
Rational Rose 2000e
Using Rose

Copyright © 1993–2000 Rational Software Corporation.
All rights reserved.

Part Number: 800-023321-000

Revision 7.0, March 2000, (Software Release 2000e)

This document is subject to change without notice.

GOVERNMENT RIGHTS LEGEND: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 227.7202-
1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR
12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14, as applicable.

Rational, the Rational logo, Rational Rose, ClearCase, and Rational Unified
Process are trademarks or registered trademarks of Rational Software
Corporation in the United States and in other countries. All other names are
used for identification purposes only and are trademarks or registered
trademarks of their respective companies.

Visual SourceSafe is a trademark or registered trademark of Microsoft
Corporation.

T Quatrani VISUAL MODELING WITH RATIONAL ROSE AND UML, (pages
3,4,29,39,73,142,153). © 1998 Addison Wesley Longman Inc., -Reprinted by
permission of Addison Wesley Longman. All rights reserved.

ii Rational Rose 2000e, Using Rose

Contents

Contents iii

List of Figures xvii

List of Tables xxi

Preface xxiii

How this Manual is Organized xxiii

Online Help xxv

Online Manuals xxv

Related Documentation xxvi

File Names xxvi

Starting Rational Rose xxvii
Rose.ini Location xxvii

Chapter 1 Introduction to Visual Modeling Using Rational Rose 1
Visual Modeling 1
Modeling with Rational Rose 2
Notations 4
Features 4
Extending Rational Rose 5
Rational Rose 2000e, Using Rose iii

Contents
Chapter 2 Getting Started with Rational Rose 7

The Application Window 8
Control-Menu Box 8
Title Bar 9
Minimize and Maximize Buttons 9
Menu Bar 9
Toolbar 9
Toolbox 12

Customizing the Toolbox 14
Browser 14

Documentation Window 14

Diagram Window 15

Overview Window 16

Specification Window 17

Printing Diagrams and Specifications 17
Print Preview 18

Zoom In and Zoom Out 18
Print 18
One Page and Two Page 18
Close 18

Apply Filter Dialog Box 18

Saving in Various Formats 19

Modifying the Rose.ini File 19

Deleting Model Elements 20
Shallow Delete 20
Deep Delete 20

Chapter 3 The Browser 21

Overview 21

Viewing the Browser 22
Hiding and Displaying the Browser 22
Positioning the Browser 22
iv Rational Rose 2000e, Using Rose

Docking and Undocking the Browser 23
Expanding and Collapsing the Browser Tree 23
Selecting Multiple Elements in the Browser 24
Navigating a Model 24
Creating and Editing Model Elements 25

Naming an Element in the Browser 26
Using Drag-and-Drop in the Browser 26

Browser to Browser Capabilities 27
Browser to Diagram Capabilities 28
Browser to Specification Capabilities 29

Sorting Packages in the Browser 29

Chapter 4 Introduction to Diagrams 31

Overview 31

Diagram Windows 31
Viewing Diagrams 32
Displaying Multiple Diagrams 33

Creating, Linking, Displaying, Renaming, and Deleting Diagrams 34
Create a New Diagram 34

Linking a Diagram 35
Display a Diagram 35
Rename a Diagram 36
Delete a Diagram 36

Selecting Multiple Elements in the Diagram 36

Creating and Naming Model Elements 37
Create an Element on the Diagram 37
Create an Element in the Browser 37
Naming Model Elements 37

Naming an Element on the Diagram 38
Creating/Naming an Overloaded Element on the Diagram 39
Placing an Overloaded Element on the Diagram from the
Browser 39
Fully Qualified Names 40
Renaming Model Elements 40
Reassigning Model Elements 40
Rational Rose 2000e, Using Rose v

Contents
Manipulating Icons 41
Deleting, Cutting, Copying, and Pasting Icons 42

Correlations 43
Creating Correlations Between Elements 43

Adorning the Diagrams 45
Manipulating Text 45

Understanding Model Workspaces 46
Differences between a Saved Model and a Model Workspace 46
Model Workspace Sample 47
Saving a Model Workspace 49
Loading a Model Workspace 49

Chapter 5 Introduction to Specifications 51

Displaying Specifications 51
Custom Specifications 52

Editing Specifications 52

Common Specification Elements 53
Dialog Boxes 53
General Tab 53
Detail Tab 55
Files Tab 55
Tab Buttons 57

Navigating the Tabs 58
Adding and Deleting Entries 58
Editing Entries 58

Chapter 6 Class Diagrams and Specifications 61

Class Diagram Overview 61
Creating and Displaying a Class Diagram 62
Class Diagram Toolbox 62
Assigning a Class to Another Logical Package 64
Adding and Hiding Classes, and Filtering Class Relationships 64
vi Rational Rose 2000e, Using Rose

Class Specification 65
Class Specification—General Tab 66

Type 66
Parent 66
Stereotype 67
Export Control 67

Class Specification—Detail Tab 68
Cardinality 69
Space 69
Persistence 70
Concurrency 71
Abstract 71
Formal Arguments 72

Class Specification—Operations Tab 72
Show Inherited 74

Class Specification—Attributes Tab 75
Class Specification—Relations Tab 77
Class Specification—Component Tab 78
Class Specification—Nested Tab 79
Class Specification—Files Tab 81

Class Attribute Specification 82
Class Attribute—General Tab 82

Class 83
Show Classes 83
Type 83
Initial Value 83

Class Attribute—Detail Tab 84
Containment 84
Static 85
Derived 85

Operation Specification 86
Operation Specification—General Tab 87

Return Class 87
Operation Specification—Detail Tab 88

Arguments 88
Protocol 88
Qualifications 89
Exceptions 89
Rational Rose 2000e, Using Rose vii

Contents
Size 89
Time 89
Concurrency 90

Operation Specification—Preconditions Tab 91
Preconditions 91
Interaction Diagram 91

Operation Specification—Semantics Tab 92
Semantics 92
Interaction Diagram 92

Operation Specification—Postconditions Tab 93
Postcondition 93
Interaction Diagram 93

Operation Specification—Files Tab 94

Parameter Specification 94
Defining a New Parameter 94
Parameter Specification—General Tab 95

Default 95
Owner 95
Type 96

Association Specification 96
Association Specification—General Tab 97

Parent 97
Stereotype 97
Role 98
Element 98

Association Specification—Detail Tab 98
Derived 99
Link Element 99
Name Direction 99
Constraints 99

Association Specification—Role B General Tab 100
Association Specification—Role A and B Detail Tab 101

Navigable 101
Aggregate 102
Static 102
Friend 102
Containment of 102
Keys/Qualifiers 103
viii Rational Rose 2000e, Using Rose

Generalize Specification 103
Generalize Specification—General Tab 104

Friendship Required 104
Virtual Inheritance 104

Realize Specification 104
Realize Specification—General Tab 105

Dependency Specification 105
Dependency Specification—General Tab 106

Has Relationship (Booch Only) 106
Has Specification—General Tab 107
Has Specification—Detail Tab 108

Key/Qualifier Specification 109
Defining a New Key/Qualifier 109
Key/Qualifier Specification—General Tab 110

Owner 110

Chapter 7 Use-Case Diagrams and Specifications 111

Use-Case Diagram Overview 111
Actors 112
Use Case 112
Flow of Events 113
Relationships 113
Association 114
Dependency 114

Extend Stereotype 115
Include Stereotype 115
Refine Stereotype 115

Generalization 116
Use-Case Diagram Toolbox 117

Use-Case Specification 118
Use-Case Specification—General Tab 118

Name 119
Package 119
Rank 119
Abstract 119
Rational Rose 2000e, Using Rose ix

Contents
Use-Case Specification—Diagram Tab 120
Diagrams 120

Use-Case Specification—Relations Tab 121
Relations 121

Generalize Specification—General Tab 122
Stereotype 122
Friendship Required 123
Virtual Inheritance 123

Actor Specification 123

Chapter 8 State Machine Diagrams and Specifications 125

Creating and Displaying a State Machine Diagram 125

State Machine Specification 126
State Machine Specification General Tab 126

Statechart Diagram Overview 127
Creating a Statechart Diagram 127

Automatic Transmission Example 128

Activity Diagram Overview 129
Using Activity Diagrams 129
Understanding Workflows 129

Creating an Activity Diagram 130

Workflow Modeling 131
Purposes of Workflow Modeling 131
Defining a Workflow 131

Modeling a Workflow with an Activity Diagram 132

Activity Diagram-Specific Model Elements 133
Activities 133
Swimlanes 133
Objects 133
Object Flow 134
Understanding Objects and Object Flows 135

Changing the State of an Object 136

Shared State Machine Diagram Model Elements 137
x Rational Rose 2000e, Using Rose

States 137
Start and End States 137
Transitions 137
Transition to Self 138
Decisions 138
Synchronizations 138

Swimlane Specification 138
Swimlane Specification General Tab 139

State and Activity Specifications 139
State and Activity Specification General Tab 140
State and Activity Specification Actions Tab 141

Type 141
Action Expression 141

State and Activity Specification Transitions Tab 142
State and Activity Specification Swimlanes Tab 143

Action Specification 143

Transition Specification 145
Transition Specification – General Tab 145
State Transition Specification Detail Tab 146

Guard Condition 146
Transition Between Substates 147

Decision Specification 147
Decision Specification General Tab 148
Decision Specification Transitions Tab 149
Decision Specification Swimlanes Tab 150

Synchronization Specification 150
Synchronization Specification General Tab 151
Synchronization Specification Transitions Tab 152

Object Specification (Activity Diagrams) 152
Object Specification General Tab 153
Object Specification Incoming Object Flows Tab 154
Object Specification Outgoing Object Flows Tab 155

Object Flow Specification 155
Rational Rose 2000e, Using Rose xi

Contents
Object Flow Specification General Tab 156

Chapter 9 Interaction Diagrams and Specifications 157

Interaction Diagram Overview 157
Creating and Displaying an Interaction Diagram 157

Collaboration Diagrams 158

Sequence Diagrams 159

Toolboxes 160
Collaboration Diagram Toolbox 160
Sequence Diagram Toolbox 161
Common Collaboration and Sequence Diagram Icons 162

Object 162
Messages 163
Message Numbering 164
Assigning an Operation to a Message 165

Collaboration Specific Toolbox Icons 166
Links 166

Sequence Numbering 167
Top-Level Numbering 167
Hierarchical Numbering 167
Scripts 167

Focus of Control 169
Displaying Focus of Control 169
Coloring Focus of Control 170
Moving the Focus of Control 170
Nested Focus of Control 170

Creating Alternative Diagrams 170
Toggling between Interaction Diagrams 171
Creating a Collaboration Diagram from a Sequence Diagram 171
Creating a Sequence Diagram from a Collaboration Diagram 171

Object Specification 171
Object Specification—General Tab 172

Name 172
Class 173
xii Rational Rose 2000e, Using Rose

Persistence Field 173
Multiple Instances Check Box 173

Class Instance Specifications 174
Class Instance Specification—General Tab 174

Class 175

Link Specification 175
Link Specification—General Tab 176

Assoc 176
Supplier & Client Visibility 177
Shared 178
Role 178

Link Specification—Messages Tab 179
Icon 179
Sequence 179
Message Name 180
Receiver 180

Message Specification 180
Message Specification—General Tab 181

Class 181
Message Specification—Detail Tab 182

Synchronization 183
Frequency 183

Chapter 10 Component Diagrams and Specifications 185

Component Diagram Overview 185
Creating and Displaying a Component Diagram 186
Component Diagram Toolbox 186
Assigning a Component to Another Package 186

Component Specifications 187
Component Specification—General Tab 188

Stereotype (Component) 188
Language 188

Component Specification—Detail Tab 189
Declarations 190

Component Specification—Realizes Tab 190
Show all Classes 191
Rational Rose 2000e, Using Rose xiii

Contents
Classes 191
Language 191

Component Specification—Files Tab 191

Package Specification 192
Package Specification—General Tab 192

Package 193
Package Specification—Detail Tab 193

Component Diagrams 193
Package Specification—Realizes Tab 194
Package Specification—Files Tab 194

Chapter 11 Deployment Diagrams and Specifications 195

Deployment Diagram Overview 195
Creating and Displaying a Deployment Diagram 196
Deployment Diagram Toolbox 196

Processor Specification 196
Processor Specification—General Tab 197
Processor Specification—Detail Tab 198

Characteristics 198
Processes 199
Scheduling 199

Device Specification 200
Device Specification—General Tab 200
Device Specification—Detail Tab 201

Connection Specifications 201

Process Specification 202
Process Specification—General Tab 203

Processor 203
Priority 203

Chapter 12 Stereotypes 205

Overview 205
Benefits to Using Stereotypes 205
User-Defined Stereotypes 206
xiv Rational Rose 2000e, Using Rose

Viewing Stereotypes 206
Diagram Tab 207
Browser Tab 208

Creating Stereotypes 209
Creating a New Stereotype for the Current Model 209
Creating a New Stereotype Configuration File 209
Creating a New Stereotype for All Rose Models 210
Creating Stereotype Icons 211
Creating a Diagram Icon 212
Creating Diagram Toolbox and List View Icons 212

Adding Stereotypes to the Diagram Toolbox 213

Subsystem Stereotype Package 214
Subsystem Stereotype Sample 214

Chapter 13 Framework Wizard Add-In 217

Activating the Framework Wizard Add-In 217

Creating a New Model from a Framework 218

Creating and Deleting Frameworks 219
The Framework Library 219
Creating a New Framework 220
Changing or Deleting a Framework 222

Chapter 14 Type Library Importer 223

What Is a Type Library? 223

Why Would I Want to Import Type Libraries into the Model? 224

What COM Components Can Be Imported into the Model? 224

How Is a Type Library Presented? 225
A Type Library in Rational Rose 225
A Type Library in the OLE Viewer in Visual Studio 231
A Type Library in the Object Browser in Visual Basic 232

Importing a Type Library Into the Model 233
Rational Rose 2000e, Using Rose xv

Contents
Importing a New Version of an Existing Type Library 234

Hiding Type Library Items 234
Show Hidden Items Selected 234
Show Hidden Items Cleared 235

Using an Imported Type Library 236

Adding Class Members to a Quick Import Type Library 237

Customizing the Type Library Importer 237

Appendix A Upgrading From a Previous Release 241

Upgrading from Rational Rose 3.0 or Later 241

Upgrading from Releases Prior to Rational Rose 3.0 241

Understanding Petal File Versions 242

Appendix B Contacting Technical Support 243

When Contacting Rational Technical Support 243

How to Contact Rational Customer Support 244

Telephone and E-mail 244

Fax 245

Rational Web Site 245

Rational Technical Support Call Center Contact Information 245
North America 245
Europe 245
Asian Pacific 246

Index 247
xvi Rational Rose 2000e, Using Rose

List of Figures

Figure 1 Application Window 8
Figure 2 Standard Toolbar 9
Figure 3 Application Window 22
Figure 4 Browser—Collapsed and Expanded Tree 23
Figure 5 Navigating a Model 25

Figure 6 Diagram Window 32
Figure 7 Multiple Diagrams—Cascade Windows 33
Figure 8 Multiple Diagrams—Tiled Windows 34
Figure 9 Selected Elements in a Diagram 37
Figure 10 Model Workspace Loaded Units 48
Figure 11 General Tab 53
Figure 12 Detail Tab 55
Figure 13 Files Tab 56
Figure 14 Tab Buttons 57
Figure 15 Class Diagram Example 61
Figure 16 Class Diagram Toolbox 63
Figure 17 Class Specification—General Tab 66
Figure 18 Class Specification—Detail Tab 68
Figure 19 Class Specifications—Operations Tab 73
Figure 20 Class Specification—Attributes Tab 75
Figure 21 Class Specification—Relations Tab 77
Figure 22 Class Specification—Component Tab 78
Figure 23 Class Specification—Nested Tab 80
Figure 24 Class Attribute—General Tab 82
Figure 25 Class Attribute—Detail Tab 84
Rational Rose 2000e, Using Rose xvii

List of Figures
Figure 26 Operations Specification—General Tab 87
Figure 27 Operation Specification—Detail Tab 88
Figure 28 Operation Specification—Precondition Tab 91
Figure 29 Operations Specification—Semantics Tab 92
Figure 30 Operation Specification—Postcondition Tab 93
Figure 31 Parameter Specification—General Tab 95
Figure 32 Association Specification—General Tab 97
Figure 33 Association Specification—Detail Tab 98
Figure 34 Association Specification—Role A and B General Tab 100
Figure 35 Association Specification—Role A and B Detail Tab 101
Figure 36 Generalize Specification—General Tab 104
Figure 37 Realize Specification—General Tab 105
Figure 38 Dependency Specification—General Tab 106
Figure 39 Has Specification—General Tab 107
Figure 40 Has Specification—Detail Tab 108
Figure 41 Key/Qualifier Specification—General Tab 110
Figure 42 Use-Case Diagram Toolbox 117
Figure 43 Use-Case Specification—General Tab 118
Figure 44 Use-Case Specification—Diagram Tab 120
Figure 45 Use-Case Specification—Relations Tab 121
Figure 46 Generalize Specification—General Tab 122
Figure 47 State Machine Specification—General Tab 126
Figure 48 Automatic Transmission Example 128
Figure 49 Objects on an Activity Diagram Sample 134
Figure 50 Object Flow Sample 135
Figure 51 CD Player Sample 136
Figure 52 Swimlane Specification—General Tab 139
Figure 53 State and Activity Specification—General Tab 140
Figure 54 State and Activity Specification—Actions Tab 141
Figure 55 State and Activity Specification—Transitions Tab 142
Figure 56 State and Activity Specification—Swimlanes Tab 143
Figure 57 State Transition Specification—General Tab 145
Figure 58 State Transition Specification—Detail Tab 146
Figure 59 Decision Specification—General Tab 148
Figure 60 Decision Specification—Transition Tab 149
Figure 61 Decision Specification—Swimlane Tab 150
xviii Rational Rose 2000e, Using Rose

Figure 62 Synchronization Specification—General Tab 151
Figure 63 Synchronization Specification—Transitions Tab 152
Figure 64 Object Specification—General Tab 153
Figure 65 Object Specification—Incoming Object Flows Tab 154
Figure 66 Object Specification—Outgoing Object Flows Tab 155
Figure 67 Object Flow Specification—General Tab 156
Figure 68 Collaboration Diagram Example 159
Figure 69 Sequence Diagram Example 160
Figure 70 Collaboration Diagram Toolbox 161
Figure 71 Sequence Diagram Toolbox 161
Figure 72 Multiple Object Diagram 163
Figure 73 Focus of Control Diagram Example 169
Figure 74 Object Specification—General Tab 172
Figure 75 Class Instance Specification—General Tab 174
Figure 76 Link Specification—General Tab 176
Figure 77 Link Specification—Message Tab 179
Figure 78 Message Specification—General Tab 181
Figure 79 Message Specification—Detail Tab 182
Figure 80 Component Diagram Example 185
Figure 81 Component Diagram Toolbox 186
Figure 82 Component Specification—General Tab 188
Figure 83 Component Specification—Detail Tab 189
Figure 84 Component Specification—Realizes Tab 190
Figure 85 Package Specification—General Tab 192
Figure 86 Package Specification—Detail Tab 193
Figure 87 Deployment Diagram Example 195
Figure 88 Deployment Diagram Toolbox 196
Figure 89 Processor Specification—General Tab 197
Figure 90 Processor Specification—Detail Tab 198
Figure 91 Device Specification—General Tab 200
Figure 92 Device Specification—Detail Tab 201
Figure 93 Process Specification—General Tab 203
Figure 94 Options Dialog Box—Diagram Tab 207
Figure 95 Options Dialog Box—Browser Tab 208
Figure 96 Subsystem Stereotype Sample 214
Figure 97 Create New Model Dialog Box 218
Rational Rose 2000e, Using Rose xix

List of Figures
Figure 98 Framework Wizard Specification Page 221
Figure 99 Framework Wizard Summary Page 222
Figure 100 The Component View of the Microsoft Scripting Runtime Type Library

225
Figure 101 The Component Overview Diagram for a Model 226
Figure 102 The Logical View of the Microsoft Scripting Runtime Type Library 227
Figure 103 The Logical Overview Diagram of the Microsoft Scripting Runtime Type

Library 228
Figure 104 The OLE Viewer in Visual Studio 231
Figure 105 The Object Browser in Visual Basic 232
Figure 106 Type Library with Show Hidden Items Option Selected 235
Figure 107 Type Library with Show Hidden Items Option Cleared 236
Figure 108 The COM Properties Dialog Box 238
xx Rational Rose 2000e, Using Rose

Rational Rose 2000e, Using Rose xxi

List of Tables

Table 1 Print Dialog Box Tabs 17
Table 2 Browser to Browser Capabilities 27
Table 3 Browser to Diagram Capabilities 28
Table 4 Browser to Specification Capabilities 29
Table 5 Export Control Field Options 67
Table 6 Cardinality Field Options 69
Table 7 Persistence Field Options 70
Table 8 Class Concurrency Options 71
Table 9 Physical Containment Options 84
Table 10 Concurrency Field Options 90
Table 11 Containment Field Options 103
Table 12 Persistence Field Options 173
Table 13 Supplier & Client Visibility Options 177
Table 14 Synchronization Options 183
Table 15 Frequency Options 183
Table 16 Scheduling Field Options 199
Table 17 COM Stereotypes 229
Table 18 Rational Rose Petal File Versions 242

Preface

The Rational Rose 2000e, Using Rose manual provides important usage
and reference information to effectively use Rational Rose. This
manual is designed for all users of Rational Rose, and provides
information on the following Rational Rose features and concepts:

� Diagrams

� Specifications

� The Browser

� Standard Rational Rose Add-Ins

The Rational Rose 2000e, Using Rose manual does not contain
information on the standard Rational Rose add-ins. For more
information on these add-ins, refer to the language-specific
documentation shipped with this edition.

To use Rational Rose 2000e, you should be comfortable with basic
Windows techniques.

Rational Rose includes an online tutorial which provides a hands-on
introduction to Rational Rose features. The Rational Rose tutorial
resides on the Documentation CD. However, the primary source for
reference information is the online help.

How this Manual is Organized

Chapter 1Chapter 1Chapter 1Chapter 1Introduction to Visual Modeling Using Rational RoseIntroduction to Visual Modeling Using Rational RoseIntroduction to Visual Modeling Using Rational RoseIntroduction to Visual Modeling Using Rational Rose

Introduces you to Visual Modeling and Rational Rose. It also gives a
brief explanation of UML Notation and describes the many features of
Rational Rose.
Rational Rose 2000e, Using Rose xxiii

Preface
Chapter 2Chapter 2Chapter 2Chapter 2Getting Started with Rational RoseGetting Started with Rational RoseGetting Started with Rational RoseGetting Started with Rational Rose

Describes how the Rational Rose graphical user interface displays,
creates, modifies, manipulates, and documents the elements of a
model using the Application, Documentation, Diagram, and
Specification windows.

Chapter 3Chapter 3Chapter 3Chapter 3The BrowserThe BrowserThe BrowserThe Browser

Explains the various capabilities of the browser including how to
navigate in a model.

Chapter 4Chapter 4Chapter 4Chapter 4Introduction to DiagramsIntroduction to DiagramsIntroduction to DiagramsIntroduction to Diagrams

Explains how to create, display and modify diagrams in a model.

Chapter 5Chapter 5Chapter 5Chapter 5Introduction to SpecificationsIntroduction to SpecificationsIntroduction to SpecificationsIntroduction to Specifications

Explains how to display and edit a specification. This chapter also
explains the common elements of a specification and how to navigate
through the default tabs.

Chapter 6Chapter 6Chapter 6Chapter 6Class Diagrams and SpecificationsClass Diagrams and SpecificationsClass Diagrams and SpecificationsClass Diagrams and Specifications

Describes the class diagram, the class specification and all of the
specifications that derive from a class diagram. The Class Attribute,
Operation, Association, Generalize, Dependency, Logical Package, Has
Relationship, and Key/Qualifier Specifications are all described in this
chapter.

Chapter 7Chapter 7Chapter 7Chapter 7Use-Case Diagrams and SpecificationsUse-Case Diagrams and SpecificationsUse-Case Diagrams and SpecificationsUse-Case Diagrams and Specifications

Explains how use-case diagrams graphically depict system behavior.
This chapter also lists the features of the Use-Case and Actor
Specifications.

Chapter 8Chapter 8Chapter 8Chapter 8State Machine Diagrams and SpecificationsState Machine Diagrams and SpecificationsState Machine Diagrams and SpecificationsState Machine Diagrams and Specifications

Describes the two diagrams contained within a state machine:
statechart diagrams and activity diagrams. The chapter explains the
concept of workflow modeling in activity diagrams. The chapter also
explains the specifications and model elements associated with
statechart and activity diagrams.
xxiv Rational Rose 2000e, Using Rose

Online Help
Chapter 9Chapter 9Chapter 9Chapter 9Interaction Diagrams and SpecificationsInteraction Diagrams and SpecificationsInteraction Diagrams and SpecificationsInteraction Diagrams and Specifications

Describes the differences and similarities between collaboration and
sequence Diagrams. The chapter also explains Focus of Control,
Message Numbering, and the various specifications associated with
both diagrams.

Chapter 10Chapter 10Chapter 10Chapter 10Component Diagrams and SpecificationsComponent Diagrams and SpecificationsComponent Diagrams and SpecificationsComponent Diagrams and Specifications

Explains the component diagram and toolbox. The chapter also
describes the Component and Package Specifications.

Chapter 11Chapter 11Chapter 11Chapter 11Deployment Diagrams and SpecificationsDeployment Diagrams and SpecificationsDeployment Diagrams and SpecificationsDeployment Diagrams and Specifications

Provides an overview of the deployment diagram and explains the
Processor, Device, Connection and Process Specifications.

Chapter 12Chapter 12Chapter 12Chapter 12StereotypesStereotypesStereotypesStereotypes

Describes the benefits of using stereotypes and how to create user-
defined stereotypes. This chapter also explains how to create and add
stereotypes to a model.

Chapter 13Chapter 13Chapter 13Chapter 13Framework Add-InFramework Add-InFramework Add-InFramework Add-In

Provides instruction on activating the Framework Add-In, creating a
new model from a framework, and deleting a framework. This chapter
also describes the framework library.

Chapter 14—Type Library ImporterChapter 14—Type Library ImporterChapter 14—Type Library ImporterChapter 14—Type Library Importer

The Type Library Importer Add-In allows you to import the type library
of COM (Component Object Model) components into your model by
dragging the file from the Windows Explorer and drop it in Rational
Rose.

Online Help

Rational Rose 2000e includes comprehensive online help with
hypertext links and a two-level search index.

Online Manuals

Rational Rose 2000e includes versions of all user manuals online on
the Documentation CD.
Rational Rose 2000e, Using Rose xxv

Preface
Related Documentation

After installation and before you begin using Rational Rose, please
review any readme.txt files and Release Notes to ensure that you
have the latest information about the product. The release notes are
included with your product documentation and are available online
from the Start menu.

For additional resources on UML, Visual Modeling, and Rational Rose,
refer to the following publications:

� Quatrani, Terry. Visual Modeling with Rational Rose and
UML.Reading, MA. Addison Wesley Longman, Inc., 1998 (Included
with product documentation).

This book introduces the most popular and influential
elements-the Rational Objectory Process, the Unified Modeling
Language (UML), and Rational Rose—and offers practical
direction on specifying visualizing, documenting, and creating
software solutions.

� Kruchten, Philippe. The Rational Unified Process - An
Introduction.Reading, MA. Addison Wesley Longman, Inc., 1998.

This book introduces you to the Rational Unified Process.

� Booch, Grady; Rumbaugh, James; Jacobson, Ivar. The Unified
Modeling Language User Guide. Reading, MA. Addison Wesley
Longman, Inc., 1999.

This book teaches you how to use and apply the Unified
Modeling Language.

File Names

Where file names appear in examples, Windows syntax is depicted. To
obtain a legal UNIX file name, eliminate any drive prefix and change the
backslashes to slashes:

c:\project\username

becomes

/project/username
xxvi Rational Rose 2000e, Using Rose

Starting Rational Rose
Starting Rational Rose

On start-up, Rational Rose extracts information from the registry and
from the rose.ini file.

Rose.ini Location

The rose.ini file is located in the following locations:

� In Windows 95/98, the rose.ini file is located in the same folder as
the Rational Rose executable.

� In Windows 2000, the rose.ini file is located at: C:\Documents and
Settings\<<username>>\Application Data\Rational\Rose\6.0

� In Windows NT, the rose.ini file is located at:
C:\WINNT\Profiles\<<username>>\Application
Data\Rational\Rose\6.0

� On UNIX platforms, the rose.ini file is located in the in home
directory.

For more information on the rose.ini file, refer to the online help.
Rational Rose 2000e, Using Rose xxvii

Chapter 1

Introduction to Visual Modeling Using
Rational Rose

Rational Rose provides support for two essential elements of modern
software engineering: component based development and controlled
iterative development. While these concepts are conceptually
independent, their usage in combination is both natural and
beneficial. [Rational Rose’s model-diagram architecture facilitates use
of the Unified Modeling Language (UML), Component Object Modeling
(COM), Object Modeling Technique (OMT), and Booch ‘93 method for
visual modeling. Using semantic information ensures correctness by
construction and maintaining consistency.]

Visual Modeling

Increasing complexity, resulting from a highly competitive and ever-
changing business environment, offers unique challenges to system
developers. Models help organize, visualize, understand, and create
complex things.

Visual Modeling is the mapping of real world processes of a system to
a graphical representation. Models are useful for understanding
problems, communicating with everyone involved with the project
(customers, domain experts, analysts, designers, etc.), modeling
complex systems, preparing documentation, and designing programs
and databases. Modeling promotes better understanding of
requirements, cleaner designs, and more maintainable systems.

As software systems become more complex, we cannot understand
them in their entirety. To effectively build a complex system, the
developer begins by looking at the big picture without getting caught
up in the details. A model is an ideal way to portray the abstractions of
a complex problem by filtering out nonessential details. The developer
Rational Rose 2000e, Using Rose 1

Chapter 1 Introduction to Visual Modeling Using Rational Rose
must abstract different views or blueprints of the system, build models
using precise notations, verify that the models satisfy the requirements
of the system, and gradually add detail to transform the models into an
implementation.

The models of a software system are analogous to the blueprints of a
building. An architect could not design a structure in its entirety with
one blueprint. Instead a blueprint is drawn up for the electrician, the
plumber, the carpenter, and so on. When designing a software system,
the software engineer deals with similar complexities. Different models
are drawn up to serve as blueprints for marketing, software developers,
system developers, quality assurance engineers, etc. The models are
designed to meet the needs of a specific audience or task, thereby
making them more understandable and manageable.

Visual modeling has one communication standard: Unified Modeling
Language (UML). The UML provides a smooth transition between the
business domain and the computer domain. By communicating with
the UML, all members of a design team work with a common
vocabulary, minimizing miscommunication and increasing efficiency.
Visualizing the components and relationships of a complex system
make it easier to understand than describing it with words.

