

Rational Rose 2000e
Using Rose C++

Copyright © 1993-2000 Rational Software Corporation.
All rights reserved.

Part Number: 800-023322-000
Revision 7.0, April 2000, (Software Release 2000e)

This document is subject to change without notice.

GOVERNMENT RIGHTS LEGEND: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 227.7202-
1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR
12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14, as applicable.

Rational, the Rational logo, and Rational Rose are trademarks or registered
trademarks of Rational Software Corporation in the United States and in other
countries. All other names are used for identification purposes only and are
trademarks or registered trademarks of their respective companies.

ii Rational Rose 2000e, Using Rose C++

Contents

Contents iii

List of Figures xxiii

List of Tables xxvii

Preface xxxv

How this Guide is Organized xxxvi

Related Documentation xxxvii
References xxxvii

File Names xxxviii

Chapter 1 Introduction 1

Chapter 2 C++ Code Generation 3

Generated Source Code 3
Classes Assigned to Modules 4
Classes Not Assigned to Modules 5
Generated Header Files 5
Generated Implementation Files 5
Logical and Component Packages 6
Source Code Annotations 6
Protected Code Regions 6

Namespaces and Protected Code Regions 8
Rational Rose 2000e, Using Rose C++ iii

Contents
Code Generation—Step by Step 8

Code Generation Properties 9

Accessing the Property Editor 9
Display or Edit Properties 10
Remove an Overriding Item-Level Property 11
Force a Property to be Item Specific 11
Reinstate the State and Value of the Last Committed Change 11
Attach a Property Set 11
Display or Edit a Specific Property Set 12
Create a New Property Set 12
Delete a Property Set 13
Managing Property Sets 13

Class Properties 14
Implementation 14
Standard Operations 15
User-Defined Operation Properties 16
Module Specification Properties 17
Module Body Properties 17
Component Package Properties 18
Project Properties 18

Code Location 18
File Name Extensions 18
Specifying Compiler-Specific Alternatives 18
Specifying the Boolean Type 19
Specifying Container Classes for Associations 19
Controlling Error Behavior 19

Class Attribute Properties 20
Association Properties 20

Property Sets 22
Project Property Sets 23

Model-to-Code Correspondences 23
Code Generated for Classes 24

In the Header File 24
In the Implementation File 25
Class Definition and Base List 25
iv Rational Rose 2000e, Using Rose C++

Class Access Specification 25
Class Friend Declarations 26

Code Generated for Class Attributes 27
Code Generated for Class Utilities 28
Code Generated for Parameterized Classes, Instantiated Classes
and Class Utilities 29

Parameterized Classes 30
Instantiated Classes 30
Parameterized and Instantiated Class Utilities 30

Code Generated for Association Relationships 31
The Association Class 33

Code Example of an Association Relationship 34
Code Generated for Generalization/Inheritance Relationships 35
Code Generated for Instantiates Relationships 35
Code Generated for Cardinality and Containment Adornments for
Associations 36
Code Generated for Standard Operations 37
Code Generated for User-Defined Operations 38
Declarations Generated for User-Defined Operations 39
Implementation Code Generated for User-Defined Operations 39
Code Generated for Modules 40

Module Inclusion Protection 40
Module #include Directives 41
Relationships in Class and Module Diagrams 41
Module Properties 42
Preserved Code Region for #includes 42
Module Declarations 42
Module Orphan Code 43

Code Generation and Component Packages 43

Chapter 3 C++ Reverse Engineering 45

Key Concepts 45
An Example Program 46
Creating a New Project 47
Selecting Source Code to Reverse Engineer 51

Code Regeneration Policy 54
Module Kind 54
Analysis Type 54
Rational Rose 2000e, Using Rose C++ v

Contents
Analysis Status 55
Project Category and Subsystem Assignments 55

Establishing a Path Map Entry 56
$DATA and Drive Names 59

Resolving References to Libraries 60
Analyzing Source Code 61
Dealing with Common Errors 62

Unresolved References 62
Language Extensions 63
Context Dependent Source Files 63

Deciding What to Export 64
Summary 72

Analysis 73
Re-analysis 73
Analysis Errors 75
Analysis Types 77

Type 1 Source Files 77
Type 2 Source Files 78
Type 3 Source Files 79

Preprocessing 80
Parsing 80
Order of Analysis 81

Design Exporting 81

Code Cycling 82

The Analyzer User Interface 83
Application Window 83
Project Window 84

Full View 85
Export View 86
Simple View 87
Files Only View 88

File Viewer Window 88
Log Window 89

Analyzer Scripts 91
Invocation 91
vi Rational Rose 2000e, Using Rose C++

Format 92
Selection/Deselection Patterns 92
Command Reference 93

analyze 93
autosave [<file name>] 93
clearlog 93
close [all] 93
codecycle 93
collapse 93
deletedata 93
deselect all 94
deselect category <pattern> 94
deselect file name <pattern> 94
deselect line <pattern> 94
deselect [pathname] <pattern> 94
deselect status <pattern> 94
deselect subsystem <pattern> 94
deselect unit <pattern> 95
expand 95
export <modelfile> [<option set name>] 95
project <file name> 95
quit 95
run <file name> 95
savelog <file name> 95
select all 96
select category <pattern> 96
select file name <pattern> 96
select line <pattern> 96
select [pathname] <pattern> 96
select status <pattern> 97
select subsystem <pattern> 97
select unit <pattern> 97
sortby <sort-kind> 97
show <project component> 97
showerrors 98
timestamp [on | off] 98
updatestatus 98

Chapter 4 Analyzer Projects 99
Caption 101
Directory List 102
Rational Rose 2000e, Using Rose C++ vii

Contents
Data Files 102
Data Directories 103
Code Regeneration Policy 103
Resolving #Include Directives 104
Directory List Entries 105
Editing the Directory List 106

Extension List 109
Module Kind 109
Extension List Entries 110
Editing the Extension List 111

File List 111
Code Regeneration 112
Module Kind 113
Analysis Type 113
Analysis Status 114
Project Category and Project Subsystem Assignments 115
Naming Conflicts 116
File List Entries 116
Sort Order 118
Editing the File List 124

Base List 127
The Default Project: analyzer.pjt 127
Editing the Base List 129

Defined Symbols List 129
Editing the Defined Symbols List 131

Undefined Symbols List 131
Editing the Undefined Symbols List 132

Categories List 133
Editing the Categories List 134

Subsystems List 135
Editing the Subsystems List 136

Type 2 Context 137
Editing the Type 2 Context 138

Changing Preprocessor Commands 139

Chapter 5 Analyzer Export Options 141
Export Option Sets 141
Editing Export Options and Sets 142
Predefined Export Option Sets 143

FirstLook 143
viii Rational Rose 2000e, Using Rose C++

DetailedAnalysis 144
RoundTrip 145

Input Export Options 146
Examine Type Definitions In These Files 146
Selected Files Only 146
Selected Files and #include Closure 146
Selected Files and Implementation Closure 147
Also Examine Type Definitions 147
Look for Definitions of Referenced Types 148
Look for Definitions in Selected Files and Designated Closure
148
Search #included Files for Definitions 148
Search Files of Project for Definitions 148
Search Project and Bases for Definitions 148

Output Export Options 149
Title 149
Model File 150
Notation Buttons 151
Browse Button 151
Create Class Model 151
Create Class Diagrams 152
Create Categories 152
Create Module Diagrams 152
Create Subsystems 152
Assign Class to Category Based On 152
Controlled Unit Policy (Categories) 153
Category Unit Extension 153
Override Existing Extension (Categories) 154
Assign Module to Subsystem based on 154
Controlled Unit Policy (Subsystems) 154

Class Model Export Options 156
Create a Class Model with Elements 156

Relationships Export Options 158
Create 158
Create Uses Relationships 159
Create Inherits Relationships to Each 160
Create Instantiates Relationships from Each Instantiation to its
Template 160
Create Uses Relationships from Each Class Declared “friend”
161

Attributes Export Options 161
Rational Rose 2000e, Using Rose C++ ix

Contents
Create Operation Specifications for 161
Create Attribute Specifications for 162

Comments Export Options 163
Look for Comments on C++ Constructs as Follows 163

Annotation Export Options 165
Model Module Annotations (Documentation) 165
Model Class Annotations for 165
Model Operation Annotations for 166
Model Data Member Annotations (Documentation) 168
Model Declarations in //##begin—//##end Regions 168
Model Generated Declarations 168
Model //##aggregate Annotations 169

Class Diagram Export Options 170
Create Class Diagrams 170
Draw Categories 170
Diagram Name 171
Draw Model Elements Derived From the Following Constructs
171
Draw Relationships Derived From Type References in the
Following Constructs 171

Module Diagram Export Options 172
Create Module Diagrams 172
Diagram Name 172
Derive Module Names from Annotations 173
Draw Visibility Relationships For... Labeled... 173
Draw Subsystems 173

Summary of Export Options 174
The Export Options 174

Chapter 6 Analyzer Project File 181
Macro File Parameters 181
Container Class Specification 182

+ct Project Parameter 183
+ct Project Parameter Example 187

Inline Annotations 188
Inline Annotation Syntax 189
Simple Annotations 189
Hierarchical Annotations 189
Annotation Literals 190
Inline Annotation Semantics 190
x Rational Rose 2000e, Using Rose C++

The prop Annotation 191
The map Annotation 194
The open Annotation 194
The close Annotation 195
Wizard Comments 195
Overriding Macro Definitions 196
Implicit Include Option 197

Chapter 7 Design Update 201

Chapter 8 C++ Round-Trip Engineering 203

Round-Trip Engineering—Step By Step 204

Starting with Existing Source Code 213

Changing Between the UML, OMT, and Booch Notations 214

Appendix A Attribute Properties 215

CodeName 215

DataMemberFieldSize 216

DataMemberIsVolatile 216

DataMemberMutability 217

DataMemberName 217

DataMemberVisibility 219

GenerateDataMember 219

GenerateGetOperation 220

GenerateSetOperation 221

GetIsConst 221

GetName 222

GetResultIsConst 223

GetSetByReference 224

GetSetKinds 224
Rational Rose 2000e, Using Rose C++ xi

Contents
InlineGet 225

InlineSet 226

SetName 226

SetReturnsValue 227

Appendix B Class Properties 229

AssignmentKind 229

AssignmentVisibility 230

ClassKey 230

CodeName 230

CopyConstructorVisibility 231

DefaultConstructorVisibility 232

DereferenceKind 232

DereferenceResultType 233

DereferenceVisibility 233

DestructorKind 234

DestructorVisibility 234

EqualityKind 235

EqualityVisibility 236

ExplicitCopyConstructor 236

ExplicitDefaultConstructor 237

GenerateAssignmentOperation 237
Example of GenerateAssignmentOperation 238

GenerateCopyConstructor 239
Example of GenerateCopyConstructor 240

GenerateDefaultConstructor 240
Example of GenerateDefaultConstructor 241
xii Rational Rose 2000e, Using Rose C++

GenerateDereferenceOperation 242
Example of GenerateDereferenceOperation 242

GenerateDestructor 243
Example of GenerateDestructor 243

GenerateEmptyRegions 244

GenerateEqualityOperation 244
Example of GenerateEqualityOperations 245

GenerateIndirectionOperation 246
Example of GenerateIndirectionOperation 246

GenerateRelationalOperations 247
Example of GenerateRelationalOperations 248

GenerateStorageMgmtOperations 249
Example of GenerateStorageMgmtOperations 250

GenerateStreamOperations 251
Example of GenerateStreamOperations 252

GenerateSubscriptOperation 252
Example of GenerateSubscriptOperation 253

ImplementationType 253

IndirectionKind 254

IndirectionResultType 255

IndirectionVisibility 255

InlineAssignmentOperation 256

InlineCopyConstructor 256

InlineDefaultConstructor 257

InlineDereferenceOperation 257

InlineDestructor 258

InlineEqualityOperations 258

InlineIndirectionOperation 259
Rational Rose 2000e, Using Rose C++ xiii

Contents
InlineRelationalOperations 259

InlineStorageMgmtOperations 260

InlineStreamOperations 260

InlineSubscriptOperation 261

PutBodiesInSpec 261

RelationalKind 261

RelationalVisibility 263

StorageMgmtVisibility 263

StreamVisibility 264

SubscriptKind 264

SubscriptResultType 265

SubscriptVisibility 265

Appendix C Class Category Properties 267

CodeName 267

GenerateEmptyRegions 268

Indent 269

IsNamespace 269

Appendix D Dependency Properties 271

BodyReferenceOnly 271

ForwardReferenceOnly 271

Appendix E Has Properties 275

CodeName 275

ContainerClass 276

DataMemberFieldSize 276
xiv Rational Rose 2000e, Using Rose C++

DataMemberIsVolatile 277

DataMemberMutability 277

DataMemberName 278

DataMemberVisibility 279

ForwardReferenceOnly 280

GenerateDataMember 282

GenerateGetOperation 283

GenerateSetOperation 284

GetIsConst 284

GetName 285

GetResultIsConst 287

GetSetByReference 287

GetSetKinds 288

InitialValue 289

InlineGet 289

InlineSet 289

NameIfUnlabeled 290

Ordered 291

SelectorName 292

SelectorType 293
Example of SelectorName and SelectorType 294

SetName 295

SetReturnsValue 296

Appendix F Module Body and Module Specification Properties 297

AdditionalIncludes 297
Rational Rose 2000e, Using Rose C++ xv

Contents
AllowExtensionlessFileName 298

CmIdentification 298

CopyrightNotice 299

FileName 300

Generate 300

GenerateEmptyRegions 301

IncludeBySimpleName 301

IncludeClosure 302

IncludeFormat 302

IncludeOrder 303

IncludePrecompiledHeader 303

InclusionProtectionSymbol (Module Spec Only) 304

InliningStyle 305

TypesDefined 306

Appendix G Operation Properties 307

BodyAnnotations 307

CodeName 307

EntryCode 308

ExitCode 308

GenerateEmptyRegions 309

Inline 309

OperationIsConst 310

OperationIsExplicit 310

OperationKind 310

Appendix H Project Properties 313
xvi Rational Rose 2000e, Using Rose C++

AllowExplicitInstantiations 313

AllowProtectedInheritance 313

AllowTemplates 314

AlwaysKeepOrphanedCode 314

BooleanType 315

BoundedByReferenceContainer 315
Example of BoundedByReferenceContainer 316

BoundedByValueContainer 316
Example of BoundedByValueContainer 317

CodeFileBackupExtension 317

CodeFileExtension 318

CodeFileTemporaryExtension 318

CommentWidth 319

CreateMissingDirectories 319

Directory 320

ErrorLimit 320

FileNameFormat 321

FixedByReferenceContainer 321
Example of FixedByReferenceContainer 322

FixedByValueContainer 322
Example of FixedByValueContainer 323

HeaderFileBackupExtension 323

HeaderFileExtension 324

HeaderFileTemporaryExtension 325

OneByReferenceContainer 325
Example of OneByReferenceContainer 326

OneByValueContainer 326
Rational Rose 2000e, Using Rose C++ xvii

Contents
Example of OneByValueContainer 327

OptionalByReferenceContainer 327
Example of OptionalByReference Container 328

OptionalByValueContainer 329
Example of OptionalByValueContainer 329

PathSeparator 330

PrecompiledHeader 330

QualifiedByReferenceContainer 331
Example of QualifiedByReferenceContainer 332

QualifiedByValueContainer 332
Example of QualifiedByValueContainer 333

StopOnError 334

UnboundedByReferenceContainer 334
Example of UnboundedByReferenceContainer 335

UnboundedByValueContainer 335
Example of UnboundedByValueContainer 336

UnorderedBoundedByReferenceContainer 336
Example of UnorderedBoundedByReferenceContainer 337

UnorderedBoundedByValueContainer 337
Example of UnorderedBoundedByValueContainer 338

UnorderedFixedByReferenceContainer 338
Example of UnorderedFixedByReferenceContainer 339

UnorderedFixedByValueContainer 339
Example of UnorderedFixedByValueContainer 340

UnorderedQualifiedByReferenceContainer 340
Example of UnorderedQualifiedByReferenceContainer 341

UnorderedQualifiedByValueContainer 342
Example of UnorderedQualifiedByValueContainer 342

UnorderedUnboundedByReferenceContainer 343
xviii Rational Rose 2000e, Using Rose C++

Example of UnorderedUnboundedByReferenceContainer 344

UnorderedUnboundedByValueContainer 344
Example of UnorderedUnboundedByValueContainer 345

UseMSVC 345

Appendix I Association Role Properties 347

AssocClassContainer 347

AssocClassDataMemberIsVolatile 348

AssocClassDataMemberMutability 348

AssocClassDataMemberName 349

AssocClassDataMemberVisibility 350

AssocClassForwardReferenceOnly 351

AssocClassGetIsConst 352

AssocClassGetName 353

AssocClassGetResultIsConst 354

AssocClassGetSetKinds 355

AssocClassInitialValue 356

AssocClassSetName 356

AssocClassSetReturnsValue 357

CodeName 358

ContainerClass 359

ContainerGet 360

ContainerSet 360

DataMemberFieldSize 361

DataMemberIsVolatile 361

DataMemberMutability 362
Rational Rose 2000e, Using Rose C++ xix

Contents
DataMemberName 362

DataMemberVisibility 364

ForwardReferenceOnly 365

GenerateAssocClassDataMember 367

GenerateAssocClassGetOperation 368

GenerateAssocClassSetOperation 369

GenerateDataMember 370

GenerateGetOperation 370

GenerateQualifiedGetOperation 371

GenerateQualifiedSetOperation 372

GenerateSetOperation 373

GetIsConst 373

GetName 374

GetResultIsConst 375

GetSetByReference 376

GetSetKinds 377

InitialValue 378

InlineAssocClassGet 378

InlineAssocClassSet 379

InlineGet 379

InlineQualifiedGet 379

InlineQualifiedSet 380

InlineSet 380

NameIfUnlabeled 380

QualifiedContainer 382
xx Rational Rose 2000e, Using Rose C++

QualifiedGetIsConst 382

QualifiedGetName 383

QualifiedGetResultIsConst 384

QualifiedGetSetByReference 385

QualifiedSetName 386

QualifiedSetReturnsValue 387

SetName 388

SetReturnsValue 389

Appendix J Subsystem Properties 391

Directory 391

DirectoryIsOnSearchList 392

PrecompiledHeader 392

Appendix K Symbols 393
$mode 393
$ordered 394
$cardinality 394
$keyCount 394
$keyn 394
$typen 394
$types 394
$upper 395
$lower 395
$bounds 395
$targetClass 395
$target 395
$supplier 395
$limit 396
$qualcont 396
$qualname 396
$qualtype 396
Rational Rose 2000e, Using Rose C++ xxi

Contents
$starIfByRef 396
$commaIfKeys 396
$commaIfNoKeys 397

Appendix L Analyzer Setup 399
Configuring the Analyzer 399
Preference Settings for New C++ Features 399
Starting a New Project 400
Adding Classes, Data Members, and Member Functions 401

Rational Rose Project Files 402
Exceptions 403

 Index 405
xxii Rational Rose 2000e, Using Rose C++

List of Figures

Figure 1 Naming Project Directories 44
Figure 2 Application Window 47
Figure 3 Project Window—Simple View 48
Figure 4 Maximize a Project Window 49
Figure 5 Project Window with Caption 50
Figure 6 Project Files Dialog Box 51
Figure 7 Working in the Project File Dialog Box 52
Figure 8 Project Directories List 53
Figure 9 Virtual Path Map Dialog Box 57
Figure 10 Virtual Symbols 58
Figure 11 Virtual Symbols and Parameters 58
Figure 12 Mapping Virtual Symbols 59
Figure 13 Base Projects Dialog Box 60
Figure 14 Export To Rose Dialog Box 65
Figure 15 Mapping the $DESIGN Symbol 66
Figure 16 Actual Path Displayed 67
Figure 17 Reverse Engineered Class Diagram 68
Figure 18 Example Class Diagram 68
Figure 19 Class Diagram After Running Layout 68
Figure 20 Class Specification for Car 69
Figure 21 Class Specification for Engine 70
Figure 22 Operation Specification for Throttle 71
Figure 23 Reverse Engineered Icon 71
Figure 24 Example Module Diagram 72
Figure 25 Full View of Project Window, Export View 86
Rational Rose 2000e, Using Rose C++ xxiii

List of Figures
Figure 26 Full View of Project Window, Simple View 87
Figure 27 Full View of Project Window, Files Only View 88
Figure 28 Log Window 90
Figure 29 Caption Dialog Box 101
Figure 30 Example Project Directory List 106
Figure 31 Project Directory List 106
Figure 32 Extension List Entries 110
Figure 33 Extension Dialog Box 111
Figure 34 Sort Order 117
Figure 35 Edit the File List 124
Figure 36 Editing the Base List 129
Figure 37 Defines Dialog Box 131
Figure 38 Undefines Dialog Box 132
Figure 39 Categories Dialog Box 134
Figure 40 Subsystems Dialog Box 136
Figure 41 Type 2 Context Dialog Box 138
Figure 42 Default Export Option Set Dialog Box 146
Figure 43 Output Export Options 149
Figure 44 Class Model Export Options 156
Figure 45 Relationships Export Options 158
Figure 46 Attributes Export Options 161
Figure 47 Comments Export Options 163
Figure 48 Annotation Export Options 165
Figure 49 Class Diagram Export Options 170
Figure 50 Module Diagram Export Options 172
Figure 51 Summary of Export Options 174
Figure 52 Round-Trip Engineering Process 204
Figure 53 Tracker Class Diagram 205
Figure 54 Generated Class Diagram 212
Figure 55 Updated Class Diagram 213
Figure 56 Example of an Association Relationship 272
Figure 57 Data Members for Has Relationships 278
Figure 58 Example of Forward Reference 281
Figure 59 Get Operations for Has Relationships 285
Figure 60 Naming the Has Relationship 290
Figure 61 Example of Selector Name and Selector Type 294
xxiv Rational Rose 2000e, Using Rose C++

Figure 62 Set Operations for Has Relationships 295
Figure 63 Example of a Bounded By Reference Association 316
Figure 64 Example of a Bounded By Value Association 317
Figure 65 Example of a Fixed By Reference Association 322
Figure 66 Example of a Fixed By Value Association 323
Figure 67 Example of a One By Reference Association 326
Figure 68 Example of a One By Value Association 327
Figure 69 Example of an Optional By Reference Association 328
Figure 70 Example of an Optional By Value Association 329
Figure 71 Example of a Qualified By Reference Container 332
Figure 72 Example of a Qualified By Value Association 333
Figure 73 Example of an Unbounded By Reference Association 335
Figure 74 Example of an Unbounded By Value Association 336
Figure 75 Example of an Unordered Bounded By Reference Association 337
Figure 76 Example of an Unordered Bounded By Value 338
Figure 77 Example of an Unordered Fixed By Reference Association 339
Figure 78 Example of an Unordered Fixed By Value Association 340
Figure 79 Example of an Unordered Qualified By Reference Association 341
Figure 80 Example of an Unordered Qualified By Value Association 342
Figure 81 Example of an Unordered Unbounded By Reference Association 344
Figure 82 Example of an Unordered Unbounded By Value Association 345
Figure 83 Association Role without an Association Class 349
Figure 84 Association Role with an Association Class 349
Figure 85 Association Role and the Get Member Function 353
Figure 86 Association Role and the Set Member Function 356
Figure 87 Data Members for Associations 363
Figure 88 Data Members for Associations with Association Classes 363
Figure 89 Example of an Association Relationship 366
Figure 90 Association Role and the Set Member Function 374
Figure 91 Naming a Role 381
Figure 92 Producing a Get Member Function 383
Figure 93 Association Role and the Set Member Function 386
Figure 94 Naming a Set Member Function 388
Rational Rose 2000e, Using Rose C++ xxv

List of Tables

Table 1 Standard Operations 15
Table 2 Module Specification Properties 17
Table 3 Module Body Properties 17
Table 4 File Name Extensions 18
Table 5 Specify Container Class 19
Table 6 Class Attribute Properties 20
Table 7 Association Properties 22
Table 8 Combination of Supplier Cardinality, Containment and Ordering 37
Table 9 Source File’s Analysis Type 55
Table 10 Analysis Status 55
Table 11 Option Sets 65
Table 12 Analysis Status 74
Table 13 Analysis Type 77
Table 14 Export Options Sets 82
Table 15 Project Window Views 84
Table 16 Character Codes for Log Messages 91
Table 17 Wildcard Characters 92
Table 18 Analysis Type Characteristics 114
Table 19 Analysis Status Designation 114
Table 20 Sort By Pathname 118
Table 21 Sort By Directory 118
Table 22 Sort By Simple Name 119
Table 23 Sort By Status 119
Table 24 Sort By Errors 120
Table 25 Sort By Type 121
Rational Rose 2000e, Using Rose C++ xxvii

List of Tables
Table 26 Sort By Category 121
Table 27 Sort By Subsystem 122
Table 28 Sort By Extension 123
Table 29 Format Code Substitutions 149
Table 30 Model File Format Code Substitutions 151
Table 31 Comments on C++ Constructs 164
Table 32 Flag Codes 184
Table 33 IMP Syntax 185
Table 34 Analyzer Changes 188
Table 35 Inline Annotation Syntax 189
Table 36 Character Codes 192
Table 37 Property Value Strings 194
Table 38 Message Map Entries 198
Table 39 CodeName Values 215
Table 40 DataMemberFieldSize Values 216
Table 41 DataMemberIsVolatile Values 216
Table 42 DataMemberMutability Values 217
Table 43 DataMemberName $attribute Values 218
Table 44 DataMemberVisibility Values 219
Table 45 GenerateGetOperation Values 220
Table 46 GenerateDataMember Values 220
Table 47 GenerateSetOperation Values 221
Table 48 GetIsConst Values 221
Table 49 GetName $attribute Values 223
Table 50 GetResultIsConst Values 223
Table 51 GetSetByReference Values 224
Table 52 GetSetKinds Values 225
Table 53 InlineGet Values 225
Table 54 InlineSet Values 226
Table 55 SetName $attribute Values 227
Table 56 SetReturnsValue Values 227
Table 57 AssignmentKind Values 229
Table 58 AssignmentVisibility Values 230
Table 59 CodeName Values 231
Table 60 CopyConstructorVisibility Values 231
Table 61 DefaultConstructorVisibility Values 232
xxviii Rational Rose 2000e, Using Rose C++

Table 62 DereferenceKind Values 232
Table 63 DereferenceResultType Values 233
Table 64 DereferenceVisibility Values 233
Table 65 DestructorKind Values 234
Table 66 DestructorVisibility Values 234
Table 67 EqualityKind Values 235
Table 68 EqualityVisibility Values 236
Table 69 ExplicitCopyConstructor Values 236
Table 70 ExplicitDefaultConstructor Values 237
Table 71 GenerateAssignmentOperation Values 238
Table 72 GenerateCopyConstructor Values 239
Table 73 GenerateDefaultConstructor Values 241
Table 74 GenerateDereferenceOperation Values 242
Table 75 GenerateDestructor Values 243
Table 76 GenerateEmptyRegions Values 244
Table 77 GenerateEqualityOperations Values 245
Table 78 GenerateIndirectionOperation Values 246
Table 79 GenerateRelationalOperations Values 247
Table 80 GenerateStorageMgmtOperations Values 250
Table 81 GenerateStreamOperations Values 251
Table 82 GenerateSubscriptOperation Values 253
Table 83 ImplementationType Values 254
Table 84 IndirectionKind Values 254
Table 85 IndirectionResultType Values 255
Table 86 IndirectionVisibility Values 255
Table 87 InlineAssignmentOperation Values 256
Table 88 InlineCopyConstructor Values 256
Table 89 InlineDefaultConstructor Values 257
Table 90 InlineDereference Values 257
Table 91 InlineDestructor Values 258
Table 92 InlinedEqualityOperations Values 258
Table 93 InlineIndirectionOperation Values 259
Table 94 InlineRelationalOperations Values 259
Table 95 InlineStorageMgmtOperation Values 260
Table 96 InlineStreamOperations Values 260
Table 97 InlineSubscriptOperation Values 261
Rational Rose 2000e, Using Rose C++ xxix

List of Tables
Table 98 RelationalKind Values 262
Table 99 RelationalVisibility Values 263
Table 100 StorageMgmtVisibility Values 263
Table 101 StreamVisibility Values 264
Table 102 SubscriptKind Values 264
Table 103 SubscriptResultType Values 265
Table 104 SubscriptVisibility Values 265
Table 105 CodeName Values 267
Table 106 CodeName Substitution Symbols 268
Table 107 GenerateEmptyRegions Values 268
Table 108 Is Namespace Property Values 269
Table 109 Indent Values 269
Table 110 BodyReferenceOnly Values 271
Table 111 Eliminate Circular Inclusion 273
Table 112 ForwardReferenceOnly Values 273
Table 113 CodeName Values 275
Table 114 ContainerClass Values 276
Table 115 DataMemberFieldSize Values 276
Table 116 DataMemberIsVolatile Values 277
Table 117 DataMemberMutability Values 277
Table 118 DataMemberName Case Options 279
Table 119 DataMemberVisibility Values 279
Table 120 Eliminate Circular Inclusion 282
Table 121 ForwardReferenceOnly Values 282
Table 122 GenerateDataMember Values 283
Table 123 GenerateGetOperation Values 283
Table 124 GenerateSetOperation Values 284
Table 125 GetIsConst Values 284
Table 126 GetName Case Options 286
Table 127 GetResultIsConst Values 287
Table 128 GetSetByReference Values 287
Table 129 GetSetKind Values 288
Table 130 InitialValue Values 289
Table 131 InlineGet Values 289
Table 132 InlineSet Values 289
Table 133 NameIfUnlabled Case Options 291
xxx Rational Rose 2000e, Using Rose C++

Table 134 Ordered Property Values 291
Table 135 SelectorName Values 293
Table 136 SelectorType Values 293
Table 137 SetName Case Options 296
Table 138 SetReturnsValue Values 296
Table 139 AllowExtensionlessFileName Values 298
Table 140 FileName Values 300
Table 141 Generate Property Values 300
Table 142 GenerateEmptyRegions Values 301
Table 143 IncludeBySimpleName Values 302
Table 144 InclusionProtectionSymbol Values 304
Table 145 InliningStyle Values 305
Table 146 CodeName Values 308
Table 147 GenerateEmptyRegions Values 309
Table 148 Inline Property Values 309
Table 149 OperationIsConst Values 310
Table 150 OperationIsExplicit Values 310
Table 151 OperationKind Values 311
Table 152 AllowExplicitInstantiations Property Values 313
Table 153 AllowProtectedInheritance Values 314
Table 154 AllowTemplates Values 314
Table 155 The AlwaysKeepOrphanedCode Values 315
Table 156 CodeFileBackupExtension Values 317
Table 157 CodeFileExtension Values 318
Table 158 CodeFileTemporaryExtension Values 319
Table 159 CreateMissingDirectories Values 319
Table 160 Directory Property Values 320
Table 161 ErrorLimit Values 320
Table 162 FileName Format Flags 321
Table 163 HeaderFileBackupExtension Values 324
Table 164 HeaderFileExtension Values 324
Table 165 HeaderFileTemporaryExtension Property Values 325
Table 166 PathSeparator Values 330
Table 167 StopOnError Values 334
Table 168 The UseMSVC Values 345
Table 169 AssocClassContainer Values 347
Rational Rose 2000e, Using Rose C++ xxxi

List of Tables
Table 170 AssocClassDataMemberIsVolatile Values 348
Table 171 AssocClassDataMemberMutability Values 348
Table 172 AssocClassDataMemberName Case Options 350
Table 173 AssocClassDataMemberVisibility Values 350
Table 174 AssocClassForwardReferenceOnly Values 352
Table 175 AssocClassGetIsConst Values 353
Table 176 AssocClassGetName Case Options 354
Table 177 AssocClassGetResultIsConst Values 355
Table 178 AssocClassGetSetKinds Values 355
Table 179 AssocClassInitialValue Values 356
Table 180 AssocClassSetName Case Options 357
Table 181 AssocClassSetReturnsValue Values 358
Table 182 Code Name Property Values 359
Table 183 ContainerClass Values 359
Table 184 DataMemberIsVolatile Values 361
Table 185 DataMemberFieldSize Values 361
Table 186 DataMemberMutability Values 362
Table 187 DataMemberName Case Options 364
Table 188 DataMemberVisibility Values 364
Table 189 Eliminate Circular Inclusion 367
Table 190 ForwardReferenceOnly Values 367
Table 191 GenerateAssocClassDataMember Values 368
Table 192 GenerateAssocClassGetOperation Values 369
Table 193 GenerateAssocClassSetOperation Value 369
Table 194 GenerateDataMember Values 370
Table 195 GenerateGetOperation Values 371
Table 196 GenerateQualifiedGetOperation Values 372
Table 197 GenerateQualifiedSetOperation Values 372
Table 198 GenerateSetOperation Values 373
Table 199 GetIsConst Values 374
Table 200 GetName Case Options 375
Table 201 GetResultIsConst Values 376
Table 202 GetSetByReference Values 376
Table 203 GetSetKinds Values 377
Table 204 InitialValue Property Values 378
Table 205 InlineAssocClassGet Values 378
xxxii Rational Rose 2000e, Using Rose C++

Table 206 InlineAssocClassSet Values 379
Table 207 InlineGet Values 379
Table 208 InlineQualifiedGet Values 379
Table 209 InlineQualifiedSet Values 380
Table 210 InlineSet Values 380
Table 211 NameIfUnlabeled Case Options 381
Table 212 QualifiedContainer Values 382
Table 213 QualifiedGetIsConst Values 383
Table 214 QualifiedGetName Case Options 384
Table 215 QualifiedGetResultIsConst Values 385
Table 216 QualifiedGetSetByReference Values 385
Table 217 QualifiedSetName Case Options 387
Table 218 QualifiedSetReturnsValue Values 387
Table 219 SetName Case Options 389
Table 220 SetReturnsValue Property Values 390
Table 221 Directory Property Values 391
Table 222 DirectoryIsOnSearchList Values 392
Table 223 PrecompiledHeader Values 392
Table 224 Preference Settings 399
Rational Rose 2000e, Using Rose C++ xxxiii

Preface

Rational Software corporation’s Rational Rose® family of products
provides easy-to-use support for object oriented analysis and design,
and for controlled iterative development. Rational Rose C++ provides
the interface between the Rational Rose modeling environment and the
C++ programming language.

This guide is intended for the experienced C++ developer. Familiarity
with Rational Rose modeling tools is strongly advised.

This guide is a companion to Rational Rose 2000e, Using Rose, which
provides the conceptual and reference information needed to use the
Rational Rose modeling tools.

Using Rose C++ explains how to:

� Generate C++ source code

� Reverse engineer C++ source code

� Identify differences between Rational Rose models

� Update a Rational Rose model to reflect source code changes

� Apply round-trip engineering to C++ applications
Rational Rose 2000e, Using Rose C++ xxxv

Preface
How this Guide is Organized

Chapter 1 introduces the features of Rational Rose C++, and the basic
concepts needed to use it.

Chapter 2 explains the process of generating C++ source code from
Rational Rose model elements. It explains the mapping between
Rational Rose model elements and C++ code elements.

Chapter 3 explains how to reverse engineer a C++ source code project
into a Rational Rose model.

Chapter 4 discusses Analyzer projects and maintaining the Analyzer
lists.

Chapter 5 explains the Analyzer export options.

Chapter 6 discusses the Analyzer project file and the annotation
process.

Chapter 7 explains how to update a Rational Rose model with the
model file updated by the Analyzer.

Chapter 8 explains the Rational rose round-trip engineering process as
it applies to C++.

Appendixes A through K list the model properties included with
Rational Rose C++, and how they control C++ code and model
generation.

Appendix L explains how to set up the Analyzer for proper operation.
xxxvi Rational Rose 2000e, Using Rose C++

Related Documentation
Related Documentation

The following documents are included with Rational Rose C++.

� Comprehensive on-line help with hypertext links and a two-level
search index. To activate on-line help, go to the Help menu on the
Rational Rose menu bar.

� Online user manuals. Please refer to the README.txt file, found in
the Rational Rose installation directory, for more information.

� Release Notes, a help file containing additional information about
Rational Rose C++. You access this file from the Windows Start
menu by selecting Programs, then Rational Rose 2000e, and then
Release Notes.

� A README.txt file, containing last-minute information about
Rational Rose C++. You access this plain-text file from the Windows
Start menu by selecting Programs, then Rational Rose 2000e, and
then ReadMe.

� A tutorial that introduces UML and guides you through Rational
Rose’s functionality. Each section includes an exercise where you
can perform the exercise and compare your solution to that of a
Rational Rose model. To run the tutorial, start the Tutorial item in
the Rational Rose program group. For Windows users, you can see
the Rational Rose solution demonstrated in a “movie”.

References

The following books are excellent references to the concepts,
semantics, and process of object-oriented analysis and design, and the
Unified Modeling Language (UML):

� Visual Modeling with Rational Rose and UML by Terry Quatrani,
Addison Wesley, 1998, available from Rational Software Corp.

� Object-Oriented Development, by Grady Booch and Jim Rumbaugh,
available from Rational Software Corp.

� UML Notation: Unified Modeling Language by James Rumbaugh,
Grady Booch, and Ivar Jacobson, available from
http://www.rational.com
Rational Rose 2000e, Using Rose C++ xxxvii

Preface
� Booch Notation: Object-Oriented Analysis and Design with
Applications (second edition) by Grady Booch, Benjamin-
Cummings Pub. Co., Redwood City, California, 1993

� OMT Notation: Object-Oriented Modeling and Design, by J.
Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Prentice-Hall Inc., Engelwood Cliffs, New Jersey, 1991

File Names

Where file names appear in examples, Windows syntax is depicted. To
obtain a legal UNIX file name, eliminate any drive prefix and change the
backslashes to forward slashes:

c:\project\username

becomes

/project/username
xxxviii Rational Rose 2000e, Using Rose C++

Chapter 1

Introduction

Controlled, iterative, and incremental development processes produce
a sequence of implementations where functionality increases towards
that specified by the user requirements. An explicit iteration driver
provides the focus required by a controlled, iterative process.

Rational’s development process specifies critical risks as its iteration
driver, prescribing continuous active identification, prioritization, and
elimination of risk items throughout the project.

This process begins with requirements definition and analysis,
followed by the development of an initial architecture. Critical-risk
aspects of the design are then identified and prioritized. A design
element can involve risk intrinsically or because it is derived from
requirements that are ambiguous, poorly understood, or likely to
change.

The highest-priority critical-risk item is chosen as the driver for the
first iteration, which is planned as the minimum implementation that,
when constructed, can objectively demonstrate the resolution of the
targeted risk. Ideally, this demonstration is accomplished by
successful execution of a test suite, thereby providing both objectivity
and a means of detecting regression during subsequent iterations. This
approach also institutes testing early in the cycle, avoiding the typical
“big bang” integration and testing efforts that overload teams in the late
phases of development projects.

When the implementation of the initial iteration has been completed, it
must then be assessed to determine whether the targeted critical-risk
has in fact been eliminated. If an iteration eliminates its targeted
critical-risk, it must also be assessed to determine whether
architectural changes were introduced during its implementation, and
Rational Rose 2000e, Using Rose C++ 1

Chapter 1 Introduction
whether these changes are acceptable. If so, the application
architecture must be updated to reflect the changes instituted during
implementation. When the targeted critical-risk has been eliminated,
and the architecture and implementation are consistent, then the
iteration has been successfully completed.

Subsequent iterations begin with a re-examination of the requirements
based on knowledge and user feedback acquired during completed
iterations. Experience gained during completed iterations can also
result in the exposure of new critical-risk items. This analysis can
result in architectural changes or reprioritization of known risk items.
This process drives out the most critical-risks, and architectural flaws,
during the earliest iterations allowing for detection and correction
when it is least expensive to do so.

Each iteration is conducted on the assumption that its entire
implementation can be incorporated in the final product.

Specifically designed to support controlled, iterative, and incremental
development, Rose C++ provides:

� A code generator that automatically carries forward user-supplied
declarations and definitions from the previous iteration, and
annotates generated code with design information not
representable in C++.

� An analyzer that reverse engineers an implementation’s classes,
class relationships, logical packages, components, modules,
relationships, and component packages from implementation
source code, utilizing information contained in annotations when
present.

� A visual differencing mechanism that reports architectural
differences between an iteration’s initial design and the “as-built,”
reverse engineered, implementation design.

� A design update mechanism that updates the iteration’s initial
design to reflect architectural changes introduced in its
implementation.

Collectively, these mechanisms facilitate round-trip engineering
architecturally driven, controlled, iterative, and incremental
development with tool support provided by Rose C++.
2 Rational Rose 2000e, Using Rose C++

Chapter 2

C++ Code Generation

Using the Rational Rose C++ code generator, you can produce C++
source code from the information contained in a Rational Rose model.
The code generated for each selected model component is a function of
that component’s specification and code generation properties, and the
project’s properties. These properties provide the language-specific
information required to map your model onto C++, and allow you to
control the code generated for each component.

Rational Rose C++ preserves the declarations and definitions you add
to generated source code from one iteration to the next. You place these
declarations and definitions in protected code regions which are
preserved whenever code is regenerated.

A Rational Rose model contains information that cannot be expressed
in C++. To support round-trip engineering, information which logically
belongs with the generated source code is placed in annotations, which
are structured comments. The Documentation field in an Operation
Specification, for example, is inserted into an annotation preceding the
declaration of the member function.

Generated Source Code

The specifications and properties of the model components you select
determine the code produced by the C++ code generator. One or more
header and implementation files contain the generated code.

In this section, the term module specification refers to a subprogram
specification, package specification, or task specification. Similarly,
the term module body refers to a subprogram body, package body, or
task body. The module kind does not modify the C++ code generated.
Rational Rose 2000e, Using Rose C++ 3

Chapter 2 C++ Code Generation
Classes Assigned to Modules

When a class you have selected for code generation is assigned to both
a module specification and a module body, the C++ code generator
places its declarations and definitions in the header and
implementation files associated with the module specification and
module body, respectively. You assign a class to a module in the
module specification.

Note: To assign a class to a module, the Rational Rose model must
contain a corresponding module body.

If the class is only assigned to a module specification, the C++ code
generator places only the class definition in the header file
corresponding to the module specification. It also warns that because
the class is not assigned to a module body, no implementation source
is generated.

If the class is only assigned to a module body, the C++ code generator
places the class definition and implementations in the implementation
file corresponding to the module body.

The C++ code generator generates a class assigned to a module body
as local to that module, by placing both its declaration and definition
in the implementation file associated with the module body.

The name of a module specification’s header file is controlled by the
module specification’s FileName property. The name of a module body’s
implementation file is controlled by the module body’s FileName
property. File name extensions are controlled by the model’s
HeaderFileExtension and CodeFileExtension properties; the default
values of these properties are .h and .cpp, respectively.

When the C++ code generator produces a header or implementation file
that already exists, the previous version is first copied to a backup file.
The file name extension of this backup file is specified by the
HeaderFileBackupExtension or CodeFileBackupExtension project properties; the
default values of these properties are .h~ and .cp~, respectively.
4 Rational Rose 2000e, Using Rose C++

Generated Source Code
Classes Not Assigned to Modules

If a class you have selected for code generation has not been assigned
to a module, the C++ code generator assigns it to an implicit pair of
modules: a module specification and a module body. When you
generate code for this class:

� The implicit module specification generates a header file that
contains the class declaration, including declarations of its data
members and member functions.

� The implicit module body generates an implementation file that
contains the definitions of member functions and static data
members.

The default code generation properties for module specifications and
module bodies determine the generated code for implicit modules. The
names of these header and implementation files are derived from the
class name. File name extensions are controlled by the model’s
HeaderFileExtension and CodeFileExtension properties; the default values of
these properties are .h and .cpp, respectively.

When the C++ code generator produces a header or implementation file
that already exists, the previous version is first copied to a backup file.
The file name extension of this backup file is specified by the
HeaderFileBackupExtension project property or CodeFileBackupExtension project
property; the default values of these properties are .h~ and .cp~,
respectively.

Generated Header Files

The generated header files contain annotations, inclusion protection
directives, #include directives, global declarations, and code regions.
Each header file also contains one or more of the following:

� Class declarations, including class names and base lists

� Member function declarations for standard operations, get and set
operations for data members, and user-defined operations

Generated Implementation Files

The generated implementation files contain annotations, #include
directives, global declarations, static data members, skeletal member
function definitions, and code regions.
Rational Rose 2000e, Using Rose C++ 5

Chapter 2 C++ Code Generation
The C++ code generator does not generate source code which
implements member functions, but instead produces skeletal member
function definitions containing protected code regions. If you place
each member function’s implementation within its code region, this
implementation code is preserved whenever code is regenerated from
the model.

Logical and Component Packages

If the logical package containing the classes selected for code
generation are assigned to component packages, all generated files are
placed in a hierarchy of directories that correspond to the model’s
component package hierarchy. The root of this hierarchy is specified by
the Directory project property.

If a logical package containing a class selected for code generation is
not assigned to a component package, the code generator assigns it to
an implicit component package and creates a corresponding directory
to contain its generated files. The name of this implicit component
package is taken from the logical package.

Source Code Annotations

Source code annotations are structured comments used to express
model information that cannot be expressed in C++ but should be
associated with generated source code. Annotations also identify
Protected Code Regions, which preserve user-supplied declarations
and definitions when code is regenerated. Annotations begin with the
string //##.

Protected Code Regions

Protected code regions are pairs of annotations generated by the C++
code generator to delimit declarations or definitions you provide so
they can be retained when code is regenerated. Generated code regions
are:

� At the head of each module spec and body, allowing you to provide
auxiliary #include directives

� At the head of each module spec and body, allowing you to provide
auxiliary global declarations
6 Rational Rose 2000e, Using Rose C++

Generated Source Code
� Within each section of a class declaration (public, protected,
private, and implementation), allowing you to provide auxiliary
declarations

� Preceding each set of definitions for a class (within a module body),
allowing you to provide auxiliary declarations and definitions
associated with that class

� Within skeletal member function definitions, allowing you to
provide the member function’s implementation

Protected code regions have the form:

//## begin code_region preserve=yes
//## end code_region

where code_region is a unique identifier constructed by the code
generator. The preserve argument indicates whether the contents of
the code region are to be preserved when code is regenerated. Changing
the argument from its default yes to no causes the code generator to
discard any declarations or definitions contained in the code region
when source code is regenerated.

When editing generated source files:

� Add declarations and definitions only between the //##begin and
//##end annotations. Any code added outside of these annotations
is not preserved when code is regenerated.

� Do not create your own code regions—you can only use those
provided by the C++ code generator.

� Do not move code regions within their module.

� Do not textually delete code regions; if the contents of a code region
should be discarded, change preserve=yes to preserve=no in the
//##begin annotation.

Generating code adds information describing newly-created protected
code regions to your current model. If after generating code, you load
a new model or exit Rational Rose, a dialog box appears enabling you
to first save your current model. If you choose not to save your model,
code subsequently added to these protected regions is not maintained.

Code regions associated with model components that are later deleted
or renamed become orphan code, which is moved to the end of its
implementation file with its preserve argument set to no.
Rational Rose 2000e, Using Rose C++ 7

Chapter 2 C++ Code Generation
Namespaces and Protected Code Regions

Elements of a namespace other than class definitions, class forward
declarations, and typedef and enum declarations must be enclosed in
a protected region. Declarations and directives, in particular, must go
in protected regions. They are not recognized during round-trip
engineering. For this purpose a new protected region is defined for the
initial portion of a namespace (before the first allowed declaration). The
marker on this region is the name of the namespace with the suffix
.initialDeclarations. Whether or not this protected region is
generated when empty is controlled by the GenerateEmptyRegions
property on the module. The permitted values for this property and
their meaning are the same as for other instances of this property on
other model items.

Since the use of directives and declarations are not recognized in this
release, all inter-namespace references are fully qualified. Intra-
namespace references are not qualified.

Code Generation—Step by Step

To generate code from your Rational Rose model:

1. Set the Directory project property to name the directory in which
generated header and implementation files are to be created.

2. Select the classes for which you want to generate code. If you select
a logical package, code is generated for every class it contains.

Check each classes’ specification for the desired operations. The
C++ code generator uses this information to generate data
members and member functions.

Check that all units are loaded. If code generation is applied to a
class that has ‘uses’ links to classes in units not yet loaded, the
generated code has no ‘with’ clause for the missing classes.

3. Click Tools > C++ > Code Generation.

4. If errors are reported during step 3, open the log icon at the lower
left side of the application window to view the error message.

5. Edit the generated source files and add implementation code to
complete the protected code regions for skeletal member function
definitions and auxiliary declarations.

6. Compile, link, and test the edited files.
8 Rational Rose 2000e, Using Rose C++

Code Generation Properties
7. Click File > Save to preserve any additional information created
during code generation.

Code Generation Properties

Code generation properties provide language-specific information that
is not expressed in the Rational Rose notation, but is necessary for
generating source code.

Properties also allow you to control the code generated for each of the
model components. For example, a class’ GenerateCopyConstructor property
determines whether a copy constructor is automatically generated.

When a model component is created, Rational Rose sets each of its
properties to a default value that can be modified.

Certain code generation properties are model-wide in scope and are
referred to as project properties.

The Property Set mechanism facilitate helps you to manage code
generation properties. it allow you to create a named set of properties
whose default values control the code generation for a specific model
element. For example, you could establish a class property set whose
property settings inhibit automatic generation of all operations.
Assigning this property set to selected classes in your model is much
more convenient than individually setting the properties of each of
these classes. Code generation property sets are described in more
detail later in this chapter.

Accessing the Property Editor

To access the Property Editor:

1. Display a diagram that contains an icon representing a model
component.

2. Select the model component in the diagram, or click on a clear
space in the diagram (no icon selected) to modify the project.

3. Click Tools > Model Properties > Edit. Rational Rose displays the
Code Generation/C++ tab for the selected model component’s
specification. If you did not specifically select a model component,
Rational Rose takes you to the C++ tab on the Options dialog box.
Rational Rose 2000e, Using Rose C++ 9

Chapter 2 C++ Code Generation
If a model component is not selected in the diagram, the Type drop-
down box lists the individual components.

The Set field lists the property set that is currently attached to the
model component. The drop-down box contains the names of all
currently-defined property sets for the selected component kind. If
a collection of components was selected and a variety of property
sets are related to those components, this field remains blank. If a
collection of components was selected and each component is
attached to the same property set, the name of that property set is
displayed in the Set field. This field can be disabled if property sets
do not exist for the selected component type.

The Model Properties section of the dialog box lists the available
code generation properties and their values.

Display or Edit Properties

To display or edit properties:

1. Display a diagram that contains an icon representing a model
component.

2. Select the model component in the diagram.

3. Open the model component’s specification by double-clicking on an
item in a diagram.

4. Select a diagram item and click Browse > Specification, or right-
click on the item and click Specification.

5. Select the C++ tab. The Set field displays the property set attached
to the item. The properties related to the model item are displayed
in the Model Properties list.

6. To modify one of the property values, select it and click on it a
second time. This places the property in edit mode. A drop-down
box displays all the property’s values.

Note: The scrollbar becomes inactive while in edit mode. To use the
scrollbar, select either OK or Cancel to switch the setting to view mode
and enable scrolling.

7. To complete the edit, click outside the edit box.

8. Click OK or Apply to commit the changes to the item.
10 Rational Rose 2000e, Using Rose C++

Accessing the Property Editor
Properties that are specified explicitly by the item, and hence override
the attached property set value, are drawn in normal text. Properties
that have been changed since the last apply are indicated by an
asterisk in the left column.

Note: Changes made to a property are accepted whenever you activate
any control in the editor. For example, after editing a property, you can
select another property to both accept the changes to the original
property and begin editing the newly selected property.

Remove an Overriding Item-Level Property

Editing a property in the C++ tab of a specification automatically
makes it an overriding item-level property. To remove the overriding
value from the item and return to the default value:

1. Select the property(s) and click Default.

2. Click OK or Apply to commit the changes to the item.

Force a Property to be Item Specific

To force a property to be item specific:

1. Select the property(s) and click Override.

2. Click OK or Apply to commit the changes to the item.

Reinstate the State and Value of the Last Committed Change

To reinstate the state and value for the last committed change:

1. Select the property(s) and click Revert.

Attach a Property Set

To attach a property set to a single component or a collection of
components:

1. Display a diagram that contains an icon representing a model
component.

2. Select the model component in the diagram.

3. Open the model component’s specification by double-clicking on an
item in a diagram.

4. Select a diagram item and click Browse > Specification, or right-
click on the item and click Specification.
Rational Rose 2000e, Using Rose C++ 11

Chapter 2 C++ Code Generation
5. Select the C++ tab. The property set attached to the item is
displayed in the Set field. The Model Properties list displays the
properties of the model item.

6. Select a different property set from the Set list box.

Commits are made as you move from page to page. Also, as you
move from set to set or type to type within the set-level property
page, any changes you have made to the currently displayed set
are committed.

Display or Edit a Specific Property Set

To display or edit a specific property set:

1. Select the component from the diagram. If you are selecting a
collection of components, ensure that all the components are of the
same type. A warning displays if you select different model
components.

2. Click Tools > Model Properties > Edit, or press the F4 key. The code
generator displays the C++ page of the Options dialog box. The kind
of model item chosen is displayed in the Type field.

3. Select the property set name in the Set list box to display all the
properties and values.

4. Modify property set values by following instructions to edit a
specific property set, as previously listed.

5. Click Apply or OK to accept your changes.

Note: Changes made to a property are accepted whenever you
activate any control in the editor. For example, after editing a
property, you can select another property to both accept the changes
to the original property and begin editing the newly selected property.

Create a New Property Set

To create a new property set:

1. Select a property set from the Set list box with which to base your
new property set.

2. Click Clone.

3. Enter the new property set name in the dialog box and click OK. A
new property set is created as a copy of the current property set.
12 Rational Rose 2000e, Using Rose C++

Accessing the Property Editor
4. Modify property set values by following instructions to edit a
specific property set, as previously listed.

Delete a Property Set

To delete a property set:

1. Select a property set from the Set list box.

2. Click Remove to delete the property set from the model. An attempt
is made to find all the components in the model that reference that
set and change those components to reference the default property
set.

Managing Property Sets

Whenever you create a new Rational Rose model, the C++ code
generator loads its default property sets from a specially-formatted
property file named rosecpp.pty. This file is created during installation
in the directory that contains the Rational Rose C++ executable.

If you modify this default property set for your model you can save and
reuse the modified set in several ways. You can:

� Designate a property set as a controlled unit to support multi-user
development.

� Export your property sets to a file for use in other models.

� Replace your current model’s property sets with those contained in
a previously exported file.

� Add properties from exported property sets to the current model.

� Specify a property file from which property sets are loaded
whenever a new model is created.

To designate a property set as a controlled unit:

Note: A Controlled Unit is any package (or file) that can be loaded and
saved independently and that is subject to revision control within a
configuration management system.

1. Click Browse > Units to display the Units dialog box.

2. Click Others in the Group frame.

3. Click <properties> in the Other Units list.

4. Click Control, and specify a file for persistent storage using the
Filename For dialog box.
Rational Rose 2000e, Using Rose C++ 13

Chapter 2 C++ Code Generation
To export your property sets to a file for use in other models:

1. Click Tools > Properties > Export Properties.

2. Specify a destination file using the Export Properties dialog box.

To replace your current model’s property sets with those
contained in a previously exported file:

1. Click Tools > Properties > Import Properties.

2. Select a source file using the Read Petal dialog box.

To add properties from exported property sets to the current
model:

Note: The properties you are adding must not be present in the model.

1. Click Tools > Properties > Add Properties.

2. Select a source file using the Add Properties dialog box.

To specify a property file from which property sets are loaded
whenever a new model is created:

1. Click Tools > Properties > Set Default Properties File.

2. Select a property file using the Set Default Property File dialog box.

The property sets in this file initialize new models, rather than those in
codegen.pty.

Class Properties

Class properties control the code generated for each selected class.
Refer to Appendix B for more detailed information on each property.

Implementation

Use the ImplementationType property to implement a class as an
elemental data type instead of as a C++ class.
14 Rational Rose 2000e, Using Rose C++

Class Properties
Standard Operations

Use the following code generation properties to specify the kinds of
standard operations you want the C++ code generator to generate in
the declaration and definition of a class:

Table 1 Standard Operations
To generate: Use these properties:

Data members CodeName
ImplementationType

Default Constructor GenerateDefaultConstructor
DefaultConstructorVisibility
InlineDefaultConstructor

Copy Constructor GenerateCopyConstructor
InlineCopyConstructor
CopyConstructorVisibility

Destructor GenerateDestructor
InlineDestructor
DestructorVisibility
DestructorKind

Assignment Operation GenerateAssignmentOperation
InlineAssignmentOperation
AssignmentVisibility
AssignmentKind

Equality Operations GenerateEqualityOperations
InlineEqualityOperations
EqualityVisibility
EqualityKind

Relational Operations GenerateRelationalOperations
InlineRelationOperations
EqualityVisibility
EqualityKind

Storage Operations GenerateStorageMgmtOperations
InlineStorageMgmtOperations
StorageMgmtVisibility

Subscript Operation GenerateSubscriptOperation
SubscriptVisibility
SubscriptKind
SubscriptResultType
Rational Rose 2000e, Using Rose C++ 15

Chapter 2 C++ Code Generation
In the above table, Visibility can be public, protected, private or
implementation, and Kind can be common, virtual, abstract, or friend.

User-Defined Operation Properties

Operation properties control the code generated for the user-defined
operations in each selected class. Refer to Appendix G for more detailed
information on each property.

When generating code for a class, the code generator produces a
skeletal member function for each user-defined operation enumerated
in the class specification:

� Use the EntryCode operation property to specify code or comments
to be inserted at the beginning of the generated member function
body; this property is useful for inserting instrumentation, or
adhering to documentation standards.

� Use the ExitCode operation property to specify code or comments to
be inserted at the end of the generated member function body; this
property is useful for inserting instrumentation, or adhering to
documentation standards.

� Use the OperationIsConst operation property to add the const
keyword to the generated member function declaration.

� Use the OperationKind operation property to specify whether the
operation is common, virtual, abstract, or friend.

Dereference Operation GenerateDeferenceOperation
InlineDeferenceOperation
DeferenceVisibility
DereferenceKind
DereferenceResultType

Indirection Operation GenerateIndirectionOperation
InlineIndirectionOperation
IndirectionVisibility
IndirectionKind
IndirectionResultType

Stream Operation GenerateStreamOperation
StreamVisibility

To generate: Use these properties:
16 Rational Rose 2000e, Using Rose C++

Class Properties
� Use the CodeName operation property when you want the class to
be named differently than it is in the Rational Rose model.

� Use the Inline operation property to specify whether to inline an
operation.

Module Specification Properties

Use the following properties to control the code generated for a module
specification. Refer to Appendix F for more detailed information on
each property.

Table 2 Module Specification Properties

Module Body Properties

Use the following properties to control the code generated for module
bodies. Refer to Appendix F for more detailed information on each
property.

Table 3 Module Body Properties

To specify: Use these properties:

Commented information CMIdentification
CopyrightNotice

Module file name FileName
Generate

Preprocessor directives InclusionProtectionSymbol
AdditionalIncludes
IncludeBySimpleName
InliningStyle

To specify: Use these properties

Commented information CMIdentification
CopyrightNotice

Module file name FileName
Generate

Preprocessor Directives AdditionalIncludes
IncludeBySimpleName
InliningStyle
Rational Rose 2000e, Using Rose C++ 17

Chapter 2 C++ Code Generation
Component Package Properties

Use the Directory subsystem property to specify the pathname of the
directory in which the code generator places source code files
generated from modules assigned to a subsystem. Refer to Appendix J
for more detailed information on the Directory property.

Project Properties

Project Properties control various aspects of code generation that apply
to an entire model rather than to specific kinds of model components
in the model, such as classes. Refer to Appendix H for more detailed
information.

Code Location

Use the Directory project property to specify the root directory into
which generated header and implementation files are placed.

File Name Extensions

Use these properties to control the file name extensions when
constructing the names of header files, implementation files, backup
header files, and backup implementation files:

Table 4 File Name Extensions

Specifying Compiler-Specific Alternatives

You use the following project properties to permit or suppress code
constructs that are supported by some C++ compilers:

� AllowTemplates

� AllowProtectedInheritance

To set extensions for: Use these properties:

Header files HeaderFileBackupExtension
HeaderFileExtension
HeaderFileTemporaryExtension

Implementation files CodeFileBackupExtension
CodeFileExtension
CodeFileTemporaryExtension
FileNameFormat
18 Rational Rose 2000e, Using Rose C++

Class Properties
Specifying the Boolean Type

Use the BooleanType project property to specify the return value type
for Boolean functions.

Specifying Container Classes for Associations

Use the following project properties to specify the default container
classes that the C++ code generator uses when generating data
members for associations. Container classes generate data members
for associations with certain combinations of cardinality and
containment.

Table 5 Specify Container Class

Controlling Error Behavior

You use the following project properties to specify how the C++ code
generator responds to errors:

� StopOnError

� ErrorLimit

Use the CreateMissingDirectories project property to specify whether the
C++ code generator must generate code in existing directories.

To specify containers for: Use these properties:

By-value relationship OptionalByValueContainer
OneByValueContainer
FixedByValueContainer
UnorderedFixedByValueContainer
BoundedByValueContainer
UnorderedBoundedByValueContainer
UnboundedByValueContainer
UnorderedQualifiedByValueContainer

By-reference relationships FixedByReferenceContainer
UnorderedFixedByReferenceContainer
OneByReferenceContainer
OptionalByReferenceContainer
UnboundByReferenceContainer
UnorderedUnboundedByReferenceContainer
QualifiedByReferenceContainer
UnorderedQualifiedByReferenceContainer
Rational Rose 2000e, Using Rose C++ 19

Chapter 2 C++ Code Generation
Class Attribute Properties

When generating code for a class, the C++ code generator produces a
data member for each class attribute. A common practice in C++ is to
make data members private and to provide get and set member
functions to read and modify member data. By default, the C++ code
generator produces a basic implementation for get and set member
functions.

You use the following code generation properties to control the code
generated for data members and their corresponding get and set
member functions. Refer to Appendix B for more detailed information
on each property.

Table 6 Class Attribute Properties

Association Properties

When generating code for a class, the C++ code generator produces a
data member for each role. The properties on a role control the code
generated to support traversal in one direction. Traversal from a client
class to a supplier class is controlled by properties on the role on the
supplier end.

A common practice in C++ is to make data members private and to
provide get and set member functions to read and modify member
data. By default, the C++ code generator produces a basic
implementation for get and set member functions.

