
RationalRose2000e
Using Rose
Visual Basic

Copyright © 1998-2000 Rational Software Corporation.
All rights reserved.

Part Number: 800-023324-000
Revision 2.5, March 2000, (Software Release 2000e)

This document is subject to change without notice.

GOVERNMENT RIGHTS LEGEND: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 227.7202-
1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR
12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14, as applicable.

Rational, the Rational logo, and Rational Rose are trademarks or registered
trademarks of Rational Software Corporation in the United States and in other
countries. All other names are used for identification purposes only and are
trademarks or registered trademarks of their respective companies.

ii Rational Rose 2000e, Using Rose Visual Basic

Contents

List of Figures xi

List of Tables xv

Preface xvii

How this Manual Is Organized xvii

Terminology xviii

Related Documentation xix

Online Help and Manuals xix

Chapter 1 Introduction to the Visual Basic Language Support Add-In 1

Chapter 2 Mapping UML to Visual Basic 3

Overview 3

Component View to Visual Basic Mapping 4
Components 4
Component Packages 8
Dependency Relationships 8

Logical View to Visual Basic Mapping 9
Classes 9
Interfaces 15
Collection Classes 19
Rational Rose 2000e, Using Rose Visual Basic iii

Contents
Class Utilities 22
Enum and Type Declarations 24
Web Classes 24
Logical Packages 24
Properties (Attributes) 25
Association Relationships 27
Aggregation Relationships 31
Dependency Relationships 31
Generalization Relationships 32
Realize Relationships 35
Advanced Association Relationship Mappings 37

Navigability 37
Containment Adornment 37
Cardinality/Multiplicity 38
Link Properties (Attributes) 39
Qualifiers 41

Methods (Operations) 42
User-Defined Methods 43
Method Stereotypes 44
Method Parameter Passing 45
Property Get/Set/Let Procedures 46
Declare Methods 46
Events 47

Use-Case View to Visual Basic Mapping 48

Deployment View to Visual Basic Mapping 48

Visual Basic to UML Mapping 48
Visual Basic Projects 48
Project Items 49
Modules 50
Project References 51
Code Comments 51
Compiler Directives 52
iv Rational Rose 2000e, Using Rose Visual Basic

Chapter 3 Round-Trip Engineering a Visual Basic Application 53

The Visual Basic Round-Trip Engineering Tools 53

Round-Trip Engineering—Starting with a Model 54

Round-Trip Engineering—Starting with a Visual Basic Project 55

Synchronization 56

Model IDs 57

Chapter 4 Generating Visual Basic Code 59

The Code Update Tool 59
Starting the Code Update Tool 60
The Code Update Tool Pages 60

Welcome Page 60
Select Components and Classes Page 61
Finish Page 62
Progress Page 62
Synchronize Page 62
Summary Page 63

Generating Visual Basic Code 63
Generating a New Visual Basic Project from a Model 63
Updating an Existing Visual Basic Project with Model Changes 64
Synchronizing Code and Model During Code Update 66
Reviewing the Generated Code 67
Evolving the Generated Code 67

Customizing the Code Generation 68
Customizing the Code Update Tool 68

Save model before code and model update 69
Supress model IDS 69
Generate Object Browser documentation 69
Other options 69

Customizing the Code Generation of a Specific Component 69
Previewing and Customizing the Code to Generate for a Specific
Class 70
Rational Rose 2000e, Using Rose Visual Basic v

Contents
Chapter 5 Reverse Engineering Visual Basic Code 71

The Model Update Tool 71
Starting the Model Update Tool 72
The Model Update Tool Pages 72

Welcome Page 72
Select Components and Classes Page 73
Finish Page 74
Progress Page 74
Synchronize Page 74
Summary Page 74

Updating a Model from Visual Basic Projects 75
Reverse Engineering a Visual Basic Project Into a New
Component 75
Updating a Component in the Model from Code Changes 76
Synchronizing Model and Code During Model Update 77
Evolving the Updated Model 78

Customizing the Model Update 80
Customizing the Model Update Tool 80

Save model before code and model update 81
Suppress model IDS 81
Default logical package 81
Default component package 82
Overview diagram 82

Customizing the Type Library Importer 83
Customizing the Model Update of a Specific Component 83
Customizing the Model Update of a Specific Class 84

Chapter 6 Modeling a Visual Basic Project 85

The Component Assignment Tool 86

Creating a New Model 87

Creating Components and Assigning Classes 89
Creating New Components in the Model 89
vi Rational Rose 2000e, Using Rose Visual Basic

Specifying a Component 90
Should be generated 90
Should be updated from code 91
Project File 91
Stereotype 91
Documentation 91
Import all references 92
Quick import 92
Import the compiled VB binary 92

Associating a Component with a Visual Basic Project File 92
Assigning Classes to Existing Components 94

Assigning Unassigned Classes to a Component 94
Assigning a Class to Several Components of the Same
Language 95

Moving a Class to Another Component 95
Moving a Class to Another Component with the Same
Language 95
Moving a Class to a Component with Another Language 96

Removing a Class from a Component 96
Removing a Class from One Component 96
Removing a Class from All Assigned Components 96

Changing the Implementation Language of a Component 97

Importing Type Libraries Into the Model 97
Importing the Type Library of Project References 98
Importing the Binary Component Compiled from a Project in the
Model 100
Importing any COM Component 101
Example of an Imported Type Library 102

Using an Imported Type Library 104
Using the Data Types Defined by a Type Library 104
Realizing the Interface of a COM Component 105
Using Property Procedures of Type Library Items 106

Browsing the Model and Code 107
Opening the Visual Basic Item that Corresponds to a Model
Element 107
Opening a Model that Corresponds to the Open Visual Basic
Project 107
Rational Rose 2000e, Using Rose Visual Basic vii

Contents
Chapter 7 Modeling Visual Basic Classes 109

The Model Assistant 109

Templates 111
What templates are provided in Rational Rose? 112

Creating Visual Basic Classes in the Model 113

Applying a Template to a Class in the Model 116
Applying Another Template to a Class BEFORE Generating
Code 117
Applying Another Template to a Class AFTER Code Has Been
Generated 118

Inserting Debug Code for All New Classes 118

Modeling Visual Basic Forms 120

Modeling Visual Basic Web Classes 121

Creating User-Defined Collection Classes 122
Creating a New User-Defined Collection Class as a Collection of an
Existing Class 122
Transforming an Existing Class into a Collection Class 124
Deleting a User-Defined Collection Class 124

Specifying Implements Constructs 124

Creating Declare Statements 126

Creating Event Statements 128

Subscribing to Events 128

Creating Enums and Types 130

Creating Constants 132

Creating Properties (Attributes) 133

Creating Property Get, Let, and Set Procedures 136
Creating a Get, Set, or Let Procedure for a Property 136
Modifying the Default Data Member Prefix 137
viii Rational Rose 2000e, Using Rose Visual Basic

Creating Methods (Operations) 138
Creating a Method 138
Creating Method Parameters 139
Adding Error-Handling Code 141
Adding "Your Code Goes Here..." Comments 142
Using Friend Methods in Sequence Diagrams 142

Modifying the Default Body of Methods 143
The Default Body 143
Modifying the Default Body of a Method 145

Changing the Value of a Template Parameter for a Class 146

Customizing the Default Behavior of the Model Assistant 148
The Visual Basic Properties Dialog Box 148

Generate debug code 149
Generate “Your code goes here...” comments 149
Generate error handling code 149
Data member prefix 150

Appendix A Model Properties Reference 151

Model Properties for Components 152
ImportBinary (Component Property) 152
ImportReferences (Component Property) 152
ProjectFile (Component Property) 153
QuickImport (Component Property) 154
UpdateCode (Component Property) 155
UpdateModel (Component Property) 155

Model Properties for Classes 156
Instancing (Class Property) 156
OptionBase (Class Property) 157
OptionCompare (Class Property) 158
OptionExplicit (Class Property) 158
UpdateCode (Class Property) 159
UpdateModel (Class Property) 160
Rational Rose 2000e, Using Rose Visual Basic ix

Contents
Model Properties for Roles and Properties (Attributes) 160
FullName (Role Property) 161
New (Property or Role Property) 161
ProcedureID (Property or Role Property) 162
PropertyName (Property or Role Property) 162
Subscript (Property or Role Property) 162
UpdateCode (Role Property) 163
WithEvents (Property or Role Property) 163

Model Properties for Methods (Operations) 164
AliasName (Method Property) 164
DefaultBody (Method Property) 164
IsStatic (Method Property) 165
LibraryName (Method Property) 166
ProcedureID (Method Property) 166
ReplaceExistingBody (Method Property) 167

Model Properties for Generalization Relationship 167
FullName (Generalization Property) 167
ImplementsDelegation (Generalization Property) 168

Appendix B UML to Visual Basic Mapping Quick Reference 171

UML to Visual Basic Mapping 171

Visual Basic to UML Mapping 173

Index 175
x Rational Rose 2000e, Using Rose Visual Basic

List of Figures

Figure 1 Components Map the Classes in the Model to Source Code Projects 5
Figure 2 Example of Imported COM Components 6
Figure 3 Example of a Class 14
Figure 4 The GeneralReporter Interface 16
Figure 5 The Reporter ActiveX DLL Component 17
Figure 6 The Reporter DLL Has Been Imported into the Model of MyApplication 18
Figure 7 The MyReporter Class Realizes the Imported GeneralReporter Interface 18
Figure 8 The Article Class Has the Standard Collection Assigned to It 20
Figure 9 A Collection of Orderrow Objects 21
Figure 10 Example of a Class Utility 23
Figure 11 Example of a Diagram Showing Dependencies Between Logical Packages

25
Figure 12 Example of an Association with Unbounded Multiplicity 28
Figure 13 Example of Association Relationships 30
Figure 14 Generalization Relationship 32
Figure 15 Example of Generalization Relationship 34
Figure 16 Generalization Relationship 35
Figure 17 Example of Realize Relationship 36
Figure 18 Example of a Navigable Association 37
Figure 19 Example of Cardinality 38
Figure 20 Example of a Link Property 40
Figure 21 Example of a Qualified Association Relationship 41
Figure 22 Dlg_Order Subscribes to the btn_cancel_KeyPress Event Defined in

CommandButton 47
Figure 23 Synchronize Page 56
Rational Rose 2000e, Using Rose Visual Basic xi

List of Figures
Figure 24 Code Update Tool—Select Components and Classes Page 61
Figure 25 Visual Basic Component Properties Dialog Box—Code Update 65
Figure 26 Code Update Tool—Synchronize Page 66
Figure 27 Visual Basic Properties Dialog Box—Code Update Properties 68
Figure 28 Model Update Tool—Select Components and Classes Page 73
Figure 29 Select Visual Basic Project Dialog Box 75
Figure 30 Model Update Tool—Synchronize Page 77
Figure 31 Use Drag and Drop to Combine Properties with Different Data Member

Prefix 79
Figure 32 Visual Basic Properties Dialog Box—Model Update Tool 80
Figure 33 The Component Assignment Tool 86
Figure 34 Select Visual Basic Project Dialog Box 89
Figure 35 Visual Basic Component Properties Dialog Box 90
Figure 36 Visual Basic Component Properties Dialog Box 93
Figure 37 Select Visual Basic Project Dialog Box 94
Figure 38 The References Dialog Box in Visual Basic 98
Figure 39 The References Tab of the Component Properties Dialog Box 99
Figure 40 The Microsoft Scripting Runtime Component Has Been Imported into the

Model 102
Figure 41 The Object Browser in Visual Basic Displays the Microsoft Scripting

Runtime Component 103
Figure 42 The Appearance of Interfaces on a Component Diagram 104
Figure 43 NewClass Has a Relationship with the Coclass Dictionary 105
Figure 44 NewClass Has a Relationship with IDictionary—the Default Interface of

the coclass Dictionary 105
Figure 45 My_Class Realizes the Interface of ObjectControl 106
Figure 46 The Browse Source Code Command Displays Code for a Selected Class

107
Figure 47 The Model Assistant Shows a Visual Basic View of a Class 110
Figure 48 The Form Template 112
Figure 49 Model Assistant—Class Tab 114
Figure 50 Model Assistant—Class Options Tab 115
Figure 51 A Dependency Is Created when Creating a Collection Class 123
Figure 52 Associations with Unbounded Multiplicity Are Moved to the New Collection

Class 123
Figure 53 Model Assistant—Declare Tab 127
xii Rational Rose 2000e, Using Rose Visual Basic

Figure 54 The dlg_Order Form Subscribes to the KeyPress Event Defined in the
CommandButton Control 129

Figure 55 Model Assistant—Enum and Type Tab 131
Figure 56 Enum and Type Classes Are Shown on the Nested Tab of the Enclosing

Class’s Specification 132
Figure 57 Model Assistant—Constant Tab 133
Figure 58 OrderId Corresponds to a Data Member, mOrderId, and Two Property

Procedures 134
Figure 59 Model Assistant—Data Member Tab 134
Figure 60 Creating a Property Procedure Adds an “m” to the Data Member Name 137
Figure 61 Model Assistant—Method Tab 138
Figure 62 Model Assistant—Method Parameters Tab 140
Figure 63 Visual Basic Properties Dialog Box—Model Assistant Properties 149
Rational Rose 2000e, Using Rose Visual Basic xiii

List of Tables

Table 1 Terminology Differences in UML and Visual Basic xix
Table 2 Visual Basic Component Stereotypes 7
Table 3 Visual Basic Class Stereotypes 10
Table 4 Property Stereotypes 27
Table 5 Cardinality Values 39
Table 6 Visual Basic Method Stereotypes 44
Table 7 Controlling the Declaration of Method Parameters 46
Table 8 Mapping of Visual Basic Project Items to Model Element 49
Table 9 Mapping of Visual Basic Modules to Model Elements 50
Table 10 Mapping of Project References to Model Elements 51
Table 11 Property Procedures on COM Interfaces 106
Table 12 Rational Rose Tool Window Commands 108
Table 13 Model Assistant—Folder Contents 110
Table 14 Default Body Variables 147
Table 15 ImportBinary Model Property Values 152
Table 16 ImportReferences Model Property Values 153
Table 17 ProjectFile Model Property Values 153
Table 18 QuickImport Model Property Values 154
Table 19 UpdateCode Model Property Values 155
Table 20 UpdateModel Model Property Values 155
Table 21 Instancing Model Property Values 157
Table 22 OptionBase Model Property Values 158
Table 23 OptionCompare Model Property Values 158
Table 24 OptionExplicit Model Property Values 159
Table 25 UpdateCode Model Property Values 159
Rational Rose 2000e, Using Rose Visual Basic xv

List of Tables
Table 26 UpdateModel Model Property Values 160
Table 27 FullName Model Property Values 161
Table 28 New Model Property Values 161
Table 29 ProcedureID Model Property Values 162
Table 30 Subscript Model Property Values 163
Table 31 UpdateCode Model Property Values 163
Table 32 WithEvents Model Property Values 163
Table 33 DefaultBody Model Property Values 165
Table 34 IsStatic Model Property Values 166
Table 35 ProcedureID Model Property Values 166
Table 36 ReplaceExistingBody Model Property Values 167
Table 37 FullName Model Property Values 168
Table 38 ImplementsDelegation Model Property Values 169
Table 39 UML to Visual Basic Mapping 171
Table 40 Visual Basic to UML Mapping 173
xvi Rational Rose 2000e, Using Rose Visual Basic

Preface

This manual:

� Describes the features of the Visual Basic Language Support
add-in in Rational Rose

� Provides information and procedures for round-trip engineering————
that is, Visual Basic code generation and reverse engineering

� Provides complete information on mapping UML to Visual Basic
and Visual Basic to UML, as implemented by the Visual Basic
Language Support add-in

This manual assumes that you are familiar with the Visual Basic
programming language, the Windows operating system, object-
oriented-design concepts, and how to use Rational Rose.

How this Manual Is Organized

This manual contains the following chapters and appendices:

� Chapter 1Chapter 1Chapter 1Chapter 1—Introduction

Provides an overview of features and the basic round-trip
engineering concepts as they apply to Rational Rose Visual Basic.

� Chapter 2Chapter 2Chapter 2Chapter 2—Mapping UML to Visual Basic

Provides a detailed mapping between Visual Basic and UML
constructs in both directions (Visual Basic <-> UML) as
implemented in Rational Rose Visual Basic.
Rational Rose 2000e, Using Rose Visual Basic xvii

Preface
� Chapter 3Chapter 3Chapter 3Chapter 3—Round-Trip Engineering a Visual Basic Application

Provides detailed procedures for generating or updating a Visual
Basic project from a Rational Rose model, and how to update the
model from, or reverse engineer, a Visual Basic project.

� Chapter 4Chapter 4Chapter 4Chapter 4—Generating Visual Basic Code

Describes how to generate Visual Basic source code from elements
in a Rational Rose model, using the Code Update Tool.

� Chapter 5Chapter 5Chapter 5Chapter 5—Reverse Engineering Visual Basic Code

Describes how to update a Rational Rose model from changes in
the Visual Basic source code, using the Model Update Tool.

� Chapter 6Chapter 6Chapter 6Chapter 6—Modeling a Visual Basic Project

Explains the need for the component view in a model. This chapter
also describes how to create Visual Basic components in a model,
using the Component Assignment Tool, and how to assign classes
to components. You can also find information about how to import
and use type libraries in Rational Rose.

� Chapter 7Chapter 7Chapter 7Chapter 7—Modeling Visual Basic Classes

Explains how to create and specify Visual Basic classes in a model,
using the Model Assistant.

� Appendix A—Appendix A—Appendix A—Appendix A—Model Properties Reference

Describes all model properties provided by the Visual Basic
Language Support add-in in Rational Rose. The model properties
are used by the Visual Basic code generator to determine what
code to generate for each model element.

� Appendix BAppendix BAppendix BAppendix B—UML to Visual Basic Mapping Quick Reference

Provides quick reference tables that show the mapping between
Visual Basic and UML constructs for code generation or reverse
engineering.

Terminology

The Unified Modeling Language (UML) and the Visual Basic language
refer to the same elements by different names. The user interface and
documentation of the Visual Basic Language Support add-in tools uses
the same terminology as Visual Basic—referred to as Component
xviii Rational Rose 2000e, Using Rose Visual Basic

Related Documentation
Object Model (COM) terminology. In the rest of the Rational Rose user
interface, you can choose between the UML or COM terminology. The
following table summarizes these terminology differences:

To customize Rational Rose to use COM terminology in the user
interface:

1. Exit Rational Rose.

2. Open rose.ini, which is located in the Rational Rose installation
folder.

3. Search for “UseCOMTerminology” and set it to “Yes.”

When you restart Rational Rose, the COM terminology is used in all
specifications, dialog boxes, and menu items.

Related Documentation

The Visual Basic Language Support add-in provides comprehensive
online help with hypertext links and a search index. To display an
overview of the online help, click Help > Rational Rose Help Topics.

The Visual Basic Language Support add-in online help is found in the
Rose Visual Basic online book. Information about the basic features of
Rational Rose can be found in the Rational Rose online book, as well as
in the Using Rose manual.

Online Help and Manuals

Rational Rose includes comprehensive online help with hypertext links
and a two-level search index.

In addition, you can find all the user manuals online. Please refer to
the Readme.txt file (found in the Rational Rose installation directory)
for more information.

Table 1 Terminology Differences in UML and Visual Basic

UML COM Rational Rose

Operation Method Operation or Method

Attribute Property Attribute or Property
Rational Rose 2000e, Using Rose Visual Basic xix

Chapter 1

Introduction to the Visual Basic
Language Support Add-In

This chapter provides an introduction to the main features of the
Visual Basic Language Support add-in in Rational Rose.

The Visual Basic Language Support add-in enables Rational Rose to
model, generate, and reverse engineer code for applications written in
Microsoft Visual Basic.

The Visual Basic Language Support add-in tools in Rational Rose are
tightly integrated with the Microsoft Visual Basic environment,
allowing you to seamlessly progress through the round-trip
engineering process. The tools are:

� Class Wizard————helps you create and specify a new Visual Basic
class in the model.

� Model Assistant————enables you to specify a Visual Basic class in
your model with all the necessary code-specific semantics for
complete and robust code generation.

See the section The Model Assistant in chapter 7.

� Component Assignment Tool————provides you with an easy-to-use
interface to create new components in the model, associate
components with source code projects, and assign classes to
components.

See the section The Component Assignment Tool in chapter 6.

� Code Update Tool————generates and updates the Visual Basic source
code from the information contained in a model, and preserves
existing user-supplied definitions and declarations from the
previous iteration's source code.

See the section The Code Update Tool in chapter 4.
Rational Rose 2000e, Using Rose Visual Basic 1

Chapter 1 Introduction to the Visual Basic Language Support Add-In
� Model Update Tool————extracts design information from the Visual
Basic code and updates the application’s design model.

See the section The Model Update Tool in chapter 5.

All these tools, except the Model Assistant, are provided by the Visual
Studio add-in in Rational Rose, which means that these tools may be
shared by other language support add-ins as well.
2 Rational Rose 2000e, Using Rose Visual Basic

Chapter 2

Mapping UML to Visual Basic

This chapter explains the mapping between the different elements of a
Rational Rose model and the Visual Basic programming language, and
vice versa. In Appendix B you can also find quick reference tables that
show these mappings.

Overview

The code generated from each element in your model is determined by
that element’s specification and model properties. These properties
provide the language-specific information required to transform your
model into Visual Basic code.

For each class in a Rational Rose model, the code generator produces
a corresponding Visual Basic project item. Class relationships—those
representing aggregations and associations—are translated to data
members, constants, class properties, or module variables, depending
on the desired implementation strategy. Also, Rational Rose Visual
Basic produces skeletal function procedures, or property procedures
for the class methods (operations) in the model.

Stereotypes and Model Properties

The notations provided by Rational Rose Visual Basic are more
abstract than the Visual Basic programming language. Some types of
model elements do not have any correspondences in Visual Basic at all,
but many of them result in several lines of Visual Basic code when
generated.
Rational Rose 2000e, Using Rose Visual Basic 3

Chapter 2 Mapping UML to Visual Basic
There is a default mapping for each model element, but you can also
control what code to generate by changing the stereotype and model
properties for the model element using the Model Assistant (see
chapter 7). When a model element is created, Rational Rose assigns
each model property a default value, which you can optionally modify.
By modifying the model properties, you can control the code that is
generated for the model element.

The model properties for a model element are also available on the
Visual Basic tab of the element’s specification (see Appendix A). Note,
however, when editing the model properties on the Visual Basic tab, no
consistency checks are being made. Therefore, it is recommended that
you use the Model Assistant to modify the model properties.

Component View to Visual Basic Mapping

The component view is used to map the logical view to Visual Basic
projects. This section explains the need for components and how they
are related to Visual Basic projects.

Please refer to the Using Rose manual for general information about the
component view.

Components

A Visual Basic project is represented by a component in the component
view of a Rational Rose model. The components are needed to map
each class in the logical view to the appropriate implementation
language and source code project (as illustrated in Figure 1).

You cannot generate Visual Basic code for a class until it has been
assigned to one or several Visual Basic components in the model. The
implementation language of a component is assigned in its Component
Specification.

To reverse engineer or update a model from a Visual Basic project, a
component corresponding to that project must exist in the model. For
information on how to create components, see the section Creating
Components and Assigning Classes in chapter 6.
4 Rational Rose 2000e, Using Rose Visual Basic

Component View to Visual Basic Mapping
Figure 1 Components Map the Classes in the Model to Source Code
Projects

A Component Is Associated with a Project

A component with the Visual Basic language assigned to it corresponds
to a Visual Basic project. The physical instantiation of a component is
the .exe, .dll, .tlb, or .ocx file that is produced from the associated
project. The type of a component—for example, Standard EXE or
ActiveX DLL—is specified by its stereotype. The component type
corresponds to the type of the associated Visual Basic project.

The name and path to the component’s project file is available in the
Visual Basic Component Properties dialog box for the component. A
component can only be related to one project, and the name of a
component is the same as the name of the corresponding Visual Basic
project. See the section Associating a Component with a Visual Basic
Project File in chapter 6.

Components May Represent Referenced COM Components

Components are also used to represent COM components that the
modeled system is using. (See the section Using an Imported Type
Library in chapter 6.)

The components referenced by a Visual Basic project are automatically
imported into the model when updating the model from the project.
You can also import any COM component containing type information
Rational Rose 2000e, Using Rose Visual Basic 5

Chapter 2 Mapping UML to Visual Basic
into Rational Rose (see section Importing Type Libraries into the Model
in chapter 6.) A component representing the selected file is then
created in the model, and the contents of the component’s type library
is inserted into a package in the logical view, as illustrated in Figure 2.

Figure 2 Example of Imported COM Components

By establishing relationships between classes in the model and the
imported type library items, you can show how classes and
components depend on the imported COM components (see section
Using an Imported Type Library in chapter 6.)

An association between a class and a type library item becomes a
project reference to the corresponding COM component in the
generated Visual Basic project. Also, a dependency relationship
between a Visual Basic component in the model and COM component
(or its interface) becomes a reference in the Visual Basic component’s
project.

Note: No code will be generated for imported type libraries when you
generate code from the model.
6 Rational Rose 2000e, Using Rose Visual Basic

Component View to Visual Basic Mapping
A Component May Represent the Compiled Visual Basic Project

The type library of a COM component that has been compiled from a
Visual Basic project can also be imported into the model. This allows
you to show how other components (projects) in the model use this
project. Because Standard EXE projects do not have a public interface,
you can only import the type library of compiled ActiveX projects.

You can either import a project’s type library automatically, when
updating the model from the project, or manually; see Importing the
Binary Component Compiled from a Project in the Model in chapter 6.

The type library of the compiled COM component is represented and
used in the model the same way as any COM component; see Importing
Type Libraries into the Model and Using an Imported Type Library in
chapter 6.

Component Stereotypes

The stereotype and language of a component indicates to what kind of
software module the component corresponds. To generate a Visual
Basic project from a component, the language of the component must
be set to “Visual Basic”, and the stereotype must be set to one of the
values in Table 2.

The following component stereotypes can be used when generating or
reverse engineering Visual Basic code:

Table 2 Visual Basic Component Stereotypes

Stereotype Visual Basic Mapping

none When generating code for a Visual Basic component
without a stereotype, the code generator creates an
ActiveX DLL project and sets the stereotype to ActiveX
DLL.

ActiveX When generating code for a Visual Basic component
with the stereotype ActiveX, the code generator creates
an ActiveX DLL project and changes the stereotype to
ActiveX DLL.

ActiveX Control Represents a Visual Basic project of the type ActiveX
Control.

ActiveX DLL Represents a Visual Basic project of the type ActiveX
DLL.
Rational Rose 2000e, Using Rose Visual Basic 7

Chapter 2 Mapping UML to Visual Basic
Note that Rational Rose Visual Basic understands all the component
stereotypes above, even though some of them may not be available by
default in the Stereotype box in the Component Specification.

Component Packages

Component packages have no direct mapping to Visual Basic code.

Dependency Relationships

A dependency relationship between a Visual Basic component in the
model and an imported COM component (or its interface) generates a
reference in the Visual Basic component’s project.

ActiveX EXE Represents a Visual Basic project of the type ActiveX
EXE.

COM Represents a COM component (.exe, .ocx, .olb,
.dll, or .tlb file) that has been imported into the
model. Thus, such a component corresponds to an
external software module, and not to a Visual Basic
project. However, for ActiveX projects, the type library
of the compiled COM component can be imported into
the model.

DLL When generating code for a Visual Basic component
with the stereotype DLL, the code generator creates an
ActiveX DLL project and changes the stereotype to
ActiveX DLL.

EXE When generating code for a Visual Basic component
with the stereotype EXE, the code generator creates a
Standard EXE project and changes the stereotype to
Standard EXE.

Standard EXE Represents a Visual Basic project of the type Standard
EXE.

any other value When generating code for a Visual Basic component
with any other stereotype value, the code generator
creates an ActiveX DLL project and sets the stereotype
to ActiveX DLL.

Table 2 Visual Basic Component Stereotypes

Stereotype Visual Basic Mapping
8 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
Logical View to Visual Basic Mapping

This section describes the purpose and mapping of the logical view in
UML to the Microsoft Visual Basic language for each type of model
element. That is, for:

� Classes, interfaces, class utilities, and logical packages

� Properties (attributes)

� Relationships

� Methods (operations)

Please refer to the Using Rose manual for general information about the
model elements in the logical view.

Classes

A class is a set of objects that share a common structure—properties
(attributes) and relationships—as well as a common behavior—
methods (operations). A class is by default generated as a Visual Basic
class module.

The Stereotype of a Class Defines Its Implementation Type

The stereotype of a class corresponds to a template. The template
defines to what kind of Visual Basic project item a class corresponds—
for example, a class module or a form. The template initializes the class
with the members that are typical for that kind of project item. You
assign the stereotype of a class in the Model Assistant or on the
General tab in the Class Specification.