Visual modeling captures business processes by defining the software
system requirements from the user’s perspective. This streamlines the
design and development process. Visual modeling also defines
architecture by providing the capability to capture the logical software
architecture independent of the software language. This method
provides flexibility to your system design since the logical architecture
can always be mapped to a different software language. Finally, with
visual modeling, you can reuse parts of a system or an application by
creating components of your design. These components can then be
shared and reused by different members of a team allowing changes to
be easily incorporated into already existing development software.

Modeling with Rational Rose

Rational Rose is the visual modeling software solution that lets you
create, analyze, design, view, modify and manipulate components and
implement systems in a way that makes them truly easy to
communicate. You can graphically depict an overview of the behavior
of your system with a use-case diagram. Rational Rose provides the
collaboration diagram as an alternate graphical representation of a
2 Rational Rose 2000e, Using Rose

use-case diagram. It shows object interactions organized around
objects and their links to one another. The statechart diagram provides
additional analysis techniques for classes with significant dynamic
behavior. A statechart diagram shows the life history of a given class,
the events that cause a transition from one state to another, and the
actions that result from a state change. Activity diagrams provide a
way to model the workflow of a business process or a way to model a
class operation.

Rational Rose provides the notation needed to specify and document
the system architecture. The logical architecture is captured in class
diagrams that contain the classes and relationships that represent the
key abstractions of the system under development. The component
architecture is captured in the component diagrams that focus on the
actual software module organization within the development
environment. The deployment architecture is captured in a deployment
diagram that maps software to processing nodesit shows the
configuration of run-time processing elements and the software
processes living in them.

Rational Rose lets you realize all the benefits of visual modeling. It is
designed to provide software developers with a complete set of visual
modeling tools for development of robust, efficient solutions to real
business needs.
Rational Rose 2000e, Using Rose 3

Chapter 1 Introduction to Visual Modeling Using Rational Rose
Notations

Notation plays an important part in any application development
activity—it is the glue that holds the process together. UML provides a
very robust notation, which grows from analysis into design. Certain
elements of the notation (that is, use cases, classes, associations,
aggregations, inheritance) are introduced during analysis. Other
elements of the notation (that is, containment indicators and
properties) are introduced during design.

Notation has the following roles:

� Communicates decisions that are not obvious or cannot be inferred
from the code itself

� Provides semantics that capture important strategic and tactical
decisions

� Offers a concrete form and tools to manipulate

Features

Rational Rose provides the following features to facilitate the analysis,
design, and iterative construction of your applications:

� Use-Case Analysis

� Object-Oriented Modeling

� User-Configurable Support for UML, COM, OMT, and Booch ‘93

� Semantic Checking

� Support for Controlled Iterative Development

� Round-Trip Engineering

� Parallel Multiuser Development through Repository and Private
Support

� Integration with Data Modeling Tools

� Documentation Generation

� Rational Rose Scripting for Integration and Extensibility

� OLE Linking

� OLE Automation

� Multiple Platform Availability
4 Rational Rose 2000e, Using Rose

Extending Rational Rose

The add-in feature allows you to quickly and accurately customize your
Rational Rose environment depending on your development needs.
Using the add-in tool, you can install language (for example, Visual
Basic, Visual Java, etc.) and non- language (for example Microsoft
Project) tools while in Rational Rose.

When an add-in is installed, it is automatically in an activated state.
Add-Ins can install:

� Menus (.mnu file)

� Help files (.hlp file)

� Contents tab file (.cnt file)

� Properties (.pty file)

� Executables (.exe)

� Script files (.ebs script source file and .ebx compiled script file)

� OLE servers (.dll file)

Additionally, an add-in can define fundamental types, predefined
stereotypes, and metafiles. Note that an add-in is not to be considered
strictly a one-to-one association with a round-trip engineering (RTE)
integration.

Add-In Manager

The Add-In Manager allows you to control the state of the add-in,
whether it is activated or deactivated. If the add-in is deactivated, it is
still visible through the Add-In Manager. However, the add-in’s
properties and menus are not available.

Installing an Add-In

Use the following steps to install an add-in on your Windows 95,
Windows 98, or Windows NT system:

1. Exit Rational Rose.

2. Insert the application’s CD ROM that you wish to install.

3. Run the setup.exe program.

4. Respond to the dialogs to complete your installation.

5. Restart Rational Rose. Confirm that your add-in is activated using
the Add-In Manager menu.
Rational Rose 2000e, Using Rose 5

Chapter 2

Getting Started with Rational Rose

When you first start Rational Rose, some editions will display a
Framework dialog box. From this dialog box, you can load a model with
predefined model elements, allowing you to focus your modeling efforts
on the parts that are unique to your system, instead of “reinventing the
wheel.” For further information on the Framework Wizard, refer to the
13 Framework Wizard Add-In.

Independent of Frameworks, Rational Rose’s graphical user interface
displays, creates, modifies, manipulates, and documents the elements
in a model using four kinds of windows:

� Application window

� Documentation window

� Diagram window

� Specification window

Rational Rose displays the diagram, specification and documentation
windows within the application window.
Rational Rose 2000e, Using Rose 7

Chapter 2 Getting Started with Rational Rose
The Application Window

An application window contains a control-menu box, a menu bar, a
title bar, a toolbar, a toolbox, a minimize button, a maximize button,
the browser, and the documentation window.

Figure 1 Application Window

Control-Menu Box

Clicking the Control-Menu Box (on the application or diagram window)
displays a drop-down list box with the following options:

Restore: Restores focus to that diagram window.

Move: Highlights the border of the window. Move your pointer to the
Title Bar, click and drag the window to the desired location.

Menu Bar Diagram Window

Toolbar

Specification Window

Browser

Documentation
Window
8 Rational Rose 2000e, Using Rose

The Application Window
Size: Highlights the border of the window. Move your pointer to the
border and resize the window as desired.

Minimize: Reduces the window to an icon placing it in the bottom of the
application window.

Maximize: Enlarges the window to consume the entire screen.

Close: Closes the window.

Title Bar

The title bar always displays diagram type. Additional information (like
the view or diagram name) is often displayed depending on the
diagram/model being viewed.

Minimize and Maximize Buttons

These buttons allow you to minimize or maximize the diagram or
application window.

Menu Bar

The menu bar changes depending on which diagram you are currently
working on. For more information regarding the menu bar see the
Diagram Overview chapter later in this manual.

Toolbar

The standard toolbar is displayed directly under the menu bar, along
the top of the application window. This toolbar is independent of the
open diagram window.

The following icons are available for use on the standard toolbar,
independent of the open diagram window.

Figure 2 Standard Toolbar

Create New Model

Clicking the New File icon creates a new model.
Rational Rose 2000e, Using Rose 9

Chapter 2 Getting Started with Rational Rose
Open Existing Model

Clicking the Open Model icon from the toolbar opens the Load Model
dialog box. You can open a model from anywhere within the design.

Create and Open icons:::: If you have a model open when you click
either the Create or Open icon, you are asked to save your
current model. Clicking No discards all changes since your last
save. Clicking Yes saves your changes and opens a new model,
or displays the Load Model dialog box automatically.

Save Model or Log

Clicking the Save Model icon opens the Save Model to dialog box. Enter
a new file name. After the model is named and saved, clicking this icon
automatically saves your changes to the current model without
displaying the dialog box. This will also save the log if the log window
is open.

Cut

Clicking the Cut icon removes icons from your model. Element(s) must
be selected to activate the icon. Cutting an element will also cut
associated relationships. You can cut multiple selected items.

Copy

Clicking the Copy icon copies an element to a new location on the same
model, or to a new model, without affecting the original model.

Paste

Clicking the Paste icon pastes a previously cut or copied element to the
clipboard onto another location.

Print Diagrams

Clicking the Print icon prints diagrams to the default printer.
10 Rational Rose 2000e, Using Rose

The Application Window
Context Sensitive Help

Clicking the Context Sensitive Help icon makes all topics covered in the
on-line help material available. Click on this icon, drag to the item and
release the mouse.

View Documentation

Clicking the View Documentation icon displays the documentation
window on the diagram.

Browse Class Diagram

Clicking the Browse Class Diagram icon opens the Select Class Diagram
dialog box.

Browse Interaction Diagram

Clicking the Browse Interaction Diagram icon opens the Select
Interaction Diagram dialog box.

Browse Component Diagram

Clicking the Browse Component Diagram icon opens the Select
Component Diagram dialog box.

Browse State Machine Diagram

Clicking the Browse State Machine Diagram icon opens the Select
Statechart Diagram or Activity Diagram dialog box.

Browse Deployment Diagram

Clicking the Browse Deployment Diagram icon opens the Deployment
Diagram dialog box.

Browse Use-Case Diagram

Clicking the Browse Use-Case Diagram icon opens the Selected Use
Case Diagram dialog box.
Rational Rose 2000e, Using Rose 11

Chapter 2 Getting Started with Rational Rose
Browse Parent

Clicking the Browse Parent icon displays the “parent” of the selected
diagram or specification. If you have a specification selected, the
specification for the parent of the “named” item is displayed.

Browse Previous Diagram

Clicking the Browse Previous Diagram icon displays the last displayed
diagram.

Zoom In

Clicking the Zoom In icon magnifies the current diagram to view an
area in detail.

Zoom Out

Clicking the Zoom Out icon minimizes the current diagram allowing
you to “pull back” to view more information.

Fit in Window

Clicking the Fit In Window icon centers and displays any diagram
within the limits of the window. This command changes the zoom
factor so that the entire diagram shows.

Undo Fit in Window

Clicking the Undo Fit In Window icon undoes the actions performed on
the previous Fit In Window command.

List Help Topics

Clicking the List Help Topics icon brings up the online help contents.

Toolbox

The diagram toolbox consists of tools that are appropriate for the
current diagram. Changing diagrams automatically displays the
appropriate toolbox.
12 Rational Rose 2000e, Using Rose

The Application Window
When a modifiable diagram window is active, a toolbox with tools
appropriate for the current diagram is displayed. If the current
diagram is contained by a controlled unit or the model is write-
protected, the toolbox is not displayed.

While each diagram has a set of tools applicable for the current
diagram, all toolboxes have the following three icons:

� Selector Icon

� Separator Icon

� Lock Icon

Selector Icon

The selector icon is used to select icons on the diagram. This icon
cannot be removed from the toolbox.

Separator Icon

The separator icon is used to put a small space between icons on the
toolbox. You can have as many as you want, but one must always
remain on the toolbox.

Lock Icon

This icon can be set to locked or unlocked. In the locked mode, any
tool icon stays in the selected state until the diagram loses focus or
another tool button is selected. This option facilitates the rapid
placement of several identical icons without repeatedly returning to the
diagram toolbox.

This icon is usually not displayed, but you can add it to the toolbox.
See Customizing the Toolbox below.

You can obtain the lock functionality without the icon through the
shortcut menu or by pressing the SHIFT key while placing an element.
Releasing the SHIFT deactivates the lock feature.

The toolbox for each diagram type is discussed in the appropriate
chapter.

Note: You can also extend the toolbox. This allows you to view
stereotype icons and additional tools if applicable. See the Stereotype
chapter for more details.
Rational Rose 2000e, Using Rose 13

Chapter 2 Getting Started with Rational Rose
Customizing the Toolbox

You can access the Customize Toolbar dialog box to modify the
displayed toolbox using any of the following methods:

� Right-click anywhere on the toolbox and then click Customize from
the shortcut menu.

� Double-click anywhere on the toolbox not occupied by a button.

� Click View > Toolbars > Configure.

� Click Tools > Options. On the Option dialog box, click Toolbars.
This approach gives you the ability to modify all the diagram
toolboxes without first displaying a specific diagram type.

Browser

The browser is a hierarchical navigational tool that allows you to view
the names and icons of interaction, class, use case, statechart, activity,
and deployment diagrams as well as many other model elements.

When a class or interface is assigned to a component, the browser
displays the assigned component name in an extended name. The
extended name is a comma-spread list within parenthesis to the right
of the class and interface name. The extended list includes all the
assigned components.

For additional information on the workings of the browser, refer to the
chapter entitled The Browser.

Documentation Window

The documentation window is used to describe model elements or
relationships. The description can include such information as the
roles, keys, constraints, purpose, and essential behavior of the
element. You can type information in this free-form text either here or
through the documentation field of a specification.

To view the documentation window, click View > Documentation. A
check mark next to documentation indicates the window is opened.

Only one documentation window can be open at one time, but as you
select different items, the window will be updated accordingly.
14 Rational Rose 2000e, Using Rose

Diagram Window
When the window is first displayed, it will be docked to the lower left
corner. To move the window, click and drag on the border. The window
outline indicates the window state: a thin, crisp line indicates the
window will be docked, while a thicker, hashmark-type border
indicates it will be floating.

Characteristics unique to the window state (docked or floating) are
discussed below:

Docked

� The window can be moved within the dockable region of the model,
but it remains positioned along the border.

� The size remains fixed.

� The title can be displayed through a tool tip (simply place your
pointer anywhere in the window).

� The window may be docked at any time.

Floating

� The window can be moved to any location, and is always displayed
on top of the diagram.

� Size can be changed via click and drag along the border in a
vertical or horizontal direction.

The window title displays the type (class or object) and the name of the
class or object.

Diagram Window

Diagram windows allow you to create and modify graphical views of the
current model. Each icon in a diagram represents an element in the
model. Since diagrams are used to illustrate multiple views of a model,
each model element can appear in none, one or several of a model’s
diagrams. This means you can control which elements and properties
appear on each diagram.
Rational Rose 2000e, Using Rose 15

Chapter 2 Getting Started with Rational Rose
Diagrams are contained by the model elements they represent:

� A logical package (also User Services, Business Services, and Data
Services) contains an automatically created class diagram called
“Package Overview,” and user created class diagrams, collaboration
diagrams, interaction diagrams, and three-tiered diagrams.

� A component package contains component diagrams.

� A class contains its state diagrams.

� A model contains the diagram for its top level components, its
three-tiered service model diagram, its deployment diagram, and
the diagram contained by its logical package and component
packages. These top-level components can be classes, components,
devices, connections, and processors.

Overview Window

The overview window is a navigational tool that helps you move to any
location on all Rational Rose diagrams. When a diagram is larger than
the viewable area within the diagram window, it is not possible to see
the whole diagram without scrolling. The overview window provides a
scaled-down view of the current diagram so you can see the entire
diagram.

To move to an exact area of your diagram, use the following steps:

1. Move the pointer over the hand located in the lower, right-side
of the diagram window. Notice how the pointer appears as a + when
the pointer is located over the active hand.

2. Click on the hand icon so the overview window appears.

3. Hold down the mouse button and move the box inside the overview
window to a desired diagram location.

Note: The overview window closes automatically when you release the
mouse button.
16 Rational Rose 2000e, Using Rose

Specification Window
Specification Window

A specification enables you to display and modify the properties and
relationships of a model element, such as a class, a relationship, an
operation, or an activity. The information in a specification is presented
textually; some of this information can also be displayed inside icons
representing the model element in diagrams.

You can change properties or relationships by editing the specification
or modifying the icon on the diagram. The associated diagram or
specification is automatically updated.

To display a specification, click the icon in either the diagram or the
browser and use one of the following methods:

� Right-click to display the shortcut menu.

� Click Browse > Specification.

� Double-click on the icon (if you have not executed the Double-Click
to Diagram command).

The specifications are displayed as tabs and you can easily navigate
through them.

Printing Diagrams and Specifications

The Print dialog box allows you to print diagrams and specifications.
The Print dialog box has the following tabs:

Table 1 Print Dialog Box Tabs

General tab Allows you to specify a printer, a selection of diagrams
and specifications, and the number of copies to be
printed.

Diagrams tab Allows you to select and view a list of diagrams to be
printed.

Specifications tab Allows you to select and view a list of specifications to
be printed.

Layout tab Allows you to select layout settings for printing
diagrams and specifications.
Rational Rose 2000e, Using Rose 17

Chapter 2 Getting Started with Rational Rose
Print Preview

The print preview option enables you to see how a diagram will appear
when printed. Also, print preview displays the total number of pages
the diagram will take to print on the status bar.

Zoom In and Zoom Out

Click either Zoom In or Zoom Out to view a diagram at different
magnified sizes. Also, you can click on any part of the diagram to get a
magnified view.

Print

Click the Print button to display the Print dialog box.

One Page and Two Page

Click Two Page to display the diagram in two pages or click One Page
to view the diagram in one page. When diagrams are viewed in two
pages, the Next Page button becomes active and enables you to view
other pages. The Previous Page button becomes active when there is a
previous page to view.

Close

Click Close to return to an active window.

Apply Filter Dialog Box

The Apply Filter dialog box enables you to search for diagrams and
specifications within your model. The filter is especially useful when
you print diagrams from large models.

To print a specific diagram in a model, type in the name, type, or path
of the diagram you are trying to print.

NameProvides a list of all diagram names depending on search
criteria.

TypeProvides a list of all diagram types depending on search criteria.

PathProvides a list of each path for diagrams displayed.
18 Rational Rose 2000e, Using Rose

Saving in Various Formats
Next, press the OK button to locate the diagram. Then, with the
diagram selected, press OK from the Print dialog box to print the
diagram.

To search for a diagram or a specification in the Apply Filter dialog box,
you can use the * (asterisk) wildcard character:

� A* matches any name beginning with the letter A

� *A matches any name ending with the letter A

� *A* matches any name containing the letter A

Saving in Various Formats

If you want to save a Rational Rose model as a different format, you
may select any of the following options from the Save As Type list in the
Save Model To dialog box:

� Models *.mdl (the current version of Rose)

� Petal *.ptl

� Rose 6.1/6.5 Model

� Rose 4.5/6.5 Model

� Rose 4.0 Model

� Rose 3.0 Model

If you prefer, you can modify the rose.ini file to always save in a
specified format, eliminating the need to select Save As.

Modifying the Rose.ini File

Use the following steps to modify the rose.ini file:

1. Make sure that Rational Rose is not running before you modify the
rose.ini file.

Note: You will lose all changes to the rose.ini file if Rational Rose is
running while you make your changes.

2. Open the rose.ini file in a text editor. To find the location of the
Rose.ini file, look at the Rose.ini Settings (Overview) topic in the
online help.

3. Make your changes to the rose.ini file.
Rational Rose 2000e, Using Rose 19

Chapter 2 Getting Started with Rational Rose
4. Save and close the rose.ini file.

5. Restart Rose.

Deleting Model Elements

There are two ways to delete model elements in Rational Rose: shallow
delete and deep delete. A shallow delete removes the view of the model
elements from a diagram. A deep delete removes model elements from
a model completely.

Shallow Delete

A shallow delete is useful when you want to remove a model element
from a diagram but keep the model element in the model. A shallow
delete keeps the model element in the browser and removes the view of
the element from the diagram.

Use one of the following commands to perform a shallow delete on
selected model element(s) that appear on a diagram:

� Click Edit > Delete

� Press CTRL + X

� Press the DELETE key

Note: If you perform a shallow delete on an element without a name,
Rational Rose will delete the model element completely out of the model.

Deep Delete

A deep delete is useful when you want to remove a model element
completely out of a model.

Use one of the following commands to perform a deep delete on
selected diagram model element(s):

� Click Edit > Delete from Model

� Press CTRL + D

� Right-click on an element in the browser and then select Delete
from the shortcut menu
20 Rational Rose 2000e, Using Rose

Chapter 3

The Browser

Overview

The browser is an easy-to-use alternative to menus and toolbars for
visualizing, navigating and manipulating items within your model. The
browser provides:

� A hierarchical view of many items in a model

� Drag-and-drop capabilities that change a model’s characteristics

� Automatic updating of model items to reflect changes in the
browser
Rational Rose 2000e, Using Rose 21

Chapter 3 The Browser
Viewing the Browser

When you start Rational Rose, the browser is visible by default. It
appears in docked position, to the left of the toolbox and diagram
windows.

Figure 3 Application Window

Hiding and Displaying the Browser

To hide (or display) the browser window, on the View menu, click
Browser. A check mark next to the word Browser indicates the browser
is visible.

Positioning the Browser

You can change the size and position of the browser according to your
own preferences. The browser can be:

� DockedDockedDockedDocked: Positioned along the border with a fixed size

� FloatingFloatingFloatingFloating: Moved to any location with a variable size

Browser
22 Rational Rose 2000e, Using Rose

Viewing the Browser
Docking and Undocking the Browser

The browser is in a docked position by default.

To redock the browser:

1. Click on any border of the browser.

2. Drag the browser to any application window border.

To undock the browser:

1. Click on any border of the browser.

2. Drag the browser to the desired position.

3. Resize the browser window, if necessary.

Note: As with any resizeable window, you can resize the browser by
pointing to a border and dragging the pointer to increase or decrease the
window’s dimensions.

Expanding and Collapsing the Browser Tree

The current model’s hierarchy is visible in the tree structure of the
browser window:

� A plus (++++) sign next to an icon indicates that the icon is collapsed,
that is, it contains other model elements. Click the ++++ sign to
expand the icon and view its subordinate items.

� A minus (−) sign next to an icon indicates that the icon is fully
expanded. Click the minus (−) sign to collapse the item.

Figure 4 Browser—Collapsed and Expanded Tree

Collapsed Tree

Expanded Tree
Rational Rose 2000e, Using Rose 23

Chapter 3 The Browser
Selecting Multiple Elements in the Browser

You can select multiple elements in the browser to manipulate items
within your model for version control purposes. Version control
functionality is available through the Version Control add-in or
through ClearCase. Selecting multiple elements in the browser enables
you to check in or check out more than one file at a time using a
version control system. When multiple icons are selected, only the
browser options are available on the shortcut menu.

Note: Add-ins have the ability to modify shortcut menus.

Use the following steps to select items in the browser:

Selecting Multiple Items in any Order

1. Select an item in the browser.

2. Hold down the CTRL key.

3. Click each item in the browser that you want to select.

Note: You can deselect an item by pressing the CTRL key.

Selecting Sequential Items

1. Select an item in the browser.

2. Hold down the SHIFT key.

3. Select another item in the browser.

Notice how the browser selects every item between the two items that
you selected.

Navigating a Model

The browser provides a visual representation of your model’s
hierarchy. As you make changes in a diagram window or in the browser
window, the windows remain synchronized:

� To display a diagram window, double-click on its name or icon in
the browser window.

� To display an item’s specification, double-click on the item in the
browser or in a diagram window. (Any changes you make to the
specification are automatically reflected in both the browser and
the diagram).
24 Rational Rose 2000e, Using Rose

Viewing the Browser
� To focus an item in the current diagram, click the item in the
browser or in the diagram window.

The following figure shows My Class1 highlighted in both the browser
and the class diagram:

Figure 5 Navigating a Model

Creating and Editing Model Elements

You can use the drag-and-drop capabilities in the browser to create
and edit model elements in two ways:

� Drag-and-drop one item in the browser to another item in the
browser. Your diagram will automatically be updated to reflect the
changes in the browser.

� Drag-and-drop elements from the browser to the appropriate
diagrams.

� If the class belongs to a parent different from the diagram, and
Show Visibility is on, the class is annotated with the term ‘(from x)’
where x is the class’ location. If Show Visibility is off, only the class
name is displayed.
Rational Rose 2000e, Using Rose 25

Chapter 3 The Browser
Naming an Element in the Browser
1. Create or select an element.

2. Type in a new name.

If this name already exists in another package, a warning dialog is
displayed telling you that the name of the element and type already
exist in another package. For example: “Class AA now exists in
multiple name spaces.”

You can dismiss this box by either clicking Cancel which ignores
the name or OK. If you do not want to see this dialog box any more,
select “Don’t warn anymore this session” button. If you want to
start seeing this warning again, you must restart the application.

Using Drag-and-Drop in the Browser

The drag-and-drop feature allows moving elements within the browser
and from the browser to diagrams and specifications.

Specifically, you can use drag-and-drop to do the following tasks:

� Assign classes and interfaces to components

� Move class operations and attributes between classes

� Move class diagrams, sequence and collaboration diagrams
between packages

� Move component diagrams between component packages

� Move nested classes from one specification to another

� Place components and component packages on component
diagrams

� Place classes interfaces and component packages on class
diagrams

� Place objects, class instances (and class assignments) on
interaction diagrams

� Relocate components and component packages between
component packages

� Relocate classes, nested classes, use cases, interfaces, associations
and packages between packages

� Place activity diagram model elements on an activity diagram

Note: You cannot re-order elements on the browser.
26 Rational Rose 2000e, Using Rose

Viewing the Browser
Browser to Browser Capabilities

The following table lists the actions you can perform by dragging-and-
dropping objects within the browser:

**** The default action is Move. To Copy, hold down the CTRL key while
dragging the element to its destination.

Table 2 Browser to Browser Capabilities

Capability Description

Add � Class to class diagram

� Logical package to class diagram

� Component to component diagram

� Component package to component diagram

Assign � Component to class and interface

� Class and interface to component

� Logical package to component package

Move � Class diagram to logical package

� Interaction diagram to logical package

� Collaboration diagram to logical package

� Component diagram to component package

� State/Activity model to the logical or use-case
view

� Process to processor

� Activities and states to different state machines

Move/Copy*
� Operation to class and interface

� Class attribute to class and interface

Relocate � Class and interface to logical package

� Class to nested class

� Logical package to logical package

� Component to component package

� Component package to component package

� Use case to package
Rational Rose 2000e, Using Rose 27

Chapter 3 The Browser
Browser to Diagram Capabilities

The following table lists the actions you can perform by dragging-and-
dropping elements from the browser to diagrams:

**** The default action is Move. To Copy, hold down the CTRL key while
dragging the element to its destination.

Table 3 Browser to Diagram Capabilities

Capability Description

Add � Class and interface to class diagram

� Logical package to class diagram

� Component to component diagram

� Component package to component diagram

� Processor to deployment diagram

� Device to deployment diagram

� Add activities and objects to activity diagrams

Assign � Component to class and interface

� Class and interface to component

� Component package to package

� Logical package to component package

Move/Copy* � Operation to class and interface

� Class attribute to class and interface

Relocate � Class to logical package

� Logical package to logical package

� Component to component package

� Component package to component package

Create Object � Class in interaction diagram

� Class in collaboration diagram
28 Rational Rose 2000e, Using Rose

Sorting Packages in the Browser
Browser to Specification Capabilities

The following table lists the actions you can perform by dragging and
dropping model elements from the browser to a specification:

Table 4 Browser to Specification Capabilities

Sorting Packages in the Browser

Use the following steps to sort packages in the browser:

1. Create a new package in the browser and name it Temp.

2. In the browser, drag all of the packages you want to sort and drop
them into the Temp package.

3. In the browser, retrieve the packages one by one from the Temp
package and place them back in the original location.

4. Delete the Temp package.

Capability Description

Assign � Class and interface to/from Component
Specification Realizes tab

� Component to Class Specification Components
tab

Move/Copy � Operations to/from Class Specification
Operations tab

� Attributes to/from Class Specification Attribute
tab
Rational Rose 2000e, Using Rose 29

Chapter 4

Introduction to Diagrams

Overview

Diagrams are views of the information contained in a model. Rational
Rose automatically maintains consistency between the diagram and
their specifications. You can change properties or relationships by
editing the specification or modifying the icon on the diagram. The
associated diagrams or specifications are automatically updated.

Diagram Windows

In a diagram window, you can create and modify graphical views of the
model. Rational Rose supports the following kinds of diagrams:

� Class Diagram

� Use-Case Diagram

� Collaboration Diagram

� Sequence Diagram

� Component Diagram

� Statechart Diagram

� Deployment Diagram

� Activity Diagram

Each icon on a diagram represents an element in the model. Since
diagrams illustrate multiple views of a model, each model element can
appear in none, one, or several of a model’s diagrams. You can control
which elements and properties appear on each diagram.
Rational Rose 2000e, Using Rose 31

Chapter 4 Introduction to Diagrams
To create or add icons to a diagram, click Tools > Create and click one
of the model elements. Click on the diagram to place the element.

Viewing Diagrams

When a diagram is opened, it is displayed in a window within the
application window. This diagram window has its own control-menu
box, title bar, minimize button, and maximize button. Each diagram
window also has vertical and horizontal scroll bars for panning across
diagrams larger than the window. The application window presents a
toolbox that contains tools appropriate for the current diagram.

Figure 6 Diagram Window

You can resize a diagram window by using the left mouse button to
drag a side or corner of the diagram’s border. You can reduce a diagram
to an icon by clicking on its minimize button.

Horizontal Scroll
Bar

Toolbox
Vertical Scroll Bar
32 Rational Rose 2000e, Using Rose

Diagram Windows
Displaying Multiple Diagrams

You can display multiple diagrams simultaneously in the application
window.

Figure 7 Multiple Diagrams—Cascade Windows

The shaded title bar indicates that it is the current diagram. Diagram-
specific commands apply to the current diagram and the application
window displays the toolbox associated with the current diagram.
Menu commands and toolbox icons not appropriate for the current
diagram are “dimmed” and cannot be used. You can make a diagram
“current” by clicking on it.
Rational Rose 2000e, Using Rose 33

Chapter 4 Introduction to Diagrams
To display multiple diagrams in cascaded windows, as shown in
Figure 7, or as tiled windows in Figure 8, click Window > Cascade or
Tile.

Figure 8 Multiple Diagrams—Tiled Windows

Creating, Linking, Displaying, Renaming, and Deleting
Diagrams

Create a New Diagram
1. Click Browse > xxx Diagram, where xxx is the diagram type. (If you

select Deployment Diagram, the diagram is immediately displayed
and the following steps can be ignored.)

2. In the resulting dialog box, select a view from the list on the left.

3. Click <New> from the list on the right. (If you are creating a new
interaction diagram, you must click either Sequence or
Collaboration from the New Interaction dialog box.)

4. Click OK.

5. Type the diagram title. If you do not enter a title, the diagram is
labeled untitled.

6. Click OK.
34 Rational Rose 2000e, Using Rose

Creating, Linking, Displaying, Renaming, and Deleting Diagrams
Linking a Diagram

You can link one diagram to another diagram through the note icon.
This feature works somewhat like the shortcut method you may be
familiar with in the Windows operating environment. Once the diagram
is linked, you can double-click on the note and the linked diagram is
immediately displayed. A linked diagram is indicated by underlined
text in the note.

1. Create a note on any diagram.

2. Display the browser if not already visible.

3. In the browser, locate the diagram that you want to link.

4. Drag the diagram icon from the browser onto the note icon on the
diagram.

❑ As you position the cursor onto the note, you will see the
shortcut symbol (a dotted square and a curved arrow inside a
solid square).

5. The fully qualified name is displayed in an underline font.

Note: You may need to resize the note to see the entire name.

6. Change the text in the note (if desired) to something more
meaningful to your project.

7. Double-click on the note to view the linked diagram.

Display a Diagram
1. Click Browse > xxx Diagram, where xxx is the diagram type. (If you

select Deployment Diagram the diagram is immediately displayed
and the following steps can be ignored.)

2. In the resulting dialog box, select an element from the list on the
left.

3. Select a diagram from the list on the right.

4. Click OK.
Rational Rose 2000e, Using Rose 35

Chapter 4 Introduction to Diagrams
Rename a Diagram
1. Click Browse > xxx Diagram, where xxx is the diagram type. (Note:

you cannot rename a deployment diagram.)

