
support@rational.com
http://www.rational.com

Using Rational
PerformanceArchitect

ii

U sing Rational PerformanceArchitect

Copyright 1999 Rational Software Corporation. All rights reserved. The contents of this manual and
the associated software are the property of Rational Software Corporation and are copyrighted. Any
reproduction in whole or in part is strictly prohibited. For additional copies of this manual or software,
please contact Rational Software Corporation.

Rational, the Rational logo, PerformanceStudio, SiteCheck, TestFactory, TestStudio,
Object-Oriented Recording, and O bject Testing are trademarks or registered trademarks of Rational
Software Corporation in the U nited States and in other countries. Java and all Java-based marks are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U nited States and other
countries. All other names are used for identification purposes only and are trademarks or registered
trademarks of their respective companies.

U .S. GO VERMEN T RIGH TS. U se, duplication, or disclosure by the U .S. Government is subject to
restrictions set forth in the applicable Rational License Agreement and in DFARS 227.7202-1(a) and
227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR
52.227-19, or FAR 52.227-14, as applicable.

Revised 12/1999

This manual prepared by:
Rational Software Corporation
20 Maguire Road
Lexington, MA 02421
U .S.A.

Phone:
800-433-5444
408-863-4000

E-mail: support@rational.com
Web: http://www.rational.com

ã ã ã Contents

Road Map . 2

Before You Begin . 3

Who Should Read This Guide . 3

What You N eed to Get Started. 3

Installing Rational PerformanceArchitect . 4

Before You Install . 4

Running the Installation . 4

Basic Concepts . 5

Modeling Rational PerformanceStudio Features U sing Rose . . . 5

Generating Scripts and Wrapper Code from Rose Models 6

Running LoadTest Schedules. 7

U nderstanding Datapools. 8

Working with the Sample Model . 8

U nderstanding the Component View . 8

U nderstanding the U se Case View . 10

U nderstanding the Logical View . 11

Testing the Sample Model . 12

Working with the Starting from Scratch Tutorial 17

Digging Deeper . 17

Adding the RationalTest Package to Your Models 18

Converting Model Elements to a Virtual U ser Script 18

Datapool Commands in the Virtual U ser Script 19

Controlling Object Creation Overhead. 22

Modeling CO M Objects with Rose. 25

H ow Rational PerformanceArchitect Maps VB Data Types . . . 29

Sample VU Script . 30

Sample C+ + Wrapper Generated for the VBExample Script . . 31

Troubleshooting. 35

Wrappers Fail to Build . 35

Asynchronous Environments . 37
i

Contents
Runtime Registry Settings. 38
ii

ã ã ã Using Rational PerformanceArchitect

Rational PerformanceArchitect (RPA) is a Rational Rose add-in that generates
scripts for testing the performance of COM/DCOM applications. Rational
PerformanceArchitect works by interpreting the information in Rose interaction
diagrams and then generating scripts that can be used with Rational LoadTest.
(Interaction diagrams include both sequence diagrams and collaboration diagrams.)

Rational PerformanceArchitect serves as a bridge between LoadTest and Rose.
After you generate scripts in Rose, you can use the Robot component of
PerformanceStudio to edit the scripts and then use LoadTest to run performance
tests. Afterwards, you can rearchitect the model in Rose, generate new scripts, and
compare the performance of the new architecture with that of the original.

Scripts generated by Rational PerformanceArchitect emulate the client side of a
client/sever application, helping you catch design flaws in your architecture early in
the development process, before you spend time and money implementing the
client. All scripts generated by Rational PerformanceArchitect are virtual user
scripts. Virtual user scripts are used primarily in performance testing to measure
server response time. Virtual user scripts are written in a C-like scripting language
called VU .

Rational PerformanceArchitect is extremely flexible and provides numerous usage
scenarios for performance-based testing. In one scenario, you can model your COM/
DCOM application for deployment in different languages and compare the
performance of each version. In another scenario, you can compare the performance
characteristics of a thin client with that of a fat client.

By default, Rational PerformanceArchitect generates one script per Rose diagram
and assigns the script the same name as the diagram. As an alternative, you can build
a diagram that generates multiple scripts. For an example of this approach, see
Controlling Object Creation Overhead on page 22.
1

Road Map

U se the following table to help you find various topics in this guide.

To find out Read this

Who should read this guide and what you
need to get started

Use the following table to help you find various topics
in this guide. on page 2

H ow to install Rational
PerformanceArchitect

Installing Rational PerformanceArchitect on page 4

H ow to model PerformanceStudio features
in Rational Rose

Adding the RationalTest Package to Your Models
on page 18

Converting Model Elements to a Virtual User Script
on page 18

H ow to generate scripts and wrapper code
from Rose models

Generating Scripts and Wrapper Code from Rose
Models on page 6

H ow to work with test data and use the
datapool facility

Understanding Datapools on page 8
Datapool Commands in the Virtual User Script on
page 19

H ow to work with the sample Rose model Working with the Sample Model on page 8

H ow to generate multiple scripts from a
single diagram

Controlling Object Creation Overhead on page 22

H ow to model interfaces Modeling COM Objects with Rose on page 25

H ow to map Visual Basic data types to C+ +
data types

How Rational PerformanceArchitect Maps VB
Data Types on page 29

H ow to troubleshoot Rational
PerformanceArchitect

Troubleshooting on page 35

About registry settings used or modified by
Rational PerformanceArchitect.

Runtime Registry Settings on page 38
2

Before You Begin
Before You Begin

This section describes the intended audience for this guide and what you need to
get started.

Who Should Read This Guide
This guide assumes you are a system architect or software developer who wants to
generate performance tests from Rose models. To get the maximum benefit from
this guide, you need to be familiar with the U nified Modeling Language, Rational
Rose, Rational PerformanceStudio, and COM development. Although some
concepts related to these products and technologies are covered in this guide, refer
to the Rose and PerformanceStudio documentation for additional information.

What You Need to Get Started
To use Rational PerformanceArchitect, you need:

ã Rational Suite PerformanceStudio 1.5 or later

PerformanceStudio is a sophisticated tool for automating performance tests on
client/server systems. PerformanceStudio includes Rational LoadTest, Rational
Rose, Rational Robot, Rational Administrator, Rational TestManager, and
Rational PerformanceArchitect, and is needed to run performance tests and to
edit scripts.

ã Rational Rose 2000 or later

ã Microsoft Visual C+ + Version 6.0

Visual C+ + Version 6.0 is needed to build the wrapper code that is called by the
generated script. Wrappers serve as an interface between the script and the
COM server.

ã The Rational Test package for Rose

The Rational Test package for Rose is a group of related actor classes that
provide support for modeling runtime functions used by various Rational
software components. The Rational Test package for Rose is included with
Rational PerformanceArchitect.
3

Installing Rational PerformanceArchitect

This section explains how to set up your test environment and install Rational
PerformanceArchitect.

