
Target Observability
Test Plan
Revision 1.00

16 October, 1998
[image: image1.png]@ OBJECTIME"
Righe in Real Time

Important Notice

Copyright 1991-1998 ObjecTime Limited. All rights reserved.

The license management portion of this product is based on:

Elan License Manager ” 1989-1998 Elan Computer Group, Inc. All rights reserved.

Unpublished -- rights reserved under all Copyright laws including Copyright laws of the United States.

ObjecTime (and logo) is a registered trademark of ObjecTime Limited. Developer is a trademark of ObjecTime Limited.

ObjecTime Limited (OTL) PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Information in this publication is subject to change from time to time without notice. Some states, provinces, or jurisdictions do not allow disclaimer of express or implied warranties in certain transactions; therefore, this statement may not apply to you.

ObjecTime Limited (OTL) and its licensors retain ownership to the ObjecTime computer program and other computer programs offered by OTL (hereinafter collectively called “ObjecTime”) and their documentation. Use of ObjecTime is governed by the Development License Agreement associated with your purchase.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the Commercial Computer Software-Restricted Rights clause FAR 52.227-19 and its successors.

For units of the Department of Defense (DoD), the license for this software is subject to the “Restricted Rights” as that term is defined in the DFAR 252.227-7013 (c)(1)(ii), Rights in Technical Data and Computer Software and its successors.

The contractor/manufacturer is:

ObjecTime Limited

340 March Road

Kanata, Ontario

Canada, K2K 2E4

When acquired by the Government, commercial computer software and related documentation so legended shall be subject to the following:

(A) Title to and ownership of the software and documentation shall remain with the Contractor.

(B) User of the software and documentation shall be limited to the facility for which it is acquired.

(C) The Government shall not provide or otherwise make available the software or documentation, or any portion thereof, in any form, to any third party without the prior written approval of the Contractor. Third parties do not include prime contractors, subcontractors and agents of the Government who have the Government’s permission to use the licensed software and documentation at the facility, and who have agreed to use the licensed software and documentation only in accordance with these restrictions. This provision does not limit the right of the Government to use software, documentation, or information therein, which the Government has or may obtain without restrictions.

(D) The Government shall have the right to use the computer software and documentation with the computer for which it is acquired at any other facility to which that computer may be transferred; to use the computer software and docu3mentation with a backup computer when the primary computer is inoperative; to copy computer programs for safekeeping (archives) or backup purposes; and to modify the software and documentation or combine it with other software. Provided, that the unmodified portions shall remain subject to these restrictions.

COMMERCIAL COMPUTER SOFTWARE — RESTRICTED RIGHTS

(c) (1) The restricted computer software delivered under this contract may not be used, reproduced or disclosed by the Government except as provided in subparagraph(c)(2).

(c)(2) The restricted computer software may be —

(i) Used or copied for use in or with the computer or computers for which it was acquired, including use at any Government installation to which such computer or computers may be transferred;

(ii) Used or copied for use in or with backup computer if any computer for which it was acquired is inoperative;

(iii) Reproduced for safekeeping (archives) or backup purposes;

(iv) Modified, adapted, or combined with other computer software, provided that the modified, combined, or adapted portions of the derivative software incorporating any of the delivered, restricted computer software shall be subject to same restrictions set forth in this contract.

Table of Contents

71. Behavior Daemons

1.1. Common Features
7
1.1.1. Persistence
7
1.2. FSM Daemon
7
1.2.1. How To Create the Daemon
7
1.2.2. When Is the Daemon Triggered?
7
1.2.3. Graphical Representation
7
1.2.4. Recommended Test Cases
7
1.3. Initial Point Daemon
8
1.3.1. How To Create the Daemon
8
1.3.2. When Is the Daemon Triggered?
8
1.3.3. Graphical Representation
8
1.3.4. Recommended Test Cases
8
1.4. State Daemon
8
1.4.1. How To Create the Daemon
8
1.4.2. When Is the Daemon Triggered?
8
1.4.3. Graphical Representation
9
1.4.4. Recommended Test Cases
9
1.5. Originating Point Daemon
9
1.5.1. How To Create the Daemon
9
1.5.2. When Is the Daemon Triggered?
9
1.5.3. Graphical Representation
9
1.5.4. Recommended Test Cases
9
1.6. Termination Point Daemon
10
1.6.1. How To Create the Daemon
10
1.6.2. When Is the Daemon Triggered?
10
1.6.3. Graphical Representation
10
1.6.4. Recommended Test Cases
10
1.7. Outgoing Point Daemon
11
1.7.1. How To Create the Daemon
11
1.7.2. When Is the Daemon Triggered?
11
1.7.3. Graphical Representation
11
1.7.4. Recommended Test Cases
11
1.8. Incoming Point Daemon
12
1.8.1. How To Create the Daemon
12
1.8.2. When Is the Daemon Triggered?
12
1.8.3. Graphical Representation
12
1.8.4. Recommended Test Cases
12
1.9. Choice Point Daemon
12
1.9.1. How To Create the Daemon
12
1.9.2. When Is the Daemon Triggered?
12
1.9.3. Graphical Representation
13
1.9.4. Recommended Test Cases
13
2. Structure Daemons
14
2.1. Common Features
14
2.1.1. Persistence
14
2.2. RTS Panel Daemon
14
2.2.1. How To Create the Daemon
14
2.2.2. When Is the Daemon Triggered?
14
2.2.3. Graphical Representation
14
2.2.4. Recommended Test Cases
14
2.3. Frame Daemon
15
2.3.1. How To Create the Daemon
15
2.3.2. When Is the Daemon Triggered?
15
2.3.3. Graphical Representation
15
2.3.4. Persistence
15
2.3.5. Recommended Test Cases
15
2.4. Port Daemon
16
2.4.1. How To Create the Daemon
16
2.4.2. When Is the Daemon Triggered?
16
2.4.3. Graphical Representation
16
2.4.4. Persistence
16
2.4.5. Recommended Test Cases
16
2.5. SAP/SPP Daemon
16
2.5.1. How To Create the Daemon
16
2.5.2. When Is the Daemon Triggered?
17
2.5.3. Graphical Representation
17
2.5.4. Persistence
17
2.5.5. Recommended Test Cases
17
3. Run-Time Operations
18
3.1. Variable Inspection and Editing
18
3.1.1. Overview
18
3.1.2. Data Types to Test
18
3.1.3. Sizes and Values to Test
18
3.1.4. Local Name Space On vs. Off
18
3.1.5. Recommended Test Cases
18
3.2. Message Injection
19
3.2.1. Overview
19
3.2.2. Data Types / Sizes / Values to Test
19
3.2.3. Recommended Test Cases when replication factor == 1
19
3.2.4. Recommended Test Cases when replication factor > 1
19
3.3. MSC (Message Sequence Chart) Trace
20
3.3.1. Overview
20
3.3.2. How To Create an MSC Trace window
20
3.3.3. Recommended Test Cases
20
4. Source Level Debugging
22
4.1. Common Features
22
4.1.1. Set Up
22
4.1.2. Recommended Test Cases for each Debugging Tool
22
4.2. Debugging on a Windows NT Host
23
4.2.1. WindRiver Tornado on Windows NT Test Cases
23
4.2.2. MSDEV Debugger on Windows NT Test Cases
23
4.3. Debugging on a Unix Host
24
4.3.1. WindRiver Crosswind Debugger Test Cases
24
4.3.2. GNU Debugger (GDB) Test Cases
24
4.3.3. GNU Debugger (GDB) Test Cases (with overrides command file)
24
4.3.4. SunC++ Debugger Test Cases (with overrides command file)
24
5. Miscellaneous Tests
26
5.1. Large Model Testing
26
5.1.1. Overview
26
5.1.2. Recommended Test Cases
26
5.2. Purify
26
5.2.1. Overview
26
5.2.2. Recommended Test Case
26
5.3. Daemon Limits
26
5.3.1. Overview
26
5.3.2. Recommended Test Cases
27
5.4. Command Line Debugger
27
5.4.1. Command Line Debugger and Manual Debugging
27
5.4.2. Command Line Debugger Standalone
27

