
Porting Guide i

OBJECTIME

Porting Guide

Product Release: ObjecTime Developer 5.2
Document Version: 1.0
Release Date: October 1998
Part Number: OT-R520-PKG009

ObjecTime Limited
340 March Road
Kanata, Ontario
Canada K2K 2E4

Printed in Canada

Important Notice

Copyright 1991-1998 ObjecTime Limited. All rights reserved.
The license management portion of this product is based on:
Elan License Manager 1989-1998 Elan Computer Group, Inc. All rights reserved.
Unpublished -- rights reserved under all Copyright laws including Copyright laws of the United States.
ObjecTime (and logo) is a registered trademark of ObjecTime Limited. Developer is a trademark of ObjecTime Limited.
ObjecTime Limited (OTL) PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Information in
this publication is subject to change from time to time without notice. Some states, provinces, or jurisdictions do not allow disclaimer
of express or implied warranties in certain transactions; therefore, this statement may not apply to you.
ObjecTime Limited (OTL) and its licensors retain ownership to the ObjecTime computer program and other computer programs offered
by OTL (hereinafter collectively called “ObjecTime”) and their documentation. Use of ObjecTime is governed by the Development
License Agreement associated with your purchase.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the Com-
mercial Computer Software-Restricted Rights clause FAR 52.227-19 and its successors.
For units of the Department of Defense (DoD), the license for this software is subject to the “Restricted Rights” as that term is defined
in the DFAR 252.227-7013 (c)(1)(ii), Rights in Technical Data and Computer Software and its successors.

The contractor/manufacturer is:
ObjecTime Limited
340 March Road
Kanata, Ontario

Canada, K2K 2E4

When acquired by the Government, commercial computer software and related documentation so legended shall be subject to the
following:
(A) Title to and ownership of the software and documentation shall remain with the Contractor.
(B) User of the software and documentation shall be limited to the facility for which it is acquired.
(C) The Government shall not provide or otherwise make available the software or documentation, or any portion thereof, in any form,
to any third party without the prior written approval of the Contractor. Third parties do not include prime contractors, subcontractors
and agents of the Government who have the Government’s permission to use the licensed software and documentation at the facility,
and who have agreed to use the licensed software and documentation only in accordance with these restrictions. This provision does
not limit the right of the Government to use software, documentation, or information therein, which the Government has or may obtain
without restrictions.
(D) The Government shall have the right to use the computer software and documentation with the computer for which it is acquired
at any other facility to which that computer may be transferred; to use the computer software and docu3mentation with a backup com-
puter when the primary computer is inoperative; to copy computer programs for safekeeping (archives) or backup purposes; and to
modify the software and documentation or combine it with other software. Provided, that the unmodified portions shall remain subject
to these restrictions.

COMMERCIAL COMPUTER SOFTWARE — RESTRICTED RIGHTS

(c) (1) The restricted computer software delivered under this contract may not be used, reproduced or disclosed by the Government
except as provided in subparagraph(c)(2).
(c)(2) The restricted computer software may be —
(i) Used or copied for use in or with the computer or computers for which it was acquired, including use at any Government installation
to which such computer or computers may be transferred;
(ii) Used or copied for use in or with backup computer if any computer for which it was acquired is inoperative;
(iii) Reproduced for safekeeping (archives) or backup purposes;
(iv) Modified, adapted, or combined with other computer software, provided that the modified, combined, or adapted portions of the
derivative software incorporating any of the delivered, restricted computer software shall be subject to same restrictions set forth in
this contract.

The following are trademarks or registered trademarks of their respective companies or organizations:
VxWorks, Tornado / Wind River Systems Inc. pSOS / Integrated Systems Inc. QNX / QNX Software Systems Ltd. LynxOS / Lynx Real
Time Systems Inc. VRTX, MRI C++ / Microtec Inc. Green Hills C++ / Green Hills Software, Inc. Cygnus C++ / Cygnus Support. Watcom
C++ / Sybase Inc. Elan License Manager / Elan Computer Group, Inc. OPEN LOOK, UNIX / UNIX System Laboratories, Inc.
FrameMaker, FrameViewer, PostScript, Acrobat / Adobe Systems, Inc. Hewlett-Packard / Hewlett-Packard Company. SGI R3000,
R4000, IRIX / Silicon Graphics Inc. AIX, IBM, PowerPC, RISC System/6000 / International Business Machines Corporation. Win-
dowsNT, VisualC++ / Microsoft Corporation. Sun Microsystems, Sun Workstation, OpenWindows, Solaris, SunView, SPARC, SPARC-
station / Sun Microsystems, Inc. X Window System, X11 / Massachusetts Institute of Technology. Smalltalk-80, ObjectWorks/Smalltalk
/ ParcPlace Systems, Inc. GNU / The Free Software Foundation. ClearCase, Purify / Rational Software Corporation. All other brand
names are trademarks of their respective holders.

Porting Guid
About this document
ce.
r-

r
ol

s

This guide is divided into the following four parts:

• Part 1: Porting the TargetRTS for C workbook leads you through the steps necessary to port the
TargetRTS for C. Print this chapter so that you can capture information that you need to referen
The workbook begins with a simple model execution and moves progressively to more complex a
eas, including debugging, target observability, threading, error parsing, and timers.

• Part 2: Porting guide reference complements the first section. It provides reference material on
how to port the TargetRTS to a new computing platform. This may involve a totally new compile
and target environment or may be a port to a newer version of the compiler/linker/debugger to
chain. Part 2 includes the following chapters:

• The Introduction describes the purpose and audience for this document.

• Before starting the port describes what you need to do before starting the port.

• Porting the TargetRTS describes the common features of the TargetRTS and the requirement
needed to port the TargetRTS to a new platform.

• Porting the TargetRTS for C++ describes porting the C++ version of the TargetRTS.

• Porting the TargetRTS for C describes porting the C version of the TargetRTS.

• Modifying the error parser describes how to modify the error parser.

• Testing the TargetRTS describes how to test the TargetRTS.

• Tuning the TargetRTS describes how to improve the performance of the TargetRTS.

• Common problems and pitfalls provides information on common problems and pitfalls
encountered when performing ports.

• Part 3: Appendices provides the following porting examples:

• TargetRTS for C++ porting example

• TargetRTS for C Porting example

• Part 4: Index

Note: It is intended that the next version of this guide will contain a Porting the TargetRTS for C++
workbook.
e iii

ObjecTime support

Your opinions and suggestions are both welcome and vital to the evolution of ObjecTime.

ObjecTime support hotline: (613) 591-3400

ObjecTime fax: (613) 591-3784

ObjecTime email: support@objectime.com
iv Porting Guide

Porting Guid
Table of Contents
Part 1: TargetRTS for C porting workbook 1

Porting the TargetRTS for C workbook . 3
1.0 Simple model execution phase . 3

1.1 Environment setup . 3
1.2 Choose names . 4
1.3 Create directories . 6
1.4 Create and edit Perl scripts . 7
1.5 Create and edit makefiles . 7
1.6 Create and edit C source and header files 8
1.7 Compile the TargetRTS for your target 10
1.8 Compile and run the C_HelloWorld model for your target . 10

2.0 Debug phase . 13
2.1 Modify $RTS_HOME\target\<TargetName>\RTTarget.h . . 13
2.2 Debug run-time testing . 13

3.0 Target Observability phase . 13
3.1 Modify $RTS_HOME\target\<TargetName>\RTTarget.h . . 13
3.2 Target Observability run-time testing 14

4.0 Threaded phase . 15
4.1 Creating the multi-threaded libraries 15
4.2 Threaded phase run-time testing . 16

5.0 Porting the error parser phase .16
5.1 If the compilation platform does not have Perl 16

6.0 Porting timers phase . 17
6.1 Local timers . 18
6.2 Actor timers . 19
e Table of Contents v

Part 2: Porting guide reference 21

Introduction .23

Before starting the port .25
OS knowledge and experience . 25
Tool chain functionality . 25
OS capabilities . 25
Simple non-ObjecTime program on target 27
TCP/IP functionality . 28
Floating point operations . 28
Standard input/output functionality . 28
Debugging . 28
Training . 28
What to do before calling ObjecTime support 28

Porting the TargetRTS .31
Phases of a port . 31
Choose a platform name . 31
Target name . 32
Libset name . 33
Create a setup script . 33
TargetRTS makefiles . 34

Porting the TargetRTS for C++ .45
TargetRTS configuration definitions . 45
Platform-specific implementation . 48
Adding new files to the TargetRTS . 52

Porting the TargetRTS for C .55
C TargetRTS configuration definitions 55
Platform-specific implementation . 61
Adding new files to the C TargetRTS 66
C TargetRTS run-time semantics . 66
Implementing timer services in the C TargetRTS 77

Modifying the error parser .91
Setting the compiler vendor in the libset.mk file 91
Reusing an existing error parser . 91
Creating a new error parser . 91

Testing the TargetRTS .95
Testing the TargetRTS for C++ . 95
Testing the TargetRTS for C . 95
vi Table of Contents Porting Guide

Tuning the TargetRTS . 97
Disabling TargetRTS features for performance 97
Target compiler optimizations . 97
Target operating system optimizations 97
Specific TargetRTS performance enhancements 98

Common problems and pitfalls . 99
Problems and pitfalls with target toolchains 99
Problems and pitfalls with TargetRTS/RTOS interaction . . 100
Problems and pitfalls with target TCP/IP interfaces 102

Part 3: Appendices 103

TargetRTS for C++ porting example . 105

Introduction . 105
Choosing the platform name . 105
Create setup script . 105
Create makefiles . 106
TargetRTS configuration definitions 109
Code changes to TargetRTS classes 110
Building the new TargetRTS . 111

TargetRTS for C Porting example . 113

Introduction . 113
Choosing the platform name . 113
Create setup script . 113
Create makefiles . 114
TargetRTS configuration definitions 117
Code changes to TargetRTS classes 119
Building the new TargetRTS . 119

Part 4: Index 121

Index .123
Porting Guide Table of Contents vii

viii Table of Contents Porting Guide

Part 1
Porting theTargetRTS
for C workbook

Chapter 1

Porting Guid
1 Porting the TargetRTS for C
workbook
1.0 Simple model execution phase
This chapter leads you through the steps required to create a simple, single-threaded, executable. Source
code will most likely not need modification as this process primarily focuses on setting up compiler
flags, link options, and creating your first C TargetRTS library. Print this chapter so that you capture the
information you will need to reference.

1.1 Environment setup

1.1.1 Create target-specific environment variables

1 Confirm that basic environment variables specific to your target platform already exist on your host
platform. If not, create them.

ex: Use the Windows NT Control Panel to create an environment
variable called USR_MRI.

1.1.2 Note the values of existing environment variables

Note that %RTS_HOME% is a conceptual and internal environment variable that is used in this docu-
ment. It does not need to be formally created as an operating system environment variable.

To find the value of %OBJECTIME_HOME% on Windows NT, open an ObjecTime Developer com-
mand prompt and type “set OB”.

%OBJECTIME_HOME% =

%RTS_HOME% =

%OBJECTIME_HOME%\C\TargetRTS
e Porting the TargetRTS for C workbook 3

a
e

1.1.3 Install all required target OS software on the host and target

Install and configure the target OS software on both the host and target platforms.

1.1.4 Compile and run hello.c for your target

For more information see “Simple non-ObjecTime program on target” on page 27.

1.2 Choose names

1.2.1 Choose a target name and target base name

For more information, see “Target name” on page 32.

Note: By ObjecTime convention, ‘S’ denotes a single-threaded executable while ‘T’ denotes
multi-threaded executable. For more information about multi-threaded run-time systems se
“Threaded phase” on page 15.

1. Confirm that all the required host tools are present and properly configured by compiling and linking
the following hello.c program. This should be done with out the use of ObjecTime Developer.
2. Confirm that all the required target tools are present and properly configured by loading the hello exe-
cutable onto the target, and running it there. This should be done without the use of ObjecTime Devel-
oper.

#include <stdio.h>
main printf (“Hello World\n”)
{
printf (“Hello World\n”)
}

 <OSname> + <OSversion> = <TargetBaseName>

 <OSname> + <OSversion> + <RTSconfig> = <TargetName>

 ex: SUN + 5 = SUN5
 SUN + 5 + S = SUN5S

S or T

TORNADO + 101 = TORNADO101
TORNADA + 101 + S = TORNADO101S
4 Porting the TargetRTS for C workbook Porting Guide

1.2.2 Choose a libset name

For more information, see “Libset name” on page 33.

1.2.3 Determine the platform name

For more information, see “Choose a platform name” on page 31.

 <Processor> + <CompilerName> + <CompilerVersion> = <LibsetName>

 ex: sparc + “-” + gnu + “-” + 2.7.1 = sparc-gnu-2.7.1

- -

ppc + cygnus + 2.7.2-960126 = ppc-cygnus-2.72-960126

 <TargetName> + <LibsetName> = <PlatformName>

 ex: SUN5S + “.” + sparc-gnu-2.7.1 = SUN5S.sparc-gnu-2.7.1
 TORNADO101S + ppc-cygnus-2.7.2-960126

= TORNADO101S.ppc-cygnus-2.7.2-960126
Porting Guide Porting the TargetRTS for C workbook 5

1.3 Create directories

%RTS_HOME%\config\

2. Create the following directories:

<PlatformName>

%RTS_HOME%\lib\

<PlatformName>

%RTS_HOME%\libset\

<LibsetName>

%RTS_HOME%\src\target\

<TargetBaseName>

%RTS_HOME%\target\

<TargetName>

1. Open an ObjecTime Developer command prompt.

3. If you need to override any of the standard source code, replicate the directory structure in

For example:

%RTS_HOME%\src\target\<TargetBaseName>\MAIN\main.c
overrides

%RTS_HOME%\src\MAIN\main.c

You will most likely find it unnecessary to make modifications or additions to the source code for

the simple model execution phase.

%RTS_HOME\src under %RTS_HOME%\src\target\<TargetBaseName>.
6 Porting the TargetRTS for C workbook Porting Guide

e

1.4 Create and edit Perl scripts

1.4.1 Create an environment variable setup script

For more information, see “Create a setup script” on page 33.

1.4.2 Make copies of Perl scripts

If the compiler does not have options that correspond to the regular -L and -l options, it will probably b
necessary to copy and then modify ld.pl from %RTS_HOME%\libset\x86-VisualC++-
5.0 to %RTS_HOME%\libset\<LibsetName>.

In addition, if your system does not provide a suitable ar command copy ar.pl from
%RTS_HOME%\tools to %RTS_HOME%\libset\<LibsetName> and modify as neces-
sary.

1.5 Create and edit makefiles

For more information, see “TargetRTS makefiles” on page 34.

1.5.1 Create the config makefile

For more information, see “Config makefile” on page 39.

%RTS_HOME%\config\<PlatformName>\setup.pl

Create and edit the following file:

1. Edit the path environment variable in setup.pl.
ex: $usr_mri = $ENV{’USR_MRI’};
 $ENV(’PATH’) = “$usr_mri/bin;$ENV{’PATH’}”;

2. Create the preprocessor environment variable.
ex: $preprocessor = “cccppc -E >MANIFEST.i”;

3. Create the supported environment variable.
ex: $supported = ’Yes’;

4. Create other new environment variables required by the target.
ex: $include_opt = ’J’;
 $target_base = ’VRTX3’;

%RTS_HOME%\config\<PlatformName>\config.mk
Porting Guide Porting the TargetRTS for C workbook 7

e

1.5.2 Create the libset makefile

For more information, see “Libset makefile” on page 39.

1.5.3 Create the target makefile

For more information, see “Target makefile” on page 38.

1.6 Create and edit C source and header files

1.6.1 Create RTTarget.h

For the simple model execution phase, disable Multi-threading (RSLMULTITHREADED), Target
Observability (RSLTO) and Debugging (RSLDEBUG).

1.6.2 Creating platform-specific source files

If there is a need to override a portion of the standard code for the port, contained in th
$RTS_HOME/src directory, copy the file that you want to override to the corresponding directory in
$RTS_HOME/src/target.

%RTS_HOME%\libset\<LibsetName>\libset.mk

%RTS_HOME%\target\<TargetName>\target.mk

%RTS_HOME%\target\<TargetName>\RTTarget.h

Create and edit the following file:

#ifndef __RTTarget_h__
#define __RTTarget_h__ included

#define USE_THREADS 0

#define RSLMULTITHREADED RSLFALSE
#define RSLTO RSLFALSE
#define RSLDEBUG RSLFALSE

#endif // __RTTarget_h__
8 Porting the TargetRTS for C workbook Porting Guide

For example:

On Unix:

$RTS_HOME/src/target/<TargetBaseName>/MAIN/main.c

overrides

$RTS_HOME/src/MAIN/main.c

Then when the compilation of the libraries is performed, the Perl scripts will choose the target specific
source file rather than the standard source file.

1.6.3 Creating platform-specific include files

To override include files, such as RT_Time.h, contained in the $RTS_HOME/src/include
directory, copy them to $RTS_HOME/src/target/<TargetBaseName> and then modify
them.
Porting Guide Porting the TargetRTS for C workbook 9

1.7 Compile the TargetRTS for your target

1.8 Compile and run the C_HelloWorld model for your target

1.8.1 Activate C_HelloWorld within ObjecTime

1 Start an ObjecTime session. Do NOT Enable Target Observability.

2 Open the Workspace Browser.

3 Open a Directory Browser on %OBJECTIME_HOME%\ModelExamples\C.

4 Drag C_HelloWorld.update from the Directory Browser to the Workspace Browser.

5 Open a Model Browser on C_HelloWorld.

1. Open an ObjecTime Developer Command Prompt.
2. Change to directory %RTS_HOME%\src\
3. Compile the TargetRTS by entering the following command:

make
nmake CONFIG=

ex: make SUN5S.sparc-gnu-2.7.1
 nmake CONFIG=NT40S.x86-VisualC++-5.0

4. This creates a set of object and library files in the following directory:
%RTS_HOME%\lib\<PlatformName>
ex: If <PlatformName> = SUN5S.sparc-gnu-2.7.1, then the fol-
lowing files should be created in directory
%RTS_HOME%\lib\SUN5S.sparc-gnu-2.7.1 :

libObjecTimeC.a
libObjecTimeCTransport.a
main.o

<PlatformName>
10 Porting the TargetRTS for C workbook Porting Guide

1.8.2 Create a new configuration

1.8.3 Edit the threads configuration

1 Right-click on the Update menu in the Model Browser. Select Open Threads Browser.

2 Activate the SingleThread threads configuration.

3 Close the Threads Browser.

1.8.4 Compile and run

1 Compile the HelloST actor. This will create an executable
%PWD%\C_HelloWorld\build\<TargetName>_config\HelloST.exe.

2 Run the model on the target using the same approach that you used in step 1.1.4 when you compiled
and ran hello.c on the target.

3 Confirm that it ran correctly by observing the output in the target console window. The output should
look like:

C_HelloWorld-v1.0-OT5.2x-started:
Hello World

1. Right-click on Configuration in the Model Browser. Select New Configuration...

2. Name the new configuration

ex: SUN5S_config

3. Double-click on the name of the new configuration.
4. Activate the C Target TargetRTS version.
5. Right-click on Language Options. Select New Language Option...

6. Name the new language option

ex: SUN5

7. Select C as the type. Press the OK button.
8. Activate the new language option.

9. Double-click on the name of the new language option.
Set the Library to

ex: sparc-gnu-2.7.1

10. If necessary, edit the various other values in the language options window, and then close it.
11. Close the Configuration Browser.
12. Activate the new configuration.

TargetName

_config

TargetBaseName

LibsetName
Porting Guide Porting the TargetRTS for C workbook 11

C_HelloWorld v1.0-OT5.2x-finished!

Compilation of the update is usually performed by compiling an actor in the ObjecTime toolset; how-
ever, an update can also be compiled from the $UPDATE_DIR by issuing the make command.

The sections that follow provide detail on additional procedures to create threaded executables, as well
as more complex areas such as debugging, target observability, compiler/linker error parsing and timers.

Note: Perl needs to be installed or the use of Perl disabled to avoid compilation failure in this simple
model execution phase. For more information, please refer to section “If the compilation platform
does not have Perl” on page 165.
12 Porting the TargetRTS for C workbook Porting Guide

2.0 Debug phase
2.1 Modify $RTS_HOME\target\<TargetName>\RTTarget.h

2.2 Debug run-time testing

3.0 Target Observability phase
3.1 Modify $RTS_HOME\target\<TargetName>\RTTarget.h

1. Modify $RTS_HOME\target\<TargetName>\RTTarget.h to have the following

#define RSLDEBUG RSLTRUE

2. Compile the libraries again and see if any further code modifications are required. If standard
Unix-like I/O capabilities are available on your target, it is likely that no modifications are required.

define:

1. Compile the C_HelloWorld model against the new libraries.
2. Run it from the command line, type stats, and then ‘info 0’ and ‘info 1’, and then verify the

information is sane.
3. Optional: If the stats and info commands are working correctly, it’s most likely that all the

debugging features will be functional. However, you may want to test them at this point. See
the debugging test plan.

1. Modify $RTS_HOME\target\<TargetName>\RTTarget.h to have the following
define:

#define RSLTO RSLTRUE

2. Compile the libraries again and see if any further code modifications are required. If your OS
supports BSD-style sockets, it is likely that no modifications are required.
Porting Guide Porting the TargetRTS for C workbook 13

3.2 Target Observability run-time testing

1. Compile the C_StateChanger update against the new libraries.
2. Start up the executable to connect with Target Observability.

You can use any of the provided connection methods, such as manual or basic. It might also be
necessary to embed the connection arguments as default arguments if the target does not accept
arguments upon process startup.
For more information on how to connect to a C target with Target Observability, please refer to the
C Language Guide. 3. Open up a behavior editor on the top-level actor.

4. Click Run and ensure the animation works correctly when you inject a message with the port probe.
5. Optional: If the animation is working correctly, it is most likely that all the Target Observability (TO)

features will be functional. However, you may want to test them at this point. See the TO test plan.
14 Porting the TargetRTS for C workbook Porting Guide

n
edo
4.0 Threaded phase
4.1 Creating the multi-threaded libraries

Essentially, you will be completing most of the steps from the “Simple model execution phase” o
page 3; however, you will be choosing a multi-threaded target. To save time, the steps you need to r
are included below.

1. Consider that the new <TargetName> will be <TargetBaseName>T
2. Since the other files will be similar, you will only have to create:

$RTS_HOME\config\<TargetName>.<LibsetName>\config.mk
$RTS_HOME\config\<TargetName>.<LibsetName>\setup.pl
$RTS_HOME\target\<TargetName>\RTTarget.h
$RTS_HOME\target\<TargetName>\target.mk

3. Copy your single-threaded files and modify them to include the thread information described
below:

a. Modify $RTS_HOME\target\<TargetName>\target.mk to include the thread
library names in the TARGETLIBS macro.

For example, the line might look like the one below before the modification:

TARGETLIBS = $(LIB_TAG)posix4

and like the one below after the modification:

TARGETLIBS = $(LIB_TAG)posix4 $(LIB_TAG)thread

b. Modify $RTS_HOME\target\<TargetName>\RTTarget.h to have the

#define RSLMULTITHREADED RSLTRUE

c. As well you will probably have to create

$RTS_HOME\src\target\<TargetBaseName>\THREAD\RTThread.c

4. Compile the new threaded libraries and see if any further code modifications are required.

following define:
Porting Guide Porting the TargetRTS for C workbook 15

ror
t

4.2 Threaded phase run-time testing

5.0 Porting the error parser phase
The majority of the concepts involved in this section are explained in detail in “Modifying the error
parser” on page 91. Using the concepts from that section, you should do the following:

5.1 If the compilation platform does not have Perl

If the compilation platform does not have Perl, the following solutions are available:

5.1.1 Short-term solutions

(Both the following solutions disable the use of Perl for the compilation phase, and consequently, er
parsing. You will, however, be able to compile without getting a fatal error indicating Perl is no
present.)

Solution 1: Make use of a make overrides file, as described in the chapter “Makefiles” in the C Lan-
guage Guide. Set the following variables to nil within that file:

• OTCOMPILE_CMD =

• OTLINK_CMD =

1. Compile the C_Multithreads model against the threaded TargetRTS.
2. Run it and observe the output to see if it is processing inter-thread messages.

1. Determine if the compiler output for the new target’s libset is similar to the output for a
reference port.

For example, sparc-gnu-2.7.1 and sparc-gnu-2.8.1 have similar error formatting rules.

2. If yes, just set the VENDOR make macro in the libset.mk file to reference the

existing vendor, and the error parsing port is done.
3. If no, see “Creating a new error parser” on page 89.
16 Porting the TargetRTS for C workbook Porting Guide

n

—
se,
Solution 2: Modify the $RTS_HOME/target/<TargetName>/target.mk file to set the
following variables to nil:

• OTCOMPILE_CMD =

• OTLINK_CMD =

5.1.2 Long Term Solution

Download and compile Perl for the compilation platform.

6.0 Porting timers phase
The majority of the concepts involved in this section are explained in “Implementing timer services i
the C TargetRTS” on page 77.

