INIT=0

-- -Ex. 2- Global initialization of lines

VAR matrix, INIT=[1,2,3]

-- -Ex. 3- Initialization of only one element

VAR matrix, INIT=[[0]]

-- -Ex. 4- Initialization of only one line

VAR matrix, INIT=[0]

The following example provides a set of VAR instructions that are semantically identical:
#int matrix[3][3];

VAR matrix, EV=0

VAR matrix, EV=[0,0,0]

VAR matrix, EV=[[0,0,0],[0,0,0],[0,0,0]]

In the three VAR instructions above, all the matrix elements are checked against zero.

 203

 Array Indices

With a VAR instruction, you can initialize and check array elements according to their index at a
given level.

The index is specified by a capital I followed by the level number. Levels begin at 1. You can use I1,
I2, I3, etc. as implicit variables.

#int matrix[3][100];

VAR matrix, EV=I1*I2

Each element of the above matrix is checked against the product of variables I1 and I2, which
indicate, respectively, a range from 0 to 2 and a range from 0 to 99. The above matrix is checked
against the 3 by 100 multiplication table.

 Reference by Default

You can reference the remaining set of fields in an array, structure, or object in a VAR instruction.
To do this, use the keyword OTHERS, followed by the arrow symbol =>, and an expression in C or
C++.

Note: To use OTHERS, the remaining fields must be the same type and must be compatible with
the expression following OTHERS.

#typedef struct {

char String[25];

int Value;

int Value2;

int Array[30];

#} block;

block variable;

VAR variable, INIT=[

& String=>"chaine",

& Array=>[0..10=>0, OTHERS=>1] ,

& OTHERS=>2]

In the previous example, OTHERS has two functions:

• When initializing the array, the values indexed from 11 to 29 begin at 1.

• When initializing the structure, the value and value2 fields begin at 2.

 Checking Pointers

With a VAR instruction, you may use NIL and NONIL, to check for null and non-null pointers.
#typedef struct {

int a;

float b;

#} block, *PT_block;

#PT_block addr[10];

VAR addr, EV=[0..5=>NIL, OTHERS=>NONIL]

In the above example, the pointers indexed from 0 to 5 of the addr array are compared with the
null address. The test of the pointers indexed from 6 to 9 is correct if these pointers are different
from the null address.

 Checking Ranges

You may use ranges of acceptable values instead of immediate values. To do this, use the following
syntax:

VAR <variable>, EV=[Min..Max]

DEF_MESSAGE <variable>, EV=[Min..Max]

The following example demonstrates this syntax:

204 IBM Rational Test RealTime User Guide

#typedef struct {

int a;

float b;

#} block, *PT_block;

#PT_block addr[10];

VAR addr, EV=[0..5=>{a=>[0..100]}, OTHERS=>NONIL]

In the previous example, the elements indexed from 0 to 5 of the addr array are checked with the
following constraint:

a should be greater than 0 and lower than 100.

The test of the pointers indexed from 6 to 9 is correct if these pointers are different from null
address

 Character Strings

When you use the VAR instruction for character strings, you may alter it. In C, a character string
can also be an array. This flexibility is retained in the VAR instruction.

In the following example, the first variable String initializes as in C (null-terminated). The second
String initializes as an array of characters (not null-terminated).

#char String[15];

VAR String, INIT="abcdef"

VAR String, INIT=['a', 'b', 'c', 'd', 'e', 'f']

Note You must define the VAR instruction either as a character string or an array of
characters.

Communication Between Virtual Testers

Virtual Testers can communicate between themselves with simple messages by using the
INTERSEND and INTERRECV statements. Virtual Tester messages can be either an integer or a
text string.

For information about the INTERSEND and INTERRECV statements, please refer to the System
Testing Script Language section in the Rational Test RealTime Reference Manual.

For these statements to be active, you must enable On-the-fly Runtime Tracing in the Configuration
Settings.

 To enable Virtual Tester communication:

1. In the Project Explorer, select the System Testing test node, and click Settings.

2. In the Configuration Settings dialog box, select System Testing and Target Deployment Port
for System Testing.

3. Set Enable On-the-fly Runtime Tracing to Yes and click OK.

Identifier

For message delivery purposes, each Virtual Testers carries a unique identifier. The virtual tester
identifier is constructed with the following rules:

• If the Virtual Tester is run as an instance named <instance>:
<instance>_<occid>

• If the Virtual Tester is running in multi-threaded mode, with its entry point in <function>:
<function_name>_<occid>

• In any other case, the identifier uses the .rio file name:
<filename>.rio_<occid>

 205

By default the occurrence identification number <occid> for each Virtual Tester is 0, but you can set
different <occid> values in the Virtual Tester Deployment dialog box.

There must never be two Virtual Testers at the same time with the same identifier. If an
INTERSEND message cannot be delivered because of an ambiguous identifier, the System Testing
supervisor returns an error message.

Instances

In a distributed environment, you can merge the description of several entities, Virtual Testers, in a
unique test script. This is possible through the concept of interaction instances, as defined in UML.

Hence, you create Virtual Testers, all based on a same test script, with distinct behaviors such as a
client and a server or both.

The use of instances in a test script must be split into two parts, as follows:

• The declaration of the instances used in test script

• The description of the instances by specific blocks containing declarations or instructions.

Instance Declaration

The DECLARE_INSTANCE instruction lets you declare the set of the instances included in the test
script.

Note Each instance behavior will be translated into different Virtual Testers executed
within a process or a thread.

The DECLARE_INSTANCE instruction must be located before the top-level scenario.

The instance declaration can be done by one or several DECLARE_INSTANCE instructions. They
must appear in the test script in such a way that no INSTANCE block containing global
declarations uses an instance that has not been previously declared.

 Example
HEADER "Multi-server / Multi-client example","1.0",""

DECLARE_INSTANCE server1, server2

...

DECLARE_INSTANCE client1, client2, client3

...

SCENARIO Principal

...

Instance Synchronization

The RENDEZVOUS statement, provides a way to synchronize Virtual Testers to each instance.

When a scenario is executed, the RENDEZVOUS instruction stops the execution until all Virtual
Testers sharing this synchronization point (the identifier) have reached this statement.

When all Virtual Testers have met the rendezvous, the scenario resumes.
SCENARIO first_scenario

FAMILY nominal

 -- Synchronization point shared by both Instances

 RENDEZVOUS sync01

 INSTANCE JUPITER:

RENDEZVOUS sync02

. . .

 END INSTANCE

 INSTANCE SATURN:

RENDEZVOUS sync02

206 IBM Rational Test RealTime User Guide

. . .

 END INSTANCE

END SCENARIO

Synchronization can be shared with other parts of the test bench such as in-house Virtual Testers,
specific feature , and so on. This can be done easily by linking these pieces with the current Target
Deployment Port.

Then, to define a synchronization point, you must make a call to the following function:
atl_rdv("sync01");

This synchronization point matches the following instruction used in a test script:
RENDEZVOUS sync01

 Example

The following test script is based on the example developed in the Event Management section. The
script provides an example of the usefulness of instances for describing several applications in a
same test script.

HEADER "SystemTest Instance-including Scenario Example", "1.0", ""

DECLARE_INSTANCE JUPITER, SATURN

COMMTYPE appl_comm IS appl_id_t

MESSAGE message_t: message, data, my_ack, neg_ack

CHANNEL appl_comm: appl_ch

#appl_id_t id;

#int errcode;

PROCSEND message_t: msg ON appl_comm: id

CALL mbx_send_message(&id, &msg) @ err_ok

END PROCSEND

CALLBACK message_t: msg ON appl_comm: id

 CALL mbx_get_message (&id, &msg, 0) @@ errcode

 MESSAGE_DATE

 IF (errcode == err_empty) THEN

 NO_MESSAGE

 END IF

 IF (errcode != err_ok) THEN

 ERROR

 END IF

END CALLBACK

SCENARIO first_scenario

FAMILY nominal

 COMMENT Initialize, register, send data

 COMMENT wait acknowledgement, unregister and release

 CALL mbx_init(&id) @ err_ok @ errcode

 ADD_ID(appl_ch,id)

 INSTANCE JUPITER:

 VAR id.applname, INIT="JUPITER"

END INSTANCE

 INSTANCE SATURN:

 VAR id.applname, INIT="SATURN"

 END INSTANCE

 CALL mbx_register(&id) @ err_ok @ errcode

 COMMENT Synchronization of both instances

 RENDEZVOUS start_RDV

 INSTANCE JUPITER:

 207

 VAR message, INIT={type=>DATA,num=>id.s_id,

& applname=>"SATURN",

& userdata=>"Hello Saturn!"}

 SEND(message , appl_ch)

 DEF_MESSAGE my_ack, EV={type=>ACK}

 WAITTIL (MATCHING(my_ack), WTIME==300)

 DEF_MESSAGE data, EV={type=>DATA}

 WAITTIL (MATCHING(data), WTIME==1000)

 END INSTANCE

 INSTANCE SATURN:

 DEF_MESSAGE data, EV={type=>DATA}

 WAITTIL (MATCHING(data), WTIME==1000)

 VAR message, INIT={type=>DATA,num=>id.s_id,

& applname=>"JUPITER",

& userdata=>"Fine, Jupiter!"}

 SEND(message , appl_ch)

 DEF_MESSAGE my_ack, EV={type=>ACK}

 WAITTIL (MATCHING(my_ack), WTIME==300)

 END INSTANCE

 CALL mbx_unregister(&id) @ err_ok @ errcode

 CLEAR_ID(appl_ch)

 CALL mbx_end(&id) @ err_ok @ errcode

 COMMENT Termination Synchronization

 RENDEZVOUS term_RDV

END SCENARIO

The scenario describes the behavior of two applications (JUPITER and SATURN) exchanging
messages by using a communications stack.

Some needed resources are allocated and a connection is established with the communication stack
(mbx_init). This connection is made known by the Virtual Tester with the ADD_ID instruction.
Note that this is a common part to both instances.

Then, the two applications register (mbx_register) onto the stack by giving their application name
(JUPITER or SATURN). These operations are specific to each instance, which is why these
operations are done in two separate instance blocks.

The application JUPITER sends the message "Hello Saturn!" to the SATURN application (through
the communication stack) which is supposed to have set itself in a message waiting state
(WAITTIL (MATCHING(data), ...)).

Once the message has been sent, JUPITER waits for an acknowledgment from the communication
stack (WAITTIL(my_ack),...). Then, it waits for the response of SATURN (WAITTIL
(MATCHING(data),...)) which answers by the message "Fine, Jupiter!" (SEND(message , appl_ch
)). These operations are specific to each instance.

Finally, the applications unregister themselves and free the allocated resources in the last part,
which is common to both instances.

Environments

When creating a test script, you typically write several test scenarios. These scenarios are likely to
require the same resources to be deployed and then freed. You can avoid writing a series of
scenarios containing similar code by factorizing elements of the scenario.

To resolve these problems and leverage your test script writing, you can define environments
introduced by the keywords INITIALIZATION, TERMINATION, and EXCEPTION.

This section describes

208 IBM Rational Test RealTime User Guide

• Error Handling

• Exception Environment (Error Recovery Block)

• Initialization Environment

• Termination Environment

Error Handling

The ERROR Statement

The ERROR instruction lets you interrupt execution of a scenario where an error occurs and
continue on to the next scenario at the same level.

ERROR instructions follow these rules:

• ERROR instructions can be located in scenarios, in procedures, or in environment blocks.

• If an ERROR instruction is encountered in an INITIALIZATION block, the Virtual Tester exits
with an error from the set of scenarios at the same level.

Note In debug mode, the behavior of ERROR instructions is different (see Debugging
Virtual Testers).

The following is an example of an ERROR instruction:
HEADER "Instruction ERROR", "1.0", "1.0"

#int IdConnection;

SCENARIO Main

 COMMENT connection

 CALL socket(AF_UNIX, SOCK_STREAM, 0)@@IdConnection

 IF (IdConnection == -1) THEN

 ERROR

 END IF

END SCENARIO

The EXIT Statement

The EXIT instruction lets you interrupt execution of a Virtual Tester. Subsequent scenarios are not
executed.

EXIT instructions follow these rules:

• EXIT instructions can be located in scenarios, procedures, or environment blocks.

• If an EXIT instruction is encountered, the EXCEPTION blocks are not executed.

The following is an example of an EXIT instruction:
HEADER "Instruction EXIT", "1.0", "1.0"

#int IdConnection;

SCENARIO Main

 COMMENT connection

 CALL socket(AF_UNIX, SOCK_STREAM, 0)@@IdConnection

 IF (IdConnection == -1) THEN

 EXIT

 END IF

END SCENARIO

Exception Environment (Error Recovery Block)

A test script is composed of a hierarchy of scenarios. An exception environment can be defined at a
given scenario level.

 209

When an error occurs in a scenario all exception blocks at the same level or above are executed
sequentially.

The syntax for exception environments can take two different forms, as follows:

• A block: This begins with the keyword EXCEPTION and ends with the sequence END
EXCEPTION. A termination block can contain any instruction.

• A procedure call: This begins with the keyword EXCEPTION followed by the name of the
procedure and, where appropriate, its arguments.

 Example

In the following example, the highest level of the test script is made up of two scenarios called first
and second. The exception environment that precedes them is executed once if scenario premier
finished with an error, and once if scenario second finishes with an error.

HEADER "Validation", "01a", "01a"

PROC Unload_mem()

...

END PROC

EXCEPTION Unload_mem()

SCENARIO first

...

END SCENARIO

SCENARIO second

EXCEPTION

...

END EXCEPTION

SCENARIO level2_1

FAMILY nominal, structural

...

END SCENARIO

SCENARIO level2_2

FAMILY nominal, structural

...

END SCENARIO

END SCENARIO

Scenario second is made up of two sub-scenarios, level2_1 and level2_2. The second exception
environment is executed after incorrect execution of scenarios level2_1 and level2_2. The highest-
level exception environment is not re-executed if scenarios level2_1 and level2_2 finish with an
error.

Only one exception environment can appear at a given scenario level.

An exception environment can appear among scenarios at the same level. It does not have to be
placed before a set of scenarios at the same level.

In a test report, the execution of an exception environment is shown even if you decided not to
trace the execution.

Initialization Environment

A test script is composed of scenarios in a tree structure. An initialization environment can be
defined at a given scenario level.

This initialization environment is executed before each scenario at the same level.

The syntax for initialization environments can take two different forms, as follows:

210 IBM Rational Test RealTime User Guide

• A block: This begins with the keyword INITIALIZATION and ends with the sequence END
INITIALIZATION. An initialization block can contain any instruction.

• A procedure call: This begins with the keyword INITIALIZATION followed by the name of
the procedure and, where appropriate, its arguments.

 Example

In the following example, the highest level of the test script is made up of two scenarios called first
and second. The initialization environment that precedes them is executed twice: once before
scenario first is executed and once before scenario second is executed.

HEADER "Validation", "01a", "01a"

PROC Load_mem()

...

END PROC

INITIALIZATION Load_mem()

SCENARIO first

...

END SCENARIO

SCENARIO second

INITIALIZATION

END INITIALIZATION

SCENARIO level2_1

FAMILY nominal, structural

...

END SCENARIO

SCENARIO level2_2

FAMILY nominal, structural

...

END SCENARIO

END SCENARIO

Scenario second is made up of two sub-scenarios, level2_1 and level2_2. The second initialization
environment is executed before scenarios level2_1 and level2_2 are executed. The highest-level
initialization environment is not re-executed between scenarios level2_1 and level2_2.

Only one initialization environment can appear at a given scenario level.

An initialization environment can appear among scenarios at the same level. The initialization
environment does not have to be placed before a set of scenarios at the same level.

In a test report, the execution of an initialization environment is shown beginning with the word
INITIALIZATION and ending with the words END INITIALIZATION.

Termination Environment

A test script is composed of scenarios in a tree structure A termination environment can be defined
at a given scenario level.

This termination environment is executed at the end of every scenario at the same level, provided
that each scenario finished without any errors.

The syntax for termination environments can take two different forms, as follows:

• A block: This begins with the keyword TERMINATION and ends with the sequence END
TERMINATION. A termination block can contain any instruction.

• A procedure call: This begins with the keyword TERMINATION followed by the name of the
procedure and, where appropriate, its arguments.

 211

 Example

In the previous example, the highest level of the test script is made up of two scenarios called first
and second. The termination environment that precedes them is executed twice:

• once after scenario first is executed correctly

• once after scenario second is executed correctly
HEADER "Validation", "01a", "01a"

PROC Unload_mem()

...

END PROC

TERMINATION Unload_mem()

SCENARIO first

...

END SCENARIO

SCENARIO second

TERMINATION

...

END TERMINATION

SCENARIO level2_1

FAMILY nominal, structural

...

END SCENARIO

SCENARIO level2_2

FAMILY nominal, structural

...

END SCENARIO

END SCENARIO

Scenario second is made up of two sub-scenarios, level2_1 and level2_2. The second termination
environment is executed after the correct execution of scenarios level2_1 and level2_2. The highest-
level termination environment is not re-executed between scenarios level2_1 and level2_2.

Only one termination environment can appear at a given scenario level.

A termination environment can appear among scenarios at the same level. The termination
environment does not have to be placed before a set of scenarios at the same level.

In a test report, the execution of a termination environment is shown beginning with the word
TERMINATION and ending with the words END TERMINATION.

Time management

In some cases, you will need information about execution time within a test script.

The following instructions provide a way to dump timing data, define a timer, clear a timer, get the
value of a timer, and temporarily suspend test script execution:

• TIME instruction

• TIMER instruction

• RESET instruction

• PRINT instruction

• PAUSE instruction

212 IBM Rational Test RealTime User Guide

TIME instruction

The TIME instruction returns the current value of a timer. You must use a C expression or
scripting instruction (IF, PRINT, and so on).

Before using TIME, you must declare the timer with the TIMER instruction.

 Example
HEADER "Socket validation", "1.0", "beta"

TIMER globalTime

PROC first

TIMER firstProc

...

PRINT globalTimeValue, TIME (globalTime)

END PROC

SCENARIO second

SCENARIO level2

TIMER level2Scn

...

PRINT level2ScnValue, TIME (level2Scn)

END SCENARIO

END SCENARIO

TIMER instruction

The TIMER instruction declares a timer in the test script.

You may declare a timer in any test script block: global, initialization, termination, exception,
procedure, or scenario.

The timer lasts as long as the block in which the timer is defined. This means that a timer defined in
the global block can be used until the end of the test script.

You may define multiple timers in the same test script. The timer starts immediately after its
declaration.

The unit of the timer unit is defined during execution of the application, with the WAITTIL and
WTIME instructions.

 Example
HEADER "Socket validation", "1.0", "beta"

TIMER globalTime

PROC first

TIMER firstProc

...

END PROC

SCENARIO second

SCENARIO level2

TIMER level2Scn

...

END SCENARIO

END SCENARIO

RESET instruction

The RESET instruction lets you reset a timer to zero.

The timer restarts immediately when the RESET statement is encountered.

A timer must be declared before using RESET.

 213

 Example
HEADER "Socket validation", "1.0", "beta"

TIMER globalTime

PROC first

TIMER firstProc

RESET globalTime

...

END PROC

SCENARIO second

SCENARIO level2

TIMER level2Scn

...

RESET level2Scn

END SCENARIO

END SCENARIO

PRINT instruction

You can print the result of an expression in a performance report by using the PRINT statement.
The PRINT instruction prints an identifier before the expression.

 Example
HEADER "Socket validation", "1.0", "beta"

#long globalTime = 45;

SCENARIO first

PRINT timeValue, globalTime

END SCENARIO

SCENARIO second

SCENARIO level2

PRINT time2Value, globalTime*10+5

...

END SCENARIO

END SCENARIO

PAUSE instruction

The PAUSE instruction lets you temporarily stop test script execution for a given period.

The unit of the PAUSE instruction is defined during execution of the application, with the
WAITTIL and WTIME instructions.

 Example
HEADER "Socket validation", "1.0", "beta"

#long time = 20;

PROC first

PAUSE 10

...

END PROC

SCENARIO second

SCENARIO level2

PAUSE time*10

...

END SCENARIO

END SCENARIO

214 IBM Rational Test RealTime User Guide

Using native C statements

In some cases, it can be necessary to include portions of C native code inside a .pts test script for
one the following reasons:

• To declare native variables that participate in the flow of a scenario. Such statements must be
analyzed by the System Testing Parser.

• To insert native code into a scenario. In this case, the code is ignored by the parser, but carried
on into the generated code.

Analyzed native code

Lines prefixed with a # character are analyzed by Component Testing Parser.

Only prefix statements with a # character to include native C variable declarations that must be
analyzed by the parser.

#int i;

#char *foo;

Variable declarations must be placed outside of System Testing Language blocks or preferably at
the beginning of scenarios and procedures.

Ignored native code

Lines prefixed with a @ character are ignored by the parser, but copied into the generated code.

To use native C code in the test script, start instructions with a @ character:
@for(i=0; i++; i<100) func(i);

@foo(a,&b,c);

You can add native code either inside or outside of System Testing Language blocks.

Understanding System Testing for C Reports

Test reports for System Testing are displayed in Test RealTime's Report Viewer.

The test report is a hierarchical summary report of the execution of a test node. Parts of the report
that have Passed are displayed in green. Failed tests are shown in red.

Report Explorer

The Report Explorer displays each element of a test report with a Passed , Failed symbol.

• Elements marked as Failed are either a failed test, or an element that contains at least one
failed test.

• Elements marked as Passed are either passed tests or elements that contain only passed tests.

Test results are displayed for each instance, following the structure of the .pts test script.

Report Header

Each test report contains a report header with:

• The version of Test RealTime used to generate the test as well as the date of the test report
generation

• The path and name of the project files used to generate the test

• The total number of test cases Passed and Failed. These statistics are calculated on the actual
number of test elements listed in the sections below

• Virtual Tester information.

 215

Main Report Sections

For each Virtual Tester execution, the report lists the details of test script execution, with time
stamps

and test result tables.

• Messages: The report displays fields and values for each field

• Tests Results: For each message, the report compares initial values, expected values and
obtained values

Understanding System Testing UML Sequence Diagrams

During the execution of the test, System Testing generates trace data this is used by the UML/SD
Viewer. The System Testing sequence diagram uses standard UML notation to represent both
System Testing results.

This is an example of a typical System Testing UML sequence diagram.

You can modify the appearance of UML sequence diagrams by changing the UML/SD Viewer
Preferences.

When using System Testing with Runtime Tracing or other Test RealTime features that generate
UML sequence diagrams, all results are merged in the same sequence diagram.

You can click any element of the UML sequence diagram to open the System Testing reports at the
corresponding line. Click again in the test report, and you will locate the line in the .pts test script.

 Virtual Testers and System Under Test

The system under test (SUT) and the Virtual Testers (VT) are represented as vertical instances.
Messages sent and received by the Virtual Tester are represented along the Virtual Tester lifeline.

Messages

Messages are sent and received between Virtual Tester and system instances.

Rendezvous

RENDEZVOUS statements are displayed as Synchronizations in the Virtual Tester lifeline.

Test Script Events and Errors

Test script events and errors are represented as UML actions. Only significant instructions, such as
INITIALIZATION, WAITTIL blocks and test errors are represented.

By default, errors appear in red. Other events are green.

WAITTIL blocks are displayed with their start and end events. Matching conditions are
represented as notes. Use the mouse cursor tool-tip to get more information about the matching
conditions.

On-the-Fly Tracing

If you are using the On-the-Fly option, only the following information can be displayed in real-time
during the execution of the application:

• Virtual Tester and system under test

• Messages

• Rendezvous

• Test script blocks

216 IBM Rational Test RealTime User Guide

Advanced System Testing

System Testing Supervisor

Test RealTime System Testing manages the simultaneous execution of Virtual Testers distributed
over a network. When using System Testing feature of Test RealTime, the machine running Test
RealTime runs a Supervisor process, whose job is to:

• Set up target hosts to run the test

• Launch the Virtual Testers, the system under test and any other tools.

• Synchronize Virtual Testers during execution

• Retrieve the execution traces after test execution

The System Testing Supervisor uses a deployment script, generated by the Virtual Tester
Configuration and Virtual Tester Deployment dialog boxes, to control System Testing Agents
installed on each distributed target host. Agents can launch either applications or Virtual Testers.

While the agent-spawned processes are running, their standard and error outputs are redirected to
the supervisor.

Note You must install and configure the agents on the target machines before execution.

Circular Trace Buffer

The circular trace buffer memorizes System Testing for C traces and flushes them to the .rio output
file when the Virtual Tester ends or at a specified point in the .pts test script.

To activate the circular trace buffer option or to set the size of the buffer, see Test Script Compiler
Settings.

How the Circular Buffer Works

During execution of the test node, System Testing accumulates traces in the buffer. When the buffer
fills up, new traces replace old ones, as shown in the following diagram, without flushing to file.

Contents of the Buffer

By default, the buffer stores all traces.

Use the TRACE_OFF instruction in your .pts System Testing for C test script to trace only scenario
begins and ends, environment blocks, procedure blocks, PRINT instructions, and failed
instructions.

Use the TRACE_ON instruction to resume default behavior.

See the Reference section for detailed information on .pts test script instructions.

Flushing the Buffer on the Disk

By default, the buffer is flushed to a file when the Virtual Tester ends.

You may flush the buffer at any point in the .pts test script by using the FLUSH_TRACE
instruction.

You cannot call the FLUSH_TRACE instruction, either directly or indirectly, from a CALLBACK
or PROCSEND block.

See the Reference section for detailed information on .pts test script instructions.

Note The TRACE_ON, TRACE_OFF and FLUSH_TRACE instructions only apply when
the Circular Trace Buffer option is selected.

 217

On-the-Fly Tracing

The System Testing for C on-the-fly tracing capability allows you to monitor the Virtual Testers
during the test execution in a UML sequence diagram. Information provided by dynamic tracking
includes:

• Beginning and end of scenarios

• Rendezvous

• Sent and received messages

• Inter-tester messages (only received messages)

• Beginning and end of termination, initialization and exception blocks

• End of Testers

On-the-fly tracing output is displayed in the UML/SD Viewer in real-time. You can click any item
in the sequence diagram to instantly highlight the corresponding test script line in the Text Editor
window.

 To activate System Testing dynamic tracking:

1. select On-the-fly tracing in the System Testing Advanced Settings for the System Testing test
node

2. ensure that the Allow remote connections option in selected in the General Preferences.

© Copyright IBM Corp. 2001, 2006 219

Chapter 5. Using the graphical user interface

The graphical user interface (GUI) of Test RealTime provides an integrated environment designed
to act as a single, unified work space for all automated testing and runtime analysis activities.

This section describes the features and capabilities included within the GUI that are designed to
make your testing effort a lot more manageable.

GUI Philosophy

In addition to acting as an interface with your usual development tools, the GUI provides
navigation facilities, allowing natural hypertext linkage between source code, test, analysis reports,
UML sequence diagrams. For example:

• You can click any element of a test report to highlight the corresponding test script line in the
embedded text editor.

• You can click any element of an runtime analysis report to highlight and edit the
corresponding item in your application source code

• You can click a filename in the output window to open the file in the Text Editor

In addition, the GUI provides easy-to-use Activity Wizards to guide you through the creation of
your project components.

The Test RealTime GUI provides a comprehensive set of tools and components that make it an
efficient and customizable development environment.

• The text editor is a full-featured editor for source code

• The Tools menu is a convenient way of integrating any command-line tool into the GUI

• The test process monitor provides ongoing activity statistics and metrics

• The report viewer displays runtime analysis reports

• The UML/SD viewer displays UML sequence diagrams provided by Runtime Tracing feature.