1. Behavior Daemons

Behavior Daemons is the collective name for daemons you can create from a Behavior Monitor, except for SAP/SPP daemons created from the SAP/SPP satellite window (they are really Structure Daemons).

1.1. Common Features

1.1.1. Persistence

Assuming that the actor, where the daemon is located, is optional and already incarnated: When the actor is destroyed, all highlighting (if applicable) should disappear immediately, but the daemon itself should remain activated. Any graphical representation of the daemon (Behavior Monitor window) should remain open. Any open Trace windows should remain open with their contents unchanged. When the actor is re-incarnated, highlighting should continue and Trace windows should start display messages again.

When using Basic (Automatic) Debugging mode, clicking [Reset] should not affect any open Monitor or Trace windows, and when clicking [Run] again, highlighting and/or message tracing should continue.

1.2. FSM Daemon

1.2.1. How To Create the Daemon

Open a Behavior Monitor for an actor.

1.2.2. When Is the Daemon Triggered?

Whenever the actor triggers a transition.

1.2.3. Graphical Representation

· The daemon itself is displayed as the Behavior Monitor window.

· The daemon should not appear in the RTS Panel’s Daemon list.

· Before the FSM has started, only the ‘top’ state should have its FSM context border highlighted. No other state or sub-state thereof should be highlighted.

· As soon as the FSM has started, there should always be exactly one state highlighted (a thin black square frame around the state).

· If the FSM (or any of its sub-states) is the current state, then the FSM context border should be highlighted, and exactly one state and one transition should be highlighted.

· If the FSM (including all of its sub-states) is not the current state, then the FSM context border should not be highlighted, and no transition should be highlighted. If the FSM has been visited at least once, its history state should be highlighted, otherwise no state should be highlighted.

1.2.4. Recommended Test Cases

1. Make sure the state/transition highlighting in the Behavior Monitor window follows the execution path while the model is running.

2. Make sure the correct transition chains are highlighted when a transition fires while stepping.

3. Open a Behavior Monitor for a state that has sub-states inside. Make sure the highlighting follows the expectations mentioned above.

4. Using an update where one optional actor is constantly (~ every 10 seconds) incarnated and destroyed, make sure the behavior described under ‘Persistence’ is followed.

1.3. Initial Point Daemon

1.3.1. How To Create the Daemon

Drop a daemon on the initial point of a state, provided there is an initial transition leading somewhere from this point.

1.3.2. When Is the Daemon Triggered?

Before the initial transition code.

1.3.3. Graphical Representation

· The daemon itself is displayed as a standard daemon icon around the initial point.

· The daemon should appear in the RTS Panel’s Daemon list.

· No highlighting is expected for the initial point.

· If a Trace window is open for this daemon, a %initialize message should appear when the daemon is triggered.

1.3.4. Recommended Test Cases

1. Make sure that the Initial Point Daemon is triggered at the right time, i.e. before the initial transition code.

2. Make sure that a daemon can not be placed on an Initial Point if there is no transition leading from this point.

3. Make sure the correct message information is listed in the probe’s Trace window, and that the content of the Trace window is not lost if it is closed and immediately re-opened. The ‘threshold’ value for the Trace window is not applicable here, since this daemon will only be hit once.

4. In the daemon’s properties dialog, activate [X]Halt. Make sure the execution stops when the daemon is hit, and that execution is resumed when you click [Run].

5. Using an update where one optional actor is constantly (~ every 10 seconds) incarnated and destroyed, make sure the behavior described under ‘Persistence’ is followed.