Using the concepts from this section, you should decide what type of timers you want to implement
local timers or actor timers. It is suggested that for RTOS applications, local timers be used; otherwi
actor timers can be used.
Porting Guide Porting the TargetRTS for C workbook 17

6.1 Local timers

6.1.1 Integrated timers

6.1.2 Integrated IPC and timers

1. In $RTS_HOME/target/<TargetName>/RTTarget.h define the following:

#define RSLTIMERS RSLTRUE
#define RSLACTOR_TIMERS RSLFALSE

2. Compile the TargetRTS.
3. Decide whether to use Integrated timers, or Integrated IPC and timers. Integrated IPC’s use another

task for the timing function calls.

Take an existing example of an update with integrated timers

1. The signalling function
2. ExternalInterface (timer) function.
3. Initialize transition code for an actor in each thread that requires timer services. This initialization

transition registers the functions and creates the data structures they will use.
4. Once the existing modified example is working, insert this functionality into an actor in each of

your target threads.

Specifically, re-implement in the timer actor:

(such as C_TornadoQueuesWithTimers, Sender and Replyer Actors)
and modify it to use the OS specific functionality for the new OS.

Take an existing example of an update with integrated IPC timers

1. ExternalInterface (Timer) function.

2. Initialize transition code for an actor in each thread that requires timer services. This initialization
transition registers the functions and creates the data structures they will use. It also creates a
message queue object and stores the handle to this in an actor ESV.

3. Once the existing modified example is working, insert this functionality into an actor in each of
your target threads.

Specifically, re-implement in the timer actor:

(such as C_TornadoQueuesWithTimers, Behavior and Responder actors)
 and modify it to use the OS specific functionality for the new OS.
18 Porting the TargetRTS for C workbook Porting Guide

6.2 Actor timers

1. In $RTS_HOME/target/<TargetName>/RTTarget.h define the following:

#define RSLTIMERS RSLTRUE
#define RSLACTOR_TIMERS RSLTRUE

2. Compile the TargetRTS

3. Take an existing example of an actor timer, for example, Timer Solaris MT, from the Model

a. External interface (Timer) function.
b. Signalling function.
c. Initialize transition code that creates a condition variable and stores it as an actor ESV.
d. Initialize transition code that registers this actor as the provider of all timing services.

ModelExample/C/C_Timers update.
Merge it into another blank update, rename it, and merge it back into the C_Timer update.
Modify it to use the OS specific functionality for the new OS.
Specifically re-implement in the actor timer:

4. Drag the new actor timer into the top level actor of any update you want to provide timing
services for.
Porting Guide Porting the TargetRTS for C workbook 19

Part 2
Porting guide reference

Chapter 2

Porting Guid
2 Introduction
The TargetRTS is the set of run-time services that provide a virtual machine on which an ObjecTime
model can run. It provides the run-time implementation of the ROOM constructs used in the model.
Figure 1 shows the context of the TargetRTS in building an executable program.

This guide describes the steps required to port the TargetRTS to a new target environment. The new tar-
get may simply be a new version of an operating system or compiler on a UNIX host. In more compli-
cated cases it may be a new operating system, compiler and target hardware. The latter scenario is of
more interest to this guide, although all the information required for the former scenario is provided.

This guide is specifically designed for ObjecTime staff and consultants. It is assumed that the reader has
significant knowledge and experience with the development environment, operating system, and target
hardware.

Figure 1 The TargetRTS in context

5. The result is
an executable

program

C / C++
source files

class Abc
{...}

class Def
{...}

class Xyz
{...}

UNIX: TopLevelActor

Executable program

make/nmake

C / C++ compiler

makefile

RTS Library

make is
controlled by
a makefile

1. ObjecTime
invokes
External

2. make
invokes
compiler

4. ...and
links with

RTS library

3. compiler
compiles

C / C++ source files

WinNT: TopLevelActor.exe

Generate/Compile

Subject of this Porting Guide

ObjecTime Developer
e Introduction 23

24 Introduction Porting Guide

Chapter 3

Porting Guid
3 Before starting the port
a
ises.

e

r).

f
s
on

TS.
g a
 its
This chapter describes what you need to do before starting the port.

OS knowledge and experience

Knowledge and experience with the target operating system is key to a successful port. This knowledge
should extend to development environment and target hardware. The type of knowledge required
includes such details as synchronization mechanisms, thread creation, memory management, timing,
device drivers, board support packages, memory maps, TCP/IP support, priority and scheduling
schemes, and so forth. See “OS capabilities” on page 25 for a list of OS capabilities required by the
TargetRTS.

Experience with porting the TargetRTS to other platforms will aid greatly as the ports tend to follow
pattern. For each development environment and operating system there are bound to be a few surpr
See “Common problems and pitfalls” on page 99.

Tool chain functionality

A functioning development environment must be in place before porting can begin. This includes th
correct installation of tools such as linkers, compilers, assemblers and debuggers. To build the
TargetRTS you must have working version of Perl for your development host (version 5.002 or greate
Perl is used extensively in the makefiles for the TargetRTS.

It is also important to initialize environment variables for inclusion of header files and location o
library files. An easy way to test this is the creation of simple program, such as “Hello World”, which i
compiled and run on the target. This step is described in “Simple non-ObjecTime program on target”
page 27.

OS capabilities

The target operating system must have a set of services that satisfy the requirements of the TargetR
In general, most commercial real-time operating systems (RTOS) have these services. Before startin
port, check for these basic capabilities in the target RTOS. Table 1 lists the TargetRTS feature and
corresponding RTOS service.
e Before starting the port 25

t

ci-

d

-

of-
rd

o
d.

a

e
. If

en-

Table 1 Required Operating System Services for C++

TargetRTS Feature Operating System Service

RTSyncObject Semaphore, mailbox, signal, condition variable — service mus
provide infinite and timed blocking.

RTTimespec::getclock A function is required to return the current time. The more pre
sion the better. In general, RTOS will return time with precision
of its internal timer.

RTThread Task creation function — must be able to create task or threa
with specified stack size and priority. Be aware of priority
scheme — some RTOS use 0 as highest priority while others
may use 0 for lowest priority.

RTMutex Semaphore, mutex, etc. — a mutual exclusion mechanism.
Some RTOS provide optimized mutex service along with sema
phores.

RTDiagStream (output to console) Standard input and output — this may not be provided out-
the-box. For embedded targets, device drivers added to the boa
support package may be required. Output is generally routed t
external serial ports but TCP/IP or UDP/IP may be used instea

RTDebuggerInput (input from console) As above. This can be removed from the C++ TargetRTS vi
configuration options. For more information, see “Customizing
the Target Services Library” on page 47 of the C++ Target
Guide.

Target Observability & External Layer TCP/IP support is required. This includes device drivers in th
board support package for the ethernet hardware on the target
not provided this is a substantial do-it-yourself project. This can
be removed from the TargetRTS via configuration options. For
more information, see “Customizing the Target Services
Library” on page 47 of the C++ Target Guide.

new, delete RTOS must support some sort of memory management. In g
eral, this is hidden from the user by the compiler as the RTOS
resolves the new and delete symbol.

main function Some RTOS have their own main function defined. If so, then
the main function in the TargetRTS must be redefined.
26 Before starting the port Porting Guide

o

m

ead
de
 a
 the
her
re
r-

te

d

-

e
. If

 is

Simple non-ObjecTime program on target

An easy way to test the tool chain functionality is to create a simple program that prints out “Hell
World” on the console.

This program should not use any TargetRTS code or libraries. Compile, link, and download the progra
to the target. If it executes successfully, then your development environment is ready.

Further testing is strongly recommended. This would include some basic RTOS services such as thr
creation in the program. Again, no TargetRTS code or libraries should be used. Many RTOS provi
example programs to compile and run. Try these out and verify the functionality. If you are using
source-level debugger, verify that you can step through the source code and examine variables. If
debugger is aware of operating system data structures, then check to see if this functions. Anot
important test for C++ compilers is to include a static constructor in the test program. This will ensu
that proper initialization is performed. The purpose of this testing to ensure that all of the required ope
ating system features are operational and understood before attempting the port of the TargetRTS.

Table 2 Required Operating System Services for a Multi-threaded C TargetRTS

TargetRTS Feature Operating System Service

RSL_semaphore Semaphore, condition variable — service must provide infini
and timed blocking.

RSL thr_create Task creation function — must be able to create task or threa
with specified stack size and priority. Be aware of priority
scheme — some RTOS use 0 as highest priority while others
may use 0 for lowest priority.

RSL_mutex Semaphore, mutex, etc. — a mutual exclusion mechanism.
Some RTOS provide optimized mutex service along with sema
phores.

RSL_nextChar (input from console) Standard character input. This can be removed from the C
TargetRTS via configuration options.

Target Observability TCP/IP support is required. This includes device drivers in th
board support package for the ethernet hardware on the target
not provided this is a substantial do-it-yourself project. This can
be removed from the TargetRTS via configuration options.

malloc, free RTOS should support some sort of memory management. If it
not supported, it may be possible to write your own.

main function Some RTOS have their own main function defined. If so, then
the main function in the TargetRTS must be redefined
Porting Guide Before starting the port 27

e
ill

ns.
rt

e

, and
m.
ires
 to

 best
gis-

ers
m-

f

s

TCP/IP functionality

In order to support target observability for the new port, the target operating system must provide a
compatible TCP/IP stack. In general, the TCP/IP layer must support BSD sockets interface, that is, the
creation and deletion of sockets, functions such as open(), connect(), bind(), listen(),
select(), and so forth. Typically, RTOSs try to provide a BSD-compliant TCP/IP stack. This is a
common source of problems with new ports. See “Common problems and pitfalls” on page 99.

If a TCP/IP stack is not provided, then you must implement one, which requires significant effort. Th
lack of ethernet hardware may require the use of SLIP or PPP over a serial port, although this w
severely affect the performance of target observability.

Floating point operations

Some of the C++ TargetRTS classes (for example, RTReal) require the use of floating point operatio
Investigate the support for floating point on your target system. It is possible to configure the suppo
for RTReal from the TargetRTS via configuration options. For more information, see “Customizing th
Target Services Library” on page 47 of the C++ Target Guide.

Standard input/output functionality

The TargetRTS needs standard input and output to a console for log messages, panic messages
debugger input/output. This may already be provided by the target development or operating syste
Some embedded RTOS and development tools may not provide standard input and output. This requ
the addition of serial port device drivers to the board support package. The use of TCP/IP or UDP/IP
provided standard input/output is also an option.

Debugging

The use of a source-level debugger that provides some sort of operating system awareness is the
development tool for the port. This is the easiest way to examine source code, memory, variables, re
ters, stacks, and so forth.

Training

Training is an important component of a successful port. ObjecTime offers training courses to help us
understand, use, and port the TargetRTS. Your RTOS vendor may also offer training and this is reco
mended as well.

What to do before calling ObjecTime support

The following steps should be followed before calling ObjecTime support for help with a custom port o
the TargetRTS.

1 Get to know your compiler/linker/debugger tool chain. Be sure it is installed correctly and program
can be compiled, linked, downloaded to the target hardware and run successfully.
28 Before starting the port Porting Guide

2 Get to know your target operating system. Be sure that an example multithreaded program that ex-
ercises the various features of the RTOS is compiled, linked and downloaded to the target hardware
and runs successfully. Do not use ObjecTime Developer for this example program. This should be
produced independently to verify toolchain and RTOS functionality.

3 Read this guide and, if you are porting to a C++ target, the C++ Target Guide that is included with
ObjecTime Developer to understand the required capabilities of the RTOS needed to support the
TargetRTS.

4 Ensure that the TCP/IP stack for your target platform is operational. In particular the sockets inter-
face must be working and additional utilities such as gethostbyname() and gethostby-
addr() must be functioning.

5 Test the functionality of the standard input and output for your target. This will probably be verified
in earlier steps.

6 Learn how to use the target debugger. This will be a useful tool when doing the port.

7 Get as much training on ObjecTime Developer, the RTOS, and tool chain as possible.
Porting Guide Before starting the port 29

30 Before starting the port Porting Guide

Chapter 4

Porting Guid
4 Porting the TargetRTS
-

”

re
is
The most common customization to the TargetRTS is porting it to a new platform. A platform is defined
by the TargetRTS as the combination of the operating system, target hardware and the compiler/linker
tool chain. A new operating system requires the most work since it often requires implementation
changes. However, a new compiler may also require changes, in particular, to the configuration files.

The ports supported by ObjecTime Ltd. and shipped with the TargetRTS source are a good place to
begin considering design alternatives for a new port. The root directory for the TargetRTS source will be
referred to from this point forward using the environment variable RTS_HOME. It is usually a subdi-
rec tory of $OBJECTIME_HOME ($OBJECTIME_HOME/C++/TargetRTS or
$OBJECTIME_HOME/C/TargetRTS). In the sections that follow, examples are extracted from
this source.

Phases of a port

The major steps for implementing the port are as follows:

• Performing pre-port steps as outlined in section “Before starting the port” on page 25.

• Naming the platform (see “Choose a platform name” on page 31).

• Defining the setup script (see “Create a setup script” on page 33).

• Defining the platform-specific makefiles (see “TargetRTS makefiles” on page 34).

• Defining the platform-specific header files (see “Porting the TargetRTS for C++” on page 45).

• Defining the platform-specific implementation of TargetRTS features (see Table 5, “TargetRTS con
stants/macros and their default values,” on page 46).

• Building the new TargetRTS and fix compile and link problems (see “Building the new TargetRTS
on page 111).

• Testing the new TargetRTS using test model updates (see “Testing the TargetRTS” on page 95).

• Tuning the performance of the TargetRTS, if required (see “Tuning the TargetRTS” on page 97).

Choose a platform name

The first step in implementing a port is picking the name for the platform. This name and parts of it a
used by the various loadbuild tools to find the files needed to build the TargetRTS for that platform. It
also used during compilation of the ObjecTime models. There are two parts to the name: target and lib-
e Porting the TargetRTS 31

ty
set. The resulting names for TargetRTS configurations are defined as combinations of the target and lib-
set names in the following pattern:

<platform> ::= <target>.<libset>

Examples are given in Table 3.

Target name

The target name presents the implementation-specific components of the TargetRTS. These components
are generally specific to a given configuration, of a given version, of a given operating system. The tar-
get name is also used to name the configuration of the target, for example, single versus multi-threaded.
The target name is defined as follows:

<target> ::= <OS name><OS version><RTS config>

For example: SUN5T. The components of <target> are defined as follows:

• <OS name> identifies the operating system (for example, SUN)

• <OS version> identifies the major version of that operating system (for example, 5 meaning SunOS
5.x, that is, Solaris 2.x). Do not use periods in the OS version as this will confuse the make utili
when trying to build the TargetRTS.

• <RTS config> is a single letter to identify the configuration. Currently only ‘S’ or ‘T’ are supported,
which denote single-threaded and multi-threaded configurations, respectively. (for example, T)

Table 3 Example platform names used by the TargetRTS

Name Description

SUN4S.sparc-gnu-2.7.1 SunOS 4.x SingleThreaded on a Sparc processor
using Free Software Foundation gnu version 2.7.1

SUN5T.sparc-gnu-2.7.1 Solaris 2.x MultiThreaded on a Sparc processor
using Free Software Foundation gnu version 2.7.1

SUN5S.sparc-SunC++-4.2 Solaris 2.x SingleThreaded on a Sparc processor
using Sun Microsystems SPARCUtils C++ version 4.2

HPUX09S.hppa-HPC++-3.76 HPUX 9.x SingleThreaded on an HPPA processor
using Hewlett Packard HPC++ version 3.76

PSOS2T.m68040-Green-1.8.7B pSOS 2.x MultiThreaded on a Motorola 68040 processor
using GreenHills C++ version 1.8.7B
32 Porting the TargetRTS Porting Guide

s

-
den-

 is,
Libset name

Although the actual libset names can be chosen arbitrarily, by convention those defined by ObjecTime
are defined as follows:

<libset> ::= <processor>-<compiler name>-<compiler version>

For example: sparc-gnu-2.7.1. The components of <libset> are defined as follows:

• <processor> identifies processor architecture name

• <compiler name> identifies the compiler product name or the vender for the compiler

• <compiler version> identifies the compiler version. It is appropriate to use periods in the compiler
version text.

Create a setup script

The setup script is a file (setup.pl) containing Perl commands that set up the environment for the
compilation of the TargetRTS to the platform. This file is contained in the $(RTS_HOME)/con-
fig/<target>.<libset> directory. If the target tool chain environment variables are part of a
user’s standard environment, then the variables in the setup.pl file may not be necessary. These
environment variables defined in the setup.pl file are not available when using the toolset to build
user models.

The commands in the setup.pl file are executed before any of the compilation tools are invoked.
Typically, definitions for locations of files on the host platform are included in this file. This usually
includes setting the shell environment variable PATH to point to the appropriate tools. Two variable
must be defined for all targets, namely the preprocessor variable and the supported variable.
The preprocessor variable defines the C++ preprocessor command appropriate for the compila
tion environment. The preprocessor command is used to automatically generate source code depen
cies for the TargetRTS. The supported variable defines whether this target is supported by
ObjecTime Limited. Valid values for supported are ‘Yes’ and ‘No’. Another variable to note is
target_base. This variable indicates that the implementation of the target-specific features of the
TargetRTS are rooted in the same source directory as the target_base target. For example, for the
VRTX4T target, the target_base is set to ‘VRTX3’. Therefore, VRTX4 specific implementations
of TargetRTS classes are found in the same source directory as those of the VRTX3 target, that
$(RTS_HOME)/src/target/VRTX3.

The example file, $(RTS_HOME)/config/VRTX4T.ppc603-Microtec-1.4/
setup.pl, includes

$os = $ENV{’ OS’ };
$os = ’ default’ unless defined($os);

if($os eq ’ Windows_NT’)
{
 $usr_mri = $ENV{’ USR_MRI’ };
Porting Guide Porting the TargetRTS 33

ec-
the

S
th
n in
 $ENV{’ PATH’} = “$usr_mri/bin;$ENV{’ PATH’}”;
}
else
{
 $usr_mri =
 “$ENV{’ OS_HOME’}/spectra/solaris-ppc603-4.AB”;
 $ENV{’ USR_MRI’} = “$usr_mri”;
 $ENV{’ SPECTRA’} = “$usr_mri/spappc”;
 $ENV{’ MRI_PPC_BIN’} = “$usr_mri/bin”;
 $ENV{’ MRI_PPC_LIB’} = “$usr_mri/lib”;
 $ENV{’ MRI_PPC_INC’} = “$usr_mri/include/mccppc”;
 $ENV{’ PATH’} = “$usr_mri/bin:$ENV{’ PATH’}”;
}

$preprocessor = “cccppc -E >MANIFEST.i”;
$include_opt = ’ -J’ ;
$target_base = ’ VRTX3’ ;
$supported = ’ Yes’ ;

Note: The setup file is not used when compiling generated updates. The environment variables de-
fined in the setup file must instead be defined in the user’s environment before executing the Obj
Time toolset. In the given example, the setup file assumes that the user’s environment has
variables USR_MRI and OS_HOME already defined. This is platform-specific.

TargetRTS makefiles

Two types of builds are supported by the makefiles for the TargetRTS: compilation of the TargetRT
libraries and compilation of the generated code. The platform-specific definitions are required by bo
and are thus placed in separate files. The sequencing of the makefiles for the two paths are show
Figure 2, “Sequencing of Makefiles,” on page 35.
34 Porting the TargetRTS Porting Guide

Figure 2 Sequencing of Makefiles

As shown, there is a makefile for each of the following:

• The generated makefile for the update being compiled. See the C++ Language Guide or the C Lan-
guage Guide for more details on how this makefile is generated.

• $RTS_HOME/target/common.mk is the main definition for compiling an update. This
makefile cannot be customized and is not discussed further in this document.

• $RTS_HOME/src/Makefile is the root makefile for the TargetRTS libraries that selects the
host to compile the libraries. See “TargetRTS makefiles” on page 36.

• $RTS_HOME/src/main.mk is the main definition for compiling the TargetRTS libraries. This
makefile cannot be customized and is not discussed further in this document.

• $RTS_HOME/libset/default.mk, the default macro definitions that may be overridden
by the platform specific makefiles. See “Default makefile” on page 36.

• $RTS_HOME/libset/<libset>/libset.mk is the definition specific to the compiler.
See “Libset makefile” on page 39.

Compile model from ObjecTime
(example: for target SUN5T with

generated Makefile from

COMMON MAKEFILE:
$RTS_HOME/TARGET/COMMON.MK

libset Makefile:
$RTS_HOME/libset/sparc-gnu-2.8.1/libset.mk

config Makefile:
$RTS_HOME/config/SUN5T.sparc-gnu-2.8.1/config.mk

target Makefile:
$RTS_HOME/target/SUN5T/target.mk

 libset sparc-gnu-2.8.1)

Source Makefile:
$RTS_HOME/src/Makefile

main compilation Makefile:
$RTS_HOME/src/main.mk

Compile TargetRTS source code

includes

includes

includes

includes

defaults Makefile:
$RTS_HOME/libset/default.mk

1

2

1a

2a

3

4

5

6

includes

toolset
Porting Guide Porting the TargetRTS 35

ig

-

ake-
• $RTS_HOME/target/<target>/target.mk is the definition specific to the target op-
erating system and TargetRTS configuration. See “Target makefile” on page 38.

• $RTS_HOME/config/<target>.<libset>/config.mk is the definition specific
to the combination of the operating system, TargetRTS configuration, and compiler. See “Conf
makefile” on page 39.

Note: The target, libset, and config makefiles are used to compile both the update and
TargetRTS libraries.

Compilation of the update is usually performed by compiling an Actor in the ObjecTime Toolset; how
ever, an update can also be compiled from the $UPDATE_DIR by issuing the make command.

Compilation of the TargetRTS is performed from the $RTS_HOME/src directory by issuing the
command:

make <target>.<libset>

for example in Unix:

make SUN5T.sparc-gnu-2.8.1

for example in Windows NT:

nmake CONFIG=NT40S.x86-VisualC++-5.0

TargetRTS makefiles

The $RTS_HOME/src/Makefile contains a default target that invokes a Perl script called
Build.pl. This script checks the dependencies for the TargetRTS source code and generates a m
file called depend.mk in the $(RTS_HOME)/build-<target>.<libset> directory. It
then builds the TargetRTS from this directory.