Table 3 shows the most important and fundamental stereotypes
(templates) for Visual Basic classes in the model. For information
about other templates, refer to the description of each template, which
is displayed on the Template tab in the Model Assistant.

If the stereotype value is empty or unknown to the Visual Basic code
generator (that is, not any of the values in Table 3) Rational Rose
generates a class module for the class, and a module definition for a
class utility. If you want a class to be generated into some other type of
Visual Basic element, you have to change its stereotype. Note that once
you have generated a class, Visual Basic will not let you alter its
implementation type.
Rational Rose 2000e, Using Rose Visual Basic 9

Chapter 2 Mapping UML to Visual Basic
Table 3 Visual Basic Class Stereotypes

Stereotype Project Item Type Usage

AddinDesigner Addin Designer For generation and reverse
engineering of Addin Designers in
Visual Basic.

Class Module Class Module For generation and reverse
engineering of Class Modules in
Visual Basic.

Collection Collection For generation of user-defined
collection classes. Note that when
reverse engineering a collection
class, Rose creates a class with the
stereotype Class Module in the
model.

Custom WebItem Custom Web Item
in Web Class

For code generation and reverse
engineering of web items in a web
class in Visual Basic. A class with
this stereotype must be nested
within the web class where it
belongs. That is, it appears on the
Nested tab of the web class’s Class
Specification.

DataEnvironment Data Environment For generation and reverse
engineering of Data Environments in
Visual Basic.

DataReport Data Report For generation and reverse
engineering of Data Reports in
Visual Basic.

Debug.
ClassIdGenerator

Debug.
ClassIdGenerator

Represents a class identifier
generator module which is used by
the debug code that is automatically
generated by Rose Visual Basic if the
Generate debug code option is
selected.

Debug.
ErrorHandling

Debug.
ErrorHandling

Represents an error-handling
module which is used by the error-
handling code that is automatically
generated by Rose Visual Basic if the
Generate error handling code option
is selected.
10 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
DTHMLPage DHTML Page For generation and reverse
engineering of DHTML Pages in
Visual Basic.

Enum Enum For generation and reverse
engineering of enum declarations. A
class with the stereotype Enum
must be nested within another class.
That is, it is defined on the Nested
tab of the parent class’s Class
Specification.

Form Form For generation and reverse
engineering of Forms in Visual
Basic.

Interface Public Class
Module in the
modeled Visual
Basic project

or

Interface or
dispinterface of an
imported COM
component

When generating code for a class
with the stereotype Interface, which
is assigned to a Visual Basic
component, Rose creates a class
module with the instancing property
Public in the generated project (if the
project is not a Standard EXE
project.)

When reverse engineering a project,
Rose automatically creates interface
classes for the interfaces and
dispinterfaces of the project’s
references.

Module Module For generation and reverse
engineering of Modules in Visual
Basic.

MDI Form MDI Form For generation and reverse
engineering of Modules in Visual
Basic.

Property Page Property Page For generation and reverse
engineering of Property Pages in
Visual Basic.

Table 3 Visual Basic Class Stereotypes

Stereotype Project Item Type Usage
Rational Rose 2000e, Using Rose Visual Basic 11

Chapter 2 Mapping UML to Visual Basic
Classes Must Be Assigned to Components

To generate Visual Basic code for a class, the class must be assigned
to a component with Visual Basic as the implementation language of
that component. A class can be assigned to, and included in, several
Visual Basic components. See the section Creating Components and
Assigning Classes in chapter 6.

Template WebItem HTML Template
Web Item in Web
Class

For code generation and reverse
engineering of web items in a web
class in Visual Basic. A class with
this stereotype must be nested
within the web class where it
belongs. That is, it appears on the
Nested tab of the web class’s Class
Specification.

Type Data type
declaration

For generation and reverse
engineering of data type
declarations. A class with the
stereotype Type must be nested
within another class. That is, it
appears on the Nested tab of the
parent class’s Class Specification.

UserConnection User Connection For generation and reverse
engineering of User Connections in
Visual Basic.

User Control User Control For generation and reverse
engineering of User Controls in
Visual Basic.

User Document User Document For generation and reverse
engineering of User Documents in
Visual Basic.

WebClass Web Class For generation and reverse
engineering of web classes in Visual
Basic. The web items are
represented in the model as classes
nested within the web class.

Table 3 Visual Basic Class Stereotypes

Stereotype Project Item Type Usage
12 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
Code Generated for Classes

For each class using the default mapping as a class module, Rational
Rose produces the following code constructs:

� A class definition taken from the name and model properties of the
class

� A code comment extracted from the Documentation box of the
Class Specification

� Module variables generated from the class’s properties and
relationships

� Method declarations, including skeletal method bodies, for all
user-defined methods and property procedures

� Debug code for class modules

Visual Basic supports public and private access control and visibility
forms. Therefore, each property, relationship, and method in the model
will be mapped appropriately to the corresponding visibility tag in
Visual Basic. Protected methods in Rational Rose are mapped as friend
methods in Visual Basic.

Caution:Caution:Caution:Caution: For each generated member, type, type field, and method,
Rational Rose adds an identifier (a Model ID) as a code comment—for
example “ModelID=3237F8CE0053”—which identifies the
corresponding class, property, role, or method in the model. Do not edit
or copy those identifiers!

Naming of Classes

When naming a class, it is recommended that you use only class
names that are accepted by Visual Basic. However, the Model Assistant
and the Visual Basic code generator check for invalid characters or
length of class names and transform them into valid characters.

Abstract Classes

You can define a class (interface) to be abstract on the Class tab in the
Model Assistant or the Detail tab of the Class Specification. The Visual
Basic code generator creates empty method bodies for abstract classes.
Also, the code generator does not generate delegation code for a
generalize relationship between a class and an abstract class.
Rational Rose 2000e, Using Rose Visual Basic 13

Chapter 2 Mapping UML to Visual Basic
Example of Code Generated for a Class

The following example illustrates the Order class, a typical class from
the Business Service layer, and the supporting Visual Basic class
module definition:

Figure 3 Example of a Class
14 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
Public Orderrows As Collection 'of OrderRow
Private mPurchaser As Customer
Private mOrder_Id As Variant

' Stores the order, initiates shipping and invoice.
Public Sub Register()
...
End Sub

' Calculates the total sum of the order.
Public Property Get Sum() As Currency

Dim tempSum As Currency
Dim thisOrderRow As OrderRow
'Initilize the sum
temp_sum = 0
'Iterate over the order rows and calculate the sum
For Each thisOrderRow In Orderrows

tempSum = tempSum + thisOrderRow.Sum
Next

'Return the calculated sum
Sum = tempSum

End Property

' Adds an order row to the order.
Public Sub Add_OrderRow(new_order_row As OrderRow)

Orderrows.Add new_order_row
End Sub

Public Property Get Purchaser() As Customer
Set Purchaser = mPurchaser

End Property

Public Property Set Purchaser(Value As Customer)
Set mPurchaser = Value

End Property

Interfaces

An interface in Rational Rose is a class with the stereotype Interface.
Interfaces in a model of a Visual Basic application are used for two
different purposes:

� An interface that is assigned to a Visual Basic component
represents a public class module in the corresponding Visual Basic
project. This kind of interface is used to model the interface of an
Rational Rose 2000e, Using Rose Visual Basic 15

Chapter 2 Mapping UML to Visual Basic
ActiveX project. (It is not meaningful to model interfaces of
Standard EXE projects, as those projects cannot have public class
modules.)

Note that these are UML interfaces rather than COM Interfaces. In
fact, a public class module in Visual Basic corresponds to both a
coclass and a default interface in COM.

� An interface that is assigned to an imported COM component
represents a COM interface in the type library of that component
(see section Importing Type Libraries into the Model in chapter 6).

Note that these kind of interfaces are pure COM Interfaces, which
are always abstract.

For detailed information about COM, refer to:

� Ted Pattison, Programming Distributed Applications with COM and
Microsoft Visual Basic 6.0, Microsoft Press, ISBN 1-57231-961-5

� Don Box, Essential COM, Addison-Wesley Pub Co, ISBN
0201634465

� The MSDN Online Library, which can be found at
http://msdn.microsoft.com/library—for example, the Inside OLE
in the Books section

Example of a Modeled Public Class Module

The following example shows an interface class that is defined in a
model and generated as a public class module in a Visual Basic project.
The example is a shared Reporter component that provides a general
reporter interface, which can be further specialized by other
components and applications. The GeneralReporter interface in
Figure 4 is defined in a model called MyComponentModel.

Figure 4 The GeneralReporter Interface
16 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
The GeneralReporter interface is assigned to the Reporter component,
as illustrated in Figure 5. The Reporter component has the stereotype
ActiveX DLL and the implementation language Visual Basic, which
means that the component corresponds to an ActiveX DLL project in
Visual Basic.

Figure 5 The Reporter ActiveX DLL Component

When generating code for the Reporter component, the code generator
creates an ActiveX DLL project with a public class module,
GeneralReporter.

When the developer compiles the project, Visual Basic creates a DLL,
called Reporter.dll, which can be referenced from other Visual Basic
projects and imported as COM components into other models, which is
examplified below.

Example of an Imported Type Library

A Standard EXE application, for example MyApplication, that needs a
reporter can reference and use the reporter DLL that was created from
the Reporter project. The type library of the Reporter.dll component
can then be imported and used in the model of MyApplication (which
can be the same model as where the Reporter component is modeled.)

The component diagram in Figure 6 illustrates how the DLL has been
imported into the model of MyApplication. The dependency
relationship shows that the MyApplication component (and project)
depends on the imported Reporter component.
Rational Rose 2000e, Using Rose Visual Basic 17

Chapter 2 Mapping UML to Visual Basic
Figure 6 The Reporter DLL Has Been Imported into the Model of
MyApplication

The public class module, GeneralReporter, has been imported as both
a COM interface, _GeneralReporter, and a coclass, GeneralReporter, in
the new model.

MyApplication provides its own implementation of the reporter, which
is defined by a class called MyReporter. The realize relationship should
be used to specify that a class realizes a certain interface. Therefore,
the MyReporter class should have a realize relationship with the
imported _GeneralReporter interface. However, because Visual Basic
assumes the default interface when implementing a class, and the code
generated for a realize relationship with a coclass or its default
interface, gives the same compiled result, it is recommended that you
create the realize relationship with the coclass. Thus, the MyReporter
class has a realize relationship with the imported GeneralReporter
coclass, and not the default interface, as illustrated in Figure 7.

Figure 7 The MyReporter Class Realizes the Imported GeneralReporter
Interface

As you can see in Figure 7, the realized method, Log, has automatically
been added to the MyReporter class.
18 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
Collection Classes

Collections provide methods for adding and removing objects in a
collection. They also provide behavior for processing the entire
collection, such as behavior for iterating the entire collection using the
For Each...Next statement in Visual Basic. A collection object in Visual
Basic is created in the same way as an ordinary object. For example:

Dim myDatabases As New Databases

Visual Basic provides a pre-defined standard collection object,
Collection, which can be used to create simple collections. However, for
collections with more complex behavior, the methods provided by the
standard collection are not sufficient. For example, an order
administrator may need to know how many orders were received
during a specified period. In that case, it is natural to let a collection
object, Orders, provide the behavior needed to collect that information.

Collection Classes in Rational Rose

A collection object is modeled as a class with the stereotype Collection
in Rational Rose. The class template for a collection class contains the
standard collection methods—add, item, remove, count, and enum.
Rational Rose 2000e, Using Rose Visual Basic 19

Chapter 2 Mapping UML to Visual Basic
Each Class Has a Collection Class Assigned to It

To each Visual Basic class in the model, there is a collection class
assigned—either a user-defined collection class or the standard
collection, which is called Collection. The collection class currently
assigned to a class is determined by the Collection Class option on the
Class tab in the Model Assistant dialog box (Figure 8.)

Figure 8 The Article Class Has the Standard Collection Assigned to It

Rational Rose uses the name of the collection class when generating
code for an association with unbounded multiplicity. See the
Association Relationships section in this chapter.

By default, Rational Rose assigns the standard collection class,
Collection, to new classes in the model, but you can assign any class
with the stereotype Collection to a class.

Note: The standard collection, Collection, is not explicitly represented in
the model. Only user-defined collection classes are represented in the
model.
20 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
Collection Classes Can Be Automatically Created

The Model Assistant automatically creates a user-defined collection
class when you type a new name in the Collection Class option for a
class. See the section Creating User-Defined Collection Classes in
chapter 7.

The created collection class gets the stereotype and class template
Collection. A dependency relationship with the stereotype Collection is
also created between the two classes.

Code Generated for Collection Classes

The following code is generated by default for the collection class,
Orderrows, in Figure 9.

Figure 9 A Collection of Orderrow Objects

Private mCol As Collection
Public Property Get Item(vntIndexKey As Variant) As Orderrow

Set Item = mCol(vntIndexKey)
End Property

Public Sub Remove(vntIndexKey As Variant)
mCol.Remove vntIndexKey

End Sub

Public Sub Add(Item As Variant, Optional Key As Variant,
Optional Before As Variant, Optional After As Variant)

If IsMissing(Key) Then
mCol.Add Item

Else

mCol.Add Item, Key

End If
End Sub

Public Property Get Count() As Long
Count = mCol.Count

End Property

Public Property Get NewEnum() As IUnknown
Rational Rose 2000e, Using Rose Visual Basic 21

Chapter 2 Mapping UML to Visual Basic
Set NewEnum = mCol.[_NewEnum]
End Property

Private Sub Class_Initialize()
Set mCol = New Collection

End Sub

Private Sub Class_Terminate()
Set mCol = Nothing

End Sub

Class Utilities

A class utility denotes a set of services provided by a module in the
application under construction. A class utility can therefore be used to
collect a set of free methods and data types. For instance, consider a
collection of subprograms from Window 3.1 kernel, (for example,
GetProfileString and WriteProfileString) that manipulate the win.ini
configuration file. These can be gathered together into a class utility.

A class utility is mapped as a module in Visual Basic. Its properties
(attributes) are mapped as public or private module variables, and the
methods (operations) are mapped as public or private module methods.

Code Generated for Class Utilities

For each class utility, Rational Rose Visual Basic produces the
following code constructs:

� Class annotations extracted from the class specification.

� Module variable declarations that are generated from the class
properties and association relationships.

� User-defined function procedure declarations that are defined in
the class specification, and skeletal function procedure bodies.
22 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
The following example shows the mapping of utilities to Visual Basic
code.

Figure 10 Example of a Class Utility

Const SWP_NOMOVE = 2
Const SWP_NOSIZE = 1
Const FLAGS = SWP_NOMOVE Or SWP_NOSIZE
Const HWND_TOPMOST = -1
Const HWND_NOTOPMOST = -2

Declare Function GetProfileInt% Lib "Kernel" _
(ByVal lpAppName$, ByVal lpKeyName$, ByVal nDefault%)

Declare Function GetProfileString% Lib "Kernel" _
(ByVal lpAppName$, ByVal lpKeyName$, ByVal lpDefault$, ByVal
lpReturnedString$, ByVal nSize%)

Declare Function WriteProfileString% Lib "Kernel" _
(ByVal lpAppName$, ByVal lpKeyName$, ByVal lpString$)

Declare Function GetPrivateProfileInt% Lib "Kernel" _
(ByVal lpAppName$, ByVal lpKeyName$, ByVal nDefault%, ByVal
lpFileName$)

Declare Function GetPrivateProfileString% Lib "Kernel" _
(ByVal lpAppName$, ByVal lpKeyName$, ByVal lpDefault$, _
ByVal lpReturnedString$, ByVal nSize%, ByVal lpFileName$)

Declare Function WritePrivateProfileString% Lib "Kernel"
_(ByVal lpAppName$, ByVal lpKeyName$, ByVal lpString$, ByVal
lpFileName$)

Declare Function SetWindowPos$ Lib "user"
(ByVal h%, ByVal hb%, ByVal x%, ByVal y%, ByVal cx%, ByVal
cy%, ByVal f%)
Rational Rose 2000e, Using Rose Visual Basic 23

Chapter 2 Mapping UML to Visual Basic
Enum and Type Declarations

A class with the stereotype Enum or Type, which is nested within
another class in the model, corresponds to an Enum or Type
declaration in the other class.

The Enums and Types for a class can be displayed in several places in
Rose. The Enums and Types are shown:

� On the Nested tab of the parent class’s Class Specification

� In the browser under the parent class

� Under the Enums and Types folders in the Model Assistant

For more information about enums and types, see the section Creating
Enums and Types in chapter 7.

Web Classes

A web class is modeled as class with the stereotype WebClass. The web
class’s web items are modeled as nested classes with the stereotype
Custom WebItem or Template WebItem. You can view these nested
classes from several places in Rose. The web items are shown:

� On the Nested tab of the web class’s Class Specification

� In the browser under the web class

� Under the Web Items folder in the Model Assistant

Rational Rose generates Visual Basic code for web classes and web
items. However, when generating a web class, Rational Rose does not
generate any code for any members on the web class and its web items,
except for the web items’ events. Thus, properties (attributes),
relationships, non-event methods, and non-event nested classes are
ignored by the Visual Basic code generator.

For information on how to create web classes and web items, see the
section Modeling Web Classes in chapter 7.

Logical Packages

A logical package is a group of strongly related classes. Each package
represents a chunk of the logical architecture of the system, and
declares its dependencies to other packages using a dependency
diagram as shown below.
24 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
The dependency relationships indicate that the classes contained by
the BO_ORDER package use the classes exported by the
BO_CUSTOMER and BO_ARTICLE packages. The classes exported by
the RDO and VB5 packages are visible to all classes in the model,
because these packages are declared as global (by clicking Global on
the Package Specification’s Detail tab.) Violations to the visibility rules,
that is the system architecture, are checked by Rational Rose Visual
Basic.

Figure 11 Example of a Diagram Showing Dependencies Between
Logical Packages

Logical packages have no direct mapping to Visual Basic code, but they
are used to represent imported COM components in the model. See the
section Components in this chapter.

Properties (Attributes)

A property (attribute) is a data member of a programming-language
type that is not a class. If a “property” is an object, it should be modeled
as an association to the corresponding object class. For information on
how to create properties, see the section Creating Properties (Attributes)
in chapter 7.

The properties of a class in the model are usually translated into data
members in the code. However, a derived property—that is, a property
with the Derived option selected—corresponds to a Property Get
method instead of a data member. Also, a property in the model may
Rational Rose 2000e, Using Rose Visual Basic 25

Chapter 2 Mapping UML to Visual Basic
correspond to a constant in Visual Basic. Such a property has the
stereotype Const. For information on how to create constants, see the
section Creating Constants in chapter 7.

Property Procedures may be Associated to Properties

Private properties may have Property Get and Set procedures
associated to them. In the Model Assistant you can select the
appropriate Property Get or Set procedures for each property. The
Model Assistant maintains the relation between a property and its
property procedures. Thus, the Model Assistant lets you manage the
property and its property procedures together. For example, if you
remove a property in the Model Assistant, Rational Rose automatically
removes the associated property procedures. For information on how
to associate property procedures with properties, see the section
Creating Property Get, Let, and Set Procedures in chapter 7.

Code Generated for Properties

For a private property, Name, on a class Customer, the following code
is generated into the Customer class module:

Private Name As Variant

If a property Get procedure is associated to the property in the model,
the following code is generated:

Private mName As Variant
Public Property Get Name() As Variant

Name = mName
End Property

Note that the Model Assistant and code generator automatically
changes the name of the property to mName to avoid a name collision
with the property procedure.

Also, in each generated data member, Rational Rose adds a unique
identifier—a Model ID—to be able to identify the corresponding
property in the model.

Property Stereotypes

The stereotype of a property controls the Visual Basic code that
Rational Rose produces for the class. You can assign a stereotype to a
property in the Model Assistant, by creating the property as a constant,
or on the General tab of its Property Specification.
26 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
Table 4 shows which stereotypes of properties are used in Rational
Rose when generating or reverse engineering Visual Basic code.

Table 4 Property Stereotypes

Association Relationships

An association is a bi-directional class relationship that denotes a
semantic dependency between two classes. Associations map to pairs
of data members in Visual Basic. The name for each data member is
taken from its association role name.

Associations can be described in detail by assigning a variety of
adornments and properties. These adornments include for example:
association direction, roles, multiplicity, navigability, aggregate,
access, containment, role documentation, and qualifiers. All these
adornments are used by the Visual Basic code generator to determine
what code to generate.

Property Procedures may be Associated with Roles

Private roles may have Property Get and Set procedures associated
with them. In the Model Assistant you can select the appropriate
Property Get or Set procedures for each role. The Model Assistant
maintains the relationship between a role and its property procedures.
Thus, if you remove an association in the Model Assistant, Rational
Rose automatically removes any associated property procedures.

For information on how to associate property procedures with roles,
see the section Creating Property Get, Let, and Set Procedures in
chapter 7.

Code Generated for Association Roles

For the private role Purchaser, on an association between an Order and
Customer class, the following code is generated into the Order class
module:

Private Purchaser As Customer

Stereotype Visual Basic Mapping

none Represents a data member.

Const Represents a Visual Basic constant. This stereotype is only
relevant for properties with an initial value assigned.
Rational Rose 2000e, Using Rose Visual Basic 27

Chapter 2 Mapping UML to Visual Basic
If a property Set procedure is associated to the Purchaser role in the
model, the following code is generated:

Private mPurchaser As Customer
Public Property Set Purchaser(value As Customer)

End Property

Note that Rational Rose automatically changes the name of the role to
mPurchaser to avoid a name collision with the property procedure. For
more information, see the section Modifying the Default Data Member
Prefix in chapter 7.

If the name of the referenced class is not unique, you may need to use
both the class name and the reference name. The FullName model
property for roles is used to instruct the code generator to include the
component name in the generated declaration. For example, if the
Customer class is assigned to the OrderSys component, Rational Rose
Visual Basic generates the following code if FullName is set to TRUE:

Private Purchaser As OrderSys.Customer

Moreover, in each generated data member, Rational Rose adds an
identifier—a Model ID—to be able to identify the corresponding role in
the model.

Code Generated for an Association with Unbounded Multiplicity

When generating code for an association with unbounded multiplicity,
as the Orderrows role in Figure 12, Rational Rose generates the
following code by default for the Orderrows role into the class module
of Order:

Public Orderrows As Collection

Figure 12 Example of an Association with Unbounded Multiplicity

If there is a user-defined collection class to handle collections of
Orderrow objects, the name of that class is used in the declaration
instead of the standard collection, for example:

Public Orderrows As Orderrows
28 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
Code Generated for Associations with Imported Interfaces

An association relationship between a class in the model and an
imported interface results in a reference to the corresponding ActiveX
component in the generated Visual Basic project.

Referenced Component

If the name of the referenced class is not unique, you may need to use
both the class name and the component name. This may happen, for
example, if two classes with the same name are defined in two different
components.

The Full Name option on the Data Member tab in the Model Assistant
dialog box (or on the Visual Basic tab of the Association Specification)
is used to instruct the code generator to include the component name
in the generated declaration. For example, if the Customer class is
assigned to the OrderSys component, Rational Rose generates the
following code if Full Name is selected:

Private Purchaser As OrderSys.Customer

Example of Code Generated for an Association

The following example shows the mapping of associations into Visual
Basic code. Code has been generated with Get and Set property
procedures associated to the mOrders and mPurchaser roles.
Rational Rose 2000e, Using Rose Visual Basic 29

Chapter 2 Mapping UML to Visual Basic
Figure 13 Example of Association Relationships

ORDER.CLS class module.

…
Public Orderrows As Collection 'of OrderRow
Private mPurchaser As Customer
Private mOrder_Id As Variant
…
Public Property Get Purchaser() As Customer …
Public Property Set Purchaser(Value As Customer) …

…
CUSTOMER.CLS class module.
…

Private mOrders As Collection 'of Order
Private mCustomer_Id As Variant
Private mName As Variant
Private mAddress As Variant
Private Storage As Persistence
…
Public Property Get Orders _

(Index As Variant) As Customer …

Public Property Set Orders _
(Index As Variant, Value As Order)
30 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
Aggregation Relationships

An aggregate relationship is conceptually the same as an association
with the aggregate adornment set. The aggregate association
adornment denotes a whole or part relationship. Aggregate
adornments are purely conceptual and have no effect on code
generation, nor reverse engineering. Thus, the code generated for an
aggregate relationship is the same as for an association relationship.

The aggregate association may be navigable on both ends, and data
members are generated for the associated classes on the navigable
side(s).

Note: Rational Rose Visual Basic does not generate code for
aggregation relationships in user interface items, such as forms, but you
can subscribe to the events that are defined by an associated controls.
See the section Subscribing to Events in chapter 7.

Dependency Relationships

The dependency relationship in the logical view denotes a
client/supplier relationship in which the client object invokes a
method on the supplier. Typically this means that the client is
dependent on the interface of the supplier, but does not contain an
instance of the supplier.

Because Visual Basic does not support the visibility declaration, a
dependency relationship between two classes belonging to the same
component has no code mapping. However, if a class is dependent
upon a module (class utility), the module is automatically added to the
same project as the class. Also, if a class is dependent upon a class that
belongs to another component, a project reference to that component
is added to the project.

The stereotype of a dependency relationship is only relevant if the
relationship appears between a class and its collection class. A
dependency relationship with the stereotype Collection is
automatically created when you assign a new user-defined collection
class to a class in the Model Assistant, or when you reverse engineer a
collection class into the model. The Visual Basic code generator needs
a dependency relationship to automatically generate the appropriate
Add, Remove, etc. methods into the collection class. For more
information, please refer to the Collection Classes section in this
chapter.
Rational Rose 2000e, Using Rose Visual Basic 31

Chapter 2 Mapping UML to Visual Basic
Generalization Relationships

A generalization relationship between two Visual Basic classes exists
when the client class inherits the behavior of the supplier class.

Figure 14 Generalization Relationship

Thus, the generalization relationship means that the client class
inherits both the interface of the supplier class and the implementation
of the inherited methods. This is also called implementation
inheritance.

If the supplier class is abstract—for example, if it is an interface in a
COM component— or if the client class is supposed to provide its own
variants of the implemented methods, the realize relationship should
be used.

Code Generated for Generalization Relationships

In Visual Basic, the closest correspondence to the generalization
relationship is the Implements construct and delegation code in the
implemented methods. Thus, for a generalization relationship between
a class B and a supplier class A, Rational Rose generates the following
code into B’s class module:

� An Implements A statement

� An object of class A—the delegation object

� Copies of A's public methods, including default dispatching
implementations that delegate to class A

� Private Get, Let, and Set procedures for A’s public properties and
roles

Note: Generalization relationships between class utilities do not result
in any special syntax Visual Basic code. Also, when reverse engineering
a class with an Implements statement, a realize relationship is created
in the model.
32 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
Referenced Component

If the name of the implemented class is not unique, you may need to
use both the class name and the component name. This may happen,
for example, if two classes with the same name are defined in two
different components.

The Full Name option on the Implements Class tab in the Model
Assistant dialog box (or on the Visual Basic tab of the Generalization
Specification) is used to instruct the code generator to include the
component name in the generated declaration. For example, if an
implemented class Customer is assigned to the OrderSys component,
Rational Rose generates the following code if Full Name is selected:

Implements OrderSys.Customer

Abstract Classes

The Visual Basic code generator automatically excludes the delegation
object and the dispatching method implementations from the
generated code if A is an abstract class. That is, the code generator
generates the same code for a generalize relationship between a class
and an abstract class as for a realize relationship between two classes.
Rational Rose 2000e, Using Rose Visual Basic 33

Chapter 2 Mapping UML to Visual Basic
Example of Code Generated for a Generalization Relationship

The following example shows the mapping of the generalization
relationship into Visual Basic code:

Figure 15 Example of Generalization Relationship

CLASSA.CLS class module.

Public Sub PublicMethod()
End Sub

Private Sub PrivateMethod()
End Sub

CLASSB.CLS class module.

Implements A
Private mAObject As New A

Private Sub A_PublicMethod()
mAObject.PublicMethod

End Sub

CLASSC.CLS class module.

Implements B
Private mBObject As New B

As you can see, Implements means conformance only to the public
interface. For example, B inherits A’s public method and gets a private
Sub A_PublicMethod(). C implements the public interface of B, but
A_PublicMethod() is not public in B. Therefore, according to the Visual
Basic programming language, there is no Sub B_A_PublicMethod in C.
34 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
Realize Relationships

A realize relationship between a Visual Basic class and another class
exists when the client class conforms to the interface defined by the
supplier class (usually an interface).