To control code for: Use these properties:

Data members GenerateDataMember
CodeName
DataMemberName
DataMemberVisibility

Get and set operations GenerateGetOperation
GenerateSetOperation
GetSetKinds
GetName
SetName
InlineGet
InlineSet
GetIsConstant
GetSetByReference
SetReturnsValue
20 Rational Rose 2000e, Using Rose C++

Class Properties
The C++ code generator implements association roles only if they are
marked navigable, regardless of their properties.

There are two cases of association traversals. One case implements an
association with an association class, and the other implements an
association without an association class. If the case involves an
association without an association class, the data member and get and
set functions implement traversal from each client class directly to its
supplier in each navigable direction. If the association traversal
includes an association class, the data member and member functions
in each client class support traversal to the association class, and the
data members and member functions in the association class support
traversal from the association class to each supplier class in each
navigable direction.

Note: There is no navigability property in Rational Rose that determines
navigability from a client class to its association class. These traversals
are always implemented.
Rational Rose 2000e, Using Rose C++ 21

Chapter 2 C++ Code Generation
You use the following code generation properties to control the code
generated for data members and their corresponding get and set
member functions. Refer to Appendix I for more detailed information on
each property.

Table 7 Association Properties

Property Sets

Code generation properties are grouped by the model component to
which they apply. A set of property values for each property in such a
group is referred to as a property set. For example, a class property set
contains property values for all class properties.

To control code for: Use these properties:

Data members NameIfUnlabeled
GenerateDataMember
CodeName
DataMemberName
DataMemberVisibility*

Get and set operations GenerateGetOperation
GenerateSetOperation
GenerateQualifiedGetOperation
GenerateQualifiedSetOperation
GetSetKinds
GetName
SetName
QualifiedGetName
QualifiedSetName
InlineGet
InlineSet
InlineQualifiedGet
InlineQualifiedSet
GetIsConst
QualifiedGetIsConst
GetSetByReference
SetReturnsValue
QualifiedSetReturnsValue

Header File Inclusion ForwardReferenceOnly
22 Rational Rose 2000e, Using Rose C++

Model-to-Code Correspondences
The C++ code generator provides a default property set for each kind of
model component, and attaches the appropriate default property set to
a component when it is created. To change a component’s code
generation properties:

� Directly modify one or more of its property values

� Modify one or more property values in its attached default property
set

� Attach a named property set, setting of all of the component’s code
generation properties to the values in that property set

Project Property Sets

Rational Rose provides three project property sets:

� Compiler 2.1

� Compiler 3.0

� Default

The Compiler 2.1 project property set contains reasonable property
values for use with a C++ Version 2.1 compiler, one that implements
neither templates nor protected inheritance. The Compiler 3.0 project
property set contains reasonable property values for use with a C++
Version 3.0 compiler, which implements both templates and protected
inheritance. The Default project property set contains the same
property values as 3.0, with the addition of UseMSVC and
CommentWidth properties.

Model-to-Code Correspondences

The C++ code generator uses the specifications and code generation
properties of components in the current model to produce C++ source
code. For each class in a Rational Rose model, the C++ code generator
produces a corresponding C++ class. Class associations—those
representing aggregation and those representing attributes—are
translated to data members of the class.

The C++ code generator produces member functions for three kinds of
operations: standard operations, get and set operations for data
members, and user-defined operations. For get and set operations, the
C++ code generator produces member functions with basic
Rational Rose 2000e, Using Rose C++ 23

Chapter 2 C++ Code Generation
implementations. For standard and user-defined operations, the C++
code generator produces skeletal member functions; you must edit the
generated code to add the member function bodies.

When the C++ code generator produces source code files for classes in
a Rational Rose model, they are stored in a directory determined by the
value you specify for the Directory project property. Component
packages in a Rational Rose model are mapped to subdirectories.

Code Generated for Classes

Code is generated for classes in both a header file and an
implementation file.

In the Header File

For each class, the C++ code generator produces the following code
constructs in the header file—unless you have assigned the class to a
module body (in which case these constructs are placed in the
implementation file):

� Class Annotations extracted from the class specification.

� A Class definition and base list, taken from the class’ name and
generalization relationships.

� A Class Access specification for public, protected, and private
declarations that are generated for the class.

� Code regions within each section of a class declaration (public,
protected, private, and implementation), allowing you to provide
auxiliary declarations.

� Member function declarations for:

❑ User-defined operations defined in the class specification.

❑ Standard operations as specified by the class properties.

❑ Get and set operations provided for data members generated
from the class associations.

� Class friend declarations for the class’ friends.
24 Rational Rose 2000e, Using Rose C++

Model-to-Code Correspondences
In the Implementation File

For each class, the C++ code generator produces the following code
constructs in the implementation file:

� Declarations of static data members, taken from the class
associations.

� A Code region that allows you to provide auxiliary declarations and
definitions associated with the class.

� Skeletal member function bodies for standard operations.

� Skeletal member function bodies for user-defined operations.

� Minimally-implemented member function bodies for get and set
operations provided for data members generated from the class
associations.

Class Definition and Base List

Following the annotations for a class, the C++ code generator produces
the class definition. The head of the definition is the keyword class
followed by the name you gave the class in the Rational Rose model.

The class definition can include a base list that contains one entry for
each of the class’ inheritance relationships. Each entry in the base list
can include additional keywords to indicate visibility and whether or
not the inheritance is virtual. In a Rational Rose model, visibility and
virtual inheritance are specified in the specification for the inheritance
relationship.

Class Access Specification

Within the class definition body, the C++ code generator produces
declarations for the class data members and member functions,
grouped according to their access. The C++ code generator produces
the appropriate access keyword preceding each of four separate access
levels:

{
public:
// Public members...
protected:
// Protected members...
private:
// Private members...
private: // implementation
Rational Rose 2000e, Using Rose C++ 25

Chapter 2 C++ Code Generation
// Private implementation members...
};

The Rational Rose notation has four levels of visibility, while C++ has
only three. The private implementation level is realized as a second
private level. By default, all data members are generated in this part.
While there is nothing to prevent a friend function from accessing
private implementation members directly, the intent of private
implementation access is to indicate that members should never be
accessed directly outside the class, even by friends.

The C++ code generator determines the direct access of a class member
using information from specifications and code generation properties.

The access of data members is determined by the value of the
association DataMemberVisibility property. By default, data members are
generated in private implementation.

The access of get and set operations for data members is determined
by the value of the Visibility field in the corresponding Association
Specification. By default, member functions for get and set operations
are generated with public access.

The access of each standard operation member function is determined
by a class property with the name “standardopVisibility” where
standardop is the name of the standard operation. By default, member
functions for standard operations are generated with public access.

The access of each user-defined operation is determined by the value
of the Visibility field in the operation’s specification. By default,
member functions for user-defined operations are generated with
public access.

Class Friend Declarations

After the private implementation members, the C++ code generator
produces declarations for friends of the class. A friend declaration is
generated for any relationship in which the class is the supplier and
the Friendship Required field in the relationship specification is set to
True. The name of the friend is the name of the client in the
relationship.
26 Rational Rose 2000e, Using Rose C++

Model-to-Code Correspondences
In the following example, class Rectangle is declared as friend of class
Screen and has access to private members of Screen.

class Rectangle : virtual public Shape
{

public:
// Public members...
protected:
// Protected members...
private:
// Private members...
private: // implementation
// Private implementation members...
friend class Screen;

};

Code Generated for Class Attributes

By default, a class attribute is represented in code as a data member
and a pair of get and set member functions for accessing the data
member. The default code that is generated consists of:

� A private implementation data member whose type specified in the
Rose model and whose name is based on the DataMemberName
value.

� A pair of private get and set member functions whose names are
based on the GetName and SetName values, respectively.

The C++ code generator declares the data member and the get and set
member functions in the class definition. If the class has not been
assigned to a module, this code is generated in the header file; if the
class has been assigned to a module, this code is generated in the
implementation file.

The C++ code generator produces the definitions for the get and set
member functions in the implementation file using a form of the code
region. These code regions specify that the definition source code is to
be regenerated each time code generation is invoked. If you modify a
definition and wish this modification to be preserved in subsequent
iterations, change the preserve argument in the code region’s begin
annotation from its default setting of no to yes.
Rational Rose 2000e, Using Rose C++ 27

Chapter 2 C++ Code Generation
A number of factors affect the actual code that is generated for a class
attribute:

� The GenerateDataMember property controls whether or not a data
member is generated.

� The type of the data member is affected by:

❑ The type specified in the Rational Rose model.

❑ The containment of the attribute.

� The static adornment generates the static keyword for the data
member.

An initial value can be specified for the attribute in the Rational Rose
model:

� Visibility adornments and properties affect access of the data
member and its get and set operations.

� The get and set operations for the data member are affected by:

❑ The GenerateGetOperation and GenerateSetOperation properties,
which control whether the member functions are generated.

❑ The GetSetKinds, GetIsConst, GetSetByReference, and
SetReturnsValue properties, which control other details about the
member functions.

� If the type of the attribute references declarations of other classes,
you must draw an association relationship from the class
containing the attribute to the referenced class. This ensures that
the referencing and referenced classes are in the correct order if
they are in the same module, or that the appropriate include gets
generated if they are not. In the latter case, the same effect can be
achieved by adding a module dependency relationship to the
appropriate module diagram. A module dependency relationship is
also required if the attribute references a declaration in the
declarations or additional declarations protected code region of
another module.

Code Generated for Class Utilities

For a class utility in a Rational Rose model, the C++ code generator
produces the same header and implementation code as a class.
However, since class utilities do not have instances, all operations for
a class utility are static.
28 Rational Rose 2000e, Using Rose C++

Model-to-Code Correspondences
Though class property sets can be attached to class utilities, many of
the code generation properties for classes are invalid for class utilities.
For example, if you set the GenerateDestructor property to True for a
class utility and then generate code, the C++ code generator displays
an error message in the log.

The C++ code generator produces the following code constructs in the
header file for the class utility:

Note: This code is generated in the implementation file if you have
assigned the class utility to a module body.

� The class definition, including the class name and base list.

� Declarations for static member functions from the operations listed
in the class specification. Operations need not be marked static
in their specification.

� Declarations for static data members.

The C++ code generator produces the following code constructs only in
the implementation file:

� Definitions for static data members.

� Skeletal definitions for static member functions.

Code Generated for Parameterized Classes, Instantiated Classes and
Class Utilities

The generation of code for parameterized and instantiated classes and
utilities depends on the value of the AllowTemplates project property.
This property controls whether the C++ code generator produces
templates for parameterized classes. This is significant because some
C++ compilers do not support templates.

If the AllowTemplates project property is set to False, parameterized and
instantiated classes and class utilities are not supported. If you try to
generate a parameterized or instantiated class or class utility, the C++
code generator displays an error message in the log.

If the AllowTemplates project property is set to True, the C++ code
generator produces code for parameterized and instantiated classes
and class utilities.
Rational Rose 2000e, Using Rose C++ 29

Chapter 2 C++ Code Generation
Parameterized Classes

A class template definition is generated for each parameterized class or
class utility. For example, a parameterized class with the name Stack
generates:

template <class T>
class Stack { }

To specify template parameters, also called arguments—in this
example, class T—you enter them in the Attributes field in the
specification for the parameterized class (right-click in the Attributes
list and click Insert, then enter the arguments in the Name field). As in
C++, you specify a type-valued parameter using the typename class.
Every parameterized class must have at least one parameter.

The C++ code generator produces data members and member
functions as for a class.

Instantiated Classes

An instantiated class or class utility generates a typedef in the header
file for the instantiated class (or in the implementation file, if you have
assigned the class to a module body). For example, the C++ code
generator generates the following typedef for Int_Stack, an
instantiation of the parameterized class Stack:

typedef Stack<int> Int_Stack;

To specify arguments for an instantiated class, enter them in the
Parameters field in the specification for the instantiated class (right-
click in the Attributes list and click Insert, then enter the arguments in
the Name field).

The C++ code generator produces data members and member
functions as for a class. The C++ code generator ignores any operations
in an instantiated class that are not defined in the corresponding
parameterized class.

Parameterized and Instantiated Class Utilities

The code generated for parameterized and instantiated class utilities is
the same as that for parameterized and instantiated classes, except
that member functions are generated as static.
30 Rational Rose 2000e, Using Rose C++

Model-to-Code Correspondences
Code Generated for Association Relationships

An association is a relationship among two or more classes. Code can
be produced to efficiently traverse the relationship in neither, one, or
both directions.

The ends of each association are called a role. Roles can be labeled with
an identifier that describes the role that an associate class plays in the
association. A role has both Rational Rose model and code generation
properties that affect the generated code which traverses to that role.
For example, marking a role navigable means that traversal from the
opposite role’s class to this role’s class is to be implemented. Relative
to a given direction of traversal, the roles can be designated as the
client role and the supplier role, respectively. Of course, these
designations are exchanged when considering traversal in the opposite
direction.

By default, an association relationship is represented in code as a data
member and a pair of get and set member functions for accessing the
data member in each client class whose corresponding supplier role is
marked navigable. In the simplest case, when each client class is
associated with exactly one supplier class, the default code that is
generated consists of:

� A private implementation data member whose type is the supplier
class and whose name is based on the DataMemberName value.

� A pair of public get and set member functions whose names are
based on the GetName and SetName values, respectively.

The C++ code generator declares the data member and the get and set
member functions in the class definition.

The C++ code generator produces the definitions for the get and set
member functions in the implementation file using a form of code
region; these code regions specify that the definition source code is to
be re-generated each time the code generator is invoked. If you modify
a definition and wish this modification to be preserved in subsequent
iterations, change the preserve argument in the code region’s begin
annotation from its default setting of no to yes.
Rational Rose 2000e, Using Rose C++ 31

Chapter 2 C++ Code Generation
A number of factors affect the actual code that is generated for an
association relationship:

� The GenerateDataMember property controls whether or not a data
member is generated.

� The type of the data is affected by:

❑ The value of the ContainerClass and QualifiedContainer
association-role properties of the supplier role of the
relationship.

❑ The ordered constraint of the supplier role.

❑ The qualifiers of the supplier role.

❑ The cardinality and containment adornments of the association
relationship.

❑ The value of the ImplementationType class property for the
supplier class.

� The static adornment generates the static keyword for the data
member.

� Visibility adornments and properties affect access of the data
member and its get and set operations.

� The get and set operations for the data member are affected by:

❑ The GenerateGetOperation, GenerateSetOperation,
GenerateQualifiedGetOperation, GenerateQualifiedSetOperation,
InlineGet, InlineSet, InlineQualifiedGet, and the InlineQualifiedSet
properties, which control whether the member functions are
generated.

❑ The qualifiers of the supplier role.

❑ The GetSetKinds, GetIsConst, GetSetByReference, SetReturnsValue,
and QualifiedSetReturnsValue properties, which control other
details about the member functions.

� The ForwardReferenceOnly property controls whether a #include
directive or a forward declaration is generated for the supplier class
of the association relationship.

There are two pairs of get and set operators:

� The unqualified get and set operators allow you to get or set the
entire container of supplier objects associated with a single client
object.
32 Rational Rose 2000e, Using Rose C++

Model-to-Code Correspondences
� The qualified get and set operators allow you to get or set the
container of supplier objects associated with a single client object
and a fixed value for each of the supplier role’s qualifiers.

The Association Class

Normally, the get and set operations in a client class implement
traversal directly from a client object to supplier objects. If there is an
association class, these operations implement traversal to zero or more
association class objects. The association class has data members and
get and set operations which implement traversal from its objects to an
object of each associate class.

The properties which affect the data members and get and set
operations generated in the association class are:

� AssocClassContainer

� GenerateAssocClassDataMember

� GenerateAssocClassGetOperation

� GenerateAssocClassSetOperation

� AssocClassGetIsConst

� AssocClassSetReturnsValue

� InlineAssocClassGet

� InlineAssocClassSet
Rational Rose 2000e, Using Rose C++ 33

Chapter 2 C++ Code Generation
Code Example of an Association Relationship

This example shows data member width of class Rectangle and its
corresponding get and set member functions.

The C++ code generator produces the data member and declarations of
the get and set member functions in the header file for a class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body:

public:
...

// Get and Set Operations for Associations
const int get_width() const;
void set_width(const int value);

...
private: // implementation
// Data Members for Associations
...
//##begin Rectangle::width:$:assoc%.has preserve=no

int width;
//##end Rectangle::width:$:assoc%.has
...

The C++ code generator produces the definitions for the get and set
member functions in the implementation file:

// Get and Set Operations for Associations
const int Rectangle::get_width() const
{
//##begin Rectangle::get_width%.get preserve=no

return width;
//##end Rectangle::get_width%.get
}
void Rectangle::set_width(const int value)
{
//##begin Rectangle::set_width%.set preserve=no

width = value;
//##end Rectangle::set_width%.set
}

34 Rational Rose 2000e, Using Rose C++

Model-to-Code Correspondences
Code Generated for Generalization/Inheritance Relationships

When the C++ code generator produces a definition for a class (the
client) that inherits from another class (the supplier), the name of the
supplier class is included in the base list of the class definition. The
access of the inheritance’s relationship and whether or not the
inheritance is virtual are determined by information in the
inheritance’s relationship specification.

When generating code for the client class, the C++ code generator also
generates a #include directive referencing the file that contains the
supplier class. If the definition of the client class is generated in a
header file, the #include directive is generated in the header file;
otherwise, it is generated in the implementation file.

Some C++ compilers do not support protected inheritance. You can
control the access that the C++ code generator produces for protected
inheritance relationships by setting the AllowProtectedInheritance
project property.

Code Generated for Instantiates Relationships

An instantiates relationship documents the relationship between an
instantiated class and the parameterized class from which it is
instantiated. The generation of code for parameterized and instantiated
classes and utilities depends on the value of the AllowTemplates project
property. This property controls whether the C++ code generator
produces templates for parameterized classes. This is significant
because some C++ compilers do not support templates.

If the AllowTemplates project property is set to False, parameterized and
instantiated classes and class utilities are not supported. If the
AllowTemplates project property is set to True, the C++ code generator
produces a class template definition for each parameterized class or
class utility.

For an instantiates relationship, the C++ code generator produces a
typedef in the header file for the instantiated template.

Note: If you have assigned the class to a module body, this code is
generated in the implementation files.
Rational Rose 2000e, Using Rose C++ 35

Chapter 2 C++ Code Generation
Code Generated for Cardinality and Containment Adornments for
Associations

When a data member is generated for an association, and the
ContainerClass property for that relationship is empty (the default), the
C++ code generator looks at the supplier cardinality, the kind of
containment of the association, and the presence or absence of the
ordered constraint to determine what kind of data member to generate.
(The client cardinality of the association is ignored.) In general:

� The cardinality of the supplier in the relationship determines the
data member type. By default:

❑ A supplier cardinality of 1 generates a simple field.

❑ A supplier cardinality greater than 1 usually requires an array
or container class.

� The relationship type determines whether the data member holds
the actual data or pointers to the data:

❑ An aggregation relationship generates a “by-value” data
member—the data member contains instances of the supplier
class.

❑ A non-aggregation relationship generates a “by-reference” data
member—the data member contains pointers to instances of the
supplier class.

Note: If you assign containment model properties that do not conform
to the above, they are ignored. For example, assigning the
OneByReference property to an aggregation relationship.

The following table summarizes the properties that determine the types
generated for the various combinations of supplier cardinality,
containment, and ordering. Most of these types either are, or are
derived from, the supplier class (T). Other types are container classes
provided by project properties (click on the container class names in
the table to see which properties generate them).

Note: You can use the default container classes if you provide
implementations for them. Otherwise, you should set the appropriate
properties to specify container classes of your own.
36 Rational Rose 2000e, Using Rose C++

Model-to-Code Correspondences
Table 8 Combination of Supplier Cardinality, Containment and
Ordering

For example, set the UnboundedByReferenceContainer property to
MyHeap. Then, whenever the C++ code generator encounters a
relationship with by-reference containment and a supplier cardinality
of n, the generated data member has the type MyHeap.

Code Generated for Standard Operations

When generating code for a class, the C++ code generator can also
generate skeletal member functions for one or more standard
operations. The C++ code generator determines whether and how to
generate member functions for standard operations from class
property values. For example, the GenerateAssignmentOperation and
AssignmentKind class properties determine whether or not the C++ code
generator produces an assignment operation for a class and if so, its
definition and visibility.

For each enabled standard operation, the code generator produces:

� A member function declaration in the header file for the class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.

� A skeletal function body in the implementation file containing a
code region. Complete the member function by inserting
implementation code between the annotations delimiting the code
region.

Supplier
Cardinality

Order
Constraint

By Value
(aggregation relationships)

By Reference
(non-aggregation relationships)

1
0..1
Exact Number, >1
Exact Number, >1

yes
yes
yes
no

OneByValueContainer
OptionalByValueContainter
FixByValueContainer
UnorderedFixByValueContainer

OneByReferenceContainer
OptionalByReferenceContainer
FixedByContainerReference
UnorderedFixByReferenceContainer

Bounded Range
Bounded Rante

yes
no

BoundedByValueContainer
UnorderedBoundedByValueContainer

BoundedByReferenceContainer
UnorderedBoundedByReferenceContainer

UnboundedRange
UnboundedRante

yes
no

UnboundedByValueContainer
UnorderedUnboundedByValueContainer

UnboundedByReferenceContainer
UnorderedUnboundedByReferenceContainer

Qualified
Qualified

yes
no

QualifiedByValueContainer
UnorderedQualifiedByValueContainer

QualifiedByReferenceContainer
UnorderedQualifiedByReferenceContainer
Rational Rose 2000e, Using Rose C++ 37

Chapter 2 C++ Code Generation
This example shows a member function declaration and corresponding
skeletal function body for an assignment operation for class
Rectangle:

// Assignment Operation
const Rectangle & operator=(const Rectangle &right);
// Assignment Operation
const Rectangle & Rectangle::operator=(const Rectangle
&right)
{
//##begin Rectangle::operator=%.body preserve=yes
//##end Rectangle::operator=%.body
}

To overload a standard operation:

1. Generate the default standard operation by setting the relevant
class properties.

2. Create one or more additional operations with the same name
but different parameters in the Class Specification.

Code Generated for User-Defined Operations

When generating code for a class, the C++ code generator produces a
skeletal member function for each operation listed in the class
specification. For each such operation, the C++ code generator
produces:

� A member function declaration in the header file for the class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.

� A skeletal function body in the implementation file containing a
code region. You complete the member function by inserting
implementation code between the annotations delimiting the code
region.

The C++ code generator uses the information in the operation’s
specification, as well as operation code generation properties, to
generate the member function.

Note: The C++ code generator automatically generates code for skeletal
member functions for standard operations, which are generated based
on the values of class properties.
38 Rational Rose 2000e, Using Rose C++

Model-to-Code Correspondences
Consequently, you do not need to list these operations in the class
specification unless you want to overload or override them.

Declarations Generated for User-Defined Operations

For each user-defined operation of a class, the C++ code generator
produces the following code in the header file for the class:

Note: This code is generated in the implementation file if you have
assigned the class to a module body:

� Comments generated from fields in the operation specification,
such as Documentation, Time and Space Complexity, and
Exceptions.

� The member function declaration, generated from fields in the
operation specification, such as Name, Formal Parameters, and
Return Class.

The declaration is generated under the appropriate access keyword,
according to the value of the Visibility field of the operation
specification.

Additional keywords, such as static, virtual, or const can be
generated for the member function declaration based on its
OperationKind and OperationIsConst values.

Implementation Code Generated for User-Defined Operations

For each user-defined operation of a class, the C++ code generator
produces the following in the implementation file:

� A member function definition, generated from fields in the
operation specification, such as Name, Formal Parameters, and
Result.

� Additional keywords, such as static, virtual, or const can be
generated for the member function declaration based on its
OperationKind and OperationIsConst values.

� Entry code, generated from text specified for the operation
EntryCode property.

� A preserved code region for specifying the body of the member
function.

� Exit code, generated from text specified for the operation ExitCode
property.
Rational Rose 2000e, Using Rose C++ 39

Chapter 2 C++ Code Generation
Code Generated for Modules

For each module specification or module body in a Rational Rose
model, the C++ code generator produces:

� Module Annotations extracted from the module specification and
module properties.

� Directives for Inclusion Protection (in header files only).

� #include Directives based on relationships in class and module
diagrams, as well as module properties.

� A code region for user-specified auxiliary #include directives.

� Module Declarations, if any, extracted from the module
specification.

� A code region for user-specified auxiliary global declarations.

� Class Declarations Definitions for classes assigned to the module,
which include code regions as described in “Code Generated for
Classes” on page 24.

� Orphan Code, if any, resulting from code regions that no longer
correspond to model components due to changes in the model.

Module Inclusion Protection

Before the #include statements in a header file, the C++ code
generator produces a set of preprocessor directives that prevents
duplicate #include directives in the file. This mechanism eliminates
the need to compute module dependencies. The preprocessor
directives are of the form:

ifndef symbol
define symbol

...#include directives...

...module contents...
endif

where symbol is based on the module’s InclusionProtectionSymbol value.
A corresponding #endif directive is generated at the end of the file.
40 Rational Rose 2000e, Using Rose C++

Model-to-Code Correspondences
For example, these are the preprocessor directives generated by the
C++ code generator for a module specification named Array:

ifndef Array_H
define Array_H

...#include directives...

...module contents...
endif

Module #include Directives

The code generator writes #include directives from up to three
sources:

� Relationships in class and module diagrams

� Module properties

� A preserved code region for #include directives

The C++ code generator produces the #include directives in the header
file for a class, unless you have assigned the class to a module body;
in this case, the code is generated in the implementation file.

In addition, when generating an implementation file that has a
corresponding header file, the C++ code generator produces a single
#include directive for the header file in the implementation file. For
example, the following code is generated in the implementation file for
module-body array:

// array
include "array.h"

The IncludeBySimpleName module specification property and
IncludeBySimpleName module-body property control whether the
#include directives that the C++ code generator produces specify the
path of the included files or only the file names.

Relationships in Class and Module Diagrams

The C++ code generator produces a #include directive for each header
file on which the module depends.

The C++ code generator determines which header files to include in a
module based on:

� Direct dependencies of the module, as shown in module diagrams.
Rational Rose 2000e, Using Rose C++ 41

Chapter 2 C++ Code Generation
� Generalization relationships and associations for each class that is
defined in the module.

Module Properties

The C++ code generator produces a group of #include directives based
on text specified in the AdditionalIncludes module property.

The generated code is of the form:

//Additional Includes:
#include “a.h”
#include “b.h”
...

Preserved Code Region for #includes

The C++ code generator produces a code region in which you can enter
additional #include directives when you edit the file. The code region
is delimited by annotations of the form:

//##begin includes preserve=yes
//##end includes

You can insert #include directives between the annotations. In this
code region, include any header files that are specific to the module.
The #include directives in the code region are preserved when the C++
code generator regenerates code.

Module Declarations

After the #include directives, the C++ code generator produces any
additional declarations that you have specified in the Declarations field
of the module specification.

Following the declarations from the module specification, the C++ code
generator produces a code region in which you can enter additional
declarations when you edit the file. The code region is delimited by
annotations of the form:

//##begin declarations preserve=yes
//##end declarations

You can insert additional declarations between the annotations. The
declarations in the code region are preserved when the C++ code
generator re-generates code.
42 Rational Rose 2000e, Using Rose C++

Model-to-Code Correspondences
Module Orphan Code

If you delete or rename a model component for which code has been
previously generated, the code generator treats all code regions
associated with that model component as “orphaned.” Rather than
deleting these code regions, the C++ code generator moves them to a
special section at the end of its file.

Depending the setting of the AlwaysKeepOrphanedCode project
property, the C++ code generator sets the preserve argument of these
regions to yes or no. If AlwaysKeepOrphanedCode is False (the default),
the preserve argument of the orphaned regions is set to no. This means
the orphaned code in these regions is discarded the next time code is
generated—you should first intercede with a text editor if you plan to
salvage this code. If AlwaysKeepOrphanedCode is True, the preserve
argument of the orphaned regions is set to yes. In this case, unless you
remove the orphaned code with a text editor or change the value of
AlwaysKeepOrphanedCode to False, the orphaned code is preserved
through subsequent code generations.

The orphan code is of the form:

#if 0
//##begin code_region preserve=no

<your implementation code>
//##end code_region
#endif

where code_region identifies the model component that was deleted
or renamed.

Code Generation and Component Packages

When the C++ code generator produces code for the classes and
modules in a project, the resulting files are stored in a directory
structure. The root of this directory structure is the directory specified
by the Directory project property.

By default, each top-level component package in a Rational Rose model
is stored in a separate subdirectory of the project directory. A nested
component package is stored in a subdirectory of its parent’s
component package’s directory. This is recursive; nested component
Rational Rose 2000e, Using Rose C++ 43

Chapter 2 C++ Code Generation
packages in the model are mapped to nested subdirectories, for
example, module files in subsystem E are stored in the subdirectory
c:\myproj\d\e, where c:\myproj is the name of the project directory:

Figure 1 Naming Project Directories

The name of each subdirectory is determined by the value of the
Directory subsystem property. By default, the subdirectory name is
derived from the name of the corresponding component package.

If the CreateMissingDirectories project property is set to True, as the C++
code generator produces module files, it creates any subdirectories it
needs automatically.

If, in its specification, a logical package is assigned to a particular
component package, the module files that correspond to that logical
package are stored in that component package. Otherwise, the C++
code generator implicitly maps the logical package to a component
package by creating a subdirectory in the project file.
44 Rational Rose 2000e, Using Rose C++

Chapter 3

C++ Reverse Engineering

Reverse engineering is the process of examining a program’s source
code to recover information about its design. The Rational Rose C++
Analyzer extracts design information from a C++ application’s source
code and uses it to construct a model representing the application’s
design—its logical and physical structure. You can then use Rational
Rose to view and manipulate this model.

The Rational Rose C++ Analyzer is packaged as a separate executable
that is invoked independently of the Rational Rose executable.

Key Concepts

To reverse engineer a program, you must specify:

� The source files which represent the program.

� The location of any source code libraries referenced by these
source files.

� How the C++ constructs in the source files should be mapped to
the UML, OMT, or Booch notation.

� What diagrams should be created.

The Analyzer captures this information for a particular program in a
project that you access whenever you wish to analyze that program. A
project contains several components—each of which maintains a
specific subset of this information. The Directory list component, for
example, enumerates the directories containing the program’s source
files. You can name a project, save it in a file, and recall it whenever
you reverse engineer the program it describes.
Rational Rose 2000e, Using Rose C++ 45

Chapter 3 C++ Reverse Engineering
An Example Program

Consider the following program, represented by two source files located
in directory c:\rose\example. The file propel.h contains:

class engine
{

int start();
int throttle(int setting);
//control speed
int stop();

};

and the file move.h contains:

#include "propel.h"
class vehicle
{

private:
engine motive_power;

};

//for use on land
class car : public vehicle
{
};

//for use on sea
class boat : public vehicle
{
};

These files illustrate many of the operations described in this section.
You can create this directory and these two files and try the operations.
46 Rational Rose 2000e, Using Rose C++

Key Concepts
Creating a New Project

When you start the Analyzer, it displays its application window:

Figure 2 Application Window

At startup, the application window contains a menu bar, a toolbar, a
status bar, and an icon representing the Analyzer’s Log window.
Though many of the toolbar icons are inactive at this point, letting the
cursor rest on an icon briefly produces a tool tip describing the icon’s
function.

Menu Bar Title Bar

Menu Control

Minimize Button

Maximize ButtonToolbar

Status Bar
Rational Rose 2000e, Using Rose C++ 47

Chapter 3 C++ Reverse Engineering
To create an empty new project:

1. While depressing the SHIFT key, click File > New. The analyzer
displays a project window named project 1 within the application
window:

Figure 3 Project Window—Simple View

The project window is a child of the application window. The
application window can simultaneously display multiple child
windows using horizontal and vertical scroll bars. To display these
windows, click Window > Cascade or Window > Tile. You can use
this feature to compare two project windows.
48 Rational Rose 2000e, Using Rose C++

Key Concepts
2. Click Windows > New Window to make multiple copies of the same
window. The Analyzer automatically maintains consistency
between these copies. When working with a single project, click on
the project window’s maximize button to provide a complete
display:

Figure 4 Maximize a Project Window

The Analyzer can display several different views of a project in a
project window. The view shown on the previous page is the Simple
view; other views are described in the Analyzer User Interface
section that follows.
Rational Rose 2000e, Using Rose C++ 49

Chapter 3 C++ Reverse Engineering
3. Click Caption and enter the descriptive caption "Transportation" in
the resulting Caption dialog box. Click File > Save As and use the
Save Project As dialog box to save the project in file
c:\rose\example\transprt.pjt. The Analyzer updates the project
window accordingly:

Figure 5 Project Window with Caption
50 Rational Rose 2000e, Using Rose C++

Key Concepts
Selecting Source Code to Reverse Engineer

To identify source files for reverse engineering, place them on the file
list by clicking Files in the project window:

Figure 6 Project Files Dialog Box

You can navigate the Directory Structure list by clicking with the
mouse. Double-clicking on a directory entry both selects it and
displays any subdirectories. The currently selected directory is named
after the Current Directory label in the dialog box.

The patterns in the File Filter box determine which files in the Current
directory are candidates for addition to the file list; such candidates are
displayed in the Files Not In List box. Since the Analyzer’s default File
Filter patterns include *.h, the files move.h and propel.h are shown
in the Files Not In List box.

To add a file shown in the Files Not In List box to the files list, click on
its entry to select it, and then click Add Selected. The file is moved from
the Files Not In List box to the Files In List box. To add all files in the
Files Not In List box to the files list, click Add All.
Rational Rose 2000e, Using Rose C++ 51

Chapter 3 C++ Reverse Engineering
To remove a file from the file list, click on its entry in the Files In List
box, and then click Remove Selected. The file is moved from the Files
In List box to the Files Not In List box. To remove all files in the Files
In List box from the files list, click Remove All.

To move multiple files between the Files Not In List and Files In List
boxes, select multiple contiguous entries in either the Files In List or
Files In List list boxes by holding the shift key while clicking on the first
and last entries of the selection. Clicking on an entry in either list box
while depressing the CONTROL key switches that entry’s selection status
without deselecting any other entries. Add Selected and Remove Se-
lected operate on all selected file entries.

To add both move.h and propel.h to the file list, click Add Selected:

Figure 7 Working in the Project File Dialog Box

Note: The directory containing move.h and propel.h has been
automatically added to the project Directory list.
52 Rational Rose 2000e, Using Rose C++

Key Concepts
Click OK to accept these changes. The Analyzer updates the project
window accordingly:

Figure 8 Project Directories List

Note: The project directory list entry contains two paths:

c:\rose\example—the source directory path

$DATA\rose\example—the associated data directory

When the Analyzer performs semantic analysis of a source file, it
creates a data file containing the results of this analysis. Using
incremental compilation technology, the Analyzer uses the information
in these data files to greatly reduce the time required to reverse
engineer a program that was previously reverse engineered but later
modified. The data file associated with a source file is stored in a data
directory that the Analyzer creates and associates with the source
directory containing the source file.

To facilitate team development, the Analyzer’s default data directory
naming pattern incorporates the virtual symbol $DATA; virtual
symbols are distinguished by a leading $ (dollar sign). Using the
Analyzer’s Path Map, each developer can specify their own physical
path-name mappings for virtual symbols used anywhere in a project.

project subsystem assignment
project category assignment

analysis status

filename
module kind icon

code regeneration icon

analysis type

associated data directory
directory on Directory list
Rational Rose 2000e, Using Rose C++ 53

Chapter 3 C++ Reverse Engineering
The procedure for establishing a Path Map entry for $DATA is
described in the following subsection. You can directly specify a
directory list entry’s data directory using the project Directory List
dialog box displayed when you click Directories from the project
window. This dialog box modifies the data directory naming pattern
used by the Analyzer when associating a data directory with a source
directory. Procedures for utilizing the project Directory List dialog box
to perform these actions are described in “Editing the Directory List”
on page 106.

Note: Adding move.h and propel.h to the file list also automatically
updates the project’s Extension list, adding an entry for .h.

The entry for each file on the file list indicates its code regeneration
policy, module kind, analysis type, analysis status, project category
assignment, and project subsystem assignment.

Code Regeneration Policy

Code regeneration policy designates source files associated with
existing class libraries or legacy code. Classes reverse engineered from
such files should have their regeneration properties set to False,
preventing Rational Rose C++ from subsequently generating code that
overwrites the existing code. When you add a file to the file list, its code
regeneration policy defaults to follow the policy of its parent directory,
which defaults to enabled. Thus, you need only modify a file’s
regeneration policy if it is associated with existing code that doesn’t
change in subsequent round-trip iterations. See “Code Regeneration
Policy” on page 103 for more information.

Module Kind

A file’s module kind identifies it as a specification (header) or body
(implementation). This information is used when reverse engineering
the physical part of the generated model. When you add a file to the file
list, its module kind is set by its file name extension, which defaults to
specification for .h file name extensions, and body for all others.

Analysis Type

The analysis type designation allows the analyzer to handle source files
that are context-dependent or syntactically incomplete; a source file is
context-dependent if it references symbols defined in another source
file without explicitly declaring a #include for that source file.
54 Rational Rose 2000e, Using Rose C++

Key Concepts
A source file’s analysis type characterizes its context dependence and
syntactic completeness:

Table 9 Source File’s Analysis Type

When a file is added to the file list, the Analyzer designates it as Type 1.
Additional information about analysis types and their management is
provided in “Analysis” on page 73.

Analysis Status

The analysis status designation indicates the Analyzer’s current
understanding of each source file’s semantic correctness. Typical
values include:

Table 10 Analysis Status

Project Category and Subsystem Assignments

Each class and module reverse engineered from source code can be
assigned to a category (logical package) and subsystem (component
package), respectively. If the source code being reverse engineered was
generated by the Rational Ros eC++ code generator, it contains

Analysis
Type

Syntactically
Complete

Context-
Independent

1 Yes Yes

2 Yes No

3 No Unknown

Analysis Status Semantic Correctness

Unknown The source file has not been analyzed since
being added to the File list, or has not been
updated since the project was opened.

Analyzed The last semantic analysis found no errors.

CodeCycled The last semantic analysis found no errors,
and the source file can support round-trip
engineering.

Has Errors The last semantic analysis found errors; these
can be displayed by double-clicking on the File
list entry.
Rational Rose 2000e, Using Rose C++ 55

Chapter 3 C++ Reverse Engineering
annotations that accurately specify these assignments. If such
annotations are not present, assign each source file to a category and
subsystem (logical and component package). The Analyzer utilizes
these assignments—referred to as the project category assignment and
project component package assignment respectively—to properly
assign model components extracted from a source file to the correct
category and subsystem (logical and component package). The
Analyzer initializes these project assignments based on directory
structure. To modify them, click Action > Set File Properties.

The Analyzer has assigned move.h and propel.h to a category (logical
package) named example and a subsystem (component package)
named example.

Establishing a Path Map Entry

Rational Rose provides the Path Map mechanism to support parallel
development by teams of analysts, architects, and engineers. The Path
Map enables Rational Rose to create model files whose embedded
paths are relative to a user-defined symbol. This allows Rational Rose
to work with models moved or copied among workspaces and archives
by redefining the actual directory associated with the user-defined
symbol. Refer to the Team Development chapter in your Rational Rose
2000e, Using Rose, for more information.

The Analyzer utilizes this same mechanism to:

� Convert physical paths to virtual paths when generating model files
containing an exported design.

� Convert physical paths to virtual paths when saving a project to a
file.

� Convert virtual paths to physical paths when loading a project from
a file.

� Convert virtual paths to physical paths in a project’s File list, Base
list, Directory list, and export options.

The project Directory list for transprt contains a single source
directory, c:\rose\example, with which the Analyzer has associated a
data directory whose path is $DATA\rose\example. The symbol $DATA
in this path is a virtual symbol, designated by its leading $. The
Analyzer provides a Path Map mechanism to allow each developer to
uniquely map each virtual symbol to a physical path.
56 Rational Rose 2000e, Using Rose C++

Key Concepts
To define a mapping for $DATA, click File > Edit Path Map to display the
Virtual Path Map dialog box:

Figure 9 Virtual Path Map Dialog Box

This dialog box shows a Path Map with no current entries, but your
Path Map might already contain entries for several virtual symbols
such as $DATA and $DESIGN. Such entries were established during
your installation of Rational Rose.

To add an entry to the Path Map:

1. Enter the virtual symbol in the Symbol text box; this symbol must
begin with a $ character.

2. Enter the actual path in the Actual Path text box, or click Browse
to display a dialog box containing a file selector.

3. Optionally, enter a comment in the Comment text box.

4. Click Add.

To delete an entry from the Path Map, select it in the Virtual Symbol,
Actual Path, or Comment text boxes and click Delete.

To update the Path Map, click OK.
Rational Rose 2000e, Using Rose C++ 57

Chapter 3 C++ Reverse Engineering
If there is no entry for $DATA, create one by entering $DATA in the
Symbol text box, then enter c:\mydata in the Actual Path text box,
and then click Add:

Figure 10 Virtual Symbols

If a mapping for $DATA is present, click on its entry to place its
parameters in the Symbol, Actual Path, and Comment text boxes where
you can modify them:

Figure 11 Virtual Symbols and Parameters
58 Rational Rose 2000e, Using Rose C++

Key Concepts
Change the Actual Path text box to c:\mydata, update the Comment
appropriately, and then click Add:

Figure 12 Mapping Virtual Symbols

Click Close to exit the dialog box. Whether you created a new Path Map
entry, or modified an existing one, you have now specified that the
virtual symbol $DATA is mapped to c:\mydata. As it semantically
analyzes the source files in transprt, the Analyzer encounters the data
directory path $DATA\rose\example, whereupon it creates a directory
named c:\mydata\rose\example (if one does not already exist) and
places in this directory the data file generated by the analysis of each
source file in c:\rose\example.

$DATA and Drive Names

When $DATA is used in the initial position of the data specification, the
drive letter from the source is preserved. This assures the data on
different drives to be in unique directories.

For example, if $DATA = c:\rose_data but your source is on your d:
drive, the data path defaults to d:\rose_data.

If you are keeping data files on a different drive than your source files,
remove the drive letter and colon from the $DATA definition and begin
the data specification with the desired drive letter. For example:

c:$DATA\...
Rational Rose 2000e, Using Rose C++ 59

Chapter 3 C++ Reverse Engineering
Resolving References to Libraries

It is often the case that the source code representing the program you
wish to reverse engineer references symbols defined in external source
code libraries, such as those provided with C++ compilers or domain-
specific class libraries. You could add the directories containing these
external source files to your project and reverse engineer them along
with your source files, but this approach is inefficient when the
libraries are used by several engineers.

Instead, you can create an Analyzer project for each external library.
You then reference these library-specific projects in your project by
adding them your project’s base list. The Analyzer can then
successfully resolve references from source files in your project to
source files in the external libraries. A project that appears on another
project’s base list is referred to as a base project.

To add a project to your base list, click Bases in the project window to
display the Base Projects dialog box:

Figure 13 Base Projects Dialog Box

The upper half of this dialog box is a file requester that allows you to
select files containing projects representing external libraries. Click
Add to add a selected project file to the Selected Files box. Remove and
60 Rational Rose 2000e, Using Rose C++

Key Concepts
Remove All delete selected project files from the Selected Files box.
When you have added a project for each external library your source
files reference, click OK to update the base list.

During the Rational Rose C++ installation process, a default project
named analyzer.pjt is created in your Rational Rose installation
directory. A compiler-specific project, representing the source libraries
associated with your site’s C++ compiler, can also be installed and
placed on the base list of analyzer.pjt. This compiler-specific project
references the Path Map virtual symbols, which it resolves to the
directories containing these source libraries. During installation, you
identify the locations of these directories. Path Map entries defining the
appropriate virtual symbols are created using this information.

Click File > New without depressing the SHIFT key, and the Analyzer
creates the new project by copying analyzer.pjt. The new project
contains a base list entry referring to the project representing the
source libraries associated with your site’s C++ compiler. This is
necessary when the source code you intend to analyze references your
compiler’s source libraries.

You can use this mechanism to facilitate the use of one or more class
libraries used at your site: create a project for each class library, and
then add these projects to the base list of analyzer.pjt.

While depressing the SHIFT key, click File > New, to empty the new
project.

Analyzing Source Code

The process of reverse engineering is split into two steps: analysis
(syntactic and semantic), and export. This division is for efficiency—it
allows you to analyze a program once but create several different
Rational Rose models from it, varying the diagrams produced, or
focusing on different parts of the program as you learn more about it.

To analyze source files on the file list, select the files you want to
analyze, then click Action > Analyze. The Analyzer displays its progress
as it proceeds in the status bar, reporting the number of classes,
members, and errors encountered. The analysis status of any file
containing errors is set to Has Errors in the file list. Double-clicking on
such a file list entry expands the entry to display one line describing
each error found. Double-clicking on one of these error lines opens a
Rational Rose 2000e, Using Rose C++ 61

Chapter 3 C++ Reverse Engineering
File Viewer window on the source file, positioned on the line containing
the error. When errors are detected during Analysis, you can review the
Analyzer’s log by clicking Window > Log.

To select multiple files on the file list in the project window, drag the
mouse from one entry to another. Clicking on an entry while depressing
the CONTROL key switches that entry’s selection status without
deselecting any other entries. You can select every entry on the file list
by clicking Edit > Select All.

Select move.h and propel.h, and then click Action > Analyze. After
analysis, the status of move.h should be set to Analyzed, and the
status of propel.h should be set to CodeCycled.

Dealing with Common Errors

There are three common sources of errors encountered during
analysis:

� Unresolved references

� Language extensions

� Context-sensitive source files

Note: It is not necessary to achieve an error-free analysis before
proceeding to export design information to Rational Rose. Especially
when first reverse engineering large bodies of pre-existing code, it is
often more effective to proceed once most of the “important” source code
analyzes without error, deferring elimination of errors in less-important
code to later iterations.

Unresolved References

The Analyzer can report errors in source code that compiles correctly.
Error messages containing the phrase "cannot #include" usually
indicate an incomplete base list, which prevents the analyzer from
resolving references to declarations in your compiler-specific or
library-specific source files. Eliminate such errors by determining
which directories contain the missing header files, and adding these
directories to a project listed in your project’s base list. To force re-
analysis, while depressing the SHIFT key, click Action > Analyze.
62 Rational Rose 2000e, Using Rose C++

Key Concepts
Language Extensions

Another cause of analysis errors in source code that compiles cleanly
is that your code can contain C++ language extensions supported by
your compiler but not recognized by the analyzer. Alternatively, your
source code might use improper or obsolete C++ constructs that are
accepted by the compiler but reported as errors by the Analyzer. In
many cases, you can work around such problems by adding symbols
to the Defined Symbol list, thereby enabling the Analyzer to
successfully preprocess and parse “non-standard” C++ source code.

Context Dependent Source Files

Error messages that contain the phrase "cannot find" are usually
caused by a source file whose semantic analysis is context dependent.
The Analyzer provides the analysis type designation to permit these
source code files to be handled properly. Such errors are frequently
caused by source files which reference symbols defined in another file
without explicitly including that file. You correct the problem by adding
the appropriate #include directive, thereby making the source file
context independent. When this is not possible, click Action > Set Type
to designate the offending source file as Type 2.

Click Edit > Type 2 Contexts to modify the project’s Type 2 context by
adding directives that include the required source file. After closing the
Type 2 context, select the offending source file and then click Action >
Analyze.

Suppose, for example, that analysis of source file balance.h reports
the error "cannot find units," and you determine that units is defined
in source file currency.h. You observe that balance.h does not contain
the directive:

#include "currency.h"

To add the directive:

1. Select balance.h, and mark it as analysis Type 2.

2. Edit the project’s Type2 Context, and append the following
directives:

#if defined (t2_balance_h)
#include "currency.h"
#endif
Rational Rose 2000e, Using Rose C++ 63

Chapter 3 C++ Reverse Engineering
3. Select balance.h, and execute the Analyze command. The Analyzer
processes the directives in the Type 2 Context before analyzing
balance.h, and includes currency.h, defining units.

Deciding What to Export

Exporting a design to Rational Rose means creating a model file that
specifies model components and, optionally, diagrams. Before
exporting, you must specify:

� How the C++ constructs in the source files should be mapped to
the UML, Booch, or OMT notation.

� What diagrams should be created.

To provide flexibility, the Analyzer specifies this information for each
kind of C++ construct and relationship:

� Classes

� Utilities

� Modules

� Typedefs

� Fundamental types

� Data members

� Member functions

� Containment relationships

� Visibility relationships

� Inheritance relationships

� Friend relationships

The Analyzer provides export options that enable you to control the
handling of each of these constructs. The Classes export option
specifies whether each C++ class should be:

� Represented in the exported model, and whether this
representation should be conditioned on the class’ visibility.

� Drawn on a class diagram created in the exported model, and
whether this appearance should be conditioned on the class’
visibility.

� Documented in its specification by comments extracted either
before or after the class header.
64 Rational Rose 2000e, Using Rose C++

Key Concepts
To facilitate the management of export options, the Analyzer provides
export option sets, which are named collections of export option
settings that can be saved as part of a project. This creates an
appropriate export option set that can be easily reused, or shared
among team members.

The Analyzer provides three predefined Option Sets to support
common reverse engineering usages:

Table 11 Option Sets

To create a design from move.h and propel.h using Action > Detailed
Analysis, click Export To Rose to display the Export To Rose dialog box:

Figure 14 Export To Rose Dialog Box

Use the Option Set box to select the Detailed Analysis export Option
Set, which instructs the Analyzer to create both class and module
diagrams for the program being exported.

FirstLook For high-level examination of
preexisting source code

DetailedAnalysis For in-depth examination of
preexisting source code

RoundTrip For Round-Trip Engineering
Rational Rose 2000e, Using Rose C++ 65

Chapter 3 C++ Reverse Engineering
The Export To Rose dialog box provides two text boxes— File and
Title—that reflect current export option settings.

The File text box, which specifies the path to the generated model file,
is similarly initialized from the Model File export option. This value is
shown on the third line of the Summary of Options box. This value
includes the format code %f, which expands to a simple name
computed from the selected file list entries and the virtual symbol
$DESIGN.

The Title text box is initialized from the Design Title export option,
whose value is shown on the second line of the Summary of Options
box. The %c format code expands to the project caption. To modify the
title of diagram’s Design Title export option, click Action > Export To
Rose.

You can cause $DESIGN to resolve to c:\rose\example by adding:

$DESIGN = c:\rose\example

to the Path Map, then clicking Cancel in the Export To Rose dialog box,
and then clicking File > Edit Path Map.

Figure 15 Mapping the $DESIGN Symbol
66 Rational Rose 2000e, Using Rose C++

Key Concepts
This allows many users to utilize the same export Option Set, since the
mapping from $DESIGN to directory is driven by the Path Map, which
is unique to each user. Alternatively, you could directly edit the Export
To Rose dialog box’s File text box to specify a path to be used only
during this export operation.

After $DESIGN is defined, click Actions > Export To Rose. The File text
box in the Export To Rose dialog box now displays the actual path to
the generated model file after the virtual symbol is replaced as directed
by its Path Map entry:

Figure 16 Actual Path Displayed

Click OK to initiate generation of the model file. The Analyzer displays
its progress in the status bar, reporting the number of classes,
members, and errors encountered. If errors are produced, click
Window > Log to inspect the error messages.

Load c:\rose\example\example.mdl into Rational Rose by clicking File
> Open.
Rational Rose 2000e, Using Rose C++ 67

Chapter 3 C++ Reverse Engineering
If your default notation is UML, the logical package contains the class
diagram named “Reverse Engineered” as shown:

Figure 17 Reverse Engineered Class Diagram

If you clicked Options > Double Click To Diagram, double-clicking on
this logical package icon displays the following class diagram:

Figure 18 Example Class Diagram

Click Tools > Layout to produce the following class diagram:

Figure 19 Class Diagram After Running Layout

car

boatveh ic le

m otive_pow er
eng ine

-sta rt ():in t
-th ro ttle (se tting : in t):in t
-stop ():in t

ca r b o a t

veh ic le

m o tive_ p o w er

en g in e

-sta rt ():in t
-th ro ttle (se tting : in t):in t
-stop ():in t
68 Rational Rose 2000e, Using Rose C++

Key Concepts
Select the icon representing class car, and click Browse > Specification:

Figure 20 Class Specification for Car

Note: The comment preceding the declaration of this class in move.h
has been captured in the specification’s Documentation field. Also note
that the class car is assigned to module specification move.
Rational Rose 2000e, Using Rose C++ 69

Chapter 3 C++ Reverse Engineering
Select the engine class icon, and then click Browse > Specification:

Figure 21 Class Specification for Engine
70 Rational Rose 2000e, Using Rose C++

Key Concepts
Note: Each of engine’s operations has been captured, and the class
engine is assigned to module specification propel. Double-click on
operation throttle to display its specification:

Figure 22 Operation Specification for Throttle

Note: The comment preceding the declaration of throttle in propel.h
has been captured in the specification’s Documentation field.

To inspect the static architecture, click Browse > Module Diagrams to
display the module diagram named “Reverse Engineered” in the <top
level> component view:

Figure 23 Reverse Engineered Icon

example
Rational Rose 2000e, Using Rose C++ 71

Chapter 3 C++ Reverse Engineering
Click Browse > Module Diagrams to display the module diagram named
“Reverse Engineered” in the example subsystem (component package).
Then click Tools > Layout, to display the following static view of the
example program:

Figure 24 Example Module Diagram

Summary

Reverse engineering in the sample program required the following
steps:

1. Create a project that identified the program’s source files.

2. Establish Path Map entries for $DATA and $DESIGN.

3. Semantically analyze the source files.

4. Choose an export option set and export a model file.

5. Load the exported model file into Rational Rose.

These steps represent the typical process used to reverse engineer an
existing application and to better understand its design. When using
the Analyzer in support of an iterative software development process,
all five steps listed need only be performed during the first iteration.
Subsequent iterations typically involve only steps 3, 4, and 5, with the
condition that new source files must be added to the project in
whatever iteration they first appear.
72 Rational Rose 2000e, Using Rose C++

Analysis
Analysis

Analysis is the syntactic and semantic processing of a program which
extracts design information. To analyze a source file, select it from a
project’s File list and then click Action > Analyze. When you analyze a
file, the Analyzer preprocesses it, parses it, and then writes the results
in a data file. The Analyzer also updates the file’s analysis status in the
File list and posts progress and error messages to the Log window,
which you can inspect by clicking Window > Log. The Analyzer also
attaches a file’s error messages to its entry in the File list.

In addition to the selected files, the Analyzer recursively analyzes any
files referenced in #include directives contained in the selected source
files. The project’s Directory list and the Directory lists of projects on
its Base list are searched for included files when attempting to resolve
the targets of these #include directives.

Because the Analyzer seeks only to extract design information, the
source files being analyzed are not required to have been compiled
without errors. In particular, function bodies are not parsed.

Re-analysis

When you make changes to source files that you have already
analyzed, you must re-analyze them to update the design information
in their data files. The Analyzer automatically accelerates re-analysis
by analyzing only those files that are affected by the changes.

To determine whether to re-analyze a source file, the Analyzer looks at
the time stamp and reference information stored in its associated data
file, as well as the actual changes made in the source file itself and in
any #include files it references. If the changes semantically impact the
source file, the Analyzer rebuilds the data file; otherwise, it reuses the
data file.

If the source file’s analysis status is Has Errors the Analyzer re-
analyzes it only if it might have changed since the last time it was
analyzed; that is, if the file or the #include files it references now have
later time stamps. If these time stamps are unchanged, the Analyzer
assumes that the errors still exist and does not update the data file. If
the file’s analysis type is Type 2, however, the analyzer re-analyzes it if
you have modified the project’s Type 2 context, or if a source file
included as a result of directives in the Type 2 context has been
modified.
Rational Rose 2000e, Using Rose C++ 73

Chapter 3 C++ Reverse Engineering
You should force re-analysis if you correct the errors in a source file
without advancing its time stamp—for example, by overwriting the
source file with a version with an earlier time stamp obtained from your
configuration management system.

To force the re-analysis of a specific source file, select the file, and then
depress the SHIFT key while clicking Action > Analyze.

Analysis Status
The analysis status designation indicates the Analyzer’s
understanding of the source file’s last semantic analysis. Typical
values include:

Table 12 Analysis Status

Unknown The source file has not been analyzed since
being added to the File list, or has not been
updated since the project was opened.

Analyzed The last semantic analysis found no errors, but
the source file cannot support round-trip
engineering.

CodeCycled The last semantic analysis found no errors, and
the source file can support round-trip
engineering.

Has Errors The last semantic analysis found errors; these
can be displayed by double-clicking on the File
list entry.

Excluded Has no data file because the source file is
Type 3—the Analyzer stores design information
Type 3 files in the data files of the source files
which reference them.

No Source Cannot find a file in the file system for this
entry in the File list—if you have deleted the file
since you added it to the File list, click Edit >
Cut to remove the entry.

Stale Data Has a potentially out-of-date data file for the
file—this status is set by clicking Actions >
Update Status.

Unanalyzed Has no data file—this status can be set by
clicking Action > Update Status or > Delete Data.
74 Rational Rose 2000e, Using Rose C++

Analysis
A source file’s analysis status and error information is stored in its
associated data file. After opening an existing project, the analyzer does
not automatically display this information in the project’s File list,
since changes to source files might have invalidated the information
stored in the data files. Select the project’s source files and click Action
> Update Status to verify the validity of each data file and update the
File list with error and analysis status information. If displaying error
information is your only concern, click Action > Show Errors for a
quicker response.

Analysis Errors

The Analyzer reports:

� Missing or incorrect definitions for classes and types.

� Missing #include files.

� Errors in referenced #include files.

The Analyzer reports all errors in the Log window, which you can
inspect by clicking Window > Log. In addition:

� If a file on the File list contains errors, the Analyzer attaches the
error messages for that file to its File list entry. Double-click on the
entry to expand or collapse it, thereby displaying or hiding
associated error messages. Double-click on an error message to
display a File Viewer window on the source file positioned at the
point of error.

� If a referenced #include file found through the Directory list
contains errors, the Analyzer adds a File list entry for that file and
attaches its errors to the new entry. The Analyzer marks such
entries as untyped and leaves them on the File list until you re-
analyze the files. You can make the entry permanent by setting an
analysis type for it.

In each error message, the Analyzer displays the error location and the
applicable message text in the following format:

line:column message text

The message text briefly describes the error and references any
conflicts that the Analyzer encountered during analysis. This
information helps you determine whether the file has missing or
Rational Rose 2000e, Using Rose C++ 75

Chapter 3 C++ Reverse Engineering
incorrect information. For example, the following error message
reports a conflict between the function in line 55:9 and the code in
line 30:

line 55:9 Function ’item’ has a different return type than item
 in line 30

To eliminate errors, consider the following:

� Error messages containing the phrase "cannot #include" usually
indicate an incomplete Base list, which prevents the analyzer from
resolving references to declarations in your compiler-specific or
library-specific header files. Eliminate such errors by determining
which directories contain the missing header files, and adding
these directories to a Base project in your project’s Base list.

� Your code might contain C++ language extensions supported by
your compiler, but not recognized by the analyzer. Alternatively,
your source code might use improper or obsolete C++ constructs
which are accepted by that compiler, but reported as errors by the
Analyzer. Error messages of the form "expected ‘...’, saw ‘...’" typify
these situations. In many cases, you can add symbols to the
Defined Symbol list, thereby enabling the Analyzer to successfully
preprocess and parse “non-standard” C++ source code.

� Error messages that contain the phrase "cannot find" are usually
caused by a source file whose semantic analysis is context
dependent. Click Action > Set Type to designate such files as
Type 2, and then click Edit > Type2Contexts to provide the context
needed to analyze the source file.

� Are include directories being searched? If not, add them to the
project’s Directory list and specify that they are to participate in
the include search.

� Are include directories being searched in the proper order? If not,
change their order in the Directory list.

Note: It is not necessary to achieve an error-free analysis before
proceeding to export design information to Rational Rose. Especially
when first reverse engineering large bodies of pre-existing code, it is
often more effective to proceed after most of the “important” source code
analyzes without error, deferring elimination of errors in less-important
code to later iterations.
76 Rational Rose 2000e, Using Rose C++

Analysis
Analysis Types

Some files require special handling during analysis because they are
context dependent or syntactically incomplete. To ensure correct
analysis, every file is tagged with an analysis type. A source file’s
analysis type characterizes its context dependence and syntactic
completeness:

Table 13 Analysis Type

Files that do not require special handling should be designated as
Type 1 files; when you initially select a file for analysis, the Analyzer
assumes it is Type 1.

Type 1 Source Files

A Type 1 source file is:

� Syntactically complete—the file is a list of complete C++
declarations at file scope.

� Semantically context-independent—the file either contains its own
symbol definitions or obtains definitions from files targeted by its
#include directives: definitions are visible for all referenced
symbols.

The header files in a well-engineered C++ program should meet these
Type 1 criteria.

A Type 1 source file is analyzed either when it is found on the File list
or when it is referenced by another source file being analyzed,
whichever comes first.

Because a context independent Type 1 file has a consistent meaning
throughout the program, the Analyzer stores the results of its analysis
in an associated data file which it references when processing #include
directives that name the source file.

Analysis
Type

Syntactically
Complete

Context-
Independent

1 Yes Yes

2 Yes No

3 No Unknown
Rational Rose 2000e, Using Rose C++ 77

Chapter 3 C++ Reverse Engineering
Type 2 Source Files

A Type 2 source file is:

� Syntactically complete: the file is a list of complete C++
declarations at file scope.

� Semantically context dependent: the file contains symbols whose
definitions are provided by the context into which it is included.

� Interpreted the same way no matter where it is included: the
symbols in the file produce the same definition from every
#include context in the program.

Type 2 source files are usually designed to be included along with some
companion #include file that provides the required symbol definitions.

A Type 2 file is context dependent. It must be analyzed in an
appropriate context; otherwise, the Analyzer might not successfully
resolve its symbols. Consequently, the Analyzer analyzes Type 2 files
in the context defined by the project’s Ty pe2 Context component.
Because a context dependent Type 2 file has a consistent meaning
throughout the program, the Analyzer stores the analysis results in a
data file and reuses the stored data each time a #include directive
references the file.

Each project provides a Type 2 Context component that enables you to
define a standard set of definitions or inclusions to be logically
prepended to every Type 2 file contained in that project. Modifying the
Type 2 Context causes all Type 2 files to require re-analysis. Modifying
a source file included in the Type 2 Context causes all Type 2 files that
reference the modified file to require re-analysis.