Before You Install
Before you install Rational PerformanceArchitect, keep the following requirements
in mind:

ã At minimum, you need Rational Robot and Rational Rose installed on the
computer running Rational PerformanceArchitect. The rest of
PerformanceStudio can reside on the same computer or a different computer.

ã To generate wrapper code automatically, Visual C+ + must be installed on the
same computer that is running Rational PerformanceArchitect.

Running the Installation
To install Rational PerformanceArchitect, run the typical Rational Suite
PerformanceStudio installation. You can also install Rational PerformanceArchitect
from the Windows Start menu after performing a custom installation of Rational
Suite PerformanceStudio.

The installation adds an Rpa subdirectory to the Rose root directory and several files
within the new directory, including:

File or Directory Description

IslandH opperA.mdl Rose model derived by reverse engineerng the Island H opper
sample application from Microsoft Visual Studio 6.

RationalTest.cat Rose catalog containing the Rational Test package. This
package contains several actors that provide support for
modeling runtime functions, such as think time, timers,
and datapool fetch. (In the U ML, an actor is someone or
something outside the system that interacts with the system.)

Sample.VB Directory containing the Visual Basic ActiveX server sample

Sample.VC Directory containing the Visual C+ + ActiveX server sample

Readme.htm Rational PerformanceArchitect release notes

Rpa.htm Rational PerformanceArchitect online manual in H TML
format
4

Basic Concepts
Basic Concepts

This section introduces several concepts that will help provide a foundation for your
work with Rational PerformanceArchitect.

Modeling Rational PerformanceStudio Features Using Rose
Rational PerformanceArchitect uses Rose interaction (sequence and collaboration)
diagrams to access PerformanceStudio features, such as think time, timers, and
datapools. These features are made accessible to Rose via the RationalTest package,
a collection of Rational-supplied actor classes that provide support for modeling
runtime functions used by various Rational software components. The RationalTest
package contains the following actors:

VU — Provides support for modeling runtime services such as the average think
time, COM initialization and deinitialization, and the VU language IN FO SERVER
command.

Timer — Provides support for modeling arbitrary start and stop timer operations
(start_time and stop_time functions)

Datapool — Provides support for modeling datapool runtime operations, such as
open and fetch.

VuServices — Inherits all operations of the VU , Datapool, and Timer actors. You
can use VuServices as a single actor in an interaction diagram in place of the other
three actors.

Script — Provides support for generating multiple scripts from a single diagram.

Virtual User — Provides support for modeling the client-side of a transaction in an
interaction diagram. U se the Virtual U ser actor as a placeholder for the actual client
object. Because this actor class is not part of the actual production application, you
can always add it to existing models without effecting the model.

The RationalTest package is included with the sample model that comes with the
Rational PerformanceArchitect installation, but it must be added to your own
models. For more information, see Adding the RationalTest Package to Your Models on
page 18.
5

The following table shows how Rational PerformanceArchitect converts the features
in the RationalTest package to commands in a virtual user script:

For more information about these features, see the VU Language Reference.

Generating Scripts and Wrapper Code from Rose Models
To generate a script, Rational PerformanceArchitect interprets the messages in an
interaction diagram in your Rose model and then processes the operations associated
with these messages. Specifically, Rational PerformanceArchitect inspects the class
of the message’s receiver object to determine whether the object is a COM object.

The following figure shows a message’s receiver object in a Rose sequence diagram:

RPA converts this feature
in a diagram

To this command in a VU script

think() set Think_avg= nnn

fetch() datapool_fetch(x)

open() datapool_open(“x”)

start() start_time

stop() stop_time

vu_CoInitialize() vu_CoInitialize()

vu_CoU ninitialize() vu_CoU ninitialize()

infoserver() IN FO SERVER label= addr[,label= addr...]

Message’s receiver object in sequence diagram
6

Basic Concepts
If Rational PerformanceArchitect determines that the object is a COM object, it
incorporates the message in the generated script as a VU emulate command. (See
Qualifying Messages for Inclusion in a Script on page 27 for more information.)
U ltimately, these messages, which are now incorporated in the script, help to drive
a performance test.

As it creates the script, Rational PerformanceArchitect also generates the C+ +
wrappers that are needed to establish an interface from the VU language to CO M.
Together, the VU script and wrappers emulate your client application using the
actual COM calls of the server objects.

Rational PerformanceArchitect looks in the Component Specification in the Rose
Component View for two pieces of information: the FileName property and the
component name. Both pieces of information are saved in the wrapper and are
shown in the following example from a wrapper file:

Running LoadTest Schedules
After you generate a script, you can add it to a LoadTest schedule and run the
schedule. Typically, you add some number of virtual users to more accurately
simulate real-world conditions. A virtual user is a single instance of a virtual user
script running on a computer. Based on the results of the schedule run, you can
choose to update the model in Rose, regenerate the scripts, and rerun the
performance tests.

You can inspect an object’s Class
Specification in Rose to see
whether it is a COM object.

FileName property, displayed in the COM
tab of the Component Specification.

#import "D:\Program Files\Rational\Rose
2000\RPA\Sample.vb\RpaDemoVB.dll"

Component Name
7

For more information about LoadTest, see the Using Rational LoadTest manual.

Understanding Datapools
With Rational Suite PerformanceStudio, you can create scripts that simulate the
actions of multiple users running multiple transactions against a database or Web
server. This is accomplished through the use of datapools. A datapool is a comma-
separated text file that contains rows of data.

Scripts generated by Rational PerformanceArchitect are fully integrated with
PerformanceStudio’s datapool facilities. For more information about the datapool
features of PerformanceStudio, see the Using Rational LoadTest manual. For more
information about the use of datapools in Rational PerformanceArchitect, see
Datapool Commands in the Virtual User Script on page 19.

Working with the Sample Model

The installation procedure installs two sample Rose models — a Visual Basic model
and a Visual C+ + model that you can use to try out Rational PerformanceArchitect.
Both models reflect a traditional transaction processing system that allows users to
credit or debit their accounts on a server.

Both models already contain an imported type library and a component associated
with the source project in Visual Basic and Visual C+ + .

Understanding the Component View
The following component diagram shows the physical pieces of software that are
included in the architecture for the Visual Basic version of the sample banking
application:

ã A CO M object (RpaDemoVB) that is associated with the imported type library

ã An optional ActiveX DLL (RpaDemoVB) that is associated with the Visual Basic
source project. This DLL is used for round-trip engineering.

ã Stdole.dll, which is the CO M automation library referenced by the
RpaDemoVB project. This component is imported by Rose when the
RpaDemoVB type library is imported.

The client application uses the COM interfaces _Account, _U pdateReceipt,
_GetReceipt, and _MoveMoney to communicate with the RpaDemoVB server. (All
COM interfaces from imported Visual Basic applications contain a leading
underscore character.)
8

Working with the Sample Model
NOTE: In the C+ + version of the sample model, the CO M object and the
ActiveX DLL are combined into a single component.
9

Understanding the Use Case View
The U se Case view in the Rose browser shows the interaction diagrams and use
cases that are included in the sample model.