Default makefile

The target, libset, and config makefiles are expected to override defaults defined in
$RTS_HOME/libset/default.mk. The defaults are as follows:

CONFIG = $(TARGET).$(LIBRARY_SET)

Defaults for macros which may be modified by
libset/$(LIBRARY_SET)/libset.mk
target/$(TARGET)/target.mk
or config/$(CONFIG)/config.mk

FEEDBACK = $(PERL) “$(RTS_HOME)/tools/feedback.pl”
NOP = $(PERL) “$(RTS_HOME)/tools/nop.pl”
PERL = perl
PRELINK = ld -r -o
RM = $(PERL) “$(RTS_HOME)/tools/rm.pl”
RMF = $(RM) -f
36 Porting the TargetRTS Porting Guide

TOUCH = $(PERL) “$(RTS_HOME)/tools/touch.pl”

default pre-compile command, can be modified by libset.mk
PRECC = $(NOP)

Macros used when creating an object file from a C++ source file

CC = $(FEEDBACK) -fail \
 CC should be defined by libset.mk or generated makefile

DEBUG_TAG = -g
DEFINE_TAG = -D
INCLUDE_TAG = -I
LIBSETCCEXTRA =
LIBSETCCFLAGS =
OBJECT_OPT = -c
OBJOUT_OPT = -o
OBJOUT_TAG =
SHLIBCCFLAGS = -PIC
SOURCE_TAG =
TARGETCCFLAGS =

Macros used when creating an object library from a set of object files

AR_CMD = $(PERL) “$(RTS_HOME)/tools/ar.pl”
LIBOUT_OPT =
LIBOUT_TAG =
RANLIB = $(NOP)

Macros used when creating an shared library from a set of object files

SHLIB_CMD = $(FEEDBACK) -fail Shared libraries not supported.
SHLIBOUT_OPT = -o
SHLIBOUT_TAG =

Macros used when creating an executable from a set of object files, li-
braries

LD = $(CC)
DIR_TAG = -L
LIBSETLDFLAGS =
LIB_TAG = -l
OT_LIB_TAG = -l
TARGETLDFLAGS =
TARGETLIBS =
EXEOUT_OPT = -o
EXEOUT_TAG =
Porting Guide Porting the TargetRTS 37

Macros used to construct names of various kinds of files

EXEC_EXT =
LIB_PFX = lib
LIB_EXT = .a
CPP_EXT = .cc
OBJ_EXT = .o
SHLIB_PFX = lib
SHLIB_EXT = .so

#

RTS_LIBRARY = $(RTS_HOME)/lib/$(CONFIG)

EXTERNAL_LIBS = $(DIR_TAG)”$(RTS_LIBRARY)” \
$(OT_LIB_TAG)ObjecTimeTransport \
$(OT_LIB_TAG)ObjecTimeTypes

SYSTEM_LIBS = $(DIR_TAG)”$(RTS_LIBRARY)” \
$(OT_LIB_TAG)ObjecTime \
$(OT_LIB_TAG)ObjecTimeTransport \
$(OT_LIB_TAG)ObjecTimeTypes

SYSTEM_DIRECTORY = $(LOCAL_DIRECTORY)/$(UPDATE)/C++/system
SYSTEM_DEPENDENCY = $(SYSTEM_DIRECTORY)/RTSystem.h \

 $(SYSTEM_DIRECTORY)/initData.h

ALL_ACTORS_LIST = $(ALL_ACTORS)

Target makefile

The $RTS_HOME/target/<target>/target.mk makefile provides definitions specific to
the operating system and TargetRTS configuration. The definitions in this makefile override the defaults
in $(RTS_HOME)/target/common.mk . An example target makefile template file,
RTS_HOME/target/SUN5T/target.mk, is as follows:

Define the _REENTRANT macro to enforce thread safety
TARGETCCFLAGS = $(DEFINE_TAG)_REENTRANT
Add in the nsl and socket libraries and to pass on the RTS
library directory to the run-time linker
TARGETLDFLAGS = $(LIB_TAG)nsl $(LIB_TAG)socket -R$(RTS_LIBRARY)
Add in the posix4 and thread libraries
TARGETLIBS = $(LIB_TAG)posix4 $(LIB_TAG)thread
38 Porting the TargetRTS Porting Guide

Libset makefile

The $RTS_HOME/libset/<libset>/libset.mk makefile provides definitions specific to
the compiler. The definitions in this makefile override the defaults in $(RTS_HOME)/target/
default.mk. An example libset makefile template file, $RTS_HOME/libset/sparc-
gnu-2.7.1/libset.mk, is as follows:

C++ compiler name and common arguments
CC = g++ -V2.7.1

Command to make shared libraries
SHLIB_CMD = $(CC) -shared -z text -o

Use pragmas to specify interface and implementation
LIBSETCCFLAGS = -DPRAGMA

More c++ flags to turn on optimization, specify processor version
and tune warnings
LIBSETCCEXTRA = -O4 -finline -finline-functions \

-mv8 -Wall -Winline -Wwrite-strings

C compiler flags for building shared libraries
SHLIBCCFLAGS = -fPIC

If SHLIBS is set to nothing,shared libraries will not be built
SHLIBS =

Config makefile

The $RTS_HOME/config/<target>.<libset>/config.mk makefile provides defini-
tions specific to the combination of the operating system, TargetRTS configuration, and the compiler.
This makefile is empty for most target/libset combinations. Usually this file will only be needed to work
around problems that may not appear in either the target or libset alone. In the C++ TargetRTS, an
example use of this file is as follows:

$RTS_HOME/config/VRTX4T.ppc603-Microtec-1.3C/config.mk:

EXEC_EXT = .x

TARGETLIBS = $(USR_MRI)/lib/cppcb.lib

Table 4 defines which make macros can be redefined and where they are set.
Porting Guide Porting the TargetRTS 39

e
Table 4 Make macro definitions

TARGET Defined in RTUpdate.mk as
“$(PLATFORM)$(THREADED)”

Redefinition not recommended.

CONFIG Defined in default.mk as
“$(TARGET).$(LIBRARY)”

Redefinition not recommended.

OTCODEGEN_HOME Defined in default.mk. Redefinition not recommended.

VENDOR Defined in default.mk as “generic”
and intended to be overridden in lib-
set.mk.

During porting, this may be left as
“generic”. However, you should pro-
vide an error-parser script eventu-
ally. Since error formats are
typically vendor-specific (indepen-
dent of the version of the compiler
or of the compilation host-type),
scripts are identified by the vendor’s
name in libset.mk.

OTCOMPILE Defined in default.mk. Redefinition not recommended.

OTLINK Defined in default.mk. Redefinition not recommended.

FEEDBACK Defined in default.mk. Redefinition not recommended.

MERGE Defined in default.mk. Redefinition not recommended.

NOP Defined in default.mk. Redefinition from Perl scripts to
(faster) OS-dependent commands is
possible.

PERL Defined in default.mk as “perl” Some compilation hosts may requir
an explicit path; if necessary, rede-
fine in libset.mk or config.mk.

RM Defined in default.mk. Redefinition from Perl scripts to
(faster) OS-dependent commands is
possible.

RMF Defined in default.mk. Redefinition from Perl scripts to
(faster) OS-dependent commands is
possible.

TOUCH Defined in default.mk. Redefinition from Perl scripts to
(faster) OS-dependent commands is
possible.

PRECC Defined in default.mk.

MAKEFILE Defined in default.mk.

CC Defined in default.mk to cause com-
pile-time error, must be redefined in
libset.mk.

Must be redefined in libset.mk
before porting.
40 Porting the TargetRTS Porting Guide

DEBUG_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler.

DEFINE_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler.

INCLUDE_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler.

LIBSETCCEXTRA Default defined in default.mk. Add compiler-specific compilation
flags in libset.mk, if necessary.

LIBSETCCFLAGS Default defined in default.mk. Add compiler-specific compilation
flags in libset.mk, if necessary.

OBJECT_OPT Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler.

OBJOUT_OPT Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler.

OBJOUT_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler.

SHLIBCCFLAGS Default defined in default.mk.

SOURCE_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler.

TARGETCCFLAGS Default defined in default.mk. Add target-specific compilation
flags in target.mk, if necessary.

AR_CMD Default defined in default.mk.

LIBOUT_OPT Default defined in default.mk.

LIBOUT_TAG Default defined in default.mk.

RANLIB Default defined in default.mk.

SHLIB_CMD Default defined in default.mk.

SHLIBOUT_OPT Default defined in default.mk.

SHLIBOUT_TAG Default defined in default.mk.

LD Default defined in default.mk. Redefine in libset.mk if linker must
be different from compiler (most
compilers can invoke the linker any-
how), or if a preprocessing script is
necessary.

DIR_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.

LIBSETLDFLAGS Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.

LIB_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.
Porting Guide Porting the TargetRTS 41

OT_LIB_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.

TARGETLDFLAGS Default defined in default.mk.

TARGETLIBS Default defined in default.mk.

EXEOUT_OPT Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.

EXEOUT_TAG Default defined in default.mk. Redefine in libset.mk if necessary
for a linker.

EXEC_EXT Default defined in default.mk. Redefine in target.mk or libset.mk if
necessary.

LIB_PFX Default defined in default.mk.

LIB_EXT Default defined in default.mk.

CPP_EXT Default defined in default.mk.

OBJ_EXT Default defined in default.mk. Redefine in libset.mk if necessary
for a compiler/linker.

SHLIB_PFX Default defined in default.mk.

SHLIB_EXT Default defined in default.mk.

RTSYSTEM_INCPATHS Defined in default.mk. Redefinition not recommended.

RTS_LIBRARY Defined in default.mk. Redefinition not recommended.

EXTERNAL_LIBS Defined in default.mk. Redefinition not recommended.

SYSTEM_LIBS Defined in default.mk. Redefinition not recommended.

OTLINK_CMD Defined in default.mk. Redefine to “” while Perl is not
available on the compilation host.

LD_HEAD Default defined in default.mk. May be used to redefine link com-
mand if necessary.

ALL_OBJS_LIST Default defined in default.mk as the
concatenation of all object files in
the update.

Redefine to
“%$(ALL_OBJS_LISTFILE)” to
pass list of object files to linker (or
linker script), if line length limita-
tions forbid passing list via shell.

LD_TAIL Default defined in default.mk. May be used to redefine link com-
mand if necessary.

OTCOMPILE_OPTS Defined in default.mk. Redefinition not recommended.

OTCOMPILE_CMD Defined in default.mk. Redefine to “” while Perl is not
available on the compilation host.

CC_HEAD Default defined in default.mk. May be used to redefine compile
command if necessary.
42 Porting the TargetRTS Porting Guide

CC_TAIL Default defined in default.mk. May be used to redefine compile
command if necessary.

MAKEDEPEND_CMD Defined in default.mk. Redefine to “echo makedepend”
while Perl is not available on the
compilation host.

MAKEDEPEND_HEAD Defined in default.mk. May be redefined to add
RTSYSTEM_INCPATHS to
updates’ dependency discovery. It
likely only makes sense to do this
when porting requires changes to
RTS include files.

USER_CC From toolset, defined in
RTUpdate_Compile.mk

Redefinition not recommended.
Porting Guide Porting the TargetRTS 43

44 Porting the TargetRTS Porting Guide

Chapter 5

Porting Guid
5 Porting the TargetRTS for C++
re
TargetRTS configuration definitions

Much of the configurability of the TargetRTS is done at the source code file level: target-specific source
files override common source files. This is illustrated in the next section on platform-specific imple-
mentations. However, configurability is also available within a source file using C preprocessor defini-
tions. The configuration is set in two C++ header files:

• $RTS_HOME/target/<target>/RTTarget.h for specifying operating system specif-
ic definitions

• $RTS_HOME/libset/<libset>/RTLibSet.h for specifying compiler specific defini-
tions; this does not exist by default

These files override macros whose defaults appear in $RTS_HOME/include/RTConfig.h.
The macros and their default values are listed in Table 5.

Table 4, “Make macro definitions,” on page 40 defines which make macros can be redefined and whe
they are set.
e Porting the TargetRTS for C++ 45

Note: In Table 5, in general, defining a symbol with the value 1 enables the feature the symbol rep-
resents and defining it with the value 0 disables the feature.

Table 5 TargetRTS constants/macros and their default values

Symbol Default Value Possible Values Description

USE_THREADS none, must be defined
in the platform head-
ers (usually
RTTarget.h)

0 or 1 Determines whether the sin-
gle-threaded or multi-threaded
version of the TargetRTS is
used. If USE_THREADS is 0,
the TargetRTS is single-
threaded. If USE_THREADS
is 1, the TargetRTS is multi-
threaded.

RTS_COUNT 0 0 or 1 If this flag is 1, the TargetRTS
will keep track of the number
of messages sent, the number
of actors incarnated, and other
statistics. Naturally, keeping
track of statistics adds over-
head.

DEFER_IN_ACTOR 0 0 or 1 If this flag is defined, the defer
queues will be kept in each
actor. If not, all deferred mes-
sages will be kept in one
queue. This is a size/speed
trade-off. Separate queues for
each actor uses more memory
but results in better perfor-
mance.

EXTERNAL_LAYER 1 0 or 1 If this flag is 1, the TargetRTS
has the capability to support
layer connections over sockets
with other processes. Required
for target observability.

INTEGER_POSTFIX 1 0 or 1 Sets whether the compiler
understands the post increment
operator on classes. i.e.
Class x; x++;

LOG_MESSAGE 1 0 or 1 Sets whether the debugger will
log the contents of messages.
46 Porting the TargetRTS for C++ Porting Guide

OBJECT_DECODE 1 0 or 1 Enables the conversion of
strings to objects, needed for
the external layer. This will
always be enabled if the
EXTERNAL_LAYER == 1.

OBJECT_ENCODE 1 0 or 1 Enables the conversion of
objects to strings. Needed for
the external layer, and log ser-
vice. This will always be
enabled if the
EXTERNAL_LAYER == 1.

OTRTSDEBUG DEBUG_VERBOSE DEBUG_VERBOSE Enables the TargetRTS debug-
ger. It will make it possible to
log all important internal
events such as the delivery of
messages, the creation and
destruction of actors, and so
on. This is necessary for the
target debug feature.

DEBUG_TERSE Reduces the size of the result-
ing executable at the expense
of limiting the amount of
debug information.

DEBUG_NONE Further reduces the executable
size, while increasing perfor-
mance. However, the RTS
debugger will not be available.

RTREAL_INCLUDED 1 0 or 1 If 1, this flag allows the use of
the RTReal class.

PURIFY 0 0 or 1 If 1, this flag indicates that the
Purify tool is being used. This
tells the TargetRTS to disable
all object caching, which
degrades performance but
allows Purify to monitor
RTMessage objects.

RTS_INLINES 1 0 or 1 Controls whether TargetRTS
header files define any inline
functions.

Table 5 TargetRTS constants/macros and their default values

Symbol Default Value Possible Values Description
Porting Guide Porting the TargetRTS for C++ 47

,

-

or
Platform-specific implementation

The implementation of the TargetRTS is contained in the $RTS_HOME/src directory. In this direc-
tory, there is a subdirectory for each class. In general, within each subdirectory there is one source file
for each method in the class. Wherever possible, the name of the source file matches the name of the
method.

To port the TargetRTS to a new platform, it may be necessary to replace some of these methods. Addi-
tionally, some of the methods that do not have default behaviors must be provided. The target-specific
source is placed in a subdirectory of $RTS_HOME/src/target/<target_base>, where
<target_base> is the target name without the ‘S’ or ‘T’. For the remainder of this section, the tar-
get directory is referred to as $TARGET_SRC. For example, the target source directory for <target>
PSOS2T is $RTS_HOME/src/target/PSOS2. This directory provides an overlay to the
$RTS_HOME/src directory. When the TargetRTS loadbuild tools search for the source for a method
it searches first in the $TARGET_SRC directory then in RTS_HOME/src.

Note: There is only a single source directory for all configurations of the TargetRTS for a given plat
form. C++ preprocessor macros, such as USE_THREADS, may be used to differentiate code for
specific configurations.

There is a sample port in the sample subdirectory to use as a template for a port to a new target. These
implementations can be incorporated into a target implementation by copying or creating soft links f

RTS_TYPES 1 0 or 1 Indicates whether the
TargetRTS should use the
ObjecTime type structures.
This flag must be set to 1 for
the current release of the Tar-
getRTS.

RTStateId short any scalar type Allows for the type definition
of the RTActor state identifier.
A smaller type may decrease
the memory footprint of an
executable. (e.g. unsigned
char)

INLINE_CHAINS <blank> inline or <blank> Inlines state machine chains
for better performance at the
expense of potentially larger
executable memory size.

INLINE_METHODS inline inline or <blank> Inlines actor methods for bet-
ter performance at the expense
of potentially largest execut-
able memory size.

Table 5 TargetRTS constants/macros and their default values

Symbol Default Value Possible Values Description
48 Porting the TargetRTS for C++ Porting Guide

h

the contents of these subdirectories into the $TARGET_SRC directory. You may also want to search
the other target subdirectories to verify that the implementation of various TargetRTS classes resembles
your target RTOS. You can copy any required code to the new $TARGET_SRC directory.

Table 6 on page 49 shows the classes and functions that must be provided in any port of the TargetRTS.
These are the minimum requirements for a new port, as most ports will include changes to more classes
than those listed.

The remainder of this section discusses the most common required implementation code required for a
new target.

Main function

In order for the execution of the TargetRTS to begin, code must be provided to cal l
RTMain::entryPoint(int argc, const char * const * argv) passing in
the arguments to the program. This code is placed in the file $TARGET_SRC/MAIN/main.cc.
See the description of the RTMain class in the C++ Target Guide for more information on entry-
Point.

On many platforms, this is the code for the main function, which simply passes argc and argv
directly. However, on other platforms, these parameters must be constructed. For example, with
VxWorks, the arguments to the program are placed on the stack. An array of strings containing the argu-
ments must be explicitly created.

If the platform does not provide a mechanism for passing arguments to an executable, the arguments for
entryPoint can be defined in the toolset. These arguments are made available by the code genera-
tor in the global variables default_argv and default_argc. The code in main.cc must
explicitly pass these values to entryPoint. For more information, see “Application-specific com-
mand line arguments” on page 115 of the C++ Language Guide.

Class RTMain

RTMain::entryPoint() calls a number of methods for target-specific initialization and shut-
down. For a more detailed discussion of class RTMain, see the description of the RTMain class in
the C++ Target Guide. These methods are as follows:

• targetStartup() — provided in file $TARGET_SRC/RTMain/targetStart-
up.cc, it initializes the target in preparation for execution of the model. This includes things suc

Table 6 Required TargetRTS Classes and Functions

Required TargetRTS Classes and
Functions

RTTimespec::getclock()

RTThread::RTThread()

RTMutex

RTSyncObject
Porting Guide Porting the TargetRTS for C++ 49

s.

-

es

d

is
e
-
f

 the
as setting the priority of the main thread, calling static constructors, and initializing devices, for ex-
ample, timers and consoles.

• targetShutdown() — provided in file $TARGET_SRC/RTMain/targetShut-
down.cc, it generally undoes the initialization that was performed in targetStartup(),
for example, calling static destructor and cleaning up operating resources such as file descriptor

• installOneHandler() — provided in file $TARGET_SRC/RTMain/instal-
lOneHandler.cc, it may also need to be overridden. In addition to target start-up and shut
down, entryPoint also installs Unix style signal handlers, where available. These signal
handlers are used by the single threaded TargetRTS for timer and I/O interrupts. If a platform do
not implement signals, the RTMain::installOneHandler() method must be overridden.

Method RTTimespec::getclock()

To implement the Timing service, the TargetRTS uses the time of day clock. The metho
RTTimespec::getclock(), found in the file $TARGET_SRC/RTTimespec/get-
clock.cc, gets the time of day from the operating system. There is no default implementation of th
method and it must be provided by the target. The format of this time of day is the POSIX-styl
struct timespec which contains two fields: the number of seconds and the number of nanosec
onds from some fixed point of time. This fixed point is usually the Universal Time reference point o
January 1, 1970. This does not need to be the case. However, to support absolute time-outs, the
TargetRTS assumes that the reference time is midnight of some day.

Class RTThread constructor

To support multi-threading, the TargetRTS provides the class RTThread. See the description of the
RTThread class in the C++ Target Guide for more information. The target implementation must pro-
vide the constructor for this class in the file $TARGET_SRC/RTThread/ct.cc.

Class RTMutex

In the multi-threaded TargetRTS, shared resources are protected using mutexes implemented by
class RTMutex. See the description of the RTMutex class in the C++ Target Guide for more infor-
mation. There is no default declaration or implementation of RTMutex that must be supplied by the
target. The header file for the RTMutex class should be placed in the file $TARGET_SRC/RTMu-
tex.h. There are four methods to RTMutex:

• RTMutex() — the constructor, provided in $TARGET_SRC/RTMutex/ct.cc, performs
any initialization of the mutex.

• ~RTMutex() — the destructor, provided in $TARGET_SRC/RTMutex/dt.cc, performs
any clean up when the mutex is no longer required.

• enter() — provided in $TARGET_SRC/RTMutex/enter.cc, locks the mutex if it is
available or blocks the current thread until it is available.

• leave() — provided in $TARGET_SRC/RTMutex/leave.cc, frees the mutex and un-
blocks the first thread waiting on the enter.
50 Porting the TargetRTS for C++ Porting Guide

a-
ro-
e
 a

e

r-

t
se

the
Class RTSyncObject

An additional synchronization mechanism used by the TargetRTS is implemented by class RTSyn-
cObject. See the description of the RTSyncObject class in the C++ Target Guide for more
information. Many operating systems provide what is known as a ‘binary semaphore’. A synchroniz
tion object is essentially the same thing. Many implementations of a semaphore, however, do not p
vide a wait (or ‘pend’) with time-out. The lack of this time-out feature requires the use of a mor
heavyweight implementation using a mutex and a condition variable (POSIX condition variables have
‘timedwait’ feature). A description of each method can be found in the $(RTS_HOME)/src/tar-
get/sample/RTSyncObject directory. There is no default declaration or implementation. The
header file for the RTSyncObject should be in the file $TARGET_SRC/RTSyncObject.h.
The implementation of five methods is required:

• RTSyncObject() — the constructor, in $TARGET_SRC/RTSyncObject/ct.cc,
performs any initialization required.

• ~RTSyncObject() — the destructor, in $TARGET_SRC/RTSyncObject/dt.cc,
performs any clean up given that the condvar is no longer required.

• signal() — in $TARGET_SRC/RTSyncObject/signal.cc. See the description of
the RTSyncObject class in the C++ Target Guide.

• wait() — in $TARGET_SRC/RTSyncObject/wait.cc. See the description of the
RTSyncObject class in the C++ Target Guide.

• timedwait() — in $TARGET_SRC/RTSyncObject/timedwait.cc. See the de-
scription of the RTSyncObject class in the C++ Target Guide.

Note: The RTMutex and RTSyncObject classes do not implement any type of priority inher-
itance protocol. If priority inheritance is supported by the target operating system then this may b
added by modifying the implementation of RTMutex and RTSyncObject.

Class RTDiagStream

The RTDiagStream class handles output of diagnostic messages to the standard output. If your ta
get does not support the fputs() function then you must supply a replacement for the RTDiag-
Stream::write() function. This function outputs a string to the standard output device.

Class RTDebuggerInput

The RTDebuggerInput class handles the input to the TargetRTS debugger. If your target system
does not support the fgetc() function, then you must supply a replacement for the RTDebug-
gerInput::nextChar() function. This function reads individual characters from the standard
input device.

Class RTTcpSocket

The RTTcpSocket class provides an interface from the TargetRTS to the sockets library of the targe
operating system. Many operating systems provide the familiar BSD sockets interface. If this is the ca
then little modification is necessary. Typically, small changes to data types are needed to satisfy
sockets interface.
Porting Guide Porting the TargetRTS for C++ 51

lass

ou
he

 or
 of
f a
m-
s to
ould

at
 or

e

Class RTIOMonitor

The RTIOMonitor class is used to monitor activity on a set of TCP/IP sockets. This class makes use
of file descriptor sets and the select() function. There may be differences in the way these sets are
implemented on your target operating system.

Class RTIOController

The RTIOController is the class used by the ioController thread in the external layer. It makes
use of several TCP sockets calls. Problems encountered here will be similar to those described in “C
RTTcpSocket” on page 51.

File main.cc

The file main.cc contains the main function for the TargetRTS and therefore the entire application.
Some operating systems already have a main function defined. This file must be modified to take this
into account. A typical solution is to create a root thread, which in turn calls the entry point to the
TargetRTS (RTMain::entryPoint).

Adding new files to the TargetRTS

If you create a new file for an existing class or you are adding a new class to the TargetRTS then y
must add the new file names to a manifest file for the TargetRTS. This must be done in order for t
dependency calculations to include the new files and thus include them into the TargetRTS.

The MANIFEST.cpp file

This file lists all the elements of the run-time system. There is one entry per line. Each entry has three
more fields separated by whitespace. The first names a make variable, which will include the name
the object file for that entry. The second field is a directory name. The third field is the base name o
file. By convention the directory name and file name typically correspond to the class name and me
ber name, respectively. The fourth and subsequent fields, if present, give an expression that evaluate
zero when the element should be excluded. Note that the expression is evaluated by Perl and so sh
be of a form that it can handle.

If you have added a new file to the TargetRTS, you must have an entry in the MANIFEST.cpp file
for the file. By convention, the entry should be placed next to the other files for the specific class th
you have modified. If you are adding a class then place the entries next to the super class if it exists
next to similar classes in the manifest file.

Regenerating make dependencies

If a file has been overridden in $(RTS_HOME)/target/src/<target_name> directory or
a new file has been added to the MANIFEST.cpp you must regenerate the make dependencies in
order for the modification to be included in the new TargetRTS. This is done by removing th
depend.mk file in the build directory ($(RTS_HOME)/build-<platform_name>). This
will cause the dependencies to be recalculated and a new depend.mk file to be created.
52 Porting the TargetRTS for C++ Porting Guide

Note that include statements should not normally be put in areas considered conditional by the pre-pro-
cessor (that is, between #if/#endif pairs). The dependency discovery script does not evaluate expres-
sions used in preprocessor #if statements, and assumes these expressions to be true. Consequently, the
dependency discovery script may capture more include statements than the preprocessor. However,
although it may calculate more dependencies than the optimal amount, the dependency discovery script
does detect and avoid endless loops of #include statements.
Porting Guide Porting the TargetRTS for C++ 53

54 Porting the TargetRTS for C++ Porting Guide

Chapter 6

Porting Guid
6 Porting the TargetRTS for C
-

This chapter has been split into several major sections, including

• C TargetRTS configuration definitions

• Platform-specific implementation

• Adding new files to the C TargetRTS

• C TargetRTS run-time semantics

• Implementing timer services in the C TargetRTS

C TargetRTS configuration definitions

Much of the configurability of the C TargetRTS is done with compilation dependencies by having tar
get-specific source files override common source files. This is illustrated in “Platform-specific imple-
mentation” on page 61. However, configurability is also available within source files using C
preprocessor definitions. The configuration is set in two C header files:

• $RTS_HOME/target/<target>/RTTarget.h for specifying the operating system
specific definitions

• $RTS_HOME/libset/<libset>/RTLibSet.h for specifying compiler specific defini-
tions; this does not exist by default

These files override macros whose defaults appear in $RTS_HOME/include/RTConfig.h.
The macros and their default values are listed in Table 7.

Table 7 C TargetRTS constants/macros and their default values

Symbol
Default
Value

Possible Values Description

RSLMULTI-
THREADED

RSLFALSE RSLFALSE or
RSLTRUE

Determines whether the single-threaded
or multi-threaded version of the C
TargetRTS is used.

