
SQABasic Language
Reference
Version 2000.02.10

ii

SQABasic Language Reference

Copyright  1998-2000 Rational Software Corporation. All rights reserved. The contents of this
manual and the associated software are the property of Rational Software Corporation and are
copyrighted. Any reproduction in whole or in part is strictly prohibited. For additional copies of this
manual or software, please contact Rational Software Corporation.

Rational, the Rational logo, PerformanceStudio, SiteCheck, TestFactory, TestStudio,
Object-Oriented Recording, and Object Testing are trademarks or registered trademarks of Rational
Software Corporation in the United States and in other countries. Java and all Java-based marks are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries. All other names are used for identification purposes only and are trademarks or registered
trademarks of their respective companies.

U.S. GOVERMENT RIGHTS. Use, duplication, or disclosure by the U.S. Government is subject to
restrictions set forth in the applicable Rational License Agreement and in DFARS 227.7202-1(a) and
227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-
19, or FAR 52.227-14, as applicable.

Revised 4/2000

This manual prepared by:
Rational Software Corporation
20 Maguire Road
Lexington, MA 02421
U.S.A.

Phone:
800-433-5444
408-863-4000

E-mail: support@rational.com
Web: http://www.rational.com

P/N 800-023367-000

 iii

► ► ► Contents

Preface
Audience..xix

Other Resources..xix

Accessing SQABasic Help...xix

Typographical Conventions..xxi

Contacting Rational Technical Publications..xxii

Contacting Rational Technical Support ..xxii

Part I Introducing SQABasic

1 What Is SQABasic?
Automatic Script Generation ... 1-1

Working with Scripts.. 1-2

Your Work Environment .. 1-2

Source and Runtime Files.. 1-3

SQABasic Additions to the Basic Language... 1-3

Other Commands Not Found in Basic.. 1-4

VU Scripting Language .. 1-4

2 Functional List
Arrays.. 2-1

Compiler Directives... 2-1

Datapool Commands (SQABasic Additions) .. 2-2

Dates & Times.. 2-2

Declarations.. 2-2

Dialog Box Definition.. 2-3

Contents

iv SQABasic Language Reference

Dialog Box Services.. 2-4

Disk and Directory Control... 2-4

Dynamic Data Exchange (DDE) ... 2-5

Environmental Control.. 2-5

Error Handling... 2-5

File Control .. 2-6

File Input/Output... 2-6

Financial Functions .. 2-7

Flow Control.. 2-7

Numeric and Trigonometric Functions.. 2-8

Object Scripting Commands (SQABasic Additions) 2-8

Objects.. 2-9

ODBC .. 2-9

Screen Input/Output.. 2-10

SQABasic Commands ... 2-10

String Conversions... 2-10

String Manipulation ... 2-11

Timing and Coordination Commands (SQABasic Additions)................... 2-12

User Action Commands (SQABasic Additions) ... 2-12

Utility Commands (SQABasic Additions) .. 2-14

Variants ... 2-17

Verification Point Commands (SQABasic Additions) 2-17

Part II Using SQABasic

3 SQABasic Fundamentals
Commands ... 3-2

Arguments .. 3-3

Passing Arguments By Value or By Reference....................................... 3-3

Passing Named Arguments... 3-4

Data Types.. 3-5

Descriptions of SQABasic Data Types ... 3-6

Variant Data Types.. 3-7

User-Defined Data Types... 3-8

Data Type Conversions .. 3-9

Contents

Contents v

Arrays.. 3-10

Declaring an Array .. 3-10

Referencing an Array... 3-10

Dynamic Arrays.. 3-11

Dimensions of a Dynamic Array .. 3-11

Dynamic Array Example ... 3-11

Expressions and Operators... 3-12

Numeric Operators... 3-12

String Concatenation Operators ... 3-12

Comparison Operators ... 3-13

Logical Operators .. 3-13

Scope of Variables and Constants .. 3-14

Year 2000 Compliance ... 3-15

Suggestions for Avoiding Year 2000 Problems..................................... 3-16

Trappable Errors .. 3-16

Responding to Errors .. 3-17

User-Defined Errors... 3-17

Error-Handling Examples... 3-17

4 SQABasic Scripts
What is a Script? ... 4-1

Script Source Files .. 4-2

Script Executable Files .. 4-2

Script Structure ... 4-2

Sample Script .. 4-4

User Action and Verification Point Commands ... 4-6

User Action Commands ... 4-6

Verification Point Commands .. 4-7

Syntax of User Action and Verification Point Commands 4-8

Components of a Recognition Method String 4-10

Recognition Method Order .. 4-10

Recognition Methods in Java Commands.. 4-13

Object Context... 4-15

Establishing Context through a Window Command........................... 4-15

Establishing Context through Context Notation 4-18

Default Context... 4-20

Contents

vi SQABasic Language Reference

Customizing Scripts ... 4-20

Script Editing Basics.. 4-21

Declaring Variables and Constants ... 4-21

Adding Custom Procedures to a Script .. 4-23

Adding Custom Procedures to a Library File....................................... 4-26

Using SQABasic Header Files.. 4-29

Sample Library and Header Files.. 4-32

Using the Template File ... 4-33

5 Enhancements to Recorded Scripts
Object Scripting ... 5-1

Specifying an Object ... 5-2

Specifying the Object Property... 5-6

Array of Property Values ... 5-8

Getting Help Defining Recognition Methods.. 5-9

Object Scripting Status Codes .. 5-11

Managing Custom Verification Points .. 5-12

Summary of Verification Point Management Commands 5-13

Current Baseline and Logged Baseline... 5-14

Using the Verification Point Management Commands....................... 5-16

Ownership of Custom Verification Point Files.................................... 5-20

Comparing Environment States .. 5-21

Why Compare Environment States? .. 5-21

What Environment State Changes Are Detected?................................ 5-21

Using the Environment State Comparison Commands...................... 5-21

Specifying the Areas of the Environment To Test............................... 5-23

Example of an Environment State Comparison................................... 5-23

Displaying Messages in Robot ... 5-26

Displaying Messages in the Console Window...................................... 5-27