The VBExample sequence diagram appears as follows. See Controlling Object Creation
Overhead on page 22 for a description of the MultipleScript sequence diagram. See
Working with the Starting from Scratch Tutorial on page 17 for a description of the other
sequence diagram included with the sample model.

The sequence diagram used in this section of this
document to help you test the sample model.

A 2nd sequence diagram that you can use to
generate multiple scripts. (See Controlling Object
Creation Overhead on page 22 for details.)

A tutorial that shows you how to generate
a virtual user script from scratch. This use
case includes multiple sequence diagrams.
10

Working with the Sample Model
In the VBExample sequence diagram:

ã The Virtual U ser actor serves as a placeholder for the actual client object.

ã The VU Services actor enables runtime services such as think time.

ã _MoveMoney is a hidden interface — indicated by the leading underscore
character — and realized by the MoveMoney coclass. The _MoveMoney
interface and the MoveMoney coclass are realized by the RpaDemoVB COM
component.

ã PrimeAccount assigns itself the number 1.

ã SecondAccount assigns itself the number 2.

ã StatefulPerform indicates a request to transfer $50 from PrimeAccount to
SecondAccount.

Understanding the Logical View
The Logical View shows the packages, classes, interfaces, and operations in the
model. Packages in the Visual Basic version of the sample model include:

ã RpaDemoVB (from COM). The package that would be created when you
import the type library from RpaDemoVB.dll. (In the sample model, the type
library has already been imported.)

ã stdole (from COM). The OLE Automation package that is created when you
import a Visual Basic project.

ã RationalTest. Rational-supplied actor classes that provide support for modeling
runtime functions used by various Rational software components.

ã RpaDemoVB (from Reverse Engineered). The package containing objects
used in round-trip engineering of the source code for RpaDemoVB objects.
11

The following figure shows the main Class Diagram for the SampleVB model:

Testing the Sample Model
To see how Rational PerformanceArchitect works, you can generate a script and
C+ + wrappers from the VBExample sequence diagram. Then, you can use
LoadTest to run a performance test. In the performance test, you can measure
the time required for the PrimeAccount, SecondAccount, and
StatefulPerform() messages that the client sends to the server.
12

Working with the Sample Model
Generating the Script and Wrappers in Rose
To generate a virtual user script and the wrappers:

1. Start Rational Rose and open the sample model,
[Rose Dir]\Rpa\SampleVB.mdl.

2. In the Rose Browser, expand the Use Case View.

3. Double-click the VBExample sequence diagram to open it.

4. Click Tools > VU Scripting > Options.

Make sure that all of the options are selected.

Select diagram from list — Displays a list of sequence diagrams to choose
from. If deselected, Rational PerformanceArchitect generates a script based on
the active sequence diagram.

Launch Robot after script is generated — Starts Robot automatically after
generating the script.

NOTE: If Robot is already running, newly generated scripts will not open
automatically in Robot.
13

Automatically build COM interface wrappers — Builds the COM wrappers
automatically. Rational PerformanceArchitect looks for the Microsoft Visual
C+ + 6.0 compiler on your computer. If it cannot locate the compiler, it asks
you to locate the vcvars32.bat file, which is typically located in the VC98\bin
directory of the compiler. If the compiler is not installed on your system,
Rational PerformanceArchitect disables the Build wrappers automatically
option. For more information about the wrappers, see Generating Scripts and
Wrapper Code from Rose Models on page 6.

Automatically include CoInitialize() and CoUninitialize() — Inserts a single
Vu_CoInitialize() and a single Vu_CoUninitialize() statement in
the script. These statements call the CoInitialize() and
CoUninitialize() COM runtime functions. If deselected, these
statements are not inserted into the script automatically, and therefore, these
functions are not executed for each iteration of the script. These statements are
part of the VU class in the RationalTest package. For more information about
this option, see Controlling Object Creation Overhead on page 22.

5. Click Tools > VU Scripting > Generate Script.

6. When prompted, log into a Rational repository. (If you don’t already have a
repository, you will need to create one. For details, see the Using the Rational
Administrator manual or the Rational Administrator online H elp.)

NOTE: Deselect this option only in certain situations, such as when the
C+ + compiler does not reside on your computer. To build the wrappers
manually, run the rpa.bat file, which resides in the repository under
Project\[ProjectN ame]\Script\externC\[DiagramN ame].

Type your user ID and password.
If you do not know these, see
your administrator.

Select a repository. To change
repositories later, exit all Robot
components and log in again.
(Repositories are created in the
Rational Administrator.)

Select a project. You can change
to another project within the
same repository after you log in.

Click OK to log in.
14

Working with the Sample Model
7. If you have chosen the Select diagram from list option and your model
contains multiple sequence diagrams, Rational PerformanceArchitect prompts
you to select a sequence diagram. Select the VBExample sequence diagram and
click OK.

8. If you are prompted, type or browse to the path for RpaDemoVB.dll, which is
the server component you are testing. Then, click OK.

At this point, Rational PerformanceArchitect opens the script in Robot and
builds the C+ + wrapper DLL for the transaction described in the sequence
diagram. The script is assigned the same name as the sequence diagram. For an
example of a C+ + wrapper, see Sample C+ + Wrapper Generated for the
VBExample Script on page 31.

NOTE: If your repository is located on another computer, you must map the
path to the repository to a drive letter in order to use the Automatically build
COM interface wrappers option.

NOTE: The list can include both sequence and collaboration diagrams.

NOTE: Rational PerformanceArchitect looks for the path in the FileName
property of the RpaDemoVB Component Specification. If it finds the path
and the path is correct, you will not be prompted.
15

If Build wrappers automatically is deselected in the Rational
PerformanceArchitect Options dialog box, the following dialog box will appear
at the end of the script/wrapper generation process. Enable the check box and
click OK to build the wrappers.

Running Performance Tests
To run a performance test:

1. In Robot, click File > Playback.

This starts LoadTest and creates a LoadTest schedule from the virtual user
script.

2. Click Run > Schedule.

3. Click OK.

4. Review the results.
16

Working with the Starting from Scratch Tutorial
For more information about creating and running schedules, see the Using
Rational LoadTest manual.

5. Run a Performance report in LoadTest to display the response times observed
during the schedule run.

Working with the Starting from Scratch Tutorial

The Starting from Scratch tutorial is a use case that is included with the Visual Basic
version of the sample model. This use case teaches you how to create your own
sequence diagrams in which you model interface operations and generate a VU
script.