2. In the resulting dialog box, select the package containing the
diagram from the list on the left.

3. Select the diagram from the list on the right.

4. Click Rename.

5. Type a new diagram title.

6. Click OK.

Delete a Diagram
1. Click Browse > xxx Diagram, where xxx is the diagram type.

2. In the resulting dialog box, select the package containing the
diagram from the list on the left.

3. Select the diagram from the list on the right.

4. Click Delete.

5. Click Yes on the confirmation box.

Selecting Multiple Elements in the Diagram

You can select multiple elements in the diagram by using the following
steps:

1. Select an elements in a diagram.

2. Hold down the CTRL key.

3. Click each element in the diagram that you want to select. Notice
the squares on each corner of the elements that indicate a selected
element.
36 Rational Rose 2000e, Using Rose

Creating and Naming Model Elements
The diagram example below shows multiple elements selected in a
diagram:

Figure 9 Selected Elements in a Diagram

Note: You can select any element in the diagram.

Creating and Naming Model Elements

Create an Element on the Diagram
1. Click on the appropriate creation tool.

2. Click on a location in the diagram.

Rational Rose creates a model element of the appropriate kind and
places an icon representing this element on the diagram and in the
browser.

Create an Element in the Browser
1. Click on the appropriate package.

2. From the shortcut menu, click New then point to the element you
want to create.

The element exists only in the browser until you drag it on a diagram.

Naming Model Elements

You can name your model elements with any combination of
characters that are meaningful to you. Depending on the model
element and its location, you may or may not be restricted to unique
names.
Rational Rose 2000e, Using Rose 37

Chapter 4 Introduction to Diagrams
For example, actors, use cases, classes, components, and packages
that reside in different packages do not require unique names. When
different elements have the same name, the elements are said to be
“overloaded.”

Overloading gives you the flexibility of using existing software libraries
that may have the exact names you have in your code or in another
software library.

Overloading also allows you to do multi-lingual component based
development. For example, an application can be modeled even if the
GUI for screen input is in VB or Java, the processing is in C++, and the
database in Oracle. In this example, each application can have their
own definition of a class “Customer” where Customer does different
things.

Another useful feature of overloading is the ability to have actors in the
use-case view and classes in the logical view with the same name.

When naming an element, it is important to note that in some cases an
overloaded element is created, while in other cases, the existing
element with the same name is used (and therefore an overloaded
element is not created).

Naming an Element on the Diagram
1. Create a new element on the diagram from the toolbox.

2. Type in a name. As soon as you start typing, a pop-up box listing
all the available class names in the model is displayed.

You can select one of the highlighted names by double-clicking on
a name or by pressing the ENTER or TAB key. Otherwise, you can
continue typing (and click outside the edit area) to enter a new
name.

❑ If you do not want to see this window, you can turn this option
off. To do so, click Tools > Options. Click on the Diagram tab.
Under the Miscellaneous section on the lower left, click Class
Name Completion to turn the feature off.

If the name you select is an overloaded name, clicking outside the
box displays a secondary window, asking you to select the name
from the fully qualified path.
38 Rational Rose 2000e, Using Rose

Creating and Naming Model Elements
Creating/Naming an Overloaded Element on the Diagram

If you want to create an overloaded element name on the diagram, you
must enter the name through the specification. If you instead enter the
duplicate name on the element in the diagram, you will be using an
existing element rather than creating a new one with its own
characteristics.

1. Create a new element on the diagram from the toolbox.

2. Double-click on the element or click Browse > Specification, to
display the specification.

3. Type a name in the name field.

4. Click OK.

If this name already exists in another package, a warning dialog is
displayed telling you the name of the element and type already
exists in anther package. For example: “Class AA now exists in
multiple name spaces.”

You can dismiss this box either by clicking Cancel which ignores
the name or OK. If you do not want to see the dialog box anymore,
select “Don’t warn anymore this session” button. If you want to
start seeing the warnings again, you must restart the application.

The element is now named with a duplicate name, but has its own
unique characteristics.

Placing an Overloaded Element on the Diagram from the
Browser

From the browser, drag the element onto the diagram.

If the element belongs to a parent different from the diagram, and Show
Visibility is on, the element is annotated with the term ‘(from x)’ where
x is the element’s location. If Show Visibility is off, only the element
name is displayed.
Rational Rose 2000e, Using Rose 39

Chapter 4 Introduction to Diagrams
Fully Qualified Names

A fully qualified name is displayed as you place your pointer over the
model element. A fully qualified name consists of the element hierachy
(starting at the package level), where each level is separated by double
colons.

Example: Logical View::Package B::Class 1

Renaming Model Elements
1. Click on the name of a selected icon to display a flashing vertical

bar that designates the insertion point.

2. Backspace and type additional text.

3. Note that stereotypes in the form <<stereotype>> are extracted
from the name of an item when you edit it.

4. Click outside the named icon.

Alternatively, you can double-click on an icon to display its
specification; modify the Name field and click OK.

If double-clicking on a logical package icon displays the main class
diagram, click Tools > Options and click the Diagram tab. Click on the
Double-Click to Diagram check box to turn off this option. With this
option turned off, double-clicking on a package will display the
specification.

Reassigning Model Elements

This feature allows you to make a selected icon represent a different
model element.

1. Select the icon to reassign.

2. Click Edit > Reassign.

The dialog box lists the packages in the model on the left and a list of
the valid elements to choose from on the right. Choose the model
element which the selected icon will represent. This operation affects
only the selected icon; other icons representing the original model
element—on the current diagram and all other diagrams—maintain
their original representation. Model elements involved in the operation
of this command are themselves unchanged.
40 Rational Rose 2000e, Using Rose

Manipulating Icons
Manipulating Icons

Manipulating icons include selecting, deselecting, moving and resizing.
These features are similar to those you might find in most major
drawing tools.

Selecting Icons (Option 1):

� To select a single icon, left-click on the icon to be selected. Rational
Rose displays the icon’s selection handles, and deselects all other
icons.

� To select several icons, hold the CONTROL or SHIFT key down and click
on each icon to be selected.

Selecting Icons (Option 2):

1. Point near the border of one of the icons to be selected.

2. Left-drag to create a dashed selection box around the icons you
want to select.

3. Release the left mouse button.

Rational Rose displays each icon’s selection handles, and deselects all
other icons.

Deselecting Icons:

� To deselect all icons, click in any open area of the diagram.

� To deselect a specific icon:

1. Press and hold the CONTROL or SHIFT key.

2. Click on the icon.

Any other icons that were previously selected remain selected.

To resize an icon:

1. Click on the icon to be resized.

2. Choose the appropriate selection handle and left-drag to the new
dimension.

Rational Rose redraws the icon at the new size, preserving its
proportions. To change the proportions of an icon, press the CTRL key
while resizing it.
Rational Rose 2000e, Using Rose 41

Chapter 4 Introduction to Diagrams
To move one or more icons (Option 1):

1. Select the icon(s).

2. Left-drag to the desired location.

3. Release the left mouse button.

To move one or more icons (Option 2):

1. Select the icon(s).

2. Use the four directional arrow keys to move the icons by one pixel
in the indicated direction, or press the CTRL key while using the
arrow keys to move eight pixels in the indicated direction.

If the snap-to-grid operation is enabled, icons and text boxes that are
created or moved will be aligned with the nearest grid coordinate. To
enable or disable this operation, in the Options dialog box, click Snap
To Grid. To specify the size of the grid in pixels, on the Options dialog
box, click Grid Size.

To change from one kind of element or relationship to another:

1. Click on the toolbox tool bearing the desired icon.

2. Press and hold the ALT or META key.

3. Click on the icon to be changed.

Rational Rose redraws the icon and updates the model to reflect the
change, or reports an error if the change is not legal.

Deleting, Cutting, Copying, and Pasting Icons

You can delete cut, copy, and paste icons between different diagram
windows using commands on the Edit menu or the tools on the toolbar.

Delete

Rational Rose has two distinct delete functions. Use:

� Delete to remove the selected icon from the current diagram with
no change to the model element it represents.

� Delete from Model to remove the represented element from the
model, along with any icon representing it on any diagram.

On the Edit menu, clicking Cut performs a delete operation on some
diagrams and a delete from model operation on others.
42 Rational Rose 2000e, Using Rose

Correlations
Cut, Copy, and Paste

Clicking Cut, Copy, or Paste can manipulate selections containing
icons and text in diagrams, and text information in specification fields.

Clicking Copy will copy the selected icons to the platform clipboard.
Clicking Cut performs this same operation and then performs a delete
operation. You can use these commands to move some or all of a class
diagram to other tools that support the platform clipboard.

Clicking Paste in a class diagram adds icons from the clipboard to the
center of the current diagram as if you manually created them with the
toolbox.

Other Menu Commands

On the Edit menu, clicking Undo reverses the last Delete, Delete From
Model, or Cut.

The Edit menu also provides commands that enable you to Select All,
Find, and Rename icons.

The Browse menu provides commands to navigate among diagrams,
and create, rename, and delete them.

When you click the right mouse button on an icon, Rational Rose
displays a shortcut menu. This modifies properties (for icons that
represent relationships) or selects properties to be displayed within the
icon.

Correlations

Depending on the diagram selected, a correlation can be a relationship,
a link, a dependency, a transition or a connection. The word correlation
can stand for any of the items previously listed.

Creating Correlations Between Elements

To place a correlation between two or more icons:

1. Click on the relationship’s tool in the toolbox.

2. Point to the client icon on the diagram.

3. Press and hold the left mouse button.
Rational Rose 2000e, Using Rose 43

Chapter 4 Introduction to Diagrams
4. Drag the pointer to the supplier icon on the diagram.

❑ You can create vertices while placing the relation, by releasing
the mouse button while still on the diagram. A new vertex is
created each time you lift the mouse button.

❑ You can modify a vertex by dragging on a selected vertex.

❑ Joining an inherits relationship to another inherits relationship
will create a tree, rather than a hierarchical structure.

5. Release the mouse button at the supplier element.

Rational Rose inserts and selects the relationship, deselecting any
other icons. Moving the relationship or class element(s) automatically
adjusts the size or vertices as necessary.

To bend a correlation icon:

1. Point to the section of the icon to introduce or modify a bend.

2. Left-drag the pointer to the new location for that section of the
icon.

3. Release the mouse button.

When you release the mouse button, Rational Rose redraws the
correlation icon with the new or modified bend. If the modification
nearly eliminates a bend, Rational Rose will replace the bend with a
straight segment.

To reconnect a correlation icon from one icon to another:

1. Point to the end you want to reconnect.

2. Left-drag to the new icon.

3. Release the left mouse button.

Rational Rose redraws the relationship between the two icons and
updates the model to reflect the change, or reports an error if the
change is not legal.

To name a newly-created correlation:

1. Click on the icon.

2. Type the name.

3. Click outside the named icon.
44 Rational Rose 2000e, Using Rose

Adorning the Diagrams
To change the name of a correlation:

1. Click on the name to display a flashing vertical bar that designates
the insertion point.

2. Backspace and type additional text.

3. Click outside the named icon.

Alternatively, you can change the name in the Name field of the
specification.

Adorning the Diagrams

You can select which adornments (symbols) to display on the diagram
through the shortcut menu. The shortcut menu is displayed by
clicking the right mouse button on an icon. You can click on the menu
choices to enable and disable them; a check mark indicates that a
choice is enabled. You can also adorn your diagram with annotation
that you add. This annotation or adornment is typically used as notes
to yourself or others about specification features or functions not noted
by Rational Rose.

Manipulating Text

To place text in a diagram:

1. To select non-default font parameters, on the Options dialog box,
click Font or Font Size.

2. Choose the tool bearing ABC from the toolbox.

3. Click on the location in the diagram.

To change the default font parameters:

1. Ensure that nothing is selected by clicking on an empty region of
any diagram.

2. To select the desired default font parameters, on the Options dialog
box, click Font or Font Size.

The default font parameters apply to all diagrams.

To change the dimensions of the invisible box containing text in a
diagram:

1. Click on the text to make the text box’s selection handles visible.
Rational Rose 2000e, Using Rose 45

Chapter 4 Introduction to Diagrams
2. Left-drag the appropriate selection handle to resize the text box.

To move the invisible box containing text in a diagram: (Option 1):

1. Click on the text.

2. Left-drag the text to the location.

3. Release the left mouse button.

To move the invisible box containing text in a diagram: (Option 2):

1. Click on the text.

2. Use the four arrow keys to move the text box by one pixel in the
indicated direction, or press the CTRL key while using the arrow keys
to move eight pixels in the desired direction.

Understanding Model Workspaces

A model workspace is a snapshot of all currently loaded units and open
diagrams. By defining one or more workspaces, you can set up your
working environment in Rational Rose and return to that environment
each time you are ready to work. When you load the workspace, Rose
restores the snapshot by loading the specified controlled units and
opening the correct diagrams.

If you are working with large models that are divided into many
controlled units, you will notice even greater productivity gains by
using workspaces to load predefined units and diagrams.

Differences between a Saved Model and a Model Workspace

A saved Rational Rose model contains the diagrams, elements, and
controlled units that make up the complete model. A model workspace
contains the actual state of open diagrams and controlled units for a
specific saved model at a given point in time.

It is possible to have multiple workspaces corresponding to only one
model. For example, during analysis and design, you might want to
define one model workspace that displays the most important analysis
diagrams and controlled units, and another model workspace that
displays the most important design diagrams and controlled units.
Each workspace is different but points to the same model.
46 Rational Rose 2000e, Using Rose

Understanding Model Workspaces
It is also important to note that saving a model workspace will not
affect how the model is loaded on another machine. If a co-worker
wants to load a model using a model workspace you defined on your
machine, the co-worker must have a copy of the model workspace and
model located in the same folder on his or her machine.

By default, Rational Rose will name the workspace <model name>-
<Operating System User Name>.wsp. For example, the name of a
saved model workspace might look like MyModelName-JillUser.wsp.

Note: Rational Rose stores all workspace files (*.wsp) in the
workspaces folder.

Model Workspace Sample

The following sample shows how using model workspaces can benefit
a team working on a large model.

A new software developer has just joined a distributed team that is
working on a very large model containing over 200 controlled units.
Through the course of the next several months, the new developer will
model several systems in the Use Case Model and will modify the
Business Actors and Use Cases (as shown in browser illustration). In
order to help the new developer, the team’s project manager created a
model workspace that will load all of the units the software developer
will be responsible for, as well as some of the more important diagrams.
Rational Rose 2000e, Using Rose 47

Chapter 4 Introduction to Diagrams
Figure 10 Model Workspace Loaded Units

When the developer loads the model workspace, the Business Actors,
Business Use Cases, eCommerce System, POS System, Telesales
System, and Warehouse System controlled units all load. The
workspace configuration will also display some important class and
activity diagrams in the diagram window.

The model workspace will help the new developer by:

� Loading the controlled units that the developer is responsible for
automatically

� Displaying some of the more important diagrams the developer
should examine first

� Saving the developer time because Rose only has to load six out of
200+ controlled units

� Eliminating confusion by limiting the scope of information the
developer sees

After working in the model, the developer can easily customize the
model workspace the project manager created, or create additional
model workspaces to create efficiency.
48 Rational Rose 2000e, Using Rose

Understanding Model Workspaces
Saving a Model Workspace

To save a Model Workspace:

1. Click File > Save Model Workspace. Rational Rose will save both the
model and workspace files.

2. Name your workspace file in the Save As dialog box. By default,
Rational Rose will name the workspace <model name>-<Operating
System User Name>.wsp. For example, the name of a saved model
workspace might look like MyModelName-JillUser.wsp.

Note: Rational Rose stores all workspace files (*.wsp) in the
workspaces folder.

Loading a Model Workspace

To load a model workspace:

1. Click File > Load Model Workspace.

2. Select the name of workspace file (*.wsp) to load.

3. Click Open.
Rational Rose 2000e, Using Rose 49

Chapter 5

Introduction to Specifications

A specification enables you to display and modify the properties and
relationships of a model element, such as a class, a relationship, or an
operation.

Some of the information displayed in a specification can also be
displayed inside icons representing the model element in diagrams.

The specification fields are standard interface elements such as text
boxes, list boxes, option buttons, and check boxes.

Displaying Specifications

You can display a specification in the following ways:

� Double-click on an item in a diagram or browser.

� Click a diagram item and then click Browse > Specification.

� Click Open Specification from the shortcut menu.

� Select the diagram item and press CTRL+B.

Rational Rose displays a specification that corresponds to the selected
item.

In order to view a specification when you double-click on a logical or
component package, you must turn off the Double-Click to Diagram
option. To disable this option, click Tools > Options. Go to the Diagram
tab. A check mark inside the Double-Click to diagram check box
indicates the main diagram will be displayed when you double-click. If
there is no check mark in the check box, double-clicking on a logical
or component package displays the package specification.
Rational Rose 2000e, Using Rose 51

Chapter 5 Introduction to Specifications
Custom Specifications

When you open the specification of an element that has an assigned
language, a custom specification will be displayed if supported. If not
supported, the standard Rose specification will be displayed.

The following specifications can be customized by language add-ins:

� Association

� Class

� Class Attribute

� Generalize

� Key/Qualifier

� Parameter

� Operation

� Component

� Class Instance

Editing Specifications

If you change a model element’s properties or relationships by editing
its specification or modifying the icons on the diagram, Rational Rose
will automatically update the corresponding diagrams or
specifications.

If a model element is write-protected, or contained by a controlled unit
that is write-protected, the OK button on the specification will be
disabled to prevent the element from being modified.

Specifications can be resized by placing the pointer on a specification
corner. Click and drag the specification to the desired size.

Specifications can also be printed by clicking File > Print.
52 Rational Rose 2000e, Using Rose

Common Specification Elements
Common Specification Elements

The specifications share a number of common elements which are
discussed on the following pages. For details on specific specifications
and their unique elements, refer to the following chapters.

Dialog Boxes

All specifications are presented in a dialog box format and contain tabs
for navigating to specific pages or items. You can resize all
specifications.

General Tab

The first tab presented in all specifications is labeled General and
usually contains information such as Name and Documentation.

Figure 11 General Tab
Rational Rose 2000e, Using Rose 53

Chapter 5 Introduction to Specifications
Name

Every model element and each relationship can be labeled with a word
or phrase that denotes the semantics or purpose of the relationship.
You can enter the name in the diagram or in the Name field of a
specification.

� If you enter the name in the diagram, Rational Rose displays the
entry in the Name field.

� If you enter the name in the specification, Rational Rose displays
the new name in the icon and updates the information in the
model.

You can rename an element using one of the following methods:

� Change its name in the diagram or browser.

� Change its name in the specification.

Documentation

Use the Documentation field to describe relationships. The description
can include such information as the roles, keys, constraints, purpose,
and essential behavior of the element. You can enter information in the
documentation field in one of two ways:

� Enter text directly in the free form text field.

� Click View > Documentation.

Rational Rose does not display this field in the diagram.

Note: If you document a class and identify the concepts or functions
represented by the entity, you can use the field to form a basis of a more
traditional data dictionary. You can also list the statements of obligation
to provide certain behavior with the class. You can use this entry as a
place holder for the responsibilities of the class that you will determine
during development.
54 Rational Rose 2000e, Using Rose

Common Specification Elements
Detail Tab

Another common tab is the Detail tab. The Detail tab contains
information specific to the model element you have selected. The Detail
tabs and their relationship to a diagram element are described in their
respective chapters.

Figure 12 Detail Tab

Files Tab

The Files tab allows you to insert new files or URLs or view files and
URLs already inserted or attached to your model element or diagram.

The Files tab is useful for maintaining links to supplemental
documentation about the system being built (for example, Vision
Documents, GUI sketches, project plans, etc.).

Any attached URLs or files listed here are also displayed when the
element or diagram is expanded in the browser.
Rational Rose 2000e, Using Rose 55

Chapter 5 Introduction to Specifications
Figure 13 Files Tab

Viewing Existing Files or URLs

If a file is already inserted, the Filename and Path are displayed on the
tab. To open the document or go the web site, double-click on either
the Filename or Path, or choose Open File/URL from the shortcut
menu.

Inserting New Files

You can insert (or attach) files by:

� Using the drag-and-drop technique.

� Clicking Insert File from the shortcut menu and navigating through
the dialog box to locate your file.
56 Rational Rose 2000e, Using Rose

Common Specification Elements
Inserting New URLs

Click Insert URL from the shortcut menu; this will insert the default
address www.rational.com. Edit the Filename and Path to point to the
correct web site.

Tab Buttons

The bottom of each tab, regardless of type (General, Detail, etc.),
contains five buttons to control the actions on each tab.

Figure 14 Tab Buttons

OK

Clicking OK applies the changes made to the specification and closes
the dialog box, returning focus to the diagram.

Cancel

Clicking Cancel ignores all changes made to the specification since the
last Apply, closes the dialog box, and returns focus to the diagram.

Apply

Clicking Apply enacts the changes made to the specification while
leaving the specification open.

Changes to a Specification field are not enacted until you click on the
specification’s OK or Apply. These will be disabled if the model element
is assigned to a controlled unit which is write-protected.

Browse

Clicking Browse displays four choices:

� Select in Browser which highlights the selected item in the browser.

� Browse Parent which opens the specification for the parent of the
selected item.

� Browse Selection which opens the specification for the currently
selected item.
Rational Rose 2000e, Using Rose 57

Chapter 5 Introduction to Specifications
� Show Usage which displays a list of all diagrams in which the
currently selected element is the supplier, or in the case of a
collaboration diagram, a list which shows the usage of a message.

Help

Clicking Help invokes the online help topic related to the dialog box.

Navigating the Tabs

Many tabs contain lists of elements related to the specification and are
described in detail in their respective chapters. However, the methods
used to navigate through the specifications are very similar throughout
all tabs.

The lists typically consist of one row per related element. The rows are
typically divided into columns, describing aspects of the rows (e.g.
Filename and Path on the Files tab). To navigate between rows and
columns in the list, either select the row and column with the pointer
or use the arrow keys on the keyboard.

Adding and Deleting Entries

To insert a new row in a list, click Insert from the shortcut menu or
press the INSERT key. An untitled entry is added.

To delete a row, select the row and click Delete from the shortcut menu
or press the DELETE key.

Editing Entries

To edit a column in a row, select the column and press F8 or select the
column twice with the pointer. Enter text into the column or select an
entry from the drop-down menu (if available). After the column has
been edited, either accept the change (by clicking outside the column,
pressing the ENTER or TAB key) or cancel the addition (by pressing the
ESC key).

To open the specification for an element displayed in a list, select the
row and column and click Specification from the shortcut menu or
double-click on the column. For example, double-clicking on the Name
58 Rational Rose 2000e, Using Rose

Navigating the Tabs
column in the Relations tab of the class specification will open the
specification for the relation, while double-clicking on the End Class
column in the same list will open the specification of the related class.

To reorder the rows in a list, select the row to be moved and drag it to
the new location in the list. It is not possible to reorder rows in every
list tab. To move an element in a list to another specification, the
browser, or to an open diagram, select the row and drag it to the new
location.
Rational Rose 2000e, Using Rose 59

Chapter 6

Class Diagrams and Specifications

Class Diagram Overview

A class diagram is a picture for describing generic descriptions of
possible systems. Class diagrams and collaboration diagrams are
alternate representations of object models. Class diagrams contain
classes and object diagrams contain objects, but it is possible to mix
classes and objects when dealing with various kinds of metadata, so
the separation is not rigid.

Figure 15 Class Diagram Example
Rational Rose 2000e, Using Rose 61

Chapter 6 Class Diagrams and Specifications
Class diagrams contain icons representing classes, interfaces, and
their relationships. You can create one or more class diagrams to
depict the classes at the top level of the current model; such class
diagrams are themselves contained by the top level of the current
model. You can also create one or more class diagrams to depict classes
contained by each package in your model; such class diagrams are
themselves contained by the package enclosing the classes they depict;
the icons representing logical packages and classes in class diagrams.

You can change properties or relationships by editing the specification
or modifying the icon on the diagram. The associated diagrams or
specifications are automatically updated.

Creating and Displaying a Class Diagram

You can create or display a class diagram in one of three ways:

� Click Browse > Class Diagram.

� On the toolbar, click the class diagram icon.

� On the browser, double-click on the class diagram icon.

Class Diagram Toolbox

The graphic below shows all the tools that can be placed on the class
diagram toolbox. See “Customizing the Toolbox” on page 14 for more
information on adding or deleting tools on a diagram toolbox.
62 Rational Rose 2000e, Using Rose

Class Diagram Overview
The application window displays the following toolbox when the
current window contains a class diagram, you have selected View > As
Unified, and you have customized the toolbox to display all the tool
options.

Figure 16 Class Diagram Toolbox

Selector

Note

Class
Unidirectional
Association
Package

Generalization

Refine Dependency

Include Dependency

Actor

Association Relationship

Instantiated Class Utility

Business Use Case

Instantiated Class

Control Class

Server Class

Business Worker Class

Business Use Case
Realization

Form Class

Boundary Class

Business Actor

Text

Note Anchor

Interface

Association Class

Dependency

Realize Relationship

Extend Dependency

Use Case

Aggregation

Unidirectional Aggregation

Parameterized Class Utility

Class Utility

Use-case Realization

Subsystem Package

Client Page Class

Parameterized Class

Organization Unit

Applet Class

Entity

Business Entity
Rational Rose 2000e, Using Rose 63

Chapter 6 Class Diagrams and Specifications
Assigning a Class to Another Logical Package

Every class is assigned to a logical package. When you create a class
using a creation tool from the class diagram toolbox, the class is
assigned to the logical package containing the class diagram. In
Figure 15, “Class Diagram Example,” on page 61 the class diagram
named Main is directly contained by the logical package named
LinkManager. All of the classes depicted on Main are assigned to
LinkManager, except the class SafeStorage. This is assigned to logical
package StorageManagement. Rational Rose annotates the icon
representing SafeStorage with the phrase from Storage Management.

To re-assign a class from one logical package to another:

1. Select an icon (or icons) representing the class in a diagram
contained by the logical package to which the class should be
assigned. (You might need to create such a diagram or icon if one
does not currently exist.)

2. Click Edit > Relocate.

Rational Rose will update all class diagrams to reflect the new
assignment.

Like classes, logical packages are also assigned to logical packages—
permitting nesting to an arbitrary depth. Assigning and re-assigning
can be applied to logical packages and classes.

Adding and Hiding Classes, and Filtering Class Relationships

The commands on the Query menu provide powerful facilities for
controlling which model elements are represented by icons in the
current diagram.

On the Query menu, clicking:

� Add Classes adds classes to the diagram by name.

� Add Use Cases adds use cases to the diagram by name.

� Expand Selected Elements adds classes to the diagram based on
their relationships to selected classes.

� Hide Selected Elements removes selected classes from the diagram
and optionally removes their clients or suppliers from the diagram.

� Filter Relationships controls which kinds of relationships appear in
the current diagram.
64 Rational Rose 2000e, Using Rose

Class Specification
Class Specification

A Class Specification displays and modifies class properties and
relationships. Some of the information in the specification can also be
displayed inside class icons.

If a field does not apply to a particular class type, the field is
unavailable and you cannot add or change information in the field.

To display a Class Specification, click an icon representing the class in
a class diagram and click Browse > Specification.

If you have not gone clicked Tools > Options and clicked Double-Click
to Diagram, you can double-click on any icon representing the class.
You can also click Specification from the shortcut menu.

Specification Content

The Class Specification consists of the following tabs: General, Detail,
Operations, Attributes, Relations, Component, Nested, and Files.
Rational Rose 2000e, Using Rose 65

Chapter 6 Class Diagrams and Specifications
Class Specification—General Tab

Figure 17 Class Specification—General Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.

Type

Your Type choices include: Class, Parameterized Class, Instantaited
Class, Class Utility, Parameterized Class Utility, Instantiated Class
Utility, and Metaclass.

Parent

The parent the class belongs to (its package) is displayed in this static
field.
66 Rational Rose 2000e, Using Rose

Class Specification
Stereotype

A stereotype represents the subclassification of an element. It
represents a class within the UML metamodel itself, that is, a type of
modeling element. Some stereotypes are already predefined, but you
can also define your own to add new kinds of modeling types.

Stereotypes can be shown in the browser and on diagrams. The name
of the stereotype may appear in angle brackets <<>>, depending on the
settings found in either the Diagram or Browser tabs of the Options
dialog box located under the Tools menu. Refer to the Stereotype
chapter for more information on stereotypes.

To show stereotypes on the diagrams, click Options from the shortcut
menu and click Stereotype Name or Stereotype Icon. Stereotype Name
displays the name in angle brackets (ie. <<stereotype>>). Stereotype
Icon displays the graphical representation.

Export Control

The Export Control field specifies how a class and its elements are
viewed outside of the defined package.

Table 5 Export Control Field Options

The Export Control field can be set only in the specification. No special
annotation is related to access control properties.

Select: To Indicate:

Public The element is visible outside of the enclosing
package and you can import it to other
portions of your model. Operations are
accessible to all clients.

Protected The element is accessible only to subclasses,
friends, or the class itself.

Private The element is accessible only to its friends or
to the class itself.

Implementation The element is visible only in the package in
which it is defined. An operation is part of the
implementation of the class.
Rational Rose 2000e, Using Rose 67

Chapter 6 Class Diagrams and Specifications
To change the export control type for the class, click on the appropriate
option in the Export Control field. You can display the implementation
export control in the component compartment. You can display
visibility in an icon through the shortcut menu.

Class Specification—Detail Tab

Figure 18 Class Specification—Detail Tab

Refer to the description in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
element not covered in the following section.
68 Rational Rose 2000e, Using Rose

Class Specification
Cardinality

The Cardinality field specifies the number of expected instances of the
class. In the case of relationships, this field indicates the number of
links between each instance of the client class and the instance of the
supplier. You can set a specific cardinality value for the client class,
supplier class, or both.

Use the following syntax to express cardinality:

Table 6 Cardinality Field Options

*Where <literal> is any integer greater or equal to one.

To display class cardinality on an icon, right-click on the icon and
select a cardinality through the shortcut menu. A literal value can only
be specified on the specification.

Space

Use the Space field to document the amount of storage required by
objects of the class during execution.

Type Description

n (default) Unlimited number of instances

1 One instance only

0..n Zero or more instances

1..n One or more instances

0..1 Zero or one instance

<literal>* Exact number of instances

<literal>..n Exact number or more instances

<literal>..<literal> Specified range of instances

<literal>..<literal>,<literal> The number of instances will be
in the specified range or an
exact number of instances

<literal>..<literal>,
<literal>..<literal>

The number of instances will be
in one of the specified ranges
Rational Rose 2000e, Using Rose 69

Chapter 6 Class Diagrams and Specifications
Persistence

Persistence defines the lifetime of the instances of a class. A persistent
element is expected to have a life span beyond that of the program or
one that is shared with other threads of control or other processes. Use
this field to identify the persistence for elements of this class:

Table 7 Persistence Field Options

The persistence of an element must be compatible with the persistence
that you specified for its class. If a class persistence is set to Persistent,
then the object persistence is either persistent, static or transient. If a
class persistence is set to Transient, then the object persistence is
either static or transient.

You can set the persistence only through the specification. This field is
inactive for class utilities, parameterized class utilities, and
instantiated class utilities.