1.4. State Daemon

1.4.1. How To Create the Daemon

Drop a daemon on a state.

1.4.2. When Is the Daemon Triggered?

After the entry code of the state, whenever any transition leads to that state.

1.4.3. Graphical Representation

· The daemon itself is displayed as a standard daemon icon around the state.

· The daemon should appear in the RTS Panel’s Daemon list.

· Every time the daemon is triggered, its corresponding state should be highlighted.

· If a Trace window is open for this daemon, the message that caused the transition should appear when the daemon is triggered.

1.4.4. Recommended Test Cases

1. Make sure that the State Daemon is triggered at the right time, i.e. after the entry code of the state.

2. Make sure the correct message information is listed in the probe’s Trace window, that the number of messages are <= the threshold value, and that the contents of the Trace window is not lost if it is closed and immediately re-opened.

3. In the daemon’s properties dialog, activate [X]Halt. Make sure the execution stops when the daemon is hit, and that execution is resumed when you click [Run].

4. Using an update where one optional actor is constantly (~ every 10 seconds) incarnated and destroyed, make sure the behavior described under ‘Persistence’ is followed.

5. When the FSM does a return to history, and the target state has a daemon with [X]Halt activated, make sure the execution stops.

1.5. Originating Point Daemon

1.5.1. How To Create the Daemon

Drop a daemon on the round point where a transition originates.

1.5.2. When Is the Daemon Triggered?

Between the exit code of the leaving state (provided the daemon is external and exiting) and the transition code. This daemon is not bound to the exit stage of the leaving state. Rather, it is bound to the specific transition on which it is placed.

1.5.3. Graphical Representation

· The daemon itself is displayed as a standard daemon icon around the originating point.

· The daemon should appear in the RTS Panel’s Daemon list.

· Every time the daemon is triggered, the entire transition (not just the originating point) should be highlighted.

· If a Trace window is open for this daemon, the message that caused the transition should appear when the daemon is triggered.

1.5.4. Recommended Test Cases

Put a daemon on the Originating Point of the following types of transitions:

A. Between two different states

B. An exiting (normal) external self-transition

C. A non-exiting external self-transition

D. An internal self-transition

For each type of transition, perform these tests:

1. Make sure the Originating Point Daemon is triggered at the right time. For transitions of type A and B, this is after the execution of the actor’s exit code but before the transition code. For transitions of type C, D and E, this is before the transition code, and the exit code should not be executed.

2. Make sure the correct message information is listed in the probe’s Trace window, that the number of messages are <= the threshold value, and that the contents of the Trace window is not lost if it is closed and immediately re-opened.

3. In the daemon’s properties dialog, activate [X]Halt. Make sure the execution stops when the daemon is hit, and that execution is resumed when you click [Run].

4. Using an update where one optional actor is constantly (~ every 10 seconds) incarnated and destroyed, make sure the behavior described under ‘Persistence’ is followed.

1.6. Termination Point Daemon

1.6.1. How To Create the Daemon

Drop a daemon on the round point where a transition terminates.

1.6.2. When Is the Daemon Triggered?

Between the transition code and the entry code (provided the daemon is external and exiting) of the entering state. This daemon is not bound to the entry stage of the entering state. Rather, it is bound to the specific transition on which it is placed.

1.6.3. Graphical Representation

· The daemon itself is displayed as a standard daemon icon around the termination point.

· The daemon should appear in the RTS Panel’s Daemon list.

· Every time the daemon is triggered, the entire transition (not just the termination point) should be highlighted.

· If a Trace window is open for this daemon, the message that caused the transition should appear when the daemon is triggered.

1.6.4. Recommended Test Cases

Put a daemon on the Termination Point of the following types of transitions:

A. Between two different states

B. An exiting (normal) external self-transition

C. A non-exiting external self-transition

D. An internal self-transition

For each type of transition, perform these tests:

1. Make sure that the Termination Point Daemon is triggered at the right time. For transitions of type A and B, this is after the transition code but before the execution of the actor’s entry code. For transitions of type C, D and E, this is after the transition code, and the entry code should not be executed.

2. Make sure the correct message information is listed in the probe’s Trace window, that the number of messages are <= the threshold value, and that the contents of the Trace window is not lost if it is closed and immediately re-opened.

3. In the daemon’s properties dialog, activate [X]Halt. Make sure the execution stops when the daemon is hit, and that execution is resumed when you click [Run].

4. Make this transition point a join point, and make sure the daemon is triggered by either of the transitions leading to it.

5. Using an update where one optional actor is constantly (~ every 10 seconds) incarnated and destroyed, make sure the behavior described under ‘Persistence’ is followed.

1.7. Outgoing Point Daemon

1.7.1. How To Create the Daemon

Go inside a state that has a transition originating from that state, and drop a daemon on this transition’s outgoing transition point, i.e. the circle on the border where the transition leaves the state.

1.7.2. When Is the Daemon Triggered?

Before the exit code of the leaving state. This daemon is not bound to the exit stage of the leaving state. Rather, it is bound to the specific transition on which it is placed.

1.7.3. Graphical Representation

· The daemon itself is displayed as a standard daemon icon around the initial point.

· The daemon should appear in the RTS Panel’s Daemon list.

· The outgoing point itself is never highlighted.

· If there is a continuing transition originating from somewhere else and passing through the outgoing point, it should be highlighted when the daemon is triggered.

· If a Trace window is open for this daemon, the message that caused the transition should appear when the daemon is triggered.

1.7.4. Recommended Test Cases

Put a daemon on the Outgoing Point of the following types of transitions:

A. Between two different states. The transition originates at this point.

B. Between two different states. The transition originates at a sub-state, and continues through the outgoing point.

C. An exiting (normal) external self transition

For each type of transition, perform these tests:

1. Make sure the Outgoing Point Daemon is triggered at the right time, i.e. before the execution of the actor’s exit code.