Displaying Messages in the LogViewer .. 5-28

Using Datapools ... 5-30

Accessing External Applications... 5-31

Dynamic Data Exchange (DDE) .. 5-31

Objects .. 5-32

Contents

Contents vii

Part III Command Reference

6 Command Reference
Abs .. 6-2

AnimateControl ... 6-2

AnimateControlVP... 6-4

AppActivate... 6-6

Asc .. 6-7

Assert .. 6-7

Atn .. 6-8

Beep .. 6-8

Begin Dialog...End Dialog ... 6-9

Browser .. 6-13

Button... 6-16

ButtonGroup.. 6-17

Calendar ... 6-18

CalendarVP .. 6-20

Call ... 6-21

CallScript.. 6-23

CancelButton ... 6-24

Caption ... 6-25

CCur... 6-26

CDbl... 6-27

ChDir ... 6-27

ChDrive.. 6-28

CheckBox (Statement)... 6-29

CheckBox (User Action Command)... 6-30

CheckBoxVP .. 6-32

Chr.. 6-35

CInt .. 6-36

Class List... 6-37

Clipboard.. 6-37

ClipboardVP... 6-38

CLng... 6-39

Close... 6-40

Contents

viii SQABasic Language Reference

ComboBox (Statement) ... 6-41

ComboBox (User Action Command)... 6-42

ComboBoxVP .. 6-44

ComboEditBox .. 6-48

ComboEditBoxVP.. 6-50

ComboListBox ... 6-52

ComboListBoxVP .. 6-55

Command .. 6-58

Const .. 6-59

Cos.. 6-60

CreateObject .. 6-61

CSng ... 6-62

CStr .. 6-63

'$CStrings ... 6-64

CurDir.. 6-65

CVar.. 6-66

CVDate... 6-66

DataWindow... 6-68

DataWindowVP.. 6-72

Date (Function).. 6-74

Date (Statement) .. 6-75

DateSerial ... 6-76

DateTime ... 6-77

DateTimeVP... 6-78

DateValue ... 6-79

Day.. 6-80

DDEAppReturnCode .. 6-81

DDEExecute... 6-82

DDEInitiate .. 6-83

DDEPoke ... 6-85

DDERequest .. 6-86

DDETerminate .. 6-88

Declare.. 6-89

Deftype .. 6-91

DelayFor... 6-92

Contents

Contents ix

Desktop .. 6-93

Dialog (Function)... 6-94

Dialog (Statement) ... 6-96

Dim... 6-97

Dir .. 6-100

DlgControlID... 6-102

DlgEnable (Function) .. 6-104

DlgEnable (Statement)... 6-105

DlgEnd ... 6-107

DlgFocus (Function).. 6-109

DlgFocus (Statement) .. 6-110

DlgListBoxArray (Function) .. 6-111

DlgListBoxArray (Statement) .. 6-113

DlgSetPicture ... 6-114

DlgText (Function).. 6-116

DlgText (Statement) .. 6-118

DlgValue (Function) .. 6-120

DlgValue (Statement)... 6-122

DlgVisible (Function) .. 6-123

DlgVisible (Statement)... 6-124

Do...Loop.. 6-126

DoEvents .. 6-127

DropComboBox .. 6-128

DropListBox... 6-129

EditBox ... 6-131

EditBoxVP .. 6-133

EndSaveWindowPositions ... 6-136

Environ ... 6-137

Eof... 6-138

Erase ... 6-139

Erl ... 6-141

Err (Function) .. 6-142

Err (Statement)... 6-143

Error (Function)... 6-144

Error (Statement) ... 6-145

Contents

x SQABasic Language Reference

Exit.. 6-146

Exp.. 6-147

FileAttr.. 6-148

FileCopy ... 6-149

FileDateTime ... 6-150

FileLen.. 6-151

FileVP ... 6-152

Fix ... 6-153

For...Next ... 6-154

Format .. 6-156

FreeFile... 6-164

Function...End Function.. 6-164

FV ... 6-166

GenericObject .. 6-168

GenericObjectVP ... 6-170

Get .. 6-173

GetAttr.. 6-175

GetField .. 6-176

GetLastVPResult .. 6-177

GetObject ... 6-177

Global ... 6-179

GoTo .. 6-182

GroupBox (Statement)... 6-183

GroupBox (User Action Command) .. 6-184

GroupBoxVP.. 6-186

Header .. 6-188

HeaderVP ... 6-190

Hex ... 6-192

HotKeyControl .. 6-193

HotKeyControlVP ... 6-194

Hour ... 6-195

HTML.. 6-196

HTMLVP... 6-198

HTMLActiveX ... 6-200

HTMLActiveXVP .. 6-201

Contents

Contents xi

HTMLDocument .. 6-203

HTMLDocumentVP ... 6-204

HTMLHiddenVP .. 6-206

HTMLImage.. 6-208

HTMLImageVP... 6-209

HTMLLink .. 6-211

HTMLLinkVP ... 6-212

HTMLTable... 6-214

HTMLTableVP.. 6-215

If...Then...Else .. 6-217

'$Include ... 6-218

Input (Function)... 6-220

Input (Statement) ... 6-221

InputBox... 6-222

InputChars ... 6-223

InputKeys ... 6-224

InStr.. 6-229

Int ... 6-230

IPAddress.. 6-232

IPAddressVP... 6-233

IPmt.. 6-234

IRR ... 6-236

Is ... 6-237

IsDate.. 6-238

IsEmpty .. 6-238

IsMissing .. 6-239

IsNull.. 6-240

IsNumeric .. 6-241

JavaCanvas .. 6-242

JavaCanvasVP ... 6-244

JavaListView ... 6-246

JavaListViewVP... 6-248

JavaMenu.. 6-250

JavaMenuVP... 6-251

JavaObject... 6-253

Contents

xii SQABasic Language Reference

JavaObjectVP.. 6-255

JavaPanel... 6-256

JavaPanelVP.. 6-258

JavaPopupMenu ... 6-260

JavaPopupMenuVP .. 6-261

JavaSplitPane .. 6-263

JavaSplitPaneVP ... 6-264

JavaSplitter.. 6-266

JavaSplitterVP... 6-268

JavaTable .. 6-270

JavaTableVP.. 6-272

JavaTableHeader .. 6-273

JavaTableHeaderVP ... 6-275

JavaTree.. 6-277

JavaTreeVP... 6-279

JavaWindow.. 6-280

JavaWindowVP... 6-282

Kill .. 6-284

Label ... 6-285

LabelVP... 6-286

LBound... 6-289

LCase .. 6-290

Left.. 6-290

Len.. 6-292

Let ... 6-292

Like ... 6-293

Line Input... 6-294

ListBox (Statement) ... 6-296

ListBox (User Action Command) ... 6-297

ListBoxVP... 6-300

ListView.. 6-303

ListViewVP... 6-305

Loc .. 6-307

Lock .. 6-308

Lof... 6-310

Contents

Contents xiii

Log .. 6-311

Lset ... 6-312

LTrim ... 6-313

MenuIDSelect .. 6-314

MenuSelect... 6-314

Mid (Function)... 6-316

Mid (Statement) ... 6-317

Minute .. 6-318

MkDir... 6-319

ModuleVP .. 6-320

Month... 6-322

MsgBox (Function).. 6-322

MsgBox (Statement) .. 6-325

Name.. 6-326

New.. 6-327

'$NoCStrings.. 6-328

Nothing .. 6-329

Now.. 6-330

NPV.. 6-330

Null .. 6-331

Object Class ... 6-332

Oct .. 6-334

OKButton... 6-335

On...GoTo.. 6-336

On Error... 6-337

Open... 6-338

Option Base.. 6-340

Option Compare .. 6-342

Option Explicit ... 6-343

OptionButton... 6-343

OptionGroup.. 6-344

Pager ... 6-346

PagerVP .. 6-347

PasswordBox .. 6-348

Picture .. 6-350

Contents

xiv SQABasic Language Reference

PlayJrnl ... 6-351

Pmt ... 6-352

PopupMenuIDSelect ... 6-353

PopupMenuSelect .. 6-353

PPmt... 6-355

Print .. 6-356

ProgressBar... 6-358

ProgressBarVP.. 6-359

PSGrid .. 6-362

PSGridHeader .. 6-365

PSGridHeaderVP ... 6-366

PSGridVP ... 6-368

PSMenu.. 6-371

PSMenuVP... 6-372

PSNavigator ... 6-373

PSNavigatorVP... 6-375

PSPanel... 6-378

PSPanelVP.. 6-382

PSSpin .. 6-386

PSSpinVP ... 6-388

PSTree.. 6-390

PSTreeHeader.. 6-392

PSTreeHeaderVP... 6-394

PSTreeVP... 6-396

PushButton (Statement) .. 6-399

PushButton (User Action Command) .. 6-400

PushButtonVP.. 6-402

Put .. 6-405

PV ... 6-406

RadioButton ... 6-407

RadioButtonVP .. 6-409

Randomize.. 6-412

Rate... 6-413

Rebar... 6-414

RebarVP.. 6-416

Contents

Contents xv

ReDim .. 6-417

RegionVP.. 6-419

Rem .. 6-421

Reset ... 6-422

ResetTime .. 6-423

Resume... 6-423

RichEdit.. 6-424

RichEditVP... 6-426

Right ... 6-428

RmDir .. 6-429

Rnd ... 6-430

Rset ... 6-431

RTrim... 6-432

ScrollBar ... 6-433

ScrollBarVP .. 6-435

Second .. 6-437

Seek (Function).. 6-438

Seek (Statement) .. 6-439

Select Case.. 6-441

SendKeys .. 6-443

Set ... 6-443

SetAttr... 6-444

SetField... 6-446

SetThinkAvg... 6-447

SetTime .. 6-448

Sgn .. 6-448

Shell .. 6-449

Sin... 6-450

Space... 6-451

Spc .. 6-452

SpinControl.. 6-453

SpinControlVP... 6-454

SQAConsoleClear.. 6-456

SQAConsoleWrite ... 6-456

SQADatapoolClose .. 6-457

Contents

xvi SQABasic Language Reference

SQADatapoolFetch .. 6-458

SQADatapoolOpen.. 6-459

SQADatapoolRewind... 6-462

SQADatapoolValue .. 6-463

SQAEnvCreateBaseline ... 6-465

SQAEnvCreateCurrent.. 6-466

SQAEnvCreateDelta .. 6-467

SQAFindObject ... 6-469

SQAGetCaptionTerminatorChar.. 6-470

SQAGetChildren ... 6-471

SQAGetDir .. 6-473

SQAGetLogDir .. 6-474

SQAGetOcrRegionRect... 6-474

SQAGetOcrRegionText .. 6-476

SQAGetProperty .. 6-478

SQAGetPropertyArray ... 6-480

SQAGetPropertyArrayAsString ... 6-482

SQAGetPropertyArraySize .. 6-483

SQAGetPropertyAsString .. 6-485

SQAGetPropertyNames .. 6-487

SQAGetSystemLong.. 6-488

SQAInvokeMethod.. 6-490

SQALogMessage .. 6-492

SQAQueryKey ... 6-493

SQAResumeLogOutput... 6-493

SQAScriptCmdFailure... 6-494

SQASetAssignmentChar.. 6-494

SQASetCaptionTerminatorChar... 6-495

SQASetDefaultBrowser ... 6-496

SQASetProperty... 6-498

SQASetSeparatorChar ... 6-500

SQAShellExecute ... 6-501

SQASuspendLogOutput.. 6-502

SQASyncPointWait .. 6-502

SQAVpGetActualFileName... 6-503

Contents

Contents xvii

SQAVpGetBaselineFileName.. 6-504

SQAVpGetCurrentBaselineFileName .. 6-505

SQAVpLog ... 6-506

SQAWaitForObject.. 6-508

SQAWaitForPropertyValue ... 6-509

SQLClose ... 6-511

SQLError.. 6-512

SQLExecQuery .. 6-513

SQLGetSchema.. 6-514

SQLOpen ... 6-516

SQLRequest ... 6-517

SQLRetrieve... 6-518

SQLRetrieveToFile.. 6-520

Sqr .. 6-521

StartApplication .. 6-522

StartBrowser... 6-523

StartJavaApplication.. 6-524

StartSaveWindowPositions .. 6-526

StartTimer .. 6-527

Static ... 6-527

StaticComboBox .. 6-529

StatusBar... 6-530

StatusBarVP.. 6-532

Stop... 6-534

StopTimer .. 6-534

Str ... 6-535

StrComp... 6-535

String .. 6-537

Sub...End Sub... 6-538

SysMenuIDSelect... 6-539

SysMenuSelect ... 6-540

Tab.. 6-541

TabControl... 6-542

TabControlVP.. 6-544

Tan.. 6-547

Contents

xviii SQABasic Language Reference

Text... 6-548

TextBox .. 6-549

Time (Function)... 6-550

Time (Statement) ... 6-551

Timer.. 6-552

TimeSerial .. 6-553

TimeValue .. 6-554

Toolbar ... 6-555

ToolbarVP .. 6-556

Trackbar ... 6-559

TrackbarVP... 6-561

TreeView .. 6-563

TreeViewVP ... 6-567

Trim ... 6-570

Type.. 6-570

Typeof .. 6-572

TypingDelays ... 6-572

UBound.. 6-573

UCase... 6-575

Unlock.. 6-575

Val ... 6-577

VarType .. 6-578

WebSiteVP.. 6-579

Weekday ... 6-581

While...Wend.. 6-582

Width .. 6-584

Window .. 6-585

WindowVP ... 6-591

With .. 6-594

Write ... 6-595

Year ... 6-597

Contents

Contents xix

Appendixes

A SQABasic Syntax Summary

B Trappable Error Codes

C Object Scripting Status Codes

D Derived Trigonometric Functions

E Mouse Actions

Glossary

Index

Contents

xx SQABasic Language Reference

xxi

► ► ► Preface
Welcome to the SQABasic Language Reference. The SQABasic Language Reference
describes the commands and conventions of the SQABasic scripting language.
SQABasic includes most of the syntax rules and core commands found in the
industry-standard Microsoft® Basic language.

Audience
This guide is intended to help QA managers, developers, and test engineers read
and customize scripts generated with Rational Robot. Familiarity with Robot and
other Rational Test software is assumed. Familiarity with programming language
practices (but not necessarily Microsoft Basic programming) is also assumed.

Other Resources
► This product contains complete online Help. For information about calling

SQABasic Help, see the following section.

► All manuals are available online in PDF format. The online manuals are on
the Rational solutions for Windows Online Documentation CD.

► For information about training opportunites, see the Rational University
Web site: http://www.rational.com/university.

Accessing SQABasic Help
You can access SQABasic Help in a variety of ways:

► From the Start menu, click SQABasic Language Reference in the
installation directory of your Rational product (typically, Rational Test).

► From within Robot, click Help � SQABasic Reference.

Accessing SQABasic Help

xxii SQABasic Language Reference

► While you are editing a script in Robot, you can display context-sensitive
information about a particular SQABasic command. To do so:

1. Place the insertion point immediately before, after, or anywhere within
the command name.

2. Press F1.

If a single Help topic is associated with the command name, reference
information about that command appears immediately.

If multiple Help topics are associated with the command, the topics are listed
in the Topics Found dialog box. Select the topic you want and click Display.

Using the Examples in Help

The Help system offers a small working example or code fragment of most
SQABasic commands. To see an example of a command, click the word Example
under the command name.

Clicking on Example opens a separate window containing a code example.
You can simply look at the contents of this window, or you can copy the example
into a Robot script.

To copy an example into a script, follow these steps:

1. In Robot, click File � Open Script.

2. Type or select a script name and click OK.

3. In the SQABasic Help Example window, click the Copy button to copy the
example to the Clipboard.

 To copy part of the example, select the text you want to copy and press
CTRL+C.

4. Paste the contents into the Robot window. (If you copy the whole example,
delete the lines of description that appear before the example.)

Notes About the Examples

► To run the examples that show ODBC commands (those beginning with
SQL), you need to have Microsoft Access® installed on your machine.

► To run the examples that show Object commands, you need to have VISIO®

installed on your machine.

► Some commands do not have examples associated with them.

Typographical Conventions

Preface xxiii

Typographical Conventions
This manual uses the following typographical conventions:

Convention Where used

Monospace type SQABasic keywords and examples:
Use the Dim statement to...
Dim i As Integer

Monospace type with the first
letter of key syllables uppercase

SQABasic commands:
Len(string$)
DateValue(string$)

Italicized monospace type Arguments to commands:
RmDir string$
CVar (expression)

Italicized variables and/or type-
declaration characters in brackets

Optional arguments:
[, caption$]
[type$]
[$]

A list inside braces ({ }) with a
vertical bar (|) separating choices

A list of required choices for an
argument. One choice must be selected:
{Goto label | Resume Next | Goto 0}

Bold type New terms:
An array has one or more dimensions.

Italicized type Emphasized text, manual titles, and
section headings:

...is assumed to be the current context.
See Dialog Box Commands on page 1-19.

An arrow (�) between menu
commands

Between a menu or sub-menu name and
a menu command.

Choose each command in sequence. For
example, File � Save As means click
File from the menu bar, and then click
Save As from the menu.

The symbol ► ► ► before or after
a table

Indicates a table is continued on the next
page or continued from the previous page.

Contacting Rational Technical Publications

xxiv SQABasic Language Reference

Contacting Rational Technical Publications
To send feedback about documentation for Rational products, please send e-mail
to our technical publications department at techpubs@rational.com.

Contacting Rational Technical Support
If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

Location Contact Information Notes

North America Telephone:
800-433-5444
408-863-4000
E-mail:
support@europe.rational.com

Europe Telephone:
+31 (0) 20 4546 200
E-mail:
support@europe.rational.com

Asia Pacific Telephone:
+61-2-9419-0111
E-mail:
support@apac.rational.com

Please be prepared to supply
the following information:

► Your name, telephone
number, and company
name

► Computer make and
model

► Operating system and
version number

► Product release number
and serial number

► Your Case ID number
(if you are calling about
a previously reported
problem)

World Wide Web htp://www.rational.com Click the Technical
Support link.

mailto:techpubs@rational.com

► ► ► Part I

Introducing SQABasic

1-1

► ► ► C H A P T E R 1

What Is SQABasic?

SQABasic is the Rational Software Corporation language for building GUI scripts.

SQABasic includes most of the syntax rules and core commands found in the
industry-standard Microsoft Basic language. If you’re familiar with Microsoft
Basic or Visual Basic, you’re already familiar with much of the SQABasic language.

Along with support for Basic commands, SQABasic includes command additions
— commands specifically designed for use in Rational TestStudio and Rational
PerformanceStudio scripts.

Automatic Script Generation
Generating an SQABasic script might be the briefest development experience
you’ll ever have. That’s because Rational Robot automatically generates a script for
you when you record the script.

During GUI recording, Robot “watches” every keyboard and mouse action you
take in the application-under-test. Robot translates these actions into a series of
SQABasic commands and stores them in the script. For example, when you click
an OK button, Robot represents the action as PushButton Click,
"Text=OK":

When you finish recording, you can play it back immediately. Robot compiles the
script before beginning to play it back.

PushButton Click, "Text=OK"

Rational Robot

Working with Scripts

1-2 SQABasic Language Reference

Working with Scripts
Although Robot generates complete, executable scripts, sometimes you might
want to edit a recorded script — for example, to:

► Add Do...While or For...Next loops to simplify repetitive actions

► Add conditional branching

► Perform Object Scripting functions

► Add datapool commands

► Access OLE or DDE resources

► Request user input during script playback, or display a message box to report
some unusual event during playback

► Perform a variety of math, date, and time functions

► Respond to runtime errors

Your Work Environment
With SQABasic as your scripting language, you view, edit, compile, debug, and
run scripts through Robot. Here is an example of the Robot environment:

For information about Robot, see the Using Rational Robot manual.

Script
Asset Browser

Compiler results

SQABasic script

Source and Runtime Files

What Is SQABasic? 1-3

Source and Runtime Files
SQABasic supports the following kinds of files:

File type Extension

Script file .rec

Header file .sbh

Library source file .sbl, .rec

Script and library runtime files .sbx

SQABasic Additions to the Basic Language
SQABasic provides a number of commands in addition to the commands in the
Microsoft Basic language. The following categories of commands are provided to
help you test your applications and analyze the results:

Datapool Commands – Control access to a datapool. You can use a datapool to
supply values to scripts during playback. You create datapools with TestManager.

Object Scripting commands – Access an application’s objects and object
properties from within a script. Object scripting tasks include retrieving and
setting an object’s properties. Object Scripting commands can only be added to a
script manually during editing. Robot does not generate these commands.

Timing and Coordination Commands – Time user activities and control the rate
of script playback.

User Action commands – Perform user actions on specific objects while
recording. Actions include choosing a menu command, scrolling a list box,
clicking a button, or typing text into an edit box.

Utility commands – Perform a variety of actions such as calling other scripts,
playing back low-level recordings, controlling output to the LogViewer or Robot
console, and managing custom verification points.

Verification Point commands – Compare the results of a user action captured
during playback against the results of the same action captured during recording. If
the playback result matches the recorded baseline (the information captured
during recording), the verification point passes. If the result is different, the
verification point fails.

For a listing and brief description of the commands in each category, see
Chapter 2, Functional List.

VU Scripting Language

1-4 SQABasic Language Reference

Other Commands Not Found in Basic
In addition to the above command categories, SQABasic provides these
commands not found in standard Basic:

Assert
GetField$
SetField$

'$CStrings
'$Include
'$NoCStrings

All SQABasic commands are described in Chapter 6, Command Reference.