RSLDEBUG RSLFALSE RSLFALSE or
RSLTRUE

If this flag is set to RSLTRUE, the C
TargetRTS will be compiled with the
debugger option (this option is also
required for target observability).
e Porting the TargetRTS for C 55

RSLDEBUG_LEVEL 0 0, 1, 2, or 3 This flag is for internal ObjecTime use
only (it defines to what level internal
progress messages are displayed).

RSLTO RSLFALSE RSLFALSE or
RSLTRUE

Indicates whether the C TargetRTS will
support target observability. If RSLTO is
set to RSLTRUE, RSLDEBUG will
forced to RSLTRUE.

RSLMEMORYALLO-
CATION

RSLTRUE RSLFALSE or
RSLTRUE

If this flag is set to RSLTRUE, the C
TargetRTS will perform all dynamic
memory allocations by allocating smaller
segments from larger segments. This uses
memory more efficiently than other tech-
niques.

RSLMEMORY-
BLOCKSIZE

1024 64+ If RSLMEMORYALLOCATION is set to
RSLTRUE, this is the size of the memory
block that the C TargetRTS will sub-
allocate smaller segments from.

RSLMEMORY-
WORDBOUNDARY

4 1,2,4,8, etc. If RSLMEMORYALLOCATION is set to
RSLTRUE, this is the size, in number of
bytes, which all new memory allocation
requests must be aligned to.

RSLDEBUGGER-
STACK

20480 (Positive Integer) If RSLMULTITHREADED and RSLDE-
BUG are set to RSLTRUE, this is the
stack size of the debugger thread.

RSLTOSTACK 20480 (Positive Integer) If RSLMULTITHREADED and RSLTO
are set to RSLTRUE, this is the stack size
of the target observability thread.

RSLNUM_FREE_GL
OBAL_MSGS

50 (Positive Integer) Specifies, in a multi-threaded TargetRTS,
the number of free messages shared
amongst all threads that are used for all
thread inter-communication.

RSLTHRESHOLD_EX
TERNAL_MSGS

10 (Positive Integer) Specifies at which point a multi-threaded
C TargetRTS will automatically move
free external messages from the thread
back to the global pool of free global
messages.

RSLMESSAGE_
DEFERRAL

RSLTRUE RSLFALSE or
RSLTRUE

Indicates whether message deferral rou-
tines and queues are to be supported by
the C TargetRTS.

Table 7 C TargetRTS constants/macros and their default values

Symbol
Default
Value

Possible Values Description
56 Porting the TargetRTS for C Porting Guide

RSLNUM_FREE_INT
ERNAL_MESSAGES_
FOR_PRIMARY_THR
EAD

50 (Positive Integer) Indicates the number of messages allo-
cated to the primary/top thread for a
multi-threaded C TargetRTS. Requires
RSLMULTITHREADED to be set to
RSLTRUE.

RSLNUM_FREE_INT
ERNAL_TCBS_FOR_
PRIMARY_THREAD

5 (Positive Integer) Indicates the number of timer control
blocks allocated to the primary/top thread
for a multi-threaded C TargetRTS.
Requires RSLMULTITHREADED to be
set to RSLTRUE.

RSLNUM_TCBS 5 (Positive Integer) Indicates the number of timer control
blocks allocated for the C TargetRTS.
Only used if RSLMULTITHREADED to
be set to RSLFALSE.

RSLTIMERS RSLTRUE RSLFALSE or
RSLTRUE

Indicates whether timers are required in
the C TargetRTS.

RSLACTOR_TIMERS RSLTRUE RSLFALSE or
RSLTRUE

Indicates whether timer services are
implemented via an application-level
actor. If set to RSLTRUE then RSLTIM-
ERS must also be set to RSLTRUE.

RSLINTERNAL_LAY
ER_SERVICE

RSLTRUE RSLFALSE or
RSLTRUE

Indicates whether the internal layer ser-
vice is supported in the C TargetRTS.

RSLMAX_SPPS 10 (Positive Integer) If RSLINTERNAL_LAYER_SERVICE
is set to RSLTRUE, indicates the maxi-
mum number of SAP/SPP registrations
supported by the C TargetRTS.

RSLERROR(x) x x or nil Indicates C TargetRTS errors to be
printed.

RSLDEBUG2(x) x x or nil Indicates Level 2 C TargetRTS progress
messages are to be printed (internal
ObjecTime use only).

RSLDEBUG1(x) x x or nil Indicates Level 1 C TargetRTS progress
messages are to be printed (internal
ObjecTime use only).

RSLDEBUG0(x) x x or nil Indicates Level 0 C TargetRTS progress
messages are to be printed (internal
ObjecTime use only).

Table 7 C TargetRTS constants/macros and their default values

Symbol
Default
Value

Possible Values Description
Porting Guide Porting the TargetRTS for C 57

RSLMemorySize unsigned long (any scalar type) Indicates the storage type used to store
the maximum memory storage size of
actor instance data.

RSLTimeoutSize unsigned long (any scalar type) Indicates the storage type of an InformIn
timeout request.

RSLPortIndex unsigned short (any unsigned
scalar type)

Indicates the storage type of a port index
in the C TargetRTS.

RSLMaxPort 65535 maximum value of
RSLPortIndex

Indicates the maximum value for a port
index in the C TargetRTS.

RSLActorIndex unsigned short (any unsigned
scalar type)

Indicates the storage type of an ActorIn-
dex in the C TargetRTS.

RSLMaxActor 65535 maximum value of
RSLActorIndex

Indicates the maximum value for an actor
index in the C TargetRTS.

RSLThreadIndex unsigned short (any unsigned
scalar type)

Indicates the storage type of a ThreadIn-
dex in the C TargetRTS.

RSLMaxThreads 65535 maximum value of
RSLThreadIndex

Indicates the maximum value for a thread
index in the C TargetRTS.

RSLMessageIndex unsigned short (any unsigned
scalar type)

Indicates the storage type of a Message-
Index in the C TargetRTS.

RSLMaxMessages 65535 maximum value of
RSLMessageIndex

Indicates the maximum value for a mes-
sage index in the C TargetRTS.

RSLTCBIndex unsigned short (any unsigned
scalar type)

Indicates the storage type of a TCBIndex
in the C TargetRTS.

RSLMaxTCBs 65535 maximum value of
RSLTCBIndex

Indicates the maximum value for a TCB
index in the C TargetRTS.

RSLBool unsigned short (any unsigned
scalar type)

Indicates the storage type of a Boolean in
the C TargetRTS.

RSLFlags unsigned short (any unsigned
 scalar type of at
least 4 bits)

Indicates the storage type of a flags field
in the C TargetRTS.

RSLMessagePriority unsigned short (any unsigned
scalar type)

Indicates the storage type for a message
priority in the C TargetRTS.

RSLMaxMessagePrior-
ity

65535 maximum value of
RSLMessageIndex

Indicates the maximum number of prior-
ity levels in the C TargetRTS.

RSLSignalIndex unsigned short (any unsigned
scalar type)

Indicates the storage type for a signal
number in the C TargetRTS.

Table 7 C TargetRTS constants/macros and their default values

Symbol
Default
Value

Possible Values Description
58 Porting the TargetRTS for C Porting Guide

ent,
Makefile fragments

Some of the TargetRTS configuration is done at the makefile level. When a developer compiles an
update, the generated compilation makefile requires two files:

• $(RTS_HOME)/target/common.mk 1

• $(OVERRIDESFILE)

The OVERRIDESFILE can be specified by the developer within the update’s active configuration and
is typically intended for temporary overrides of make macros. The definition for OVERRIDESFILE is
provided in RTUpdate.mk and defaults to $(RTS_HOME)/target/empty.mk, which is itself an
empty file.

RSLSignalEvent 65535 maximum value of
RSLSignalIndex

Indicates the maximum number of dis-
tinct signals supported in the C
TargetRTS.

RSLActorType unsigned short (any unsigned
scalar type)

Indicates the storage type for an actor
class index in the C TargetRTS.

RSLMaxActorClasses 65535 maximum value of
RSLActorType

Indicates the maximum number of actor
classes supported in the C TargetRTS.

RSLStateIndex unsigned short (any unsigned
scalar type)

Indicates the storage type for a state
index in the C TargetRTS.

RSLMaxStates 65535 maximum value of
RSLStateIndex

Indicates the maximum number of state
indices in the C TargetRTS.

RSLPortType unsigned short (any unsigned
scalar type)

Indicates the storage type for a port class
in the C TargetRTS.

RSLMaxPortClasses 65535 maximum value of
RSLPortType

Indicates the maximum number of port
classes in the C TargetRTS.

RSLFieldType unsigned short (any unsigned
scalar type)

Indicates the storage type for a field
description in the C TargetRTS.

RSLMaxFieldTypes 65535 maximum value of
RSLFieldType

Indicates the maximum number of field
types supported in the C TargetRTS.

RSLObjectName char * char * Indicates the storage type for all object
names in the C TargetRTS.

1. common.nmk is required when using Microsoft’s nmake utility. Slight formatting differences exist between this utility and
most other make utilities. Specifically, when a make macro must be evaluated in order to process a makefile include statem
nmake requires the included file’s filename to be enclosed in angle brackets. Hence, include $(FILE_MK) becomes
include <$(FILE_MK)>. Structurally, common.nmk and common.mk are intended to be equivalent, and this document
refers to the latter for brevity. No other makefile fragments are dependent upon which make utility you are using.

Table 7 C TargetRTS constants/macros and their default values

Symbol
Default
Value

Possible Values Description
Porting Guide Porting the TargetRTS for C 59

nd
fic
ral

-

li-

er/
The makefile fragment common.mk is really intended as a common entry point independent of the
value of $(RTS_HOME). It typically includes four other makefile fragments:

$(RTS_HOME)/libset/default.mk
$(RTS_HOME)/libset/$(LIBRARY_SET) /libset.mk
$(RTS_HOME)/target/$(TARGET)/target.mk
$(RTS_HOME)/config/$(CONFIG)/config.mk

The make macro TARGET is defined by:

TARGET=$(PLATFORM)$(THREADED)

The make macro CONFIG is defined by:

CONFIG=$(LIBRARY_SET).$(TARGET)

LIBRARY_SET, PLATFORM and THREADED are all defined from within the update’s active con-
figuration.

Default.mk

This makefile fragment defines some common make macros. These macros are interpreted first a
may be overridden in any of the three RTS-specific makefile fragments or even the update-speci
Make Overrides file that will be included later. Consequently, these macros may serve one of seve
purposes:

• common definitions that should always work (for example, PERL=perl, CONFIG=$(TAR-
GET).$(LIBRARY))

• common definitions that work in a majority of cases, but can be overridden depending on the com
piler/library-set, target or configuration

• definitions that can suffice temporarily but are intended to be overridden depending on compiler/
brary-set, target or configuration (for example, VENDOR=generic)

• definitions that are intended to be overridden and will fail otherwise

In many cases, default definitions are provided that may only be appropriate for a subset of compil
library-sets, targets or configurations.

For more information, see Table 4, “Make macro definitions,” on page 40.

Libset.mk

This file is intended to list items specific to correctly linking with a particular library, and/or typically
configuring the compiler. These configuration items include

• the name of (and possibly the path to) your compiler/linker

• compilation flags specific to this compiler/linker

• the vendor’s name

• linker flags
60 Porting the TargetRTS for C Porting Guide

to

in

-

erl

e,

iles.

de
ny
Target.mk

Some targets will require further configuration without respect to which compiler is being used. For
example Wind River System’s Tornado targets require their linkers to be invoked with the –r option (
facilitate run-time linking).

Config.mk

In cases where a configuration item should only affect a particular library-set/target pairing, configura-
tions can be put in the config.mk makefile fragment.

Availability of Perl on compilation host

If the compilation host does not have Perl (version 5.002 or greater), it is highly recommended to obta
and compile the source from http://www.perl.com.

Since obtaining Perl may take some time, some limited functionality will still be available on the com
pilation host:

• Dependency discovery (see MAKEDEPEND_CMD) must be disabled.

• Error parsing (see OTCOMPILE_CMD and OTLINK_CMD) must be disabled.

• The definition for NOP may need to be redefined to use an OS-dependent alternative instead of P
scripts (RM, RMF and TOUCH are not typically required during compilation).

Platform-specific implementation

The implementation of the C TargetRTS is contained in the $RTS_HOME/src directory. In this
directory, there is a subdirectory for each major run-time area. For example, the sub-directory C
TargetRTS contains all of the standard run-time library functions. Other sub-directories, for exampl
TCP, MONITOR, INITSTOP, and TRANSPRT contain target observability functionality.

To port the C TargetRTS to a new platform, it may be necessary to update or replace some of these f
The target specific source is placed in a subdirectory of $RTS_HOME/src/target/
<target_base>, where <target_base> is the target name without the ‘S’ or ‘T’. For the
remainder of this section, the target directory is referred to as $TARGET_SRC. For example, the target
source directory for an example <target> PSOS2T is $RTS_HOME/src/target/PSOS2. This
directory provides an overlay to the $RTS_HOME/src directory. When the C TargetRTS loadbuild
tools search for a source file, it searches first in the $TARGET_SRC directory then in RTS_HOME/
src.

Note: There is only a single source directory for all configurations of the C TargetRTS for a given
platform. C preprocessor macros, such as RSLMULTITHREADED, may be used to differentiate
code for specific configurations.

For a single-threaded port without target observability, it is entirely conceivable that no source co
modifications would be required, as the intent was to make the C TargetRTS completely portable to a
ANSI C compiler, which should compile single-threaded C code without modification.
Porting Guide Porting the TargetRTS for C 61

ck
r

u

e

im-
However, if the target is multi-threaded, modifications will be required to specify how certain RTOS
services (for example, semaphore creation) are performed in that target environment. The remainder of
this section discusses the most common required implementation code required for a new multi-
threaded target.

Main function

In order for the execution of the C TargetRTS to begin, code must be provided to call
cRSL_entryPoint(int argc, const char * const * argv) passing in the
arguments to the program. This code is placed in the file $TARGET_SRC/MAIN/main.c.

The default code is likely to be suitable for a new target platform.

Target observability startup and shutdown

If any special initialization and/or shut-down code is required for target observability, the files
TGTinit.c, TGTstop.c, TOinit.c, and TOstop.c which are located in the directory
$TARGET_SRC/INITSTOP contain code to perform these functions, in conjunction with the C
TargetRTS initialization and shutdown.

The default code is likely to be suitable for a new target platform.

Memory management

All memory allocation performed by the C TargetRTS (this does not apply to any dynamic memory
allocation performed by the application) is performed through a single routine:

void *RSLAllocateMemory(RSLMemorySize size)

The C TargetRTS only allocates dynamic memory during its initialization phase. Thus, once the system
has initialized, the C TargetRTS will not perform any dynamic memory allocations. Since the C
TargetRTS does not support any implicit recovery capabilities, the C TargetRTS does not support the
freeing of any dynamically allocated memory, which was allocated by it. Thus, users must exercise cau-
tion when using this memory management routine at an application level.

The default implementation of this routine is to invoke the standard C “malloc” run-time routine, to
allocate a large chunk of memory, whereupon requests are serviced efficiently from within this blo
(this works particularly efficiently in certain RTOS environments where there are minimal sizes, fo
example, 64 bytes for any malloc request). If standard C run-time malloc support is not available—or
alternatively, you want to have the C TargetRTS allocate memory from a specific memory region—yo
should modify this routine (in file memory.c) as appropriate for your target environment.

Multi-threaded RTOS interface

All of the RTOS interface mapping routines used by the C TargetRTS should be contained in th
RTThread.c file located in the directory $TARGET_SRC/target/<target>/THREAD.

Figure 3 shows the relationships between an application, the C TargetRTS, and underlying RTOS pr
itives required to support a multi-threaded C TargetRTS.
62 Porting the TargetRTS for C Porting Guide

S
le
Figure 3 Required relationships

RTThread.c contents

This file is split into three general sections:

• target header file include statements

• type definitions for base RTOS types

• defines for C TargetRTS macro mappings to TargetRTS

Target header files include statements

This section should specify the list of header files that are required for compilation for the TargetRT
(specifically, those header files that are required for the multi-threaded RTOS interface). An examp
follows:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <semaphore.h>

Type definitions for base RTOS types

This section specifies RTOS-equivalent types for three C TargetRTS base types:

• RSL_mutex

Application

cRSL Thread I/F

cRSL

POSIX-Compliant I/F

RTOS 1 RTOS N RTOS A RTOS Z

Mutex, Semaphore, Thread Create

Function Function

... ...
Porting Guide Porting the TargetRTS for C 63

ess

ss,
and

y

 in
• RSL_semaphore

• RSL_thread_id

If the RTOS does not support mutexes, a mutex can be constructed via a semaphore.

typedef SEM_ID RSL_mutex;
typedef SEM_ID RSL_semaphore;
typedef int RSL_thread_id;

C TargetRTS function mappings to TargetRTS

The final section in the RTThread.c file is used to define a set of C TargetRTS functions providing
a direct interface from the C TargetRTS to the underlying RTOS capability.

These functions are organized as:

• 3 functions related to mutex creation, locking, and unlocking:

• RSLmutex_init(lock). Given a pointer to the address “X” of a lock, create a lock, and
set the address “X” to be the address of the newly created lock.

• RSLmutex_lock(lock). Given the address of a lock, lock the lock.

• RSLmutex_unlock(lock). Given the address of a lock, unlock the lock.

• 3 functions related to semaphore creation, waiting and posting:

• RSLsemaphore_init(semaphore). Given a pointer to the address “X” of a
semaphore, create a semaphore as initially signalled (or with a count of 1), and set the addr
“X” to be the address of the newly created semaphore.

• RSLsemaphore_wait(semaphore). Given the address of a semaphore, wait for the
semaphore to be available (signalled, or count >= 1).

• RSLsemaphore_post(semaphore). Given the address of a semaphore, post the
semaphore as signalled, or increment the semaphore count.

• 1 function related to thread creation:

• RSLthr_create (index,priority,stack,stackSize,entryPoint,args). Given the task/thread
instance integer number (0 through n-1 threads), task/thread priority, task/thread stack addre
task/thread stack size, task/thread entry point, and task/thread arguments, create a thread
assign the returned thread id to the C TargetRTS thread description arra
RSLRTThreadInstances[index].threadId.

A suitable definition of a complete RTThread.c file for a Tornado 1.0.1 target might appear as shown
the extract below:

#include <RTThread.h>
#include <crsl.h>

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <semaphore.h>
64 Porting the TargetRTS for C Porting Guide

typedef SEM_ID RSL_mutex;
typedef SEM_ID RSL_semaphore;
typedef int RSL_thread_id;

extern RSLRTThreadInstanceDescription *RSLRTThreadInstances;

int
RSLmutex_init(void **lockptr_ptr) {
 *lockptr_ptr = semCCreate(SEM_Q_FIFO , 1);
 return 1;
}

int
RSLmutex_lock(void *lockptr) {
 return semTake(lockptr , WAIT_FOREVER);
}

int
RSLmutex_unlock(void *lockptr) {
 return semGive(lockptr);
}

int
RSLsemaphore_init(void **semaphoreptr_ptr) {
 *semaphoreptr_ptr = semBCreate(SEM_Q_FIFO , SEM_FULL);
 return 1;
}

int
RSLsemaphore_wait(void *semaphoreptr) {
 return semTake(semaphoreptr , WAIT_FOREVER);
}

int
RSLsemaphore_post(void *semaphoreptr) {
 return semGive(semaphoreptr);
}

int
RSLthr_create(int index , int priority , void *stack , int stackSize ,
 void *entryPoint , void *args) {

 RSLRTThreadInstances[index].threadId =
 taskSpawn(NULL , priority , 0 , (stackSize) , entryPoint , args ,
 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0);
}

Porting Guide Porting the TargetRTS for C 65

hich

a
tion

e

c-
e
ol-

ese
ca-
ing

een
Adding new files to the C TargetRTS

If you create a new file for the C TargetRTS, then you must add the new file name to a manifest file for
the C TargetRTS. This must be done in order for the dependency calculations to include the new file and
thus include it into the C TargetRTS.

The MANIFEST.c file

This file lists all the elements of the run-time system. There is one file entry per line. Each entry has
three or more fields separated by whitespace. The first field names a make variable that specifies which
library to associate the file with. The second field is a directory name. The third field is the base name of
a file. The fourth and subsequent fields, if present, give an expression that evaluates to zero when the
element should be excluded. Note that the expression is evaluated by Perl and so should be of a form
that it can handle.

Regenerating make dependencies

If a file has been overridden in $(RTS_HOME)/target/src/<target_name> directory or
a new file has been added to the MANIFEST.c you must regenerate the make dependencies in order
for the modification to be included in the new TargetRTS. This is done by removing the depend.mk
file in the build directory ($(RTS_HOME)/build-<platform_name>). This causes the
dependencies to be recalculated and a new depend.mk file to be created. Note that include files must
not be enclosed in #ifdef/#endif or similar macros because the preprocessor may not have the
needed definitions to satisfy these macros. Consequently, the include file may be ignored during depen-
dency checking.

C TargetRTS run-time semantics

Tasks, processes, and threads

The C TargetRTS does not distinguish between a task, process, or thread. In fact, some RTOSs—w
support multiple tasks—represent a thread as a task. Instead, the C TargetRTS requires the simple
notion of a “thread of execution”, which (depending upon the customer RTOS capability) might be
thread, a task, or a process. However, the C TargetRTS does require that if multiple threads of execu
are required, they share a common “shared” memory space.

If multiple threads are supported in the target environment, the C TargetRTS, in conjunction with th
ObjecTime toolset, provides the customer with the ability to split up an application into multiple
threads. The decision to split the application into multiple threads of execution is an important archite
tural decision. The C TargetRTS provides simple capabilities to define which top-most ObjecTim
actors are to be assigned to which threads. Thus it is possible to “code-generate” different thread top
ogies easily, without necessarily modifying any user code in the ObjecTime model.

The mainloop

Currently, most systems are comprised of one or more separate threads of execution. Each of th
threads typically has a main routine that is responsible for servicing the IPC (Inter-Process Communi
tion) messages or signals that are received by that system. These IPC routines are usually block
RTOS IPC calls; that is, they do not return execution to the main routine until a message/signal has b
66 Porting the TargetRTS for C Porting Guide

of
oop-
te

tion-
r
nt

on-

),

”
a
of

the

or

 to a
 all
received. When a message/signal is received, an appropriate subroutine is invoked to handle the actual
processing associated with the arrival of that particular message/signal. This message processing occurs
for the duration of the execution of the system.

Similarly, each thread of execution in the C TargetRTS also has a “mainloop”. This is in recognition
the fact that the main C TargetRTS routine processes many IPC messages, in a serial fashion, via a l
ing mechanism. After receiving each external message, it processes it, that is, it “walks’ the sta
machines of one or more actors.

The following pseudo-code describes this notion of a main-loop:

<Initialize IPC>
<Do Forever>
{

<Process Actor Messages>
<Block for IPC Message>

}

To support user-defined messaging interfaces, each of these threads of execution requires a applica
specified routine, which in conjunction with the C TargetRTS mainloop, implements how that particula
task is to interface to the user’s IPC. It is possible to have many different interface routines—a differe
one for every thread. It is also possible for different threads to use different IPC mechanisms. Note that
a thread blocked waiting for external messages from the IPC will not unblock to process actor mes-
sages.

RSLThreadMap

In an ObjecTime design, the top-most actor is assigned its own thread; in fact, by default, every program
that is run has at least one thread of execution. Unless directed otherwise by that top-most actor, all c
tained actors will also “run” on that same thread.

However, if the user application is multi-threaded (that is, at least two or more threads of execution
then these additional threads are contained by this top-level actor. These contained actors are assigned a
different thread at run-time through the top-level actor’s function RSLThreadMap, which is a “special
function, with a non-C specification syntax; that is, it cannot be compiled by a C compiler. It is called
“special” function, since there is special code-generation handling the particular function name
“RSLThreadMap”.

This RSLThreadMap function specifies the run-time characteristics of each of the threads, except
top-thread. The top-thread’s characteristics are not defined by the C TargetRTS, as the user’s RTOS
specifies how the first thread of the C TargetRTS is to be started (and with which characteristics, f
example, priority, stack size, and so forth).

The RSLThreadMap, in conjunction with the logical/physical thread configuration stipulated in the
ObjecTime toolset (see the C Language Guide for additional information), specify which logical threads
are mapped to which physical threads. In those instances where multiple logical threads are mapped
single physical thread, the resource requirements of the physical thread are determined by summing
Porting Guide Porting the TargetRTS for C 67

TS

the

s.

ctor
cal

re
 are
in

d no
of the resource requirements of each of the logical threads together, that is, the number of internal mes-
sages and the number of timer control blocks. Each logical thread name specified in the RSLThreadMap
must have a corresponding logical thread definition in the thread configuration browser in the Objec-
Time toolset.