2. Make sure the correct message information is listed in the probe’s Trace window, that the number of messages are <= the threshold value, and that the contents of the Trace window is not lost if it is closed and immediately re-opened.

3. In the daemon’s properties dialog, activate [X]Halt. Make sure the execution stops when the daemon is hit, and that execution is resumed when you click [Run].

4. Make this transition point a join point, and make sure the daemon is triggered by either of the transitions leading to it.

5. Using an update where one optional actor is constantly (~ every 10 seconds) incarnated and destroyed, make sure the behavior described under ‘Persistence’ is followed.

1.8. Incoming Point Daemon

1.8.1. How To Create the Daemon

Go inside a state that has a transition terminating at the state, and drop a daemon on this transition’s incoming transition point, i.e. the circle on the border where the transition enters the state.

1.8.2. When Is the Daemon Triggered?

After the entry code of the entering state. This daemon is not bound to the entry stage of the entering state. Rather, it is bound to the specific transition on which it is placed.

1.8.3. Graphical Representation

· The daemon itself is displayed as a standard daemon icon around the incoming point.

· The daemon should appear in the RTS Panel’s Daemon list.

· The incoming point itself is never highlighted.

· If there is a continuing transition passing through the incoming point and terminating somewhere else, it should be highlighted when the daemon is triggered.

· If a Trace window is open for this daemon, the message that caused the transition should appear when the daemon is triggered.

1.8.4. Recommended Test Cases

Put a daemon on the Incoming Point of the following types of transitions:

A. Between two different states. The transition terminates at this point.

B. Between two different states. The transition continues through the incoming point, and terminates in a sub-state.

C. An exiting (normal) external self transition

For each type of transition, perform these tests:

1. Make sure that the Incoming Point Daemon is triggered at the right time, i.e. after the execution of the actor’s entry code.

2. Make sure the correct message information is listed in the probe’s Trace window, that the number of messages are <= the threshold value, and that the contents of the Trace window is not lost if it is closed and immediately re-opened.

3. In the daemon’s properties dialog, activate [X]Halt. Make sure the execution stops when the daemon is hit, and that execution is resumed when you click [Run].

4. Using an update where one optional actor is constantly (~ every 10 seconds) incarnated and destroyed, make sure the behavior described under ‘Persistence’ is followed.

1.9. Choice Point Daemon

1.9.1. How To Create the Daemon

Drop a daemon on a choice point.

1.9.2. When Is the Daemon Triggered?

Between the transition code leading to the choice point and the choice point code.

1.9.3. Graphical Representation

· The daemon itself is displayed as a standard daemon icon around the choice point.

· The daemon should appear in the RTS Panel’s Daemon list.

· The Choice Point itself is never highlighted. Rather, the transition leading to it is highlighted before the daemon is triggered, and the resulting branch leading from the Choice Point is highlighted after the daemon is triggered.

· If a Trace window is open for this daemon, the message that caused the transition should appear when the daemon is triggered.

1.9.4. Recommended Test Cases

1. Make sure that the Choice Point Daemon is triggered at the right time, i.e. after the transition code but before the choice point code.

2. Make sure the correct message information is listed in the probe’s Trace window, that the number of messages are <= the threshold value, and that the contents of the Trace window is not lost if it is closed and immediately re-opened.

3. In the daemon’s properties dialog, activate [X]Halt. Make sure the execution stops when the daemon is hit, and that execution is resumed when you click [Run].

4. Make this transition point a join point, and make sure the daemon is triggered by either of the transitions leading to it.

5. Create a choice loop; i.e. one of the branches goes back into the choice point, and this branch is taken a fixed number (say 5) times. Set the probe to [X]Halt, and make sure the execution stops the same number of times (5 in this example).

6. Using an update where one optional actor is constantly (~ every 10 seconds) incarnated and destroyed, make sure the behavior described under ‘Persistence’ is followed.

2. Structure Daemons

Structure Daemons is the collective name for daemons you can create from a Structure Monitor. Included in this definition are also SAP/SPP daemons that you attach from a SAP/SPP satellite window in a Behavior Monitor.

2.1. Common Features

2.1.1. Persistence

Assuming that the actor, where the daemon is located, is optional and already incarnated: When the actor is destroyed, all highlighting (if applicable) should disappear immediately, but the daemon itself should remain activated. Any graphical representation of the daemon (Structure Monitor window) should remain open. Any open Trace windows should remain open with their contents unchanged. When the actor is re-incarnated, highlighting should continue and Trace windows should start display messages again.

2.2. RTS Panel Daemon

2.2.1. How To Create the Daemon

In the Toolset, select ‘Compile -> Load’ for the update in question.

2.2.2. When Is the Daemon Triggered?

It is never triggered since neither the TargetRTS nor the SimulationRTS updates the actor incarnation list automatically. It can be manually refreshed by selecting ‘View -> Refresh’.

2.2.3. Graphical Representation

· The daemon itself is displayed as the actor incarnation list in the RTS Panel.

· The daemon should not appear in the RTS Panel’s Daemon list.

· No highlighting is expected for the RTS Panel.

· The actor list in an RTS Panel should contain all the actors in the system, down to n levels of depth. Each actor reference can have an icon attached:

· Fixed: no icon

· Optional and incarnated: a diagonally striped box

· Imported and existing: a solid dark gray box.

Other kinds (optional-but-not-yet-incarnated and imported-but-not-yet-existing) are not shown in the actor list, since they don’t exist.

The RTS Panel also contains a list of all the daemons (activated or not) in the system, but this list originates from the update. Any non-activated daemons in this list are completely non-existent from the TargetRTS’ point of view.