VU Scripting Language
Because the SQABasic scripting language lets you capture keyboard and mouse
actions as well as verify GUI objects, it is the language used in functional testing
(testing the way your application looks and works).

But for testing client/server performance, you need to record a client’s requests
to the server. Capturing a client/server conversation requires the VU scripting
language.

VU is a C-based language that Robot generates when recording requests such as
HTTP, SQL, TUXEDO, and socket-level requests. Rational PerformanceStudio
is required to record and run VU scripts. For information, see the Using Rational
LoadTest manual.

2-1

► ► ► C H A P T E R 2

Functional List

This chapter organizes the SQABasic commands into functional categories.

NOTE: The SQABasic command category Web commands (HTTP and
HTTP/HTTPS API requests to a server) is no longer supported in SQABasic.
However, actions on HTML objects are supported in User Action commands and
Verification Point commands. Also, Virtual User commands (with the exception of
SQASyncPointWait) are no longer supported in SQABasic. You will find
commands that perform similar functions in Rational Software’s VU language.

Arrays

Erase Reinitialize the contents of an array.

LBound Return the lower bound of an array subscript.

Option Base Declare the default lower bound for array subscripts.

ReDim Declare dynamic arrays and reallocate memory.

UBound Return the upper bound of an array subscript.

Compiler Directives

'$CStrings
(SQABasic addition)

Treat a backslash in a string as an escape character as in the
C language.

'$Include
(SQABasic addition)

Tell the compiler to include statements from another file.

'$NoCStrings
(SQABasic addition)

Tell the compiler to treat a backslash as a normal character.

Rem Treat the remainder of the line as a comment. Equivalent
to an apostrophe (').

Datapool Commands (SQABasic Additions)

2-2 SQABasic Language Reference

Datapool Commands (SQABasic Additions)
These commands let you access data in a datapool.

SQADatapoolClose Close the specified datapool.

SQADatapoolFetch Move the cursor for the datapool to the next row.

SQADatapoolOpen Open the specified datapool.

SQADatapoolRewind Reset the cursor for the specified datapool.

SQADatapoolValue Retrieve the value of the specified datapool column.

Dates & Times

Date Function Return the current date.

Date Statement Set the system date.

DateSerial Return the date value for year, month, and day specified.

DateValue Return the date value for string specified.

Day Return the day of month component of a date-time value.

Hour Return the hour of day component of a date-time value.

IsDate Determine whether a value is a legal date.

Minute Return the minute component of a date-time value.

Month Return the month component of a date-time value.

Now Return the current date and time.

Second Return the second component of a date-time value.

Time Function Return the current time.

Time Statement Set the current time.

Timer Return the number of seconds since midnight.

TimeSerial Return the time value for hour, minute, and second.

TimeValue Return the time value for string specified.

Weekday Return the day of the week for the specified date-time.

Year Return the year component of a date-time value.

Declarations

Const Declare a symbolic constant.

Declare Forward declare a procedure in the same module or in a
dynamic link library.

Dialog Box Definition

Functional List 2-3

Deftype Declare the default data type for variables.

Dim Declare variables.

Function ... End Function Define a function.

Global Declare a global variable.

Option Compare Declare the default case sensitivity for string comparisons.

Option Explicit Force all variables to be explicitly declared.

ReDim Declare dynamic arrays and reallocate memory.

Static Define a static variable or subprogram.

Sub ... End Sub Define a subprogram.

Type Declare a user-defined data type.

Dialog Box Definition

Begin Dialog Begin a dialog box definition.

Button Define a button dialog box control.

ButtonGroup Begin definition of a group of button dialog box controls.

CancelButton Define a Cancel button dialog box control.

Caption Define the title of a dialog box.

CheckBox Define a check box dialog box control.

ComboBox Define a combo box dialog box control.

DropComboBox Define a drop-down combo box dialog box control.

DropListBox Define a drop-down list box dialog box control.

GroupBox
(SQABasic Addition)

Define a group box dialog box control.

ListBox Define a list box dialog box control.

OKButton Define an OK button dialog box control.

OptionButton Define an option button dialog box control.

OptionGroup Begin definition of a group of option button controls.

Picture Define a Picture control.

PushButton Define a push button dialog box control.

StaticComboBox Define a static combo box dialog box control.

Text Define a line of text in a dialog box.

TextBox Define a text box in a dialog box.

Dialog Box Services

2-4 SQABasic Language Reference

Dialog Box Services

Dialog Function Display a dialog box and return the button pressed.

Dialog Statement Display a dialog box.

DlgControlID Return the numeric ID of a dialog control.

DlgEnable Function Tell whether a dialog control is enabled or disabled.

DlgEnable Statement Enable or disable a dialog control.

DlgEnd Close the active dialog box.

DlgFocus Function Return the ID of the dialog control having input focus.

DlgFocus Statement Set focus to a dialog control.

DlgListBoxArray Function Return the contents of a list box or combo box.

DlgListBoxArray Statement Set the contents of a list box or combo box.

DlgSetPicture Change the picture in the Picture control.

DlgText Function Return the text associated with a dialog control.

DlgText Statement Set the text associated with a dialog control.

DlgValue Function Return the value associated with dialog control.

DlgValue Statement Set the value associated with a dialog control.

DlgVisible Function Tell whether a control is visible or hidden.

DlgVisible Statement Show or hide a dialog control.

Disk and Directory Control

ChDir Change the default directory for a drive.

ChDrive Change the default drive.

CurDir Return the current directory for a drive.

Dir Return a filename that matches a pattern.

MkDir Make a directory on a disk.

RmDir Remove a directory from a disk.

Dynamic Data Exchange (DDE)

Functional List 2-5

Dynamic Data Exchange (DDE)

DDEAppReturnCode Return a code from an application on a DDE channel.

DDEExecute Send commands to an application on a DDE channel.

DDEInitiate Open a dynamic data exchange (DDE) channel.

DDEPoke Send data to an application on a DDE channel.

DDERequest Return data from an application on a DDE channel.

DDETerminate Close a DDE channel.

Environmental Control

AppActivate Activate another application.

Command Return the command line by the MAIN sub.

Date Statement Set the current date.

DoEvents Let the operating system process messages.

Environ Return a string from the operating system’s environment.

Randomize Initialize the random-number generator.

Shell Run an executable program.

Error Handling

Assert
(SQABasic addition)

Trigger an error if a condition is false.

Erl Return the line number where a runtime error occurred.

Err Function Return a runtime error code.

Err Statement Set the runtime error code.

Error Function Return a string representing an error.

Error Statement Generate an error condition.

On Error Control runtime error handling.

Resume End an error-handling routine.

See Appendix B for a list of SQABasic trappable error codes.

File Control

2-6 SQABasic Language Reference

File Control

FileAttr Return information about an open file.

FileCopy Copy the contents of a file.

FileDateTime Return modification date and time of a specified file.

FileLen Return the length of specified file in bytes.

GetAttr Return the attributes of a file, directory, or volume label.

Kill Delete files from a disk.

Name Rename a disk file.

SetAttr Set attribute information for a file.

File Input/Output

Close Close a file.

Eof Check for end of file.

FreeFile Return the next unused file number.

Get Read bytes from a file.

Input Function Return a string of characters from a file.

Input Statement Read data from a file or from the keyboard.

Line Input Read a line from a sequential file or from the keyboard.

Loc Return the current position of an open file.

Lock Keep other processes from accessing part or all of an
open file.

Lof Return the length of an open file.

Open Open a disk file or device for I/O.

Print Print data to a file or to the screen.

Put Write data to an open file.

Reset Close all open disk files.

Seek Function Return the current position for a file.

Seek Statement Set the current position for a file.

Spc Output a given number of spaces.

Tab Move the print position to the given column.

Unlock Restore access to an open file (release the lock).

Width Set output-line width for an open file.

Write Write data to a sequential file.

Financial Functions

Functional List 2-7

Financial Functions

FV Return the future value for a stream of periodic cash flows.

IPmt Return interest payment for a given period.

IRR Return internal rate of return for a cash flow stream.

NPV Return net present value of a cash flow stream.

Pmt Return a constant payment per period for an annuity.

PPmt Return principal payment for a given period.

PV Return present value of a future stream of cash flows.

Rate Return interest rate per period.

Flow Control

Call Transfer control to a subprogram.

Do...Loop Control repetitive actions.

Exit Cause the current procedure or loop structure to return.

For...Next Loop a fixed number of times.

GoTo Send control to a line label.

If...Then...Else Branch on a conditional value.

Let Assign a value to a variable.

Lset Left-align one string or a user-defined variable within
another.

On...GoTo Branch to one of several labels depending upon value.

Rset Right-align one string within another.

Select Case Execute one of a series of statement blocks.

Set Set an object variable to a value.

Stop Stop program execution.

While...Wend Control repetitive actions.

With Execute a series of statements on a specified variable.

Numeric and Trigonometric Functions

2-8 SQABasic Language Reference

Numeric and Trigonometric Functions

Abs Return the absolute value of a number.

Atn Return the arc tangent of a number.

Cos Return the cosine of an angle.

Exp Return the value of e raised to a power.

Fix Return the integer part of a number.

Int Return the integer part of a number.

IsNumeric Determine whether a value is a legal number.

Log Return the natural logarithm of a value.

Rnd Return a random number.

Sgn Return a value indicating the sign of a number.

Sin Return the sine of an angle.

Sqr Return the square root of a number.

Tan Return the tangent of an angle.

See Appendix D for a list of math functions derived from SQABasic Numeric and
Trigonometric functions.

Object Scripting Commands (SQABasic Additions)
These commands let you work with an object’s properties. The Object Scripting
commands can only be used programmatically. Robot does not generate these
commands during recording.

SQAFindObject Search for a specified object.

SQAGetChildren Retrieve an array containing recognition methods that
identify each of an object’s child objects.

SQAGetProperty Retrieve the value of the specified property.

SQAGetPropertyArray Retrieve an array of values for the specified property.

SQAGetPropertyArrayAsString Retrieve the string equivalent of an array of values for the
specified property.

SQAGetPropertyArraySize Retrieve the number of elements in an array of property
values.

SQAGetPropertyAsString Retrieve a property value in String form.

SQAGetPropertyNames Retrieve an array containing the names of all the
object’s properties.

Objects

Functional List 2-9

SQAInvokeMethod Execute the specified method of an object.

SQASetProperty Assign a value to a specified property.

SQAWaitForObject Pause execution of the script until the specified object can
be found.

SQAWaitForPropertyValue Pause execution of the script until a property is set to the
specified value.

Objects

Class List List of available classes.

Clipboard Access the Windows Clipboard.

CreateObject Create an OLE2 automation object.

GetObject Retrieve an OLE2 object from a file or get the active OLE2
object for an OLE2 class.

Is Determine if two object variables refer to the same object.

New Allocate and initialize a new OLE2 object.

Nothing Set an object variable to not refer to an object.

Object Class Declare an OLE2 automation object.

Typeof Check the class of an object.

With Execute statements on an object or a user-defined type.

ODBC

SQLClose Close a data source connection.

SQLError Return a detailed error message for ODBC functions.

SQLExecQuery Execute an SQL statement.

SQLGetSchema Obtain information about data sources, databases,
terminology, users, owners, tables, and columns.

SQLOpen Connect to a data source for use by other functions.

SQLRequest Make a connection to a data source, execute an SQL
statement, and return the results.

SQLRetrieve Return the results of a select that was executed by
SQLExecQuery into a user-provided array.

SQLRetrieveToFile Return the results of a select that was executed by
SQLExecQuery into a user-specified file.

Screen Input/Output

2-10 SQABasic Language Reference

Screen Input/Output

Beep Produce a short beeping tone through the speaker.

Input Function Return a string of characters from a file.

Input Statement Read data from a file or from the keyboard.

InputBox Display a dialog box that prompts for input.

MsgBox Function Display a Windows message box and return a value
indicating which button the user selected.

MsgBox Statement Display a prompt in a Windows message box.

PasswordBox Display a dialog box for input. Do not echo input.

Print Print data to a file or to the screen.

SQABasic Commands
Most SQABasic additions to the Basic language are grouped within the following
categories of commands:

► Datapool Commands. See page 2-2.

► Object Scripting Commands. See page 2-8.

► Timing and Coordination Commands. See page 2-12.

► User Action Commands. See page 2-12.

► Utility Commands. See page 2-14.

► Verification Point Commands. See page 2-17.

String Conversions

Asc Return an integer corresponding to a character code.

CCur Convert a value to currency.

CDbl Convert a value to double-precision floating point.

Chr Convert a character code to a string.

CInt Convert a value to an integer by rounding.

CLng Convert a value to a long by rounding.

String Manipulation

Functional List 2-11

CSng Convert a value to single-precision floating point.

CStr Convert a value to a string.

CVar Convert a number or string to a variant.

CVDate Convert a value to a variant date.

Format Convert a value to a string using a picture format.

Val Convert a string to a number.

String Manipulation

GetField
(SQABasic addition)

Return a substring from a delimited source string.

Hex Return the hexadecimal representation of a number,
as a string.

InStr Return the position of one string within another.

LCase Convert a string to lowercase.

Left Return the left portion of a string.

Len Return the length of a string or size of a variable.

Like Operator Compare a string against a pattern.

LTrim Remove leading spaces from a string.

Mid Function Return a portion of a string.

Mid Statement Replace a portion of a string with another string.

Oct Return the octal representation of a number, as a string.

Right Return the right portion of a string.

RTrim Remove trailing spaces from a string.

SetField
(SQABasic addition)

Replace a substring within a delimited target string.

Space Return a string of spaces.

Str Return the string representation of a number.

StrComp Compare two strings.

String Return a string consisting of a repeated character.