Digging Deeper

Read the following topics in this section for important information about:

ã Adding the RationalTest package to your models

ã Converting model elements to a virtual user script

ã Datapool commands in the virtual user script

ã Controlling object creation overhead

ã Modeling COM objects with Rose

ã H ow Rational PerformanceArchitect maps Visual Basic data types

ã Sample virtual user script

ã Sample C+ + wrapper
17

Adding the RationalTest Package to Your Models
The RationalTest package is a collection of actors that provide support for modeling
runtime functions used by various Rational software components. To add this
package to your own models:

1. Open your model in Rose.

2. Click File > Units > Load.

3. N avigate to the [Rose Dir]\rpa directory and select the RationalTest.cat file.

4. Click Open.

Converting Model Elements to a Virtual User Script
Rational PerformanceArchitect converts elements in your Rose model to lines of
code in a virtual user script. To get a feel for how this conversion works, consider
how CO M calls and think time are modeled in your sequence diagram.

When Rational PerformanceArchitect generates a virtual user script, the messages to
a CO M server in the sequence diagram become VU language emulate commands
in your script. The emulate command provides generic emulation services to the
VU language and to external C function calls.

Rational PerformanceArchitect helps you model think time by providing a
think()operation as part of the VU class in the RationalTest package. Think time
is used in LoadTest to pace the playback of virtual user scripts. Generally speaking,
think time is used to indicate the time that a typical user would delay or think
between submitting commands.

The think() operation of the VU class in the RationalTest package takes one
parameter, the average think time in milliseconds, for which you must supply a
value.

Every think (nnn) message in your sequence diagram becomes a set
Think_Avg=nnn command in the script, where nnn is the value of the average
delay time in milliseconds. When you model this operation in a message, Rational
PerformanceArchitect uses the value that you supply as the parameter on the
message and generates the corresponding set Think_avg command in the virtual
user script.

The following segment of a virtual user script shows how Rational
PerformanceArchitect converts a think (nnn) message in the sequence diagram to
a set Think_Avg=nnn command in the script and then converts the messages in
the sequence diagram to emulate commands in the script.
18

Digging Deeper
For more information about the emulate command and the think time
environment variable, see the VU Language Reference.

Datapool Commands in the Virtual User Script
Rational PerformanceArchitect uses the arguments from the COM calls in your
interaction diagram to fill in a DATAPO OL_CON FIG section in the generated
script. Like-named arguments with the same data value in the diagram are treated as
one datapool field in the DATAPOOL_CO N FIG section. Like-named arguments
with different data values in the diagram are treated as separate fields in the
DATAPOOL_CO N FIG section. These rules apply even if the arguments are used
in separate functions. To prevent like-named fields in the DATAPO OL_CON FIG
section, Rational PerformanceArchitect appends a suffix to the argument name —
for example AccountN o, AccountN o1, and so on.

In the following example, the AccountN umber parameter is assigned different
values in the transaction while Amount is a constant value. This results in two
datapool variables for AccountN umber and a single variable for Amount.

/* think() message from sequence diagram */
 set Think_avg = 2000;
 emulate ["IAccount_Post"] iRetval = IAccount_Post(
 datapool_value(Transfer1VC, "lAccount"),
 datapool_value(Transfer1VC, "lAmount")),
 pszLogPass, pszLogFail;
19

This first line of the DATAPOOL_CONFIG contains the datapool name and the flags
that define how the datapool is accessed when the script is played back in LoadTest.

Each subsequent line has four columns of information, separated by commas. These
lines serve as a datapool blueprint, giving Robot the information it needs to create the
datapool. During script playback, these lines also tell LoadTest where to look for
values to assign the variables in the script.

You will find datapool commands throughout a virtual user script. These commands
work in conjunction with the DATAPOOL_CONFIG section of the script to control
datapool creation and datapool access. Datapool commands typically found in virtual
user scripts include datapool_open, datapool_fetch,
datapool_value, datapool_rewind, datapool_close, and
DATAPOOL_CONFIG.

DATAPOOL_CONFIG "VBExample" OVERRIDE DP_SEQUENTIAL DP_SHARED DP_NOWRAP
{
 EXCLUDE, "lAccount", "string", "1";
 EXCLUDE, "lAccount0", "string", "2";
 EXCLUDE, "lAmount", "string", "50";
 EXCLUDE, "lTranType", "string", "3";

Data values shown in the COM
calls in the sequence diagram
become default values in the script.

Defaults to Exclude

Column names come from the
parameters in the Operation
Specification in Rose.

Data types appear but are not used
by Rational PerformanceArchitect.
20

Digging Deeper
The following example shows several datapool commands and a
DATAPOOL_CONFIG statement for a datapool named VBExample.

For more information about datapools, see the Using Rational LoadTest and VU
Language Reference manuals.

Using Real Data Values
When creating interaction diagrams, be sure to include real data values for the
arguments in your COM calls rather than the data type names that Rose defaults to
in the message signatures. If you fail to supply default data values in the message
signatures of your interaction diagrams, your scripts may fail on playback. The
interaction diagrams in the sample model provided with Rational
PerformanceArchitect provide default data values for your reference. (See Working
with the Sample Model on page 8.)

 vu_CoInitialize(); /* Automatically generated - vu_CoInitialize() */
 VBExample = datapool_open("VBExample");
 datapool_fetch(VBExample);
 /* **
*/
 /* Operations mapped in the sequence diagram */
 /* **
*/
 /* think() message from sequence diagram */
 set Think_avg = 2500;
 emulate ["MoveMoney_PrimeAccount"] iRetval = MoveMoney_PrimeAccount(
 datapool_value(VBExample, "lAccount")),
 pszLogPass, pszLogFail;
 emulate ["MoveMoney_SecondAccount"] iRetval = MoveMoney_SecondAccount(
 datapool_value(VBExample, "lAccount0")),
 pszLogPass, pszLogFail;
 emulate ["MoveMoney_StatefulPerform"] iRetval = MoveMoney_StatefulPerform(
 datapool_value(VBExample, "lAmount"),
 datapool_value(VBExample, "lTranType")),
 pszLogPass, pszLogFail;

 /* **
*/
 vu_CoUninitialize(); /* Automatically generated - CoUninitialize() */
 pop [Think_avg, Think_dist, Think_def, Timeout_val, Timeout_scale];
}
DATAPOOL_CONFIG "VBExample" OVERRIDE DP_SEQUENTIAL DP_SHARED DP_NOWRAP
{
 EXCLUDE, "lAccount", "string", "1";
 EXCLUDE, "lAccount0", "string", "2";
 EXCLUDE, "lAmount", "string", "50";
 EXCLUDE, "lTranType", "string", "3";
}

21

Controlling Object Creation Overhead
Two features of Rational PerformanceArchitect can be especially useful in modeling
architectures for certain types of systems, such as an order entry system. These
features are the Automatically include CoInitialize()/CoUninitialize() option and
the script object feature.

In an order entry system, each user generates numerous transactions. This type of
application often requires a different architectural approach than an ATM
application, in which many users execute a single transaction.