Error messages that contain the phrase "cannot find" are often caused
by source files that should be designated as Type 2. Click Action > Set
Type to designate the offending source file as Type 2. Click Edit >
Type2Contexts to modify the project’s Type 2 Context by adding
directives that include the required source file. After closing the Type 2
Context, click File > Save to make your changes permanent.

Suppose, for example, that analysis of source file balance.h reports
the error "cannot find units", and you determine that units is defined
in source file currency.h. You observe that balance.h does not contain
the directive #include "currency.h" .

Select balance.h, and mark it as analysis Type 2. Edit the project’s
Type 2 Context, and append the following directives:
78 Rational Rose 2000e, Using Rose C++

Analysis
#if defined (T2_BALANCE_H)
#include "currency.h"
#endif

Select balance.h, and execute the Analyze command. The Analyzer
processes the directives in the Type 2 Context before analyzing
balance.h, and will therefore include currency.h, defining units.

Type 3 Source Files

Any source file that is in isolation syntactically incomplete—containing
a bare list of statements, or some portion of a declaration—should be
set to analysis Type3. Files of this sort are usually designed to
introduce additional text into the file that includes them, producing a
result that is syntactically complete.

Any file that meets the following criteria should also be set to analysis
Type 3:

� The file is syntactically complete, consisting of a list of complete
declarations at file scope.

� The file is semantically context dependent, containing symbols
whose definitions are provided by the context in which the file is
included.

� The symbols contained in the file are interpreted differently as a
function of where in the program the file is included.

Source files meeting these criteria are sometimes encountered in
simulations of templates in early versions of C++.

Because Type 3 source files are either syntactically or semantically
context dependent, the Analyzer analyzes them in context. Without
information from the files that #include them, Type 3 files might fail
to successfully parse or might contain symbols which cannot
successfully be resolved. Consequently, the Analyzer ignores any
selected Type 3 files in the File list—it analyzes them only when
resolving #include directives.

Because the meaning of a Type 3 source file varies throughout a
program, the file must be re-analyzed each time it is referenced by
another file. The Analyzer stores the results of each analysis in the data
file associated with the source file that included it, rather than the
Type 3 file’s own data file.
Rational Rose 2000e, Using Rose C++ 79

Chapter 3 C++ Reverse Engineering
Preprocessing

Preprocessing is the first phase of analyzing a C++ source file. During
preprocessing, the Analyzer:

� Expands preprocessing macros.

� Executes preprocessing directives such as #include directives and
conditional compilation.

During macro expansion, the Analyzer consults the entries in the
project’s Defined Symbols list and the Undefined Symbols list.

When the Analyzer encounters #include directives in a file, it searches
the directories in the project’s Directory list and, if necessary, the
Directory lists of the base projects in its Base list for the referenced
#include files. Files which are included are recursively analyzed.

The Analyzer’s handling of an #include file referenced by multiple
source files depends on that #include file’s analysis type. Unless the
included file is Type 3, the Analyzer preprocesses and parses it only
once, using information stored in the included file’s associated data file
for subsequent encounters. If the referenced #include file is Type 3,
then the Analyzer re-analyzes it each time it is referenced.

Parsing

Parsing is the second phase of analyzing a file, after preprocessing.
Parsing performed by the Analyzer is similar to parsing during
compilation, except that the Analyzer ignores the code in function
bodies. Thus, you can reverse engineer files that do not currently
compile without error, or are semantically incomplete.

The Analyzer extracts design information from the following constructs
at any scope outside of function bodies:

� Struct definitions

� Class definitions

� Enumeration definitions

� Type definitions

� Instantiations

� Class template definitions

� References to types and classes in forward declarations, derivation
lists, friend declarations, and function signatures
80 Rational Rose 2000e, Using Rose C++

Design Exporting
Order of Analysis

The Analyzer determines the order in which to analyze files by:

� The order of the files on the File list.

� The order in which #include directives are resolved during
preprocessing.

The Analyzer uses the File list order as a starting point. When you
select multiple files on the File list, the Analyzer starts by
preprocessing the first file in the selection. The Analyzer does not parse
this file until it has resolved all of its #include directives. When the file
has been parsed, the Analyzer moves to the next un-analyzed file in the
selection. Consequently, the Analyzer might analyze an arbitrary
number of files before starting preprocessing on the second file in the
selection.

Some of the files found during #include resolution might also be
among those selected on the File list. By default, the Analyzer analyzes
a file whenever it is first encountered—as the next selection on the File
list or during #include resolution for another file.

Syntactically incomplete files must be analyzed only when they are
found during #include resolution. Errors result if you allow them to
be analyzed in the wrong order. You can prevent this by clicking Action
> Set Type to designate such files as Type 3.

Design Exporting

After you analyze the source files specified in a project, you can
selectively extract design information and generate one or more model
files; these model files can then be displayed or manipulated with
Rational Rose. Rational Rose can merge the generated model files into
an existing model, updating it to reflect design changes instituted in
source code derived from that existing model—refer to the chapter
titled C++ Round-Trip Engineering for more information about this
approach.

The export operation can be directed to map specific C++ constructs
found in your source code into components of the notation, and
selectively place these components into the generated model file. The
export operation can optionally fabricate a class diagram for each
exported category (logical package), and can optionally fabricate a
module diagram for each exported subsystem (component package).
Rational Rose 2000e, Using Rose C++ 81

Chapter 3 C++ Reverse Engineering
These diagrams can be selectively populated with icons representing
exported model components and the relationships between them.
Diagrams fabricated by the Analyzer are placed in the generated model
file, enabling viewing and manipulation with Rational Rose.

There are many choices which drive exporting—the selection of source
files, the specification of language-to-notation mapping, the selection
of components to be exported, the grouping of classes into categories
(logical packages), the grouping of modules into subsystems
(component packages), and the fabrication, naming, and population of
diagrams. These choices are controlled by Export Options, which are
maintained in the project’s Export Options component. Refer to
Chapter 5, Analyzer Export Options for more information.

The Export Options appropriate for one set of software engineering
activities can be inappropriate for another. For example, the Export
Options needed to reverse-engineer pre-existing C++ source code are
different from those one would use during a round-trip iteration. The
Analyzer therefore enables you to define Export Option sets—named
collections of settings for each Export Option—that enable you to
rapidly and accurately establish Export Option settings appropriate for
your current activity. The Analyzer provides three predefined Export
Options sets:

Table 14 Export Options Sets

Code Cycling

In a round-trip engineering iteration, new operation definitions and
file-scope declarations added to the source code must be annotated to
preserve them through subsequent code generation. When reverse
engineering the source code, you can instruct the Analyzer to insert
these annotations by clicking Action > Code Cycle. This command
performs the same analysis steps performed by clicking Action >

FirstLook For high-level examination of pre-existing
source code.

DetailedAnalysis For in-depth examination of pre-existing
source code.

RoundTrip For round-trip engineering.
82 Rational Rose 2000e, Using Rose C++

The Analyzer User Interface
Analyze. If no errors are encountered during analysis, the Analyzer
inserts the required annotations into the source code in place, creating
an unmodified backup copy of each modified source file.

If the command is successful, the selected file’s analysis status is set
to CodeCycled. If a source code file is write-protected, or if the Analyzer
cannot create a backup copy, it does not add the annotations, and sets
the file’s analysis status to Analyzed.

Click Action > Analyze to set a file’s analysis status to CodeCycled if no
errors are found and if the necessary annotations are already present;
this typically occurs when you reverse engineer source code generated
by the Rational Rose C++ code generator.

Click Action > Code Cycle to annotate operation definitions and file-
scope declarations when initially reverse engineering source code that
was not produced by the Rational Rose C++ code generator. During
subsequent code generation, the properties for automatic generation of
operations—such as constructors, destructors, and equality—should
be disabled; otherwise, the automatically generated operations might
duplicate those already present in the source code.

The Analyzer User Interface

Application Window

The main window displays the name Rational C++ Analyzer in its title
bar. When you start the C++ Analyzer, the main window is the first
window that you see. This window remains on the screen until you exit
the application. The main window is initially empty except for the menu
bar, toolbar, status bar, and an icon representing the Log window. The
menu bar contains all of the C++ Analyzer’s command menus.

The toolbar appears below the menu bar, and contains buttons that
can activate frequently-used commands; the toolbar also contains a
text box that specifies the search string used by clicking Edit > Find or
Edit > Find Next. Allowing the mouse cursor to remain over a toolbar
button for a few seconds displays a tool tip naming the command
associated with the button. Click View > Toolbar to enable or disable
the display of the toolbar.
Rational Rose 2000e, Using Rose C++ 83

Chapter 3 C++ Reverse Engineering
The status bar appears at the bottom of every File Viewer window, and
at the bottom of a Project window while a command from the Action
menu is executing. Click View > Status Bar to enable or disable the
display of the status bar.

The Analyzer application window can simultaneously display multiple
child windows: the Log window, one or more Project windows, and one
or more File Viewer windows. Click Window > Cascade or Window > Tile
to arrange child windows.

Project Window

The Analyzer displays the components of a project in a Project window;
the project’s file name is displayed in the title bar. When you enlarge a
Project window to the maximum size, it shares its borders and title bar
with the Analyzer Application window.

A Project window displays some or all of the project’s components.
Each displayed component appears as a rectangular region bordered
by dark lines within which you can scroll the component’s contents.
Using sizing bars, you can resize a displayed component to display
more of its contents without scrolling. You can click a component’s edit
button to change its contents.

The particular set of project components shown in the Project window
depends on the currently selected view of the project.

For example, to make Use On Open the default project view:

1. Click View > Use On Open.

2. Click File > Save.

The Analyzer provides the following Project window views:

Table 15 Project Window Views
Choose this view: To display these components:

Full All components

Export Caption, File list, Directory list, Category list,
Subsystem list, Export Options, Defined Symbols list

Simple Caption, File list, Directory list, Extension list, Base
list

Files Only Caption, File list
84 Rational Rose 2000e, Using Rose C++

The Analyzer User Interface
If you use the sizing bars to change the layout of a view, and want to
preserve these changes:

1. Click View > MemorizeChanges.

2. Click File > Save.

To restore all views to their original layouts:

1. Click View > Restore Standard Views.

2. Click File > Save.

Click Window > New Window to create a new copy of the currently
active Project window. The Analyzer automatically maintains
consistency between the multiple copies of a Project window. Thus you
can set up window copies to present specific project views or file list
sort orders to facilitate rapid access to the desired presentation, or
both.

Full View

To display the full view of a Project window, click View > Full.
Rational Rose 2000e, Using Rose C++ 85

Chapter 3 C++ Reverse Engineering
Export View

To display the full view of a Project window, click View > Export:

Figure 25 Full View of Project Window, Export View
86 Rational Rose 2000e, Using Rose C++

The Analyzer User Interface
Simple View

To display the full view of a Project window, click View > Simple:

Figure 26 Full View of Project Window, Simple View
Rational Rose 2000e, Using Rose C++ 87

Chapter 3 C++ Reverse Engineering
Files Only View

To display the full view of a Project window, click View > Files Only:

Figure 27 Full View of Project Window, Files Only View

File Viewer Window

The File Viewer window is a read-only window in which you can display
the contents of a text file. You can have more than one File Viewer
window open at a time. You can divide a File Viewer window into two
or four panes either by clicking Window > Split, or by dragging the split
controls located to the left of the horizontal scroll bar and above the
vertical scroll bar.

Click Window > New Window to create a new copy of the currently
active File Viewer window. The Analyzer automatically maintains
consistency between the multiple copies of a File Viewer window.

Each File Viewer window contains the name of the displayed file in the
title bar. The status bar displays:

� The text of a corresponding analysis error message, if applicable.

� The current line number.
88 Rational Rose 2000e, Using Rose C++

The Analyzer User Interface
The rest of the window displays the contents of the selected file. You
can use the window’s scroll bars to display any text that might be
hidden from view. When you enlarge a File Viewer window to the
maximum size, it shares its borders and title bar with the C++ Analyzer
main window.

You can access the File Viewer window by selecting a file in the File list
and clicking File > Open Selected, or by double-clicking on an analysis
error displayed in the File list.

When you access the File Viewer window by double-clicking on an
analysis error message, the C++ Analyzer highlights the text that
corresponds to the selected analysis message and displays the error
message in the status bar. If a text line has more than one associated
error, the C++ Analyzer displays the text for the first error message. You
can see the text for the remaining error messages by looking in the File
list.

Click View > Next Message to navigate between error messages in the
File Viewer window.

Log Window

The C++ Analyzer posts all progress and error messages produced by
Action menu commands in the Log window. The Log window is
minimized until you double-click on its icon in the Main window, or
until you click Window > Log. The C++ Analyzer posts messages to the
Log window whether it is minimized, obscured, or visible. You cannot
close the Log window—clicking on its upper-left-corner close control
results in it being minimized.

Messages posted to the log can be prefixed with a time stamp. Click
View > Time Stamp to enable or disable this time stamp. The Time
Stamp command is only present when the Log window is active.
Rational Rose 2000e, Using Rose C++ 89

Chapter 3 C++ Reverse Engineering
Use the Log window to inspect messages produced by clicking Action >
Analyze or Action > Code Cycle. You can monitor progress during
execution of these commands, or to help you diagnose and correct any
errors afterwards:

Figure 28 Log Window
90 Rational Rose 2000e, Using Rose C++

Analyzer Scripts
Each log message is prepended with a 3-character code to identify its
nature:

Table 16 Character Codes for Log Messages

Click File > Save Log to save the contents of the Log window to a file.
You can also choose to automatically save messages to a file as they
are posted by clicking File > Auto Save Log. These commands are only
present when the Log window is active.

Analyzer Scripts

An Analyzer Script is an ASCII text file containing a series of
commands that perform certain menu actions. The recommended file
extension for a script is .scr, although this is not required. A script file
is processed by providing its path as an argument in the command line
that invokes the Analyzer.

Invocation

Assuming that your search path is set up so that the Analyzer shell
command invokes the Rational Rose C++ Analyzer, then

Analyzer -Scripts- <script-pathname1> <script-pathname2> ...

directs the Analyzer to process each specified script in succession,
terminating only when a quit command is executed. If no quit
command is encountered in a script, the Analyzer can be controlled
through its user interface after the last script command is executed.

When invoked this way, the Analyzer provides two additional
commands on the File menu: Run Script, and Check Script.

::: Analyzer revision information

--- note

!!! warning

*** error

+++ step completed with no errors

++! step completed with non-fatal errors

++* step completed with fatal errors
Rational Rose 2000e, Using Rose C++ 91

Chapter 3 C++ Reverse Engineering
Clicking File > Run Script enables you to interactively select an Analyzer
script to be processed. Control returns to the Analyzer’s user interface
after the last script command is executed, unless the script contains a
quit command.

Clicking File > Check Script enables you to interactively select an
Analyzer script to be checked for errors (but not processed); any errors
detected are noted in the Log.

Invoking the Analyzer with the shell command

Analyzer -Scripts-

enables Run Script and Check Script without first executing a script.

Format

Each command in a script file is written on a line by itself. The line
begins with a command name and any arguments to the command
follow the command name on the line. Blanks and tabs are significant
and are used to delimit command names and arguments. Except in
Unix file names, alphabetic case is ignored in category (logical package)
names, subsystem (component package) names, and option set names.

All file names encountered during script processing are considered
virtual paths; the Path Map is used to construct physical paths prior
to use of the file name during command execution.

Lines beginning with // are treated as comments—they are listed in
the Log, but otherwise ignored.

For the most part, script command names are derived from the
interactive (menu-invoked) commands that they emulate.

Selection/Deselection Patterns

Several commands select or deselect File list entries based on pattern
arguments. Such arguments can contain the following wildcard
characters:

Table 17 Wildcard Characters

? Matches a single character.

* Matches zero or more contiguous characters not including the
path segment delimiter (’/’ or ’\’).

Matches zero or more contiguous characters.
92 Rational Rose 2000e, Using Rose C++

Analyzer Scripts
Command Reference

analyze

Semantically analyze the files specified by the selected File list entries.
Execution of this command with no active project or no selected File
list entries yields an error.

autosave [<file name>]

If a file name is provided, activate the Analyzer’s autosave function,
which automatically spools Log contents to the designated file. If no file
name is specified and the autosave function has been previously
activated, then the autosave function is deactivated.

clearlog

Clear the contents of the Log window.

close [all]

Close the active project; if all is specified, close all projects. After
execution of this command, no project is active. Execution of this
command with no active project yields an error.

codecycle

Code Cycle the files associated with the selected File list entries.
Execution of this command with no active project or no selected File
list entries yields an error.

collapse

Collapses the currently-selected File list entries; if no File list entries
are selected, no operation is performed. Collapsed File list entries
cannot be selected or deselected. Execution of this command with no
active project yields an error.

deletedata

Delete the data files associated with the selected File list entries.
Execution of this command with no active project or no selected File
list entries yields an error.
Rational Rose 2000e, Using Rose C++ 93

Chapter 3 C++ Reverse Engineering
deselect all

Deselect all visible (not collapsed) File list entries. Execution of this
command with no active project yields an error.

deselect category <pattern>

Deselect all visible (not collapsed) File list entries assigned to the
specified category (logical package). Execution of this command with
no active project yields an error.

deselect file name <pattern>

Deselect all visible (not collapsed) File list entries associated with the
specified simple file name. Execution of this command with no active
project yields an error.

deselect line <pattern>

Deselect all visible (not collapsed) lines in the File list that match the
specified pattern. This command is the only way to deselect lines that
do not correspond to files in the File list—such as the lines for a
directory or status category in a sorted display. Execution of this
command with no active project yields an error.

deselect [pathname] <pattern>

Deselect all visible (not collapsed) File list entries associated with the
specified full path. Execution of this command with no active project
yields an error.

deselect status <pattern>

Deselect all visible (not collapsed) File list entries whose analysis status
matches the specified pattern. Execution of this command with no
active project yields an error.

deselect subsystem <pattern>

Deselect all visible (not collapsed) File list entries assigned to the
specified subsystem (component package). Execution of this command
with no active project yields an error.
94 Rational Rose 2000e, Using Rose C++

Analyzer Scripts
deselect unit <pattern>

Deselect all visible (not collapsed) File list entries assigned to the
specified controlled unit. Execution of this command with no active
project yields an error.

expand

Expands the currently-selected File list entries; if no File list entries are
selected, no operation is performed. Execution of this command with
no active project yields an error.

export <modelfile> [<option set name>]

Export a model file using design information extracted from the files
associated with the selected File list entries according to the Export
Options specified in the named Export Option Set. If no Export Option
Set is specified, the active project’s default Export Option Set is
utilized. Execution of this command with no active project or no
selected File list entries yields an error.

project <file name>

Establish the project in the named file as the active project.

quit

Terminate the Analyzer application. The Analyzer is left running—
awaiting interactive direction through its user interface—at the end of
a script unless the script executes this command.

run <file name>

Run the specified script file in the current context. The context at the
completion of the specified script is retained for the rest of the script
containing this command.

savelog <file name>

Save the contents of the Log window to the named file.
Rational Rose 2000e, Using Rose C++ 95

Chapter 3 C++ Reverse Engineering
select all

Select all visible (not collapsed) File list entries. This command does not
clear the current selection; it adds File list entries matching the
specified pattern to the set of selected entries. Use the deselect all
command before a select command to achieve an exclusive selection.
Execution of this command with no active project yields an error.

select category <pattern>

Select all visible (not collapsed) File list entries assigned to the specified
category (logical package). This command does not clear the current
selection; it adds File list entries matching the specified pattern to the
set of selected entries. Use the deselect all command before a select
command to achieve an exclusive selection. Execution of this
command with no active project yields an error.

select file name <pattern>

Select all visible (not collapsed) File list entries associated with the
specified simple file name. This command does not clear the current
selection; it adds File list entries matching the specified pattern to the
set of selected entries. Use the deselect all command before a select
command to achieve an exclusive selection. Execution of this
command with no active project yields an error.

select line <pattern>

Select all visible (not collapsed) lines in the File list that match the
specified pattern. This command is the only way to select lines that do
not correspond to files in the File list—such as the lines for a directory
or status category in a sorted display. This command does not clear the
current selection; it adds File list entries matching the specified
pattern to the set of selected entries. Use the deselect all command
before a select command to achieve an exclusive selection. Execution
of this command with no active project yields an error.

select [pathname] <pattern>

Select all visible (not collapsed) File list entries associated with the
specified full path. This command does not clear the current selection;
it adds File list entries matching the specified pattern to the set of
96 Rational Rose 2000e, Using Rose C++

Analyzer Scripts
selected entries. Use the deselect all command before a select
command to achieve an exclusive selection. Execution of this
command with no active project yields an error.

select status <pattern>

Select all visible (not collapsed) File list entries whose analysis status
matches the specified pattern. This command does not clear the
current selection; it adds File list entries matching the specified
pattern to the set of selected entries. Use the deselect all command
before a select command to achieve an exclusive selection. Execution
of this command with no active project yields an error.

select subsystem <pattern>

Select all visible (not collapsed) File list entries assigned to the specified
subsystem (component package). This command does not clear the
current selection; it adds File list entries matching the specified
pattern to the set of selected entries. Use the deselect all command
before a select command to achieve an exclusive selection. Execution
of this command with no active project yields an error.

select unit <pattern>

Select all visible (not collapsed) File list entries assigned to the specified
controlled unit. This command does not clear the current selection; it
adds File list entries matching the specified pattern to the set of
selected entries. Use the deselect all command before a select
command to achieve an exclusive selection. Execution of this
command with no active project yields an error.

sortby <sort-kind>

Selects the File list display format. Legal values for <sort-kind> are
category (logical package), directory, errors, extension, path name,
status, simple name, subsystem (component package), or type.
Execution of this command with no active project yields an error.

show <project component>

Writes the contents of the selected project component to the Log, with
spaces and special characters elided. Legal values for <project
component> are bases, captions, categories (logical packages), defines,
Rational Rose 2000e, Using Rose C++ 97

Chapter 3 C++ Reverse Engineering
directories, Export Options, extensions, files, subsystems (component
packages), Type 2contexts, and undefines. Execution of this command
with no active project yields an error.

showerrors

Refresh the error messages associated with each selected File list
entry. Execution of this command with no active project or no selected
File list entries yields an error.

timestamp [on | off]

Enable or disable generation of time-of-day stamps at the beginning of
each Log entry.

updatestatus

Refresh the error messages and analysis status associated with each
selected File list entry. Execution of this command with no active
project or no selected File list entries yields an error.
98 Rational Rose 2000e, Using Rose C++

Chapter 4

Analyzer Projects

A project is a specially formatted file that is the focal point for reverse
engineering a program whose source code is contained in a set of files.
Conceptually, projects used by the Analyzer are similar to project files
used by some compilers. Just as a compilation project contains the
necessary information for producing an executable from source-code
files, a reverse-engineering project contains the necessary information
for extracting a Rational Rose design from those same source-code
files. Since projects are stored in named files, it is easy to reverse-
engineer a set of source files repeatedly—for example, during each
iteration of your program’s development.

A project stores its information as a set of components. Components
are lists that the Analyzer consults when it analyzes a program or
exports design information to Rational Rose. These lists provide the
information required for the Analyzer to preprocess the code, parse it,
write the results into data files, and export the information from design
files into model files:

� The Caption provides text describing the project’s title and
purpose.

� The Directory list identifies each directory containing source code
files, associating each source code directory with a data directory
in which its data files are maintained.

� The Extension list enumerates the file name extensions that
identify files containing source code, and specifies a data file
extension for each.

� The File list identifies the source code files to be analyzed from
among candidates contained by directories in the Directory list.
Rational Rose 2000e, Using Rose C++ 99

Chapter 4 Analyzer Projects
� The Base list identifies base projects required to resolve source
code #include references to compiler-specific or library-specific
header files.

� The Defined Symbols and Undefined Symbols lists specify how
preprocessor symbols found in source code files are to be
expanded.

� The Categories list provides a list of categories (logical packages) to
which source files can be assigned.

� The Subsystem list provides a list of subsystems (component
packages) to which source files can be assigned.

� The Type 2 Context provides preprocessor directives to be executed
before analyzing those context-sensitive source code files
designated as analysis Type 2.

� Export options govern the selection of source files from which
design information is exported, the specification of Code-to-Design
Correspondences, the selection of components to be exported, the
grouping of classes into categories (logical packages), the grouping
of modules into subsystems (component packages), and the
fabrication, naming, and population of diagrams.

The project window’s currently selected view determines which
components are visible. Each component can be edited to add or delete
entries from its list.

Projects whose file lists contain source code for an application being
reverse engineered are referred to as program-specific projects. This
distinguishes them from compiler-specific or library-specific projects
constructed to encapsulate compiler-specific or library-specific header
files. When the Analyzer is directed to analyze the source files in an
initial program-specific project, it performs the following actions:

1. Recursively analyzes each base project named in the Base list.

2. Processes the Defined Symbols and Undefined Symbols list in each
base project before processing the symbols listed in the initial
project.

3. If references remain unresolved after searching the directories
listed in the initial project, searches the directories in the Directory
list of each base project.

4. Determines whether files specified in the File list of the initial
project are context-sensitive, and thus require special handling.
100 Rational Rose 2000e, Using Rose C++

5. Records any errors found during analysis in the log, and in the File
list of the initial project.

6. Extracts design information and places it in data files in the initial
project’s data directories.

When the Analyzer is directed to export design information from a
program-specific project, it performs the following actions:

1. Uses the project’s export options to identify those files from which
design information is to be exported.

2. Processes each exported file’s data file, using the project’s export
options to filter the design information, map it to the UML, COM,
OMT, or Booch notation, group classes into categories (logical
packages), group modules into subsystems (component packages),
construct diagrams, and generate model files.

Note: Refer to the Analyzer Export Options chapter for more
information.

Caption

This text string identifies a project’s purpose and contents. A project’s
caption establishes the default value for the title of any exported
diagrams, as specified by the Title export option. A diagram’s title and
name are placed in its upper-left corner. Captions also appear in
entries for the base projects in a Base list.

To edit the project’s caption, click Caption in the project window, or
click Edit > Caption:

Figure 29 Caption Dialog Box
Rational Rose 2000e, Using Rose C++ 101

Chapter 4 Analyzer Projects
Directory List

A project’s Directory list component specifies:

� The path for each directory containing source files to be reverse
engineered and, for each directory:

❑ The data directory in which to create the data files that result
from the analysis of source files in that directory.

❑ Its code regeneration policy.

� The path for each directory to be searched when resolving
#include directives during preprocessing. These are directories
that usually appear in the include path option for many compilers.

Data Files

When the Analyzer performs semantic analysis of a source file, it
creates a data file containing the results of this analysis. When you
export a design to Rational Rose, the Analyzer combines information
extracted from data files to construct model files. Using incremental
compilation technology, the Analyzer exploits the information in these
data files to greatly reduce the time required to reverse engineer a
program that was previously reverse engineered but later modified.
Data files enable the Analyzer to determine what changed and assess
the impact of these changes, eliminating the need to recompute valid
information. This approach is particularly beneficial during the
iterative development of large applications where only a portion of the
source files change during each iteration.

When analyzing a source file, the Analyzer generates the name and
location of the file’s associated data file by:

� Giving the data file the same simple name as its associated source
file.

� Finding the source file’s extension in the project’s Extension list
and giving the data file the associated data extension.

� Finding the source file’s closest containing directory in the project’s
Directory list and building the data file in that directory’s
associated data directory.

Data files enable the Analyzer to minimize preprocessing and parsing.
Before the Analyzer preprocesses a file, it determines whether a valid
data file already exists. Preprocessing proceeds only if no valid data file
exists, if the data file is obsolete, or if the file’s analysis type indicates
102 Rational Rose 2000e, Using Rose C++

that it should be re-analyzed at each reference. To determine whether
a data file is obsolete, the Analyzer examines time stamp and reference
information, as well as semantic changes made to the associated
source file.

In addition to design data, time stamps, and reference information,
each data file stores error status and analysis status for its associated
source file. This information is displayed in the project’s file list after
semantic analysis.

Data Directories

The data file associated with a source file is stored in a data directory
that the Analyzer creates and associates with the directory containing
the source file. When a directory is added to the project’s Directory
list—either as a side effect of your adding a file to the file list, or
because you explicitly added the directory for #include resolution
purposes—the Analyzer automatically creates an associated data
directory. The Analyzer requires that each directory be associated with
a unique data directory—no two directories can be associated with the
same data directory. The Analyzer’s default behavior builds the data
directory structure under directory named by the virtual symbol
$DATA.

After defining a Path Map entry for $DATA, you can generally leave the
management of data directories and data files to the Analyzer. If
necessary, however, you can change the Analyzer’s behavior in creating
data directories by clicking Edit > Directories and modifying the Default
Data Directory Pattern text box in the Directory dialog box.

Code Regeneration Policy

When incorporating an existing source code class library in your
application, you can reverse engineer its design for inclusion in your
application’s design. To disable code generation for those parts of your
application’s design that were reverse engineered from class libraries,
Rational Rose C++ provides the Generate code generation property. By
setting this property to False for each class library module, subsequent
code generation to that module is disabled.

To automate the setting of this code generation property for reverse
engineered design elements, the C++ Analyzer allows you to enable or
disable code regeneration at both directory and file granularity. By
default, the directories on a project’s directory list and the files on its
Rational Rose 2000e, Using Rose C++ 103

Chapter 4 Analyzer Projects
file list are set to enable code generation, meaning that modules
extracted from the files on its file list have their Generate property set
to True. By sequentially clicking on a file’s code regeneration icon in its
file list entry, its code regeneration policy can be set to enabled,
disabled, or specified by parent directory.

By clicking on a directory’s code regeneration icon in its Project
Directory List dialog box entry, its code regeneration policy is switched
between enabled and disabled. If a file’s code regeneration policy is
disabled, or if its code regeneration policy is specified by the parent
directory and that parent directory’s code regeneration policy is
disabled, then modules extracted from this file have their Generate
property set to False; otherwise, these modules have their Generate
property set to True.

Resolving #Include Directives

When the Analyzer is attempting to resolve a #include directive during
preprocessing, it searches each directory in the Directory list until it
finds a file with the name referenced in the directive. The Analyzer
searches directories in the order they appear in the Directory list.

If the Analyzer does not resolve the directive by searching the Directory
list of the program-specific project, it recursively searches the
Directory list of each of the base projects in the base list in the order
that they appear. If a #include is not resolved by this extended search,
the Analyzer posts an analysis error message for the file that contains
the unresolved directive.

To ensure that the Directory list contains directory paths that enable
resolution of #include directives, you can inspect individual #include
directives to see how they reference the included files. The following
cases contain examples that refer to the directory hierarchy as shown:

c:
my_project

my_subsys
my_source.h

� For a simple file name, for example:

#include "my_source.h"

add the path of the directory that contains the file name to the
Directory list, in this example c:\my_project\my_subsys.
104 Rational Rose 2000e, Using Rose C++

� For a relative file name, for example:
#include "my_subsys\my_source.h"

add the path of the enclosing directory to the Directory list, in this
example c:\my_project. Note that c:\my_project\my_subsys
should also be added to the directory list if my_source.h is to be
reverse engineered.

� For an absolute name, for example:

 #include "c:\my_project\my_subsys\my_source.h"

no paths are added to the Directory list.

Directory List Entries

In the project window, each entry in the Directory list has the following
form:

[-I] directory name — data-directory name

where:

� directory name is the path to a directory containing source-code
files or files containing #include directives.

� data-directory name is the path to the data directory assigned to
directory name.

� -IIII (if present) indicates that the Analyzer searches the named
directory during #include resolution.

In the highlighted Directory list entry shown, the directory
c:\rose\example is searched during #include resolution, and is
associated with a data directory named c:\mydata\rose\example.
Rational Rose 2000e, Using Rose C++ 105

Chapter 4 Analyzer Projects
All data files produced during the analysis of source files in
c:\rose\example are placed in c:\mydata\rose\example.

Figure 30 Example Project Directory List

Editing the Directory List

To edit the project Directory list, click Directory in the project window,
or click Edit > Directory. Either action displays the Project Directory List
dialog box, which presents an entry in its Source Directory and Data
Directory lists for each directory currently on the project’s Directory
list:

Figure 31 Project Directory List

regeneration policy
include search icon
repositioning icon
106 Rational Rose 2000e, Using Rose C++

Each entry in the Source Directory and Data Directory lists includes:

� A positioning icon

� An include search icon

� A generation policy icon

� The directory’s path

� The path to its associated data directory

By dragging an entry’s positioning icon, you can change the order of
directories in the Directory list. This order is relevant to #include
resolution, since the Analyzer searches directories in their Directory-
list order.

An entry’s include search icon indicates whether the associated
directory is searched during #include resolution. Clicking on an
entry’s icon switches it between two settings:

An entry’s regeneration policy icon indicates the associated directory’s
code regeneration policy. Clicking on an entry’s icon switches it
between two settings:

To add a directory to the Directory list, locate it with the Directory
Structure browser. Double-clicking on a directory in this browser
displays any subdirectories and places its path in the Current
Directory Name box. Alternatively, you can directly enter a directory
name into the Current Directory Name box. When the Current
Directory Name box contains the name of the directory you wish to
add, click Add Current. To add each subdirectory of the Current
Directory Name to the Directory list, click Add Subdirs. To add every
subdirectory in the directory tree rooted at Current Directory Name,
click Add Hierarchy.

When a directory is added to the Source Directory and Data Directory
lists by the action of Add Current, Add Subdirs or Add Hierarchy—or by
the action of adding a file to the file list—it’s #include search and code
regeneration states are set to Included and Enabled Respectively, and
its data directory is set using the pattern in the Default Data Directory
Pattern box.
Rational Rose 2000e, Using Rose C++ 107

Chapter 4 Analyzer Projects
The Default Data Directory Pattern box contains a path that includes
an asterisk (****); a source directory’s data directory name is created by
substituting the source directory’s name for the asterisk in the pattern.
This mechanism ensures that each data directory be uniquely
associated with one source directory, as required by the C++ Analyzer.
If you specify a Default Data Directory Pattern that does not include an
asterisk—which results in the same data directory being assigned to
every source directory—the C++ Analyzer automatically appends an
asterisk to the end of your pattern to ensure that unique data
directories are assigned.

The Default Data Directory Pattern Set To Current button sets the
Default Data Directory Pattern to the Current Directory Name suffixed
by *.

A newly-created project’s Default Data Directory Pattern is set to
$DATA*, which means that the data files for each source directory are
maintained in a subdirectory of a directory whose path is specified by
the Path Map entry for the virtual symbol $DATA.

To change the #include search state or data directory for one or more
source directories, first select the Source Directory and Data Directory
list entries associated with these source directories. To select a single
entry in this list box, click on it. To select several contiguous entries,
click on the first, depress the Shift key, and click on the last. To switch
an entry’s selection, depress the Ctrl key and click on that entry.

To change selected entries’ #include search states, click Search List
Include or Search List Exclude.

To update selected entries’ data directories to match the Default Data
Directory Pattern, click Data Directory Apply Pattern.

To assign a specific data directory to a source directory, first select the
Source Directory and Data Directory entry associated with the source
directory. Enter the path to the data directory in the Current Directory
Name box (or use the Directory Structure browser to navigate to this
directory) and click Data Directory Set to Current.

To remove one or more a directories from the Directory list, select their
entries in the Source Directory and Data Directory list and click
Remove.

Directory list changes made through the Project Directory List dialog
box are abandoned unless you exit the box by clicking OK.
108 Rational Rose 2000e, Using Rose C++

Extension List

The Analyzer uses the Extension list component of a project to:

� Provide an initial filter for files presented as candidates for addition
to the project’s file list. Typical file name extensions are .h, .hh,
and .cpp.

� Associate a module kind with each file name extension used in the
project.

� Determine which file name extensions to use when naming the
data files that are built during analysis. The Extension list
associates a data file extension with each source file extension on
the Extension list. When the Analyzer semantically analyzes a
source file, it builds a data file whose file name utilizes the
extension associated with the source file’s extension. Although you
can view the associated data file extensions in the Extension list,
you cannot change them.

Module Kind

A source file can represent a module specification or module body; file
name extensions of .h or .hh usually designate a file representing a
module specification. The Extension list associates a module kind—
specification or body—with each file name extension used in the
project. When you add a source file to the file list, the Analyzer sets its
module kind to the module kind associated with its file name
extension. You can set a file’s module kind to override its file name
extension’s module kind.

When a new file name extension is added to the Extension list—either
as a side effect of adding a file to the file list, or through your use of the
Project File Extensions dialog box—the Analyzer sets the extension’s
module kind to specification if the extension contains the letter h;
otherwise, the Analyzer sets the extension’s module kind to body. You
can edit the Extension list to change a file name extension’s module
kind if your file name extensions follow a different convention.
Rational Rose 2000e, Using Rose C++ 109

Chapter 4 Analyzer Projects
Extension List Entries

Each entry has the form

source file extension — data file extension

where:

� source file extension is a file name extension added to the
Extension list.

� data file extension is the data extension the Analyzer assigned to
source file extension.

The highlighted entry shown specifies the data files for source files
whose file name extension is .h and is assigned a file name extension
of .cnh:

Figure 32 Extension List Entries
110 Rational Rose 2000e, Using Rose C++

Editing the Extension List

To edit an Extension list, click Extensions in the project window, or
click Edit > Extensions, to display the Project File Extension dialog box:

Figure 33 Extension Dialog Box

To add a file name extension, you can directly enter it in the New
Extension list box and click Add, or you can choose from an existing
set by clicking on the activation arrow.

Each entry in the Source—Data list box includes a module kind icon,
the file name extension, and its associated data file name extension. An
entry’s module kind icon indicates whether files matching the
extension are considered specification or body modules. Clicking on an
entry’s icon switches it between two settings:

You can also change an extension’s module kind by selecting its entry
and clicking Spec or Body. You can use this mechanism to change the
module kind of several selected entries.

To remove a file name extension from the Extension list, select its entry
and click Remove.

File List

A project’s File list component specifies the name of each source file to
be reverse engineered and, for each file, contains:

� Code regeneration policy

� Module kind

Activation Arrow

Module Kind Icon
Rational Rose 2000e, Using Rose C++ 111

Chapter 4 Analyzer Projects
� Analysis type

� Analysis status

� Project category assignment

� Project subsystem assignment

To successfully analyze a program, you should add the following
source files to the File list:

� All the header files in the program, or in the portion of your
program you want to reverse engineer.

� Any implementation files that contain class definitions at file scope
(the Analyzer ignores definitions that are local to function bodies)
or for which you are generating code.

� Any files that are context dependent or syntactically incomplete.

Header files that are required only for compilation—for example,
system header files like iostream.h—do not need to be on the File list.
However, the directories containing these files must be on the project’s
Directory list, or must be on the Directory list of a base project on the
project’s Base list.

From the File list, you select specific source files for the Analyzer to
semantically analyze and extract design data from—you can select all
source files in your program, or focus on a particular subset. In
addition to the source files you select, the Analyzer recursively
analyzes files referenced by #include directives in those selected
source files.

Code Regeneration

When incorporating an existing source code class library in your
application, you can reverse engineer its design for inclusion in your
application’s design. To disable code generation for those parts of your
application’s design that were reverse engineered from class libraries,
Rational Rose C++ provides the Generate code generation property. By
setting this property to False for each class library module, subsequent
code generation from that module is disabled.

To automate the setting of this code generation property for reverse
engineered design elements, the C++ Analyzer enables or disables code
regeneration at both directory and file granularity. By default, the
directories on a project’s Directory list and the files on its File list are
set to enable code regeneration, meaning that modules extracted from
112 Rational Rose 2000e, Using Rose C++

the files on its File list have their Generate property set to True. By
sequentially clicking on a file’s code regeneration icon in its File list
entry, its code regeneration policy can be set to enabled, disabled, or
specified by the parent directory. By clicking on a directory’s code
regeneration icon in its Project Directory List dialog box entry, its code
regeneration policy is switched between enabled and disabled. If a file’s
code regeneration policy is disabled, or if its code regeneration policy is
specified by a parent directory and that parent directory’s code
regeneration policy is disabled, then modules extracted from this file
have their Generate property set to False; otherwise, these modules
have their Generate property set to True.

Module Kind

A source file can represent a module specification or module body; file
name extensions of .h or .hh usually designate a file representing a
module specification. The Extension list associates a module kind—
specification or body—with each file name extension used in the
project. When you add a source file to the File list, the Analyzer sets its
module kind to the module kind associated with its file name
extension. You can set a file’s module kind to override its file name
extension’s module kind.

When a new file name extension is added to the Extension list—either
as a side effect of adding a file to the File list, or through your use of
the Project File Extensions dialog box—the Analyzer sets the
extension’s module kind to specification if the extension contains
the letter h; otherwise, the Analyzer sets the extension’s module kind
to body. You can edit the Extension list to change a file name
extension’s module kind if your file name extensions follow a different
convention.

Analysis Type

A file that is context sensitive or syntactically incomplete requires
special handling during analysis. The File list allows you to identify
such files by maintaining an analysis type designator for each File list
entry. The analysis type designation allows the analyzer to handle
source files which are context-dependent or syntactically incomplete;
a source file is context-dependent if it references symbols defined in
Rational Rose 2000e, Using Rose C++ 113

Chapter 4 Analyzer Projects
another source file without explicitly #include declaring that source
file. A source file’s analysis type characterizes its context dependence
and syntactic completeness:

Table 18 Analysis Type Characteristics

When you add a file to the File list, the Analyzer assumes it requires no
special handling, and sets its analysis type designator to Type 1; you
can change the analysis type designator if you determine that special
handling is required.

Analysis Status

The analysis status designation indicates the Analyzer’s knowledge of
any previous analysis. Defined values are:

Table 19 Analysis Status Designation

Analysis
Type

Syntactically
Complete

Context-
Independent

1 yes yes

2 yes no

3 no unknown

Defined Value Definition

Unknown The file has not been examined since the
project has been opened.

Analyzed The last semantic analysis found no errors,
but the source file cannot support round-
trip engineering.

CodeCycled The last semantic analysis found no errors,
and the source file can support round-trip
engineering.

Has Errors The last semantic analysis found errors;
these can be displayed by double-clicking on
the File list entry.

Excluded Has no data file because the source file is
Type3—the Analyzer stores design
information for Type 3 files in the data files
of the source files that reference them.
114 Rational Rose 2000e, Using Rose C++

The Analyzer does not permanently store analysis status and error
information in a project because it can become invalid when you
change your program. You must refresh this information by clicking
Action > ShowErrors after you open a project. Or clicking Action >
UpdateStatus or Action > Analyze also refreshes this information, but
their additional functionality is slower than clicking Action >
ShowErrors.

Project Category and Project Subsystem Assignments

When you add a source file to the File list, the Analyzer creates a
project category assignment and project subsystem assignment by
assuming that the simple name of the file’s parent directory represents
both the category (logical package) and subsystem (component
package) to which the file is assigned. This parent directory’s simple
name is added to the project’s Category list and Subsystem list, which
can be edited if desired. A file’s project category assignment and project
subsystem assignment are displayed in its File list entry. You can
change these assignments by selecting the entry and clicking Action >
Set File Properties.

When you export design information to Rational Rose, the Assign Class
To Category Based On Export option in the Output tab of the Export Op-
tions dialog box can be set to the project category assignment that as-
signs classes to categories (logical packages). If you instead set this
Export Option to either Class Annotations or Directory Containing Def-
inition, the File list entries continue to display their project category as-
signments. Similarly, the Assign Module to Subsystem Based On
Export Option in the Output tab of the Export Options dialog box can be
set to use the project subsystem assignment to associate modules with

No Source Cannot find a file in the file system for this
entry in the File list—if you have deleted the
file since you added it to the File list, to
remove the entry, click Cut > Edit.

Stale Data Has potentially out-of-date data file for the
file—this status is set during analysis, or by
clicking Action > UpdateStatus.

Unanalyzed Has no data file—this status can be set by
clicking Action > UpdateStatus or Action >
DeleteData.

Defined Value Definition
Rational Rose 2000e, Using Rose C++ 115

Chapter 4 Analyzer Projects
subsystems (component packages).

Naming Conflicts

Rational Rose requires the names of classes and categories (logical
packages), and the names of modules and subsystems (component
packages) to be unique. When the Analyzer encounters a module or
subsystem (component package) that has the same name as an
existing subsystem (component package) or module, a new name is
generated by appending .n to the original name, where n is an integer
greater than 0 selected to produce a unique name. When the Analyzer
encounters a class whose name conflicts with an existing category
(logical package) name, or when it encounters a category (logical
package) whose name conflicts with an existing class name, the
category (logical package) name is made unique by appending “.0” to
the original name. The names of classes are never changed.

If errors are detected while analyzing a file, the Analyzer attaches the
error messages to the file’s entry; you can expand or collapse the entry
to display or hide its error messages by clicking Edit > Expand. Double-
clicking on the entry of a source file with errors expands the entry to
display one line for each error message. Double-clicking on one of these
error messages displays a File Viewer window on the source file
positioned at the point of error.

File List Entries

The File list maintains an entry for each of its files. You can change the
File list’s display of its entries by choosing different sort orders using
the View menu’s Sort commands, as described in Figure 34. As shown,
the fields in a file list entry display its file’s regeneration policy icon,
116 Rational Rose 2000e, Using Rose C++

module kind icon, simple name, location in the file system, analysis
type, analysis status, assigned category, assigned subsystem, and the
number of analysis errors found when the file was last analyzed:

Figure 34 Sort Order

An entry’s regeneration policy icon indicates the associated file’s code
regeneration policy. Clicking on an entry’s icon switches it between
four settings:

An entry’s module kind icon indicates whether the file considers
specification or body modules. Clicking on an entry’s icon switches it
between four settings:

Subsystem Assignment

Category

Analysis Status
Analysis Type

Filename
Module Kind icon

Regeneration Policy icon
Rational Rose 2000e, Using Rose C++ 117

Chapter 4 Analyzer Projects
Sort Order

The View menu’s Sort commands provide several arrangements of File
list entries. To make one of these sorts the default File list order, select
it, then click View > Memorize Changes, and then click File > Save.

Sort By Pathname

Choose this sort order to arrange File list entries alphabetically by the
full paths of the listed files.

A check mark next to Sort by Pathname identifies it as the current sort
order. In the File list, each entry has four fields:

Table 20 Sort By Pathname

Sort By Directory

Choose this sort order to arrange the File list entries in groups
according to the directories that contain the listed files. Within each
group, files are listed alphabetically by their simple names.

A check mark next to Sort by Directory identifies it as the current sort
order. In the File list, directory names appear as group headings and
each entry has four fields:

Table 21 Sort By Directory

Pathname
Analysis
Type

Analysis
Status

Category
Name

c:\testsrc\obj_key.
h

Type 2 Unanalyzed keys

c:\testsrc\options.
h

Type 1 Analyzed heaps

c:\testsrc\srcblock.
h

Type 1 Has
Errors:4

heaps

File Name Analysis Type Analysis
Status

Category
Name

-q:\testsrc (3)

obj_key.h Type 2 Unanalyzed keys

options.h Type 1 Analyzed heaps

srcblock.h Type 1 Has Errors:4 heaps
118 Rational Rose 2000e, Using Rose C++

Sort By Simple Name

Choose this sort order to arrange the File list entries alphabetically by
the simple names of the listed files.

A check mark next to Sort by Simple Name identifies it as the current
sort order. In the File list, each entry has five fields:

Table 22 Sort By Simple Name

Sort By Status

Choose this sort order to arrange the File list entries in groups
according to their analysis status. Within each group, files are listed
alphabetically by their simple names. You might need to refresh the
File list before choosing this sort order; if so, click Actions >
UpdateStatus.

A check mark next to Sort by Status identifies it as the current sort
order. In the File list, each analysis status appears as a group heading
and each entry has five fields, where the number of errors field might
be blank:

Table 23 Sort By Status

File Name
Analysis
Type

Analysis
Status

Category
Name Directory

obj_key.h Type 2 Unanalyzed keys q:\testsrc

options.h Type 1 Analyzed heaps q:\testsrc

srcblock.h Type 1 Has
Errors:4

heaps q:\testsrc

Number of
Errors File Name

Analysis
Type

Category
Name Directory

-Unanalyzed (1)

0 obj_key.h Type 2 keys q:\testsrc

-Analyzed (1)

0 options.h Type 1 heaps q:\testsrc

-Has Errors (1)

+4 srcblock.h Type 1 heaps q:\testsrc
Rational Rose 2000e, Using Rose C++ 119

Chapter 4 Analyzer Projects
Sort By Errors

Choose this sort order to arrange the File list entries according to the
number of analysis errors associated with them.

This sort order groups File list entries according to their analysis
status, which indicates whether errors are present. Entries with Has
Errors status have one or more associated errors, and entries with
other status have no errors. Within the Has Errors group, files appear
in descending order by the number of errors. You might need to refresh
the File list before choosing this sort order; if so, click Actions >
ShowErrors.

A check mark next to Sort by Errors identifies it as the current sort
order. In the File list, analysis status appears as group headings and
each entry has five fields, where the number of errors field might be
blank:

Table 24 Sort By Errors

Sort By Type

Choose this sort order to arrange the File list entries in groups
according to the assigned analysis type. Within each group, files are
further grouped by the directory that contains them. Within each
subgroup, files appear alphabetically by file name.

Number of
Errors File Name

Analysis
Type

Category
Name Directory

-Has Errors (2)

+4 srcblock.h Type 1 heaps q:\testsrc

+1 heapid.h Type 1 heaps q:\testsrc

-Analyzed (1)

0 options.h Type 1 heaps q:\testsrc
120 Rational Rose 2000e, Using Rose C++

A check mark next to Sort by Type identifies it as the current sort order.
In the File list, analysis types and directory names appear as group
headings and each entry has three fields:

Table 25 Sort By Type

Sort By Category

Choose this sort order to arrange the File list entries in groups
according to their assigned categories (logical packages). Within each
group, files are listed alphabetically by their simple names.

A check mark next to Sort by Category identifies it as the current sort
order. In the File list, category names appear as group headings and
each entry has five fields, where the Number of Errors field might be
blank:

Table 26 Sort By Category

File Name Analysis Status Category Name

-Type 1 (2)

-q:\testsrc (1)

options.h Analyzed heaps

srcblock.h Has Errors:4 heaps

-Type 2 (1)

-q:\testsrc (1)

obj_key.h Unanalyzed heaps

Number of
Errors File Name

Analysis
Type

Analysis
Status Directory

-heaps (2)

0 options.h Type 1 Analyzed q:\testsrc

+4 srcblock.h Type 1 Has Errors q:\testsrc

-keys (1)

0 obj_key.h Type 2 Unanalyzed q:\testsrc
Rational Rose 2000e, Using Rose C++ 121

Chapter 4 Analyzer Projects
Sort By Subsystem

Choose this sort order to arrange the File list entries in groups
according to their assigned subsystems. Within each group, files are
listed alphabetically by their simple names.

A check mark next to Sort by Subsystem identifies it as the current sort
order. In the File list, subsystem names appear as group headings and
each entry has five fields, where the number of errors field might be
blank:

Table 27 Sort By Subsystem

Sort By Extension

Choose this sort order to arrange the File list entries in groups
according to their file name extensions. Within each extension group,
files are grouped by directory; within directory groups, files are listed
alphabetically by their simple names.

Number of
Errors File Names

Analysis
Type

Analysis
Status Director

y

-heaps (2)

0 options.h Type 1 Analyzed q:\testsrc

+4 srcblock.h Type 1 Has Errors q:\testsrc

-keys (1)

0 obj_key.h Type 2 Unanalyzed q:\testsrc
122 Rational Rose 2000e, Using Rose C++

A check mark next to Sort by Extension identifies it as the current sort
order. In the File list, file extensions appear as major group headings,
directory names appear as minor group headings, and each entry has
four fields:

Table 28 Sort By Extension
File Name Analysis

Status
Analysis
Name

Category
Type

.cpp (2)

q:\testsrc

options.cpp Type 1 Analyzed heaps

srcblock.cp
p

Type 1 Has Errors:1 heaps

.h (3)

q:\testsrc

obj_key.h Type 2 Unanalyzed keys

options.h Type 1 Analyzed heaps

srcblock.h Type 1 Has Errors:2 heaps
Rational Rose 2000e, Using Rose C++ 123

Chapter 4 Analyzer Projects
Editing the File List

To edit the project’s File list, click Files in the Project window, or click
Edit > File List to display the Project Files dialog box. This dialog box
adds and removes directories from the Directory list:

Figure 35 Edit the File List

To add one or more files to the File list:

1. If the directory containing the files you want to add is already on
the Directory list, double-click on its entry in the Project Directory
List box. Otherwise, use the directory system browser in the
Directory Structure box to double-click on the directory that
contains the files you want to add. On Windows platforms, use the
Drive box and Network button to re-root the Directory Structure
browser if necessary.

2. Inspect the Files Not In List box, which contains files from the
selected directory that match the criteria in the File Filter box. This
box is initialized with a set of patterns from the project’s Extension
124 Rational Rose 2000e, Using Rose C++

list. An **** (asterisk) in these patterns matches 0 or more characters,
and a ? (question mark) matches a single character. To specify
multiple patterns, separate them with semicolons.

If your Extension list contains .h and .cpp, for example, the File
Filter is initialized to *.h;*.cpp. If you want to add files with a .hh
file name extension, then you would change the File Filter to
.h;.hh;*.cpp.

After modifying the File Filter, click the Filter button to update the
Files Not In List box.

3. Select one or more files in the Files Not In List box, and click Add
Selected to transfer the selections to the Files In List box.

You can select multiple files in the Files Not In List box by dragging
the mouse from one entry to another. Clicking on an entry in either
list box while depressing the Ctrl-key switches that entry’s
selection status without deselecting any other entries.

To add all of the files in the Files Not In List box to the File list, click
Add All.

4. Click OK to add your selections to the File list, and update the
Directory and Extension lists with any additions resulting from
your choice of files.

The regeneration policy of each added file is set to specified by
parent directory; the module kind of each added file is set to
specified by file name extension.

The regeneration policy of each added directory (if any) is set to
enabled, and the #include search state of each added directory is
set to included. The module kind of each added file name extension
(if any) is set to specification if the file name extension contains the
letter h. Otherwise, the module kind is set to body.

Click Cancel to dismiss the dialog box without making changes
to the project.

5. Click File > Save to save the changes to the project.

The Refresh Project File List button—activated if one or more
directories in the project Directory list are selected—adds every
qualified source file in each selected directory to the File list. A source
file is qualified if it meets the current File Filter.
Rational Rose 2000e, Using Rose C++ 125

Chapter 4 Analyzer Projects
To remove one or more files from the File list:

1. In the project Directory list box, double-click on the directory that
contains the files you want to remove.

2. Select the unwanted files in the Files In List box and click Remove
Selected. Note that if the selected files do not match the File Filter
criteria, they are removed from the Files In List box but do not
appear in the Files Not In List box.

You can select multiple files in the Files In List box by dragging the
mouse from one entry to another. Clicking on an entry in either
check box while depressing the Ctrl-key switches that entry’s
selection status without deselecting any other entries.

3. To remove all of the files in the Files In List box, click Remove All.

4. Click OK to update the File list. The project’s Directory list and
Extension list are not modified by this procedure.

Click Cancel to dismiss the dialog box without making changes to
the project.

5. Click File > Save to save the changes to the project.

To add a directory to the Directory list:

1. Locate it with the Directory Structure browser; double-clicking on a
directory in this browser displays its subdirectories (if any) and
places its path in the Current Directory text box.

2. When the Current Directory text box contains the name of the
directory you wish to add, click Add Current.

To add each subdirectory of the Current Directory to the Directory
list, click Add Subdirs.

To add every subdirectory in the directory tree rooted at Current
Directory, click Add Hierarchy.

The regeneration policy of each added directory is set to enabled,
and the #include search state of each added directory is set to
included.

3. Click OK to update the project with these changes.

Click Cancel to dismiss the dialog box without making changes to
the project.

4. Click File > Save to save the changes to the project.
126 Rational Rose 2000e, Using Rose C++

To remove a directory to the Directory list:

1. In the project Directory list box, click on the directory that you
want to remove.

2. Click Remove Dir(s).

3. Click OK to update the project with these changes.

Click Cancel to dismiss the dialog box without making changes to
the project.

4. Click File > Save to save the changes to the project.

Base List

It is often the case that the source code representing the program you
wish to reverse engineer references files (in #include directives)
defined in external source code libraries, such as those provided with
C++ compilers or domain-specific class libraries. You could add the
directories containing these external source files to your project and
reverse engineer them along with your source files, but this approach
is inefficient when the libraries are used by several engineers.

Instead, you can create an Analyzer project for each external library.
You then reference these library-specific projects in your project by
adding them your project’s Base list. The Analyzer can then
successfully resolve references from source files in your project to
source files in the external libraries. A project that appears on another
project’s Base list is referred to as a base project.

If, during preprocessing, the Analyzer cannot resolve all symbols and
#include directives after searching the files in the directories in the
project’s Directory list, it searches the directories identified by each
base project on the Base list. Each base project’s Defined Symbols list
and Undefined Symbols list are taken into account during this search.

Each entry in a Base list consists of the file name and caption of a base
project. The order in which Base projects appear in the Base list entries
is important, since it determines the order in which the C++ Analyzer
searches header files, and defines or undefines preprocessor symbols;
the first Base project on the Base list is processed first.

The Default Project: analyzer.pjt

During the Rational Rose C++ installation process, a default project
named analyzer.pjt is created in your Rational Rose installation
directory. A compiler-specific project, representing the source libraries
Rational Rose 2000e, Using Rose C++ 127

Chapter 4 Analyzer Projects
associated with your site’s C++ compiler, can also be installed and
placed on the Base list of analyzer.pjt. This compiler-specific project
references PathMap virtual symbols that it resolves to the directories
containing these source libraries. During installation, you identify the
locations of these directories; PathMap entries defining the appropriate
virtual symbols are created using this information. Click File > New
without depressing the SHIFT key, and the Analyzer creates the new
project by copying analyzer.pjt. The new project contains a Base list
entry referring to the project representing the source libraries
associated with your site’s C++ compiler. This is appropriate when the
source code you intend to analyze references your compiler’s source
libraries.

You can use this mechanism to facilitate the use of one or more class
libraries used at your site: create a project for each class library, and
add these projects to the Base list of analyzer.pjt.

Click File > New while depressing the SHIFT key, the new project is
empty, rather than a copy of analyzer.pjt.
128 Rational Rose 2000e, Using Rose C++

Editing the Base List

To edit the project’s Base list, click Bases in the Project window or
Click Edit > Base List to display the Base Projects dialog box:

Figure 36 Editing the Base List

To add a project to the Base list, use the file requester in the dialog box
to select an Analyzer project representing the external library, and then
click Add. The Analyzer will not permit you to add a project to the Base
list if this action would introduce a circular dependency.

To remove a project from the Base list, select its entry in the Selected
Files list box and click Remove.

To change the order of Base list entries, use the mouse to drag them
into the appropriate order.

Defined Symbols List

Use a project’s Defined Symbols list to define any preprocessor
symbols you want the Analyzer to expand when it semantically
analyzes the files in your program; however, the symbols you define
should not already be defined in the source files.
Rational Rose 2000e, Using Rose C++ 129

Chapter 4 Analyzer Projects
The Analyzer utilizes the C++ language definition in ARM draft
standard. However, the program you are analyzing might make use of
language extensions or predefined macros that the compiler or a class
library provides. Furthermore, your program can contain macros that
you define via the -D compiler option instead of using #define
directives. In order to analyze such source files, the Analyzer relies on
the Defined Symbols list to define any language extensions and
undefined macros it is likely to encounter.

In the Defined Symbols list for a compiler-specific base project, you
should list:

� A symbol with an empty value for each compiler-defined language
extension. For example, keywords such as far.

� A symbol with an appropriate value for each compiler-defined
preprocessor symbol. For example, predefined macros like
__M_I86__.

In the Defined Symbols list for a program-specific project, list:

� Any symbol you normally pass to your compiler via the -D option.

If the same symbol is defined in a program-specific project and in any
of the base projects it references, the Analyzer takes the symbol
definition from the program-specific project. Furthermore, if the same
symbol is defined in more than one base project, the Analyzer uses the
last definition for that symbol, and processes the base projects, in
order, from first to last on the Base list.
130 Rational Rose 2000e, Using Rose C++

Editing the Defined Symbols List

To edit the project’s Defined Symbols list, click Edit > Defined Symbols
to display the Defines dialog box:

Figure 37 Defines Dialog Box

To add a symbol to the Defined Symbol list:

1. Enter the symbol’s name in the Symbol text box.

2. Enter the symbol’s value in the Value text box.

3. Optionally, enter a comment in the Comment text box.

4. Click Add.

To remove a symbol from the Defined Symbol list, select its entry in the
Define These Symbols text box and click Delete.

Note: You can directly edit the project’s Undefined Symbols list,
Categories list, or Subsystems list by clicking the appropriate option
button in the Symbol List frame.

Undefined Symbols List

Use the Undefined Symbols list to specify which symbols are undefined
during analysis.
Rational Rose 2000e, Using Rose C++ 131

Chapter 4 Analyzer Projects
The Undefined Symbols list for a program-specific project should list
any symbol that you pass to your compiler via the -U option. The
Undefined Symbols list for a compiler-specific base project is usually
empty.

Each entry in the Undefined Symbols list consists of a symbol followed
by an optional comment:

symbol #comment

The symbol in each entry must be a single valid C++ identifier. For ex-
ample: far or _M_I86_ or MYSYM.

Editing the Undefined Symbols List

To edit the project’s Undefined Symbols list, click Edit > Undefined
Symbols to display the Undefines dialog box:

Figure 38 Undefines Dialog Box

To add a symbol to the Undefined Symbol list:

1. Enter the symbol’s name in the Symbol text box.

2. Optionally enter a comment in the Comment text box.

3. Click Add.

To remove a symbol from the Undefined Symbol list, select its entry in
the Undefine These Symbols text box and click Delete.
132 Rational Rose 2000e, Using Rose C++

Note: You can directly edit the project’s Defined Symbols list, Categories
list, or Subsystems list by clicking the appropriate option button in the
Symbol List frame.

Categories List

A project’s Categories list contains all categories (logical packages) to
which source files in the File list have been assigned. When a source
file is added to the File list, the Analyzer uses the simple name of the
source file’s parent directory as the assigned category (logical package),
and adds this simple name to the Categories list. The project’s
assignment of a source file to a category is referred to as the project
category assignment.

Each entry in the project’s Categories list contains three components:

� The name of a category (logical package).

� If the category (logical package) is to be a controlled unit, the path
to the petal file that provides its persistent storage.