Configurations and settings

Two major concepts of Test RealTime are Configurations and Configuration Settings:

• A Configuration is an instance of a Target Deployment Port (TDP) as used in your project.

• Configuration Settings are the particular properties assigned to each node in your project for a
given Configuration.

A Configuration is not the actual Target Deployment Port. Configurations are derived from the
Target Deployment Port that you select when the project is created, and contain a series of Settings
for each individual node of your project.

This provides extreme flexibility when you are using multiple platforms or development
environments. For example:

220 IBM Rational Test RealTime User Guide

• You can create a Configuration for each programming language or compiler involved in your
project.

• If you are developing for an embedded platform, you can have one Configuration for native
development on your Unix or Windows development platform and another Configuration for
running and testing the same code on the target platform.

• You can set up several Configurations based on the same TDP, but with different libraries or
compilers.

• If you are using multiple programming languages in your project, you can even override the
TDP on one or several nodes of a project.

The Configuration Settings allow you to customize test and runtime analysis configuration
parameters for each node or group of your project, as well as for each Configuration. You reach the
Configuration Settings for each node by right-clicking any node in the Project Explorer window
and selecting Settings.

The left-hand section of the Configuration Settings window allows you to select the settings
families related to the node, as well as the Configuration itself, to which changes will be made. The
right-hand pane lists the individual setting properties.

The right-hand section contains the various settings available for the selected node.

Propagation Behavior of Configuration Settings

The Project Explorer displays a hierarchical view of the nodes that constitute your project.

Settings for each node are inherited by child nodes from parent nodes. For instance, Settings of a
project node will be cascaded down to all nodes in that project.

Child settings can be set to override parent settings. In this case, the overridden settings will, in turn,
be cascaded down to lower nodes in the hierarchy. Overridden settings are displayed in bold.

Settings are changed only for a particular Configuration. If you want your changes to a node to be
made throughout all Configurations, be sure to select All Configurations in the Configuration box.

 To change the settings for a node:

1. In the Project Explorer, click the Settings button.

2. Use the Configuration box to change the Configuration for which the changes will be made.

3. In the left pane, select the settings family that you want to edit.

4. In the right pane, select and change the setting properties that you want to override.

5. When you have finished, click OK to validate the changes.

Note The Enter and Esc keys do not work in the Configuration Settings window. Use the
OK, Apply, and Cancel buttons.

By default, the settings of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration. Overridden fields are displayed in bold.

Configuration Settings Structure

The Configuration Settings provides access to the following settings families:

• General

• Build

• Runtime Analysis

 221

• Component Testing

The actual settings available for each node depend on the type of node and the language of the
selected Configuration.

Selecting Configurations

Although a project can use multiple Configurations, as well as multiple TDPs, there must always
be at least one active Configuration.

The active Configuration affects build options, individual node settings and even wizard behavior.
You can switch from one Configuration to another at any time, except during build activity, when
the green LED flashes in the Build toolbar.

 To switch Configurations:

1. From the Build toolbar, select the Configuration you wish to use in the Configuration box.

Modifying Configurations

Configurations are based on the Target Deployment Ports (TDP) that are specified when you create
a new project. In fact, a Configuration contains basic Configuration Settings for a given TDP
applied to a project, plus any node-specific overridden settings.

Remember that although a project can use multiple Configurations, as well as multiple TDPs, there
must always be at least one active Configuration.

Configuration Settings are a main characteristic of the project and can be individually customized
for any single node in the Project Explorer.

 To create a new Configuration for a Project:

1. From the Project menu, select Configurations.

2. In the Configurations dialog box, click the New... button.

3. Enter a Name for the Configuration.

4. Select the Target Deployment Port to be used to create the Configuration.

5. Enter the Hostname, Address and Port of the machine on which the Target Deployment Port
is to be compiled.

6. Click OK.

7. Click Close.

 To remove a Configuration from a Project:

If you choose to remove a Configuration, all custom settings for that Configuration will be lost.

1. From the Project menu, select Configurations.

2. In the Configurations dialog box, select the Configuration to be removed.

3. Click the Remove button.

4. Click Yes to confirm the removal of the Configuration

 To copy an existing Configuration:

This can be useful if you want several Configurations, with different custom settings, based on a
unique Target Deployment Port.

1. From the Project menu, select Configurations.

222 IBM Rational Test RealTime User Guide

2. In the Configurations dialog box, select an existing Configuration.

3. Click the Copy To... button

4. Enter a Name for the new Configuration.

5. Click OK.

Creating tests and applications

The Start Page provides with a full set of activity wizards to help you get started with a new project
or activity.

 To start a new activity wizard:

1. From the Start Page, click New Activities

2. Select the activity of your choice.

Creating a new project

When Test RealTime starts, the Start Page offers to either open an existing project or create a new
project. The New Project wizard creates a brand new project.

 To create a new project:

1. From the Start Page, select New Project.

2. In the Project Name, enter a name for the project.

3. In the Location box, change the default directory if necessary and click Next to continue.

4. Select one or several Target Deployment Ports for the new project.

The Wizard creates a Configuration based on each selected Target Deployment Port. Later,
when working with the project, any changes are made to the Configuration Settings, not to the
Target Deployment Port itself.

5. Click the Set as Active button to set the current TDP. The active port is the default
Configuration to be used in your project.

6. Click Finish.

Once your project has been created, the wizard opens the Activities page.

Creating a runtime analysis application node

The Runtime Analysis Wizard helps you create a new application node in the Project Explorer.
Basically, an application node represents the build of your C, C++, Ada or Java source code, which
is very similar to most other integrated development environments (IDE). You can actually use this
graphical user interface as your primary IDE.

Once you have created your application node, you simply add the options required to run any of
the runtime analysis features:

• Memory Profiling

• Performance Profile

• Code Coverage

• Runtime Tracing

 223

 To create an application node with the Runtime Analysis Wizard:

1. Use the Start Page or the File menu to open or create a project.

2. Ensure that the correct Configuration is selected in the Configuration box.

3. On the Start Page, select Activities and choose the Runtime Analysis activity.

4. The Application Files page opens. Use the Add and Remove buttons to build a list of source
files and header files (for C and C++) to add to your project.

The Configuration Settings button allows you to override the default Configuration Settings.
Use the Move Up and Move Down buttons to change the order in which files appear in the
application node, and subsequently are compiled.
Use the Remove button to remove files from the selection.

Click Next to continue.

5. Select the C procedures and functions, C++ or Java classes or Ada units that you want to
analyze.

Use the Select File and Deselect File buttons to specify the files that contain the components
that you want to analyze. The Select All and Deselect All buttons to select or clear all
components.

Click Next to continue.

6. If you are creating a Java application node, set the basic settings that are required for the
program to compile:

• Class path: Click the "..." button to create or modify the Class Path parameter for the
JVM

• Java main class: Select the name of the main class

• Jar creation: Specifies whether to build an optional .jar file, as well as the basic .jar
related options

Click Next to continue.

7. Enter a name for the application node.

By default, the new application node inherits Configuration Settings from the current project.
If necessary, click Settings to access the Configuration Settings dialog box. This allows you to
change any particular settings for the new application node as well as its contents.

Click Next to continue.

8. In the Summary page, check that all the parameters are correct, and click Finish.

The wizard creates an application node that includes all of the associated source files.

You can now select your build options to apply any of the runtime analysis tools to the application
under analysis.

Creating a component test

The Component Testing Wizard helps you create a new Component Testing test node in your
project for C, C++, Ada and Java.

For each script type, the wizard analyzes the source code under test to extract unit information and
will produce a corresponding test script template using the following test script types:

• C Test Script Language

• C++ Test Driver Script Language

• C++ Contract-Check Language

224 IBM Rational Test RealTime User Guide

• Ada Test Script Language

• JUnit Test Harness

You use the generated test script template to elaborate your own test cases.

You can later add to this test node any of the runtime analysis features included in Test RealTime .

There are two methods of creating a test node with the Component Testing wizard:

• From the Start page: this method allows you to specify a set of files or components to test.

• From the Asset Browser: this method rapidly creates a test from a single file or source code
component selected in the Asset Browser.

Once the test node has been generated, you can complete your Component Testing test scripts in
the Text Editor. Refer to the Test RealTime Reference Manual for information about the actual
language semantics.

 To run the Component Testing Wizard from the Start Page:

1. Use the Start Page or the File menu to open or create a project. Ensure that the correct
Configuration is selected in the Configuration box.

The selected programming language impacts the type of Component Testing test node to be
created.
On the Start Page, select Activities and choose the Component Testing activity.

2. The Application Files page opens. Use the Add and Remove buttons to build a list of source
files and header files (for C and C++) to add to your project.

The Configuration Settings button allows you to override the default Configuration Settings.
Select Compute Static Metrics to run the analysis of static testability metrics.

Click Next> to continue.

Note If the static metrics analysis takes too much time, you can clear the Compute Static Metrics
option. In this case, the calculation and display of static metrics in any further steps are disabled.

Note With Component Testing for Ada, it is not possible to submit only an Ada procedure file.
Instead, you must include the single procedure in a package.

3. The Components Under Test page allows you to select the units or files for the selected source
files.

In order to help you choose which components you want to test, this page displays the metrics
for each file or unit (packages, classes or functions depending on the language).
Select File Selection to choose files under test or Unit Selection to choose the source code
units that require testing. The selection mode toggles the static metrics displayed between file
metrics or unit metrics.

Note If the Unit Selection view seems incomplete, cancel the wizard, from the Project menu, select
Refresh File Information and restart the wizard. See Refreshing the Asset Browser.

Click Metrics Diagram to select the units under test from a graph representation.
Click Next> to continue or Generate to skip any further configuration and to use default
settings.

4. The Test Script Generation Settings page allows you to specify the test node generation
options. The General settings specify how the wizard creates the test node.

• Test Name: Enter a name for the test node.

• Test Mode: Disables or enables the test boundaries.

• Typical Mode: No test boundaries are specified. This is the default setting. For Java,
all dependency classes are stubbed in the node.

 225

• Expert Mode: This mode allowing you to manually drive generation of the test
harness. This provides more flexibility in sophisticated software architectures.

• Node Creation Mode: Selects how the test node is created:

• Single Mode: In C and Ada, this mode creates one test node for each source file
under test. In C++ and Java, it creates one test node for all selected source code
components.

• Multiple Mode: This creates a single test node for each selected source code unit.

The Components Under Test settings specify advanced settings for each component of the test
node. These settings depend on the language and Configuration.
Click Next> to continue.

5. Review the Summary. This page provides a summary of the selected options and the files that
are to be generated by the wizard.

Click Next> to create the test node based on this information.

6. The Test Generation Result page displays progression of the test node creation process. Click
Settings to set the Configuration Settings. You can always modify the test node Configuration
Settings later if necessary, from the Project Explorer.

Note If you apply new settings after the test generation, the wizard reruns the test
generation. This allows you to fine-tune any settings that may cause the test generation to
fail.

Once a test node has been successfully generated, click Finish to quit the Component Testing
Wizard and update the project.

 To run the Component Testing Wizard from the Asset Browser:

1. Use the Start Page or the File menu to open or create a project.

2. Ensure that the correct Configuration is selected in the Configuration box. The selected
programming language impacts the type of Component Testing test node to be created.

3. In the Project Explorer, select the Asset Browser tab.

4. Right click an object, package or source file under test. From the popup menu, select Test.

5. The Test Script Generation Settings allows you to specify the test node generation options.
The General settings specify how the wizard creates the test node.

• Test Name: Enter a name for the test node.

• Test Mode: Disables or enables the test boundaries.

• Typical Mode: No test boundaries are specified. This is the default setting. For Java,
all dependency classes are stubbed in the node.

• Expert Mode: This mode allowing you to manually drive generation of the test
harness. This provides more flexibility in sophisticated software architectures.

The Components Under Test settings specify advanced settings for the component of the test
node. These settings depend on the language and Configuration.

Click Next> to continue.

6. Review the Summary. This page provides a summary of the selected options and the files that
are to be generated by the wizard.

Click Next> to create the test node based on this information.

7. The Test Generation Result page displays progression of the test node creation process. Click
Settings to set the Configuration Settings. You can always modify the test node Configuration
Settings later if necessary, from the Project Explorer.

226 IBM Rational Test RealTime User Guide

Note If you apply new settings after the test generation, the wizard reruns the test
generation. This allows you to fine-tune any settings that may cause the test generation to
fail.

Once a test node has been successfully generated, click Finish to quit the Component Testing
Wizard and update the project.

Creating a system test

The System Testing Wizard helps you create a new System Testing test node in your project.

Basically, a System Testing node contains a .pts test script as well as a set of Virtual Testers for
message-based testing.

Note System Testing for C does not support paths or filenames which contain spaces. When
naming files or directories, make sure that these do not contain any spaces.

 To create a System Testing node:

1. Enter the name of the new System Testing test node.

2. On the Test Script Selection (1/7) page, you select the source files that are used to build your
application among the source files that are currently in your workspace.

Select whether you want to create a new .pts test script file, or if you want to reuse an existing
test script. In both cases you will need to enter a name for the .pts test script.

Next, use the Add and Remove buttons to build a list of interface files. The Interface Files List
must contain .h header files that define the message structures used by your application.

Click Next to continue.

3. On the Include Directories List (2/7) page, specify the directories that contain include files that
can be required by the interface files and the messaging API.

Use the Add and Remove buttons to build a list of include directories. These are the
directories that contain files that are included by your application's source code. If necessary,
you can use the Up and Down buttons to indicate the order in which they are searched.

Click Next to continue. If you chose to use an existing .pts test script, this brings you straight
Virtual Tester Driver Creation (5/7) page to step 6.

4. On the Generate New Test Script (3/7) page, specify the message type to be used by the test.

• Message type: Select the type definition that will be used for messages.

• Base filename: Specify the name of the generated API files. The wizard generates .c,
.h and .hts files based on this filename.

• Directory: Specify the location where the API files will be generated.

• Generate with INSTANCE blocks: Select this option if you want INSTANCE
statements to be created in the .pts test for a multi-process or multi-threaded test
driver.

Click Next to continue.

5. On the Generate New Test Script (4/7) page, change the configuration settings of the test node
or click Next.

6. On the Virtual Tester Driver Creation (5/7) page, you can create a set of virtual testers. Use
the New button to create and name a new virtual tester. You can create and duplicate several
virtual testers. You can also skip this page and decide to create your virtual testers later on.

When a virtual tester is selected, the General tab allows you to specify an instance and target
deployment port for the virtual tester.

 227

• VT Name: This is the name of the selected virtual tester. This must be a standard C
identifier.

• Implemented INSTANCE: Use this box to assign an INSTANCE statement, defined
in the .pts test script, to the selected virtual tester. This information is used to deploy
the virtual tester. Select Default to manually specify the instance during deployment.

• Target: Select the Target Deployment Port that will be used for the selected Virtual
Tester.

The Scenario tab lets you select one or several scenarios as defined in the .pts test script.
During execution, the Virtual Tester plays the selected scenarios.

The Family tab lets you select one or several families as defined in the .pts test script. During
execution, the Virtual Tester plays the selected families.

If necessary, click the Configure Settings button to change the configuration settings for the
selected virtual tester.

The API source files list displays the generated messaging API source files. Use the Add or
Remove buttons to modify this list if your messaging API requires more files.

Click Next to continue.

7. On the Deploy Configuration (6/7) page, you specify how to deploy the virtual testers onto
host and target computers. Use the Add, Remove buttons to modify the list. Each line
represents one or several parallel executions of a virtual tester assigned to an instance, target
host, and other parameters.

• Number of Occurrences: Specifies the number of simultaneous executions of the current
line.

• Virtual Tester Name: Specifies one of the previously created virtual testers.

• INSTANCE: Specifies the instances assigned to this virtual testers. If an instance was
specifically assigned in the Virtual Tester Configuration box, this cannot be changed.
Select <default> only if no INSTANCE is defined in the test script.

• Network Node: This defines the target host on which the current line is to be deployed.
You can enter a machine name or an IP address. Leave this field blank if you want to use
the IP address specified in the Host Configuration section of the General Settings.

Note If the IP address line in the Host Configuration settings is blank, then the Virtual
Tester Deployment Table retrieves the IP address of the local machine when generating
the deployment script.

Click the Advanced Options button to add the following columns to the Virtual Tester
Deployment Table, and to add the Rendezvous... button.

• Agent TCP/IP Port: This specifies the port used by the System Testing Agents to
communicate with Test RealTime. By default, System Testing uses port 10000.

• Delay: This allows you to set a delay between the execution of each line of the table.

• First Occurrence ID: This specifies the unique occurrence ID identifier for the first Virtual
Tester executed on this line. The occurrence ID is automatically incremented for each
number of instances of the current line. See Communication Between Virtual Testers for
more information.

• RIO filename: This specifies the name of the .rio file containing the Virtual Tester output,
for use in multi-threaded or RTOS environments.

If necessary, click the Rendezvous Configuration button to set up any rendezvous
members.

Click Next to continue.

228 IBM Rational Test RealTime User Guide

8. Review the options in the Test Generation Summary (7/7) page and use the Back button if
necessary to make any changes.

• Test Script File: indicates the name of the .pts test script

• Interface Files: lists the interface files defining the communication routines of your
application.

• Included Directories: lists the directories containing files included by your
application.

• Virtual Testers: lists the virtual testers that are to be deployed by the test.

9. Click the Finish button to launch the generation of the System Testing node with the
corresponding virtual testers.

The wizard creates a test node with the associated test scripts. The test node appears in the Project
Explorer.

If you chose to create a new .pts test script, you can now complete the generated System Testing
test script in the Text Editor and then configure and deploy your virtual testers.

Refer to the System Testing language reference for information about the System Testing script
language.

Viewing a static metrics diagram

As part of the Component Testing wizard, Test RealTime provides static testability metrics to help
you pinpoint the critical components of your application. You can use these static metrics to
prioritize your test efforts.

The graph displays a simple two-axis plot based on the static metrics calculated by the wizard. The
actual metrics on each axis can be changed in the Metrics Diagram Options dialog box.

Each unit (function, package or class, depending on the current Configuration language) is
represented by a checkbox located at the intersection of the selected testability metrics values.

Move the mouse pointer over a checkbox to display a tooltip with the names of the associated
units. To test a unit, select the corresponding checkbox.

Test RealTime also provides a Static Metrics Viewer, which is independent from the Component
Testing wizard and can be accessed at any time.

 To access the wizard Metrics Diagram:

1. From the Start Page, run the Component Testing wizard.

2. From the Components under Test page, click Metrics Diagram.

 To select a unit for test:

1. If necessary, click Options to set the two most relevant metrics for your application. This
displays each unit at the intersection point of the two values.

2. Move the mouse pointer over a checkbox to display a tooltip with the name of the unit.

3. Select the most relevant units to test. Units under test are displayed in the list box.

4. Click OK to validate the selection.

Specifying advanced component test options

The Advanced Options dialog box allows you to specify a series of advanced test generation
parameters in the Component Testing wizard. In most cases, you can leave the default values.

 229

The actual options available in this dialog box depend on the programming language of the current
Configuration:

• C or Ada

• C++

• Java

Component Testing for C and Ada

The following advanced options are available in the Component Testing wizard with a C or Ada
Target Deployment Port:

• Tested file: name of the source file under test

• Test script and path: location and name of the generated test script template

• Test static/private data or functions: specifies whether the file under test is included in a
#include statement.

• Additional options: allows you to add specific command line options for the C or Ada Source
Code Parser. See the Command Line Reference section in the Rational Test RealTime
Reference Manual for further information.

Component Testing for C++

The following advanced options are available in the Component Testing wizard for C++:

• Tested file: name of the source file under test.

• Test driver script: specifies whether an .otd test driver script is to be generated.

• Contract-Check script: specifies whether an .otc Contract Check driver script is to be
generated.

• Test script and path: location and name of the generated .otd test driver script template.

• Directory for Contract-Check script files: sets the location where the .otc Contract Check script
files are created.

• Additional options: allows you to add specific command line options for the C++ Source Code
Parser. See the Line Command section in the Rational Test RealTime Reference Manual for
further information.

• Ignore #line directive: by default, the Test Generation Wizard analyzes #line directives,
although use of preprocessed files with Component Testing for C++ is not recommended.
Select this option when #line directives should be ignored.

• Test union and struct as class: tells the Test Generation Wizard to consider classes defined
with the struct or union keyword as candidate classes. This option is only available if the auto-
select candidate classes was selected on the File and Classes under Test page.

• Test each template instance: tells the wizard to generate C++ Test Script Language code for
each instance of a template class. If this option is selected, there must be template class
instances in the source file under test. By default, the Test Generation Wizard generates a
single portion of C++ Test Script Language code for a template class.

• Overwrite previous test scripts: tells the wizard to overwrite any previously generated .otc or
.otd test scripts. if this option is not selected, no changes will be made to any existing .otc or
.otd test scripts.

• Path for included header files: specifies how include file names must be analyzed.

• Select Relative for relative filenames.

• Select Absolute for absolute filenames.

230 IBM Rational Test RealTime User Guide

• Select Copy to use include the path as specified.

• Included files: use the Add and Remove buttons to add and remove files in the list. The
include file list used by the Component Testing wizard is kept in the generated test node
settings.

Component Testing for Java

The following advanced options are available in the Component Testing wizard for C++:

• Test driver name: name of the generated Java test script template.

• Testing framework: allows you to override the TDP setting to the J2SE or J2ME framework.

• Test class prefix: specifies the prefix for test class names.

Working with projects

The project is your main work area in Test RealTime , as displayed in the Project Explorer
window.

A project is a tree representation that contains nodes. Projects can contain one or more sub-projects
which are actually links to other projects.

Note Previous versions of the product used Workspaces instead of sub-projects. Workspaces
are automatically converted to sub-projects when loaded into the current version of the
product.

Within the project tree, each node has its own individual Configuration Settings —inherited from
its parent node— and can be individually executed.

Project overview

A project is a tree representation that contains nodes.

Within the project tree, each node has its own individual Configuration Settings —inherited from
its parent node— and can be individually executed.

Project Nodes

The project is your main work area in Test RealTime .

A project is materialized as a directory in your file system, which contains everything you need to
test and analyze your code:

• Source code

• Test scripts

• Analysis and test result files

In the Test RealTime GUI, a project is organized as follows

• Project node: this node contains any of the following nodes:

• Group node: Allows you to group together several application or test nodes.

• Application node: contains a complete application.

• Results node: contains your runtime analysis result files, once the application has been
executed. Use this node to control the result files in Rational ClearCase or any other
configuration management system.

• Source node: these are the actual source files under test. They can be instrumented or not
instrumented .

 231

• Test node: represents a complete test harness, for Component Testing for C and Ada , C++
, Java or System Testing . A test node containing.

• Results node: contains your test result files, once the test has been executed. Use this node to
control the result files in Rational ClearCase or any other configuration management system.

• Test Script node: contains the test driver script for the current test.

• Source node: these are the actual source files under test. They can be instrumented or not
instrumented .

• External Command node: this node allows you to execute a command line anywhere in the
project. Use this to launch applications or to communicate with the application under test.

Application and test nodes can be moved around the project to change the order in which they are
executed. The order of files inside a Test node cannot be changed; for example the test script must
be executed before the source under test.

Projects and sub-projects

Projects can contain one or more sub-projects which are actually links to other project directories.
The behavior of a sub-project is the same as a project. In fact, a sub-project can be opened
separately as a stand-alone project.

Note Previous versions of the product used Workspaces instead of sub-projects. Workspaces
are automatically converted to sub-projects when loaded into the current version of the
product.

Here are several examples of the use of super-projects and sub-projects:

• In a team, users work on their own projects to develop and test portions of a larger
development project. For testing the whole project, a single master project can be created to
integrate, build, and test multiple sub-projects in one go.

• A single project may contain different sub-projects for different target platforms.

Results Node

By default, each application and test node contains a Results node.

Once the test or runtime analysis results have been generated, this node contains the report files.
Right-click the result node or the report files to bring up the Source Control popup menu.

If you are not controlling result files in a configuration management system, you can hide the
Results node by setting the appropriate option in the Project Preferences.

Troubleshooting a project

When executing a node for the first time in Test RealTime, it is not uncommon to experience
compilation issues. Most common problems are due to some common oversights pertaining to
library or include paths or Target Deployment Port settings.

To help debug such problems during execution, you can prompt the GUI to report more detailed
information in the Output window by selecting the verbose output option.

 To set the verbose output option from the GUI:

1. From the Edit menu, select Preferences.

2. Select the Project preferences.

3. Select Verbose output and click OK.

232 IBM Rational Test RealTime User Guide

 To set the verbose output option from the command line:

1. Set the environment variable $ATTOLSTUDIO_VERBOSE.

2. Rerun the command line tools.

Refreshing the asset browser

The Asset Browser view of the Project Explorer window analyzes source files and extracts
information about source code components (classes, methods, functions, etc...) as well as any
dependency files. This capability, known as file tagging, allows you to navigate through your source
files more easily and provides direct access to the source code components through the Text Editor.

When the automatic file tagging option is selected, Test RealTime refreshes the file information
whenever a change is detected. However, you can use the Refresh Information command to update
a single file or the entire project.

You can change the way files are tagged by Test RealTime by changing the Source File
Information Configuration Settings for the current project.

Note When many files are involved in the tagging process, the Refresh Information
command may take several minutes.

 To manually refresh a single file in the Asset Browser:

1. In the Project Explorer, select the Asset Browser tab.

2. Right-click the file or object that you want to refresh.

3. From the pop-up menu, select Refresh Information.

 To refresh all project files:

1. From the Project menu, select Refresh File Information.

 To activate or de-activate the automatic refresh:

With the automatic file tagging option, files are automatically refreshed whenever a file is loaded
into the workspace or selected in the Project Explorer.

1. From the Edit menu, select Preferences.

2. Select the Project preferences node.

3. Select or clear the Activate file tagging option, and then click OK.

 To edit the Source File Information settings for the project:

1. In the Project Explorer, click the Settings button.

2. Select the project node in the Project Explorer pane.

3. In the Configuration Settings list, expand General.

4. Select Source File Information.

5. When you have finished, click OK to validate the changes.

Manually creating an application or test node

Application nodes and test nodes are the main building blocks of your workspace. An application
node typically contains the source files required to build the application.

Test nodes contain the source under test, test scripts and any dependency filed requires for the test.

 233

The preferred method to create an application or test node is to use the Activity Wizard, which
guides you through the entire creation process.

However, if you are re-using existing components, you might want to create an empty application
node and manually add its components to the workspace.

The GUI allows you to freely create and modify test or application nodes. However, you must
follow the logical rules regarding the order of execution of the items contained in the node. When
using Component Testing for C++, .otc scripts must be placed before .otd scripts.

 To manually add components to the application node.

1. In the Project Explorer, right-click a Project node or a Group node.

2. From the pop-up menu, select Add Child and Files.

3. In the File Selector, select the files that you want to add to the application node.

4. Click Ok.

Note Before running an application node created with this method, please ensure that all
necessary files are present in the application node and that all Configuration Settings have
been correctly set.

Creating an external command node

External Command nodes are custom nodes that allow you to add a user-defined command line at
any point in the project tree.

This is particularly useful when you need to run a custom command line during test execution.