2.2.4. Recommended Test Cases

1. Using a model with various levels of actor containment depth and with different containment properties (fixed, optional-but-not-yet-incarnated, optional-and-incarnated, imported-but-not-yet-existing, imported-and existing), run the executable and refresh the RTS Panel from time to time to make sure that the actor list reflects the correct reference name, icon, class and state.

2. From the actor list menu in the RTS Panel, test Deeper,/Shallower/Depth..., and make sure information for the correct depth is displayed.

3. Select ‘Select All Aspects’ for an actor that is imported elsewhere, and make sure all instances of that actor are highlighted.

4. Test [Run]/[Stop]/[Step]/[Reset] and make sure they work as expected.

5. Select ‘Hide/Show’ for an actor, which contains other actors, and make sure the contained actors are hidden and then displayed again.

2.3. Frame Daemon

2.3.1. How To Create the Daemon

Open a Structure Monitor window. It is also created when you open a Navigator window from the Structure Monitor.

2.3.2. When Is the Daemon Triggered?

For the Structure Monitor, it is never triggered since the TargetRTS currently does not support structure animation (with one exception – see below). For the Navigator window, it is never triggered since neither the TargetRTS nor the SimulationRTS updates the Navigator window automatically. Both can, however, be manually refreshed.

2.3.3. Graphical Representation

· The daemon itself is displayed as the Structure Monitor window / Navigator window.

· The daemon should not appear in the RTS Panel’s Daemon list.

· No highlighting is expected for the Structure Monitor or the Navigator window.

· Each actor reference contained in a Structure Monitor has a fill pattern to show its current structure at the time the window was last refreshed:

· Fixed, or Optional-and-incarnated, or Imported-and-existing: solid light gray

· Optional-but-not-incarnated: diagonally striped

· Imported-but-not-existing: solid dark gray

2.3.4. Persistence

Assuming that the actor where the daemon is located is optional and already incarnated: When the actor is destroyed, the Structure Monitor window should remain open, but the actor id in the window caption should read (0-0). After selecting ‘Refresh’, any actor references in the Structure Monitor should be displayed with their un-initialized fill pattern (fixed: solid light gray; optional: diagonally striped; imported: solid dark gray). When the actor is re-incarnated the actor id in the window caption should read (<any_number_other_than_0>-0). If you select ‘Refresh’, the fill pattern should reflect the current actor situation.

2.3.5. Recommended Test Cases

1. Using a model with various levels of actor containment depth and with different containment properties (Fixed, Optional-but-not-incarnated, Optional-and-incarnated, Imported-but-not-existing, Imported-and-existing), run the executable, open various Structure Monitors and refresh them from time to time to make sure that the actor reference icons reflect the correct structure.

2. Open a Navigator window from each Structure Monitor, and make sure they are displaying the correct information when you select ‘Refresh’.

3. Using an update where one optional actor is constantly (~ every 10 seconds) incarnated and destroyed, make sure the behavior described under ‘Persistence’ is followed.

2.4. Port Daemon

2.4.1. How To Create the Daemon

Drop a daemon on a port.

2.4.2. When Is the Daemon Triggered?

Whenever a message is sent or received through this port.

2.4.3. Graphical Representation

· The daemon itself is displayed as a standard daemon icon around the port.

· The daemon should appear in the RTS Panel’s Daemon list.

· No highlighting is expected for the port.

2.4.4. Persistence

Assuming that the actor where the activated daemon is located is optional and already incarnated: When the actor is destroyed, the daemon should remain activated. Any open Trace windows should remain open with their contents unchanged. When the actor is re-incarnated, Trace windows should start display messages again.

2.4.5. Recommended Test Cases

Put a daemon on the following locations:

A. On an unreplicated port.

B. On a replicated port as a whole.

C. On individual incarnations of a replicated port.

For each of the above daemons, perform these tests:

1. Make sure that the Port Daemon is triggered at the right time, i.e. when a message is being sent in either direction through the port.

2. Make sure the correct message information is listed in the probe’s Trace window, that the number of messages are <= the threshold value, and that the contents of the Trace window is not lost if it is closed and immediately re-opened.

3. In the daemon’s properties dialog, activate [X]Halt. Make sure the execution stops when the daemon is hit, and that execution is resumed when you click [Run].

4. Using an update where one optional actor is constantly (~ every 10 seconds) incarnated and destroyed, make sure the behavior described under ‘Persistence’ is followed.

2.5. SAP/SPP Daemon

2.5.1. How To Create the Daemon

Open a SAP/SPP satellite window in a Behavior Monitor window, and select ‘Attach Daemon’ for any SAP/SPP that’s not of the Frame/Log/Timing variety.

2.5.2. When Is the Daemon Triggered?

Whenever a message is sent or received through this SAP/SPP.

2.5.3. Graphical Representation

· There is no graphical representation of a SAP/SPP Daemon. It is listed under ‘Daemon’ in the SAP/SPP satellite window of the Behavior Monitor.

· The daemon should appear in the RTS Panel’s Daemon list.

· No highlighting is expected for the SAP/SPP.

2.5.4. Persistence

Assuming that the actor where the activated daemon is located is optional and already incarnated: When the actor is destroyed, the daemon should remain activated. Any open Trace windows should remain open with their contents unchanged. When the actor is re-incarnated, Trace windows should start display messages again.

2.5.5. Recommended Test Cases

Put a daemon on the following locations:

A. On a SAP.

B. On an SPP.

For each of the above daemons, perform these tests:

1. Make sure that the SAP/SPP Daemon is triggered at the right time, i.e. when a message is being sent in either direction through the port.

2. Make sure the correct message information is listed in the probe’s Trace window, that the number of messages are <= the threshold value, and that the contents of the Trace window is not lost if it is closed and immediately re-opened.

3. In the daemon’s properties dialog, activate [X]Halt. Make sure the execution stops when the daemon is hit, and that execution is resumed when you click [Run].