� Optionally, the name of the subsystem to which the category
(logical package) is assigned.

When you export a project’s design information, the Assign Class to
Category Export Option in the Output tab of the Export Options dialog
box can be set to use the Project category assignment to assign classes
to categories (logical packages). Alternatively, this Export Option can be
set to drive this assignment based on Class Annotation, or from the
Directory Containing Definition.
Rational Rose 2000e, Using Rose C++ 133

Chapter 4 Analyzer Projects
Editing the Categories List

To edit the project’s Categories list, click Edit > Categories to display
the Categories dialog box:

Figure 39 Categories Dialog Box

To add a category (logical package) to the Categories list:

1. Enter the category’s (logical package) name in the Category text
box.

2. If the category (logical package) is a controlled unit, enter the path
to the petal file that provides persistent storage into the Unit text
box, or click Browse to use a file requester dialog box.

3. If the category (logical package) is assigned to a subsystem, enter
the subsystem’s name in the Subsystem text box.

4. Click Add.

To remove a category (logical package) from the Categories list, select
its entry in the Use These Categories list box and click Delete.

Note: You can directly edit the project’s Defined Symbols list, Undefined
Symbols list, or Subsystems list by clicking the appropriate option button
in the Symbol List frame.
134 Rational Rose 2000e, Using Rose C++

Subsystems List

A project’s Subsystems list contains all subsystems to which source
files in the File list have been assigned. When a source file is added to
the File list, the Analyzer use the simple name of the source file’s
parent directory as the assigned subsystem, and adds this simple
name to the Subsystem list. The project’s assignment of a source file to
a subsystem is referred to as the project subsystem assignment.

Each entry in the project’s Subsystems list contains three components:

� The name of a subsystem.

� If the subsystem is to be a controlled unit, the path to the petal file
which provides its persistent storage.

� Optionally, a comment describing the subsystem.

When you export a project’s design information to Rational Rose, the
Assign Module to Subsystem Export Option in the Output tab of the
Export Options dialog box can be set to use the Project subsystem
assignment to assign modules to subsystems. Alternatively, this
Export Option can be set to drive this assignment based on Module
Annotation, or from the Directory Containing Definition.
Rational Rose 2000e, Using Rose C++ 135

Chapter 4 Analyzer Projects
Editing the Subsystems List

To edit the project’s Subsystems list, click Edit > Subsystems to display
the Subsystems dialog box:

Figure 40 Subsystems Dialog Box

To add a component package to the Subsystems list:

1. Enter the subsystem’s (component package) name in the
Subsystem text box.

2. If the subsystem (component package) is a controlled unit, enter
the path to the petal file that provides persistent storage into the
Unit text box, or click the Browse button to use a file selector
dialog box.

3. Optionally, enter a comment in the Comment text box.

4. Click Add.

To remove a subsystem (component package) from the Subsystems
list, select its entry in the Use These Subsystems list box and click
Delete.

Note: You can directly edit the project’s Defined Symbols list, Undefined
Symbols list, or Categories list by clicking the appropriate option button
in the Symbol List frame.
136 Rational Rose 2000e, Using Rose C++

Type 2 Context

A project’s Type 2 Context component is a list of preprocessor
directives to be executed before analyzing a Type 2 file contained by
that project. When the Analyzer encounters a Type 2 file during
semantic analysis, it creates a temporary file containing:

� An identification #define directive which defines a symbol derived
from the name of the Type 2 file being analyzed.

� The preprocessor directives that you placed in the project’s Type 2
Context component.

� A #include directive referencing the Type 2 file being analyzed.

This temporary file is then semantically analyzed instead of the Type 2
file. This temporary file is created in the directory containing the
current project; if files cannot be created in this directory—due to
filesystem access control settings—Type 2 files cannot be successfully
semantically analyzed.

Without conditional compilation in the Type 2 Context component’s
directives, every Type 2 file would be analyzed in the same context; this
is usually not appropriate. Each Type 2 file usually needs a different
set of #include directives to provide the right context. To facilitate this,
the Analyzer provides a #define symbol derived from the name of the
Type 2 file being analyzed, which can be used in the Type 2 Context
component directives to conditionally include the header files needed
for each Type 2 file in the project. This symbol is constructed as
specified in the Type 2 Context File dialog box.

Suppose your project includes the Type 2 files foo.h and bar.h.
Further suppose that foo.h requires inclusion of footext.h, and
bar.h requires inclusion of bartext.h. A Type 2 Context component
that supports analysis of both Type 2 files is:

#if defined (t2_foo_h)
#include “footext.h”

#elif defined (t2_bar_h)
#include “bartext.h”

#endif

where t2_foo_h is defined only when compiling foo.h and t2_bar_h
is defined only when compiling bar.h.

Modifying the Type 2 Context causes all Type 2 files to require re-
analysis. Modifying a source file included in the Type 2 Context causes
all Type 2 files to reference the modified file to require re-analysis.
Rational Rose 2000e, Using Rose C++ 137

Chapter 4 Analyzer Projects
Editing the Type 2 Context

To edit the project’s Type 2 Context, click Edit > Type2 Context to
display the Type 2 Context dialog box:

Figure 41 Type 2 Context Dialog Box

To identify the special #include or #define directives that the C++
Analyzer needs to compile Type 2 files:

1. Click Edit > Type2Context or click Type 2 in the Project window to
display the Type 2 Context dialog box.

2. Type one or more #include or #define statements in the editing
window after the Add your preprocessor commands here comment.
You can use Insert to enter the identification symbol for the
currently selected File list entry where needed.

Note: Type 2 Context dialog box is non-modal—you can click File >
Save to have changes take effect without dismissing the dialog box.

3. Click OK to add the preprocessor information, or click Cancel to
discard your additions.

4. Click File > Save to save your changes to the project.
138 Rational Rose 2000e, Using Rose C++

Changing Preprocessor Commands

To modify the #include or #define directives for Type 2 context files:

1. Click Edit > Type2Contexts or click Type 2 in the Project window to
display the Type 2 Context dialog box.

2. Select the text below the Add your preprocessor commands.

3. Click OK to add the preprocessor information, or click Cancel to
discard your additions.

4. Click File > Save to save your changes to the project.
Rational Rose 2000e, Using Rose C++ 139

Chapter 5

Analyzer Export Options

Export options enable you to map specific C++ source code constructs
into model-notation elements, and then selectively place these
elements into one or more exported model files. Rational Rose can then
use the exported model files to update an existing model, so that it
reflects design changes instituted in source code derived from that
existing model. These export options are maintained in a project's
export options component.

Export options allow you to control things like: the selection of source
files, the specification of language-to-notation mapping, the selection
of elements to be exported, the grouping of classes into class
categories, the grouping of modules into subsystems, and the
fabrication, naming, and population of diagrams.

The export operation can optionally fabricate a class diagram for each
exported class category, and can optionally fabricate a module diagram
for each exported subsystem. These diagrams can be selectively
populated with icons representing exported model elements and the
relationships between them. Diagrams fabricated by the C++ Analyzer
are placed in the generated model file, enabling viewing and
manipulation with Rational Rose.

Export Option Sets

The export options appropriate for reverse-engineering pre-existing
C++ source code are different from those one would use for round-trip
engineering. The C++ Analyzer therefore lets you to define export
options sets—named collections of export option settings—and attach
a set to your project. These sets enable you to rapidly and accurately
Rational Rose 2000e, Using Rose C++ 141

Chapter 5 Analyzer Export Options
establish the settings appropriate for your current activity. To specify
the export option set whose export options govern the export process,
click Action > Export To Rose.

The Analyzer predefines three standard export option sets:

� FirstLook

� DetailedAnalysis

� RoundTrip

You can modify the export option settings of these predefined sets, or
you can create and name new sets. You specify an export option set as
your project default by clicking Action > Export To Rose and selecting
an option set. See “Predefined Export Option Sets” on page 143 for
more information.

Editing Export Options and Sets

To display or modify the export options for a set, click Edit > Export
Options or, if your current project view shows the Export Options
component, click Export Options to display the Export Options dialog
box. Select the export option set you wish to display or modify in the
Option Set list box, then click the tab that contains the options of
interest.

If you modify one or more export option settings, an asterisk is
appended to the export options set name in the Option Set list box, and
the Delete button changes to Update. Clicking Update saves your
modifications when the dialog box is dismissed. When you click
Update, the appended asterisk is removed to indicate that the export
option set was updated.

The Export To Rose dialog box (click Action > Export To Rose) also
provides an Option Set list box, along with a Mk Dflt (make default)
button that enables you to designate a specific option set as the project
default. A project’s default export option set can always be selected by
choosing the special symbol <default> in an Option Set list box.

Clicking this dialog box’s Edit button, or clicking on a specific export
option in its Summary of Options scroll box enables you to modify the
export options used during the export operation without modifying the
settings of any export option set. The Export Option dialog box
142 Rational Rose 2000e, Using Rose C++

presented in this situation is identical to those described, except that
the title is “One-Use Export Option Set” and the confirmation button is
labeled Use-Set.

To choose the most-recently modified export option set, select <latest>
in the Option Set list box.

You can modify the export option settings of a predefined export option
set. To restore the settings of the predefined export option sets to their
original values, select <restore standard option settings> in the Option
Set list box.

To create a new export option set, select a predefined set in the Export
Options box. Choose the predefined set whose export option settings
are closest to the desired values in the new set.

Click Clone, and name the new export option set in the Name Option
Set dialog box the Analyzer then displays. Use the dialog tabs to modify
the new set’s export options as desired. To preserve these definitions,
click Update, click OK, and then click File > Save.

To delete an export option set, select it in the Export Options box and
click Delete.

Predefined Export Option Sets

In addition to allowing you to define your own export option sets, the
Analyzer provides three predefined sets:

� FirstLook

� DetailedAnalysis

� RoundTrip

FirstLook

The FirstLook option set is optimized for high-level examination of pre-
existing source code.

� The complete model is exported in one file with extension .mdl.

� Classes are assigned to categories (logical packages) based on the
project category assignment.

� Categories (logical packages), classes, typedefs, and enumerations
are modeled and drawn.

� Object functions and static functions are modeled.
Rational Rose 2000e, Using Rose C++ 143

Chapter 5 Analyzer Export Options
� Aggregate, generalization, and instantiates relationships are
modeled and drawn.

� Default cardinality is 1 to 0..1.

� Default protocol is C++.

� Generated class diagrams are named “Reverse Engineered.”

� Neither subsystems (component packages) nor modules are
modeled or drawn.

� Class, operator, member, and module annotations are modeled.

DetailedAnalysis

The DetailedAnalysis option set is optimized for in-depth examination of
pre-existing source code.

� The complete model is exported in one file with extension .mdl.

� Classes are assigned to categories (logical packages) based on the
project category assignments.

� Categories (logical packages), classes, typedefs, and enumerations
are modeled and drawn.

� Object functions and static functions are modeled.

� Object aggregate, static aggregate, generalization, instantiates, and
friendship required relationships are modeled and drawn.

� All dependency relationships are modeled, but not drawn.

� Default cardinality is 1 to 0..1.

� Default protocol is C++.

� Generated class and module diagrams are named “Reverse
Engineered.”

� Modules are assigned to class categories based on the project
subsystem assignments.

� Module names are derived from directories.

� Class categories and modules are modeled and drawn.

� Visibility relationships are drawn for direct #include declarations,
#include declarations needed from context, and #include
declarations of type 3 headers.

� Module -> subsystem (component package) and subsystem ->
module visibility relationships are drawn.

� Class, operator, member, and module annotations are modeled.
144 Rational Rose 2000e, Using Rose C++

RoundTrip

The RoundTrip option set is optimized for round-trip engineering.

� The complete model is exported in one file with extension .red.

� Classes are assigned to categories (logical packages) based on
annotations.

� Categories (logical packages), classes, and typedefs are modeled
and drawn.

� Object functions and static functions are modeled.

� Aggregate and instance dependency relationships are modeled,
drawn, and named.

� Object dependency, static dependency, generalization, instantiates,
and friendship required relationships are modeled and drawn.

� Default cardinality is 1 to 0..1.

� Default protocol is C++.

� Generated class and module diagrams are named “Reverse
Engineered.”

� Modules are assigned to subsystems (component packages) based
on annotations.

� Module names are derived from annotations.

� Subsystems (component packages) and modules are modeled and
drawn.

� Visibility relationships are drawn for direct #include declarations,
#include declarations needed from context, and #include
declarations of type 3 headers.

� Module -> subsystems (component packages) and subsystems ->
module visibility relationships are drawn.

� Class, operator, member, and module annotations are modeled.
Rational Rose 2000e, Using Rose C++ 145

Chapter 5 Analyzer Export Options
Input Export Options

Figure 42 Default Export Option Set Dialog Box

Examine Type Definitions In These Files

This export option identifies the source files from which design
information is extracted.

Selected Files Only

This option indicates that design information should be extracted only
from files selected in the project’s File List.

Selected Files and #include Closure

This option indicates that design information should be extracted from
files selected in the project’s File List and the include closure of each
selected file.
146 Rational Rose 2000e, Using Rose C++

A file’s include closure is the combination of two sets of files:

1. The set of all files referenced in its #include directives.

2. The set of all files contained in the #include closure of each file
contained in the first set.

This recursive definition produces a list of files within which a
referenced declaration must be located.

Selected Files and Implementation Closure

This option indicates that design information should be extracted from
files selected in the project’s File List and the implementation closure
of each selected file.

A file’s implementation closure is the combination of three sets of files:

1. The set of all files referenced by its #include directives.

2. The set of implementation files associated with the header files
contained in the first set.

3. The set of all files contained in the implementation closure of
each file contained in the first and second sets.

This recursive definition produces a list of files within which a
referenced definition must be located.

Also Examine Type Definitions

The option, Also Examine Type Definitions Referenced in the Following
Sections of Examined Types has the following check boxes:

Non-static data members

Static data members

Non-static member functions

Static member functions

Typedefs

Base Lists

Instantiations

Instantiation Arguments

Friend Declarations

Template Parameters
Rational Rose 2000e, Using Rose C++ 147

Chapter 5 Analyzer Export Options
Look for Definitions of Referenced Types

This option controls the Analyzer’s effort to find the definition of types
referenced in C++ elements selected in the Also Examine Type
Definitions Referenced in the Following Sections of Examined Types
option.

Look for Definitions in Selected Files and Designated
Closure

This option searches for definitions only where specified by the
Examine Type Definitions in These Files setting.

Search #included Files for Definitions

The option, Search #included Files for Definitions searches the
#include closure of an exported file in an attempt to find the definition
for each referenced class. Since this is exactly what a C++ compiler
does to compile a file, a file that compiles without errors should enable
the Analyzer to resolve all references to base classes and templates in
the file as well as all aggregation and dependency relationships by
value.

Because C++ allows incomplete forward declarations, the Analyzer
might not find some dependency and aggregation relationships by
reference.

Search Files of Project for Definitions

The option, Search Files of Project for Definitions, searches the
#include closure of an exported file in an attempt to find the definition
for each referenced class. If this search fails, the Analyzer then
searches all analyzed files in the project.

Search Project and Bases for Definitions

The option, Search Project and Basis for Definitions, searches the
#include closure of an exported file in an attempt to find the definition
for each referenced class. If this search fails, the Analyzer then
searches all analyzed files in the project and its base projects. This
search should find all referenced definitions; if not, a warning message
is generated.
148 Rational Rose 2000e, Using Rose C++

Output Export Options

Figure 43 Output Export Options

Title

The string contained in this text box initializes the Title box in the Ex-
port To Rose dialog box, which specifies the title placed on every gen-
erated class and module diagram.

The following format code substitutions are supported:

Table 29 Format Code Substitutions

%c Replace by the project Caption.

%d Replaced by the simple name of the directory that
contains the project.
Rational Rose 2000e, Using Rose C++ 149

Chapter 5 Analyzer Export Options
Model File

The string contained in this text box initializes the File box in the
Export To Rose dialog box, which specifies the pathname of the
generated petal file(s).

%e Replaced by the simple name generated from the
selected File List entries.

If a single file is selected, the resulting name is the
simple name of the selected file. If multiple files are
selected, and every selected file is assigned to the
same category (logical package), then the resulting
name is the name of the category (logical package);
otherwise, the resulting name is the name of the
project.

%p Replaced by the project name.
150 Rational Rose 2000e, Using Rose C++

The following format code substitutions are supported:

Table 30 Model File Format Code Substitutions

Notation Buttons

These option buttons determine whether diagrams are generated with
the UML, OMT, Booch notation.

Browse Button

This button displays the Specify Design File dialog box which enables
you to select the Model File by traversing the file system.

Create Class Model

This check box enables the inclusion of classes and related elements
in the generated model containing the reverse engineered design,
subject to fine-grained control by export options on the Class Model
tab. If you do not create a class model, then module diagrams can be
exported.

%c Replaced by the project Caption.

%d Replaced by the simple name of the directory that
contains the project.

%e Replaced by the full name of the directory that
contains the project.

%f Replaced by a simple name generated from the
selected File List entries.

If a single file is selected, the resulting name is the
simple name of the selected file. If multiple files are
selected, and every selected file is assigned to the
same category (logical package), then the resulting
name is the name of the category (logical package);
otherwise, the resulting name is the name of the
project.

%p Replaced by the project name.
Rational Rose 2000e, Using Rose C++ 151

Chapter 5 Analyzer Export Options
Create Class Diagrams

If this check box is enabled, the Analyzer generates a class diagram in
each category (logical package) it encounters. On each class diagram,
the Analyzer places icons representing model elements contained in
the diagram’s parent category (logical package), as directed by the
export options on the Class Diagram tab.

Create Categories

This check box enables the inclusion of categories (logical packages) in
the generated model. If this check box is disabled, all classes are placed
in the <top level> Logical View.

Create Module Diagrams

If this check box is enabled, the Analyzer generates a module diagram
in each subsystem (component package) it encounters. On each
module diagram, the Analyzer places icons representing model
elements contained in the diagram’s parent subsystem (component
package), as directed by the export options on the Module Diagram tab.

Create Subsystems

This check box enables the inclusion of subsystems (component
packages) in the generated model. If this check box is disabled, all
modules are placed in the Component View.

Assign Class to Category Based On

Class Annotation

Classes are assigned to categories (logical packages) based on
information extracted from source code annotations. If a class without
the necessary annotation is encountered, the Analyzer will assign it a
category (logical package) based on its project category assignment.

Project

Classes are assigned to categories (logical packages) based on the
project category assignment, which is maintained by each source file’s
entry in the project’s File List. If there is no project category assignment
152 Rational Rose 2000e, Using Rose C++

for the file, it will be assigned to a category (logical package) whose
name is the simple name of the file’s parent directory. Any category
(logical package) annotation present is ignored.

Directory Containing Definition

Classes will be assigned to categories (logical packages) whose names
are the simple names of their file’s parent directory. The project
category assignment is ignored.

Controlled Unit Policy (Categories)

Put All Categories in Model File

Categories (logical packages) are not designated as controlled units.

Create Units Based On Annotations

Categories (logical packages) are assigned to controlled units as
specified by unit annotations in the source code; each exported
controlled unit is represented by a separate petal file.

Create Units as Defined in Project

Categories (logical packages) in the project’s Categories List are
designated as controlled units if they have been assigned a unit name;
each exported controlled unit is represented by a separate petal file.
Any unit annotations present are ignored.

One Top-level Category per Unit

Each category (logical package) is designated as a controlled unit; each
exported controlled unit is represented by a separate petal file.

One Category per Unit

Every category (logical package) in the design is designated as a
controlled unit; each exported controlled unit is represented by a
separate petal file.

Category Unit Extension

This text box specifies the file name extension used for separate petal
files containing a category (logical package).
Rational Rose 2000e, Using Rose C++ 153

Chapter 5 Analyzer Export Options
Override Existing Extension (Categories)

If enabled, the user-specified extension in the Category Unit Extension
text boxes will replace any extension specified in an annotation or in
the project. The user-specified extensions can also be used if a unit in
an annotation or the project has no specified extension.

Assign Module to Subsystem based on

The following determine how to assign a module to a subsystem:

Module Annotation

Modules will be assigned to subsystems (component packages) based
on information extracted from source code annotations. If a module is
missing the required annotation, the Analyzer will assign the module
to the subsystem (component package) specified by the module’s
project-subsystem assignment.

Project

Modules will be assigned to subsystems (component packages) based
on the project-subsystem assignment, which is maintained by each
source file’s entry in the project’s File List. If there is no project
subsystem-assignment for the file, it is assigned to the subsystem
(component package) whose name is the simple name of the file’s
parent directory. Any subsystem (component package) annotation
present is ignored.

Directory Containing Module

Modules are assigned to subsystems (component packages) whose
names are the simple names of their file’s parent directory. The project-
subsystem assignment is ignored.

Controlled Unit Policy (Subsystems)

Put All Subsystems in Model File

Subsystems (component packages) are not designated as controlled
units.
154 Rational Rose 2000e, Using Rose C++

Create Units as Defined by Project

Subsystems (component packages) in the project’s Subsystems list are
designated as controlled units if they have been assigned a unit name;
each exported controlled unit is represented by a separate petal file.

One Component View per Unit

Each component view will be designated as a controlled unit; each
exported controlled unit is represented by a separate petal file.

One Subsystem per Unit

Every subsystem (component package) in the design is designated as a
controlled unit; each exported controlled unit is represented by a
separate petal file.

Subsystem Unit Extension

This text box specifies the file name extension used for separate petal
files containing a subsystem (component package).

Override Existing Extension (Subsystems)

If enabled, the user-specified extension in the Subsystem Unit
Extension text boxes will replace any extension specified in an
annotation or in the project. The user-specified extensions are also
used if a unit in an annotation or the project has no specified
extension.
Rational Rose 2000e, Using Rose C++ 155

Chapter 5 Analyzer Export Options
Class Model Export Options

Figure 44 Class Model Export Options

Create a Class Model with Elements

The check box, Create a Class Model with Elements for the following C++
Types, enables the inclusion of classes and related elements in the
generated model containing the reverse engineered design, subject to
fine-grained control by the option settings on this tab.

Several of the following export options include check boxes that provide
control based on access—Public, Private, Protected, and
Implementation. Unnested types in specification files have public
access; those in body files have implementation access. The access of
nested types is determined by the rules of C++.

Classes

These export options determine which C++ classes are represented as
classes in the generated model.
156 Rational Rose 2000e, Using Rose C++

Templates

These export options determine which C++ templates are represented
as classes in the generated model.

Template Instantiations

These export options determine whether C++ template instantiations
are represented as classes in the generated model.

Typedefs

These export options determine which C++ typedefs are represented as
classes in the generated model.

POD Structs and Unions

These export options determine which C++ “Plain Old Data” structs
and unions are represented as classes in the generated model.

Fundamental Types (int, char, etc.)

These export options determine whether C++ fundamental types are
represented as classes in the generated model.

Enumerations

These export options determine which C++ enumerations are
represented as classes in the generated model.
Rational Rose 2000e, Using Rose C++ 157

Chapter 5 Analyzer Export Options
Relationships Export Options

Figure 45 Relationships Export Options

Create

This check box enables the mapping of C++ data members to
relationships in the generated model, subject to fine-grained control by
the following export options:

Has (Aggregate) Relationships or Associations

The export option, Has Relationships or Associations to the Data Type
of Each, determine whether C++ data members are represented as
aggregate (has) relationships or as associations.

Non-Static Data Member

These export options determine which non-static C++ data members
are represented in the generated model.
158 Rational Rose 2000e, Using Rose C++

Static Data Member

These export options determine which static C++ data members are
represented in the generated model.

Default Cardinality for Pointers

These export options specify the default cardinality that you want the
Analyzer to use for relationships representing C++ pointer objects. The
C++ Analyzer cannot determine the cardinality of a C++ pointer object
from its definition. Set this option to the dominant usage of pointers in
the application you are modeling, typically FFFFrrrroooommmm:::: 1 TTTToooo: : : : 0..1 .

Note: Each pointer definition generated by the Rational Rose C++ is
accompanied by an annotation that specifies its pointer’s cardinality.
Enable modeling of class annotations for cardinality in the Annotation
export options dialog tab if you want the cardinality from annotations
used instead of the default cardinality—this is the recommended setting
for round-trip engineering.

Create Uses Relationships

The check box, Create Uses Relationships to Each Type Referenced in
the Declaration of enables the creation of dependency relationships in
the generated model containing the reverse engineered design, subject
to fine-grained control by the following export options:

Non-Static Methods

These export options determine whether to create dependency
relationships to each type referenced in the declaration of non-static
methods from the classes containing these methods.

Static Methods

These export options determine whether to create dependency
relationships to each type referenced in the declaration of static
methods from the classes containing these methods.

Typedefs

These export options determine whether to create dependency
relationships to each type referenced in the declaration of typedefs
from the classes containing these typedefs.
Rational Rose 2000e, Using Rose C++ 159

Chapter 5 Analyzer Export Options
Type-Valued Instantiation Arguments

These export options determine whether to create dependency
relationships to each type referenced in the declaration of type-valued
instantiated arguments from the classes representing these
instantiations, and how these relationships are named.

Non-Type Template Parameters

These export options determine whether to create dependency
relationships to each type referenced in the declaration of non-type
template parameters from the classes representing these templates,
and how these relationships are named.

Create Inherits Relationships to Each

This check box enables the creation of generalization/inheritance
relationships in the generated model containing the reverse engineered
design, subject to fine-grained control by the following export options:

Public Base Class

This export option determines whether to create
generalization/inheritance relationships between classes and their
public base classes.

Protected Base Class

This export option determines whether to create
generalization/inheritance relationships between classes and their
protected base classes.

Private Base Class

This export option determines whether to create
generalization/inheritance relationships between classes and their
private base classes.

Create Instantiates Relationships from Each Instantiation to
its Template

This check box enables the creation of instantiates relationships in the
generated model.
160 Rational Rose 2000e, Using Rose C++

Create Uses Relationships from Each Class Declared
“friend”

This check box enables the creation of dependency relationships
between classes and their “friends”.

Attributes Export Options

Figure 46 Attributes Export Options

Create Operation Specifications for

This check box enables the mapping of C++ methods (member
functions) to operations in the generated model containing the reverse
engineered design, subject to fine-grained control by the following
export options:
Rational Rose 2000e, Using Rose C++ 161

Chapter 5 Analyzer Export Options
Non-Static Methods

These export options determine which non-static methods are
represented as operations in the generated model.

Static Methods

These export options determine which static methods are represented
as operations in the generated model.

Default Function Protocol

This export option specifies the protocol field in each generated opera-
tion specification; usually, CCCC++++++++ is the proper value.

Note: Each operation definition generated by the Rational Rose C++
code generator is accompanied by an annotation that specifies its
operation’s protocol. Enable modeling of operation annotations for
protocol in the Annotation export options dialog tab if you want the
protocol from annotations used instead of the default protocol—this is
the recommended setting for round-trip engineering.

Create Attribute Specifications for

This check box enables the mapping of C++ data members to attributes
in the generated model containing the reverse engineered design,
subject to fine-grained control by the following export options:

Note: The Analyzer does not enforce mutual exclusivity between export
options governing whether a data member is to be modeled as an
attribute and export options governing whether that same data member
is to be modeled as a relationship.

Non-Static Data Members

These export options determine which non-static data members are
represented as attributes in the generated model.

Static Data Members

These export options determine which static data members are
represented as attributes in the generated model.
162 Rational Rose 2000e, Using Rose C++

Comments Export Options

Figure 47 Comments Export Options

Look for Comments on C++ Constructs as Follows

The check box in each entry enables the capture of comments from the
designated C++ language construct for inclusion in the documentation
field of the generated component specification. If the designated
construct is not being modeled, its associated check box is disabled.
Rational Rose 2000e, Using Rose C++ 163

Chapter 5 Analyzer Export Options
The option buttons in each entry control how the comments are
extracted:

Table 31 Comments on C++ Constructs

Non-static data member before definition or after definition

Static data member before definition or after definition

Non-static member function before declaration or after declaration

Static member function before declaration or after declaration

Member function body before definition or after header

Class before definition or after header

Struct before definition or after header

Template before definition or after header

Typedef before definition or after definition

Enumeration before definition or after definition

Module
164 Rational Rose 2000e, Using Rose C++

Annotation Export Options

Figure 48 Annotation Export Options

Model Module Annotations (Documentation)

This check box enables module documentation annotations to be
placed in the documentation field of reverse engineered module
specifications.

Model Class Annotations for

The following check boxes are available in Model Class Annotations for.

Documentation

This check box enables class documentation annotations to be placed
in the documentation field of reverse engineered class specifications.
Rational Rose 2000e, Using Rose C++ 165

Chapter 5 Analyzer Export Options
Persistence

This check box enables class persistence annotations to be placed in
the persistence field of reverse engineered class specifications.

Concurrency

This check box enables class concurrency annotations to be placed in
the concurrency field of reverse engineered class specifications.

Associations

This check box enables class association annotations to create their
specified association relationships in the reverse engineered model.

Dependency

This check box enables class association annotations to create their
specified relationships in the reverse engineered model.

Cardinality

This check box enables class cardinality annotations to be placed in
the cardinality field of reverse engineered class specifications.

Space Complexity

This check box enables class space complexity annotations to be
placed in the space field of reverse engineered class specifications.

Model Operation Annotations for

The following check boxes are available in Model Operation Annotations
for.

Documentation

This check box enables documentation operation annotations to be
placed in the documentation field of reverse engineered operation
specifications.

Time Complexity

This check box enables time complexity operation annotations to be
placed in the time field of reverse engineered operation specifications.
166 Rational Rose 2000e, Using Rose C++

Exceptions

This check box enables exceptions operation annotations to be placed
in the exceptions field of reverse engineered operation specifications.

Preconditions

This check box enables preconditions operation annotations to be
placed in the preconditions field of reverse engineered operation
specifications.

Concurrency

This check box enables concurrency operation annotations to be
placed in the concurrency field of reverse engineered operation
specifications.

Space Complexity

This check box enables space complexity operation annotations to be
placed in the space field of reverse engineered operation specifications.

Protocol

This check box enables protocol operation annotations to be placed in
the protocol field of reverse engineered operation specifications.

Post Conditions

This check box enables post conditions operation annotations to be
placed in the post conditions field of reverse engineered operation
specifications.

Qualification

This check box enables qualification operation annotations to be
placed in the qualification field of reverse engineered operation
specifications.

Semantics

This check box enables semantics operation annotations to be placed
in the semantics field of reverse engineered operation specifications.
Rational Rose 2000e, Using Rose C++ 167

Chapter 5 Analyzer Export Options
Model Data Member Annotations (Documentation)

This check box enables data member annotations to be placed in the
documentation field of aggregate relationship specifications.

Model Declarations in //##begin—//##end Regions

This check box enables the reverse engineering of declarations in
protected regions.

Note: This export option should not be enabled when practicing round-
trip engineering.

Model Generated Declarations

Note: The export options for model generated declarations should not
be enabled when practicing round-trip engineering.

The following check boxes are available in Model Generated
Declarations for.

Constructors

This check box enables the reverse engineering of constructors.

Destructor

This check box enables the reverse engineering of destructors.

Assignment Operator

This check box enables the reverse engineering of assignment
operators.

Equality Operators

This check box enables the reverse engineering of equality operators.

Relational Operators

This check box enables the reverse engineering of relational operators.

Storage Management Operators

This check box enables the reverse engineering of storage management
operators.
168 Rational Rose 2000e, Using Rose C++

Subscript Operator

This check box enables the reverse engineering of subscript operators.

Dereference Operators

This check box enables the reverse engineering of dereference
operators.

Indirection Operator

This check box enables the reverse engineering of indirection
operators.

Stream Operators

This check box enables the reverse engineering of stream operators.

Get/Set Operations

This check box enables the reverse engineering of get and set
operators.

Model //##aggregate Annotations

This check box enables aggregate annotations to create their specified
aggregate relationships in the reverse engineered model.
Rational Rose 2000e, Using Rose C++ 169

Chapter 5 Analyzer Export Options
Class Diagram Export Options

Figure 49 Class Diagram Export Options

Create Class Diagrams

If this check box is enabled, the Analyzer generates a class diagram,
named as specified by the Diagram Name export option, in each
category (logical package) it encounters. On each such class diagram,
the Analyzer places icons representing model elements contained in
the diagram’s parent category (logical package), as directed by the
following export options:

Draw Categories

If this check box is enabled, separate class diagrams depict the model
elements contained by each category (logical package); if not enabled,
all model elements are depicted on the Logical View.
170 Rational Rose 2000e, Using Rose C++

Diagram Name

All generated class diagrams have the same name, as specified by the
contents of this text box.

Draw Model Elements Derived From the Following
Constructs

The check boxes in each entry determine whether icons representing
model elements derived from the entry’s C++ construct will be depicted
in generated class diagrams. If a construct is not being modeled, its
associated check box is disabled.

Classes

POD (“Plain Old Data”) Structs and Unions

Templates

Typedefs

Enumerations

Fundamental Types

Instantiations

Draw Relationships Derived From Type References in the
Following Constructs

The check boxes in each entry determine whether icons representing
relationships derived from type references in the entry’s C++ construct
will be depicted in generated class diagrams. If a relationship is not
being modeled, its associated check box is disabled.

Non-static Data Members

Static Data Members

Base Lists

Member Functions, Typedefs, Instance Arguments, and Template
Parameters

Instantiations

Friend Declarations
Rational Rose 2000e, Using Rose C++ 171

Chapter 5 Analyzer Export Options
Module Diagram Export Options

Figure 50 Module Diagram Export Options

Create Module Diagrams

If this check box is enabled, the Analyzer generates a module diagram,
named as specified by the Diagram Name export option, in each
subsystem (component package) it encounters. On each such module
diagram, the Analyzer places icons representing model elements
contained in the diagram’s parent subsystem (component package), as
directed by the following export options:

Diagram Name

All generated class diagrams have the same name, as specified by the
contents of this text box.
172 Rational Rose 2000e, Using Rose C++

Derive Module Names from Annotations

This option indicates that module names are specified by annotations
in the selected source code files; if this option is not selected, module
names are derived from file names.

Draw Visibility Relationships For... Labeled...

The check box in each entry determines whether visibility relationship
icons representing the entry’s C++ construct are shown in generated
module diagrams; the entry’s text box specifies how such relationship
icons are to be labeled.

Type Relationships

Direct #include declarations

Indirect #include declarations

Unused #include declarations

#include declarations needed from context

#include declarations of Type 3 headers

Draw Subsystems

If this check box is enabled, separate module diagrams will depict each
subsystem’s modules; if not enabled, all modules are shown on a single
top level module diagram.

Draw Module -> Subsystem Visibility Relationships

If this check box is enabled, instances of Module to Subsystem
visibility relationships are shown in generated module diagrams.

Draw Subsystem -> Module Visibility Relationships

If this check box is enabled, instances of Subsystem to Module
visibility relationships are shown in generated module diagrams.
Rational Rose 2000e, Using Rose C++ 173

Chapter 5 Analyzer Export Options
Summary of Export Options

Figure 51 Summary of Export Options

The summary of export options provided by this dialog tab is identical
to the project’s export options component.

The Export Options

The available export options and their purpose are defined below. They
are listed in the order in which they appear on the Summary tab of the
Export Option Set dialog box.

Note: Some of the field names are quite long so, for clarity, the names
may be truncated by an ellipsis (...).

Double-clicking on an export option listed on the Summary tab takes
you to the tab and field where the option is set.

� The Option Set option identifies the name of the option set.
174 Rational Rose 2000e, Using Rose C++

� The Design Title option defines the identifying text string that is
placed on each generated diagram.

� The Model File option defines the path for the generated model file.
The option is set by the field on the tab.

� The Notation option determines whether generated diagrams utilize
UML, COM, OMT, or Booch notation.

� The Export Scope option determines the closure for type definitions.

� The Search Effort option determines the search breadth for
referenced type definitions.

� The Categories option specifies the basis on which classes are
assigned to categories (logical packages), and whether categories
(logical packages) appear in generated class diagrams. This option
is enabled by the Create Class Model check box and has three
settings on the Output tab:

❑ The first (from) is set by the Assign Class To radio buttons, but
is enabled by the Create Categories check box

❑ The second (Model) is automatically set when the Create Class
Model and Create Categories check boxes are checked

❑ The third (Draw) is set by the Create Class Diagrams check box

� The Category Units option determines how categories (logical
packages) are mapped to controlled units. This option is enabled by
the Create Class Model check box and is set by the (Class)
Controlled Unit Policy option buttons on the Output tab.

When one of the two Create option buttons is selected, it enables
the Override check box, which allows you to overwrite existing
model-file extensions with the value for Category File Extension.

� The Category File Extension option specifies the file name extension
used to generate model files representing categories (logical
packages) that are controlled units. This option is enabled by all
but the first (All) Controlled Unit Policy option buttons and is set by
the Category Unit Extension text box on the Output tab.

� The Subsystem option determines the basis on which modules are
assigned to subsystems (component packages). This option is
enabled when both Create Class Model and Create Module
Diagrams check boxes are checked on the Output tab. This option
has three settings:

❑ The first (from) is set by the Assign Module To option buttons
Rational Rose 2000e, Using Rose C++ 175

Chapter 5 Analyzer Export Options
❑ The second (Model) is automatically set when the Create Class
Model and Create Module Diagrams check boxes are checked

❑ The third (Draw) is set by the Create Module Diagrams check
box

� The Subsystem Units option determines how subsystems
(component packages) are mapped to controlled units.

When one of the two Create option buttons is selected, it enables
the Override check box, which allows you to overwrite existing
model-file extensions with the value for Subsystem File Extension.

� The Subsystem File Extension option specifies the file name
extension used to generate model files representing subsystems
(component packages) that are controlled units.

� The Create Class Model option determines whether classes are
generated in the model, whether categories and subsystems (logical
and component packages) are created, and whether class or
module diagrams are generated.

� The Classes option determines the kinds of classes that are
generated in the model, whether comments associated with these
classes are captured in their specification’s documentation field,
and whether these classes appear in class diagrams.

� The Templates option determines what kinds of templates are
represented as classes in the generated model, including
associated comments, visibility, and class diagrams.

� The Instantiations option determines whether template
instantiations are represented as classes in the generated model,
and whether these classes appear in class diagrams.

� The Typedefs option determines what kinds of typedefs are
represented as classes in the generated model, including
associated comments, visibility, and class diagrams.

� The POD Structs, Unions option determines what kinds of Structs
and Unions are represented as classes in the generated model,
including associated comments, visibility, and class diagrams.

� The Enumerations option determines what kind of enumerations will
be represented as classes in the generated model, whether
comments associated with these enumerations are captured in
their class specification’s documentation field, and whether these
classes will appear in class diagrams.
176 Rational Rose 2000e, Using Rose C++

� The Fundamental Types option determines whether fundamental
types are represented as classes in the generated model and in
class diagrams.

� The Identify Utilities option determines whether classes, templates,
or template instantiations that have no non-static members are
modeled as class utilities, parameterized class utilities, or
instantiated class utilities.

If the option is disabled and there are no annotations, these
language elements are modeled as normal, parameterized, or
instantiated classes, respectively.

� The Object Methods option determines whether non-static methods
are represented as operations in the generated model, including
comments associated with the declarations of these methods.

� The Static Methods option determines whether static methods are
represented as operations in the generated model, including
comments associated with the declarations of these methods.

� The Method Body Comments option determines whether comments
associated with the definitions of these methods are captured in
their operation specification’s documentation field (appended to
comments captured from the declarations of these methods).

� The Class Object Data option determines whether non-static data
members of class type are represented as attributes in the
generated model.

� The Class Static Data option determines whether static data
members of class type are represented as attributes in the
generated model.

� The Non-Class Object Data option determines whether non-static
data members of non-class type are represented as attributes in
the generated model.

� The Non-Class Static Data option determines whether static data
members of non-class type are represented as attributes in the
generated model.

� The Unmodeled Object Data option determines whether non-static
data members of unmodeled type are represented as attributes in
the generated model.

� The Unmodeled Static Data option determines whether static data
members of unmodeled type are represented as attributes in the
generated model.
Rational Rose 2000e, Using Rose C++ 177

Chapter 5 Analyzer Export Options
� The Class Object Has option determines whether to create has
relationships or associations to the data types of non-static data
members of class type.

� The Class Static Has option determines whether to create has
relationships or associations to the data types of static data
members of class type.

� The Non-Class Object Has option determines whether to create has
relationships or associations to the data types of non-static data
members of non-class type.

� The Non-Class Static Has option determines whether to create has
relationships or associations to the data types of static data
members of non-class type.

� The Object Method Uses option determines whether to create uses
relationships to each type referenced in the declaration of non-
static methods, and whether such uses relationships appear on
class diagrams.

� The Static Method Uses option determines whether to create uses
relationships to each type referenced in the declaration of static
methods, and whether such uses relationships appear on class
diagrams.

� The Instance Arg Uses option determines whether to create uses
relationships to each type referenced in the declaration of type-
valued instantiation arguments, whether such uses relationships
appear on class diagrams, and whether these relationships are
labeled with the name of their instantiation argument.

� The Template Param Uses option determines whether to create uses
relationships to each type referenced in the declaration of non-
type-valued template parameters, whether such uses relationships
appear on class diagrams, and whether these relationships are
labeled with the name of their parameter.

� The Typedef Uses option determines whether to create uses
relationships to each type referenced in the declaration of typedefs.

� The Inherits option determines whether to create generalize
relationships from classes to their base classes, and whether such
relationships appear on class diagrams.

� The Instantiate option determines whether to create instantiates
relationships from each template to its instantiation, and whether
such instantiates relationships appear on class diagrams.
178 Rational Rose 2000e, Using Rose C++

� The Friendship Required option determines whether to create uses
relationships from classes to classes declared as friends, and
whether such uses relationships appear on class diagrams.

� The Default Cardinality From and Default Cardinality To options specify
the cardinality assigned to has or association relationships
representing pointers.

� The Default Protocol option specifies the function protocol of each
operation included in the generated model.

� The Class Diagram Name option specifies the name of the class
diagram generated for each logistical package.

� The Modules option specifies the basis on which modules are
assigned to subsystems (component packages), and whether
subsystems (component packages) appear in generated module
diagrams.

� The Module Diagram Name option specifies the name of the module
diagram generated for each subsystem (component package).

� The Model Type Relationships option determines whether to create
visibility relationships for type relationships, and how such
relationships are labeled.

� The Model Direct #includes option determines whether to create
visibility relationships for direct #include references, and how
such relationships are labeled.

� The Model Indirect #includes option determines whether to create
visibility relationships for indirect #include references, and how
such relationships are labeled.

� The Model Unused #includes option determines whether to create
visibility relationships for unused #include references, and how
such relationships are labeled.

� The Model Contextual #includes option determines whether to create
visibility relationships for #include references needed from
context, and how such relationships are labeled.

� The Model Type-3 #includes option determines whether to create
visibility relationships for #include references to type-3 headers,
and how such relationships are labeled.

� The Module-Subsystem Rels option determines whether to create
module-to-subsystem and subsystem-to-module visibility
relationships.
Rational Rose 2000e, Using Rose C++ 179

Chapter 5 Analyzer Export Options
� The Model Module Annotations option determines whether module
annotations are captured in the documentation field of generated
module specifications.

� The Model Class Annotations option determines what class
annotations are captured in the documentation field of generated
class specifications.

� The Model Operator Annotations option determines what operation
annotations are captured in the documentation field of generated
operation specifications.

� The Model Member Annotations option determine whether data
member annotations are captured in the documentation field of
generated attribute specifications.

� The Model Protected Regions option, which determines whether to
ignore declarations found in protected regions.

� The Model Generated Declarations options, which determine whether
to ignore generated declarations.

� The Version option cannot be set by the user.

In the interest of information density, several abbreviations are used in
presenting the settings of the previously listed export options:

� Modeled—A specification for the component is included in the
generated model.

� Drawn—An icon representing the component appears on the
appropriate class or module diagram.

� Name—The icon representing the relationship is labeled.

� Comments before—Comments immediately preceding the
declaration or definition are included in the documentation field of
the component’s specification.

� Comments after—In a class export option, indicates comments
immediately following the declaration’s left brace are included in
the documentation field of the class’s specification.

� Comments after—In a non-class export option, indicates
comments following the declaration’s (or definition’s) right brace or
semicolon are included in the documentation field of the
component’s specification.
180 Rational Rose 2000e, Using Rose C++

Chapter 6

Analyzer Project File

The project files include settings for Visual C++ style macros and
container classes from the MFC library. If you are an advanced user
and you are planning to use other macro settings or different container
classes than those provided, you might want to modify the project files.
The help topics titled Macro File Parameters, Container Class
Specifications, and Inline Annotations offer a detailed description of
these project file settings.

The Analyzer project file is a text file with numerous project parameters
specified one per line. The first characters of each line identify the
parameters being specified on the rest of the line. These first characters
are either of the form “#xxx>” or a simple letter code preceded by a “+”
or “–”. The project file must start with the “#v001>” command, but
there are a few order-dependencies between the parameter
specifications. It is always safe to add new commands at the end of the
project file.

Macro File Parameters

The parameter that supports a macro file is:

+J<macro file name>

The language recognized by the Rational Ros eC++ Analyzer has been
extended to include uniquely recognizable constructs for expressing
Wizard information and its structures unambiguously within C++
source code to support the macros used by Visual C++. The Wizard
macros generate this extended syntax. The macros are used only in
reverse-engineering user code and, hence, are seen only by the
Analyzer.
Rational Rose 2000e, Using Rose C++ 181

Chapter 6 Analyzer Project File
The language extensions are called inline annotations. The +J
parameter identifies to the Analyzer the file that contains the Visual
C++ macros. This file is implicitly included in every compilation.
Without this project entry, none of the Visual C++ macros would be
captured for RTE. The supplied MSVC42.pjt, MSVC42b.pjt, and
MSVC50.pjt projects have this +J parameter pointing to
$ROSECPPHOME\projects\msvc.h.

Container Class Specification

If you use container classes other than the ones provided for MFC as
defined in this release, you might want to change the container class
specifications. The new parameter to support container classes is:

+ct<container class specification>

Un-annotated data members of a class are modeled as associations if
the type of the data member is a type modeled as a class. In many
cases, this technique generates a model that correctly captures the
intended association between two classes. For example:

class Label {
CString m_sName;

};

is modeled as a by-value aggregation between the class Label and the
class CString. In more complex cases, however, this approach
generates a poor model for the C++ code. For example, consider

class Message {
CList<CString, int> To;
CString From;
CString Subject;
CString Text;

};

Here, To would be modeled as a 1-1 by-value aggregate relation
between Message and the instantiated class CList<CString,int>, but
probably should be modeled as an unbounded aggregation of CStrings
within Message since, in MFC, CList is a container class that
implements a list of objects.

To model the use of container classes correctly, the Analyzer must be
told what the container classes are and for a given instance, what the
target class is and what cardinalities may be implied. This is the
purpose of the +ct project parameter.
182 Rational Rose 2000e, Using Rose C++

+ct Project Parameter

The +ct project parameter has the form:

+ct<container class name> = <target class> [[<key type1>,…]]

{<card-from> -> <card-to> <flags>} [<imp>]

The left half of the equation represents the C++ name for a type. The
rest of the +ct project parameter specifies how a given use of the
container class is to be mapped to an association in a Rational Rose
model.

<container class name> is the C++ name (fully qualified as needed) for
a type, usually a template class, a class or a typedef naming an
instantiation or class. When the <container class name> is found in the
declaration of a class data member, the <container class name> and
any template arguments, if present, will become the ContainerClass
property for the role item (or has relationship) in the model that
represents the data member. The ContainerClass property is used to
regenerate the data member the next time Rational Rose generates
source.

<target class> is the name of the class to be associated with the class
that contains the data declaration. If the collection is indexed or
qualified, the types of the keys should be listed in square brackets
following the <target class>.

Within the specification of <target class>, special symbols of the form
$n (for n = 1,…,9) may be used to reference the template arguments for
a specific instance of the <container class name>. When the model is
constructed, each $n will be replaced by the text of the nth template
argument. The $n symbols can be used with a typedef if the typedef
ultimately references an instantiation. The symbol $0 is replaced by the
first of the entered instances of the container class in the declarations.

<card-to> and <card-from> specify the cardinality of the relationship
on both ends using any of the cardinality specifications allowed by
Rational Rose (including a blank or unspecified cardinality).

Within the specification of <card-to> and <card-from>, special symbols
of the form $n (for n = 1,…,9) may be used to reference the template
arguments for a specific instance of the <container class name>. When
the model is constructed, each $n will be replaced by the text of the nth
template argument. The $n symbols can be used with a typedef if the
Rational Rose 2000e, Using Rose C++ 183

Chapter 6 Analyzer Project File
typedef ultimately references an instantiation. The symbol $0 is
replaced by the first of the entered instances of the container class in
the declarations.

<flags> is a sequence of one-letter codes that provide supplemental
information about the relationship:

Table 32 Flag Codes

<imp> specifies what methods are to be generated to access the data.
Its syntax is:

[P(<set>)] [M |V |A |T|F] [BR|BV] [C |N] [[I] [K] [-] G<name>] [[J] [R
] [-] S<name>][br|bv] [c |n] [[i] [k] [-] g<name> <exp>] [[j] [r] [-]
s<name> <exp>] q<name>

Code Meaning

R Containment is by reference

V Containment is by value

U Containment is unspecified

F Relationship is forward-reference only (definition of
target class is not needed for this declaration)

G Relationship is an aggregate

O Relationship is ordered

D Relationship is derived
184 Rational Rose 2000e, Using Rose C++

The elements of this specification string indicate how the project
properties for the generated relationship are to be set for this collection
class.

Table 33 IMP Syntax
Code Meaning CG Properties affected

P<set> Use the pre-defined property set identified
by the string <set>. If this is not specified,
then the default property set is used for the
relationship. The remaining codes may be
used to override this set or the default
property set. If the code for a specific
property is not present, then the value of
that property forms the specified property
set is used.

M Declare all functions as non-virtual Member
functions.

GetSetKinds

V Declare all functions virtual. GetSetKinds

A Declare all functions abstract. GetSetKinds

T Declare all functions static. GetSetKinds

F Declare all functions friend. GetSetKinds

BR & BV Container values are passed By Reference
or By Value

GetSetByReference

C The value/results are const. GetResultIsConst
QualifiedGetResultIsConst

N The value/result are not const. GetResultIsConst
QualifiedGetResultIsConst

I Declare function inline. InlineGet
InlineQualifiedGet

K Function is const. GetIsConst
QualifiedGetIsConst
Rational Rose 2000e, Using Rose C++ 185

Chapter 6 Analyzer Project File
G<name> Generate a get function for retrieving the
entire container. In the absence of other
codes, the function is not in-lined and not
declared const.
<name> following a G or g code is an
optional name for the function enclosed in
parentheses. If specified, the name becomes
the value of the SetName, GetName,
QualifiedSetName, and QualifiedSetName
properties, respectively, for the relationship,
The name can use the special symbols
allowed in these project properties as well
as the $n symbols. The default name is
get_$target.

GenerateQualifiedGetOperation
QualifiedGetName

<exe> <exe> following an g code is a C++
expression enclosed in braces that specifies
how to get a value into or out of the
collection. In this expression $data
represents the data member that is the
collection, and $keyn (for n in 1..9)
represents the key values that identify the
element of the collection to be set or
retrieved. $key is a list of the key names
separated by commas (,). $value represents
the value to be set into or retrieved from the
collection. The use of $value is optional in
the specification of the <exp> for retrieval. If
it is not present, it is assumed that the
<exp> evaluates directly to the desired
value.
<exp> can be omitted. The default value
<exp> for g is {$data.get ($keys,
$value)}.

J InlineSet
InlineQualifiedSet

R A set function returns a value. SetReturnsValue
QualifiedSetReturnsValue

Code Meaning CG Properties affected
186 Rational Rose 2000e, Using Rose C++

+ct Project Parameter Example

The +ct project parameter for CList might look like this:

+ctCList=$1[int]{1->nVGN} M BR C IGK -S

igk{$data.GetAt($data.FindIndex($key1))}

js{$data.SetAt($data.FindIndex($key1),$value)}

S<name> Generate a qualified Set function for storing
a single item into the container. In the
absence of other codes, the function is not
in-lined and does not return a value.
<name> following an S or s code is an
optional name for the function enclosed in
parentheses. If specified, the name becomes
the value of the SetName, GetName,
QualifiedSetName, and QualifiedSetName
properties, respectively, for the relationship.
The name can use the special symbols
allowed in these project properties as well
as the $n symbols defined above. The
default name is set_$target.

GenerateQualifiedSetOperation
QualifiedSetName

<exp> <exp> following an s code is a C++
expression enclosed in braces that specifies
how to get a value into or out of the
collection. In this expression $data
represents the data member that is the
collection, and $keyn (for n in 1..9)
represents the key values that identify the
element of the collection to be set or
retrieved. $keys is a list of the key names
separated by commas (,). $value represents
the value to be set into or retrieved from the
collection. The use of $value is optional in
the specification of the <exp> for retrieval. If
it is not preset, it is assumed that the <exp>
evaluates directly to the desired value.
Either <exp> can be omitted. The default
<exp> for s is {$data.set
($keys,$value)}.

Q<name> a qualified container type. QualifiedContainer

Code Meaning CG Properties affected
Rational Rose 2000e, Using Rose C++ 187

Chapter 6 Analyzer Project File
For the other MFC container classes, the +ct project parameters are as
follows:

+ctCArray= $1[int]{1->nVGN} M BR C IGK -S
igk{$data.GetAt($key1)}js{$data.SetAt($key1,$value)}

+ctCMap= $3[$1] {1->nVGN} M BR C IGK -S ig{$data[$key1]}
js{$data.SetAt($key1,$value)}

+ctCTypedPtrList= $2 {1->nRGN} M BR C IGK -S -g -s

+ctCTypedPtrArray=$2[int]{1->nRGN} M BV C -G -S ig{$data[$key1]}
js{$data[$key1]=$value}

+ctCTypedPtrMap= $3[$2] {1->nRGN} M BV C -G -S
ig{$data[$key1]}js{$data[$key1]=$value}

Inline Annotations

The language recognized by the Rational Ros eC++ Analyzer has been
extended to include uniquely recognizable constructs for expressing
MFC information and structures unambiguously within C++ source
code. Substitute definitions for all of the MFC macros used to build
these constructs have been created to generate this extended syntax.
The language extensions are called inline annotations.

Specifically, the Rational Rose C++ Analyzer has been changed as
follows:

Table 34 Analyzer Changes

� The data file generated by the Analyzer been augmented
to represent inline annotations.

� The Analyzer’s preprocessor and parser have been
modified to recognize inline annotations and the macro
definitions that use them.

� The Analyzer’s Rational Rose model builder has been
modified to transfer the inline annotations from the data
file to the Rational Rose model.

� The relevant Wizard macros have been identified and
redefined to generate inline annotations.
188 Rational Rose 2000e, Using Rose C++

Inline Annotation Syntax
Table 35 Inline Annotation Syntax

The %%-token constructs are called inline annotations because, like the
existing code generator annotations, they convey model information
through the source, but, in addition, they can appear inline such as in
a macro definition. They are recognized by the Analyzer’s C++
scanner/parser and data file entries are generated for them. The parser
determines where these inline annotations are permitted and to which
language entity they are attached. Currently inline annotations are
permitted wherever standard annotations are allowed and also as type
specifiers in a declaration.

Simple Annotations

The %%[token introduces a simple inline annotation, whose arguments
are all individual tokens bracketed by a matching]. The syntax for an
inline annotation is Lisp-like in that an annotation is simply a list of
tokens, the first of which identifies the type of annotation and the
remaining tokens are the arguments to the annotation. Parsing an
annotation requires no knowledge of its semantics.

Hierarchical Annotations

The %%{ token introduces a list of inline annotations. The list is
terminated by the next matching }. The list represents a hierarchy of
inline annotations. The first inline annotation defines the root node of
the hierarchy and the remaining inline annotations define its
immediate children.

An empty annotation list is a valid construct. It generates no nodes in
the data file, but counts as an inline annotation when the scanner
decides if a macro definition is an overriding macro definition.

<inline annotation> ::= %%%%%%%%[[[[<token list>]]]] | %%%%%%%%{{{{ {<inline
annotation>} }}}}

<token list> ::= <token> | <token> <token list>

<token> ::= %%%%%%%%((((<token list>)))) | %%%%%%%%(((()))) | <any C++
language token>
Rational Rose 2000e, Using Rose C++ 189

Chapter 6 Analyzer Project File
Annotation Literals

The %%(token begins an annotation literal and causes all the tokens
up to the next matching)to be collected into a single token similar to
the way quotation marks are used to form characters into a string
literal. In an annotation literal, however, the characters are tokenized
and macro argument substitution is performed, but macro names are
not expanded. An annotation literal thus behaves much like an
extended form of the ## concatenation operator.

Annotation literals are allowed only in macro definitions and then only
as an argument to a simple inline annotation.

The image of an annotation literal is the concatenated images of its
contained tokens. The spacing of tokens in the source file is lost during
preprocessing, so to preserve the identity of tokens within the
annotation literal, a single blank is inserted between most token
images when forming the image of the annotation literal. No space is
inserted before the tokens ,, ., ;, :, ::,] or) and no space is inserted
after the tokens ., ::, (or [. Within an annotation literal, the # and ##
tokens can be used to modify the insertion of spaces: ## inhibits
insertion of spaces and # forces a space to be inserted.

The empty annotation literal %%() has special meaning. It is not
ignored like empty hierarchical annotations, %%{}. Instead, %%()
generates an annotation literal that is the image of the macro call in
which it is embedded. The image of the call is constructed by
concatenating the tokens of the macro call using the spacing rules
defined in the previous paragraph. This special annotation literal is the
principle mechanism by which macro calls are captured from the
source and copied into the model.

Inline Annotation Semantics

The parsing of inline annotations and the constructing of the
corresponding data file entries is based purely on the annotation
syntax. The semantics of the various inline annotations is determined
only by the export operation. The following inline annotations are
currently implemented. Others may be added in future releases.

� The prop Annotation

� The map Annotation

� The open Annotation

� The close Annotation
190 Rational Rose 2000e, Using Rose C++

� Wizard Comments

� Overriding Macro Definitions

� Implicit Include Option

� An Example of Inline Annotations

The prop Annotation

The prop annotation causes project properties to be set in the exported
model. The general form of this annotation is:

%%[prop [<class name> | <member name> | *]

{<property specification> <property value>}]

Any code generation property presented to the Analyzer via the prop
inline annotation will be attached to the indicated model element, but
the property will not show up in the specification dialog within Rational
Rose for the item unless it is also defined in the property file associated
with the model.

The first argument to prop specifies the model element whose project
properties are to be set.

� If the first argument is an annotation literal, then it is interpreted
as a <class name>. The <class name> may be a C++ qualified
name, which is evaluated in the context of the inline annotation
according to normal C++ name lookup rules.

� The * token as the first argument indicates that the project
property is to be set on the class that encloses the inline
annotation; or, if the inline annotation is outside a class, on the
module that encloses the inline annotation.

� If the first argument is neither an annotation literal nor an *, it is
assumed to be a <member name>. The <member name> is the
simple name of the class member. It can be the name of a nested
class, or an Operation, Attribute, or Role of the class. The class to
which the member belongs is determined from the context of the
inline annotation, which may be a class definition, a class member
function definition, or a containing inline annotation that specifies
a class (such as the map annotation described below).

� If the <member name> is specified as a string literal, and a member
of that name does not exist, a Class Attribute of that name is
created. (If the member name were not a string literal and the
member did not exist, a warning message would be generated
Rational Rose 2000e, Using Rose C++ 191

Chapter 6 Analyzer Project File
during the export operation.) This feature is used in the MFC
macros to construct a pseudo class member to represent OLE
properties implemented via Get/Set functions rather than as data
members.

� If the optional first argument is omitted (i.e. if there are an even
number of tokens in the argument list), then it is assumed that the
inline annotation is attached to the declaration or definition of the
class member whose project property is to be set.

� If <member name> is overloaded, the properties are set on all of the
overloaded members.

<property specification> is a single token of the form

[<tool name>::] [<type>]<property name>

A <property specification> must be an annotation literal if it contains
a <tool name> and it may be an annotation literal even if it doesn’t.

The default <tool name> is “cg”.

The type of the code generation attribute is specified by a single,
lowercase letter. If the first character of the <property specification>,
following :: is present, and it is not one listed in the following table, the
property is assumed to be a String property.

Table 36 Character Codes

<type>
Code

Project
Property
Type

Derivation of Property Value from <property value>

a The <property name> is ignored for this <type>. The inline annotation
must associate with a class attribute. The built-in type property of
the associated class attribute is set by this inline annotation.
<property value> is the name of the member function of the class that
contains this annotation. If it exists, it is the first argument type is
the value assigned to the class attribute’s type.

b Boolean The property is set to “True” if the <property value> image begins
with ‘T’ or ‘t’; if it begins with ‘W’ or ‘w’ it is set “True” or “False” based
on the location of the prop annotation inside or outside Wizard
comments; otherwise it is set to “False”.

c Char The first character of the <property value> image becomes the value
of the project property.
192 Rational Rose 2000e, Using Rose C++

<property name> can be any string of characters, but it usually
conforms to the syntax for a C++ identifier.

A special naming convention is used in the implementation of the code
generation properties that capture the macros that appear between
Wizard comments. Using this convention one <property name> string
actually names one of two possible code generation properties to be set.
If the inline annotation appears between Wizard comments, the first
property is set; if the inline annotation is not between Wizard
comments, the second property is set. The convention is to delimit the
second property name by “__AFX__” and “__.” Any text that precedes
the “__AFX__” or follows the “__” is common to both property names. To
form the first property name (when the inline annotation is between

e Enum The <property value> image consists of an attribute set name and an
integer value defined in that set written as a single C++ identifier,
such as WizardTypeSet3 or OleFactorySet21.

l Text The <property value> image is appended to the existing value of the
project property and then a new line sequence is appended. A multi-
line CG Text property is thus constructed, one line at a time.

m String The <property value> image is appended to the existing value of the
project property and then a space is appended. A multi-segment CG
String property is thus constructed one segment at a time.

n Int The <property value> image is parsed (via atoi()) as an integer
literal and the resulting integer value becomes the value of the project
property.

r The <property name> is ignored for this <type>. The inline annotation
must associate with a class attribute. The built-in type property of
the associated class attribute is set by this inline annotation.
<property value> is the name of a member function of the class that
contains this annotation. If it exists, its return type is the value
assigned to the class attribute’s type.

s String The <property value> image is copied verbatim to the project
property.

t Text The <property value> image is copied verbatim to the project
property.