The characteristics that can be specified, on a per thread basis (for more information see “C TargetR
constants/macros and their default values” on page 55), include

• Number of Internal Messages (Optional)

The maximum requirements for inter-actor messages used within the thread. If not specified, it de-
faults to 0, which implies that the thread intends to do no internal messaging between actors in
same thread (probably unlikely).

• Number of Timer Control Blocks (Optional)

The maximum number of active timers that can be active at one time within the thread. If not spec-
ified, it defaults to 0, which implies that no actors contained in that thread intend to start any timer

Finally, the RSLThreadMap serves to provide an association between an actor reference in the top a
(that is, the name of an actor in the structure diagram of the top actor in the system), and the logi
thread name, as specified in the ObjecTime toolset in the Threads Browser.

For example, in the example RSLThreadMap below, two threads are defined. ‘sender’ and ‘replyer’ a
the names of two actor references contained in the top-most actor. Each of these actor references
associated with their respective logical threads (which, in turn, are mapped to physical threads with
the toolset). In addition, each thread has been defined to be created with five internal messages an
TCBs (Timer Control Blocks).

/*
thread SenderLogicalThread {

NumberOfInternalMessages 5;
NumberOfTCBs 0;

} sender;
thread ReplyerLogicalThread {

NumberOfInternalMessages 5;
NumberOfTCBs 0;

} replyer;
*/

Message priority

The C TargetRTS message priority, defines six RSL levels of priority (from highest to lowest):

• RSLDEBUGGER (internal C TargetRTS use only)

• RSLPANIC

• RSLHIGH

• RSLGENERAL

• RSLLOW
68 Porting the TargetRTS for C Porting Guide

ority
sed.
ssed

ior,

 one

ter-
 in a
ge

en

ore

or, as

the
n a

 (the
• RSLBACKGROUND

These message priorities are used by the internal C TargetRTS scheduler to dispatch the highest pri
messages (for example, Panic) before lower priority messages (for example, General) are proces
Without the use of message priority, all messages are treated equally, in that all messages are proce
FIFO (First-In, First-Out).

Often, indiscriminate use of message priority unnecessarily increases the complexity of actor behav
since the sequence of events now also depends on message priority.

Message queues

Each thread of execution has six incoming internal message queues (five to be used by customers),
for each message priority, as defined in the previous section.

At run-time, based on the specified SAP/Endport in a message send request, the C TargetRTS de
mines whether the recipient of a message is within the same thread as the sender, or alternatively, is
different thread. Once this is known, the C TargetRTS automatically selects an appropriate messa
enqueueing technique for the message send.

Single-threaded C TargetRTS

In the single-threaded C TargetRTS, there is no distinguishing run-time characteristic made betwe
“internal” and “external” C TargetRTS messages, since there is only one thread of execution.

Thus, in a single-threaded C TargetRTS, there is

• one set of internal message queues

• one free message queue/free-list

The C TargetRTS mainloop will process the messages that are on the internal message queues (m
about this in a subsequent section).

When an actor transition is fired that contains one or more requests to send messages to another act
indicated in Figure 4, the following steps are performed for each such message send:

1 A “free” message is allocated from the free message queue (also referred to as the ‘free list’).

If no message is available, a false result (a value of 0) is returned by the send function. Under
assumption that the port has been bound, this is the only error that the C TargetRTS can detect o
send.

2 The message’s structure fields are populated with the parameters passed in the send request
‘flags’ and ‘dest SAP’ fields are set automatically by the C TargetRTS send routine).

3 The message is enqueued for internal processing at the appropriate priority.
Porting Guide Porting the TargetRTS for C 69

C
uns in
end-

ss-

sage

 In

 in
Figure 4 Intra-thread inter-actor send

Multi-threaded C TargetRTS

In the multi-threaded C TargetRTS, the C TargetRTS distinguishes between “internal” and “external”
TargetRTS messages. Internal messages are inter-actor intra-thread messages, where each actor r
the same thread of execution. External messages are inter-actor inter-thread messages, where the s
ing and receiving actors run in a different thread of execution.

In the multi-threaded C TargetRTS, each thread has

• one external incoming message queue (for receiving inter-actor, inter-thread messages)

• one set of internal message queues

• one internal free message queue (for inter-actor, intra-thread)

• one external free message queue (for inter-actor, inter-thread—one actor in one thread)

In addition, in the multi-threaded C TargetRTS, there is a global free message queue.

As discussed in “Message processing” on page 72, the multi-threaded C TargetRTS:

• moves messages from the external incoming queue to the internal queue

• invokes the behaviors associated with the arrival of those messages (which may involve the proce
ing of both external and internally generated messages)

• eventually returns external messages to the external message queue (global) and internal mes
queue (local)

The previous section described the C TargetRTS implementation of an intra-thread inter-actor send.
the multi-threaded C TargetRTS, all intra-thread sends are performed in the same manner.

Inter-thread sends, however, are substantially different, in that they require processing as indicated
Figure 5, with the following numbered steps:

1 A free message is popped from the intended receiver’s external free queue/list, if available (1A).

Panic

High

Gen

Low

Bkgd

freeList

C TargetRTS Thread

dest SAP

signal

priority

data ptr

flags

ROOM_PrioritizedPortSendData(myIntraThreadPort, mySignal, myPriority, myMsgData)

2
2

2

1

3

70 Porting the TargetRTS for C Porting Guide

nd

der
tect

iving
r-

r be-
If none are available, a free message is popped from the sender’s external free queue (1B).

Once again, if not available, a free message is popped from the global free queue (1C).

If that also fails, the C TargetRTS will then move all free external messages from every thread a
put them on the global free queue (then it tries to pop from the global queue again).

Finally, if no message is available, a false result (a value of 0) is returned by the send function. Un
the assumption that the port has been bound, this is the only error that the C TargetRTS can de
on an inter-thread send.

2 The message data fields are filled in with the passed parameters in the send request.

3 The message is enqueued on the receiving thread’s external incoming message queue, the rece
thread’s ‘InPriority’ is checked and updated to the current message priority (if used, and if the cu
rent message priority is higher than the current posted ‘InPriority’), and the thread’s semaphore is
posted ‘ready to run’.

4 TargetRTS then processes a message in its internal queue, and dispatches the appropriate acto
havior.

Figure 5 Inter-thread sends

Panic

High

Gen

Low

Bkgd

freeList

C TargetRTS Thread

Panic

High

Gen

Low

Bkgd

freeList

C TargetRTS Thread

dest SAP

signal

priority

data ptr

flags

ROOM_PrioritizedPortSendData(myInterThreadPort, mySignal, myPriority, myMsgData)

IncomeQ

1C

2
Sender Receiver

4

inPriority inPriority

ExtFreeQ

IncomeQ

ExtFreeQ

22

1A

GlobalFreeQ

1B 3
Porting Guide Porting the TargetRTS for C 71

 of

gher
user

ted

 be
nvo-
The C TargetRTS ensures system integrity by locking a global mutex prior to accessing any global
shared data (shared amongst multiple threads), and releasing the lock once the shared data updates have
been completed.

The ‘InPriority’ field is used by a thread to determine at what point an external incoming message is
higher priority than that which is currently being processed internally. Thus, this allows the C
TargetRTS to “interrupt” normal actor message processing (on a per-message basis) and service a hi
priority actor message. Note, however, that this does not mean that the processing of one or more
code transitions is interrupted, as new messages are selected for processing only after the processing of
the behavior of the current message has been completed.

Message processing

Single-threaded C TargetRTS message processing

As indicated below, in Figure 6, single-threaded C TargetRTS actor message processing is implemen
by:

1 Selecting the highest priority queued message.

2 Invoking the actor behavior associated with the arrival of that signal and data.

3 “Returning” the used message frame to the free message Queue.

Figure 6 Single-threaded C TargetRTS message processing

If the invocation of actor behavior causes one or more messages to be sent to other actors, the C
TargetRTS mainloop may continue to invoke actor behaviors until there are no further messages to
processed. By default, all of these messages are processed prior to the C TargetRTS directing the i
cation of the user-registered external interface (IPC) routine.

Panic

High

Gen

Low

Bkgd

FreeList

C TargetRTS Thread

dest SAP

signal

priority

data ptr

flags

1

2

3

Actor

Behavior
72 Porting the TargetRTS for C Porting Guide

 put
ree
ges)
ac-

ad
er
 all of
face/
Multi-threaded C TargetRTS message processing

As indicated in Figure 7, multi-threaded C TargetRTS actor message processing is implemented by:

1 Checking if a higher-priority (as compared to internal messages) externally queued message exists,
all external messages are dequeued from the external message queue and enqueued on the internal
message queue.

2 Selecting the highest priority queued internal message.

3 Invoking the actor behavior associated with the arrival of that signal and data.

4 “Returning” the used message frame to the free message Queue. If the message was internal, it is
back onto the internal free queue (4a). If the message was external, it is put back on its external f
queue (4b), and if a certain message count threshold is exceeded, it (along with other freed messa
may be put back (4c) on the global external free message queue. (See “C TargetRTS constants/m
ros and their default values” on page 55 for the definition of
RSLTHRESHHOLD_EXTERNAL_MSGS.)

Figure 7 Multi-threaded C TargetRTS message processing

If the initial invocation of actor behavior causes one or more messages to be sent to other intra-thre
actors, the C TargetRTS mainloop may continue to invoke actor behaviors until there are no furth
messages to be processed. By default, if both intra-thread and inter-thread messages are enqueued,
these messages are processed prior to the C TargetRTS invoking the user-registered external inter
IPC routine.

Panic

High

Gen

Low

Bkgd

FreeList

C TargetRTS Thread

dest SAP

signal

priority

data ptr

flags

2

34a

Actor

Behavior

ExtFreeQ

GlobalFreeQ

4c

ExtIncomgQ

1

4b
Porting Guide Porting the TargetRTS for C 73

s-
 were

es-
er-
so
l
rity
ssage

-
es-
ead

d’s
es-
 C

ha-
he
ed
read

s-

ol-
Run-to-completion

This default “run-to-completion” C TargetRTS message scheduling policy is implemented in the C
TargetRTS mainloop as

while(RSLDispatch(RSLBACKGROUND));

where “RSLBACKGROUND” represents the lowest priority message to be processed. The RSLDis-
patch routine is responsible for invoking the behavior associated with the single highest-priority me
sage on the input queue. It returns true if a message was processed, or false if no internal messages
available for processing at the specified, or higher priority.

Thus, the “while” clause causes the C TargetRTS to continue processing these “internally” queued m
sages, until no further messages are enqueued, at which point, the C TargetRTS will call the us
defined IPC interface routine to block for external stimuli (for example, IPC messages, timeouts, and
forth). If the C TargetRTS is multi-threaded, the C TargetRTS will also check the incoming externa
queue for higher priority messages than those in the internal message queue. If there are higher prio
external messages, these messages are moved to the internal queue, and C TargetRTS actor me
processing continues.

If no user-defined IPC routine was specified, the multi-threaded C TargetRTS will wait until its ‘ready
to-run’ semaphore has been signalled by another thread (for example, an inter-thread inter-actor m
sage send). In the single-threaded C TargetRTS, if there is no other source of potential inputs, the thr
will exit.

Also, in the multi-threaded C TargetRTS, an external C TargetRTS message is moved from the threa
external incoming message queue to its internal message queue (based on priority). At that point, m
sage processing within the thread proceeds in a similar fashion in both the single and multi-threaded
TargetRTS.

RSLRegisterExternalInterface

The C TargetRTS was designed so that it requires no inherent notion of how customers’ IPC mec
nisms work. Instead, it provides the “internal” C TargetRTS actor message processing portion of t
mainloop, and allows customers to register their own IPC external interface routines, which are invok
by the C TargetRTS once no further internal message processing is possible. Note that a blocked th
waiting for external messages from the IPC will not unblock to process any new actor messages.

It is possible to have many different interface routines—a different one for every thread—and it is po
sible for different threads to use different IPC mechanisms.

The C TargetRTS provides support for each thread to register its own interface function by using the f
lowing routine to dynamically perform this registration, an example of which might appear as

RSLRegisterExternalInterface(_actor,MyActorIPCInterface);

The first parameter ‘_actor’ of type RSLActorIndex should be set to the internal C TargetRTS
variable automatically defined for all actor transitions. ‘MyActorIPCInterface’ would be the name of
the user-defined actor function, which implements how the thread interfaces to IPC and/or timers.
74 Porting the TargetRTS for C Porting Guide

l-
nal

r a
nal

e, to

g

le
ject
e

sig-
the

t the
 the
Alternative implementations can be contemplated whereby an actor implements the IPC interface
directly in the actor behavior, but this technique would likely require that this IPC actor run with the
lowest priority messaging to ensure that all internal actor messages have been processed before the IPC
actor blocks on an IPC call.

RSLRegisterExternalInterface is used for all IPC and timer implementations. For exam-
ple, the code fragment shown below was taken from an actor’s initialization transition. Once this initia
ization transition is executed, the thread that the actor is executing in will have a registered exter
interface routine called ’ExternalInterfaceRoutine’.

RSLRegisterExternalInterface(_actor,ExternalInterfaceRoutine);
printf("Example thread: Alive!\n");

RSLRegisterMessageSignallingInterface

The C TargetRTS was designed to support different types of IPC and timing mechanisms, suitable fo
particular target environment. In some instances, it may be necessary to have the C TargetRTS sig
another C TargetRTS thread that it is in the process of sending that thread a message (for exampl
interrupt a blocking RTOS function called from within a registered external interface function).

The C TargetRTS provides support for each thread to register a signalling function via the followin
example:

RSLRegisterMessageSignallingInterface(_actor,
&MyCV,MySignallingInterface);

The first parameter ‘_actor’ of type RSLActorIndex should be set to the internal C TargetRTS variab
automatically defined for all actor transitions. The second parameter is the address of the RTOS ob
to be signalled. “MySignallingInterface” is the name of a user-defined actor function, which would b
responsible for signalling the passed RTOS object MyCV.

At run-time, when an inter-thread message is delivered to a thread that had previously registered a
nalling interface routine, the C TargetRTS calls the specified procedure, along with the address of
specified RTOS object, via the pre-registered procedure variable.

Enqueueing external events

To allow customer-registered external interface/IPC routines to enqueue messages that represen
arrival of an external IPC message or a timeout event (discussed later), the C TargetRTS provides
following routine:

RSLMessage *RSLPortEnqueue(RSLActorIndex _actor,
RSLPortIndex portOffset,
RSLSignalIndex signal,
RSLMessagePriority priority,
void *data);
Porting Guide Porting the TargetRTS for C 75

e

a

 op-

to

rnal
re

ead

er
le

ck
 be

uto-
nd

lies
• ‘_actor’ is automatically defined and passed for every application code transition, and this valu
should be passed to this routine without modification.

• ‘portOffset’ is the name of the actor end-port or SAP that you want to receive the message on.

• ‘signal’ is the desired signal name from the protocol SAP for the end-port or SAP. If the signal is
timeout, ‘RSLTIMEOUT’ should be used (this signal name is automatically defined). An input sig-
nal is required since it is an un-bound port/SAP, and the message is being received (as input), as
posed to being sent (as output) from what typically would be the other end of a port binding.

• ‘priority’ (if used) defines the message priority (for example, RSLGENERAL).

• ‘data’ is a 32- or 16-bit value (depending on the size of an int for the processor), which is used
identify the accompanying data (if any) with that signal.

Once a message is enqueued in this manner, control should be returned from the registered exte
interface routine to the C TargetRTS, which is responsible for dispatching the message. In fact, if the
is no message enqueued after the registered external interface function returns, it is likely that the thr
will suspend indefinitely (or if single-threaded, possibly exit).

RSLPortEnqueue is used for all IPC and timer implementations.

RSLGetFirstTimeout

This C TargetRTS function is used to get the RTTimerId (same as RSLTimerReference) of the first tim
control block on the sorted list of timers for the thread associated with the specified actor. An examp
follows:

RSLTimerReference RSLGetFirstTimeout(_actor)

RSLGetFirstTimeout is used for all timer implementations (RSLTIMERS set to RSLTRUE).

RSLCancelTimer

This C TargetRTS function is used to cancel a pending timer request by marking the timer control blo
associated with that timer reference as cancelled. Thus, at a later time, the timer control block could
released and reused.

RSLBool RSLCancelTimer(RSLActorIndex,RSLTimerReference);

RSLCancelTimer is used for all timer implementations (RSLTIMERS set to RSLTRUE).

RSLDequeueTimer

Since the TCBs are managed by one or more actors or registered actor functions (as opposed to a
matic control via the C TargetRTS), the C TargetRTS also provides a routine to dequeue a timer, a
possibly free the timer control block:

RSLDequeueTimer(_actor,&TimerControlBlock,Free)

The first parameter ‘_actor’ indicates which context we are executing. The second parameter supp
the address of the timer control block. The final parameter is a Boolean value that instructs the C
TargetRTS to return the timer control block to the original user thread.
76 Porting the TargetRTS for C Porting Guide

le
ce
lled.
r

-

 as

;

d in
nd

fi-
ial

ch
al

h are
y
OS

or
RSLRegisterTimerServices

The C TargetRTS supports actor-based implementations of timing services via the following routine:

RSLRegisterTimerServices(_actor,sap,
&MyCV,MySignallingInterface);

The first parameter ‘_actor’ of type RSLActorIndex should be set to the internal C TargetRTS variab
automatically defined for all actor transitions. The second parameter is the SAP upon which servi
requests are to be received. The third parameter is the address of the RTOS object to be signa
“MySignallingInterface” is the name of a user-defined actor function, which would be responsible fo
signalling the passed RTOS object MyCV.

RSLRegisterTimerServices is only used for actor timer implementations (RSLTIMERS set to RSL
TRUE; RSLACTOR_TIMERS set to RSLTRUE).

RSLGetTimerServiceActor

This C TargetRTS function is used to get the run-time actor Id of the timer actor that has registered
the provider of all timing services for the C TargetRTS. An example invocation follows:

RSLActorIndex RSLGetTimerServiceActor(_actor)

RSLGetTimerServiceActor is used for timer actor implementations (RSLTIMERS set to RSLTRUE
RSLACTOR_TIMERS set to RSLTRUE).

Implementing timer services in the C TargetRTS

Often, timing events are required by system tasks to determine that some function was not complete
a timely manner, or to schedule activities. Depending upon the customer’s application requirements a
RTOS timing capabilities, two different timer implementation approaches can be considered:

• Local timers, where each thread implements their timing functions locally within that thread, in con-
junction with an application registered external interface routine. This is the simplest and most ef
cient implementation of timers, and should be considered for all RTOS implementations. No spec
timing actors/packages are required.

• Actor timers, where one actor registers that it is the provider of timing services for all other C
TargetRTS actors. Note that you may not have multiple “timer” actors. In a multi-threaded C
TargetRTS, this “timer” actor must be assigned its own thread of execution. This is the approa
used for C TargetRTS implementations in all of the toolset development environments. A speci
timing actor/package is required.

These two approaches are independent implementations, and the techniques used in one approac
not compatible with the other. Hybrid solutions should be avoided. Once again, primarily for efficienc
and size considerations, it is recommended that all C TargetRTS users use integrated timers in an RT
environment.

Local timers

Local timers implement timing services on a per-thread basis by using an RTOS capability to block f
some sort of a signal/message for a specified period of time. Thus, once the RTOS primitive returns exe-
Porting Guide Porting the TargetRTS for C 77

S-

om-

s”
e

sing

n-

ctor
rta-
o
r-
ce
em

e

cution, a return code can be checked to see if either a signal/message was received or the RTOS call
timed out.

Typically, the blocking RTOS call that forms the basis for implementation for local timers is either a
message read request (for example, on a message queue), or a signal wait request (for example, on a
semaphore). By specifying an appropriate timeout parameter each time this RTOS function is invoked, a
simple and efficient timing mechanism can be implemented. Since this same approach can be used in
multiple threads, each thread is responsible for managing its external interface (message queue, sema-
phore, and so forth) and timer requests.

By using the RSLRegisterExternalInterface C TargetRTS API function, it is possible to define an
RTOS-specific actor interface function, which is registered by an actor executing in each thread. These
registered functions would be responsible for implementing timer services for all actors in that thread,
and possibly interfacing to a proprietary RTOS IPC (Inter-Process Communication) mechanism.

Since the C TargetRTS provides an efficient inter-thread inter-actor messaging mechanism via port
bindings, if an actor provides a proprietary RTOS IPC interface, it is likely that it will interfere with nor-
mal C TargetRTS inter-thread communication. This is because it is not possible to service multiple com-
munication mechanisms simultaneously (proprietary C TargetRTS communication and RTOS IPC),
unless you consider the use of a signalling function. For more information, see “RSLRegisterMessage
ignallingInterface” on page 75.

With the local timer approach, there are two inter-thread messaging alternatives:

• In those instances where it is desirable that the C TargetRTS handle all inter-thread message c
munication via actor port bindings, the external interface routine must only handle timing requests,
unless you consider the use of a signalling function. This approach is called the “Integrated Timer
implementation, and it is described in “Integrated timers” on page 79. For more information, se
“RSLRegisterMessageSignallingInterface” on page 75.

• In those instances where it is desirable that inter-thread native RTOS messaging be used (not u
actor port bindings), the external interface function must handle both the proprietary RTOS IPC and
timing requests. This approach is called the “Integrated IPC and Timers”, and it is described in “I
tegrated IPC and timers” on page 83.

Since there is a tremendous advantage in having the C TargetRTS manage all inter-thread inter-a
messaging—that is, you can change thread topologies easily and the software is likely to be more po
ble—the first alternative “Integrated Timers” is recommended. However, if there is a requirement t
service different types of IPC (for example, in a legacy system), it is still possible to provide actor inte
face functions to these threads, which are responsible for providing the proprietary RTOS IPC interfa
and forwarding requests (via port bindings) on to other C TargetRTS threads. Thus, in some syst
environments, it is possible that a mix of approaches may be needed to satisfy all requirements.

An examp le o f bo th o f these types o f imp lementa t ions can be found under
$(OBJECTIME_HOME)/ModelExamples/C , i n an upda te ca l l ed
“C_TornadoQueuesWithTimers”. A detailed description of this update can be found in “Complianc
Suite & Examples” on page 219 of the C Language Guide. This update should be used as a basis for
implementing either Integrated Timers or Integrated IPC and Timers.
78 Porting the TargetRTS for C Porting Guide

nd

ent

es-

-
-

the
Integrated timers

RTTarget.h should specify that RSLTIMERS is set to RSLTRUE; RSLACTOR_TIMERS is set to
RSLFALSE.

No special timing actor/packages are required.

Two actor functions must be implemented.

• A signalling function, which is passed a pointer to an RTOS object (for example, a semaphore), a
will signal it in a suitable manner (for example, posting a semaphore).

• An external interface function, which is passed a pointer to the object instance data and the curr
executing actor Id.

At initialization time, an actor in each thread that requires the use of integrated timers must:

• Register the external interface (timing routine) function via the RSLRegisterExternalInterface C
TargetRTS API function (an example pseudo-code for this function appears below).

• Create and initialize a suitable RTOS object (for example, semaphore, or possibly an unused m
sage queue/mailbox), storing the handle to this RTOS object as an actor ESV.

• Register the signalling function with the C TargetRTS via the RSLRegisterMessageSignalling
Interface C TargetRTS API function, which the C TargetRTS will invoke whenever it is about to de
liver an inter-thread inter-actor message to that thread.

An example of this type of timer implementation can be found under $(OBJECTIME_HOME)/
ModelExamples/C, in an update called “C_TornadoQueuesWithTimers”. Specifically, the actors
“Sender” and “Replyer” in this update implement this form of timer. A detailed description of this
update can be found in “Compliance Suite & Examples” on page 219 of the C Language Guide.