 To add an external command to a workspace:

1. In the Project Explorer, right-click the node inside which you want to create the test,
application or external command node

2. From the pop-up menu, select Add Child and External Command.

3. To move the node up or down in the workspace, right-click the external command node and
select Move Up or Move Down .

 To specify a command line for the external node:

Once the External Command node has been created, you can specify the command line that it will
be carrying in the Configuration Settings dialog box:

1. In the Project Explorer, click the Settings button.

2. Click the External Command node.

3. Enter the command in the Command box.

4. Click OK.

Note External Commands support the GUI Macro Language so that you can send variables from the GUI
environment to your command line. See the GUI Macro Language section in the Reference Manual for further
details.

Creating a group

The Group node is designed to contain several application nodes. This allows you to organize
workspace by grouping applications together.

This also allows you to build and run a specific group of application nodes without running the
entire workspace.

234 IBM Rational Test RealTime User Guide

 To create a group node:

1. In the Project Explorer, right-click the workspace node or right-click any application node.

2. From the pop-up menu, select Add Child and Group.

3. In the New Group box, enter the name of the group.

4. Click OK.

Deleting a node

Removing nodes from a project does not actually delete the files, but merely removes them from
the Project Explorer's representation.

 To delete a node from the Project Explorer:

1. Select one or several nodes that you want to delete.

2. From the Edit menu, select Delete or press the Delete key.

Opening a report

Because of the links between the various views of the GUI, there are many ways of opening a test
or runtime analysis report in Test RealTime. The most common ones are described here.

Note Some reports require opening several files. For example, when manually opening a
UML sequence diagram, you must select at the complete set of .tsf files as well as the .tdf file
generated at the same time. A mismatch in .tsf and .tdf files would result in erroneous
tracing of the UML sequence diagram.

 To open a report from the Project Explorer:

1. Execute your test with the Build command.

2. Right-click the application or test node.

3. From the pop-up menu, select View Report and then the appropriate report.

Note Reports cannot be viewed before the application or test has been executed.

 To manually open a report made of several files:

1. From the File menu, select Browse Reports. Use the Browse Reports window to create a list of
files to be opened in a single report. For example, a .tdf dynamic trace file with the
corresponding .tsf static trace files.

2. Click the Add button. In the Type box of the File Selector, select the appropriate file type.
For example, select .tdf.

3. Locate and select the report files that you want to open. Click Open.

4. Click the Add button. In the Type box of the File Selector, select the appropriate file type.
For example, select .tsf.

5. Locate and select the report files that you want to open. Click Open.

6. In the Browse Reports window, click Open.

 Report Viewers

The GUI opens the report viewer adapted to the type of report:

• The UML/SD Viewer displays UML sequence diagram reports.

• The Report Viewer displays test reports and Memory Profiling reports for Java.

 235

• The Code Coverage Viewer displays code coverage reports.

• The Memory Profiling Viewer and Performance Profiling Viewer display Memory Profiling for
C and C++ and Performance Profiling results.

Creating a source file folder

The Project Explorer Asset Browser provides a convenient way of viewing the source files in your
project.

To make this even more convenient, you can create custom folders to accommodate any file types.
This makes navigation through your source files even easier.

Note The Asset Browser provides a virtual navigation interface. The actual files do not change
location. Use the Properties Window to view the actual file locations.

 To create a custom folder:

1. In the Asset Browser, select the By File sort method.

2. Right-click on an existing folder.

3. From the popup menu, select New Folder...

4. Enter a name for the new folder and a file filter for the desired file type.

Using assembler source files

Test RealTime, provides support for using assembler source code in your projects. Due to their
nature, you cannot use Component Testing or Runtime Analysis tools directly on assembler files.

Because assembler file extensions are not standard and depend on your development environment,
it is necessary to configure Test RealTime to recognize the file extension used for assembler files.
You must specify the assembler file extension:

• In the Project Preferences in order for the GUI to recognize the file type.

• In the TDP Editor for the TDP to recognize assembler files.

 To specify the file type preferences:

1. From the Edit menu, select Preferences and select the Project > Source File Types page.

2. Click Add to create a new line.

3. In the Extension column, enter the file extension. For example: *.asm.

4. In the Description column, enter the description of the file type. For example: Assembler
source files.

5. Click OK.

 To change ASMEXT in the TDP Editor:

1. Open the TDP Editor: from the Tools menu, select Target Deployment Port Editor > Start.

2. In the TDP Editor select Basic Settings and the native language of the TDP.

3. Double-click the ASMEXT customization point, and add the assembler file extension. For
example: asm.

4. Save the TDP and quit the TDP Editor.

 To add the assembler files to your project.

1. In the Project explorer, right click an test or application node and select Add Child > Files.

236 IBM Rational Test RealTime User Guide

2. Select the corresponding file type; and locate and select the assembler files that you want to
use in your project.

3. Click OK.

Unloadable libraries

In some cases, the architecture of an application requires that shared libraries are loaded and
unloaded dynamically during the execution in order to optimizing memory usage.

Test RealTime supports this behavior by allowing you to specify this in the Configuration settings
of the project. There are two steps to this:

• Define a shared library as unloadable

• Specify an application as using unloadable libraries

 To use unloadable libraries in a project:

1. In the Project Explorer, click the Settings button.

2. Select an application or test node in the Project Explorer pane.

3. In the Configuration Settings list, expand Build > Build Target Deployment Port.

4. On Use unloadable library, select Yes.

5. Select the library node of your unloadable shared library in the Project Explorer pane.

6. In the Configuration Settings list, expand Build > Build Target Deployment Port.

7. On Build as unloadable library, select Yes.

8. When you have finished, click OK to validate the changes.

Using shared libraries

Test RealTime, provides support for using, testing and profiling shared libraries with any C or C++
test or application node.

Shared libraries must be stored inside library nodes within the project in order for them to be
accessed by test or application nodes. The library node is a container for the source files of the
shared library.

Once the library has been included in the project, you must create link the library to the test or
application by creating a reference node in the test or application node.

There are three steps that you must follow in order to use a shared library in your project:

• Create a library node in the project.

• Specify how the library is to be linked (statically or dynamically).

• Create a reference to the library in the test or application node.

 To add a shared library to your project:

1. Right-click a group or project node and select Add Child and Library from the popup menu.

2. Enter the name of the Library node

3. Right-click the Library node and select Add Child and Files from the popup menu.

4. Select the source files of the shared library and click OK.

 To specify link settings for a library node:

1. Select a library node in the Project Explorer pane.

 237

2. In the Project Explorer, click the Settings button.

3. Select the Build > Linker page and select the Generation Format:

• Static library (.lib, .a)

• Dynamic library (.dll, .so)

• Executable file (.exe)

4. When you have finished, click OK to validate the changes.

 To link a library node to a test or application node:

1. Right-click the test or application node that will use the shared library and select Add Child
and Reference from the popup menu.

2. Select the library that you want to reference and click OK.

Example

An example demonstrating how to test and profile shared libraries is provided in the Shared
Library example project. See Example projects for more information.

Viewing node properties

You can obtain and change file or node properties by opening the Properties window.

 To view file properties:

1. Right-click a file in the Project Explorer.

2. Select Properties... from the pop-up menu.

Renaming a node

Renaming a node in the Project Explorer involves modifying the properties of the node.

 To change the name of a node:

• In the Project Explorer, right-click the node that you want to modify.

• Select Properties in the pop-up menu.

• Change the Name of the node.

• Click OK.

Adding files to a project

The Project Explorer centralizes all Project files in a unique location. For Test RealTime to access
and analyze source files, they must be accessible from the Project Explorer.

Files are automatically added when you use the Activity Wizard.

 To add files to the Project Explorer:

1. In the Project Explorer, select the Object Browser tab

2. In the Sort Method box, select By Files.

3. From the Project menu, select Add to Current Project and New File...

4. This opens the file selector. In the file Type box, select the type of files that are to be added.

5. Locate and select one or several files to be added, and click Open.

238 IBM Rational Test RealTime User Guide

The selected files will appear under the Source sections of the Project Explorer.

If you have the Automatic source browsing option enabled, your source files will be analyzed,
making their components directly accessible in the Project Explorer.

Importing files

Importing files from a Microsoft Visual Studio project

The Test RealTime GUI offers the ability to create a project by importing source files from an
existing Microsoft Visual Studio 6.0 or .NET project.

Note The Import feature merely imports a list of files as referenced in the Visual Studio
project. It does not import everything you need to immediately build a project in Test
RealTime.

The makefile import feature creates a new project, reads the .dsp or .vcproj project file and adds
the source files found in the Visual Studio project to the Test RealTime project. The project is
created with the default Configuration Settings of the current Target Deployment Port (TDP).

Any other information contained in the Visual Studio project, such as compilation options, must be
entered manually in the Configuration Settings dialog box.

Alternatively, you can import the files as a sub-project of the Test RealTime current project. In this
case, the sub-project inherits the Configuration Settings of the master project.

 To import files from a Microsoft Visual Studio project as a new project:

1. Close any open projects.

2. From the File menu, select Import > Import from Visual Studio 6.0 Project or Import from
Visual Studio .NET Project.

3. Use the file selector to locate a valid .dsp or .vcproj project file and click Open.

4. Enter a name for the new project and click OK.

5. Select the correct Configuration in the Configuration toolbar.

6. In the Project Explorer, click Settings .

7. Enter any specific compilation options in the Build settings and click OK.

 To import files from a Microsoft Visual Studio project as a sub-project:

1. With a project open, select the project node.

2. Right-click the project node and select Add Child > Import.

3. Use the file selector to locate a valid .dsp or .vcproj project file and click Open.

4. In the Project Explorer, click Settings .

5. Enter any specific compilation options in the Build settings and click OK.

Importing files from a makefile

The Test RealTime GUI offers the ability to create a project by importing source files from an
existing makefile.

Note The Import Makefile feature merely imports a list of files as referenced in the makefile.
It does not import everything you need to immediately build a project in Test RealTime.

 239

The makefile import feature creates a new project, reads the makefile and adds the source files
found in the makefile to the project. The project is created with the default Configuration Settings
of the current Target Deployment Port (TDP).

Any other information contained in the makefile, such as compilation options must be entered
manually in the Configuration Settings dialog box. The following limitations apply:

• Source files must be referenced in the build line

• The makefile cannot be recursive

• Any external commands such as Unix Shell commands are not imported

• Complex operations with variables cannot be imported

Any environment variables used within the makefile must be valid.

You can also use Import Makefile feature to import any list of files contained in a plain text file.

Alternatively, you can import the project as a sub-project of the Test RealTime current project. In
this case, the sub-project inherits the Configuration Settings of the master project.

 To import files from a makefile as a new project:

1. Close any open projects.

2. From the File menu, select Import > Import from Makefile. Use the file selector to locate a
valid makefile and click Open.

3. Enter a name for the new project and click OK.

4. Select the correct Configuration in the Configuration toolbar.

5. In the Project Explorer, click Settings .

6. Enter any specific compilation options in the Build settings and click OK.

 To import files from a makefile as a sub-project:

1. With a project open, select the project node.

2. Right-click the project node and select Add Child > Import.

3. Use the file selector to locate a valid makefile and click Open.

4. In the Project Explorer, click Settings .

5. Enter any specific compilation options in the Build settings and click OK.

Importing sub-projects

Sub-projects are projects that are grouped together within a master project. Projects can contain one
or more sub-projects which are actually links to other project directories. The behaviour of a sub-
project is the same as a project.

There are two ways of setting up a master project:

• Add the projects manually to a new or existing project. Use this method to import projects one
by one from different locations or to add sub-projects to an existing project.

• Imports all the projects contained in a specific directory into a master project. Use this method
to automatically import many sub-projects when they are all located in the same directory.

 To add an existing sub-project:

1. Create a new project or open an existing project.

2. Select File > Add Project > Existing Project. This opens the file selector.

240 IBM Rational Test RealTime User Guide

3. Locate and select an .rtp project file and click OK.

 To create a new sub-project:

1. Create a new project or open an existing project.

2. Select File > Add Project > New Project. This opens the Add New Project wizard.

3. Enter a name and location for the new project, and click Finish. The new sub-project is created
with the configuration settings of the super-project.

 To create a master project containing all sub-projects from a directory:

1. Close any open projects

2. Select File > Import > Import multiple Test RealTime projects.

3. Enter the name of the new master project and the location of the existing projects and click
OK. The new project is created in the selected directory and imports all the projects found in
all sub-directories of that location. When browsing many directories, the import can take a
long time.

Importing a data table (.csv file)

IBM Rational Test RealTime Component Testing for C and C++ provide the ability to import .csv
table files and to turn these into standard .h header files. The resulting header file uses the same
filename with a .h extension. Once included in your .ptu or .otd test script, this data can be used by
the test driver script or the application under test.

Such .csv files can be produced by most spreadsheet programs or a text editor.

 To import a .csv file into a test node:

1. From the Project Explorer, right click an existing test node.

2. From the pop-up menu, select Add File...

3. Locate and select the .csv file and click OK.

4. By default, added files are excluded from the build. Click the Excluded marker to allow the file
to be built. The .csv table file must be located before the .ptu test script in the test node.

5. Edit the .ptu test script to manually add an include statement of the resulting .h header file.

Note The .csv data table file must be located before the .ptu test script in the test node. If
not, then you must manually build the .csv data table file before building the test node.

CSV File Format

The formatting rules for the .csv file are as follow:

• The first line contains the names of the variable arrays separated by the default CSV separator
specified in the preferences or the Configuration settings.

• The second line optionally specifies the data type: string, char or int, long, float and double,
which can be signed or unsigned. if this information is not specified, then int is assumed by
default.

• Each following line contains the data for the corresponding array

• When a blank value is encountered, an end of array is assumed. Any further values for that
array will be ignored.

When the test node is built, Test RealTime produces a <filename>.h header file, where <filename> is
based on the name of the input <filename>.csv file.

 241

Use the arrays produced by the .csv file by including <filename>.h into your test script or source
code.

The separator options for the .csv file are defined in two locations:

• Data tables preferences: These specify the default behavior for Test RealTime.

• Data tables section in the General Configuration settings: These allow you to override the
default settings for a particular project of test node.

 Example

This is an example of a valid table.csv data table:
var_A;var_B;var_C

int;signed int;float

12;34;45.2345

14;2;3.142

;-5;0

This produces the following corresponding table.h file:
int var_A[]={12,14};

signed int var_B[]={34,2,-5};

float var_C[]={45.2345,3.142,0};

Editing code and test scripts

The product GUI provides its own text editor for editing and browsing script files and source code.

The Text Editor is a fully-featured text editor with the following capabilities:

• Syntax Coloring

• Find and Replace functions

• Go to line or column

The main advantage of the Text Editor included with Test RealTime is its tight integration with the
rest of the GUI. You can click items within the Project Explorer, Output Window, or any Test and
Runtime Analysis report to immediately highlight and edit the corresponding line of code in the
Editor.

Creating a text file

 To create a new text file:

1. Click the New Text File toolbar button,

2. From the Editor menu, use the Syntax Color submenu to select the language.

or

3. From the File menu, select New... and then open the Text File option

4. From the Editor menu, use the Syntax Color submenu to select the language.

Opening a text file

The Text Editor is tightly integrated with the Test RealTime GUI. Because of the links between the
various views of the GUI, there are many ways of opening a text file. The most common ones are
described here.

242 IBM Rational Test RealTime User Guide

 Using the Open command:

1. From the File menu, select Open... or click the Open button from the standard toolbar.

2. Use the file selector to select the file type and to locate the file.

3. Select the file you want to open.

4. Click OK.

 Using the File Explorer:

1. Select a file in the Project Explorer. If there are recognized components in the file, a '+' symbol
appears next to it.

2. Click the '+' symbol to expand the list of references in the file.

3. Double-click a reference to open the Text Editor at the corresponding line.

You can also navigate through the source file by double-clicking other reference points in the
Project Explorer.

 Using a Test or Report Viewer:

1. With the Report Viewer open, locate an element inside the report.

2. Double-click the item to open the Text Editor at the corresponding line.

Finding text in the text editor

To locate a particular text string within the text editor, use the Find command.

Search Options

The Search box allows you to select the search mode:

• All searches for the first occurrence from the beginning of the file.

• Selected searches through selected text only.

• Forward and Backward specify the direction of the search, starting at the current cursor
position.

Match case restricts search criteria to the exact same case.

Match whole word only restricts the search to complete words.

Use regular expression allows you to specify UNIX-like regular expressions as search criteria.

 To find a text string in the Text Editor:

1. From the Edit menu, select Find...

2. The editor Find and Replace dialog appears with the Find tab selected.

3. Type the text that you want to find in the Find what: section. A history of previously searched
words is available by clicking the Find List button.

4. Change search options if required.

5. Click Find.

Replacing text in the text editor

To replace a text string with another string, you use the Find and Replace command.

 243

 To replace a text string:

1. From the Edit menu, select Replace...

2. The editor Find and Replace dialog appears with the Replace tab selected.

3. Type the text that you want to change in the Find what box. A history of previously searched
words is available by clicking the Find List button.

4. Type the text that you want to replace it with in the Replace with box. A history of previously
replaced words is available by clicking the Replace List button.

5. Change search options (see below) if required.

6. Click Replace to replace the first occurrence of the searched text, or Replace All to replace all
occurrences.

Search Options

The Search box allows you to select the search mode:

• All searches for the first occurrence from the beginning of the file.

• Selected searches through selected text only.

• Forward and Backward specify the direction of the search, starting at the current cursor
position.

• Match case restricts search criteria to the exact same case.

• Match whole word only restricts the search to complete words.

• Use regular expression allows you to specify UNIX-like regular expressions as search criteria.

Locating a line and column in the text editor

The Go To command allows you to move the cursor to a specified line and column within the Text
Editor.

 To use the Go To feature:

1. From the Edit menu, select Go To...

2. The Text Editor's Find and Replace dialog appears with the Go To tab selected.

3. Enter the number of the line or column or both.

4. Click Go to close the dialog box and to move the cursor to the specified position.

Text editor syntax coloring

The Text Editor provides automatic syntax coloring for C, Ada and C++ source code as well for the
C and Ada, C++ test script languages, and System Testing Script Language. The Text Editor
automatically detects the language from the filename extension.

If the filename does not have a standard extension, you must select the language from the Syntax
Color submenu.

 To manually set the syntax coloring mode:

1. From the Editor menu, select the desired language through the Syntax Color submenu.

244 IBM Rational Test RealTime User Guide

Commenting code in the text editor

The text editor allows you simply to comment and uncomment blocks of source code or test script.
The same principle also applies to declaring native C code in a C test script by prefixing each with a
dash (#) character.

 To comment a block of source code

1. In the text editor, select a block of code.

2. Click the Comment (-- or // depending on the language) button in the toolbar.

 To uncomment a block of commented source code

1. In the text editor, select a block of commented code.

2. Click the Uncomment (-- or // depending on the language) button in the toolbar.

 To declare native code in a .ptu test script

1. In the .ptu test script, select a block of native C code.

2. Click the Native # button in the toolbar.

Running tests and applications

Building and Running a Node

You build and execute workspace nodes by using the Build button on the Build toolbar. The
build process compiles, links, deploys, executes, and then retrieves results. However, you first have
to specify the various build options.

You can use the Build command to execute any application node, as well as a single specific
source file, a group node or even the whole project.

Note When you run the Build command, all open files are saved. This means that any
unsaved changes will actually be taken into account for the build.

 Before building a node:

1. Select the correct Configuration for your target in the build toolbar.

2. Exclude any temporarily unwanted nodes from the build.

3. Select the build options for each particular node.

4. If necessary, clean up files left by any previous executions by clicking the Clean button.

 To build and execute the node:

1. From the Build toolbar, click the Build button.

2. During run-time, the Build Clock indicates the execution time and the green LED flashes. The
Project Explorer displays a check mark next to each item to mark progression of the build
process.

3. When the build process is finished, you can view the related test reports.

 To stop the execution:

1. If you want to stop the execution of a node before it finishes, or if the application does not stop
by itself, click the Stop Build/Execution button.

 245

Selecting Build Options for a Node

The Test RealTime GUI allows you to specify the actions that will be performed during a build for
each node in the test project.

Build options contain two sections:

• Stages contains the compilation options. In most cases, you will need to select the All option to
ensure the test is up to date.

• Runtime Analysis allows you to enable debugging and Runtime Analysis tools.

Build options are linked to each node through the Configuration Settings mechanism. For example,
you can decide to only apply Code Coverage to one node in the project. If you want you changes to
apply to the entire project, set the build options on the project node.

By default, the build options of each node are inherited from those of the parent node. When you
override the settings of a parent node, changes are propagated to all child nodes within the same
Configuration.

 To set the build options of a node:

1. In the Project Explorer, click the Settings button.

2. Select a node in the Project Explorer pane.

3. Select the Build node.

4. Click the Value column the ... button.

5. Select the Runtime Analysis features (Memory Profiling, Performance Profiling, Code
Coverage and Runtime Tracing) and build options to use them on the current node.

6. Click OK and Apply.

Excluding a Node from a Build

In some cases, you might want to exclude one or several nodes from the build process. This can be
done by changing the Build state of the node directly in the Project Explorer, as described below, or
through the Properties window.

Note If you exclude a node that contains child nodes, such as an application node, a group
or even a project, none of the contents of the node are executed.

In the Project Explorer, there are three possible build states:

Build state Symbol Description

Build The node is normally built and executed.

Report only R The node is not built, but is used to produce the report.

Exclude from Build The node is not built and ignored.

The Report only option means that only static result files (.tsf and .fdc) are used to generate the
report, but the node is not built and does not produce any dynamic results.

 To change the Build state of a node:

1. In the Project Explorer, click the Build state symbol to toggle the three different states.

2. In the Properties window set the Build property to No.

246 IBM Rational Test RealTime User Guide

Excluding a Node from Instrumentation

In some cases, you might want to exclude one or several source files from the instrumentation
process. This can be done directly in the Project Explorer, as described below, or through the
Properties window.

• Instrumented files are displayed with a blue icon

• Non-instrumented files are displayed with a white icon

You can combine both of the following methods to exclude or include a large number of files from
the instrumentation process.

 To exclude entire directories from instrumentation:

1. In the Project Explorer, click the Settings button.

2. Select Runtime Analysis, General Runtime Analysis and Selective Instrumentation.

3. In Directories excluded from Instrumentation, add the directories to be excluded.

4. Click Ok.

 To turn off instrumentation for an individual node:

1. In the Project Explorer, select the node that you want to exclude from the build.

2. In the Properties window set the Instrumented property to No.

Cleaning Up Generated Files

In some cases, you might want to delete any files created by a build execution, such as to perform
the build process in a clean environment or when you are running short of disk space.

Use the Clean All Generated Files command to do this.

 To clean your workspace:

1. From the Build toolbar, click the Clean All Generated Files button.

Debug mode

The Debug option allows you to build and execute your application under a debugger.

The debugger must be configured in the Target Deployment Port. See the Rational Target
Deployment Guide for further information.

Note Before running in Debug mode you must change the Compilation and Link
Configuration Settings to support Debug mode. For example set the -g option with most
Linux compilers.

Setting environment variables

Solaris, Linux or HP-UX platforms

 To set an environment variable with a csh shell:

1. Open a shell window

2. Type the following command:
setenv <variable> <value>

 247

 To set an environment variable with a sh, ksh, or Bourne shell:

1. Open a shell window

2. Type the following commands:
<variable>=<value>

export <variable>

Windows platforms

 To set an environment variable under Windows NT, 2000 or XP:

1. From the Start menu, select Parameters, Control Panel, and double-click System.

2. Select the Advanced tab and click Environment variables.

3. Click the New... button to add the new environment variable.

4. Click OK.

Viewing reports

Report Viewer

The Report Viewer allows you to view Test or Runtime Analysis reports from Component Testing,
System Testing and any of the Runtime Analysis tools

Most reports are produced as .xrd files, which are generated during the execution of the test or
application node.

 To navigate through the report:

1. You can use the Report Explorer to navigate through the report. Click an element in the Report
Explorer to go to the corresponding line in the Report Viewer.

2. You can also jump directly to the next or previous Failed test in the report by using the Next
Failed Test or Previous Failed Test buttons.

 To filter out passed tests:

You can choose to only display the Failed tests in the report.

1. From the Report Viewer menu, select Failed Tests Only or click the Failed Tests Only button
in the Report Viewer toolbar.

2. To switch back to a complete view of the report, from the Report Viewer menu, select All
Tests or click the All Tests button in the Report Viewer toolbar.

 To hide or show report nodes:

The Report Viewer can filter out certain elements of a report.

1. From the Report Viewer menu, select the elements that you want to hide or show.

Exporting reports to HTML

You can export the following Test and Runtime Analysis reports to HTML.

• Memory Profiling

• Performance Profiling

248 IBM Rational Test RealTime User Guide

• Code Coverage

• Static Metrics

• Component Testing for C and Ada

• Component Testing for C++

• System Testing for C

There are two methods of exporting to HTML, depending on whether you are viewing the report
in a loaded project or you are viewing the report as a standalone document.

 To export to HTML from a project:

1. Select a report in the Project Browser.

2. Select File > Export project report in HTML file format.

3. Choose between exporting the entire project (all the report files contained in the project) or
only the selected report.

4. Select the type of report to export (only if you have selected the entire project) and the
directory where you want the HTML files to be generated.

5. Click Export.

 To export to HTML when no project is open:

1. Open the report.

2. In the Report Viewer menu (labelled as the type of report), select Generate HTML.

3. Select the directory where you want the HTML files to be generated.

4. Click OK.

Understanding Reports

Test RealTime generates Test and Runtime Analysis reports based on the execution of your
application.

Runtime analysis reports

• Memory Profiling

• Performance Profiling

• Code Coverage

• Runtime Tracing

Static analysis reports

• Static metrics

• Code review

Test verdict reports

• Component Testing for C and Ada

• Component Testing for C++

• System Testing for C

 249

Setting the zoom level

UML sequence diagrams and other reports can be viewed with different zoom levels.

 To set the zoom level:

1. You can directly change the zoom level in the View Toolbar by using the Zoom In and
Zoom Out buttons

Or

2. Select one of the pre-defined or custom levels from the Choose Zoom Level box of the View
Toolbar.

Displaying a report summary header

In some cases, test reports can be quite large and complicated when all you want is a quick
summary. The report viewer can display a short summary header at the top of a Component
Testing test report.

The summary header contains:

• The name of the report

• The number of failed and passed tests

• The total number of tests

 To display the summary header for the current test:

1. Open a test report

2. From the Test Report menu, select Show Header.

 To display a full summary for the entire project:

1. Right-click the main project node

2. Select View Report and Test.

3. From the Test Report menu, select Show Header.

Monitoring the test process

About the test process monitor

The test process monitor provides an integrated monitoring feature that helps project managers
and test engineers obtain a statistical analysis of the progress of their development effort.

Each generated metric is stored in its own file and consists of one or more fields.

The test process monitor works by gathering the statistical data from these files and then
generating a graphical chart based on each field.

The preexistence of a file is required before running the test process monitor. Files are created
either by running a runtime analysis feature that generates test process data, or by creating and
updating your own file.

Note Only the Code Coverage tool provides data for the test process monitor. You can,
however, build your own files with the Test Process Monitor tool (tpmadd).

250 IBM Rational Test RealTime User Guide

Changing Curve Properties

The Curve Properties menu allows you to change the way a particular graph is displayed.

 To change the curve color:

1. Right-click a curve.

2. From the pop-up menu, select Change Curve Color.

3. Use the Color Palette to select a new color, and click OK.

 To hide a curve:

1. Right-click a curve.

2. From the pop-up menu, select Hide Curve.

 To set a maximum value:

Changing the maximum displayed value for a curve actually changes the scale at which it is
displayed. For instance, when a curve only reaches 100, there is no point in displaying it at on a
scale of 1000, unless you want to compare it with another curve that uses that scale.