If you select the Automatically include CoInitialize()/CoUninitialize() option
(Tools > VU Scripting > Options) and generate a script, Rational
PerformanceArchitect inserts the vu_CoInitialize() and
vu_CoUninitialize() statements into your script. (These statements are also
inserted into the C+ + wrappers.) When you run multiple iterations of your script
in LoadTest, these statements reset the COM environment and cause any objects
created by the script to be recreated with each script iteration. To see how this object
creation overhead affects performance, you can compare scripts that include the
CoInitialize/CoU ninitialize pair with scripts that do not.

Rather than include the vu_CoInitialize() and vu_CoUninitialize()
statements in your script, you can use the script object provided in the Rational Test
package to tell Rational PerformanceArchitect to create additional scripts — one to
initialize the CO M environment and another to uninitialize the CO M environment.
You can include all three scripts in a single diagram in Rose. U sing this technique,
you can set up the diagram as follows:

ã A CoInitialize() script that initializes the COM environment.

ã Another script that executes the transaction. If you deselect the Automatically
include CoInitialize()/CoUninitialize() option, this script will not contain the
vu_CoInitialize() and vu_CoUninitialize() statements, thereby
eliminating the overhead of having to recreate the COM object with each
iteration.

ã A CoUninitialize() script that uninitializes the COM environment.

NOTE: To display real data values, be sure to configure Rose to display message
signatures. To do this, click Tools > Options, click the Diagram tab, and be sure
that either Type Only, Name Only, or Name and Type is selected. H owever, if
you change this option, every argument in your diagram will be reset, and you
will need to reenter the argument values.
22

Digging Deeper
To see how this can be implemented in a Rose diagram:

1. Double-click MultipleScripts in the Rose browser for the sample model.

2. View the sequence diagram that is displayed. N ote that the diagram includes
three script objects and that there is a N ew() message before each CO M call.

Double-click to open the
MultipleScripts diagram.

New script objects

New() message starts
a new script.

Uninitialize

Initialize

Post
transaction
23

To create a scenario such as this in your own diagrams:

1. In Rose, click Tools > VU Scripting > Options and deselect Automatically
include CoInitialize() and CoUninitialize().

2. Add the Rational Test package to your script. (See Adding the RationalTest Package
to Your Models on page 18.)

3. Add a script object for each script that you want to create.

For example, in the MultipleScripts diagram, there is one script object for
transfer, one for initialize, and one for uninitialize.

4. Add a New() message before each CO M call that you plan to add.

New() tells Rational PerformanceArchitect to start a new script. Each script
becomes the receiving object of the New() message.

5. After each New() message, add a message for each COM call.

In the sample, these messages are vu_Coinitialize(),
PrimeAccount(), SecondAccount(),StatePerform())and
vu_CoUninitialize().

Sample LoadTest Schedule
This section shows how your use of the Automatically include CoInitialize()/
CoUninitialize() option and the script object can affect a schedule in LoadTest.

In the following sample LoadTest schedule, there are three U ser Groups — U ser
Group1, U ser Group2, and U serGroup3 — and four scripts — VBExample,
Transfer, Initialize, and U ninitialize.

User Group1 runs the
VBExample script 10 times.
COM objects are opened and
closed with each iteration.

User Group2 runs the Initialize
script once, the Transfer script
10 times, and the Uninitialize
script once. COM objects are
opened and closed once.

User Group3 runs the
VBExample script 10 times.
The script fails because the
COM environment is not
initialized.
24

Digging Deeper
The following table describes the four scripts:

In this sample, it is expected that U ser Group2 will outperform U ser Group1
because of reduced object creation overhead. In addition, the Transfer script will fail
to run in U ser Group3 because of the missing CoInitialize and CoU ninitialize calls.

Modeling COM Objects with Rose
COM support is provided in Rational PerformanceArchitect when you import type
libraries with the type library import tool in Rose 2000.

The type library import tool defines all the appropriate interfaces, coclasses, and
classes and the relationships among them. The structure for each CO M object
created in the model by the imported type library is the same as the structure created
with the ATL (ActiveX Type Library) object creation wizard in Rose 2000.

Comparing COM Components in Visual Basis and C+ +
When you program in Visual Basic, VB masks the complexity of dealing with
interfaces and coclasses. You use the class name both to instantiate objects and to call
methods on those objects. VB creates a hidden interface, using your class name
preceded by a leading underscore character.

In Visual C+ + , you typically model interfaces as separate classes and connect them
to their coclasses using the U ML realizes relationship. In Visual C+ + , interface
names often begin with a leading I and class names often begin with a leading C.

Script Description

VBExample Includes CoInitialize and CoU ninitialize COM calls. Can be
generated with the Automatically include CoInitialize()/
CoUninitialize() option turned on.

Transfer Does not includes CoInitialize and CoU ninitialize CO M calls.
Can be generated with the Automatically include
CoInitialize()/CoUninitialize() option turned off and with a
script object in the Rose diagram.

Initialize Initializes COM environment. Can be generated with the
Automatically include CoInitialize()/CoUninitialize() option
turned off and with a script object in the Rose diagram.

U ninitialize U ninitializes CO M environment. Can be generated with the
Automatically include CoInitialize()/CoUninitialize() option
turned off and with a script object in the Rose diagram.
25

Class Diagram Structure for COM Objects
The following figure shows the structure created when you use the ATL object
creation wizard in Rose 2000. (You can access this wizard in Rose by clicking
Tools > Visual C+ + > COM > New ATL Object.) N ote that you must implement
operations as members of the IN ewClass interface.

The following figure shows a class diagram for an ATL object imported from a type
library for a CO M object built using Visual C+ + :
26

Digging Deeper
The following figure shows a class diagram for an ATL object imported from a type
library for a CO M object built using Visual Basic.

Requirements for COM Objects
Requirements for CO M objects in Rational PerformanceArchitect are as follows:

ã Rational PerformanceArchitect requires a realize relationship from the coclass
to the interface.

ã Rational PerformanceArchitect requires that the interface and coclass be realized
by a component (in this case Account) in the Component View, as shown in the
previous figure. N ote that the design of the application will require other classes
to be realized by the component.

Qualifying Messages for Inclusion in a Script
Rational PerformanceArchitect qualifies a message for inclusion in the script as
follows:

ã The message must be associated with an operation.

ã The message must contain a uuid property, which you can find on the COM tab
in the specification for the parent class of the message’s receiver object.
27

To verify whether a message qualifies:

1. Right-click the message’s receiver object.

2. Click Open Specification.

3. Click Browse and select Browse Class.

A sample class specification appears as follows:

What Happens When Multiple Classes Realize an Interface
In a model, it is possible to have more than one class of the same name realizing the
same interface. When you generate the script, Rational PerformanceArchitect
displays a dialog box that prompts you to specify which class you want to use.