To set the persistence, click on the applicable option in the Persistence
field. You can display the persistence in the diagram by clicking Show
Persistence from the shortcut menu.

Type Description

Persistent (Default) The state of the element transcends the lifetime of
the enclosing element.

Transient The state and lifetime of the element are identical.

Static The element exists during the entire execution of a
program.
70 Rational Rose 2000e, Using Rose

Class Specification
Concurrency

A class concurrency defines its semantics in the presence of multiple
threads of control. Choose one of the following options:

Table 8 Class Concurrency Options

Abstract

The Abstract check box identifies a class that serves as a base class.
An abstract class defines operations and states that will be inherited
by subclasses. This field corresponds to the abstract class adornment
displayed inside the class icon.

To toggle the abstract adornment, click on the abstract check box in
the class specification.

When you click Abstract and you view the model in Booch notation, the
abstract class adornment is displayed in the lower left corner of the
class icon.

You can change the abstract class adornment only through the
specification.

The Abstract field is inactive for metaclasses, class utilities,
parameterized class utilities, and instantiated class utilities.

Type Description

Sequential (default) The semantics of the operation are
guaranteed only in the presence of a single
thread of control. Only one thread of
control can be executing in the method at
any one time.

Guarded The semantics of the operation are
guaranteed in the presence of multiple
threads of control. A guarded class
requires collaboration among client
threads to achieve mutual exclusion.

Active The class has its own tread of control.

Synchronous The semantics of the operation are
guaranteed in the presence of multiple
threads of control; mutual exclusion is
supplied by the class.
Rational Rose 2000e, Using Rose 71

Chapter 6 Class Diagrams and Specifications
Formal Arguments

In the Parameterized Class or Parameterized Class Utility Specification,
the formal, generic parameters declared by the class or class utility are
listed.

In the Instantiated Class or Instantiated Class Utility Specification, the
actual arguments that match the generic parameters of the class being
instantiated are listed.

You can add, update, or delete parameters only through the Class
Specification. This field applies only to parameterized classes,
parameterized class utilities, instantiated classes, and instantiated
class utilities.

To define the parameters for a class, position the pointer within the
Parameters field and click Insert from the shortcut menu or press the
INSERT key.

Parameters are displayed on class diagrams.

Class Specification—Operations Tab

Operations denote services provided by the class. Operations are
methods for accessing and modifying Class fields or methods that
implement characteristic behaviors of a class.
72 Rational Rose 2000e, Using Rose

Class Specification
The Operations tab lists the operations that are members of this class.
Rational Rose stores operation information in an operation
specification. You can access Operation Specifications from the Class
Specification or from the Browser.

Figure 19 Class Specifications—Operations Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
element not covered in the following section.

To enter an operation in the Class Specification, use Insert from the
shortcut menu. Rational Rose adds the operation name to the
operations list.
Rational Rose 2000e, Using Rose 73

Chapter 6 Class Diagrams and Specifications
The descriptions for each field on the Operations tab are discussed
below:

� Access Control Adornment (Unlabeled):

Public—members of a class are accessible to all clients.

Protected—members of a class are accessible only to
subclasses, friends, or to the class itself.

Private—members of a class are accessible only to the class
itself or to its friends.

Implemented—the class is accessible only by the
implementation of the package containing the class.

� Stereotype—displays the name of the stereotype.

� Operation—displays the name of the operation.

� Return Type—identifies the type of value returned from the
operation.

� Parent—identifies which class defines the operation.

The Operation tab is active for all class types. In the class diagram, you
can display operation names in the class compartment.

Show Inherited

Click the Show Inherited option to see operations inherited from other
classes. If there is no check mark in this field, you can view only
operations associated with the selected class.
74 Rational Rose 2000e, Using Rose

Class Specification
Class Specification—Attributes Tab

Figure 20 Class Specification—Attributes Tab

Refer to the descriptions earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
specification elements not covered in the following section.

The Rational Unified Method asserts that attributes are data values
(string or integer) held by objects in a class. Thus, the Attributes tab
lists attributes defined for the class through the Class Attribute
Specification.

You can add an attribute relationship through Insert on the shortcut
menu or by pressing the INSERT key. An untitled entry is added.
Rational Rose 2000e, Using Rose 75

Chapter 6 Class Diagrams and Specifications
Attributes and relationships created using this technique are added to
the model, but do not automatically appear in any diagrams.

The descriptions for each field are discussed below:

� Access Control Adornment (Unlabeled):

Public—members of a class are accessible to all clients.

Protected—members of a class are accessible only to
subclasses, friends, or to the class itself.

Private—members of a class are accessible only to the class
itself or to its friends.

Implemented—the class is accessible only by the
implementation of the package containing the class.

� Stereotype—displays the name of the stereotype.

� Name—displays the name of the attribute.

� Class—identifies where the attribute is defined.

� Type—this can be a class or a traditional type, such as int.

� Initial—displays the initial value of an object.

This Attribute tab is active for all class types.
76 Rational Rose 2000e, Using Rose

Class Specification
Class Specification—Relations Tab

Classes collaborate with other classes in a variety of ways. The
Relations tab identifies the relationships in which this class is the
client (class) and the corresponding supplier (end) class. If you labeled
the relationship, Rational Rose displays its name after the kind of
relationship.

Figure 21 Class Specification—Relations Tab

Refer to the descriptions earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
specification element not covered in the following section.

Rational Rose automatically updates this list when you draw
relationships between classes.

The description for each field is discussed below:

� Name—displays the name of the relationship.

� Parent—displays the client name.

� End Class—displays the supplier name.
Rational Rose 2000e, Using Rose 77

Chapter 6 Class Diagrams and Specifications
Class Specification—Component Tab

Figure 22 Class Specification—Component Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
element not covered in the following section.

Show All Components

Select this option if you want to get a list of all components in a model.
If this option is not selected, you will see only the components to which
this class is assigned.

Component Name

The component list identifies the components to which this class is
assigned (with a check mark). A class can be assigned to a note or to
several components with the same implementation language assigned.
78 Rational Rose 2000e, Using Rose

Class Specification
You can assign the class to a component through Assign on the
shortcut menu, or by dragging a component from the browser and
dropping it in the list.

Package Name

This field displays the package that the component belongs to.

Language

The Language field identifies the implementation language that is
assigned to this element.

Note: When you change the implementation language of a component,
the data types that are used in the specification of operations are
attributes of the assigned classes, are not automatically converted to
data types in the new implementation language. Also if you change the
implementation language for a component with classes that are
assigned to other components, a dialog box is displayed asking how to
handle those classes.

Class Specification—Nested Tab

A nested class is a class that is enclosed within another class. Classes
may contain instances of, inherit from, or use a nested class.

Enclosing classes are referred to as parent classes, and a class that lies
underneath the parent class is called a nested class.

A nested class is typically used to implement functionality for the
parent class. In many designs, a nested class is closely coupled to the
parent class and is often not visible outside of the parent class. For
example:

Τhink of your computer as a parent class and its power supply as a
nested class. While the power supply is not visible outside the
computer, the task it completes is crucial for the overall
functionality of the computer.

Note: Nested classes can be cut and pasted.
Rational Rose 2000e, Using Rose 79

Chapter 6 Class Diagrams and Specifications
Figure 23 Class Specification—Nested Tab

Refer to the description earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
specification elements not covered in the following section.

Adding a Nested Class from a Class Specification:

1. Create and name a class.

2. Display the Class Specification.

3. Click on the Nested tab.

4. Right-click to display the shortcut menu, then click Insert.

An untitled class entry is inserted. A nested class entry with a default
class name is inserted.

To display a nested class:

1. Click Query > Add Classes.

2. Select the nested class and place it in the Selected Classes list box.
80 Rational Rose 2000e, Using Rose

Class Specification
Deleting a Nested Class from a Class Specification

1. Select the nested class from the Nested tab in the Class
Specification.

2. Right-click on the class to display a shortcut menu.

3. From the shortcut menu, click Delete.

Or, use the following steps to delete a nested class:

1. Select the name of the nested class from the Nested Classes list
box in the Class Specification.

2. Press the DELETE key.

If you delete a nested class that is also a parent to other nested classes,
all the nested classes will be deleted.

Note: When you attempt to delete a nested class from a Class
Specification, a warning dialog will appear to verify the deletion.

Relocating Nested Classes from the Browser to a Specification

Classes and Nested Classes can be moved from the browser to the
Class Specification Nested Tab. If you move a class (NewClassA) from
the browser and place it directly on top of a class (NewClassB) on the
Nested tab, NewClassA becomes nested underneath NewClassB.
However, only one level of class nesting appears on the Nested tab. You
can view all levels of nesting in the browser.

For additional information on the browser, refer to Chapter 3, The
Browser.

Moving Nested Classes between Class Specifications

Nested classes can be dragged and dropped between Class
Specification Nested tabs.

Class Specification—Files Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on this tab.
Rational Rose 2000e, Using Rose 81

Chapter 6 Class Diagrams and Specifications
Class Attribute Specification

A Class Attribute Specification enables you to display and modify the
properties of a class attribute in the current model.

To display an Attribute Specification, select the entry on the Attribute
tab of the Class Specification and click Insert from the shortcut menu.
Alternatively, double-clicking on the entry will display the Class
Attribute Specification.

Specification Content

The Class Attribute Specification consists of the following tabs: General
and Detail.

Class Attribute—General Tab

Figure 24 Class Attribute—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
specification elements not covered in the following section.
82 Rational Rose 2000e, Using Rose

Class Attribute Specification
Class

The class the attribute belongs to is displayed in this static field.

Show Classes

Select the Show Classes check box to list all classes defined in the
model and any fundamental types that reside in the model.

If you clear this check box, the selection lists include only the
fundamental types that reside in the model.

Type

Attribute types can either be classes or language specific types. When
the attribute is a data value, the type is defined as a language specific
type. You can enter the type in the Type field of the Class Attribute
Specification. Rational Rose displays the type beside the attribute
name in the class icon and updates the information in the model.

Initial Value

You can assign an initial value to your class attribute through this
field. Click in the Initial Value field and enter the value.
Rational Rose 2000e, Using Rose 83

Chapter 6 Class Diagrams and Specifications
Class Attribute—Detail Tab

Figure 25 Class Attribute—Detail Tab

Containment

Physical containment plays a role in the construction and destruction
of an aggregate’s parts through semantics. The specification of physical
containment is necessary for meaningful code generation from the
model.

You can set one of the following types of physical containment:

Table 9 Physical Containment Options
Type Description

By Value Physical containment of a value of the
part.

By Reference Physical containment of a pointer or
reference to the part.

Unspecified (default) The type of physical containment has
not been specified.
84 Rational Rose 2000e, Using Rose

Class Attribute Specification
To set or change the containment type in the Relationship
Specification, click on the applicable option in the Containment field.
The application places an adornment at the supplier end of the
relationship. You can also select a value from the shortcut menu.

Static

Select the Static check box to specify that the client class, not the
client’s instances, owns the supplier class. In the case of an attribute,
a static attribute is an attribute whose value is common to a class of
objects rather than a value peculiar to each instance.

You can set this field in the specification or through the shortcut menu.

Derived

The Derived check box indicates whether the element was computed or
implemented directly.

To define a element as derived, select the Derived check box. The
element name is adorned by a “/” in front of the name.
Rational Rose 2000e, Using Rose 85

Chapter 6 Class Diagrams and Specifications
Operation Specification

You should complete one Operation Specification for each operation
that is a member of a class and for all free subprograms.

If you change a class operations property by editing its specification,
Rational Rose will update all class diagrams containing icons
representing that class.

To access the Operation Specification, select an entry on the Operation
tab of the Class Specification and double-click the entry or click Insert
from the shortcut menu. You can also bring the specification up
through the shortcut menu.

Specification Content

The Operation Specifications consists of the following tabs: General,
Detail, Preconditions, Semantics, Postconditions, and Files.
86 Rational Rose 2000e, Using Rose

Operation Specification
Operation Specification—General Tab

Figure 26 Operations Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
specification elements not covered in the following section.

Return Class

For operations that are functions, set this field to identify the class or
type of the function’s result. If show classes is set, the list box displays
all the classes in the package. If Show Classes is not set, only the
predefined set of return class types is displayed.

If you enter a class name and it does not exist in your model, the
application does not create one.
Rational Rose 2000e, Using Rose 87

Chapter 6 Class Diagrams and Specifications
Operation Specification—Detail Tab

Figure 27 Operation Specification—Detail Tab

Refer to the description in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.

Arguments

This field contains a list of the arguments of the operation. You may
express these arguments in your selected implementation language.

The argument list can be rearranged with the click and drag technique.
Select an argument from the list, drag it to the location, and release.
The list will reflect the new order.

Protocol

This field lists a set of operations that a client can perform on an object
and the legal orderings in which they might be invoked. The protocol of
an operation has no semantic impact.
88 Rational Rose 2000e, Using Rose

Operation Specification
Qualifications

This field identifies language-specific features that qualify the method.
You will find this especially useful in Common Lisp Object System
(CLOS), in which methods can be described as before or after.

Exceptions

This field contains a list of the exceptions that can be raised by the
operation. Enter the name of one or more classes identifying the
exception.

Size

This field identifies the relative or absolute amount of storage
consumed by the invocation of the operation.

Time

This field contains a statement about the relative or absolute time
required to complete an operation. Use this field to budget time for the
operation.
Rational Rose 2000e, Using Rose 89

Chapter 6 Class Diagrams and Specifications
Concurrency

This field denotes the semantics in the presence of multiple threads of
control. The Concurrency field shows the concurrency for the elements
of a class. The concurrency of an operation should be consistent with
its class.

Table 10 Concurrency Field Options

You can set the concurrency of a class only through the Class
Specification. The Concurrency field is inactive for class utilities,
parameterized class utilities, and instantiated class utilities.

To change the concurrency, click on an applicable option in the
Concurrency field. You can display the concurrency in the class
diagram by clicking Show Concurrency from the shortcut menu.

Type Description

Sequential (default) The semantics of the operation are
guaranteed only in the presence of a single
thread of control. Only one thread of
control can be executing in the method at
any one time.

Guarded The semantics of the operation are
guaranteed in the presence of multiple
threads of control. A guarded class
requires collaboration among client
threads to achieve mutual exclusion.

Synchronous The semantics of the operation are
guaranteed in the presence of multiple
threads of control; mutual exclusion is
supplied by the class.
90 Rational Rose 2000e, Using Rose

Operation Specification
Operation Specification—Preconditions Tab

Figure 28 Operation Specification—Precondition Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.

Preconditions

Invariants that are assumed by the operation (the entry behavior of an
operation) are listed.

Interaction Diagram

Select an interaction diagram from the list box that illustrates the
appropriate semantics.
Rational Rose 2000e, Using Rose 91

Chapter 6 Class Diagrams and Specifications
Operation Specification—Semantics Tab

Figure 29 Operations Specification—Semantics Tab

Refer to the description in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.

Semantics

The action of the operation is shown in this area.

Interaction Diagram

Select an interaction diagram from the list box that illustrates the
appropriate semantics.
92 Rational Rose 2000e, Using Rose

Operation Specification
Operation Specification—Postconditions Tab

Figure 30 Operation Specification—Postcondition Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.

Postcondition

Invariants that are satisfied by the operation (the exit behavior of an
operation) are listed in this area.

Interaction Diagram

Select an interaction diagram from the list box that illustrates the
appropriate semantics.
Rational Rose 2000e, Using Rose 93

Chapter 6 Class Diagrams and Specifications
Operation Specification—Files Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on this tab.

Parameter Specification

A Parameter Specification enables you to modify an argument of an
operation.

Specification Content

The Parameter Specification consists of the following tab: General.

Defining a New Parameter

To display a Parameter Specification, use the following steps:

1. From a Class Specification’s Operation Tab, double-click an
operation to display the Operation Specification.

2. From the Operation Specification, select the Detail tab.

3. Move the pointer to the arguments section.

4. Right-click to display the shortcut menu.

5. Click Insert, and a new argument is added.

6. Double-click on the argument to display the Parameter
Specification.
94 Rational Rose 2000e, Using Rose

Parameter Specification
Parameter Specification—General Tab

Figure 31 Parameter Specification—General Tab

Refer to the description in the Introduction to Diagrams and
Specification chapter if you need information on the specification
elements not covered in the following section.

Default

The default field may contain a value that an instance takes unless
otherwise specified.

Owner

The operation is the owner of the parameter.
Rational Rose 2000e, Using Rose 95

Chapter 6 Class Diagrams and Specifications
Type

Type is a description of a set of instances that share the same
operations, abstract attributes and relationships, and semantics.
Depending upon the language installed, different types will appear.

Association Specification

An association represents a bidirectional semantic relationship
between two classes.

To display the association specification, double-click any icon
representing the processor or click Browse > Specifications.

Specification Content

The Association Specification consists of the following tabs: General,
Detail, Role A and Role B General, and Role A and Role B Detail.
96 Rational Rose 2000e, Using Rose

Association Specification
Association Specification—General Tab

Figure 32 Association Specification—General Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.

Parent

The parent the component belongs to (its package) is displayed in this
static field.

Stereotype

A stereotype represents the subclassification of an element. It
represents a class within the UML metamodel itself (that is, a type of
modeling element). Some stereotypes are already predefined, but you
can also define your own to add new kinds of modeling types.
Rational Rose 2000e, Using Rose 97

Chapter 6 Class Diagrams and Specifications
Role

Use this field to label the role with a name that denotes the purpose or
capacity wherein one class associates with another.

To enter a role name, click in the Role field and enter the text.

Element

The Element field describes the two elements which this association
associates. This field cannot be edited.

Association Specification—Detail Tab

Figure 33 Association Specification—Detail Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.
98 Rational Rose 2000e, Using Rose

Association Specification
Derived

This field indicates whether the element was computed or implemented
directly.

To define an element as derived, select the Derived check box. The
element name is adorned by a “/” in front of the name.

Link Element

This field lists the attributed associations linked to the association.
These attributed associations apply to the association as a whole.

Name Direction

This field defines the direction of a role.

Constraints

The constraint is an expression of some semantic condition that must
be preserved while the system is in a steady state. The constraint on
the Detail tab applies to the association as a whole, while the constraint
on the Detail A or Detail B tab applies to a particular role.

To apply a constraint, click in the Constraint field and enter the text.
Constraints are displayed notationally, surrounded by braces under
the role for which it applies.
Rational Rose 2000e, Using Rose 99

Chapter 6 Class Diagrams and Specifications
Association Specification—Role B General Tab

Figure 34 Association Specification—Role A and B General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
elements shown on this specification.
100 Rational Rose 2000e, Using Rose

Association Specification
Association Specification—Role A and B Detail Tab

Figure 35 Association Specification—Role A and B Detail Tab

Refer to the descriptions earlier in the chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
specification elements not covered in the following sections.

Navigable

The Navigable field indicates in which direction the role is navigating.
By default, roles are bidirectional and no navigation notation is
provided.

To set a role’s navigation, click on the Navigable box in the Association
Specification or click Navigable through the shortcut menu. The
navigable arrowhead points in the direction of the role, unless a
containment adornment is displayed. Containment adornments
override navigable adornments.
Rational Rose 2000e, Using Rose 101

Chapter 6 Class Diagrams and Specifications
Aggregate

Use the Aggregate field to set a direction to either all or part of the
relationship among instances of these classes. Only one end of the
relationship can be aggregate.

To set the aggregate adornment, click on the Aggregate box in the
Association Specification or click Aggregate through the shortcut
menu. The adornment is a diamond on the relationship.

Static

Use the Static field to specify that the client class, not the client’s
instances, owns the supplier class. In the case of an attribute, a static
attribute is an attribute whose value is common to a class of objects
rather than a value peculiar to each instance.

You can set this field in the specification or through the shortcut menu.
To switch the static adornment in the Relationship Specification, select
the Static check box.

Friend

The friend field designates that the supplier class has granted rights to
a client class to access its non-public parts.

You can set this field in the Relationship Specification or through the
relationship’s shortcut menu.

Containment of

Physical containment has semantics that play a role in the
construction and destruction of an aggregate’s parts. The specification
of physical containment is necessary for meaningful code generation
from the model.
102 Rational Rose 2000e, Using Rose

Generalize Specification
You can set one of the following types of physical containment:

Table 11 Containment Field Options

You can change the containment type in the Relationship Specification
or you can select a value from the relationship’s shortcut menu.

Keys/Qualifiers

A key or qualifier is an attribute that uniquely identifies a single target
object. The attributes allow 1..n or n..n associations and reduce the
number of instances. The list box will display all keys or qualifiers
currently defined.

To enter a key or qualifier, click Insert from the shortcut menu or press
the Insert key. An untitled entry is placed in the name and type field.
To change the entry, select to highlight and type in a new name.

For information on the Key/Qualifier specification, refer to the
Key/Qualifier section later in this chapter.

Generalize Specification

A generalize relationship between classes shows that one class shares
the structure or behavior defined in one or more other classes.

Specification Content

The Generalize Specification consists of the following tab: General.

Type Description

By Value Physical containment of a value of the
part.

By Reference Physical containment of a pointer or
reference to the part.

Unspecified (default) The type of physical containment has not
been specified.
Rational Rose 2000e, Using Rose 103

Chapter 6 Class Diagrams and Specifications
Generalize Specification—General Tab

Figure 36 Generalize Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
elements not covered in the following section.

Friendship Required

Select the Frendship required check box to specify the supplier class
has granted rights to the client class to access its non-public members.

Virtual Inheritance

Select the Virtual Inheritance check box to ensure that only one copy of
the base class will be inherited by descendants of the subclasses.

Realize Specification

A realize relationship connects a class to an interface or a component
to an interface.
104 Rational Rose 2000e, Using Rose

Dependency Specification
Specification Content

The Realize Specification consists of the following tab: General.

Realize Specification—General Tab

Figure 37 Realize Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
elements shown on this specification.

Dependency Specification

The dependency relationship indicates that the client class depends on
the supplier class to provide certain services. One class can use
another class in a variety of ways. Typically, a dependency relationship
indicates that the operations of the client invoke operations of the
supplier. Dependency relationships appear on component diagrams
and they can also be used to connect use cases.

Note: A dependency that connects two use cases together contains a
simpler form of the dependency specification pictured below. Only the
name, class, sterotype, and documentation fields are present.
Rational Rose 2000e, Using Rose 105

Chapter 6 Class Diagrams and Specifications
Specification Content

The Dependency Specification consists of the following tab: General.

Dependency Specification—General Tab

Figure 38 Dependency Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
elements shown on this specification.

Has Relationship (Booch Only)

A has relationship shows a whole and part relationship between two
classes, where one class is the whole and the other is the part. The
whole class contains or owns its parts. This relationship is also called
an aggregation relationship.

Because attributes for a class can be expressed by a has by-value
relationship with cardinality of “1,” attributes are also defined in the
has relationship specifications.
106 Rational Rose 2000e, Using Rose

Has Relationship (Booch Only)
To display a has relationship’s specification, select any icon
representing the has relationship and either double-click or click
Browse > Specifications.

Specification Content

The Has Specification consists of the following tab(s): General and
Detail.

Has Specification—General Tab

Figure 39 Has Specification—General Tab

Refer to the section on the Class Attribute General Tab earlier in this
chapter for more information.
Rational Rose 2000e, Using Rose 107

Chapter 6 Class Diagrams and Specifications
Has Specification—Detail Tab

Figure 40 Has Specification—Detail Tab

Refer to the descriptions earlier in this chapter, or in the Introduction
to Diagrams and Specifications chapter if you need information on the
specification elements on this tab.
108 Rational Rose 2000e, Using Rose

Key/Qualifier Specification
Key/Qualifier Specification

A Key/Qualifier Specification enables you to modify a specific attribute
whose value uniquely identifies a single target object.

Defining a New Key/Qualifier

To display a Key/Qualifier Specification, use the following steps:

1. Double-click on an association or aggregation.

2. From either the Association Specification or the Aggregation
Specification, select the Role A Detail or Role B Detail.

3. Move the pointer to the Key/Qualifier section of either specification.

4. Right-click to display the shortcut menu.

5. Click Insert, and a Key/Qualifier is added.

6. Double-click on the entry to display the Key/Qualifier Specification.

Specification Content

The Key/Qualifier Specification consists of the following tab: General.
Rational Rose 2000e, Using Rose 109

Chapter 6 Class Diagrams and Specifications
Key/Qualifier Specification—General Tab

Figure 41 Key/Qualifier Specification—General Tab

Refer to the description in the Introduction to Diagrams and
Specification chapter if you need information on the specification
elements not covered in the following section.

Owner

The owner static field identifies the name, or owner, of the role that the
key/qualifier evolved from.
110 Rational Rose 2000e, Using Rose

Chapter 7

Use-Case Diagrams and Specifications

Use-Case Diagram Overview

Use-case diagrams present a high-level view of how a system is used
as seen from an outsider’s (or actor’s) perspective. These diagrams
graphically depict system behavior (also known as use cases). A use-
case diagram may depict all or some of the use cases of a system.

A use-case diagram can contain:

� Actors (“things” outside the system).

� Use cases (system boundaries identifying what the system
should do).

� Interactions or relationships between actors and use cases in the
system including the associations, dependencies, and
generalizations.

Use-case diagrams can be used during analysis to capture the system
requirements and understand how the system should work. During
the design phase, use-case diagrams can be used to specify the
behavior of the system as implemented.
Rational Rose 2000e, Using Rose 111

Chapter 7 Use-Case Diagrams and Specifications
Actors

Actors represent system users. They help define the system and give a
clear picture of what the system should do. It is important to note that
an actor interacts with, but has no control over the use cases.

An actor is someone or something that:

� Interacts with or uses (but is not part of) the system.

� Provides input to and receives information from the system.

� Is external to the system and has no control over the use cases.

Actors are discovered by examining:

� Who directly uses the system.

� Who is responsible for maintaining the system.

� External hardware used by the system.

� Other systems that need to interact with the system.

An actor is a stereotype of a class and is depicted as a “stickman” on a
use-case diagram. The name of the actor is displayed below the icon.

Use Case

A use case is a sequence of events (transactions) performed by a
system in response to a trigger initiated by an actor. A use case
contains all the events that can occur between an actor-use case pair,
not necessarily the ones that will occur in any particular scenario.

In its simplest form, a use case can be described as a specific way of
using the system from a user’s (actor’s) perspective. A use case also
illustrates:

� A pattern of behavior the system exhibits

� A sequence of related transactions performed by an actor and the
system

Use cases provide a means to:

� Capture system requirements

� Communicate with the end users and domain experts

� Test the system
112 Rational Rose 2000e, Using Rose

Use-Case Diagram Overview
Use cases are best discovered by examining what the actor needs and
defining what the actor will be able to do with the system; this helps
ensure that the system will be what the user expects.

Since all the needs of a system typically cannot be covered in one use
case, it is usual to have a collection of use cases. Together this use
case collection specifies all the ways of using the system.

A use case may have a name, although it is typically not a simple name.
It is often written as an informal text description of the actors and the
sequences of events between objects. Use case names often start with
a verb.

The name of the use case is displayed below the icon.

Flow of Events

A flow of events is a sequence of transactions (or events) performed by
the system. They typically contain very detailed information, written in
terms of what the system should do, not how the system accomplishes
the task. Flow of events are created as separate files or documents in
your favorite text editor and then attached or linked to a use case using
the Files tab of a model element. See Chapter 6 for a discussion on the
Files tab.

A flow of events should include:

� When and how the use case starts and ends

� Use case/actor interactions

� Data needed by the use case

� Normal sequence of events for the use case

� Alternate or exceptional flows

You can use activity diagrams to further model flow of events.

Relationships

Relationships show interactions between actors and use cases.
Association, dependency, generalization relationships can be drawn
from an actor to a use case. The generalize relationship can be drawn
between actors.

Any association relationships are also presented in a text format on the
Relations tab (described later) for a selected use case or actor.
Rational Rose 2000e, Using Rose 113

Chapter 7 Use-Case Diagrams and Specifications
Association

An association provides a pathway for communication between use
cases and actors. Associations are the most general of all relationships
and consequentially, the most semantically weak. If two objects are
usually considered independently, the relationship is an association.
The association name and its stereotype is typically a verb or a verb
phrase and is used to identify the type or purpose of the relationship.

There are two different types of associations connected with use-case
diagrams: uni-directional and bi-directional.

Uni-directional association:Uni-directional association:Uni-directional association:Uni-directional association: By default, associations in use cases are
uni-directional and drawn with a single arrow at one end of the
association. The end with the arrow indicates who or what is receiving
the communication.

Bi-directional association:Bi-directional association:Bi-directional association:Bi-directional association: To change the communication to be bi-
directional, double-click on the association to view the Association
Specification. Select the appropriate Role A (or B) Detail tab, click
Navigable to add a check mark, and click Apply. You have now made
the association bi-directional. The graphic changes from a line with an
arrow at one end to a line with no arrow.

If you prefer, you can also customize the toolbox to include the bi-
directional tool to the use-case toolbox. See See “Customizing the
Toolbox” on page 14. for information on adding or deleting tools on a
diagram toolbox.

You can create or display a use-case diagram in one of three ways:

� Click Browse > Use Case Diagram.

� On the toolbar, double-click the use-case diagram icon.

� In the browser, double-click the use-case diagram icon.

Dependency

A dependency is a relationship between two model elements in which
a change to one model element will affect the other model element. Use
a dependency relationship to connect model elements with the same
level of meaning. Typically, on class diagrams, a dependency
relationship indicates that the operations of the client invoke
operations of the supplier.
114 Rational Rose 2000e, Using Rose

Use-Case Diagram Overview
You can connect model elements with dependencies on any diagram
except state machine diagrams and object diagrams. For example, you
can connect a use case to another use case, a package to another
package, and a class to a package. Dependencies are also used on
component diagrams to connect model elements.

Extend Stereotype

An extend relationship is a stereotyped relationship that specifies how
the functionality of one use case can be inserted into the functionality
of another use case. You can place extend stereotypes on all
relationships. However, most extend stereotypes are placed on
dependencies or associations. Extend relationships are important
because they show optional functionality or system behavior.

Include Stereotype

An include relationship is a stereotyped relationship that connects a
base use case to an inclusion use case. An include relationship
specifies how behavior in the inclusion use case is used by the base use
case. Include relationships are important because they represent that
the inclusion use case functionality is used by the base use case.

Refine Stereotype

A refine relationship is a stereotyped relationship that connects two or
more model elements at different semantic levels or development
stages. It represents a fuller specification of something that has already
been specified at a certain level of detail. For example, a design class is
a refinement of an analysis class. In a refine relationship, the source
model element is general and more broadly defined whereas the target
model element is more specific and refined.
Rational Rose 2000e, Using Rose 115

Chapter 7 Use-Case Diagrams and Specifications
Generalization

A generalize relationship is a relationship between a more general class
or use case and a more specific class or use case. A generalization is
shown as a solid-line path from the more specific element to a more
general element. The tip or a generalization is a large hollow triangle
pointing to the more general element.