The relevant transitions and functions which adhere to the above guidelines are shown below for
sender actor:

/* Sender -- Initialize transition */

this->MySemaphore=semCCreate(0,0);
RSLRegisterExternalInterface(_actor,SenderMainloop);
RSLRegisterMessageSignallingInterface(_actor,

(void*)this->MySemaphore,SenderSignalRoutine);
printf("Sender thread: Alive!\n");
ROOM_InformIn(MyTimer,RSLTARGET_TIME(100));
ROOM_PortSend(inOut,InOutSignal);

/* Sender Functions */

/* Signalling Function */
void SenderSignalRoutine(SEM_ID semaphore) {

semGive(semaphore);
}

Porting Guide Porting the TargetRTS for C 79

/* External Interface Routine */
void SenderMainloop(Sender_InstanceData *this,

RSLActorIndex _actor) {
unsigned longcurrent;
int MsgQReceiveResult;
RSLTimerControlBlock*tcb;
RSLTimerReferencetr;

/* Get the current time and check to see if the lowest timer
value has already expired */

current=tickGet();
tr=RSLGetFirstTimeout(_actor);
tcb=tr.tcb;
if((tcb)&&(current>=tcb->timeoutNSec)) {

tcb->timeoutMessage=RSLPortEnqueue(_actor,
MyTimer,RSLTIMEOUT,RSLGENERAL,(void *)0);

RSLCancelTimer(_actor,tr);
return;

}

/* Block for any message on the queue with a timeout
(# clock ticks from now) */

if(tcb)
MsgQReceiveResult=semTake(this->MySemaphore,

tcb->timeoutNSec-current);
else

MsgQReceiveResult=msgQReceive(
this->MySemaphore,WAIT_FOREVER);

if((MsgQReceiveResult==ERROR)&&
(errno=S_objLib_OBJ_TIMEOUT)) { /* Timeout */
RSLPortEnqueue(_actor,MyTimer,

RSLTIMEOUT,RSLGENERAL,(void *)0);
RSLCancelTimer(_actor,tr);

}
}

The relevant transitions and functions that adhere to the above guidelines are shown below for the replyer
actor:

/* Replyer -- Initialize Transition */

this->MySemaphore=semCCreate(0,0);
RSLRegisterExternalInterface(_actor,ReplyerMainloop);
RSLRegisterMessageSignallingInterface(_actor,

(void *)this->MySemaphore,ReplyerSignalRoutine);
80 Porting the TargetRTS for C Porting Guide

printf("Replyer thread: Alive!\n");
ROOM_InformIn(MyTimer,RSLTARGET_TIME(100));

/* Replyer -- Functions */

/* Signalling Function */
void ReplyerSignalRoutine(SEM_ID semaphore) {

semGive(semaphore);
}

/* External Interface Function */
void ReplyerMainloop(Replyer_InstanceData *this,

RSLActorIndex _actor) {
unsigned longcurrent;
int MsgQReceiveResult;
RSLTimerControlBlock*tcb;
RSLTimerReferencetr;

/* Get the current time and check to see if the lowest timer
value has already expired */

current=tickGet();
tr=RSLGetFirstTimeout(_actor);
tcb=tr.tcb;
if((tcb)&&(current>=tcb->timeoutNSec)) {

tcb->timeoutMessage=RSLPortEnqueue(_actor,
MyTimer,RSLTIMEOUT,RSLGENERAL,(void *)0);

RSLCancelTimer(_actor,tr);
return;

}

/* Block for any message on the queue with a timeout
(# clock ticks from now) */

if(tcb)
MsgQReceiveResult=semTake(this->MySemaphore,

tcb->timeoutNSec-current);
else

MsgQReceiveResult=msgQReceive(this->MySemaphore,
WAIT_FOREVER);

if((MsgQReceiveResult==ERROR)&&
(errno=S_objLib_OBJ_TIMEOUT)) { /* Timeout */
RSLPortEnqueue(_actor,MyTimer,

RSLTIMEOUT,RSLGENERAL,(void *)0);
RSLCancelTimer(_actor,tr);

}
}

Porting Guide Porting the TargetRTS for C 81

er)

m
en-

a
C
 a

ine
,
S

by

a,
is-
ve

 to
ed
The external interface function pseudo-code for the two actors’ code fragments (sender and reply
would be defined as:

<GetFirstTimeout>
<GetCurrentTime>
<If (ValidTimer && TimerHasTimedOut)> {

<EnqueueTimeoutEvent>
<RemoveTimerRequest>
return;

}
<If ValidTimer>

<BlockForSignalWithTimeout>
else

<BlockForSignalWithInfiniteTimeout>
<IfTimedOut> {

<EnqueueTimeoutEvent>
<RemoveTimerRequest>

}

The first block of pseudo code determines if (during the intervening period of time while the syste
was processing) any timeouts would have occurred. If timeouts have occurred, timeout events are g
erated, and the time requests are removed from the timer list.

If no timeout occurred, the next block of code will await for an external RTOS signal while specifying
timeout value (which is our next shortest time to a timeout). Once control is returned to the user’s IP
routine, a check is then done to determine if the blocking RTOS request timed-out (at which point,
timeout event is enqueued, and the timer request is removed from the timer list).

These timers require the use of relative time (for the informIn request), and absolute time to determ
when a timer is to expire (for example, clock ticks). Thus, the use of a macro (for example
RSLTarget_Time) might be used to ensure compatibility between SimulationRTS and the C TargetRT
running on a target. Specifically, the target version of RSLTarget_Time should be defined to add
the current number of clock ticks to the relative time to create a future absolute time, which is used
the external interface routine.

e.g. #define RSLTarget_Time(x) (clockTicks()+x)

Timers are started when an actor in that thread starts a timer via ROOM_InformIn. In the C
TargetRTS, the timer start routine will allocate a local thread TCB, populate it with appropriate dat
and then insert it into the list of active timers for that thread, in sorted order. Once enqueued, the reg
tered external interface for that routine will process the timeout requests, as described in the abo
pseudo-code.

If a thread is currently blocked, waiting for a timeout to occur, and if another thread sends a message
that thread, the thread will be interrupted, since the sending thread will invoke the previously register
82 Porting the TargetRTS for C Porting Guide

ent

ng

Be-
or-
signalling function in the receiving thread. Once that message is processed, the external interface func-
tion will once again be invoked by the C TargetRTS.

Timers are cancelled via ROOM_CancelTimer. In the C TargetRTS, the timer cancel routine will
mark the RTTimerID (which points to a timer control block) as cancelled, and thus will be ignored by
external interface function, when it actually times out.

The number of timers that can be started is configured in the RSLThreadMap. For the first/top thread,
the number of timers to be created at initialization time should be configured in RTTarget.h, over-
riding the defaults in RTConfig.h.

Each thread has a set of internal TCBs available for its exclusive use. TCBs are not shared amongst
threads, and are to be modified by the C TargetRTS only.

Also, each thread has a linked-list of active TCBs, which are purposely stored in sorted order. That is to
say, when you start a timer, the timeout is checked and inserted in order into the linked-list, where the
smallest timeout values appear at the front of the queue, and the largest timeout values appear at the end
of the queue. By inserting these items into the queue in sorted order, it is possible to quickly determine
the next timeout value by simply reviewing the first entry on the timer queue.

Integrated IPC and timers

RTTarget.h should specify that RSLTIMERS is set to RSLTRUE; RSLACTOR_TIMERS is set to
RSLFALSE.

No special timing actor/packages are required.

One actor function must be implemented.

• An external interface function, which is passed a pointer to the object instance data and the curr
executing actor Id.

At initialization time, an actor in each thread that requires the use of integrated IPC and timers must

• Register the external interface (timing routine) function via the RSLRegisterExternalInterface C
TargetRTS API function (an example pseudo-code for this function appears below).

• Create/initialize (or locate) a suitable RTOS object (for example, message queue/mailbox), stori
the handle to this RTOS object as an actor ESV.

An example of this type of timer implementation can be found under $(OBJECTIME_HOME)/
ModelExamples/C, in an update called “C_TornadoQueuesWithTimers”. Specifically, the actors
“Behavior” and “Responder” in this update implement this form of timer. A detailed description of this
update can be found in “Compliance Suite & Examples” on page 219 of the C Language Guide.

The relevant transitions and functions that adhere to the above guidelines are shown below for the
havior actor. Note that the behavior external interface function is not registered until it has received a c
responding Sync signal (with identifying Queue ID information).
Porting Guide Porting the TargetRTS for C 83

/* Behavior -- initialize transition */

this->MyQ=msgQCreate(2,256,MSG_Q_FIFO);
ROOM_PortSendData(ids,Request,(void *)this->MyQ);
printf("Behavior: Sending QID Info (0x%x) of my Q\n",this->MyQ);

/* Behavior -- Sync transition */

this->otherQ=(MSG_Q_ID)msg->data;
printf("Behavior: Received other Q ID (0x%x)\n",this->otherQ);
RSLRegisterExternalInterface(_actor,BehaviorMainloop);
printf("Behavior: Starting Timer for 1 Second\n");
ROOM_InformIn(timer,RSLTARGET_TIME(100));

/* Behavior -- timeout transition */

printf("Behavior: Got expected timeout!\n");
msgQSend(this->otherQ,"Hello!",7,NO_WAIT,0);
printf("Behavior: Starting Timer for 1 Second\n");
ROOM_InformIn(timer,RSLTARGET_TIME(100));

/* Behavior -- Functions */

void BehaviorMainloop(Behavior_InstanceData *this,
RSLActorIndex _actor) {

static char copyData[256],*newCopy;
unsigned longcurrent;
int MsgQReceiveResult;
RSLTimerControlBlock*tcb;
RSLTimerReferencetr;

/* Get the current time and check to see if the lowest timer
value has already expired */

current=tickGet();
tr=RSLGetFirstTimeout(_actor);
tcb=tr.tcb;
if((tcb)&&(current>=tcb->timeoutNSec)) {

tcb->timeoutMessage=RSLPortEnqueue(_actor,timer,
RSLTIMEOUT,RSLGENERAL,(void *)0);

RSLCancelTimer(_actor,tr);
return;

}

/* Block for any message on the queue with a timeout
(# clock ticks from now) */

if(tcb)
84 Porting the TargetRTS for C Porting Guide

MsgQReceiveResult=msgQReceive(this->MyQ,copyData,
256,tcb->timeoutNSec-current);

else
MsgQReceiveResult=msgQReceive(this->MyQ,copyData,

256,WAIT_FOREVER);
if((MsgQReceiveResult==ERROR)&&

(errno=S_objLib_OBJ_TIMEOUT)) { /* Timeout */
RSLPortEnqueue(_actor,timer,RSLTIMEOUT,RSLGENERAL,

(void *)0);
RSLCancelTimer(_actor,tr);

}
else if(MsgQReceiveResult>0) { /* Received a Message! */

newCopy=(char *)malloc(256);
memcpy(newCopy,copyData,256);
RSLPortEnqueue(_actor,ids,SomeEvent,RSLGENERAL,newCopy);

}
else {

/* ??? Error */
}

}

Since this actor supports both timers and proprietary IPC (Tornado message queues), the external inter-
face function pseudo-code would be defined as:

<GetFirstTimeout>
<GetCurrentTime>
<If (ValidTimer && TimerHasTimedOut)> {

<EnqueueTimeoutEvent>
<RemoveTimerRequest>
return;

}

<If ValidTimer>
<BlockForIPCWithTimeout>

else
<BlockForIPCWithInfiniteTimeout>

<IfTimedOut> {
<EnqueueTimeoutEvent>
<RemoveTimerRequest>

}
else

<EnqueueIPCMessage>
Porting Guide Porting the TargetRTS for C 85

m-
e or
bse-

ine
,

e,

a,
is-
ve

e to

ge

d,

gst

 to
re
t the

ter-
The first block of pseudo code determines if (during the intervening period of time while the system
was processing) any timeouts would have occurred. If timeouts have occurred, timeout events are gen-
erated, and the time requests are removed from the timer list.

If no timeout occurred, the next block of code will await for an external IPC message/stimulus while
specifying a timeout value (which is our next shortest time to a timeout). Once control is returned to the
user’s IPC routine, a check is then done to determine if the IPC request timed-out (at which point, a ti
eout event is enqueued, and the timer request is removed from the timer list), or a real IPC messag
external stimulus was received. In that instance, an appropriate message event is enqueued for su
quent execution by the actor.

These timers require the use of relative time (for the informIn request), and absolute time to determ
when a timer is to expire (for example, clock ticks). Thus, the use of a macro (for example
RSLTarget_Time) might be used to ensure compatibility between the SimulationRTS and the C
TargetRTS running on a target. Specifically, the target version of RSLTarget_Time should be
defined to add the current number of clock ticks to the relative time to create a future absolute tim
which is used by the external interface routine.

e.g. #define RSLTarget_Time(x) (clockTicks()+x)

Timers are started when an actor in that thread starts a timer via ROOM_InformIn. In the C
TargetRTS, the timer start routine will allocate a local thread TCB, populate it with appropriate dat
and then insert it into the list of active timers for that thread, in sorted order. Once enqueued, the reg
tered external interface for that routine will process the timeout requests, as described in the abo
pseudo-code.

If a thread is currently blocked, awaiting for a timeout to occur, and if another thread sends a messag
that thread, the thread will not be interrupted (assuming that the RTOS IPC is incompatible with the pro-
prietary C TargetRTS inter-thread inter-actor messaging implementation). Thus the ObjecTime messa
will be deferred until after that thread’s interface routine returns.

Timers are cancelled via ROOM_CancelTimer. In the C TargetRTS, the timer cancel routine will
mark the RTTimerID (which points to a timer control block) as cancelled, and thus will be ignored
by the external interface function, when it actually times out.

The number of timers that can be started is configured in the RSLThreadMap. For the first/top threa
the number of timers to be created at initialization time should be configured in RTTarget.h, over-
riding the defaults in RTConfig.h.

Each thread has a set of internal TCBs available for its exclusive use. TCBs are not shared amon
threads, and are to be modified by the C TargetRTS only.

Also, each thread has a linked-list of active TCBs, which are purposely stored in sorted order. That is
say, that when you start a timer, the timeout is checked, and inserted in order into the linked-list, whe
the smallest timeout values appear at the front of the queue, and the largest timeout values appear a
end of the queue. By inserting these items into the queue in sorted order, it is possible to quickly de
mine the next timeout value by simply reviewing the first entry on the timer queue.
86 Porting the TargetRTS for C Porting Guide

The relevant transitions and functions that adhere to the above guidelines are shown below for the Re-
sponder actor. Note that the behavior external interface function is not registered until it has received a
corresponding Sync signal (with identifying Queue ID information).

/* Responder -- initial transition */

this->stimulatorQ=msgQCreate(2,256,MSG_Q_FIFO);
printf("Responder: Sending QID Info (0x%x) of my Q\n",

this->stimulatorQ);
ROOM_PortSendData(ids,Request,(void *)this->stimulatorQ);

/* Responder -- Sync transition */

this->otherQ=(MSG_Q_ID)msg->data;
printf("Responder: Received other Q ID (0x%x)\n",this->otherQ);
RSLRegisterExternalInterface(_actor,ResponderMainloop);

/* Responder -- ExtMsg transition */

printf("Responder: Received Q msg ’%s’\n",(char *)msg->data);
msgQSend(this->otherQ,"There!",7,NO_WAIT,0);

/* Responder -- Functions */

void ResponderMainloop(Responder_InstanceData *this,
RSLActorIndex _actor) {

static charcopyData[256];

/* Get a Tornado message for the queue and enqueue it
for the cRSL */

msgQReceive(this->stimulatorQ,copyData,256,WAIT_FOREVER);
RSLPortEnqueue(_actor,ids,SomeEvent,RSLGENERAL,©Data);

}

Since this actor supports only proprietary IPC (Tornado message queues), the external interface func-
tion pseudo-code would be defined as:

<BlockForExternalMessage>
<EnqueueMessage>

Actor timers

RTTarget.h should specify that RSLTIMERS is set to RSLTRUE; RSLACTOR_TIMERS is set to
RSLTRUE.
Porting Guide Porting the TargetRTS for C 87

 in

g

ent

)

e

-

at
A special timers package should be used as a basis for implementation. An example of this type of timer
implementation can be found under $(OBJECTIME_HOME)/ModelExamples/C, in an
update called “C_Timers”. A detailed description of this update can be found in “Compliance Suite &
Examples” on page 219 of the C Language Guide.

In this approach, a timer actor registers itself as the provider of timing services for all timing requests
the C TargetRTS. If multi-threaded, this actor should be configured to run on its own thread. The C
TargetRTS will handle all inter-actor inter-thread and intra-thread messaging to and from the timin
actor.

At least two timing actor functions must be implemented. They are as follows:

• An external interface function, which is passed a pointer to the object instance data and the curr
executing actor Id.

• A signalling function, which passed a pointer to a RTOS object (for example, condition variable
will signal it in a suitable manner.

At initialization time, an actor in each thread that requires the use of integrated timers must

• Register the external interface (timing routine) function via the RSLRegisterExternalInterface C
TargetRTS API function (an example pseudo-code for this function appears below).

• Create/initialize (or locate) a suitable RTOS object (for example, condition variable), storing th
handle to this RTOS object as an actor ESV.

• Register itself with the C TargetRTS as the provider of all timing services (single- or multi-thread-
ed), providing the address of the signalling variable and signalling function via the RSLRegisterTim
erService C TargetRTS API function. The C TargetRTS will invoke the signalling function (passing
the address of the signaling variable) whenever it is about to deliver a new timing request to th
thread.

The external interface function pseudo-code would be defined as

<GetFirstTimeout>
<GetCurrentTime>
<If (ValidTimer && TimerHasTimedOut)> {

<EnqueueTimeoutEvent>
<RemoveTimerRequest>
return;

}

<If ValidTimer>
<BlockForSignalWithTimeout>

else
<BlockForSignalWithInfiniteTimeout>

<IfTimedOut> {
<EnqueueTimeoutEvent>
<RemoveTimerRequest>

}

88 Porting the TargetRTS for C Porting Guide

r-
at

ine
,

e,

n
ing
d
out

ed.
tine

y

d,

gst
e-

 to
re
t the
kly
The first block of pseudo code determines if (during the intervening period of time while the system
was processing) any timeouts would have occurred. If timeouts occurred, timeout events are generated,
and the time requests are removed from the timer list.

If no timeouts occurred, the next block of code waits for an external signal while specifying a timeout
value (which is our next shortest time to a timeout). Once control is returned to the timer actor’s exte
nal interface routine, a check is then done to determine if the blocking RTOS request timed-out (
which point, a timeout event is enqueued, and the timer request is removed from the timer list).

These timers require the use of relative time (for the informIn request), and absolute time to determ
when a timer is to expire (for example, clock ticks). Thus, the use of a macro (for example
RSLTarget_Time) might be used to ensure compatibility between SimulationRTS and the
C TargetRTS running on a target. Specifically, the target version of RSLTarget_Time should be
defined to add the current number of clock ticks to the relative time to create a future absolute tim
which is used by the external interface routine.

e.g. #define RSLTarget_Time(x) (clockTicks()+x)

Timers are started when an actor in a thread starts a timer via ROOM_InformIn. In the C TargetRTS,
the timer start routine will allocate a local thread TCB, populate it with appropriate data, and the
enqueue it via an inter-thread message to be delivered to the registered timing actor. When the tim
actor receives the new request, it will insert it into the list of active timers for the timing thread, in sorte
order. Once enqueued, the registered external interface for the timing thread will process the time
requests, as described in the above pseudo-code.

If the timing thread is currently blocked, waiting for a timeout to occur or for new timing requests, and
if another thread sends a timing request message to the timing thread, the thread will be interrupt
Thus, once the ObjecTime timeout request message is processed, the timing threads interface rou
will be re-invoked.

Timers are cancelled via ROOM_CancelTimer. In the C TargetRTS, the timer cancel routine will
mark the RTTimerID (which points to a timer control block) as cancelled, and thus will be ignored b
external interface function when it actually times out.

The number of timers that can be started is configured in the RSLThreadMap. For the first/top threa
the number of timers to be created at initialization time should be configured in RTTarget.h, over-
riding the defaults in RTConfig.h.

Each thread has a set of internal TCBs available for its exclusive use. TCBs are not shared amon
threads, and are to be modified only by the C TargetRTS or the timers. In the multi-threaded C Targ
tRTS, timer control blocks are moved back and forth between the requesting and timing threads.

Also, each thread has a linked-list of active TCBs, which are purposely stored in sorted order. That is
say, that when you start a timer, the timeout is checked, and inserted in order into the linked-list, whe
the smallest timeout values appear at the front of the queue, and the largest timeout values appear a
end of the queue. By inserting these items into the queue in sorted order, it is then possible to quic
determine the next timeout value by simply reviewing the first entry on the timer queue.
Porting Guide Porting the TargetRTS for C 89

90 Porting the TargetRTS for C Porting Guide

Chapter 7

Porting Guid
7 Modifying the error parser
Setting the compiler vendor in the libset.mk file

Each libset references its associated error parser via the VENDOR make macro in the libset.mk
file. The toolset will execute scripts in the $OBJECTIME_HOME/codegen/compilers/
$VENDOR/ directory to perform the conversion from the raw error stream to the Generic Error Stream
(GES) format.

Reusing an existing error parser

If you are porting to a new libset, but using an existing compiler vendor, just set the VENDOR make
macro in the libset.mk file to reference the existing vendor, and the error parsing port is done.

Creating a new error parser

If you are porting to a new vendor, you will need to pick a vendor acronym ($VENDOR) and create the
directory $OBJECTIME_HOME/codegen/compilers/$VENDOR. You will need to create
two files in this directory, otcompile.pl and otlink.pl, which you can copy from another
vendor. These Perl files contain the following:

1 Inclusion of common code that performs all the error parsing functions.

2 Setting the errormode variable to indicate whether the file is parsing compiler errors or linker errors.
Errormode is set to compilation by default.

3 Setting arrays of regular expressions and other information the common code will use to parse the
raw error stream. There will be one set of variables per error expression handled. There will also be
one set of variables for each expression that is ignored.

4 A call to the common code once array initializations are done to start parsing input.

To complete the ports, delete the variables that deal specifically with the error expressions that are han-
dled. You will then need to figure out what error expressions your compiler and linker generate and pop-
ulate otcompile.pl or otlink.pl appropriately with new variables. There are a couple ways
to efficiently determine what errors your compiler generates.

1 There is an error parser update available at http://www.objectime.com/support/restricted-dir/docu-
mentation.html, which contains a good number of common compilation errors. You can compile it
and look at the compilation details file ($update_dir/compile.output) for the errors it
e Modifying the error parser 91

generates. Add expressions one at a time and recompile until you have successfully captured all the
errors.

2 Use programs that search the actual compiler or linker executable for strings. Then manually exam-
ine the output and intelligently determine which of the strings look like error statements.

Each regular expression used is a Perl regular expression. If you are not familiar with Perl regular
expressions it is suggested that you get a Perl book or find an equivalent reference online. Below is an
explanation of how each variable can be used for error expression number X.

The expression @oterr::start_error[X] indicates what pattern to look for to indicate that the current line
being parsed is the beginning of the type of error expression X.

@oterr::start_error[X] = ’ ^.*:\d*: warning: .*’ ;

The expression @oterr::end_error[X] indicates which pattern to look for to indicate that the current line
being parsed is the end of the type of error expression X. If the error is a single line error, it can be set to
empty string. If the end of the error is too difficult to determine via a regular expression, it can be set to
UNKNOWN. For the unknown case, it will consider every line part of the current error being parsed
until it finds the beginning of another error, or a line it is supposed to ignore.

@oterr::end_error[X] = ’’ ;
@oterr::end_error[X] = ’ UNKNOWN’ ;
@oterr::end_error[X] = ’ .*then contact your local service provid-
er.*’ ;

Once the error has been isolated, the lines that compose it are concatenated into one string and the
expression @oterr::regexps[X] is used to extract useful information from it. The parentheses in the reg-
ular expression pick out the filename, line number and error text respectively. Note that the Perl script is
set up so that its wildcard characters can include newlines.

@oterr::regexps[X] = ’ ^(.*):(\d*): warning: (.*)’ ;

Each error type has to report to the toolset the severity of the error. Errors will cause the compilation to
report a failure, while warnings will allow other steps, such as linking, to proceed.

@oterr::severity[X] = ’ warning’ ;
@oterr::severity[X] = ’ error’ ;

Optionally, if a weird error turns up that does not have the filename argument first, then the line number,
then the error text, you can include the expression @oterr::argorder[X] to change the order in which the
program extracts the arguments from the parentheses in the @oterr::regexps[X] expression. By default
this variable is set for all error types to be ‘FNE’.

@oterr::argorder[X] = ’ EFN’ ;

You can tell the error parser to ignore lines that the compiler or linker generate but are actually not any-
thing you want to display in the error browser or map back to the toolset. There is one set of variables
for each ignore statement that work very much like the variables for parsing a specific error type. Below
is an explanation of how each variable can be used to ignore a specific type of expression Y.
92 Modifying the error parser Porting Guide

-

The @oterr::start_ignore[Y] statement indicates the beginning of a statement to ignore.

@oterr::start_ignore[Y] = ’ Copyright \(C\) .* Corp.*’ ;

The expression @oterr::end_ignore[Y] indicates which pattern to look for to indicate that the current
line being parsed is the end of the type Y of expression that is being ignored. If the expression to be
ignored is only one line, it can be set to empty string. Note that an ‘UNKNOWN’ end of ignore state
ment is not supported.

@oterr::end_ignore[Y] = ’’ ;
@oterr::end_ignore[Y] = ’ \s*Version \d*.*’ ;
Porting Guide Modifying the error parser 93

94 Modifying the error parser Porting Guide

Chapter 8

Porting Guid
8 Testing the TargetRTS
.
es

ons.
ng
tion-

he
ns

del

on

rget
A port to a new platform requires testing the TargetRTS. There are some standard ObjecTime updates
that can be used to test the functionality of the TargetRTS. These tests are not comprehensive but pro-
vide some assurance that the port was successful. The C++ models are available for download by cus-
tomers only from our support webpage (start from http://www.objectime.com). These models are
provided as is and ObjecTime Limited provides no warranty expressed or implied for their use.

Testing the TargetRTS for C++

HelloWorld update

The HelloWorld update is a single actor model that simply outputs “Hello World” on the target console
It makes use of the Log service to output the message. The HelloWorld model, if functional, validat
the TargetRTS initialization and startup, log service and console output and basic actor functionality.