1. Right-click a curve.

2. From the pop-up menu, select Set Max Value.

3. Enter the scale value, and click OK.

Note Setting a maximum value lower than the actual maximum value of a curve can result
in erratic results.

 To display a scale:

For any curve, you can display a scale on the right or left-hand side of the graph. When you display
a new scale, it replaces any previously displayed one.

1. Right-click a curve.

2. From the pop-up menu, select Right Scale or Left Scale.

Custom Curves

In some cases, you may want to remove certain figures from a chart to make it more relevant. The
custom curves capability allows you to alter the chart by selecting the records that you want to
include.

Note Using the custom curves capability does not impact the actual database. If you remove
a record from the chart by using the custom curves function, the actual record remains in the
database and may impact other figures.

Custom curves create a new metric, using the name of the base metric, with a Custom prefix.

 To create a custom curve:

1. Make sure a user is selected in the Report Explorer pane. If not, select a user.

2. From the Project menu, select Test Process Monitor and Custom Curves.

3. In the Custom Curves dialog box, select a metric and the start and end date of your chart.

4. The record list displays all the records contained in the database of that metric. Select the
records that you want to use for your custom curve. Clear the records that you do not want to
use.

5. Click OK. A new metric is created.

 251

 To change a custom curve:

1. From the Project menu, select Test Process Monitor and Custom Curves.

2. In the Custom Curves dialog box, select the Custom metric that you want to modify.

3. Select the records that you want to use for your custom curve. Clear the records that you do
not want to use.

4. Click OK.

Event markers

Use event markers to identify milestones or special events within your Test Process Monitor chart.
An event marker is identified by the date of the event and a marker label.

Event markers appear as bold vertical lines in a Test Process Monitor chart.

 To create an event marker:

1. Right-click the location where you want to put the chart

2. From the pop-up menu, select Event Properties and New Event.

3. Enter the date of the event, and a marker label, and click OK.

 To remove an event marker:

1. Right-click the event marker that you want to hide.

2. From the pop-up menu, select Delete Event.

 To hide a specific event marker:

Hiding a marker does not remove it. You can still make the marker reappear.

1. Right-click the event marker that you want to hide.

2. From the pop-up menu, select Hide Event.

 To hide or show all event markers:

1. In the Test Process Monitor toolbar, click the Events button to hide all event markers.

2. Click again to show all hidden event markers.

Setting the time scale

The scale capability defines the period that you want to view in the Test Process Monitor window.
This option allows you to select an annual, monthly or daily view, as well as a user-definable time
period.

 To set the time scale:

1. Select a user in the Report Explorer pane.

2. From the Project menu, select Test Process Monitor, Scale and the desired time scale.

3. If you chose Customize, enter the start and end date of the period that you want to monitor,
and click OK.

Adding a metric

Metrics generated Code Coverage or other tools are directly available through the Test Process
Monitor. Each metric file contains one or several fields.

252 IBM Rational Test RealTime User Guide

 To open a metric database a metric chart:

1. From the Project menu, select Test Process Monitor and either Project or Current Workspace.
Current Workspace applies to the user of the current workspace. Project applies to all
workspace users in the project.

2. If a new metric database is detected, you need to provide a name for the metric, as well as a
label for each field of the database.

3. In the Report Explorer, select a user.

4. From the Project menu, select Test Process Monitor, the metric and the field that you want to
display.

You can add as many curves as you want to the chart.

 To hide a curve:

1. Right-click a curve.

2. From the pop-up menu, select Hide Curve.

Customizing tools

Custom tools overview

The Tools menu is a user-configurable menu that allows you to access personal tools from the Test
RealTime graphical user interface (GUI). You can customize the Tools menu to meet your own
requirements.

Custom tools can be applied to a selection of nodes in the Project Explorer. Selected nodes can be
sent as a parameter to a user-defined tool application. A series of macro variables is available to
pass parameters on to your tool's command line.

The Tool Configuration dialog allows you to configure a new or existing tool.

In the Tools menu, each tool appears as a submenu item, or Name, with one or several associated
actions or Captions.

Identification

In this tab, you describe how the tool will appear in the Tools menu.

• Enter the Name of the tool submenu as it will appear in the Tools menu and a Comment that is
displayed in the lower section of the Toolbox dialog box.

• Select the type of tool:

• Select Change Management System if the tool is used to send and retrieve from a change
management system. When Change Management System is selected, Check In and Check
Out actions are automatically added to the Action tab (see below) and a Change Management
System toolbar is activated.

• Select External Editor if the tool is an editor. When External Editor is selected, you can select
Automatic Launch if you want this editor to replace the Test RealTime editor for file
extensions specified in the Files Filter list. (for example: "*.c;*.cpp;*.txt").

• Select Other if the tool is neither a configuration management tool nor an editor.

• Clear the Add to Tools menu checkbox if you do not want the tool to be added to the Tools
menu.

 253

• Select Send messages to custom tab if you want to view the tool's text output to be sent to a
specific tab in the Output Window.

• Use the Icon button to attach a custom icon to the tool that will appear in the Tools menu.
Icons must be either .xpm or .png graphic files and have a size of 22x22 pixels.

Actions

This tab allows you to describe one or several actions for the tool.

• The Actions list displays the list of actions associated with the tool. If Change Management
System is selected on the Identification tab, Check In and Check Out tool commands will
listed here. These cannot be renamed or removed.

• Menu text is the name of the action that will appear in the Tools submenu.

• Command is a shell command line that will be executed when the tool action is selected from
Tools menu. Command lines can include GUI macro variables and functions.

A series of macro variables is available to pass parameters on to your tool's command line. See GUI
Macro Variables in the Reference section for detailed information about using the macro
command language.

Click OK to validate any changes made to the Tool Edit dialog box.

 Examples

IBM Rational ClearCase is preconfigured in the Tools menu as the default configuration
management tool. If you are using another tool you can simply add it to the Tools menu.

 To add CVS to the Tools menu:

1. Select Tools > Configure Tools and click Add.

2. On the Identification page, enter CVS in the Name field, and select Change Management
System.

3. On the Actions page, enter the following command lines:

• Add to Source Control: cvs -add $$VCSITEMS

• Check Out: cvs -co $$VCSITEMS

• Check In: cvs -ci $$VCSITEMS

4. Click OK.

 To add the Windows Notepad editor to the Tools menu:

1. Select Tools > Configure Tools and click Add.

2. On the Identification page, enter Notepad in the name field, and select External Editor.

3. If you want Notepad to replace the default editor for .java and .c files for example, then select
Automatic launch and enter:

.java;.c

4. On the Actions page, enter:

notepad.exe $$NODEPATH

5. Click OK.

254 IBM Rational Test RealTime User Guide

Customizing the Tools menu

The Tools menu is a user-configurable menu that allows you to access personal tools from the Test
RealTime graphical user interface (GUI). You can customize the Tools menu to meet your own
requirements.

In the Tools menu, each tool appears as a submenu item, or Name, with one or several associated
actions or Captions.

The Tool Configuration dialog allows you to configure a new or existing tool.

Using the Tools Menu

 To use a user-defined tool:

1. Select an icon from the Project Explorer pane.

2. Click the Tools menu and select the tool you want to use.

 To add a new tool to the Tools menu:

1. Select Tools > Configure Tools.

2. To add a new tool, click Add... If you want to create and modify a copy of an existing tool,
select the existing tool, click Copy and click Edit...

3. Edit the tool in the Tool Edit box. See Custom tools overview.

4. Click OK and Close.

 To edit a user-defined tool:

1. Select Tools > Configure Tools.

2. Select the tool that you want to modify and click Edit...

3. Edit the tool in the Tool Edit box. See Custom tools overview.

4. Click OK and Close.

 To remove a tool from the Tools menu:

1. Select Tools > Configure Tools.

2. Select an existing tool from the tool list.

3. Click Remove and Close.

© Copyright IBM Corp. 2001, 2006 255

Chapter 6. Using the command line interface

IBM Rational Test RealTime was designed ground-up to provide seamless integration with your
development process. To achieve this versatility, the entire set of features are available as
command line tools.

In most cases when a CLI is necessary, the easiest method is to develop, set up and configure your
project in the graphical user interface and to use the studio command line to launch the GUI and
run the corresponding project node.

When not using the GUI to execute a node, you must create source files that can execute Test
RealTime tests or acquire runtime analysis data without conflicting with the your native compiler
and linker. In both cases – that is, regardless of whether you are attempting to execute a Test or
Application node – the native compiler and linker do the true work.

For Test nodes, the following commands convert Test RealTime test scripts into source files
supported by your native compiler and linker:

• attolpreproC for the C language

• atoprepro for the C++ language

• attolpreproADA for the Ada language

Java does not require a special command because the test scripts are already .java files.

For Runtime Analysis, the primary choice is whether or not you wish to perform source code
insertion (SCI) as an independent activity or as part of the compilation and linkage process. Of
course, if no runtime analysis is required, source code insertion is unnecessary and should not be
performed. To simply perform source code insertion, use the binaries:

• attolcc1 for the C language

• attolccp for the C++ language

• attolada for the Ada language

• javi for the Java language

However, if the user would like compilation and linkage to immediately follow source code
insertion, use the binaries:

• attolcc for the C and C++ language

• javic for the Java language for standard compilation

• inclusion of the javic.jar library, and calls to javic.jar classes, as part of an ant-facilitated build
process

The following sections provide details about the most common use cases.

Running a Node from the Command Line

Although the product contains a full series of command line tools, it is usually much easier to
create and configure your runtime analysis specifications inside the graphical user interface (GUI).

256 IBM Rational Test RealTime User Guide

The CLI would then be used to simply launch the GUI with a project or project node as a
parameter.

By doing this, you combine the ease and simplicity of the GUI with the ability to execute project
nodes from a CLI.

Note This functionality can be used to execute any node in a project, including group
nodes, application nodes, test nodes or the entire project.

An HTML output option produces a set of HTML reports in a specified directory. The output is the
same as exporting to HTML from the original reports. With this option, it is not necessary to open
the GUI to view the reports.

 To run a specific node from a command line:

1. Set up and configure your project in the GUI.

2. Save your project and close the GUI.

3. Type the following command:
studio -r <node>.{[.<node>]} <project_file> [-html <directory>]

where:

• <node> is the node to be executed.

• <project> is the .rtp project file.

• <directory> is the output directory for the optional HTML output.

The <node> hierarchy must be specified from the highest node in the project (excluding the actual
project node) to the target node to be executed, with periods ('.') separating each item:

<node>{[.<node>]}

 Example

The following command opens the project.rtp project in the GUI, and runs the app2 application
node, located in group1 of the sub-project subproject1:

studio -r subproject1.group1.app2 project.rtp -html project/output

Command Line Runtime Analysis for C and C++

The runtime analysis tools for C and C++ include:

• Memory Profiling

• Performance Profiling

• Code Coverage

• Runtime Tracing

These features use Source Code Insertion (SCI) technology. When analyzing C and C++ code, the
easiest way to implement SCI features from the command line is to use the C and C++
Instrumentation Launcher.

The Instrumentation Launcher is designed to fit directly into your compilation sequence; simply
add the attolcc command in front of your usual compilation or link command line.

Note The attolcc binary is located in the /cmd directory of the applicable Target
Deployment Port.

 To perform runtime analysis on C or C++ source code:

1. First, set up the necessary environment variables. See Setting Environment Variables.

 257

2. Edit your usual makefile with the following command line:
attolcc [-options] [--settings] -- <compiler command line>

Where <compiler command line> is the command that you usually invoke to build your
application.

For example:
 attolcc -- cc -I../include -o appli appli.c bibli.c -lm

 attolcc -TRACE -- cc -I../include -o appli appli.c bibli.c -lm

3. After execution of your application, in order to process SCI dump information (i.e. the runtime
analysis results), you need to separate the single output file into separate, feature-specific,
result files. See Splitting the SCI Dump File.

4. Finally, launch the Graphical User Interface to view the test reports. See Opening Reports
from the Command Line.

Command Line Runtime Analysis for Java

The runtime analysis tools for Java covered in this section include:

• Performance Profiling

• Code Coverage

• Runtime Tracing

These features use Source Code Insertion (SCI) technology. Memory Profiling for Java relies on
JVMPI instead of SCI technology.

The easiest way to implement SCI from the command line is to use the Java Instrumentation
Launcher: javic. The product provides two methods for use of javic:

• Java Instrumentation Launcher: designed to fit directly into your compilation sequence;
simply add the javic command in front of your usual compilation or link command line

• Java Instrumentation Launcher for Ant: this integrates javic with the Apache Jakarta Ant
utility

For details of command line usage and option syntax, see the Reference section.

 To perform runtime analysis on Java source code:

1. First, set up the necessary environment variables. See Setting environment variables.

2. Edit your usual makefile by adding the Java Instrumentation Launcher to the command line:
javic [-options] -- <compiler command line>

Where <compiler command line> is the command that you usually invoke to build your
application.

Please refer to the Instrumentation Launcher section of the Reference section for information
on the options and settings.

3. After execution, to obtain the final test results, as well as any trace dump information, you
need to separate the output file into separate result files:

• For Memory Profiling for Java, the studio command splits the .jpt JVMPI trace dump file.

• For all other features, the atlsplit command splits the .spt SCI trace dump file.

See Splitting the trace dump file for details about this task.

4. Finally, launch the Graphical User Interface to view the test reports. See Opening reports
from the command line.

258 IBM Rational Test RealTime User Guide

Command Line Component Testing for C, Ada and C++

Use Component Testing for C and Ada and Component Testing for C++ to test individual
components of your C, C++ and Ada source code.

 To perform component testing on C, C++ or Ada source code:

1. First, set up the necessary environment variables. See Setting Environment Variables.

2. Generate a set of test script templates based on your source files by using the Source Code
Parser. See corresponding Source Code Parser command line section in the Reference section.

3. Use the generated .ptu, .otc or .otd templates to write a test script. See the Reference section for
test script syntax.

4. If you are using an .otc Contract Check script, set up an options.h header file. See Preparing an
Options Header File.

5. Compile the generated test harness source file. See Compiling the Test Harness

6. If you are using any of the runtime analysis tools, instrument and compile the source code. See
Instrumenting and Compiling the Source Code.

If not, simply compile your source code with your usual compiler.

7. Set up the TDP configuration file, called product.h. See Preparing a Products Header File.

8. Compile the TDP Library. See Compiling the TDP Library.

9. Link the compiled files together to create an executable test binary. See Linking the
Application.

10. Execute the test binary. See Running the Test Harness or Application.

11. After execution, to obtain the final test results, as well as any SCI dump information, you need
to separate the output file into separate result files. See Splitting the SCI Dump File.

12. Run the Report Generator to produce a test report. See the Reference section.

13. Finally, launch the Graphical User Interface to view the test reports. See Opening Reports
from the Command Line.

Command Line Component Testing for Java

Use Component Testing for Java to test individual components of your Java source code.

 To perform component testing on Java source code:

1. First, set up the necessary environment variables. See Setting Environment Variables.

2. Generate a set of test script templates based on your source files by using the Source Code
Parser. See corresponding Source Code Parser command line section in the Reference Manual.

3. Use the generated .java templates to write a test script. See the Java Test Primitives reference
section.

4. Compile the generated test harness source file. See Compiling the Test Harness.

5. If you are using any of the runtime analysis tools, instrument and compile the source code. See
Instrumenting and Compiling the Source Code.

If not, simply compile your source code with your usual compiler.

6. Set up the TDP configuration file Products.java. See Preparing a Products Header File.

7. Compile the TDP Library. See Compiling the TDP Library.

 259

8. Link the compiled files together to create an executable test binary. See Linking the
Application.

9. Execute the test binary. See Running the Test Harness or Application.

10. After execution, to obtain the final test results, as well as any SCI dump information, you need
to separate the output file into separate result files. See Splitting the SCI Dump File.

11. Run the Report Generator to produce a test report. See the corresponding Report Generator
command line section in the Reference section.

12. Finally, launch the Graphical User Interface to view the test reports. See Opening Reports
from the Command Line.

Command Line System Testing for C

Use System Testing to test message-based systems and subsystems written in C.

 To perform message based testing on a system:

1. First, set up the necessary environment variables. See Setting Environment Variables.

2. Write a System Testing .pts test script. See System Testing language reference.

3. Write a System Testing .spv supervisor script. See System Testing language reference.

Note Manually created supervisor scripts may be overwritten by the Test RealTime
graphical user interface.

4. Compile the generated test harness source file. See Compiling the Test Harness.

5. If you are using any of the runtime analysis tools, instrument and compile the source code. See
Instrumenting and Compiling the Source Code.

If not, simply compile your source code with your usual compiler.

6. Set up the TDP configuration file, called product.h. See Preparing a Products Header File.

7. Compile the TDP Library. See Compiling the TDP Library.

8. Link the compiled files together to create an executable test binary. See Linking the
Application.

9. Ensure that the System Testing agents are running on all remote target hosts. See Installing
System Testing Agents.

10. Run the supervisor script on the supervisor machine (the machine running Test RealTime)
with the following command:
atsspv <supervisor.spv>

where supervisor is the name of the .spv supervisor script.

11. Run the System Testing Report Generator to produce a test report. See System Testing Report
Generator - atsmerge.

12. Finally, launch the Graphical User Interface to view the test reports. See Opening Reports
from the Command Line.

Command line examples

This section describes an example of using Test RealTime Runtime Analysis tools through the
Command Line Interface:

260 IBM Rational Test RealTime User Guide

Note This example is for UNIX platforms only.

This example demonstrates using Runtime Analysis tools through the attolcc Instrumentation
Launcher. The example application is the Apache Web Server, which is widely available for most
platforms.

Additionally, the Apache Web Server is a multi-process, multi-tasking application written in C
where particular attention must be paid to tracking memory leaks.

 To prepare for the example:

1. Download the apache_1.3.27.tar.gz archive of the Apache web server source code from:

http://www.apache.org/dist/httpd/

2. Copy the archive file to the directory where you will perform the tests (for example,
/projects/Apache_Test) and untar the archive:
cp /projects/download/apache_1.3.27.tar.gz .

tar zxvf apache_1.3.27.tar.gz

cd apache_1.3.27

3. To set up the Test RealTime environment, type the following command:
. <install_dir>/TestRealTime.2003.06.00/testrtinit.sh

where <install_dir> is the installation directory of the product.

Refer to the Rational Test RealTime Installation Guide for information about setting up and
launching the product.

 To compile the application with the Runtime Analysis features

1. To configure the Apache release, type the following command:
./configure --prefix=`pwd`

2. To compile the Apache server with instrumentation, type the following commands:
REP=`pwd`

make -C src/main gen_test_char

make CC="attolcc -mempro -perfpro -trace -proc=ret -block=l -keep --
atl_multi_process=1 --atl_traces_file=$REP/atlout.spt -- gcc"

This compiles the application with the following options:

• Memory Profiling instrumentation enabled

• Performance Profiling instrumentation enabled

• Runtime Tracing instrumentation enabled

• Instrumentation of procedure inputs, outputs, and terminal instructions

• Instrumentation of simple, implicit and logical blocks (loops)

• Keep instrumented files

• Multi-process support

3. To install the Apache server, type the following command:
make install

This should display a message indicating that you have successfully built and installed the
Apache 1.3 HTTP server.

 To run the application and view runtime analysis results

1. Optionally, edit the configuration file apache_1.3.27/conf/httpd.conf.

2. To start the Apache server, type the following command:

 261

/projects/Apache_Test/apache_1.3.27/bin/apachectl start

3. To stimulate the application, start a web browser on port 8080 (see the httpd.conf file), type
the following command:
netscape <IP Address>:8080

where <IP Address> is the IP address of the machine hosting the Apache server.

4. To stop the Apache server, type the following command:
/projects/Apache_Test/apache_1.3.27/bin/apachectl stop

5. To split the results, type the following command:
atlsplit *.spt

6. To start the Test RealTime GUI to view the results, type the following command:
studio `find . -name "*.fdc"` `find . -name "*.tsf"` *.tio *.tpf
*.tqf *.tdf

Command Line Tasks

Setting Environment Variables

The command line interface (CLI) tools require several environment variables to be set.

These variables determine, for example, the Target Deployment Port (TDP) that you are going to
use. The available TDPs are located in the product installation directory, under targets. Each TDP is
contained in its own sub-directory.

Prior to running any of the CLI tools, the following environment variables must be set:

• TESTRTDIR indicates the installation directory of the product

• ATLTGT and ATUTGT specify the location of the current TDP: $TESTRTDIR/targets/<tdp>,
where <tdp> is the name of the TDP.

• PATH must include an entry to $TESTRTDIR/bin/<platform>/<os>, where <platform> is the
hardware platform and <os> is the current operating system.

You must also add the product installation bin directory to your PATH.

Note Some command-line tools may require additional environment variables. See the
chapters dedicated to each command in the Reference Manual section.

Note Environment variables concerning Java on Windows must not contain spaces. Use 8.3
naming conventions, for example: TESTRTDIR=C:\PROGRA~1\Rational\TESTRE~1.

Most of these environment variables are set during installation of the product. Under Linux, use
the testrtinit.sh script to set these variables. See the Reference section for more information about
these scripts.

Automated Testing

If you are using Component Testing or System Testing features, the following additional
environment variables must be set:

• ATUDIR for Component Testing, points to $TESTRTDIR/lib

• ATS_DIR, for System Testing, points to $TESTRTDIR/bin/<platform>/<os>, where <platform>
is the hardware platform and <os> is the current operating system.

Library Paths

UNIX platforms require the following additional environment variable:

262 IBM Rational Test RealTime User Guide

• On Solaris and Linux platforms: LD_LIBRARY_PATH points to
$TESTRTDIR/lib/<platform>/<os>

• On HP-UX platforms: SHLIB_PATH points to $TESTRTDIR/lib/<platform>/<os>

• On AIX platforms: LIB_PATH points to $TESTRTDIR/lib/<platform>/<os>

where <platform> is the hardware platform and <os> is the current operating system.

Example

The following example shows how to set these variables for Test RealTime with a sh shell on a Suse
Linux system. The selected Target Deployment Port is clinuxgnu.

TESTRTDIR=/opt/Rational/TestRealTime.v2002R2

ATCDIR=$TESTRTDIR/bin/intel/linux_suse

ATUDIR=$TESTRTDIR/lib

ATS_DIR=$TESTRTDIR/bin/intel/linux_suse

ATLTGT=$TESTRTDIR/targets/clinuxgnu

ATUTGT=$TESTRTDIR/targets/clinuxgnu

LD_LIBRARY_PATH=$TESTRTDIR/lib/intel/linux_suse

PATH=$TESTRTDIR/bin/intel/linux_suse:$PATH

export TESTRTDIR

export ATCDIR

export ATUDIR

export ATS_DIR

export ATLTGT

export ATUTGT

export LD_LIBRARY_PATH

export PATH

Preparing an Options Header File

This step is necessary if you are using:

• System Testing for C

• .otc Contract Check feature

Before you can compile a generated source file, you must set up a file named options.h, which
contains compilation parameters for such files.

 How to prepare the options.h file:

1. From the sub-directory lib of the selected Target Deployment Port, copy a file named
options_model.h to a directory of your choice, and rename it to options.h.

The directory of your choice may be the directory where the generated source files or
instrumented source files are located.

2. Open options.h in a text editor and add the following define at the beginning of the file:
#define ATL_WITHOUT_STUDIO

3. Make any necessary changes by adjusting the corresponding macros in the file.

The options_model.h file is self-documented, and you can adjust every macro to one of the values
listed. Each macro is set to a default value, so you can keep everything unchanged if you don't
know how to set them.

Take note of the directory where this file is stored, you will need it in order to compile the
generated or instrumented source files.

 263

Preparing a Products Header File

Before you can compile the TDP library source files, you must set up a file named products.h for C
and C++ or Products.java for Java. This file contains the options that describe how the TDP library
files are to be compiled.

 To set up a products header file

1. For C and C++, copy the product_model.h file from the lib sub-directory of the current Target
Deployment Port to a directory of your choice, and rename it to products.h.

The directory of your choice may be the directory where the generated source files or
instrumented source files are located.

2. For Java, copy the Products_defaults.java.txt file from the lib sub-directory of the current
Target Deployment Port to com/rational/test/Products.java.

3. Open products.h or Products.java in a text editor and add the following define at the beginning
of the file:

#define ATL_WITHOUT_STUDIO

4. Make any necessary changes by adjusting the corresponding macros in the file.

The product_model.h file is self-documented, and you can adjust every macro to one of the values
listed. Each macro is set to a default value, so you can keep everything unchanged if you don't
know how to set them.

Note Pay attention to correctly set the macros starting with USE_, because these macros set
which features of Test RealTime you are using. Certain combinations are not allowed, such
as using several test features simultaneously.

Ensure that the ATL_TRACES_FILE macro correctly specifies the name of the trace file which will
be produced during the execution. If you are using Component Testing, this value may be
overridden by a Test Script Compiler command line option.

Take note of the directory where this file is stored, you will need it in order to compile the
generated or instrumented source files.

Instrumenting and Compiling the Source Code

The runtime analysis tools (Memory Profiling, Performance Profiling, Code Coverage and Runtime
Tracing) as well as Component Testing for C++ Contract Check all use SCI instrumentation
technology to insert analysis and SCI dump routines into your source code.

Requirements

Before compiling an SCI-instrumented source file, you must make sure that:

• A working C, Ada, C++ or Java compiler is installed on your system

• If you use Component Testing for C++, you have prepared a valid options.h file

• If you compile on a target different from the host where the generated file has been produced,
the instrumented file must have been produced using option -NOPATH, and the sub-
directory lib of the selected Target Deployment Port directory must be copied onto the target.

There are two alternatives to instrument and compile your source code:

• Using the Instrumentation Launcher in your standard makefile

• Using the Instrumentor and Compiler separately.

264 IBM Rational Test RealTime User Guide

Instrumentation Launcher

The Instrumentation Launcher replaces your actual compiler command in your makefiles. This
launcher transparently takes care of source code preprocessing, instrumentation and compiling.

See the reference section:

• C and C++ Instrumentation Launcher - attolcc

• Java Instrumentation Launcher - javic

Instrumentation and Compilation

Alternatively, you can use the actual Instrumentor command line tools to instrument the source
files.

See the reference section:

• C and C++ Instrumentor - attolcc1 and attolccp

• Ada Instrumentor - attolada

• Java Instrumentor - javi

If you are compiling on a different target, you must copy the TDP /lib directory over to that target.

Add to the include search path the /lib sub-directory that you have copied onto the target. In C and
C++, use the -I compiler option. In Java, add the directory to the CLASSPATH.

After this, simply compile the instrumented source file with your compiler.

Compiling the TDP Library

Before you can link your test harness or your instrumented application, you must compile the
Target Deployment Port library. This section describes how to do this.

Requirements

To compile the Target Deployment Port library, make sure that:

• A working C or C++ Test Script Compiler is installed on your system

• You have prepared a valid Products file

Compilation

Depending on the language of your source file:

• For C: compile the TP.c file

• For C++: compile the TP.cpp file

• For Ada: compile the contents of the /lib directory

• For Java: set the CLASSPATH to the TDP /lib directory

Do not forget to add to the include search path the directory where the products.h or Products.java
file is located (usually with option -I or /I, depending on the compiler).