For a class to qualify as a COM object
and be included in a script, the kind
property must have a value of
interface and the uuid property
cannot be blank. If you import the type
library using Rose, then these
properties will be set properly.

In this model, the first
CAccount class is part of
a package called
ACCOUNT, and the
second CAccount class is
part of a package called
AccountLib. Both classes
realize the IAccount
interface.
28

Digging Deeper
How Rational PerformanceArchitect Maps VB Data Types
In the VU language, all data is typed as strings and is passed into the C+ + wrapper
as a TCHAR* data type. Inside the wrapper, these parameters are transformed from a
TCHAR* data type into local variables before they are passed into the COM object.

When mapping the Visual Basic data types to Visual C+ + data types, Rational
PerformanceArchitect checks the Type property of the Parameter object. It also
inspects the list of properties for each Parameter object to determine whether the
Parameter object is passed by value or passed by reference. Specifically, the VC+ +
type is used for data manipulation inside the wrapper and is passed to the target
object by value or by reference according to the dictates of the model.

The following table lists the Visual Basic data types and the corresponding Visual
C+ + data types used in the wrappers.

When reading the table, you can extrapolate the example to the general case. For
example, in the case of Boolean, the variable name Parm_bool is the parameter
name from the model. The name wrParm_bool is the wrapper variable used to
pass the transformed data from Parm_bool to the object. This pattern is used in all
of the examples. N ote that two types, Currency and String, use a two-step
transformation process.

VB Type VC+ + Type Example Wrapper Code

Boolean VARIAN T_BOO L VARIAN T_BO OL wrParm_bool =
(VARIAN T_BOOL)Parm_bool;

Byte U CH AR U CH AR wrParm_byte = (U CH AR)Parm_byte;

Currency CU RREN CY CU RREN CY wrParm_curr;
wrParm_curr.int64 = _atoi64(Parm_curr);

Date DATE DATE wrParm_date = atof(Parm_date);

Double DOU BLE DOU BLE wrParm_double = atof(Parm_double);

Integer SH ORT SH ORT wrParm_int = (SH ORT)Parm_int;

Long LON G LON G wrParm_long = atol(Parm_long);

Object LPDISPATCH LPDISPATCH wrParm_obj = (LPDISPATCH)Parm_obj;

Single FLOAT FLOAT wrParm_single = (FLOAT)atof(Parm_single);

String BSTR BSTR BSTRResult;

Variant VARIAN T VARIAN T wrParm_byval = _variant_t(Parm_byval);
29

Sample VU Script
#include <VU.h>
external_C string strResult; /*for string results*/
external_C int intResult; /*for non-string results*/
external_C string pszLogPass; /*log message for success*/
external_C string pszLogFail; /*log message for fail*/
external_C int func vu_CoInitialize() {} /*initialize COM*/
external_C int func vu_CoUninitialize() {} /*unitialize COM*/
external_C int func MoveMoney_PrimeAccount(lAccount)
string lAccount,;
{}
external_C int func MoveMoney_SecondAccount(lAccount)
string lAccount,;
{}
external_C int func MoveMoney_StatefulPerform(lAmount,lTranType)
string lAmount,lTranType,;
{}
/* Main */
{
 int iRetval = 0;
 /* ** */
 /* The following code is common initialization code for all scripts */
 /* ** */
 push Timeout_scale = 200; /* Set timeouts To 200% of maximum response Time *
 push [Think_avg = 0, Think_dist = "NEGEXP", Think_def = "LS"];
 push Timeout_val = 120000;/* Set minimum Timeout_val to 2 minutes *
 /* ** */

 vu_CoInitialize(); /* Automatically generated - vu_CoInitialize() */
 VBExample = datapool_open("VBExample");
 datapool_fetch(VBExample);
 /* ** */
 /* Operations mapped in the sequence diagram */
 /* ** */
 /* think() message from sequence diagram */
 set Think_avg = 2500;
 emulate ["MoveMoney_PrimeAccount"] iRetval = MoveMoney_PrimeAccount(
 datapool_value(VBExample, "lAccount")),
 pszLogPass, pszLogFail;
 emulate ["MoveMoney_SecondAccount"] iRetval = MoveMoney_SecondAccount(
 datapool_value(VBExample, "lAccount0")),
 pszLogPass, pszLogFail;
 emulate ["MoveMoney_StatefulPerform"] iRetval = MoveMoney_StatefulPerform(
 datapool_value(VBExample, "lAmount"),
 datapool_value(VBExample, "lTranType")),
 pszLogPass, pszLogFail;

 /* ** */
 vu_CoUninitialize(); /* Automatically generated - CoUninitialize() */
 pop [Think_avg, Think_dist, Think_def, Timeout_val, Timeout_scale];
}
DATAPOOL_CONFIG "VBExample" OVERRIDE DP_SEQUENTIAL DP_SHARED DP_NOWRAP
{
 EXCLUDE, "lAccount", "string", "1";
 EXCLUDE, "lAccount0", "string", "2";
 EXCLUDE, "lAmount", "string", "50";
 EXCLUDE, "lTranType", "string", "3";
}

30

Digging Deeper
Sample C+ + Wrapper Generated for the VBExample Script
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <comdef.h>
#include <tchar.h>

#ifndef _WIN32_DCOM
#define _WIN32_DCOM
#endif
#define DLLEXPORT __declspec(dllexport)

#import "D:\Program Files\Rational\Rose 2000\RPA\Sample.vb\RpaDemoVB.dll"

using namespace RpaDemoVB;

TCHAR sDat1[256]; /*buffer for strResult*/
TCHAR sDat2[256]; /*buffer for pszLogPass*/
TCHAR sDat3[256]; /*buffer for pszLogFail*/
extern "C" {
DLLEXPORT int intResult;
DLLEXPORT TCHAR* strResult = sDat1;
DLLEXPORT int* addr_intResult(void) {return &intResult;}
DLLEXPORT TCHAR** addr_strResult(void) {return &strResult;}
DLLEXPORT TCHAR* pszLogPass = sDat2;
DLLEXPORT TCHAR* pszLogFail = sDat3;
DLLEXPORT TCHAR** addr_pszLogPass(void) {return &pszLogPass;}
DLLEXPORT TCHAR** addr_pszLogFail(void) {return &pszLogFail;}

DLLEXPORT _MoveMoney* p_MoveMoney = NULL;
DLLEXPORT LONG* addr_p_MoveMoney(void) {return (LONG*)&p_MoveMoney;}

DLLEXPORT int MoveMoney_PrimeAccount(TCHAR* lAccount)
{

LONG rc = 1;
_tcscpy(pszLogPass, "Pass: ");
_tcscpy(pszLogFail, "Fail: ");

HRESULT HRESULTResult;
//Declare and initialize variables for parameters
//to be passed.