Figure 16 Generalization Relationship

Thus, the realize relationship means that the client class will
implement the interface of the supplier class, and provide an
implementation of the realized interface’s properties and methods. This
is also called interface inheritance. Interface inheritance is used if the
supplier class or interface is defined in a type library without code—
that is, if it is an abstract class or an interface—or if the client class is
supposed to provide its own variants of the implemented methods.

To inherit also the implementation of the methods in the supplier
class—that is, to delegate the implementation of the inherited methods
to the supplier class—the generalization relationship should be used.

Code Generated for Realize Relationships

The realize relationship corresponds to the Implements construct in
Visual Basic. Thus, for a realize relationship between a class B and
class A, Rational Rose generates the following code into B’s class
module:

� An Implements A statement

� Copies of A's public methods with empty method bodies

� Private Get, Let, and Set procedures for A’s public properties and
roles with empty bodies

When reverse engineering a class with an Implements statement, a
realize relationship is created in the model.
Rational Rose 2000e, Using Rose Visual Basic 35

Chapter 2 Mapping UML to Visual Basic
Referenced Component

If the name of the realized class is not unique, you may need to use
both the class name and the component name. This may happen, for
example, if two classes with the same name are defined in two different
components.

The Full Name option on the Implements Class tab in the Model
Assistant dialog box is used to instruct the code generator to include
the component name in the generated declaration. For example, if a
realized class Customer is assigned to the OrderSys component,
Rational Rose generates the following code if Full Name is selected:

Implements OrderSys.Customer

Example of Code Generated for a Realize Relationship

The following example shows the mapping of the realize relationship
into Visual Basic code:

Figure 17 Example of Realize Relationship

CLASSA.CLS class module.

Public Sub PublicMethod()
End Sub

Private Sub PrivateMethod()
End Sub

CLASSB.CLS class module.

Implements A

Private Sub A_PublicMethod()
End Sub
36 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
Advanced Association Relationship Mappings

This section explains how the following advanced association
relationship settings are mapped to Visual Basic code:

� Navigability

� Containment adornment

� Cardinality/Multiplicity

� Link properties

� Qualifiers

Navigability

A navigable association adornment (defined on the Role Detail tabs of
the Association Specification) indicates the implementation direction of
an association. A data member is generated only on the navigable side
of the association. By default, a new association relationship becomes
navigable in both directions.

Example of Code Generated for a Navigable Association

The following example shows the mapping of a navigable association
into Visual Basic code.

Figure 18 Example of a Navigable Association

ORDER.CLS class module.

…
Public Orderrows As Collection 'of OrderRow

…

Containment Adornment

By-Value and By-Reference containment adornments (defined on the
Detail tab of Property Specifications and Role Detail tabs of Association
Specifications) are not directly applicable to Visual Basic code
generation, because all object references are implemented By-
Reference.
Rational Rose 2000e, Using Rose Visual Basic 37

Chapter 2 Mapping UML to Visual Basic
Conceptually, the By-Value aggregate implies that the lifetime of the
containing and contained objects are identical. As such, it is expected
that the initialization method for the containing object will create its
contained objects, and the termination method of the containing object
will destroy the contained objects.

The By-Reference aggregate implies that the lifetime of the containing
and contained objects are different. As such, it is expected that the
initialization for the containing object will not create its contained By-
Reference objects, and the termination method of the containing object
will not destroy the objects. Object references are often passed by
method or property procedure calls.

The containment adornments may be used by other add-ins in
Rational Rose. Therefore, these adornments may need to be specified
in the model, and they are preserved by Rational Rose Visual Basic
during reverse engineering.

Cardinality/Multiplicity

When code is generated from an aggregation or association
relationship, Rational Rose looks at the supplier cardinality (Figure 19)
to determine what kind of data member to generate. (The client
cardinality of the relationship is ignored.)

Figure 19 Example of Cardinality

The relationship cardinality indicates the number of links between
each instance of the classes. A cardinality of 1 results in the simple
data member of one object within another. A cardinality larger than 1
is generated using either an array object definition (for bounded
multiplicities) or a collection object (for unbounded multiplicities.)

The cardinality of an array is defined using the Subscript option on the
Data Member tab in the Model Assistant dialog box. Note that you
should use Visual Basic syntax in the Subscript option box, for
example "1 To MaxLen" or "mnuOpen To mnuQuit". If a value has been
entered in the Subscript option, the Visual Basic code generator uses
that value, and not the cardinality, when generating code.
38 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
Table 5 shows what code is generated for a certain cardinality or
subscript value.

Link Properties (Attributes)

A link property (attribute) represents a value held by an association,
rather than one of the classes participating in the association. Link
properties are encapsulated by a link class. The association is
generated as data members of the link class. Data members for the two
associated classes are added to the link class.

The generated code from link property may be optimized by generating
the property as a part of the “many” side of the association.

Table 5 Cardinality Values

Cardinality Subscript
option

Generated code

0, 0..0 none Nothing. The relationship is ignored by the
code generator.

0..1, 1, none none A data member of the supplier object.

x..y 0, 1, x To y,
etc.

An array with a subscript. For example,
"1..5" is generated as:
Public Customers(1 To 5) As Customer

Note, however, that public properties in a
Standard EXE component cannot have
subscript.

0..n, 0..*, 1..n,
1..*, n, *

none A data member of a collection class, for
example:
Public Orderrows As Collection

See the Collection Classes and Association
Relationships section.

any () A dynamic array, for example:
Private My_Prop() As Variant
Rational Rose 2000e, Using Rose Visual Basic 39

Chapter 2 Mapping UML to Visual Basic
Example of Code Generated for a Link Property

The following example illustrates that the shipment date is added as a
link property to the Order—Customer association, that is to the
Shipment class, rather than the Order or Customer classes.

After the code has been generated, the association between Order and
Customer in the model is replaced by two associations: one between
Order and Shipment and one between Customer and Shipment.

Figure 20 Example of a Link Property

ORDER.CLS class module.

…
Private mPurchaser As Shipment

…

CUSTOMER.CLS class module.

…
Private mOrders As Shipment

…

SHIPMENT.CLS class module.

…
Private the_Date As Date
Private mPurchaser As Customer
Private mOrders As Collection 'of Order
40 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
Qualifiers

A qualifier is a variant form of a link property that is implemented
using a dictionary. Qualifier keys can be used to index the dictionary
in order to retrieve a link object.

A qualifier is associated with one of the roles of an association
relationship, which means that Rational Rose maps a qualified role
into a data member. The multiplicity of the role decides whether a
collection object is used in the data member declaration.

You can add property Get, Let, and Set procedures to the generated
data member by selecting the appropriate procedures in the Model
Assistant. The property procedures automate the maintenance of the
dictionary.

Example of Code Generated for a Qualified Association

The example below shows the mapping of the qualified association
relationship role mOrder, which has an unbounded multiplicity (*).
Note that the property Set and Get procedures were not created by
default. They were manually added to the Orders property in the Model
Assistant.

Figure 21 Example of a Qualified Association Relationship
Rational Rose 2000e, Using Rose Visual Basic 41

Chapter 2 Mapping UML to Visual Basic
CUSTOMER.CLS class module.

…
Private mOrders As Collection
…
Public Property Set Orders(Order_Id As String, ByVal vNewValue
As Order)

Set mOrders (Order_Id) = vNewValue
Exit Property

Public Property Get Orders(Order_Id As String) As Order
Set Orders = mOrders(Order_Id)

Exit Property
…

Methods (Operations)

This section covers what you need to consider when creating and
specifying Visual Basic methods (operations) in Rational Rose, such as:

� User-defined methods

� Method stereotypes

� Method parameter passing

� Property Get/Set/Let procedures

� Declare methods

� Events
42 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
User-Defined Methods

Rational Rose allows you to specify several aspects of a method
(operation), either in the Method Specification or in the Model
Assistant. For example:

� The method stereotype defines the method type, which can be
Declare, Event, Get, Set, or Let. See Method Stereotypes below. An
empty stereotype means that the method is a Sub or Function,
depending on whether the method has a return type or not.

� Methods can be declared as:

❑ Public - allowing use from other modules. Rational Rose Visual
Basic translates the method into a visible function or sub
declaration.

❑ Private - allowing use only from within the module. Rational
Rose Visual Basic translates the method into a private Function
or Sub declaration.

❑ Protected - allowing use only from within the project. Rational
Rose Visual Basic translates the method into a Friend Function
or Sub declaration. See Using Friend Methods in Sequence
Diagrams in chapter 7.

� Method parameters are declared with a name and a parameter
type. The type definition can be omitted, implying the use of a
Variant data type. The parameter passing mechanism can be
specified in the Model Assistant.

� Methods can be static, indicating that the Sub procedure's local
variables are preserved between calls. Methods are marked as
static by using the Static option in the Model Assistant.

� When generating a new method, default code is inserted into the
method body from the class’s template. See the The Default Body
section in chapter 7. You can preview the default body on the
Method tab in the Model Assistant.

� You can instruct Rational Rose to insert debug code, error-
handling code, and “Your code goes here...” comments into each
class; see chapter 7.

Caution:Caution:Caution:Caution: Be careful when moving methods from one class to another in
the model, because the code generator regards moved methods as new
methods. That is, their method bodies get default contents. Also, in each
Rational Rose 2000e, Using Rose Visual Basic 43

Chapter 2 Mapping UML to Visual Basic
generated method, Rational Rose adds an identifier—a model ID—used
to identify the corresponding method in the model. Do not edit those
identifiers.

Method Stereotypes

The stereotype of a method controls the Visual Basic code that Rational
Rose produces for the method.

The stereotype can be used to declare a property Get, Let, or Set
procedure, a reference to an external procedure in a dynamic-link
library (DLL), or an event handler. If the stereotype is empty, Rational
Rose produces a sub, or a function declaration, depending on whether
there is a result type declared for the method or not.

Table 6 summarizes the possible values for the method stereotype
when generating or reverse engineering Visual Basic code. In this table,
result is the return type of the member function, fname is the name
of the member function, and params is the formal parameter list.

Table 6 Visual Basic Method Stereotypes

Stereotype Visual Basic Mapping

No stereotype (Default) Represents a sub or a function
declaration, depending on the availability of a
result type. For example:
Sub fname (params)
Function fname (params) As result.
Sub and function declarations can be both
generated and reverse engineered.

Get Represents a property Get procedure, such as
Public Property Get fname () As result.
Property Get procedures can be both generated
and reverse engineered.

Let Represents a property Let procedure, such as
Public Property Let fname (params). Property
Let procedures can be both generated and reverse
engineered.
44 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
In the Model Assistant, you can automatically create a method of a
specific stereotype. See the section Creating Declare Statements,
Creating Events, Creating Property Get, Let, and Set Procedures, and
Creating Methods in chapter 7.

Method Parameter Passing

The Visual Basic programming language allows specification of the
parameter passing mechanism as well as dynamic parameter
cardinality. The passing mechanism for the parameters of a method
can be viewed and modified in the Model Assistant as options on the
Parameters tab.

You can also specify the parameter passing mechanism by appending
a keyword in front of the parameter name in the Method Specification
or in a diagram, as outlined on the following table. When opening the
class in the Model Assistant, or when generating code for the class, any
keywords that have been entered that way are transformed to option
settings in the Model Assistant

You do not have to specify the passing mechanism in Rational Rose.
You can do it later, in Visual Basic, after you have generated the code.

Set Represents a property Set procedure, such as
Public Property Set fname (params). Property
Set procedures can be both generated and reverse
engineered.

Declare Represents a references to external procedures in a
dynamic-link library, for example:
Declare Sub fname Lib libname (params)
Declare Function fname Lib libname
(params)As result.
Declare statements can be both generated and
reverse engineered.

Event Rational Rose declares an event handler, such as
Event fname (params). Events can be both
generated and reverse engineered.

Table 6 Visual Basic Method Stereotypes

Stereotype Visual Basic Mapping
Rational Rose 2000e, Using Rose Visual Basic 45

Chapter 2 Mapping UML to Visual Basic
You are also able to define default initial values of method parameters.
These values are directly mapped to default parameter values in the
Visual Basic code.

Table 7 Controlling the Declaration of Method Parameters

Property Get/Set/Let Procedures

A property procedure in Visual Basic corresponds to a method with the
stereotype Get, Set, or Let in the model. A property procedure in the
model can be:

� Associated to a role or property in the model. By selecting property
procedures for a role or property in the Model Assistant, the
created property procedures are associated with the role or
property. Thus, if a property is removed, the corresponding
property procedures are automatically deleted. See the section
Creating Property Get, Let, and Set Procedures in chapter 7.

� Independent from the roles and properties in the model. A property
procedure can be created by giving a method the stereotype Get,
Set, or Let. However, there is no correspondence between the
properties or roles in the model and a property procedure that has
been created in that way.

Property procedures are also generated for all public roles and
properties of a superclass, A, into the class modules of its subclasses.
See the Generalization Relationships and Realize Relationships sections
in this chapter.

Declare Methods

A method in a class or class utility can be declared as a reference to a
DLL library procedure; see the section Creating Declare Statements in
chapter 7. Rational Rose transforms the method into a Declare Sub or
Declare Function statement. To reference a method to a DLL
procedure, the method stereotype must be set to Declare.

If you enter The parameter is declared as

ByVal argname Passed by value

ByRef argname Passed by reference

Optional argname Optional parameter

ParamArray argname Indefinite number of parameters
46 Rational Rose 2000e, Using Rose Visual Basic

Logical View to Visual Basic Mapping
The DLL library name and method alias name are set using the Library
and Alias options on the Declare tab for the method in the Model
Assistant.

The Library option specifies the name of the DLL that contains the
declared method. The Alias option indicates that the procedure being
called has another name in the DLL. This is useful when the external
procedure name is the same as a Visual Basic reserved word. You can
also use Alias when a DLL procedure has the same name as a Global
variable, constant, or any other procedure in the same scope. Alias is
also useful if any characters in the DLL procedure name are not
allowed in Visual Basic names.

Events

A method in a class or web item can be declared as an event by setting
the method stereotype to Event. Rational Rose then transforms the
method into an event declaration statement. You can also create event
methods in the Model Assistant; see the section Creating Events in
chapter 7.

A class can subscribe to the events that are defined in other classes.
For roles that are declared with the WithEvents keyword and for
controls (that is, associations with the stereotype Contained Control or
aggregation relationships) the Model Assistant lists all events that are
defined in the associated class or control. By selecting an event the
code necessary to subscribe to that event will be generated into the
class; see the section Subscribing to Events in chapter 7.

For example, if the form dlg_Order in Figure 22 subscribes to the
KeyPress event in the CommandButton interface, the following code
will be inserted into dlg_Order:

Private Function btn_cancel_KeyPress(ByRef KeyAscii As Integer)
As HRESULT

Figure 22 Dlg_Order Subscribes to the btn_cancel_KeyPress Event
Defined in CommandButton
Rational Rose 2000e, Using Rose Visual Basic 47

Chapter 2 Mapping UML to Visual Basic
Use-Case View to Visual Basic Mapping

Rational Rose Visual Basic does not currently support code generation
from actors and use cases. However, you can generate Visual Basic
code for any classes that you have created in the use-case view.

Please refer to the Using Rose manual or online help for information
about the use-case view.

Deployment View to Visual Basic Mapping

Rational Rose Visual Basic does not currently support code generation
from the deployment view.

Please refer to the Using Rose manual or online help for information
about the deployment view.

Visual Basic to UML Mapping

This section describes the mapping of the Microsoft Visual Basic
language to the logical and component views in Rational Rose. Rational
Rose Visual Basic uses these mapping rules during reverse
engineering.

Visual Basic Projects

When reverse engineering a Visual Basic project, a component with the
language “Visual Basic” is created. The stereotype of the component is
the same as the project type. For example, a Standard EXE project
becomes a component with the stereotype Standard EXE in the model.

The model can also contain the type library of the COM component that
has been compiled from the Visual Basic project (only relevant for
ActiveX projects). The compiled COM component is represented in the
same way as the project references; see the section Project References
below. The Import the compiled VB binary option in the Visual Basic
Component Properties dialog box defines whether to automatically
import the type library of the compiled project.
48 Rational Rose 2000e, Using Rose Visual Basic

Visual Basic to UML Mapping
The name of the model file that corresponds to a project is stored as a
related document to the project. In the Rational Rose tool window in
Visual Basic, you can see what models are related to a project. To open
the Rational Rose tool window in Visual Basic, click Add-Ins > Rational
Rose.

Project Items

When reverse engineering Visual Basic project items, the mapping
rules in Table 8 are used:

Table 8 Mapping of Visual Basic Project Items to Model Element

Note: When reverse engineering a project item, A, all project items that
A refers to must exist in the model. If the referenced project items were
not selected for model update, and if they did not exist in the model
before, the Model Update Tool creates empty classes for them in the
model.

In Visual Basic Becomes in the model

project_item_type Class (stereotype = project_item_type)

Implements statement Realize relationship

Constant declaration Property with default value

Enum or Type
declaration

Nested class with stereotype Enum or Type, which
is contained by the reverse engineered class

Web item in web class Nested class with stereotype WebItem, which is
contained by the reverse engineered web class

Data member Property

Association (navigable) to object type

Method Method (stereotype= empty)

Event declaration Method (stereotype= Event)

Declare declaration Method (stereotype= Declare)

Property procedure Method (stereotype= Set, Get, or Let)
Rational Rose 2000e, Using Rose Visual Basic 49

Chapter 2 Mapping UML to Visual Basic
Note: When reverse engineering a new collection class in Visual
Basic, the created class in the model gets the stereotype Class
Module, and not Collection. However, Rational Rose inserts a
dependency relationship between the collection class and the item
class in the model.

Note: When reverse engineering a class module with an instancing
property other than Private, the stereotype of the created class in the
model becomes Interface.

Modules

When reverse engineering Visual Basic modules, the mapping rules in
Table 9 are used:

Table 9 Mapping of Visual Basic Modules to Model Elements

In Visual Basic Becomes in the model

Module Class utility (stereotype = Module)

Constant declaration Property with default value

Enum declaration Nested class with stereotype Enum,
which is contained by the reverse
engineered class

Data member Property

Association (navigable) to object type

Method Method (stereotype = empty)

Declare declaration Method (stereotype= Declare)

Property procedure Method (stereotype= Set, Get, or Let)
50 Rational Rose 2000e, Using Rose Visual Basic

Visual Basic to UML Mapping
Project References

When reverse engineering a Visual Basic project, all COM components
that are referenced from the project are automatically imported into the
model. Each project reference becomes a package in the logical view
and a component, with the stereotype and language COM, in the
component view. The type library of the COM component is inserted
into its logical package as follows:

Note: No code will be generated for imported COM components when
you generate code from the model.

Code Comments

Rational Rose Visual Basic takes care of code comments by inserting
them as documentation of the corresponding model elements in the
model.

For each declaration in the Visual Basic code, Rational Rose Visual
Basic copies the directly preceding comment into the Documentation
box of the corresponding model element’s specification in Rational
Rose. Thus, you must be careful where you put the code comments to
make them appear in the correct model element.

Table 10 Mapping of Project References to Model Elements

In type library Becomes in the model

Interface or dispinterface Class (stereotype = Interface)

Coclass Class (stereotype = Coclass)

Module Class (stereotype = Module)

Enum Class (stereotype = Enum)

Struct Class (stereotype = Struct)

Union Class (stereotype = Union)

Methods and properties Methods and properties if the component
was imported as a full import. Methods
and properties are not created when
performing a quick import.
Rational Rose 2000e, Using Rose Visual Basic 51

Chapter 2 Mapping UML to Visual Basic
Example:

' This comment will be inserted into the documentation field of
the Purchaser property.
Public Property Get Purchaser() As Customer

Purchaser = mPurchaser
End Property

' This comment will not be reverse engineered because there is
an empty row between the comment and the function declaration
below.

Public Sub Add_OrderRow(new_order_row As OrderRow)
' This comment will not be reverse engineered
because it does not precede code that corresponds
to a model component of its own.
Orderrows.Add new_order_row

End Sub

Note: The Model Update Tool does not wrap code comments when
inserting them into the model.

Caution:Caution:Caution:Caution: The Model Update Tool clears the contents of the
Documentation boxes of Parameter Specifications when updating the
model from code. Thus, any parameter documentation that you have
entered in the model is removed when you update the corresponding
classes from code changes.

Compiler Directives

If your Visual Basic project contains conditional compiler directives,
the reverse engineering applies only to those declarations that are
visible under the current conditions. For example, if the project
contains the compiler directive “#if Debug Dim A #else Dim B
#endif,” and Debug is true, then only the Dim B statement will be
reverse engineered.
52 Rational Rose 2000e, Using Rose Visual Basic

Chapter 3

Round-Trip Engineering a Visual Basic
Application

Rational Rose facilitates a controlled iterative application-development
process called round-trip engineering. This process enables you to
model your application, analyze and refine it as you increase your
understanding of its operation, then generate the code elements of a
complete Visual Basic application framework based on that model. You
then evolve this generated code, using Visual Basic, and reverse
engineer your modified code structures into the model—keeping the
model and code fully synchronized. The process of alternating between
the model and the code is called round-trip engineering.

This chapter provides an overview on how to round-trip engineer a
Visual Basic project and the corresponding Rational Rose model. It also
explains what synchronization means and how Rational Rose Visual
Basic enables synchronization by inserting unique model identifiers
into the source code.

The Visual Basic Round-Trip Engineering Tools

The round-trip engineering tools in Rational Rose Visual Basic are
tightly integrated with the Microsoft Visual Basic environment,
allowing you to seamlessly progress through the round-trip
engineering process. The tools are:

� The Model Assistant, which enables you to update and refine a
Visual Basic class in your model with all the necessary code-
specific semantics for complete and robust code generation.
Rational Rose 2000e, Using Rose Visual Basic 53

Chapter 3 Round-Trip Engineering a Visual Basic Application
� The Component Assignment Tool, which provides you with an
easy-to-use interface to create new Visual Basic components in the
model, associate components with Visual Basic projects, and
assign classes to components.

� The Code Update Tool, which generates and updates the Visual
Basic source code from the information contained in a model, and
preserves existing user-supplied definitions and declarations from
the previous iteration's source code.

� The Model Update Tool, which extracts design information from the
Visual Basic code and updates the application’s design model.

Note: When further developing the application in Rational Rose or
Visual Basic, you should generate or reverse engineer the code before
continuing the development in the other tool. Otherwise, if you rename or
delete classes, members, and methods in both tools at the same time,
you may lose some of the changes.

Round-Trip Engineering—Starting with a Model

To round-trip engineer a Visual Basic application starting with a
model:

1. Create a new model.

See Creating a New Model in chapter 6.

2. Create a component in the component view to represent the Visual
Basic project.

See Creating New Components in the Model in chapter 6.

3. Develop a model of the system by creating logical packages,
classes, relationships, properties (attributes), and methods
(operations), as well as by illustrating the model in diagrams.
Specify each class by using the Model Assistant. Also, assign each
class to the created Visual Basic component.

See:

❑ The Using Rose manual

❑ Creating Visual Basic Classes in the Model in chapter 7

❑ Assigning Classes to Existing Components in chapter 6

4. Generate a new Visual Basic project from the model.

See Generating a New Visual Basic Project from a Model in
chapter 4.
54 Rational Rose 2000e, Using Rose Visual Basic

Round-Trip Engineering—Starting with a Visual Basic Project
5. Evolve the generated code.

See Evolving the Generated Code in chapter 4.

6. Update the model with the code changes.

See Updating a Component in the Model from Code Changes in
chapter 5.

7. Evolve the updated model.

See Evolving the Updated Model in chapter 5.

8. Update the Visual Basic project with model changes.

See Updating an Existing Visual Basic Project with Model Changes
in chapter 4.

9. Continue developing your system in increments by iterating
through steps 5-8.

Round-Trip Engineering—Starting with a Visual Basic Project

To round-trip engineer a Visual Basic application starting with a
project:

1. Reverse engineer the code to create a new model.

See Reverse Engineering a Visual Basic Project Into a New
Component in chapter 5.

2. Evolve the generated model.

See Evolving the Updated Model in chapter 5.

3. Update the Visual Basic project with model changes.

See Updating an Existing Visual Basic Project with Model Changes
in chapter 4.

4. Evolve the generated code.

See Evolving the Generated Code in chapter 4.

5. Reverse engineer the code to update the model.

See Updating a Component in the Model from Code Changes in
chapter 5.

6. Continue developing your system in increments by iterating
through steps 2-5.
Rational Rose 2000e, Using Rose Visual Basic 55

Chapter 3 Round-Trip Engineering a Visual Basic Application
Synchronization

Changing a model typically involves adding, changing, or deleting
model or code elements. Rational Rose automatically adds or changes
elements, so synchronization is not required for these operations.
When you delete a model or code element for which Rational Rose has
generated the code synchronization becomes an issue.

Whenever you perform a code or model update, Rational Rose checks
to see that the code and model agree. If the Code Update Tool finds code
with no corresponding model element, or if the Model Update Tool finds
a model element with no corresponding code, the tool displays a
Synchronize page as in the following figure:

Figure 23 Synchronize Page

The Synchronize page allows you to delete or keep the listed model
elements or code items; synchronizing the model with the code. If you
select the check box next to a model element or code item on the
Synchronize page, the Model Update Tool or Code Update Tool removes
that model element or code item.
56 Rational Rose 2000e, Using Rose Visual Basic

Model IDs
Model IDs

To support model-element to code-item matching when renaming or
deleting model elements or code items, each generated model element
is tagged with a unique identifier in the code—a model ID. This allows
the code item to be matched with a model element independent of the
actual names. Thus, all model elements that can be renamed and
reverse engineered are generated with a special comment tag that
contains the model ID.

For example, the following is a model ID comment tag for a property:

‘##ModelId=351ADC1EF002
Private Name As Variant

The Code Update Tool and the Model Update Tool use the model IDs to
synchronize the model and code, which means that the model IDs are
required to generate and reverse engineer the code properly. Therefore,
do not edit or remove the inserted model IDs!

If the ability to synchronize the model and code is not important—for
example, if you are going to generate Visual Basic code from this model
only once—you can suppress the generation of model IDs by checking
the Suppress model IDs option in the Visual Basic Properties dialog
box. Note, however, that Rational Rose will not be able to keep the
model and code synchronized if you select that option.
Rational Rose 2000e, Using Rose Visual Basic 57

Chapter 4

Generating Visual Basic Code

The Visual Basic components in the component view of a model
represent Visual Basic projects. Code is generated from the classes
that are assigned to a component into the associated Visual Basic
project. You use the Code Update Tool to generate Visual Basic code for
one or several components.

For each class in a component, Rational Rose Visual Basic generates a
Visual Basic project item according to the class’s stereotype. The
generated code for a class is defined by the class’ properties
(attributes), associations, and methods (operations) in the model. You
can customize the code to generate for a class or its members by using
the Model Assistant in Rational Rose; see chapter 7.

This chapter introduces the Code Update Tool and explains the basic
steps for generating Visual Basic code. It also provides information on
how to customize the Visual Basic code generation.

The Code Update Tool

Using the Code Update Tool, you can produce Visual Basic source code
from the information contained in a model. The Code Update Tool
generates code from the components in your model into the
corresponding Visual Basic projects. With the Code Update Tool you
can:

� Generate and update several projects of different implementation
languages at the same time.

� Preview the code to be generated for each class and member.
Rational Rose 2000e, Using Rose Visual Basic 59

Chapter 4 Generating Visual Basic Code
� Further specify the mapping between the classes in the model and
the code, by opening the Model Assistant.

� Keep the model and Visual Basic projects synchronized, as the
Code Update Tool detects any project items that may have been
renamed or deleted from the model.

� Assign selected classes that are not assigned to any component.

Starting the Code Update Tool

You can start the Code Update Tool in the following ways:

� Click Tools > Visual Basic > Update Code.

� Right-click on a component or class in the browser or in a diagram
and click Update Code.

The Code Update Tool Pages

The Code Update Tool leads you through the process of updating a
Visual Basic project from model changes on the following pages:

Welcome Page

The first page provides general information about the tool. You can
turn this page off by selecting the Don’t show this page in the future
option.
60 Rational Rose 2000e, Using Rose Visual Basic

The Code Update Tool
Select Components and Classes Page

Figure 24 Code Update Tool—Select Components and Classes Page

On this page, you select the components or classes from which you
want to generate code. Do any of the following:

� To generate code for all classes in a component, select the check
box next to that component. To generate code for only some of the
classes that are assigned to a component, select only those classes.

Note: You can select several components. Also, the components and
classes that are selected in the current active diagram or in the
browser are selected by default.