Configuration Settings

A wide variety of compilation flags can be used by the command line tools, allowing you to select
sub-components of the application under test. These flags are equivalent to the Test Configuration
Settings dialog box of the graphical user interface and are covered in the Reference section.

Default settings are contained in the following Perl script. You can use this file to define your own
customized configuration settings.

<InstallDir>/lib/scripts/BatchCCDefaults.pl

 265

To run this script, type the following command:
$TESTRTDIR/bin/<cpu>/<os>/perl -I$TESTRTDIR/lib/perl

$TESTRTDIR/lib/scripts/TDPBatchCC.pl <my_env.pl>

where <cpu> is the architecture platform of the machine, <os> is the operating system, and
<my_env.pl> is your customized copy of the BatchCCDefaults.pl file

The TESTRTDIR and ATLTGT environment variables must have been previously set.

Compiling the Test Harness

Each of the test compilers converts a test script into test harness source code. This section explains
how to compile the test harness source file.

Requirements

In order to compile a generated source file, you must check that:

• A working C, C++ or Ada compiler is installed on your system

• If you are using System Testing, you have prepared a valid options.h file

• If you are compiling on a target different from the host where the file was generated, the
generated file must have been produced using the -NOPATH option (available with every test
compiler), and the /lib sub-directory of the Target Deployment Port directory must be copied
onto the target.

Compilation

If you are using Component Testing, System Testing or Component Testing for C++ alone without
any of the runtime analysis tools, then simply compile the generated test harness source file with
your C or C++ compiler.

If you are compiling on a remote target, do not forget to add to the include search path the /lib sub-
directory that you have copied onto the target.

If you are using SCI instrumentation features (Memory Profiling, Performance Profiling, Code
Coverage, Runtime Tracing and C++ .otc contract check), use the specific command line options for
the Instrumentor in the Reference section:

• C and C++ Instrumentor - attolcc1 and attolccp

• Ada Instrumentor - attolada

• Java Instrumentor - javi

Linking the Application

Once you have compiled all your source files, you need to link them to build an executable. This
section describes linkage specifics when using a test or runtime analysis feature.

Requirements

In order to compile an instrumented source file, you must check that:

• A working C, C++ or Ada linker is installed on your system

• You have compiled every source file, including any instrumented source files, of your
application under test

• If using a Component Testing for C, Ada or C++, or System Testing, you have compiled the test
harness.

• You have compiled the Target Deployment Port library.

266 IBM Rational Test RealTime User Guide

Linking

If you are using only runtime analysis feature (Runtime Tracing, Code Coverage, Memory
Profiling, Performance Profiling, C++ Contract Check), you just have to add the Target
Deployment Port library object to the object files linked together. If you are using a test feature, you
also have to add the tester object to the linked files.

You just have to add the Target Deployment Port library object to the object files linked together.

Running the Test Harness or Application

Once you have produced a binary tester or instrumented application, you want to run it in order to
obtain test or SCI analysis information.

By default, the generated SCI dump file is named atlout.spt.

 To run the test application binary:

1. Check that the current directory is correct, relatively to the previously specified trace file, if the
trace files was specified with a relative path.

2. Run the binary. When the application terminates, the trace file should be available.

Troubleshooting Command Line Usage

The following information might help if you encounter any problems when using the command
line tools.

Failure Response

Compilation fails Ensure that the selected Target Deployment Port matches your compiler;
there may be several Target Deployment Ports for one OS, each of which
targets a different compiler. If you are unsure, you can check the full name
of a Target Deployment Port by opening any of the .ini files located in the
Target Deployment Port directory.

Compiler reports that
options.h is missing

Ensure that you have correctly prepared the options.h file, and that this
file is located in a directory that is searched by your compiler (this is
usually specified with -I or /I option on the compiler command line).

Compiler reports that TP.h file
is missing

If you are compiling on a target different from the host where the
generated file has been produced, double-check the above specific
requirements to compilation on a different target.

If the compiler and C/C++ Test Script Compiler are executed on the same
machine, ensure you have not used the -NOPATH option on the test
compiler command line, and that the ATLTGT environment variable was
correctly set while the test compiler was executed.

Compilation fails Ensure that the selected Target Deployment Port matches your compiler;
there may be several Target Deployment Ports for one OS, each of which
targets a different compiler. If you are unsure, you can check the full name
of a Target Deployment Port by opening any of the .ini files located in the
Target Deployment Port directory.

TDP compilation fails When using the -I- linker option, the TDP fails to compile. This is because
the following line is added to the instrumented file:

#include "<path to target
directory>/TP.h"

where TP.h includes other files using the #include syntax, such as:
#include "clock.h"

where clock.h is in the same directory as "TP.h". If you use the -I- flag, the
compiler no longer searches the same directory as the current file (TP.h)
and therefore cannot find clock.h. If you cannot remove the -I- flag, you

 267

must add a -I flag for the compiler to find the include files required by the
TDP.

Linkage fails because of
undefined references

Ensure you have successfully compiled the Target Deployment Port
library object, and have included it in your linked files

Ensure you have correctly configured the products.h options file.

If you are using a test feature, ensure that you are linking both source
under test and additional files. You may also want to add some stubs in
your .ptu or .otd test script.

Ensure the options set in options.h (if required) are coherent with the
options set in products.h.

Errors are reported through
#error directives

You may have selected a combination of options in products.h which is
incompatible. The error messages help you to locate the inconsistencies.

Splitting the trace dump file

When you use several features together, the executable produces a multiplexed trace file,
containing several outputs targeting different features from Test RealTime.

The method for splitting the trace dump file is different, depending on the output file produced.

• Memory Profiling for Java uses a .jpt JVMPI trace dump file.

• All other features use an atlout.spt SCI dump file.

Splitting an SCI dump file

In most cases, you must split the atlout.spt trace file into several files for use with each particular
Report Generator or the product GUI.

To do this, you must have a working perl interpreter. You can use the perl interpreter provided with
the product in the /bin directory.

 To split the trace file:

1. Use the atlsplit tool supplied in the /bin directory of Test RealTime :
atlsplit atlout.spt

After the split, depending on the selected runtime analysis tools, the following file types are
generated:

• .rio test result files: process with a Report Generator

• .tio Code Coverage report files: view with Code Coverage Viewer

• .tdf dynamic trace files: view with UML/SD Viewer

• .tpf Memory Profiling report files: view with Memory Profiling Viewer

• .tqf Performance Profiling report files: view with Performance Profiling Viewer

Splitting a JVMPI trace dump file (Memory Profiling for Java only)

The Memory Profiling for Java features produces a .jpt file. When opening this file for the first
time, the .jpt must be split into a .tpf file and a .txf file by studio.

 To split and view the Java trace file:

1. Run the studio GUI with the following parameters:
studio <jpt file> <txf file> <tpf file>

268 IBM Rational Test RealTime User Guide

After the split, depending on the selected runtime analysis tools, the following file types are
generated:

• .tpf Memory Profiling report files: view with Report Viewer

• .txf Java Dynamic report files: view with Report Viewer

Opening Reports from the Command Line

Once the test harness or application has been successfully run, you will want to view the test result
files in the Test RealTime. To do this, simply invoke the studio binary with the corresponding
result files. Some reports require at least two files to be opened simultaneously.

• Code Coverage: .fdc and .tio files

• Memory Profiling for C and C++: .tsf and .tpf files

• Memory Profiling for Java: .tpf and .txf files

• Performance Profiling: .tsf and .tqf files

• Runtime Tracing: .tsf and .tdf files

• Test Reports: .xrd files

Alternatively, you can launch the GUI (studio) and use the Browse Reports feature to open the
report files. See Opening a Report.

Report Viewers

The GUI opens the report viewer adapted to the type of report:

• The UML/SD Viewer displays UML sequence diagram reports.

• The Report Viewer displays test reports and Memory Profiling reports for Java.

• The Code Coverage Viewer displays code coverage reports.

• The Memory Profiling Viewer and Performance Profiling Viewer display Memory Profiling for
C and C++ and Performance Profiling results.

 Examples

To open the Runtime Tracing UML sequence diagram:
studio MyApp.tsf MyApp.tdf

To open a Java Memory Profile report for the first time:
studio MyApp.jpt MyApp.txf MyApp.tpf

To open a Java Memory Profile report once the .txf an .tpf files have been generated:
studio MyApp.txf MyApp.tpf

To open a Test Report file
studio MyTest.xrd

© Copyright IBM Corp. 2001, 2006 269

Chapter 7. Using source code insertion

Source code insertion (SCI) technology uses instrumentation techniques that automatically adds
special code to the source files under analysis. After compilation, execution of the code produces
SCI dump data for the selected runtime analysis or automated testing features.

IBM Rational Test RealTime makes extensive use of source code insertion technology to
transparently produce test and analysis reports on both native and embedded target platforms.

Estimating Instrumentation Overhead

Instrumentation overhead is the increase in the binary size or the execution time of the
instrumented application, which is due to source code insertion (SCI) generated by the Runtime
Analysis features.

Source code insertion technology is designed to reduce both types of overhead to a bare minimum.
However, this overhead may still impact your application.

The following table provides a quick estimate of the overhead generated by the product.

Code Coverage Overhead

Overhead generated by the Code Coverage feature depends largely on the coverage types selected
for analysis.

A 48-byte structure is declared at the beginning of the instrumented file.

Depending on the information mode selected, each covered branch is referenced by an array that
uses

• 1 byte in Default mode

• 1 bit in Compact mode

• 4 bytes in Hit Count mode

The actual size of this array may be rounded up by the compiler, especially in Compact mode
because of the 8-bit minimum integral type found in C and C++.

See Information Modes for more information.

Other Specifics:

• Loops, switch and case statements: a 1-byte local variable is declared for each instance

• Modified/multiple conditions: one n-byte local array is declared at the beginning of the
enclosing routine, where n is the number of conditions belonging to a decision in the routine

I/O is either performed at the end of the execution or when the end-user decides (please refer to
Coverage Snapshots in the documentation).

As a summary, Hit Count mode and modified/multiple conditions produce the greatest data and
execution time overhead. In most cases you can select each coverage type independently and use

270 IBM Rational Test RealTime User Guide

Pass mode by default in order to reduce this overhead. The source code can also be partially
instrumented.

Memory and Performance Profiling and Runtime Tracing

Any source file containing an instrumented routine receives a declaration for a 16 byte structure.

Within each instrumented routine, a n byte structure is locally declared, where n is:

• 16 bytes

• +4 bytes for Runtime Tracing

• +4 bytes for Memory Profiling

• +3*t bytes for Performance Profiling, where t is the size of the type returned by the clock-
retrieving function

For example, if t is 4 bytes, each instrumented routine is increased of:

• 20 bytes for Memory Profiling only

• 20 bytes for Runtime Tracing only

• 28 bytes for Performance Profiling only

• 36 bytes for all Runtime Analysis features together

Memory Profiling Overhead

This applies to Memory Profiling for C and C++. Memory Profiling for Java does not use source
code insertion.

Any call to an allocation function is replaced by a call to the Memory Profiling Library. See the
Target Deployment Guide for more information.

These calls aim to track allocated blocks of memory. For each memory block, 16+12*n bytes are
allocated to contain a reference to it, as well as to contain link references and the call stack observed
at allocation time. n depends on the Call Stack Size Setting, which is 6 by default.

If ABWL errors are to be detected, the size of each tracked, allocated block is increased by 2*s bytes
where s is the Red Zone Size Setting (16 by default).

If FFM or FMWL errors are to be detected, a Free Queue is created whose size depends on the Free
Queue Length and Free Queue Size Settings. Queue Length is the maximum number of tracked
memory blocks in the queue. Queue Size is the maximum number of bytes, which is the sum of the
sizes of all tracked blocks in the queue.

Performance Profiling Overhead

For any source file containing at least one observed routine, a 24 byte structure is declared at the
beginning of the file.

The size of the global data storing the profiling results of an instrumented routine is 4+3*t bytes
where t is the size of the type returned by the clock retrieving function. See the Target Deployment
Guide for more information.

Runtime Tracing Overhead

Implicit default constructors, implicit copy constructors and implicit destructors are explicitly
declared in any instrumented classes that permits it. Where C++ rules forbid such explicit
declarations, a 4 byte class is declared as an attribute at the end of the class.

 271

Reducing Instrumentation Overhead

Rational's Source Code Insertion (SCI) technology is designed to reduce both performance and
memory overhead to a minimum. Nevertheless, for certain cross-platform targets, it may need to
be reduced still further. There are three ways to do this.

Limiting Code Coverage Types

When using the Code Coverage feature, procedure input and simple and implicit block code
coverage are enabled by default. You can reduce instrumentation overhead by limiting the number
of coverage types.

Note The Code Coverage report can only display coverage types among those selected for
instrumentation.

Instrumenting Calls (C Language)

When calls are instrumented, any instruction that calls a C user function or library function
constitutes a branch and thus generates overhead. You can disable call instrumentation on a set of C
functions using the Selective Code Coverage Instrumentation Settings.

For example, you can usually exclude calls to standard C library functions such as printf or fopen.

Optimizing the Information Mode

When using Code Coverage, you can specify the Information Mode which defines how much
coverage data is produced, and therefore stored in memory.

Generating SCI Dumps

By default, the system call atexit() or on_exit() invokes the Target Deployment Port (TDP) function
that dumps the trace data. You can therefore instrument either all or a portion of the application as
required.

When instrumenting embedded or specialized applications that never terminate, it is sometimes
impractical to generate a dump on the atexit() or on_exit() functions. If you exit such applications
unexpectedly, traces may not be generated.

In this case, you must either:

• Specify one or several explicit dump points in your source code, or

• Use an external signal to call a dump routine, or

• Produce an snapshot when a specific function is encountered.

Explicit Dump

Code Coverage, Memory Profiling and Performance Profiling allow you to explicitly invoke the
TDP dump function by inserting a call to the _ATCPQ_DUMP(1) instrumentation pragma (the
parameter 1 is ignored).

Explicit dumps should not be placed in the main loop of the application. The best location for an
explicit dump call is in a secondary function, for example called by the user when sending a
specific event to the application.

The explicit dump method is sometimes incompatible with watchdog constraints. If such
incompatibilities occur, you must:

272 IBM Rational Test RealTime User Guide

• Deactivate any hardware or software watchdog interruptions

• Acknowledge the watchdog during the dump process, by adding a specific call to the Data
Retrieval customization point of the TDP.

You can automatically add an explicit dump your C and C++ source code by clicking the Add
Dump button in the text editor. This inserts the _ATCPQ_DUMP instrumentation pragma into
your source code.

Dump on Signal

Code Coverage allows you to dump the traces at any point in the source code by using the
_ATC_SIGNAL_DUMP environment variable.

When the signal specified by _ATC_SIGNAL_DUMP is received, the Target Deployment Port
function dumps the trace data and resets the signal so that the same signal can be used to perform
several trace dumps.

Before starting your tests, set _ATC_SIGNAL_DUMP to the number of the signal that is to trigger
the trace dump.

The signal must be redirectable signal, such as SIGUSR1 or SIGINT for example.

Instrumentor Snapshot

The Instrumentor snapshot option enables you to specify the functions of your application that will
dump the trace information on entry, return or call.

In snapshot mode, the Runtime Tracing feature starts dumping messages only if the Partial
Message Dump setting is activated. Code Coverage, Memory Profiling and Performance Profiling
features all dump their internal trace data.

© Copyright IBM Corp. 2001, 2006 273

Chapter 8. Working with other development tools

Rational Test RealTime is a versatile tool that is designed to integrate with your existing
development environment.

Working with configuration management

The GUI provides an interface that allows you to control your project files through a configuration
management (CM) system such as Rational ClearCase and submit software defect report to a
Rational ClearQuest system.

Note Before using any configuration management tool, you must first configure the CMS
Preferences dialog box. See Customizing Configuration Management.

You can also set up the GUI to use a CM system of your choice.

Working with IBM Rational ClearCase

IBM Rational ClearCase is a configuration management system (CMS) tool providing version
control, workspace management, process configurability, and build management. With ClearCase,
your development team gets a scalable, best-practices-based development process that simplifies
change management – shortening your development cycles, ensuring the accuracy of your releases,
and delivering reliable builds and patches for your previously shipped products.

By default, Test RealTime offers configuration management support for ClearCase. You can
however customize the product to support different configuration management software. When
using ClearCase you can instantly control your files from the product Tools menu.

Note Before using ClearCase commands, select Rational ClearCase as your CMS tool in the
CMS Preferences.

Source Control Commands.

For any file in the Test RealTime project, ClearCase, or any other CMS tool, can be accessed
through a set of source control commands.

Source control can be applied to all files and nodes in the Project Browser or Asset Browser. When
a source control command is applied to a project, group, application, test or results node, it affects
all the files contained in that node.

The following source control commands are included for use with ClearCase:

• Add to Source Control

• Check Out

• Check In

• Undo Check Out

• Compare to Previous Version

• Show History

274 IBM Rational Test RealTime User Guide

• Show Properties

Please refer to the documentation provided with ClearCase for more information about these
commands.

Source control commands are fully configurable from the Tools menu.

 To control files from the Tools menu:

1. Select one or several files in the Project Explorer window.

2. From the Tools menu, select Rational ClearCase and the source control command that you
want to apply.

 To control files from the Source Control popup menu:

1. Right-click one or several files in the Project Explorer window.

2. From the popup menu, select Source Control and the source control command that you want
to apply.

Working with IBM Rational ClearQuest

IBM Rational ClearQuest is a defect and change tracking tool designed to operate in a client/server
environment. It allows you to easily track defects and change requests, target your most important
problems or enhancements to your product. ClearQuest helps you determine the quality of your
application or component during each phase of the development cycle and helps you track the
release in which a feature, enhancement or bug fix appears.

By default, the product offers defect tracking support for ClearQuest. When using ClearQuest with
Test RealTime you can directly submit a report from a test or runtime analysis report.

 To submit a ClearQuest report from Test RealTime:

1. In the Report Explorer, right-click a test.

2. From the pop-up menu, select Submit ClearQuest Report.

3. This opens the ClearQuest Submit Defect window, with information about the Failed test.

4. Enter any other necessary useful information, and click OK.

Please refer to the documentation provided with Rational ClearQuest for more information.

Customizing source control tools

Out of the box, the product offers configuration management support for Rational ClearCase, but
the product can be configured to use most other Configuration Management Software (CMS) that
uses a vault and local repository architecture and that offers a command line interface.

 To configure the product to work with your version control software:

1. Add a new CMS tool to the Toolbox with the command lines for checking files into and out of
the configuration management software. This activates the Check In and Check Out
commands in the Project Explorer and the ClearCase Toolbar.

2. Set up version control repository in CMS Preferences.

Working with Eclipse C/C++ Development Tools

The Test RealTime plug-in for Eclipse CDT allows you to use the Runtime Analysis tools with the
Eclipse C/C++ Development Tools (CDT) without leaving the Eclipse environment.

 275

If you installed Eclipse and Eclipse CDT after Test RealTime, you must manually install the Test
RealTime plug-in for Eclipse. Installation is described in the IBM Rational Test RealTime
Installation Guide.

Test RealTime plugin for Eclipse overview

The Test RealTime plugin for Eclipse allows you to use the Runtime Analysis tools with the Eclipse
C/C++ Development Tools (CDT) on Windows platforms without leaving the Eclipse
environment.

The Test RealTime plugin for Eclipse CDT relies on the following third party product versions:

• Eclipse version 3.1.0

• Eclipse CDT version 3.0.0

• EMF/XSD version 2.1.0

• Java 2 Platform, Standard Edition, version 1.4.2

• Cygwin 1.5 or later

It is important that these exact versions are used. Any later or earlier versions of these products
might cause the Test RealTime integration to fail.

Please refer to the IBM Rational Test RealTime Installation Guide for details on installing these
products and the Test RealTime plugin.

How the Test RealTime plugin for Eclipse works

The plugin supports managed and unmanaged C and C++ projects in the Eclipse development
platform.

In Eclipse, you engage the runtime analysis tools on a managed or unmanaged C or C++ project.
You set the configuration settings for the project or for each source file, run the source code, and
view the runtime analysis results in Eclipse.

Enabling runtime analysis tools on an Eclipse project

To use the runtime analysis tools on your Eclipse project files, you must enable the project for Test
RealTime. This creates the Test RealTime configuration for your project.

Before you enable the project, you must ensure that the correct Target Deployment Port is selected
in the Test RealTime preferences.

Note By default, the selected TDP is for C. If you are using C++, you must select a C++
TDP.

When you first enable Test RealTime on a project, a default configuration is created based on the
default TDP as specified in the Test RealTime preferences. You can change the active
configurations later in the Set Active Configurations.

 To enable an Eclipse C or C++ project for Test RealTime:

1. Select Window > Preferences and Test RealTime and ensure the correct Target Deployment
Port is selected in Default TDP. Click OK.

2. In Eclipse, right click the C or C++ project and select Test RealTime > Enable. This creates a
Test RealTime configuration based on the default TDP.

276 IBM Rational Test RealTime User Guide

Managing configurations in Eclipse

Test RealTime configurations are based on the Target Deployment Ports (TDP) that are specified
when you create a new project. In fact, a configuration contains basic configuration settings for a
given TDP applied to a project, plus any project element overridden settings.

Configuration settings are a main characteristic of the project and can be individually customized
for any single project element in the C/C++ project navigator.

 To copy an existing configuration:

1. In the C or C++ Eclipse project, expand the Test RealTime folder

2. Right click the folder of an existing configuration and click Copy.

3. Right click the Test RealTime folder and click Paste.

4. Rename the new folder and the settings file as required.

Note This can be useful if you want several configurations, with different custom settings,
based on a unique Target Deployment Port, or if you want to create a new configuration.

 To remove a configuration from an Eclipse project:

1. In the C or C++ Eclipse project, expand the Test RealTime folder.

2. Right click the folder of an existing configuration and click Delete.

Note If you choose to remove a configuration, all custom settings for that Configuration
will be lost.

 To change the active Test RealTime configurations in a project:

1. In Eclipse, right click the C or C++ project and select Test RealTime > Set Active
Configuration.

2. In the Set Active Configurations window, select the configurations that will apply to the
Eclipse project.

3. Click OK.

 To change the Target Deployment Port in a configuration:

1. In the C or C++ Eclipse project, expand the Test RealTime folder.

2. Open the .settings configuration.

3. Expand Configuration properties > Build > Build options.

4. Select Target Deployment Port and change the setting if necessary.

5. Close the configuration editor to save your changes.

Managing configuration settings in Eclipse

The Eclipse CDT integration adds a Configuration Settings editor to Eclipse. The Test RealTime
settings are added to the C or C++ project when the project is enabled for Test RealTime.

For the usage of configuration settings, see Configuration settings reference.

 To edit the configuration settings for an Eclipse project element:

1. In the C or C++ Eclipse project, expand Test RealTime and the folder for the current
configuration.

2. Double-click the settings. This opens the Configuration Settings editor.

 277

3. In the Configuration properties list on the left, locate the settings that you want to change.

4. On the right, select the setting and change the value.

5. When you have finished, click Save to validate the changes.

Running a project with Test RealTime in Eclipse

Before you can run a project in Eclipse, you must create a run configuration.

 To create a run configuration:

1. From the Run menu, select Run.

2. In the Configurations list select C/C++ Application under Test RealTime and click New.

3. Enter a name for the new run configuration.

4. Click Select to select the project that will use this run configuration.

5. Click Select or Browse to specify the name of the C/C++ application.

6. Click Apply and Close to create the configuration and quit, or click Run to create and run the
configuration.

 To run an existing configuration:

1. From the Run menu, select Run.

2. Select the run configuration and click Run.

or

3. Click the Run toolbar button.

Viewing runtime analysis reports in Eclipse

After execution, you can view the results of the Test RealTime runtime analysis in the Test
RealTime report view.

 To open Test RealTime results in Eclipse:

1. In the C/C++ Projects view, expand Test RealTime and double-click results.xtp. This opens
the Test RealTime report view in Eclipse.

2. At the bottom of the Test RealTime report, click the tabs corresponding to runtime analysis
tool that you want to see. There is a page for each tool that was selected in the Test RealTime
Build settings.

Each page of the report is identical to the corresponding report viewer in Test RealTime. See
Viewing reports for more information about each viewer.

Test RealTime preferences in Eclipse

The Test RealTime preferences in the Eclipse workbench allow you to configure settings for Test
RealTime in Eclipse.

Test RealTime preferences

The Test RealTime preferences allow you to change the following settings:

• Binary Directory: Specifies the directory where Test RealTime binaries are located.

• Default TDP: Specifies the default TDP that will be used in the Default.settings configuration
when you enable Test RealTime in a C or C++ project.

278 IBM Rational Test RealTime User Guide

• Verbose Mode: Enables detailed information of Test RealTime components in the console
during execution.

Results Editor preferences

The Results Editor preferences allow you to change the appearance of your Test and Runtime
Analysis reports in Eclipse.

These preferences are identical to the corresponding preferences in the Test RealTime user
interface.

• Styles: This list allows you to select one or several styles that you want to change. To change
several styles at the same time, you can perform multiple selections in the style list.

• Font: This allows you to change the font type and size for the selected style.

• Text Color: This allows you to change the foreground and background colors for the selected
style. This opens a standard color palette.

• Text Attributes: This allows you to set the selected style to Bold, Italic, Underlined or Dashed.

 To access the Test RealTime preferences in Eclipse:

1. In Eclipse, select Window > Preferences.

2. In the Preferences window, expand Test RealTime.

Working with IBM Rational Rose RealTime

IBM Rational Rose RealTime is a software development environment tailored to the demands of
real-time software. Developers use Rose RealTime to create models of the software system based
on the Unified Modeling Language (UML) constructs, to generate the implementation code,
compile, then run and debug the application.

If you installed Rose RealTime after Test RealTime, you must manually install the plug-in.
Installation of the Rose RealTime plug-in is covered in the Test RealTime Installation Guide.

Using Test RealTime with Rose RealTime

Before using IBM Rational Test RealTime as a Rose RealTime plug-in, you must first open or create
a model within Rose RealTime.

Test RealTime can perform Source Code Insertion (SCI) instrumentation on several components.

Note If you installed Rose RealTime after Test RealTime, you must manually install the
plug-in. Please refer to the IBM Rational Test RealTime Installation Guide for further
information.

 To activate Runtime Analysis tools:

1. From Rose RealTime, open the Component Specification of the components that you want to
observe and select the C++ TestRT tab.

2. Select Enable Component Instrumentation.

3. In the Coverage section, select the code coverage type

4. Select Enable Memory Profiling, Enable Performance Profiling and Enable Runtime Tracing
to specify the Runtime Analysis tools that you want to activate. The Additional Options box
allows you to add other options to the Instrumentation Launcher command line.

5. Activate Add Target Deployment Port Object Files if you want to link the selected
component with the TDP.

 279

This is required when producing an executable. For a library component, this depends on
whatever components are linked to the library.

This option also adds a new version of cmdCommand.obj to the object file list if such a file
exists in <InstallDir>\bin\intel\RoseRT\<TDP>, where <InstallDir> is the Test RealTime
installation directory and <TDP> is the name of the current TDP. This object file dumps SCI
traces when the user clicks on the Stop button in Rose RealTime.

6. Select Support Multi-threaded Code Generation if necessary. Optionally, you can enter a new
location and file name for the trace file in Output Trace File Name. By default, <model
directory>\atlout.spt is used.

7. Click OK.

8. In Rose RealTime, from the Tools menu, select Rational Test RealTime , and Enable
Instrumentation of Selected Components. You must repeat this operation whenever you
change any of the options described above.