LONG wrlAccount = atol(lAccount);

_MoveMoneyPtr p_MoveMoneyPtr = NULL;
try {

// Use an existing interface reference if available.
// To create the object on every iteration, model the
// vu_CoInitialize and vu_CoUninitialize operations in
// your sequence diagram.

if (p_MoveMoney == NULL) {
p_MoveMoneyPtr = _MoveMoneyPtr(__uuidof(MoveMoney));

// Save raw interface ptr in process global memory.
// Increment the reference count so the smart pointer
// does not clean up when we lose scope returning control
// to the script. The vu_CoUninitialize() function
// releases this reference.

p_MoveMoney = p_MoveMoneyPtr.GetInterfacePtr();
p_MoveMoney->AddRef();

}

31

else {
p_MoveMoneyPtr = _MoveMoneyPtr(p_MoveMoney);

}

//Call the COM interface using a smart pointer.
//But, if the object platform is Visual basic then
//use the raw interface pointer.
HRESULT hr = p_MoveMoney->put_PrimeAccount(wrlAccount,&HRESULTResult);

if (FAILED(hr))
_com_raise_error(hr);

}
catch (_com_error e) {

rc = 0; // Return 0 to VU to signal a failure.
_tcscat(pszLogFail, (TCHAR*)e.ErrorMessage()); //com_error message to VU log

}
catch (...) {

rc = 0;
_tcscat(pszLogFail, "Failure not COM-related.");

}
return rc;

}

DLLEXPORT int MoveMoney_SecondAccount(TCHAR* lAccount)
{

LONG rc = 1;
_tcscpy(pszLogPass, "Pass: ");
_tcscpy(pszLogFail, "Fail: ");

HRESULT HRESULTResult;
//Declare and initialize variables for parameters
//to be passed.

LONG wrlAccount = atol(lAccount);

_MoveMoneyPtr p_MoveMoneyPtr = NULL;
try {

// Use an existing interface reference if available.
// To create the object on every iteration, model the
// vu_CoInitialize and vu_CoUninitialize operations in
// your sequence diagram.

if (p_MoveMoney == NULL) {
p_MoveMoneyPtr = _MoveMoneyPtr(__uuidof(MoveMoney));

// Save raw interface ptr in process global memory.
// Increment the reference count so the smart pointer
// does not clean up when we lose scope returning control
// to the script. The vu_CoUninitialize() function
// releases this reference.

p_MoveMoney = p_MoveMoneyPtr.GetInterfacePtr();
p_MoveMoney->AddRef();

}
else {

p_MoveMoneyPtr = _MoveMoneyPtr(p_MoveMoney);
}

//Call the COM interface using a smart pointer.
//But, if the object platform is Visual basic then
//use the raw interface pointer.
HRESULT hr = p_MoveMoney->put_SecondAccount(wrlAccount,&HRESULTResult);

if (FAILED(hr))
32

Digging Deeper
_com_raise_error(hr);

}
catch (_com_error e) {

rc = 0; // Return 0 to VU to signal a failure.
_tcscat(pszLogFail, (TCHAR*)e.ErrorMessage()); //com_error message to VU log

}
catch (...) {

rc = 0;
_tcscat(pszLogFail, "Failure not COM-related.");

}
return rc;

}

DLLEXPORT int MoveMoney_StatefulPerform(TCHAR* lAmount, TCHAR* lTranType)
{

LONG rc = 1;
_tcscpy(pszLogPass, "Pass: ");
_tcscpy(pszLogFail, "Fail: ");

BSTR* BSTRResult;
//Declare and initialize variables for parameters
//to be passed.

LONG wrlAmount = atol(lAmount);
LONG wrlTranType = atol(lTranType);

_MoveMoneyPtr p_MoveMoneyPtr = NULL;
try {

// Use an existing interface reference if available.
// To create the object on every iteration, model the
// vu_CoInitialize and vu_CoUninitialize operations in
// your sequence diagram.

if (p_MoveMoney == NULL) {
p_MoveMoneyPtr = _MoveMoneyPtr(__uuidof(MoveMoney));

// Save raw interface ptr in process global memory.
// Increment the reference count so the smart pointer
// does not clean up when we lose scope returning control
// to the script. The vu_CoUninitialize() function
// releases this reference.

p_MoveMoney = p_MoveMoneyPtr.GetInterfacePtr();
p_MoveMoney->AddRef();

}
else {

p_MoveMoneyPtr = _MoveMoneyPtr(p_MoveMoney);
}

//Call the COM interface using a smart pointer.
//But, if the object platform is Visual basic then
//use the raw interface pointer.
HRESULT hr = p_MoveMoney->StatefulPerform(wrlAmount,wrlTranType,&BSTRResult);

if (FAILED(hr))
_com_raise_error(hr);

_tcscat(pszLogPass, (TCHAR*)_bstr_t(BSTRResult));
_tcscpy(strResult, (TCHAR*)_bstr_t(BSTRResult));

}
catch (_com_error e) {

rc = 0; // Return 0 to VU to signal a failure.
_tcscat(pszLogFail, (TCHAR*)e.ErrorMessage()); //com_error message to VU log
33

}
catch (...) {

rc = 0;
_tcscat(pszLogFail, "Failure not COM-related.");

}
return rc;

}

DLLEXPORT int vu_CoInitialize()
{

::CoInitialize(NULL);
return 1;

}

DLLEXPORT int vu_CoUninitialize()
{

//Release the raw interface pointer and set it to 0
if (p_MoveMoney) {
try {

p_MoveMoney->Release();
p_MoveMoney = 0;

}

catch (...) {
//Catch everything so we do not crash.
}

}
//Release the raw interface pointer and set it to 0
if (p_MoveMoney) {
try {

p_MoveMoney->Release();
p_MoveMoney = 0;

}

catch (...) {
//Catch everything so we do not crash.
}

}
//Release the raw interface pointer and set it to 0
if (p_MoveMoney) {
try {

p_MoveMoney->Release();
p_MoveMoney = 0;

}

catch (...) {
//Catch everything so we do not crash.
}

}
::CoUninitialize();
return 1;

} }
34

Troubleshooting
Troubleshooting

This section provides troubleshooting techniques you can use when running
Rational PerformanceArchitect.

Wrappers Fail to Build
Wrapper compilation may fail for a variety of reasons related to the data types of
parameters. For example, you may have uncovered a data type conversion that
Rational PerformanceArchitect does not handle properly, or you may have exposed
an issue in your model.

In addition, it is possible that N otepad may fail to initialize and display the results of
a wrapper build when build errors occur.

Problems with Visual Basic Applications
For Visual Basic components, you must verify that you have properly modeled the
ByVal and ByRef properties using ByVal in the parameter name or using the
Model Assistant. For information about the Model Assistant, see the Using Rose
Visual Basic manual.

If Then

Wrappers fail to build and you see a
message such as Program is not an
executable file.

See Wrappers Fail to Build on page 35.

Wrappers fail to build and the build results
are not displayed

See Configuring N otepad to Always Display Build
Errors on page 36.