� If you have selected classes, before entering the Code Update Tool,
which are not assigned to any component, you must assign those
classes to a Visual Basic component before you can generate code
for them. To assign all selected unassigned classes to one and the
same component, select that component and click Assign new
classes to the component at the top of the page. Otherwise, right-
click on any component and click Assign Classes, which brings up
the Component Assignment Tool.
Rational Rose 2000e, Using Rose Visual Basic 61

Chapter 4 Generating Visual Basic Code
� To associate a component with a project file, right-click on the
component and click Properties, which brings up the Visual Basic
Component Properties dialog box for the component. See the
Associating a Component with a Visual Basic Project File section in
chapter 6.

Note: A component marked with is associated with a project file
that the Code Update Tool cannot find.

� To preview the code to be generated for a class, select the class in
the left-hand list. A list and preview of all its members is displayed
in the right-hand list.

� To customize the code to generate for a class or member, open the
Model Assistant for that class by right-clicking on the class or one
of its members, and then clicking Open.

Note: Classes marked with will generate incorrect code. You must
change the code mapping of those classes before generating code for
them.

� To customize the Code Update Tool, right-click on the Visual Basic
language and click Properties on the displayed menu. See
Customizing the Code Generation in this chapter.

Finish Page

This page displays a summary of the code to be generated. Click Finish
if you are satisfied, or click Back if you want to change something.

Progress Page

This page displays the progress of the code generation.

Synchronize Page

This page is shown if the Code Update Tool detects project items that
do not have any correspondences in the model. Here you can confirm
the deletion of each such project item. See Synchronizing Code and
Model During Code Update in this chapter.
62 Rational Rose 2000e, Using Rose Visual Basic

Generating Visual Basic Code
Summary Page

This page displays a summary of the result of the code generation. On
the shortcut menu, you can customize whether or not to display
warnings and errors in color and to use timestamps. The information
on the Log tab can also be found in the Rational Rose log window after
exiting the Code Update Tool.

Generating Visual Basic Code

Generating a New Visual Basic Project from a Model

In order to generate code for classes into a new Visual Basic project, a
component representing that project must exist in the model, and the
classes must be assigned to that component.

To generate a new project from a model:

1. First, a component is needed to map classes in the model to the
new Visual Basic project. If there is no component for the new
project in the model yet, create a component for the new project.
(See Creating New Components in the Model in chapter 6.) Also,
assign the classes that should belong to the new project. (See
Assigning Classes to Existing Components in chapter 6.)

2. Click Tools > Visual Basic > Update Code. The Code Update Tool
starts. If the Welcome page is shown, click Next.

3. On the Select Components and Classes page (see Figure 24) select
the check box next to the component for which you want to
generate a Visual Basic project. Click Next.

4. Look at the code to be generated on the Finish page, and click
Finish if you are satisfied.

5. If the Synchronize page is displayed, confirm the deletion of each
project item that does not have any correspondence in the model.
See Synchronizing Code and Model During Code Update in this
chapter.

6. Examine the results of the code generation on the Summary page.
Click Close.

7. Be sure to review the generated source code before you continue
modeling and coding. See Reviewing the Generated Code in this
chapter.
Rational Rose 2000e, Using Rose Visual Basic 63

Chapter 4 Generating Visual Basic Code
8. In order to associate the generated component with the new project
permanently, save the created Visual Basic project and generate
code from the component once again. The name of the project file is
then stored in the Project file option on the component’s Visual
Basic Component Properties dialog box. Rational Rose will then be
able to find the associated project file next time you generate code.

Updating an Existing Visual Basic Project with Model Changes

To update a Visual Basic project from changes in the model:

1. First, each new class has to be assigned to the component(s) that
correspond to the project(s) that will contain the new class. If there
are any unassigned classes, click Tools > Visual Basic > Component
Assignment Tool, and assign the classes. (See Assigning Classes to
Existing Components in chapter 6.)

2. Click Tools > Visual Basic > Update Code. The Code Update Tool
starts. If the Welcome page is shown, click Next.

3. On the Select Components and Classes page, select the check box
next to the components or classes that you want to update.
64 Rational Rose 2000e, Using Rose Visual Basic

Generating Visual Basic Code
4. If a selected component is not associated with a Visual Basic
project yet, associate it with the project that you want to update by
right-clicking on the component and clicking Properties. The Visual
Basic Component Properties dialog box opens:

Figure 25 Visual Basic Component Properties Dialog Box—Code
Update

For more information, see Associating a Component with a Visual
Basic Project File in chapter 6.

5. Click Next and examine the code to be generated. Click Finish if
you are satisfied.

6. If an updated project contains project items or members that do
not have any correspondences in the model, a Synchronize page is
displayed. In the right-hand list, select those project items and
members that you want to delete from the project. See
Synchronizing Code and Model During Code Update in this chapter.

7. Take a look at the results of the code generation on the Summary
page. Click Close.

8. Be sure to review the generated source code before you continue
modeling and coding. See Reviewing the Generated Code in this
chapter.
Rational Rose 2000e, Using Rose Visual Basic 65

Chapter 4 Generating Visual Basic Code
Synchronizing Code and Model During Code Update

Whenever you perform a code update, Rational Rose checks to see that
the code and model agree. If the Code Update Tool finds code with no
corresponding model element, the tool displays a Synchronize page:

Figure 26 Code Update Tool—Synchronize Page

To delete selected code items:

1. In the right-hand list, select the check box next to each code item
that you want to delete.

2. Click OK to delete the selected items.

To delete all code items of the same kind:

1. In the left-hand list, select the check box next to the appropriate
delete folder (Classes or Members.) The contents of the folder are
displayed in the right-hand list and all items that will be deleted
are selected.

2. Click OK to delete the selected items, or clear those items you do
not want deleted.
66 Rational Rose 2000e, Using Rose Visual Basic

Generating Visual Basic Code
Reviewing the Generated Code

This section provides you with some tips on how to review the
generated code. After code generation:

1. Check the error log on the Summary page of the Code Update Tool
to track down errors and warnings. Or, exit the Code Update Tool
and open the log by clicking Window > Log in Rational Rose.

2. In your Microsoft Visual Basic environment, compile the project to
make sure that the generated code is free from syntax errors.

3. Inspect the generated source code. To browse between the model
and the code, select a component, class, or member in Rational
Rose, click Tools > Visual Basic > Browse Source Code. The Visual
Basic item that corresponds to the selected element in the model is
displayed in Visual Basic.

4. Based on your evaluation, make the necessary changes to the
model and regenerate the code, or make the changes directly in the
code.

5. When you are satisfied, save the code in your Microsoft Visual
Basic environment.

Note: When generating code, Rational Rose uses the procedure
separators in Visual Basic as indicators of where declarations start and
end. However, if there is an empty line before the #Endif statement of
a compiler directive in Visual Basic, the location of the procedure
separator becomes incorrect. Thus, make sure that the separators are
correctly located before generating code again.

Evolving the Generated Code

Evolve the generated Visual Basic source code by editing the code
regions to implement the application’s functionality included in the
iteration, and changing and adding members, constants, methods
(functions, subs, and property procedures), forms, controls, and so on.

Compile and test the edited project in the Visual Basic development
environment. Make sure that the project does not contain any syntax
errors before generating or reverse engineering the code again.
Rational Rose 2000e, Using Rose Visual Basic 67

Chapter 4 Generating Visual Basic Code
Caution:Caution:Caution:Caution: For each generated project item, member, and method,
Rational Rose adds an identifier as a code comment—for example
"ModelID=3237F8CE0053"—which identifies the corresponding class,
property, role, or method in the model. Those identifiers are called Model
IDs. Do not edit them!

Customizing the Code Generation

You can customize several aspects of the code generation. For example,
you can customize the behavior of the Code Update Tool, associate a
component with a Visual Basic project file, or preview and specify the
code to generate for each class.

Customizing the Code Update Tool

You can customize general aspects of the code generation by modifying
the code generation options for the Visual Basic language itself. Those
options are available in the Visual Basic Properties dialog box.

To open the Visual Basic Properties dialog box, right-click on the Visual
Basic language node on the Select Components and Classes page in the
Code Update Tool, and then click Properties. (Or click Tools > Visual
Basic > Properties.)

Figure 27 Visual Basic Properties Dialog Box—Code Update Properties
68 Rational Rose 2000e, Using Rose Visual Basic

Customizing the Code Generation
Save model before code and model update

Specifies whether to save the current open model (automatically or
after confirmation) before generating anything. If you are not satisfied
with the code update, you can revert to the saved model.

Note: The contents of the model may be affected when updating the
model from a Visual Basic project as well as when generating code from
the model.

Supress model IDS

Specifies whether to insert unique model identifiers in the Visual Basic
code for new code items when generating or reverse engineering a
Visual Basic project. See the section Model IDs in chapter 3.

Rational Rose Visual Basic needs the model IDs to synchronize the
model with the code when generating or reverse engineering Visual
Basic code. If you select this option, Rational Rose will no longer be
able to automatically rename or remove classes and members when
generating or reverse engineering code.

Generate Object Browser documentation

Specifies whether to make the documentation of the generated classes,
properties, and methods available in the Object Browser in Visual
Basic.

Other options

For information about the Generate debug code, Generate “Your code
goes here...” comments, Generate error handling code, and Data
member prefix options, please refer to section Customizing the Default
Behavior of the Model Assistant in chapter 7.

Customizing the Code Generation of a Specific Component

To customize the code generation of a specific component:

1. Open the Visual Basic Component Properties dialog box for the
component, by right-clicking on the component in the Code Update
Tool and clicking Properties.

2. Select and specify the options that are relevant when generating
code for a component, which are the following:
Rational Rose 2000e, Using Rose Visual Basic 69

Chapter 4 Generating Visual Basic Code
� Should be generated

� Project file

� Stereotype

For information about each option, please refer to Specifying a
Component in chapter 6.

3. Click OK.

Previewing and Customizing the Code to Generate for a Specific Class

In the right pane of the Select Components and Classes page in the
Code Update Tool, you can preview, but not customize, the code to be
generated for each member of the selected class.

To customize the code to generate for a class, you must open the Model
Assistant as follows:

1. Right-click on the class or one of its members on the Select
Components and Classes page in the Code Update Tool. Then click
Open.

2. Define the class’ mapping to Visual Basic code on the different
tabs. For further information, see chapter 7.

3. Click OK.
70 Rational Rose 2000e, Using Rose Visual Basic

Chapter 5

Reverse Engineering Visual Basic Code

Visual Basic reverse engineering is the process of examining a Visual
Basic project to recover information about its design and to update the
model accordingly. Rational Rose extracts design information and uses
it to generate or update a model representing the application's logical
structure. Rational Rose enables you to view and manipulate this
model using the UML notation for object-oriented analysis and design.

A Visual Basic project corresponds to a component in the component
view of a model. Reverse engineering takes place between the chosen
components in the model and the associated Visual Basic projects.

This chapter provides an overview of the Model Update Tool and the
basic steps for generating and updating a model from a Visual Basic
project.

The Model Update Tool

Using the Model Update Tool you can reverse engineer a Visual Basic
project to create a new model from a project or update an existing
model with changes made to the code. With the Model Update Tool you
can:

� Update several components of different implementation languages
at the same time

� Keep the model and source code projects synchronized as the
Model Update Tool detects any model elements that may have been
deleted from the code

� Add new components to the model
Rational Rose 2000e, Using Rose Visual Basic 71

Chapter 5 Reverse Engineering Visual Basic Code
Starting the Model Update Tool

You can start the Model Update Tool in several ways, for example:

� Click Tools > Visual Basic > Update Model from Code.

� Right-click a component and choose Update Model from Code from
the displayed menu.

� In Microsoft Visual Basic, open a Visual Basic project and bring up
the Rational Rose tool window by clicking Add-Ins > Rational Rose.
Right-click the model file and click Update Model on the displayed
menu.

The Model Update Tool Pages

The Model Update Tool leads you through the process of updating a
model from code on the following pages:

Welcome Page

The first page provides general information about the tool. You can
turn this page off by selecting the Don’t show this page in the future
option.
72 Rational Rose 2000e, Using Rose Visual Basic

The Model Update Tool
Select Components and Classes Page

Figure 28 Model Update Tool—Select Components and Classes Page

On this page, you select the components that you want to update. A list
of components is displayed. Each component (for example,
OrderSystem in Figure 28) represents a source code project and is
used to map the classes in the model to items in the project. To reverse
engineer a project, the project must be represented in the model by a
component.

Do any of the following:

� To update all classes in a project, select the corresponding
component. To update or generate only some of the classes that are
assigned to a component, expand the component and select those
code classes.

Note: Classes marked with a star do not exist in the model.
When selecting such a class, the class will be created in the model.
Also, you can select several components. Each selected component is
then updated from the changes of its associated project.
Rational Rose 2000e, Using Rose Visual Basic 73

Chapter 5 Reverse Engineering Visual Basic Code
� In order to update the model from a project, the model must
contain a component that is associated with that project. Thus, to
generate model elements from a project for the first time, create a
corresponding component by right-clicking on the appropriate
language node and clicking Add Component on the displayed
menu.

� To associate an existing component with a project file, right-click
on the component and click Properties, which brings up the Visual
Basic Component Properties dialog box for the component.

� To customize general aspects of the model update, right-click on
the Visual Basic language and click Properties on the displayed
menu. See Customizing the Model Update in this chapter.

Finish Page

This page displays a summary of what will be updated in the model.
Click Finish if you are satisfied, or Back if you want to change
something.

Progress Page

This page displays the progress of the model update process.

Synchronize Page

This page is shown if the Model Update Tool detects any model
elements that do not have any correspondences in the code. Here you
can confirm the deletion of each such model element. See the section
Synchronizing Model and Code During Model Update in this chapter.

Summary Page

This page displays a summary of the result of the model update. On the
shortcut menu, you can choose to display warnings and errors in color
and to use timestamps. The information on the Log tab can also be
found in the Rational Rose log window after exiting the Model Update
Tool.
74 Rational Rose 2000e, Using Rose Visual Basic

Updating a Model from Visual Basic Projects
Updating a Model from Visual Basic Projects

Reverse Engineering a Visual Basic Project Into a New Component

To reverse engineer a source code project into the model:

1. Compile the project that you are going to reverse engineer and
make sure that it does not contain any syntax errors.

2. Click Tools > Visual Basic > Update Model from Code. The Model
Update Tool starts and the Select Components and Classes page is
displayed. (If the Welcome page is shown, click Next.)

3. Before you can reverse engineer the project, you must associate the
project with an existing or new component in the model:

❑ To associate the project with a new component, right-click on
the Visual Basic language and click Add Component. In the
displayed dialog box (Figure 29), select the project file that you
want to reverse engineer and click OK.

Figure 29 Select Visual Basic Project Dialog Box

❑ To associate the project with an existing component, right-click
on that component and click Properties.
Rational Rose 2000e, Using Rose Visual Basic 75

Chapter 5 Reverse Engineering Visual Basic Code
4. Select the project items that you want to reverse engineer, or select
the check box next to the new component in order to reverse
engineer the entire project.

5. On the Finish page, take a look at the model elements to be
generated.

6. When the reverse engineering process has finished, take a look at
the results on the Summary page. Click OK.

7. Evolve the updated model. For example, note that a logical package
with the same name as the new component has been added to the
logical view. The new logical package contains classes, properties,
associations, and methods corresponding to the selected project
items. Move the new logical package and its contents to an
appropriate place in the logical view of your model. For more
information, please refer to the Evolving the Updated Model section
in this chapter.

8. Save the new model.

9. If the model was untitled before running the Model Update Tool,
you must associate the project with the model file. To do that, open
the Rational Rose tool window in Microsoft Visual Basic by clicking
Add-Ins > Rational Rose. Click the refresh button, , in the
toolbar. Rational Rose will then be able to find the associated
model the next time you update the model from this project.

Updating a Component in the Model from Code Changes

To update a component with source code changes:

1. Compile the project that you are going to reverse engineer and
make sure that it does not contain any syntax errors.

2. Click Tools > Visual Basic > Update Model from Code. The Model
Update Tool starts and the Select Components and Classes page is
displayed. (If the Welcome page is shown, click Next.)

3. Select the check box next to the component to update the model
with all changes that have been made to the corresponding project,
or select specific project items to insert only some of the changes.

Note: For project items marked with a star there are no
corresponding elements in the model yet.

4. Click Next and take a look at the summary of what will be updated.
Click Finish if you are satisfied.
76 Rational Rose 2000e, Using Rose Visual Basic

Updating a Model from Visual Basic Projects
5. If the model contains model elements that do not have any
correspondences in the project, a Synchronize page is displayed. In
the right-hand list, select those elements that you want to delete
from the model. See the Synchronizing Model and Code During
Model Update section in this chapter.

6. Take a look at the results of the code generation on the Summary
page. Click Close.

7. Evolve the updated model. For example, if you updated the model
with new classes, the new classes are inserted into a logical
package called Reverse Engineered. Move the new classes to an
appropriate place in the logical view of your model. For further
information, please refer to the Evolving the Updated Model section
below.

8. Save the model.

Synchronizing Model and Code During Model Update

Whenever you update the model from code, Rational Rose checks to see
that the code and model agree. If the Model Update Tool finds a model
element with no corresponding code, the tool displays a Synchronize
page:

Figure 30 Model Update Tool—Synchronize Page
Rational Rose 2000e, Using Rose Visual Basic 77

Chapter 5 Reverse Engineering Visual Basic Code
To delete selected model elements:

1. In the right-hand list, select the check box next to each model
element that you want to delete.

2. Click OK to delete the selected elements.

To delete all model elements of the same kind:

1. In the left-hand list, select the check box next to the appropriate
delete folder (Classes or Members.) The contents of the folder are
displayed in the right-hand list and all elements that will be deleted
are selected.

2. Click OK to delete the selected elements, or clear those elements
you do not want deleted.

Evolving the Updated Model

After the Model Update tool has finished, classes, properties
(attributes), associations and methods (operations) corresponding to
the selected project items are inserted into your new model. Also, any
project items that were not selected for model update, but which are
referred to from other project items, are created as empty classes in the
model.

To evolve the updated model:

1. Save the updated model.

2. After updating the model with Visual Basic project items that do
not have any model correspondences yet, a new class is created in
the model for each such project item. Each new class is placed in a
logical package specified by the Default logical package option in
the Visual Basic Properties dialog box.

Move any new classes to the logical package where they are
supposed to be located in the model. You may need to create new
logical packages if some classes do not naturally belong to any of
the existing logical packages.

3. After reverse engineering a Visual Basic project for the first time, a
corresponding component is created in the component view of the
model. The new component is placed in a component package
specified by the Default component package option in the Visual
Basic Properties dialog box. Move any new components to the
component package where they are supposed to be located in the
model.
78 Rational Rose 2000e, Using Rose Visual Basic

Updating a Model from Visual Basic Projects
4. If a reverse engineered project has new ActiveX references, identify
the imported ActiveX components as used components, and not
classes that need to be implemented.

5. If the reverse engineered Visual Basic project uses another data
member prefix (for example “the”) than the prefix defined by the
Data member prefix option in the Visual Basic Properties dialog box
(which is “m” by default) Rational Rose will not be able to connect
the data member with its property procedures in the model. Thus,
a data member that has property procedures assigned to it in the
code will generate two properties under the Properties folder in the
Model Assistant. To combine each such pair of properties into one
and the same property, drag one of the properties and drop it on
the other as shown in Figure 31.

Figure 31 Use Drag and Drop to Combine Properties with Different
Data Member Prefix

6. Insert any new classes and components into the appropriate
diagrams, by using drag-and-drop from browser to diagram, to
illustrate the architecture of the system. Avoid crossed association
lines by moving the classes in the diagram, and use the Edit >
Diagram Object Properties command to control the level of class
details in a diagram.

Now you are ready to further develop the model by creating new logical
packages, classes, relationships, properties, and methods, as well as
illustrating the model in diagrams.
Rational Rose 2000e, Using Rose Visual Basic 79

Chapter 5 Reverse Engineering Visual Basic Code
Customizing the Model Update

You can customize several aspects of the model update. For example,
you can customize the behavior of the Model Update Tool or choose
whether to import project references into the model.

Customizing the Model Update Tool

You can customize general aspects of a model update in the Visual
Basic Properties dialog box.

Figure 32 Visual Basic Properties Dialog Box—Model Update Tool

To open the Visual Basic Properties dialog box, right-click the Visual
Basic language on the Select Components and Classes page in the
Model Update Tool, and click Properties. (Or click Tools > Visual Basic
> Properties.)

The following options are relevant when customizing the model update:
80 Rational Rose 2000e, Using Rose Visual Basic

Customizing the Model Update
Save model before code and model update

Specifies whether to save the current open model (automatically or
after confirmation) before updating the model. When the model update
is finished, and if you are not satisfied with the result, you can revert
to the saved model.

Suppress model IDS

Specifies whether to insert unique model identifiers in the Visual Basic
code for new code items when generating or reverse engineering a
Visual Basic project. See the section Model IDs in chapter 3.

Note: Rational Rose Visual Basic needs the Model IDs to synchronize
the model with the code when generating or reverse engineering Visual
Basic code. Thus, if you select this option, Rational Rose will no longer
be able to automatically rename or remove classes and members when
generating or reverse engineering code.

Default logical package

Specifies the logical package into which new classes that are created
during model update are inserted. To insert classes into a new or
existing logical package, type the name of that package including the
path of any enclosing packages. The Model Update Tool will create the
packages for you if they do not exist.

For example, if you type “Package1/Package2”, new classes are
inserted into the following logical package:

Logical View
Package1

Package2

You can use the following variables in the package name:

� $component—the name of the component where the currently
reverse engineered class belongs

� $language—the implementation language of the currently reverse
engineered class
Rational Rose 2000e, Using Rose Visual Basic 81

Chapter 5 Reverse Engineering Visual Basic Code
For example, “Reverse Engineered/$component” means that a new
Visual Basic class called MyClass, which belongs to the component
MyComponent, is inserted into the following logical package:

Logical View
Reverse Engineered

MyComponent

Default component package

Specifies the component package into which new components that are
created during model update are inserted.

If this box is empty, new components are inserted at the top level of the
component view. To insert the component into a new or existing
component package, type the name of that package including the path
of any enclosing packages. The Model Update Tool will create the
packages for you if they do not exist.

For example, if you type “Package1/Package2”, new components are
inserted into the following component package:

Component View
Package1

Package2

You can use the following variables in the package name:

� $component—the name of the reverse engineered component

� $language—the implementation language of the reverse engineered
component

For example, “Reverse Engineered/$language/$component” means
that a new Visual Basic component called MyComponent, is inserted
into the following component package:

Component View
Reverse Engineered

Visual Basic
MyComponent

Overview diagram

Specifies the name and location of the class diagram that Rose creates
when you reverse engineer a Visual Basic project. The diagram shows
all new classes that are created in the model during the model update.
82 Rational Rose 2000e, Using Rose Visual Basic

Customizing the Model Update
You can use the following variables in the package path:

� $component—the name of the reverse engineered component

� $language—the implementation language of the component

For example, “Reverse Engineered/$component/Overview of
$component” means that a class diagram called “Overview of
MyComponent”, is inserted into the following logical package when
reverse engineering a Visual Basic project called MyComponent:

Logical View
Reverse Engineered

MyComponent

Customizing the Type Library Importer

In the COM Properties dialog box, you can control several aspects of
how type libraries are imported into the model. For example, you can
control:

� What should happen with existing type libraries when importing
new versions

� The name and location of new type libraries in the model

� The name, location, and contents of the overview diagrams that are
created when importing type libraries

To open the COM Properties dialog box, click Tools > COM > Properties.
For more information, see the Customizing the Type Library Importer
section in the Type Library Importer chapter in the Using Rational Rose
manual.

Customizing the Model Update of a Specific Component

To customize the model update rules for a specific component:

1. Right-click on the component in the Model Update Tool and click
Properties. The Visual Basic Component Properties dialog box
opens.

2. Select and specify the options that are relevant when updating a
component from code changes, which are the following:

� Should be updated from code

� Project file

� Import all references
Rational Rose 2000e, Using Rose Visual Basic 83

Chapter 5 Reverse Engineering Visual Basic Code
� Quick import

� Import the compiled VB binary

For information about each option, please refer to the section
Specifying a Component in chapter 6.

3. Click OK.

Customizing the Model Update of a Specific Class

To specify that a specific class is not allowed to be updated from code
changes:

1. Before entering the Model Update Tool, open the Model Assistant
for the class by right-clicking on the class and clicking Model
Assistant.

2. On the Class tab, clear the Should be updated from code option.
84 Rational Rose 2000e, Using Rose Visual Basic

Chapter 6

Modeling a Visual Basic Project

To model a Visual Basic project means to create a component for the
project in the model, create and specify the classes that belong to the
project, and to assign those classes to the corresponding component in
the model.

The components are needed to map each class in the logical view to the
appropriate implementation language and source code project (as
illustrated in Figure 1 in chapter 2.) You cannot generate code for a
class until it has been assigned to one or several components in the
model. Also, to update a model from a source code project a component
corresponding to that project must exist in the model.

You can always use the standard procedures that Rational Rose
provides to create Visual Basic components in the model and to assign
classes to them. See the Using Rose manual. However, the Visual Basic
Language Support add-in provides a separate tool, the Component
Assignment Tool, which is specifically made for the creation and
specification of Visual Basic components.

This chapter explains how to create a new model, how to create Visual
Basic components in the model using the Component Assignment Tool,
and how to assign classes to Visual Basic components. It also explains
how to import external software modules into the model and how to
browse the model and the code.
Rational Rose 2000e, Using Rose Visual Basic 85

Chapter 6 Modeling a Visual Basic Project
The Component Assignment Tool

The Component Assignment Tool provides you with an easy-to-use
interface to:

� Create new components (see the section Creating New Components
in the Model later in this chapter)

� Assign classes to components by using drag-and-drop (see the
section Assigning Classes to Existing Components)

� Associate a component with a Visual Basic project (see the section
Associating a Component with a Visual Basic Project File)

The advantage of using the Component Assignment Tool is that the
components you create here will contain all the information needed in
order to generate Visual Basic code. The tool also provides specific help
to assign classes to components, as it finds and displays all currently
unassigned classes in a separate folder called Unassigned Classes (see
Figure 33.)

Figure 33 The Component Assignment Tool
86 Rational Rose 2000e, Using Rose Visual Basic

Creating a New Model
You can open the Component Assignment Tool in two ways:

� Click Tools > Visual Basic > Component Assignment Tool

� Right-click a component in the Code Update Tool and click Assign
Classes.

For information on how to use the Component Assignment Tool, see
the section Creating Components and Assigning Classes in this
chapter.

Creating a New Model

Rational Rose is delivered with a library of predefined frameworks. By
basing new models on one of these frameworks you get immediate
access to a lot of reusable components in your model. Note that the
code generator does not generate declarations for the predefined data
types and class modules in the frameworks. Only references to these
types and class modules are generated.

To create a new model, perform the following steps:

1. Click File > New.

2. If the Framework add-in is installed and activated, the framework
dialog box opens. Open the model framework that corresponds to
the system you are going to develop. A new model is created and
initialized with the contents of the chosen framework. (If you don’t
want to use any of the frameworks, click Cancel. A new model with
nothing but the default contents is created.)

3. If the Framework add-in is not installed or not activated, an empty
model is opened.

4. Save the new model and give it a name by clicking File > Save As.

Note: Each package in a framework is stored as a controlled unit in a
separate file. To access the contents of a package in a framework, you
must load the corresponding controlled unit. To load a unit, double-click
on the package in a diagram, or click File > Units > Load. For more
information about controlled units, please refer to the Team Development
chapter in the Using Rose manual.
Rational Rose 2000e, Using Rose Visual Basic 87

Chapter 6 Modeling a Visual Basic Project
The Contents of a New Model

A new model contains by default the following:

Use-Case View—which specifies the behavior and surroundings of the
system in terms of use cases and actors. By default it contains a use-
case diagram called Main, which is intended to illustrate an overview
of the use-case model.

Logical View—which describes the logical structure of the system,
that is, the classes and their relationships. If the 3 Tiered Diagram
option on the Diagram tab of the Options dialog box is selected, the
logical view of a new model contains the following:

� Three logical packages representing the three fundamental service
layers of a three-tiered model: User Services, Business Services,
and Data Services.

� A class diagram, called Package Overview, for each service layer
package. Rational Rose Visual Basic automatically inserts each
new class diagram, or package, into the Package Overview for the
service layer to which it belongs.

� A three-tiered diagram called Three-Tiered Service Model. Rational
Rose Visual Basic automatically inserts each new class or logical
package into this diagram, in the tier representing the service layer
to which it belongs.

Note: For more information about three-tiered diagrams, please refer
to the online help or the Using Rose manual.

If the 3 Tiered Diagram option is cleared, the logical view of a new model
contains only a main class diagram.

Component View—which describes the physical structure of the
system, that is, how the system is divided into .exe.exe.exe.exe files and DLLs. By
associating classes to components, and components to Visual Basic
projects, the component view defines in which Visual Basic project(s)
the classes in the model are contained.