<type>
Code

Project
Property
Type

Derivation of Property Value from <property value>
Rational Rose 2000e, Using Rose C++ 193

Chapter 6 Analyzer Project File
Wizard comments), the sequence beginning with “__AFX__” and ending
with “__” is replaced by the name that appears in the Wizard comment
(such as AFX_MSG_MAP or AFX_DISPATCH). To form the second
property name, the “__AFX__” and “__” sequences are simply elided.

For example “__AFX__MESSAGE_MAP___Entries” generates
“AFX_MSG_MAP_Entries” when it appears between
//{{AFX_MSG_MAP and //}}AFX_MSG_MAP comments and
“MESSAGE_MAP_Entries” when not between Wizard comments.

<property value> strings have special interpretations:

Table 37 Property Value Strings

The map Annotation

%%[map <class name> [<base class name>]]

The map annotation denotes an MFC map implementation, such as a
message map or dispatch map. The <class name> argument of the map
annotation specifies the class with which the map is associated. It
must be an annotation literal and may be a qualified name. The entries
in the map are represented by the prop annotations that are
subordinate to the map annotation.

The open Annotation

%%[open < property specification > <class> {<property specification>
<property value>}]

Special <property
value> Token

Value stored in CG Property

%%(#) The source text between the braces of the
definition that is associated with the inline
annotation of which this <property value> is a
part; e.g., the body of a function definition.

%%(::;) The source text of the entire declaration that is
associated with the inline annotation of which
this <property value> is a part.

%%(,) The source text of the macro call (including
embedded comments) that generated the inline
annotation of which this <property value> is a
part.
194 Rational Rose 2000e, Using Rose C++

%%[open < property specification > <class> this]

These open annotations mark the start of a Wizard section in the
source. A close annotation marks the end of a Wizard section. Wizard
sections do not nest.

Within a Wizard section, if the image of any Boolean <property value>
begins with a ‘W’ or ‘w’, then the value actually set in the property is
True. Outside of a Wizard section, such Boolean values actually set the
property to False.

Also in a Wizard section, any <property name> containing the sequence
“__AFX__” … “__” is modified by replacing the sequence with the
<property name> from the first <property specification> of the open
annotation. Outside a Wizard section, both the “__AFX__” and “__”
segments are elided (but the segment in between is retained).

If the first form of the open annotation is used, the specified <property
specification> <property value> pairs are applied to each declaration in
the Wizard region opened by the annotation as if there were a prop
annotation associated with the declaration with the same list of
<property specification> <property value> pairs. Typically the prop
annotation sets a property that indicates in which type of Wizard
region the declaration appeared.

If the second form of the open annotation is used, “_Entries” is
appended to the <property specification> and a code generation
property with that name is attached to the class that contains the
annotation. The value of that property is the source text for the entire
declaration that the annotation is attached to. This is obviously not a
general-purpose annotation argument. It is used to capture the
AFX_DISP_ID Wizard region in a class definition.

The close Annotation
%%[close]

Wizard Comments

The Microsoft Class Wizard uses unique comments of the form
//{{AFX_xxx and //}}AFX_xxx to bracket the member declarations and
map entries that it understands and manipulates for the user. The
Analyzer now recognizes these as well. When the Analyzer sees a
comment beginning “//{{ xxx” it replaces it internally with
“__OPEN_xxx” and continues scanning the source. This could lead to
Rational Rose 2000e, Using Rose C++ 195

Chapter 6 Analyzer Project File
Analysis errors were it not for the fact that for each possible
//{{AFX_xxx comment there is a corresponding __OPEN_AFX_xxx macro
defined. Each __OPEN_xxx macro introduces an open inline annotation
into the token stream.

Similarly, each comment of the form “//}} xxx” is transformed
internally to “__CLOSE_xxx” and for each //}}AFX_xxx comment there is
a __CLOSE_AFX_xxx macro defined. The __CLOSE_AFX_xxx macros
introduce a close inline annotation into the token stream.

Also, each comment of the form “//{{ xxx }}” is transformed internally
to “__NOTE_xxx.” The defined __NOTE_xxx macros currently generate no
tokens in this release.

The export operation keeps track of which inline annotations appear
between Wizard comments and which ones don’t. If the image of a
Boolean <property value> begins with a ‘W’ or ‘w’, then the value
actually set in the property is True if the annotation is between Wizard
comments and False if it is not.

Overriding Macro Definitions

Any macro definition containing an inline annotation (simple or
hierarchical) or annotation literal is considered an overriding macro
definition. That is, an overriding macro definition is any macro
definition that contains one of the tokens %%[, %%{, or %%(. It does not
matter how the macro definition is presented to the Analyzer — it may
be from the source text or from the project’s Defined Symbols list or via
the +J project parameters.

Normally, the “defined symbols” specified in a project follow the rules
for a symbol specified in the -D option of cpp (the UNIX preprocessor)
and provide only an initial definition for the symbol. If the symbol is
defined in the source being analyzed, then the definition in the source
takes precedence. If, however, by the above mechanism, the symbol is
defined as an overriding macro definition, any definitions of the symbol
in the source will be ignored by the analyzer’s preprocessor.

We use overriding macro definitions to replace the normal expansion of
VC++ macros with expansions that generate annotations, which will
allow the Analyzer to preserve the use of the macro in the source so
that its semantics can be transmitted to the Rational Rose model.
196 Rational Rose 2000e, Using Rose C++

Implicit Include Option

The Analyzer option +J<file name> causes <file name> to be implicitly
declared (#include) into each source file analyzed by the Analyzer
(unless the source file is, itself, a +J file). Currently there is no GUI
support for adding such lines to an Analyzer project, they must be
added using a text editor. Since the primary use of this feature is to
introduce our substitute MFC macros when analyzing MFC source,
there seems to be little need for GUI support.

Example of Inline Annotations

As an example of how inline annotations are used to recognize MFC
constructs, consider the ubiquitous MFC message map. The message
map is declared in the class specification via the
DECLARE_MESSAGE_MAP() macro and is defined in the .CPP file by a list
of macro calls such as ON_COMMAND(), ON_WM_LBUTTONDOWN(), etc. There
is one macro call per message map entry and they are all sandwiched
between the macros BEGIN_MESSAGE_MAP and END_MESSAGE_MAP. Unique
comments of the form //{{AFX_xxx and //}}AFX_xxx bracket for the
Class Wizard both the member function declarations in the spec (xxx =
MSG) and the message map entries in the body (xxx = MSG_MAP). To
complicate things further, the ClassWizard does not understand all of
the macros that can appear in a message map, so there are some map
entries that appear between BEGIN_MESSAGE_MAP and END_MESSAGE_MAP
but not within the Wizard brackets.

To regenerate the message map for a class, the Rational Rose C++ code
generator needs to know which member functions are message
handlers and what their message map entries should look like. It also
Rational Rose 2000e, Using Rose C++ 197

Chapter 6 Analyzer Project File
needs to know if the message map entry is understood by the
ClassWizard. This information is defined in MSVC-specific project
properties:

Table 38 Message Map Entries

To fill in these project properties, the redefined overriding MFC macros
would look like this:

// First some macros to simplify defining the multitude of
 ON_xxx macros
#define __MessageHandler MSVCOperationsTypeSet2
#define __WIZMAP(Member, Map, Entry) \
%%[prop %%(Member) %%(MSVC::l__AFX__##Map##___Entries) Entry]
#define __MSGMAP(Member,Entry) %%{} __WIZMAP(Member,
 MESSAGE_MAP, Entry)

// Macros to record the Wizard regions for the message map
#define __OPEN_AFX_MSG(Class) \
%%[open %%(MSVC::lAFX_MSG) %%(Class) %%(MSVC::eType)
 __MessageHandler] \

MVCS Property
Name Type

Item
Found On Comments

Generate Message
Map

Boolean Class Causes the code generator to generate a
message map for the class.

Generate Message
Group

Boolean Class Causes the code generator to generate a
//{{AFX_MSG section in the class definition.

Type Enum Operation When an Operation has the Type
MessageHandler, the code generator places
the declaration in the //{{AFX_MSG section of
the class definition.

AFX_MSG_MAP_
Entries

Text Class or
Operation

On an Operation item, the property contains
the image of the actual message map entries
referencing that Operation and appearing
within the //{{AFX_MSG_MAP section of the
message map. On a Class item, the property
contains the image of the actual message
map entries referencing an Operation not
defined in the class (presumably a member of
some base class) and appearing within the
//{{AFX_MSG_MAP section of the message
map.
198 Rational Rose 2000e, Using Rose C++

%%[prop * %%(MSVC::bGenerateMessageGroup) True]
#define __CLOSE_AFX_MSG %%[close]
#define __OPEN_AFX_MSG_MAP(Class) %%[open AFX_MSG_MAP
 %%(Class)]
#define __CLOSE_AFX_MSG_MAP %%[close]

// Elide the code normally generated by afx_msg from the source
 the Analyzer sees.
#define afx_msg %%{}

// Declare and define the message map entries in the Analyzer’s
 data file
#define DECLARE_MESSAGE_MAP() %%[prop *
 %%(MSVC::bGenerateMessageMap) True]
#define BEGIN_MESSAGE_MAP(theClass, baseClass) %%{ %%[map
 %%(theClass) %%(baseClass)]
#define END_MESSAGE_MAP() %%{}}

// Capture the message map entries and associate them with
 there Message Handlers
#define ON_COMMAND(id, memberFxn) __MSGMAP (memberFxn, %%())
#define ON_COMMAND_RANGE(id, idLast, memberFxn) __MSGMAP
 (memberFxn, %%())
#define ON_UPDATE_COMMAND_UI(id, memberFxn) __MSGMAP
 (memberFxn, %%())
#define ON_UPDATE_COMMAND_UI_RANGE(id, idLast, memberFxn)
 __MSGMAP (memberFxn, %%())
… more of the same…
#define ON_WM_CREATE() __MSGMAP (OnCreate, %%())
#define ON_WM_DESTROY() __MSGMAP (OnDestroy, %%())
#define ON_WM_MOVE() __MSGMAP (OnMove, %%())
… and so forth for all macros that can appear in a message map.
Rational Rose 2000e, Using Rose C++ 199

Chapter 7

Design Update

The Rational Rose C++ Analyzer produces model files containing
design information extracted from application source files. In round-
trip engineering practice, these source files are generated by a Rational
Rose Code Generator from a Rational Rose model. Clicking File >
Update inserts the reverse-engineered information contained in a
specified model file (the update source) into the currently open model
(the update destination). The Update command updates the currently
open model to reflect design changes introduced through source file
modification. Since this operation is performed “in place,” you should
be certain that the model has been appropriately versioned before
clicking File > Update.

The Update option is not active (is grayed out) if the update destination
is not a monolithic file—is separated into controlled units represented
by several model files—and any of the controlled units of the update
destination are:

� Not loaded.

� Or not write-enabled.

By default, clicking File > Update expects the model file containing the
update source to have a .red file name extension; the Analyzer
generates model files with this extension when its RoundTrip export
option set is selected.

Clicking File > Update preserves the following information in the
current model:

� The documentation field in each logical package specification.

� The documentation field in each component package specification.

� The deployment diagram.
Rational Rose 2000e, Using Rose C++ 201

Chapter 7 Design Update
� All interaction diagrams.

� All state diagrams.

The Analyzer can optionally generate class and module diagrams and
place them into the generated model file. Clicking File > Update inserts
these diagrams into the model, replacing any existing diagrams with
the same name. Clicking File > Update preserves all class and module
diagrams in the model except any whose names match diagrams
contained in the specified model file.

New components identified during reverse engineering are noted in the
log and added to the currently open model; icons representing these
new components are not automatically added to diagrams.
Components that have been relocated are also noted in the log without
modification to diagrams.

Classes present in a logical package in the currently open model but
absent from the reverse engineered version of that logical package are
noted in the log as legacy components, but are not automatically
removed from the currently open model or diagrams. Components
present in a component package in the currently open model but
absent from the reverse engineered version of that component package
are similarly noted in the log.

The following code generation properties are updated from the Reverse
Engineered source code:

� FileName

� CopyrightNotice

� AdditionalIncludes

� OperationKind

� OperationIsConst

� ForwardReferenceOnly

� DataMemberVisibility

� ImplementationType

� Directory
202 Rational Rose 2000e, Using Rose C++

Chapter 8

C++ Round-Trip Engineering

The tool support required by controlled iterative development is known
as round-trip engineering. Each iteration begins with the use of
Rational Rose to assess the current iteration model, capture new
scenarios, and extend the design to achieve specific objectives.
Rational Rose generates source code frameworks for each class in this
extended model, preserving user-supplied definitions and auxiliary
declarations from the previous iteration’s source code. New method
definitions are then added, and this extended implementation is
validated against the iteration’s objectives. In the course of these
activities, intentional and unintentional design changes are frequently
introduced.

During acceptance, the C++ Analyzer is used to reverse engineer the
extended implementation and annotate all newly-added operation
definitions and file-scope declarations, producing a new as-built model
that can be examined with Rational Rose. The Rational Rose C++
Visual Differencing tool is used to reveal design changes by comparing
the reverse engineered model to the extended iteration model.

After the implementation is accepted, the Analyzer is used to produce
a round-trip model that is used to update the iteration model to reflect
the design changes instituted in the source code.
Rational Rose 2000e, Using Rose C++ 203

Chapter 8 C++ Round-Trip Engineering
The overall process is illustrated below:

Figure 52 Round-Trip Engineering Process

Round-Trip Engineering—Step By Step

All of the facilities required to practice round-trip engineering have
already been described in earlier chapters of this guide. To illustrate
their use, an example will be pursued through one iteration.
204 Rational Rose 2000e, Using Rose C++

Round-Trip Engineering—Step By Step
Consider the Tracker/Main class diagram from the iteration’s initial
model:

Figure 53 Tracker Class Diagram

At the beginning of the iteration, generate code by selecting these icons
and clicking Tools > C++ > Code Generation. In the course of testing the
iteration, it is discovered that a Satellite must be able to report position
on demand, and that a Position Display needs a Data Link.

The code for module satllite.h, to which class Satellite is assigned
follows. The code added to define operation ObtainPosition is
underlined:

//## begin module.cm preserve=no
// %X% %Q% %Z% %W%
//## end module.cm

//## begin module.cp preserve=no
//## end module.cp
Rational Rose 2000e, Using Rose C++ 205

Chapter 8 C++ Round-Trip Engineering
//## Module: Satellite; Pseudo Package specification
//## Component Package: tracker
//## Source file: c:\rose\demo\ootrack\tracker\satllite.h
#ifndef Satllite_h
#define Satllite_h 1

//## begin module.additionalIncludes preserve=no
//## end module.additionalIncludes

//## begin module.includes preserve=yes
//## end module.includes

// Result
#include “utilties\Result.h”
// String
#include “utilties\String.h”
// KeplerianParameters
#include “utilties\KplrnPrm.h”

//## begin module.additionalDeclarations preserve=yes
//## end module.additionalDeclarations

//## Class: Satellite
//## Unit: c:\rose\demo\ootrack\tracker.cat
//## Logical package: tracker
//## Component package: tracker
//## Concurrency: Sequential
//## Persistence: Transient
//## Cardinality/Multiplicity: n
//## Dependency <Result>: public: Result { -> }
//## Dependency <String>: public: String { -> }
//## Dependency <KeplerianParameters>: public:
KeplerianParameters { -> }

class Satellite
{
 //## begin Satellite.initialDeclarations preserve=yes
 //## end Satellite.initialDeclarations

 public:
 //## Constructors (generated)
 Satellite();
 Satellite(const Satellite &right);

 //## Destructor (generated)
 ~Satellite();
206 Rational Rose 2000e, Using Rose C++

Round-Trip Engineering—Step By Step
//## Assignment Operation (generated)
 const Satellite & operator=(const Satellite &right);

 //## Equality Operations (generated)
 int operator==(const Satellite &right) const;
 int operator!=(const Satellite &right) const;

 //## Other Operations (specified)
 //## Concurrency: Sequential
 Result Register(String Name, KeplerianParameters Params);

 //## Concurrency: Sequential
 Result BeginTracking();

 //## Concurrency: Sequential
 Result EndTracking();

 //## Concurrency: Sequential
 Result Forget();

 //$$ Documentation
 // report satellite position
 Result ObtainPosition();

 // Additional Public Declarations
 //## begin Satellite.public preserve=yes
 //## end Satellite.public

 protected:
 // Additional Protected Declarations
 //## begin Satellite.protected preserve=yes
 //## end Satellite.protected

private:
 // Additional Private Declarations
 //## begin Satellite.private preserve=yes
 //## end Satellite.private

 private: //## implementation
 // Additional Implementation Declarations
 //## begin Satellite.implementation preserve=yes
 //## end Satellite.implementation
};
// Class Satellite
#endif
Rational Rose 2000e, Using Rose C++ 207

Chapter 8 C++ Round-Trip Engineering
The code for module pstndspl.h, to which class Position Display is
assigned follows. The code added to show its containment of a data link
is underlined:

//## begin module.cm preserve=no
// %X% %Q% %Z% %W%
//## end module.cm

//## begin module.cp preserve=no
//## end module.cp

//## Module: Position Display; Pseudo Package specification
//## Component package: tracker
//## Source file: c:\rose\demo\ootrack\tracker\pstndspl.h

#ifndef PstnDspl_h
#define PstnDspl_h 1

//## begin module.additionalIncludes preserve=no
//## end module.additionalIncludes

//## begin module.includes preserve=yes
//## end module.includes
// Result
#include “utilties\Result.h”
// Satellite
#include “tracker\Satllite.h”
// Map Database
#include “tracker\MapDtbse.h”
// Site
#include “tracker\Site.h”
// ReferenceList
#include “utilties\RfrncLst.h”

//## begin module.additionalDeclarations preserve=yes
//## end module.additionalDeclarations

class DataLink
// provide data communications
{
public:
 int open();
 // open link
 int close();
 // close link
};
208 Rational Rose 2000e, Using Rose C++

Round-Trip Engineering—Step By Step
//## Class: Position Display
// This class manages a one-Window geographic display
//## Unit: c:\rose\demo\ootrack\tracker.cat
//## Logical package: tracker
//## Component package: tracker
//## Concurrency: Sequential
//## Persistence: Transient
//## Cardinality/Multiplicity: n
//## Dependency <Site>: public: Site { -> }
//## Dependency <Map_Database>: public: Map_Database { -> }
//## Dependency <Result>: public: Result { -> }
//## Dependency <ReferenceList>: public: ReferenceList { -> }

class Position_Display
{
 //## begin Position_Display.initialDeclarations preserve=yes
 //## end Position_Display.initialDeclarations

 public:
 //## Constructors (generated)
 Position_Display();
 Position_Display(const Position_Display &right);

 //## Destructor (generated)
 ~Position_Display();

 //## Assignment Operation (generated)
 const Position_Display & operator=(const Position_Display
&right);

 //## Equality Operations (generated)
 int operator==(const Position_Display &right) const;
 int operator!=(const Position_Display &right) const;

 //## Other Operations (specified)
 //## Documentation:
 //this operation specifies the region within which
 //the satellite is to be tracked
 //## Concurrency: Sequential
 Result SpecifyTrackingRegion();

 //## Documentation:
 //this operation shows the satelitte’s current
 // position
 //## Concurrency: Sequential
 Result DisplaySatellitePosition();
Rational Rose 2000e, Using Rose C++ 209

Chapter 8 C++ Round-Trip Engineering
//## Documentation:
 //this operation shows the satellite’s ground
 // track
 //## Concurrency: Sequential
 Result DisplaySatelliteTrack();

 //## Documentation:
 //this operation shows the Satellite’s current
 //ground coverage
 //## Concurrency: Sequential
 Result DisplaySatelliteCoverage();

 //## Documentation:
 //this operation terminates the display
 //## Concurrency: Sequential
 Result TerminateTracking();

 //## Documentation:
 //Begin tracking the specified satellite
 //## Concurrency: Sequential
 Result InitiateTracking();

 //## Get and Set Operations for Has Relationships
(generated)
 const ReferenceList get_tracks() const;
 void set_tracks(const ReferenceList value);

 // Additional Public Declarations
 //## begin Position_Display.public preserve=yes
 //## end Position_Display.public

 protected:
 // Additional Protected Declarations
 //## begin Position_Display.protected preserve=yes
 //## end Position_Display.protected

private:
 // Additional Private Declarations
 //## begin Position_Display.private preserve=yes
 //## end Position_Display.private

 private: //## implementation
 // Data Members for Aggregate Relationships
 //## begin Position_Display::tracks.has preserve=no
210 Rational Rose 2000e, Using Rose C++

Round-Trip Engineering—Step By Step
public: Satellite {1 -> nRO}
 ReferenceList tracks;
 //## end Position_Display::tracks.has

 DataLink connects;

 // Additional Implementation Declarations
 //## begin Position_Display.implementation preserve=yes
 //## end Position_Display.implementation
};

// Class Position_Display

//## Get and Set Operations for Aggregate Relationships
(inline)
inline const ReferenceList Position_Display::get_tracks() const
{
 //## begin Position_Display::get_tracks%.get preserve=no
 return tracks;
 //## end Position_Display::get_tracks%.get
}

inline void Position_Display::set_tracks(const ReferenceList
value)
{
 //## begin Position_Display::set_tracks%.set preserve=no
 tracks = value;
 //## end Position_Display::set_tracks%.set
}

#endif
Rational Rose 2000e, Using Rose C++ 211

Chapter 8 C++ Round-Trip Engineering
To assess these changes, the implementation is reverse engineered
using the DetailedAnalysis export option set. The resulting model is
loaded into Rational Rose by clicking File > Open. The generated class
diagram is re-arranged by clicking Tools > Layout:

Figure 54 Generated Class Diagram

Note: The new ObtainPosition operation in class Satellite, and class
DataLink, its operators, and the appropriate aggregate relationship from
class Position Display to class DataLink were added. With the reverse
engineered model, these changes are acceptable.

To update the iteration model to reflect the changes instituted in the
source code, the modified source code is reverse engineered using the
RoundTrip export option set; since none of the source files changed
after being reverse engineered to support assessment, semantic
analysis proceeds quickly.

The iteration model is loaded into Rational Rose by clicking File > Open,
and the reverse engineered model is updated by clicking File > Update.
The Tracker/Main class diagram is displayed. Click Query > Add
Classes to add an icon representing the new DataLink class. Right-
212 Rational Rose 2000e, Using Rose C++

Starting with Existing Source Code
clicking on the icon representing class Satellite updates its
compartment to reflect its new ObtainPosition operation. The updated
Tracker/Main class diagram follows:

Figure 55 Updated Class Diagram

Double-clicking the Data Link icon displays the specification for its
class.

Double-clicking the Satellite icon to display its specification, and then
double-clicking on the ObtainPosition operation displays the
specification for this new operation.

The iteration has been completed with the iteration model updated to
match the implementation.

Starting with Existing Source Code

If you begin round-trip engineering with an existing body of source
code, the existing operation definitions and file-scope declarations
within this source code must be annotated to preserve them through
Rational Rose 2000e, Using Rose C++ 213

Chapter 8 C++ Round-Trip Engineering
subsequent code generation. Click Action > Code Cycle to both analyze
the source files and insert the required annotations while initially
reverse engineering with the DetailedAnalysis export option set. Logical
and Component Package assignments will be taken from the project
category assignment and project subsystem assignment.

Rational Rose’s default code generation properties automatically
generate standard operations, such as constructors, destructors,
equality operations, and get and set operations. Generating code from
a model produced by reverse engineering existing source code will, by
default, result in duplicate declarations for standard operations
originally present in the source code. To avoid this, load the reverse
engineered model into Rational Rose by clicking File > Open. Then click
Tools > Properties > Edit Properties to create a code generation property
set whose code generation properties disable generation of standard
operations. Attach this property set to all model components whose
standard operations were declared in the original source code. Setting
the properties prevents duplicated operations in all subsequent
iterations.

Before proceeding with a first iteration, generate code from the model,
and reverse engineer this code using the DetailedAnalysis export option
set. Use the Rational Rose model Integrator tool to verify that there are
no unexpected variances between the first reverse engineered model
and the second.

Changing Between the UML, OMT, and Booch Notations

The Analyzer’s Notation Export Option allows the generation of either
UML, OMT, or Booch models. When practicing round-trip engineering,
the setting of this Export Option should always match the notation you
are using in Rational Rose to generate code and update your model. If
you wish to change from one notation to the other, click Tools >
Options, and then click the Notations tab. From the Default Notation
box choose OMT, Booch or UML. Subsequent code generation, reverse
engineering and update operations can then consistently utilize the
new notation.
214 Rational Rose 2000e, Using Rose C++

Appendix A

Attribute Properties

CodeName

The CodeName property specifies the name for the class attribute in the
generated code.

You need to set this property only if you want the class attribute to be
named differently than it is in the Rational Rose model. This is
especially useful when the Rational Rose model and code are expressed
in different natural languages. The CodeName value should be a valid
C++ identifier. If it is not a valid C++ identifier, the C++ code generator
performs the following substitutions:

� White space characters and hyphens are changed to underscores

� All other characters except letters, digits, and underscores are
changed to "X"

� If the first character is a number, an "N" precedes the number

Table 39 CodeName Values

If you select: The action is:

C++ Identifier The class attribute is assigned the name of the
identifier. This is especially useful when
supporting dual languages.

<blank> (Default) The C++ code generator produces a
name for the class attribute from the model.
Rational Rose 2000e, Using Rose C++ 215

Appendix A Attribute Properties
DataMemberFieldSize

The DataMemberFieldSize property specifies the number of bits as the
size of the designated data member.

The following table lists the values for DataMemberFieldSize:

DataMemberIsVolatile

If a data member is generated for this attribute, the declaration will be
adorned with the v keyword.

The following table lists the values for DataMemberIsVolatile:

Table 40 DataMemberFieldSize Values

If you select: The action is:

<integer> The C++ code generator specifies <integer> bits as
the size of the data member.

<blank> (Default) The C++ code generator does not
produce the size for the data member.

Table 41 DataMemberIsVolatile Values

If you select: The action is:

True A data member generated for this attribute has its
declaration adorned with the v keyword.

False The declaration is not adorned with the v keyword.
216 Rational Rose 2000e, Using Rose C++

DataMemberMutability
DataMemberMutability

The DataMemberMutability property identifies how the declaration is
adorned if a data member is generated for this attribute.

The following table lists the values for DataMemberMutability:

DataMemberName

The DataMemberName property specifies the name the C++ code
generator produces for a data member for a class attribute. The default
value is:

$attribute

When the C++ code generator produces a data member, $attribute
expands to the label of the class attribute in the model or the name
specified in the attribute's CodeName property.

The following class diagram and code example illustrate a class
attribute and the data member that the C++ code generator produces
for it by default:

Name: high_temperature
Type: Temperature
Default Value: 70
Containment: By-Value

// Data Members for Attributes
...
Temperature high_temperature;

Table 42 DataMemberMutability Values

If you select: The action is:

Mutable A data member generated for this attribute, has its
declaration prefixed with the mutable keyword.

Const A data member is generated for this attribute, has its
declaration adorned with the const keyword.

Unrestricted (Default) No const or mutable adornments are
generated.
Rational Rose 2000e, Using Rose C++ 217

Appendix A Attribute Properties
You can change the form of the names the C++ code generator uses for
class attributes by changing the format of DataMemberName in each
constructor. You can also refer to $attribute in DataMemberName. Note
that if $attribute is followed by a character that can appear in an
identifier, you must enclose "attribute" in braces {}.

For example, if you set DataMemberName to:

${attribute}_data

the C++ code generator produces the following data member for the
class attribute:

// Data Members for Attributes
...
Temperature the_temperature_data;

You can control the case of the name derived from $attribute. This
table describes the possible options:

Table 43 DataMemberName $attribute Values

If you enter: The action is:

${attribute:l} All characters in the attribute name are converted
to lower case.

${attribute:u} All characters in the attribute name are converted
to upper case.

${attribute:f} The case of the first character in the attribute
name is inverted.

${attribute:i} The case of all characters in the attribute name is
inverted.
218 Rational Rose 2000e, Using Rose C++

DataMemberVisibility
DataMemberVisibility

The DataMemberVisibility property specifies the visibility of the data
member generated from the class attribute. The C++ code generator
uses this information to determine access for the generated data
member.

The following table lists the values for DataMemberVisibility:

GenerateDataMember

The GenerateDataMember property specifies whether or not the C++
code generator produces a data member corresponding to the class
attribute. The name of the data member is determined by the class
attribute’s DataMemberName value. The data member type is specified
in Rational Rose if the attribute's containment is by-value. The data
member type is a pointer to the type specified in Rational Rose if the
attribute's containment is by-reference.

You may also specify a default value for the data member in Rational
Rose. If the data member is static, Rational Rose generates a
declaration in the class header and a definition in the class body. If the
data member is not static, Rational Rose generates a declaration in
the class header and a constructor initializer in each constructor. All
attributes are static in a class utility.

You set GenerateDataMember to False if you want to provide your own
data member definition or if you want to implement the class attribute
in some other way. After you generate code, you edit the generated file
and add your own data member definition (or some other
implementation of the class attribute) between the source markers for
the data member. Be sure to change the preserve setting in the source
marker to yes.

Table 44 DataMemberVisibility Values

If you select: The action is:

Public The C++ code generator produces the data
member with public access.

Protected The C++ code generator produces the data
member with protected access.
Rational Rose 2000e, Using Rose C++ 219

Appendix A Attribute Properties
The following table lists the values for GenerateDataMember:

GenerateGetOperation

The GenerateGetOperation property specifies whether the C++ code
generator produces a get member function which accesses the value of
the data member generated from the class attribute. The get member
function name is determined by the class attribute’s GetName value.
The result type of the get member function is the type of the data
member.

You set GenerateGetOperation to False if you do not want to provide a
member function for accessing the data member. If you want to create
a custom get operation, set GenerateGetOperation to False and then
define your get operation in the Class Specification, as you would for
any user-defined operation.

The following table lists the values for GenerateGetOperation:

Table 46 GenerateGetOperation Values

Table 45 GenerateDataMember Values

If you select: The action is:

True (Default) The C++ code generator produces a data
member for the class attribute.

False The C++ code generator does not generate a data
member for the class attribute.

If you select: The action is:

True (Default) The C++ code generator produces a get
operation for the data member.

False The C++ code generator does not generate a get
operation for the data member.
220 Rational Rose 2000e, Using Rose C++

GenerateSetOperation
GenerateSetOperation

The GenerateSetOperation property specifies whether the C++ code
generator produces a set member function that modifies the value of
the data member generated from the class attribute. The set member
function name is determined by the class attribute’s SetName value. By
default, the result type of the set member function is void. You can
change the result type of the set member function by setting the class
attribute’s SetReturnsValue property.

You set GenerateSetOperation to False if you do not want to provide a
member function for modifying the data member. If you want to create
a custom set operation, set GenerateSetOperation to False and then
define your set operation in the Class Specification, as you would for
any user-defined operation.

The following table lists the values for GenerateSetOperation:

Table 47 GenerateSetOperation Values

GetIsConst

The GetIsConst property specifies whether the C++ code generator
produces the get member function for a data member with the const
keyword. const member functions cannot modify class data members.

The following table lists the values for GetIsConst. In this table,
Temperature is the attribute type:

Table 48 GetIsConst Values

If you select: The action is:

True (Default) The C++ code generator produces a set
operation for the data member.

False The C++ code generator does not generate a set
operation for the data member.

If you select: The C++ code generator produces:

True (Default) const Temperature get_high_temperature const

False Temperature get_high_temperature
Rational Rose 2000e, Using Rose C++ 221

Appendix A Attribute Properties
GetName

The GetName property specifies the name the C++ code generator
produces for a get member function for a class attribute. The default
value is:

get_$attribute

When the C++ code generator produces a get member function for a
data member, $attribute expands to the label of the class attribute in
the model, or the name specified in the attribute's CodeName property.

The following class diagram and code example illustrate a class
attribute and the get member function that the C++ code generator
produces for it by default:

Name: high_temperature
Type: Temperature
Default Value: 70
Containment: By-Value

// Get and Set Operations for Attributes
const Temperature get_high_temperature() const;

You can change the form of the names that the C++ code generator
produces for get member functions by changing the GetName format.
Note that if $attribute is followed by a character that can appear in an
identifier, you must enclose "attribute" in braces {}.

For example, if you set GetName to:

${attribute}_get

the C++ code generator produces the following get member function for
the class attribute:

// Get and Set Operations for Attributes
const Temperature high_temperature_get () const;
222 Rational Rose 2000e, Using Rose C++

GetResultIsConst
You can control the case of the name derived from $attribute. This
table describes the possible options:

Table 49 GetName $attribute Values

GetResultIsConst

The GetResultIsConst property returns a const value if a get function is
generated for this element.

The following table lists the values for GetResultIsConst:

Table 50 GetResultIsConst Values

If you enter: The action is:

${attribute:l} All characters in the attribute name are
converted to lower case.

${attribute:u} All characters in the attribute name are
converted to upper case.

${attribute:f} The case of the first character in the attribute
name is inverted.

${attribute:i} The case of all characters in the attribute name
is inverted.

If you select: The action is:

True If a get function is generated for this item, it
returns a const value.

False If a get function is generated for this item, it
returns a non-const value.

Same_As_Function If a get function is generated for this item, it
returns a const value if the function is
const and a non-const value if the
function is not const (as set by GetIsConst).
Rational Rose 2000e, Using Rose C++ 223

Appendix A Attribute Properties
GetSetByReference

The GetSetByReference property specifies whether values in the get and
set member functions are passed by reference or by value. By default,
the C++ code generator produces get and set member functions for a
class attribute to pass arguments and return values by value. You set
GetSetByReference to True if you want the get and set member
functions to pass arguments and return values by reference.

The following table lists the values for GetSetByReference. In this table,
Temperature is the name of the supplier class of the class attribute and
the_high_temperature is the name of the class attribute:

Table 51 GetSetByReference Values

GetSetKinds

The GetSetKinds property specifies the kind of member functions that
are generated for the get and set operations for a data member. The C++
code generator produces additional keywords in the declarations of the
get and set member functions based on the value of GetSetKinds, such
as static or virtual.

If you select: The C++ code generator produces:

True Temperature & get_high_temperature;void
set_high_temperature(const Temperature &value)

False (Default) Temperature get_high_temperature;
void set_high_temperature(const Temperature
value)
224 Rational Rose 2000e, Using Rose C++

InlineGet
The following table lists the values for GetSetKinds. In this table, T is
the name of the supplier class in the class attribute and the_T is the
name of the class attribute:

Table 52 GetSetKinds Values

Note that if the class attribute itself is static, the only legal values for
GetSetKinds are “Common” and "Static." In both cases, the C++ code
generator produces:

static T get_the_T();
static void set_the_T(const T value);

InlineGet

The InlineGet property specifies whether the C++ code generator inlines
get operations.

Table 53 InlineGet Values

If you select: The C++ code generator produces:

Common
(Default)

T get_the_T();
void set_the_T(const T value)

Virtual virtual T get_the_T();
virtual void set_the_T(const T value)

Static static T get_the_T(A &client);
static void set_the_T(A &client, const T value);

Abstract virtual T get_the_T() = 0;
virtual void set_the_T(const T value) = 0;

Friend friend T get_the_T(A &client);
friend void set_the_T(A &client, const T value);

If you select: The action is:

True (Default) The C++ code generator inlines get operations.

False The C++ code generator does not inline get operations.
Rational Rose 2000e, Using Rose C++ 225

Appendix A Attribute Properties
InlineSet

The InlineSet property specifies whether the C++ code generator inlines
set operations.

Table 54 InlineSet Values

SetName

The SetName property specifies the name the C++ code generator
produces for a set member function for a class attribute. The default
value is:

set_$attribute

When the C++ code generator produces a set member function for a
data member, $attribute expands to the label of the class attribute in
the model, or the name specified in the attribute's CodeName property.

The following code example illustrates a class attribute and the default
set member function produced for it by the C++ code generator:

Name: high_temperature
Type: Temperature
Default Value: 70
Containment: By-Value

// Get and Set Operations for Attributes
void set_high_temperature(const Temperature value);

You can change the form of the names that the C++ code generator
produces for set member functions by changing the format of SetName.
Note that if $attribute is followed by a character that can appear in an
identifier, you must enclose "attribute" in braces {}.

For example, if SetName is:

${attribute}_set

If you select: The action is:

True (Default) The C++ code generator inline sets operations.

False The C++ code generator does not inline set operations.
226 Rational Rose 2000e, Using Rose C++

SetReturnsValue
the C++ code generator produces the following set member function for
the class attribute:

// Get and Set Operations for Attributes
void high_temperature_set (const Temperature value);

You can control the case of the name derived from $attribute. This
table describes the values.

Table 55 SetName $attribute Values

SetReturnsValue

The SetReturnsValue property specifies whether the C++ code generator
produces the set member function for a class attribute with a non-void
return type. By default, the C++ code generator produces the set
member function with return type void. However, sometimes it is
convenient for the set member function to return the value to which
the data member is set in the function.

The following table lists the values for SetReturnsValue. In this table,
Temperature is the name of the supplier class of the class attribute and
high_temperature is the name of the class attribute:

Table 56 SetReturnsValue Values

If you enter: The action is:

${attribute:l} All characters in the attribute name are
converted to lower case.

${attribute:u} All characters in the attribute name are
converted to upper case.

${attribute:f} The case of the first character in the attribute
name is inverted.

${attribute:i} The case of all characters in the attribute name
is inverted.

If you select: The C++ code generator produces:

True const Temperature set_high_temperature (const
Temperature value)

False (Default) void set_high_temperature (const Temperature
value)
Rational Rose 2000e, Using Rose C++ 227

Appendix B

Class Properties

AssignmentKind

The AssignmentKind property specifies the kind of member function that
is generated for the assignment operation (operator=) of a class. The
C++ code generator produces additional keywords in the declaration of
the assignment member function based on the value of AssignmentKind.

The following table lists the values for AssignmentKind. In this table, T
is the name of the class for which the assignment operation is defined:

Table 57 AssignmentKind Values
If you select: The C++ code generator produces:

Common (Default) const T & operator=(const T &right)

Virtual virtual const T & operator=(const T
&right

Abstract virtual const T & operator=(const T
&right) = 0;
Rational Rose 2000e, Using Rose C++ 229

Appendix B Class Properties
AssignmentVisibility

The AssignmentVisibility property specifies the visibility of the
assignment member function (operator=) that the C++ code generator
produces for the class.

The following table lists the values for AssignmentVisibility:

Table 58 AssignmentVisibility Values

ClassKey

If the ClassKey property is non-blank, its value is used to generate the
definition and any forward declarations of this class. If it is blank, then
the class keyword is used.

The possible values of ClassKey include any valid C++ class key: class,
struct, or union.

CodeName

The CodeName property specifies the name for the class in the
generated code.

You need to set this property only if you want the class to be named
differently than it is in the Rational Rose model. This is especially
useful when the Rational Rose model and code are expressed in

If you select: The action is:

Public (Default) The C++ code generator produces the
assignment member function with public access.

Protected The C++ code generator produces the assignment
member function with protected access.

Private The C++ code generator produces the assignment
member function with private access.

Implementation The C++ code generator produces the assignment
member function in a second private area called
private implementation.
230 Rational Rose 2000e, Using Rose C++

CopyConstructorVisibility
different natural languages. The value of CodeName should be a valid
C++ identifier. If it is not a valid identifier, the C++ code generator
performs the following substitutions:

� White space characters and hyphens are changed to underscores

� All other characters except letters, digits, and underscores are
changed to "X"

� If the first character is a number, an "N" precedes the number
Table 59 CodeName Values

CopyConstructorVisibility

The CopyConstructorVisibility property specifies the visibility of the copy
constructor that the C++ code generator produces for the class.

The following table lists the values for CopyConstructorVisibility:

Table 60 CopyConstructorVisibility Values

If you select: The action is:

C++ Identifier The class is assigned the name of the identifier.

<blank> (Default) The C++ code generator produces a
class name from the model.

If you select: The action is:

Public (Default) The C++ code generator produces the
copy constructor with public access.

Protected The C++ code generator produces the copy
constructor with protected access.

Private The C++ code generator produces the copy
constructor with private access.

Implementation The C++ code generator produces the copy
constructor in a second private area called
private implementation.
Rational Rose 2000e, Using Rose C++ 231

Appendix B Class Properties
DefaultConstructorVisibility

The DefaultConstructorVisibility property specifies the visibility of the
default constructor that the C++ code generator produces for the class.

The following table lists the values for DefaultConstructorVisibility:

Table 61 DefaultConstructorVisibility Values

DereferenceKind

The DereferenceKind property specifies the kind of member function
that is generated for the dereference operation (operator*) of a class.
The C++ code generator produces additional keywords in the
declaration of the dereference member function based on the value of
the Dereference Kind property.

The following table lists the values for DereferenceKind. In this table,
TPtr is the name of the class for which the dereference operation is
defined and T is the result type as specified by DereferenceResultType:

Table 62 DereferenceKind Values

If you select: The action is:

Public (Default) The C++ code generator produces the
default constructor with public access.

Protected The C++ code generator produces the default
constructor with protected access.

Private The C++ code generator produces the default
constructor with private access.

Implementation The C++ code generator produces the default
constructor in a second private area called
private implementation.

If you select: The C++ code generator produces:

Common (Default) T operator*() const;

Virtual virtual T operator*() const;

Abstract virtual T operator*() const = 0;
232 Rational Rose 2000e, Using Rose C++

DereferenceResultType
DereferenceResultType

The DereferenceResultType property specifies the result type of the
dereference member function. The following table lists the values for
DereferenceResultType:

Table 63 DereferenceResultType Values

DereferenceVisibility

The DereferenceVisibility property specifies the visibility of the
dereference member function (operator*) that the C++ code generator
produces for the class.

The following table lists the values for DereferenceVisibility:

Table 64 DereferenceVisibility Values

If you enter: The action is:

literal The C++ code generator produces the
dereference operation (operator*) with literal as
the result type.

<blank> (Default) The C++ code generator produces the
dereference operation (operator*) with result type
void. It is recommended that you do not leave
this property blank.

If you select: The action is:

Public (Default) The C++ code generator produces the
dereference member function with public access.

Protected The C++ code generator produces the
dereference member function with protected
access.

Private The C++ code generator produces the
dereference member function with private
access.

Implementation The C++ code generator produces the
dereference member function in a second private
area called private implementation.
Rational Rose 2000e, Using Rose C++ 233

Appendix B Class Properties
DestructorKind

The DestructorKind property specifies the kind of member function that
is generated for the destructor of a class. The C++ code generator
produces additional keywords in the destructor's declaration based on
the value of DestructorKind.

The following table lists the values for DestructorKind. In this table, T is
the name of the class for which the destructor is defined:

Table 65 DestructorKind Values

DestructorVisibility

The DestructorVisibility property specifies the visibility of the destructor
member function that the C++ code generator produces for the class.

The following table lists the values for DestructorVisibility:

Table 66 DestructorVisibility Values

If you select: The C++ code generator produces:

Common (Default) ~T()

Virtual virtual ~T()

If you select: The action is:

Public (Default) The C++ code generator produces the
destructor with public access.

Protected The C++ code generator produces the
destructor with protected access.

Private The C++ code generator produces the
destructor with private access.

Implementation The C++ code generator produces the
destructor in a second private area called
private implementation.
234 Rational Rose 2000e, Using Rose C++

EqualityKind
EqualityKind

The EqualityKind property specifies the kind of member functions that
are generated for the equality operations (operator== and operator!=) of
a class. The C++ code generator produces additional keywords in the
declarations of the equality member functions based on the value of
EqualityKind.

The following table lists the values for EqualityKind. In this table, T is
the name of the class for which the equality operations are defined:

Table 67 EqualityKind Values

The type returned by the equality functions is determined by the
BooleanType Project property.

If you select: The C++ code generator produces:

Common
(Default)

int operator==(const T &right) const;
int operator!=(const T &right) const;

Virtual virtual int operator==(const T &right)
const;
virtual int operator!=(const T &right)
const;

Abstract virtual int operator==(const T &right) const
= 0;
virtual int operator!=(const T &right) const
= 0; Friend friend int operator==(const T
&left, const
 T &right);
friend int operator!=(const T &left, const T
 &right);
Rational Rose 2000e, Using Rose C++ 235

Appendix B Class Properties
EqualityVisibility

The EqualityVisibility property specifies the visibility of the equality
member functions (operator== and operator!=) that the C++ code
generator produces for the class.

The following table lists the values for EqualityVisibility:

Table 68 EqualityVisibility Values

ExplicitCopyConstructor

If a copy constructor is generated for the class, the
ExplicitCopyConstructor property makes it an explicit constructor.

The following table lists the values for ExplicitCopyConstructor:

Table 69 ExplicitCopyConstructor Values

If you select: The action is:

Public (Default) The C++ code generator produces the
equality member functions with public access.

Protected The C++ code generator produces the equality
member functions with protected access.

Private The C++ code generator produces the equality
member functions with private access.

Implementation The C++ code generator produces the equality
member functions in a second private area called
private implementation.

If you select: The action is:

True If a copy constructor is generated for the class,
the Explicit Copy Constructor property makes it an
explicit constructor.

False If a copy constructor is generated for the class, it
is a non-explicit constructor.
236 Rational Rose 2000e, Using Rose C++

ExplicitDefaultConstructor
ExplicitDefaultConstructor

If a default constructor is generated for the class, the
ExplicitDefaultConstructor property makes it an explicit constructor.

The following table lists the values for ExplicitDefaultConstructor:

Table 70 ExplicitDefaultConstructor Values

GenerateAssignmentOperation

The GenerateAssignmentOperation property specifies whether the C++
code generator produces an assignment member function (operator=)
for a class.

When the C++ code generator produces an assignment operation, it
generates:

� A member function declaration in the header file for a class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.

� A skeleton function definition with preserved code regions in the
implementation file. You complete the member function by
inserting implementation code between the source markers for the
code regions.

If you select: The action is:

True If a default constructor is generated for the
class, the ExplicitDefaultConstructor property
makes it an explicit constructor.

False If a default constructor is generated for the
class, it is a non-explicit constructor.
Rational Rose 2000e, Using Rose C++ 237

Appendix B Class Properties
The following table lists the values for GenerateAssignmentOperation:

Table 71 GenerateAssignmentOperation Values

Example of GenerateAssignmentOperation

This example shows a member function declaration and corresponding
skeleton function definition generated for the assignment operation for
class T:

� Declaration

// Assignment Operation
const T & operator=(const T &right);

� Function Definition

// Assignment Operation
const T & T::operator=(const T &right)
{
//##begin T::operator=%.body preserve=yes
//##end T::operator=%.body
}

If you select: The action is:

Declare and
Define

(Default) The C++ code generator produces a declaration
and a skeleton definition for the operator= member
function.

Declare Only The C++ code generator produces a declaration for the
operator= member function to prevent C++ from
supplying a default assignment operation.

Do Not Declare The C++ code generator does not generate a declaration
or a definition for the operator= member function. C++
supplies a default assignment operation.
238 Rational Rose 2000e, Using Rose C++

GenerateCopyConstructor
GenerateCopyConstructor

The GenerateCopyConstructor property specifies whether the C++ code
generator produces a copy constructor for a class.

When the C++ code generator produces a copy constructor, it
generates:

� A member function declaration in the header file for a class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.

� A skeleton function definition with preserved code regions in the
implementation file. You complete the member function by
inserting implementation code between the source markers for the
code regions.

The following table lists the values for GenerateCopyConstructor:

Table 72 GenerateCopyConstructor Values

Note: If you prefer, you may enter the default constructor into Rational
Rose's list of operations. This allows you to supply documentation and
alter information. If you choose to do this, set this property to Do Not
Declare so that Rational Rose does not automatically generate a default
constructor.

If you select: The action is:

Declare and
Define

(Default) The C++ code generator produces a declaration
and a skeleton definition for the copy constructor.

Declare Only The C++ code generator produces a declaration for the
copy constructor to prevent C++ from supplying one.

Do Not Declare The C++ code generator does not generate a declaration
or a definition for the copy constructor. C++ will supply a
copy constructor.
Rational Rose 2000e, Using Rose C++ 239

Appendix B Class Properties
Example of GenerateCopyConstructor

This example shows a member function declaration and corresponding
skeleton function definition generated for the copy constructor for
class T:

� Declaration

T(const T& right);

� Function Definition

T::T(const T &right)
//##begin T::T%copy.hasinit preserve=no
//##end T::T%copy.hasinit
//##begin T::T%copy.initialization preserve=yes
//##end T::T%copy.initialization
{
//##begin T::T%copy.body preserve=yes
//##end T::T%copy.body
}

There are two code regions in which you may place a constructor
initializer: hasinit and initialization. If you specify an initial value for
an attribute, or if a container class object generator for a has
relationship or association requires initialization, Rational Rose
generates the appropriate constructor initializer in the hasinit
section. Normally, this region is not preserved and Rational Rose
regenerates it each time. Rational Rose does not generate constructor
initializers for superclasses; the initialization section is provided for
you to enter them.

GenerateDefaultConstructor

The GenerateDefaultConstructor property specifies whether the C++ code
generator produces a default constructor for a class.

When the C++ code generator produces a default constructor, it
generates:

� A member function declaration in the header file for a class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.
240 Rational Rose 2000e, Using Rose C++

GenerateDefaultConstructor
� A skeleton function definition with preserved code regions in the
implementation file. You complete the member function by
inserting implementation code between the source markers for the
code regions.

The following table lists the values for GenerateDefaultConstructor:

Table 73 GenerateDefaultConstructor Values

Example of GenerateDefaultConstructor

This example shows a member function declaration and corresponding
skeleton function definition generated for the default constructor for
class T:

� Declaration

T();

� Function Definition

T::T()
//##begin T::T%.hasinit preserve=no
//##end T::T%.hasinit
//##begin T::T%.initialization preserve=yes
//##end T::T%.initialization
{
//##begin T::T%.body preserve=yes
//##end T::T%.body
}

There are two code regions in which you may place a constructor
initializer: hasinit and initialization. If you specify an initial value for
an attribute, or if a container class object generator for a has
relationship or association requires initialization, Rational Rose
generates the appropriate constructor initializer in the hasinit section.

If you select: The action is:

Declare and
Define

(Default) The C++ code generator produces a
declaration and a skeleton definition for the default
constructor.

Declare Only The C++ code generator produces a declaration for the
default constructor to prevent C++ from supplying one.

Do Not Declare The C++ code generator does not generate a declaration
or a definition for the default constructor. C++ will
supply a default constructor.
Rational Rose 2000e, Using Rose C++ 241

Appendix B Class Properties
Normally, this region is not preserved and Rational Rose regenerates it
each time. Rational Rose does not generate constructor initializers for
superclasses; the initialization section is provided for you to enter
them.

GenerateDereferenceOperation

The GenerateDereferenceOperation property specifies whether the C++
code generator produces a dereference member function (operator*)
for dereferencing a pointer to an object of a class.

When the C++ code generator produces a dereference operation, it
generates:

� A member function declaration in the header file for a class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.

� A skeleton function definition with preserved code regions in the
implementation file. You complete the member function by
inserting implementation code between the source markers for the
code regions.

The following table lists the values for GenerateDereferenceOperation:

Table 74 GenerateDereferenceOperation Values

Example of GenerateDereferenceOperation

This example shows a member function declaration and corresponding
skeleton function definition generated for a dereference operation for
class TPtr. In this example, the DereferenceResultType property is set to
T.

� Declaration

// Dereference Operation
T operator*() const;

If you select: The action is:

True The C++ code generator produces a declaration and a
skeleton definition for the operator* member function.

False (Default) The C++ code generator does not generate an
operator* member function.
242 Rational Rose 2000e, Using Rose C++

GenerateDestructor
� Function Definition
// Dereference Operation
T TPtr::operator*() const
{
//##begin TPtr::operator*%.body preserve=yes
//##end TPtr::operator*%.body
}

GenerateDestructor

The GenerateDestructor property specifies whether the C++ code
generator produces a destructor for a class.

When the C++ code generator produces a destructor, it generates:

� A member function declaration in the header file for a class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.

� A skeleton function definition with preserved code regions in the
implementation file. You complete the member function by
inserting implementation code between the source markers for the
code regions.

The following table lists the values for GenerateDestructor:

Table 75 GenerateDestructor Values

Example of GenerateDestructor

This example shows a member function declaration and corresponding
skeleton function definition generated for the destructor for class T:

� Declaration

// Destructor
~T();

� Function Definition
// Destructor

If you select: The action is:

True (Default) The C++ code generator produces declarations
and skeleton definitions for the destructor.

False The C++ code generator does not generate a destructor.
Rational Rose 2000e, Using Rose C++ 243

Appendix B Class Properties
 T::~T()
{
//##begin T::~T%.body preserve=yes
//##end T::~T%.body
}

GenerateEmptyRegions

The GenerateEmptyRegions property identifies the type of protected
region associated with the item.

The following table lists the values for GenerateEmptyRegions:

Table 76 GenerateEmptyRegions Values

GenerateEqualityOperation

The GenerateEqualityOperations property specifies whether the C++ code
generator produces equality and inequality member or friend functions
(operator== and operator!=) for a class.

When the C++ code generator produces equality operations, it
generates the following for each operation:

� A member function declaration in the header file for a class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.

If you select: The action is:

None No empty protected region associated with the
item will be generated in the source file.

Preserved An empty protected region associated with the
item will be generated only if it has a
“preserve=yes” clause.

Unpreserved An empty protected region associated with the
item will be generated only if it has a
“preserve=no” clause.

All An empty protected region associated with the
item will always be generated in the source file.
244 Rational Rose 2000e, Using Rose C++

GenerateEqualityOperation
� A skeleton function definition with preserved code regions in the
implementation file. You complete the member function by
inserting implementation code between the source markers for the
code regions.

The following table lists the values for GenerateEqualityOperations:

Table 77 GenerateEqualityOperations Values

The type returned by the equality functions is determined by the
BooleanType Project property.

Example of GenerateEqualityOperations

This example shows member function declarations and corresponding
skeleton function definitions generated for equality operations for
class T. In this example, the BooleanType Project property is set to int:

� Declarations

// Equality Operations
int operator==(const T &right) const;
int operator!=(const T &right) const;

� Function Definitions

// Equality Operations
int T::operator==(const T &right) const
{
//##begin T::operator==%.body preserve=yes
//##end T::operator==%.body
}
int T::operator!=(const T &right) const

If you select: The action is:

Declare and
Define

(Default) The C++ code generator produces
declarations and skeleton definitions for the
operator== and operator!= member functions.

Declare Only The C++ code generator produces declarations
for the operator== and operation!= member
functions to prevent C++ from supplying default
equality operations.

Do Not Declare The C++ code generator does not generate
declarations or definitions for the operator== and
operator!= member functions. C++ will supply
default equality operations.
Rational Rose 2000e, Using Rose C++ 245

Appendix B Class Properties
{

//##begin T::operator!=%.body preserve=yes

//##end T::operator!=%.body

}

GenerateIndirectionOperation

The GenerateIndirectionOperation property specifies whether the C++
code generator produces an indirection member function (operator->)
for accessing an object of a class through a pointer to that object.

When the C++ code generator produces an indirection operation, it
generates:

� A member function declaration in the header file for a class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.

� A skeleton function definition with preserved code regions in the
implementation file. You complete the member function by
inserting implementation code between the source markers for the
code regions.

The following table lists the values for GenerateIndirectionOperation:

Table 78 GenerateIndirectionOperation Values

Example of GenerateIndirectionOperation

This example shows a member function declaration and corresponding
skeleton function definition generated for an indirection operation for
class TPtr. In this example, the IndirectionResultType property is set to
T*.

� Declaration

// Indirection Operation
T* operator->() const;

If you select: The action is:

True The C++ code generator produces a declaration and a
skeleton definition for the operator-> member function.

False (Default) The C++ code generator does not generate an
operator-> member function.
246 Rational Rose 2000e, Using Rose C++

GenerateRelationalOperations
� Function Definition
// Indirection Operation
T* TPtr::operator->() const
{
//##begin TPtr::operator->%.body preserve=yes
//##end TPtr::operator->%.body
}

GenerateRelationalOperations

The GenerateRelationalOperations property specifies whether the C++
code generator produces relational member or friend functions
(operator<, operator<=, operator>, and operator>=) for comparing
class objects.

When the C++ code generator produces relational operations, it
generates the following for each operation:

� A member function declaration in the header file for a class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.

� A skeleton function definition with preserved code regions in the
implementation file. You complete the member function by
inserting implementation code between the source markers for the
code regions.

The following table lists the values for GenerateRelationalOperations:

Table 79 GenerateRelationalOperations Values

The type returned by the relational functions is determined by the
BooleanType Project property.

If you select: The action is:

True The C++ code generator produces declarations and
skeleton definitions for the operator<, operator<=,
operator>, and operator>= member functions.

False (Default) The C++ code generator does not generate
relational member functions.
Rational Rose 2000e, Using Rose C++ 247

Appendix B Class Properties
Example of GenerateRelationalOperations

This example shows member function declarations and corresponding
skeleton function definitions generated for relational operations for
class T. In this example, the BooleanType Project property is set to int:

� Declarations

// Relational Operations
int operator<(const T &right) const;
int operator>(const T &right) const;
int operator<=(const T &right) const;
int operator>=(const T &right) const;
248 Rational Rose 2000e, Using Rose C++

GenerateStorageMgmtOperations
� Function Definitions
// Relational Operations
int T::operator<(const T &right) const
{
//##begin T::operator<%.body preserve=yes
//##end T::operator<%.body
}
int T::operator>(const T &right) const
{
//##begin T::operator>%.body preserve=yes
//##end T::operator>%.body
}
int T::operator<=(const T &right) const
{
//##begin T::operator<=%.body preserve=yes
//##end T::operator<=%.body
}
int T::operator>=(const T &right) const
{
//##begin T::operator>=%.body preserve=yes
//##end T::operator>=%.body
}

GenerateStorageMgmtOperations

The GenerateStorageMgmtOperations property specifies whether the C++
code generator produces storage management member functions
(operator new and operator delete) for allocating and freeing class
objects.

When the C++ code generator produces storage management
operations, it generates the following for each operation:

� A static member function declaration in the header file for a class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.

� A skeleton function definition with preserved code regions in the
implementation file. You complete the member function by
inserting implementation code between the source markers for the
code regions.
Rational Rose 2000e, Using Rose C++ 249

Appendix B Class Properties
The following table lists the values for GenerateStorageMgmtOperations:

Table 80 GenerateStorageMgmtOperations Values

Example of GenerateStorageMgmtOperations

This example shows member function declarations and corresponding
skeleton function definitions generated for storage management
operations for class T:

� Declarations

// Storage Management Operations
static void * operator new(size_t size);
static void operator delete(void *object);

� Function Definitions
// Storage Management Operations
void * T::operator new(size_t size)
{
//##begin T::operatornew%.body preserve=yes
//##end T::operatornew%.body
}
void T::operator delete(void *object)
{
//##begin T::operatordelete%.body preserve=yes
//##end T::operatordelete%.body
}

If you select: The action is:

True The C++ code generator produces declarations and
skeleton definitions for the operator new and operator
delete member functions.

False (Default) The C++ code generator does not generate
operator new and operator delete member functions.
250 Rational Rose 2000e, Using Rose C++

GenerateStreamOperations
GenerateStreamOperations

The GenerateStreamOperations property specifies whether the C++ code
generator produces stream friend functions (operator>> and
operator<<) for reading and writing class objects. Stream operations
are always generated as friend functions.

When the C++ code generator produces stream operations, it generates
the following for each operation:

� A member function declaration in the header file for a class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.

� A skeleton function definition with preserved code regions in the
implementation file. You complete the member function by
inserting implementation code between the source markers for the
code regions.

You can overload operator<< and operator>> to implement your own
left and right shift operations. To do this, you define left and right shift
operations in the Class Specification, as for any user-defined
operation. Note that the C++ code generator places all operator<< and
operator>> member functions following the comment line // Stream
Operations.

The following table lists the values for GenerateStreamOperations:

Table 81 GenerateStreamOperations Values
If you select: The action is:

True The C++ code generator produces declarations and
skeleton definitions for the operator>> and operator<<
member functions.

False (Default) The C++ code generator does not generate
operator>> and operator<< member functions.
Rational Rose 2000e, Using Rose C++ 251

Appendix B Class Properties
Example of GenerateStreamOperations

This example shows member function declarations and corresponding
skeleton function definitions generated for stream operations for
class T:

� Declarations:

// Stream Operations
friend ostream & operator<<(ostream &s, const T &right)
const;
friend istream & operator>>(istream &s, T &object);

� Function Definitions

// Stream Operations
friend ostream & T::operator<<(ostream &s, const T &right)
const
{
//##begin T::operator<<%.body preserve=yes
//##end T::operator<<%.body
}
friend istream & T::operator>>(istream &s, T &object)
{
//##begin T::operator>>%.body preserve=yes
//##end T::operator>>%.body
}

GenerateSubscriptOperation

The GenerateSubscriptOperation property specifies whether the C++ code
generator produces a subscript member function (operator[]) for
accessing a particular object of a class.

When the C++ code generator produces a subscript operation, it
generates:

� A member function declaration in the header file for a class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.

� A skeleton function definition with preserved code regions in the
implementation file. You complete the member function by
inserting implementation code between the source markers for the
code regions.
252 Rational Rose 2000e, Using Rose C++

ImplementationType
The following table lists the values for GenerateSubscriptOperation:

Table 82 GenerateSubscriptOperation Values

Example of GenerateSubscriptOperation

This example shows a member function declaration and corresponding
skeleton function definition generated for a subscript operation for
class T. In this example, the SubscriptResultType property is set to T&.

� Declaration
// Subscription Operation
void operator[](const int index) const;

� Function Definition

// Subscription Operation

T& T::operator[](const int index) const

{

//##begin T::operator[]%.body preserve=yes

//##end T::operator[]%.body

}

ImplementationType

The ImplementationType property allows you to implement a class using
either a class definition or an elemental data type. By default, the C++
code generator generates a class definition for a class in a Rational
Rose model. You set the ImplementationType property when you want to
implement a class as an elemental data type instead of as a C++ class.
The C++ code generator produces a typedef that maps the class to its
implementation type.

If you select: The action is:

True The C++ code generator produces a declaration
and a skeleton definition for the operator[]
member function.