Performance update

The Performance update is a suite of tests that provides measurements of basic TargetRTS functi
This model is also useful for testing the functionality of the TargetRTS since many features are testi
during the performance measurements. Test results are sent to the standard output and correct func
ality can easily be determined by observing the output.

FiveStates update

The FiveStates update is a model that tests the functionality of the target observability feature of t
TargetRTS. This test provides a model with a state machine consisting of five states. The transitio
between these states can be monitored from the behavior monitor in the ObjecTime Developer Mo
Execution Browser. If target observability is functioning then the Model Execution Browser will be able
to connect to the application running on the target via TCP/IP and provide debugging and executi
monitoring via the Model Execution Browser.

Testing the TargetRTS for C

The CRSL Compliance Tests

The TargetRTS for C ships a set of compliance test models that can be compiled and run on a new ta
platform to ensure the functionality of the newly ported C TargetRTS.
e Testing the TargetRTS 95

These models are part of the %OBJECTIME_HOME\ModelExamples\C folder and are fully
described in “Compliance Suite & Examples” on page 219 of the C Language Guide.
96 Testing the TargetRTS Porting Guide

Chapter 9

Porting Guid
9 Tuning the TargetRTS
ss of

r-

ded

S
a-

de.
all
za-
ne-
f

t is
ve
m-

ns

 a
fer
This section briefly describes areas in the TargetRTS that can be tuned to improve performance. The
Performance update described in “Performance update” on page 95 can be used to verify the succe
performance enhancements.

Disabling TargetRTS features for performance

The TargetRTS can be modified to exclude many of its features to provide a minimum high perfo
mance feature set. The section “TargetRTS Customization Example” in the C++ Target Guide describes
how to create such a version of the TargetRTS. For C Language usage, please refer to “Recommen
Configurations” on page 213 in the C Language Guide for suggested optimizations. The so-called “min-
imum TargetRTS” disables the external layer (and target observability), logging service and the RT
debugger. The minimum TargetRTS should provide significant performance gains over the fully fe
tured version.

Target compiler optimizations

Most compilers provide optimizations at the code generation stage that can produce faster running co
In general, if your compiler supports such optimizations, they should be used. Be sure to remove
debug options at the same time since they may cancel out certain or all optimizations. Some optimi
tions may come at the cost of code size. If application code size is a factor for your target then the be
fit of optimization versus code size will have to analyzed. Many compilers may have different levels o
optimization, which may produce differing degrees of code size and performance enhancements. I
hard to predict the outcome of such optimizations in C++. Using the Performance update may pro
useful. See “Performance update” on page 95. For C usage, please refer to “Compliance Suite & Exa
ples” on page 219 of the C Language Guide.

Optimizations can cause errors in the running application that were not present before optimizatio
were enabled. Be sure to fully test the TargetRTS after enabling any optimizations.

Target operating system optimizations

The Target operating system may provide optimizations. For example, it may be possible to link in
non-debug version of the OS with the application. These optimizations are specific to each RTOS. Re
to the documentation for your specific RTOS.
e Tuning the TargetRTS 97

Specific TargetRTS performance enhancements

In C++, one key area that can improve performance in the TargetRTS is in inter-thread message passing.
The TargetRTS make use of two synchronization mechanisms for much of its message passing, namely,
the RTMutex and RTSyncObject class. Some operating systems provide heavy-weight and light-
weight synchronization mechanisms. The light-weight version has less features but higher performance;
whereas, the heavy-weight version may have more features but poorer performance. Your choice of
implementation for the RTMutex and RTSyncObject may affect the performance of inter-thread
message passing, so be sure to investigate and determine the lightest-weight mechanism necessary to
satisfy the requirements of these classes.
98 Tuning the TargetRTS Porting Guide

Chapter 10

Porting Guid
10 Common problems and pitfalls
 is a

le
n
ns

tes
h is
ing
This section contains common problems and pitfalls that we have encountered with previous ports. The
TargetRTS is supported on approximately 71 platforms and has been verified on each of these plat-
forms. In general, the problems and pitfalls encountered are due to RTOS and tool chain oddities and
bugs. Other problems arise from lack of support for certain features required by the TargetRTS and thus
require a custom workaround to satisfy the TargetRTS.

Problems and pitfalls with target toolchains

Compiler optimizations

Compiler optimizations, in general, help speed up the application. Some optimizations can cause errors
in the application. One such problem occurs when the compiler optimizes references to a memory loca-
tion that is not modified by the application. It assumes that because the application does not modify the
contents of the address, it is never modified. This can cause problems when a memory location is used
to store a RTOS primitive, such as a semaphore. The operating system modifies the contents of the
semaphore variable but the application does not. The compiler optimizes the references to the sema-
phore and consequently removes proper access to the semaphore.

Optimizations vary from compiler to compiler, so refer to the documentation for your specific tool
chain. Review the optimizations that are available and be aware that some may cause errors in the appli-
cation. Running a test suite such as the one described in section “Testing the TargetRTS” on page 95
good way to ensure the optimizations have not broken the TargetRTS.

Linking problems

Linker configuration file

When linking an application to a embedded target, there is usually some sort of linker configuration fi
that defines where in memory each section of the application will go. Many default linker configuratio
files are included without the user’s knowledge and may cause strange linking errors as applicatio
grow larger. Be sure to define your own linker configuration file appropriate for your target.

Duplicate references with global signal names

In ObjecTime the signals are defined globally. Many of these standard signal names may be duplica
of names used in RTOS libraries. This can cause duplicate reference errors at link time. One approac
to recompile the TargetRTS with these signal names redefined. This can be done by globally replac
e Common problems and pitfalls 99

ter-
nd

 as
nd

x

 the
e or
s
ad).
c-
<signal name> during compile time using the compile option
"-D<signal_name>=rt<signal_name>".

System include files

The structure and content of include files can be a challenge when moving to a new tool chain. In the
TargetRTS an attempt is made to isolate the nuances of include files for each RTOS into a few specific
include files that can be used by all the target-specific code. In general, all RTOS-specific definitions
should be combined into a file called RT<os_name>.h in the $(RTS_HOME)/src/target/
<target_name> directory. This way all include files needed to access OS functions can be found
in this one file. In the C++ TargetRTS, for TCP/IP specific include files, a file called RTtcp.h should
be created in the $(RTS_HOME)/src/target/<target_name> directory. This file should
contain all the necessary include files required for TCP/IP functions. For RTOSs that provide a POSIX
interface to OS functions then a file called RTPosixDefines.h should be used to encapsulate all
POSIX header files. Other, more specific, header files may be required to isolate unique interfaces for
your RTOS. These may be added to the $(RTS_HOME)/src/target/<target_name>
directory as needed, and are typically prefixed by “RT”.

Problems and pitfalls with TargetRTS/RTOS interaction

Synchronization primitives

Return codes for POSIX function calls

Even though POSIX is a standard, there are still some discrepancies in the implementation of the in
face. Some implementations of the POSIX function calls return an error code, while others return -1 a
store the result in global variable errno. Check your specific RTOS to see how error conditions are
reported.

Priority inversion

The TargetRTS provides no specific mechanism to prevent priority inversion. Some RTOSs, such
Tornado, support a priority inheritance mechanism for synchronization primitives such as mutexes a
semaphores. The C++ TargetRTS for Tornado 1.0.1 enables this option for the RTMutex and
RTSyncObject classes. If your RTOS supports this then enable this option when creating a mute
or semaphore.

Thread creation

Thread creation has caused problems in the past. One specific problem is the lack of free space on
heap to allocate the stack for the new thread. This causes a system crash with no error messag
exception raised. Other potential pitfalls arise with thread priorities. Do not alter the relative prioritie
of the C++ TargetRTS threads (main thread, external layer thread, timer thread and debugger thre
Incorrect priorities may effect the functioning of the external layer, timers, debugger or even the Obje
Time application.
100 Common problems and pitfalls Porting Guide

Real-time clock

Most RTOSs provide a function to retrieve the current system time. Typically it may return clock ticks,
milliseconds or even nanoseconds. In the C++ TargetRTS, a conversion from the RTOS time to
RTTimespec i s t y p i c a l l y r e q u i r e d in o r d e r t o s a t i s f y th e r e q u i r e m e n t s o f t h e
RTTimespec::getclock function. Some RTOSs may provide a macro or function to resolve the
number of ticks per second and thus make conversion to RTTimespec straightforward. Others may
require hard-coded conversion based on the known tick rate for the RTOS. If this rate is later changed
then the conversion will fail. This results in incorrect behavior for all timers in the ObjecTime model.

In the C++ TargetRTS, when changing the system clock, note that if the time returned by the
RTTimespec::getclock() function is affected by changes in the system clock, the function
call that adjusts the time must be between the RTTimerSAP::adjustTimeBegin() and
RTTimerSAP::adjustTimeEnd() functions. If, however, system clock changes do not
affect the RTTimespec::getclock() function, do not use the RTTimerSAP::adjust-
TimeBegin and RTTimerSAP::adjustTimeEnd() functions. Timers will fail in this case
and cause unwanted behavior in your ObjecTime application.

For example:

void AdjustTimeActor::setclock(constRTTimespec & new_time)
{
 RTTimespec old_time;
 RTTimespec delta;

 timer.adjustTimeBegin();//stop ObjecTime timer service

 sys_getclock(old_time);//an OS-specific function
 sys_getclock(new_time);//an OS-specific function

 delta = new_time;
 delta -= old_timer;

timer.adjustTimeEnd(delta);//resume Objectime timer service
}

Signal handlers

Many RTOSs do not use signals that are typical of UNIX operating systems. If your RTOS does not pro-
vide signals then be sure to override the C++ TargetRTS code in RTMain::installHan-
dlers() and RTMain::installOneHandler().

RTOS supplies main() function

The TargetRTS assumes that it defines the main() function for an application. Some RTOSs may
provide there own main() function, which causes a duplicate reference error at link time. If this is the
case for your RTOS, you have to modify the code in $(RTS_HOME)/src/target/
Porting Guide Common problems and pitfalls 101

his
er-

the
<target_name>/MAIN/main.cc (/main.c for the C TargetRTS). Typically,
you have to start a thread that contains the main() function for the ObjecTime application. The docu-
mentation for the RTOS will describe how to start your application in this manner.

Application command line arguments

Embedded targets do not usually have access to command line arguments, so RTOSs rarely provide a
way to pass command line arguments to a running application. If your RTOS does not support command
line arguments, use two globally defined variables default_argc and default_argv, defined
in the generated code from the toolset, which contain command line arguments from the ObjecTime
toolset. In the C and C++ TargetRTS, you can pass these variables to the RTMain::entry-
Point() function from your modified main() function. See section “RTOS supplies main()
function” on page 101. Default arguments can be specified in the toolset via the Update Browser’s Con-
figuration>Language Options>Targets menu.

Exiting application

In the C++ TargetRTS, the RTDiag::panic() function requires a way to terminate the applica-
tion. This is generally achieved by exiting the application. If your RTOS does not support the exit()
function, you have to override the code in $(RTS_HOME)/src/target/<target_name>/
RTDiag/panic.cc to use the exit function specific to your RTOS.

Problems and pitfalls with target TCP/IP interfaces

Select() statement

Some implementations of the select() statement do not correctly use the value set in the width
parameter. Consequently the function thinks the file descriptor sets are larger than they really are. T
can cause memory corruption and, consequently, serious failures in the running application. To ov
come this problem in the C++ TargetRTS, some targets (CLASSIX, OSE3, VRTX3) override the RTI-
OMonitor::min_size() f unc t ion in $(RTS_HOME)/src/target/
<target_name>/RTIOMonitor/min_size.cc. In these cases, the minimum size is
assumed to be the maximum file descriptor set size.

gethostbyname() reentrancy

A problem was found on some UNIX targets when trying to use the gethostbyname() function
in a multi-threaded application. The call was replaced with a call to the gethostbyname_r()
function, which is re-entrant and multi-thread safe. If this is the case for your target OS then replace
call RTTcpSocket::lookup() in $(RTS_HOME)/src/target/<target_name>/RTTcp-
Socket/lookup.cc in the C++ TargetRTS.
102 Common problems and pitfalls Porting Guide

Part 3
Appendices

Appendix A

Porting Guid
ATargetRTS for C++ porting
example
Introduction
This section provides an example of porting the TargetRTS for C++ to a new platform. This is an exam-
ple port rather than customization of an existing port. See the C++ Target Guide for a customization
example. This porting example should help implement the information presented in previous sections.
The target platform for this example is the VRTX 4.0 real-time operating system using the Microtec
Research C++ Compiler Version 4.5T for Motorola 68040 microprocessors. This is a currently sup-
ported platform, but it is assumed that no previous version of the TargetRTS for this platform exists.

Choosing the platform name

The platform name is an important identifier of the TargetRTS. It identifies the operating system, hard-
ware architecture and (cross) compiler. In this example, the operating system is VRTX4. The hardware
architecture is Motorola 68040 (m68040). The compiler is the Microtec Research C++ Compiler Ver-
sion 4.5T. For this example we will only consider the multi-threaded version of the TargetRTS since this
provides the most interesting porting challenges. The resulting platform name is as follows:

<OS> = VRTX4T
<LIBSET> = m68040-Microtec-4.5T
<OS>.<LIBSET> = VRTX4T.m68040-Microtec-4.5T

Create setup script

The setup script is in the file $(RTS_HOME)/config/VRTX4T.m68040-Microtec-
4.5T/setup.pl. This file is a Perl script that defines environment variables for the compilation
of the TargetRTS. The contents of the setup script are as follows:

$OS_HOME = $ENV{‘OS_HOME‘};

$USR_MRI = “$OS_HOME/spectra/solaris-68k-4.AAA”;

$ENV{‘USR_MRI’} = “$USR_MRI”;

$ENV{‘SPECTRA’} = “$USR_MRI/spa68k”;

$ENV{‘MRI_68K_BIN’} = “$USR_MRI/bin”;
e TargetRTS for C++ porting example 105

Introduction

re

s the
ot

 for

e
-

 in
m-
$ENV{‘MRI_68K_LIB‘} = “$USR_MRI/lib”;

$ENV{‘MRI_68K_INC‘} = “$USR_MRI/include/mcc68k”;

$ENV{‘PATH‘} = “$USR_MRI/bin:$ENV{‘PATH’}”;

$preprocessor = “ccc68k -E >MANIFEST.i”;
$include_opt = ‘-J‘;
$target_base = ‘VRTX3‘;
$supported = ‘Yes‘;

The setup script must contain the mandatory definitions for the preprocessor and supported
flags. The tool chain environment variables are usually required for cross compiler tools such as Micro-
tec, since it is not typically part of a user’s command path and the environment variable definitions a
probably not already defined in most users’ environments. Note that the target_base variable is
set to VRTX3. This means the VRTX4T target uses the same code base for the TargetRTS classes a
VRTX3T target. In a TargetRTS port to a native compiler tool chain these definitions are probably n
required.

Create makefiles

The next step in porting the TargetRTS is to create various makefiles needed to build the TargetRTS
the platform and to build ObjecTime models on this new TargetRTS and platform.

Libset makefile

The libset makefile is used to make specific definitions for the compiler. The command line interfac
for C++ compilers differs significantly, particularly for cross-compilers such as the Microtec C++ com
piler. It is in this file that we make definitions for command line options for the compiler and linker and
override other definitions made in $(RTS_HOME)/libset/default.mk. See “Default
makefile” on page 36 for details. In any port of the TargetRTS there are certain commands required
the tool chain in order to support the building of the TargetRTS. Table 8 illustrates these required co
mands, the Unix equivalent, and the Microtec variant.

The library archive command (ar) for the Microtec tool chain requires the use of a script to work the
way the TargetRTS build requires. The Microtec development environment does not supply an ar com-

Table 8 Compiler tool chain requirements

Command Unix Microtec

library archive ar microtec_ar (script)

C++ Compiler CC ccc68k

Linker ld -r lnk68k -r

Pre-linker ld -r -o lnk68k -r -o

Shared library builder CC -G -z text -o ccc68k -G -z text -o

VENDOR n/a Microtec
106 TargetRTS for C++ porting example Porting Guide

Introduction

e

mand. Instead it provides a lib command that behaves differently than the ar command. A script file,
microtec_ar was written to provide a wrapper around the lib command. This is an exception to
other supported TargetRTS platforms but illustrates a possible pitfall when moving to a new platform.
The libset makefile must define the VENDOR variable that instructs the error parser which type of com-
piler is being used. The error parser uses this information to decode error messages returned by the com-
piler to a format compatible with the ObjecTime Developer toolset.

Another important role of the libset makefile is the definition of command line options. Table 9 illus-
trates the typical subset of command line options, the Unix equivalent, and the Microtec variant.

The compiler options may vary greatly from one platform to another, but must support some basic fea-
tures. Read the compiler documentation carefully and review some of the libset.mk for other
TargetRTS platforms for guidance. A list of required features follows:

• to compile source files into object files only (that is, not to the link phase), typically the ‘-c’ option

• to place the object file in a desired directory and file name, typically the ‘-o’ option

• to produce shared libraries, typically the ‘-G’ option

• to link and place the executable in a desired directory and file name, typically the ‘-o’ option for th
link phase

• to turn on debugging instructions in the compiled code, typically the ‘-g’ option

• to specify the pathname of include files, typically the ‘-I’ option

• to specify the pathname of libraries, typically the ‘-L’ option

• to specify the libraries to link, typically the ‘-l’ option

• to turn on code optimization, typically ‘-O’ option and sub-options

Table 9 C++ Command line options

Option Unix Microtec

DEBUG_TAG -g -g -Gf

LIBSETCCEXTRA -p68040 -c -Qms0401 -
Qs -Xp -Mca -Mdaa

a. The -Qms0401 option suppresses the 0401 error message “destructor
for base class is not virtual”. The -Qs option suppresses the summary
message. The -Xp allocates space for global variables that have not been
explicitly initialized.

LIBSETCCFLAGS -O -O -Ob -Oe -Ot -Qfs -
NM$(@F:.o=)b

b. The -Qfs option suppresses the display of the source file line number
for diagnostic messages. The -NM options sets the module name.

INCLUDE_TAG -I -J

DIR_TAG -l -l

LIB_EXT .a .lib
Porting Guide TargetRTS for C++ porting example 107

Introduction
The contents of the libset makefile, $(RTS_HOME)/libset/m68040-Microtec-4.5T/
libset.mk , for Microtec compiler is as follows:

AR_CMD = $(RTS_HOME)/targets/microtec_ar lib68k
CC = ccc68k
LD = lnk68k -r
PRELINK = cat >
SHLIB_CMD = $(CC) -G -z text -o

#VENDOR is used in definition of OTCOMPILE and OTLINK in default.mk
VENDOR = Microtec

#override the extension for executables
EXEC_EXT = .x

LIBSETCCFLAGS = -p68040 -c -Qms0401 -Qs -Xp -Mca -Mda
LIBSETCCEXTRA = -O -Ob -Oe -Ot -Qfs -NM$(@F:.o=)
SHLIBS =

LIB_EXT = .lib

DEBUG_TAG = -g -Gf
DIR_TAG =
INCLUDE_TAG = -J

Target makefile

The target makefile is used to make definitions specific to the target operating system and the
TargetRTS configuration. These are usually specific command line options for the compiler and linker
to define such things as include directories for the target OS and libraries and their pathnames. These
definitions must be common to all VRTX targets. The contents of the target makefile,
$(RTS_HOME)/target/VRTX4T/target.mk, is as follows:

TARGETCCFLAGS = $(INCLUDE_TAG)$(SPECTRA)/target/include \
 $(DEFINE_TAG)timeout=otTimeout

Configuration makefile

The configuration makefile is used to make definitions required by the operating system and compila-
tion environment together. In the case of VRTX, the definitions for libraries are made here since they
are specific to the compiler and operating system combination. Therefore these definitions are not
appropriate in the target makefile. The content of the configuration makefile, $(RTS_HOME)/con-
fig/VRTX4T.m68040-Microtec-4.5T/config.mk, is as follows:

EXEC_EXT = .x

SYSTEM_LIBS = $(RTS_LIBRARY)/libObjecTime$(LIB_EXT) \
108 TargetRTS for C++ porting example Porting Guide

Introduction

tion
 $(RTS_LIBRARY)/libObjecTimeTransport$(LIB_EXT) \
 $(RTS_LIBRARY)/libObjecTimeTypes$(LIB_EXT)

TARGETLIBS = $(USR_MRI)/lib/ccc68kab040.lib

TargetRTS configuration definitions

The configuration definitions for the TargetRTS are found in the include file $(RTS_HOME)/
include/RTConfig.h. The definitions in this file are overridden by $(RTS_HOME)/tar-
get/VRTX4T/RTTarget.h and possibly $(RTS_HOME)/libset/m68040-Micro-
tec-4.5T/RTLibSet.h. These definitions are used to enable and disable various features in the
TargetRTS. By default all of the TargetRTS features are enabled (for example, target observability). The
porting effort may be made easier if these features are disabled. See section “TargetRTS Customiza
Example” in the C++ Target Guide for instructions on how to build a minimized TargetRTS. The con-
tent of the file $(RTS_HOME)/target/VRTX4T/RTTarget.h is as follows:

#ifndef __RTTarget_h__
#define __RTTarget_h__ included

#define TARGET_VRTX 4
#define TARGET platVRTX

#define USE_THREADS 1
#define EXTERNAL_LAYER 1

#define DEFAULT_MAIN_PRIORITY 75
#define DEFAULT_LAYER_PRIORITY 73
#define DEFAULT_TIMER_PRIORITY 70
#define DEFAULT_IOMON_PRIORITY 72
#define DEFAULT_DEBUG_PRIORITY 60

#define CLOCK_TICKS_PER_SEC 100
#define NSECS_PER_TICK 10000000

#define __READY_EXTENSIONS__

#ifdef _SIZE_T
#ifndef __size_t
#define __size_t
#endif
typedef _SIZE_T size_t;
#endif

#endif // __RTTarget_h__
Porting Guide TargetRTS for C++ porting example 109

Introduction

the

s a

h
rat-
Code changes to TargetRTS classes

Most ports to new targets require some minor changes to the TargetRTS code. These changes typically
apply to operating system features for thread (task) creation and destruction, mutual exclusion and syn-
chronization and time services. A description of TargetRTS classes that may require changes is already
given in Table 5, “TargetRTS constants/macros and their default values,” on page 46.

The required changes to the TargetRTS source for VRTX 4 and the Microtec compiler are located in
$(RTS_HOME)/src/target/VRTX3 directory. These files override the versions in
$(RTS_HOME)/src. To override a definition from the source directory a new subdirectory is cre-
a ted in $(RTS_HOME)/src/target/VRTX3 (tha t i s , a new de f in i t ion fo r
RTTimespec::getclock requires a subdirectory $(RTS_HOME)/src/target/
VRTX3/RTTimespec). The new file containing RTTimespec::getclock would be
$(RTS_HOME)/src/target/VRTX3/RTTimespec/getclock.cc.

The required changes to the TargetRTS are too large to include in this document. Table 10 contain
summary of the required changes to each file.

Table 10 Required changes to TargetRTS source

Class File Change

main function main.cc This change was required due to a bug in the Microtec compiler wit
respect to static constructors. Normally changes are required for ope
ing systems that already provide a main function.

RTDebugger-
Input

nextChar.cc

RTDiagStream flush.cc if fflush is not supported, implement a flush empty method

ls_string << operator overridden with code to output string (fputs not sup-
ported)

RTIOMonitor min_size.cc min_size method changed to use FD_SETSIZE.

RTMain targetStar-
tup.cc

targetStartup method overridden with code to perform VRTX
specific startup code.

installOne-
Handler.cc

installOneHandler empty method

installHan-
dlers.cc

installHandlers empty method

RTMutex ct.cc constructor for RTMutex defined for VRTX mutex creation
(sc_mcreate)

dt.cc destructor for RTMutex defined for VRTX mutex destruction
(sc_mdelete)

enter.cc enter method created to use VRTX sc_mpend function

leave.cc leave method created to use VRTX sc_mpost function
110 TargetRTS for C++ porting example Porting Guide

Introduction

e
Building the new TargetRTS

Once the setup script, makefiles and source are complete the TargetRTS is ready to be built. To build the
TargetRTS for the VRTX-Microtec target, type the following in the $(RTS_HOME)/src directory:

make VRTX4T.m68040-Microtec-4.5T

This will create a directory $(RTS_HOME)/build-VRTX4T.m68040-Microtec-4.5T
which will contain the dependency file and object files for the TargetRTS. If the build completes suc-
cessfully the resulting ObjecTime libraries will be placed in the $(RTS_HOME)/lib directory.