Deployment View—which shows the connections between the
system’s processors and devices, and the allocation of its processes to
processors. It contains by default a diagram called Deployment
Diagram.
88 Rational Rose 2000e, Using Rose Visual Basic

Creating Components and Assigning Classes
Creating Components and Assigning Classes

Creating New Components in the Model

To create new components:

1. Click Tools > Visual Basic > Component Assignment Tool.

2. In the left list, right-click on the desired language for the new
components.

3. On the displayed menu, click New Component. The following dialog
box is opened:

Figure 34 Select Visual Basic Project Dialog Box

4. For each new component to create: On the New tab, select the type
of Visual Basic project, to which the component corresponds. Or,
on one of the other tabs, select an existing Visual Basic project,
which the new component is supposed to represent. Click Add.

5. Click OK. New Visual Basic components, with the same name as
the selected projects, or the default name Project1,Project2,
etc. for new components, are inserted into the model.
Rational Rose 2000e, Using Rose Visual Basic 89

Chapter 6 Modeling a Visual Basic Project
6. To change the name of a component, right-click on the component,
and then click Rename.

7. Assign classes to the new components. See the Assigning Classes
to Existing Components section in this chapter.

Note: You can also create components in the browser or in a component
diagram. The advantage of using the Component Assignment Tool is that
it helps you to create Visual Basic components in specific.

Specifying a Component

You can specify Visual Basic information about a component in the
Visual Basic Component Properties dialog box. To open that dialog box
for a component, right-click the component and click Properties.

Figure 35 Visual Basic Component Properties Dialog Box

Enter information about the component by selecting or specifying the
following options:

Should be generated

Specifies whether it is possible to generate code for this component. If
this option is cleared, the component cannot be selected for code
generation.
90 Rational Rose 2000e, Using Rose Visual Basic

Creating Components and Assigning Classes
Should be updated from code

Specifies whether it is possible to update the classes assigned to this
component from code changes. If this option is cleared, the component
cannot be selected for model update.

Project File

Specifies the project file (.vbp) for the Visual Basic project that is
associated with this component.

When generating code for a component, Rational Rose Visual Basic
generates the code into the project file specified here. If the Project file
box contains a name of a project file, but no file path, the code
generator assumes that the project file is located in the same folder as
the model file.

If the Project file box is empty and the open project has the same name
as the component, or if the component has been generated from/into
that project before, Rational Rose generates code into the current open
Visual Basic project. Otherwise, Rational Rose starts the Visual Basic
application and generates code into a new project.

For more information, see Associating a Component with a Visual Basic
Project File in this chapter.

Note: If you have defined a virtual path map for your project—for
example "$MYPATH=C:\VB_Projects\my_proj"—Rational Rose stores
the project reference using the path map symbol—for example
"$MYPATH\my_proj.vbp". However, this dialog box will display the
reference as the corresponding absolute path.

Stereotype

Defines the project type of the Visual Basic project that this component
represents. For more information, see the section Components in
chapter 2.

Documentation

A textual description of the component. The text can also be found in
the Documentation box of the Component Specification.
Rational Rose 2000e, Using Rose Visual Basic 91

Chapter 6 Modeling a Visual Basic Project
Import all references

Specifies whether to import the type library of the COM components
that are referred to from the Visual Basic project associated to this
component. Use the Quick import option to specify how much of the
referenced COM components you want to import.

Quick import

If this option is selected, the Model Update Tool imports only the
interface classes of the referenced COM components. If this option is
cleared, the properties and methods of the imported interfaces are also
added to the model. This option is relevant only if the Import all
references option is selected.

Import the compiled VB binary

If this option is selected, the Model Update Tool quick imports the type
library of the binary component that is compiled from this Visual Basic
project. Select this option if other components in the model need to use
the interface of this component. This option is not available for
Standard EXE components.

Associating a Component with a Visual Basic Project File

In order to generate code for a component or update the classes that
are assigned to the component from code changes, the component
must be associated with a Visual Basic project. The associated project
is specified in the Visual Basic Component Properties dialog box.

When selecting a component for code generation, not yet associated
with a project, the Code Update Tool will automatically associate it with
a project using to the following rules:

� Rational Rose generates code into the current open Visual Basic
project:

❑ if the open project has the same name as the component, or

❑ if the component has been generated from/into that project
before.

� Otherwise, Rational Rose starts the Visual Basic application and
generates code into a new project.

However, you can also associate a component with any Visual Basic
project before generating code.
92 Rational Rose 2000e, Using Rose Visual Basic

Creating Components and Assigning Classes
To manually associate a component with a Visual Basic project:

1. In the browser, in a diagram, or in the Component Assignment
Tool, right-click the component and click Properties. The Visual
Basic Component Properties dialog box opens:

Figure 36 Visual Basic Component Properties Dialog Box
Rational Rose 2000e, Using Rose Visual Basic 93

Chapter 6 Modeling a Visual Basic Project
2. Click the browse button, which brings up the Select Visual
Basic Project dialog box:

Figure 37 Select Visual Basic Project Dialog Box

3. Select the Visual Basic project file that should be associated with
the component and click OK twice. The selected project is then
associated with the component. The next time you generate code
for this component, the code is generated into the Visual Basic
project you selected.

Assigning Classes to Existing Components

To generate Visual Basic code for a class, a component that represents
the Visual Basic project where the class belongs must exist in the
model, and the class must be assigned to that component. A class or
interface can be assigned to a component of a specific implementation
language, or to several components with the same language.

Assigning Unassigned Classes to a Component
1. Click Tools > Visual Basic > Component Assignment Tool.

2. Select the Unassigned Classes folder.
94 Rational Rose 2000e, Using Rose Visual Basic

Creating Components and Assigning Classes
3. In the right list, select the classes that are to be assigned to the
component.

4. Drag the selected classes to the component.

Note: You can also assign classes on the Realizes tab of the Component
Specification dialog by right-clicking on the class and clicking Assign on
the displayed menu.

Assigning a Class to Several Components of the Same
Language

A class can be assigned to one or several components, but all
components must have the same implementation language.

1. Click Tools > Visual Basic > Component Assignment Tool.

2. In the left list, select a component to which the class is already
assigned. Select the class in the right list.

3. Point to the class. Hold down CTRL while pressing the right mouse
button. Drag the selected class to the other component. Then
release both the CTRL key and the mouse button.

Note: You can also drag the class from the browser and drop it on the
appropriate component in a diagram, in the browser, or on the Realizes
tab of the Component Specification.

Moving a Class to Another Component

Moving a Class to Another Component with the Same
Language
1. Click Tools > Visual Basic > Component Assignment Tool.

2. In the left list, select the component to which the class is assigned.

3. In the right list, drag the class and drop it on its new component in
the left list.

Note: You can also drag the class from the browser and drop it on the
appropriate component in a diagram, in the browser, or on the Realizes
tab of the Component Specification.
Rational Rose 2000e, Using Rose Visual Basic 95

Chapter 6 Modeling a Visual Basic Project
Moving a Class to a Component with Another Language

A class can be reassigned to a component with a different
implementation language. Note, however, that if you have used
language specific data types in the specification of the class, you must
manually change the data types to conform to the new language. If the
reassigned class is also assigned to other components, it will be deleted
from those components.

1. Click Tools > Visual Basic > Component Assignment Tool.

2. In the left list, select the component to which the class is assigned.

3. In the right list, select the class.

4. Drag the class to the other component.

5. Because the other component is of another implementation
language, a warning message is displayed. Click OK, and the
necessary assignments/reassignments will be made. Or, click
Cancel, and the class will not be reassigned to the new component.

If you have used language specific data types in the specification of the
class, open the Class Specification and change the data types for all
methods, formal arguments, and properties to conform to the new
language.

Removing a Class from a Component

Removing a Class from One Component
1. Click Tools > Visual Basic > Component Assignment Tool.

2. In the left list, select the component from which the class is to be
removed.

3. In the right list, right-click on the class and click Unassign on the
displayed menu.

Note: You can also unassign the class on the Components tab of its
Class Specification dialog by right-clicking on the component and
clicking Unassign on the displayed menu.

Removing a Class from All Assigned Components
1. Click Tools > Visual Basic > Component Assignment Tool.

2. In the left list, select a component to which the class is assigned.
96 Rational Rose 2000e, Using Rose Visual Basic

Importing Type Libraries Into the Model
3. Drag the class (or several classes) from the right list and drop it on
the Unassigned Classes folder in the left list.

4. A warning dialog box is displayed. Click OK.

Changing the Implementation Language of a Component

To change the language of a component:

1. Click Tools > Visual Basic > Component Assignment Tool.

2. In the left list, select the current language of the component.

3. Drag the component from the right list and drop it on its new
language.

4. If any class of the selected component is also assigned to other
components, a dialog box is displayed where you must confirm the
language change. Those classes are then removed from the
component before it is assigned to the new language.

Note: The data types that are used in the specification of the assigned
classes’ methods, formal arguments, and properties will remain data
types of the original language. You must manually change all data types
that do not conform to the new language.

Importing Type Libraries Into the Model

If you need to use existing software components—.exe, .dll, .ocx, or .tlb
files—in the system you are modeling, you should import the type
library of those COM components into your model. By importing type
libraries into the model, you can show how classes in the model use
and depend upon the interface of COM components, regardless of the
COM components’ implementation languages.

There are several ways to import a COM component’s type library into
the model. The way you choose depends on which COM component you
are importing. You can import the type library for

� Project references

� The binary component compiled from a Visual Basic project in the
model

� Any COM component
Rational Rose 2000e, Using Rose Visual Basic 97

Chapter 6 Modeling a Visual Basic Project
Importing the Type Library of Project References

When you reverse engineer a Visual Basic project, you can
automatically import the type libraries of all project references into the
model. You can also do this manually for individual components.

To automatically import the type library of project references into
the model:

Specify the following settings to make the Model Update Tool
automatically import all project references when updating the model
from a project:

� The Visual Basic project being reverse engineered must reference
the component. To see the components that a project references,
click Project > References in Visual Basic, which brings up the
References dialog box:

Figure 38 The References Dialog Box in Visual Basic
98 Rational Rose 2000e, Using Rose Visual Basic

Importing Type Libraries Into the Model
� Select the Import all references option in the Visual Basic
Component Properties dialog box (see Figure 39.) By default, the
Model Update Tool performs a quick import. That is, it imports the
type library items without properties and methods. To also import
the properties and methods, clear the Quick import option.

Figure 39 The References Tab of the Component Properties Dialog
Box

� If the referenced component is to be used by Visual Basic clients
only, it is recommended that the Show hidden items option in the
Tools > COM > Properties dialog box be cleared. See the Hiding
Type Library Items section in the Type Library Importer chapter in
the Using Rational Rose manual.

The Model Update Tool creates a COM component and a logical
package for each of the updated project’s references; see the How Is a
Type Library Presented? section in the Type Library Importer chapter in
the Using Rational Rose manual.

The Model Update Tool also creates a dependency relationship between
the updated project’s component and the imported COM components.
Rational Rose 2000e, Using Rose Visual Basic 99

Chapter 6 Modeling a Visual Basic Project
To manually import the type library of project references into the
model:

1. Select the component that corresponds to the modeled project in a
diagram.

2. Click Tools > Visual Basic > Add Reference.

Rational Rose creates a dependency relationship between the selected
Visual Basic component and the imported COM component. The next
time you generate code, the COM component is added as a reference to
the generated Visual Basic project.

Importing the Binary Component Compiled from a Project in the Model

When reverse engineering a Visual Basic project, the type library of its
compiled binary component can be automatically imported into the
model. You can also manually import the type library of a project’s
binary component; see the Importing a Type Library Into the Model
section in the Type Library Importer chapter in the Using Rational Rose
manual.

After importing the project’s binary component, there will be two
components with the same name in the model:

� A Visual Basic component representing the source view of the
component, which corresponds to the Visual Basic project

� A COM component representing the public view as seen from other
COM components, which corresponds to the compiled binary
component

By including the type library of a project’s binary component in the
model, you can show how other components (projects) in the model use
this project. It is only possible to import the type library of ActiveX
projects, because Standard EXE projects do not have a public
interface.

To automatically import the type library of the binary component
compiled from a project:

1. If the COM component is to be used by Visual Basic clients only,
you may want to clear the Show hidden items option in the Tools >
COM > Properties dialog box.
100 Rational Rose 2000e, Using Rose Visual Basic

Importing Type Libraries Into the Model
2. In the browser or in a diagram, locate the component that
corresponds to the project for which you want to import the type
library. Right-click the component and click Properties.

3. On the References tab, select the Import the compiled VB binary
option and click OK.

4. Make sure that the Visual Basic project has been compiled and
that its binary component has been created.

5. Update the model from the project; see chapter 5.

The Model Update Tool imports the type library and creates a COM
component and a logical package for it in the model. The Model Update
Tool also creates dependency relationships between the updated
project’s classes and the corresponding COM coclasses in the type
library.

The type library is imported quick. To also import the type library’s
members, see the Adding Class Members to a Quick Import Type Library
section in the Type Library Importer chapter in the Using Rational Rose
manual.

Importing any COM Component

See the Importing a Type Library Into the Model section in the Type
Library Importer chapter in the Using Rational Rose manual.
Rational Rose 2000e, Using Rose Visual Basic 101

Chapter 6 Modeling a Visual Basic Project
Example of an Imported Type Library

In this example, the type library of the Microsoft Scripting Runtime
component has been imported into the model as illustrated in
Figure 40.

Figure 40 The Microsoft Scripting Runtime Component Has Been
Imported into the Model
102 Rational Rose 2000e, Using Rose Visual Basic

Importing Type Libraries Into the Model
In this example, the Microsoft Scripting Runtime type library has been
imported with the Show hidden items option selected in the Tools >
COM > Properties dialog box, which means that both coclasses and
their default interfaces are shown directly under the type library’s
package. Because Visual Basic assumes the default interface when
referring to a coclass, the Object Browser in Visual Basic hides the
default interfaces of coclasses, as you can see in the following
illustration:

Figure 41 The Object Browser in Visual Basic Displays the Microsoft
Scripting Runtime Component

Thus, if the COM component is to be used by Visual Basic classes only,
it is recommended that you clear the Show hidden items option. Then
the browser in Rational Rose will give the same view of the imported
type library as the Object Browser in Visual Basic.
Rational Rose 2000e, Using Rose Visual Basic 103

Chapter 6 Modeling a Visual Basic Project
An imported type library belongs to the logical view, but its interfaces
and dispinterfaces can also be displayed on component diagrams as
shown in Figure 42.

Figure 42 The Appearance of Interfaces on a Component Diagram

The items in the imported Microsoft Scripting Runtime type library can
be used by the Visual Basic classes in the model by creating
relationships between the classes and the imported coclasses and
interfaces. See Using an Imported Type Library below.

Using an Imported Type Library

The application you are modeling can use the data types defined by a
COM component or realize the interface of a COM component. Before
you can use a COM component in the model you must import the type
library of that component.

Using the Data Types Defined by a Type Library

You can reuse an imported data type by creating an association
relationship between a class and the imported data type. You can
associate the class with either a coclass in an imported type library or
with the coclass’ default interface. The generated code gives the same
result when compiled.
104 Rational Rose 2000e, Using Rose Visual Basic

Using an Imported Type Library
For example, you can reuse the Dictionary of the Microsoft Scripting
Runtime component by creating an association relationship between
the class that has a dictionary and the imported Dictionary coclass, as
follows:

Figure 43 NewClass Has a Relationship with the Coclass Dictionary

Or, you can create the relationship between NewClass and the default
interface of Dictionary, which is called IDictionary, as follows:

Figure 44 NewClass Has a Relationship with IDictionary—the Default
Interface of the coclass Dictionary

Note that for imported controls, the aggregation relationship (or
association relationship with the stereotype Contained Control) is used
to specify which controls are used in each form.

Realizing the Interface of a COM Component

Some COM components define interfaces that the classes in other
applications may conform to. You can show that a class in the model
realizes an interface of an imported type library, by creating a realize
relationship between the class and the interface (see Realize
Relationships in chapter 2).

Because an interface of a COM component is always abstract, and
cannot be instantiated, you should use the realize relationship, which
does not result in any delegation code, and not the generalization
relationship.

For example, a class, My_Class, that is supposed to run in Microsoft
Transaction Server may need to provide the methods defined by the
ObjectControl interface of the Microsoft Transaction Server Type
Library. The ObjectControl interface provides three methods, Activate,
Deactivate, and CanBePooled. In order for My_Class to also provide
Rational Rose 2000e, Using Rose Visual Basic 105

Chapter 6 Modeling a Visual Basic Project
those methods, you should create a realize relationship between
My_Class and the imported ObjectControl interface. When you open
My_Class in the Model Assistant or generate code from it, the realized
methods are automatically added to My_Class as shown in the
following picture:

Figure 45 My_Class Realizes the Interface of ObjectControl

Note: Instead of creating a realize relationship with a coclass’ default
interface, you can create a realize relationship with the coclass itself.
The result of the generated code is the same when compiled.

Using Property Procedures of Type Library Items

An imported interface may have methods with the stereotype propget,
propput, and propputref. Those method stereotypes correspond to
Visual Basic’s property procedures as shown in Table 11.

For example, the ObjectContext interface in Microsoft Transaction
Server Type Library has four methods with the stereotype propget:
Count, Item, _NewEnum, and Security. Thus, if a class realizes the
ObjectContext interface, the corresponding Property Get procedures
are automatically added to the class.

Table 11 Property Procedures on COM Interfaces

Stereotype Corresponds to

propget Property Get

propput Property Let

propputref Property Set
106 Rational Rose 2000e, Using Rose Visual Basic

Browsing the Model and Code
Browsing the Model and Code

The Rational Rose and Microsoft Visual Basic applications are tightly
integrated—and not only with respect to code and class generation.
You can also use each application to browse corresponding code or
models in the other tool. In fact, there is a separate tool in Microsoft
Visual Basic, called the Rational Rose tool window, which is used to
browse the models that correspond to a project.

Opening the Visual Basic Item that Corresponds to a Model Element

To open the code item for a model element:

1. Select the component, class, or member in Rational Rose.

2. Click Tools > Visual Basic > Browse Source Code. (Or, click Browse
Source on the shortcut menu for the model element.) The Visual
Basic item that corresponds to the selected element in the model is
displayed in Visual Basic as in the figure below.

Figure 46 The Browse Source Code Command Displays Code for a
Selected Class

Opening a Model that Corresponds to the Open Visual Basic Project

The Visual Basic Language Support Add-In provides a tool window in
Microsoft Visual Basic, which displays a list of the currently open
Visual Basic projects and the Rational Rose models to which each
project is associated. With the Rational Rose tool window you can
Rational Rose 2000e, Using Rose Visual Basic 107

Chapter 6 Modeling a Visual Basic Project
associate an open project with a model file, open an associated model
file, or even create a new model. Also, you can start the Model Update
Tool for a selected model.

Open the Rational Rose tool window by clicking Add-Ins > Rational
Rose in Microsoft Visual Basic, or by clicking the Rational Rose icon,

, in the toolbar in Microsoft Visual Basic.

The command buttons on the Rational Rose tool window’s toolbar and
the list view’s shortcut menus allow you to operate on the models that
are associated with the currently open Visual Basic projects. Table 12
explains each command.

Note: These commands are enabled if the project is under version
control but not checked-out.

To open the model that is associated with a Visual Basic project:

1. In Microsoft Visual Basic, bring up the Rational Rose tool window
by clicking Add-Ins > Rational Rose.

2. Right-click the model file in the tool window and click Browse
Model on the displayed menu. Rational Rose is started (if needed)
with the selected model opened.

Table 12 Rational Rose Tool Window Commands

Command Meaning

Connect Visual
Model

Associates a new or existing model with the
selected project.

Update Model Updates the selected model with changes in
the corresponding project, by starting the
Model Update Tool.

Browse Model Starts Rational Rose (if needed) and opens the
selected model.

Disconnect Disconnects the selected model from the
project.

Refresh Updates the list view. For example, assigns a
model file to untitled models.

Help Displays help on the Rational Rose tool
window.
108 Rational Rose 2000e, Using Rose Visual Basic

Chapter 7

Modeling Visual Basic Classes

When modeling Visual Basic classes in Rational Rose, you can always
use the ordinary procedures that Rational Rose provides; see the Using
Rose manual. However, the Visual Basic Language Support add-in
provides a separate tool, called the Model Assistant, for specifying
classes that are to be implemented in Visual Basic.

This chapter explains how to create Visual Basic classes in a model
and how to specify them using the Model Assistant.

The Model Assistant

The Model Assistant lets you create members on a Visual Basic class
in the model, as well as customize the code to generate from the class
and its members. With the Model Assistant you can:

� Create constants, Declare statements, Event statements, Enum
and Type declarations, properties (attributes), and methods
(operations).

� Create Get, Let, and Set procedures for class properties and
association roles.

� Define and create a user-defined collection class for the class.

� Preview the code to be generated for the class and each of its
members.

� Specify implementation details about the class and its members.
Rational Rose 2000e, Using Rose Visual Basic 109

Chapter 7 Modeling Visual Basic Classes
The Model Assistant shows the information about a class as it will be
implemented in the Visual Basic code. That is, it maps each UML
element found in the Class Specification————generalization relationships,
properties, roles, methods, and nested classes————into one of the
member folders specified in Table 13.

Figure 47 The Model Assistant Shows a Visual Basic View of a Class

The Model Assistant displays only those member folders that currently
contain members. The displayed folders contain the following model
elements that are related to the current class:

Table 13 Model Assistant—Folder Contents

Folder Contains the following model elements

Implements
Classes

Classes with which the current class has generalization
or realize relationships; see Specifying Implements
Constructs later in this chapter.

Declare
statements

Methods with stereotype Declare; see Creating Declare
Statements.

Events Methods with stereotype Event; see Creating Event
Statements and Subscribing to Events.

Enums Nested classes with stereotype Enum; see Creating
Enums and Types.

Types Nested classes with stereotype Type; see Creating
Enums and Types.
110 Rational Rose 2000e, Using Rose Visual Basic

Templates
You can open the Model Assistant for a class in several ways:

� Select the class in a diagram and click Tools > Visual Basic > Model
Assistant.

� In a diagram or in the browser, right-click on the class and click
Model Assistant on the displayed menu.

� On the Select Components and Classes page in the Code Update
Tool, right-click on a class, or one of its members, and click Open
on the displayed menu.

Templates

A template defines a number of members that typically appear in a
certain type of class—that is, a template describes a certain class
stereotype. You can apply a template to a Visual Basic class by
selecting the corresponding stereotype in the Class Specification or in
the Model Assistant.

WebItems Nested classes with stereotype Custom WebItem or
Template WebItem; see Modeling Web Classes. This
folder is only displayed for classes with the stereotype
“WebClass”.

Constants Properties with stereotype Const; see Creating
Constants.

Controls Associations with stereotype Contained Control and
aggregation relationships. Also, any Events of the
supplier control are listed; see Subscribing to Events.
This folder is only relevant for user interface classes,
such as forms.

Properties Properties (attributes) and association roles, as well as
any associated property procedures (that is, methods
with the same name as a property or role and having
the stereotype Get, Set, or Let.)
For roles that are defined with the WithEvents option,
the Events of the supplier class are listed.
See Creating Properties.

Methods Methods (operations) with no stereotype or a stereotype
other than any of the above; see Creating Methods.

Table 13 Model Assistant—Folder Contents

Folder Contains the following model elements
Rational Rose 2000e, Using Rose Visual Basic 111

Chapter 7 Modeling Visual Basic Classes
A new Visual Basic class gets the stereotype Class Module by default.
Thus, when you create a Visual Basic class, it gets a set of predefined
members that often appear in class modules. By clicking the check box
next to a default member in the Model Assistant you can select those
members that this particular class should have.

If you give a class the stereotype Form, as in Figure 48, the Model
Assistant automatically adds the standard form event procedures
(Click, DragDrop, etc.) to the Methods folder. Those standard
procedures are defined in the Form template. For a Form template,
none of the template members are selected by default, but for other
templates some or all template members may be initially selected.

Figure 48 The Form Template

What templates are provided in Rational Rose?

Rational Rose provides a template for each fundamental Visual Basic
project item type. There are also templates for project items with
specific purposes. For example, there are templates for collection
classes and MTS classes.

These additional templates are not fundamental Visual Basic project
item types themselves. Instead, they are mapped to one of the
fundamental project types. For example, a class that has been created
from the Collection template becomes a class module in Visual Basic,
and the two Debug templates generate standard modules in the code.
112 Rational Rose 2000e, Using Rose Visual Basic

Creating Visual Basic Classes in the Model
For information about the fundamental project item type templates,
see Table 3 in chapter 2. For information about other templates, refer
to the description of each template, which is displayed on the Template
tab in the Model Assistant.

You can create and modify your own templates; see the Rational Rose
Extensibility / Rose Visual Studio Extensibility book on the Contents tab
of the Rational Rose online help.

Creating Visual Basic Classes in the Model

You create Visual Basic classes (that is, classes that are to be
implemented in Visual Basic code) in the same way as any other class
in Rational Rose. (You can also use the Class Wizard, which you open
from the Tools menu’s Visual Basic menu.) Then use the Model
Assistant to create members on the class and to specify
implementation details about the class and its members. In order to
use the Model Assistant on a class and to generate Visual Basic code
from a class, however, the class must be assigned to the Visual Basic
language.

To create a Visual Basic class:

1. Create a class in a diagram or in the browser.

2. If Visual Basic is not the default language in Rational Rose, which
you specify on the Notation tab of the Tools > Options dialog box,
the class must be assigned to a component that has Visual Basic
as language. See Assigning Classes to Existing Components in
chapter 6.

3. Open the Model Assistant for the class.

4. Map the class to a Visual Basic project item type by applying a
template to the class. See the section Applying a Template to a
Class in the Model in this chapter.
Rational Rose 2000e, Using Rose Visual Basic 113

Chapter 7 Modeling Visual Basic Classes
5. Specify any implementation details on the Class tab.

Figure 49 Model Assistant—Class Tab

On the Class tab, you can specify the following implementation
details about a class:

❑ Should be Generated—Specifies if it is possible to generate code
for this class. If this option is cleared, the class cannot be
selected for code generation.

❑ Should be Updated from Code—Specifies if it is possible to
update this class from code changes. If this option is cleared,
the component cannot be selected for model update.

❑ Abstract Interface—Specifies whether this class module is
abstract. If a class is abstract, the Visual Basic code generator
generates empty method bodies. This option corresponds to the
Abstract option on the Detail tab of the Class Specification.

❑ Stereotype—Defines the type of the class. For example, if the
stereotype of a class is set to Class Module, the Visual Basic
code generator produces a class module for it. For more
information about stereotypes see the section Classes in
chapter 2. The type of a class also determines what set of pre-
defined standard members the class may have.
114 Rational Rose 2000e, Using Rose Visual Basic

Creating Visual Basic Classes in the Model
❑ Instancing—Specifies if the class module is visible outside the
project, and if so, specifies rules for how it may be instantiated
from other projects. This option is only relevant for classes that
correspond to class modules in the code. For more information,
see the section Instancing (Class Property) in Appendix A.

❑ Collection Class—Defines the name of the collection class to be
used for data members generated for roles with an unbounded
multiplicity (0..n, 0..*, 1..n, 1..*, n, *.) By default, the class
“Collection” is used. If you enter a name of a new collection
class, the Model Assistant creates a collection class with that
name in the model. For more information, see the section
Creating a User-Defined Collection Class for a Class in this
chapter.

❑ Documentation—A textual description of the class. The text can
also be found in the Documentation box of the Class
Specification. When generating code for the class, the text is
inserted as a code comment to the corresponding project item.

6. Specify any class option details on the Options tab:

Figure 50 Model Assistant—Class Options Tab
Rational Rose 2000e, Using Rose Visual Basic 115

Chapter 7 Modeling Visual Basic Classes
On the Options tab, you can specify the following implementation
details about a class:

❑ Option Explicit—This statement is used to force explicit
declaration of all variables in that module. If you select this
option, Rational Rose inserts an Option Explicit statement in
the Declarations section of the class.

❑ Option Base—This statement declares the default lower
boundary for array subscripts and is used to override the
default base array subscript value of 0. As 0 is the default value
in Visual Basic, the code generator inserts an Option Base
statement in the Declarations section, before any array
dimension declaration, only if the value of this option is set to 1.

❑ Option Compare—This statement is used to declare the default
comparison method to use when string data is compared. As
Binary is the default value in Visual Basic, Rational Rose
produces an Option Compare statement for the class only if Text
is selected.