You can place a stereotype on any generalization through the
Generalization Specification. However, three common stereotypes for
generalizations are extends, includes and generalization.
116 Rational Rose 2000e, Using Rose

Use-Case Diagram Overview
Use-Case Diagram Toolbox

The graphic below shows all the tools that can be placed on the use-
case diagram toolbox. See See “Customizing the Toolbox” on page 14.
for information on adding or deleting diagram toolbox tools.

The application window displays the following toolbox when the
current window contains a use-case diagram and As Unified is selected
from the View menu.

Some icons will be different if As Booch or As OMT is selected from the View
menu.

Figure 42 Use-Case Diagram Toolbox

Selector

Note

Class
Unidirectional
Association
Package

Generalization

Refine Dependency

Include Dependency

Actor

Association Relationship

Instantiated Class Utility

Business Use Case

Instantiated Class

Control Class

Server Class

Business Worker Class

Business Use Case
Realization

Form Class

Boundary Class

Business Actor

Text

Note Anchor

Interface

Association Class

Dependency

Realize Relationship

Extend Dependency

Use Case

Aggregation

Unidirectional Aggregation

Parameterized Class Utility

Class Utility

Use-case Realization

Subsystem Package

Client Page Class

Parameterized Class

Organization Unit

Applet Class

Entity

Business Entity
Rational Rose 2000e, Using Rose 117

Chapter 7 Use-Case Diagrams and Specifications
Use-Case Specification

A Use-Case Specification enables you to display and modify the
properties and relationships of a use case in the current model.

Specification Content

The Use-Case Specification contains the following tabs: General,
Diagrams, Relations, and Files.

Use-Case Specification—General Tab

Figure 43 Use-Case Specification—General Tab

Refer to the description in the Introduction to Diagrams and
Specifications chapter if you need information on the specifications
elements not covered in the following section.
118 Rational Rose 2000e, Using Rose

Use-Case Specification
Name

A use case name is often written as an informal text description of the
external actors and the sequences of events between elements that
make up the transaction. Use-case names often start with a verb. The
name can be entered or changed on the specification or directly on the
diagram.

Package

This static field identifies the package to which the components belong.

Rank

The Rank field prioritizes use cases. For example, you can use the rank
field to plan what iteration in the development cycle a use case should
be implemented.

Abstract

An abstract notation indicates a use case that exists to capture
common functionality between use cases (uses) and to describe
extensions to a use case (extends).
Rational Rose 2000e, Using Rose 119

Chapter 7 Use-Case Diagrams and Specifications
Use-Case Specification—Diagram Tab

Figure 44 Use-Case Specification—Diagram Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.

Diagrams

The Diagrams list box lists all the diagrams owned by the use case. The
diagram list consists of two columns. The first (unlabeled) column
displays the diagram icon type for the diagram. The second column
displays the diagram name. To insert a new diagram in the list, click
one of the Insert choices in the shortcut menu that corresponds to the
diagram type.
120 Rational Rose 2000e, Using Rose

Use-Case Specification
Use-Case Specification—Relations Tab

Figure 45 Use-Case Specification—Relations Tab

Refer to the description in the in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.

Relations

The Relations tab lists all the association relationships that correspond
to the selected use case. The client and supplier names and type icons
are displayed to the right of the relation name. Double-clicking on any
column in a row displays the element’s specification.
Rational Rose 2000e, Using Rose 121

Chapter 7 Use-Case Diagrams and Specifications
Generalize Specification—General Tab

Figure 46 Generalize Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
elements not covered in the following section.

Stereotype

Stereotypes allow you to provide additional distinctions in your model
that are not explicitly supported by the UML. The use of stereotypes
makes it easy to add information about modeling elements that may be
specific to a project or process.

The Generalize Specification uses stereotypes to create two new use-
case relationships which can be attached to a model element to
indicate a special relationship between use cases.
122 Rational Rose 2000e, Using Rose

Actor Specification
Friendship Required

Select the Friendship Required check box to specify that the supplier
class has granted rights to the client class to access its non-public
members.

Virtual Inheritance

Select the Virtual Inheritance check box to ensure that only one copy of
the base class will be inherited by descendants of the subclasses.

Actor Specification

An Actor Specification looks identical to a Class Specification, except
that the stereotype field is set to actor. However, some of the fields in
the class specification are not applicable to actors and are therefore
disabled. Refer to the class specification in the Class Diagrams and
Specifications chapter for more information.
Rational Rose 2000e, Using Rose 123

Chapter 8

State Machine Diagrams and
Specifications

The state/activity model icon that appears in the browser can be
thought of as a “container” for statechart and activity diagrams and all
of their model elements. A state/activity model owns statecharts and
activity diagrams and is represented semantically with a state
machine. A state machine can be defined as a behavior that specifies
the valid sequences of activities that an object or interaction goes
through during its life in response to events, together with its
responses and actions.

Rational Rose automatically creates one state/activity model when you
create a statechart or activity diagram. A state/activity model can be
relocated to a new owner, such as a class operation or a use case, by
dragging it to a new location in the browser. Rational Rose limits you
to only one state/activity model per owner.

Creating and Displaying a State Machine Diagram

To create a State/Activity Model, use the following steps:

1. Click Browse > State Machine Diagram.

2. Double-click New.

3. Name the diagram.

4. Specify the type of diagram you want to create: Activity or
Statechart.

5. Click OK.
Rational Rose 2000e, Using Rose 125

Chapter 8 State Machine Diagrams and Specifications
State Machine Specification

A State Machine Specification enables you to display and modify the
properties and relationships of a State/Activity Model. A state/activity
model contains statechart and activity diagrams.

To view the State Machine Specification, double-click the
State/Activity Model in the browser.

Changes made either through the specification or directly on the icon
are automatically updated throughout the model.

Specification Content

The State Machine Specification consists of the following tab: General.

State Machine Specification General Tab

Figure 47 State Machine Specification—General Tab
126 Rational Rose 2000e, Using Rose

Statechart Diagram Overview
Statechart Diagram Overview

Statechart diagrams model the dynamic behavior of individual classes
or any other kind of object. They show the sequences of states that an
object goes through, the events that cause a transition from one state
or activity to another, and the actions that result from a state or activity
change.

Statechart diagrams are closely related to activity diagrams. The main
difference between the two diagrams is statechart diagrams are state
centric, while activity diagrams are activity centric. A statechart
diagram is typically used to model the discrete stages of an object’s
lifetime, whereas an activity diagram is better suited to model the
sequence of activities in a process.

Each state represents a named condition during the life of an object
during which it satisfies some condition or waits for some event. A
statechart diagram typically contains one start state and multiple end
states. Transitions connect the various states on the diagram. As with
activity diagrams, decisions and synchronizations may also appear on
statechart diagrams.

Creating a Statechart Diagram

You can create statechart diagrams on most model elements except for
attributes, associations, or model elements that appear in the
component view.

To create a statechart diagram, use the following steps:

1. In the browser, right-click on any model element except for
attributes, associations, or model elements that appear in the
component view.

2. Click New > Statechart Diagram.

Here is another way to create a statechart diagram:

1. Click the Browse State Machine Diagram button from the toolbar.

2. Click New.

3. Select the Statechart Diagram check box in the New State Machine
dialog box.

4. Enter the statechart diagram title.
Rational Rose 2000e, Using Rose 127

Chapter 8 State Machine Diagrams and Specifications
5. Click OK.

Automatic Transmission Example

Figure 48 Automatic Transmission Example

Figure 48 illustrates some of the major model elements in a statechart
diagram:

� Decisions

� Synchronizations

� States

� Transitions

� Start States

� End States
128 Rational Rose 2000e, Using Rose

Activity Diagram Overview
Activity Diagram Overview

Activity diagrams provide a way to model the workflow of a business
process. You can also use activity diagrams to model code-specific
information such as a class operation. Activity diagrams are very
similar to a flowchart because you can model a workflow from activity
to activity. An activity diagram is basically a special case of a state
machine in which most of the states are activities and most of the
transitions are implicitly triggered by completion of the actions in the
source activities. The main difference between activity diagrams and
statecharts is activity diagrams are activity centric, while statecharts
are state centric. An activity diagram is typically used for modeling the
sequence of activities in a process, whereas a statechart is better suited
to model the discrete stages of an object’s lifetime.

Using Activity Diagrams

Activity diagrams can model many different types of workflows. For
example, a company could use activity diagrams to model the flow for
an approval of orders or to model the paper trail of invoices. An
accounting firm could use activity diagrams to model any number of
financial transactions. A software company could use activity diagrams
to model a software development process.

Understanding Workflows

Each activity represents the performance of a group of actions in a
workflow. Once the activity is complete, the flow of control moves to the
next activity or state through a transition. If an outgoing transition is
not clearly triggered by an event, then it is triggered by the completion
of the contained actions inside the activity. A unique activity diagram
feature is a swimlane that defines who or what is responsible for
carrying out the activity or state. It is also possible to place objects on
activity diagrams. The workflow stops when a transition reaches an
end state.

You can attach activity diagrams to most model elements in the use
case or logical views. Activity diagrams cannot reside within the
component view.
Rational Rose 2000e, Using Rose 129

Chapter 8 State Machine Diagrams and Specifications
You can use the following tools on the activity diagram toolbox to model
activity diagrams:

� Decisions

� Swimlanes

� Objects

� Object Flows

� Activities

� States

� Synchronizations

� Transitions

� Start State

� End State

Creating an Activity Diagram

You can create activity diagrams on most model elements except for
attributes, associations, or model elements that appear in the
component view.

To create an activity diagram, use the following steps:

1. In the browser, right-click on any model element except for
attributes, associations, or model elements that appear in the
component view.

2. Click New > Activity Diagram.

3. Rename or double-click to display the NewDiagram icon in the
browser.

Here is another way to create an activity diagram:

1. Click the Browse State Machine Diagram button from the toolbar.

2. Click New.

3. Select the Activity Diagram check box in the New State Machine
dialog box.

4. Enter the activity diagram title.

5. Click OK.
130 Rational Rose 2000e, Using Rose

Workflow Modeling
Workflow Modeling

In business and in other industries, there are many manual and
automated systems. Each of these systems contains one or more
workflows. A workflow is best defined as a well-defined sequence of
activities that produces an observable value or objective to an
individual or entity when performed. You can model workflows with
activity diagrams.

Purposes of Workflow Modeling

The purposes of workflow modeling are threefold:

� To understand the structure and dynamics of an organization

� To ensure that customers, end users, and developers have a
common understanding of the organization

� To derive requirements on systems to support the organization

Defining a Workflow

When you define a workflow, your activity diagram should answer the
following questions:

Who or what has the overall responsibility of the workflow?

� A use case or class could own each activity diagram, for example.

What activities need to be performed to meet your objective or goal?

� Define all of the high-level activities that need to take place in the
workflow. You do not need to define every activity or state, just the
ones with the greatest importance in the workflow.

Who will be responsible for performing the various activities and
states?

� Define each activity within a swimlane so you know who is
responsible for carrying out the activity. Any element within a
swimlane is owned and should be carried out by the swimlane.

Do the activities create or modify objects?

� Connect objects and activities with object flows. Specify the state of
the object through the state specification.
Rational Rose 2000e, Using Rose 131

Chapter 8 State Machine Diagrams and Specifications
Where do the activities and states take place with respect to other
elements on your diagram?

� Placement of your activities on the diagram determines the order of
your workflow.

Why does this activity or state need to take place?

� The reason or purpose for each activity or state should be placed in
the specification documentation field.

Modeling a Workflow with an Activity Diagram

Modeling a workflow in an activity diagram can be done several ways;
however, the following steps present just one logical process:

1. Identify a workflow objective. Ask, “What needs to take place or
happen by the end of the workflow? What needs to be
accomplished?” For example, if your activity diagram models the
workflow of ordering a book from an online bookstore, the goal of
the entire workflow could be getting the book to the customer.

2. Decide the pre and post-conditions of the workflow through a start
state and an end state. In most cases, activity diagrams have a
flowchart structure so start and end states are used to designate
the beginning and ending of the workflow. State and end states
clarify the perimeter of the workflow.

3. Define and recognize all activities and states that must take place
to meet your objective. Place and name them on the activity
diagram in a logical order.

4. Define and diagram any objects that are created or modified within
your activity diagram. Connect the objects and activities with
object flows.

5. Decide who or what is responsible for performing the activities and
states through swimlanes. Name each swimlane and place the
appropriate activities and states within each swimlane.

6. Connect all elements on the diagram with transitions. Begin with
the "main" workflow.

7. Place decisions on the diagram where the workflow may split into
an alternate flow. For example, based on a Boolean expression, the
workflow could branch to a different workflow.
132 Rational Rose 2000e, Using Rose

Activity Diagram-Specific Model Elements
8. Evaluate your diagram and see if you have any concurrent
workflows. If so, use synchronizations to represent forking and
joining.

9. Set all actions, triggers and guard conditions in the specifications
of each model element.

Activity Diagram-Specific Model Elements

Activities

An activity represents the performance of “task” or “duty” in a
workflow. It may also represent the execution of a statement in a
procedure. An activity is similar to a state, but expresses the intent
that there is no significant waiting (for events) in an activity.

Swimlanes

Swimlanes are helpful when modeling a business workflow because
they can represent organizational units or roles within a business
model. Swimlanes are very similar to an object because they provide a
way to tell who is performing a certain role. Swimlanes only appear on
activity diagrams. You should place activities within swimlanes to
determine which unit is responsible for carrying out the specific
activity.

When a swimlane is dragged onto an activity diagram, it becomes a
swimlane view. Swimlanes appear as small icons in the browser while
a swimlane views appear between the thin, vertical lines with a header
that can be renamed and relocated.

Objects

Rational Rose allows objects on activity, collaboration, and sequence
diagrams. Specific to activity diagrams, objects are model elements
that represent something you can feel and touch. It might be helpful to
think of objects as the nouns of the activity diagram and activities as
the verbs of the activity diagram. Further, objects on activity diagrams
allow you to diagram the input and output relationships between
activities. In the following diagram, the Submit Defect and Fix
Rational Rose 2000e, Using Rose 133

Chapter 8 State Machine Diagrams and Specifications
Defects can be thought of as the verbs and the defect objects as the
nouns in the activity diagram vocabulary. Objects are connected to
activities through object flows.

Figure 49 Objects on an Activity Diagram Sample

Most objects can appear in an infinite number of states. For example,
look at both instances of the defect object. In one instance, the
Customer (noted by the swimlane) placed the defect in a [submitted]
state. In the other, the software engineer (noted by the swimlane)
placed the defect in a [fixed] state. Each time you associate a new state
with an object, a new state appears in the browser along with the
object. You may specify more details of the object’s state in the state
specification.

Object Flow

An object flow on an activity diagram represents the relationship
between an activity and the object that creates it (as an output) or uses
it (as an input).
134 Rational Rose 2000e, Using Rose

Activity Diagram-Specific Model Elements
Rational Rose draws object flows as dashed arrows rather than solid
arrows to distinguish them from ordinary transitions. Object flows look
identical to dependencies that appear on other diagram types.

You do not need a transition if your diagram has two activities
connected through an object and two corresponding object flows. The
scenario below does not require a transition because the transition is
redundant:

Figure 50 Object Flow Sample

Understanding Objects and Object Flows

The object flow sample demonstrates how activities affect object state
on activity diagrams. The object flow sample illustrates three important
aspects of activity diagram objects:

� Objects may appear more than once and in several states

� activities may change object state

� objects connect with activities through object flows
Rational Rose 2000e, Using Rose 135

Chapter 8 State Machine Diagrams and Specifications
Figure 51 CD Player Sample

In the object flow sample, notice that the CD Player object appears on
the diagram more than once. However, each object appears in a
different state: playing, paused, and stopped. Each activity in the
sample changes the state of the CD Player when you push the various
buttons or perform the activity. For example, when you Push Pause
Button the state of the CD Player changes to [Paused].

In most cases, the same object may be (and usually is) the output of
one activity and the input of one or more subsequent activities.

Changing the State of an Object

To change the state of an object on an activity diagram:

1. Double-click on the object to display the object specification.

2. Select New from the State drop-down menu. A new state
specification appears.

3. Enter descriptive information about the object state in the state
specification.

4. Click OK to close the state specification.

5. Click OK to close the object specification.
136 Rational Rose 2000e, Using Rose

Shared State Machine Diagram Model Elements
Shared State Machine Diagram Model Elements

The following paragraphs contain the elements that can appear in both
activity diagrams and statechart diagrams:

States

A state represents a condition or situation during the life of an object
during which it satisfies some condition or waits for some event. Each
state represents the cumulative history of its behavior.

Start and End States

A start state explicitly shows the beginning of a workflow on an activity
diagram or the beginning of the events that cause a transition on a
statechart. You can have only one start state on a statechart or activity
diagram.

An end state represents a final or terminal state on an activity diagram
or statechart diagram. Place an end state when you want to explicitly
show the end of a workflow on an activity diagram or the end of a
statechart diagram.

Transitions

A state transition indicates that an object in the source state will
perform certain specified actions and enter the destination state when
a specified event occurs or when certain conditions are satisfied. A
state transition is a relationship between two states, two activities, or
between an activity and a state.

You can show one or more state transitions from a state as long as each
transition is unique. Transitions originating from a state can not have
the same event, unless there are conditions on the event. Transitions
appear on statechart and activity diagrams.

You should label each state transition with the name of at least one
event that causes the state transition. You do not have to use unique
labels for state transitions because the same event can cause a
transition to many different states or activities.

Transitions are labeled with the following syntax:

event (arguments) [condition] / action ^ target.sendEvent
(arguments)
Rational Rose 2000e, Using Rose 137

Chapter 8 State Machine Diagrams and Specifications
Only one event is allowed per transition, and one action per event.

Events, conditions and actions must be added by editing the label or
through the State Transition Specification.

Transition to Self

A transition to self is very similar to a state transition; however, it does
not move the focus of control to another state or activity when an event
occurs. A transition to self contains the same source and target state
or activity.

A transition to self contains actions and events just like transitions.

The icon for a transition to self is a looped line with an arrowhead
pointing toward the same source state or activity. The transition to self
arc appears on the top of an activity or state icon.

Decisions

A decision represents a specific location on an activity diagram or
statechart diagram where the workflow may branch based upon guard
conditions. There may be more than two outgoing transitions with
different guard conditions, but for the most part, a decision will have
only two outgoing transitions determined by a Boolean expression.

Synchronizations

Synchronizations enable you to see a simultaneous workflow in an
activity diagram or statechart diagram. They also visually define forks
and joins representing parallel workflow.

Swimlane Specification

A Swimlane Specification enables you to display and modify the
properties and relationships of a swimlane on an activity diagram.

To display a Swimlane Specification, select the swimlane header on an
activity diagram and double-click. You may also double-click on the
swimlane icon in the browser.

Specification Content

The swimlane specification consists of the following tab: GeneralGeneralGeneralGeneral.
138 Rational Rose 2000e, Using Rose

State and Activity Specifications
Swimlane Specification General Tab

Figure 52 Swimlane Specification—General Tab

State and Activity Specifications

A State and Activity Specification enables you to display and modify the
properties and relationships of a state or activity on a statechart
diagram or activity diagram. Although a state and activity have almost
identical features, they are used for very different purposes. Also, start
and end states have identical features as a state specification. Start
and End States are actually states. However, they appear as circles on
statechart and activity diagrams.

Specification Content

The State, Activity, Start State, and End State Specifications consists of
the following tabs: General, Action, Transitions, and Swimlanes.
Rational Rose 2000e, Using Rose 139

Chapter 8 State Machine Diagrams and Specifications
State and Activity Specification General Tab

Figure 53 State and Activity Specification—General Tab

Information about the name, stereotype, owner, context,
documentation, state/activity history and sub state/activity history is
entered or displayed on this tab.

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the elements shown
on this specification.

State/Activity History

History provides a mechanism to return to the most recently visited
state when transitioning directly to a state with substates. History
applies to the level in which it appears. It may also be applied to the
lowest depth of nested states.

To apply history at the state or activity level, click State/activity history.
Click Sub state/activity history to apply history to all the depths of
nested states or activities within the state or activity level.
140 Rational Rose 2000e, Using Rose

State and Activity Specifications
State and Activity Specification Actions Tab

Figure 54 State and Activity Specification—Actions Tab

Information about the type and action expression is entered or
displayed on this tab.

Type

The Type field identifier bar lists the kind of action specified in the
Action Specification.

Action Expression

The Action Expression field identifier bar lists the four possible timing
options that specify when to carry out an action and it specifies the
types of actions that are carried out. You can modify the action settings
through the Action Specification Detail tab.

For information on the Actions Specification, refer to the Action
Specification.
Rational Rose 2000e, Using Rose 141

Chapter 8 State Machine Diagrams and Specifications
State and Activity Specification Transitions Tab

Figure 55 State and Activity Specification—Transitions Tab

Information about the icon, event and end is displayed on this tab.
142 Rational Rose 2000e, Using Rose

Action Specification
State and Activity Specification Swimlanes Tab

Figure 56 State and Activity Specification—Swimlanes Tab

Information about the swimlane namenamenamename is displayed on this tab.

Action Specification

An Action Specification enables you to display and modify the action
properties in a statechart diagram or activity diagram.

How to Define a New Action

Use the following steps to define a new action on a state or activity from
a State or Activity Specification Actions tab:

1. Click the Actions tab of a State Specification or Activity
Specification,

2. Right-click to display the shortcut menu.

3. Click Insert and an entry item is added.
Rational Rose 2000e, Using Rose 143

Chapter 8 State Machine Diagrams and Specifications
4. Double-click on the entry to display the Action Specification.

5. Type the action description in the Name field. If this field is not
active, click Action on the Type field.

If you select Send Event, you may type optional arguments to the
triggered event in the Send Arguments field and the name of another
object in the model in the Send Target field.

State and Activity Actions

Each state and activity on a statechart or activity diagram may contain
any number of internal actions. An action is best described as a “task”
that takes place while inside a state or activity. There are four possible
actions within a state or activity:

� On Entry

� On Exit

� Do

� On Event

On Event

The On Event parameters are only enabled when you set the On Event
timing parameter.

Event—In a statechart or activity diagram, an event is an occurrence
that can trigger a state transition. Type the name of the event that will
trigger the action.

Arguments—Consists of any optional arguments associated with the
event.

Condition—May contain a conditional Boolean expression.

There is an advantage to using an On Event state action rather than a
transition to self. Transitions to self trigger all the actions associated
with a state, whereas state actions handle internal state transitions.
This provides you with the control to process an internal event without
triggering the entry and exit actions. The Trigger specification contains
the same features as the Action Specification. The Trigger Specification
defines the properties of a trigger.

Specification Content

The Action Specification consists of the following tab: Detail.
144 Rational Rose 2000e, Using Rose

Transition Specification
Transition Specification

A State Transition Specification enables you to display and modify the
properties and relationships of a transition on a statechart diagram or
activity diagram. The state transition specification lists the events and
actions that comprise the transition.

Specification Contents

The State Transition Specification consists of the following tabs:
General, and Detail.

Transition Specification – General Tab

Figure 57 State Transition Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
specification elements not covered in the following section.
Rational Rose 2000e, Using Rose 145

Chapter 8 State Machine Diagrams and Specifications
State Transition Specification Detail Tab

Figure 58 State Transition Specification—Detail Tab

Guard Condition

Conditional state transitions are triggered only when the conditional
expression evaluates to true. Conditions are denoted by surrounding
brackets:

Event (args) [condition] / Action ^target.someEvent (args)

To add a condition, click Condition on the State Transition
Specification and type the conditional expression. You may also
include a condition by selecting the event label and changing the text.
146 Rational Rose 2000e, Using Rose

Decision Specification
Transition Between Substates

Transition between substates is useful when a transition is placed to
or from a substate that has been hidden from view. The From field
displays the state name from which the transition is initiated. The To
field displays the state name from which the transition is pointing.
Both fields are active at all times.

To enter a transition substate, click the scrolling arrow on the right
side of the field. A list of potential transition substates will be
presented. The list includes the name of all the states that reside within
the bounds of the top level superstate, including the superstate. Select
a state from the list.

Decision Specification

A Decision Specification enables you to display and modify the
properties and relationships of a decision on a statechart diagram or
activity diagram.

The Decision Specification consists of the following tabs: General,
Transitions, and Swimlanes.
Rational Rose 2000e, Using Rose 147

Chapter 8 State Machine Diagrams and Specifications
Decision Specification General Tab

Figure 59 Decision Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
specification elements not covered in the following section.
148 Rational Rose 2000e, Using Rose

Decision Specification
Decision Specification Transitions Tab

Figure 60 Decision Specification—Transition Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.
Rational Rose 2000e, Using Rose 149

Chapter 8 State Machine Diagrams and Specifications
Decision Specification Swimlanes Tab

Figure 61 Decision Specification—Swimlane Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.

Synchronization Specification

A Synchronization Specification enables you to display and modify the
properties and relationships of a synchronization on a statechart
diagram or activity diagram.

The Decision Specification consists of the following tabs: General and
Transitions.
150 Rational Rose 2000e, Using Rose

Synchronization Specification
Synchronization Specification General Tab

Figure 62 Synchronization Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
specification elements not covered in the following section.
Rational Rose 2000e, Using Rose 151

Chapter 8 State Machine Diagrams and Specifications
Synchronization Specification Transitions Tab

Figure 63 Synchronization Specification—Transitions Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section

Object Specification (Activity Diagrams)

An Object Specification enables you to display and modify the
properties of an activity diagram object. The object specifications that
appear from objects on an activity diagrams are slightly different than
the object specifications derived from a sequence or collaboration
diagram. Activity diagram object specifications contain state and
stereotype menus.

The Object Specification for an activity diagram consists of the
following tabs: General, Incoming Object Flows, and Outgoing
Object Flows
152 Rational Rose 2000e, Using Rose

Object Specification (Activity Diagrams)
Object Specification General Tab

Figure 64 Object Specification—General Tab

State

The state drop-down menu specifies and dispays the object state.

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.
Rational Rose 2000e, Using Rose 153

Chapter 8 State Machine Diagrams and Specifications
Object Specification Incoming Object Flows Tab

Figure 65 Object Specification—Incoming Object Flows Tab

The Incoming Object Flows tab displays the name of all incoming object
flows.
154 Rational Rose 2000e, Using Rose

Object Flow Specification
Object Specification Outgoing Object Flows Tab

Figure 66 Object Specification—Outgoing Object Flows Tab

The Outgoing Object Flows tab displays the name of all outgoing object
flows.

Object Flow Specification

An Object Flow Specification enables you to display and modify the
properties and relationships of an object flow on an activity diagram.

The Object Flow Specification consists of the following tab: General.
Rational Rose 2000e, Using Rose 155

Chapter 8 State Machine Diagrams and Specifications
Object Flow Specification General Tab

Figure 67 Object Flow Specification—General Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.
156 Rational Rose 2000e, Using Rose

Chapter 9

Interaction Diagrams and Specifications

Interaction Diagram Overview

An interaction is an important sequence of interactions between
objects. Rational Rose provides two alternate views or representations
of each interaction—a collaboration and sequence diagram. These are
collectively referred to as interaction diagrams. There are two main
differences between sequence and collaboration diagrams: sequence
diagrams show time-based object interaction while collaboration
diagrams show how objects associate with each other.

You can specify and modify an interaction with either kind of diagram,
or with both. Rational Rose automatically reflects all changes made
either to a sequence or collaboration diagram in the corresponding
collaboration or sequence diagram, if one has been created.

Creating and Displaying an Interaction Diagram

To create or display a collaboration or sequence diagram:

1. Click Browse > Interaction Diagram. The Select Interaction Diagram
dialog box is displayed.

2. Select a package to “own” the diagram.

3. On the right side of the dialog box, click the diagram name, then
click OK.
Rational Rose 2000e, Using Rose 157

Chapter 9 Interaction Diagrams and Specifications
4. From the New Interaction Diagram dialog box, enter the diagram
title and click the diagram type. Your choices are Sequence or
Collaboration. Each diagram type is described in detail later in this
chapter.

Collaboration Diagrams

A collaboration diagram is an interaction diagram which shows the
sequence of messages that implement an operation or a transaction.
These diagrams shows objects, their links, and their messages. They
can also contain simple class instances and class utility instances.
Each collaboration diagram provides a view of the interactions or
structural relationships that occur between objects and object-like
entities in the current model.

You can create one or more collaboration diagrams to depict
interactions for each logical package in your model. Such collaboration
diagrams are themselves contained by the logical package enclosing
the objects they depict.

During analysis, collaboration diagrams can indicate the semantics of
the primary and secondary interactions.

During design, collaboration diagrams can show the semantics of
mechanisms in the logical design of the system.

Use collaboration diagrams as the primary vehicle to describe
interactions that express your decisions about the behavior of the
system. They can also be used to trace the execution of a scenario by
capturing the sequential and parallel interaction of a cooperating set of
objects.
158 Rational Rose 2000e, Using Rose

Sequence Diagrams
Collaboration diagrams may also depict interactions that illustrate
system behavior.

Figure 68 Collaboration Diagram Example

Sequence Diagrams

A sequence diagram is a graphical view of a scenario that shows object
interaction in a time-based sequence—what happens first, what
happens next. Sequence diagrams establish the roles of objects and
help provide essential information to determine class responsibilities
and interfaces. Sequence diagrams are normally associated with use
cases.

This type of diagram is best used during early analysis phases in
design because they are simple and easy to comprehend. A sequence
diagram has two dimensions: typically, vertical placement represents
time and horizontal placement represents different objects.

Sequence diagrams are closely related to collaboration diagrams and
each are alternate representations of an interaction.
Rational Rose 2000e, Using Rose 159

Chapter 9 Interaction Diagrams and Specifications
A sequence diagram traces the execution of a scenario in time. The
following example shows a sequence diagram:

Figure 69 Sequence Diagram Example

Toolboxes

Each diagram type has its own unique toolbox. The collaboration and
sequence diagram toolboxes are illustrated in this section.

Collaboration Diagram Toolbox

The graphic below shows all the tools that can be placed on the
collaboration diagram toolbox. See “Customizing the Toolbox” on
page 14. for information on adding or deleting tools on a diagram
toolbox.

The application window displays the following toolbox when the
current window contains a collaboration diagram and you have
selected View > As Unified.

Note: Some icons will be different if you have selected View > As Booch or
View > As OMT.
160 Rational Rose 2000e, Using Rose

Toolboxes
Figure 70 Collaboration Diagram Toolbox

Sequence Diagram Toolbox

The graphic below shows all the tools that can be placed on the
sequence diagram toolbox. See “Customizing the Toolbox” on page 14.
for information on adding or deleting tools on a diagram toolbox.

The application window displays the following toolbox when the
current window contains a sequence diagram and you have selected
View > As Unified.

Note: Some icons will be different if you have selected View > As Booch or
View > As OMT.

Figure 71 Sequence Diagram Toolbox

Note: The object and message icons are also found in the collaboration
toolbox.

Selector

Note

Object

Object Link

Link Message

Data Flow

Lock

Text

Note Anchor

Class Instance

Link to Self

Reverse Link Message

Reverse Data Flow

Selector

Note

Object

Message to

Text

Note Anchor

Object Message

Lock
Self
Rational Rose 2000e, Using Rose 161

Chapter 9 Interaction Diagrams and Specifications
Common Collaboration and Sequence Diagram Icons

There are a number of common tools that are used on both
collaboration and sequence diagrams. Although they may look slightly
different, they illustrate common concepts or elements. Tools unique
to a specific diagram type are discussed after this section.