4. Using an update where one optional actor is constantly (~ every 10 seconds) incarnated and destroyed, make sure the behavior described under ‘Persistence’ is followed.

3. Run-Time Operations

3.1. Variable Inspection and Editing

3.1.1. Overview

All Extended State Variables (ESVs) that are sendable can also be inspected and edited in a Variable Inspector window. The Variable Inspector window is opened from a Behavior Monitor, and the value for the selected ESV is dynamically updated while the window is open.

3.1.2. Data Types to Test

Internal (ObjecTime) types:

· RTActorId

· RTBoolean

· RTCharacter

· RTEnumerated

· RTInteger

· RTPointer

· RTReal

· RTSequence

· RTSequenceOf

· RTString

· RTTime

External (non-ObjecTime) C++ types: Test with a representative set of C++ types; float, int, char, double. Remember that any types or members containing ‘*”, ‘&’ or ‘:’ will not be visible or editable.

Wrapper types:

· Test one built-in, like float.

· Test one user-defined. See the C++ guide, ‘External C++ Data Types’ for details.

3.1.3. Sizes and Values to Test

· For array-like data types, test with the sizes 0, 1, 10, 100, 1000 and 10000.

· For scalar data types, test with the values -<max_neg>, -1, 0, +1, +<max_pos>.

· For other data types, test with a representative set of different values.

3.1.4. Local Name Space On vs. Off

Local Name Space can be either turned On or Off (examples are for Integers, but applies to all ObjecTime types):

· On: Both ObjecTime types Integer and RTInteger can be inspected. They will both, however, show up as Integers in the Variable Inspector window.

· Off: Only the ObjecTime type RTInteger can be inspected (but will show up as Integer in the Variable Inspector window). Integer does not exist as an ObjecTime type.

3.1.5. Recommended Test Cases

For each combination of type, size, value and name space, perform these tests:

1. Open a Variable Inspector window. Select a ObjecTime type variable that should change its value during execution, and make sure the value in the window is updated accordingly.

2. Click [Stop] in the RTS Panel. Edit the variable in the inspector window. Click [Start] again. Make sure that the new value is used by the executable instead of the old value.

3. Create an external non-wrapped data type called Integer. Turn ‘Local Name Space’ off. Try to inspect a variable of this type (it shouldn’t work).

3.2. Message Injection

3.2.1. Overview

It is possible to inject a message into two kinds of daemons: Port daemons and SAP/SPP daemons. Both of these kinds will be referred to as Port daemons in this chapter.

3.2.2. Data Types / Sizes / Values to Test

Use a representative subset of the data types, sizes and values described in the chapter ‘Variable Inspection and Editing’ for injection. Be sure to include both simple and more complex data types.

3.2.3. Recommended Test Cases when replication factor == 1

The following port kinds all have an implicit or explicit replication factor of 1. They share the same behavior when it comes to message injection; they all act like one single message was injected:

· SAP

· Unreplicated Port

· One Instance of a Replicated Port

For each combination of data type, size and value, perform these tests on each port kind:

1. Inject one message inwards. Make sure one message arrives at the actor where the port is located, regardless of whether the port is bound or not.

2. Inject one message outwards, the port is unbound; nothing should happen.

3. Inject one message outwards, the port is bound. Make sure the message arrives at the actor in the other end of the port binding.

4. Inject one message inwards, the port is unbound, let the receiving actor do a reply. Make sure the reply doesn’t go anywhere.

5. Inject one message inwards, the port is bound, let the receiving actor do a reply. Make sure the reply arrives at the actor in the other end of the binding.

6. Inject 5 different messages at the same time by highlighting them all and choose ‘Inject’. The resulting behavior for the target executable is undefined, but no part of the message chain (Toolset/controller/target) should crash or generate an exception or print funny error messages.

7. Using a stopped system, inject one message. Nothing should happen. Click [Run]. The system should now behave exactly as if the message had been injected into a running system.

8. Same as above, but inject a couple of messages before clicking [Run].

3.2.4. Recommended Test Cases when replication factor > 1

The following port kinds all can have an implicit or explicit replication factor of > 1. They share the same behavior when it comes to message injection; they all act like there was one message injected for each replication:

· SPP

· Replicated Port as a Whole

In the following descriptions, N denotes the replication factor.

For each combination of data type, size and value, perform these tests on each port kind:

1. Inject one message inwards. Make sure N messages arrive at the actor where the port is located, regardless of whether no/some/all bindings are established.

2. Inject one message outwards. One message should be sent for every replication that has a binding established.

3.3. MSC (Message Sequence Chart) Trace

3.3.1. Overview

When opening an MSC Trace window, messages between the actors in each MSC Trace window are displayed. There are also configuration options of displaying messages between the system and either actor (currently only timeouts from the system are shown), and state changes for either actor.

MSC Traces use the same mechanism as Behavior Monitors in the target, so it’s important to make sure that neither of them disturbs the other.

3.3.2. How To Create an MSC Trace window

· In the RTS Panel, select one or more actor references, and choose ‘Open Trace Window’ from the list item menu.

· From a Structure Monitor, choose ‘View -> MSC’. If there are any saved MSCs, they will be shown here. Open a Trace window by selecting one and choosing ‘Open Trace Window’.

3.3.3. Recommended Test Cases

Below, the letters A, B, C etc. denotes actors, whereas M1, M2, M3 etc. denotes different MSC Traces. BM means a Behavior Monitor.

1. Open M1 for A, configure so ‘System’ and ‘States’ are checked. Make sure timeouts and state changes are displayed.

2. Re-configure: de-select ‘System’. Make sure no further timeouts are displayed.

3. Re-configure: de-select ‘States’. Make sure no further state changes are displayed.

4. Re-configure: increase Threshold from default 25 to 1000. Make sure the M1 window saves and displays more than 25 events.