Trim Remove leading and trailing spaces from a string.

UCase Convert a string to uppercase.

Timing and Coordination Commands (SQABasic Additions)

2-12 SQABasic Language Reference

Timing and Coordination Commands (SQABasic
Additions)

These commands affect the flow of test procedure playback by setting wait times and
starting and stopping timers:

DelayFor Delay execution of the script for a specified number of
milliseconds.

ResetTime Reset the delay between execution of script commands to
the default delay.

SetThinkAvg Set the average “think time” for the next Robot action.

SetTime Set the delay between script commands to the specified
number of millisecond.

SQASyncPointWait Define a sync point for coordination in multi-user testing.

StartTimer Start the specified timer in the currently running script and
write a message to the log.

StopTimer Stop the specified timer in the currently running script and
write the elapsed time in milliseconds to the log.

TypingDelays Set one or more keystroke delays during playback of the
next InputKeys command.

User Action Commands (SQABasic Additions)
These commands cause an action to be taken on a particular control. Actions include
choosing a menu command, scrolling a list box, clicking on a button, or typing text in
an edit box:

AnimateControl Perform an action on an animation control.

Calendar Perform an action on a month calendar control.

CheckBox Perform an action on a check box control.

ComboBox Perform an action on a combo box control.

ComboEditBox Perform an action on a combo edit box control.

ComboListBox Perform an action on a combo list box control.

DataWindow Perform an action on a PowerBuilder DataWindow.

DateTime Perform an action on a date and time (DTP) picker
control.

Desktop Perform an action on the Windows desktop.

EditBox Perform an action on an edit box control.

GenericObject Perform an action on a generic object.

GroupBox Perform an action on a group box control.

User Action Commands (SQABasic Additions)

Functional List 2-13

Header Perform an action on a header control.

HotKeyControl Perform an action on a hot key control.

HTML Perform a mouse action on an HTML tag.

HTMLActiveX Perform a mouse action on an ActiveX control
embedded in the page.

HTMLDocument Perform a mouse click on the text of a Web page.

HTMLImage Perform a mouse click on an image in a Web page.

HTMLLink Perform a mouse click on link of a Web page.

HTMLTable Perform a mouse click on a table in a Web page.

InputChars Send one or more characters to the active window as if
they had been entered at the keyboard.

InputKeys Send one or more keystrokes to the active window as if
they had been entered at the keyboard.

IPAddress Perform an action on an IP Address control.

JavaCanvas Perform an action on a Java canvas component.

JavaListView Perform an action on a Java multi-column list
component.

JavaMenu Perform an action on a Java menu.

JavaObject Perform an action on an unrecognized Java component.

JavaPanel Perform an action on a Java panel or canvas.

JavaPopupMenu Perform an action on a Java popup menu.

JavaSplitPane Perform an action on a Java split pane.

JavaSplitter Perform an action on a Java splitter.

JavaTable Perform an action on a Java table.

JavaTableHeader Perform an action on a Java table header.

JavaTree Perform an action on a Java tree component.

JavaWindow Perform an action on a Java window.

Label Perform an action on a label control.

ListBox Perform an action on a list box control.

ListView Perform an action on a list view control.

MenuIDSelect Perform a menu selection based on the internal ID of
the menu item.

MenuSelect Select a popup item through one or more mouse clicks.

Pager Perform an action on a Pager control.

PopupMenuIDSelect Perform a popup menu selection based on the internal
ID of the menu item.

PopupMenuSelect Select a popup menu item through one or more mouse
clicks.

ProgressBar Perform an action on a progress bar control.

Utility Commands (SQABasic Additions)

2-14 SQABasic Language Reference

PSGrid Perform an action on a PeopleTools grid.

PSGridHeader Perform an action on a column header in a
PeopleTools grid.

PSMenu Perform an action on a PeopleTools menu object.

PSNavigator Perform an action on a PeopleTools Navigator window
or a navigator map in the PeopleTools Business Process
Designer.

PSPanel Perform an action on a PeopleTools panel.

PSSpin Perform an action on a PeopleTools spin control.

PSTree Perform an action on a PeopleTools tree object.

PSTreeHeader Perform an action on a column header in a PeopleTools
tree object.

PushButton Perform an action on a push button control.

RadioButton Perform an action on an option button control.

Rebar Perform an action on a Rebar control.

RichEdit Perform an action on a rich edit control.

ScrollBar Perform an action on a scroll bar control.

SpinControl Perform an action on a spin control.

StatusBar Perform an action on a status bar control.

SysMenuIDSelect Perform a system menu selection based on the internal
ID of the menu item.

SysMenuSelect Perform a system menu selection based on the text of
the menu item.

TabControl Perform an action on a tab control.

Toolbar Perform an action on a toolbar control.

Trackbar Perform an action on a trackbar control.

TreeView Perform an action on a treeview control.

Window Perform an action on a window.

Utility Commands (SQABasic Additions)
These commands affect the flow of script playback by setting wait times, calling other
scripts, starting applications, starting and stopping timers, and playing back low-level
recordings. They also control output to the log, retrieve results from running scripts,
and set characters used in SQABasic statements:

Browser Perform an action on a Web browser.

CallScript Cause a script to be executed from within the
currently-running script.

Utility Commands (SQABasic Additions)

Functional List 2-15

DelayFor Delay execution of the script for a specified number
of milliseconds.

EndSaveWindowPositions Mark the end of the script commands that save the
window positions for restoration at playback.

GetLastVPResult Return the result of the last verification point to have
been evaluated in the current playback session.

PlayJrnl Start playback of a series of low-level recorded mouse
and keyboard actions.

ResetTime Reset the delay between execution of script
commands to the default delay.

SetTime Set the delay between script commands to the
specified number of millisecond.

SQAConsoleClear Clear the text currently displayed in the console
window.

SQAConsoleWrite Write the specified text to the console window.

SQAEnvCreateBaseline Capture a snapshot of the environment state before
one or more tasks are performed that change or are
suspected of changing the environment.

SQAEnvCreateCurrent Capture a snapshot of the environment state just after
some task is performed that changes or is suspected of
changing the environment.

SQAEnvCreateDelta Create a comparison report of the data captured in the
pre-task and post-task snapshots.

SQAGetCaptionTerminatorChar Retrieve the character that Robot is currently using as
the window caption terminator character.

SQAGetDir Retrieve the path of standard directories used by
Rational test applications.

SQAGetLogDir Retrieve the path of the runtime log.

SQAGetOcrRegionRect Retrieve the coordinates of the specified OCR region.

SQAGetOcrRegionText Retrieve the text in the specified OCR region.

SQAGetSystemLong Retrieve a system value.

SQALogMessage Write a message to a log and optionally insert a result
flag (Pass, Fail, or Warning) in the Result column.

SQAQueryKey Return the state of a locking key (Caps Lock, Num
Lock, and Scroll Lock).

SQAResumeLogOutput Resume the output of verification point and wait state
results to the log.

SQAScriptCmdFailure Generate a script command failure.

SQASetAssignmentChar Set the character to be used by Robot as the
assignment character in SQABasic statements.

Utility Commands (SQABasic Additions)

2-16 SQABasic Language Reference

SQASetCaptionTerminatorChar Set the character that Robot uses as the window
caption terminator character.

SQASetDefaultBrowser Set the default browser to use during playback.

SQASetSeparatorChar Set the character to be used by Robot as the separator
character in SQABasic statements.

SQAShellExecute Open an application or a file.

SQASuspendLogOutput Suspend the output of verification point and wait state
results to the log.

SQAVpGetActualFileName Generate a unique path and name for an actual data
file used in a custom verification point.

SQAVpGetBaselineFileName Generate a unique path and name for a baseline data
file used in a custom verification point.

SQAVpGetCurrentBaselineFileName Generate the path and name for the current baseline
data file used in a custom verification point.

SQAVpLog Write a custom verification point record to a log.

StartApplication Start the specified application from within the
currently running script.

StartBrowser Start an instance of a Web browser.

StartJavaApplication Start the specified Java application from within the
currently running script.

StartSaveWindowPositions Mark the start of the script commands that save the
window positions for restoration at playback.

StartTimer Start the specified timer in the currently running
script and write a message to the log.

StopTimer Stop the specified timer in the currently running
script and write the elapsed time in milliseconds to
the log.

NOTE: The command names now prefixed by SQA were prefixed by PLA in previous
releases. The old form of each name should no longer be used, but it continues to be
supported to maintain the upward compatibility of your existing scripts.

NOTE: WriteLogMessage has been replaced by SQALogMessage.

Variants

Functional List 2-17

Variants

IsEmpty Determine whether a variant has been initialized.

IsNull Determine whether a variant contains a NULL value.

Null Return a null variant.

VarType Return the type of data stored in a variant.

Verification Point Commands (SQABasic Additions)
These commands compare the results of a user action captured during playback against
the result of the same action captured during recording. If the playback result matches
the recorded baseline, the verification point passes. If the result is different, the
verification point fails:

AnimateControlVP Establish a verification point for an animation control.

CalendarVP Establish a verification point for a month calendar
control.

CheckBoxVP Establish a verification point for a check box control.

ClipboardVP Establish an alphanumeric verification point for the
contents of the Windows Clipboard.

ComboBoxVP Establish a verification point for a combo box control.

ComboEditBoxVP Establish a verification point for a combo edit box
control.

ComboListBoxVP Establish a verification point for a combo list box
control.

DataWindowVP Establish a verification point for a PowerBuilder
DataWindow.

DateTimeVP Establish a verification point for a date and time picker
(DTP) control.

EditBoxVP Establish a verification point for an edit box control.

FileVP Establish a verification point for a file or files.

GenericObjectVP Establish a verification point for a generic object.

GroupBoxVP Establish a verification point for a group box control.

HeaderVP Establish a verification point for a header control.

HotKeyControlVP Establish a verification point for a hot key control.

HTMLVP Establish a verification point for an HTML tag.

HTMLActiveXVP Establish a verification point for an ActiveX control
embedded in the page.

Verification Point Commands (SQABasic Additions)

2-18 SQABasic Language Reference

HTMLDocumentVP Establish a verification point for Web page data.

HTMLHiddenVP Establish a verification point for a hidden element.

HTMLImageVP Establish a verification point for a Web page image.

HTMLLinkVP Establish a verification point for a Web page link.

HTMLTableVP Establish a verification point for a Web page table.

IPAddressVP Establish a verification point for an IP Address control.

JavaCanvasVP Establish a verification point for a Java canvas
component.

JavaListViewVP Establish a verification point for a Java multi-column
list component.

JavaMenuVP Establish a verification point for a Java menu.

JavaObjectVP Establish a verification point for an unrecognized Java
component.

JavaPanelVP Establish a verification point for a Java panel or canvas.

JavaPopupMenuVP Establish a verification point for a Java popup menu.

JavaSplitPaneVP Establish a verification point for a Java split pane.

JavaSplitterVP Establish a verification point for a Java splitter.

JavaTableVP Establish a verification point for a Java table.

JavaTableHeaderVP Establish a verification point for a Java table header.

JavaTreeVP Establish a verification point for a Java tree component.

JavaWindowVP Establish a verification point for a Java window.

LabelVP Establish a verification point for a label control.

ListBoxVP Establish a verification point for a list box control.

ListViewVP Establish a verification point for a list view control.

ModuleVP Verify whether a specified module is in memory
during playback.

PagerVP Establish a verification point for a pager control.

ProgressBarVP Establish a verification point for a progress bar control.

PSGridHeaderVP Establish a verification point for a column header in a
PeopleTools grid.

PSGridVP Establish a verification point for a PeopleTools grid.

PSMenuVP Establish a verification point for a PeopleTools menu
object.

PSNavigatorVP Establish a verification point for a PeopleTools
Navigator window or a navigator map in the
PeopleTools Business Process Designer.

PSPanelVP Establish a verification point for a PeopleTools panel.

PSSpinVP Establish a verification point for a PeopleTools spin
control.

Verification Point Commands (SQABasic Additions)

Functional List 2-19

PSTreeHeaderVP Establish a verification point for a column header in a
PeopleTools tree object.

PSTreeVP Establish a verification point for a PeopleTools tree
object.

PushButtonVP Establish a verification point for a push button control.

RadioButtonVP Establish a verification point for an option button
control.

RebarVP Establish a verification point for a rebar control.

RegionVP Establish a verification point for a specified rectangular
screen region.

RichEditVP Establish a verification point for a rich edit control.

ScrollBarVP Establish a verification point for a scroll bar control.

SpinControlVP Establish a verification point for a spin control.

StatusBarVP Establish a verification point for a status bar control.

TabControlVP Establish a verification point for a tab control.

ToolbarVP Establish a verification point for a toolbar control.

TrackbarVP Establish a verification point for a trackbar control.

TreeViewVP Establish a verification point for a tree view control.

WebSiteVP Test for defects (such as missing or broken links) on a
Web site, or compare Web sites.

WindowVP Establish a verification point for a window.

Verification Point Commands (SQABasic Additions)

2-20 SQABasic Language Reference

► ► ► Part II

Using SQABasic

3-1

► ► ► C H A P T E R 3

SQABasic Fundamentals
This chapter describes the following SQABasic language elements:

► Commands

► Arguments

► Data types

► Arrays

► Dynamic arrays

► Expressions and operators

► Scope of variables and constants

► Two-digit year conversions

► Trappable errors

See Appendix A for a summary of SQABasic syntax conventions.

Commands

3-2 SQABasic Language Reference

Commands
These are the major categories of SQABasic commands:

Command Description User-definable?

Statement A keyword that specifies an
action, declaration, or
definition. Examples:
Option Explicit
GoTo ErrorRoutine
Dim i As Integer
Let i = 10

No. Statement keywords are
predefined elements of the
SQABasic language.