False (Default) The C++ code generator does not
generate an operator[] member function.
Rational Rose 2000e, Using Rose C++ 253

Appendix B Class Properties
For example, you might create a class called SmallString whose
ImplementationType property is set to char[3]. When the C++ code
generator produces code for class Small String, it generates a typedef
instead of a class definition:

typedef char SmallString[3];

To define an enumeration type, set ImplementationType to an
enumeration type definition, for example:

enum {red = 10, blue = 20, green = 30, yellow = 40}

The following table lists the values for ImplementationType:

Table 83 ImplementationType Values

IndirectionKind

The IndirectionKind property specifies the kind of member function that
is generated for the indirection operation (operator->) of a class. The
C++ code generator produces additional keywords in the declaration of
the indirection member function based on the IndirectionKind value.

The following table lists the values for IndirectionKind. In this table, TPtr
is the name of the class for which the indirection operation is defined
and T* is the result type as specified by the IndirectionResultType
property:

Table 84 IndirectionKind Values

If you enter: The action is:

type name The C++ code generator produces a typedef that maps
the class to its implementation type and does not
generate a class definition for the class.

<blank> (Default) The C++ code generator produces a class
definition for the class.

If you select: The C++ code generator produces:

Common (Default) T* operator->() const;

Virtual virtual T* operator->() const;

Abstract virtual T* operator->() const = 0;
254 Rational Rose 2000e, Using Rose C++

IndirectionResultType
IndirectionResultType

The IndirectionResultType property specifies the result type of the
indirection member function.

The following table lists the values for IndirectionResultType:

Table 85 IndirectionResultType Values

IndirectionVisibility

The IndirectionVisibility property specifies the visibility of the indirection
member function (operator->) that the C++ code generator produces
for the class.

The following table lists the values for IndirectionVisibility:

Table 86 IndirectionVisibility Values

If you enter: The action is:

literal The C++ code generator produces the indirection
operation (operator->) with literal as the result type.

<blank> (Default) The C++ code generator produces the
indirection operation (operator->) with result type
void. It is recommended that you do not leave this
property blank.

If you select: The action is:

Public (Default) The C++ code generator produces the
indirection member function with public access.

Protected The C++ code generator produces the indirection
member function with protected access.

Private The C++ code generator produces the indirection
member function with private access.

Implementation The C++ code generator produces the indirection
member function in a second private area called
private implementation.
Rational Rose 2000e, Using Rose C++ 255

Appendix B Class Properties
InlineAssignmentOperation

The InlineAssignmentOperation property specifies whether the C++ code
generator inlines an assignment member function (operator=) for a
class.

The following table lists the values for InlineAssignmentOperation:

Table 87 InlineAssignmentOperation Values

InlineCopyConstructor

The InlineCopyConstructor property specifies whether the C++ code
generator inlines a copy constructor for a class.

The following table lists the values for InlineCopyConstructor:

Table 88 InlineCopyConstructor Values

If you select: The action is:

True The C++ code generator inlines the assignment
operations for the class.

False (Default) The C++ code generator does not inline
the assignment operations for the class.

If you select: The action is:

True The C++ code generator inlines the copy
constructor for the class.

False (Default) The C++ code generator does not inline
the copy constructor for the class.
256 Rational Rose 2000e, Using Rose C++

InlineDefaultConstructor
InlineDefaultConstructor

The InlineDefaultConstructor property specifies whether the C++ code
generator inlines the default constructor for the class. If no default
constructor is generated, this property has no effect. See
GenerateDefaultConstructor.

The following table lists the values for InlineDefaultConstructor:

Table 89 InlineDefaultConstructor Values

InlineDereferenceOperation

The InlineDereferenceOperation property specifies whether the C++ code
generator inlines a dereference member function (operator*) for
dereferencing a pointer to an object of a class.

The following table lists the values for InlineDereferenceOperation:

Table 90 InlineDereference Values

If you select: The action is:

True The C++ code generator inlines the default
constructor for the class.

False (Default) The C++ code generator does not inline
the default constructor for the class.

If you select: The action is:

True The C++ code generator inlines the dereferences
for the class.

False (Default) The C++ code generator does not inline
dereferences for the class.
Rational Rose 2000e, Using Rose C++ 257

Appendix B Class Properties
InlineDestructor

The InlineDestructor property specifies whether the C++ code generator
inlines a destructor for a class.

The following table lists the values for InlineDestructor:

Table 91 InlineDestructor Values

InlineEqualityOperations

The InlineEqualityOperations property specifies whether the C++ code
generator inlines equality and inequality member or friend functions
(operator== and operator!=) for a class.

When the C++ code generator produces equality operations, it
generates the following for each operation:

� A member function declaration in the header file for a class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.

� A skeleton function definition with preserved code regions in the
implementation file. You complete the member function by
inserting implementation code between the source markers for the
code regions.

The following table lists the values for InlineEqualityOperations:

Table 92 InlinedEqualityOperations Values

If you select: The action is:

True The C++ code generator inlines the destructors
for the class.

False (Default) The C++ code generator does not inline
destructors for the class.

If you select: The action is:

True The C++ code generator inlines the equality
operation for the class.

False (Default) The C++ code generator does not inline
the equality operation for the class.
258 Rational Rose 2000e, Using Rose C++

InlineIndirectionOperation
InlineIndirectionOperation

The InlineIndirectionOperation property specifies whether the C++ code
generator inlines an indirection member function (operator->) for
accessing an object of a class through a pointer to that object.

The following table lists the values for InlineIndirectionOperation:

Table 93 InlineIndirectionOperation Values

InlineRelationalOperations

The InlineRelationalOperations property specifies whether the C++ code
generator inlines relational member or friend functions (operator<,
operator<=, operator>, and operator>=) for comparing class objects.

When the C++ code generator produces relational operations, it
generates the following for each operation:

� A member function declaration in the header file for a class.

Note: This code is generated in the implementation file if you have
assigned the class to a module body.

� A skeleton function definition with preserved code regions in the
implementation file. You complete the member function by
inserting implementation code between the source markers for the
code regions.

The following table lists the values for InlineRelationalOperations:

Table 94 InlineRelationalOperations Values

If you select: The action is:

True The C++ code generator inlines the indirection
operations for the class.

False (Default) The C++ code generator does not inline
the indirection operations for the class.

If you select: The action is:

True The C++ code generator inlines the relational
operation for the class.

False (Default) The C++ code generator does not
inline the relational operation for the class.
Rational Rose 2000e, Using Rose C++ 259

Appendix B Class Properties
The type returned by the relational functions is determined by the
BooleanType Project property.

InlineStorageMgmtOperations

The InlineStorageMgmtOperations property specifies whether the C++
code generator inlines storage management member functions
(operator new and operator delete) for allocating and freeing class
objects.

The following table lists the values for InlineStorageMgmtOperation:

Table 95 InlineStorageMgmtOperation Values

InlineStreamOperations

The InlineStreamOperations property specifies whether the C++ code
generator inlines stream friend functions (operator>> and operator<<)
for reading and writing class objects. Stream operations are always
generated as friend functions.

The following table lists the values for InlineStreamOperations:

Table 96 InlineStreamOperations Values

If you select: The action is:

True The C++ code generator inlines the storage management
operations for the class.

False (Default) The C++ code generator does not inline the
storage management operations for the class.

If you select: The action is:

True The C++ code generator inlines the stream
operations for the class.

False (Default) The C++ code generator does not inline
the stream operations for the class.
260 Rational Rose 2000e, Using Rose C++

InlineSubscriptOperation
InlineSubscriptOperation

The InlineSubscriptOperation property specifies whether the C++ code
generator inlines a subscript member function (operator=) for a class.

The following table lists the values for InlineSubscriptOperation:

Table 97 InlineSubscriptOperation Values

PutBodiesInSpec

If the value of PutBodiesInSpec is True, the implementation for the class
is placed in the specification file (header). This would be used for
compilers that need the definition of the template in every compilation
unit.

RelationalKind

The RelationalKind property specifies the kind of member functions that
are generated for the relational operations (operator<, operator<=,
operator>, and operator>=) of a class. The C++ code generator
produces additional keywords in the declarations of the relational
member functions based on the value of its RelationalKind property.

If you select: The action is:

True The C++ code generator inlines the subscript
operations for the class.

False (Default) The C++ code generator does not
inline the subscript operations for the class.
Rational Rose 2000e, Using Rose C++ 261

Appendix B Class Properties
The following table lists the values for RelationalKind. In this table, T is
the name of the class for which the relational operations are defined:

Table 98 RelationalKind Values

The type returned by the relational functions is determined by the
BooleanType Project property.

If you select: The C++ code generator produces:

Common
(Default)

int operator<(const T &right) const;
int operator>(const T &right) const;
int operator<=(const T &right) const;
int operator>=(const T &right) const;

Virtual virtual int operator<(const T &right) const;
virtual int operator>(const T &right) const;
virtual int operator<=(const T &right) const;
virtual int operator>=(const T &right) const,

Abstract virtual int operator<(const T &right) const =
0;
virtual int operator>(const T &right) const =
0;
virtual int operator<=(const T &right) const
= 0;
virtual int operator>=(const T &right) const
= 0;

Friend friend int operator<(const T &left, const
 T&right);
friend int operator>(const T &left, const
 T&right);
friend int operator<=(const T &left, const
 T&right);
friend int operator>=(const T &left, const
 T&right);
262 Rational Rose 2000e, Using Rose C++

RelationalVisibility
RelationalVisibility

The RelationalVisibility property specifies the visibility of the relational
member functions (operator<, operator<=, operator> and
operator>=) that the C++ code generator produces for the class.

The following table lists the values for RelationalVisibility:

Table 99 RelationalVisibility Values

StorageMgmtVisibility

The StorageMgmtVisibility property specifies the visibility of the storage
management member functions (operator new and operator delete)
that the C++ code generator produces for the class.

The following table lists the values for StorageMgmtVisibility:

Table 100 StorageMgmtVisibility Values

If you select: The action is:

Public (Default) The C++ code generator produces the
relational member functions with public access.

Protected The C++ code generator produces the relational
member functions with protected access.

Private The C++ code generator produces the relational
member functions with private access.

Implementation The C++ code generator produces the relational
member functions in a second private area called
private implementation.

If you select: The action is:

Public (Default) The C++ code generator produces the new
and delete member functions with public access.

Protected The C++ code generator produces the new and delete
member functions with protected access.

Private The C++ code generator produces the new and delete
member functions with private access.

Implementation The C++ code generator produces the new and delete
member functions in a second private area called
private implementation.
Rational Rose 2000e, Using Rose C++ 263

Appendix B Class Properties
StreamVisibility

The StreamVisibility property specifies the visibility of the stream
member functions (operator<< and operator>>) that the C++ code
generator produces for the class.

The following table lists the values for StreamVisibility:

Table 101 StreamVisibility Values

SubscriptKind

The SubscriptKind property specifies the kind of member function that
is generated for the subscript operation (operator[]) of a class. The
C++ code generator produces additional keywords in the declaration of
the subscript member function based on the value of SubscriptKind.

The following table lists the values for SubscriptKind. In this table, T is
the name of the class for which the subscript operation is defined and
T& is the result type as specified by SubscriptResultType:

Table 102 SubscriptKind Values

If you select: The action is:

Public (Default) The C++ code generator produces the
stream member functions with public access.

Protected The C++ code generator produces the stream
member functions with protected access.

Private The C++ code generator produces the stream
member functions with private access.

Implementation The C++ code generator produces the stream
member functions in a second private area called
private implementation.

If you select: The C++ code generator produces:

Common
(Default)

T& operator[](const int index) const;

Virtual virtual T& operator[](const int
 index) const;

Abstract virtual T& operator[](const int
 index) const = 0;
264 Rational Rose 2000e, Using Rose C++

SubscriptResultType
SubscriptResultType

The SubscriptResultType property specifies the result type of the
subscript member function.

The following table lists the values for SubscriptResultType:

Table 103 SubscriptResultType Values

SubscriptVisibility

The SubscriptVisibility property specifies the visibility of the subscript
member function (operator[]) that the C++ code generator produces for
the class.

The following table lists the values for SubscriptVisibility:

Table 104 SubscriptVisibility Values

If you enter: The action is:

literal The C++ code generator produces the subscript
operation (operator[]) with literal as the result type.

<blank> (Default) The C++ code generator produces the
subscript operation (operator[]) with result type void.
It is recommended that you do not leave this
property blank.

If you select: The action is:

Public (Default) The C++ code generator produces the
subscript member function with public access.

Protected The C++ code generator produces the subscript
member function with protected access.

Private The C++ code generator produces the subscript
member function with private access.

Implementation The C++ code generator produces the subscript
member function in a second private area called
private implementation.
Rational Rose 2000e, Using Rose C++ 265

Appendix C

Class Category Properties

CodeName

The CodeName property indicates the C++ name for the namespace.

You need to set this property only if you want the class to be named
differently than it is in the Rational Rose model. This is especially
useful when the Rational Rose model and code are expressed in
different natural languages. This property value should be a valid C++
identifier. If it is not a valid C++ identifier, the C++ code generator
performs the following substitutions:

� White space characters and hyphens are changed to underscores

� All other characters except letters, digits, and underscores are
changed to "X"

� If the first character is a number, an "N" precedes the number

Table 105 CodeName Values

If you select: The action is:

C++ Name The string that identifies the C++ name for the
namespace.

<blank> (Default) The package does not represent a
namespace.
Rational Rose 2000e, Using Rose C++ 267

Appendix C Class Category Properties
The following substitution symbols are defined for CodeName:

Table 106 CodeName Substitution Symbols

GenerateEmptyRegions

The GenerateEmptyRegions property identifies the type of protected
region associated with the class.

The following table lists the values for GenerateEmptyRegions:

Table 107 GenerateEmptyRegions Values

Code Explanation

$name :model name

$identifier :model name edited to conform
to C++ rules for an identifier

$packageName :same as name

$packageIdentifier :same as identifier

$subsystemName :model name for associated
subsystem

$subsystemDir :name of directory associated
with subsystem

If you select: The action is:

None No empty protected region associated with the class is
generated in the source file.

Preserved An empty protected region associated with the class is
generated only if it has a preserve=yes clause.

Unpreserved An empty protected region associated with the class is
generated only if it has a preserve=no clause.

All An empty protected region associated with the class is
always generated in the source file.
268 Rational Rose 2000e, Using Rose C++

Indent
Indent

The Indent property specifies the indentation for a class category when
the class category is a namespace. This property takes effect only when
IsNamespace is True. The C++ code generator produces the specified
indentation for the first-level items inside the namespace.

IsNamespace

The IsNamespace property specifies whether or not a class category is
treated as a namespace in C++. For a class inside a class category, the
C++ code generator normally produces a top-level C++ class. If a class
category IsNamespace property is True, its C++ class is generated
inside a C++ namespace with category name as the namespace name.

The following table lists the values for IsNamespace:

Table 109 Is Namespace Property Values

Table 108 Indent Values

If you select: The action is:

<integer> The C++ code generator produces <integer>-space
indentation for the first-level items inside the
namespace. The default value is 2.

If you select: The action is:

True The C++ code generator produces a namespace
for the class category, and places all its
enclosing items inside the namespace.

False (Default) The C++ code generator does not treat
the class category as a namespace.
Rational Rose 2000e, Using Rose C++ 269

Appendix D

Dependency Properties

BodyReferenceOnly

The BodyReferenceOnly property specifies whether the reference due to
the Dependency only takes effect on the body (implementation) file. The
C++ code generator uses this property to decide where to produce the
reference for the Dependency.

The following table lists the values for BodyReferenceOnly:

Table 110 BodyReferenceOnly Values

ForwardReferenceOnly

The ForwardReferenceOnly property specifies whether the C++ code
generator produces a forward declaration for the supplier class of the
association relationship before the class definitions in the module. If,
in the Rational Rose model, there is a cycle consisting of two or more
association, uses, inherits, and instantiates relationships, and
navigable association roles, you must set ForwardReferenceOnly to True
for at least one of the association or uses relationships, or navigable
roles to break the cycle. You may also set this property to break cycles

If you select: The action is:

True The C++ code generator produces the reference for
the Dependency in the implementation file.

False (Default) The C++ code generator produces the
reference for the Dependency in the header file.
Rational Rose 2000e, Using Rose C++ 271

Appendix D Dependency Properties
which include other kinds of dependencies, such as those specified by
the module dependency relationship on a component diagram, or by
includes you put in the AdditionalIncludes protected code region.

Note: This property does not apply to inherits or instantiates
relationships because a forward declaration never provides sufficient
information to the compiler in these cases.

Each associate class is always dependent on its association class. An
association class always has forward references to its associate class.

For example, if two classes are assigned to the same module and each
class is the supplier in an association relationship with the other, as
shown here, then a forward declaration is needed for one of the classes.

Figure 56 Example of an Association Relationship

Setting ForwardReferenceOnly to True for the "A to B" direction of the
association (My_B) causes the C++ code generator to generate a forward
declaration for class B, as shown by the following code example:

class B;
class A
{...

// Data Members for Association Relationships
B *My_B;

...};
class B
{...

// Data Members for Association Relationships
A *My_A;

...};

Note that this restricts how A can contain B. In particular, A cannot
contain an instance of class B, although it can contain a pointer to an
instance of B. It seldom makes sense to set ForwardReferenceOnly to
True for an association-by-value because such a relationship usually
272 Rational Rose 2000e, Using Rose C++

ForwardReferenceOnly
implies containment. If the association role's GenerateDataMember
property is False, however, it is possible to implement the association
in a way that simulates containment without actual containment.

If the classes are assigned to different modules, then, by default, A's
header file would contain B's header file and vice versa, creating a
circular inclusion. To eliminate the circular inclusion, you set
ForwardReferenceOnly to True for one of the association roles. The C++
code generator produces a forward declaration for the supplier class in
the client module and suppresses the #include directive in the client
module. In the following code example, ForwardReferenceOnly is set to
True for the "A has B" relationship:

Table 111 Eliminate Circular Inclusion

The following table lists the values for ForwardReferenceOnly:

Table 112 ForwardReferenceOnly Values

A's Header File B's Header File

class B; #include "a.h"

... ...

class A{ class B {

... ...

}; };

If you select: The action is:

True The C++ code generator produces a forward declaration
for the supplier class of the association relationship. If
the supplier and the client are assigned to different
modules, the C++ code generator suppresses the
#include directive for the supplier module in the
client module.

False (Default) The C++ code generator does not generate a
forward declaration for the supplier class of the
association relationship.
Rational Rose 2000e, Using Rose C++ 273

Appendix E

Has Properties

CodeName

The CodeName property specifies the name for the has relationship in
the generated code.

You set this property only if you want the has relationship to be named
differently than it is in the Rational Rose model. This is especially
useful when the Rational Rose model and code are expressed in
different natural languages. This property value should be a valid C++
identifier. If it is not a valid C++ identifier, the C++ code generator
performs the following substitutions:

� White space characters and hyphens are changed to underscores

� All other characters except letters, digits, and underscores are
changed to "X"

� If the first character is a number, an "N" precedes the number
Table 113 CodeName Values

If you select: The action is:

C++ Identifier The has relationship is assigned the name of
the identifier.

<blank> (Default) The C++ code generator produces a
name for the has relationship from the model.
Rational Rose 2000e, Using Rose C++ 275

Appendix E Has Properties
ContainerClass

The ContainerClass property specifies a data type for the data member
generated from the has relationship. You can set ContainerClass to refer
to your own container classes, which the C++ code generator will use
to generate types for data members.

If you leave this property blank, the data members are generated whose
types are container classes organized as lists, sets, or dictionaries. You
can use this property when you want to generate other types of
container classes, or if you want to choose the container class based
on other criteria.

The following table lists the values for ContainerClass:

Table 114 ContainerClass Values

DataMemberFieldSize

The DataMemberFieldSize property specifies the number of bits as the
size of the designated data member.

The following table lists the values for DataMemberFieldSize:

If you enter: The action is:

<blank> (Default) The C++ code generator produces a type for the
data member based on the supplier cardinality and
containment of the has relationship.

literal The C++ code generator uses literal as the data member
type. Usually, literal is an instance of a template. The
literal text may contain the variables $supplier and $limit.

Table 115 DataMemberFieldSize Values

If you select: The action is:

<integer> The C++ code generator specifies <integer> bits as
the size of the data member.

<blank> (Default) The C++ code generator does not specify
the size for the data member.
276 Rational Rose 2000e, Using Rose C++

DataMemberIsVolatile
DataMemberIsVolatile

If a data member is generated for this relationship, the declaration will
be adorned with the v keyword.

The following table lists the values for DataMemberIsVolatile:

Table 116 DataMemberIsVolatile Values

DataMemberMutability

The DataMemberMutability property identifies how the declaration is
adorned if a data member is generated for this relationship.

The following table lists the values for DataMemberMutability:

Table 117 DataMemberMutability Values

If you select: The C++ code generator produces:

True If a data member is generated for this relationship, the
declaration is adorned with the v keyword.

False The declaration is not adorned with the v keyword.

If you select: The C++ code generator produces:

Mutable If a data member is generated for this
relationship, the declaration is adorned
with the mutable keyword.

Const If a data member is generated for this
relationship, the declaration is adorned
with the const keyword.

Unrestricted (Default) No const or mutable
adornments are generated.
Rational Rose 2000e, Using Rose C++ 277

Appendix E Has Properties
DataMemberName

The DataMemberName property specifies the name the C++ code
generator produces for a data member for a has relationship. The
default value is:

$relationship

When the C++ code generator produces a data member, $relationship
and $target expand to the label of the has relationship in the model. If
the has relationship is unlabeled, $relationship and $target expand to
the value of the has relationship’s NameIfUnlabeled value.

The following class diagram and code example illustrate a has
relationship and the data member that the C++ code generator
produces for it by default:

Figure 57 Data Members for Has Relationships

...
B the_B;

You can change the form of the names the C++ code generator uses for
unlabeled has relationships by changing the DataMemberName format.
You can also refer to $supplier in DataMemberName. Note that if either
$relationship or $supplier is followed by a character that can appear in
an identifier, you must enclose "relationship" in braces {}.

For example, if you set DataMemberName to:

${relationship}_data

the C++ code generator produces the following data member for the has
relationship:

// Data Members for Has Relationships
...
B the_B_data;
278 Rational Rose 2000e, Using Rose C++

DataMemberVisibility
You can control the case of the name derived from $relationship. This
table describes the possible options (note that these options also can
be used with $supplier, $targetClass, and $target):

Table 118 DataMemberName Case Options

DataMemberVisibility

The DataMemberVisibility property specifies the visibility of the data
member generated from the has relationship. The C++ code generator
uses this information to determine access for the generated data
member.

The following table lists the values for DataMemberVisibility:

Table 119 DataMemberVisibility Values

If you enter: The action is:

${relationship:l} All characters in the relationship name are
converted to lower case.

${relationship:u} All characters in the relationship name are
converted to upper case.

${relationship:f} The case of the first character in the
relationship name is inverted.

${relationship:i} The case of all characters in the relationship
name is inverted.

If you select: The action is:

Public The C++ code generator produces the data
member with public access.

Protected The C++ code generator produces the data
member with protected access.
Rational Rose 2000e, Using Rose C++ 279

Appendix E Has Properties
ForwardReferenceOnly

The ForwardReferenceOnly property specifies whether the C++ code
generator produces a forward declaration for the supplier class of the
has relationship before the class definitions in the module. If, in the
Rational Rose model, there is a cycle consisting of two or more has,
uses, inherits, and instantiates relationships, and navigable
association roles, you must set ForwardReferenceOnly to True for at
least one of the has, uses relationships, or association roles to break
the cycle. You may also use this property to break cycles which include
other kinds of dependencies, such as those specified by the module
dependency relationship on a component diagram, or by includes you
put in the AdditionalIncludes protected code region.

Note: This property does not apply to inherits or instantiates
relationships because a forward declaration never provides sufficient
information to the compiler in these cases.

Private The C++ code generator produces the data
member with private access.

Implementation (Default) The C++ code generator produces the
data member in a second private area called
private implementation.

At Relationship
Visibility

The C++ code generator produces the data
member at the level of access specified for the
relationship in the Rational Rose model. This
choice is useful when you want to implement the
relationship direct access to the data member,
rather than protecting it with Get and Set, or other
operations. Normally when the DataMemberVisibility
is set to this value, you should set
GenerateGetOperation and GenerateSetOperation to
False.

If you select: The action is:
280 Rational Rose 2000e, Using Rose C++

ForwardReferenceOnly
For example, if two classes are assigned to the same module and each
class is the supplier in a has relationship with the other, as shown
here, then a forward declaration is needed for one of the classes.

Figure 58 Example of Forward Reference

Setting ForwardReferenceOnly to True for the "A has B" relationship
causes the C++ code generator to generate a forward declaration for
class B, as shown by the following code example:

class B;
class A
{...

// Data Members for Has Relationships
B *My_B;

...};
class B
{...

// Data Members for Has Relationships
A *My_A;

...};

Note that this restricts how A can contain B. In particular, A cannot
contain an instance of class B, although it can contain a pointer to an
instance of B. It seldom makes sense to set ForwardReferenceOnly to
True for a has-by-value relationship because such a relationship
usually implies containment. However, if the has relationship’s
GenerateDataMember property is False, it is possible to implement a
relationship that simulates containment without actual containment.

If the classes are assigned to different modules, then, by default, A's
header file would contain B's header file and vice versa, creating a
circular inclusion. To eliminate the circular inclusion, you set
ForwardReferenceOnly to True for one of the relationships. The C++ code
generator produces a forward declaration for the supplier class in the
Rational Rose 2000e, Using Rose C++ 281

Appendix E Has Properties
client module and suppresses the #include directive in the client
module. In the following code example, ForwardReferenceOnly is True
for the "A has B" relationship:

Table 120 Eliminate Circular Inclusion

The following table lists the values for ForwardReferenceOnly:

Table 121 ForwardReferenceOnly Values

GenerateDataMember

The GenerateDataMember property specifies whether the C++ code
generator produces a data member corresponding to the has
relationship. The name of the data member is determined by the has
relationship’s DataMemberName value. The data member type is one
that contains or designates objects of the supplier class.

You set GenerateDataMember to False if you want to provide your own
data member definition or if you want to implement the has
relationship in some other way. After you generate code, you edit the
generated file and add your own data member definition (or some other

A's Header File B's Header File

class B; #include "a.h"

... ...

class A{ class B {

... ...

}; };

If you select: The action is:

True The C++ code generator produces a forward
declaration for the supplier class of the has
relationship. If the supplier and the client are assigned
to different modules, the C++ code generator
suppresses the #include directive for the supplier
module in the client module.

False (Default) The C++ code generator does not generate a
forward declaration for the supplier class of the has
relationship.
282 Rational Rose 2000e, Using Rose C++

GenerateGetOperation
implementation of the has relationship) between the source markers
for the data member. Be sure to change the preserve setting in the
source marker to yes.

The following table lists the values for GenerateDataMember:

Table 122 GenerateDataMember Values

GenerateGetOperation

The GenerateGetOperation property specifies whether the C++ code
generator produces a get member function which accesses the value of
the data member generated from the has relationship. The name of the
get member function is determined by the has relationship’s GetName
value. The result type of the get member function is the type of the data
member.

You set GenerateGetOperation to False if you do not want to provide a
member function for accessing the data member. If you want to create
a custom get operation, set GenerateGetOperation to False and then
define your get operation in the class specification, as you would for
any user-defined operation.

The following table lists the values for GenerateGetOperation:

Table 123 GenerateGetOperation Values

If you select: The action is:

True (Default) The C++ code generator produces a
data member for the has relationship.

False The C++ code generator does not generate a
data member for the has relationship.

If you select: The action is:

True (Default) The C++ code generator produces a basic
get operation for the data member.

False The C++ code generator does not generate a get
operation for the data member.
Rational Rose 2000e, Using Rose C++ 283

Appendix E Has Properties
GenerateSetOperation

The GenerateSetOperation property specifies whether the C++ code
generator produces a set member function which modifies the value of
the data member generated from the has relationship. The name of the
set member function is determined by the has relationship’s SetName
value. By default, the result type of the set member function is void.
You can change the result type of the set member function by setting
the has relationship’s SetReturnsValue property.

You set GenerateSetOperation to False if you do not want to provide a
member function for modifying the data member. If you want to create
a custom set operation, set GenerateSetOperation to False and then
define your set operation in the class specification, as you would for
any user-defined operation.

The following table lists the values for GenerateSetOperation:

Table 124 GenerateSetOperation Values

GetIsConst

The GetIsConst property specifies whether the C++ code generator
produces the get member function for a data member with the const
keyword. const member functions cannot modify class data members.

The following table lists the values for GetIsConst. In this table, T is the
supplier class of the has relationship:

Table 125 GetIsConst Values

If you select: The action is:

True (Default) The C++ code generator produces a basic
set operation for the data member.

False The C++ code generator does not generate a set
operation for the data member.

If you select: The C++ code generator
produces:

True (Default) const T get_the_T() const;

False T get_the_T();
284 Rational Rose 2000e, Using Rose C++

GetName
GetName

The GetName property specifies the name the C++ code generator
produces for a get member function for a has relationship. The default
value is:

get_$relationship

When the C++ code generator produces a get member function for a
data member, $relationship and $target expand to the label of the has
relationship in the model. If the has relationship is unlabeled,
$relationship and $target expand to the has relationship’s
NameIfUnlabeled value.

The following class diagram and code example illustrate a has
relationship and the get member function that the C++ code generator
produces for it by default:

Figure 59 Get Operations for Has Relationships

const B get_the_B() const;

You can change the form of the names that the C++ code generator
produces for get member functions by changing the format of GetName.
You can also refer to $supplier and $targetClass in GetName. Note that
if either $relationship, $target, $target Class, or $supplier is followed
by a character that can appear in an identifier, you must enclose
"relationship" or "supplier" in braces {}.

For example, if you set the Get Name property to:

${relationship}_get

the C++ code generator produces the following get member function for
the has relationship:

// Get and Set Operations for Has Relationships
const B the_B_get() const;
Rational Rose 2000e, Using Rose C++ 285

Appendix E Has Properties
You can control the case of the name derived from $relationship. This
table describes the possible options (note that these options also can
be used with $supplier, $targetClass and $target):

Table 126 GetName Case Options

If you enter: The action is:

${relationship:l} All characters in the relationship name are
converted to lower case.

${relationship:u} All characters in the relationship name are
converted to upper case.

${relationship:f} The case of the first character in the
relationship name is inverted.

${relationship:i} The case of all characters in the relationship
name is inverted.
286 Rational Rose 2000e, Using Rose C++

GetResultIsConst
GetResultIsConst

The GetResultIsConst property returns a const value if a get function
is generated for this element.

The following table lists the values for GetResultIsConst:

Table 127 GetResultIsConst Values

GetSetByReference

The GetSetByReference property specifies whether values in the get and
set member functions are passed by reference or by value. By default,
the C++ code generator produces get and set member functions for a
has relationship to pass arguments and return values by value. If you
want the get and set member functions to pass arguments and return
values by reference, set GetSetByReference to True.

The following table lists the values for GetSetByReference. In this table,
T is the name of the supplier class of the has relationship and the_T
is the name of the has relationship:

Table 128 GetSetByReference Values

If you select: The C++ code generator produces:

True If a get function is generated for this item, it will
return a const value.

False If a get function is generated for this item, it will
return a non-const value.

Same_As_Function If a get function is generated for this item, it will
return a const value if the function is const and a
non-const value if the function is not const (as
dictated by the Get Is Const property).

If you select: The C++ code generator produces:

True T & get_the_T();
void set_the_T(const T &value);

False (Default) T get_the_T();
void set_the_T(const T value);
Rational Rose 2000e, Using Rose C++ 287

Appendix E Has Properties
GetSetKinds

The GetSetKinds property specifies the kind of member functions that
are generated for the get and set operations for a data member. The C++
code generator produces additional keywords in the declarations of the
get and set member functions based on the value of GetSetKinds, such
as static or virtual.

The following table lists the values for GetSetKinds. In this table, T is
the name of the supplier class in the has relationship and the_T is the
name of the has relationship:

Table 129 GetSetKind Values

Note that if the has relationship itself is static, then the only legal
values for GetSetKinds are "Common" and "Static." In both cases, the
C++ code generator produces static member functions, such as:

static T get_the_T();
static void set_the_T(const T value);

If you select: The C++ code generator produces:

Common
(Default)

T get_the_T();
void set_the_T(const T value);

Virtual virtual T get_the_T();
virtual void set_the_T(const T value)

Static static T get_the_T(A &client);
static void set_the_T(A &client, const T
 value);

Abstract virtual T get_the_T() = 0;
virtual void set_the_T(const T value) = 0;

Friend friend T get_the_T(A &client);
friend void set_the_T(A &client, const T
 value);
288 Rational Rose 2000e, Using Rose C++

InitialValue
InitialValue

The InitialValue property specifies the initial value for the supplier of a
Has relation. When the C++ code generator produces the declaration of
the supplier, it also produces the initial value for the declaration.

The following table lists the values for InitialValue:

Table 130 InitialValue Values

InlineGet

The InlineGet property specifies whether the C++ code generator inlines
the C++ code generator get operations.

Table 131 InlineGet Values

InlineSet

The InlineSet property specifies whether the C++ code generator inlines
the C++ code generator set operations.

Table 132 InlineSet Values

If you select: The action is:

<string> The C++ code generator produces a declaration for
the has relation with <string> as its initial value.

<blank> (Default) The C++ code generator produces a
declaration for the has relation with no initial value.

If you select: The action is:

True (Default) The C++ code generator inlines get operations.

False The C++ code generator does not inline get operations.

If you select: The action is:

True (Default) The C++ code generator inlines set operations.

False The C++ code generator does not inline set operations.
Rational Rose 2000e, Using Rose C++ 289

Appendix E Has Properties
NameIfUnlabeled

The NameIfUnlabeled property specifies the name to be used for an
unlabeled has relationship. This property is not used if the relationship
is labeled in Rational Rose or if a name is specified in the relationship's
CodeName property. The C++ code generator uses the has relationship
name to construct names for the corresponding data member and get
and set member functions.

The default value of NameIfUnlabeled is:

the_$supplier

When the C++ code generator needs the name of the has relationship
to generate a name for a data member or a get or set member function,
$supplier expands to the name of the supplier class in the has
relationship.

By default, the C++ code generator uses "the_B" as the name of the
unlabeled has relationship shown in the following class diagram:

Figure 60 Naming the Has Relationship

You can change the form of the names the C++ code generator uses for
unlabeled has relationships by changing the format of NameIfUnlabeled.
Note that if $supplier is followed by a character that can appear in an
identifier, you must enclose "supplier" in braces {}.

For example, if you set NameIfUnlabeled to:

${supplier}_rel

The C++ code generator uses "B_rel" as the name of the unlabeled has
relationship.
290 Rational Rose 2000e, Using Rose C++

Ordered
You can control the case of the name derived from $supplier. This table
describes the possible options:

Table 133 NameIfUnlabled Case Options

The $targetClass symbol is the same as the $supplier symbol.

Note: The NameIfUnlabeled property is always interpreted in the context
of one of the roles of the association.

Ordered

The Ordered property specifies whether the objects on the supplier side
are ordered.

This setting affects the choice of containers when generating code for
has relationships. The type of the data member selected is based on the
various combinations of supplier cardinality, containment, and order.

Table 134 Ordered Property Values

If you enter: The action is:

${supplier:l} All characters in the supplier class name are
converted to lower case.

${supplier:u} All characters in the supplier class name are
converted to upper case.

${supplier:f} The case of the first character in the supplier
class name is inverted.

${supplier:i} The case of each character in the supplier class
name is inverted.

If you select: The action is:

True (Default) The objects in the supplier side of the
has relationship are ordered.

(blank) The objects in the supplier side of the has
relationship are not ordered.
Rational Rose 2000e, Using Rose C++ 291

Appendix E Has Properties
SelectorName

The SelectorName property allows you to implement direct get and set
member functions for data members whose type is a container class.
In particular, you use this property to specify a name for the selector
argument of the generated get and set member functions. In addition,
you need to specify a type for the selector argument in the SelectorType
property.

Direct get and set member functions implement a direct method of
accessing values in the container value of the relationship's data
member.

� A direct get member function takes a selector as an argument and
returns the corresponding element in the container.

� A direct set member function takes two arguments, a selector and
a value, and sets the element identified by the selector to be the
value.

By default, the C++ code generator produces indirect get and set
member functions, which implement an indirect method of accessing
values in a container class:

� The get member function returns a reference to or a copy of the
entire container value of the relationship's data member. You then
use member functions in the interface of the container class to
modify the values in the copy.

� The set member function takes a complete container as its
argument and replaces the contents of the entire container with
the modified copy.

Note: You can set GetSetByReference to True to cause the get member
function to return a reference to the container instead of a copy. You then
use the container's member functions to modify the container's contents
in-place.
292 Rational Rose 2000e, Using Rose C++

SelectorType
The following table lists the values for SelectorName:

Table 135 SelectorName Values

SelectorType

The SelectorType property allows you to specify a corresponding type for
the selector argument specified by SelectorName. You use SelectorName
and SelectorType to implement direct get and set member functions for
a data member whose type is a container class. To learn more about
direct and indirect get and set member functions, see SelectorName
Property in the online help.

If you specify a value for SelectorName but do not specify a value for
SelectorType, the selector argument is generated with type void.

The following table lists the values for SelectorType:

Table 136 SelectorType Values

If you enter: The action is:

literal The C++ code generator produces a selector argument for
the get and set member functions with name literal. The
type of the selector argument is determined by the value
of SelectorType. For the set member function, the C++
code generator also generates a value argument whose
name is "value" and whose type is the name of the
supplier in the has relationship.

<blank> (Default) The C++ code generator produces indirect get
and set member functions for data members whose type
is a container class.

If you enter: The action is:

literal The C++ code generator produces the selector
argument for the get and set member functions
with type literal.

<blank> (Default) If a value has been specified for
SelectorName, the C++ code generator produces
the get and set member functions with a selector
argument of type void. If SelectorName is also
blank, the C++ code generator produces indirect
get and set member functions.
Rational Rose 2000e, Using Rose C++ 293

Appendix E Has Properties
Example of SelectorName and SelectorType

This example shows an association for which the C++ code generator
produces a container class data member and the effect of SelectorName
and SelectorType on the get and set member functions generated for the
data member:

Figure 61 Example of Selector Name and Selector Type

By default, the C++ code generator produces the following data
member for the association:

// Data Members for Associations
BoundedListByValue My_B<B,7>;

If no values are specified for SelectorName and SelectorType of the
association, the C++ code generator produces indirect get and set
member functions for the data member:

// Get and Set Operations for Associations
BoundedListByValue <B,7> get_My_B();
void set_My_B(const BoundedListByValue <B,7> value);

If SelectorName is set to "index" and SelectorType is set to "const int,"
the C++ code generator produces direct get and set member functions:

// Get and Set Operations for Associations
B get_My_B(const int index);
void set_My_B(const int index, const B value);

Note that in this case the implementation generated for the get and set
member functions assume that the container class indicated by
BoundedListByValue has a get function that takes a const int selector
argument and a set function that takes a const int selector argument
and a value argument:

// Get and Set Operations for Associations
B A::get_My_B(const int index)
{
//##begin A::get_My_B%.get preserve=no

return My_B.get(index);
//##end A::get_My_B%.get
}
void A::set_My_B(const int index, const B value)
294 Rational Rose 2000e, Using Rose C++

SetName
{
//##begin A::set_My_B%.set preserve=no

My_B.set(index, value);
//##end A::set_My_B%.set
}

SetName

The SetName property specifies the name the C++ code generator
produces for a set member function for a has relationship. The default
value is:

set_$relationship

When the C++ code generator produces a set member function for a
data member, $relationship and $target expand to the label of the has
relationship in the model. If the has relationship is unlabeled,
$relationship and $target expand to the has relationship’s
NameIfUnlabeled value.

The following class diagram and code example illustrate a has
relationship and the set member function that the C++ code generator
produces for it by default:

Figure 62 Set Operations for Has Relationships

void set_the_B(const B value);

You can change the form of the names that the C++ code generator
produces for set member functions by changing the SetName format.
You can also refer to $supplier and $targetClass in SetName. Note that
if either $relationship, $target, $targetClass or $supplier is followed by
a character that can appear in an identifier, you must enclose
"relationship" or "supplier" in braces {}.

For example, if you set SetName to:

${relationship}_set

the C++ code generator produces the following set member function for
the has relationship:

// Get and Set Operations for Has Relationships
Rational Rose 2000e, Using Rose C++ 295

Appendix E Has Properties
void the_B_set(const B value);

You can control the case of the name derived from $relationship. This
table describes the possible options.

Note: These options can also be used with $supplier, $target, and
$targetClass.

Table 137 SetName Case Options

SetReturnsValue

The SetReturnsValue property specifies whether the C++ code generator
produces the set member function for a has relationship with a non-
void return type. By default, the C++ code generator produces the set
member function with return type void. However, sometimes it is
convenient for the set member function to return the value to which
the data member is set in the function.

The following table lists the values for SetReturnsValue. In this table, T
is the name of the supplier class of the has relationship and the_T is
the name of the has relationship:

Table 138 SetReturnsValue Values

If you enter: The action is:

${relationship:l} All characters in the relationship name are
converted to lower case.

${relationship:u} All characters in the relationship name are
converted to upper case.

${relationship:f} The case of the first character in the
relationship name is inverted.

${relationship:i} The case of all characters in the relationship
name is inverted.

If you select: The C++ code generator produces:

True const T set_the_T(const T value);

False (Default) void set_the_T(const T value);
296 Rational Rose 2000e, Using Rose C++

Appendix F

Module Body and Module Specification
Properties

AdditionalIncludes

The C++ code generator produces #includes in a file based on class
relationships and module dependencies in your Rational Rose model.
The AdditionalIncludes property specifies any additional #include
directives to be generated in the implementation and header files. By
default, AdditionalIncludes is empty.

The value of AdditionalIncludes must be a list of header files, one per line.
Each file name should be enclosed by the delimiters "" or <>, as in
C++. Typically, you use quotes to specify user-defined header files that
are in your inclusion search path. You use <> to specify system header
files such as <iostream.h> and <stddef.h>. Consult your compiler
manual for the search rules for your preprocessor. Conditional
directives are not permitted.

The Rational Rose C++ code generator produces the additional
#include directives in the form:

//Additional Includes:
#include "a.h"
#include <b.h>
...

A line beginning with $include is interpreted as a directive to insert
the content of the file named after the $include symbol in the source.
Rational Rose 2000e, Using Rose C++ 297

Appendix F Module Body and Module Specification Properties
AllowExtensionlessFileName

The AllowExtensionlessFileName Module Body and Module Specification
Properties specify whether the C++ code generator can produce an
implementation file header whose full name does not have an
extension. Normally, the C++ code generator uses the File Name
property to create the name for the file.

If AllowExtensionlessFileName is set to False, the C++ code generator
makes sure the specified file name has a proper extension. In this case,
if the content of the FileName property does not have an extension, the
C++ code generator appends an extension to that value to form a new
file name.

The following table lists the values for AllowExtensionlessFileName:

Table 139 AllowExtensionlessFileName Values

CmIdentification

The CmIdentification property specifies text that can be interpreted by a
configuration management system to manage a file. The C++ code
generator inserts the value of the CmIdentification property in the
module annotation at the beginning of each implementation and
header files.

The default value of the CmIdentification property is "%X% %Q% %Z% %W%."
If you are using a configuration management system to manage your
generated code files, change the value of CmIdentification property to a
format that your configuration management system understands. If
you are not using a configuration management system, you can change
the CmIdentification property to any value or make it empty.

A line beginning with $include is interpreted as a directive to insert
the content of the file named after the $include symbol in the source.

If you enter: The action is:

True The C++ code generator uses the value of
FileName to create the file name, regardless of
whether the file name has an extension.

False (Default) The C++ code generator creates a file
name with proper extension for the module
specification or module body.
298 Rational Rose 2000e, Using Rose C++

CopyrightNotice
If $date is used in the CMIdentification property, it expands to the date
the code was generated. If $time is used, it expands to the time the code
was generated. If $module is used, it expands to the module name of
the module. If $file is used, it expands to the fully qualified path of the
module’s file. If $relativeFile is used, it expands to the Apex view-
independent name of the module’s file. If $subsystem is used, it
expands to the fully qualified name of the subsystem that contains the
module. If $moduleKind is used, it expands to the specification or
body. If $specificModuleKind is used, it expands to one of the following:

Generic subprogram, Main program, Subprogram Specification,
Subprogram Body, Package Specification, Package Body, Generic
Package, Task Specification, Task Body, Pseudo Package Body,
Pseudo Package Specification or Unknown.

CopyrightNotice

The CopyrightNotice property is a text property that specifies copyright
information for the generated implementation and header files. You
can use the CopyrightNotice property to specify text that you want to
place in every implementation and header file, such as copyright
notices, project identification information, and so on. The C++ code
generator inserts the value of the CopyrightNotice property in the
annotation at the beginning of the implementation and header files. By
default, the CopyrightNotice property is empty.

A line beginning with $include is interpreted as a directive to insert
the content of the file named after the $include symbol in the source.

If $date is used in CopyrightNotice, it expands to the date the code was
generated. If $time is used, it expands to the time the code was
generated. If $module is used, it expands to the module name of the
module. If $file is used, it expands to the fully qualified path of the
module’s file. If $relativeFile is used, it expands to the Apex view-
independent name of the module’s file. If $subsystem is used, it
expands to the fully qualified name of the subsystem that contains the
module. If $moduleKind is used, it expands to the specification or
body. If $specificModuleKind is used, it expands to one of the following:

Generic subprogram, Main program, Subprogram Specification,
Subprogram Body, Package Specification, Package Body, Generic
Package, Task Specification, Task Body, Pseudo Package Body,
Pseudo Package Specification or Unknown.
Rational Rose 2000e, Using Rose C++ 299

Appendix F Module Body and Module Specification Properties
FileName

The FileName property specifies the file name for the implementation
and header files that is generated for the module. The following table
lists the possible values for FileName:

Table 140 FileName Values

Generate

The Generate property specifies whether the C++ code generator will
generate a code file for the module.

This property allows you to prevent code from ever being generated for
a module, such as modules in third party libraries, even if it is selected
when the C++ code generator is invoked.

Table 141 Generate Property Values

If you enter: The action is:

Auto Generate (Default) The C++ code generator produces a file
name based on the name of the module. This name
is the name of the module shortened to no more
than the maximum number of characters permitted
by the operating system, or 32, whichever is less.
Shortening names can result in name conflicts. If
this happens you must specify a name explicitly for
all but one of the conflicting modules.

literal The C++ code generator creates a file whose name is
literal.extension, where extension is the file name
extension specified by the module Implementation or
HeaderFileExtensions property if one is not already
specified. literal must be a valid file name.

<blank)> The C++ code generator is unable to create a file and
displays an error in the log.

If you enter: The action is:

True (Default) The C++ code generator produces a code file
for the module.

False The C++ code generator does not produce a code file.
300 Rational Rose 2000e, Using Rose C++

GenerateEmptyRegions
GenerateEmptyRegions

The GenerateEmptyRegions property identifies the type of protected
region associated with the item.

The following table lists the possible values for GenerateEmptyRegions:

Table 142 GenerateEmptyRegions Values

IncludeBySimpleName

The IncludeBySimpleName property controls whether the #include
directives that the C++ code generator produces in the implementation
and header files specify the path of the included files or just the file
names.

If IncludeBySimpleName is False, the C++ code generator produces
#include directives that specify the included file's path relative to the
project directory.

For example, suppose a module "city" exists in a subsystem "county,"
which is nested in subsystem "state." The module's file name and the
subsystem's directory properties have their default values (AUTO
GENERATE). If IncludeBySimpleName is True, highway.h contains:
#include "city.h"

If IncludeBySimpleName is False, it contains:

#include "\state\county\city.h."

If IncludeBySimpleName is True, the C++ code generator produces
#include directives with the included file names only. In this case, if
your project generates code in multiple subdirectories, you must use a

If you select: The action is:

None No empty protected region associated with the item is
generated in the source file.

Preserved An empty protected region associated with the item is
generated only if it has a preserve=yes clause.

Unpreserved An empty protected region associated with the item is
generated only if it has a preserve=no clause.

All An empty protected region associated with the item is
always generated in the source file.
Rational Rose 2000e, Using Rose C++ 301

Appendix F Module Body and Module Specification Properties
compilation option to tell the compiler to search for #include files in
each subsystem. Consult your compiler manual for the search options
for your compiler.

The following table lists the values for IncludeBySimpleName:

Table 143 IncludeBySimpleName Values

IncludeClosure

The IncludeClosure property specifies the header files that are included
(directly or indirectly) by the module. It is used by the code generator
to determine if a given header file is in the closure of the pre-compiled
header file.

The IncludeClosure property is computed by the Analyzer when it
reverse-engineers the pre-compiled header and should not have to be
modified by the user. It is computed only for the pre-compiled header.

The acceptable value for IncludeClosure is a list of source file names
(including the path), one name per line.

IncludeFormat

The IncludeFormat property specifies the source generated for #include
directives.

Two symbols are available for substitution in the text: $package is
replaced by the name of the module in the model and $file is replaced
by the name of the file (in the format requested by IncludeBySimpleName
for the module being included). The default value is:

// $package
#include “$file”

If you select: The action is:

True The C++ code generator produces #include
directives with the file name only.

False (Default) The C++ code generator produces #include
directives with the path of the file, relative to the
project directory.
302 Rational Rose 2000e, Using Rose C++

IncludeOrder
IncludeOrder

Rational Rose C++ defines six regions that may contain #include
directives. These regions are generated in the order specified by the
IncludeOrder property. If the letter is not specified in IncludeOrder, the
region is not generated. The regions are designated by letters, as
follows:

A – module.AdditionalIncludes region

I – module.Includes region

M – AFX_INCLUDES group (Visual C++ only)

H – Header file

P – Pre-compiled header file

R – Rational Rose-generated #include directives

The A, I, and M regions are not modified by the code generator, but
they are searched for #include directives and when the R region is
generated, it will not duplicate any #include directives found in the
other regions.

If P or H is omitted, the #include directives for the header and pre-
compiled header, respectively, are placed at the start of the #include
directives in the R section.

Note that even if P is specified in an IncludeOrder module property, the
#include directives for the pre-compiled header are generated only if
IncludePrecompiledHeader for the module is also True.

The possible values for IncludeOrder are any combination of at most one
instance of each of the following letters: A, I, M, H, P, or R.

IncludePrecompiledHeader

If IncludePrecompiledHeader is True and the module references
something in the closure of the precompiled header, generate a
#include for the pre-compiled header instead of a #include for the file
that actually contains the referenced declaration.
Rational Rose 2000e, Using Rose C++ 303

Appendix F Module Body and Module Specification Properties
If IncludePrecompiledHeader is False, and the module references
something in the closure of the precompiled header, no #include is
generated to satisfy the reference. (The precompiled header might be
made visible to the compiler by some other method than #include
directives.)

InclusionProtectionSymbol (Module Spec Only)

The InclusionProtectionSymbol property specifies the symbol that the
C++ code generator uses to generate preprocessor directives that
prevent a header file from being included multiple times in another file.

The preprocessor directives are of the form:

ifndef symbol
define symbol

...#include directives...

...file contents...
endif

where symbol is based on the value specified for
InclusionProtectionSymbol. The following table lists the values for
InclusionProtectionSymbol:

Table 144 InclusionProtectionSymbol Values
If you enter: The action is:

Auto Generate (Default) The C++ code generator produces a symbol
based on the name of the module.

literal The C++ code generator produces the directives with
literal as the symbol.

<blank> The C++ code generator displays an error in the log.
304 Rational Rose 2000e, Using Rose C++

InliningStyle
InliningStyle

The InliningStyle property specifies the style of inlining the C++ code
generator produces. The following table lists the values for InliningStyle:

Table 145 InliningStyle Values
If you enter: The action is:

In Class
Declaration

The C++ code generator produces definitions of inlined
member functions directly in the class header.

Following Class
Declaration

(Default) The C++ code generator produces declarations
of inline member functions in the class header. The
definitions of these inline member functions are
produced following the class header in the same file.
The code is generated with the inline keyword.
Rational Rose 2000e, Using Rose C++ 305

Appendix F Module Body and Module Specification Properties
TypesDefined

The TypesDefined property specifies the types defined in a module. If a
module references a type, but that type is not assigned to a module,
the code generator scans these lists of defined types to identify the
module to #include into the referencing module.

The DefinedTypes property is computed by the Analyzer when it reverse-
engineers C++ source code and should not have to be modified by the
user.

The acceptable values for TypesDefined is a list of type names, one name
per line.
306 Rational Rose 2000e, Using Rose C++

Appendix G

Operation Properties

BodyAnnotations

The BodyAnnotations property allows annotations to be placed in the
body. It specifies the annotations that are generated from the
implementation (body) of the operation rather than from the
specification. Any annotations not specified in BodyAnnotations are
generated from the specification.

The BodyAnnotations format is a list of keywords separated by
semicolons. The keywords are drawn from the following list, which
correspond to the text boxes on the operation specification:

Documentation, Concurrency, Space Complexity, Time
Complexity, Qualification, Exceptions, Preconditions,
Postconditions, and Semantics.

Only enough letters of a keyword to uniquely identify it are required.
These letters are underlined in the above list.

CodeName

The CodeName property specifies the name for the operation in the
generated code.

You need to set this property only if you want the class to be named
differently than it is in the Rational Rose model. This is especially
useful when the Rational Rose model and code are expressed in
Rational Rose 2000e, Using Rose C++ 307

Appendix G Operation Properties
different natural languages. The value of this property should be a
valid C++ identifier. If it is not a valid C++ identifier, the C++ code
generator performs the following substitutions:

� White space characters and hyphens are changed to underscores

� All other characters except letters, digits, and underscores are
changed to "X"

� If the first character is a number, an "N" precedes the number
Table 146 CodeName Values

EntryCode

The EntryCode property is a text property that specifies additional code
or comments for a user-defined operation. You use EntryCode to specify
code that you want to insert in a number of operations, such as
instrumentation code. By default, EntryCode is empty.

The C++ code generator inserts the contents of the Entry Code property
in the member function body before the source markers for the
preserved code region. Note that the C++ code generator does not check
the correctness of the code specified in EntryCode.

To learn more about the implementation code that is generated for
user-defined operations, see Implementation Code Generated for
Operations in the online help.

ExitCode

The ExitCode property is a text property that specifies additional code
or comments for a user-defined operation. You use ExitCode to specify
code that you want to insert in a number of operations, such as
instrumentation code. By default, ExitCode is empty.

If you select: The action is:

C++ Identifier The operation is assigned the name of the
identifier.

<blank> (Default) The C++ generator produces an
operation name from the model.
308 Rational Rose 2000e, Using Rose C++

GenerateEmptyRegions
The C++ code generator inserts the contents of ExitCode in the member
function body following the source markers for the preserved code
region. Note that the C++ code generator does not check the
correctness of the code you specify in ExitCode. You must ensure that
the flow of control passes through the exit code when appropriate.

GenerateEmptyRegions

The GenerateEmptyRegions property identifies the type of protected
region associated with the item.

The following table lists the values for GenerateEmptyRegions:

Table 147 GenerateEmptyRegions Values

Inline

The Inline property is a boolean property that specifies whether to inline
an operation.

Table 148 Inline Property Values

If you select: The action is:

None No empty protected region associated with the item is
generated in the source file.

Preserved An empty protected region associated with the item is
generated only if it has a preserve=yes clause.

Unpreserved An empty protected region associated with the item is
generated only if it has a preserve=no clause.

All An empty protected region associated with the item is
always generated in the source file.

If you enter: The action is:

True The C++ code generator inlines the operation.

False (Default) The C++ code generator does not inline the
operation.
Rational Rose 2000e, Using Rose C++ 309

Appendix G Operation Properties
OperationIsConst

TheOperationIsConst property specifies whether the C++ code generator
produces the member function for a user-defined operation with the
const keyword. const member functions cannot modify class data
members.

The following table lists the values for OperationIsConst. In this table,
result is the return type of the member function, fname is the name
of the member function, and params is the formal parameter list:

Table 149 OperationIsConst Values

OperationIsExplicit

The OperationIsExplicit property identifies the explicit keyword used
to prefix the declaration of this operation. This option is valid only for
operations that are constructors.

The following table lists the values for OperationIsExplicit:

Table 150 OperationIsExplicit Values

OperationKind

The OperationKind property specifies the kind of member function that
is generated for a user-defined operation. The C++ code generator
produces additional keywords in the declaration of the member
function based on the value of OperationKind, such as static or
virtual.

If you select: The C++ Code Generator produces:

True result fname (params) const;

False (Default) result fname (params);

If you select: The action is:

True The explicit keyword prefaces the declaration
of this operation.

False The explicit keyword is not used to prefix the
declaration of this operation.
310 Rational Rose 2000e, Using Rose C++

OperationKind
The following table lists the values for OperationKind. In this table,
result is the result type of the member function, fname is the name
of the member function, and params is the formal parameter list:

Table 151 OperationKind Values
If you select: The C++ Code Generator produces:

Common (Default) result fname (params);

Virtual virtual result fname (params);

Static static result fname (params);

Abstract virtual result fname (params) = 0;
Friend friend result fname (params);
Rational Rose 2000e, Using Rose C++ 311

Appendix H

Project Properties

AllowExplicitInstantiations

The AllowExplicitInstantiations property specifies whether the C++ code
generator produces an explicit instantiation of a parameterized class.
Note that some C++ compilers (for example, Visual C++ 6.0) may not
properly handle this kind of instantiation.

The following table lists the values for AllowExplicitInstantiations:

AllowProtectedInheritance

The AllowProtectedInheritance property controls whether the C++ code
generator produces protected derivation for classes with protected
inherits relationships in the Rational Rose model. This is significant
because some C++ compilers do not support protected inheritance.

If the AllowProtectedInheritance property is False, the C++ code generator
produces protected inheritance relationships as public derivation.

Table 152 AllowExplicitInstantiations Property Values

If you select: The action is:

True The C++ code generator produces explicit
instantiation of a parameterized class.

False (Default) The C++ code generator does not produce
explicit instantiation of a parameterized class.
Rational Rose 2000e, Using Rose C++ 313

Appendix H Project Properties
The following table lists the values for AllowProtectedInheritance:

AllowTemplates

The AllowTemplates property controls whether the C++ code generator
produces templates for parameterized classes. This is significant
because Version 2.1 C++ compilers do not support templates.

The following table lists the values for AllowTemplates:

AlwaysKeepOrphanedCode

The AlwaysKeepOrphanedCode property specifies whether the C++ code
generator moves the orphaned code into a preserved region. A
preserved region is a protected region whose "preserve" option is set to
Yes. Normally, the C++ code generator moves the orphaned code into a
non-preserved region that may be removed in the subsequent code
generations.

Table 153 AllowProtectedInheritance Values

If you select: The action is:

True The C++ code generator produces protected inheritance
relationships as protected derivation.

False (Default) The C++ code generator produces protected
inheritance relationships as public derivation.

Table 154 AllowTemplates Values

If you select: The action is:

True The C++ code generator produces templates for
parameterized classes.

False The C++ code generator displays an error message
in the log if you try to generate code for a
parameterized or instantiated class or class utility.
314 Rational Rose 2000e, Using Rose C++

BooleanType
The following table lists the values for AlwaysKeepOrphanedCode:

BooleanType

The BooleanType property specifies the data type that you want the C++
code generator to generate as a result type for member functions that
return Boolean values, such as equality and relational operations. The
default value for BooleanType property is int.

BoundedByReferenceContainer

The BoundedByReferenceContainer property indicates the default
container class that the C++ code generator uses to generate a data
member for a bounded has by reference relationship or a navigable
bounded has by reference association. The value of this project
property is used only if the ContainerClass property of the association
or has relationship is empty.

The default value of the BoundedByReferenceContainer property is:

BoundedListByReference<$targetClass,$limit>

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The C++ code generator does not provide an implemented container
class for bounded by reference relationships. However, you can either
set the BoundedByReferenceContainer property to refer to a container
class of your own, or you can provide an implementation for the default
container class (BoundedListByReference).

Table 155 The AlwaysKeepOrphanedCode Values

If you select: The action is:

True The C++ code generator always moves the
orphaned code into a preserved region.

False (Default) The C++ code generator moves the
orphaned code into a non-preserved region.
Rational Rose 2000e, Using Rose C++ 315

Appendix H Project Properties
Example of BoundedByReferenceContainer

This is an example of a bounded by reference association and the data
member that is generated for it by default, using Rational Rose default
project properties:

Figure 63 Example of a Bounded By Reference Association

The Rational Rose C++ code generator produces the data member as
an instance of a template:

// Data Members for Associations
...
BoundedListByReference<B,10> BRole;
...

BoundedByValueContainer

The BoundedByValueContainer property indicates the default container
class that the C++ code generator uses to generate a data member for
a bounded has by value relationship or a navigable bounded has by
value association. The value of this project property is used only if the
ContainerClass property of the association or has relationship is empty.

The default value of the BoundedByValueContainer property is:

BoundedListByValue<$targetClass,$limit>

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The C++ code generator does not provide an implemented container
class for bounded by value relationships. However, you can either set
the BoundedByValueContainer property to refer to a container class of
your own, or you can provide an implementation for the default
container class (BoundedListByValue).
316 Rational Rose 2000e, Using Rose C++

CodeFileBackupExtension
Example of BoundedByValueContainer

This is an example of a bounded by value association and the data
member that is generated for it by default, using Rational Rose default
project properties:

Figure 64 Example of a Bounded By Value Association

The Rational Rose C++ code generator produces the data member as
an instance of a template:

// Data Members for Associations
...
BoundedListByValue<B,10> BRole;
...

CodeFileBackupExtension

If the C++ code generator produces an implementation file that already
exists, the previous version of the file is renamed to a backup file. The
CodeFileBackupExtension property specifies the file name extension that
the C++ code generator uses when creating implementation backup
files. The default value of the CodeFileBackupExtension property is
"cp~".

The following table lists the values for CodeFileBackupExtension:

Table 156 CodeFileBackupExtension Values

If you enter: The action is:

cp~ (Default) The C++ code generator creates code
backup files with the extension ".cp~".

literal The C++ code generator creates code backup files
with the extension ".literal". literal must be a valid
file name extension, without the "...." Use caution
when working with literal file extensions to insure
that unique file names are assigned to the code
files, header files, inline files, and backup files.
Rational Rose 2000e, Using Rose C++ 317

Appendix H Project Properties
CodeFileExtension

The CodeFileExtension property specifies the file name extension that
the C++ code generator uses when creating implementation files. The
default value of the CodeFileExtension property is cpp.

The following table lists the values for the CodeFileExtension:

CodeFileTemporaryExtension

When the C++ code generator writes a code file, it actually writes the
code to a temporary file. Once the code is completely written, the
following steps are taken:

� The backup file (see CodeFileBackupExtension) is deleted, if there is
one.