7. Create and specify the following for the class:

❑ Constants

❑ Controls

❑ Declare statements

❑ Event statements

❑ Enum and Type declarations

❑ Properties

❑ Property procedures

❑ Methods

❑ Implements constructs

❑ Web items (if it is a web class)

Applying a Template to a Class in the Model

A template defines a number of members that typically appear in a
certain type of class—that is, a template describes a certain class
stereotype. The default Visual Basic class stereotype is Class Module
which means that Rational Rose by default produces a class module
for a new class.
116 Rational Rose 2000e, Using Rose Visual Basic

Applying a Template to a Class in the Model
If you want a class to be generated as something other than class
module in Visual Basic, you must apply a template to the class before
you generate code for it.

Applying Another Template to a Class BEFORE Generating
Code
1. If Visual Basic is not the default language in Rational Rose, which

you specify on the Notation tab of the Options dialog box, the class
must first be assigned to a component that has Visual Basic as
language.

2. Open the Model Assistant for the class.

Note: You can also change the stereotype of a class in the Class
Specification but the corresponding template is not applied until you
open the class in the Model Assistant or generate code for the class.

3. Select the appropriate template in the Stereotype box on the Class
tab. The Model Assistant updates the class as follows:

❑ Removes all unselected template members.

❑ Adds all members that are defined by the new template.

❑ Adjusts any members that appear both in the class and in the
new template. Those members get the required parameters and
types from the new template.

❑ Leaves unchanged all members that appear only in the class.

Also, Rational Rose imports any type libraries that the new
template is dependent upon.

4. Depending on the stereotype (template) a pre-defined set of
standard members defined by the template may be applied to the
class. Select the check box next to the template members that you
want the class to have and clear those members that the class
should not have.

For example, for a class module you can specify whether to include
a Class_Initialize and a Class_Terminate method by selecting the
check box next to those methods.

Note: You can later remove a template member from the class, for
example by clearing the check box next to the member in the Model
Assistant. However, the template members must conform to the template
where they are defined, so you cannot change the name or the
specification of a template member for a class.
Rational Rose 2000e, Using Rose Visual Basic 117

Chapter 7 Modeling Visual Basic Classes
Applying Another Template to a Class AFTER Code Has
Been Generated

To apply another template of the same implementation type:

Once you have generated a class you cannot alter its implementation
type in Rational Rose. For example, you cannot apply the Module
template to a Class Module. However, you can apply another class
module template, for example ADO Class, to a class with the Class
Module template currently assigned. To do that, see Applying Another
Template to a Class BEFORE Generating Code.

To alter the implementation type of a class:

To change a class module into a module, follow these steps:

1. Create a module in the Visual Basic project.

2. Copy the methods and properties from the class module into the
new module.

3. Delete the class module in the Visual Basic project.

4. Reverse engineer the changes into the model.

To add members from another template:

You can also add members from another template to a class by
temporarily applying another template. To add collection class
methods to an "ADO Class", follow these steps:

1. Open the Model Assistant for the class and select Collection in the
Stereotype box.

2. Select the template members that you want the class to have.

3. Switch back to the original stereotype.

Inserting Debug Code for All New Classes

Visual Basic specifies two predefined methods for creating,
terminating, and debugging class instances:

� Class_Initialize, which is called when an object is constructed.

� Class_Terminate, which is called before the object is destructed.
118 Rational Rose 2000e, Using Rose Visual Basic

Inserting Debug Code for All New Classes
You can instruct Rational Rose Visual Basic to include debug code in
the default bodies of new Class_Initialize and Class_Terminate
methods. The debug code is only applicable to class modules. These
two methods, including standard debug code, are added to all new
classes that correspond to class modules in the code if the Generate
debug code option in the Visual Basic Properties dialog box is selected.

To insert debug code into all new Class_Initialize and
Class_Terminate methods:

1. Open the Visual Basic Properties dialog box.

2. Select the Generate debug code option and click OK.

From now on, the default body of each new Class_Initialize and
Class_Terminate method will contain debug code. When you later
generate code for the class, Rational Rose generates the following
skeleton code for the Class_Initialize and Class_Terminate methods
into the class module:

Private mlClassDebugID As Long

Private Sub Class_Initialize()
mlClassDebugID = GetNextClassDebugID()
Debug.Print "’" & TypeName(Me) & "’ instance "
& mlClassDebugID & " created"

End Sub

Private Sub Class_Terminate()
Debug.Print "’" & TypeName(Me) & "’ instance "
& CStr(mlClassDebugID) & " is terminating"

End Sub

Public Property Get ClassDebugID()
ClassDebugID = mlClassDebugID

End Property

Rational Rose also creates a logical package called Debug, and adds it
to the model. This package contains a class utility,
modClassIdGenerator, which is generated as a module in the code. All
classes containing debug code will have a dependency relationship
with that class utility.
Rational Rose 2000e, Using Rose Visual Basic 119

Chapter 7 Modeling Visual Basic Classes
If you have several Visual Basic components in the same model, the
same modClassIdGenerator module will automatically be assigned to
all those components, and the corresponding Visual Basic projects will
include the same .bas file.

To remove the ClassDebugID property for a class:

1. Open the Model Assistant for the class.

2. In the Properties folder, clear the ClassDebugID property.

3. Select the class, and click the Template tab.

4. Select False in the value field for the DebugCode parameter.

To remove generated debug code in the Class_Terminate and
Class_Initialize methods for a class:

Remove the code manually in Visual Basic.

Modeling Visual Basic Forms

You can create forms in the model and generate code for them but you
cannot use Rational Rose to design the appearance of the form.
Rational Rose can generate the form itself, standard members, user-
defined members, and event procedures, but not the controls.

To model, generate, and design a Visual Basic form:

1. Create a Visual Basic class in the model and give it the stereotype
Form.

2. Open the Model Assistant for the form. Click the “+” sign next to
the form’s name in the left list, and select the standard members
that the form should have.

3. Generate the form into a Visual Basic project by updating the
Visual Basic project with model changes or generating a new
Visual Basic project from the model. See chapter 4.

4. Design the form in Visual Basic by adding controls to it.

5. Make sure that the Import all references option in the Visual Basic
Component Properties dialog box is selected. Then update the
model with the code changes. The Model Update Tool imports the
type libraries containing the used controls into the model and adds
relationships between the form and its controls.

6. Open the Model Assistant for the form in Rational Rose.
120 Rational Rose 2000e, Using Rose Visual Basic

Modeling Visual Basic Web Classes
7. Open the Controls folder. For each control, subscribe to the
appropriate events. See the section Subscribing to Events in this
chapter.

8. Update the Visual Basic project with the latest changes. See the
section Updating an Existing Visual Basic Project with Model
Changes in chapter 4.

Modeling Visual Basic Web Classes

You can create Visual Basic web classes and web items in the model
and generate code for them.

To create a Visual Basic web class:

1. Create a Visual Basic class in the model.

2. Open the Model Assistant for the class and select WebClass in the
Stereotype box.

3. Select the standard members of the web class.

4. Create web items on the class (see To add a web item to a web
class).

5. Generate the web class into a Visual Basic project by updating the
Visual Basic project with model changes or generating a new
Visual Basic project from the model.

To add a web item to a web class:

1. Open the web class in the Model Assistant.

2. Right-click the web class or the WebItems folder in the left list, and
click New Custom WebItem or New Template WebItem. The Model
Assistant inserts a new web item under the WebItems statements
folder.

3. Edit the default name in the list.

4. Add events to the web item (see To add an event to a web item).

After exiting the Model Assistant, you can view the new web items in
the model by expanding the web class in the browser. Or, open the
Class Specification for the web class and click the Nested tab.

To add an event to a web item:

1. Open the web class in the Model Assistant.
Rational Rose 2000e, Using Rose Visual Basic 121

Chapter 7 Modeling Visual Basic Classes
2. Expand the WebItems folder in the left list.

3. Right-click the web item and click New Event.

4. Edit the event’s default name in the list and specify any
implementation details on the displayed tabs.

Creating User-Defined Collection Classes

By default, Rational Rose Visual Basic assigns the standard collection
class, called Collection, to new classes in the model. For collections
with more complex behavior, you may want to use a user-defined
collection class. This section explains how to create a user-defined
collection class in the model and how to transform an existing class
into a collection class.

For more information about collection classes, please refer to the
section Collection Classes in chapter 2.

Creating a New User-Defined Collection Class as a Collection of an
Existing Class

To create a collection class as a collection of another class:

1. Right-click the class of which you want to create a collection—for
example Orderrow—and click Model Assistant.

2. On the Class tab, give the new collection class a name in the
Collection Class box. For example, Orderrows.

3. Click OK.

The following happens:

� A collection class with the specified name and the stereotype
Collection is created in the model. The new class is initiated it with
the standard collection methods—add, item, remove, count, and
enum. The return type of the Property Get Item() procedure is
determined by the selected class—that is, Orderrow in the above
example.
122 Rational Rose 2000e, Using Rose Visual Basic

Creating User-Defined Collection Classes
� A dependency relationship with the stereotype Collection is created
between the new collection class and the selected class (Figure 51).

Figure 51 A Dependency Is Created when Creating a Collection
Class

Note: If you want the dependency relationship to appear on a
diagram you must add it to the diagram by clicking Query > Filter
Relationships and selecting the Dependency option.

� All associations with unbounded multiplicity—n, *, 0..n, 0..*, 1..n,
or 1..*—between the selected class and other classes will be moved
to the new collection class. Note, however, that the associations are
not moved until you open the Model Assistant or generated code
from the associated classes.

For example, in the following picture, the association between
Order and Orderrow is moved to Orderrows when you open the
Model Assistant or generate code from Order.

Figure 52 Associations with Unbounded Multiplicity Are Moved to
the New Collection Class

The next time you generate code from the model, select the new
collection class to create it in the corresponding Visual Basic project as
well.
Rational Rose 2000e, Using Rose Visual Basic 123

Chapter 7 Modeling Visual Basic Classes
Transforming an Existing Class into a Collection Class

To transform an existing class into a collection class:

1. Right-click the new class and click Model Assistant. (You may need
to assign the class to a Visual Basic component first.)

2. In the Stereotype box on the Class tab, select Collection.

3. By default, the collection class’s standard methods—for example,
Property Get Item()—will refer to an item of the type Variant. In
order to have the collection class' default methods to refer to a
specific class instead, enter the name of that class as the value of
the CollectionOf parameter on the Template tab.

4. Under the Properties and Methods folders, select and clear the
standard properties and methods that you want the collection class
to have.

5. Click OK.

Deleting a User-Defined Collection Class

To delete a user-defined collection class from the model:

1. Select the collection class.

2. Click Edit > Delete from Model.

The next time you generate code from the model, the Code Update Tool
removes the collection class from the corresponding Visual Basic
project as well.

Specifying Implements Constructs

Under the Implements Classes folder, you can find all classes with
which the current class has generalize or realize relationships. For the
following generalization relationship:

the Model Assistant displays:
124 Rational Rose 2000e, Using Rose Visual Basic

Specifying Implements Constructs
As you can see, Rational Rose Visual Basic generates an implements
construct for each one of the implemented classes into the class
module of the current class.

You cannot add or remove implemented classes in the Model Assistant.
However, you can exclude the delegation class object from the class
and the dispatching code from the implemented methods for
generalization relationships. This is preferable if the delegation class is
defined in a type library without code, or if the class is supposed to
provide its own variants of the implemented methods. You can also
specify if the full name of the implemented class should be used in the
generated code.

Note: If you change the name of the implemented class, for example if
you change A to X in the above example, the Model Assistant or code
generator creates new delegation methods with the new name in the
client class (X_Method1 and X_Method2). Note, however, that the
existing implemented methods are not automatically deleted.

To exclude the delegation class object from a class:

1. Open the Model Assistant for the class.

2. Open the Implements Classes folder and the implemented class—
for example, A above.

3. Clear the check box next to the delegation object—for example,
mAObject.

4. Click Yes in the displayed dialog box.

5. Click OK. Rational Rose will not generate a delegation object
declaration and the dispatching method implementations into the
class module of the current class.

Note: A generalization relationship generates a delegation object and
delegation code in the implemented methods by default. Thus, if you do
not want the delegation code, it is recommended that you use the realize
relationship instead, which does not generate any delegation code.
Rational Rose 2000e, Using Rose Visual Basic 125

Chapter 7 Modeling Visual Basic Classes
To use the full name, including the component name, of an
implemented class:

1. Open the Model Assistant for the class that implements the other
class.

2. Select the implemented class under the Implements Classes folder.

3. Select Full Name on the displayed Implements Class tab.

4. Click OK. Rational Rose Visual Basic will use the full name of the
implemented class in the generated code—for example, Implements
MyComponent.MyClass.

For more information about the generalize and realize relationships,
see the Generalization Relationships and Realize Relationships sections
in chapter 2.

Creating Declare Statements

A method in a class or class utility can be declared as a reference to a
DLL library procedure; that is, it can be declared as a Declare Sub or
Declare Function statement. For more information, see the section
Declare Methods in chapter 2.

To create a Declare statement on a class:

1. Open the Model Assistant for the class.

2. Right-click the class or the Declare statements folder in the left list,
and click New Declare.

3. The Model Assistant inserts a Declare statement under the Declare
statements folder. Edit the default name in the list.
126 Rational Rose 2000e, Using Rose Visual Basic

Creating Declare Statements
4. Specify any implementation details on the displayed Declare tab:

Figure 53 Model Assistant—Declare Tab

On the Declare tab, you can specify the following implementation
details about a Declare statement:

❑ Access Level—Defines whether to generate a Public or Private
Declare statement.

❑ Type—Specifies the return type of a Declare Function
statement. If the Type box is empty, a Declare Sub declaration is
generated.

❑ Library—Specifies the name of the DLL that contains the
declared method. The value must be a string literal.

❑ Alias—Specifies the real name of the procedure, if you are using
another name than the DLL. The value must be a string literal.

❑ Documentation—A textual description of the Declare statement.
The text can also be found in the Documentation box of the
Method Specification. When generating code for the class, the
text is inserted as a code comment to the Declare statement.

5. Create any parameters on the Parameters tab. See the section
Creating Method Parameters in this chapter.
Rational Rose 2000e, Using Rose Visual Basic 127

Chapter 7 Modeling Visual Basic Classes
Creating Event Statements

A method with the stereotype Event corresponds to an Event statement
in Visual Basic.

To create an Event statement on a class or class utility:

1. Open the Model Assistant for the class.

2. Right-click the class or the Events folder in the left list, and click
New Event.

3. The Model Assistant inserts an Event statement under the Events
folder. Edit the default name in the list.

4. Optionally, enter a textual description of the Event in the
Documentation box on the Event tab.

5. Create any parameters on the Parameters tab for the Event. See the
section Creating Method Parameters in this chapter. Note, however,
that the Optional, ParamArray, and Initial Value options are
unavailable for parameters on Events.

To create an Event statement on a web item:

See Modeling Visual Basic Web Classes in this chapter.

Subscribing to Events

For roles that are declared with the WithEvents option and for controls
(that is, associations with the stereotype Contained Control or
aggregation relationships) the Model Assistant lists all events that are
defined in the associated class or control.
128 Rational Rose 2000e, Using Rose Visual Basic

Subscribing to Events
For example, the dlg_Order form in Figure 54 has an aggregation
relationship with a CommandButton control in the model. Among the
events that are defined in CommandButton, dlg_Order subscribes to
the KeyPress event.

Figure 54 The dlg_Order Form Subscribes to the KeyPress Event
Defined in the CommandButton Control

To specify that a user interface item, such as a form called A, should
subscribe to certain events in a control, B:

1. Make sure there is an association relationships with the stereotype
Contained Control or an aggregation relationship between class A
and B.

2. Open the Model Assistant for class A.

3. Under the Controls folder, open control B. All events that are
defined in B are displayed.

4. Select the check box next to the events that class A should
subscribe to.
Rational Rose 2000e, Using Rose Visual Basic 129

Chapter 7 Modeling Visual Basic Classes
To specify that class module, called A, should subscribe to certain
events in another class, B:

1. Make sure there is an association or aggregation relationship
between class A and B. The role on class B’s end of the association
must also be navigable.

2. Open the Model Assistant for class A.

3. Under the Properties folder, select the data member that
corresponds to role B.

4. On the Data Member tab, select WithEvents. The Model Assistant
then displays all events that are defined in class B in the left list.

5. Select the check box next to the events that class A should
subscribe to.

When generating code for the class, Rational Rose Visual Basic inserts
a Sub or Function procedure for each event to which the class
subscribes.

Creating Enums and Types

An Enum or Type declaration in a Visual Basic class corresponds to a
class with the stereotype Enum or Type nested within the containing
class in the model. An Enum or Type declaration can have data
members which correspond to properties on the Enum or Type class in
the model.

To create an Enum or Type declaration on a class:

1. Open the Model Assistant for the class.

2. Right-click the class or the Enums or Types folder in the left list,
and click New Enum or New Type.

3. The Model Assistant inserts an Enum or Type declaration under
the Enums or Types folder. Edit the default name in the list.
130 Rational Rose 2000e, Using Rose Visual Basic

Creating Enums and Types
4. Specify any implementation details on the displayed Enum or Type
tab:

Figure 55 Model Assistant—Enum and Type Tab

On the Enum and Type tabs you can specify the following
implementation details about an Enum or Type declaration:

❑ Access Level—Defines whether to generate a Public or Private
Enum or Type declaration.

❑ Documentation—A textual description of the Enum or Type
declaration. The text can also be found in the Documentation
box of the Class Specification for the corresponding nested
class. When generating code for the enclosing class, the text is
inserted as a code comment to the Enum or Type declaration.

5. To create data members on the Enum or Type declaration, right-
click on the Enum or Type declaration and click New Member. The
Model Assistant inserts a member under the selected Enum or
Type declaration. Edit the default name in the list. You can specify
implementation details for a selected member (see the section
Creating Properties in this chapter.) Note, however, that some data
member options are not available for Enum and Type members.
Rational Rose 2000e, Using Rose Visual Basic 131

Chapter 7 Modeling Visual Basic Classes
6. After exiting the Model Assistant, you can view the new Enum or
Type class in the model by expanding the enclosing class in the
browser. Or, open the Class Specification for the enclosing class
and click on the Nested tab:

Figure 56 Enum and Type Classes Are Shown on the Nested
Tab of the Enclosing Class’s Specification

Creating Constants

A constant corresponds to a property in the model, which has an initial
value assigned.

To create a constant on a class:

1. Open the Model Assistant for the class.

2. Right-click the class or the Constants folder in the left list, and
click New Constant.

3. The Model Assistant inserts a new constant under the Constants
folder. Edit the default name in the list.
132 Rational Rose 2000e, Using Rose Visual Basic

Creating Properties (Attributes)
4. Specify any implementation details on the displayed Constant tab:

Figure 57 Model Assistant—Constant Tab

On the Constant tab, you can specify the following implementation
details about a constant:

❑ Access Level—Defines whether to generate a Public or Private
Constant declaration.

❑ Type—Specifies the type of the generated constant.

❑ Initial Value—Specifies the initial value of the generated
constant. You must specify the initial value in order to generate
a constant.

❑ Documentation—A textual description of the constant. The text
can also be found in the Documentation box of the Property
Specification. When generating code for the class, the text is
inserted as a code comment to the constant.

Creating Properties (Attributes)

A property in Visual Basic corresponds to a property or a navigable
association role in the model. Except for Rational Rose’s standard ways
to create properties, you can also use the Model Assistant to view and
create them.
Rational Rose 2000e, Using Rose Visual Basic 133

Chapter 7 Modeling Visual Basic Classes
The Model Assistant displays each property as a data member together
with any associated property procedures. For example, in Figure 58,
the property OrderId in the model corresponds to a data member,
mOrderId, with which a property Get and a property Let procedure are
associated.

Figure 58 OrderId Corresponds to a Data Member, mOrderId, and
Two Property Procedures

To create a property on a class:

1. Open the Model Assistant for the class.

2. Right-click the class or the Properties folder in the left list, and
click New Property.

3. The Model Assistant inserts a new property under the Properties
folder. Edit the default name in the list.

4. Select the corresponding data member and specify any
implementation details about it on the displayed Data Member tab:

Figure 59 Model Assistant—Data Member Tab
134 Rational Rose 2000e, Using Rose Visual Basic

Creating Properties (Attributes)
On the Data Member tab, you can specify the following
implementation details about a data member:

❑ Access Level—Defines whether to generate a Public or Private
data member declaration.

❑ Subscript—For a property of the type array, the size of the
generated array is defined here. To generate correct code you
must use Visual Basic syntax for array bound values, for
example 1 To 10 or 1 To MaxLen. A dynamic array is declared
by entering ().

❑ Type—Specifies the type of the generated data member.

❑ Should be Generated—Specifies whether to generate Visual
Basic code for this role or property.

❑ Full Name—Specifies if the full name of the referenced class,
including the name of the component to which the class is
assigned, should be used in the data member declaration for the
role. The full name—for example OrderSys.Customer—is needed
to generate correct code for class names that are defined in
several components.

❑ New—Specifies if Rational Rose Visual Basic should add the New
keyword to the data member declaration.

❑ WithEvents—Specifies if Rational Rose Visual Basic should add
the WithEvents keyword to the data member declaration. If this
option is selected for a role, any events that are defined in the
associated class are listed under the data member. To specify
that the current class should subscribe to a certain event, select
the check box next to that event. See the section Subscribing to
Events.

❑ Documentation—A textual description of the property. The text
can also be found in the Documentation box of the Property
Specification. When generating code for the class, the text is
inserted as a code comment to the property.

Note: The New and WithEvents options are only available for data
members that correspond to roles in the model and the Type box is
only available for data members corresponding to properties in the
model. Also, the Subscript, New, or WithEvents option may not be
valid with the current settings. For more information please refer to
the Visual Basic documentation.
Rational Rose 2000e, Using Rose Visual Basic 135

Chapter 7 Modeling Visual Basic Classes
5. For private properties, create any necessary Property Get, Set, or
Let procedures. See the Creating Property Get, Let, and Set
Procedures section below.

For more information about properties and associations roles, see the
sections Properties and Association Relationships in chapter 2.

Creating Property Get, Let, and Set Procedures

A property procedure corresponds to a method in the model with the
stereotype Get, Set, or Let. Thus, you can create a property procedure
for a class by creating a method of one of those stereotypes in the Class
Specification. However, by using the Model Assistant you can create
property procedures for a specific property or role of a class.

The Model Assistant uses the name of a property procedure determine
to which property it belongs to. For example, in Figure 58, the property
Get procedure for the mOrderId data member is called OrderId(). If you
rename a property, the Model Assistant renames the corresponding
data member and property procedures accordingly.

To avoid name clashes between the data member and the property
procedure names, the Model Assistant adds a prefix “m” to the data
member when creating a property procedure. For example, the Model
Assistant renames the data member OrderId in Figure 59 to mOrderId
if you associate a property procedure with that property. To use a
prefix other than the default prefix “m,” please refer to the section
Modifying the Default Data Member Prefix in this chapter.

Creating a Get, Set, or Let Procedure for a Property
1. Open the Model Assistant for the class that has the property or role

for which you want to create property procedures.

2. Under the Properties folder, open the property in question.
136 Rational Rose 2000e, Using Rose Visual Basic

Creating Property Get, Let, and Set Procedures
3. Select the check box next to the property procedure(s) that you
want to associate with the property, such as Get and Set in the
picture below. Note that only those property procedures that are
relevant for a data member of the current type are available.

Figure 60 Creating a Property Procedure Adds an “m” to the Data
Member Name

4. Select the new property procedure, and take a look at the code to
be generated for it in the Default Body box. As you can see, the
generated property procedure simply copies the passed parameter
to the data member or returns the value of the data member.

5. Specify any implementation details about the property procedure.
See the Method tab and Method Parameters tab in the Creating
Methods section in this chapter.

For more information about property procedures, please refer to the
section Property Get/Set/Let Procedures in chapter 2.

Modifying the Default Data Member Prefix

If you associate a property procedure to a property or role, the Model
Assistant adds an “m” in front of the name of the property or role to
avoid a name collision with the property procedure.
Rational Rose 2000e, Using Rose Visual Basic 137

Chapter 7 Modeling Visual Basic Classes
To instruct the Model Assistant to add another prefix than “m”:

1. Open the Visual Basic Properties dialog box.

2. In the Data member prefix box enter the prefix that you want to add
to data members.

3. Click OK. From now on, all properties or roles to which you assign
property procedures will get the new prefix.

Creating Methods (Operations)

Creating a Method

To create a Sub or Function method on a class:

1. Open the Model Assistant for the class.

2. Right-click the class or the Methods folder in the left list, and click
New Method.

3. The Model Assistant inserts a new method under the Methods
folder. Edit the default name in the list.

4. Specify any implementation details on the displayed Method tab:

Figure 61 Model Assistant—Method Tab
138 Rational Rose 2000e, Using Rose Visual Basic

Creating Methods (Operations)
On the Method tab, you can specify the following implementation
details about a method:

❑ Access Level—Defines whether to generate a Public, Friend, or
Private method.

❑ Type—Specifies the return type of a Function declaration. If this
box is empty, the method is mapped to a Sub declaration in
Visual Basic.

❑ Static—Specifies if Rational Rose Visual Basic produces the
method with the Static keyword. This indicates that the function
procedure's local variables are preserved between calls. This
option does not affect variables that are declared outside the
function procedure, even if they are used in the procedure.

❑ Replace Existing Body—Specifies whether to always replace the
body of a method with the contents of the Default Body box
when updating the code for this class. Note that Rational Rose
Visual Basic then overwrites the method’s current body.

❑ Default Body—Provides a preview of the code to be inserted into
the body of the method, for methods that are generated for the
first time. (See also the Replace Existing Body option.) To modify
the default body, see the section Modifying the Default Body of a
Method in this chapter.

❑ Documentation—A textual description of the method. The text
can also be found in the Documentation box of the Method
Specification. When generating code for the class, the text is
inserted as a code comment to the method. Also, for public
classes, the text is used as a description of each method in the
type library.

5. Create the method’s parameters on the Parameters tab; see the
section Creating Method Parameters below.

For more information about user-defined methods, please refer to
Methods in chapter 2.

Creating Method Parameters

Method parameters are created with a name and a type. The type
definition can be omitted, implying the use of a Variant data type. You
can also define an initial value of each parameter. Those values are
directly mapped to default parameter values in the Visual Basic code.
Also, you can specify the parameter passing mechanism for each
parameter.
Rational Rose 2000e, Using Rose Visual Basic 139

Chapter 7 Modeling Visual Basic Classes
To create parameters to a method in the Model Assistant:

1. Select the method in the left list and click on the Parameters tab.

2. For each parameter, right-click in the parameters list at the bottom
of the tab and click Add Parameter on the displayed menu.

3. Specify any implementation details about each parameter, by
selecting the parameter and using the available options on the
Parameters tab:

Figure 62 Model Assistant—Method Parameters Tab

On the Parameters tab, you can specify the following
implementation details about each parameter:

❑ Pass—Specifies the parameter passing mechanism for the
selected parameter. You do not have to specify the passing
mechanism in Rational Rose. You can do it later, in Visual
Basic, after you have generated the code. For more information
about parameter passing, see the section Method Parameter
Passing in chapter 2.

❑ Type—Specifies the type of the selected parameter.

❑ Initial Value—Specifies that the selected parameter is Optional
and has the given initial value.

❑ Optional—Specifies if the selected parameter is optional. (This
option is unavailable if the ParamArray option is selected.)
140 Rational Rose 2000e, Using Rose Visual Basic

Creating Methods (Operations)
❑ ParamArray — Specifies if the selected parameter represents an
indefinite number of parameters. This option cannot be selected
if the ByVal, ByRef, or Optional option is selected. Also, this
option can only be used when the parameter is a Variant type
and only for the last parameter.

4. To rearrange the order between the parameters, use the arrow
buttons.

Adding Error-Handling Code

Module methods often define exception handling in a macro-like way.
The exception handler is declared in the first line of the method and the
exception handler, including calls to an error or event handler, are
added at the end of the method.

You can instruct Rational Rose to automatically insert error-handling
code into all new methods. Then each new method will get a default
body with the following error-handling code when you generate code:

On Error GoTo ErrorHandler
...
ErrorHandler:

Call RaiseError(MyUnhandledError,"method_name
method_type")

Also, Rational Rose creates a logical package in the model, called
Debug, containing a class utility, modErrorHandling, which is
generated as a module in the code. All classes containing debug code
will have a dependency relationship with that class utility.

If you have several Visual Basic components in the same model, the
same modErrorHandling module will automatically be assigned to all
those components, and the corresponding Visual Basic projects will
include the same .bas file.

To add error-handling code to all new methods:

1. Open the Visual Basic Properties dialog box.

2. Select the Generate error handling code option and click OK.

To add error-handling code to new methods on a specific class:

1. Open the Model Assistant for the class and click the Template tab.

2. Select True in the value field for the ErrorHandling parameter.
Rational Rose 2000e, Using Rose Visual Basic 141

Chapter 7 Modeling Visual Basic Classes
This overrides the value of the Generate error handling code option in
the Visual Basic Properties dialog box.