Object

One of the primary elements of a collaboration or sequence diagram is
an object. An object has state, behavior, and identity. The structure
and behavior of similar objects are defined in their common class. Each
object in a diagram indicates some instance of a class. An object that
is not named is referred to as a class instance.

The object icon is similar to a class icon except that the name is
underlined.

If you use the same name for several object icons appearing in the
same collaboration diagram, they are assumed to represent the same
object; otherwise, each object icon represents a distinct object. Object
icons appearing in different diagrams denote different objects, even if
their names are identical. Objects can be named three different ways:
object name, object name and class, or just by the class name itself.

Multiple Objects

If you have multiple objects that are instances of the same class, you
can modify the object icon by clicking Multiple Instances in the Object
Specification. When you select this check box, the icon is changed from
one object to three staggered objects.

To create an icon representing multiple objects:

1. Create an object.

2. Double-click on its icon to display its specification.

3. Click the Multiple Instances check box.

4. Click OK.
162 Rational Rose 2000e, Using Rose

Toolboxes
Rational Rose displays the Multiple Object icon:

Figure 72 Multiple Object Diagram

Messages

A message icon represents the communication between objects,
indicating that an action will follow.

Each message icon represents a message passed between two objects,
and indicates the direction of message is going. A message icon in a
collaboration diagram can represent multiple messages. A message
icon in a sequence diagram represents exactly one message.

A message is the communication carried between two objects that
triggers an event. A message carries information from the source focus
of control to the destination focus of control.

A message is represented on collaboration diagrams and sequence
diagrams by a message icon which visually indicates its
synchronization. The synchronization of a message can be modified
through the message specification.

If all messages represented by a message icon do not have the same
synchronization, the “simple” message icon is displayed. You can
change the synchronization of the message by editing the message
specification.

The sequence diagram toolbox contains two message tools. The
message icon tool appears as a horizontal arrow. The message to self
icon appears as a message that returns to itself.

The collaboration diagram toolbox contains two message tools. The
forward message tool, bearing an arrow pointing “northeast,” places a
message icon from client to supplier. The reverse message tool, bearing
an arrow pointing “southwest,” places a message icon from supplier to
client. The default synchronization for a message is “simple.”

Scripts may be attached to messages to enhance the messages.
Rational Rose 2000e, Using Rose 163

Chapter 9 Interaction Diagrams and Specifications
If a message is deleted, the link on the collaboration diagram remains
intact.

To create a client-to-supplier message and assign it to a link
between two objects (collaboration diagram only):

1. Click the Message icon.

2. Click on an icon representing the link.

Rational Rose creates an unnamed, empty message assigned to the
designated link. The source of this message is the client object, and the
destination of this message is the supplier object.

To create a supplier-to-client message, use the Reverse Message
Creation tool in the above procedure. The source of the resulting
message is the supplier-object, and the destination of this message is
the client-object.

To name an unnamed message:

1. Click the icon representing the message.

2. Type the name.

3. Click outside the named icon.

Rational Rose will name the message as specified, and assign it a
sequence number based on creation order, starting with 1.

To Change Message Names in Interaction Diagrams:

1. Click on the name to display a flashing vertical bar that designates
the insertion point.

2. Enter additional text.

3. Click outside the named icon.

Alternatively, you can double-click on an icon representing the
message to display the message specification; modify the Name field and
click OK.

Message Numbering

To enable or disable the display of message numbers click Tools >
Options. Click on the Diagram tab and click Collaboration Numbering
(for collaboration diagrams) or Sequence Numbering (for sequence
diagrams).
164 Rational Rose 2000e, Using Rose

Toolboxes
To Change Messages Numbering in Interaction Diagrams:

1. Create or display the interaction’s sequence diagram, click Browse
> Create Sequence Diagram or Browse > Go to Sequence Diagram.

2. Reorder the messages by dragging the message icons into the
preferred order.

3. Redisplay the interaction diagram by clicking Browse > Go to
Collaboration Diagram or Browse > Go to Sequence Diagram.

Assigning an Operation to a Message

Rational Rose enables you to assign an operation to a message by
presenting a list of all operations accepted by the destination object.
The list of valid operations is defined by the specification of the object’s
parent class, and the specifications of the parent class’ superclasses,
as specified by its inheritance hierarchy. The Class field of the
destination object’s specification must therefore be set to identify the
destination object’s parent class before operations can be assigned to
a message to that destination object.

Assigning an operation to a message changes the name of the message
to the name of the operation.

To assign an operation to a message:

1. Right-click on the message icon.

2. Click an operation from the pop-up list, or click <new operation> to
add and specify a new operation to the destination object’s class
specification.

If you click <new operation>, you must repeat this procedure after
specifying the new operation to assign the newly-created operation to
the message.

You can associate multiple messages with a message icon. Each new
message is represented by an independent name and sequence
number. If a message icon represents multiple messages, you must
select a specific message by clicking on its name.

You can also create multiple messages associated with the same
message icon using the link specification. This method is described in
the Link Specification section in this chapter.
Rational Rose 2000e, Using Rose 165

Chapter 9 Interaction Diagrams and Specifications
To change a message’s assigned operation, display its specification by
double-clicking on its message icon. If the message icon represents
multiple messages, double-click on the name of the message whose
operation you select to change. Select the desired operation from the
specification’s Referenced Operation field, or directly enter an
operation name in the Name field.

Collaboration Specific Toolbox Icons

Links

Objects interact through their links to other objects. A link is an
instance of an association, analogous to an object being an instance of
a class.

A link should exist between two objects, including class utilities, only
if there is a relationship between their corresponding classes. The
existence of a relationship between two classes symbolizes a path of
communication between instances of the classes: one object may send
messages to another.

Links can support multiple messages in either direction. If a message
is deleted, the link remains intact.

The link is depicted as a straight line between objects or objects and
class instances in a collaboration diagram. If an object links to itself,
use the loop version of the icon.

To create a link between two objects:

1. Click the Link tool.

2. Drag the pointer between the two object icons.

Rational Rose will create and display an unnamed link.

To create a reflexive link—a link between an object and itself:

1. Click the Link to Self tool.

2. Click on an icon representing the object.

Rational Rose will create and display an unnamed reflexive link.
166 Rational Rose 2000e, Using Rose

Sequence Numbering
Sequence Numbering

Sequence numbering allows you to clearly see how messages interact
and relate to one another. Numbering messages can be done two ways
on sequence diagrams: top level numbering; in a 1, 2, 3, pattern or
hierarchical numbering; in a 1.1, 1.1.2, 1.1.3, pattern. Only top level
numbering is available on collaboration diagrams. However, if you
create a collaboration diagram from a sequence diagram with
hierarchal numbering the hierarchal numbering is retained.

Top-Level Numbering

Top-level numbering gives each message or message to self a single
number. There are no number subsets. Top-level numbering is useful
in small sequence diagrams with few objects and messages.

Hierarchical Numbering

Hierarchical numbering bases all messages on a dependent message.
For example, you could have messages numbered 1., 1.1, 1.2, 1.2.1,
where message number 1 is an independent message. All other
message numbers numbered 1.x and beyond are dependent on
message 1. If you remove independent message 1 from the diagram, all
dependent messages will be removed.

To Display Hierarchical Numbering:

1. Click Options from the Tools menu.

2. Click the Diagram tab.

3. Click on the Sequence Numbering check box.

4. Click on the Hierarchical Messages check box.

Scripts

Scripts are used to enhance messages on sequence diagrams. They are
simply text fields that attach to messages.

To create and attach a script:

1. Click on the message icon and drag between two objects.

2. Create text by either:

❑ Using the ABC icon.
Rational Rose 2000e, Using Rose 167

Chapter 9 Interaction Diagrams and Specifications
❑ Clicking Text from the Create option on the Tools menu.

3. Select one or more labels.

❑ Press the CTRL or SHIFT key to enable multiple selections.

4. Select ONE message.

❑ The order of steps 2 & 3 is inconsequential.

5. Click Edit > Attach Script.

❑ The script is now attached to the message.

To move a script:

1. Select the message and move with the drag technique.

❑ The script moves next to the message.

2. Select only the script and move with the drag technique.

❑ The script moves independently of the message.

To detach a script:

1. Select either script or message.

2. Click Edit > Detach Script.

To delete a(n):

1. Message

❑ All dependent messages and attached scripts are deleted.

or...

2. Script

❑ Script is deleted with no effect on the messages.

or...

3. Object

❑ All messages and attached scripts are deleted.

To undo:

1. Click Edit > Undo will reverse the latest change.
168 Rational Rose 2000e, Using Rose

Focus of Control
Focus of Control

Focus of Control (FOC) is an advanced notational technique that
enhances sequence diagrams. This technique shows the period of time
during which an object is performing an action, either directly or
through an underlying procedure.

FOC is portrayed through narrow rectangles that adorn lifelines (the
vertical lines descending from each object). The length of a FOC
indicates the amount of time it takes for a message to be performed.
When you move a message vertically, each dependent message will
move vertically as well. Also, you can move a FOC vertically off the
source FOC to make it detached and independent.

A sequence diagram with FOC notation and scripts follows:

Figure 73 Focus of Control Diagram Example

Displaying Focus of Control

To enable or suppress the Focus of Control notation on a sequence
diagram:

1. Click Tools > Options.
Rational Rose 2000e, Using Rose 169

Chapter 9 Interaction Diagrams and Specifications
2. Click the Diagram tab.

A check mark beside Focus of Control means that the notation will be
displayed.

Coloring Focus of Control

To help distinguish a particular FOC from other items in a sequence
diagram, you can fill a FOC with a color. To color a FOC:

1. Select the message icon that enters the FOC you want to color.

2. Click Format > Fill Color.

3. Click on the color you want to make the selected FOC.

4. Click OK.

Moving the Focus of Control

Sometimes it is helpful to move the starting point of a FOC and all
corresponding messages. If the FOC has an entry point message, you
can move the message. Otherwise, use the following steps to move the
FOC on a sequence diagram:

1. Select the first message from the FOC you want to move.

2. Press the ALT key.

3. Grab the source message and move it to the desired location on a
sequence diagram. Note how the source FOC changes locations.

Nested Focus of Control

A Nested Focus of Control is a FOC that resides on another FOC.
Nested FOC allows you to distinguish exactly where a message starts
and where it ends. If you want to add a message to an existing
sequence diagram, the Nested FOC feature helps you determine where
to place it.

Creating Alternative Diagrams

The Create Collaboration Diagram command creates a collaboration
diagram from information contained in the sequence diagram. The
Create Sequence Diagram command creates a sequence diagram from
170 Rational Rose 2000e, Using Rose

Object Specification
information contained in the interaction’s collaboration diagram. The
Go to Sequence Diagram and Go to Collaboration Diagram commands
traverse between an interaction’s two representations.

Toggling between Interaction Diagrams

When you work in either a collaboration or sequence diagram, it is
possible to view the corresponding diagram by pressing the F5 key. For
example, if you are working on a sequence diagram, you can press F5
and Rational Rose will automatically create a collaboration diagram
with the same diagram name and model elements. If you make a
change to one diagram and then press F5, the change will appear on
the corresponding diagram as well.

Note: When toggling from a sequence diagram to a collaboration
diagram, you may need to rearrange the collaboration diagram model
elements.

Creating a Collaboration Diagram from a Sequence Diagram

To create a collaboration diagram from a sequence diagram, click
anywhere on the sequence diagram and click Create Collaboration
Diagram from the Browse menu. Note that if this collaboration diagram
already exists, the Browse menu will instead present the Go to
Collaboration Diagram option.

Creating a Sequence Diagram from a Collaboration Diagram

To create a sequence diagram from a collaboration diagram, click
anywhere on the collaboration diagram and click Create Sequence
Diagram from the Browse menu. Note that if this sequence diagram
already exists, the Browse menu will instead present the Go to
Sequence Diagram option. Class instances in the collaboration diagram
are represented as objects in the sequence diagram.

Object Specification

An object specification enables you to display and modify the
properties and relationships of an object in the current model.

To display an Object Specification, double-click on any icon
representing an object or on the Browse menu, click Specifications.
Rational Rose 2000e, Using Rose 171

Chapter 9 Interaction Diagrams and Specifications
Specification Content

The Object Specification consists of the following tab: General.

Object Specification—General Tab

Figure 74 Object Specification—General Tab

Refer to the description in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.

Name

If you specify the name of the object's class in the Object Specification,
the name must identify a class defined in the model.
172 Rational Rose 2000e, Using Rose

Object Specification
Class

The Class field displays the name of the object’s parent class. The
default class for a newly created object is Unspecified.

The object will accept messages conveying the operations of its parent
class, and the operations of the superclasses of its parent class.

If you subsequently delete the class from the model, its name will be
displayed in parentheses. If you recreate the class or create a new class
with the same name, the object becomes an instance of this class.

Persistence Field

Use these options to specify the object’s persistence:

Table 12 Persistence Field Options

To display an object’s persistence in a collaboration diagram, right-
click on an icon representing the object to display the shortcut menu
and click Show Persistence.

Multiple Instances Check Box

Check the Multiple Instances check box to indicate that this object
represents multiple instances of the same class. When you select this
field, the icon changes from one object to three staggered objects. The
object group is considered one entity, but this icon indicates that
several objects are involved.

Type Description

Persistent The object exists after the termination of the
program in which it was created.

Static The object exists during the entire execution of
a program.

Transient The object is created and destroyed dynamically
during the execution of a program.
Rational Rose 2000e, Using Rose 173

Chapter 9 Interaction Diagrams and Specifications
Class Instance Specifications

A class instance places a representation of a class on a collaboration
diagram.

To display an Class Instance Specification, double-click on any icon
representing an class instance or on the Browse menu, click
Specifications.

Specification Content

The Class Instance Specification consists of the following tab: General.

Class Instance Specification—General Tab

Figure 75 Class Instance Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
specification elements not covered in the following section.
174 Rational Rose 2000e, Using Rose

Link Specification
Class

The class the element belongs to is displayed here. The default class for
a newly created element is (Unspecified). If you specify an object’s class
in the Object Specification, the class name must identify a class
defined in the model, or you may create a new class.

To create a new class through the Object Specification, click the scroll
arrow on to the right of the Class field. A list box will display all the
possible class selections, including <New>. Double-click on <New>. A
Class Specification dialog box is displayed. Enter the information
regarding the new class.

If you delete a class from the model after you have associated it with
one or more objects, the class name is enclosed in parentheses. If you
re-create the class or create a new class with the same name, the object
becomes an instance of the new class.

You can set this field only through the dialog box.

Link Specification

A link is the path of communication between two objects. A link can
exist between two objects, between an object and a class instance, or
between an object and itself.

To display a Link Specification, double-click on any icon representing
a link or click Browse > Specifications.

Specification Content

The Link Specification consists of the following tabs: General and
Messages.
Rational Rose 2000e, Using Rose 175

Chapter 9 Interaction Diagrams and Specifications
Link Specification—General Tab

Figure 76 Link Specification—General Tab

Refer to the description in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.

Assoc

The Association field lists any valid role(s) or association(s) tied to the
classes belonging to the two objects.

Select an association from the drop-down list. The name of the role tied
to the association is displayed beside the link on the diagram. The keys
are displayed in brackets under the role, and the constraints are
displayed in braces under the keys.
176 Rational Rose 2000e, Using Rose

Link Specification
Supplier & Client Visibility

Visibility is the ability of one object to see another object.

You can specify the following visibility types for the supplier object, the
client object or both:

Table 13 Supplier & Client Visibility Options

An object visibility adornment is a letter inside a box placed at the
supplier end of the link. Each letter identifies the type of visibility used.
The adornment box is either open (shared) or filled (unshared).

You can set link visibility through the Link Specification or through the
shortcut menu. These fields correspond to visibility adornments
displayed in the collaboration diagram.

� To set visibility for the supplier object, click on a visibility type in
the Supplier Visibility section.

� To set visibility for the client object, click on a visibility type in the
Client Visibility Section.

The visibility adornment is placed at the appropriate end of the link.
The unspecified object visibility does not have a corresponding
visibility adornment. Use this adornment only when you need to
document an important tactical decision.

Type Description

Unspecified (Default) The object visibility has not been
specified.

Field The supplier object is visible because it
is a field of the client.

Parameters The supplier object is visible to the client
because it is a parameter for one of the
client’s operations.

Local The supplier is local to an operation of
the client object.

Global The supplier object is global to client.
Rational Rose 2000e, Using Rose 177

Chapter 9 Interaction Diagrams and Specifications
Shared

If visibility is an important detail in your software model, use visibility
adornments to show these details in a collaboration diagram.

Shared visibility indicates structural sharing of the given object; that
is, the shared object’s state can be altered through more than one path.
Unshared visibility represents unique access given to the client object.
When you create a link, unshared visibility is the default.

You can set the shared indicators in the Link Specification or by
selecting a visibility value from the shortcut menu.

To toggle the shared indicator, click on the Shared check box below the
appropriate visibility section.

� If you specify shared visibility, the visibility adornment changes
from a filled square to an open square of the corresponding type.

� If you specify unshared visibility, the visibility adornment changes
to a filled square of the corresponding type.

Role

This field lists the role names tied to the selected associations. This is
especially useful since many associations are not named. This field
cannot be edited.

Note: The Link to Self Specification contains only the Name, Visibility
and Shared elements.
178 Rational Rose 2000e, Using Rose

Link Specification
Link Specification—Messages Tab

Figure 77 Link Specification—Message Tab

Refer to the description in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.

You can add a message either directly on the diagram or through Insert
on the shortcut menu.

Icon

This left-most unlabeled field contains a small version of the link
message icon indicating the direction of the message.

Sequence

This is a system-assigned, sequential message number.
Rational Rose 2000e, Using Rose 179

Chapter 9 Interaction Diagrams and Specifications
Message Name

Click on the item to see the Picklist box showing all available
operations on the class. This is the only editable column on this tab.

Receiver

This is the object receiving the message.

Note: You can double-click on every field except the icon field to display
the message specification.

Message Specification

A message conveys an operation through a link between objects. A
message’s specification identifies the operation it conveys, its
synchronization, its frequency, and its associated documentation.

To display a Message Specification, double-click on any icon
representing a message or on the Browse menu, click Specifications.

Specification Content

The Message Specification consists of the following tabs: General and
Detail.
180 Rational Rose 2000e, Using Rose

Message Specification
Message Specification—General Tab

Figure 78 Message Specification—General Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the elements not
covered in the following section.

Class

The Class field displays the name of the class to which the element
belongs.
Rational Rose 2000e, Using Rose 181

Chapter 9 Interaction Diagrams and Specifications
Message Specification—Detail Tab

Figure 79 Message Specification—Detail Tab

Refer to the description in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.
182 Rational Rose 2000e, Using Rose

Message Specification
Synchronization

Use these options to specify concurrency semantics for the operation
named in the Synchronization field:

Table 14 Synchronization Options

Frequency

Use these options to indicate whether the message is sent periodically
or aperiodically:

Table 15 Frequency Options

Type Description

Simple (default) The message has a single thread of control.

Synchronous The operation proceeds only when the client
sends a message to the supplier and the
supplier accepts the message.

Balking The client passes a message only if the supplier
is immediately ready to accept the message; the
client abandons the message if the supplier is
not ready.

Timeout The client abandons a message if the supplier
cannot handle the message within a specified
amount of time.

Asynchronous The client sends a message to the supplier for
processing and continues to execute its code
without waiting for or relying on the supplier’s
receipt of the message.

Type Description

Aperiodic The message is sent at irregular intervals, or
does not have a regular interval.

Periodic The message is sent at regular intervals.
Rational Rose 2000e, Using Rose 183

Chapter 10

Component Diagrams and
Specifications

Component Diagram Overview

A component diagram shows the physical dependency relationships
(mapping to a file system) between components—main programs,
subprograms, packages, and tasks—and the arrangement of
components into component packages.

Figure 80 Component Diagram Example

Component diagrams are contained (owned) either at the top level of
the model, or by a package. This means the diagram will depict the
components and packages where the diagram is contained.
Rational Rose 2000e, Using Rose 185

Chapter 10 Component Diagrams and Specifications
Creating and Displaying a Component Diagram

You can create or display the component diagram in one of three ways:

� Click Browse > Component Diagram.

� On the toolbar, double-click the component diagram icon.

� On the browser, double-click on the component diagram icon.

Component Diagram Toolbox

The application window displays the following toolbox when the
current window contains a component diagram and As Unified is
selected from the View menu.

Figure 81 Component Diagram Toolbox

Assigning a Component to Another Package

Every component is assigned to a package. When you create a
component using a creation tool from the component diagram toolbox,
the component is assigned to the package containing the component
diagram.

Selector

Note

Component

Dependency

Subprogram Body

Main Program

Package Body

Task Specification

Lock

Text

Note Anchor

Package

Subprogram
Specification
Generic
Specification

Package Specification

Generic Package

Task Body
186 Rational Rose 2000e, Using Rose

Component Specifications
To reassign a component from one package to another:

1. Select a component icon in a diagram directly contained by the
package to which the component should be assigned. (You might
need to create such a diagram or icon if one does not currently
exist.)

2. Click Edit > Relocate.

Rational Rose will update all component diagrams to reflect the
component’s new assignment.

Like components, packages are also assigned to packages, permitting
nesting to an arbitrary depth. The mechanisms previously described
can be applied to packages as well as components.

Component Specifications

A Component Specification displays and modifies the properties and
relationships of each component in the current model. The same
specification is used for all component kinds.

Some of the information on this specification can also be displayed
inside icons representing the component in a component diagram.

To display a Component Specification, double-click on any icon
representing the component or on the Browse menu, click
Specifications.

Specification Content

The Component Specification consists of the following tabs: General,
Detail, Realizes, and Files.
Rational Rose 2000e, Using Rose 187

Chapter 10 Component Diagrams and Specifications
Component Specification—General Tab

Figure 82 Component Specification—General Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the elements shown
on this specification tab.

Stereotype (Component)

A component stereotype represents the subclassification of an element.
The most common type of components are already predefined as
stereotypes, including Main Program, Package Body, Package
Specification, Subprogram Body, Subprogram Specification, Task
Body and Task Specification. You can also define and add your own
kinds of stereotypes.

Language

This field identifies the implementation language that is assigned to
this component.
188 Rational Rose 2000e, Using Rose

Component Specifications
Note that when changing the implementation language of a
component, the data types that are used in the specification of
operations and attributes of the assigned classes, are not
automatically converted to data types in the new implementation
language. Also, if you change the implementation language for a
component with classes that are assigned to other components, a
dialog box is displayed where you have to decide how to handle those
classes.

Component Specification—Detail Tab

Figure 83 Component Specification—Detail Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.
Rational Rose 2000e, Using Rose 189

Chapter 10 Component Diagrams and Specifications
Declarations

The Declarations field contains a list of declarations, such as class
names, variables, and other language-specific features (such as
#includes or similar constructs). Declarations can include classes,
objects and any other language-specific declarations.

Use this field to list the elements that physically reside in the
component. You can view this field only through the component
specification.

Component Specification—Realizes Tab

Figure 84 Component Specification—Realizes Tab

Refer to description in the Introduction to Diagrams and Specifications
chapter if you need information on the specification elements not
covered in the following section.
190 Rational Rose 2000e, Using Rose

Component Specifications
Show all Classes

Select this check box if you want to view a list of all classes in the
model. If this option is not selected, you will see only the classes that
are assigned to this component.

Classes

The list identifies the classes and interfaces that are assigned to this
component (indicated with check marks). The Logical Package column
shows to which package a class belongs, and the Language column
shows the programming language that is assigned to a specific class.

You assign a class or interface to a component through Assign on the
shortcut menu in the list, or by dragging a class or interface from the
browser and dropping it in this list. Note that you can only assign
classes that are unassigned, or classes that are assigned to
components with the same implementation language as this
component.

Language

This field identifies the implementation language that is assigned to
this component.

Note that when the changing the implementation language of a
component, the data types that are used in the specification of
operations and attributes of the assigned classes, are not
automatically converted to data types in the new implementation
language. Also, if you change the implementation language for a
component with classes that are assigned to other components, a
dialog box is displayed where you have to decide how to handle those
classes.

Component Specification—Files Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on this tab.
Rational Rose 2000e, Using Rose 191

Chapter 10 Component Diagrams and Specifications
Package Specification

A Package Specification displays and modifies the properties and
relationships of a package in the current model.

To display a Package Specification, double-click on any icon
representing the package or on the Browse menu, click Specifications.

The Package Specification consists of the following tabs: General,
Detail, Realizes and Files.

Package Specification—General Tab

Figure 85 Package Specification—General Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the elements of this
specification not covered in the following section.
192 Rational Rose 2000e, Using Rose

Package Specification
Package

The package the component belongs to is displayed in this static field.

Package Specification—Detail Tab

Figure 86 Package Specification—Detail Tab

Component Diagrams

This field lists the component diagrams contained in the package. You
can create a new component diagram in the package through Insert on
the shortcut menu, or on the Browse menu, click Component Diagram.
You may rename or delete existing component diagrams from this field.

To display a specific component diagram listed in this field, double-
click on its entry.
Rational Rose 2000e, Using Rose 193

Chapter 10 Component Diagrams and Specifications
Package Specification—Realizes Tab

Refer to description earlier in this chapter if you need information on
this tab.

Package Specification—Files Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on this tab.
194 Rational Rose 2000e, Using Rose

Chapter 11

Deployment Diagrams and
Specifications

Deployment Diagram Overview

A deployment diagram shows processors, devices, and connections.
Each model contains a single deployment diagram that shows the
connections between its processors and devices, and the allocation of
its processes to processors.

Figure 87 Deployment Diagram Example
Rational Rose 2000e, Using Rose 195

Chapter 11 Deployment Diagrams and Specifications
Creating and Displaying a Deployment Diagram

You can create or display the deployment diagram in one of three ways:

� Click Browse > Deployment Diagram.

� On the toolbar, double-click on the deployment diagram icon.

� In the browser, double-click on the deployment diagram icon.

Deployment Diagram Toolbox

The application window displays the following toolbox when the
current window contains a deployment diagram and you have selected
View > As Unified:

Figure 88 Deployment Diagram Toolbox

Processor Specification

A Processor Specification displays and modifies the properties and
relationships of a processor in the current model. Some of the
information on the specification can also be displayed inside icons
representing the processor in a model's deployment diagram.

To display a Processor Specification, double-click on any icon
representing a processor or click Browse > Specifications.

Specification Content

The Processor Specification consists of the following tabs: General and
Detail.

Selector

Note

Processor

Device

Text

Note Anchor

Connection

Lock
196 Rational Rose 2000e, Using Rose

Processor Specification
Processor Specification—General Tab

Figure 89 Processor Specification—General Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the elements shown
on this specification.
Rational Rose 2000e, Using Rose 197

Chapter 11 Deployment Diagrams and Specifications
Processor Specification—Detail Tab

Figure 90 Processor Specification—Detail Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.

Characteristics

Use the Characteristics field to specify a physical description of an
element. For example, you can describe the kind and bandwidth of a
connection, the manufacturer, model, memory, and disks of a
machine, or the kind and size of a device. You can set this field only
through the specification. This information is not displayed in the
deployment diagram.

To update this field, click in the Characteristics field and enter the
information.
198 Rational Rose 2000e, Using Rose

Processor Specification
Processes

Use this field to identify the processes assigned to this processor.
Processes denote either the root of a main program from a component
diagram or the name of an active object from a collaboration diagram.

To create a process, place the pointer in the Processes area and click
Insert using the shortcut menu. A NewProcess entry is created. To
change the name or priority, click the item and type the changes.

You can display a list of the processes by selecting the processor icon
and clicking Show Processes from the shortcut menu.

Scheduling

The Scheduling field specifies the type of process scheduling used by
the processor. Use these options to specify the appropriate scheduling:

Table 16 Scheduling Field Options

You can set this field only through the specification. To set the
scheduling type, click on the applicable option button in the
Scheduling field.

You can display the scheduling type in the processor icon by clicking
Show Scheduling form the shortcut menu.

Type Description

Preemptive Higher-priority processes that are ready to
execute can preempt lower-priority processes
that are currently executing. Processes with
equal priority are given a time slice in which to
execute, allowing computation resources to be
fairly distributed (default).

Non preemptive The current process continues to execute until
it relinquishes control.

Cyclic Control passes from one process to another;
each process is given a fixed amount of
processing time.

Executive An algorithm controls process scheduling.

Manual Processes are scheduled by a user outside of
the system.
Rational Rose 2000e, Using Rose 199

Chapter 11 Deployment Diagrams and Specifications
Device Specification

A Device Specification displays and modifies the properties and
relationships of a device in the current model. Some of the information
on this specification can also be displayed inside icons representing
the device in a deployment diagram.

To display a Device Specification, double-click on any icon
representing a device or click Browse > Specifications.

Specification Content

The Device Specification consists of the following tabs: General and
Detail.

Device Specification—General Tab

Figure 91 Device Specification—General Tab
200 Rational Rose 2000e, Using Rose

Connection Specifications
Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the elements shown
on this specification.

Device Specification—Detail Tab

Figure 92 Device Specification—Detail Tab

Refer to the descriptions earlier in this chapter or in the Introduction to
Diagrams and Specifications chapter if you need information on the
elements shown on this specification.

Connection Specifications

A Connection Specification indicates a communication path between
two processors, two devices, or a processor and a device. A connection
usually represents a direct hardware coupling, such as an RS232
cable. It can also represent an indirect coupling.
Rational Rose 2000e, Using Rose 201

Chapter 11 Deployment Diagrams and Specifications
To display a Connection Specification, double-click on any icon
representing a connection or click Browse > Specifications.

The Connection Specification consists two tabs, which contain the
same elements as the Device Specification, and is not repeated here.

Process Specification

Processes are threads of control that execute on a processor. One
process specification documents one thread of control.

You access the Process Specification through the Processes field of a
Processor Specification. None of the information contained in the
Process Specification is displayed in a diagram; thus, process
properties can only be viewed and modified through a Process
Specification.

Specification Content

The Process Specification consists of the following tabs: General.
202 Rational Rose 2000e, Using Rose

Process Specification
Process Specification—General Tab

Figure 93 Process Specification—General Tab

Refer to the descriptions in the Introduction to Diagrams and
Specifications chapter if you need information on the specification
elements not covered in the following section.

Processor

The owner of the process is shown here.

Priority

This field contains the relative priority of this process, if there is one.
You can use this information with the scheduling type identified in the
Processor Specification to schedule process execution.
Rational Rose 2000e, Using Rose 203

Chapter 12

Stereotypes

Overview

A stereotype is a modeling element subclassification that has been
given a more specific meaning. Stereotypes can be applied to:

� Packages

� Components

� Classes

� Use Cases

� Attributes and Operations

� Association, Generalization, and Dependency Relationships

� Processors, Devices, and Connections

� Objects (on activity diagrams)

� Activities

� State

A stereotype can be depicted by either a name or by an icon.