5. Re-configure: select ‘System’ and ‘States’. Decrease Threshold back to 25.

6. Add B to M1 by dragging it from the RTS Panel. Make sure all messages between A and B are displayed.

7. Drag C into M1. Make sure all messages between A, B and C are displayed.

8. Open M2 for C, drag B into it. Make sure messages between B and C are displayed, and that this operation doesn’t affect M1

9. Open a BM for A. Make sure this doesn’t affect M1 or M2, and that the BM functionality isn’t affected.

10. Open M3 for C, drag B into it. Make sure this doesn’t affect M1, M2 or BM.

11. Select ~20 lines from M1, select ‘Create MSC’. Make sure the MSC corresponds to reality.

12. Close M1, make sure this doesn’t affect M2, M3 or BM.

13. Close M2, make sure this doesn’t affect M3 or BM.

14. Close M3, make sure this doesn’t affect BM.

15. Close BM. Check the target with ‘list’ that no Actor Daemons are left.

16. Run a model under TargetRTS, create an MSC, and save it. Run the same model in the same way under SimulationRTS, create an MSC, and verify that the two MSCs are equivalent. Pay attention to the ordering of messages vs. state changes and unexpected messages.

17. Same as previous, but create the MSC from SimulationRTS first, and verify it with and MSC created under TargetRTS.

18. Use an update with optional actors that are constantly (~every 10 seconds) destroyed and re-incarnated, and open an MSC Trace window with these actors included. Make sure these optional actors are being traced again after they have been re-incarnated.

19. Using Basic (Automatic) mode, run an update with an MSC Trace window open, make sure messages are displayed. Click [Reset] in the RTS Panel, then click [Run]. Make sure new messages are displayed even after this operation.

20. Add actors to a running Trace. Make sure this doesn’t affect the already existing actors, and that messages from/to the new actors are displayed.

21. Remove actors from a running Trace. Make sure this doesn’t affect the remaining actors.

4. Source Level Debugging

This section describes the test cases that can be executed for all the supported third-party debuggers.

4.1. Common Features

4.1.1. Set Up

· The Programmer’s Toolset icon should be added to OTD. This gives the tester access to the Debugging menu. From the Debugging menu, the tester can select the Target Path Debug item. This option will enable debug information from the debug DLLs to be displayed in the debug window. (stdout for Unix, DBMON for Windows NT)

· The update should be configured such that the Manual mode entry is activated in the Debugging Tools menu of the Configuration Browser.

· Select each Debugging Tools menu item and verify that the properties are set up in the appropriate manner.

NOTE: Source Breakpoints can only be set via Transition Daemons placed at the start of a transition and State Daemons for states that have entry code.

4.1.2. Recommended Test Cases for each Debugging Tool

1. Activate the Debugging Tool to be tested in the Configuration Browser. This will load the appropriate DLL.

2. Verify that no errors are reported from the toolset as well as none reported in the debug window.

3. Load the model via the Load item in the Compile menu.

4. Verify that no errors are reported from the toolset as well as none reported in the debug window.

5. Create Transition Daemons on the start of a number of transitions. Make sure some of these transitions are in subclasses with inherited and overridden transitions.

6. Open the corresponding Daemon Properties and verify that the Source Breakpoint is available.

7. Check the Source Breakpoint item and Apply the change.

8. Verify that no errors are reported from the toolset as well as none reported in the debug window.

9. Create State Daemons on a number of states that contain entry code. Make sure some of these transitions are in subclasses with inherited and overridden entry-code.

10. Open the corresponding Daemon Properties and verify that the Source Breakpoint is available.

11. Check the Source Breakpoint item and Apply the change.

12. Verify that no errors are reported from the toolset as well as none reported in the debug window.

13. Run the model.

14. Verify that the appropriate debugger behavior is displayed. (See debugger specific details below)

15. When a breakpoint is hit, verify the debugger is displaying the appropriate source code.

16. Continue execution from the debugger.

17. Verify that TO and the debugger can be used together.

18. Deactivate or disable the Source Breakpoint for a number of daemons.

19. Verify that no errors are reported from the toolset as well as none reported in the debug window.

20. Continue the execution, verifying that the removed breakpoints have really been removed.

21. Add and remove breakpoints as desired from the OTD toolset.

22. Once satisfied that the integration is working, terminate the TO session.

23. Verify that no errors are reported from the toolset as well as none reported in the debug window.

24. Go back to the Configuration Browser and activate the Manual item in the Debugging Tools menu.

25. Verify that no errors are reported from the toolset as well as none reported in the debug window.

26. The DLL should be unloaded.

27. Start again with the next available Debugging Tool item.

4.2. Debugging on a Windows NT Host

To get the debug information in Windows NT, a debug output monitor is required such as DBMON.EXE (Win32 SDK).

4.2.1. WindRiver Tornado on Windows NT Test Cases

1. Select Tornado from the Debugging Tools menu of the Configuration Browser.

2. Verify its Properties specify the appropriate target server and target processor type.

3. Verify that the desired target server is running.

4. Activate the Tornado item from the Debugging Tools menu.

5. Verify that no errors are reported from the toolset as well as none reported in the debug window.

6. Perform the generic test cases.

7. When a source breakpoint is hit, a dialog is displayed. This dialog specifies the target server and the location of the breakpoint.

8. If Tornado is not running, bring Tornado up and invoke the debugger for the appropriate target server.

9. Once the debugger is running, enter Control-V. This copies commands from the clipboard into the debugger. (The Tornado DLL put the information into the clipboard).