To remove generated error-handling code for a class:

Remove the code manually in Visual Basic.

Adding "Your Code Goes Here..." Comments

You can instruct the code generator to generate comments indicating
where you need to add code in a method. The following code comment
is then inserted into the default body of the method:

Public Sub NewMethod()
'your code goes here...

End Sub

The comment is inserted only on methods that are generated for the
first time.

To add “Your code goes here...” comments to new methods on all
classes:

1. Open the Visual Basic Properties dialog box.

2. Select the Generate “Your code goes here...” comments option and
click OK.

To add “Your code goes here...” comments to new methods on a
specific class:

1. Open the Model Assistant for the class and click the Template tab.

2. Select True in the value field for the Comments parameter.

This overrides the value of the Generate “Your code goes here...”
comments option in the Visual Basic Properties dialog box.

Using Friend Methods in Sequence Diagrams

Friend methods in Visual Basic correspond to protected methods in
Rational Rose. To be able to select a protected method when assigning
a method to a message in a sequence diagram, the calling class must
be defined as a "friend" to the class with the protected method.
142 Rational Rose 2000e, Using Rose Visual Basic

Modifying the Default Body of Methods
To define a class as a friend using a dependency relationship:

1. Create a dependency relationship between the two classes,
pointing from the calling class to the other class.

2. Open the Dependency Relationship Specification.

3. On the General tab, select the Friendship required option.

Note: If there is an association relationship between the two classes
already, open the Association Relationship Specification and select the
Friend option on the Detail tab of the called class’s role. If you do not
want to create any relationship, you can simply type the name of the
protected method on the message in the sequence diagram.

Modifying the Default Body of Methods

When you create a new method (operation) on a Visual Basic class in
the model, the Model Assistant automatically attaches a method body
with default code to that method. You can preview and modify the
suggested method body in the Default Body box on the Method tab in
the Model Assistant.

The Default Body

The default body contents are defined by the template that is currently
attached to the class. The contents are different for different kinds of
methods. For example, the default body for a Public Sub method,
mySub, of a Class Module contains the following code comments and
source code:

' <Documentation box>
Public Sub MySub()

' <Preconditions tab>
' <Semantics tab>

On Error GoTo ErrorHandler
' ## Your code goes here…
' <Postconditions tab>
Exit Sub

ErrorHandler:
Call RaiseError(MyUnhandledError, "MySub Sub")

End Sub
Rational Rose 2000e, Using Rose Visual Basic 143

Chapter 7 Modeling Visual Basic Classes
The exact contents for a specific method are determined by the value
of the class’s template parameters and the information in the Method
Specification. For example:

� The “On Error...” and “ErrorHandler:...” statements are inserted
only if the ErrorHandling template parameter for the class is True;
see Adding Error-Handling Code in this chapter.

� The “Your code goes here...” comment is inserted only if the
Comments template parameter is True; see Adding “Your Code
Goes Here...” Comments in this chapter.

� The code comments and source code in <...> are only present if
the corresponding Class Specification fields—Documentation box,
Semantics tab, Postconditions tab, and Preconditions tab—contain
any information.

Thus, if the Preconditions, Semantics, and Postconditions tabs are
empty in the Method Specification, but ErrorHandling and Comments
are True, the default body for MySub above would look like:

‘ The MySub method...
Public Sub MySub()

On Error GoTo ErrorHandler
' ## Your code goes here ...
Exit Sub

ErrorHandler:
Call RaiseError(MyUnhandledError, "MySub Sub")

End Sub

A template can have additional template parameters, which insert
different default body code depending on the parameter values; see the
documentation of each template. The template parameters for a class
are available on the Template tab in the Model Assistant for the class.
For information on how to change the value of a template parameter,
see Changing the Value of a Template Parameter in this chapter.

The default body is inserted only the first time code is generated for a
method. However, if the Replace Existing Body option on the Method
tab in the Model Assistant is selected, Rational Rose Visual Basic
inserts the default body each time the method is generated.

If you are not satisfied with the method body suggested by default for
a method, you can edit the body before generating the Visual Basic
code; see Modifying the Default Body of a Method in this chapter.
144 Rational Rose 2000e, Using Rose Visual Basic

Modifying the Default Body of Methods
Note: The code generator does not wrap code comments when inserting
them into the Visual Basic project.

Modifying the Default Body of a Method

If you are not satisfied with the default body for a method (operation),
you can modify the code in the model. This section explains how to
modify the default body before or after generating Visual Basic code for
the method.

Some templates also provide parameters that control the contents of
the default bodies. For more information, see the following sections in
this chapter:

� Adding Error-Handling Code

� Adding “Your code goes here…” Comments

� Changing the Value of a Template Parameter for a Class

To modify the method body BEFORE generating any code for the
method:

1. Open the Model Assistant for the class in which the method is
defined.

2. Select the method in the left list.

3. On the Method tab, click the button above the Default Body box.
The default body becomes editable.

4. Modify the default body by removing, adding, or changing the code.

5. When you generate code for the class, your code is inserted into the
method’s body in Visual Basic.

To modify the method body AFTER code has been generated for
the method:

You can edit a generated method body directly in the Visual Basic
project, but in order to generate a new default body from Rational Rose,
follow these steps:

1. Open the Model Assistant for the class in which the method is
defined.

2. Select the method in the left list.

3. On the Method tab, click the button above the Default Body box.
The default body becomes editable.
Rational Rose 2000e, Using Rose Visual Basic 145

Chapter 7 Modeling Visual Basic Classes
4. Modify the default body by removing, adding, or changing the code.

5. Select the Replace Existing Body option and click OK.

6. Generate code for the class. Rational Rose replaces the code body
for the method with the new default body.

7. If you leave the Replace Existing Body option selected, the code
body for the method is replaced each time you generate code for the
class. If you do not want this to happen————for example, if you want
to edit the method body in Visual Basic————clear Replace Existing
Body for the method before generating code again.

To revert to the default body defined by the template:

1. Open the Model Assistant for the class in which the method is
defined.

2. Select the method in the left list.

3. On the Method tab, click the button above the Default Body
box. The Model Assistant overwrites the default body with the code
body defined by the template currently attached to the class.

Changing the Value of a Template Parameter for a Class

When you select the class node in the Model Assistant, a Template tab
is displayed. This tab shows the class’s template parameters, which
control:

� The contents of the generated default body for the class’s methods.

For example, the ErrorHandling parameter defines whether error-
handling code should be added to the method bodies.

� What standard members the class should have.

For example, the DebugCode parameter defines whether to add
members that are needed to enable debugging of the generated
class.

The template parameters available for a specific class depend on the
template that is attached to the class. The parameters in Table 14 are
available for most classes. For information about other template
parameters, refer to the documentation of the template.
146 Rational Rose 2000e, Using Rose Visual Basic

Changing the Value of a Template Parameter for a Class
Table 14 Default Body Variables

Variable Meaning and value

CollectionOf This template parameter is used only for collection
classes. It specifies the name of the item class. The
name is used in the collection class’s standard
methods to refer to an item of the correct type.

The default value is the name of the class with
which the collection class has a dependency
relationship. If there is no dependency
relationship, the default value is Variant. The value
can be modified in the Model Assistant on the
Template tab for the class.

Comments This template parameter, which can be True or
False, specifies whether to add "Your code goes
here..." comments to the class' methods.

The default value is determined by the Generate
“Your code goes here...” comments option in the
Visual Basic Properties dialog box, but can be
changed for a specific class on the Template tab in
the Model Assistant.

DebugCode This template parameter, which can be True or
False, specifies whether to add debug code to the
class's Initialize and Terminate events.

The default value is determined by the Generate
debug code option in the Visual Basic Properties
dialog box, but can be changed for a specific class
on the Template tab in the Model Assistant.

ErrorHandling This template parameter, which can be True or
False, specifies whether to add error-handling
code to the class's methods.

The default value is determined by the Generate
error handling code option in the Visual Basic
Properties dialog box, but can be changed for a
specific class on the Template tab in the Model
Assistant.
Rational Rose 2000e, Using Rose Visual Basic 147

Chapter 7 Modeling Visual Basic Classes
To change the value of a template parameter for a class:

1. Open the Model Assistant for the class, and click the Template tab.

2. Type the new value for the parameter you want to change. For a
conditional parameter, such as Comments, you should select either
True or False.

Note that the new value affects the default body for all methods in the
class. For example, if you change the Comments parameter from False
to True, the default bodies for all methods in the class will include a
“Your code goes here...” comment.

To revert to the default value of a parameter:

Right-click on the parameter and click Revert on the displayed menu.

To change the value of a template parameter for all classes:

Some template parameters (Comments, DebugCode and ErrorHandling)
have a default value, which can be changed in the Visual Basic
Properties dialog box. The change affects all classes and methods for
which you have not yet generated code. For more information, see the
following sections in this chapter:

� Inserting Debug Code

� Adding Error-Handling Code

� Adding “Your code goes here…” Comments

Customizing the Default Behavior of the Model Assistant

The Visual Basic Properties Dialog Box

You can customize the code that the Model Assistant inserts by default
in the Visual Basic Properties dialog box. To open the Visual Basic
Properties dialog box, click Tools > Visual Basic > Properties.
148 Rational Rose 2000e, Using Rose Visual Basic

Customizing the Default Behavior of the Model Assistant
Figure 63 Visual Basic Properties Dialog Box—Model Assistant
Properties

The following options customize the behavior of the Model Assistant:

Generate debug code

Specifies whether to include debug code and debug members for
Initialize and Terminate events for new class modules. See the section
Inserting Debug Code for all New Classes in this chapter.

Generate “Your code goes here...” comments

Specifies whether to generate code comments indicating where you
need to add code for new methods. See the section Adding “Your Code
Goes Here...” Comments in this chapter.

Generate error handling code

Specifies whether to include error-handling code for new methods. See
the section Adding Error-Handling Code in this chapter.
Rational Rose 2000e, Using Rose Visual Basic 149

Chapter 7 Modeling Visual Basic Classes
Data member prefix

Specifies the prefix to add to the property names for properties that
have Get, Set, or Let procedures associated with them. The specified
prefix is used in the data member names to avoid name collisions with
the property procedures. The default value is “m”, which means that if
you associate a Property Get procedure to a property called Order, the
Model Assistant changes the name of the property to mOrder. See
Modifying the Default Data Member Prefix later in this chapter.
150 Rational Rose 2000e, Using Rose Visual Basic

Appendix A

Model Properties Reference

The Visual Basic Language Support add-in provides model properties
for the following kinds of model elements:

� Component Properties

� Class Properties

� Role and Property (Attribute) Properties

� Method (Operation) Properties

� Generalization Properties

For model elements without a code mapping, such as packages, there
are no model properties.

The Model Assistant lets you modify the Visual Basic model properties,
and ensures that the settings are consistent and that they will generate
correct code. The model properties of a model element are also
available on the Visual Basic tab of its specification. Note, however,
when editing the model properties in a specification, no consistency
checks are being made.

This appendix explains each model property that is provided by the
Visual Basic Language Support add-in in Rational Rose. Use this
appendix as a reference when you want to know the meaning of a
specific model property, how to use it, and the meaning of each of its
values.
Rational Rose 2000e, Using Rose Visual Basic 151

Appendix A Model Properties Reference
Model Properties for Components

Model properties for components control the correspondence between
a component and a Visual Basic project. A component has the
following model properties:

� ImportBinary

� ImportReferences

� ProjectFile

� QuickImport

� UpdateCode

� UpdateModel

ImportBinary (Component Property)

The ImportBinary model property specifies whether to import the type
library of the binary component, for example, a DLL, that is compiled
from this component. The type library is imported the next time you
update the model from the Visual Basic project that is associated with
this component. This option is not relevant for Standard EXE
components.

The value of the ImportBinary model property can be modified on the
References tab of the Visual Basic Component Properties dialog box, as
well as on the Visual Basic tab in the Component Specification.

ImportReferences (Component Property)

The ImportReferences model property specifies whether to import the
type library of the COM components that are referred to from the Visual
Basic project associated to this component. By default, the Model
Update Tool imports only the interface classes of the COM components,
and no properties and methods, but you can use the QuickImport model
property to specify how much of the type library you want to import.

Table 15 ImportBinary Model Property Values

Value Result

TRUE (Default) Rose imports the type library of the binary
component that is compiled from this component.

FALSE Rose does not import the type library of the binary
component.
152 Rational Rose 2000e, Using Rose Visual Basic

Model Properties for Components
The value of the ImportReferences model property can be modified on
the References tab of the Visual Basic Component Properties dialog
box, as well as on the Visual Basic tab in the Component Specification.

ProjectFile (Component Property)

The ProjectFile property specifies the project file (.vbp) for the Visual
Basic project associated with the component. When generating code for
a component, Rational Rose generates the code into the project file
specified by the ProjectFile property.

Rational Rose sets this model property automatically when generating
or reverse engineering Visual Basic code. You can assign a project to a
component in the Visual Basic Component Properties dialog box, as
well as on the Visual Basic tab in the Component Specification.

Table 16 ImportReferences Model Property Values

Value Result

TRUE (Default) Rose imports the type library of the COM
components that are referenced by the Visual Basic
project for this component.

FALSE Rose ignores any project references.

Table 17 ProjectFile Model Property Values

Value Result

An absolute file
path

Rose generates code into the specified project file, for
example:
c:\my_project\project1.vbp.
Rational Rose 2000e, Using Rose Visual Basic 153

Appendix A Model Properties Reference
QuickImport (Component Property)

If the ImportReferences model property is True, the QuickImport property
specifies whether to import properties and methods of the imported
interface classes into the model. If ImportReferences is False, the Model
Update Tool ignores the value of the QuickImport model property.

The value of the QuickImport model property can be modified on the
References tab of the Visual Basic Component Properties dialog box, as
well as on the Visual Basic tab in the Component Specification.

A virtual file path Rose transforms the virtual path (for example
$MYPATH\project1.vbp) into the corresponding absolute
path (for example c:\my_project\project1.vbp) and
generates code into that project.

project.vbp Rose generates code into the specified project file, for
example project1.vbp, in the same folder as where the
model file is located.

Nothing Rose generates code into the current open Visual Basic
project:
If the open project has the same name as the
component
or
If the component has been generated from/into that
project before.
Otherwise, Rose starts the Visual Basic application and
generates code into a new project.

Table 18 QuickImport Model Property Values

Value Result

TRUE (Default) If ImportReferences is True, Rose imports only
the interface classes, but not properties and methods, of
referenced COM components.

FALSE If ImportReferences is True, Rose imports the interface
classes, including their properties and methods, of
referenced COM components.

Table 17 ProjectFile Model Property Values

Value Result
154 Rational Rose 2000e, Using Rose Visual Basic

Model Properties for Components
UpdateCode (Component Property)

The UpdateCode property specifies whether code can be generated for
this component. If UpdateCode is set to False, the component cannot be
selected for code generation.

The value of the UpdateCode model property can be modified in the
Visual Basic Component Properties dialog box (Should be generated
option), as well as on the Visual Basic tab in the Component
Specification.

UpdateModel (Component Property)

The UpdateModel property specifies whether it is possible to update the
classes assigned to this component from code changes. If UpdateModel
is set to False, the component cannot be selected for model update.

The value of the UpdateModel model property can be modified in the
Visual Basic Component Properties dialog box (Should be updated from
Ccde option), as well as on the Visual Basic tab in the Component
Specification.

Table 19 UpdateCode Model Property Values

Value Result

TRUE (Default) You can select this component for code
generation.

FALSE You cannot select this component for code generation.

Table 20 UpdateModel Model Property Values

Value Result

TRUE (Default) You can update this component with code
changes.

FALSE You cannot update this component from code changes.
Rational Rose 2000e, Using Rose Visual Basic 155

Appendix A Model Properties Reference
Model Properties for Classes

Model properties for classes control the Visual Basic code that Rational
Rose Visual Basic produces for a class.

The following properties are available for classes:

� Instancing

� OptionBase

� OptionCompare

� OptionExplicit

� UpdateCode

� UpdateModel

Instancing (Class Property)

The Instancing model property is used to determine how classes you
define are exposed to other applications. It specifies, for example, if you
can create instances of a public class outside a Visual Basic project.
The Instancing property is only relevant for classes with the stereotype
set to Class Module.
156 Rational Rose 2000e, Using Rose Visual Basic

Model Properties for Classes
The value of the Instancing model property can be changed on the Class
tab of the Model Assistant and on the Visual Basic tab in the Class
Specification.

Restrictions on class instancing may be applied by the stereotype of the
component where a class belongs. For example, a Standard EXE
component can have only private classes.

For detailed explanations of the meaning of each value and any
restrictions, please refer to the Visual Basic documentation.

OptionBase (Class Property)

The Option Base statement in Visual Basic declares the default lower
bound for array subscripts and is used to override the default base
array subscript value of 0. The value must be either 0 or 1. The Option
Base statement has no effect on arrays within user-defined types. The
code generator inserts an Option Base statement in the Declarations
section, before any array dimension declaration.

Table 21 Instancing Model Property Values

Value Result

Private Rose makes the class visible only within a Visual Basic
project.

PublicNotCreatable Rose makes the class visible to applications outside the
project, but instantaible inside the project only.

SingleUse Refer to your Microsoft Visual Basic documentation.

GlobalSingleUse Please refer to your Microsoft Visual Basic
documentation.

MultiUse (Default) Refer to your Microsoft Visual Basic
documentation.

GlobalMultiUse Refer to your Microsoft Visual Basic documentation.
Rational Rose 2000e, Using Rose Visual Basic 157

Appendix A Model Properties Reference
The OptionBase model property lets you define the value of the Option
Base statement for each class. The value of the OptionBase model
property can be changed on the Options tab of the Model Assistant and
on the Visual Basic tab in the Class Specification.

OptionCompare (Class Property)

The Option Compare statement in Visual Basic is used to declare the
default comparison method to use when string data is compared.

The OptionCompare model property lets you define the value of the
Option Compare statement for each class. You can change the
OptionCompare model property on the Options tab of Model Assistant
and on the Visual Basic tab in the Class Specification.

OptionExplicit (Class Property)

The Option Explicit statement is used in Visual Basic to force explicit
declaration of all variables in that module. If you attempt to use an
undeclared variable name, an error occurs at Visual Basic compile
time. Rational Rose inserts an Option Explicit statement in the
Declarations section.

Table 22 OptionBase Model Property Values

Value Result

(none) (Default) Rose does not generate an Option Base statement for
the class. Thus, the Option Base for this class becomes the
default value in Visual Basic, which is 0.

0 Rose generates an Option Base 0 statement for the class.

1 Rose produces an Option Base 1 statement for the class.

Table 23 OptionCompare Model Property Values

Value Result

(none) (Default) Rose does not produce an Option Compare statement
for the class. Thus, the Option Compare becomes the default
value in Visual Basic, which is Binary.

Text Rose produces an Option Compare Text statement for the
class.

Binary Rose produces an Option Compare Binary statement for the
class.
158 Rational Rose 2000e, Using Rose Visual Basic

Model Properties for Classes
The OptionExplicit model property lets you define the value of the Option
Explicit statement for each class. The value of the OptionExplicit model
property can be changed on the Options tab of the Model Assistant and
on the Visual Basic tab in the Class Specification.

UpdateCode (Class Property)

The UpdateCode property specifies if code can be generated for this
class. If UpdateCode is set to FALSE, the class cannot be selected for
code generation. However, all association relationships referring to
such a class result in type or object variable declarations.

The value of the UpdateCode model property can be modified on the
Class tab of the Model Assistant (Should be Generated option), as well
as on the Visual Basic tab in the Class Specification.

Table 24 OptionExplicit Model Property Values

Value Result

TRUE Rose produces an Option Explicit statement for the module.

FALSE Rose does not produce an Option Explicit statement for the
module.

Table 25 UpdateCode Model Property Values

Value Result

TRUE (Default) You can generate code for this class.

FALSE You cannot select this class for code generation.
Rational Rose 2000e, Using Rose Visual Basic 159

Appendix A Model Properties Reference
UpdateModel (Class Property)

The UpdateModel property specifies if it is possible to update this class
from changes in the corresponding project item. If UpdateModel is set to
False, the class cannot be selected for model update.

The value of the UpdateModel model property can be modified on the
Class tab of the Model Assistant (Should be Updated from Code option),
as well as on the Visual Basic tab in the Class Specification.

Model Properties for Roles and Properties (Attributes)

When generating code for a class, Rational Rose Visual Basic produces
a data member for each role and property. Use the following model
properties to control the code generated for data members:

� FullName (roles only)

� New

� ProcedureID

� PropertyName

� Subscript

� UpdateCode (roles only)

� WithEvents

If the code generator discovers conflicts between these model
properties, the following priority rules are used when generating code
for a property:

Priority 1- WithEvents

Priority 2- New and Subscript

This means, for example, that if both WithEvents and New are set to
True, the property is generated as a WithEvents, and the value of the
New model property is ignored.

Table 26 UpdateModel Model Property Values

Value Result

TRUE (Default) You can update this class with code changes.

FALSE You cannot select this class to be updated from code changes.
160 Rational Rose 2000e, Using Rose Visual Basic

Model Properties for Roles and Properties (Attributes)
FullName (Role Property)

The FullName model property specifies if the full name of the referenced
class, including the name of the component to which the class is
assigned, should be used in the property declaration for a role. The full
name is needed to generate correct code for class names that are
defined in several components.

The value of the FullName model property can be modified on the Data
Member tab of the Model Assistant and on the Visual Basic tab in the
Association Specification.

New (Property or Role Property)

The New model property is used to specify whether Rational Rose
Visual Basic adds the New keyword to the module variable declaration.

The value of the New model property can be changed on the Data
Member tab of the Model Assistant and on the Visual Basic tab in the
Property and Association Specification.

Table 27 FullName Model Property Values

Value Result

TRUE Rose uses the full name of the referenced class in the property
declaration for this role.
For example, if the class Customer is assigned to a component
called OrderSys, Rose generates the following code for the
private role Purchaser on an association between an Order
and Customer class:
Private Purchaser As OrderSys.Customer

FALSE (Default) Rose does not use the full name of the referenced
class in the property declaration for this role. In the above
example, Rose would generate the following declaration:
Private Purchaser As Customer

Table 28 New Model Property Values

Value Result

TRUE Rose adds the New keyword to the module variable declaration.

FALSE (Default) Rose creates module variable declaration without
implicit object allocation.
Rational Rose 2000e, Using Rose Visual Basic 161

Appendix A Model Properties Reference
ProcedureID (Property or Role Property)

The ProcedureID property corresponds to the Procedure ID box in the
Procedure Attributes dialog box for the property’s or role’s property
procedures in Microsoft Visual Basic. The value of this model property
is set when the property or role in the model is updated from code.

The value of the ProcedureID model property for a property or role is
only available on the Visual Basic tab in the Attribute or Association
Specification.

PropertyName (Property or Role Property)

The PropertyName property is the name of the property to which a data
member and the associated property procedure belong. The Model
Assistant needs this information to display a data member and its
property procedures together, as illustrated below:

Subscript (Property or Role Property)

The Subscript model property specifies the array subscript that Rational
Rose Visual Basic uses when generating data members for the role or
property.

The subscript must include the subscript parenthesis, for example (1
To MaxLen) or (mnuOpen to mnuQuit).

The value of the Subscript model property can be changed on the Data
Member tab of the Model Assistant and on the Visual Basic tab in the
Property and Association Specification.

Table 29 ProcedureID Model Property Values

Value Corresponds to value

nothing (None)

0 (Default)

-552 AboutBox

-550 Refresh
162 Rational Rose 2000e, Using Rose Visual Basic

Model Properties for Roles and Properties (Attributes)
UpdateCode (Role Property)

The UpdateCode property specifies if code can be generated for this role.

Note: The normal model and code synchronization is not applied to roles
with the UpdateCode property set to FALSE.

The value of the UpdateCode model property can be modified on the
Data Member tab of the Model Assistant (Should be Generated option),
as well as on the Visual Basic tab in the Association Specification.

WithEvents (Property or Role Property)

The WithEvents model property is used to enable events triggering from
other objects.

The value of the WithEvents model property can be changed on the Data
Member tab of the Model Assistant and on the Visual Basic tab in the
Property and Association Specification.

Table 30 Subscript Model Property Values

Value Result

“(literal)” Rose uses the given array subscript when generating the data
member.

No value (Default) No subscript is used when generating the data
member.

“()” Rose produces a dynamic array.

Table 31 UpdateCode Model Property Values

Value Result

TRUE (Default) Rose generates code for this role.

FALSE Rose does not generate code for this role.

Table 32 WithEvents Model Property Values

Value Result

TRUE Rose adds the WithEvents keyword to the module variable
declaration.

FALSE (Default) Rose creates module variable declaration without
enables event triggering.
Rational Rose 2000e, Using Rose Visual Basic 163

Appendix A Model Properties Reference
Model Properties for Methods (Operations)

When generating code for a class, Rational Rose Visual Basic produces
a skeletal member function for each user-defined method that is
detailed in the Class Specification. You use the following model
properties to specify additional details that Rational Rose Visual Basic
uses when generating the member functions:

� AliasName

� DefaultBody

� IsStatic

� LibraryName

� ProcedureID

� ReplaceExistingBody

AliasName (Method Property)

The AliasName property indicates that the procedure being called has
another name in the DLL. This is useful when the external procedure
name is the same as a Visual Basic reserved word. You can also use an
alias when a DLL procedure has the same name as a global variable,
or constant, or any other procedure in the same scope. An alias is also
useful if any characters in the DLL procedure name are not allowed in
Visual Basic names.

The AliasName property must be a string literal defining a valid alias
name of the declared procedure.

The value of the AliasName model property for methods with stereotype
Declare can be changed on the Declare tab of the Model Assistant. It
can also be changed on the Visual Basic tab in the Method
Specification.

DefaultBody (Method Property)

The DefaultBody model property is a text property that specifies the
code and comments to insert into the method body when generating
code for this method. If the DefaultBody model property is empty,
Rational Rose uses the default body defined by the template currently
attached to this class. However, if DefaultBody is not empty, its contents
override the code defined by the template.
164 Rational Rose 2000e, Using Rose Visual Basic

Model Properties for Methods (Operations)
Depending on the value of the ReplaceExistingBody model property,
Rational Rose inserts the contents of the DefaultBody in the method
body either the first time or every time the method is generated.

The value of the DefaultBody model property for Sub methods, Function
methods, and property procedures can be modified on the Method or
Property Get/Set/Let tab of the Model Assistant. It can also be modified
on the Visual Basic tab in the Method Specification.

Note: Rose does not check the correctness of the code that you specify
in the DefaultBody property.

IsStatic (Method Property)

The IsStatic property specifies if Rational Rose Visual Basic produces
the function procedure for a user-defined method with the Static
keyword. This indicates that the function procedure's local variables
are preserved between calls. The IsStatic property does not affect
variables that are declared outside the function procedure, even if they
are used in the procedure.

The value of the IsStatic model property for Sub methods, Function
methods, and property procedures can be modified on the Method or
Property Get/Set/Let tab of the Model Assistant. It can also be modified
on the Visual Basic tab in the Method Specification.

The following table summarizes the possible values for the IsStatic
property. In this table, result is the return type of the member
function, fname is the name of the member function, and params is the
formal parameter list.

Table 33 DefaultBody Model Property Values

If ReplaceExistingBody is Result

TRUE Rose always replaces the method body with the
contents of DefaultBody when updating the
code for this class. If DefaultBody is empty, Rose
uses the default body defined by the template
currently attached to this class.

FALSE (Default) Rose inserts the contents of
DefaultBody, but only the first time code is
generated for this method. If DefaultBody is
empty, Rose uses the default body defined by
the template currently attached to this class.
Rational Rose 2000e, Using Rose Visual Basic 165

Appendix A Model Properties Reference
LibraryName (Method Property)

The LibraryName property specifies the name of the DLL that contains
the declared method.

The value of the LibraryName model property must be a string literal. It
can be modified on the Declare tab of the Model Assistant and on the
Visual Basic tab in the Method Specification.

ProcedureID (Method Property)

The ProcedureID property corresponds to the Procedure ID box in the
Procedure Attributes dialog box for the method in Microsoft Visual
Basic. The value of this model property is set when the method in the
model is updated from code.

The value of the ProcedureID model property for a method is only
available on the Visual Basic tab in the Method Specification.