 To run a build with the runtime analysis tools:

1. In Rose RealTime, click the Build Component button, or from the Build menu, select Build or
Rebuild.

These commands generate the code and makefile, and launch the product instrumentation with the
selected options.

 To run the instrumented binary:

1. Just like a standard Rose RealTime application, from the Build menu, select Run or click the
Run button.

2. Then, click Start and, when appropriate, Stop.

Collecting dump data in Rose RealTime

The Source Code Insertion (SCI) technology used for Test RealTime is designed to minimize
overhead. The instrumented code stores information in memory (except for the Runtime Tracing
feature) and dumps this SCI data when the program terminates. To use this technique, you must
add a call to a dumping function in your source code:

extern "C" _atl_obstools_dump(int);

...

_atl_obstools_dump(1);

In some cases, such as in embedded applications, it is not practical to dump traces upon exit. See
Generating Trace Dumps for more information.

 To connect the SCI data dump to the Rose RealTime Stop button:

1. Add the following code to the cmdCommand.cc file.

At the beginning of the file:
#include <RTDebugger.h>

#include <RTMemoryUtil.h>

#include <RTObserver.h>

#include <RTTcpSocket.h>

#include <stdio.h>

extern "C" _atl_obstools_dump(int);

In the RTObserver::cmdCommand method:
else if(0 == RTMemoryUtil::strcmp(commandString, "stop"))

 {

280 IBM Rational Test RealTime User Guide

 _atl_obstools_dump(1);

 printf("TestRT dump\n");

 haltByProbe = 0;

 resumeToRun = 0;

 debugger->step(0U);

 }

2. Re-compile this file and add the cmdCommand.obj to the Additional Object Files section of
the model's Component Specification window

Note For Visual C 6.0 and .NET, such an object file is already provided in:
<install dir>\bin\intel\RoseRT\cvisual6 or cvisual7
where <install dir> is the Test RealTime installation directory.

3. By default, when executing the model, press the Rose RealTime Stop button to ensure that
trace information is uploaded.

Any other code point could be used to dump the traces, as long as the chosen code point is linked
to a specific event—a particular message or an external event—in order to force the dump.

Viewing results from Rose RealTime

Once the application has run and dump data has been collected, you can view the execution results
in Rose RealTime. See Using Test RealTime with Rose RealTime for the main steps to using Test
RealTime with Rose RealTime.

 To view the results with Test RealTime report viewers:

1. In Rose RealTime, from the Tools menu, select Rational Test RealTime, View all Results and
select:

• With Model Code Coverage to open the Code Coverage viewer of the product only
on the code included in the actions of each transition and with 2 additional coverage
levels for State and Transition coverage.

• With Code Coverage to open the Code Coverage viewer of the product with the
entire source code.

In both cases, Runtime Tracing, Memory Profiling and Performance Profiling work on the entire
code.

 To view coverage information in a Rose RealTime state diagram:

1. In Rose RealTime, from the Tools menu, select Rational Test RealTime, Model Coverage and
either:

• Show Onto Selected State Diagram

• Hide From Selected State Diagram

• Show Onto all State Diagram

• Hide from all State Diagram

2. This displays State Diagram colored with Code Coverage. Default colors are:

• Green: covered code

• Red: non-covered code

Advanced Rose RealTime integration

This section covers the more advanced information about using Test RealTime with IBM Rational
Rose RealTime.

 281

Using a Cross Compiler with Rose RealTime

When using a compiler that produces code for a non-native platform, you must set up two Target
Deployments Ports for both the native and the target platform.

 To use a cross compiler:

1. Locate the corresponding Target Deployment Ports. These TDPs must contain an attolcc
Instrumentation Launcher binary.

2. In the TDP.txt file located in the Rose RealTime installation directory, write a line for each
Target Deployment Ports based on the following syntax:
<rosert_targetRTS_name> , <testrt_tdp_name> [, [<path>], [$], [/|\]]

where:

• <rosert_targetRTS_name> is the name of the Rose RealTime TDP.

• <testrt_tdp name> is the name of the Test RealTime TDP.

• <path> is the location of the CmdCommand.o file in the Rose RealTime targetRTS

• The $ option indicates to use environment variable names instead of their values.

• Use the / or \ option to specify the use of the '/' or '\'directory separator if these are not the
platform default.

For example:
NT40T.x86-VisualC++-6.0 , cvisual6 , C:/temp ,$,/

Using a Makefile

If you chose not to use the Rose RealTime environment for compilation and link, but instead to use
a makefile to perform these tasks, you can use the Rational Test RealTime Instrumentation Launcher
tools as described below:

 To compile with a makefile:

1. Modify your compiler command as follows:
CC = attolcc <options> -- cc

LD = attolcc <options> -- ld (if necessary)

attolcc is the Instrumentation Launcher which must be available in the Target Deployment Port, in
the /cmd directory. This directory must be in your PATH.

<options> are the instrumentation options. See the Reference Manual for more information about
the Instrumentation Launcher command line.

Splitting the Result File

The instrumented application produces the atlout.spt file at the end of the execution.

 To display the report

1. Run the following command:
studio *.fdc *.tsf atlout.spt atlout.tio atlout.tdf atlout.tqf
atlout.tpf

This launches the Test RealTime graphical user interface. The .fdc and .tsf files are static files
generated by the instrumentation. The four last files are created by the product to store the traces
for each component.

282 IBM Rational Test RealTime User Guide

Troubleshooting Rose RealTime Integration

In some cases, conflicts or problems may prevent the Rose RealTime integration to work as
expected. The following tables sum up some of the issues that may occur, and explains how to
solve them.

Project instrumentation and compilation

Problem Solution

Instrumentation options cannot be changed The component or model is read-only.
Change the component to read-write status.

An .fdc correspondence file is not found during
instrumentation

The component Cov or Cov/Model directory may
have been destroyed, for example by a Clean
command.
To restore the lost information, run the Enable
Instrumentation of Selected Component command.

New settings are ignored after performing an Enable
Instrumentation of Selected Component command

Quick Build does not regenerate makefiles.
Run the Rebuild command instead of a Quick
Build.

An error message states that an Instrumentor is
missing during instrumentation

Another component for which no Instrumentation
Launcher (attolcc) is available, or no link exists
between the Rose RealTime code generation and the
TDP, has been enabled with Enable Component
Instrumentation.
Only enable components for which a complete
configuration exists.

Project link

Problem Solution

An application cannot be instrumented with
instrumented libraries

Activate the Add TDP option for the application
component. The plug-in automatically scans
application dependencies and adds the TDP.Obj of
instrumented libraries to the User Obj.

Note Instrumentation options must be the same for
all libraries.

An application cannot be instrumented with
external instrumented libraries

The Rose RealTime plug-in does not know where
TDP is generated when external components are
used. In this case, create an external library that
contains TP.obj.

Execution

Problem Solution

Multithreading issues Check that the Multithreading instrumentation
setting is correctly configured.

Link issues When multiple subcomponents are involved in a
component (libraries and binary), check that
instrumentation options are the same for all
components and that the TDP.obj is correctly linked.

Instrumentation issues Check that no warning message appears during
instrumentation. It may be necessary to exclude one

 283

or several components from instrumentation (attolcc
-exunit). See the Reference section for further
information about Instrumentation Launcher
command line options.

Results

Problem Solution

Files are missing when the Test RealTime is
launched to display report files. Code Coverage
results are missing or display the entire application
as uncovered.

The runtime analysis trace dump was interrupted.
Dumps can take a long time, especially when the
Memory Profiling feature is in use. See Generating
SCI Dumps for more information.

Missing files on another component The plug-in offers to display all the results for
enabled components.

Disable the any components that are not under
analysis.

No coverage results on a diagram Check that the component was correctly generated
with the Code Coverage instrumentation option.

Check that the component is enabled for
instrumentation. The Plug-in only changes state
diagrams for enabled components.

Check that the component is not read-only, such as
for an inherited diagram.

Working with IBM Rational TestManager

IBM Rational TestManager is used to manage all aspects of testing and all sources of information
related to the testing effort throughout all phases of the software development project.

Test RealTime integration with TestManager enables the following features:

• Association of TestManager test inputs, via test cases, with Test RealTime test nodes and
Group nodes.

• Local copy of Test RealTime test and runtime analysis results, test scripts, and referenced
source code in the Rational project log folder, all of which can be baselined along with other
Rational project log files

• Test RealTime test and runtime analysis results available within the Test RealTime GUI directly
from a LogViewer test log

Note If you installed TestManager after Test RealTime, you must manually install the plug-
in. Please refer to the IBM Rational Test RealTime Installation Guide for further
information.

Installing and configuring the TestManager integration

Test RealTime (on Windows installations only) includes a integration with IBM Rational
TestManager. In order for the integration to work, TestManager and Test RealTime must be
installed on the same workstation.

Before you are able to use the two products together, the plug-in must be installed by doing the
following:

284 IBM Rational Test RealTime User Guide

 To install the plug-in:

1. Ensure that both TestManager and Test RealTime are not running.

2. From the Windows Start menu select Programs > Rational Software > Test RealTime > Tools
> Enable Rational Project TestManager Integration.

Note Test Manager must be installed before Test RealTime is installed otherwise the Enable
Rational Project TestManager Integration menu item will not appear in the Start menu.

Associating test nodes to test cases

All of the Test RealTime integration functionality is accessed and performed in TestManager.

A Rational project must be enabled with the Enable Rational Project tool in order to be used with
Test RealTime. See the chapter Installing TestManager Integration.

The Rational project and Test RealTime project can be located on any network-accessible drive -
and not necessarily the same drive - but test execution must occur locally, on the Windows
machine upon which TestManager and Test RealTime are co-installed. TestManager does not
support remote target execution of Test RealTime tests.

TestManager associates test cases with nodes found within the Test RealTime Project Browser. You
can only associate TestManager test cases with Test RealTime test nodes and group nodes. Test
RealTime application nodes are not supported. (Although you can associate a test case with a Test
RealTime group node, it is recommended that a one-to-one correspondence between the test case
and an individual test node is preserved.)

 To associate a TestManager test case with a test node or group node:

1. In TestManager, access the properties window of a test case and select the Implementation
tab.

2. In the Automated Implementation section, click Select and choose Rational Test RealTime.

3. In the Rational Test RealTime Test Selection window, click Browse to select an .rtp Test
RealTime project file and click Open.

Note When the .rtp file is located on a network drive, indicate the location with a UNC path
("\\machine_name\directory\file") instead of using a mapped drive letter
("G:\directory\file").

The Select a Test Node or Group Node window now displays a list of all top-level group and
test nodes.

4. Select the test node or group node that you want to associate with the TestManager test case
and click OK. You can specify either a single test node, a group node containing one or more
test nodes or child nodes of group nodes.

The text box in the Automated Implementation section of the test case Properties window
now displays the following path to the test node:
<group node name>.<test node name>

Note Click Options in the Implementation tab after selecting a Test RealTime test or group
node to view the path to the Test RealTime project and the test or group node names.

Accessing Test RealTime test nodes and group nodes

You can open and execute Test RealTime test nodes and group nodes from within TestManager.
This implies that you have previously built a working project in Test RealTime.

When a Test RealTime test node or group node is executed from within Test Manager, the Test
RealTime GUI does not appear and tests are run silently. To obtain full feedback of test execution,
run the node directly from within Test RealTime.

 285

 To open a test or group node from within TestManager:

1. In TestManager, from the File menu, select Open Test Script and Rational Test RealTime.

2. Browse to a Test RealTime project in the Rational Test RealTime Test Selection window and
then press the Open button.

3. The window Select a Test Node or Group Node lists all the test nodes and group nodes
within the project. Left-click the node representing the test you wish to view and then click
OK.
The corresponding project opens in Test RealTime.

 To execute a test node or group node from within TestManager:

1. In the Test Plan window of TestManager, right-click the test case and select Run.

2. In the Run Test Cases window, select the execution options and click OK.

Note Test RealTime test nodes and group nodes can also be associated with TestManager
test cases as test implementations. This means that Test RealTime test and group nodes can
also be executed as part of a TestManager suite.

Viewing results in TestManager

Once a Test RealTime test has been executed from within a TestManager suite, test results are
accessible from the TestManager Test Log window.

For each TestManager test case, the Test Log window displays a single User Defined line for each
Test RealTime test node. This means that if a test case was associated with a group node, and the
group node contained five test nodes, then five User Defined lines are shown in the test log for this
particular test case. Each line has its own associated Pass or Fail status

In the properties window of a User Defined line (accessed via a right-click of the User Defined line
and then selecting Properties), on the General tab:

• For a passed test: The Failure Description field indicates:
All <x> tests passed
where <x> is the total number of tests performed by a particular test node

• For a failed test: The Failure Description field indicates:
<x> tests failed. <y> tests passed
where <x>+<y> is the total number of tests performed by a particular test node.

In the properties window of a User Defined line, on the View Test RealTime Logs tab, click the
Open button to view the test and runtime analysis reports for the selected test node.

Note These files are copies of the original test scripts and source files solely intended for
report purposes. Any changes to these files are not made to the actual test scripts and source
files. Open the original files in Test RealTime for debugging purposes.

Submitting a ClearQuest defect from TestManager

In TestManager you can submit a defect relating to a Test RealTime test node as part of the
TestManager - ClearQuest integration.

To automatically submit the script name, you must submit the defect from the Script Start line and
not from the User Defined line. This is because TestManager does not submit the Script Name from
a User Defined line.

Troubleshooting the TestManager integration

If you are experiencing problems related to the TestManager integration, the following
troubleshooting guide might help you to find a solution.

286 IBM Rational Test RealTime User Guide

If a problem persists, do not hesitate to contact IBM Customer support for help.

Problem Solution

Once the test has finished executing, when trying to
view the reports through the Detail tab, Test
RealTime launches but no graphical results are
shown.

When creating the test asset you must select both a
project and also a test node. If no test node is
selected, the test will pass but no results will be
generated and no reports will be displayed.

When configuring the Test Case Properties, when I
select the Automated Implementation on the
Implementation tab, a General Data Store error
message is displayed.

There are two possible causes for the generation of
this error:

• The TestRTConsoleAdapter.dll has
been placed in Rational\Rational
Test\tsea instead of
\Rational\Rational Test

• The version of the
TestRTConsoleAdapter.dll file which
has been installed is wrong.

For example, it may occur that a file from a previous
version was not updated when upgrading to Test
RealTime 2003.06.13.

When selecting an Automated Implementation, I
click Select, but Rational Test RealTime is not shown
as an option.

This means that the integration has not been enabled
for the project.

See Installing and configuring the TestManager
integration.

This problem can also occur if you tried to install the
plug-in while TestManager was running. You must
not be running TestManager when you install the
plug-in

Working with Microsoft Visual Studio

Configuring Microsoft Visual Studio integration

Test RealTime provides a special setup tool to configure runtime analysis tools with Microsoft
Visual Studio 6.0.

Note Integration with Microsoft Visual Studio is only available with the Windows version
of the product.

Configuration

The Rational Test RealTime Setup for Microsoft Visual Studio tool allows you to set up and
activate coverage types and instrumentation options for Test RealTime runtime analysis features,
without leaving Microsoft Visual Studio.

 To run the product Setup for Microsoft Visual Studio:

In Microsoft Visual Studio, two new items are added to the Tools menu:

• Test RealTime Viewer: this launches the Test RealTime user interface, providing access to
reports generated by Test RealTime runtime analysis and test features.

• Test RealTime Options: this launches the Rational Setup for Microsoft Visual Studio tool.

The following commands are available:

 287

• Apply: Applies the changes made

• OK: Apply the choices made and leave the window

• Enable or Disable: Enable or Disable the runtime analysis tools

• Cancel: Cancels modifications

Code Coverage Instrumentation Options

See About Code Coverage and the sections about coverage types.

• Function instrumentation:

• Select None to disable instrumentation of function inputs, outputs and termination
instructions.

• Select Functions to instrument function inputs only.

• Select Exits to instrument function inputs, outputs and termination instructions.

• Function calls instrumentation (C only):

• Select None to disable function call instrumentation.

• Select Calls to enable function call instrumentation.

• Block instrumentation

• Select None to disable block instrumentation.

• Select Statement Blocks to instrument simple blocks only.

• Select Implicit Blocks to instrument simple and implicit blocks.

• Select Loops to instrument implicit blocks and loops.

• Condition instrumentation (C only)

• Select None to disable condition instrumentation

• Select Basic to instrument basic conditions

• Select Modified/Multiple to instrument multiple

• Select Forced to instrument forced multiple conditions

• No Ternaries Code Coverage: when this option is selected, simple blocks corresponding for
the ternary expression true and false branches are not instrumented

• Instrumentation Mode: see Information Modes for more information.

• Pass mode: allows you to distinguish covered branches from those not covered.

• Count mode: The number of times each branch is executed is displayed in addition to the pass
mode information in the coverage report.

• Compact mode: The compact mode is similar to the Pass mode. But each branch is stored in
one bit instead of one byte to reduce overhead.

Other Options

• Dump: this specifies the dump mode:

• Select None to dump on exit of the application

• Select Calling to dump on call of the specified function

• Select Incoming to dump when entering the specified function

• Select Returning to dump when exiting from the specified function

• Static Files Directory: allows you to specify where the .fdc and .tsf files are to be generated

288 IBM Rational Test RealTime User Guide

• Runtime Tracing: this option activates the Runtime Tracing runtime analysis feature

• Memory Profiling: this option activates the Memory Profiling runtime analysis feature

• Performance Profiling: this option activates the Performance Profiling runtime analysis feature

• Other: allows you to specify additional command-line options that are not available using the
buttons. See the Test RealTime Reference Manual for a complete list of Instrumentor
options.

Integration with Microsoft Visual Studio is only available for the Windows versions of Test
RealTime .

Test RealTime and Microsoft Visual Studio 6.0 must be installed on the same machine.

To enable the product integration with Visual Studio, from the Windows Start menu, select
Programs, Test RealTime, Tools and Install Rational Test RealTime add-in for Microsoft Visual
Studio 6.0 to add the new menu items to Microsoft Visual Studio.

To disable

Configuring Microsoft Visual Studio integration

Test RealTime provides a special setup tool to configure runtime analysis tools with Microsoft
Visual Studio 6.0.

Note Integration with Microsoft Visual Studio is only available with the Windows version
of the product.

Configuration

The Rational Test RealTime Setup for Microsoft Visual Studio tool allows you to set up and
activate coverage types and instrumentation options for Test RealTime runtime analysis features,
without leaving Microsoft Visual Studio.

 To run the product Setup for Microsoft Visual Studio:

In Microsoft Visual Studio, two new items are added to the Tools menu:

• Test RealTime Viewer: this launches the Test RealTime user interface, providing access to
reports generated by Test RealTime runtime analysis and test features.

• Test RealTime Options: this launches the Rational Setup for Microsoft Visual Studio tool.

The following commands are available:

• Apply: Applies the changes made

• OK: Apply the choices made and leave the window

• Enable or Disable: Enable or Disable the runtime analysis tools

• Cancel: Cancels modifications

Code Coverage Instrumentation Options

See About Code Coverage and the sections about coverage types.

• Function instrumentation:

• Select None to disable instrumentation of function inputs, outputs and termination
instructions.

• Select Functions to instrument function inputs only.

• Select Exits to instrument function inputs, outputs and termination instructions.

• Function calls instrumentation (C only):

 289

• Select None to disable function call instrumentation.

• Select Calls to enable function call instrumentation.

• Block instrumentation

• Select None to disable block instrumentation.

• Select Statement Blocks to instrument simple blocks only.

• Select Implicit Blocks to instrument simple and implicit blocks.

• Select Loops to instrument implicit blocks and loops.

• Condition instrumentation (C only)

• Select None to disable condition instrumentation

• Select Basic to instrument basic conditions

• Select Modified/Multiple to instrument multiple

• Select Forced to instrument forced multiple conditions

• No Ternaries Code Coverage: when this option is selected, simple blocks corresponding for
the ternary expression true and false branches are not instrumented

• Instrumentation Mode: see Information Modes for more information.

• Pass mode: allows you to distinguish covered branches from those not covered.

• Count mode: The number of times each branch is executed is displayed in addition to the pass
mode information in the coverage report.

• Compact mode: The compact mode is similar to the Pass mode. But each branch is stored in
one bit instead of one byte to reduce overhead.

Other Options

• Dump: this specifies the dump mode:

• Select None to dump on exit of the application

• Select Calling to dump on call of the specified function

• Select Incoming to dump when entering the specified function

• Select Returning to dump when exiting from the specified function

• Static Files Directory: allows you to specify where the .fdc and .tsf files are to be generated

• Runtime Tracing: this option activates the Runtime Tracing runtime analysis feature

• Memory Profiling: this option activates the Memory Profiling runtime analysis feature

• Performance Profiling: this option activates the Performance Profiling runtime analysis feature

• Other: allows you to specify additional command-line options that are not available using the
buttons. See the Test RealTime Reference Manual for a complete list of Instrumentor
options.

290 IBM Rational Test RealTime User Guide

 291

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer
the products, services, or features discussed in this document in other countries. Consult your local
IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However,
it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program,
or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You
can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106
Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION
‘AS IS’ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions of
the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice

Any references in this information to non-IBM Web sites are provided for convenience only and do
not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

292 IBM Rational Test RealTime User Guide

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including
this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Department BCFB
20 Maguire Road
Lexington, MA 02421
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore,
the results obtained in other operating environments may vary significantly. Some measurements
may have been made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore, some measurement
may have been estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to IBM, for the purposes of developing,
using, marketing or distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBMís application programming
interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a
copyright notice as follows:

(c) (your company name) (year). Portions of this code are derived from IBM Corp. Sample
Programs. (c) Copyright IBM Corp. _enter the year or years_. All rights reserved.

Additional legal notices are described in the legal_information.html file that is included in your
Rational software installation.

Trademarks

AIX, ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearGuide, ClearQuest,
DB2, DB2 Universal Database, DDTS, Domino, IBM, Lotus Notes, MVS, Notes, OS/390, Passport
Advantage, ProjectConsole Purify, Rational, Rational Rose, Rational Suite, Rational Unified
Process, RequisitePro, RUP, S/390, SoDA, SP1, SP2, Team Unifying Platform, WebSphere, XDE,
and z/OS are trademarks of International Business Machines Corporation in the United States,
other countries, or both.

 293

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product or service names may be trademarks or service marks of others.

294 IBM Rational Test RealTime User Guide

 295

Glossary

A
ABR: Array Bounds Read

ABW: Array Bounds Write

ABWL: Late Detect Array Bound Write on the Heap

Additional Files: Source files that are required by the test script, but not actually tested.

API: Application Programmer Interface. A reusable library of subroutines or objects that encapsulates the
internals of some other system and provides a well‐defined interface. Typically, it makes it easier to use
the services of a general‐purpose system, encapsulates the subject system providing higher integrity, and
increases the userʹs productivity by providing reusable solutions to common problems.

Application: A software program or system used to solve a specific problem or a class of similar
problems.

Application node: The main building block of your application under analysis. It contains the source files
required to build the application.

Assertion: A predicate expression whose value is either true or false.

Asynchronous: Not occurring at predetermined or regular intervals.

B
Black box testing: A software testing technique whereby the internal workings of the item being tested
are not known by the tester.

Boundary: The set of values that defines an input or output domain.

Boundary condition: An input or state that results in a condition that is on or immediately adjacent to a
boundary value.

Branch: When referring to the Code Coverage feature, a branch denotes a generic unit of enumeration.For
a given branch, you specify the coverage type. Code Coverage instruments this branch when you compile
the source under test.

Branch coverage: Achieved when every path from a control flow graph node has been executed at least
once by a test suite. It improves on statement coverage because each branch is taken at least once.

Breakpoint: A statement whose execution causes a debugger to halt execution and return control to the
user.

BSR: Beyond Stack Read

BSW: Beyond Stack Write

Bug: An error or defect in software or hardware that causes a program to malfunction.

296 IBM Rational Test RealTime User Guide

Build: The executable(s) produced by a build generation process. This process may involve actual
translation of source files and construction of binary files by e.g. compilers, linkers and text formatters.

Build generation: The process of selecting and merging specific versions of source and binary files for
translation and linking within a component and among components.

C
Check‐in: In configuration management, the release of exclusive control of a configuration item.

Check‐out: In configuration management, the granting of exclusive control of a configuration item to a
single user.

Class: A representation or source code construct used to create objects. Defines public, protected, and
private attributes, methods, messages, and inherited features. An object is an instance of some class. A
class is an abstract, static definition of an object. It defines and implements instance variables and
methods.

Class contract: The set of assertions at method and class scope, inherited assertions, and exceptions.

Class invariant: An assertion that specifies properties that must be true of every object of a class.

Clear box testing: A software testing technique whereby explicit knowledge of the internal workings of
the item being tested are used to select the test data. Test RealTime leverages the power of source code
analysis to initiate the creation of white box tests.

Code Coverage: Test RealTime feature whose function is to measure the percentage of code coverage
achieved by your testing efforts, using a variety of powerful data displays to ensure all portions of your
code are exercised and thus verified as properly implemented.

COM: Com API/Interface Failure

Complexity: A characteristic of software measured by various statistical models.

Component: Any software aggregate that has visibility in a development environment, for example, a
method, a class, an object, a function, a module, an executable, a task, a utility subsystem, an application
subsystem. This includes executable software entities supplied with an API.

Component Testing: The Test RealTime feature used to automate the white box testing of individual
software components in your system, facilitating early, proactive debugging and provided a repeatable,
well‐defined process for runtime analysis.

Computational complexity: The study of the time (number of iterations) and space (quantity of storage)
required by algorithms and classes of algorithms.

Configuration: It is a Target Deployment Port, applied to a Project, plus node‐specific settings.

Configuration management: A technical and administrative approach to manage changes and control
work products.

Container class: A class whose instances are each intended to contain multiple occurrences of some other
object.

COR: Core Dump

Coverage: The percentage of source code that has been exercised during a given execution of the
application.

Cyclomatic complexity: The V(g) or cyclomatic number is a measure of the complexity of a function
which is correlated with difficulty in testing. The standard value is between 1 and 10. A value of 1 means
the code has no branching. A functionʹs cyclomatic complexity should not exceed 10.

 297

D
Debug: To find the error or misconception that led to a program failure uncovered by testing, and then to
design and to implement the program changes that correct the error.

Debugger: A software tool used to perform debugging.

Defect: An incorrect or missing software component that results in a failure to meet a functional or
performance requirement.

Destructor: A method that removes an active object.

E
Embedded system: A combination of computer hardware and software, and perhaps additional
mechanical or other parts, designed to perform a dedicated function. In some cases, embedded systems
are part of a larger system or product, as is the case of an anti‐lock braking system in a car.

Equivalence class: A set of input values such that if any value is processed correctly (incorrectly), then it
is assumed that all other values will be processed correctly (incorrectly).

Error: A human action that results in a software fault.

Event: Any kind of stimulus that can be presented to an object: a message from any client, a response to a
message sent to the virtual machine supporting an object, or the activation of an object by an externally
managed interrupt mechanism.

EXC: Continued Exception

Exception: A condition or event that causes suspension of normal program execution. Typically it results
from incorrect or invalid usage of the virtual machine.

Exception handling: The activation of program components to deal with an exception. Exception
handling is typically accomplished by using built‐in features and application code. The exception causes
transfer to the exception handler, and the exception handler returns control to the module that invoked
the module that encountered the exception.