Function
procedure
(referred to
as functions)

One or more lines of code that
perform a specific task.
Functions return a value.
Examples:
i = Len(MyString)
RtnVal = MyFunction(x)
Call MyFunction(x)

Yes. Functions begin with the
statement Function and
end with the statement End
Function.

Sub
procedure

One or more lines of code that
perform a specific task. Sub
procedures don’t return values.
Examples:
MySubProc x
Call MySubProc(x)

Yes. Sub procedures begin with
the statement Sub and end
with the statement End Sub.

See Chapter 6 for a description of the Function...End Function statement
and the Sub...End Sub statement.

NOTE: A script contains one or more sub procedures. When you record a script,
SQA Robot declares the sub procedure it generates as Sub Main.

Arguments

SQABasic Fundamentals 3-3

Arguments
Most SQABasic functions and sub procedures take one or more arguments:

► If a function takes arguments, enclose the arguments in parentheses and
separate them with commas.

► If a sub procedure takes arguments, separate the arguments with commas, but
do not enclose the arguments in parentheses.

NOTE: If you use the Call statement to call a sub procedure, you enclose the
arguments in parentheses just as you would for a function.

Passing Arguments By Value or By Reference
You can pass an argument to a function or sub procedure in one of two ways:

By value – The value of the argument variable is unchanged when the function or
sub procedure returns control to the caller.

By reference – The value of the variable can be changed by the function or sub
procedure. If the value changes, the calling function or sub procedure uses the
new value in subsequent processing.

By default, values are passed by reference.

Syntax of By-Value and By-Reference Arguments

► To pass an argument by value, enclose the argument in parentheses. When
you do this, an argument for a function (or a sub procedure called with the
Call statement) is enclosed in double parentheses.

► In the following examples, the argument x is passed by value. The argument
y is passed by reference:

Call MySub((x))
Call MySub ((x),y)
MySub(x)
MySub(x),y
z=MyFunction((x))
Call MyFunction((x))

► To pass an argument by reference, no special syntax is required.

► In the following examples, all arguments are passed by reference:
Call MySub(x)
Call MySub (x,y)
MySub x,y
Z=MyFunction(x)
Call MyFunction(x)

Arguments

3-4 SQABasic Language Reference

Syntax for Passing Arguments to External Procedures

To use a procedure stored in an external module or .DLL file, you must first
Declare the module or procedure. The Declare statement uses different
syntax for specifying whether arguments are to be passed by value or by reference,
as follows:

► To pass an argument by value, use the ByVal statement.

► To pass an argument by reference, no special syntax is required. Passing an
argument by reference is the default.

► For example:
Declare Sub MySub Lib "MyDll"(ByVal x As Integer, y As String)

Passing Named Arguments
When you call an SQABasic command that takes arguments, you usually supply
values for those arguments by listing them in a particular order — the order in
which the arguments appear in the syntax definition. This rule applies to built-in
SQABasic commands as well as functions and sub procedures you create.

For example, suppose you declare a function this way:

Function MyFunction(id, action, value)

From the above syntax, you know that MyFunction requires three arguments:
id, action, and value. When you call this function, you supply the arguments
in the order shown in the declaration.

If a command contains just a few arguments, it’s fairly easy to remember the order
of the arguments. However, if a command has several arguments, and you want
to be sure the values you supply are assigned to the correct arguments, consider
using named arguments.

Named arguments are arguments identified by name rather than by syntax
position. With named arguments, the order of the arguments is not important.

All SQABasic commands accept named arguments.

Data Types

SQABasic Fundamentals 3-5

Syntax of Named Arguments

Named arguments have this syntax:
namedarg:= value

In the MyFunction example, both function calls below assign the correct values
to the appropriate arguments:

MyFunction id:=1, action:="get", value:=0
MyFunction action:="get", value:=0, id:=1

If an argument is optional and you don’t want to provide a value for the optional
argument, simply omit it.

For example, if the action argument of the MyFunction call is optional, you
could call the function like this:

MyFunction action:="get",id:=1

NOTE: Although you can shift the order of named arguments, you can’t omit
required arguments.

Data Types
You declare the data type of a variable in any of these ways:

Explicit declaration – Data types are explicitly declared with the Dim statement.

Type-declaration character – When first referencing a variable, you can declare
the variable by adding a type-declaration character (such as $ for String or % for
Integer) to the end of the variable name.

Implicit declaration – If neither a Dim statement nor a type-declaration character
is used to declare a variable, SQA automatically assigns the variable the default data
type Variant.

Once a data type is declared, a variable can only contain data of the declared type.

NOTE: You must always explicitly declare variables of a User-Defined data
type. If you use the Option Explicit statement, you must explicitly declare
all variables.

Data Types

3-6 SQABasic Language Reference

Descriptions of SQABasic Data Types
These are the data types SQABasic supports:

Data type Type
character

Storage
size

Range

Integer
(short)

% 2 bytes -32,768 to 32,767

Long
(long)

& 4 bytes -2,147,483,648 to 2,147,483,647

Single
(single-precision
floating point)

! 4 bytes -3.402E38 to -1.401E-45
(for negative values)

1.401E-45 to 3.402E38
(for positive values)

Double
(double-precision
floating-point)

8 bytes -1.797E308 to -4.94E-324
(for negative values)

4.94E-324 to 1.797E308
(for positive values)

Currency @ 8 bytes
(fixed)

-922,337,203,685,477.5808 to
 922,337,203,685,477.5807

String
(variable length)

$ 0 to about
32 KB

0 characters to 32,767 characters

String
(fixed length)

None 1 to about
32 KB

1 character to 32,767 characters

Object None n/a n/a

Variant None A Variant’s storage size and range depend on
the way the Variant is used. For example, a
Variant used as an Integer is stored in 2
bytes and has a range between -32,768 and
32,767

User-Defined None Byte size
is set by
individual
elements

The range of each element is
determined by the element’s
declared data type

Data Types

SQABasic Fundamentals 3-7

Data Type Notes

► Variants support most of the data type in the table. The unsupported data
types are fixed-length Strings and User-Defined data types.

► Variants can also be used as a Date data type. A Variant used as a date is
stored as an 8-byte Double. Values range from Jan 1st, 100 to Dec 31st,
9999.

► Numeric values are always signed.

► SQABasic has no true Boolean variables. SQABasic considers 0 to be FALSE
and any other numeric value to be TRUE. Only numeric values can be used
as Booleans. Comparison operator expressions always return 0 for FALSE
and -1 for TRUE.

► Integer constants can be expressed in decimal, octal, or hexadecimal
notation. Decimal constants are expressed by simply using the decimal
representation. To represent an octal value, precede the constant with &O or
&o (for example, &o177). To represent a hexadecimal value, precede the
constant with &H or &h (for example, &H8001).

► There are no restrictions on the characters you can include in a string. For
example, the character whose ANSI value is 0 can be embedded in a string.

► See the following sections for more information about Variant and
User-Defined data types.

Variant Data Types
You declare a Variant data type in either of these ways:

► Explicitly through the Dim statement.

► Implicitly by using a variable without declaring it explicitly or through a type-
declaration character. By default, SQABasic assigns the data type Variant to
any undeclared variable.

Valid Variant Data Types

A Variant data type can be used to store any type of data except fixed-length
String data and User-Defined data.

In addition, there are these special Variant data types:

Empty Variants – Any newly-defined Variant defaults to the Variant type
Empty. Empty Variants contain no initialized data.

Data Types

3-8 SQABasic Language Reference

An Empty Variant is zero when used in a numeric expression, and it is an
empty string when used in a string expression. Call the IsEmpty function to test
whether a Variant is uninitialized (empty).

Null Variants – These Variants have no associated data and serve only to
represent invalid or ambiguous results. Call the IsNull function to test whether
a Variant contains a null value.

Date Variants – Date values range from Jan 1st, 100 to Dec 31st, 9999. See the
Format function in Chapter 6 for information about valid date formats.

Identifying the Type of Data Stored in a Variant

A tag stored with Variant data identifies the type of data the Variant contains.
You can examine the tag by calling the VarType function.

User-Defined Data Types
A User-Defined data type is a set of related variables that can be referenced by
a single variable name. It is similar to a C data structure.

User-Defined data types contain one or more elements. An element in a
User-Defined data type can contain any type of data that SQABasic supports.
An element can also contain an array or another User-Defined type.

Declaring a Variable as a User-Defined Data Type

Before you can declare a variable as a User-Defined data type, you first must
define the data type. You can then declare as many variables of that type as you
like — just as you can declare as many variables as you like of type Integer
or String.

Here are the basic steps for defining a User-Defined type:

1. Use the Type statement to define the User-Defined data type, as in:
Type CustData ' Name of the data type

CustName As String ' Element for customer’s name
CustID As Long ' Element for customer’s ID

End Type

2. Use the Dim statement to declare a variable of the type you just defined:
Dim Customer As CustData ' Declare the variable Customer

Use dot-notation syntax to reference an individual element — for example:
Customer.CustName = "Jennifer Farriday"
Customer.CustID = 533128

Data Types

SQABasic Fundamentals 3-9

Dialog Box Records

In SQABasic, you create a dialog box by first defining a dialog box record. Dialog
box records look like any other user-defined data type, but there are two
important differences:

► You define a dialog box record with the Begin Dialog...End Dialog
statements, not the Type...End Type statements.

► The elements in a dialog box record refer to the objects (such as buttons,
entry fields, and labels) in the dialog box.

Once you define a dialog box record, you declare an instance of that record. Like
other user-defined types, you use the Dim statement to declare an instance of a
dialog box. Also, you use dot-notation syntax to refer to the objects in a dialog box:

MyDialog.Columns = "2"

See the Begin Dialog statement in Chapter 6 for more information about
creating dialog boxes.

Data Type Conversions
SQABasic attempts to convert one dissimilar data type to another when moving
data between the following data types:

► Between any two numeric types – When converting from a larger type to a
smaller type (for example, a Long to an Integer), a runtime numeric
overflow error might occur. This error indicates that the number of the larger
type is too large for the target data type. For example, loss of precision is not a
runtime error when converting from Double to Single, or from either
float type to either Integer type.

► Between fixed-length strings and dynamic (variable-length) strings –
When converting a fixed-length string to dynamic, a dynamic string that has
the same length and contents as the fixed-length string is created. When
converting from a dynamic string to a fixed-length string, some adjustment
might be required. If the dynamic string is shorter than the fixed-length
string, the resulting fixed-length string is extended with spaces. If the dynamic
string is longer than the fixed-length string, the resulting fixed-length string is
a truncated version of the dynamic string. No runtime errors are caused by
string conversions.

► Between any data type and Variant data types – Any data type
(other than a User-Defined type) can be converted to a Variant data
type. SQABasic converts variant strings to numbers when required. A type
mismatch error occurs if the variant string does not contain a valid
representation of a number.

Arrays

3-10 SQABasic Language Reference

No other implicit conversions are supported. In particular, SQABasic does not
automatically convert between numeric and string data. Use the functions Val
and Str$ for such conversions.

Arrays
An array is a variable made up of individual elements that have the same data
type. Each element is accessed through a unique index number.

An array has one or more dimensions (sets of elements). An array can have up to
60 dimensions.

Array subscripts specify the number of elements in a dimension by setting its
starting and ending index values. For example, the following array MyArray has
one dimension with a starting index value of 1 and an ending index value of 100:

Dim MyArray(1 To 100) As String

If only one subscript is provided (which is typically the case), it is assumed to
specify the ending index value. The starting index value defaults to 0. You can set
the starting index default to either 0 or 1 through the Option Base statement.

Arrays support all SQABasic data types. Arrays of arrays and dialog box records are
not supported.

Declaring an Array
The following array has two dimensions containing 11 elements and 101 elements,
respectively (the default starting index is 0 for each dimension):

Dim MyArray (10,100) as Integer

See the Dim statement in Chapter 6 for more information.

Referencing an Array
You reference array elements by enclosing the proper index values in parentheses
after the array name – for example, ArrayName(i,j)= x.

Dynamic Arrays

SQABasic Fundamentals 3-11

Dynamic Arrays
When you declare a dynamic array, you don’t specify a subscript range for the
array elements. Instead, you use the ReDim statement to set the subscript range.

The advantage of using dynamic arrays is that you can base the number of array
elements on unpredictable conditions that only become known at runtime.
Because you don’t have to pre-define the number of elements in the array, you
avoid having to reserve space for elements that you might not use.

For example, suppose you want to use an array to store a set of values entered by a
user, but you don’t know in advance how many values the user needs to store. In
this case, you dimension the array without specifying a subscript range, and then
you execute a ReDim statement to increase the range by 1 each time the user is
about to enter a new value. Or, you might want to prompt for the number of
values the user wants to enter, and then execute one ReDim statement to set the
size of the array accordingly before prompting for the entry.

NOTE: ReDim destroys the current contents of the array. To preserve the array’s
contents, include the Preserve argument in your ReDim statement.

Dimensions of a Dynamic Array
If you Dim a dynamic array before using it, the maximum number of dimensions
it can have is 8. To create dynamic arrays with more dimensions (up to 60), do not
Dim the array at all. Instead, use the ReDim statement inside your procedure.

Dynamic Array Example
In this example, the dynamic array varray contains user-defined cash flow values:

Sub main
Dim aprate as Single
Dim varray() as Double
Dim cflowper as Integer
Dim msgtext
Dim x as Integer
Dim netpv as Double
cflowper=InputBox("Enter number of cash flow periods")
ReDim varray(cflowper)
For x= 1 to cflowper

varray(x)=InputBox("Enter cash flow for period #" & x & ":")
Next x
aprate=InputBox("Enter discount rate: ")
If aprate>1 then

aprate=aprate/100
End If
netpv=NPV(aprate,varray())
msgtext="The net present value is: "
msgtext=msgtext & Format(netpv, "Currency")
MsgBox msgtext

End Sub

Expressions and Operators

3-12 SQABasic Language Reference

Expressions and Operators
An expression is a collection of two or more terms that perform a mathematical,
comparative, or logical operation. The type of operation performed is determined
by the operator in the expression.