Table 34 IsStatic Model Property Values

Value Result

TRUE Rose produces a static Function procedure declaration.
For example:

Static Sub fname (params)
Static Function fname (params) As result

FALSE (Default) Rose produces a Function procedure
declaration. For example:

Sub fname (params)
Function fname (params) As result

Table 35 ProcedureID Model Property Values

Value Corresponds to value

nothing (None)

0 (Default)

-552 AboutBox

-550 Refresh
166 Rational Rose 2000e, Using Rose Visual Basic

Model Properties for Generalization Relationship
ReplaceExistingBody (Method Property)

The ReplaceExistingBody property specifies whether or not to always
replace the body of a method with the default body in the model when
updating the code for this class. The default body is the contents of the
DefaultBody model property, or if that model property is empty, the
default body is defined by the template currently attached to this class.

The value of the ReplaceExistingBody model property for Sub methods,
Function methods, and property procedures can be modified on the
Method or Property Get/Set/Let tab of the Model Assistant. It can also
be modified on the Visual Basic tab in the Method Specification.

Model Properties for Generalization Relationship

The following model properties can be used on generalization
relationships:

� FullName

� ImplementsDelegation

FullName (Generalization Property)

The FullName model property specifies if the full name of the
implemented class, including the name of the component to which the
class is assigned, should be used in the Implements statement. The full
name is needed to generate correct code for class names that are
defined in several components.

Table 36 ReplaceExistingBody Model Property Values

Value Result

TRUE Rose always replaces the method body with the default
body when updating the code for this class. Thus, the
current method body is overwritten with the default
body.

FALSE (Default) Rose inserts a default body only the first time
code is generated for this method.
Rational Rose 2000e, Using Rose Visual Basic 167

Appendix A Model Properties Reference
The value of the FullName model property can be modified on the
Implements Class tab of the Model Assistant and on the Visual Basic
tab in the Generalization Specification.

ImplementsDelegation (Generalization Property)

The ImplementsDelegation model property is used to control whether to
generate code that delegates the implemented public methods to the
delegation object.

The default value of this model property is True. If the delegation object
is defined in a type library without code, or if the current class is
supposed to provide its own variants of the implemented methods, you
should use the value False.

Table 37 FullName Model Property Values

Value Result

TRUE Rose uses the full name of the referenced class in the
Implements statement.
For example, if the class Customer is assigned to a
component called OrderSys, Rose generates the
following code for the generalization relationship
between an Order and Customer class:
Implements OrderSys.Customer

FALSE (Default) Rose does not use the full name of the
referenced class in the Implements statement. In the
above example, Rose would generate the following
declaration:
Implements Customer
168 Rational Rose 2000e, Using Rose Visual Basic

Model Properties for Generalization Relationship
The value of the ImplementsDelegation property can be changed in the
Model Assistant under the Implements Classes folder, by selecting or
clearing the check box next to the delegation object declaration, and on
the Visual Basic tab in the Generalization Specification.

Table 38 ImplementsDelegation Model Property Values

Value Result

TRUE (Default) Rose generates an object declaration and
dispatching declarations of the delegation object into the
current class. For example, if B inherits from A, which
has a public method called methodA(), the following code
is generated into B:

Implements A
Private mAObject As New A
Private Sub A_MethodA()

mAObject.MethodA
End Sub

FALSE Rose does not generate an object declaration and
dispatching declarations of the delegation object into the
current class. For example, if B inherits from A, which
has a public method called methodA(), the following code
is generated into B:

Implements A
Private Sub A_MethodA()
End Sub
Rational Rose 2000e, Using Rose Visual Basic 169

Appendix B

UML to Visual Basic Mapping Quick
Reference

This appendix provides quick reference tables that map the Visual
Basic programming language and UML constructs for code generation
or reverse engineering.

UML to Visual Basic Mapping

The following table summarizes the mapping between model element
types in UML and the Visual Basic programming language.

Table 39 UML to Visual Basic Mapping

Model element Becomes in Visual Basic

Logical View

Class Project item of the same type as the
stereotype of the class in the model

Class utility Module

Interface Class module

Nested class Enum declaration, Type declaration, or
web item, depending on the stereotype of
the nested class in the model

Logical package Nothing

Property (attribute) Property or constant, depending on the
stereotype of the property in the model

Method (operation) Method, Property Get, Set, or Let
Procedure, Declare declaration, or Event
declaration, depending on the stereotype
of the method in the model
Rational Rose 2000e, Using Rose Visual Basic 171

Appendix B UML to Visual Basic Mapping Quick Reference
Role of an association Property (if navigable)
Also, a reference to a COM component (if
an imported interface is associated)

Generalization Implements construct with delegation
code

Realize Implements construct without delegation
code

Dependency If a class is dependent upon a module
(class utility), the module is automatically
added to the same project as the class.
If a class is dependent upon a class that
belongs to another component, a project
reference to that component is added to
the project.
If a class is dependent upon a class in the
same component, nothing is generated.

Component View

Component Visual Basic project of the type defined by
the component’s stereotype

Component package Nothing

Dependency A reference in the project

Table 39 UML to Visual Basic Mapping

Model element Becomes in Visual Basic
172 Rational Rose 2000e, Using Rose Visual Basic

Visual Basic to UML Mapping
Visual Basic to UML Mapping

The following table summarizes the mapping between the Visual Basic
programming language and UML.

Table 40 Visual Basic to UML Mapping

Project item Becomes in the model

Visual Basic project Component with the same stereotype as
the type of the project

COM component compiled
from the Visual Basic
project

A component with the language and
stereotype COM, and a logical package
with the component’s type library

Project reference A component and a logical package with
the referenced type library, as well as a
dependency relationship with the
project’s component

Project item Class with the same stereotype as the
type of the project item

Module Class utility

Code comment Text in the Documentation box in the
corresponding model element’s
specification

Implements statement Realize relationship

Constant declaration Property (attribute) with default value

Enum or Type declaration Nested class with stereotype Enum or
Type, which is contained by the reverse
engineered class

Web item in web class Nested class with stereotype Custom
WebItem or Template WebItem, which is
contained by the reverse engineered web
class

Data member Property (attribute)

Navigable association to object type

Method Method (operation), stereotype= empty
Rational Rose 2000e, Using Rose Visual Basic 173

Appendix B UML to Visual Basic Mapping Quick Reference
Event declaration Method, stereotype = Event

Declare declaration Method, stereotype = Declare

Property procedure Method, stereotype = Set, Get, or Let

Table 40 Visual Basic to UML Mapping

Project item Becomes in the model
174 Rational Rose 2000e, Using Rose Visual Basic

Index
A
abstract class 14
abstract interface 15, 33, 114
ActiveX Control project 7
ActiveX DLL project 7
ActiveX EXE project 8
Addin Designer 10
aggregation relationships 31
Alias Name model property 47, 127, 164
Alias option 47, 127
arguments 43

creating 139
mapping to code 45

assigning
classes to components 94
component to a project 92
language to component 4
new language to component 97
stereotype to class 116
template to class 116

association relationship 160
cardinality 38
containment adornment 37
full name 29
mapping to code 27
model properties 160
multiplicity 38
navigability 37
property procedures 27
Rational Rose 2000e, Using Rose Visual Basic
unbounded multiplicity 28
viewing in Model Assistant 133

attribute
containment adornment 37
creating 133
derived 25
mapping to code 25
model properties 160
viewing in Model Assistant 133

attribute properties
New 135, 161
ProcedureID 162
PropertyName 162
Subscript 135, 162
WithEvents 135, 163

B
browsing

model from project 107
source code 107

Business Services 88
By-Reference containment adornment

37
By-Value containment adornment 37
175

Index
C
cardinality 38
categories 24
class

abstract 14, 33, 114
applying template 116
assigning to component 94
changing stereotype 116
creating 113
documentation 91, 115
full name 29
instancing 115
mapping to code 9
mapping to model 49
model properties 156
nested 24, 130
removing from component 96
stereotype in Model Assistant 114
stereotypes 9
unassigning from component 96

class module
creating 113
default mapping 9
mapping to model 49
stereotype 10

class properties
Instancing 156
OptionBase 116, 157
OptionCompare 116, 158
OptionExplicit 116, 158
UpdateCode 114, 159
UpdateModel 114, 160

class stereotypes 9
Addin Designer 10
Class Module 10
ClassIdGenerator 10
Collection 10, 19
Custom Web Item 10, 24, 121
Data Environment 10
Data Report 10
DHTML Page 11
176
Enum 11, 24
ErrorHandling 11
Form 11, 120
Interface 11, 15
MDI Form 12
Module 11
Property Page 12
Template Web Item 12, 24, 121
Type 12, 24
User Connection 12
User Control 12
User Document 12
Web Class 12, 24, 121

class utility
mapping to code 22
mapping to model 50

Class Wizard 1, 113
coclass 18, 104
code comments

documentation of method 143
generating to Object Browser 69
mapping to model 51
model ID 43

code generation 59
Code Update Tool 59
customizing 68
entry and exit code 139
Event statements 47
evolving the code 67
generating a new Visual Basic

project from a model 63
initialization methods 141
model properties 151
of aggregation relationships 31
of attributes 25
of By-Reference adornment 37
of By-Value adornment 37
of cardinalities 38
of categories 24
of class utilities 22
of components 4
of containment adornments 37
Rational Rose 2000e, Using Rose Visual Basic

Index
of dependency relationships 8, 31
of deployment view 48
of generalization relationships 32
of inherits relationships 32
of interfaces 15
of link classes 39
of link properties 39
of logical packages 24
of logical view 9
of method documentation field 139
of methods 42
of multiplicities 38
of operations 42
of packages 24
of properties 25
of qualified association relationships

41
of realize relationships 35
of use-case view 48
of uses relationships 31
of vavigability adornments 37
previewing the code 70
project type 91
reviewing the code 67
selecting implementation type 116
synchronizing code and model 66
termination methods 141
updating an existing Visual Basic

project with model changes
64

Visual Basic Component Properties
dialog box 69

Code Update Tool 59
customizing 68
see also code generation

collection class 19
creating 122
deleting 124

Collection Class option 115
CollectionOf template parameter 124,

147
Rational Rose 2000e, Using Rose Visual Basic
COM component
importing 97

COM components 5, 98
interfaces 15
using 104

COM Properties dialog box 83
COM terminology xviii
Comments template parameter 142,

144, 147
component 4, 25

assigning classes to components 94
associating with project 92
changing language 97
code update options 69
creating 89
creating from project 75
generating code 63, 64
model update options 83
removing class 96
specifying 90
stereotypes 7, 91
unassigning class 96
updating from code 76

component package 8
component properties 152

ImportBinary 152
ImportReferences 152
ProjectFile 153
QuickImport 154
UpdateCode 90, 155
UpdateModel 91, 155

component stereotypes
ActiveX 7
ActiveX Control 7
ActiveX DLL 7
ActiveX EXE 8
COM 8, 97
DLL 8
EXE 8
Standard EXE 8

component view 88
mapping to code 4
177

Index
constants
creating 132
mapping to model 49
represented by properties 25
stereotype 27

contained control 128
containment adornment 37
contents of a model 88
controls 105, 128
creating

arguments 139
class 113
collection class 122
component 89
constants 132
Declare statement 126
enums 130
Event statement 128
forms 120
interfaces 15
method 138
method parameters 139
model 87
parameters 139
properties 133
property procedures 136
types 130
web classes 121
web items 121

Custom Web Item 10
customizing

classes for code generation 70
classes for model update 84
Code Update Tool 68
components for code generation 69
components for model update 83
Model Assistant 148
Model Update Tool 80
Type Library Importer 83
178
D
Data Environment 10
Data Member Prefix option 150
data members 25

as properties in the model 25
as roles in the model 27
mapping to model 49

Data Report 10
Data Services 88
debug code 118, 119
Debug.modClassIdGenerator 119
Debug.modErrorHandling 141
DebugCode template parameter 118,

147
Declare statement

as a method in the model 47
creating 126
stereotype 45

Default Body model property 139, 164
default body of methods 143
Default Component Package option 82
default interface 104
Default Logical Package option 81
deleting

collection class 124
delegation object 125

dependency relationship 4
mapping to code 8, 31
with collection class 21, 50

deployment view 88
mapping to code 48

derived property 25
DHTML Page 11
documentation

in Object Browser 69
of methods 139, 143
reverse engineering 51
Rational Rose 2000e, Using Rose Visual Basic

Index
E
Entry Code model property 143
enums 24

creating 130
error-handling code 141
ErrorHandling template parameter 141,

144, 147
Event statement 45, 47

creating 128
subscribing to events 128

evolving generated code 67
Exit Code model property 143

F
form 11, 49, 120
frameworks

using to create model 87
friend method 43, 142
Full Name model property 167

on generalize relationships 126
on roles 135, 161

Full Name option 29

G
generalization properties

FullName 126, 167
ImplementsDelegation 168

generalization relationships 32
model properties 167
viewing in Model Assistant 124

Generate Debug Code option 149
Generate Error Handling Code option

149
Generate Object Browser Documenta-

tion option 69
Generate Your Code Goes Here... Com-

ments option 149
Rational Rose 2000e, Using Rose Visual Basic
generating code
see also code generation
Code Update Tool 59
debug code 119
error-handling code 141
evolving the code 67
generating a new Visual Basic

project from a model 63
reviewing the code 67
updating an existing Visual Basic

project with model changes
64

Your Code Goes Here... comments
142

Get Procedure 46
creating 136
naming 136
stereotype 44

H
HTML Template Web Item 12

I
Implements Delegation model property

124, 168
Implements in Visual Basic 32, 35, 105

viewing in Model Assistant 124
Implements statements

mapping to model 49
Import All References option 92, 99
Import Binary model property 152
Import References model property 152
Import the compiled VB binary option 92
importing

binary 100
COM component 97
project references 5, 98
type library 97

inheritance
see generalization relationships
179

Index
inherits relationships
see generalization relationships

instancing 115
Instancing model property 115, 156
interface

abstract 14, 33, 114
default 104
importing 5, 98
mapping to code 15
of component 4
of project reference 5, 98
realizing 105
reverse engineering 50
stereotype 11

Is Static model property 139, 165

L
Let Procedure 46

creating 136
naming 136
stereotype 44

Library Name model property 47, 127,
166

Library option 127
link class 39
link property 39
logical packages 24
logical view

creating 88
mapping to code 9

M
mapping

component view to code 4
deployment view to code 48
logical view to code 9
UML to Visual Basic 9, 171
use-case view to code 48
Visual Basic to UML 48, 173

MDI Form 12, 49
180
method
creating 138, 142
creating parameters 139
debug code 118
Declare statement 47
default body 139, 143, 146
documentation 139, 143
error-handling code 141
events 47
friend 43, 142
mapping to code 42
model properties 164
modifying the default body 143
parameters 43, 45, 139
postconditions 143
preconditions 143
private 43
property procedures 46
protected 43, 142
public 43
refreshing the default body 146
reverting the default body 146
semantics 143
stereotypes 43

method parameters 43
creating 139
parameter passing 45

method properties
AliasName 127, 164
DefaultBody 139, 164
IsStatic 139, 165
LibraryName 127, 166
ProcedureID 166
ReplaceExistingBody 139, 167

method stereotypes 44
Declare 45, 47
Event 45, 47
Get 44, 46
Let 44, 46
Set 45, 46

modClassIdGenerator 119
Rational Rose 2000e, Using Rose Visual Basic

Index
model
backup 69, 81
creating 87
creating from project 75
evolving after model update 78
frameworks 87
opening from Visual Basic 107
round-trip engineering 54, 55
updating from project 76

Model Assistant
Class Options tab 115
Class tab 112, 114
Constant tab 133
Data Member tab 134
Declare tab 124, 127
Enum tab 131
Method Parameter tab 140
Method tab 138
Template tab 146
Type tab 131

model IDs 57
model properties 3, 151

AliasName 47, 127, 164
EntryCode 143
ExitCode 143
for attributes 160
for classes 156
for components 152
for generalization rRelationships 167
for methods 138, 164
for properties 160
for roles 160
FullName 126, 135, 161, 167
ImplementsDelegation 124, 168
ImportBinary 152
ImportReferences 152
Instancing 115, 156
IsStatic 43, 139, 165
LibraryName 47, 127, 166
New 135, 161
OptionBase 116, 157
OptionCompare 116, 158
Rational Rose 2000e, Using Rose Visual Basic
OptionExplicit 116, 158
ProcedureID 162, 166
ProjectFile 153
PropertyName 162
QuickImport 154
ReplaceExistingBody 139, 167
Subscript 38, 135, 162
UpdateCode 90, 114, 135, 155, 159,

163
UpdateModel 91, 114, 155, 160
WithEvents 135, 163

model to code mapping 171
model update

see reverse engineering
Model Update Tool 71

customizing 80
see also reverse engineering

ModErrorHandling 141
module

as class utility 22
mapping to model 50
stereotype 10, 11

multiplicity 38

N
naming

modifying the data member prefix
137

properties 136
property procedures 136

navigable associations 37
nested classes 24, 130
New model property 135, 161

O
Object Browser documentation 69
online help xix
opening a model from a project 107
operation

see method
181

Index
operation properties
AliasName 127, 164
DefaultBody 164
IsStatic 139, 165
LibraryName 127, 166
ProcedureID 166
ReplaceExistingBody 139, 167

Option Base model property 116, 157
Option Compare model property 116,

158
Option Explicit model property 116, 158
Overview Diagram option 82

P
package overview diagram 88
packages 24
parameters 43

creating 139
mapping to code 45

postconditions 143
preconditions 143
previewing the code to generate 70
private methods 43
Procedure ID model property 162, 166
project

importing binary 100
see Visual Basic project

project file 4, 92
Project File model property 153
project references 92

importing 5, 98
mapping to model 51

project types 7
property

containment adornment 37
creating 133
derived 25
mapping to code 25
model properties 160
stereotypes 26
viewing in Model Assistant 133
182
Property Name model property 162
Property Page 12, 49
property procedures 46

creating 136
naming 136

property properties
New 135, 161
ProcedureID 162
PropertyName 162
Subscript 135, 162
WithEvents 135, 163

propget 106
propput 106
propputref 106
protected method 43, 142
public classes 15
public methods 43

Q
qualified association relationship 41
Quick Import model property 92, 99, 154
Quick Import option 92, 99
Quick Start with Rose Visual Basic xix

R
Rational Rose Tool Window

opening related model 107
Refresh command 76
related model 49

realize relationships 35, 105
references 5, 51, 92, 98
Refresh command in Visual Basic 76
related model 49
Replace Existing Body model property

139, 167
reverse engineering 71, 75

class module 49
code-to-model mappings 48
collection classes 50
comments 51
Rational Rose 2000e, Using Rose Visual Basic

Index
constant declaration 49
data members 49
Event statement 49
evolving the updated model 78
forms 49
Implements statement 49
interfaces 50
MDI Forms 49
methods 49
modules 50
project references 5, 51, 98
projects 48
Property Pages 49
property procedures 49
references 5, 51, 98
reverse engineering a project into a

new component 75
synchronizing model and code 77
updating a component from code

changes 76
User Controls 49
User Documents 49
Visual Basic projects 48
web classes 49

reviewing generated code 67
role

containment adornment 37
full name 29
mapping to code 27
model properties 160
navigability 37
viewing in Model Assistant 133

role properties
FullName 135, 161
New 135, 161
ProcedureID 162
PropertyName 162
Subscript 135, 162
UpdateCode 135, 163
WithEvents 135, 163

Rose Add-In in Visual Basic 107
Rational Rose 2000e, Using Rose Visual Basic
Rose Tool Window
opening related model 107
Refresh command 76
related model 49

round-trip engineering 53
starting with a model 54
starting with a project 55

S
Save Model Before Code and Model Up-

date option 69, 81
Semantics tab 143
Set Procedure 46

naming 136
stereotype 45

source code 107
evolving 67
generating 59
mapping of comments 51
model IDs 57
reviewing 67
updating model

specifying
component 90

Standard EXE projects 8
static methods 43
stereotypes 3

of classes 9, 114, 116
of components 7, 91
of methods 44
of properties 26

subscribing to events 128
subscript 38
Subscript model property 135, 162
Subscript option 135
Suppress Model IDs option 57, 69, 81
synchronizing 56

during code update 66
during model update 77
183

Index
T
template members 117
template parameters

CollectionOf 124
Collectionof 147
Comments 142, 144, 147
debug 118
DebugCode 147
ErrorHandling 141, 144, 147

Template Web Item 12
terminology xviii
three-tiered diagram 88
Tool Window in Visual Basic

opening related model 107
Refresh command 76
related model 49

tutorial xix
type declarations 24

creating 130
type library

as component 5
coclass 18, 104
default interface 104
example 102
importing 97
interface 15
using 104

Type Library Importer 83

U
UML xviii, xix, 9
UML to Visual Basic mapping 171
unassigned classes 94
Unified Modeling Language xviii, 9
Update Code model property

on classes 114, 159
on components 90, 155
on roles 135, 163
184
Update Model model property
on classes 114, 160
on components 91, 155

updating code
see code generation

updating model from code
see reverse engineering

use-case view 88
mapping to code 48

User Connection 12
User Control 12, 49
User Document 12, 49
User Services 88
uses relationships 31
using a type library 104

V
Visual Basic Component Properties dia-

log box 90
code generation options 69
model update options 83

Visual Basic Language Support Add-In 1
Visual Basic mappings 9
Visual Basic model properties 151
Visual Basic project 49, 51

as component 4
associating to component 92
generating from model 63
opening related model 107
reverse engineering 48, 75
round-trip engineering 55
updating from model 64

Visual Basic project references
importing 5, 98
mapping to model 51

Visual Basic Properties dialog box
Code Update Tool 68
Model Assistant 148
Model Update Tool 80

Visual Basic to UML mapping 48, 173
Visual Studio Add-In 2
Rational Rose 2000e, Using Rose Visual Basic

Index
W
Web Class 12
web classes 24, 121

mapping to model 49
Web Item 10, 12
web items 24, 121
With Events model property 135, 163
WithEvents 128
Rational Rose 2000e, Using Rose Visual Basic
 185

	Rational Rose 2000e Using Rose Visual Basic
	Contents
	List of Figures
	List of Tables
	Preface
	How this Manual Is Organized
	Terminology
	Related Documentation
	Online Help and Manuals

	Introduction to the Visual Basic Language Support Add-In
	Mapping UML to Visual Basic
	Overview
	Component View to Visual Basic Mapping
	Components
	Component Packages
	Dependency Relationships

	Logical View to Visual Basic Mapping
	Classes
	Interfaces
	Collection Classes
	Class Utilities
	Enum and Type Declarations
	Web Classes
	Logical Packages
	Properties (Attributes)
	Association Relationships
	Aggregation Relationships
	Dependency Relationships
	Generalization Relationships
	Realize Relationships
	Advanced Association Relationship Mappings
	Navigability
	Containment Adornment
	Cardinality/Multiplicity
	Link Properties (Attributes)
	Qualifiers

	Methods (Operations)
	User-Defined Methods
	Method Stereotypes
	Method Parameter Passing
	Property Get/Set/Let Procedures
	Declare Methods
	Events

	Use-Case View to Visual Basic Mapping
	Deployment View to Visual Basic Mapping
	Visual Basic to UML Mapping
	Visual Basic Projects
	Project Items
	Modules
	Project References
	Code Comments
	Compiler Directives

	Round-Trip Engineering a Visual Basic Application
	The Visual Basic Round-Trip Engineering Tools
	Round-Trip Engineering—Starting with a Model
	Round-Trip Engineering—Starting with a Visual Basic Project
	Synchronization
	Model IDs

	Generating Visual Basic Code
	The Code Update Tool
	Starting the Code Update Tool
	The Code Update Tool Pages
	Welcome Page
	Select Components and Classes Page
	Finish Page
	Progress Page
	Synchronize Page
	Summary Page

	Generating Visual Basic Code
	Generating a New Visual Basic Project from a Model
	Updating an Existing Visual Basic Project with Model Changes
	Synchronizing Code and Model During Code Update
	Reviewing the Generated Code
	Evolving the Generated Code

	Customizing the Code Generation
	Customizing the Code Update Tool
	Save model before code and model update
	Supress model IDS
	Generate Object Browser documentation
	Other options

	Customizing the Code Generation of a Specific Component
	Previewing and Customizing the Code to Generate for a Specific Class

	Reverse Engineering Visual Basic Code
	The Model Update Tool
	Starting the Model Update Tool
	The Model Update Tool Pages
	Welcome Page
	Select Components and Classes Page
	Finish Page
	Progress Page
	Synchronize Page
	Summary Page

	Updating a Model from Visual Basic Projects
	Reverse Engineering a Visual Basic Project Into a New Component
	Updating a Component in the Model from Code Changes
	Synchronizing Model and Code During Model Update
	Evolving the Updated Model

	Customizing the Model Update
	Customizing the Model Update Tool
	Save model before code and model update
	Suppress model IDS
	Default logical package
	Default component package
	Overview diagram

	Customizing the Type Library Importer
	Customizing the Model Update of a Specific Component
	Customizing the Model Update of a Specific Class

	Modeling a Visual Basic Project
	The Component Assignment Tool
	Creating a New Model
	Creating Components and Assigning Classes
	Creating New Components in the Model
	Specifying a Component
	Should be generated
	Should be updated from code
	Project File
	Stereotype
	Documentation
	Import all references
	Quick import
	Import the compiled VB binary

	Associating a Component with a Visual Basic Project File
	Assigning Classes to Existing Components
	Assigning Unassigned Classes to a Component
	Assigning a Class to Several Components of the Same Language

	Moving a Class to Another Component
	Moving a Class to Another Component with the Same Language
	Moving a Class to a Component with Another Language

	Removing a Class from a Component
	Removing a Class from One Component
	Removing a Class from All Assigned Components

	Changing the Implementation Language of a Component

	Importing Type Libraries Into the Model
	Importing the Type Library of Project References
	Importing the Binary Component Compiled from a Project in the Model
	Importing any COM Component
	Example of an Imported Type Library

	Using an Imported Type Library
	Using the Data Types Defined by a Type Library
	Realizing the Interface of a COM Component
	Using Property Procedures of Type Library Items

	Browsing the Model and Code
	Opening the Visual Basic Item that Corresponds to a Model Element
	Opening a Model that Corresponds to the Open Visual Basic Project

	Modeling Visual Basic Classes
	The Model Assistant
	Templates
	What templates are provided in Rational Rose?

	Creating Visual Basic Classes in the Model
	Applying a Template to a Class in the Model
	Applying Another Template to a Class BEFORE Generating Code
	Applying Another Template to a Class AFTER Code Has Been Generated

	Inserting Debug Code for All New Classes
	Modeling Visual Basic Forms
	Modeling Visual Basic Web Classes
	Creating User-Defined Collection Classes
	Creating a New User-Defined Collection Class as a Collection of an Existing Class
	Transforming an Existing Class into a Collection Class
	Deleting a User-Defined Collection Class

	Specifying Implements Constructs
	Creating Declare Statements
	Creating Event Statements
	Subscribing to Events
	Creating Enums and Types
	Creating Constants
	Creating Properties (Attributes)
	Creating Property Get, Let, and Set Procedures
	Creating a Get, Set, or Let Procedure for a Property
	Modifying the Default Data Member Prefix

	Creating Methods (Operations)
	Creating a Method
	Creating Method Parameters
	Adding Error-Handling Code
	Adding "Your Code Goes Here..." Comments
	Using Friend Methods in Sequence Diagrams

	Modifying the Default Body of Methods
	The Default Body
	Modifying the Default Body of a Method

	Changing the Value of a Template Parameter for a Class
	Customizing the Default Behavior of the Model Assistant
	The Visual Basic Properties Dialog Box
	Generate debug code
	Generate “Your code goes here...” comments
	Generate error handling code
	Data member prefix

	Model Properties Reference
	Model Properties for Components
	ImportBinary (Component Property)
	ImportReferences (Component Property)
	ProjectFile (Component Property)
	QuickImport (Component Property)
	UpdateCode (Component Property)
	UpdateModel (Component Property)

	Model Properties for Classes
	Instancing (Class Property)
	OptionBase (Class Property)
	OptionCompare (Class Property)
	OptionExplicit (Class Property)
	UpdateCode (Class Property)
	UpdateModel (Class Property)

	Model Properties for Roles and Properties (Attributes)
	FullName (Role Property)
	New (Property or Role Property)
	ProcedureID (Property or Role Property)
	PropertyName (Property or Role Property)
	Subscript (Property or Role Property)
	UpdateCode (Role Property)
	WithEvents (Property or Role Property)

	Model Properties for Methods (Operations)
	AliasName (Method Property)
	DefaultBody (Method Property)
	IsStatic (Method Property)
	LibraryName (Method Property)
	ProcedureID (Method Property)
	ReplaceExistingBody (Method Property)

	Model Properties for Generalization Relationship
	FullName (Generalization Property)
	ImplementsDelegation (Generalization Property)

	UML to Visual Basic Mapping Quick Reference
	UML to Visual Basic Mapping
	Visual Basic to UML Mapping

	Index