EXH: Handled Exception

EXI: Ignored Exception

EXU: Unhandled Exception

F
FFM: Freeing Freed Memory

FIM: Freeing Invalid Memory

FIU: File In Use

FMM: Freeing Mismatched Memory

FMR: Freeing Memory Read

FMW: Free Memory Write

FMWL: Late Detect Free Memory Write On the Heap

FUM: Freeing Unallocated Memory

298 IBM Rational Test RealTime User Guide

G
Garbage collector (Java): The process of reclaiming allocated blocks of main memory (garbage) that are
(1) no longer in use or (2) not claimed by any active procedure.

H
HAN: Invalid Handle Use

HIU: Handle In Use

I
ILK: Com Interface Leak

Included Files: Included files are normal source files under test. However, instead of being compiled
separately during the test, they are included and compiled with the object test driver script.

Inheritance: A mechanism that allows one class (the subclass) to incorporate the declarations of all or
part of another class (the superclass). It is implemented by three characteristics: extension, overriding,
and specialization.

Instrumentation: The action of adding portions of code to an existing source file for runtime analysis
purposes. The product uses Rationalʹs source code insertion technology for instrumentation.

IPR: Invalid Pointer Read

IPW: Invalid Pointer Write

J
JUnit: JUnit is an open source testing framework for Java. It provides a means of expressing how the
application should work. By expressing this in code, you can use JUnit test scripts to test your code.

M
MAF: Memory Allocation Failure

MC/DC: Modified Condition/Decision Coverage.

Memory profiling: Test RealTime feature whose function is to measure your codeʹs reliability as it
pertains to memory usage. Applicable to both Application and Test Nodes, the memory profiling feature
detects memory leaks, monitors memory allocation and deallocation and provides detailed reports to
simplify your debugging efforts.

Method (Java, C++): A procedure that is executed when an object receives a message. A method is always
associated with a class.

MIU: Memory In Use

MLK: Memory Leak

Model: A representation intended to explain the behavior of some aspects of [an artifact or activity]. A
model is considered an abstraction of reality.

N

 299

Node: Any item that appears in the Project Explorer. This includes test nodes, application nodes, source
files or test scripts.

NPR: Null Pointer Read

NPW: Null Pointer Write

O
ODS: Output Debug String

P
Package (ADA): Program units that allow the specification of groups of logically related entities.

Package (Java): A group of types (classes and interfaces).

PAR: Bad System Api Parameter

Performance profiling: Test RealTime feature whose function is to measure your codeʹs reliability as it
pertains to performance. Applicable to both Application and Test nodes, the performance profiling
feature measures each and every function, procedure or method execution time, presenting the data in a
simple‐to‐read format to simplify your efforts at code optimization.

PLK: Potential Memory Leak

Polymorphism: This refers to a programming languageʹs ability to process objects differently depending
on their data type or class. More specifically, it is the ability to redefine methods for derived classes.

Postcondition: An assertion that defines properties that must hold when a method completes. It is
evaluated after a method completes execution and before the message result is returned to the client.

Precondition: An assertion that defines properties that must hold when a method begins execution. It
defines acceptable values of parameters and variables upon entry to a module or method.

Predicate expression: An expression that contains a condition (conditions) that evaluates true or false.

Procedure (C): A procedure is a section of a program that performs a specific task.

Project: The project is your main workspace as shown in the Project Explorer. The project contains all the
files required to build, analyze and test an application.

R
Requirement: A desired feature, property, or behavior of a system.

Runtime Tracing: The Test RealTime feature whose function is to monitor code s it executes, generating
an easy‐to‐read UML‐based sequence diagram of events. Perfect for developers trying to understand
inherited code, this feature also greatly simplifies the debugging process at the integration level.

S
Scenario: An interaction with a system under test that is recognizable as a single unit of work from the
userʹs point of view. This step, procedure, or input event may involve any number of implementation
functions.

SCI: Source Code Insertion. Method used to enable the runtime analysis functionality of Test RealTime.
Pre‐compiled source code is modified via the insertion of custom commands that enable the monitoring

300 IBM Rational Test RealTime User Guide

of executing code. The actual code under test is untouched. The testing features of Test RealTime do not
require SCI.

SCI dump: Data that is dumped from a SCI‐instrumented application.

Sequence diagram: A sequence diagram is a UML diagram that provides a view of the chronological
sequence of messages between instances (objects or classifier roles) that work together in an interaction or
interaction instance. A sequence diagram consists of a group of instances (represented by lifelines) and
the messages that they exchange during the interaction.

SIG: Signal Received

Snapshot: In Memory Profiling for Java, a snapshot is a memory dump performed by the JVMPI Agent
whenever a trigger request is received. The snapshot provides a status of memory and object usage at a
given point in the execution of the Java program.

Subsystem: A subset of the functions or components of a system.

System Testing: The Test RealTime feature dedicated to testing message‐based applications. It helps you
solve complex testing issues related to system interaction, concurrency, and time and fault tolerance by
addressing the functional, robustness, load, performance and regression testing phases from small, single
threads or tasks up to very large, distributed systems.

T
TDP: Target Deployment Port. A versatile, low‐overhead technology enabling target‐independent tests
and runtime analysis despite limitless target support. Its technology is constructed to accommodate your
compiler, linker, debugger, and target architecture.

Template class: A class that defines the common structure and operations for related types. The class
definition takes a parameter that designates the type.

Test driver: A software component used to invoke a component under test. The driver typically provides
test input, controls and monitors execution, and reports results.

Test harness: A system of test drivers and other tools to support test execution.

Test node: The main building block of your test campaign. It contains one or more test scripts as well as
the source code under test.

Transition: In a state machine, a change of state.

U
UMC: Uninitialized Memory Copy

UML: Unified Modeling Language. A general‐purpose notational language for specifying and visualizing
complex software, especially large, object‐oriented projects.

UMR: Uninitialized Memory Read

Unit: Generic term referring to language specific code elements such as procedures, classes, functions,
methods, packages.

Unit Testing: See Component Testing.

W
White box testing: See Clear box testing.

© Copyright IBM Corp. 2001, 2006 301

Index

prefix

Native Ada... 142
Native C (Component Testing)................. 95
Native C (System Testing) 212
Native C++ ... 130

prefix....................................... 95, 130, 142, 212
#line ... 226

&
& prefix ... 94, 140

.
.a... 234
.dcl ... 128, 129, 131
.dll .. 234
.fdc ... 278
.h .. 108, 129
.lib .. 234
.prj .. 123, 220, 228
.pts125, 184, 187, 189, 212, 213, 214, 224, 257
.ptu.......91, 94, 113, 114, 115, 124, 145, 160, 165,
221, 256
.rtp.. 253
.ses.. 123
.so ... 234
.tsf... 232, 278
.xpm... 252
.xrd... 133, 178, 245

@
@ prefix

Native Ada... 142
Native C (Component Testing)................. 95
Native C (System Testing) 212
Native C++ ... 130

@ prefix...................................... 95, 130, 142, 212

_
_ATCPQ_RESET.. 269
_inout .. 113

_int64..121
_no..112, 157

6
64‐bit ..121

A
Abort ..23
About

Code Coverage...22
Code Coverage Viewer...............................47
Component Testing for C and Ada...........91
Component Testing for C++126
Component Testing for Java168
Configuration Settings..............................217
Environments...118
JUnit ..169
Memory Profiling ..50
Online Documentation1
Performance Profiling.................................62
Runtime Tracing ..65
Static Metrics ..83
System Testing ...181
Target Deployment Technology..................4
Tools Menu...250

About1, 47, 239, 247, 250
About/Projects ..228
ABWL...52
ACK..193, 194, 196, 203
Acknowledgement194, 196, 203
Activity Wizard ..220
Ada

Ada 83 ...30
Ada 95 ...23
Additional Statements31
Advanced testing.......................................160
Arrays and structures168
Block code coverage....................................23
Call code coverage.......................................26
Calling stubs...156
Character arrays ..147
Condition code coverage............................26

302 IBM Rational Test RealTime User Guide

Discriminants .. 151
Exception ... 166
Expressions.. 144
Pointers .. 163
Records..150, 151
Reports ... 166
Stubs ..154, 155, 157
Syntax extensions 156
Tagged records.. 151
Test script... 140
Unit code coverage..................................... 28
Units ... 26, 31
Unknown values....................................... 166
Variables .. 142

Ada ..22, 23, 26, 30, 31, 47, 84, 98, 108, 154, 155,
163, 241, 256
adalib83.alk .. 30
adalib95.alk .. 30
ADD .. 34
Add to source control 271
ADD_ID...................................193, 194, 196, 203
Adding

Metric ... 249
Source Control .. 271

Adding...249, 271
Adding a metric... 249
Additional directories................................... 221
Additional files92, 130, 221
Additional options .. 226
Additional Statements 43, 47
Address....2, 51, 91, 126, 181, 193, 199, 219, 269
Advanced Options .. 226
Agent

JVMPI ... 61
Agent... 61
Agent Access File .. 183
Agents181, 183, 185, 214
Allocated........................51, 52, 54, 194, 196, 203
ANSI.. 108
API... 194
Appearance .. 23, 213
Application..263, 264
ARINC .. 181
Array103, 118, 119, 125, 145, 163
Array bounds write... 52
ARRAY keyword... 119
Arrays99, 100, 102, 103, 145, 147, 149, 168
Arrays of Characters 116
Arrays/Character arrays102, 147
Arrays/Enumerated list102, 148

Arrays/Pseudo‐variable100, 147
assert .. 169, 171, 178, 179
Asset Browser

Folders ..233
Asset Browser...233
ASSIGN ...34
ATC

ATC block...23
ATC_SIGNAL_DUMP..............................269

ATC..23
ATC_SIGNAL_DUMP269
atcapi.h ..50
Atl_dump_trace macro77
Atl_rdv ..203
ATL_SYSTEMTEST_DEBUG185
ATL_T_ARG...188
ATL_T_ARG arg_Tester_1............................188
ATL_T_THREAD_RETURN188
ATL_TRACES_FILE261
atlout..278
atlout.spt..264, 265, 278
atlsplit ..265
ATLTGT ..259, 262
Atqapi.h file ..63
ats.h..188
ATS_DIR..181, 185, 259
atsagtd ...181, 183
Atsagtd.bin

directory ...181
Atsagtd.bin..181
Atsagtd.exe

directory ...181
Atsagtd.exe ...181
Atsagtd.ini file ..181, 183
ATT_DUMP_STACK.......................................76
ATT_FLUSH_ITEMS76
ATT_SIGNAL_DUMP environment76
ATT_START_DUMP76
ATT_STOP_DUMP..76
ATT_SWITCH_DUMP....................................76
attol exit_instr...37
ATTOL_TEST160, 162, 163
attolalk...30
attolcc...254, 278
ATTOLCOV_ADALINK.................................30
ATTOLHOME..259, 262
ATUDIR...259
AutoGenerate ...187
Average F Time ..62

 303

B
Bar.. 71, 72
Basic Declarations.. 193
BatchCCDefaults.pl 262
Beechavenue 30.. 2
BEGIN 94, 108, 118, 145, 160
BEGIN PROTECTED_ARRAY 163
Begin.exception.. 23
Best‐practices‐based 271
BLOCK

Block code coverage 23, 31, 39, 43, 47
Block select/then.. 23
Block SERVICE.. 94
Block start/end... 186
Block summary ... 51
Blocks......23, 28, 31, 34, 38, 39, 47, 51, 52, 53,
54, 94, 98, 108, 118, 119, 120, 133, 163, 185,
186, 190, 191, 192, 196, 199, 203, 206, 207,
208, 210, 213, 214, 215, 230

BLOCK .. 39, 43, 103
Block Code Coverage 43
Blue icon.. 244
BODY

Body files...................................... 92, 129, 130
BODY... 30, 92, 129, 130
Branch ...22, 23, 26, 28, 31, 34, 37, 38, 39, 41, 42,
48, 87, 189, 190, 191, 269
BREAK .. 38, 41, 46
Browse Reports 232, 266
BSD .. 193
Build

Build options ... 243
Build/Execution button 242

Build21, 50, 62, 65, 67, 91, 181, 192, 217, 219,
220, 221, 224, 230, 232, 242, 243, 244, 247, 271
Build state ... 243
Build/Troubleshooting.................................. 229
Byte summary .. 51

C
C

Additional Statements................................ 38
Advanced testing 120
Arrays... 99
Arrays and structures............................... 125
C typedef.. 193
Character arrays.. 102
Expressions .. 98
Function Code Coverage 37
Instrumentation... 62

macros ...77
Pointers ...121, 122
Reports ..124
Structured variables104, 106
Stubs ..112
Test Script Language.....................91, 94, 221
Unions...106

C....... 22, 26, 28, 31, 34, 37, 38, 39, 41, 42, 43, 47,
50, 54, 55, 62, 63, 71, 84, 91, 92, 94, 98, 108, 110,
119, 128, 129, 130, 135, 181, 185, 190, 191, 192,
193, 194, 196, 199, 210, 241, 256
C++

Test Driver script126, 128, 129, 131, 136
Test Script Language........126, 127, 128, 131,
133, 136

C++..55, 71, 131, 241, 256
CALL

Call code coverage...........................26, 34, 47
CALL Instruction.......................................189

CALL................................136, 189, 190, 192, 206
CALLBACK ..196, 214
calloc ..55
Calls..62
CASE..38, 191
Change tracking ...272
Changing configurations...............................219
Changing targets ..219
CHANNEL..193
char* ...116
Character arrays102, 147
CHECK ..133, 136
CHECK EXCEPTION136
Check In.......................................51, 53, 252, 271
CHECK METHOD...136
Check out...252, 271
CHECK PROPERTY136
CHECK STUB ...136
Circular buffer ..214
Class definitions ...127
Classes Under Test ...129
CLEAR_ID.......................................194, 196, 203
ClearCase...271
ClearQuest...272, 283
CLI

Example ..257
CLI..253, 259
Client/server environment272
Clock ..242
CM..271
Cmp..123

304 IBM Rational Test RealTime User Guide

CMS... 271
CMS tool ... 271
Code coloring... 241
Code Coverage22, 23, 30, 43, 46, 47, 48, 49,
71, 267
Color...................26, 31, 34, 39, 48, 239, 241, 248
Combined evaluation...................................... 98
Command Line253, 254, 255, 256, 257, 264
Command Line Component Testing for C,
Ada and C++... 256
Command Line Interface.............................. 253
Command line options 226
COMMENT48, 110, 136, 190, 194, 196, 203, 206
COMMENT Synchronization 203
COMMTYPE .. 193
Communication Between Virtual Testers .. 202
Compact hit data ... 22
Compact mode... 22, 269
Comparison.. 125
Compilation30, 261, 262, 263
Compilation sequence in Ada 155
Compiling... 262
Complex Stubs..112, 157
Complexity... 83
Component..133, 135
Component Testing..........91, 168, 169, 179, 256
Component Testing for Ada

Native code.. 142
Component Testing for Ada 138
Component Testing for Ada/Entry point... 162
Component Testing for C

Component Testing files.......................... 123
Component Testing wizard..................... 221
Native code.. 95
Overview ... 92

Component Testing for C......................... 91, 92
Component Testing for C and Ada............... 91
Component Testing for C, Ada and C++.... 256
Component Testing for C++

Native code.. 130
Component Testing for C++........................... 91
Component Testing for Java168, 256
Component Testing UML Sequence Diagram
.. 179
Concurrency... 181
Cond.. 26, 34
Condition code coverage.....................26, 34, 47
Conditions .. 190
Configurability .. 271
Configuration..........................184, 217, 252, 271

Configuration Management220, 271
Configuration settings...........................217, 219
Configurations..219, 252
Configure rendezvous...................................187
Configuring Virtual Testers..........................184
Const..115
CONSTRAINT_ERROR28, 155, 166
CONTINUE ..38, 41, 46
Contract‐Check Script ... 126, 127, 128, 129, 135
Contract‐Check Sequence Diagrams135
Contract‐Checks ...135
COR..53
Core Dump ...53
Count mode ..22
Coverage

Code Coverage dump driver.....................50
Code Coverage Dump Driver API............50
Code Coverage information mode22
Code Coverage Metrics87
Code Coverage toolbar...............................47
Code Coverage Viewer...............................47
Coverage types 23, 26, 34, 47, 49

Coverage 21, 22, 23, 26, 31, 34, 37, 38, 41, 42,
47, 48, 49, 50, 84, 87, 125, 217, 220, 232, 247,
269
Coverage Bar ..71
Coverage type...23, 267
Cpp...92, 129, 130
CPU

CPU overhead..22
Creating super‐projects237
Criticity..87
cross compiler...278
Cross reference tool ...48
Cross‐development environment1
Cshrc ..181
Csun...185
Curve properties ..248
Curves..248
Custom Curves...248
Cyclomatic ..47, 87
Cyclomatic complexity....................................87

D
Daemon ...181
dangling pointers ...53
DATA....................................... 190, 194, 196, 203
Data Management..199
Dcl file..131
DCT..272

 305

Ddd.. 62
debug... 21, 185, 206, 244
Debug Mode... 244
debugger ... 4, 244
Debugging Virtual Testers 185
Decisions........................... 23, 31, 38, 39, 41, 220
Declaration files ... 131
DECLARE_INSTANCE 203
Declaring Global Variables........................... 145
DEF_MESSAGE 191, 194, 196, 199, 203
DEFAULT................................. 31, 38, 39, 43, 77
DEFAULT blocks... 38
Defect tracking ... 272
DEFINE STUB........................ 108, 113, 145, 154
defining stubs in Ada.................................... 154
Delete... 232
Delta .. 97, 143
Deployment script 186, 214
Deployment Table ... 185
Descendants ... 62
Diff ... 125
Directories

atsagtd.bin.. 181
atsagtd.exe ... 181

Directories50, 63, 92, 125, 130, 181, 220, 221, 224
Discriminants ... 151
Display Variables... 124
DIVIDE.. 34
DLL.. 234
DO.. 31, 38, 39
DO...WHILE ... 43, 46
Do.end... 23
Documentation .. 1
DOS_NO_AUTO_INSTANTIATE 42
DRW_COMPILE_INSTANTIATE................. 42
Dump Data ... 277
Dump Driver API .. 63
Dump File ... 264, 265
Dump on End

Execution.. 269
Dump on End... 269
Dump on end of execution........................... 269
Dump on signal ... 269
Dumps................................... 50, 53, 75, 209, 269
Dynamic libraries .. 234

E
ECUs.. 181
Edit filters ... 69
Edit triggers.. 68, 72

Editor16, 68, 72, 239, 240, 241
ELEMENT94, 103, 110, 119, 120, 145, 163
ELEMENT block.......................................98, 119
ELEMENT keyword119
ELSE31, 38, 39, 43, 46, 120, 190
ELSE branch..190
ELSE FOR IF..31, 39, 43
Elsif...23
E‐mail...2
Empty_evt ...196
END..190, 191
END CALLBACK...................................196, 203
END CASE ..191
END DEFINE..........................108, 111, 112, 154
END ELEMENT94, 110, 119, 163
END ENVIRONMENT..................118, 119, 163
END EXCEPTION..206
END IF120, 190, 196, 203, 206
END IF block...120
END INITIALIZATION207
END INSTANCE..203
END PROC..............192, 206, 207, 208, 210, 211
END PROCSEND...........................194, 196, 203
END SCENARIO...190, 191, 192, 194, 196, 203,
206, 207, 208, 210, 211
END SERVICE94, 110, 163
END TERMINATION163, 208
END TEST94, 110, 119, 163
END WHILE ...190
ENSURE ..136
Entries 26, 28, 37, 47, 135, 163, 202, 269
Entry point ..162
Entry READ ..163
Entry WRITE...163
Enumerated list102, 148
Environment

Override..119
Parameters..119
Variables ...259

Environment1, 4, 75, 76, 110, 118, 119, 120,
124, 126, 129, 163, 181, 187, 188, 190, 191, 203,
206, 207, 208, 214, 231, 239, 244, 259, 269, 272
Errcode.....................................193, 194, 196, 203
Errno ..112
Error ...191, 196, 203, 206
Error Messages ...51, 58
Ev.............. 110, 118, 119, 142, 191, 196, 199, 203
Evaluation strategy ..98
Event

Editor...68

306 IBM Rational Test RealTime User Guide

Event‐dependent .. 68
Management.. 193
Markers .. 249

Event23, 50, 51, 68, 69, 72, 76, 135, 186, 191,
193, 194, 196, 203, 213, 249, 269
EXCALL.. 34
EXCEPTION... 206
Exception STORAGE_ERROR..................... 155
Exceptions23, 26, 28, 136, 155, 166, 187, 206, 210, 215
Exclude ... 243
Excluding a parameter...........................112, 157
Execution

Dump on End.. 269
Execution .. 269
Execution Traces.. 186
EXIT..38, 41, 190, 206
Exits23, 26, 28, 31, 37, 38, 41, 47, 53, 54, 68,
133, 135, 194, 196, 206, 269
Exp... 74
Expected values ... 98
Explicit dump .. 269
Export.. 245
Expr ... 31, 39
Expressions... 98, 144
External Command

External Command Node........................ 231
External Command 231

F
F Time ... 62
F+D .. 62
F+D Time .. 62
FAMILY94, 110, 119, 163, 190, 192, 194, 196,
203, 206, 207, 208
Fd..108, 111, 112
FDC file ... 278
FFM ... 52
FIFO... 77, 79
File

File in use... 54
File Properties ... 235
File tagging .. 230
File under test...........21, 91, 92, 129, 130, 221
File View .. 85

File77, 123, 129, 235, 244
Filters

Performance Profiling 64
Sequence diagram....................................... 72

Filters....................47, 58, 64, 68, 69, 72, 125, 245
Find ... 74, 240

FIU..54
Flag...30
FLOAT...163
Flow Control Instructions.............................189
FLUSH_TRACE..214
FMWL..53
Folder...233
FOR ..31, 38, 46
Forced conditions...26
Format 62, 70, 76, 102, 123, 125, 147, 163
Fprintf ..37, 41
Free...55
Free memory write...53
Free queue

Free queue length..................................52, 53
Free queue threshold52, 53

Free queue...52, 53
Freed Memory ..52
Freeing freed memory.....................................52
Freeing unallocated memory..........................52
FTF ...26
FUM...52
Func..39
Function

Function Call.................. 34, 48, 193, 194, 196
Function pointers166
Function return..154
Function Time..62

Function..................... 62, 113, 114, 115, 116, 121
FXF ...26, 34
FXT...26, 34

G
g..47, 87, 244
Garbage Collection ..61
GEN ...154
Generate dumps...269
Generate separate test harness165
Generate virtual testers185
GENERIC ..154
Generic packages ...160
Generic units...154
GetCoord...41
Global variables..145
Go To ...241
GOTO ..31, 38, 41, 46
Group...231
GUI............................. 83, 168, 217, 228, 253, 271

 307

H
Halstead

Halstead metrics ... 87
Halstead .. 47, 85, 86, 87
Halstead Graph.. 85
HEADER...94, 145, 190, 191, 192, 194, 196, 203,
206, 207, 208, 210, 211
Header File ... 261
Header files............................... 92, 129, 130, 188
Hit count tool ... 48
Hostname.. 181, 183, 219
HTML

HTML file... 47, 58, 63
HTML.. 47, 58, 63, 245

I
IDENTIFIER ... 34
IF .31, 38, 39, 43, 46, 120, 190, 196, 203, 206, 210
IGNORE.. 77
Illegal

Illegal transitions....................................... 135
Illegal... 135
Implementations.. 129
Implicit blocks.............................. 23, 31, 39, 269
Import.. 123, 177
Import makefile ... 236
Importing a JUnit Test Campaign 177
Importing Component Testing files............ 123
Importing sub‐projects.................................. 237
INCLUDE ... 190
Include Statements .. 190
Included files.. 130
Indicators .. 87
inetd... 181
Information Mode ... 22
Init............110, 118, 119, 142, 163, 190, 194, 196,
199, 203
Init_expr.. 199
Initial ... 98
Initial values ... 98
Initial/error state .. 135
INITIALIZATION 206, 207, 213
Initialization environment............................ 207
Initializations.. 199
Inline.. 22
Inout

input/output .. 108
Inout .. 108
Input/output

inout.. 108

Input/output............................107, 108, 110, 192
Instance

Instance Declaration..................................203
Instance Synchronization203

Instance..184, 185, 203
Instantiation ..42
Instantiationmode ..42
Instrumentation

Comparison..125
Excluding from instrumentation.............244
Instrumentation Launcher........................261
Instrumentation overhead........................267

Instrumentation.....21, 22, 31, 38, 42, 43, 47, 52,
65, 91, 217, 254, 255, 261, 267, 269, 276, 277
Instrumenting

C...62
Instrumenting ...62
Instrumentor ...34, 42
Instrumentor Snapshot..................................269
int64..121
INTEGER...163
Integration

with Rational ClearCase271
with Rational ClearQuest272

Integration...272
Interface ...253
Intermediate‐level ..190
INTERRECV..202
INTERSEND ...202
Invariants.................................127, 129, 133, 135
IP Address...185
Isting ..231
Item buffer...76
Iterations..190

J
J2ME...169, 171, 178
J2MEUnit ...169, 171, 178
J2SE...169, 171
Java

Memory Profiling ..59
Java.... 43, 46, 47, 59, 71, 168, 171, 172, 178, 179,
255, 256
Java Method Code Coverage46
Java Stubs ..172
Java Test Harness ...171
Java Test Report..178
Java Virtual Machine59, 61
Java‐enabled..1
javic ..255

308 IBM Rational Test RealTime User Guide

Javic Ant Launcher.. 255
JIT mode ... 61
JUnit

Extensions to JUnit 169
JUnit91, 168, 169, 171, 177, 179
just‐in‐time mode .. 61
JVM.. 59, 61
JVMPI

Agent .. 61
Technology .. 59, 61

JVMPI...59, 61, 254, 255

L
Language .. 23
Late detect array bounds write...................... 52
Late detect free memory write....................... 53
LED...219, 242
Libraries

compiling TDP libraries........................... 262
runtime analysis.. 82
testing... 93
using shared libraries............................... 234

Libraries .. 82, 234
libs ... 234
Limiting coverage types 269
Link ... 263
Linking.. 263
Loading files... 235
Locate .. 241
Log2 n ... 87
LOGICAL ... 39
Login ... 181
long long... 121
LOOP .. 94
Loops......23, 26, 28, 31, 38, 39, 94, 163, 190, 269

M
Macro expansion ... 48
macros..........48, 77, 120, 192, 231, 250, 252, 269
MAF... 53
main() .. 66
Make....2, 52, 62, 67, 87, 112, 129, 135, 196, 203,
217, 221, 224, 235, 236, 243, 248, 249, 252
Makefile ...220, 236
malloc.. 55
Margin... 97, 143
Markers... 249
Master projects... 237
MATCHED... 196
MATCHING....................................191, 196, 203

Math.h..118
Maurice Halstead...87
Maximum reached...22
MDd...244
Memory

Allocation failure...53
Errors ..50
In use...53, 54
Leak...54
Memory usage ...71
Potential leak..54
Usage bar..71

Memory ...52
Memory Profiling

Java..59
JVMPI..61
Memory Profiling Results51
Memory Profiling Viewer58
Memory Profiling warning messages.......53

Memory Profiling.. 21, 50, 51, 52, 53, 54, 55, 58,
59, 217, 220, 232, 267, 269
Memory Profiling for Java59
Message