Expressions are evaluated according to an established order of precedence for
operators. Use parentheses to override the default precedence order.

Operator precedence order (from high to low) is:

Numeric operators
String concatenation operators
Comparison operators
Logical operators

Numeric Operators
Numeric operators are shown in order of precedence (from high to low):

Operator Description

^ Exponentiation.

-,+ Unary minus and plus.

*, / Numeric multiplication or division. For division, the result is
a Double.

\ Integer division. The operands can be Integer or Long.

Mod Modulus or Remainder. The operands can be Integer or
Long.

-, + Numeric addition and subtraction. The + operator can also be
used for string concatenation.

String Concatenation Operators
The string concatenation operator is the ampersand (&). Alternatively, you can
use a plus sign (+).

Expressions and Operators

SQABasic Fundamentals 3-13

Comparison Operators
Comparison operators have equal precedence. They are evaluated from left to right:

Operator Description

> Greater than

< Less than

= Equal to

<= Less than or equal to

>= Greater than or equal to

<> Not equal to

Comparison operators compare numbers and strings:

► For numbers, operands are widened to the least common type (Integer is
preferred over Long, Long is preferred over Single, and Single is
preferred over Double).

► For English strings, comparisons are case-sensitive by default. You can change
the default through the Option Compare statement.

► String comparisons return 0 for FALSE and -1 for TRUE.

Logical Operators
Logical operators are shown in order of precedence (from high to low):

Operator Description

Not Unary Not – operand can be Integer or Long. The
operation is performed bitwise (one’s complement).

And And – operands can be Integer or Long. The operation is
performed bitwise.

Or Inclusive Or – operands can be Integer or Long. The
operation is performed bitwise.

► ► ►

Scope of Variables and Constants

3-14 SQABasic Language Reference

► ► ►

Operator Description

Xor Exclusive Or – operands can be Integer or Long. The
operation is performed bitwise.

Eqv Equivalence – operands can be Integer or Long. The
operation is performed bitwise. (A Eqv B) is the same as
(Not (A Xor B)).

Imp Implication – operands can be Integer or Long. The
operation is performed bitwise. (A Imp B) is the same as
((Not A) Or B).

Scope of Variables and Constants
The scope of variables and constants can be any of the following:

► Local. Accessible only to the function or sub procedure containing the
variable or constant declaration. Use the statement Dim to declare local
variables and Const for local constants.

► Module-level. Accessible to any function or sub procedure in the same
module (script or library file) as the Dim or Const statement. With module-
level declarations, place the Dim or Const statement above the first
procedure in the module.

► Global. Accessible to any function or sub procedure in any module. Use the
Global statement for global declarations. Global declarations can appear in a
module or in a header file.

For more information about the scope of variables and constants, including how to
declare each type, see the section Declaring Variables and Constants in Chapter 4,
SQABasic Scripts.

For information on module-level and global procedures, see the sections
Adding Custom Procedures to a Script and Adding Custom Procedures to a Library File
in Chapter 4, SQABasic Scripts.

Year 2000 Compliance

SQABasic Fundamentals 3-15

Year 2000 Compliance
SQABasic converts two-digit years to four-digit years in the following situations:

Command or assignment Two-digit year conversion

Input string with a two-digit
year, when converted to an
internal date value

00 through 29 is converted to 2000 through 2029

30 through 99 is converted to 1930 through 1999

Date statement 80 through 99 is converted to 1980 through 1999

00 through 79 is converted to 2000 through 2079

Format function with the
following format
argument values:

General Date
Short Date
c
ddddd

Two-digit dates are formatted as four-digit dates

CVDate, DateValue, and
Year functions

00 through 29 is converted to 2000 through 2029

30 through 99 is converted to 1930 through 1999

Of course, you can force a two-digit year through a user-defined date format —
for example:

Sub Main
Dim datestr

datestr = InputBox("Enter a date with a 2-digit year" + _
Chr$(13) + "(in the format mm/dd/yy):")

'CVDate converts to a 4-digit year
datestr = CVDate(datestr)
MsgBox "Default format: " + datestr

'Now change the format to use a 2-digit year
datestr = Format(datestr, "m/d/yy")
MsgBox "Custom format: " + datestr

End Sub

Trappable Errors

3-16 SQABasic Language Reference

Suggestions for Avoiding Year 2000 Problems
Here are some guidelines for avoiding year 2000 problems in your scripts:

► Always maintain internal date information as date values.

► Store date values in variables with numeric or variant data types.

► Use date values, not strings, when performing date calculations.

► When accepting date information from the user, always display the value
received in a format that explicitly identifies the century.

► When displaying data information, always use a format that explicitly
identifies the century.

► When exchanging data information with external data sources or external
programs, you should use double-precision floating point numbers or data
strings with at least four characters for identifying the century.

Trappable Errors
Trappable errors are runtime errors that you can respond to in any way you
choose. If you don’t provide a response to a trappable error, SQABasic displays an
error dialog box at runtime.

SQABasic provides the following error-handling commands:

Command Description

Err statement Sets a runtime error code without simulating an
occurrence of the error

Err function Returns the error code for the last error trapped

Error statement Simulates the occurrence of a runtime error

Error function Returns the error message that corresponds to the
specified error code

On Error statement Specifies how your program responds to a runtime
error

Error codes aren’t automatically returned. You must retrieve them with Err.

See Appendix B for a list of trappable error codes.

Trappable Errors

SQABasic Fundamentals 3-17

Responding to Errors
You can respond to errors in either of these ways:

► Put error-handling code directly before a line of code where an error might
occur (such as after a File Open statement).

► Create a separate section of the procedure just for error handling, and assign
the section an appropriate label. When an error occurs, program flow jumps
to the label.

► You typically use this method to test for and react to different error codes.

Use the On Error statement to specify either method.

User-Defined Errors
In addition to the standard runtime errors reported by SQABasic, you might want
to create your own set of codes for trapping errors specific to your program. For
example, if your program establishes rules for file input, you might want to trap
for errors that result when the user doesn’t follow the rules.

You can trigger an error and respond appropriately through the same statements
and functions you use for standard SQABasic error codes.

Error-Handling Examples
SQABasic online Help contains examples of how you can respond to runtime
errors. To see the examples:

1. Choose Using SQABasic from Contents.

2. Choose Error Handling.

3. Choose Trapping Errors Returned by SQABasic or Trapping User-Defined
(Non-SQABasic) Errors.

Trappable Errors

3-18 SQABasic Language Reference

4-1

► ► ► C H A P T E R 4

SQABasic Scripts
Rational Robot automatically generates scripts for you during recording.
However, because you may want to edit the scripts that Robot generates, and even
create custom procedures and library files, you should have a fundamental
understanding of the structure and contents of a script.

This chapter includes the following topics:

► What is a script?

► User action and verification point commands

► Object context

► Customizing scripts

What is a Script?
A script is an ASCII text file that contains SQABasic commands. A compiled
script can be executed (played back) by Robot or by the CallScript command.

When you record a script, Robot translates your actions into a series of SQABasic
commands and stores them in the script. When you play back the script, Robot
performs the actions you recorded by executing the SQABasic commands.

Typically, GUI scripts include user actions such as mouse clicks and keystrokes.
GUI scripts also include verification points that you insert during recording.

Scripts that Robot generates consist of a single sub procedure called Main.
Optionally, you can add custom sub procedures and functions to the script file, as
described in the section Adding Custom Procedures to a Script on page 4-23.

NOTE: A script is also associated with properties such as the purpose of the script
and the type of script. Typically, you define script properties when you plan the
script with TestManager. You can also view and edit script properties in Robot.

What is a Script?

4-2 SQABasic Language Reference

Script Source Files
GUI scripts have the extension .rec.

If changes are made to a script, Robot automatically saves the script when you
compile it, play it back, or debug it. To explicitly save a script during editing, click
File � Save, or click the Save button on the toolbar.

Script Executable Files
A compiled script has the extension .sbx. Only Robot can execute a .sbx file.

At the start of playback or debugging, Robot automatically compiles a script if it
has changed since it last ran. To explicitly compile a script during editing, click
File � Compile, or click the Compile button on the toolbar.

Script Structure
The typical Main sub procedure that Robot generates in a script can be broken
into four general sections:

► Initialization

► Window restoration (optional)

► Script body (window context, user actions, and verification points)

► Close

Script Initialization

All Robot scripts begin with the following commands:

► Sub Main

Defines a subroutine named Main. This is normally the first command in the
script and should not be edited.

The name Main is reserved for scripts Robot generates. Do not assign this
name to any custom procedures you may write.

► Dim Result As Integer

Defines the variable Result as an integer variable. Robot returns values
from verification point commands into the variable Result. The value of
Result is local to the Main subroutine.

What is a Script?

SQABasic Scripts 4-3

► 'Initially Recorded: 06/16/98 14:08:33

'Script Name: CdOrder

Robot writes two comment lines in the initialization section of each script.
The first shows when the script was recorded, and the second shows the
script name. These comments are not required and can be edited or removed.

Window Restoration

Robot includes the following two commands at the beginning of a script if
Save window positions is selected in the General tab of the GUI Record Options
dialog box:

StartSaveWindowPositions
. . . ' Window restoration commands
EndSaveWindowPositions

During playback, the window restoration commands bracketed between
StartSaveWindowPositions and EndSaveWindowPositions restore
the specified windows to the size and position they were in at the start of
recording. Also, a context window (a window within which subsequent user
actions are to occur) may be specified — for example, with MDI applications.

The referenced windows must exist during playback before the window
restoration commands can be properly executed.

StartSaveWindowPositions and EndSaveWindowPositions also tell
Robot that, during playback, the intervening Window SetContext, Window
MoveTo, and Window SetPosition commands are for window restoration
only. During window restoration, all playback timing defaults are set to zero in
order to process the commands as quickly as possible.

If any command fails between StartSaveWindowPositions and
EndSaveWindowPositions, that failure is reported to the log as a warning,
not as a script command failure.

NOTE: Additionally, you can save the positions of all active windows (except
hidden windows) after every Window SetContext command by selecting the
GUI recording option Auto Record Window Size (on the General tab). During
playback, Robot restores the windows to their positions when the script was
recorded. Robot writes warning messages to the log for any windows it can’t find
during playback.

What is a Script?

4-4 SQABasic Language Reference

Script Body

The script body is the primary processing section of the script. The script body
typically includes SQABasic commands that:

► Perform user actions — for example, keystrokes and mouse clicks you make to
navigate through the application and to provide data to the application.

For more information, see User Action Commands on page 4-6.

► Establish verification points by comparing information captured for an object
during recording with information captured for the object during playback.

For more information, see Verification Point Commands on page 4-7.

► Set the context window. When you set the context window, Robot expects
subsequent actions and verification points to be performed within that
window.

For more information, see Establishing Context through a Window Command
on page 4-15.

Script Close

All scripts that Robot generates end with the following command. This command
terminates the script.

End Sub

This line indicates the end of the Main subroutine.

Sample Script
The following short script illustrates the four sections of a script as well as typical
actions you can record in a script.

In this example, the application-under-test is Classics.exe, a Visual Basic
application for ordering CDs. As the user places an order for two CDs of the same
title, Robot records the user’s actions. In the dialog box where the user provides
credit card and other ordering information, the user performs verification points
on the following dialog box objects:

► txtAlbumInfo – An edit box that displays the name of the CD being
purchased.

► txtQuantity – An edit box that displays the number of CDs ordered.

► lblTotal – A non-modifiable label object that displays the cost of the
order.

What is a Script?

SQABasic Scripts 4-5

Sub Main
Dim Result As Integer

'Initially Recorded: 06/16/98 16:09:16
'Script Name: CdOrder

' Restore all windows to their size and position during recording
StartSaveWindowPositions
Window SetPosition, "Caption=Program Manager",

"Coords=0,0,1024,768;Status=NORMAL"
Window SetPosition, "Caption=Exploring - C:\Classics\AccessData",

"Coords=-32000,-32000,160,24;Status=MINIMIZED"
Window SetPosition, "Caption=Untitled - Notepad",

"Coords=76,18,558,418;Status=NORMAL"
Window SetPosition, "Caption=Microsoft Excel - Book1",

"Coords=363,247,639,460;Status=NORMAL"
Window SetContext, "Caption=Microsoft Excel - Book1", ""
Window SetPosition, "Caption=Book1;ChildWindow",

"Coords=-6,-25,639,349;Status=NORMAL"
Window SetPosition, "Class=Shell_TrayWnd",

"Coords=-2,740,1028,30;Status=NORMAL"
EndSaveWindowPositions

' Start the application-under-test
StartApplication "C:\Classics Online\Classics.exe"

' Select the title of the CD to purchase
Window SetContext, "Name=frmMain", ""
TreeView Click, "Name=treMain;\;ItemText=Bach->Brandenburg

Concertos Nos. 1 3", ""
PushButton Click, "Name=cmdOrder"

' Login
Window SetContext, "Name=frmOrderLogin", ""
PushButton Click, "Name=cmdOK"

' Specify the number of CDs to purchase
Window SetContext, "Name=frmOrder", ""
EditBox Left_Drag, "Name=txtQuantity", "Coords=25,10,-120,11"
InputKeys "2"

' Provide credit card information
ComboBox Click, "Name=comboCardType", "Coords=104,7"
ComboListBox Click, "ObjectIndex=1", "Text=MasterCard"
EditBox Click, "Name=txtCreditCard", "Coords=49,11"
InputKeys "1535399178421813"
EditBox Click, "Name=txtExpirationDate", "Coords=11,5"
InputKeys "12/31/00"

' Verify that the correct CD is being purchased
Result = EditBoxVP (CompareText, "Name=txtAlbumInfo",

"VP=TitleText;Type=CaseSensitive")

Initialization

Window
Restoration
(optional)

Script body
� Context window
� User actions
� Verification

points

User Action and Verification Point Commands

4-6 SQABasic Language Reference

' Verify that the number of CDs being purchased is correct
Result = EditBoxVP (CompareText, "Name=txtQuantity",

"VP=QuantityText;Type=CaseInsensitive")

' Verify the correct total purchas price
Result = LabelVP (CompareProperties, "Name=lblTotal",

"VP=CostObjProp")

' Close the application-under-test
PushButton Click, "Name=cmdCancel"
Window SetContext, "Name=frmMain", ""
Window CloseWin, "", ""

End Sub

User Action and Verification Point Commands
To read or edit a script successfully, you need to have a basic understanding of
two important categories of commands that are executed within the body of a
script. These categories are:

► User action commands

► Verification point commands

The following sections describe these commands.