� The existing code file is renamed to the backup file, assuming an
existing code file is present.

� The temporary file is renamed to be the new code file.

The CodeFileTemporaryExtension specifies the file name extension that
the C++ code generator uses when creating temporary code files. The
default value is .c#.

Table 157 CodeFileExtension Values

If you enter: The action is:

cpp (Default) The C++ code generator creates code files
with the extension .cpp.

literal The C++ code generator creates code files with the
extension ".literal". literal must be a valid file name
extension, without the "...." Use caution when
working with literal file extensions to insure that
unique file names are assigned to the code files,
header files, inline files, and backup files.
318 Rational Rose 2000e, Using Rose C++

CommentWidth
The following table lists the values for CodeFileTemporaryExtension:

CommentWidth

The CommentWidth property specifies the maximum number of
characters per line in generated comments. Lines in the model that are
longer than this are split at word boundaries into multiple lines. The
default Comment Width is 60.

CreateMissingDirectories

By default, each package in a Rational Rose model is stored in a
separate subdirectory of the project directory, as specified by the
Directory project property. The CreateMissingDirectories property
indicates whether or not the C++ code generator should create missing
directories as it generates code. The C++ code generator can create
directories only if you have proper access to the project directory and
any parent directories that already exist.

The following table lists the values for CreateMissingDirectories:

Table 158 CodeFileTemporaryExtension Values

If you enter: The action is:

c# (Default) The C++ code generator creates temporary
code files with the extension .c#.

literal The C++ code generator creates temporary code files
with the extension ".literal". literal must be a valid
file name extension, without the "...." Use caution
when working with literal file extensions to insure
that unique file names are assigned to the code
files, header files, and backup files.

Table 159 CreateMissingDirectories Values

If you select: The action is:

True (Default) The C++ code generator creates any
needed directories automatically.

False The C++ code generator does not create directories.
The C++ code generator produces an error if a
needed directory is missing.
Rational Rose 2000e, Using Rose C++ 319

Appendix H Project Properties
Directory

The Directory property specifies the project directory, which is the
directory in which all subdirectories and files for a project are
generated. You can set this project property to an absolute or relative
path.

If the model containing this project property is supporting multiuser
development and thus must contain only relative paths, use virtual
symbols from your Path Map to construct the directory path.

The following table lists the values for Directory:

ErrorLimit

The ErrorLimit property indicates whether or not the C++ code generator
stops generating code when it encounters the specified error limit. The
following table lists the values for ErrorLimit:

Table 160 Directory Property Values

If you enter: The action is:

Auto Generate (Default) The C++ code generator uses the current
working directory as the project directory.

literal The C++ code generator produces a directory with the
name literal. literal must be a valid file system directory
name. literal may be a relative or an absolute path; if
literal is a relative path, the C++ code generator assumes
that it is relative to the current working directory. The
path specified by literal may include virtual path symbols.

(blank) The C++ code generator uses the root directory as the
project directory.

Table 161 ErrorLimit Values

If you select: The action is:

number If the C++ code generator detects an error while
generating code for a module, it displays the error
in the log and continues. Once the error limit is
reached, the C++ code generator stops generating
code immediately. The default value is 30.
320 Rational Rose 2000e, Using Rose C++

FileNameFormat
FileNameFormat

The FileNameFormat property controls the automatic generation of
directory and file names when the value of the Directory project
property, a Directory subsystem property, or a module FileName
property is “Auto Generate.”

The value is expected to be an integer followed by zero or more flag
characters. The integer is the maximum number of characters in a file
or directory name. The flags are:

The default, if the value is blank, is to limit the length to 128
characters, retain vowels, eliminate white space, and eliminate
underscores. When a blank or underscore is eliminated, the next
character is capitalized. So, for example, if a project specification is
named my_strange module, the file name for it is myStrangeModule.h.

FixedByReferenceContainer

The FixedByReferenceContainer property indicates the default container
class that the C++ code generator uses to generate a data member for
a fixed has by reference relationship or a navigable fixed has by
reference association. The value of this project property is used only if
the ContainerClass property of the has relationship is empty.

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

Table 162 FileName Format Flags

Flag: The action is:

_ retain underscores

v retain vowels

u convert all letters to upper case

l convert all letters to lower case

x retain case
Rational Rose 2000e, Using Rose C++ 321

Appendix H Project Properties
The C++ code generator does not provide an implemented container
class for fixed by reference relationships. However, you can set
FixedByReferenceContainer to refer to a container class of your own. You
can use $supplier, $limit, $target, and $targetClass variables when you
provide your own value for this project property.

By default, FixedByReferenceContainer is empty, which causes the C++
code generator to generate the data member as an array of pointers to
the supplier class T:

T*[5]

Example of FixedByReferenceContainer

This is an example of a fixed by reference association and the data
member that is generated for it by default:

Figure 65 Example of a Fixed By Reference Association

The C++ code generator produces the following data member:

// Data Members for Has Relationships

...

b *my_b[4];

...

FixedByValueContainer

The FixedByValueContainer property indicates the default container
class that the C++ code generator uses to generate a data member for
an ordered fixed has by value relationship or a navigable fixed has by
value association. The value of this project property is used only if the
ContainerClass property of the has relationship is empty.

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.
322 Rational Rose 2000e, Using Rose C++

HeaderFileBackupExtension
The C++ code generator does not provide an implemented container
class for fixed by value relationships. However, you can set
FixedByValueContainer to refer to a container class of your own. You can
use $supplier, $limit, $target, and $targetClass variables when you
provide your own value for this project property.

By default, FixedByValueContainer is empty, which causes the C++ code
generator to generate a data member which is an array of the supplier
class T:

T[5]

Example of FixedByValueContainer

This is an example of a fixed by value association and the data member
that is generated for it by default:

Figure 66 Example of a Fixed By Value Association

The C++ code generator produces the following data member:

// Data Members for Has Relationships
...
b my_b[4];
...

HeaderFileBackupExtension

If the C++ code generator writes a header file that already exists, the
previous version of the file is renamed to a backup file. The
HeaderFileBackupExtension property specifies the file name extension
that the C++ code generator uses when creating header backup files.
The default value is "h~".
Rational Rose 2000e, Using Rose C++ 323

Appendix H Project Properties
The following table lists the values for HeaderFileBackupExtension:

HeaderFileExtension

The HeaderFileExtension property specifies the file name extension that
the C++ code generator uses when creating header files. The default
value is "h".

The following table lists the values for HeaderFileExtension:

Table 163 HeaderFileBackupExtension Values

If you enter: The action is:

h~ (Default) The C++ code generator creates header
backup files with the extension ".h~".

literal The C++ code generator creates header backup files
with the extension ".literal". literal must be a valid file
name extension, without the "...." Use caution when
working with literal file extensions to insure that
unique file names are assigned to the code files, header
files, and backup files.

Table 164 HeaderFileExtension Values

If you enter: The action is:

h (Default) The C++ code generator creates header
files with the extension .h.

literal The C++ code generator creates header files with
the extension ".literal". literal must be a valid file
name extension, without the "...." Use caution when
working with literal file extensions to insure that
unique file names are assigned to the code files,
header files, inline files, and backup files. This
caution need not apply if the file is conditionally
coded for Unix.
324 Rational Rose 2000e, Using Rose C++

HeaderFileTemporaryExtension
HeaderFileTemporaryExtension

When the C++ code generator writes a header file, it actually writes the
code to a temporary file. Once the code is completely written, the
following steps are taken:

� The backup file (see the HeaderFileBackup Extension property) is
deleted, if there is one.

� The existing header file is renamed to the backup file, assuming an
existing header file is present.

� The temporary file is renamed to be the new header file.

The HeaderFileTemporaryExtension specifies the file name extension that
the C++ code generator uses when creating temporary header files. The
default value is .h#.

The following table lists the values for HeaderFileTemporaryExtension:

OneByReferenceContainer

The OneByReferenceContainer property indicates the default container
class that the C++ code generator uses to generate a data member for
a one has by reference relationship or a navigable one has by reference
association. The value of this project property is used only if the
ContainerClass property of the association or has relationship is empty.

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

Table 165 HeaderFileTemporaryExtension Property Values

If you enter: The action is:

h# (Default) The C++ code generator creates temporary
header files with the extension .h#.

literal The C++ code generator creates temporary header
files with the extension ".literal". literal must be a
valid file name extension, without the "...." Use
caution when working with literal file extensions to
insure that unique file names are assigned to the
code files, header files, and backup files.
Rational Rose 2000e, Using Rose C++ 325

Appendix H Project Properties
The default value of OneByReferenceContainer is simple containment of
a target object:

$targetClass

The C++ code generator does not provide an implemented container
class for one by reference relationships and one is usually not
necessary in this case. However, you can set the One By Reference
Container property to refer to a container class of your own.

Example of OneByReferenceContainer

This is an example of an one by reference association and the data
member that is generated for it by default, using Rational Rose default
project properties:

Figure 67 Example of a One By Reference Association

The Rational Rose C++ code generator produces the following data
member:

// Data Members for Associations
...
B *BRole;
...

OneByValueContainer

The OneByValueContainer property indicates the default container that
the C++ code generator uses to generate a data member for a one has
by value relationship or a navigable one has by value association. The
value of this project property is used only if the ContainerClass property
of the association or has relationship is empty.

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.
326 Rational Rose 2000e, Using Rose C++

OptionalByReferenceContainer
The default value of OneByValueContainer is simple containment of a
target object:

$targetClass

When the C++ code generator produces the data member, $targetClass
expands to the name of the supplier class in the association or has
relationship. When this project property is empty, the generated data
member has a void data type.

The C++ code generator does not provide an implemented container
class for one by value relationships and one is not usually necessary
in this case. However, you can set OneByValueContainer to refer to a
container class of your own.

Example of OneByValueContainer

This is an example of a one by value association and the data member
that is generated for it by default:

Figure 68 Example of a One By Value Association

The C++ code generator produces the following data member:

// Data Members for Associations
...
B BRole;
...

OptionalByReferenceContainer

The OptionalByReferenceContainer property indicates the default
container class that the C++ code generator uses to generate a data
member for an optional has by reference relationship or a navigable
optional has by reference association. The value of this project property
is used only if the ContainerClass property of the association or has
relationship is empty.
Rational Rose 2000e, Using Rose C++ 327

Appendix H Project Properties
When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The default value of OptionalByReferenceContainer is:

OptionalByReference<$targetClass>

When the C++ code generator produces the data member, this project
property is empty. $targetClass expands to the name of the supplier
class when there is no association class. However, when an association
class is present, $targetClass expands to the name of the association
class. When this project property is empty, the generated data member
has a void data type.

The C++ code generator does not provide an implemented container
class for optional by reference relationships. However, you can either
set OptionalByReferenceContainer to refer to a container class of your
own, or you can provide an implementation for the default container
class (optional by reference).

Example of OptionalByReference Container

This is an example of an optional by reference association and the data
member that is generated for it by default, using Rational Rose default
project properties:

Figure 69 Example of an Optional By Reference Association

The Rational Rose C++ code generator produces the following data
member:

// Data Members for Associations
...
B *BRole;
...
328 Rational Rose 2000e, Using Rose C++

OptionalByValueContainer
OptionalByValueContainer

The OptionalByValueContainer property indicates the default container
class that the C++ code generator uses to generate a data member for
an optional has by value relationship or a navigable optional has by
value association. The value of this project property is used only if the
ContainerClass property of the association or has relationship is empty.

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The default value of the OptionalByValueContainer property is:

OptionalByValue<$targetClass>

When the C++ code generator produces the data member, $targetClass
expands to the name of the supplier class when there is no association
class. However, when an association class is present, $targetClass
expands to the name of the association class. When this project
property is empty, the generated data member has a void data type.

The C++ code generator does not provide an implemented container
class for optional by value relationships. However, you can either set
OptionalByValueContainer to refer to a container class of your own, or
you can provide an implementation for the default container class
(optional by value).

Example of OptionalByValueContainer

This is an example of an optional by value association and the data
member that is generated for it by default, using Rational Rose default
project properties:

Figure 70 Example of an Optional By Value Association
Rational Rose 2000e, Using Rose C++ 329

Appendix H Project Properties
The Rational Rose C++ code generator produces the following data
member:

// Data Members for Associations or Has Relationships
...
OptionalByValue BRole;
...

PathSeparator

By default, the C++ code generator generates path separators in
#include directives as preferred by the operating system. Windows
uses a backslash or a slash as the path separator. Unix uses a slash
as the path separator.

The following table lists the values for PathSeparator:

PrecompiledHeader

The PrecompiledHeader property identifies the header file that
represents a pre-compiled header (or any commonly included file). Any
module that needs visibility to a definition in the #include closure of
this header file, will #include the pre-compiled header file rather than
the file that defines the needed type.

The possible value of PrecompiledHeader is the simple name of the pre-
compiled header file. The name of the pre-compiled header file is saved
in each project.

Table 166 PathSeparator Values

If you enter: The action is:

<blank> (Default) The C++ code generator generates path
separators in #include directives as preferred by
the operating system.

literal The C++ code generator uses the value to separate
path elements in #include directives. This is
especially useful when you specify a "/" which
causes the C++ code generator to generate
#include directives with slashes, even under
Windows. This is helpful if you need to generate
platform-independent code.
330 Rational Rose 2000e, Using Rose C++

QualifiedByReferenceContainer
The pre-compiled header file can be changed in a simple dialog
accessible from the PrecompiledHeader option on the Edit menu, or
CTRL-H.

QualifiedByReferenceContainer

The QualifiedByReferenceContainer property indicates the default
container class that the C++ code generator uses to generate a data
member for a navigable qualified has by reference association. The
value of this project property is used only if the ContainerClass property
of the association is empty.

The default value of QualifiedByReferenceContainer is:

AssociationByReference<$qualtype,$qualcont>

An association is an ordered list of (key,value) pairs that can be
efficiently accessed by key value.

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

You can use $qualtype and $qualcont when you provide your own
value for this project property. When this project property is empty, the
generated data member has a void data type.

The C++ code generator does not provide an implemented container
class for qualified by reference relationships. However, you can either
set QualifiedByReferenceContainer to refer to your own container class,
or you can provide an implementation for the default container class
(association by reference).
Rational Rose 2000e, Using Rose C++ 331

Appendix H Project Properties
Example of QualifiedByReferenceContainer

This is an example of a qualified by reference association and the data
member that is generated for it by default, using Rational Rose default
project properties:

Figure 71 Example of a Qualified By Reference Container

The Rational Rose C++ code generator produces the data member as
an instance of a template:

// Data Members for Associations
...
AssociationByReference<Identifier,B*> BRole;
...
AssociationByReference<Identifier,UnboundedSetByReference<D>
DRole;

QualifiedByValueContainer

The QualifiedByValueContainer property indicates the default container
class that the C++ code generator uses to generate a data member for
a navigable, singly qualified has by value association. The value of this
project property is used only if the ContainerClass property of the
association is empty.

The default value of QualifiedByValueContainer is:

AssociationByValue<$qualtype, $qualcont>

An association is an ordered list of (key,value) pairs that can be
efficiently accessed by key value.
332 Rational Rose 2000e, Using Rose C++

QualifiedByValueContainer
When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The C++ code generator does not provide an implemented container
class for qualified by value relationships. However, you can either set
QualifiedByValueContainer to refer to a container class of your own, or
you can provide an implementation for the default container class
(association by value).

Example of QualifiedByValueContainer

This is an example of a qualified by value association and the data
member that is generated for it by default, using Rational Rose default
project properties:

Figure 72 Example of a Qualified By Value Association

The Rational Rose C++ code generator produces the data member as
an instance of a template:

// Data Members for Associations
...
AssociationByValue<Identifier,B> BRole;
...
AssociationByValue<Identifier, UnboundedSetByValue >
DRole;
Rational Rose 2000e, Using Rose C++ 333

Appendix H Project Properties
StopOnError

The StopOnError property indicates whether or not the C++ code
generator stops generating code when it encounters an error. This
project property applies when you select multiple classes, modules,
logical packages, or component packages and then initiate code
generation. The following table lists the values for StopOnError:

Note: This project property is obsolete and will be removed in a future
release. We recommend that StopOnError be left at its default value and
that you use the ErrorLimit property instead.

UnboundedByReferenceContainer

The UnboundedByReferenceContainer property indicates the default
container class that the C++ code generator uses to generate a data
member for an unbounded has by reference relationship or a navigable
unbounded has by reference association. The value of this project
property is used only if the ContainerClass property of the association
or has relationship is empty.

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The default value of UnboundedByReferenceContainer is:

UnboundedListByReference<$targetClass>

You can use $targetClass when you provide your own value for this
project property. When this project property is empty, the generated
data member has a void data type.

Table 167 StopOnError Values

If you select: The action is:

True If the C++ code generator detects an error while
generating code for a module, it displays the error
in the log and stops immediately.

False (Default) If the C++ code generator detects errors
while generating code for a module, it displays the
errors in the log and continues.
334 Rational Rose 2000e, Using Rose C++

UnboundedByValueContainer
The C++ code generator does not provide an implemented container
class for unbounded by reference relationships. However, you can
either set UnboundedByReferenceContainer to refer to your own
container class, or you can provide an implementation for the default
container class (unbounded list by reference).

Example of UnboundedByReferenceContainer

This is an example of an unbounded by reference association and the
data member that is generated for it by default, using Rational Rose
default project properties:

Figure 73 Example of an Unbounded By Reference Association

The Rational Rose C++ code generator produces the data member as
an instance of a template:

// Data Members for Associations
...
UnboundedSetByReference BRole;
...

UnboundedByValueContainer

The UnboundedByValueContainer property indicates the default
container class that the C++ code generator uses to generate a data
member for an unbounded has by value relationship or a navigable
unbounded has by value association. The value of this project property
is used only if the ContainerClass property of the association or has
relationship is empty.

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The default value of UnboundedByValueContainer is:

UnboundedListByValue<$targetClass>
Rational Rose 2000e, Using Rose C++ 335

Appendix H Project Properties
When the C++ code generator produces the data member, $targetClass
expands to the name of the association class if one exists. If there is
not an association class, it expands to the name of the supplier class.
When this project property is empty, the generated data member has a
void data type.

The C++ code generator does not provide an implemented container
class for unbounded by value relationships. However, you can either
set the UnboundedByValueContainer property to refer to a container class
of your own, or you can provide an implementation for the default
container class (unbounded list by value).

Example of UnboundedByValueContainer

This is an example of an unbounded by value association and the data
member that is generated for it by default, using Rational Rose default
project properties:

Figure 74 Example of an Unbounded By Value Association

The Rational Rose C++ code generator produces the data member as
an instance of a template:

// Data Members for Associations
...
UnboundedListByValue BRole;
...

UnorderedBoundedByReferenceContainer

The UnorderedBoundedByReferenceContainer property indicates the
default container class that the C++ code generator uses to generate a
data member for an unordered bounded has by reference relationship
or a navigable unordered bounded has by reference association. The
value of this project property is used only if the ContainerClass property
of the association or has relationship is empty.

The default value of UnorderedBoundedByReferenceContainer is:

BoundedSetByReference<$targetClass,$limit>
336 Rational Rose 2000e, Using Rose C++

UnorderedBoundedByValueContainer
When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The C++ code generator does not provide an implemented container
class for unordered bounded by reference relationships. However, you
can either set the UnorderedBoundedByReferenceContainer property to
refer to a container class of your own, or you can provide an
implementation for the default container class (bounded set by
reference).

Example of UnorderedBoundedByReferenceContainer

This is an example of an unordered bounded by reference association
and the data member that is generated for it by default:

Figure 75 Example of an Unordered Bounded By Reference Association

The C++ code generator produces the following data member:

// Data Members for Associations
...
BoundedSetByReference<B,10> BRole;
...

UnorderedBoundedByValueContainer

The UnorderedBoundedByValueContainer property indicates the default
container class that the C++ code generator uses to generate a data
member for an unordered bounded has by value relationship or a
navigable unordered bounded has by value association. The value of
this project property is used only if the ContainerClass property of the
association or has relationship is empty.

The default value of UnorderedBoundedByValueContainer is:

BoundedSetByValue<$targetClass,$limit>
Rational Rose 2000e, Using Rose C++ 337

Appendix H Project Properties
When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The C++ code generator does not provide an implemented container
class for unordered bounded by value relationships. However, you can
either set UnorderedBoundedByValueContainer to refer to a container
class of your own, or you can provide an implementation for the default
container class (bounded set by value).

Example of UnorderedBoundedByValueContainer

This is an example of an unordered bounded by value association and
the data member that is generated for it by default:

Figure 76 Example of an Unordered Bounded By Value

The C++ code generator produces the following data member:

// Data Members for Associations
...
BoundedSetByValue<B,10> BRole;
...

UnorderedFixedByReferenceContainer

The UnorderedFixedByReferenceContainer property indicates the default
container class that the C++ code generator uses to generate a data
member for an unordered fixed has by reference relationship or an
unordered association role. The value of this project property is used
only if the ContainerClass property of the has relationship or association
is empty.

The default value of this project property is:

$targetClass *[$limit]

which implements the data member as an array of pointers.
338 Rational Rose 2000e, Using Rose C++

UnorderedFixedByValueContainer
When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The C++ code generator does not provide a container class for
unordered fixed by reference relationships. However, you can set
UnorderedFixedByReferenceContainer to refer to a container class of your
own. You can use $supplier and $limit variables when you provide your
own value for this property.

Example of UnorderedFixedByReferenceContainer

This is an example of an unordered fixed by reference association and
the data member that is generated for it by default:

Figure 77 Example of an Unordered Fixed By Reference Association

The C++ code generator produces the following data member:

// Data Members for Associations
...
B *BRole [1];
...

UnorderedFixedByValueContainer

The UnorderedFixedByValueContainer property indicates the default
container class that the C++ code generator uses to generate a data
member for an unordered fixed has by value relationship or a navigable
unordered fixed has by value association. The value of this project
property is used only if the ContainerClass property of the has
relationship is empty.

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.
Rational Rose 2000e, Using Rose C++ 339

Appendix H Project Properties
The C++ code generator does not provide an implemented container
class for unordered fixed by value relationships. However, you can set
UnorderedFixedByValueContainer to refer to a container class of your
own. You can use $supplier, $limit, $target and $targetClass variables
when you provide your own value for this project property.

By default, UnorderedFixedByValueContainer is empty, which causes the
C++ code generator to generate a data member as an array of the
supplier class T:

T[5]

Example of UnorderedFixedByValueContainer

This is an example of an unordered fixed by value association and the
data member that is generated for it by default:

Figure 78 Example of an Unordered Fixed By Value Association

The C++ code generator produces the following data member:

// Data Members for Associations
...
B BRole [1];
...

UnorderedQualifiedByReferenceContainer

The UnorderedQualifiedByReferenceContainer property indicates the
default container class that the C++ code generator uses to generate a
data member for a navigable unordered qualified has by reference
association. The value of this project property is used only if the
ContainerClass property of the association is empty.

The default value of UnorderedQualifiedByReferenceContainer is:

DictionaryByReference<$qualtype, $qualcont>

A dictionary is an unordered set of (key,value) pairs that can be
efficiently accessed by key value.
340 Rational Rose 2000e, Using Rose C++

UnorderedQualifiedByReferenceContainer
When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

You can use $qualtype and $qualcont when you provide your own
value for this project property. When this project property is empty, the
generated data member has a void data type.

The C++ code generator does not provide an implemented container
class for unordered qualified by reference relationships. However, you
can either set UnorderedQualifiedByReferenceContainer property to refer
to your own container class, or you can provide an implementation for
the default container class (dictionary by reference).

Example of UnorderedQualifiedByReferenceContainer

This is an example of an unordered qualified by reference association
and the data member that is generated for it by default, using Rational
Rose default project properties:

Figure 79 Example of an Unordered Qualified By Reference
Association

The Rational Rose C++ code generator produces the following data
member:

// Data Members for Associations
...
DictionaryByReference<Identifier,B*> BRole;
...
DictionaryByReference<Identifier,UnboundedSetByReference>
, BRole;
...
Rational Rose 2000e, Using Rose C++ 341

Appendix H Project Properties
UnorderedQualifiedByValueContainer

The UnorderedQualifiedByValueContainer property indicates the default
container class that the C++ code generator uses to generate a data
member for a navigable unordered qualified has by value association.
The value of this project property is used only if the ContainerClass
property of the association is empty.

The default value of UnorderedQualifiedByValueContainer is:

DictionaryByValue<$qualtype,$qualcont>

An association is an ordered list of (key,value) pairs that can be
efficiently accessed by key value.

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The C++ code generator does not provide an implemented container
class for unordered qualified by value relationships. However, you can
either set the UnorderedQualifiedByValueContainer property to refer to a
container class of your own, or you can provide an implementation for
the default container class (dictionary by value).

Example of UnorderedQualifiedByValueContainer

This is an example of an unordered qualified by value association and
the data member that is generated for it by default, using Rational Rose
default project properties:

Figure 80 Example of an Unordered Qualified By Value Association
342 Rational Rose 2000e, Using Rose C++

UnorderedUnboundedByReferenceContainer
The Rational Rose C++ code generator produces the following data
member:

// Data Members for Associations
...
DictionaryByValue<Identifier,B> BRole;
...
DictionaryByValue<Identifier, UnboundedSetByValue<D> >
DRole;
...

UnorderedUnboundedByReferenceContainer

The UnorderedUnboundedByReferenceContainer property indicates the
default container class that the C++ code generator uses to generate a
data member for an unordered unbounded has by reference
relationship or a navigable unordered unbounded has by reference
association. The value of this project property is used only if the
ContainerClass property of the association or has relationship is empty.

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The default value of UnorderedUnboundedByReferenceContainer is:

UnboundedSetByReference<$targetClass>

You can use $targetClass when you provide your own value for this
project property. When this project property is empty, the generated
data member has a void data type.

The C++ code generator does not provide an implemented container
class for unordered unbounded by reference relationships. However,
you can either set UnorderedUnboundedByReferenceContainer property
to refer to your own container class, or you can provide an
implementation for the default container class (unbounded set by
reference).
Rational Rose 2000e, Using Rose C++ 343

Appendix H Project Properties
Example of UnorderedUnboundedByReferenceContainer

This is an example of an unordered unbounded by reference
association and the data member that is generated for it by default,
using Rational Rose default project properties:

Figure 81 Example of an Unordered Unbounded By Reference
Association

The Rational Rose C++ code generator produces the following data
member:

// Data Members for Associations
...
UnboundedSetByReference<B,10> BRole;
...

UnorderedUnboundedByValueContainer

The UnorderedUnboundedByValueContainer property indicates the
default container class that the C++ code generator uses to generate a
data member for an unordered unbounded has by value relationship
or a navigable unordered unbounded has by value association. The
value of this project property is used only if the ContainerClass property
of the association or has relationship is empty.

The default value of UnorderedUnboundedByValueContainer is:

UnboundedSetByValue<$targetClass,$limit>

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The C++ code generator does not provide an implemented container
class for unordered unbounded by value relationships. However, you
can either set UnorderedUnboundedByValueContainer to refer to a
container class of your own, or you can provide an implementation for
the default container class (unbounded set by value).
344 Rational Rose 2000e, Using Rose C++

UseMSVC
Example of UnorderedUnboundedByValueContainer

This is an example of an unordered unbounded by value association
and the data member that is generated for it by default, using Rational
Rose default project properties:

Figure 82 Example of an Unordered Unbounded By Value Association

The Rational Rose C++ code generator produces the following data
member:

// Data Members for Associations
...
UnboundedSetByValue BRole;
...

UseMSVC

The UseMSVC property specifies whether the C++ code generator
produces MSVC (Microsoft Visual C++) source code.

When the C++ code generator produces MSVC source code, it also uses
the MSVC code generation properties. The MSVC properties are
specified in the MSVC tab of the Options dialog.

The following table lists the values for UseMSVC:

Table 168 The UseMSVC Values

If you select: The action is:

True The C++ code generator uses MSVC code
generation properties.

False (Default) The C++ code generator does not
use MSVC properties.
Rational Rose 2000e, Using Rose C++ 345

Appendix I

Association Role Properties

AssocClassContainer

The AssocClassContainer property specifies a data type for a data
member generated for the association relationship in an association
class. You can set AssocClassContainer to reference your own container
class and the C++ code generator uses your container class to generate
the data member type.

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The default value of this property is $supplier, indicating the C++ code
generator generates a pointer to a single instance of the supplier class.

The following table lists the values for AssocClassContainer:

Table 169 AssocClassContainer Values

If you enter: The action is:

<blank> (Default) The C++ code generator produces a type for
the data member based on the supplier cardinality
and containment of the association relationship.

type expression The C++ code generator uses type expression as the
data member type. Usually, type expression is an
instance of a template. The type expression text may
contain the variables $supplier, $target, and
$targetClass.
Rational Rose 2000e, Using Rose C++ 347

Appendix I Association Role Properties
AssocClassDataMemberIsVolatile

The AssocClassDataMemberIsVolatile property specifies whether a data
member for an association role in the association class is volatile.

The following table lists the values for AssocClassDataMemberIsVolatile:

Table 170 AssocClassDataMemberIsVolatile Values

AssocClassDataMemberMutability

The AssocClassDataMemberMutability property identifies how the
declaration is adorned if a data member is generated for an association
role in the association class.

The following table lists the values for AssocClassDataMemberMutability:

Table 171 AssocClassDataMemberMutability Values

If you enter: The action is:

True If a data member is generated for the association
role in the association class, the declaration is
adorned with the v keyword.

False (Default) The declaration is not adorned with the
v keyword.

If you enter: The action is:

Mutable If a data member is generated for the association
role in the association class, the declaration is
prefixed with the mutable keyword.

Const If a data member is generated for the association
role in the association class, the declaration will
be prefixed with the const keyword.

Unrestricted (Default) No const or mutable adornments are
generated.
348 Rational Rose 2000e, Using Rose C++

AssocClassDataMemberName
AssocClassDataMemberName

The AssocClassDataMemberName property specifies the name the C++
code generator produces for a data member for an association role in
the association class. The default value is:

$target

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The following class diagrams and code examples illustrate an
association role (with and without an association class) and the data
member that the C++ code generator produces for it by default:

Figure 83 Association Role without an Association Class

// Data Members for Associations

Figure 84 Association Role with an Association Class

// Data Members for Associations with Association Classes
The Data Member in C: B the_B

You can change the form of the names the C++ code generator uses for
the name of the data member in the association class by changing the
AssocClassDataMemberName format. Note that if any of the symbols
above are followed by a character that can appear in an identifier, you
must enclose the symbol name in braces {}.
Rational Rose 2000e, Using Rose C++ 349

Appendix I Association Role Properties
You can control the case of the name derived from $target. This table
describes the options (note that these options also can be used with
$supplier):

Table 172 AssocClassDataMemberName Case Options

Note: If the association does not have an association class, this
property has no effect on the generated code.

AssocClassDataMemberVisibility

The AssocClassDataMemberVisibility property specifies the visibility of
the data member generated from the association relationship in the
association class. The C++ code generator uses this information to
determine access for the generated data member.

The following table lists the values for AssocClassDataMemberVisibility:

Table 173 AssocClassDataMemberVisibility Values

If you enter: The action is:

${target:l} All characters in the relationship name are
converted to lower case.

${target:u} All characters in the relationship name are
converted to upper case.

${target:f} The case of the first character in the relationship
name is inverted.

${target:i} The case of all characters in the relationship name
is inverted.

If you select: The action is:

Public The C++ code generator produces the data member
with public access.

Protected The C++ code generator produces the data member
with protected access.
350 Rational Rose 2000e, Using Rose C++

AssocClassForwardReferenceOnly
Normally, when AssocClassDataMemberVisibility is set to this value, you
should set the association role’s GenerateGetOperation and
GenerateSetOperation properties to False.

Note: If the association does not have an association class, this
property has no effect on the generated code.

AssocClassForwardReferenceOnly

The AssocClassForwardReferenceOnly property specifies whether the
C++ code generator produces a forward declaration for an associate
class before the class definition of the association class. The default
value is True. If this property is True, a forward declaration is produced
for the associate class before the definition of the association class. If
the property is False, a #include of the header file defining the
association class is produced.

As a side effect, this property also controls whether a forward
declaration or a #include is produced for the association class in each
associate class. A #include is normally produced unless that would
produce a direct cycle in combination with a #include generated
because AssocClassForwardReferenceOnly is False. (A cycle refers to
header files that include each other in a cyclic manner.)

You must take the necessary steps to avoid cycles in the C++ code
generator. Some rules must be adhered to when breaking cycles. A
cycle may exist in a Rational Rose model consisting of two or more
uses, inherits, or instantiates relationships. These relationships may

Private The C++ code generator produces the data member
with private access.

Implementation (Default) The C++ code generator produces the data
member in a second private area called private
implementation.

At Relationship
Visibility

The C++ code generator produces the data member at
the level of access specified for the relationship in the
Rational Rose model. This choice is useful when you
want to implement the relationship by direct access to
the data member, rather than protecting it with Get
and Set, or other operations.

If you select: The action is:
Rational Rose 2000e, Using Rose C++ 351

Appendix I Association Role Properties
involve dependencies implied by navigable association roles, either
between associate classes or between an association class and one or
more association classes.

You must break the cycle using one of two properties. Set
ForwardReferenceOnly to True for at least one of the has or uses
relationships, or for a navigable association role. Or you can set
AssocClassForwardReferenceOnly to True for at least one of the
association roles. You can also set AssocClassForwardReferenceOnly to
True to break cycles that include other kinds of dependencies, such as
those specified by the module dependency relationship on a
component diagram, or by includes you put in the AdditionalIncludes
protected code region.

If the associate class and the association class are in the same module,
this property controls their order of declaration.

The following table lists the values for AssocClassForwardReferenceOnly:

Table 174 AssocClassForwardReferenceOnly Values

AssocClassGetIsConst

The AssocClassGetIsConst property specifies whether the C++ code
generator produces get member functions in the association class for
a data member with the const keyword. const member functions
cannot modify class data members.

If you select: The action is:

True (Default) The C++ code generator produces a forward
declaration for an associate class before the class
definition of the association class.

False The C++ code generator produces a #include of the
header file defining the associate class in the module
containing the association class. The #include of the
module defining the association class in the module
containing the associate class, if any, is replaced by a
forward declaration.
352 Rational Rose 2000e, Using Rose C++

AssocClassGetName
The following table lists the values for AssocClassGetIsConst. In this
table, T is the supplier class of the association relationship in the
association class:

Table 175 AssocClassGetIsConst Values

Note: If the association does not have an association class, this
property has no effect on the generated code.

AssocClassGetName

The AssocClassGetName property specifies the name the C++ code
generator produces for a get member function for an association role
in the association class. The default value is:

get_$target

The following class diagram and code example illustrate an association
role and the get member function that the C++ code generator
produces for it by default:

Figure 85 Association Role and the Get Member Function

// Get and Set Operations for Association Roles
const B get_the_B() const;

You can change the form of the names that the C++ code generator
produces for get member functions by changing the
AssocClassGetName format. You can also refer to $supplier in
AssocClassGetName. Note that if either $target or $supplier is followed
by a character that can appear in an identifier, you must enclose the
variable name in braces {}.

For example, if you set GetName to:

${target}_get

If you select: The C++ code generator produces:

True (Default) const T get_the_T() const;

False T get_the_T();
Rational Rose 2000e, Using Rose C++ 353

Appendix I Association Role Properties
the C++ code generator produces the following get member function for
the association role:

// Get and Set Operations for Association Roles:
const B the_B_get() const;

You can control the case of the name derived from $target. This table
describes the possible options (Note that these options also can be
used with $supplier):

Table 176 AssocClassGetName Case Options

Note: If the association does not have an association class, this
property has no effect on the generated code.

AssocClassGetResultIsConst

If a get function is generated in the line class for the item, the const-
ness of the returned value will be determined by the value of this
property in the same way GetResultIsConst dictates the const-ness of
the result for the get function.

If you enter: The action is:

${target:l} All characters in the target name are
converted to lower case.

${target:u} All characters in the target name are
converted to upper case.

${target:f} The case of the first character in the target
name is inverted.

${target:i} The case of all characters in the target name
is inverted.
354 Rational Rose 2000e, Using Rose C++

AssocClassGetSetKinds
The following table lists the values for AssocClassGetResultIsConst:

Table 177 AssocClassGetResultIsConst Values

AssocClassGetSetKinds

The AssocClassGetSetKinds property specifies the kind of member or
friend functions that are generated for the get and set operations for a
data member in the association class. The C++ code generator
produces additional keywords in the declarations of the get and set
member functions based on the value of GetSetKinds, such as static
or virtual.

The following table lists the values for AssocClassGetSetKinds. In this
table, T is the name of the supplier class in the association
relationship and the_T is the name of the supplier role of the
association relationship in the association class:

Table 178 AssocClassGetSetKinds Values

If you select: The C++ code generator produces:

True If a get function is generated for this item, it will
return a const value.

False If a get function is generated for this item, it will
return a non-const value.

Same_As_Function If a get function is generated for this item, it will
return a const value if the function is const and a
non-const value if the function is not const (as
dictated by the Get Is Const property).

If you select: The C++ code generator produces:

Common
(Default)

T get_the_T();
void set_the_T(const T value);

Virtual virtual T get_the_T();
virtual void set_the_T(const T value)

Static static T get_the_T(A &client);
static void set_the_T(A &client, const T value);

Abstract virtual T get_the_T() = 0
virtual void set_the_T(const T value) = 0;

Friend friend T get_the_T(A &client);
friend void set_the_T(A &client, const T value);
Rational Rose 2000e, Using Rose C++ 355

Appendix I Association Role Properties
Note: If the association does not have an association class, this
property has no effect on the generated code.

AssocClassInitialValue

The AssocClassInitialValue property specifies the initial value for an
association role in the association class. When C++ code generator
produces the declaration of the association role, it also produces the
initial value for the declaration.

The following table lists the values for AssocClassInitialValue:

Table 179 AssocClassInitialValue Values

AssocClassSetName

The AssocClassSetName property specifies the name the C++ code
generator produces for a set member function for an association role.
The default value is:

set_$target

If the association relationship is unlabeled, $target expands to the
value of the association’s NameIfUnlabeled property.

The following class diagram and code example illustrate an association
role and the set member function that the C++ code generator produces
for it by default:

Figure 86 Association Role and the Set Member Function

// Get and Set Operations for Association Roles
void set_the_B(B value);

If you select: The action is:

<string> The C++ code generator produces a declaration for the
association role with <string> as its initial value.

<blank> (Default) The C++ code generator produces a declaration
for the association role with no initial value.
356 Rational Rose 2000e, Using Rose C++

AssocClassSetReturnsValue
You can change the form of the names that the C++ code generator
produces for set member functions by changing the
AssocClassSetName format. You can also refer to $supplier in
AssocClassSetName. Note that if either $target or $supplier is followed
by a character that can appear in an identifier, you must enclose the
variable name in braces {}.

For example, if you set the Set Name property to:

${target}_set

the C++ code generator produces the following set member function for
the association role:

// Get and Set Operations for Association Roles
void the_B_set(const B value);

You can control the case of the name derived from $target. This table
lists the options (note that these options also can be used with
$supplier):

Table 180 AssocClassSetName Case Options

Note: If the association does not have an association class, this
property has no effect on the generated code.

AssocClassSetReturnsValue

The AssocClassSetReturnsValue property specifies whether the C++ code
generator produces the member function for an association
relationship with a non-void return type in the association class. By
default, the C++ code generator produces the set member function with

If you enter: The action is:

${target:l} All characters in the target name are converted
to lower case.

${target:u} All characters in the target name are converted
to upper case.

${target:f} The case of the first character in the target name
is inverted.

${target:i} The case of all characters in the target name is
inverted.
Rational Rose 2000e, Using Rose C++ 357

Appendix I Association Role Properties
return type void. However, sometimes it is convenient for the set
member function to return the value to which the data member is set
in the function.

The following table lists the values for AssocClassSetReturnsValue. In
this table, T is the name of the supplier class of the association
relationship and the_T is the name of the association relationship:

Table 181 AssocClassSetReturnsValue Values

Note: If the association does not have an association class, this
property has no effect on the generated code.

CodeName

The CodeName property specifies the name for the association role in
the generated code.

You need to set this property only if you want the association role to be
named differently than it is in the Rational Rose model. This is
especially useful when the Rational Rose model and code are expressed
in different natural languages. The value of this property should be a
valid C++ identifier. If it is not a valid C++ identifier, the C++ code
generator will perform the following substitutions:

� White space characters and hyphens are changed to underscores

� All other characters except letters, digits, and underscores are
changed to "X"

� If the first character is a number, an "N" precedes the number

If you select: The C++ code generator produces:

True const T set_the_T(const T value);

False (Default) void set_the_T(const T value);
358 Rational Rose 2000e, Using Rose C++

ContainerClass
Table 182 Code Name Property Values

ContainerClass

The ContainerClass property specifies a data type for the data member
generated for the association relationship. You can set ContainerClass
to reference your own container classes and the C++ code generator
would then use them to generate types for data members.

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The container class property also specifies the return type of the get
operation and the parameter type of the value parameter of the set
operation.

If you leave this property blank, the data members are generated whose
types are container classes organized as lists, sets, or dictionaries. You
can use this property to generate any other container class.

The following table lists the values for ContainerClass:

Table 183 ContainerClass Values

If you select: The action is:

C++ Identifier The association role is assigned the name to be used
for the role in the generated code. This is especially
useful when the design and code are written in
different natural languages.

<blank> (Default) The C++ code generator uses the name or
the association role from the model.

If you enter: The action is:

<blank> (Default) The C++ code generator produces a type for
the data member based on the supplier cardinality
and containment of the association relationship.

type expression The C++ code generator uses type expression as the
type of the data member. Usually, type expression is
an instance of a template. The type expression text
may contain the variables $supplier and $limit.
Rational Rose 2000e, Using Rose C++ 359

Appendix I Association Role Properties
ContainerGet

When a qualified “Get” member function is generated for a role (when
the role is qualified and GenerateQualifiedGet is True), the value of
ContainerGet is used to generate the body of the Get method, which
takes a set of keys and returns the element of the collection associated
with that set of keys.

Within the prototype the special symbols $data, $value, and $keyn (for
n = 1..9) represent the name of the collection, the selected element
value, and the qualifying keys, respectively. If $value is not present in
the prototype it is assumed that the C++ expression evaluates to the
selected collection element.

The possible value for ContainerGet is the prototype C++ expression for
retrieving an element from the collection that implements a qualified
association.

ContainerSet

When a qualified “Set” member function is generated for a role (when
the role is qualified and GenerateQualifiedSet is True), the value of
ContainerSet is used to generate the body of the Set method, which
takes a set of keys and a value and stores the value into the element of
the collection associated with that set of keys.

Within the prototype the special symbols $data, $value, and $keyn (for
n = 1..9) represent the name of the collection, the selected element
value, and the qualifying keys, respectively.

The possible value of the ContainerSet property is the prototype C++
expression for storing an element into the collection that implements a
qualified association.
360 Rational Rose 2000e, Using Rose C++

DataMemberFieldSize
DataMemberFieldSize

The DataMemberFieldSize property specifies the number of bits as the
size of the designated data member.

The following table lists the values for DataMemberFieldSize:

DataMemberIsVolatile

If the DataMemberIsVolatile property is True, a data member is
generated for this relationship and the declaration is adorned with the
v keyword.

The following table summarizes the values for DataMemberIsVolatile:

Table 185 DataMemberIsVolatile Values

Table 184 DataMemberFieldSize Values

If you select: The action is:

<integer> The C++ code generator specifies <integer> bits as
the size of the data member.

<blank> (Default) The C++ code generator does not specify
the size for the data member.

If you select: The C++ code generator produces:

True If a data member is generated for this relationship, the
declaration is adorned with the v keyword.

False The declaration will not be adorned with the v
keyword.
Rational Rose 2000e, Using Rose C++ 361

Appendix I Association Role Properties
DataMemberMutability

The DataMemberMutability property identifies how the declaration is
adorned if a data member is generated for this relationship.

The following table lists the values for DataMemberMutability:

Table 186 DataMemberMutability Values

DataMemberName

The DataMemberName property specifies the name the C++ code
generator produces for a data member for an association role. The
default value is:

$target

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

If you select: The C++ code generator produces:

Mutable If a data member is generated for this relationship, the
declaration is adorned with the mutable keyword.

Const If a data member is generated for this relationship, the
declaration is adorned with the const keyword.

Unrestricted (Default) No const or mutable adornments are
generated
362 Rational Rose 2000e, Using Rose C++

DataMemberName
The following class diagrams and code examples illustrate an
association role (with and without an association class) and the data
member that the C++ code generator produces for it by default:

Figure 87 Data Members for Associations

...
B the_B;

Figure 88 Data Members for Associations with Association Classes

...
The Data Member in A: C* the_C
The Data Member in C: B the_B

You can change the form of the names the C++ code generator uses for
unlabeled association roles by changing the DataMemberName format.
Note that if any of the symbols above are followed by a character that
can appear in an identifier, you must enclose the symbol name in
braces {}.
Rational Rose 2000e, Using Rose C++ 363

Appendix I Association Role Properties
You can control the case of the name derived from $target. This table
describes the possible options (note that these options also can be used
with $supplier):

Table 187 DataMemberName Case Options

DataMemberVisibility

The DataMemberVisibility property specifies the visibility of the data
member generated from the association relationship. The C++ code
generator uses this information to determine access for the generated
data member.

The following table lists the values for DataMemberVisibility:

Table 188 DataMemberVisibility Values

If you enter: The action is:

${target:l} All characters in the relationship name are
converted to lower case.

${target:u} All characters in the relationship name are
converted to upper case.

${target:f} The case of the first character in the relationship
name is inverted.

${target:i} The case of all characters in the relationship
name is inverted.

If you select: The action is:

Public The C++ code generator produces the data member with
public access.

Protected The C++ code generator produces the data member with
protected access.
364 Rational Rose 2000e, Using Rose C++

ForwardReferenceOnly
ForwardReferenceOnly

The ForwardReferenceOnly property specifies whether the C++ code
generator produces a forward declaration for the supplier class of the
association relationship before the class definitions in the module. If,
in the Rational Rose model, there is a cycle consisting of two or more
association, uses, inherits, and instantiates relationships, and
navigable association roles, you must set ForwardReferenceOnly to True
for at least one of the association or uses relationships, or navigable
roles to break the cycle. You may also set ForwardReferenceOnly to
break cycles that include other kinds of dependencies, such as those
specified by the module dependency relationship on a component
diagram, or by includes you put in the AdditionalIncludes protected code
region.

Note: This property does not apply to inherits or instantiates
relationships because a forward declaration never provides sufficient
information to the compiler in these cases.

Each associate class is always dependent on its association class. An
association class always has forward references to its associate class.

Private The C++ code generator produces the data member with
private access.

Implementation (Default) The C++ code generator produces the data
member in a second private area called private
implementation.

At Relationship
Visibility

The C++ code generator produces the data member at
the level of access specified for the relationship in the
Rational Rose model. This choice is useful when you
want to implement the relationship by direct access to
the data member, rather than protecting it with Get and
Set, or other operations. Normally, when
DataMemberVisibility is set to this value, you should set
GenerateGetOperation and GenerateSetOperation to False.

If you select: The action is:
Rational Rose 2000e, Using Rose C++ 365

Appendix I Association Role Properties
For example, if two classes are assigned to the same module and each
class is the supplier in an association relationship with the other, as
shown here, then a forward declaration is needed for one of the classes.

Figure 89 Example of an Association Relationship

Setting ForwardReferenceOnly to True for the "A to B" direction of the
association (My_B) causes the C++ code generator to generate a forward
declaration for class B, as shown by the following code example:

class B;
class A
{...

// Data Members for Association Relationships
B *My_B;

...};
class B
{...

// Data Members for Association Relationships
A *My_A;

...};

Note that this restricts how A can contain B. In particular, A cannot
contain an instance of class B, although it can contain a pointer to an
instance of B. It seldom makes sense to set ForwardReferenceOnly to
True for an association-by-value because such a relationship usually
implies containment. If the association role's GenerateDataMember
property is set to False, however, it is possible to implement the
association in a way that simulates containment without actual
containment.

If the classes are assigned to different modules, then, by default, A's
header file would contain B's header file and vice versa, creating a
circular inclusion. To eliminate the circular inclusion, you set
ForwardReferenceOnly to True for one of the association roles. The C++
code generator produces a forward declaration for the supplier class in
366 Rational Rose 2000e, Using Rose C++

GenerateAssocClassDataMember
the client module and suppresses the #include directive in the client
module. In the following code example, ForwardReferenceOnly is set to
True for the "A has B" relationship:

Table 189 Eliminate Circular Inclusion

The following table lists the values for ForwardReferenceOnly:

Table 190 ForwardReferenceOnly Values

GenerateAssocClassDataMember

The GenerateAssocClassDataMember property specifies whether the C++
code generator produces a data member corresponding to the
association role in the association class. Regardless of the setting of
this property, the C++ code generator generates code for associations
only in directions that are marked as navigable in the Rational Rose
model. The name of the data member is determined by the
AssocClassDataMemberName value for the association role. The data
member type is one that designates an instance of the supplier class.

A's Header File B's Header File

class B; #include "a.h"

... ...

class A{ class B {

... ...

}; };

If you select: The action is:

True The C++ code generator produces a forward
declaration for the supplier class of the association
relationship. If the supplier and the client are
assigned to different modules, the C++ code
generator suppresses the #include directive for the
supplier module in the client module.

False (Default) The C++ code generator does not generate a
forward declaration for the supplier class of the
association relationship.
Rational Rose 2000e, Using Rose C++ 367

Appendix I Association Role Properties
You set GenerateAssocClassDataMember to False if you want to provide
your own data member definition or if you want to implement the
association in some other way. After you generate code, you edit the
generated file and add your own data member definition (or some other
implementation of the association) between the source markers for the
data member. Be sure to change the preserve setting in the source
marker to "yes."

The following table lists the values for GenerateAssocClassDataMember:

Table 191 GenerateAssocClassDataMember Values

Note: If the association does not have an association class, this
property has no effect on the generated code.

GenerateAssocClassGetOperation

The GenerateAssocClassGetOperation property specifies whether the
C++ code generator produces a get member function that accesses the
value of the data member generated from the association relationship
in the association class. The name of the get member function is
determined by the value of the association relationship Assoc
ClassGetName property. The result type of the get member function is
the type of the data member.

You set GenerateAssocClassGetOperation to False if you do not want to
provide a member function for accessing the data member. If you want
to create a custom get operation, set GenerateAssocClassGetOperation to
False and then define your get operation in the association class
specification, as you would for any user-defined operation.

If you select: The action is:

True (Default) The C++ code generator produces a data
member for the association in the association class.

False The C++ code generator does not generate a data
member for the association in the association class.
368 Rational Rose 2000e, Using Rose C++

GenerateAssocClassSetOperation
The following table lists the values for GenerateAssocClassGetOperation:

Table 192 GenerateAssocClassGetOperation Values

Note: If the association does not have an association class, this
property has no effect on the generated code.

GenerateAssocClassSetOperation

The GenerateAssocClassSetOperation property specifies whether the
C++ code generator produces a set member function that modifies the
value of the data member generated from the association relationship
in the association class. The name of the set member function is
determined by the AssocClassSetName value of the association
relationship. By default, the result type of the set member function is
void. You can change the result type of the set member function by
setting the association relationship’s AssocClassSetReturnsValue
property.

You set GenerateAssocClassSetOperation to False if you do not want to
provide a member function for modifying the data member. If you want
to create a custom set operation, set GenerateAssocClassSetOperation to
False and then define your set operation in the class specification, as
you would for any user-defined operation.

The following table lists the values for GenerateAssocClassSetOperation:

Table 193 GenerateAssocClassSetOperation Value

If you select: The action is:

True (Default) The C++ code generator produces a get
operation for the data member in the association class.

False The C++ code generator does not generate a get
operation for the data member in the association class.

If you select: The action is:

True (Default) The C++ code generator produces a set
operation for the data member in the association class.

False The C++ code generator does not generate a set
operation for the data member in the association class.
Rational Rose 2000e, Using Rose C++ 369

Appendix I Association Role Properties
Note: If the association does not have an association class, this
property has no effect on the generated code.

GenerateDataMember

The GenerateDataMember property specifies whether the C++ code
generator produces a data member corresponding to the association
role. Regardless of the setting of this property, the C++ code generator
generates code for associations only in directions that are marked as
navigable in the Rational Rose model. The name of the data member is
determined by the DataMemberName value for the association role. The
data member type is one that contains or designates zero or more
instances of the supplier class.

You set GenerateDataMember to False if you want to provide your own
data member definition or if you want to implement the association in
some other way. After you generate code, you edit the generated file
and add your own data member definition (or some other
implementation of the association) between the source markers for the
data member. Be sure to change the preserve setting in the source
marker to yes.

The following table lists the values for GenerateDataMember:

Table 194 GenerateDataMember Values

GenerateGetOperation

The GenerateGetOperation property specifies whether the C++ code
generator produces a get member function, which accesses the value
of the data member generated from the association relationship. The
name of the get member function is determined by the GetName value
for the association relationship. The result type of the get member
function is the type of the data member.

If you select: The action is:

True (Default) The C++ code generator produces a
data member for the association.

False The C++ code generator does not generate a
data member for the association.
370 Rational Rose 2000e, Using Rose C++

GenerateQualifiedGetOperation
You set GenerateGetOperation to False if you do not want to provide a
member function for accessing the data member. If you want to create
a custom get operation, set GenerateGetOperation to False and then
define your get operation in the class specification, as you would for
any user-defined operation.

This get operation accesses the entire data member. It does not reduce
the subset of the suppliers returned by qualification.

The following table lists the values for GenerateGetOperation:

Table 195 GenerateGetOperation Values

GenerateQualifiedGetOperation

The GenerateQualifiedGetOperation property specifies whether the C++
code generator produces a get member function, which accesses the
value of the data member generated from the association relationship.
The name of the get member function is determined by the Get Name
value for the association relationship. The result type of the get
member function is a container suitable to hold the set of suppliers
associated with a single client with a single set of qualifier values. See
the QualifiedContainer property for more information. The parameters of
this operation are the association qualifiers.

You set GenerateQualifiedGetOperation property to False if you do not
want to provide a member function for accessing the data member. If
you want to create a custom get operation, set
GenerateQualifiedGetOperation to False and then define your get
operation in the Class Specification, as you would for any user-defined
operation.

If you select: The action is:

True (Default) The C++ code generator produces a get
operation for the data member.

False The C++ code generator does not generate a get
operation for the data member.
Rational Rose 2000e, Using Rose C++ 371

Appendix I Association Role Properties
The following table lists the values for GenerateQualifiedGetOperation:

Table 196 GenerateQualifiedGetOperation Values

GenerateQualifiedSetOperation

The GenerateQualifiedSetOperation property specifies whether the C++
code generator produces a set member function, which modifies the
value of the data member generated from the association relationship.
The name of the set member function is determined by the SetName
value for the association relationship. By default, the result type of the
set member function is void. You can change the result type of the set
member function through SetReturnsValue for the association
relationship. The parameters of this operation are the container of
values to be associated with a single client and set of qualifier values,
along with the values of the qualifiers.

You set GenerateQualifiedSetOperation to False if you do not want to
provide a member function for modifying the data member with
qualifications. If you want to create a custom set operation, set
GenerateQualifiedSetOperation to False and then define your set
operation in the Class Specification, as you would for any user-defined
operation.

The following table lists the values for GenerateQualifiedSetOperation:

Table 197 GenerateQualifiedSetOperation Values

If you select: The action is:

True (Default) The C++ code generator produces a
basic get operation for the data member.

False The C++ code generator does not generate a get
operation for the data member.

If you select: The action is:

True (Default) The C++ code generator produces a
basic set operation for the data member.

False The C++ code generator does not generate a set
operation for the data member.
372 Rational Rose 2000e, Using Rose C++

GenerateSetOperation
GenerateSetOperation

TheGenerateSetOperation property specifies whether the C++ code
generator produces a set member function, which modifies the value of
the data member generated from the association relationship. The
name of the set member function is determined by the SetName value
for the association relationship. By default, the result type of the set
member function is void. You can change the result type of the set
member function through SetReturnsValue for the association
relationship.

You set GenerateSetOperation to False if you do not want to provide a
member function for modifying the data member. If you want to create
a custom set operation, set GenerateSetOperation to False and then
define your set operation in the Class Specification, as you would for
any user-defined operation.

This set operation accesses the entire data member. It does not reduce
the subset of the suppliers returned by qualification.

The following table lists the values for GenerateSetOperation:

Table 198 GenerateSetOperation Values

GetIsConst

The GetIsConst property specifies whether the C++ code generator
produces the unqualified get member functions for a data member with
the const keyword. Const member functions cannot modify class data
members.

If you select: The action is:

True (Default) The C++ code generator produces a set
operation for the data member.

False The C++ code generator does not generate a set
operation for the data member.
Rational Rose 2000e, Using Rose C++ 373

Appendix I Association Role Properties
The following table lists the values for GetIsConst. In this table, T is the
supplier class of the association relationship:

Table 199 GetIsConst Values

GetName

The GetName property specifies the name the C++ code generator
produces for a get member function for an association role. The default
value of GetName is:

get_$target

When the C++ code generator produces a get member function for a
data member and there is no associate class, $target expands to the
label of the supplier role in the model. If there is an association class,
$target expands to the role of the association. If there is no association
class, $target expands to the value of NameIfUnlabeled for the
association role. If the association relationship is unlabeled, $target
expands to the NameIfUnlabeled value for the association role.

If $targetClass is used in GetName, it is the same as $supplier when
generating code in the association class. If there is no association
class, it is the same as $supplier. Otherwise, it is the code name for the
association.

If $role is used in GetName, it is the code name for the role. If
$association is used in GetName, it is the code name for the association

The following class diagram and code example illustrate an association
role and the get member function that the C++ code generator
produces for it by default:

Figure 90 Association Role and the Set Member Function

// Get and Set Operations for Association Roles
const B get_the_B() const;

If you select: The C++ code generator produces:

True (Default) const T get_the_T() const;

False T get_the_T();
374 Rational Rose 2000e, Using Rose C++

GetResultIsConst
You can change the form of the names that the C++ code generator
produces for get member functions by changing the GetName format.
You can also refer to $supplier in GetName. Note that if either $target
or $supplier is followed by a character that can appear in an identifier,
you must enclose the variable name in braces {}.

For example, if you set GetName to:

${target}_get

the C++ code generator produces the following get member function for
the association role:

// Get and Set Operations for Association Roles:
const B the_B_get() const;

You can control the case of the name derived from $target. This table
describes the possible options (note that these options also can be used
with $supplier):

Table 200 GetName Case Options

GetResultIsConst

The GetResultIsConst property returns a const value if a get function
is generated for this element.

If you enter: The action is:

${target:l} All characters in the target name are converted to
lower case.

${target:u} All characters in the target name are converted to
upper case.

${target:f} The case of the first character in the target name
is inverted.

${target:i} The case of all characters in the target name is
inverted.
Rational Rose 2000e, Using Rose C++ 375

Appendix I Association Role Properties
The following table lists the values for GetResultIsConst:

Table 201 GetResultIsConst Values

GetSetByReference

The GetSetByReference property specifies whether values in the
unqualified and qualified get and set member functions are passed by
reference or by value. By default, the C++ code generator produces get
and set member functions for an association relationship to pass
arguments and return values by value. You set the value of
GetSetByReference to True if you want the get and set member
functions to pass arguments and return values by reference.

The following table lists the values for GetSetByReference. In this table,
T is the name of the supplier class of the association relationship and
the_T is the name of the association relationship:

Table 202 GetSetByReference Values

If you select: The C++ code generator produces:

True If a get function is generated for this item,
it returns a const value.

False If a get function is generated for this item,
it returns a non-const value.

Same_As_Function If a get function is generated for this item,
it returns a const value if the function is
const and a non-const value if the
function is not const (as dictated by
GetIsConst).

If you select: The C++ code generator produces:

True T & get_the_T();
void set_the_T(const T &value);

False (Default) T get_the_T();
void set_the_T(const T value);
376 Rational Rose 2000e, Using Rose C++

GetSetKinds
GetSetKinds

The GetSetKinds property specifies the kind of member or friend
functions that are generated for the get and set operations for a data
member. The C++ code generator produces additional keywords in the
declarations of the get and set member functions based on the value of
GetSetKinds, such as static or virtual.

The following table lists the values for GetSetKinds. In this table, T is
the name of the supplier class in the association relationship and
the_T is the name of the supplier role of the association relationship:

Table 203 GetSetKinds Values

Note: If the association relationship itself is static, then the only legal
values for GetSetKinds are "Common" and "Static." In both cases, the C++
code generator produces:

static T get_the_T();
static void set_the_T(const T value);

If you select: The C++ code generator produces:

Common (Default) T get_the_T();
void set_the_T(const T value);

Virtual virtual T get_the_T();
virtual void set_the_T(const T value)

Static static T get_the_T(A &client);
static void set_the_T(A &client,
const T value);

Abstract virtual T get_the_T() = 0;
virtual void set_the_T(const T value)
= 0;

Friend friend T get_the_T(A &client);
friend void set_the_T(A &client,
const T value);
Rational Rose 2000e, Using Rose C++ 377

Appendix I Association Role Properties
InitialValue

The InitialValue property specifies the initial value for the supplier role
of an association. When the C++ code generator produces the
declaration of the supplier role, it also produces the initial value for the
declaration.

The following table lists the values for InitialValue:

Table 204 InitialValue Property Values

InlineAssocClassGet

The InlineAssocClassGet property specifies whether the C++ code
generator inlines get operations in the association class.

Table 205 InlineAssocClassGet Values

Note: If the association does not have an association class, this
property has no effect on the generated code.

If you select: The action is:

<string> The C++ code generator produces a declaration
for the role with <string> as its initial value.

<blank> (Default) The C++ code generator produces a
declaration for the role with no initial value.

If you select: The action is:

True (Default) The C++ code generator inlines get operations.

False The C++ code generator does not inline get operations.
378 Rational Rose 2000e, Using Rose C++

InlineAssocClassSet
InlineAssocClassSet

The InlineAssocClassSet property specifies whether the C++ code
generator inlines set operations in the association class.

Table 206 InlineAssocClassSet Values

Note: If the association does not have an association class, this
property has no effect on the generated code.

InlineGet

The InlineGet property specifies whether the C++ code generator inlines
get operations.

Table 207 InlineGet Values

InlineQualifiedGet

The InlineQualifiedGet property specifies whether the C++ code
generator inlines qualified get operations.

Table 208 InlineQualifiedGet Values

If you select: The action is:

True (Default) The C++ code generator inlines set operations.