Message dump...76
Message‐oriented middleware................181

Message ...193, 194, 196
MET file ...84
Method

Coverage...41
Method ..46
Metrics

Adding..249
Graph ..226
Viewer...84, 85, 86

Metrics 47, 83, 84, 87, 133, 247, 248, 249
Microsoft

Microsoft Visual Studio....................220, 244
Microsoft ...284, 286
Min.Max ..199
Misc..217
MIU..53
MLd..244
MLK...54
Mms ...70
Mode Arrays...113
Modified conditions26, 34
Modifier...114
MOM..181
MPK ...54
MPL..54

 309

MTd ... 244
Multi‐dimension .. 199
Multiple

Multiple conditions 26, 34, 191
Multiple instances..................................... 187
Multiple transitions 135

Multiple............................... 26, 34, 135, 187, 191
Multi‐thread

Support... 75
Multi‐thread 75, 187, 188, 202

N
Native code

Component Testing for Ada.................... 142
Component Testing for C 95
Component Testing for C++ 130
System Testing for C................................. 212

Native code... 95
Navigating.. 70
Navigation Pane .. 70
Nb_instances .. 34
Neg_ack 193, 194, 196, 203
Netscape Navigator... 1
NEXT_TEST.. 94
NIL... 199
NIS ... 181
Nns... 70
NO ... 112, 154, 157
Node

Instrumentation... 244
Node.228, 230, 231, 232, 235, 242, 243, 253, 282
Nodes .. 228
NOMATCHED .. 196
NOMATCHING .. 196
Non‐coverable statements 43, 47
NONIL .. 199
Non‐spreadable.. 53
NOT... 72
Nul... 26
NULL... 26, 52
Null‐terminated ... 199
NUMBER .. 34
NUMERIC_ERROR....................................... 166

O
O... 39, 92, 130
Obj.. 92, 130
Object View .. 86
Object‐oriented... 91, 126
ObjectSpace C++... 42

Occid ..202
ON ERROR..136
ON ERROR BYPASS......................................136
ON ERROR CONTINUE...............................136
On_exit...269
Online Documentation1
On‐the‐fly trace...215
Options ..243
Options Header File.......................................260
options.h..........................256, 257, 260, 261, 263
options_model.h...260
OR...72
OSEK..181
OTC.................. 127, 128, 129, 256, 257, 260, 263
OTC file............................127, 128, 129, 256, 260
OTD..128, 129, 256
OTD file ...128, 129, 256
OTHERS ..191, 199
Output..229
Overhead...22, 267, 269

P
PACKAGE...160
param1...189
param2...189
param4...189
Parameter

Environments...119
Parameter ..98, 115, 119
Parameters...114, 115
Parser ...115
Partial message dump76
Pass mode..22
Pass/fail..26, 34
PATH environment..181
Pathnames ...186
PAUSE ...211
Performance 21, 62, 75, 76, 77, 181, 186, 211,
267, 269
Performance Profiling

Filters...64
Performance Profiling Results62
Performance Profiling Viewer

Using .. 63
Performance Profiling Viewer63

Performance Profiling.........21, 62, 63, 220, 232,
267, 269
Png..252
Pointers

structure elements121

310 IBM Rational Test RealTime User Guide

Pointers26, 34, 52, 53, 54, 107, 116, 121, 124,
163, 192, 199
Posix .. 75
Post‐conditions135, 136
Potential memory leak.................................... 54
Pragma directives.. 76
Prefix ... 77, 248
Primitives.................................169, 171, 178, 179
PRINT Instruction136, 186, 210, 211, 214
Printf.. 114
Private values... 166
Probe C macros.. 77
probecst.c.. 79
Probecst.c file ... 77
Probes...21, 77, 79, 220
PROC........28, 30, 37, 41, 136, 154, 192, 210, 211
Procedures.. 192
Process_count... 26
PROCSEND.. 194
product.h ...256, 257
product_model.h ... 261
Products Header File 261
products.h..261, 262
Profiling/libraries .. 82
PROGRAM_ERROR 28, 166
Project.. 228
Project Browser.. 228
Project Explorer76, 77, 230, 231, 232, 235,
239, 243, 250
Project Wizard ... 220
Project/Troubleshooting 229
Projects........4, 21, 68, 69, 91, 123, 124, 125, 181,
212, 217, 219, 220, 228, 231, 235, 247, 248, 249
Properties...235, 243, 248
PROTECTED_ARRAY.................................. 163
PROTECTED_ARRAY_TASK 163
Protected_array_task.read............................ 163
Protected_array_task.write 163
PTU File .. 256

R
Raise exception stubs 155
RAISE STANDARD.CONSTRAINT_ERROR155
RAISE STORAGE_ERROR........................... 155
Rates Report ... 49
Rational

ClearCase ... 271
Clearquest...271, 272
Rational Software Corporation................... 2
Rose RealTime............................181, 271, 276

Test RealTime1, 2, 52, 187, 202, 214, 247, 250
TestManager271, 281, 282

READ...163
Real‐time ...267
Records ..150, 151
RED..26, 31, 34, 39
Red zone..52
Reg ...74
Rename..235
Rendezvous

Rendezvous Members187
Rendezvous..................... 185, 187, 203, 213, 215
Replace ..240
Report

Browser...124
Explorer ..70, 178
Header ..178
Summary header247
Viewer

Using...245
Viewer...212, 232, 245

Report 63, 124, 125, 133, 166, 178, 212, 232,
245, 246, 247, 266
Report/Component Testing for Ada............166
Report/Viewer ..266
REQUIRE ..136
RESET ..210
Results ...278
RET...41
RETURN..38, 41, 46
return_param..189
Retval ...31, 39
RIO file....................................... 77, 202, 214, 265
Root Level File View..85
Root Level Object View...................................86
Rose RealTime276, 278, 280
Rose RealTime/Troubleshooting..................280
RTOS..187
RTP File ...253
RUN ...136
running runtime analysis features.................21
running test features..91
RunTest method (Java)..................................173
Runtime Analysis

Features ..21, 246
Reports..246
Wizard ..220

Runtime Analysis..................... 21, 220, 254, 255
Runtime analysis/libraries82
Runtime Tracing....... 65, 66, 67, 68, 71, 179, 267

 311

S
Scalable.. 271
SCENARIO.....190, 191, 192, 203, 206, 207, 208,
210, 211
SCI

Dump Data .. 277
Dump File .. 265

SCI........23, 63, 254, 255, 261, 264, 265, 267, 269,
276, 277
SCI/Excluding from instrumentation.......... 244
SCM ... 271
Script.. 283
SEND... 194, 196, 203
separate body stub... 154
Sequence Diagram.... 65, 66, 67, 70, 71, 74, 213,
215, 232
SERVICE 94, 98, 108, 124
SHARE .. 187
Shared libraries .. 234
SIG ... 54
SIGHUP... 181
SIGINT .. 269
Signal............................... 22, 31, 54, 76, 181, 269
Signal handled ... 54
SIGUSR1.. 76, 269
Simulated files.. 108, 221
Simulation... 107
Sizeof ... 52
SOCK_STREAM 190, 206
Solaris .. 75
Source Code.. 261
Source Code Insertion............................. 23, 267
Source Code Parser................................ 115, 226
Source Control

Add ... 271
Source Control ... 271
Source file folder.. 233
Source file information 230
Source Report ... 48
SPEC .. 30
Split.. 265
Spv ... 186, 257
SPV File ... 185
SPV script.. 186
start app .. 171
State ... 72
State machines.. 135
Statement blocks .. 23, 31
States...........................26, 127, 129, 133, 135, 203
Static metrics 83, 84, 226

Stb...128, 129
Stderr..37, 41
Step‐by‐step mode ...67
STORAGE_ERROR ..166
STR ...118, 119
String pointer ..122
Stroud number..87
Struct ..105, 106
STRUCTURE...125
Structure Display..125
Structured variables.......................104, 105, 106
Structures ..168
Stub

Ada ..155, 156
Generic units ..154
Stub harness ...172

Stub107, 110, 111, 136, 155, 172
Stub/Excluding a parameter112, 157
Stubs

Advanced Ada ...157
Complex stubs in Ada...............................157

Sub‐project ..228, 237
Summary report ...247
Supervisor ...214
Supervisor script ..186
SUT...181, 213
SWITCH31, 38, 39, 43, 46
SWITCH CASE ...39, 43
Switching configurations219
Switching targets..219
Synchronization..203
Syntax ..30
Syntax coloring ...241
System

System Testing ...181
System Testing for C91

System.............. 181, 183, 187, 212, 213, 214, 224
System Testing

Probes..79
Supervisor...186, 214
System Testing for C257
Wizard...224

System Testing................................183, 186, 214
System Testing for C

Native code...212

T
TABLE..163
Tagged limited private values......................166
Tagged records ...151

312 IBM Rational Test RealTime User Guide

Target .. 259
Target Deployment Port.....4, 16, 50, 55, 63, 75,
94, 123, 125, 184, 187, 188, 196, 203, 217, 219,
220, 244, 262, 269
Target‐independent... 4
Task

Task protected_array................................ 163
Task testing.. 163

Task ..28, 163, 181, 187
TASKING_ERROR.. 166
Tcp nowait.. 181
TCP/IP port... 185
TDF.. 77, 265
TDF file ..77, 232, 265
TDP...........4, 16, 55, 123, 244, 257, 259, 261, 262
TDP Editor.. 16, 55
TDP Library...261, 262
TDP.txt file.. 278
Technical Support

Africa.. 2
Asia Pacific .. 2
Europe.. 2
Middle East.. 2
North America .. 2
USA... 2

Technical Support.. 2
Telecommunication....................................... 181
Telnet... 181
Template Instrumentation.............................. 42
Templates.txt.. 42
TERMINATION163, 208
Termination Environment............................ 208
Test

Test case ... 136
Test cases ... 282
TEST CLASS.. 136
Test Configurations76, 77, 184, 219
Test feature21, 67, 91, 123, 126, 181, 214
Test Files .. 244
Test Harness165, 171, 263, 264
Test nodes .. 127
Test primitives (Java) 173
Test reports .. 166
Test selection ... 140

Test94, 110, 119, 124, 163, 230, 246
Test Process Monitor......................247, 248, 249
Test RealTime.......1, 2, 21, 23, 26, 31, 34, 37, 39,
42, 50, 58, 62, 63, 65, 67, 76, 77, 91, 94, 123, 124,
125, 126, 181, 183, 185, 186, 212, 213, 214, 220,

221, 224, 230, 231, 232, 235, 239, 241, 243, 246,
247, 249, 250, 271, 272, 276
Test Script

Component Testing for Ada140
Test Script Compiler Macro Definitions.120
Test Script Structure....................................94

Test Script..118, 120, 140
Test Verdict Reports246
Testability metrics..226
TestCase ..171
TestCase class (Java)173
TestClass..178
Tested file ..226
Tester Configuration......................................124
Testing libraries..93
Testing pointers......................................121, 163
Testing tasks ...163
Testing variables ..142
TestManager ...281, 283
TestResult..171
TestResult class (Java)176
TestSuite ..171, 178
TestSuite class (java)176
Text

Text editor 48, 66, 84, 179, 230, 239, 240, 241
Text File ..239
Text_io.put_line...28

Text...74, 240
TFF ...26, 34
TFT file...26, 34, 68, 69
THEN............... 31, 38, 39, 43, 190, 196, 203, 206
Thread

Thread Bar..72
Thread ID ...72
Thread Properties..72

Thread.......................... 72, 75, 181, 187, 188, 203
Through...70
THROW...41, 46
TIME

Time format..70
TIME Instruction210
TIME keyword...210
Time Management209
Time scale...249
Time stamping...70

TIME ..70, 210
Time scale..249
Time stamping..70
TIMER..210
Timestamp ..72

 313

TIO File.. 265
Tmp ... 34
Tolerance... 97, 143
Tool.. 252
Tools Menu

About.. 250
Tools Menu... 250
TP.h.. 188
Tpf.. 265
TPF file .. 265
TPM

TPM Metrics .. 249
tpmadd... 247

TPM ... 247
Tqf.. 265
TQF file.. 265
Trace

Trace buffer.................................. 76, 186, 214
Trace dump.. 50, 269
Trace dumps .. 269
Trace Files .. 77
Trace pragma... 76
trace probes.. 77
Trace triggers... 68

Trace .. 21, 65, 69
Trace File... 264, 265
Trace Item Buffer ... 76
TRACE_OFF... 214
TRACE_ON.. 214
Traces22, 47, 50, 63, 65, 67, 68, 74, 75, 76, 77,
125, 135, 186, 188, 206, 213, 214, 215, 217, 220,
232, 269
Traget Deployment Port 259
Transitions .. 133, 135
Triggers 23, 50, 68, 72, 269
Troubleshooting..................................... 229, 264
TRY.. 43
TRY blocks.. 39
tryFiveTimes () ... 39
Tsf file.. 278
TTX .. 26, 34
Type Modifiers... 114
Typedef ... 192
Typedef int ... 199

U
UML

UML sequence diagram................ 21, 65, 66,
67,70, 71, 74, 75, 77, 125, 135, 136, 179, 213,
215, 232

UML/SD Viewer65, 66, 67, 71, 179, 213
UML 65, 66, 70, 71, 72, 74, 125, 135, 179,
203, 213, 215, 232, 247, 276
UML Sequence Diagram71, 179
UML/SD Viewer

Filters...69
Triggers ...68

UML/SD Viewer66, 67, 71, 72, 179, 213
Undo check out...271
Unexpected exceptions..........................136, 166
Unions..106
Unit code coverage...28
Unknown values ..166
User interface ..217, 253
Using

Environments...120
Graphical User Interface...........................217
GUI ..217
Memory Profiling Viewer58
Performance Profiling Viewer63
Report Viewer ..245
runtime analysis features21
Runtime Tracing67, 76
stubs in Ada ...155
test features ..91

Using..58, 63, 245

V
V(g)...85, 86, 87
V2001A files ..123
VAR......... 103, 118, 119, 125, 142, 163, 190, 194,
196, 199, 203
Variable number of parameters....................114
Variables..................................124, 142, 145, 259
Variables/Ada ...142
Verbose output ...229
verify ..169, 171, 178, 179
Viewer................67, 71, 72, 74, 84, 213, 232, 278
Viewing metrics..84
Virtual tester

Virtual tester thread188
Virtual tester thread starter program188

Virtual tester124, 181, 184, 185, 186, 187,
188, 193, 194, 196, 202, 203, 206, 212, 213, 214,
215, 224
Visual Studio...284, 286
void*...115
VT ...184

314 IBM Rational Test RealTime User Guide

W
WAITTIL

WAITTIL blocks.. 213
WAITTIL exits... 196

WAITTIL..........186, 191, 196, 199, 203, 210, 211
Warning messages..................................... 53, 58
Watchdogs.. 269
WHEN... 191
WHEN OTHERS.. 191
WHILE31, 38, 39, 43, 46, 190
WHILE blocks .. 31, 39
WHILE loops.. 31, 38
WHITE ...26, 31, 34, 39
White icon... 244
Wildcard ..72, 74, 183
WITH... 154
Wizard220, 221, 224, 228
Workspace.. 228
WRAP ... 133
WRITE... 163
WTIME.............................191, 196, 203, 210, 211

X
XRD file... 178

Z
Zoom... 247
Zoom Level .. 247

����

Printed in USA

	IBM Rational Test RealTime User Guide
	Table Of Contents
	Preface
	About Rational software from IBM
	Contacting IBM Customer Support
	Downloading the IBM Support Assistant

	Installing, migrating, configuring
	Example projects
	Target deployment technology overview
	Key Capabilities and Benefits
	Downloading Target Deployment Ports
	Obtaining New Target Deployment Ports
	Reconfiguring a TDP for a compiler or JDK

	Configuring target deployment ports
	Determining target requirements
	Data Retrieval Capability
	Free Data Space
	Free Stack Space
	Mutex
	Thread Self and Private Data
	Time management
	Heap Management
	High-Speed Link
	Task Management
	BSD Socket Compliance
	Thread Adaptation
	Clock Adaptation
	JVMPI Support
	Heap Settings
	Determining target architecture support

	Retrieving data from the target platform
	Retrieving Data from the Target Host
	Never ending applications
	Target System Categories

	Troubleshooting target deployment ports

	Using the TDP Editor
	Using the TDP Editor
	Launching the TDP Editor
	Updating a Target Deployment Port

	Opening a Target Deployment Port
	Creating a Target Deployment Port
	Naming Conventions

	Editing Customization Points
	Updating a Target Deployment Port
	Using a Post-generation Script
	Example

	Profiling with runtime analysis
	Runtime analysis overview
	Code coverage
	How Code Coverage Works
	Information Modes
	Default Mode
	Compact Mode
	Hit Count Mode

	Coverage types
	Branches
	Coverage Levels
	Ada coverage
	C coverage
	C++ coverage
	Java coverage

	Filtering coverage types
	Test by test analysis mode
	Reloading a report
	Resetting a report
	Coverage source report
	Hypertext Links
	Macro Expansion
	Hit Count
	Cross Reference
	Comment

	Coverage rates report
	Code Coverage Dump Driver
	Cleaning code coverage report files

	Memory profiling for C and C++
	How Memory Profiling for C and C++ Works
	Memory Profiling Results for C and C++
	Memory Profiling Error Messages
	List of Memory Profiling Error Messages
	Freeing Freed Memory (FFM)
	Freeing Unallocated Memory (FUM)
	Freeing Invalid Memory (FIM)
	Late Detect Array Bounds Write (ABWL)
	Late Detect Free Memory Write (FMWL)
	Memory Allocation Failure (MAF)
	Core Dump (COR)

	Memory Profiling Warning Messages
	List of Memory Profiling Warning Messages
	Memory in Use (MIU)
	Memory Leak (MLK)
	Memory Potential Leak (MPK)
	File in Use (FIU)
	Signal Handled (SIG)

	Memory Profiling User Heap in C and C++
	Target Deployment Port API

	Using the Memory Profiling Viewer
	Error and Warning Filter
	Reloading a Report
	Resetting a Report

	Checking for ABWL and FMWL errors
	Specifying a manual check
	Selecting blocks to check

	Memory profiling for Java
	How Memory Profiling for Java works
	Memory Profiling results for Java
	Report explorer
	Method snapshots
	Referenced objects
	Differential reports

	JVMPI technology
	Garbage Collection
	JVMPI Agent

	Performance profiling
	Performance Profiling Results
	Top Functions Graph
	Performance Summary

	Performance Profiling SCI Dump Driver
	Using the performance profiling viewer
	Reloading a report
	Resetting a report
	Exporting a report to HTML

	Applying performance profile filters
	Editing performance profile filters

	Runtime tracing
	How Runtime Tracing works
	UML sequence diagram overview
	Tracing a test node
	Step-by-step tracing
	Using sequence diagram triggers
	Start and end of runtime tracing:

	Applying sequence diagram filters
	Adding UML notes to source code
	Viewing UML sequence diagrams
	Navigating through UML Sequence Diagrams
	Time stamping
	Coverage bar
	Memory usage bar
	Thread bar
	Thread properties
	Filtering sequence diagram events
	Finding text in a sequence diagram
	Exporting a sequence diagram to a text file (.csv)

	Advanced runtime tracing
	Multi-thread support
	Partial trace flush
	Trace item buffer
	Splitting trace files

	Trace Probes for C
	How Trace Probes work
	Using Probe Macros
	Trace Probe output modes
	Traces Probes and System Testing for C
	Customizing the USER output mode
	atl_start_trace
	atl_end_trace
	atl_send_trace and atl_recv_trace
	atl_write_probe
	atl_dump_trace()
	atl_open_probe
	atl_close_probe
	atl_read_probe
	atl_select_trace

	Profiling shared libraries

	Checking with static analysis
	Static metrics
	How the static metrics tool works
	Viewing Static Metrics
	Report Explorer
	Metrics Window
	Static metrics
	Root level file view
	Object view

	Halstead Metrics
	V(g) or Cyclomatic Number

	Code review
	How the code review tool works
	Configuring code review rules
	Running a code review
	Viewing code review results
	Reloading a Report
	Exporting a Report to HTML

	Ignoring a rule on a portion of code
	Understanding code review reports
	Report explorer
	Report summary
	Code review details

	Testing software components
	Component Testing for C
	How Component Testing for C Works
	Component Testing for C Overview
	Integrated, Simulated and Additional Files
	Testing shared libraries

	Writing a Test Script
	Test Script Structure
	Using native C statements
	Automatically updating a .ptu test script
	Testing variables
	Stub Simulation
	Environments
	Advanced C Testing

	Viewing Reports
	Understanding Component Testing Reports
	Understanding Component Testing UML Sequence Diagrams
	Comparing C Test Reports
	Array and Structure Display

	Component Testing for C++
	Overview
	How Component Testing for C++ Works
	C++ testing overview
	C++ test nodes
	C++ contract check Script
	C++ Test Driver Script
	Files and classes under test
	Using native C++ statements
	Additional and included files
	Declaration files
	Error Handling
	Template Classes
	Testing shared libraries

	C++ test reports
	Understanding Component Testing for C++ reports
	Understanding Component Testing for C++ UML Sequence Diagram
	Illegal and multiple transitions
	Contract-Check sequence diagrams
	Test Driver Sequence Diagrams

	Component Testing for Ada
	Component Testing for Ada overview
	How Component Testing for Ada Works
	Integrated, simulated and additional Files
	Component Testing test selection
	Initial and expected value settings

	Writing a test script
	Test Script Structure
	Using native Ada statements
	Testing variables
	Stub simulation
	Advanced Ada testing

	Viewing reports
	Understanding Component Testing reports
	Comparing Ada Test Reports
	Array and structure display

	Component Testing for Java
	How Component Testing for Java works
	Java testing overview
	About JUnit
	Java test nodes
	Java test harness
	Java stub harness
	Using the TestCase class
	Using the TestResult class
	Using the TestSuite class
	Simulated and additional classes
	Importing a JUnit test campaign
	J2ME specifics

	Java test reports
	Understanding Java test reports
	Understanding Java component testing UML sequence siagrams

	System Testing for C
	Agents and Virtual Testers
	System Testing Agents
	Configuring Virtual Testers
	Debugging Virtual Testers
	Deploying Virtual Testers
	Editing the Deployment Script
	Optimizing Execution Traces
	Setting Up Rendezvous Members
	System Testing in a Multi-Threaded or RTOS Environment
	Launching virtual tester threads

	System Testing for C Test Scripts
	Flow control
	Adaptation layer
	Instances
	Environments
	Time management
	Using native C statements

	Understanding System Testing for C Reports
	Report Explorer
	Report Header
	Main Report Sections
	Understanding System Testing UML Sequence Diagrams

	Advanced System Testing
	System Testing Supervisor
	Circular Trace Buffer
	On-the-Fly Tracing

	Using the graphical user interface
	GUI Philosophy
	Configurations and settings
	Propagation Behavior of Configuration Settings
	Configuration Settings Structure
	Selecting Configurations
	Modifying Configurations

	Creating tests and applications
	Creating a new project
	Creating a runtime analysis application node
	Creating a component test
	Creating a system test
	Viewing a static metrics diagram
	Specifying advanced component test options
	Component Testing for C and Ada
	Component Testing for C++
	Component Testing for Java

	Working with projects
	Project overview
	Project Nodes
	Projects and sub-projects
	Results Node

	Troubleshooting a project
	Refreshing the asset browser
	Manually creating an application or test node
	Creating an external command node
	Creating a group
	Deleting a node
	Opening a report
	Creating a source file folder
	Using assembler source files
	Unloadable libraries
	Using shared libraries
	Viewing node properties
	Renaming a node
	Adding files to a project

	Importing files
	Importing files from a Microsoft Visual Studio project
	Importing files from a makefile
	Importing sub-projects
	Importing a data table (.csv file)
	CSV File Format

	Editing code and test scripts
	Creating a text file
	Opening a text file
	Finding text in the text editor
	Search Options

	Replacing text in the text editor
	Search Options

	Locating a line and column in the text editor
	Text editor syntax coloring
	Commenting code in the text editor

	Running tests and applications
	Building and Running a Node
	Selecting Build Options for a Node
	Excluding a Node from a Build
	Excluding a Node from Instrumentation
	Cleaning Up Generated Files
	Debug mode
	Setting environment variables

	Viewing reports
	Report Viewer
	Exporting reports to HTML
	Understanding Reports
	Runtime analysis reports
	Static analysis reports
	Test verdict reports

	Setting the zoom level
	Displaying a report summary header

	Monitoring the test process
	About the test process monitor
	Changing Curve Properties
	Custom Curves
	Event markers
	Setting the time scale
	Adding a metric

	Customizing tools
	Custom tools overview
	Identification
	Actions

	Customizing the Tools menu

	Using the command line interface
	Running a Node from the Command Line
	Command Line Runtime Analysis for C and C++
	Command Line Runtime Analysis for Java
	Command Line Component Testing for C, Ada and C++
	Command Line Component Testing for Java
	Command Line System Testing for C
	Command line examples
	Command Line Tasks
	Setting Environment Variables
	Automated Testing
	Library Paths
	Example

	Preparing an Options Header File
	Preparing a Products Header File
	Instrumenting and Compiling the Source Code
	Requirements
	Instrumentation Launcher
	Instrumentation and Compilation

	Compiling the TDP Library
	Requirements
	Compilation
	Configuration Settings

	Compiling the Test Harness
	Requirements
	Compilation

	Linking the Application
	Requirements
	Linking

	Running the Test Harness or Application
	Troubleshooting Command Line Usage
	Splitting the trace dump file
	Splitting an SCI dump file
	Splitting a JVMPI trace dump file (Memory Profiling for Java

	Opening Reports from the Command Line
	Report Viewers

	Using source code insertion
	Estimating Instrumentation Overhead
	Code Coverage Overhead
	Memory and Performance Profiling and Runtime Tracing
	Memory Profiling Overhead
	Performance Profiling Overhead
	Runtime Tracing Overhead

	Reducing Instrumentation Overhead
	Limiting Code Coverage Types
	Instrumenting Calls (C Language)
	Optimizing the Information Mode

	Generating SCI Dumps
	Explicit Dump
	Dump on Signal
	Instrumentor Snapshot

	Working with other development tools
	Working with configuration management
	Working with IBM Rational ClearCase
	Source Control Commands.

	Working with IBM Rational ClearQuest
	Customizing source control tools

	Working with Eclipse C/C++ Development Tools
	Test RealTime plugin for Eclipse overview
	How the Test RealTime plugin for Eclipse works

	Enabling runtime analysis tools on an Eclipse project
	Managing configurations in Eclipse
	Managing configuration settings in Eclipse
	Running a project with Test RealTime in Eclipse
	Viewing runtime analysis reports in Eclipse
	Test RealTime preferences in Eclipse

	Working with IBM Rational Rose RealTime
	Using Test RealTime with Rose RealTime
	Collecting dump data in Rose RealTime
	Viewing results from Rose RealTime
	Advanced Rose RealTime integration
	Using a Cross Compiler with Rose RealTime
	Using a Makefile
	Splitting the Result File

	Troubleshooting Rose RealTime Integration
	Project instrumentation and compilation
	Project link
	Execution
	Results

	Working with IBM Rational TestManager
	Installing and configuring the TestManager integration
	Associating test nodes to test cases
	Accessing Test RealTime test nodes and group nodes
	Viewing results in TestManager
	Submitting a ClearQuest defect from TestManager
	Troubleshooting the TestManager integration

	Working with Microsoft Visual Studio
	Configuring Microsoft Visual Studio integration
	Configuration
	Code Coverage Instrumentation Options
	Other Options

	Configuring Microsoft Visual Studio integration
	Configuration
	Code Coverage Instrumentation Options
	Other Options

	Notices
	Glossary
	Index