10. Verify that the appropriate source code is displayed in the debugger.

11. Close the dialog box and verify that it comes up when the next breakpoint is hit.

12. Verify that breakpoint history is correct.

13. Check the “Disable this dialog” and close the dialog.

14. Continue execution of the model. Verify that the dialog does not come up when breakpoints are hit.

15. Terminate the TO session, the debugger and do the test again.

16. Verify that the dialog box reappears when a breakpoint is hit.

4.2.2. MSDEV Debugger on Windows NT Test Cases

1. Select VC50 from the Debugging Tools menu of the Configuration Browser.

2. Verify its Properties have the Source Debugging enabled.

3. Activate the VC50 item from the Debugging Tools menu.

4. Verify that no errors are reported from the toolset as well as none reported in the debug window.

5. Perform the generic test cases.

6. When a breakpoint is hit, the MSDEV debugger is brought into the foreground.

7. Verify that the appropriate source code is displayed.

8. The toolset plays no part in breakpoint hits.

4.3. Debugging on a Unix Host

The debug information is displayed in the stdout window, that is, the console window in which ObjecTime Developer was invoked.

4.3.1. WindRiver Crosswind Debugger Test Cases

1. Select Tornado from the Debugging Tools menu of the Configuration Browser.

2. Verify the Properties specify the appropriate target server and target processor type.

3. Verify that the desired target server is running.

4. Activate the Tornado item from the Debugging Tools menu.

5. Verify that no errors are reported from the toolset as well as none reported in the debug window.

6. Perform the generic test cases.

7. When a breakpoint is hit, the Crosswind debugger is invoked.

8. Verify that the appropriate source code is displayed.

9. The toolset ignores the remaining breakpoint hits.

4.3.2. GNU Debugger (GDB) Test Cases

1. Select Basic from the Debugging Tools menu of the Configuration Browser.

2. Verify the Properties have the Source Debugging enabled.

3. Activate the Basic item from the Debugging Tools menu.

4. Verify that no errors are reported from the toolset as well as none reported in the debug window.

5. Perform the generic test cases.

6. When a breakpoint is hit, the GDB debugger is invoked.

7. Verify that the appropriate source code is displayed.

8. The toolset ignores the remaining breakpoint hits.

4.3.3. GNU Debugger (GDB) Test Cases (with overrides command file)

Create a file called .objectime.debugger.commands in your ObjecTime working directory, containing these seven lines:

attach “attach %d”

bline “break %s:%d”

bfunc “break %s::%s”

cont “cont”

dir “dir %s”

debug “xxgdb -command=%s %s”

mode “func”

1. Perform all the 5.3.2 test cases, and verify that the debugger behaves identical to those test cases.

2. Replace the last line’s “func” with “line” and verify that line-oriented debugging works.

4.3.4. SunC++ Debugger Test Cases (with overrides command file)

Create a file called .objectime.debugger.commands in your ObjecTime working directory, containing these seven lines:

attach “debug - %d”

bline “stop at %s:%d”

bfunc “whereis %s; stop inmember %s”

cont “cont”

dir “cd %s”

debug “debugger -s %s %s”

mode “func”

1. Perform all the 5.3.2 test cases, and verify that the debugger behaves identical to those test cases.

2. Replace the last line’s “func” with “line” and verify that line-oriented debugging works.

5. Miscellaneous Tests

5.1. Large Model Testing

5.1.1. Overview

Some basic sanity testing needs to be done on large models, in terms of:

· Number of classes and user code

· Actor containment depth and replication factor

· Number of states

5.1.2. Recommended Test Cases

1. Using Basic Debugging tool and Tornado as the target, test with a model big enough to take a couple of minutes to load. Make sure nothing in the load chain (Toolset, target server etc) times out or gives error messages.

2. Using Basic Debugging tool and both Toolset and target on Solaris, let the Toolset load the same large model on another Solaris machine and make sure nothing times out.

3. Update with 10 / 100 / 1000 / 10000 actors. Refresh RTS Panel, make sure nothing core dumps or gives strange error messages.

4. Update with actor that has a replication factor of 10 / 100 / 1000 / 10000. Refresh RTS Panel, make sure nothing core dumps or gives strange error messages

5. Load the model DeepNestedFSM, refresh RTS Panel and make sure nothing core dumps or gives strange error messages.

6. Load the model ManyStates, open Behavior Monitor window and click [Run]. Make sure the animation works as expected.

5.2. Purify

5.2.1. Overview

Some update with a wide code coverage, for example FiveStates, should be compiled and run with purify to look for memory leaks and other no-no’s. This should be done both on Solaris and on Windows NT.

5.2.2. Recommended Test Case

Click [Run]. Make sure the Purify portion of the executable identifies itself, either in the console window or in a separate window. Open some Behavior Monitors, Structure Monitors and Trace windows. Create and destroy some daemons. Leave running overnight. Report anything that Purify complains about.

5.3. Daemon Limits

5.3.1. Overview

The pre-set limit for number of daemons in the RTS Controller / TargetRTS is currently 30.

5.3.2. Recommended Test Cases

1. Test what happens with 29, 30, 31 activated daemons.

2. Test what happens with 29 activated daemons, when you open an MSC for 3 actors.

3. Test what happens when you first load the model under SimulationRTS (which doesn’t have this 30-daemon limit), create 35 daemons, and then load the same model under TargetRTS.

5.4. Command Line Debugger

5.4.1. Command Line Debugger and Manual Debugging

When starting the target executable using Manual Mode, you have access to the TargetRTS command-line debugger, even if the Toolset and the Target Observability session is ‘in charge’ of controlling the target executable. Make sure that the following non-intrusive commands do not affect the Target Observability session in any way:

· help

· info

· list

· log

· printstats

· saps

· stats

· system

· tasks

The following commands are intrusive, and using of them in the above mentioned scenario is strongly advised against:

· attach

· delete

· detach

· exit

· go

· quit

· step

· trace

5.4.2. Command Line Debugger Standalone

Test all the commands in the command-line debugger without a Target Observability session running. Make sure they all work correctly.

PAGE
98-10-16 16.37
ObjecTime Limited

Page 23 of 27