A COM not initialized error
appears when you run a LoadTest
schedule.

You failed to call vu_CoInitialize and
vu_CoU ninitialize in your script. To correct
this error, select the Automatically include
CoInitialize and CoUninitialize option in the
Rational PerformanceArchitect Options
dialog box and regenerate the script; or,
model the call in your diagram and regenerate
the script. For more information, see
Controlling Object Creation Overhead on page 22.

Script fails to open in Robot after script
has been generated, even with the Launch
Robot option selected.

Be sure to exit out of Robot before generating
a script.
35

In addition, this version of Rational PerformanceArchitect generates interface
wrappers that use early binding. Visual Basic applications may use late binding
depending on the data types for functions and parameters that are being used.

Missing Libraries
Wrappers may also fail to build because of various undefined COM operations.
Rational PerformanceArchitect generates code for #import statements in the
VC+ + interface wrapper code. O ne #import statement is generated for each
COM object included in a given diagram. In some cases, your transaction may
depend on type libraries that are not directly referenced in your sequence diagram.
In this case, you need to determine which library is missing and add a #import
statement for it manually.

Exceeding the Maximum Wrapper Size
Wrappers will fail to build if the source file for the wrapper is larger than 64k bytes.

Program is Not an Executable File Message
If the wrappers fail to build and you see a message such as Program is not an
executable file:

1. Verify that you have the C+ + compiler installed on your computer.

2. Click Automatically build COM interface wrappers in the Rational
PerformanceArchitect Options dialog box.

3. Regenerate the script.

4. If step 3 fails, run the Vsvars32 batch file, located in the Visual C+ + bin
directory.

5. Then, run the rpa.bat file. (See Generating the Script and Wrappers in Rose on page
13.)

Configuring Notepad to Always Display Build Errors
On Windows N T computers, Rational Suite PerformanceStudio may prevent
Windows from locating the N otepad executable and cause Windows to fail to display
the results of a wrapper build when build errors occur.

To ensure that N otepad will display build errors:

1. Click Start > Settings > Control Panel > System and click the Environment
tab.
36

Troubleshooting
2. Select the PATH System Variable.

3. Click inside the Value box at the bottom of the dialog (without making any
changes).

4. Click Set and click OK.

5. Regenerate the script and wrappers by running the rpa.bat command file
associated with the wrapper or by clicking Tools > VU Scripting > Generate
Script in Rose.

Be sure that the Automatic build COM Interface Wrappers option is selected
when you generate the script.

Asynchronous Environments
Rational PerformanceArchitect generates scripts for testing the performance of
COM/DCO M applications in a synchronous client/server environment. Visual
Basic client applications that respond to asynchronous server-initiated requests
(callbacks) using VB events are not supported by Rational PerformanceArchitect.

Select the PATH
System Variable.

Click inside the
Value box.
37

Runtime Registry Settings

Rational PerformanceArchitect maintains several runtime registry settings in
H KEY_CU RREN T_U SER\Software\BasicScript Program Settings\Rational
PerformanceArchitect. The following table describes the keys and their legal values:

Key Value

AutoBuild TRUE. Build wrappers when generating
script.

FALSE. Do not build wrappers.

CompilerLocation Fully-qualified location and name of
vcvars32.bat.

InitializeCOM TRUE. Include vu_CoInitialize() and
vu_CoU ninitialize calls.

FALSE. Do not include these calls. U ser must
model them explicitly.

LaunchRobot TRUE. Launch Robot when script generation
completes.

FALSE. Do not launch Robot.

TypelibHistory Collection of key values for the list of
previously used type libraries.

UseDefaultSettings TRUE. Set all options to their default values
the next time VU Scripting is called.

FALSE. U se the settings as specified by the
user.

N ote: This is a system setting used during
product installation.

UseDiagramList TRUE. Display a list of diagrams in the model.

FALSE. U se the current diagram.
38

ã ã ã Index
A
ActiveX Type Library. See also ATL

ATL object creation wizard 25, 26

B
binding, early vs. late 36

C
Class Specification dialog box 7
coclasses with Visual Basic 25

CoInitialize/U ninitialize runtime functions 14

collaboration diagrams 5
CO M objects

interfaces imported from Visual Basic 8
requirements for 27

component diagrams 8

D
data types, mapping VB to VC+ + 29

datapools

DATAPOO L_CON FIG section of script 19

definition 8
support for in RationalTest package 5

E
early binding 36

emulate command 7, 18

F
fat client 1
FileN ame property, in Component Specification 7

I
IN FO SERVER command 5
installation instructions 4
interaction diagrams 1, 5
interfaces

COM 8
leading underscore character in name 25

realize relationship from coclass 27

K
kind property 28

L
late binding 36

LoadTest 3

M
MultipleScripts sequence diagram 23

N
N otepad, configuring to display build errors 36
Index-1

Using Rational PerformanceArchitect
O
OLE objects. See also stdole

operation signatures, in Rose 22

options, VU Scripting 13

P
performance tests, running 16

R
Rational Test package 3, 18

realize relationship 27

receiver objects 6
registry settings 38

repository 15

requirements, PerformanceArchitect 3, 4
round-trip engineering 8, 11

S
schedules, in Rational LoadTest 24

scripts

generating 13

support for generating multiple 5
sequence diagrams 5
set Think_Avg command 18

StatefulPerform message 12

stdole 8, 11

T
thin client 1
think time 18

Timer actor 5

U
underscore characters, in COM interfaces 8

user groups, in Rational LoadTest 24

uuid property 27, 28

V
virtual user actor 5, 11

virtual user scripts, definition 1
VU actor 5
VU Scripting options 13

Vu_CoInitialize and Vu_CoU ninitialize statements
14, 22

VuServices actor 5, 11

W
wrappers

FileN ame property in 7
generating 13

troubleshooting 35
Index-2

	Contents
	Road Map
	Before You Begin
	Who Should Read This Guide
	What You Need to Get Started

	Installing Rational PerformanceArchitect
	Before You Install
	Running the Installation

	Basic Concepts
	Modeling Rational PerformanceStudio Features Using Rose
	Generating Scripts and Wrapper Code from Rose Models
	Running LoadTest Schedules
	Understanding Datapools

	Working with the Sample Model
	Understanding the Component View
	Understanding the Use Case View
	Understanding the Logical View
	Testing the Sample Model

	Working with the Starting from Scratch Tutorial
	Digging Deeper
	Adding the RationalTest Package to Your Models
	Converting Model Elements to a Virtual User Script
	Datapool Commands in the Virtual User Script
	Controlling Object Creation Overhead
	Modeling COM Objects with Rose
	How Rational PerformanceArchitect Maps VB Data Types
	Sample VU Script
	Sample C++ Wrapper Generated for the VBExample Script

	Troubleshooting
	Wrappers Fail to Build
	Asynchronous Environments

	Runtime Registry Settings

	Index