User Action Commands
User actions include all of the GUI actions you perform during recording — for
example, clicking a button that opens a dialog box, selecting an item in a list, or
typing data into an order form.

You perform user actions as you navigate through the application-under-test and
as you supply data to the application-under-test.

User action command names (such as PushButton, Window, or EditBox)
reflect the object being acted upon. User action command names are followed by
the action argument (containing values such as Click, Resize, or
VScrollTo), which specifies the action taken against the object — for example:

PushButton Click, "Name=cmdOK"

For a summary of all user action commands, see the section User Action Commands
(SQABasic Additions) in Chapter 2, Functional List.

Script body (Cont.)
� Context window
� User actions
� Verification

points

Close

User Action and Verification Point Commands

SQABasic Scripts 4-7

Verification Point Commands
In functional testing, you need to verify that the objects in the application-under-
test look and work as designed from build to build. To accomplish this, you
establish verification points for the objects. Here is an overview of how
verification points work:

► During recording, a verification point command captures information about an
object — for example, the size, position, and other properties of the object, or
any data that might be associated with the object. Information captured
during recording establishes a baseline for future tests. The information is
stored in a baseline data file and written to the LogViewer.

► During playback, the same verification point command again captures
information about the object. The information captured during playback is
compared against the baseline information captured for the object during
recording — thus verifying whether the information is the same or has
changed.

If there is a discrepancy between the baseline data and the data captured
during playback, the latter is stored in an actual data file and written to the
LogViewer.

At any time, you can re-record a verification point for an object, thus establishing
a new baseline. For example, if the position of a push button changes in build 20
of the application-under-test, you need to record a new baseline for the push
button to verify its new position in subsequent builds.

Verification point command names (such as PushButtonVP, WindowVP, or
EditBoxVP) reflect the object you are verifying. Verification point command
names are followed by the action argument (containing values such as
CompareData, CompareText, or CompareProperties), which indicates
the type of verification you are performing on the object — for example:

Result = EditBoxVP (CompareText, "Name=txtQuantity",
"VP=QuantityText;Type=CaseInsensitive")

User Action and Verification Point Commands

4-8 SQABasic Language Reference

Verification point commands return a value to the Result variable. If the
information captured during playback matches the baseline, the verification point
passes, and Result equals 1. If there is no match, the verification point fails, and
Result equals 0.

For a summary of all the verification point commands, see the section Verification
Point Commands (SQABasic Additions) in Chapter 2, Functional List.

Syntax of User Action and Verification Point Commands
Syntax conventions for user action and verification point commands are similar.

The general format for a user action command is:

ObjectType action, recMethod, parameters

The general format for a verification point command is:

Result = ObjectTypeVP (action, recMethod, parameters)

Here is a summary of the key syntax elements:

Syntax Element Description

ObjectType The command name. User action command names
always begin with the name of the object being acted
upon — for example, ComboBox. When you record an
action against an object, Robot automatically
determines the object type.

ObjectTypeVP Like user action command names, verification point
command names indicate the target object. However,
verification point names include the suffix VP — for
example, ComboBoxVP.

action The action performed against the object, or the type of
verification point established for the object — for
example:

ComboBox Click,"Name=lstUserName","Coords=75,6"

recMethod Information Robot uses to identify and locate the target
object during playback — for example:

ComboBox Click,"Name=lstUserName","Coords=75,6"

Use double quotation marks to delimit the recognition
method string.

► ► ►

User Action and Verification Point Commands

SQABasic Scripts 4-9

► ► ►

Syntax Element Description

If multiple recognition method values are needed to
uniquely identify an object, enclose the entire
recognition method string within a single set of quotes.
For more information about multiple component values
in a recognition method string, see Components of a
Recognition Method String on page 4-10.

Because multiple values might be required to uniquely
identify an object, each object is associated with an
ordered set of possible recognition method values that
Robot can use to identify the object. For information
about the order of recognition method values, see
Recognition Method Order on page 4-10.

recMethod can have up to 2,048 characters.

parameters Any additional information required by the action
argument. For example, if the action is a mouse click
on a combo box, parameters might contain the
coordinates of the click relative to the combo box — as in:

ComboBox Click,"Name=lstUserName","Coords=75,6"

Use double quotation marks to delimit parameters. If
multiple parameter values are listed, enclose them all in
a single set of quotes, and use semicolons to separate
the individual values.

parameters can have up to 968 characters.

Result A variable that specifies whether a verification point
passes (value is 1) or fails (value is 0) during playback.

NOTE: The recMethod argument is also used in Object Scripting commands.
For more information, see the section Object Scripting in Chapter 5, Enhancements to
Recorded Scripts.

User Action and Verification Point Commands

4-10 SQABasic Language Reference

Components of a Recognition Method String
Robot uses the recognition method (recMethod) argument of user action and
verification point commands to uniquely identify the target object.

Sometimes, more than one recognition method value is required to uniquely
identify an object. If a recognition method string consists of multiple component
values, enclose the entire string within a single set of quote marks (").

A recognition method string can have two types of component values:

► Values that further define, or qualify, the object. These types of values are
delimited by a semicolon (;). For example, the recognition method string in
this command identifies a window titled Classics Online:

Window SetContext,"Caption=Classics Online;Class=#32770",""

► Values that show a hierarchy of objects, such as a window and an object in that
window. These types of values are delimited by a semicolon, backslash, and
semicolon (;\;). For example, the recognition method string in this
command identifies an item in a tree view object named treMain:

TreeView Click,"Name=treMain;\;ItemText=Haydn","Location=Button"

In this example, the tree view object is in the current context window. You
can also use context notation to specify an object. For more information, see
Establishing Context through Context Notation on page 4-18.

Recognition Method Order
There are many possible pieces of information that Robot can use to uniquely
identify an object. Choosing the right recognition method balances script
reliability and readability.

Most of the standard object types are associated with a pre-defined, ordered list of
recognition method values. While recording an action on an object, Robot tries
each listed value in sequence until it can uniquely identify the object. In most
cases, the object can be uniquely identified through the first value in the list for
that object type, but occasionally additional information is required.

User Action and Verification Point Commands

SQABasic Scripts 4-11

The following table lists the object types that Robot supports for user action and
verification point commands, and also the default order of recognition method
values it checks for each object type:

Object type Order of recognition
method values

AnimateControl/VP
CheckBox/VP
DataWindow/VP
GroupBox/VP
Header/VP
HTML/VP
HTMLActiveX/VP
HTMLDocument/VP
HTMLHiddenVP
HTMLImage/VP
HTMLLink/VP
HTMLTable/VP
JavaCanvas/VP
JavaListView/VP
JavaMenu/VP
JavaObject/VP
JavaPanel/VP
JavaPopupMenu/VP
JavaSplitPane/VP
JavaSplitter/VP
JavaTable/VP

JavaTableHeader/VP
JavaTree/VP
JavaWindow/VP
Label/VP
ListView/VP
Pager/VP
ProgressBar/VP
PSCalendar/VP
PSGridHeader/VP
PSNavigator/VP
PSPanel/VP
PSTreeHeader/VP
PushButton/VP
RadioButton/VP
Rebar/VP
SpinControl/VP
TabControl/VP
Toolbar/VP
Trackbar/VP
TreeView/VP

ObjectName
Text
Index
ID

ComboBox/VP
ComboEditBox/VP
ComboListBox/VP
EditBox/VP
HotKeyControl/VP
IPAddress/VP

ListBox/VP
PSGrid
PSMenu/VP
PSSpin/VP
PSTree
RichEdit/VP

ObjectName
Label
Index
ID

Calendar/VP
DateTime/VP

ObjectName
Label
Text
Index
ID

► ► ►

User Action and Verification Point Commands

4-12 SQABasic Language Reference

► ► ►

Object type Order of recognition
method values

ScrollBar/VP
StatusBar/VP

ObjectName
Index
ID

Desktop None (the Windows
desktop is automatically
recognized)

Window/VP ObjectName
Caption
CaptionClass *
Class

* Writes both Caption and
Class to the script.

GenericObject/VP Object Name
Text
ClassIndex *
Index
ID

* Writes both Class and
ClassIndex to the script.

NOTE: In C++ development environments, the default order of recognition
method values is different from the order shown in this table. See the next section
for more information.

Changing the Default Order

You can view and optionally modify the order of recognition method values for a
given object type. To do so:

1. In Robot, click Tools � GUI Record Options.

2. Click the Object Recognition Order tab.

3. Select an object type in the Object type box.

4. View and optionally modify the order of recognition method values in the
Recognition method order box.

User Action and Verification Point Commands

SQABasic Scripts 4-13

Robot can more efficiently identify the objects in a C++ application if you
change the default recognition method order that it uses for other application
environments. To change the recognition method order for all object types in C++
applications, select C++ Recognition Order in the Object Order Preference list.

Recognition Methods in Java Commands
When recording actions against Java objects, Robot is aware of a parent object and a
child object. The parent object is the outermost Java container — for example, a
frame with Java applications, or an applet with Java applets. The child object is the
object being acted upon. Robot ignores any objects between the parent object and
the target child object.

The recMethod argument in Java commands always specifies the child object.
The parent object can be specified in either of these ways:

► Through the same recMethod argument that specifies the child object.

If a recognition method in a Java command specifies both the parent and
child objects, the objects are separated by a semicolon, backslash, and
semicolon (;\;), which is standard syntax for hierarchical objects in all
recognition method strings. Here is an example:

JavaTree Expand, "Name=Main;\;Type=JavaTree;Name=Music",
"Text=Music->Jazz"

► Through a preceding Browser command.

If a recognition method in a Java command doesn’t explicitly specify the
parent object, the parent object must be specified through a preceding
Browser command. To specify a parent Java object, the Browser command
includes the action SetApplet and an appropriate recMethod (Name,
JavaCaption, or JavaClass, and possibly the qualifier Index).

Here is an example of a Browser command specifying a parent object
named Main:

Browser SetApplet, "Name=Main", ""
JavaTree Expand, "Type=JavaTree;Name=Music", "Text=Music->Jazz"

The parent object in a Browser SetApplet command applies to all
subsequent Java commands that do not explicitly specify a parent object in
recMethod.

User Action and Verification Point Commands

4-14 SQABasic Language Reference

Using Object Scripting Commands with Java Objects

Object Scripting commands (such as SQAGetChildren, SQAGetProperty,
and SQAInvokeMethod) cannot extract information about parent Java objects
from a preceding Browser command, as other commands can. As a result, the
recMethod argument of an Object Scripting command must include the parent
object and child object, separated by a semicolon, backslash, and semicolon (;\;).

When you’re editing your script, simply copy the parent object information from
the recMethod argument of the preceding Browser command into the
recMethod argument of the Object Scripting command.

For a list of the SQABasic Object Scripting commands, see Object Scripting
Commands (SQABasic Additions) in Chapter 2.

Specifying Parent Objects in recMethod

When you record user actions or verification points against Java objects, Robot can
write the following kinds of commands to the script:

► Commands used only with objects in the Java environment — for example,
JavaMenu, JavaPanel, or JavaTree. These commands have the prefix
Java.

► Commands used with objects in the Java and other environments — for
example, PushButton, EditBox, or ListBox.

When either of these kinds of commands refers to a Java object, the command’s
recMethod argument can specify the Java parent object. When specifying a
parent object, recMethod uses the recognition method Name= or either of the
following recognition methods:

► JavaCaption=$

The text of the Java window caption. The caption can be used to identify the
parent Java object when the object has no programmatic name. The wildcards
? and * are supported. (See Using Wildcards in Window Captions on page 4-17.)

This recognition method is used only with window-based parent objects, not
with browser-based applets.

► JavaClass=$

The Java class name. The class name can be used to identify the parent Java
object when the object has no programmatic name or window caption.

With JavaObject and JavaObjectVP, JavaClass= can also be used to
identify the child Java object.

The recognition method qualifier Index= can appear after Name=,
JavaCaption=, and JavaClass=.

Object Context

SQABasic Scripts 4-15

Object Context
For Robot to find the edit boxes, buttons, and other objects that you test, it has to
know where to look. For example, if you reference a list view object named
MyList, Robot needs to know which window the list is in. If you reference a
particular item in MyList, Robot needs to know both the list that the item is in
and the window that the list is in.

Robot locates an object through the object’s context. Context helps Robot
identify an object by providing a point of reference for the object. In other words,
the identity of a parent object provides the context for its child objects.

Context for objects is established in either or both of these ways:

► Through a Window SetContext, Window SetTestContext, or
Window ResetTestContext action taken against a particular window.

When context is established in this way, Robot assumes that subsequent
actions occur in the specified window until another Window command
changes the context.

► Through SQABasic context notation in the recMethod argument of a
command.

This method establishes context only for the command in which the
recMethod appears. Subsequent commands are not affected.

The following sections describe these methods of establishing context.

Establishing Context through a Window Command
Robot uses the Window command to identify a window as the context for
subsequent user actions.