RTSyncObject ct.cc constructor for RTSyncObject

dt.cc destructor for RTSyncObject

signal.cc signal method for RTSyncObject created to use VRTX
sc_post function.

wait.cc wait method defined to use VRTX sc_pend function with no time-
out.

timedwait.cc timedwait method defined to use VRTX sc_pend function with
time-out specified. NOTE: In VRTX the mailbox feature is used — it
behaves much like a binary semaphore and provides a time-out on th
sc_pend function — this greatly simplifies the implementation of
the RTSyncObject

RTTcpSocket getPrimary.cc getPrimary method overridden to support different method of
establishing host name.

lookup.cc lookup method overridden due to differences in gethost-
byname function

set_nonblocki
ng.cc

set_nonblocking method overridden due to differences in
ioctl function.

RTThread ct.cc constructor for RTThread overridden to use VRTX-specific thread
creation function (sc_tecreate)

RTTimespec getclock.cc getclock method overridden to use VRTX-specific clock function
(sc_gclock).

Table 10 Required changes to TargetRTS source

Class File Change
Porting Guide TargetRTS for C++ porting example 111

Introduction
112 TargetRTS for C++ porting example Porting Guide

Appendix B

Porting Guid
BTargetRTS for C Porting example
Introduction
This section provides an example of porting the TargetRTS for C to a new platform. This is an example
port rather than customization of an existing port. This porting example should help implement the
information presented in previous sections. The target platform for this example is the VRTX 4.0 real-
time operating system using the Microtec Research C Compiler Version 1.3C for Motorola PowerPC
603 microprocessors. It is assumed that no previous version of the TargetRTS for this platform exists.

Choosing the platform name

The platform name is an important identifier of the TargetRTS. It identifies the operating system, hard-
ware architecture and (cross) compiler. In this example, the operating system is VRTX4. The hardware
architecture is Motorola PowerPC 603 (ppc603). The compiler is the Microtec Research C Compiler
Version 1.3C. For this example we will only consider the multi-threaded version of the TargetRTS since
this provides the most interesting porting challenges. The resulting platform name is as follows:

<OS> = VRTX4T
<LIBSET> = ppc603-Microtec-1.3C
<OS>.<LIBSET> = VRTX4T.ppc603-Microtec-1.3C

Create setup script

The setup script is in the file $(RTS_HOME)/config/VRTX4T.ppc603-Microtec-1.3C /
setup.pl. This file is a Perl script that defines environment variables for the compilation of the
TargetRTS. The contents of the setup script are as follows:

$os = $ENV{’OS’};
$os = ’default’ unless defined($os);
if($os eq ’Windows_NT’)
{
 $usr_mri = $ENV{’USR_MRI’};
 $ENV{’PATH’} = "$usr_mri/bin;$ENV{’PATH’}";
}
else
{
 $os_name = ‘uname -s‘; ## get the flavor of unix
 chomp($os_name);
e TargetRTS for C Porting example 113

Introduction

re

 for

e
t
-

ol
 if($os_name eq ’SunOS’) ## if the flavor of unix is solaris
 {
 $usr_mri = "$ENV{’OS_HOME’}/spectra/solaris-ppc603-4.AB";
 }
 elsif($os_name eq ’HP-UX’) ## if the flavor of unix is HP-UX
 {
 $usr_mri = "$ENV{’OS_HOME’}/spectra/hp-ppc603-4.AB";
 }
 else ## this flavor of unix is not a supported flavor
 {
 printf "This‘%s’is not a supported flavor of unix\n",
 $os_name;
 }
 $ENV{’USR_MRI’} = "$usr_mri";
 $ENV{’SPECTRA’} = "$usr_mri/spappc";
 $ENV{’MRI_PPC_BIN’} = "$usr_mri/bin";
 $ENV{’MRI_PPC_LIB’} = "$usr_mri/lib";
 $ENV{’MRI_PPC_INC’} = "$usr_mri/include/mccppc";
 $ENV{’PATH’} = "$usr_mri/bin:$ENV{’PATH’}";
}
 $preprocessor = "mccppc -E >MANIFEST.i";
 $include_opt = ’-J’;
 $target_base = ’VRTX4’;
 $supported = ’Yes’;

The setup script must contain the mandatory definitions for the preprocessor and supported
flags. The tool chain environment variables are usually required for cross compiler tools such as Micro-
tec, since it is not typically part of a user’s command path and the environment variable definitions a
probably not already defined in most users’ environments. Note that the target_base variable is
set to VRTX4. The value VRTX4 for target_base implies that the name of the directory for the
VRTX code base is $(RTS_HOME)/src/target/VRTX4. In a TargetRTS port to a native com-
piler tool chain these definitions are probably not required.

Create makefiles

The next step in porting the TargetRTS is to create various makefiles needed to build the TargetRTS
the platform and to build ObjecTime models on this new TargetRTS and platform.

Libset makefile

The libset makefile is used to make specific definitions for the compiler. The command line interfac
for C compilers differs significantly, particularly for cross-compilers such as the Microtec C compiler. I
is in this file that we make definitions for command line options for the compiler and linker and over
ride other definitions made in $(RTS_HOME)/libset/default.mk. See “Default make-
file” on page 36 for details. In any port of the TargetRTS there are certain commands required in the to
114 TargetRTS for C Porting example Porting Guide

Introduction
chain in order to support the building of the TargetRTS. Table 11 illustrates these required commands,
the Unix equivalent, and the Microtec variant.

The library archive command (ar) for the Microtec tool chain requires the use of a script to work the
way the TargetRTS build requires. The Microtec development environment does not supply an ar com-
mand. Instead it provides a lib command that behaves differently than the ar command. A Perl script
file, ar.pl that resides in the directory $(RTS_HOME)/libset/ppc603-Microtec-
1.3C, was written to provide a wrapper around the lib command. This is an exception to other sup-
ported TargetRTS platforms but illustrates a possible pitfall when moving to a new platform. Another
Perl script file, ld.pl that resides in the directory $(RTS_HOME)/libset/ppc603-
Microtec-1.3C, was written to provide a wrapper around the lnkppc -i command. This
script takes lnkppc -i as arguments and is invoked to link an ObjecTime Developer update. The
libset makefile must define the VENDOR variable that instructs the error parser which type of compiler
is being used. The error parser uses this information to decode error messages returned by the compiler
to a format compatible with the ObjecTime Developer toolset.

Another important role of the libset makefile is the definition of command line options. Table 12 illus-
trates the typical subset of command line options, the Unix equivalent, and the Microtec variant.

Table 11 Compiler tool chain requirements

Command Unix Microtec

library archive ar ar.pl (a perl script)

C++ Compiler CC mccppc

Linker ld -r lnkppc -i

Pre-linker ld -r -o lnkppc -i -o

Shared library builder CC -G -z text -o mccppc -G -z text -o

VENDOR n/a Microtec

Table 12 C++ Command line options

Option Unix Microtec

DEBUG_TAG -g -g -Gd -Gf -Gm -Gs

LIBSETCCFLAGS -p603 -DPPC

LIBSETCCEXTRA -O -O -Qfsa

a. The -Qfs option suppresses the display of the source file line number
for diagnostic messages.

INCLUDE_TAG -I -J

DIR_TAG -l -l

LIB_EXT .a .lib
Porting Guide TargetRTS for C Porting example 115

Introduction

e

er
ese
,

The compiler options may vary greatly from one platform to another, but must support some basic fea-
tures. Read the compiler documentation carefully and review some of the libset.mk for other
TargetRTS platforms for guidance. A list of required features follows:

• to compile source files into object files only (that is, not to the link phase), typically the ‘-c’ option

• to place the object file in a desired directory and file name, typically the ‘-o’ option

• to produce shared libraries, typically the ‘-G’ option

• to link and place the executable in a desired directory and file name, typically the ‘-o’ option for th
link phase

• to turn on debugging instructions in the compiled code, typically the ‘-g’ option

• to specify the pathname of include files, typically the ‘-I’ option

• to specify the pathname of libraries, typically the ‘-L’ option

• to specify the libraries to link, typically the ‘-l’ option

• to turn on code optimization, typically ‘-O’ option and sub-options

The contents of the libset makefile, $(RTS_HOME)/libset/ppc603-Microtec-1.3C/
libset.mk , for Microtec compiler is as follows:

VENDOR = Microtec
AR_CMD = $(PERL) $(RTS_HOME)/libset/$(LIBRARY_SET)/ar.pl
CC = mccppc
LD = $(PERL)$(RTS_HOME)/libset/$(LIBRARY_SET)/ld.pl \
 lnkppc -i
SHLIB_CMD = $(CC) -G -z text -o
LIBSETCCFLAGS = -p603 -DPPC
LIBSETCCEXTRA = -O -Qfs
SHLIBS =
OT_LIB_TAG = -llib
LIB_EXT = .lib
INCLUDE_TAG = -J
ALL_OBJS_LIST = %$(ALL_OBJS_LISTFILE)
DEBUG_TAG = -g -Gd -Gf -Gm -Gs

Target makefile

The target makefile is used to make definitions specific to the target operating system and the
TargetRTS configuration. These are usually specific command line options for the compiler and link
to define such things as include directories for the target OS and libraries and their pathnames. Th
definit ions must be common to all VRTX targets. The contents of the target makefi le
$(RTS_HOME)/target/VRTX4T/target.mk, is as follows:

TARGETCCFLAGS = $(INCLUDE_TAG)$(SPECTRA)/target/include \
 $(DEFINE_TAG)timeout=otTimeout
116 TargetRTS for C Porting example Porting Guide

Introduction
Configuration makefile

The configuration makefile is used to make definitions required by the operating system and compila-
tion environment together. In the case of VRTX, the extension to be used at the end of the filename for
the final executable is defined here. The content of the configuration makefile, $(RTS_HOME)/
config/VRTX4T.ppc603-Microtec-1.3C/config.mk, is as follows:

EXEC_EXT = .x

TargetRTS configuration definitions

The configuration definitions for the TargetRTS are found in the include file $(RTS_HOME)/
include/RTConfig.h. The definitions in this file are overridden by $(RTS_HOME)/tar-
get/VRTX4T/RTTarget.h. These definitions are used to enable and disable various features in
the TargetRTS. The content of the file $(RTS_HOME)/target/VRTX4T/RTTarget.h is as
follows:

#ifndef __RTTarget_h__
#define __RTTarget_h__ included
#define USE_THREADS 1
#define RSLMULTITHREADED RSLTRUE
/* Following definition is due to PR 7890 */
#ifdef RSLTHREAD_RETURNVAL
#undef RSLTHREAD_RETURNVAL
#endif
#define RSLTHREAD_RETURNVAL
#define RSLTO RSLTRUE
#define RSLDEBUG RSLTRUE
#define RSLTIMERS RSLTRUE
#define RSLACTOR_TIMERS RSLFALSE
#define DEFAULT_MAIN_PRIORITY 75
#define DEFAULT_LAYER_PRIORITY 73
#define DEFAULT_TIMER_PRIORITY 70
#define DEFAULT_DEBUG_PRIORITY 60
#define __READY_EXTENSIONS__
#define RSL_OVERRIDE_BASIC_SIZES
/*
 *
 * typically long
 *
*/
typedef unsigned long RSLMemorySize;
typedef unsigned long RSLTimeoutSize;
/*
 * typically short or int
 * -- each actor may only have 64k-1 of local data
 */
Porting Guide TargetRTS for C Porting example 117

Introduction
typedef unsigned short RSLDataSize;
/*
typedef unsigned short RSLFieldOffset;
*/
typedef unsigned long RSLFieldOffset; /* for VRTX-MRI C compiler */
/*
 * typically unsigned short
 * -- there may only be 64k-2 ports
 * -- there may only be 64k-2 actors
 * -- there may only be 64k-2 threads
 */
/* override RSLPortIndex definition for VRTX - PR7804, PR7808 */
typedef short RSLPortIndex;
#define RSLMaxPort 32767
typedef unsigned short RSLActorIndex;
#define RSLMaxActor 65535
typedef unsigned short RSLThreadIndex;
#define RSLMaxThread 65535
typedef unsigned short RSLMessageIndex;
#define RSLMaxMessages 65535
typedef unsigned short RSLTCBIndex;
#define RSLMaxTCBs 65535
/*
 * typically char
 * -- there may only be 255 events per protocol
 * -- there may only be 255 ports references per actor
 * -- there may only be 255 Actor Classes
 * -- there may only be 255 states in each actor
 * -- there may only be 255 port classes
 */
typedef unsigned short RSLBool;
typedef unsigned short RSLFlags;
#define RSLMaxMessagePriority 65535
typedef unsigned short RSLMessagePriority;
#define RSLSignalEvent 65535
typedef unsigned short RSLSignalIndex;
#define RSLMaxActorClasses 65535
typedef unsigned short RSLActorType;
typedef unsigned short RSLStateIndex;
#define RSLMaxPortClasses 65535
typedef unsigned short RSLPortType;
#define RSLMaxFieldTypes 65535
typedef unsigned short RSLFieldType;
#endif /* #ifndef __RTTarget_h__ */
118 TargetRTS for C Porting example Porting Guide

Introduction
Code changes to TargetRTS classes

Most ports to new targets require some minor changes to the TargetRTS code. These changes typically
apply to operating system features for thread (task) creation and destruction, mutual exclusion and syn-
chronization and time services.

The required changes to the TargetRTS source for VRTX 4 and the Microtec compiler are located in the
$(RTS_HOME)/src/target/VRTX4 directory. These files override the versions in various
directories in $(RTS_HOME)/src. To override a definition from the source directory a new subdi-
rectory is created in $(RTS_HOME)/src/target/VRTX4.

The required changes to the TargetRTS are too large to include in this document. Table 13 contains a
summary of the required changes to each file.

Building the new TargetRTS

Once the setup script, makefiles and source are complete the TargetRTS is ready to be built. To build the
TargetRTS for the VRTX-Microtec target, type the following in the $(RTS_HOME)/src directory:

make VRTX4T.ppc603-Microtec-1.3C

This will create a directory $(RTS_HOME)/build-VRTX4T.ppc603-Microtec-1.3C
which will contain the dependency file and object files for the TargetRTS. If the build completes suc-
cessfully the resulting ObjecTime libraries will be placed in the $(RTS_HOME)/lib/
VRTX4T.ppc603-Microtec-1.3C directory.

Table 13 Required changes to TargetRTS source

Class File Change and Description

MAIN main.c

DEBUG debugio.c RSL_nextChar function is overridden to support getting the next
character from Input stream

INITSTOP TGTinit.c RSL_Target_Startup function is overridden to support relevant
initialization during startup

TCP lookup.c cRSL_lookup function is overridden due to differences in
gethostbyname function

THREAD RTThread.c The functions RSLmutex_init, RSLmutex_lock,
RSLmutex_unlock, RSLsemaphore_init,
RSLsemaphore_wait, RSLsemaphore_post,
RSLthr_create are overridden.
Porting Guide TargetRTS for C Porting example 119

Introduction
120 TargetRTS for C Porting example Porting Guide

Part 4
Index

Porting Guid
11Index
A
actor classes, C++ 25
actor timers 19, 87
adding new files to the C TargetRTS 66
adding new files to the TargetRTS 52
application command line arguments 102
arguments 49
availability of Perl on compilation host 61

B
before starting the port 25
building the new TargetRTS 111, 119

C
C source and header files, creating and editing 8
C TargetRTS

adding new files 66
configuration definitions 55
implementing timer services 77
run-time semantics 66

C TargetRTS configuration definitions 55
C++ Actor Classes 25
C_HelloWorld within ObjecTime, activating 10
C_HelloWorld, compiling and running for your target

10
Classes

RTCondVar
extending the Mutex 51

RTDebuggerInput 51
RTDiagStream 51
RTIOController 52
RTIOMonitor 52
RTMain 49

target-specific methods 49

RTMutex 50
protecting shared resources 50

RTSyncObject 51
RTTcpSocket 51
RTThread

supporting multi-threading 50
RTThread Constructor 50
RTThread constructor 50

code changes to TargetRTS classes 110, 119
common overrides required for a new target 49, 62
common problems and pitfalls 99
compile and run 11
compile and run hello.c for your target 4
compile and run the C_HelloWorld model for your tar-

get 10
compile the TargetRTS for your target 10
compiler optimizations 99
compiling and running hello.c for your target 4
compiling and running the C_HelloWorld model for

your target 10
config makefile 39
config makefile, creating a 7
configuration makefile 108, 117
COUNT 46, 55
CRSL Compliance Tests 95

D
Debug phase 13
Debug run-time testing 13
Debugger 47
Debugger statistics 46
Debugging 28
Default makefile 36
DEFER_IN_ACTOR 46
definitions, platform-specific 45
e A 123

Index
directories, creating and editing 6
disabling TargetRTS features for performance 97

E
enqueueing external events 75
entryPoint function 50
environment setup 3
environment variable setup script, creating an 7
environment variables, creating target-specific 3
environment variables, noting the value of existing 3
example platform names used by the TargetRTS 32
exiting application 102
external events, enqueueing 75
EXTERNAL_LAYER 46

F
File main.cc 52
FiveStates update 95
floating point operations 28
functions

entryPoint 50
gethostbyname() reentrancy 102
Main 49, 62
RSLCancelTimer 76
RSLDequeueTimer 76
RSLGetFirstTimeout 76
RSLGetTimerServiceActor 77
RSLRegisterExternalInterface 74
RSLRegisterMessageSignallingInterface 75
RSLRegisterTimerServices 77
RSLThreadMap 67
RTOS supplies main() 101
targetShutdown 50
targetStartup 49

G
generated code

compilation supported by makefiles 34
gethostbyname() reentrancy 102

H
hello.c, compiling and running for your target 4
HelloWorld update 95

I
Implementaion

platform-specific 46, 55
implementing timer services in the C TargetRTS 77
install all required target OS software on the host and

target 3
INTEGER_POSTFIX 46
Integrated IPC and timers 18
Integrated timers 18

L
libset

makefiles 39
name, components of 5, 33
platform name, part of 31

libset makefile 39, 106, 114
libset makefile, creating the 8
libset name 5, 33
libset name, choosing a 5
linking problems 99
local timers 18, 77
LOG_MESSAGE 46

M
Main function 49, 62
mainloop 66
makefile fragments 59
makefiles 34

config, template 39
libset,template 39
sequencing of 35
target 38
TargetRTS, changes 36
typical target, template 38

makefiles, creating 106, 114
makefiles, creating and editing 7
MANIFEST.c file 66
MANIFEST.cpp File 52
MANIFEST.cpp file 52, 66
memory management 62
message priority 68
message processing 72
message queues 69
Method RTTimespec::getclock() 50
modify $RTS_HOME\target\<TargetName>\RTTar-
124 E Porting Guide

Index
get.h 13
modifying the error parser 91
multi-threaded C TargetRTS 70
multi-threaded C TargetRTS message processing 73
multi-threaded libraries, creating 15
multi-threaded mode

support for 50
multi-threaded RTOS interface 62
Mutex

methods to protect shared resources 50

N
names, choosing 4
new configuration, creating a 11
new error parser, creating a 91
new files, adding to the C TargetRTS 66
new files, adding to the TargetRTS 52

O
OBJECT_DECODE 47
OBJECT_ENCODE 47
ObjecTime -How to Contact

Support Hotline, Fax, E-mail iv
ObjecTime support, what to do before calling 28
OS capabilities 25
OS knowledge and experience 25
OTRTSDEBUG 47

P
PATH variable 33
Performance update 95
Perl scripts, creating and editing 7
Perl scripts, making copies of 7
Perl, availability on a compilation host 61
Perl, if the compilation platform does not have 16
phases of a port 31
platform

example names 32
two-part name

target and libset 5, 27, 31
platform name, choosing a 5, 31, 105, 113
platform name, determining the 5
platform-specific

definitions 45
implementation 46, 55

platform-specific implementation 48, 61
platform-specific include files, creating 9
platform-specific source files, creating 8
port, major steps for implementing the 31
porting the error parser phase 16
porting the TargetRTS 31
porting the TargetRTS for C 3, 55
porting the TargetRTS for C++ 45
porting timers phase 17
problems and pitfalls with target TCP/IP interfaces

102
problems and pitfalls with target toolchains 99
problems and pitfalls with TargetRTS/RTOS interac-

tion 100

R
Real-time clock 101
regenerating make dependencies 52, 66
reusing an existing error parser 91
RSLCancelTimer 76
RSLDequeueTimer 76
RSLGetFirstTimeout 76
RSLGetTimerServiceActor 77
RSLRegisterExternalInterface 74
RSLRegisterMessageSignallingInterface 75
RSLRegisterTimerServices 77
RSLThreadMap 67
RTOS supplies main() function 101
RTREAL_INCLUDED 47
RTTarget.h, creating 8
RTThread.c contents 63
Run-to-completion 74

S
Select() statement 102
setting the compiler vendor in the libset.mk file 91
setup script

TargetRTS compilation to the platform 7, 33
setup script, creating a 7, 33, 105, 113
signal handlers 101
simple model execution phase 3
simple non-ObjecTime program on target 27
single-threaded C TargetRTS 69
single-threaded C TargetRTS message processing 72
standard input/output functionality 28
synchronization primitives 100
Porting Guide N 125

Index
system include files 100

T
target

name, components of 32
platform name, part of 31

target compiler optimizations 97
Target makefile 38
target makefile 38, 108, 116
target makefile, creating the 8
target name 32
target name and target base name, choosing a 4
Target Observability phase 13
Target Observability run-time testing 14
Target Observability startup and shutdown 62
target operating system optimizations 97
TargetRTS

adding new files 52
constants/macros and their default values 46, 55
example platform names used by the 32
libraries

compilation supported by makefiles 34
porting it to a new platform 31
porting the 31
specific performance enhancements 98
testing 95
tuning 97

TargetRTS classes, code changes to 110, 119
TargetRTS configuration definitions 45, 109, 117
TargetRTS features, disabling for performance 97
TargetRTS for C

porting the 3
testing 95

TargetRTS for C++
porting the 45
testing 95

TargetRTS makefiles 34, 36
targetShutdown function 50
target-specific environment variables, creating 3
targetStartup function 49
tasks, processes, and threads 66
TCP/IP functionality 28
testing the TargetRTS 95
testing the TargetRTS for C 95
testing the TargetRTS for C++ 95
thread creation 100

threaded phase 15
threaded phase run-time testing 16
threads configuration, editing the 11
Tool chain functionality 25
Training 28
tuning the TargetRTS 97

U
USE_THREADS 46
126 T Porting Guide

ObjecTime Limited
340 March Road
Kanata, Ontario
Canada K2K 2E4

	About this document
	ObjecTime support

	Porting theTargetRTS for C workbook
	Porting the TargetRTS for C workbook
	1.0 Simple model execution phase
	1.1 Environment setup
	1.2 Choose names
	1.3 Create directories
	1.4 Create and edit Perl scripts
	1.5 Create and edit makefiles
	1.6 Create and edit C source and header files
	1.7 Compile the TargetRTS for your target
	1.8 Compile and run the C_HelloWorld model for your target

	2.0 Debug phase
	2.1 Modify $RTS_HOME\target\<TargetName>\RTTarget.h
	2.2 Debug run-time testing

	3.0 Target Observability phase
	3.1 Modify $RTS_HOME\target\<TargetName>\RTTarget.h
	3.2 Target Observability run-time testing

	4.0 Threaded phase
	4.1 Creating the multi-threaded libraries
	4.2 Threaded phase run-time testing

	5.0 Porting the error parser phase
	5.1 If the compilation platform does not have Perl

	6.0 Porting timers phase
	6.1 Local timers
	6.2 Actor timers

	Porting guide reference
	Introduction
	Before starting the port
	OS knowledge and experience
	Tool chain functionality
	OS capabilities
	Simple non-ObjecTime program on target
	TCP/IP functionality
	Floating point operations
	Standard input/output functionality
	Debugging
	Training
	What to do before calling ObjecTime support

	Porting the TargetRTS
	Phases of a port
	Choose a platform name
	Target name
	Libset name
	Create a setup script
	TargetRTS makefiles

	Porting the TargetRTS for C++
	TargetRTS configuration definitions
	Platform-specific implementation
	Adding new files to the TargetRTS

	Porting the TargetRTS for C
	C TargetRTS configuration definitions
	Platform-specific implementation
	Adding new files to the C TargetRTS
	C TargetRTS run-time semantics
	Implementing timer services in the C TargetRTS

	Modifying the error parser
	Setting the compiler vendor in the libset.mk file
	Reusing an existing error parser
	Creating a new error parser

	Testing the TargetRTS
	Testing the TargetRTS for C++
	Testing the TargetRTS for C

	Tuning the TargetRTS
	Disabling TargetRTS features for performance
	Target compiler optimizations
	Target operating system optimizations
	Specific TargetRTS performance enhancements

	Common problems and pitfalls
	Problems and pitfalls with target toolchains
	Problems and pitfalls with TargetRTS/RTOS interaction
	Problems and pitfalls with target TCP/IP interfaces

	Appendices
	TargetRTS for C++ porting example
	Introduction
	Choosing the platform name
	Create setup script
	Create makefiles
	TargetRTS configuration definitions
	Code changes to TargetRTS classes
	Building the new TargetRTS

	TargetRTS for C Porting example
	Introduction
	Choosing the platform name
	Create setup script
	Create makefiles
	TargetRTS configuration definitions
	Code changes to TargetRTS classes
	Building the new TargetRTS

	Index
	Index