False The C++ code generator does not inline set operations.

If you select: The action is:

True (Default) The C++ code generator inlines get operations.

False The C++ code generator does not inline get operations.

If you select: The action is:

True (Default) The C++ code generator inlines
qualified get operations.

False The C++ code generator does not inline qualified
get operations.
Rational Rose 2000e, Using Rose C++ 379

Appendix I Association Role Properties
InlineQualifiedSet

The InlineQualifiedSet property specifies whether the C++ code generator
inlines qualified set operations.

Table 209 InlineQualifiedSet Values

InlineSet

The InlineSet property specifies whether the C++ code generator inlines
set operations.

Table 210 InlineSet Values

NameIfUnlabeled

The NameIfUnlabeled property specifies the name to be used for an
unlabeled role. The C++ code generator uses the name of the role to
construct names for the corresponding data member and get and set
member functions. If the role is not named, the C++ code generator
uses this property to determine the name of the role.

The default value of NameIfUnlabeled is:

the_$targetClass

When the C++ code generator needs the name of the role to generate a
name for a data member or a get or set member function, $targetClass
expands to the name of the association class or the association if there
is one. Otherwise it expands to the name of the supplier class. If

If you select: The action is:

True (Default) The C++ code generator inlines
qualified set operations.

False The C++ code generator does not inline qualified
set operations.

If you select: The action is:

True (Default) The C++ code generator inlines set operations.

False The C++ code generator does not inline set operations.
380 Rational Rose 2000e, Using Rose C++

NameIfUnlabeled
$association is used in NameIfUnlabeled, it expands to the name of the
association. If the $supplier is used in NameIfUnlabeled, it expands to
the code name for the supplier class of the relevant Role.

By default, the C++ code generator uses the_B as the name of the
unlabeled role shown in the following class diagram:

Figure 91 Naming a Role

You can change the form of the names the C++ code generator uses for
unlabeled roles by changing the NameIfUnlabeled format. Note that if
$targetClass is followed by a character that can appear in an identifier,
you must enclose "targetClass" in braces {}.

For example, if you set NameIfUnlabeled to:

${targetClass}_rel

The C++ code generator uses B_rel as the name of the unlabeled role.

You can control the case of the name derived from $targetClass. This
table describes the possible options:

Table 211 NameIfUnlabeled Case Options

If you enter: The action is:

${targetClass:l} All characters in the targetClass class name
are converted to lower case.

${targetClass:u} All characters in the targetClass class name
are converted to upper case.

${targetClass:f} The case of the first character in the
targetClass class name is inverted.

${targetClass:i} The case of each character in the targetClass
class name is inverted.
Rational Rose 2000e, Using Rose C++ 381

Appendix I Association Role Properties
QualifiedContainer

The QualifiedContainer property specifies the data type of a container
that contains or designates the supplier objects associated with a
single client plus a particular setting for each qualifier. If you set
QualifiedContainer to reference your own container classes, the C++ code
generator uses your container classes to generate types for data
members and for the container class property.

When the C++ code generator produces a data member, some symbols
are expanded. Refer to the online help for information on the expanded
symbol table.

The C++ code generator specifies the return data type for the data
member generated from the qualified get operation. It also specifies the
parameter type for the data member generated from the qualified set
operation.

If you leave this property blank, the data members are generated whose
types are container classes organized as sets. You can use this property
to generate a non-set container class, such as a list or a bag. Note that
containers are always unbounded if there is a qualifier.

The following table lists the values for QualifiedContainer:

Table 212 QualifiedContainer Values

QualifiedGetIsConst

The QualifiedGetIsConst property specifies whether the C++ code
generator produces the qualified get member function for a data
member with the const keyword. const member functions cannot
modify class data members.

If you enter: The action is:

(blank) (Default) The C++ code generator produces a type for
the data member based on the supplier cardinality
and containment of the association relationship.

type expression The C++ code generator uses type expression as the
type of the data member. Usually, type expression is
an instance of a template. The type expression text
may contain the variables $supplier, $target, and
$targetClass.
382 Rational Rose 2000e, Using Rose C++

QualifiedGetName
The following table lists the values for QualifiedGetIsConst. In this table,
T is the supplier class of the association relationship:

Table 213 QualifiedGetIsConst Values

QualifiedGetName

The QualifiedGetName property specifies the name the C++ code
generator produces for a qualified get member function for an
association role. The default value is:

get_$target

When the C++ code generator produces a get member function for a
data member, $target expands to the label of the association
relationship in the model. If the association role is unlabeled, $target
expands to the NameIfUnlabeled value for the association role.

If $targetClass is used in QualifiedGetName, it is the same as $supplier
when generating code in the association class. If there is no association
class, it is the same as $supplier. Otherwise, it is the code name for the
association.

If $role is used in QualifiedGetName, it is the code name for the role. If
$association is used in QualifiedGetName, it is the code name for the
association.

The following class diagram and code example illustrate an association
role and the get member function that the C++ code generator
produces for it by default:

Figure 92 Producing a Get Member Function

// Get and Set Operations for Association Roles

const B get_the_B() const;

If you select: The C++ code generator produces:

True (Default) const T get_the_T() const;

False T get_the_T();
Rational Rose 2000e, Using Rose C++ 383

Appendix I Association Role Properties
You can change the form of the names that the C++ code generator
produces for get member functions by changing the QualifiedGetName
format. You can also refer to $supplier in QualifiedGetName. Note that
if either $target or $supplier is followed by a character that can appear
in an identifier, you must enclose the variable name in braces {}.

For example, if you set QualifiedGetName to:

${target}_get

the C++ code generator produces the following get member function for
the association relationship:

// Get and Set Operations for Association Roles
const B the_B_get() const;

You can control the case of the name derived from $target. This table
describes the possible options (Note that these options also can be
used with $supplier):

Table 214 QualifiedGetName Case Options

QualifiedGetResultIsConst

If a qualified get function is generated for the item, the const-ness of
the returned value is determined by QualifiedGetResultIsConst in the
same way GetResultIsConst dictates the const-ness of the result for a
get function.

If you enter: The action is:

${target:l} All characters in the target name are converted
to lower case.

${target:u} All characters in the target name are converted
to upper case.

${target:f} The case of the first character in the target name
is inverted.

${target:i} The case of all characters in the target name is
inverted.
384 Rational Rose 2000e, Using Rose C++

QualifiedGetSetByReference
The following table lists the values for QualifiedGetResultIsConst:

Table 215 QualifiedGetResultIsConst Values

QualifiedGetSetByReference

The QualifiedGetSetByReference property specifies whether values in the
qualified get and set member functions are passed by reference or by
value. By default, the C++ code generator produces get and set member
functions for an association relationship to pass arguments and return
values by value. You set the value of QualifiedGetSetByReference to True
if you want the get and set member functions to pass arguments and
return values by reference.

The following table lists the values for QualifiedGetSetByReference. In
this table, T is the name of the supplier class of the association
relationship and the_T is the name of the association relationship:

Table 216 QualifiedGetSetByReference Values

If you select: The C++ code generator produces:

True If a get function is generated for this item, it will
return a const value.

False If a get function is generated for this item, it will
return a non-const value.

Same_As_Function If a get function is generated for this item, it will
return a const value if the function is const and a
non-const value if the function is not const (as
dictated by GetIsConst).

If you select: The C++ code generator produces:

True T & get_the_T();
void set_the_T(const T &value);

False (Default) T get_the_T();
void set_the_T(const T value);
Rational Rose 2000e, Using Rose C++ 385

Appendix I Association Role Properties
QualifiedSetName

The QualifiedSetName property specifies the name the C++ code
generator produces for a qualified set member function for an
association role. The default value of the QualifiedSetName property is:

set_$target

When the C++ code generator produces a set member function for a
data member, $target expands to the label of the association role in the
model. If the association role is unlabeled, $target expands to the
NameIfUnlabeled value for the association role.

If $targetClass is used in the QualifiedSetName property, it is the same
as $supplier when generating code in the association class. If there is
no association class, it is the same as $supplier. Otherwise, it is the
code name for the association.

If $role is used in the QualifiedSetName property, it is the code name for
the role. If $association is used in QualifiedSetName, it is the code name
for the association.

The following class diagram and code example illustrate an association
role and the set member function that the C++ code generator produces
for it by default:

Figure 93 Association Role and the Set Member Function

// Get and Set Operations for Association Roles
void set_the_B(const B value);

You can change the form of the names that the C++ code generator
produces for set member functions by changing the QualifiedSetName
format. You can also refer to $supplier in QualifiedSetName. Note that if
either $target or $supplier is followed by a character that can appear
in an identifier, you must enclose the variable name in braces {}.

For example, if you set QualifiedSetName to:

${target}_set
386 Rational Rose 2000e, Using Rose C++

QualifiedSetReturnsValue
the C++ code generator produces the following set member function for
the association role:

// Get and Set Operations for Association Roles
void the_B_set(const B value);

You can control the case of the name derived from $target. This table
describes the possible options (note that these options also can be used
with $supplier):

Table 217 QualifiedSetName Case Options

QualifiedSetReturnsValue

The QualifiedSetReturnsValue property specifies whether the C++ code
generator produces the qualified set member function for an
association relationship with a non-void return type. By default, the
C++ code generator produces the set member function with return type
void. However, sometimes it is convenient for the set member function
to return the value to which the data member is set in the function.

The following table lists the values for QualifiedSetReturnsValue. In this
table, T is the name of the supplier class of the association relationship
and the_T is the name of the association relationship:

Table 218 QualifiedSetReturnsValue Values

If you enter: The action is:

${target:l} All characters in the target name are converted to
lower case.

${target:u} All characters in the target name are converted to
upper case.

${target:f} The case of the first character in the target name
is inverted.

${target:i} The case of all characters in the target name is
inverted.

If you select: The C++ code generator produces:

True const T set_the_T(const T value);

False (Default) void set_the_T(const T value);
Rational Rose 2000e, Using Rose C++ 387

Appendix I Association Role Properties
SetName

The SetName property specifies the name the C++ code generator
produces for a set member function for an association role. The default
value is:

set_$target

When the C++ code generator produces a set member function for a
data member and there is no association class, $target expands to the
label of the supplier role in the model. If there is an association class,
$target expands to the name of the association. If the association
relationship is unlabeled, $target expands to the NameIfUnlabeled value
for the association.

If $targetClass is used in SetName, it is the same as $supplier when
generating code in the association class. If there is no association
class, it is the same as $supplier. Otherwise, it is the code name for the
association.

If $role is used in SetName, it is the code name for the role. If
$association is used in SetName, it is the code name for the
association.

The following class diagram and code example illustrate an association
role and the set member function that the C++ code generator produces
for it by default:

Figure 94 Naming a Set Member Function

// Get and Set Operations for Association Roles
void set_the_B(const B value);

You can change the form of the names that the C++ code generator
produces for set member functions by changing the format of the
SetName property. You can also refer to $supplier in the SetName
388 Rational Rose 2000e, Using Rose C++

SetReturnsValue
property. Note that if either $target or $supplier is followed by a
character that can appear in an identifier, you must enclose the
variable name in braces {}.

For example, if the SetName value is:

${target}_set

the C++ code generator produces the following set member function for
the association role:

// Get and Set Operations for Association Roles
void the_B_set(const B value);

You can control the case of the name derived from $target. This table
describes the possible options (note that these options also can be used
with $supplier).

Table 219 SetName Case Options

SetReturnsValue

The SetReturnsValue property specifies whether the C++ code generator
produces the unqualified set member function for an association
relationship with a non-void return type. By default, the C++ code
generator produces the set member function with return type void.
However, sometimes it is convenient for the set member function to
return the value to which the data member is set in the function.

If you enter: The action is:

${target:l} All characters in the target name are converted to lower
case.

${target:u} All characters in the target name are converted to upper
case.

${target:f} The case of the first character in the target name is
inverted.

${target:i} The case of all characters in the target name is inverted.
Rational Rose 2000e, Using Rose C++ 389

Appendix I Association Role Properties
The following table lists the values for SetReturnsValue. In this table, T
is the name of the supplier class of the association relationship and
the_T is the name of the association relationship:

Table 220 SetReturnsValue Property Values

If you select: The C++ code generator produces:

True const T set_the_T(const T value);

False (Default) void set_the_T(const T value);
390 Rational Rose 2000e, Using Rose C++

Appendix J

Subsystem Properties

Directory

The Directory property specifies the name of the directory to which the
subsystem is mapped during code generation. The following table lists
the values for Directory:

Table 221 Directory Property Values
If you
enter:

The action is:

Auto
Generate

(Default) The C++ Generator produces a directory name based
on the name of the subsystem. This name is the name of the
module, shortened to no more than the maximum number of
characters permitted by the operating system, or 32, whichever
is less. Shortening names can result in name conflicts. If this
happens, you must specify a name explicitly for all but one of
the conflicting modules. The subsystem's directory is created
as a subdirectory of the project directory, as specified by the
Directory project property.

literal The C++ Generator produces a directory for the subsystem with
the name literal. The subsystem's directory is a subdirectory of
the project directory. literal must be a valid directory name. If
literal includes a path, the path must be relative, not absolute.

<blank> The C++ Generator does not create a subdirectory for the
subsystem. Any files generated for the subsystem are created
in the enclosing subsystem's subdirectory, if any; otherwise,
the files are created in the project directory.
Rational Rose 2000e, Using Rose C++ 391

Appendix J Subsystem Properties
If the model containing this property is supporting multiuser
development and thus must contain only relative paths, use virtual
symbols from your Path Map to construct the directory path.

DirectoryIsOnSearchList

When a #include is generated in a module for which
IncludeBySimpleName is False and that #include references a module
in this subsystem, the path that appears in that #include will be
relative to the directory associated with this subsystem.

The following table lists the values for DirectoryIsOnSearchList:

Table 222 DirectoryIsOnSearchList Values

PrecompiledHeader

The PrecompiledHeader property specifies the file name for the
precompiled header file used in the model. The C++ code generator
uses the specified file name to locate a module in the model whose
FileName property yields to the same name.

It then sets up the closure of the precompiled header file from the
IncludeClosure property of the module and uses that for the code
generation.

The following table lists the values for PrecompiledHeader:

Table 223 PrecompiledHeader Values

If you enter: The action is:

True The path that appears in the #include is relative to
the directory associated with this subsystem.

False The path that appears in the #include must be an
absolute path.

If you enter: The action is:

<string> The C++ code generator sets up the closure of the
precompiled header based on the file <string>.

<blank> (Default) There is no precompiled header in the model.
392 Rational Rose 2000e, Using Rose C++

Appendix K

Symbols

The intended use of these symbols is that $mode, $ordered,
$keyCount, $cardinality, and (possibly) $keyn can be used to form the
name of the template or preprocessor macro and the remaining
symbols can be used as arguments to the template instantiation or
macro call.

Note: Because a C++ constructor call and a preprocessor macro call are
syntactically indistinguishable and because the Rational Rose code
generator sometimes needs to modify constructor calls, a special syntax
must be used to pass a macro call through the code generator
unmodified. To protect the macro call, don’t delimit the macro’s argument
list with parentheses, but use the special character sequence “<{” and
“>}” instead. These special character sequences will be converted to
parentheses before being placed in the generated code. Using this
convention, the generic example written:
$ordered${cardinality}Bag$mode<{$qualcont,$keys $bounds}>

generates macro calls rather than template instantiations.

For example:

$ordered${cardinality}Bag$mode< $qualcont,$keys $bounds >

Note: Exactly one of $keys or $bounds will always be null so a
syntactically correct instantiation is always generated.

$mode

The $mode symbol indicates whether the mode is by reference or by
value.

The possible values you can enter are By Reference or By Value.
Rational Rose 2000e, Using Rose C++ 393

Appendix K Symbols
$ordered

The $ordered symbol indicates whether the ordered constraint has
been specified in the Role specification.

The possible values you can enter are Ordered or null.

$cardinality

The $cardinality symbol corresponds to the cardinality 0…1, 1 or 1…1,
x…x, for any integer, x > 1, x…y, for any integers y > x > 1, 0…n, 1…n or
n , or when keys are defined.

The possible values you can enter are Optional, One, Fixed, Bounded,
Unbounded, and Qualified.

$keyCount

The $keyCount symbol indicates the number of qualifiers or keys
specified for the role.

The possible values are any non-negative integer.

$keyn

The $keyn symbol identifies the code name for the key for the first nine
keys in a qualified role.

The possible values are an identifier or null.

$typen

The $typen symbol indicates the key type for the first nine keys in a
qualified role.

The possible values are C++ type specification or null.

$types

The $types symbol lists all of the key types in the form of an argument
list to a template instantiation.

The possible values are null or a list of C++ type specifications
separated by commas.
394 Rational Rose 2000e, Using Rose C++

$upper

For an unqualified association, the $upper symbol identifies the upper
bound in the cardinality specification. It is the same as $limit. You
must #define _Unbounded to be something meaningful in your
implementation.

The possible values are integer, “_Unbounded”, or null. This is null for
qualified associations.

$lower

For an unqualified association, the $lower symbol identifies the lower
bound in the cardinality specification. It will be the same as $upper if
only one bound is specified.

The possible values are integer, “_Unbounded”, or null. This is null for
qualified associations.

$bounds

The possible values for the $bounds symbol are $lower, $upper or
null.

$targetClass

The $targetClass symbol is the same as $supplier unless there is an
association class associated with the association, in which case the
$targetClass is the association class.

The possible values are the fully qualified name of the class of elements
to be stored in the container.

$target

The $target symbol is the code name for $targetClass.

$supplier

The $supplier symbol is always the class associated with the role
opposite the role being coded—the class on the opposite end of the
association from the end being implemented.

The possible values are the fully qualified name of the class on the
other end of the relationship.
Rational Rose 2000e, Using Rose C++ 395

Appendix K Symbols
$limit

For an unqualified association, the $limit symbol identifies the upper
bound in the cardinality specification. It is the same as $upper. You
must #define _Unbounded to be something meaningful in your
implementation.

The possible values are integer, “_Unbounded”, or null. This is null for
qualified associations.

$qualcont

In a qualified association, the $qualcont symbol indicates the type of
the elements selected by a particular set of key values—the first
argument and result type for the qualified set and get functions,
respectively. This is the QualifiedContainer class specified for the role
as selected by the cardinality of the supplier role.

In an unqualified association this is the same as $targetClass.

For complete generality, any expression in the Container Class property
should use $qualcont as the type of the element stored in the
collection defined by that Container Class property.

The possible value is the C++ type specification.

$qualname

The $qualname symbol is the key name. It is the same as $key1.

$qualtype

The $qualtype symbol is the key type. It is the same as $type1.

$starIfByRef

The $starIfByRef symbol is “*” only if $mode is By Reference.

The possible values are **** or Null.

$commaIfKeys

The $commaIfKeys symbol is “,” only if $keyCount > 0.

The possible values are “,” or Null.
396 Rational Rose 2000e, Using Rose C++

$commaIfNoKeys

The $commaIfNoKeys symbol is “,” only if $keyCount = 0.

The possible values are “,” or Null.
Rational Rose 2000e, Using Rose C++ 397

Appendix L

Analyzer Setup

This section outlines how you should use Rational Rose C++ with
Microsoft Visual C++. It includes information on how to configure your
Analyzer, start a new project, and add classes, data members, and
member functions to your project.

Configuring the Analyzer

To use Rational Rose C++ with Microsoft Visual C++, you must set the
precompiled header file to stdafx.h using the Precompiled Header dialog
from the Edit menu.

Preference Settings for New C++ Features

New reserved words are required to support the new C++ features. The
Analyzer controls whether a feature is supported through Analyzer
preferences. If you choose to use the latest set of enhancements, set
the following preferences to be compatible with the features supported
by your compiler. This is done from the Precompiled Header dialog,
which you reach from the Edit menu.

Table 224 Preference Settings
Preference Option Introduces as reserved words

or punctuation...

NamespacesOK=True namespace, using

TypeBoolOK=True book, true, false

TypeWCharTOK=True wchar_t

MutableOK=True mutable
Rational Rose 2000e, Using Rose C++ 399

Appendix L Analyzer Setup
To turn any of these features off, set the value to False instead.

Starting a New Project

To start development of a new Visual C++ application, do the following:

� Use one of the Application Wizards in Visual C++ to create the
initial set of files for your application.

� Create a new Analyzer project and populate it with the files created
by the Application Wizard.

� All Wizard-generated header files, except for stdafx.h, should be
established as Type 2 files—they all assume the presence of
stdafx.h in the compilation unit, but do not include it directly.

� The Regenerate attribute for the following files should be turned
off. They contain no classes and should not be regenerated by
Rational Rose or Code Cycled by the Analyzer: stdafx.h,
stdafx.cpp, and resource.h.

� Now Code Cycle all files and export an initial model to Rational
Rose using the RoundTrip export options.

TypeIdOK=Trye typeid

NewStyleCaseOK=True const_cast, dynamic_case,
static_cast,
reinterpret_cast

AlternativeOperators
OK=True

bitand (&), and (&&), bitor (|),
xor (^), compl (~), and_eq (&=),
xor_eq (^=), not (!), not_eq (!=)

CatchOK=True catch, try

ExplicitOK-True explicit

ExportOK=True export

TrigraphicsOK=True ??= (#), ??/ (\), ??’ (^), ??(({),
??) (}), ??! (|), ??< ({), ??> (}),
??- (~)

DigraphsOK=True <% ({), %< (}), <: ([), :> (]), %: (#),
%:%: (##)

Preference Option Introduces as reserved words
or punctuation...
400 Rational Rose 2000e, Using Rose C++

� Open the .red file in Rational Rose.

� The reverse-engineered model has no properties associated with it,
so execute the Replace option from the Properties tab on the Tools
dialog box and select the rosevcpp.pty file as the new property
file.

� Save the model into a .mdl file.

Adding Classes, Data Members, and Member Functions

To add a class to a Visual C++ application:

1. Use the Class Wizard in Visual C++ to create the new class if it will
be using any of the mechanisms supported by the Class Wizard,
such as message maps or ActiveX functions, properties or events;
otherwise create the class in Rational Rose, generate code, and add
the new files to the Visual C++ project.

2. After the Class Wizard has created the files for the class, add them
to the Analyzer project.

3. New header files should be established as Type 2 files.

4. The Regenerate attribute should be turned off for any files created
by the Class Wizard as wrapper classes for ActiveX controls. These
files are linked to pre-compiled code and must not be changed by
you, Rational Rose, or the Analyzer.

5. Code Cycle the project files to bring the Analyzer database up to
date with the changes.

6. Export the files that have changed using a modified version of the
RoundTrip export option set.

7. Modify the RoundTrip export option set

a. Change the name of the class diagram, or turn off the creation
of class diagrams altogether. Usually when you update the
model in this fashion, you are reverse-engineering only a portion
of the full model. The class diagram generated will reflect only
the portion reverse-engineered. Most likely you will want to
throw the diagram away once you have ruminated a while on its
contents. If you don’t change the name of the class diagram,
Rational Rose will replace the diagram for the full model with
this partial one.

b. Change the name of the module diagram, but do not turn its
creation off entirely. You can suppress the creation of
subsystems, however. You need to transfer the new file
Rational Rose 2000e, Using Rose C++ 401

Appendix L Analyzer Setup
information into the model. This can only be done through the
creation of a module diagram. By suppressing the creation of
subsystems, you will get only one diagram. After updating the
model, delete this diagram.

8. Click File > Update.

Adding a new method or data member to an existing file proceeds the
same as adding a new class. Use the Class Wizard to add methods and
data members normally handled by the Class Wizard, then Code Cycle
and Export via the Analyzer, and Update the Rational Rose model. Use
Rational Rose to add other methods and data items, then regenerate
code and compile and link using Visual C++.

Rational Rose Project Files

A Rational Rose project file is a line-oriented ASCII file. The only truly
cryptic entries in a project file are the encodings for window and page
layouts and export options. These components are not critical and can,
in fact, be omitted entirely.

The first few characters of each line identify the line’s contents. The
only required line in a project is the first line, which must begin with
the version number of the project file format:

#v001>

The rest of the line is the project caption.

With the few exceptions noted below, the line prefix takes the form
"#xxxx>", where xxxx is a unique 4-character abbreviation for the
information contained on that line. the allowable prefixes are:

#stup> – Description of virtual symbol used in project

#dlft> – Name of default view

#dpfx> – Prefix for default data directory

#dsfx> – Suffix for default data directory

#xnam> – Name of export set

#xopt> – Export options

#xddd> – Default design file

#dt2p> – Type 2 #define symbol prefix
402 Rational Rose 2000e, Using Rose C++

Rational Rose Project Files
#t2fc> – Line in the type 2 context file

#flf>, #sky>, #hky> #dky>, and #flf> – Define a file list display-sort
option

#lyt>, #ste> #brs>, and #lyt> – Define a project window layout

#ssys> – Subsystem name

Exceptions

Line entries that are prefixed by Unix-like command line options, such
as -D or +X.

+C <category name>=<unit name>=<subsystem name>

-I <searched source lib>=<data lib>

-I!<unsearched source lib>=<data lib>

+I <non-regenerated searched source lib>=<data lib>

+I!<non-regenerated unsearched source lib>=<data lib>

+X*<source body extension>=.<data extension>

+X!<source header extension>=.<data extension>

-D<#define symbol definition>

-U<#undef symbol>

@<name of base project>

-X<type 3 file name>=<header/body/regenerate code>

-Y<type 2 file name>=<header/body/regenerate code>

The <header/body/regenerate code> is a string of letters indicating
the file-level override for the file, where: L = don't regenerate, R =
regenerate, B = body file, S = header file.

A line with no prefix indicates a type 1 file name, which may also be
followed by the sequence =<header/body/regenerate code>.

A file is assigned to the last mentioned category and subsystem. Thus
the category and subsystem lines (+C and #ssys>) can be repeated as
necessary to assign the files appropriately.
Rational Rose 2000e, Using Rose C++ 403

 Index
Symbols
#include 35, 63, 102, 104
#include directives in modules 41
$DATA 53, 56, 72, 103, 108
$DESIGN 72
%f 66

A
accessing the property editor 9
Add Properties command 14
AdditionalIncludes module property 42,

297
AllowExplicitInstantiations project

property 313
AllowExtensionlessFileName module

property 298
AllowProtectedInheritance project

property 18, 35, 313
AllowTemplates project property 18, 29,

35, 314
AlwaysKeepOrphanedCode project

property 43, 314
analysis status 114
Analyzer

configuration 399
data directory 103
data file 102

analyzing source code 61
Rational Rose 2000e, Using Rose C++

Annotation export options 165
annotations, source code 6
arguments, template 30
AssignmentKind class property 37, 229
AssignmentVisibility class property 230
AssocClassContainer role property 33,

347
AssocClassDataMemberIsVolatile role

property 348
AssocClassDataMemberMutability role

property 348
AssocClassDataMemberName role

property 349
AssocClassDataMemberVisibility role

property 350
AssocClassForwardReferenceOnly role

property 351
AssocClassGetIsConst role property 33,

352
AssocClassGetName role property 353
AssocClassGetResultIsConst role

property 354
AssocClassGetSetKinds role property

355
AssocClassInitialValue role property 356
AssocClassSetName role property 356
AssocClassSetReturnsValue Role

Property 357
AssocClassSetReturnsValue role

property 33
405

Index
association class 33
association properties 20
association relationships 31

code example 34
association role properties

AssocClassContainer 347
AssocClassDataMemberIsVolatile

348
AssocClassDataMemberMutability

348
AssocClassDataMemberName 349
AssocClassDataMemberVisibility

350
AssocClassForwardReferenceOnly

351
AssocClassGetIsConst 352
AssocClassGetName 353
AssocClassGetResultIsConst 354
AssocClassGetSetKinds 355
AssocClassInitialValue 356
AssocClassSetName 356
AssocClassSetReturnsValue 357
CodeName 358
ContainerClass 359
ContainerGet 360
ContainerSet 360
DataMemberFieldSize 361
DataMemberIsVolatile 361
DataMemberMutability 362
DataMemberName 362
DataMemberVisibility 364
ForwardReferenceOnly 365
GenerateAssocClassDataMember

367
GenerateAssocClassGetOperation

368
GenerateAssocClassSetOperation

369
GenerateDataMember 370
GenerateGetOperation 351, 370
GenerateQualifiedGetOperation 371
GenerateQualifiedSetOperation 372
406

GenerateSetOperation 351, 373
GetIsConst 373
GetName 374
GetResultIsConst 375
GetSetByReference 376
GetSetKinds 377
InitialValue 378
InlineAssocClassGet 378
InlineAssocClassSet 379
InlineGet 379
InlineQualifiedGet 379
InlineQualifiedSet 380
InlineSet 380
NameIfUnlabeled 356, 374, 380,

383, 386, 388
QualifiedContainer 382
QualifiedGetIsConst 382
QualifiedGetName 383
QualifiedGetResultIsConst 384
QualifiedGetSetByReference 385
QualifiedSetName 386
QualifiedSetReturnsValue 387
SetName 388
SetReturnsValue 389

attaching property sets 11
attribute properties

CodeName 215
DataMemberFieldSize 216
DataMemberIsVolatile 216
DataMemberMutability 217
DataMemberName 217
DataMemberVisibility 219
GenerateDataMember 219
GenerateGetOperation 220
GenerateSetOperation 221
GetIsConst 221
GetName 222
GetResultIsConst 223
GetSetByReference 224
GetSetKinds 224
InlineGet 225
InlineSet 226
Rational Rose 2000e, Using Rose C++

Index
SetName 226
SetReturnsValue 227

Attributes tab, export options 161

B
base list 25, 60, 100
base project 60
BodyAnnotations operation property 307
BodyReferenceOnly dependency

property 271
Booch notation xxxviii, 214
boolean types, specifying 19
BooleanType project property 19, 315
BoundedByReferenceContainer

example of 316
project property 315

BoundedByValueContainer
example of 317
project property 316

C
C++

Analyzer 201
code generator 3

caption, project 101
cardinality 36
categories list 100
class 41

access specification 25
attribute properties 20
attributes 27
definition 25
friend declarations 26
utilities 28, 29

class category properties
CodeName 267
GenerateEmptyRegions 268
Indent 269
IsNamespace 269

Class Diagram export options 170
Rational Rose 2000e, Using Rose C++

Class Model export options 156
class properties 14

AssignmentKind 229
AssignmentVisibility 230
ClassKey 230
CodeName 230
CopyConstructorVisibility 231
DefaultConstructorVisibility 232
DereferenceKind 232
DereferenceResultType 233
DereferenceVisibility 233
DestructorKind 234
DestructorVisibility 234
EqualityKind 235
EqualityVisibility 236
ExplicitCopyConstructor 236
ExplicitDefaultConstructor 237
GenerateAssignmentOperation 237
GenerateCopyConstructor 239
GenerateDefaultConstructor 240
GenerateDereferenceOperation 242
GenerateDestructor 243
GenerateEmptyRegions 244
GenerateEqualityOperation 244
GenerateIndirectionOperation 246
GenerateRelationalOperations 247
GenerateStorageMgmtOperations

249
GenerateStreamOperations 251
GenerateSubscriptOperation 252
implementation 14
ImplementationType 253
IndirectionKind 254
IndirectionResultType 255
IndirectionVisibility 255
InlineAssignmentOperation 256
InlineCopyConstructor 256
InlineDefaultConstructor 257
InlineDereferenceOperation 257
InlineDestructor 258
InlineEqualityOperations 258
InlineIndirectionOperation 259
407

Index
InlineRelationalOperations 259
InlineStorageMgmtOperations 260
InlineStreamOperations 260
InlineSubscriptOperation 261
PutBodiesInSpec 261
RelationalKind 261
RelationalVisibility 263
standard operations 15
StorageMgmtVisibility 263
StreamVisibility 264
SubscriptKind 264
SubscriptResultType 265
SubscriptVisibility 265

class utilities 28, 29
classes 64

assigned to modules 4
not assigned to modules 5

classes export option 64
ClassKey class property 230
CmIdentification module property 298
code generated for

association relationships 31
cardinality 36
class attributes 27
class utilities 28, 29
classes 24
component packages 43
containment 36
generalization relationships 35
inheritance relationships 35
instantiated classes 29
instantiates relationships 35
modules 40
parameterized classes 29
standard operations 37
user-uefined operations 38

code generation 8
code generation properties 9
code location 18
CodeFileBackupExtension project

property 4, 5, 317
CodeFileExtension project property 4, 5,
408

318
CodeFileTemporaryExtension project

property 318
CodeName

attribute property 215
class category property 267
class property 230
has property 275
operation property 17, 307
role property 358

Comments export options 163
CommentWidth project property 23, 319
common errors 62
component package (subsystem) list 100
component package properties 18
component packages 6, 43
components 45, 99
configuring the Analyzer 399
container classes, specifying 19
ContainerClass

has property 276
role property 32, 359

ContainerGet role property 360
ContainerSet role property 360
containment 36
controlled unit 13
controlling C++ error behavior 19
CopyConstructorVisibility class property

231
CopyrightNotice module property 299
CreateMissingDirectories project

property 19, 44, 319
creating

a new project 47
new property sets 12

D
data directory, Analyzer 103
data file extension 110
data file, Analyzer 102
data member 31
Rational Rose 2000e, Using Rose C++

Index
DataMemberFieldSize
attribute property 216
has property 276
role property 361

DataMemberIsVolatile
attribute property 216
has property 277
role property 361

DataMemberMutability
attribute property 217
has property 277
role property 362

DataMemberName
attribute property 27, 217
has property 278
role property 31, 362

DataMemberVisibility
attribute property 219
has property 279
role property 26, 364

declarations
generated for operations 39
module 42

DefaultConstructorVisibility class
property 232

defined symbol list 63
defined symbols 100
deleting property sets 13
dependency properties

BodyReferenceOnly 271
ForwardReferenceOnly 271

DereferenceKind class property 232
DereferenceResultType class property

233
DereferenceVisibility class property 233
DestructorKind class property 234
DestructorVisibility class property 234
DetailedAnalysis export option set 144,

214
direct get member functions 292
direct set member functions 292
Directory
Rational Rose 2000e, Using Rose C++

project property 8, 24, 319, 320, 321
subsystem property 321, 391

directory list 99, 105
project 102

DirectoryIsOnSearchList subsystem
property 392

displaying properties 10
displaying property sets 12

E
editing

export option sets 142
export options 142
properties 10, 12
property sets 12

EntryCode operation property 16, 39,
308

EqualityKind class property 235
EqualityVisibility class property 236
ErrorLimit project property 19, 320
errors 62

common 62
controlling behavior 19

ExitCode operation property 16, 39, 308
ExplicitCopyConstructor class property

236
ExplicitDefaultConstructor class

property 237
export option sets 65

DetailedAnalysis 144, 214
editing 142
FirstLook 143
RoundTrip 145

export options 64, 100, 174
Annotation 165
Attributes tab 161
Class Diagram 170
Class Model 156
Comments 163
editing 142
Input 146
409

Index
Module Diagram 172
Output 149
predefined sets 143
Relationships 158
sets 141
summary of 174

Export Properties command 14
extension list 99, 109, 113

F
file list 99, 111, 116
file name extensions 18
file, property 13
FileName module property 4, 300
FileNameFormat project property 321
FirstLook export option set 143
FixedByReferenceContainer

example of 322
project property 321

FixedByValueContainer
example of 323
project property 322

ForwardReferenceOnly
dependency property 271
has property 280
role property 32, 365

G
generalize relationships 35
Generate module property 300
GenerateAssignmentOperation

class property 37, 237
example of 238

GenerateAssocClassDataMember role
property 33, 367

GenerateAssocClassGetOperation role
property 33, 368

GenerateAssocClassSetOperation role
property 33, 369

GenerateCopyConstructor
410

class property 9, 239
example of 240

generated
header files 5
implementation files 5
source code 3

GenerateDataMember
attribute property 28, 219
has property 282
role property 32, 370

GenerateDefaultConstructor
class property 240
example of 241

GenerateDereferenceOperation
class property 242
example of 242

GenerateDestructor
class property 29, 243
example of 243

GenerateEmptyRegions
class category property 268
class property 244
module property 8, 301
operation property 309

GenerateEqualityOperations
class property 244
example of 245

GenerateGetOperation
attribute property 28, 220
has property 283
role property 32, 351, 370

GenerateIndirectionOperation
class property 246
example of 246

GenerateQualifiedGetOperation role
property 32, 371

GenerateQualifiedSetOperation role
property 32, 372

GenerateRelationalOperations
class property 247
example of 248

GenerateSetOperation
Rational Rose 2000e, Using Rose C++

Index
attribute property 28, 221
has property 284
role property 32, 351, 373

GenerateStorageMgmtOperations
class property 249
example of 250

GenerateStreamOperations
class property 251
example of 252

GenerateSubscriptOperation
class property 252
example of 253

GetIsConst
attribute property 28, 221
has property 284
role property 32, 373

GetName
attribute property 27, 222
has property 285
role property 31, 374

GetResultIsConst
attribute property 223
has property 287
role property 375

GetSetByReference
attribute property 28, 224
has property 287
role property 32, 376

GetSetKinds
attribute property 28, 224
has property 288
role property 32, 377

H
has properties

CodeName 275
ContainerClass 276
DataMemberFieldSize 276
DataMemberIsVolatile 277
DataMemberMutability 277
DataMemberName 278
Rational Rose 2000e, Using Rose C++

DataMemberVisibility 279
ForwardReferenceOnly 280
GenerateDataMember 282
GenerateGetOperation 283
GenerateSetOperation 284
GetIsConst 284
GetName 285
GetResultIsConst 287
GetSetByReference 287
GetSetKinds 288
InitialValue 289
InlineGet 289
InlineSet 289
NameIfUnlabeled 290
Ordered 291
SelectorName 292
SelectorType 293
SetName 295
SetReturnsValue 296

header files 4, 5, 24, 112
HeaderFileBackupExtension project

property 4, 5, 323, 325
HeaderFileExtension project property 4,

5, 324
HeaderFileTemporaryExtension project

property 325

I
implementation code generated for user-

defined operations 39
implementation files 4, 5, 25
ImplementationType class property 14,

32, 253
Import Properties command 14
IncludeBySimpleName module property

41, 301
IncludeClosure module property 302
IncludeFormat module property 302
IncludeOrder module property 303
IncludePrecompiledHeader module

property 303
411

Index
InclusionProtectionSymbol module
specification property 40, 304

Indent class category property 269
indirect get member functions 292
indirect set member functions 292
IndirectionKind class property 254
IndirectionResultType class property

255
IndirectionVisibility class property 255
inheritance relationships 35
InitialValue

has property 289
role property 378

Inline operation property 17, 309
InlineAssignmentOperation class

property 256
InlineAssocClassGet role property 33,

378
InlineAssocClassSet role property 33,

379
InlineCopyConstructor class property

256
InlineDefaultConstructor class property

257
InlineDereferenceOperation class

property 257
InlineDestructor class property 258
InlineEqualityOperations class property

258
InlineGet

attribute property 225
has property 289
role property 32, 379

InlineIndirectionOperation class
property 259

InlineQualifiedGet role property 32, 379
InlineQualifiedSet role property 32, 380
InlineRelationalOperations class

property 259
InlineSet

attribute property 226
has property 289
412

role property 32, 380
InlineStorageMgmtOperations class

property 260
InlineStreamOperations class property

260
InlineSubscriptOperation class property

261
InliningStyle module property 305
Input export options 146
instantiated class utilities 30
instantiated classes 29, 30
instantiates relationships 35
IsNamespace class category property

269
item-specific properties 11

L
logical packages 6

M
macro file parameters 181
managing property sets 13
mapping

model-to-code 23
model-to-code correspondences 23
model-to-code mapping 23
Module

Diagram export options 172
module

#include directives 41
body properties 17
declarations 42
diagrams and relationships 41
inclusion protection 40
orphan code 43

module properties 42
AdditionalIncludes 297
AllowExtensionlessFileName 298
CmIdentification 298
CopyrightNotice 299
Rational Rose 2000e, Using Rose C++

Index
FileName 300
Generate 300
GenerateEmptyRegions 301
IncludeBySimpleName 301
IncludeClosure 302
IncludeFormat 302
IncludeOrder 303
IncludePrecompiledHeader 303
InliningStyle 305
TypesDefined 306

module specification properties 17
InclusionProtectionSymbol 304

modules 40
classes assigned to 4
classes not assigned to 5

N
NameIfUnlabeled

has property 290
role property 356, 374, 380, 383,

386, 388
namespaces and protected code regions

8
new project, creating 47
notations 214

changing 214

O
OMT notation xxxviii, 214
OneByReferenceContainer

example of 326
project property 325

OneByValueContainer
example of 327
project property 326

operation properties
BodyAnnotations 307
CodeName 307
EntryCode 308
ExitCode 308
Rational Rose 2000e, Using Rose C++

GenerateEmptyRegions 309
Inline 309
OperationIsConst 310
OperationIsExplicit 310
OperationKind 310

OperationIsConst operation property 16,
39, 310

OperationIsExplicit operation property
310

OperationKind operation property 16,
39, 310

OptionalByReferenceContainer
example of 328
project property 327

OptionalByValueContainer
example of 329
project property 329

Ordered has property 291
orphan code and modules 43
Output export options 149
overriding item-level property, removing

11

P
parameterized classes 29, 30
PathSeparator project property 330
PrecompiledHeader

project property 330
subsystem property 392

preserve argument 7
preserved code region for #includes 42
program-specific projects 100
project 45, 99

caption 101
directory list 102
program-specific 100

project properties 9, 18
AllowExplicitInstantiations 313
AllowProtectedInheritance 313
AllowTemplates 314
AlwaysKeepOrphanedCode 314
413

Index
BooleanType 19, 315
BoundedByReferenceContainer 315
BoundedByValueContainer 316
CodeFileBackupExtension 317
CodeFileExtension 318
CodeFileTemporaryExtension 318
CommentWidth 319
CreateMissingDirectories 319
Directory 319, 320, 321
ErrorLimit 320
FileNameFormat 321
FixedByReferenceContainer 321
FixedByValueContainer 322
HeaderFileBackupExtension 323,

325
HeaderFileExtension 324
HeaderFileTemporaryExtension 325
OneByReferenceContainer 325
OneByValueContainer 326
OptionalByReferenceContainer 327
OptionalByValueContainer 329
PathSeparator 330
PrecompiledHeader 330
QualifiedByReferenceContainer 331
QualifiedByValueContainer 332
StopOnError 334
UnboundedByReferenceContainer

334
UnboundedByValueContainer 335
UnorderedBoundedByReference

Container 336
UnorderedBoundedByValue

Container 337
UnorderedFixedByReference

Container 338
UnorderedFixedByValueContainer

339
UnorderedQualifiedByReference

Container 340
UnorderedQualifiedByValue

Container 342
UnorderedUnboundedByReference
414

Container 343
UnorderedUnboundedByValue

Container 344
UseMSVC 345

project property sets 23
properties

attaching sets 11
component package 18
creating new sets 12
deleting sets 13
displaying 10
displaying sets 12
editing 10
editing sets 12
forcing item-specific 11
managing sets 13
module body 17
module specification 17
project 18
user-defined operation 16

property editor 9
property file 13
property sets 22

creating 12
protected code regions 6

namespaces 8
PutBodiesInSpec class property 261

Q
QualifiedByReferenceContainer

example of 332
project property 331

QualifiedByValueContainer
example of 333
project property 332

QualifiedContainer role property 32, 382
QualifiedGetIsConst role property 382
QualifiedGetName role property 383
QualifiedGetResultIsConst role property

384
QualifiedGetSetByReference role
Rational Rose 2000e, Using Rose C++

Index
property 385
QualifiedSetName role property 386
QualifiedSetReturnsValue role property

32, 387

R
reinstate last committed change 11
RelationalKind class property 261
RelationalVisibility class property 263
Relationships

export options 158
relationships

class 41
module diagrams 41

removing an overriding item-level
property 11

resolving library references 60
reverse engineering 45
role properties

AssocClassContainer 347
AssocClassDataMemberIsVolatile

348
AssocClassDataMemberMutability

348
AssocClassDataMemberName 349
AssocClassDataMemberVisibility

350
AssocClassForwardReferenceOnly

351
AssocClassGetIsConst 352
AssocClassGetName 353
AssocClassGetResultIsConst 354
AssocClassGetSetKinds 355
AssocClassInitialValue 356
AssocClassSetName 356
AssocClassSetReturnsValue 357
CodeName 358
ContainerClass 359
ContainerGet 360
ContainerSet 360
DataMemberFieldSize 361
Rational Rose 2000e, Using Rose C++

DataMemberIsVolatile 361
DataMemberMutability 362
DataMemberName 362
DataMemberVisibility 364
ForwardReferenceOnly 365
GenerateAssocClassDataMember

367
GenerateAssocClassGetOperation

368
GenerateAssocClassSetOperation

369
GenerateDataMember 370
GenerateGetOperation 351, 370
GenerateQualifiedGetOperation 371
GenerateQualifiedSetOperation 372
GenerateSetOperation 351, 373
GetIsConst 373
GetName 374
GetResultIsConst 375
GetSetByReference 376
GetSetKinds 377
InitialValue 378
InlineAssocClassGet 378
InlineAssocClassSet 379
InlineGet 379
InlineQualifiedGet 379
InlineQualifiedSet 380
InlineSet 380
NameIfUnlabeled 356, 374, 380,

383, 386, 388
QualifiedContainer 382
QualifiedGetIsConst 382
QualifiedGetName 383
QualifiedGetResultIsConst 384
QualifiedGetSetByReference 385
QualifiedSetName 386
QualifiedSetReturnsValue 387
SetName 388
SetReturnsValue 389

round-trip engineering 203
from existing source code 213

RoundTrip export option set 145
415

Index
S
SelectorName has property 292

example of 294
SelectorType has property 293

example of 294
Set Default Properties File command 14
SetName

attribute property 27, 226
has property 295
role property 31, 388

SetReturnsValue
attribute property 28, 227
has property 296
role property 32, 389

source code annotations 6
source code, analyzing 61
source file extension 110
standard operations 37
StopOnError project property 19, 334
StorageMgmtVisibility class property

263
StreamVisibility class property 264
SubscriptKind class property 264
SubscriptResultType class property 265
SubscriptVisibility class property 265
subsystem list 100
subsystem properties

Directory 321, 391
DirectoryIsOnSearchList 392
PrecompiledHeader 392

summary of export options 174

T
template arguments 30
Type 2 context 100
TypesDefined module property 306

U
UML xxxvii
UML notation 214
416

UnboundedByReferenceContainer
example of 335
project property 37, 334

UnboundedByValueContainer
example of 336
project property 335

undefined symbols 100
UnorderedBoundedByReference

Container
example of 337
project property 336

UnorderedBoundedByValueContainer
example of 338
project property 337

UnorderedFixedByReferenceContainer
example of 339
project property 338

UnorderedFixedByValueContainer
example of 340
project property 339

UnorderedQualifiedByReference
Container

example of 341
project property 340

UnorderedQualifiedByValueContainer
example of 342
project property 342

UnorderedUnboundedByReference
Container

example of 344
project property 343

UnorderedUnboundedByValue
Container

example of 345
project property 344

UseMSVC project property 23, 345
user-defined operation properties 16
user-defined operations 38, 39
Rational Rose 2000e, Using Rose C++

	Rational Rose 2000e Using Rose C++
	Contents
	List of Figures
	List of Tables
	Preface
	How this Guide is Organized
	Related Documentation
	References

	File Names

	Introduction
	C++ Code Generation
	Generated Source Code
	Classes Assigned to Modules
	Classes Not Assigned to Modules
	Generated Header Files
	Generated Implementation Files
	Logical and Component Packages
	Source Code Annotations
	Protected Code Regions
	Namespaces and Protected Code Regions

	Code Generation—Step by Step
	Code Generation Properties
	Accessing the Property Editor
	Display or Edit Properties
	Remove an Overriding Item-Level Property
	Force a Property to be Item Specific
	Reinstate the State and Value of the Last Committed Change
	Attach a Property Set
	Display or Edit a Specific Property Set
	Create a New Property Set
	Delete a Property Set
	Managing Property Sets

	Class Properties
	Implementation
	Standard Operations
	User-Defined Operation Properties
	Module Specification Properties
	Module Body Properties
	Component Package Properties
	Project Properties
	Code Location
	File Name Extensions
	Specifying Compiler-Specific Alternatives
	Specifying the Boolean Type
	Specifying Container Classes for Associations
	Controlling Error Behavior

	Class Attribute Properties
	Association Properties

	Property Sets
	Project Property Sets

	Model-to-Code Correspondences
	Code Generated for Classes
	In the Header File
	In the Implementation File
	Class Definition and Base List
	Class Access Specification
	Class Friend Declarations

	Code Generated for Class Attributes
	Code Generated for Class Utilities
	Code Generated for Parameterized Classes, Instantiated Classes and Class Utilities
	Parameterized Classes
	Instantiated Classes
	Parameterized and Instantiated Class Utilities

	Code Generated for Association Relationships
	The Association Class

	Code Example of an Association Relationship
	Code Generated for Generalization/Inheritance Relationships
	Code Generated for Instantiates Relationships
	Code Generated for Cardinality and Containment Adornments for Associations
	Code Generated for Standard Operations
	Code Generated for User-Defined Operations
	Declarations Generated for User-Defined Operations
	Implementation Code Generated for User-Defined Operations
	Code Generated for Modules
	Module Inclusion Protection
	Module #include Directives
	Relationships in Class and Module Diagrams
	Module Properties
	Preserved Code Region for #includes
	Module Declarations
	Module Orphan Code

	Code Generation and Component Packages

	C++ Reverse Engineering
	Key Concepts
	An Example Program
	Creating a New Project
	Selecting Source Code to Reverse Engineer
	Code Regeneration Policy
	Module Kind
	Analysis Type
	Analysis Status
	Project Category and Subsystem Assignments

	Establishing a Path Map Entry
	$DATA and Drive Names

	Resolving References to Libraries
	Analyzing Source Code
	Dealing with Common Errors
	Unresolved References
	Language Extensions
	Context Dependent Source Files

	Deciding What to Export
	Summary

	Analysis
	Re-analysis
	Analysis Errors
	Analysis Types
	Type�1 Source Files
	Type�2 Source Files
	Type�3 Source Files

	Preprocessing
	Parsing
	Order of Analysis

	Design Exporting
	Code Cycling
	The Analyzer User Interface
	Application Window
	Project Window
	Full View
	Export View
	Simple View
	Files Only View

	File Viewer Window
	Log Window

	Analyzer Scripts
	Invocation
	Format
	Selection/Deselection Patterns
	Command Reference
	analyze
	autosave [<file name>]
	clearlog
	close [all]
	codecycle
	collapse
	deletedata
	deselect all
	deselect category <pattern>
	deselect file name <pattern>
	deselect line <pattern>
	deselect [pathname] <pattern>
	deselect status <pattern>
	deselect subsystem <pattern>
	deselect unit <pattern>
	expand
	export <modelfile> [<option set name>]
	project <file name>
	quit
	run <file name>
	savelog <file name>
	select all
	select category <pattern>
	select file name <pattern>
	select line <pattern>
	select [pathname] <pattern>
	select status <pattern>
	select subsystem <pattern>
	select unit <pattern>
	sortby <sort-kind>
	show <project component>
	showerrors
	timestamp [on | off]
	updatestatus

	Analyzer Projects
	Caption
	Directory List
	Data Files
	Data Directories
	Code Regeneration Policy
	Resolving #Include Directives
	Directory List Entries
	Editing the Directory List

	Extension List
	Module Kind
	Extension List Entries
	Editing the Extension List

	File List
	Code Regeneration
	Module Kind
	Analysis Type
	Analysis Status
	Project Category and Project Subsystem Assignments
	Naming Conflicts
	File List Entries
	Sort Order
	Editing the File List

	Base List
	The Default Project: analyzer.pjt
	Editing the Base List

	Defined Symbols List
	Editing the Defined Symbols List

	Undefined Symbols List
	Editing the Undefined Symbols List

	Categories List
	Editing the Categories List

	Subsystems List
	Editing the Subsystems List

	Type 2 Context
	Editing the Type 2 Context

	Changing Preprocessor Commands

	Analyzer Export Options
	Export Option Sets
	Editing Export Options and Sets
	Predefined Export Option Sets
	FirstLook
	DetailedAnalysis
	RoundTrip

	Input Export Options
	Examine Type Definitions In These Files
	Selected Files Only
	Selected Files and #include Closure
	Selected Files and Implementation Closure
	Also Examine Type Definitions
	Look for Definitions of Referenced Types
	Look for Definitions in Selected Files and Designated Closure
	Search #included Files for Definitions
	Search Files of Project for Definitions
	Search Project and Bases for Definitions

	Output Export Options
	Title
	Model File
	Notation Buttons
	Browse Button
	Create Class Model
	Create Class Diagrams
	Create Categories
	Create Module Diagrams
	Create Subsystems
	Assign Class to Category Based On
	Controlled Unit Policy (Categories)
	Category Unit Extension
	Override Existing Extension (Categories)
	Assign Module to Subsystem based on
	Controlled Unit Policy (Subsystems)

	Class Model Export Options
	Create a Class Model with Elements

	Relationships Export Options
	Create
	Create Uses Relationships
	Create Inherits Relationships to Each
	Create Instantiates Relationships from Each Instantiation to its Template
	Create Uses Relationships from Each Class Declared “friend”

	Attributes Export Options
	Create Operation Specifications for
	Create Attribute Specifications for

	Comments Export Options
	Look for Comments on C++ Constructs as Follows

	Annotation Export Options
	Model Module Annotations (Documentation)
	Model Class Annotations for
	Model Operation Annotations for
	Model Data Member Annotations (Documentation)
	Model Declarations in //##begin—//##end Regions
	Model Generated Declarations
	Model //##aggregate Annotations

	Class Diagram Export Options
	Create Class Diagrams
	Draw Categories
	Diagram Name
	Draw Model Elements Derived From the Following Constructs
	Draw Relationships Derived From Type References in the Following Constructs

	Module Diagram Export Options
	Create Module Diagrams
	Diagram Name
	Derive Module Names from Annotations
	Draw Visibility Relationships For... Labeled...
	Draw Subsystems

	Summary of Export Options
	The Export Options

	Analyzer Project File
	Macro File Parameters
	Container Class Specification
	+ct Project Parameter
	+ct Project Parameter Example

	Inline Annotations
	Inline Annotation Syntax
	Simple Annotations
	Hierarchical Annotations
	Annotation Literals
	Inline Annotation Semantics
	The prop Annotation
	The map Annotation
	The open Annotation
	The close Annotation
	Wizard Comments
	Overriding Macro Definitions
	Implicit Include Option

	Design Update
	C++ Round-Trip Engineering
	Round-Trip Engineering—Step By Step
	Starting with Existing Source Code
	Changing Between the UML, OMT, and Booch Notations

	Attribute Properties
	CodeName
	DataMemberFieldSize
	DataMemberIsVolatile
	DataMemberMutability
	DataMemberName
	DataMemberVisibility
	GenerateDataMember
	GenerateGetOperation
	GenerateSetOperation
	GetIsConst
	GetName
	GetResultIsConst
	GetSetByReference
	GetSetKinds
	InlineGet
	InlineSet
	SetName
	SetReturnsValue

	Class Properties
	AssignmentKind
	AssignmentVisibility
	ClassKey
	CodeName
	CopyConstructorVisibility
	DefaultConstructorVisibility
	DereferenceKind
	DereferenceResultType
	DereferenceVisibility
	DestructorKind
	DestructorVisibility
	EqualityKind
	EqualityVisibility
	ExplicitCopyConstructor
	ExplicitDefaultConstructor
	GenerateAssignmentOperation
	Example of GenerateAssignmentOperation

	GenerateCopyConstructor
	Example of GenerateCopyConstructor

	GenerateDefaultConstructor
	Example of GenerateDefaultConstructor

	GenerateDereferenceOperation
	Example of GenerateDereferenceOperation

	GenerateDestructor
	Example of GenerateDestructor

	GenerateEmptyRegions
	GenerateEqualityOperation
	Example of GenerateEqualityOperations

	GenerateIndirectionOperation
	Example of GenerateIndirectionOperation

	GenerateRelationalOperations
	Example of GenerateRelationalOperations

	GenerateStorageMgmtOperations
	Example of GenerateStorageMgmtOperations

	GenerateStreamOperations
	Example of GenerateStreamOperations

	GenerateSubscriptOperation
	Example of GenerateSubscriptOperation

	ImplementationType
	IndirectionKind
	IndirectionResultType
	IndirectionVisibility
	InlineAssignmentOperation
	InlineCopyConstructor
	InlineDefaultConstructor
	InlineDereferenceOperation
	InlineDestructor
	InlineEqualityOperations
	InlineIndirectionOperation
	InlineRelationalOperations
	InlineStorageMgmtOperations
	InlineStreamOperations
	InlineSubscriptOperation
	PutBodiesInSpec
	RelationalKind
	RelationalVisibility
	StorageMgmtVisibility
	StreamVisibility
	SubscriptKind
	SubscriptResultType
	SubscriptVisibility

	Class Category Properties
	CodeName
	GenerateEmptyRegions
	Indent
	IsNamespace

	Dependency Properties
	BodyReferenceOnly
	ForwardReferenceOnly

	Has Properties
	CodeName
	ContainerClass
	DataMemberFieldSize
	DataMemberIsVolatile
	DataMemberMutability
	DataMemberName
	DataMemberVisibility
	ForwardReferenceOnly
	GenerateDataMember
	GenerateGetOperation
	GenerateSetOperation
	GetIsConst
	GetName
	GetResultIsConst
	GetSetByReference
	GetSetKinds
	InitialValue
	InlineGet
	InlineSet
	NameIfUnlabeled
	Ordered
	SelectorName
	SelectorType
	Example of SelectorName and SelectorType

	SetName
	SetReturnsValue

	Module Body and Module Specification Properties
	AdditionalIncludes
	AllowExtensionlessFileName
	CmIdentification
	CopyrightNotice
	FileName
	Generate
	GenerateEmptyRegions
	IncludeBySimpleName
	IncludeClosure
	IncludeFormat
	IncludeOrder
	IncludePrecompiledHeader
	InclusionProtectionSymbol (Module Spec Only)
	InliningStyle
	TypesDefined

	Operation Properties
	BodyAnnotations
	CodeName
	EntryCode
	ExitCode
	GenerateEmptyRegions
	Inline
	OperationIsConst
	OperationIsExplicit
	OperationKind

	Project Properties
	AllowExplicitInstantiations
	AllowProtectedInheritance
	AllowTemplates
	AlwaysKeepOrphanedCode
	BooleanType
	BoundedByReferenceContainer
	Example of BoundedByReferenceContainer

	BoundedByValueContainer
	Example of BoundedByValueContainer

	CodeFileBackupExtension
	CodeFileExtension
	CodeFileTemporaryExtension
	CommentWidth
	CreateMissingDirectories
	Directory
	ErrorLimit
	FileNameFormat
	FixedByReferenceContainer
	Example of FixedByReferenceContainer

	FixedByValueContainer
	Example of FixedByValueContainer

	HeaderFileBackupExtension
	HeaderFileExtension
	HeaderFileTemporaryExtension
	OneByReferenceContainer
	Example of OneByReferenceContainer

	OneByValueContainer
	Example of OneByValueContainer

	OptionalByReferenceContainer
	Example of OptionalByReference Container

	OptionalByValueContainer
	Example of OptionalByValueContainer

	PathSeparator
	PrecompiledHeader
	QualifiedByReferenceContainer
	Example of QualifiedByReferenceContainer

	QualifiedByValueContainer
	Example of QualifiedByValueContainer

	StopOnError
	UnboundedByReferenceContainer
	Example of UnboundedByReferenceContainer

	UnboundedByValueContainer
	Example of UnboundedByValueContainer

	UnorderedBoundedByReferenceContainer
	Example of UnorderedBoundedByReferenceContainer

	UnorderedBoundedByValueContainer
	Example of UnorderedBoundedByValueContainer

	UnorderedFixedByReferenceContainer
	Example of UnorderedFixedByReferenceContainer

	UnorderedFixedByValueContainer
	Example of UnorderedFixedByValueContainer

	UnorderedQualifiedByReferenceContainer
	Example of UnorderedQualifiedByReferenceContainer

	UnorderedQualifiedByValueContainer
	Example of UnorderedQualifiedByValueContainer

	UnorderedUnboundedByReferenceContainer
	Example of UnorderedUnboundedByReferenceContainer

	UnorderedUnboundedByValueContainer
	Example of UnorderedUnboundedByValueContainer

	UseMSVC

	Association Role Properties
	AssocClassContainer
	AssocClassDataMemberIsVolatile
	AssocClassDataMemberMutability
	AssocClassDataMemberName
	AssocClassDataMemberVisibility
	AssocClassForwardReferenceOnly
	AssocClassGetIsConst
	AssocClassGetName
	AssocClassGetResultIsConst
	AssocClassGetSetKinds
	AssocClassInitialValue
	AssocClassSetName
	AssocClassSetReturnsValue
	CodeName
	ContainerClass
	ContainerGet
	ContainerSet
	DataMemberFieldSize
	DataMemberIsVolatile
	DataMemberMutability
	DataMemberName
	DataMemberVisibility
	ForwardReferenceOnly
	GenerateAssocClassDataMember
	GenerateAssocClassGetOperation
	GenerateAssocClassSetOperation
	GenerateDataMember
	GenerateGetOperation
	GenerateQualifiedGetOperation
	GenerateQualifiedSetOperation
	GenerateSetOperation
	GetIsConst
	GetName
	GetResultIsConst
	GetSetByReference
	GetSetKinds
	InitialValue
	InlineAssocClassGet
	InlineAssocClassSet
	InlineGet
	InlineQualifiedGet
	InlineQualifiedSet
	InlineSet
	NameIfUnlabeled
	QualifiedContainer
	QualifiedGetIsConst
	QualifiedGetName
	QualifiedGetResultIsConst
	QualifiedGetSetByReference
	QualifiedSetName
	QualifiedSetReturnsValue
	SetName
	SetReturnsValue

	Subsystem Properties
	Directory
	DirectoryIsOnSearchList
	PrecompiledHeader

	Symbols
	$mode
	$ordered
	$cardinality
	$keyCount
	$keyn
	$typen
	$types
	$upper
	$lower
	$bounds
	$targetClass
	$target
	$supplier
	$limit
	$qualcont
	$qualname
	$qualtype
	$starIfByRef
	$commaIfKeys
	$commaIfNoKeys

	Analyzer Setup
	Configuring the Analyzer
	Preference Settings for New C++ Features
	Starting a New Project
	Adding Classes, Data Members, and Member Functions
	Rational Rose Project Files
	Exceptions

	Index