Benefits to Using Stereotypes

A stereotype allows you to provide additional distinctions in your model
that are not explicitly supported by the UML. The use of stereotypes:

� Allows for customization of your development process

� Provides mnemonic help and visualization aids

� Allows you to make presentations with more pizzazz
Rational Rose 2000e, Using Rose 205

Chapter 12 Stereotypes
User-Defined Stereotypes

Some stereotypes are predefined, but you can also define your own to
add new kinds of modeling types. User-defined stereotypes are defined
in a stereotype configuration file. For each stereotype, you can
customize icons to be displayed in diagrams, in the browser, and in the
toolbox.

Rational Rose offers ten stereotype icons that you can use when
modeling a business:

� Business Use Case

� Use-Case Realization

� Boundary Class

� Business Actor

� Business Entity

� Business Worker

� Entity Class

� Control Class

� Business Use Case Realization

� Organization Unit Package

For more information on these icons, refer to the Rational Unified
Process.

Viewing Stereotypes

You can control how stereotypes are displayed. The settings are found
on the Diagram tab and the Browser tab, located in the Options dialog
box under the Tools menu.
206 Rational Rose 2000e, Using Rose

Viewing Stereotypes
Diagram Tab

Figure 94 Options Dialog Box—Diagram Tab

The following selections are applied to new model elements are added
to the diagrams. To make changes to existing model elements, use the
shortcut menu.

Compartments—Show Stereotypes

This option allows you to control the display of stereotype names for
operations and attributes of new classes in the class compartments.

Stereotype Display—None, Label, Decoration, Icon

These options allow you to control the display of stereotypes (except for
relationships) in diagrams. The selection is applied to new model
elements that are added to diagrams.

Selecting Label, makes the name of the stereotype appear inside angled
brackets, << >>. Decorating displays a graphic marker such as
highlighting an icon or tool. Selecting None means the name is not
displayed, while selecting Icon means the icon created for that
stereotype is displayed.

Stereotype

Stereotype

Setting

Settings
Rational Rose 2000e, Using Rose 207

Chapter 12 Stereotypes
Stereotype Display—Show labels on relations and associations

This option allows you to control the display of stereotype labels on new
relationships in diagrams. If enabled, the name of the stereotypes will
appear inside angle brackets, << >>.

Browser Tab

Figure 95 Options Dialog Box—Browser Tab

The changes made on the Browser tab are reflected in the browser.

Show stereotype names

This option allows you to control the display of stereotype names of
model elements in the browser.

Hide stereotype name if there is an icon for it

Select this option to display stereotype icons, but not stereotype
names, of model elements in the browser. This option is only relevant
for stereotypes that have an icon.

Stereotype
Settings
208 Rational Rose 2000e, Using Rose

Creating Stereotypes
Creating Stereotypes

Creating a New Stereotype for the Current Model

You can create a new stereotype by typing a new name in the
Stereotype field of a model element’s specification. The new stereotype
will then be available in the Stereotype field for all model elements of
that type (which are assigned the same language), in the current
model.

If you want the stereotype to be available in all Rose models, follow the
steps below. If you already have a stereotype configuration file, skip to
the section titled Creating a New Stereotype for All Rose Models.

Creating a New Stereotype Configuration File

The stereotypes in Rational Rose must be defined in a stereotype
configuration file. Rational Rose is delivered with a default stereotype
configuration file, called DefaultStereotypes.ini. If possible, add your
stereotypes to that file. If you do not want to use that file, follow these
steps to create a new stereotype configuration file:

1. Close Rational Rose.

2. Create a text file (called, for example, MyStereotypes.ini) using
Notepad or another text editor, and save it in the Rose installation
folder.

3. Edit the new stereotype configuration file. For information on how
to create a new stereotype and add it to a stereotype configuration
file, please refer to the Creating a New Stereotype section.

4. Run the Windows Registry Editor (regedit.exe) by selecting Run on
the Start menu. Type “regedit” and click OK.

5. Locate and select the section entitled
[HKEY_LOCAL_MACHINE\SOFTWARE\Rational
Software\RoseStereotypeCfgFiles] in the registry list.

6. Click Edit > New and click String Value. Give the new registry key
the name “file#”, where # is the next consecutive number (1, 2, or
3, etc.).

7. Double-click the new key, and enter the name of your
configuration file (for example, MyStereotypes.ini).
Rational Rose 2000e, Using Rose 209

Chapter 12 Stereotypes
8. Close the registry. Next time you open a model in Rational Rose,
the stereotypes defined in your new stereotype configuration file
will be available in the model.

Creating a New Stereotype for All Rose Models

To create a new stereotype and make it available in all models in Rose:

1. Close Rational Rose.

Note: Optionally, create icons for the stereotype to be used in diagrams,
lists, and diagram toolboxes. Please refer to the Creating Stereotype
Icons section later in this chapter.

2. Open the default stereotype configuration file,
DefaultStereotypes.ini.

3. In the stereotype configuration file, add a line for the new
stereotype in the section called [Stereotyped Items]. For example, to
add the class stereotype Controller to an existing configuration file,
add a corresponding line as follows:

[Stereotyped Items]
Class:Model
Class:View
Class:Controller

4. Create a section for the new stereotype, named exactly as the line
you added in the [Stereotyped Items] section, for example:

[Class:Controller]
Item=Class
Stereotype=Controller

5. If you have created a diagram icon for the stereotype, specify the
name of that file (Metafile). Note that you can use “&” instead of the
folder of the stereotype configuration file. For example:

Metafile=&\MyStereotypeIcons\controller.emf

6. If you want to create a diagram toolbox button for this stereotype,
specify the name of the file where you created the corresponding
small toolbox icon (SmallPaletteImages) and the location of the icon
in that file (SmallPaletteIndex). You can also specify the name of
the file where the corresponding large toolbox icon is defined
(MediumPaletteImages) and the location of the icon in that file
(MediumPaletteIndex). For example:

SmallPaletteImages=&\MyStereotypeIcons\
small_palette_icons.bmp
210 Rational Rose 2000e, Using Rose

Creating Stereotypes
SmallPaletteIndex=3
MediumPaletteImages=&\MyStereotypeIcons\

medium_palette_icons.bmp
MediumPaletteIndex=3

7. If you want to graphically display this stereotype in specification
lists or in the browser, specify the name of the file where you
created its list icon (ListImages) and the location of the icon in that
file (ListIndex). For example:

ListImages=&\MyStereotypeIcons\list_icons.bmp
ListIndex=2

8. Add any other setting needed to define the new stereotype. For a
list of all available settings, information on the meaning of each
setting, the possible values, and the default values, please refer to
the “Stereotype Configuration File” topic in the online help. Note,
however, that you only have to include settings for which you want
to give other values than their default values.

9. Save your changes to the stereotype configuration file.

10. Run Rational Rose. View the log window to make sure there were
no problems loading your icons.

11. If you created a diagram toolbox icon for the new stereotype, and
want to add it as a button on a diagram toolbox, please refer to the
Adding Stereotypes to the Diagram Toolbox section later in this
chapter.

The new stereotype is now available in Rational Rose. For information
on how to control the display of the new stereotype in diagrams and in
the browser, please refer to the Viewing Stereotypes section earlier in
this chapter.

Creating Stereotype Icons

For each stereotype, four different icons may be supplied:

� A diagram icon (to customize the appearance of model elements
with this stereotype in diagrams).

� A small and a large diagram toolbox icon (to be able to add a button
for this stereotype to the diagram toolbox). Two different sizes
correspond to the Use Large Buttons option on the Toolbars tab of
the Options dialog box.

� A list view icon (to graphically display the stereotype for model
elements in specification lists and in the browser).
Rational Rose 2000e, Using Rose 211

Chapter 12 Stereotypes
Creating a Diagram Icon

Diagram icons are “symbols” or “elements” that can be placed on a
diagram from the browser, toolbar, or menu. Diagram icons have to be
created in Windows Metafile (.wmf) or Enhanced Metafile (.emf) format.
You can download drawing packages that support these formats at
various shareware sites on the Internet. Enhanced Metafiles are
recommended if possible. Diagram toolbox and list view icons must be
created in bitmap (.bmp) format.

Note: Note: If you create a diagram icon, for example, you will most
likely want to create the other three corresponding icons: a list view icon,
a small toolbar icon, and a large toolbar icon.

To create a diagram icon:

1. Using a vector based (as opposed to bitmap) drawing application,
draw your icon in the size you want it to appear in Rational Rose. It
is not recommended that you use a drawing application that forces
the icon to fit a certain area, such as a page as with PowerPoint.

2. Consider the following: Make sure that the scaling factor is set to
100% when deciding on the size of the icon. Use colors if you like. If
you want the name of the model element to appear within the
stereotype icon, leave some blank space for it.

3. Select the icon and export it in either the Windows Metafile (.wmf)
format or the Enhanced Metafile (.emf) format. If you use
CorelDraw, make sure the Include header option is checked if you
save your selection as a Windows Metafile.

Creating Diagram Toolbox and List View Icons

Diagram toolbox icons and list view icons (icons that appear in the
browser) are created in bitmap (.bmp) format and Rational Rose only
supports bitmap files saved in the 256 color bitmap scheme. You can
create one bitmap file containing several icons, arranged horizontally
side by side. Note that the SmallPaletteIndex setting in the
configuration file of a stereotype specifies the diagram toolbox icon that
belongs to a specific stereotype. The ListIndex setting specifies the list
icon that belongs to a specific stereotype. Diagram icons can only be
created in Windows Metafile (.wmf) or Enhanced Metafile (.emf) format.
212 Rational Rose 2000e, Using Rose

Adding Stereotypes to the Diagram Toolbox
Note: If you create a list view icon, for example, you will most likely
want to create the other three corresponding icons: a diagram icon, a
small toolbar icon, and a large toolbar icon.

To create a new icon:

1. Create or open a bitmap file using a program such as Microsoft
Paint or the bitmap editor in Microsoft Visual Studio.

Note: If you are adding several icons to the same bitmap file in
Microsoft Visual Studio, use the grid setting in the Image menu to help
you see the borders of each icon.

2. Create an icon of the following size and background color:

❑ Small diagram toolbox iconSmall diagram toolbox iconSmall diagram toolbox iconSmall diagram toolbox icon - 15 pixels high and 16 pixels wide,
using a gray background (which is RGB = 192, 192, 192 in
Rational Rose).

❑ Large diagram toolbox iconLarge diagram toolbox iconLarge diagram toolbox iconLarge diagram toolbox icon - 24 pixels high and 24 pixels wide,
using a gray background (which is RGB = 192, 192, 192 in
Rational Rose).

❑ List view iconList view iconList view iconList view icon - 16 pixels high and 16 pixels wide, using a white
background.

3. Save the icon as a 256 color bitmap file (.bmp). To save the color
setting in Microsoft Paint, select 256 color bitmap from the Save as
type menu in the Save as dialog box.

Note: Some of your icon colors may not show up precisely because
the color palette used by the toolbars is limited.

Adding Stereotypes to the Diagram Toolbox

To make a stereotype available as a button on a diagram toolbox:

1. Create a stereotype and a corresponding diagram toolbox icon. For
information on how to do that, please refer to the Creating a New
Stereotype section earlier in this chapter.

2. Click Tools > Options,,,, and click the Toolbars tab....

3. Under Customize Toolbars, click on the diagram type for which you
want to change the toolbox.

or,

In an open diagram, right-click in the diagram toolbox and select
Customize.
Rational Rose 2000e, Using Rose 213

Chapter 12 Stereotypes
4. The Customize Toolbars dialog box is displayed. The leftmost
column provides the list of available icons. Select the icon you want
to appear on the diagram toolbox and click Add.

Subsystem Stereotype Package

Although closely related to a system, a subsystem is a group of model
elements that has specific behavior and objectives. A subsystem is a
stereotyped package and is represented by the package icon with the
subsystem stereotype.

Note: The term subsystem is also used in the Rose Extensibility
Interface (REI). However, there is a specific distinction between each
term. In the REI, any package that resides in the component view is
considered a subsystem. A subsystem on a Rose diagram is a
stereotyped package.

Subsystem Stereotype Sample

The subsystem stereotype sample demonstrates how subsystems
collaborate to make up a larger system. The sample below illustrates a
bookstore system and the smaller subsystems that make up the total
system.

Figure 96 Subsystem Stereotype Sample
214 Rational Rose 2000e, Using Rose

Subsystem Stereotype Package
The four subsystems in the subsystem sample together make up all the
functionality of the Bookstore Enterprise System. Noted throughout
the <<include>> relationships, each subsystem provides a certain
piece of the Bookstore system functionality.

Instead of going into separate subsystems, a user of the Bookstore
Enterprise System can verify stock in the Warehouse subsystem or
check the status of a shipped book in the mailing subsystem, for
example. All subsystems make up a much larger system. Each
stereotyped package subsystem is just a means of organizing model
elements and diagrams together.
Rational Rose 2000e, Using Rose 215

Chapter 13

Framework Wizard Add-In

The Framework Wizard Add-In provides a library of frameworks that
can be used as templates when creating new models. If the Framework
Wizard Add-In is active, the File > New command in Rational Rose
displays a dialog box from which you can choose one of the available
frameworks. By choosing an appropriate framework when you create a
new model, the model is automatically initialized with a predefined
architecture and a set of reusable model elements. This way, you can
focus your modeling efforts on the parts that are unique to your
system, instead of “reinventing the wheel.”

The Framework Wizard Add-In also provides a wizard to help you add
additional frameworks. The Wizard is started by opening the “Make
New Framework” framework.

Note: The Framework Wizard Add-In is only available on Windows, and
only in some Rational Rose editions. Also, in order to create models from
frameworks and add new frameworks, the Framework Wizard Add-In
must be active (see the Activating the Framework Wizard Add-In
section.)

Activating the Framework Wizard Add-In

In order to create models from frameworks and add new frameworks,
the Framework Wizard Add-In it must be active. It is active if the File >
New command in Rational Rose displays a Create New Model dialog
box. If the File > New command just opens a new empty model, the
Framework Wizard Add-In is not active.
Rational Rose 2000e, Using Rose 217

Chapter 13 Framework Wizard Add-In
To Install the Framework Wizard Add-In

1. Run the Rational Rose setup program.

2. Select a custom install, and select the Rose Framework Add-In
feature. If the Framework Wizard Add-In feature is not present, the
add-in is not available in your Rational Rose edition.

To activate the Framework Wizard Add-In:

1. Click Add-Ins > Add-In Manager in Rational Rose.

2. Select the Framework Wizard option and click OK. If the option is
not present, the Framework Wizard Add-In is not installed.

Creating a New Model from a Framework

To create a new model from a framework, use the following steps:

1. Click File > New. The Create New Model dialog opens.

Figure 97 Create New Model Dialog Box
218 Rational Rose 2000e, Using Rose

Creating and Deleting Frameworks
2. Open the framework that corresponds to the system you are going
to develop. A new model is created and initialized with the contents
of the chosen framework. (If you don’t want to use any of the
frameworks, click Cancel. A new model with only the default
contents is created.)

3. Save the new model and give it a name by clicking File > Save As.

Note: Each package in a framework is stored as a controlled unit in a
separate file. To access the contents of a package in a framework, you
have to load the corresponding controlled unit. To load a unit, double-
click on the package in a diagram, or click File > Units and click Load.

Creating and Deleting Frameworks

Rational Rose provides you with a Framework Wizard that helps you
create a new framework and add it to the framework library. To use the
Framework Wizard, the Framework Wizard Add-In must be installed
and activated (see the Activating the Framework Wizard Add-In
section).

The Framework Library

The Framework Wizard Add-In provides a library of predefined
frameworks. The frameworks are located in the
\Framework\Frameworks folder in your Rational Rose installation
folder. When creating a new model, you can choose to create the model
from one of the listed frameworks. The set of available frameworks are
displayed with the File > New command.

In the framework library, all files that work together to define a specific
framework are located in a folder with the same name as the
framework. Each framework is defined by the following files:

� FrameworkName.mdl, which contains the model framework itself.
This model is an ordinary Rational Rose model.

� FrameworkName.ico, which includes the icon that symbolizes the
framework in the Create New Model dialog box. If there is no .ico
file, Rational Rose displays a default icon for the framework.

� FrameworkName.rtf, which includes a description of the
framework, which is shown in the Create New Model dialog box
when the user clicks Details. If there is no .rtf file, Rational Rose
displays a default description text.
Rational Rose 2000e, Using Rose 219

Chapter 13 Framework Wizard Add-In
� Parameters, which holds the name of the diagram that is initially
opened for models created from this framework. The Framework
Wizard automatically creates this file and enters the name of the
diagram as a line with the following syntax:
“StartDiagram=ParentPackage / DiagramName.” For example:
“StartDiagram=Logical View / Framework Overview.”

Creating a New Framework

To create a new framework, perform the following steps:

1. Create and save a model with the contents of the framework in any
folder. That model will be used as the template when creating new
models from this framework.

Note: Optionally, write a description of the framework in any word
processor and save the document in RTF (Rich Text Format) format in
any folder.

Note: Optionally, use a drawing tool to create an icon that
symbolizes the new framework. Save the icon as an .ico file in any
folder. (Or look for a suitable existing .ico file.)

2. Click File > New. The Create New Model dialog box opens.

3. Open the “Make New Framework” framework, which starts the
Framework Wizard. (If the welcome page is shown, click Next.
220 Rational Rose 2000e, Using Rose

Creating and Deleting Frameworks
Figure 98 Framework Wizard Specification Page

4. In the Framework Name field, specify the name of the new
framework. The name must be unique among the existing
frameworks, and it can only contain characters that are allowed in
folder names.

5. In the Model File field, specify the name and location of the file that
constitute the framework model. To browse to the file, click in the
field. Then click the displayed button.

Note: Optionally, click in the Start Diagram field to specify a diagram
that is to be initially opened for models created from this framework. The
specified model opens. Click the arrow to the right of the Start Diagram
field and select one of the diagrams.

Note: Optionally, specify the name and location of the documentation
and icon files in the Documentation File and Icon File fields. (To browse
to a file, click in the field. Then click the displayed button.)

6. Click Next. A summary of the new framework is shown.
Rational Rose 2000e, Using Rose 221

Chapter 13 Framework Wizard Add-In
Figure 99 Framework Wizard Summary Page

7. If you are satisfied with the framework specification, click Finish.
Otherwise, go back and change your settings.

When the Framework Wizard is finished, a folder with the same name
as the new framework, containing the specified files, will be created in
the \Framework\Frameworks folder. The new framework is now
available for creating new models.

Changing or Deleting a Framework

To change the contents of a framework model, its icon, its description,
or the initial diagram to be opened, update the appropriate file in the
framework’s folder.

To delete a framework, delete its folder in the
\Framework\Frameworks folder.
222 Rational Rose 2000e, Using Rose

Chapter 14

Type Library Importer

The Type Library Importer allows you to import a type library of a COM
component into the model, by dragging the COM component from the
Windows Explorer and drop it in Rational Rose. Or, you can use the
Tools > COM > Import Type Library command.

You can control several aspects of how type libraries are imported into
the model. For example, you can control:

� What should happen with existing type libraries when importing
new versions

� The name and location of new type libraries in the model

� The name and contents of the overview diagrams that are created
when importing type libraries

For further information, see the Customizing the Type Library Importer
section later in this chapter.

Note: Importing a component is not the same as reverse engineering a
component into the model. Imported components are still external to the
system, because you import only the type library of the components,
whereas reverse engineering a component means that a model of the
component’s source code is added to the model.

What Is a Type Library?

A type library contains a description of a COM (component object
model) component as viewed from the outside. The description
includes the coclasses, interface items, dispinterfaces, properties
(called attributes in UML), methods (called operations in UML), data
Rational Rose 2000e, Using Rose 223

Chapter 14 Type Library Importer
types, etc. of the component. Type library information is needed to
provide a language-neutral description of the interfaces and data types
that a COM component exposes.

This chapter does not explain the different kinds of type library items—
coclasses, interfaces, dispinterfaces, etc. For detailed information
about COM components and type libraries, refer to:

� Don Box, Essential COM, Addison-Wesley Pub Co, ISBN
0201634465

� http://msdn.microsoft.com/library—for example the Inside OLE
section in the Books section.

Why Would I Want to Import Type Libraries into the Model?

By importing type libraries into the model, you can show how classes
in the model use and depend upon classes in other components,
regardless of their implementation language. For example, you can:

� Reuse COM components—that is, to show how the classes in the
model instantiate, use, and communicate with the items in a COM
component.

� Show how classes in the model implement (or realize) the interface
items of a COM component.

� Show dependencies between components.

� Use the data types defined by a COM component when specifying
attributes and operations on the classes in the model.

What COM Components Can Be Imported into the Model?

The following file types can be imported into a Rational Rose model:

� Dynamic Link Libraries (.dll)

� Executables (.exe)

� ActiveX Components (.ocx)
224 Rational Rose 2000e, Using Rose

How Is a Type Library Presented?
� Object Libraries (.olb)

� Type Libraries (.tlb)

The file must contain valid type information. If you drop a file without
type information on an element in the browser, Rational Rose treats it
as any file and attaches the dropped file to the model element that you
drop it on. When you drop the file in Rational Rose, the cursor indicates
whether the file will be imported or attached to a model element. A
cursor with:

� a icon means that Rational Rose imports the file

� a icon means that the file is attached to the model element that
you drop it on

How Is a Type Library Presented?

In Rational Rose, an imported type library is represented as a
component in the component view and a logical package containing the
type library items. In your implementation environment, a type library
is presented differently in different implementation language
environments.

A Type Library in Rational Rose

The Type Library Importer creates a component, such as Scripting Ver
1.0 (Microsoft Scripting Runtime) in Figure 100, in the component view
for an imported type library.

Figure 100 The Component View of the Microsoft Scripting Runtime
Type Library
Rational Rose 2000e, Using Rose 225

Chapter 14 Type Library Importer
The Component Overview Diagram

The component is automatically inserted into a type library overview
diagram in the component view. For example, the overview diagram in
Figure 101 shows that two type libraries, Scripting and stdole, have
been imported into this model and that the Scripting type library
depends upon the stdole type library.

Figure 101 The Component Overview Diagram for a Model
226 Rational Rose 2000e, Using Rose

How Is a Type Library Presented?
The Logical View of a Type Library

The logical view contains a package for the imported COM component,
such as Scripting Ver 1.0 (Microsoft Scripting Runtime) in Figure 102.

Figure 102 The Logical View of the Microsoft Scripting Runtime Type
Library

Type Library Items

The logical package contains the type library items that are defined by
the type information of the imported COM component—coclasses,
interfaces, dispinterfaces, etc.

Each item in the type library is represented by a class, such as the
coclass “FileSystemObject” in Figure 102. The stereotype of the type
library’s classes in the model indicates the kind of project item—
coclass, interface, enum, type, module, struct, and union (see the COM
Stereotypes section below). As you can see in Figure 102, coclasses
have their own icon in the browser: .
Rational Rose 2000e, Using Rose 227

Chapter 14 Type Library Importer
The “kind” model property on an interface class indicates whether the
class corresponds to an interface or a dispinterface in COM.

Note: If the type library was imported using a quick import, the Type
Library Importer does not create any class members (attributes and
operations) on the imported items. If you chose a full import, the class
members are created. You can later import the class members for a type
library item, see the Adding Class Members to a Quick Import Type
Library section in this chapter.

The Type Library Overview Diagram

An overview diagram is created in the logical view, which shows the
contents of the imported type library. Figure 103 shows the overview
diagram for the Microsoft Scripting Runtime type library.

As you can see, coclasses, such as Encoder in Figure 103, are green in
type library overview diagrams.

Figure 103 The Logical Overview Diagram of the Microsoft Scripting
Runtime Type Library
228 Rational Rose 2000e, Using Rose

How Is a Type Library Presented?
Hidden Items

If the Show hidden items option in the COM Properties dialog box is
cleared when a type library is imported, all hidden items and items
with names beginning with “_” are placed in a separate logical package
called “Hidden”. Those items are not displayed on the overview
diagram. The Microsoft Scripting Runtime type library in Figure 102
and Figure 103 was imported with the Show hidden items option
cleared.

For more information, see the Hiding Type Library Items section in this
chapter.

Referenced Type Libraries

Any referenced type libraries are automatically imported. When
importing a type library item, for example A, all items that A refers to
must exist in the model. If the referenced items did not exist in the
model before, the Type Library Importer automatically imports the type
libraries of the corresponding COM components and adds dependency
relationships between them. For example, the stdole type library in
Figure 101 was automatically imported when the Scripting type library
was imported, because Scripting refers to the stdole type library.

Referenced type libraries are imported using a quick import. Also, type
library items that are referenced by the current type library, such as
IDispatch in Figure 103, are gray in the type library’s overview
diagram.

COM Stereotypes

The Type Library Importer uses the stereotypes in Table 17 for the
model elements that represent a type library in the model.

Table 17 COM Stereotypes

Stereotype: Meaning:

Components

COM The Type Library Importer assigns the stereotype and
language “COM” to the component representing an imported
type library.

Classes
Rational Rose 2000e, Using Rose 229

Chapter 14 Type Library Importer
coclass Represents an enum type definition in a type library. The
class members of the enum in the type library become
attributes with initial values on the class in the model.

enum Represents an enum type definition in a type library. The
class members of the enum in the type library become
attributes with initial values on the class in the model.

interface Represents an interface or dispinterface in a type library.
The “kind” model property on the class in Rational Rose
indicates whether the class is an interface or a
dispinterface. Type library interfaces are always abstract—
that is, the Abstract box in the interface’s Class
Specification is checked.

module Represents a module in a type library.

struct Represents a struct type definition in a type library. The
class members of the struct in the type library become typed
attributes on the class in the model.

union Represents a union type definition in a type library. The
class members of the union in the type library become typed
attributes on the class in the model.

Operations

propget Corresponds to a property-accessor function on an interface
or dispinterface.

propput Corresponds to a property-setting function on an interface
or dispinterface.

propputref Corresponds to a property-setting function that uses a
reference instead of a value.

Realize
relationship

none Represents any realize relationship between type library
items.

source Indicates that the realized interface contains the coclass’
event procedures.

Stereotype: Meaning:
230 Rational Rose 2000e, Using Rose

How Is a Type Library Presented?
A Type Library in the OLE Viewer in Visual Studio

The contents of a type library as shown in the OLE Viewer correspond
to how Rational Rose presents an imported type library. Figure 105
shows how the OLE Viewer in Visual Studio presents the Microsoft
ActiveX Data Objects type library, MSADO15.dll. All the type library
items displayed by the OLE Viewer can be found in the model after
importing the type library.

Figure 104 The OLE Viewer in Visual Studio

default Indicates that the realized interface is the default interface
of the coclass.

Dependency
relationship

imports Indicates that the supplier COM component was
automatically imported when the client component was
imported, because the supplier component is referenced by
the client component.

Stereotype: Meaning:
Rational Rose 2000e, Using Rose 231

Chapter 14 Type Library Importer
A Type Library in the Object Browser in Visual Basic

Figure 105 shows how the Object Browser in Visual Basic presents the
Microsoft ActiveX Data Objects type library, MSADO15.dll. The Object
Browser in Visual Basic shows only those type library items that are
relevant in Visual Basic. For example, it does not list the default
interfaces of the coclasses, because Visual Basic assumes the default
interface when referring to a coclass.

Figure 105 The Object Browser in Visual Basic

As Rational Rose supports many different programming languages, all
items in an imported type library are shown in the model. However, by
clearing the Show hidden items option, the top level of the packages of
the type libraries that you import, as well as their overview diagrams,
give the same view of the libraries as the Object Browser in Visual
Basic. For more information, see the Hiding Type Library Items section
in this chapter.
232 Rational Rose 2000e, Using Rose

Importing a Type Library Into the Model
Importing a Type Library Into the Model

The Type Library Importer in Rational Rose allows you to import a type
library of a COM component into the model. By doing that, you can
show how classes in the model use and depend upon classes in other
components.

If you want to change the default behavior of the Type Library Importer,
the Tools > COM > Properties dialog box allows you to control how to
import type libraries. For more information, see the Customizing the
Type Library Importer section in this chapter.

To import a type library into the model:

1. If a type library is to be used by Visual Basic classes only, you may
want to show only the type information that is relevant for Visual
Basic classes. See the Hiding Type Library Items section in this
chapter.

2. Drag the file—DLL, EXE, OCX, OLB, or TLB—from the Windows
Explorer and drop it in the browser or in a diagram. (The drop
target is not important, because the type library is created in the
packages defined by the Default package options in the COM
Properties dialog box.)

Note: If the Rational Rose application window is hidden or
minimized, point to the Rational Rose icon in the Windows task bar
before dropping the file, which brings the application to the front.
Instead of dragging and dropping the file, you can click Tools > COM
> Import Type Library and select the appropriate file.

3. On the displayed menu, select whether to import the full
component (Full Import), including all operations and attributes of
the type library items, or to perform a Quick Import which excludes
the members.

Note: You can later import the members of a quickly imported type
library item, see the Adding Class Members to a Quick Import Type
Library section in this chapter.

4. The following now happens:

❑ If the selected COM component contains all the necessary type
information, the Type Library Importer creates a representation
of the type library in the model.
Rational Rose 2000e, Using Rose 233

Chapter 14 Type Library Importer
❑ If a dragged and dropped COM component does not contain
valid type information, and if you have dropped the component
on an element in the browser, Rational Rose attaches the
dropped file to that element if possible. That is, if the cursor
turns into an arrow with a icon, Rational Rose will attach and
not import the file.

Importing a New Version of an Existing Type Library

To import a new version of a type library that already exists in the
model, right-click on the component that represents the imported type
library and click Upgrade to Latest Version.

Hiding Type Library Items

When importing a type library, the created type library in the model is
represented differently depending on the Show hidden items option in
the Tools > COM > Properties dialog box.

Show Hidden Items Selected

If the Show hidden items option is selected when importing a type
library, all type library items, coclasses, dispinterfaces, interfaces, etc.
are shown on the type library’s overview diagram. Also, the type library
items are inserted directly under the type libraries package in the
browser.

Figure 106 shows how the Microsoft Scripting Runtime component,
scrrun.dll, is presented when imported with the Show hidden items
option is selected. This view is recommended when developing clients
in other languages than Visual Basic.
234 Rational Rose 2000e, Using Rose

Hiding Type Library Items
Figure 106 Type Library with Show Hidden Items Option Selected

Show Hidden Items Cleared

If the Show hidden items option is cleared when importing scrrun.dll,
no hidden type library items are shown on the type library’s overview
diagram. Also, the hidden type library items are inserted into a
separate package called “Hidden” in the type library’s package in the
browser.

Figure 107 shows how the Microsoft Scripting Runtime component,
scrrun.dll, is presented when imported with the Show hidden items
option is cleared.
Rational Rose 2000e, Using Rose 235

Chapter 14 Type Library Importer
Figure 107 Type Library with Show Hidden Items Option Cleared

This means that with this view, only the type information that is
relevant for Visual Basic clients are shown on the type libraries
overview diagram, and all hidden type library items are inserted into a
separate package called “Hidden”. Thus, this view is recommended
when developing Visual Basic clients, because it corresponds to the
view that is shown by the Object Browser in Visual Basic (see
Figure 105).

Using an Imported Type Library

By importing type libraries into the model, you are able to show how
classes in the model use and depend upon classes in other
components, regardless of their implementation language. The
application you are modeling can use a type library in several ways, for
example:

� Classes can use the data types defined by a type library

� Classes in the model can implement the interface of a COM
component

� A COM component can be reused by the application
236 Rational Rose 2000e, Using Rose

Adding Class Members to a Quick Import Type Library
How to use a type library differs between different programming
languages. For further information, refer to the Rational Rose
documentation of each language integration.

Adding Class Members to a Quick Import Type Library

If a type library was imported using a quick import, the Type Library
Importer did not create any class members (attributes and operations)
on the imported items. You can later import the class members of a
type library item by doing a full import of that item.

To add class members to a type library:

1. In the browser or in a diagram, right-click on a(n):

❑ interface to import its class members into the model

❑ coclass to import the class members of its interfaces into the
model

❑ COM component to import the class members of all the items in
that type library

2. Click Full Import on the displayed menu.

Note: It may take several minutes for Rational Rose to perform a full
import of an entire COM component. If you do not want to import the
entire type library, perform a full import of only those type library items
that you are using.

Customizing the Type Library Importer

In the Tools > COM > Properties dialog box, you can control several
aspects of how type libraries are imported into the model. For example,
you can control the following:

� What should happen with existing type libraries when importing
new versions

� The name and location of new type libraries in the model

� The name, location, and contents of the overview diagrams that are
created when importing type libraries

To open the COM Properties dialog box, click Tools > COM > Properties:
Rational Rose 2000e, Using Rose 237

Chapter 14 Type Library Importer
Figure 108 The COM Properties Dialog Box

Note: Changing the settings in the COM Properties dialog box affects
only type libraries that are imported hereafter.

To replace existing type libraries when importing new versions:

Select the Upgrade older type libraries option in the COM Properties
dialog box. The next time you import a new version of a type library,
the current version is replaced by the new version. If this option is
cleared when you import a new version of a type library, the model will
contain both versions.

To hide items that are defined as hidden or called “_item”:

See the Hiding Type Library Items section in this chapter.

To show the composition hierarchy for imported type libraries:

Select the Construct composition hierarchy option. The next time you
import a type library, the Type Library Importer adds association
relationships between its related interfaces, which indicate the type
library's composition hierarchy.
238 Rational Rose 2000e, Using Rose

Customizing the Type Library Importer
To change the name of the logical packages where type libraries
are created:

In the Default package box under Logical view in the COM Properties
dialog box, type the name of the package including the path of any
enclosing packages. You can use the following variables in the package
name:

� $library — the name of the imported type library, which
corresponds to the library model property

� $version — the version of the imported type library, which
corresponds to the version model property

� $helpstring — a description of the type library, which corresponds
to the helpstring model property

For example, “COM/$library Ver $version ($helpstring)” means that
the following logical package is created for a new type library called
stdole:

Logical View

COM

stdole Ver 2.0 (OLE Automation)

To change the name of the component packages where type library
components are created:

In the Default package box under Component view in the COM
Properties dialog box, type the name of the package including the path
of any enclosing packages. You can use the same variables as above.

For example, “COM/$library Ver $version ($helpstring)” means that
the following component package is created for a new type library
called stdole:

Component View

COM

stdole Ver 2.0 (OLE Automation)

You can change the name and location of the diagrams on which type
libraries are displayed.
Rational Rose 2000e, Using Rose 239

Chapter 14 Type Library Importer
In the Overview diagram box under Logical view or Component view in
the COM Properties dialog box, type the name of the diagram including
the path of any enclosing packages. You can use the same variables as
above in the diagram name.

For example, the default value for the logical view is “COM/$library Ver
$version ($helpstring)/Overview of $library”, which means that the
Type Library Importer creates a diagram called “Overview of stdole Ver
2.0 (OLE Automation)” when you import a COM component called
stdole.

The default value for the component view is “COM/Overview of type
libraries”. This means that the Type Library Importer inserts all
imported type library components into the same diagram, which is
called “Overview of type libraries”.
240 Rational Rose 2000e, Using Rose

Appendix A

Upgrading From a Previous Release

This appendix describes procedures for converting models developed
under previous versions of Rational Rose.

Upgrading from Rational Rose 3.0 or Later

If you are upgrading from release 3.0 or later of Rational Rose for
Windows, your models are converted automatically when you open
them. When you save your model, Rational Rose asks you if you want
to save your model in the new format.

Upgrading from Releases Prior to Rational Rose 3.0

If you are upgrading from a Rational Rose release prior to 3.0, please
contact technical support for assistance.
Rational Rose 2000e, Using Rose 241

Appendix A Upgrading From a Previous Release
Understanding Petal File Versions

Petal files and Model files are very similar. However, a petal file is a
portion of a model file whereas a model file is really the complete or
entire model. You can create a petal file by saving your model in petal
through the File > Save As command. Petal files are also created when
you export part of a model through the File > Export command.

The following table contains the petal file version numbers for each
Rational Rose release. If you save a model as an older version of Rose,
some model elements and features will be lost. For example, if you save
a Rose 2000 model in a Rose 98i format, your model will not include
activity diagrams.

Table 18 Rational Rose Petal File Versions

Rose Version Petal File Version Rose Format

Rose 3.0 Petal 37 3.0 Model

Rose 4.0 Petal 40 4.0 Model

Rose 98 and Rose 98i Petal 42 4.5/6.0 Models

Rose 98i Service Pack 1
and Rose 2000

Petal 43 6.1/6.5 Models

Rose 2000e Petal 44 7.0 Model
242 Rational Rose 2000e, Using Rose

Appendix B

Contacting Technical Support

This appendix describes procedures for interacting with Rational
Software Corporation's technical support services.

When Contacting Rational Technical Support

When contacting Rational technical support, please be prepared to
supply the following information:

� Name, telephone number, and company name

� Computer make and model

� Make and version number of operating system

� Product release number

� Your log number (if you're calling about a previously reported
problem)

If your site has a designated, on-site support person, please try to
contact that person before contacting Rational technical support.
Rational Rose 2000e, Using Rose 243

Appendix B Contacting Technical Support
How to Contact Rational Customer Support

Rational customer support can provide information and assistance by:

� Telephone

� Electronic Mail

� Fax

� Rational Web Site

Please note that all information was current at the time of printing. To
be assured of the latest information, from the Help menu, point to
Rational on the Web and select Technical Support.

Telephone and E-mail

Telephone and E-mail support is available Monday through Friday
(except holidays) in four major Rational Technical Support Call Centers
around the world. Specific call center contact information is located at
the end of this Appendix, as well as on our web site at
www.rational.com.

When contacting Technical Support through e-mail, please include the
requested information outlined in the previous section “When
Contacting Rational Technical Support,” along with a detailed
description of your problem. Upon receipt of your request, Rational
Technical Support will send you an electronic response with your Log
id # and point of contact for your issue. When sending e-mail
concerning a previously reported problem, please include in the
subject field: “re: Log XXXX,” substituting your assigned support log id
for the XXXX.
244 Rational Rose 2000e, Using Rose

Fax
Fax

Rational Technical Support Engineers will sometimes ask you to fax
information to help them diagnose problems. Please mark faxes
“Attention: Technical Support” and add your fax number to the
information requested earlier.

Rational Web Site

You can also contact Rational technical support through our web site
at www.rational.com.

Rational Technical Support Call Center Contact Information

This information was accurate at the time of printing. If you experience
any difficulty contacting us using this information, please check our
web site at www.rational.com/support for the most up-to-date
information.

North America

18880 Homestead Road

Cupertino, CA 95014

Telephone: 800-433-5444 or 408-863-4000

E-mail: support@rational.com

Europe

Beechavenue 30

1119 PV Schiphol-Rijk

The Netherlands

Telephone: +31 (0)20 4546 200

E-mail: support@europe.rational.com
Rational Rose 2000e, Using Rose 245

Appendix B Contacting Technical Support
Asian Pacific

Level 13, 821 Pacific Hwy

Chatswood NSW 2067

Australia

Telephone: +61-2-9419-0111

E-mail: support@apac.rational.com
246 Rational Rose 2000e, Using Rose

Index
Symbols
+ (plus) sign 23

A
Abstract 71, 119
Action 143
Activities 133
Activity diagrams 129
activity diagrams 125
Actor Specification 123
Add icons to a diagram 32
Add-In

Installing 5
Manager 5

Adding
Classes 64
Stereotypes to the Diagram Toolbox

213
Add-Ins 5
Adorning the Diagrams 45
Aggregate 102
Application Window 8

documentation window 8
maximize button 8
menu bar 8
title bar 8
toolbar 8

Arguments 88
Rational Rose 2000e, Using Rose
Assigning a Component to Another Pack-
age 186

Assigning Classes 64
Association 176
Association Specification 96

Detail Tab 98
Constraints 99
Derived 99
Link Element 99
Name Direction 99

General Tab 97
Element 98
Parent 97
Role 98
Stereotype 97

Role A and B Detail Tab 101
Aggregate 102
Containment 102
Friend 102
Keys/Qualifiers 103
Navigable 101
Static 102

Role A and B General Tab 100

B
Browse

Class Diagram 11
Component Diagram 11
Deployment Diagram 11
247

Index
Interaction Diagram 11
Parent 12
Previous Diagram 12

Browser 21, 22, 23
Collapsing 23
Creating Icons 212
Docked 22
Docking 23
Drag-and-Drop 26
Hiding 22
Hiding and Displaying 22
Naming an Element 26
Navigating 24
Redock 23
Undocking 23
Viewing 22

Browser to Browser Capabilities 27
Browser to Diagram Capabilities 28
Browser to Specification Capabilities 29
Browser Tree

Collapsing 23
Expanding 23

C
Cardinality 69
Change the default font parameters 45
Changing the State of an Object 136
Characteristics 198
Class 83, 173, 175, 181
Class Attribute Specification 82

Detail Tab 84
Containment 84
Derived 85
Static 85

General Tab 82
Class 83
Initial Value 83
Show Classes 83
Type-Class Attribute 83

Class Diagram 11, 61
Creating 62
248
Displaying 62
Re-assign a class 64
Toolbox 62

Class Instance Specification 174
General Tab 174

Class 175
Class Specification 65

Attributes Tab 75
Detail Tab 68

Abstract 71
Cardinality 69
Concurrency 71
Formal Arguments 72
Persistence 70
Space 69

Files Tab 81
General Tab 66

Export Control 67
Parent 66
Stereotype 67
Type 66

Operation Tab 72
Show Inherited 74

Relations Tab 77
Classes 191
Client Visibility 177
coclass 227
Collaboration 157
Collaboration Diagram 158

Create 170
Toolbox 159

COM components 223
COM Properties dialog box 237
Common Specification Elements 53
Component Diagram 11, 193

Creating 186
Displaying 186
Toolbox 186

Component Name 78
Component Specification 187

Detail Tab 189
Declarations 190
Rational Rose 2000e, Using Rose

Index
General Tab 188
Language 188
Stereotype 188

Realizes Tab 190
Classes 191
Language 191
Show all Classes 191

Concurrency 71, 90
Connection Specification 201
Connections 195
Constraints 99
Containment 84, 102
Context Sensitive Help 11
Control-Menu Box 8
Copy 10
Correlation 43, 44

Bending 44
Changing the Name 45
Reconnecting 44

Creating
Alternative Diagrams 170
Collaboration Diagram from a Se-

quence Diagram 171
Component Diagram 186
Diagram Icon 212
Elements 37
Icons for the Diagram Toolbox or

Browser 212
Icons on a diagram 32
Model Elements 25
New Model 9
New Stereotype Configuration File

209
Overloaded Element on the Diagram

39
Sequence Diagram from a Collabora-

tion Diagram 171
Creating an Activity Diagram 130
Creating Diagram Toolbox and List View

Icons 212
Creating Model Elements 37
Cut 10
Rational Rose 2000e, Using Rose
D
Decisions 138
Declarations 190
Deep Delete 20
Default Font Parameters

Changing 45
Delete 42

From Model 42
Icons 42

Deleting 42
Deleting Model Elements 20
Dependency 114
Dependency Specification 105

General Tab 106
Deployment Diagram 11, 195

Creating 196
Displaying 196
Toolbox 196

Derived 85, 99
Deselecting Icons 41
Detail Tab 55
Device Specification 200

Detail Tab 201
General Tab 200

Devices 195
Diagram 120

Adorning 45
Creating 34, 170
Deleting 36
Displaying 35
Placing Text 45
Renaming 36

Diagram Icon 212
Diagram Toolbox

Adding Stereotypes 213
Creating Icons 212

Diagram Window 31, 32
Diagrams 120
Dialog Boxes 53
dispinterface 227
Displaying 22
249

Index
Browser 22
Multiple Diagrams 33
Specifications 51

Docked 22
Documentation 54
Documentation Window 8
Drag-and-Drop 21, 25, 26

E
Editing Model Elements 25
Elements 98
Exceptions 89
Expanding 23
Export Control 67
Extend 115
Extending Rose 5

F
F5 171
Features 4
Files Tab 55, 81
Filtering Class Relationships 64
Fit in Window 12
Floating 22
Focus of Control

Diagrams 174
Scripts 167

Font 45
Formal Arguments 72
Framework 217

Activating the Framework Wizard
Add-In 217

Changing 222
Creating a Model from a Framework

218
Creating a New Framework 219
Deleting 222

Framework Library 219
Frequency 183
Friend 102
250
Friendship Required 104, 123
full import 237
Fully Qualified Names 40

G
Generalize Specification 103

General Tab 104, 122
Friendship Required 104, 123
Virtual Inheritance 104, 123

H
Has Relationship 106
Has Specification 106

Detail Tab 108
General Tab 107

Hide Stereotype Name 208
Hiding Classes 64
Hiding the Browser 22

I
Icons 179

Copying 42
Cutting 42
Deleting 42
Pasting 42

importing a type library 233
Include 115
Initial Value 83
Installing an Add-In 5
Interaction Diagram 11, 91, 92, 93, 157
interface

in type library 227
of COM component 227

K
Keys 103
Rational Rose 2000e, Using Rose

Index
L
Language 79, 188, 191
Link a Diagram 35
Link Element 99
Link Specification 175

General Tab 176
Association 176
Roles 178
Shared 178

Messages Tab 179
Icon 179
Message Name 180
Receiver 180
Sequence 179

Linking 34
Loading a Model Workspace 49
Logical Package

Assigning 64
Logical Package Specification 106

M
Manipulating Icons 41
Manipulating Text 42
Maximize Button 8
Menu Bar 8
Menu Control Box 8
Message Name 180
Message Specification 180

Detail Tab 182
Frequency 183
Synchronization 183

General Tab 181
Class 181

Messages 163
Minimize Button 8
Model

Navigating 24
Model Elements 37

Creating 25
Editing 25
Rational Rose 2000e, Using Rose
Model files 242
model workspace 46
Model Workspace Sample 47
Moving Icons 42
Multiple Instances Check Box 173
Multiple Objects 162

N
Name 119
Name Direction 99
Naming 44

an Element on the Diagram 38
an Overloaded Element on the Dia-

gram 39
Element 26
Element in the Browser 26
Model Elements 37

Naming Model Elements 37
Navigable 101
Navigating a Model 24
Navigating the Tabs 58

Adding and Deleting Entries 58
Editing Entries 58

Notations 4

O
Object Browser in Visual Basic 232
Object Flow 134
Object Flow Specification 155
Object Specification 171

General Tab 172
Class 173
Persistence Field 173

Objects 133
OLE Viewer 231
Open Existing Model 10
Operation Specification 86

Detail Tab 88
Arguments 88
Concurrency 90
251

Index
Exceptions 89
Protocol 88
Qualifications 89
Size 89
Time 89

Files Tab 94
General Tab 87

Return Class 87
Post Conditions Tab 93

Interaction Diagram 93
Postconditions Tab

Postcondition 93
Pre Condition Tab

Pre Conditions 91
Pre Conditions Tab 91

Pre Conditions 91
Semantics Tab 92

Interaction Diagram 91, 92
Semantics 92

Overloaded Element 39
Overloading 38

P
Package 66, 119, 193, 214
Package Name 79
Package Specification 192

Detail Tab 193
Component Diagram 193

General Tab 192
Package 193

Parent 12, 66, 97
Paste 10
Persistence 70
Persistence Field 173
Petal File 242
Petal files 242
Positioning 22
Postcondition 93
PreConditions 91
Previous Diagram 12
Print Diagrams 10
252
Priority 203
Private 67
Process Specification 202

General Tab 203
Priority 203
Processor 203

Processes 199
Processor 195, 203
Processor Specification 196

Detail Tab 198
Characteristics 198
Processes 199
Scheduling 199

General Tab 197
Protected 67
Protocol 88
Public 67

Q
Qualifications 89
Qualifiers 103
quick import 237

R
Rank 119
Reassigning Model Elements 40
Receiver 180
Refine 115
Relations 121
Renaming Model Elements 40
Resizing an Icon 41
Return Class 87
Role 98, 178
Rose.ini File 19

S
Save Model or Log 10
Saving 19
Saving a Model Workspace 49
Rational Rose 2000e, Using Rose

Index
Scheduling 199
Scripts 174

Create 167
Delete 168
Detach 168
Move 168
Undo 168

Semantics 92
Sequence 179
Sequence Diagram 159

Toolbox 170
Shallow Delete 20
Shared 178
Show all Classes 191
Show Classes 83
Show labels 208
Show Stereotype Names 208
Show Stereotypes 207
Size 89
Snap-to-grid 42
Sorting Packages 29
Space 69
Specification

Actor 123
Association 96
Class 65
Class Attribute 82
Class Instance 174
Component 187
Connection 201
Dependency 105
Detail Tab 55
Device 200
Dialog Boxes 53
Displaying 51
Files Tab 55
General Tab

Documentation 54
Name 54

Generalize 103
Has 106
Link 175
Rational Rose 2000e, Using Rose
Logical Package 106
Message 180
Object 171
Operation 86
Package 192
Process 202
Processor 196
Tab Buttons 57

Apply 57
Browse 57
Cancel 57
Help 58
OK 57

Start and End States 137
State Machine 125
state transition 137
State Transition Specification

Detail Tab
Transition Between Substates

147
state/activity model icon 125
statechart 125
Statechart diagrams 127
States 137
Static 85, 102
Stereotype 67, 97, 188, 205, 209

Benefits 205
Creating 209
Creating Configuration File 209
Creating Icons 211
Display 207
Icon 211
User-Defined 206
Viewing 206

stereotype 214
Stereotype Sample 214
subsystem 214
Subsystem Stereotype Package 214
Supplier Visibility 177
Support 243
Swimlanes 133
Synchronization 183
253

Index
Synchronizations 138

T
Tab Buttons 57

Apply 57
Browse 57
Cancel 57
Help 58
OK 57

Tabs
Navigating 58

Technical Support 243
Time 89
Title Bar 8
Toolbar 8, 34
Toolbox

Class Diagram 62
Collaboration Diagram 159
Component Diagram 186
Deployment Diagram 196
Sequence Diagram 170

Transition Between Substates 147
Transition to Self 138
Transitions 137
Type 66
type libraries 223
Type Library Importer 223
Type-Class Attribute 83

U
Undo Fit in Window 12
Undock 23
Upgrading 241
URLs 56
Use-Case Specification

Diagram Tab 120
Diagram 120

General Tab
Abstract 119
Package 119
254
Rank 119
Relations Tab 121

Relations 121
User Interface 5
User-Defined 206

V
Viewing

Diagrams 32
Documentation 11

Virtual Inheritance 104, 123
Visibility 177

W
Workflow Modeling 131
Workflows 129
Workspaces 46

Z
Zoom In/Out 12
Rational Rose 2000e, Using Rose

	Rational Rose 2000e Using Rose
	Contents
	List of Figures
	List of Tables
	Preface
	How this Manual is Organized
	Online Help
	Online Manuals
	Related Documentation
	File Names
	Starting Rational Rose
	Rose.ini Location

	Introduction to Visual Modeling Using Rational Rose
	Visual Modeling
	Modeling with Rational Rose
	Notations
	Features
	Extending Rational Rose

	Getting Started with Rational Rose
	The Application Window
	Control-Menu Box
	Title Bar
	Minimize and Maximize Buttons
	Menu Bar
	Toolbar
	Toolbox
	Customizing the Toolbox

	Browser

	Documentation Window
	Diagram Window
	Overview Window
	Specification Window
	Printing Diagrams and Specifications
	Print Preview
	Zoom In and Zoom Out
	Print
	One Page and Two Page
	Close

	Apply Filter Dialog Box

	Saving in Various Formats
	Modifying the Rose.ini File
	Deleting Model Elements
	Shallow Delete
	Deep Delete

	The Browser
	Overview
	Viewing the Browser
	Hiding and Displaying the Browser
	Positioning the Browser
	Docking and Undocking the Browser
	Expanding and Collapsing the Browser Tree
	Selecting Multiple Elements in the Browser
	Navigating a Model
	Creating and Editing Model Elements
	Naming an Element in the Browser

	Using Drag-and-Drop in the Browser
	Browser to Browser Capabilities
	Browser to Diagram Capabilities
	Browser to Specification Capabilities

	Sorting Packages in the Browser

	Introduction to Diagrams
	Overview
	Diagram Windows
	Viewing Diagrams
	Displaying Multiple Diagrams

	Creating, Linking, Displaying, Renaming, and Deleting Diagrams
	Create a New Diagram
	Linking a Diagram

	Display a Diagram
	Rename a Diagram
	Delete a Diagram

	Selecting Multiple Elements in the Diagram
	Creating and Naming Model Elements
	Create an Element on the Diagram
	Create an Element in the Browser
	Naming Model Elements
	Naming an Element on the Diagram
	Creating/Naming an Overloaded Element on the Diagram
	Placing an Overloaded Element on the Diagram from the Browser
	Fully Qualified Names
	Renaming Model Elements
	Reassigning Model Elements

	Manipulating Icons
	Deleting, Cutting, Copying, and Pasting Icons

	Correlations
	Creating Correlations Between Elements

	Adorning the Diagrams
	Manipulating Text

	Understanding Model Workspaces
	Differences between a Saved Model and a Model Workspace
	Model Workspace Sample
	Saving a Model Workspace
	Loading a Model Workspace

	Introduction to Specifications
	Displaying Specifications
	Custom Specifications

	Editing Specifications
	Common Specification Elements
	Dialog Boxes
	General Tab
	Detail Tab
	Files Tab
	Tab Buttons

	Navigating the Tabs
	Adding and Deleting Entries
	Editing Entries

	Class Diagrams and Specifications
	Class Diagram Overview
	Creating and Displaying a Class Diagram
	Class Diagram Toolbox
	Assigning a Class to Another Logical Package
	Adding and Hiding Classes, and Filtering Class Relationships

	Class Specification
	Class Specification—General Tab
	Type
	Parent
	Stereotype
	Export Control

	Class Specification—Detail Tab
	Cardinality
	Space
	Persistence
	Concurrency
	Abstract
	Formal Arguments

	Class Specification—Operations Tab
	Show Inherited

	Class Specification—Attributes Tab
	Class Specification—Relations Tab
	Class Specification—Component Tab
	Class Specification—Nested Tab
	Class Specification—Files Tab

	Class Attribute Specification
	Class Attribute—General Tab
	Class
	Show Classes
	Type
	Initial Value

	Class Attribute—Detail Tab
	Containment
	Static
	Derived

	Operation Specification
	Operation Specification—General Tab
	Return Class

	Operation Specification—Detail Tab
	Arguments
	Protocol
	Qualifications
	Exceptions
	Size
	Time
	Concurrency

	Operation Specification—Preconditions Tab
	Preconditions
	Interaction Diagram

	Operation Specification—Semantics Tab
	Semantics
	Interaction Diagram

	Operation Specification—Postconditions Tab
	Postcondition
	Interaction Diagram

	Operation Specification—Files Tab

	Parameter Specification
	Defining a New Parameter
	Parameter Specification—General Tab
	Default
	Owner
	Type

	Association Specification
	Association Specification—General Tab
	Parent
	Stereotype
	Role
	Element

	Association Specification—Detail Tab
	Derived
	Link Element
	Name Direction
	Constraints

	Association Specification—Role B General Tab
	Association Specification—Role A and B Detail Tab
	Navigable
	Aggregate
	Static
	Friend
	Containment of
	Keys/Qualifiers

	Generalize Specification
	Generalize Specification—General Tab
	Friendship Required
	Virtual Inheritance

	Realize Specification
	Realize Specification—General Tab

	Dependency Specification
	Dependency Specification—General Tab

	Has Relationship (Booch Only)
	Has Specification—General Tab
	Has Specification—Detail Tab

	Key/Qualifier Specification
	Defining a New Key/Qualifier
	Key/Qualifier Specification—General Tab
	Owner

	Use-Case Diagrams and Specifications
	Use-Case Diagram Overview
	Actors
	Use Case
	Flow of Events
	Relationships
	Association
	Dependency
	Extend Stereotype
	Include Stereotype
	Refine Stereotype

	Generalization
	Use-Case Diagram Toolbox

	Use-Case Specification
	Use-Case Specification—General Tab
	Name
	Package
	Rank
	Abstract

	Use-Case Specification—Diagram Tab
	Diagrams

	Use-Case Specification—Relations Tab
	Relations

	Generalize Specification—General Tab
	Stereotype
	Friendship Required
	Virtual Inheritance

	Actor Specification

	State Machine Diagrams and Specifications
	Creating and Displaying a State Machine Diagram
	State Machine Specification
	State Machine Specification General Tab

	Statechart Diagram Overview
	Creating a Statechart Diagram
	Automatic Transmission Example

	Activity Diagram Overview
	Using Activity Diagrams
	Understanding Workflows

	Creating an Activity Diagram
	Workflow Modeling
	Purposes of Workflow Modeling
	Defining a Workflow

	Modeling a Workflow with an Activity Diagram
	Activity Diagram-Specific Model Elements
	Activities
	Swimlanes
	Objects
	Object Flow
	Understanding Objects and Object Flows
	Changing the State of an Object

	Shared State Machine Diagram Model Elements
	States
	Start and End States
	Transitions
	Transition to Self
	Decisions
	Synchronizations

	Swimlane Specification
	Swimlane Specification General Tab

	State and Activity Specifications
	State and Activity Specification General Tab
	State and Activity Specification Actions Tab
	Type
	Action Expression

	State and Activity Specification Transitions Tab
	State and Activity Specification Swimlanes Tab

	Action Specification
	Transition Specification
	Transition Specification – General Tab
	State Transition Specification Detail Tab
	Guard Condition
	Transition Between Substates

	Decision Specification
	Decision Specification General Tab
	Decision Specification Transitions Tab
	Decision Specification Swimlanes Tab

	Synchronization Specification
	Synchronization Specification General Tab
	Synchronization Specification Transitions Tab

	Object Specification (Activity Diagrams)
	Object Specification General Tab
	Object Specification Incoming Object Flows Tab
	Object Specification Outgoing Object Flows Tab

	Object Flow Specification
	Object Flow Specification General Tab

	Interaction Diagrams and Specifications
	Interaction Diagram Overview
	Creating and Displaying an Interaction Diagram

	Collaboration Diagrams
	Sequence Diagrams
	Toolboxes
	Collaboration Diagram Toolbox
	Sequence Diagram Toolbox
	Common Collaboration and Sequence Diagram Icons
	Object
	Messages
	Message Numbering
	Assigning an Operation to a Message

	Collaboration Specific Toolbox Icons
	Links

	Sequence Numbering
	Top-Level Numbering
	Hierarchical Numbering
	Scripts

	Focus of Control
	Displaying Focus of Control
	Coloring Focus of Control
	Moving the Focus of Control
	Nested Focus of Control

	Creating Alternative Diagrams
	Toggling between Interaction Diagrams
	Creating a Collaboration Diagram from a Sequence Diagram
	Creating a Sequence Diagram from a Collaboration Diagram

	Object Specification
	Object Specification—General Tab
	Name
	Class
	Persistence Field
	Multiple Instances Check Box

	Class Instance Specifications
	Class Instance Specification—General Tab
	Class

	Link Specification
	Link Specification—General Tab
	Assoc
	Supplier & Client Visibility
	Shared
	Role

	Link Specification—Messages Tab
	Icon
	Sequence
	Message Name
	Receiver

	Message Specification
	Message Specification—General Tab
	Class

	Message Specification—Detail Tab
	Synchronization
	Frequency

	Component Diagrams and Specifications
	Component Diagram Overview
	Creating and Displaying a Component Diagram
	Component Diagram Toolbox
	Assigning a Component to Another Package

	Component Specifications
	Component Specification—General Tab
	Stereotype (Component)
	Language

	Component Specification—Detail Tab
	Declarations

	Component Specification—Realizes Tab
	Show all Classes
	Classes
	Language

	Component Specification—Files Tab

	Package Specification
	Package Specification—General Tab
	Package

	Package Specification—Detail Tab
	Component Diagrams

	Package Specification—Realizes Tab
	Package Specification—Files Tab

	Deployment Diagrams and Specifications
	Deployment Diagram Overview
	Creating and Displaying a Deployment Diagram
	Deployment Diagram Toolbox

	Processor Specification
	Processor Specification—General Tab
	Processor Specification—Detail Tab
	Characteristics
	Processes
	Scheduling

	Device Specification
	Device Specification—General Tab
	Device Specification—Detail Tab

	Connection Specifications
	Process Specification
	Process Specification—General Tab
	Processor
	Priority

	Stereotypes
	Overview
	Benefits to Using Stereotypes
	User-Defined Stereotypes

	Viewing Stereotypes
	Diagram Tab
	Browser Tab

	Creating Stereotypes
	Creating a New Stereotype for the Current Model
	Creating a New Stereotype Configuration File
	Creating a New Stereotype for All Rose Models
	Creating Stereotype Icons
	Creating a Diagram Icon
	Creating Diagram Toolbox and List View Icons

	Adding Stereotypes to the Diagram Toolbox
	Subsystem Stereotype Package
	Subsystem Stereotype Sample

	Framework Wizard Add-In
	Activating the Framework Wizard Add-In
	Creating a New Model from a Framework
	Creating and Deleting Frameworks
	The Framework Library
	Creating a New Framework
	Changing or Deleting a Framework

	Type Library Importer
	What Is a Type Library?
	Why Would I Want to Import Type Libraries into the Model?
	What COM Components Can Be Imported into the Model?
	How Is a Type Library Presented?
	A Type Library in Rational Rose
	A Type Library in the OLE Viewer in Visual Studio
	A Type Library in the Object Browser in Visual Basic

	Importing a Type Library Into the Model
	Importing a New Version of an Existing Type Library
	Hiding Type Library Items
	Show Hidden Items Selected
	Show Hidden Items Cleared

	Using an Imported Type Library
	Adding Class Members to a Quick Import Type Library
	Customizing the Type Library Importer

	Upgrading From a Previous Release
	Upgrading from Rational Rose 3.0 or Later
	Upgrading from Releases Prior to Rational Rose 3.0
	Understanding Petal File Versions

	Contacting Technical Support
	When Contacting Rational Technical Support
	How to Contact Rational Customer Support
	Telephone and E-mail
	Fax
	Rational Web Site
	Rational Technical Support Call Center Contact Information
	North America
	Europe
	Asian Pacific

	Index