NOTE: In this document, a window is a top-level object on the desktop. For
example, a dialog box is typically a top-level desktop object.

Suppose you click a push button in the application-under-test during recording.
In the script, Robot might describe the action like this:

Window SetContext, "Caption=Classics Online", ""
PushButton Click, "Name=cmdOrder"

Object Context

4-16 SQABasic Language Reference

Here’s what each line tells Robot:

► The first line specifies that you took an action in a window. The window is
identified by the caption Classics Online in the window title bar. The
SetContext action establishes the specified window as the current
context window for subsequent user actions.

► The second line specifies that you clicked a push button with the developer-
assigned object name cmdOrder. The push button object is assumed to be in
the current context window — in this case, the window identified by the
caption Classics Online.

Robot assumes that the context for subsequent user actions is the current
context window. The current context window can (and usually does) change
often in a script.

Actions that Set Context

The following action argument values for the Window command set the
context for an object:

SetContext – Establishes the current context window for all user action and
verification point commands that follow.

SetTestContext – Establishes a test context for an object that is outside the
scope of the current context window or Object Scripting command. When test
context is established for an object, subsequent verification point operations are
performed on the specified object until the context changes.

ResetTestContext – Restores the context to its state before the last
SetTestContext action.

See the Window user action command in Chapter 6 for more information about
SetContext, SetTestContext, and ResetTestContext actions.

Assigning Context to the Currently Active Window

You can assign context to the currently active window without specifically
identifying the window. To do so, use the recMethod value CurrentWindow.
For example:

Window SetContext, "CurrentWindow", ""
PushButton Click, "Name=cmdOrder"

Object Context

SQABasic Scripts 4-17

Using Wildcards in Window Captions

If you are using the Window command to establish the context window, you can
identify the window through its caption. The caption is located in the title bar.

When you specify a window caption, you can type the entire caption, or you can
use the following wildcards:

Wildcard character Description

Question mark (?) Matches a single character in a caption.

Asterisk (*) Matches any number of caption characters from the
asterisk to the next character or, if there are no
characters after the asterisk, to the end of the caption.

When using wildcard characters in a caption, enclose the caption within braces.

Here are some examples of using caption wildcards in the Window command to
establish context:

Window SetContext, "Caption={?otepad}",""
' Matches the window caption "Notepad"

Window SetContext, "Caption={Query*}",""
' Matches any window caption beginning with "Query"

Window SetContext, "Caption={Class*line}",""
' Matches any window caption beginning with "Class" and
' ending with "line" (such as "Classics Online")

NOTE: Wildcards are not supported in the Text recognition method of
DataWindow and DataWindowVP commands.

Using Wildcard Characters as Ordinary Characters

If you want to include a question mark or an asterisk as just another character in a
caption rather than as a wildcard, precede the question mark or asterisk with the
backslash (\) escape character. Also, to use a backslash as an ordinary character in a
caption, precede it with another backslash.

For example, to match the path c:*.* in a window caption, use:

Caption={c:*.*}

Alternatively, you could simply omit the braces:

Caption=c:*.*

Object Context

4-18 SQABasic Language Reference

Establishing Context through Context Notation
Context notation is recMethod argument syntax that defines hierarchical
relationships between objects. Context notation is used in the recMethod
argument of user action, verification point, and Object Scripting commands.

In context notation, context for the target object is established by identifying its
parent object(s). Note that:

► Sometimes, the parent object is a window or the desktop. The parent object
could also be another object within a window.

► Sometimes, a child object is actually an item such as a tree view item. These
low-level items do not have associated properties, as objects do.

Context notation does not change the current context window. Context notation
establishes context only for the command using the context notation in its
recMethod argument.

With context notation, the recMethod argument follows these syntax rules:

► A backslash (\) between two objects specifies that the first object is the
parent of (and the context for) the second object. The backslash is delimited
by semicolons (;\;)

For example, the following code specifies that the tab labeled Album was
clicked in a tabbed dialog box:

TabControl Click, "Name=tabMain;\;ItemText=Album", ""

In this example, the item Data.mdb was clicked in a list view object:

ListView Click, "ObjectIndex=1;\;ItemText=Data.mdb","Coords=10,8"

This type of context notation is used with hierarchical objects (such as list
view and tree view) and with Object Scripting commands.

► A backslash at the beginning of a recognition method specifies that the next
object in the path is a child of the desktop. The backslash is followed by a
semicolon (\;).

This example shows a recMethod argument that specifies a path from the
desktop to the target object:

"\;Type=Window;Caption=Notepad;\;Type=EditBox;ObjectIndex=1"

This type of context notation is used only with Object Scripting commands.

► A dot-backslash (.\) represents the current context window. If the path
includes an object after the dot-backslash, the dot-backslash is followed by a
semicolon (.\;).

Object Context

SQABasic Scripts 4-19

In this example, Robot retrieves the recognition string for the current context
window:

Result = SQAGetProperty (".\", "Recognition", value)

In this example, Robot retrieves the number of rows in the grid myGrid,
which is in the current context window:

Result = SQAGetProperty (".\;Name=myGrid", "Rows", value)

This type of context notation is used only with Object Scripting commands.

► Backslash and dot-backslash characters are delimited by semicolons (;).

► In addition, with user action and verification point commands, use the
recMethod value ChildWindow when specifying an MDI window. In this
example, Book2 is shown to be a child window of Microsoft Excel:

Window SetContext, "Caption=Microsoft Excel", ""
Window WMinimize, "Caption=Book2;ChildWindow", ""

NOTE: Multi-object recognition method paths can be difficult to construct.
To be sure you define the correct recognition method for an object, record a
temporary script and click on the object. Robot will find the correct recognition
method for you. You can then copy the recognition method into your own script.
For more information, including information about finding recognition method
information programmatically, see the section Getting Help Defining Recognition
Methods in Chapter 5, Enhancements to Recorded Scripts.

Using Wildcards in Window Captions

If you are establishing a window as the context for a child object, you can identify
the window through its caption. The caption is located in the title bar.

When you specify a window caption, you can type the entire caption, or you can
use the following wildcards:

Wildcard character Description

Question mark (?) Matches a single character in a caption.

Asterisk (*) Matches any number of caption characters from the
asterisk to the next character or, if there are no
characters after the asterisk, to the end of the caption.

When using wildcard characters in a caption, enclose the caption within braces.

Customizing Scripts

4-20 SQABasic Language Reference

Here are some examples of using caption wildcards in the recMethod argument
of an Object Scripting command:

"\;Type=Window;Caption={?otepad};\;Type=EditBox;ObjectIndex=1"
' Matches the window caption "Notepad"

"\;Type=Window;Caption={Query*};\;Type=EditBox;ObjectIndex=1"
' Matches any window caption beginning with "Query"

"\;Type=Window;Caption={Class*line};\;Type=PushButton;ObjectIndex=1"
' Matches any window caption beginning with "Class" and
' ending with "line" (such as "Classics Online")

Using Wildcard Characters as Ordinary Characters

If you want to include a question mark or an asterisk as just another character in a
caption rather than as a wildcard, precede the question mark or asterisk with the
backslash (\) escape character. Also, to use a backslash as an ordinary character in a
caption, precede it with another backslash.

For example, to match the path c:*.* in a window caption, use:

Caption={c:*.*}

Alternatively, you could simply omit the braces:

Caption=c:*.*

Default Context
Object context has different defaults in different situations:

► The default context for a window is the desktop.

► The default context for other objects is the context set through the most
recent SetContext, SetTestContext, or ResetTestContext action.

Customizing Scripts
The SQABasic scripting language gives you much of the programming flexibility
of Microsoft Basic and other programming languages. For example, you can:

► Edit the scripts that Robot automatically generates.

► Add new commands, variables, and constants to scripts.

► Create custom sub procedures and functions for a script.

► Create library files for sub procedures and functions called from multiple
scripts.

► Declare variables, constants, functions, and sub procedures in header files.

► Create a script template.

Customizing Scripts

SQABasic Scripts 4-21

Script Editing Basics
To edit a script in Robot:

1. Click File � Open � Script.

2. Select the script to edit.

3. Click OK.

You can edit the SQABasic commands that Robot generates during recording, and
you can add new commands. Add and edit commands according to the syntax
descriptions in Chapter 6, Command Reference.

Declaring Variables and Constants
Declaring variables and constants is a fundamental script editing task you perform
when editing a script. The following sections describe local, module-level, and
global declarations of variables and constants.

Declaring Local Variables and Constants

You can declare local variables in a script or library source file.

The scope of local variables and constants is confined to the procedure in which
the declarations appear.

You can insert a local declaration of a variable or constant anywhere within a
procedure, as long as the declaration appears before its first use. Typically,
however, variable and constant declarations appear at the beginning of the
procedure.

Use Dim to declare a variable and Const to declare a constant.

In the following example, the variables Result and value, and the constant
TESTID, are local to the Main sub procedure. Other procedures that may exist in
this script file cannot access Result, value, or TESTID.

Sub Main
Dim Result As Integer
Dim value As String
Const TESTID As String = "Test Plan Alpha: "
. . . ' Continue processing Main sub procedure

End Sub

Customizing Scripts

4-22 SQABasic Language Reference

Declaring Module-Level Variables and Constants

A module is an SQABasic script or library source file.

If you declare module-level variables and constants inside a script or library file,
their scope spans all the sub procedures and functions in that file.

Module-level variable and constant declarations appear at the beginning of the file,
above the Main sub procedure (for scripts) and any other procedures in the file.
Use Dim to declare a module-level variable and Const to declare a module-level
constant.

In this example, the variable value and the constant TESTID can be accessed by
all the procedures in the script file. The variable Result, however, is local to the
Main sub procedure.

Dim value as String
Const TESTID As String = "Test Plan Alpha: "

Sub Main
Dim Result As Integer
. . . ' Continue processing Main sub procedure

End Sub

NOTE: For information about declaring variables and constants that are available
to any module, see Using SQABasic Header Files on page 4-29.

Declaring Global Variables and Constants

If you declare a global variable or constant in a module, the variable or constant is
validated at module load time:

► Variables. If you attempt to load a module that has a global variable declared,
and the variable has a different data type than an existing global variable of the
same name, the module load fails.

► Constants. If a declared constant has already been added to the runtime global
area, the constant’s type and value are compared to the previous definition,
and the load fails if a mismatch is found. This is useful as a mechanism for
detecting version mismatches between modules.

A definition for each global constant is stored in every compiled module. Other
constants are only stored in a module if they are referenced by the module

Because global variables and constants have the potential to make modules large
and slow, you should declare global variables and constants only when necessary.

Customizing Scripts

SQABasic Scripts 4-23

The following table shows the difference between local or module-level
declarations and global declarations:

Local or module-level declaration Global declaration

Dim myVariable as Integer Global myVariable as Integer

Const MYCONSTANT as String = "aa" Global Const MYCONSTANT as String = "aa"

You can also declare global variables and constants in a header file.

Adding Custom Procedures to a Script
You can write custom sub procedures and functions and add them to the Main
sub procedure that Robot generates in a script. If you add a custom sub procedure
or function to a script, you can call it from Main or other procedures in the script.

For information about defining procedures in a script, see the following sections
of Chapter 6, Command Reference:

► Sub . . . End Sub to define a sub procedure

► Function . . . End Function to define a function

Declaring a Procedure Residing in a Script

Procedure declarations typically appear at the beginning of a file, before the first
Sub ... or Function ... statement in the file. Procedure declarations cannot
appear within a procedure’s Sub . . . End Sub or Function . . . End Function
statements.

However, you can insert a procedure declaration anywhere within a file, as
long as the declaration appears before its first use and does not appear within
a procedure.

Use the Declare statement to declare procedures.

NOTE: For information about declaring custom procedures that are available to
any module, see Using SQABasic Header Files on page 4-29.

Customizing Scripts

4-24 SQABasic Language Reference

Declaring a Sub Procedure

Here is an example of declaring a sub procedure named MySub. MySub has a
string argument and an integer argument:

Declare Sub MySub(arg1 As String, arg2 As Integer)

Sub Main
Dim s As String
Dim i As Integer
. . .
Call MySub(s,i)
. . .

End Sub

Sub MySub(arg1 As String, arg2 As Integer)
. . . ' Process the passed values

End Sub

Declaring a Function

Here is an example of declaring a function named MyFunc. MyFunc has a string
argument and an integer argument. It also returns a status code as a string:

Declare Function MyFunc(arg1 As String, arg2 As Integer) As String

Sub Main
Dim s As String
Dim i As Integer
Dim status As String
. . .
status=MyFunc(s,i)
If status = "Success" Then

. . .
End If
. . .

End Sub

Function MyFunc(arg1 As String, arg2 As Integer) As String
. . . ' Process the passed values
MyFunc="Success"

End Function

Customizing Scripts

SQABasic Scripts 4-25

Using a Procedure Definition as a Declaration
A procedure definition also serves as a declaration. As a result, procedure
declarations are not always required. For instance, in the previous example, if the
order of the procedures is reversed, no declaration is needed for MyFunc:

Function MyFunc(arg1 As String, arg2 As Integer) As String
. . . ' Process the passed values
MyFunc="Success"

End Function

Sub Main
Dim s As String
Dim i As Integer
dim status As String
. . .
status=MyFunc(s,i)
If status = "Success" Then

. . .
End If
. . .

End Sub

Example of a Custom Procedure
In the following example, the custom function MyProp is added to the script file
DB5. MyProp gets information about a property by calling SQAGetProperty,
and reports any SQAGetProperty errors to the log as warnings.

The calling procedure, Main, expects a window entitled Make An Order to be the
currently active window. If it isn’t the active window, Main makes it the active
window and reports an error to the log. Main then performs an object property
verification point on the window’s Order button.

Customizing Scripts

4-26 SQABasic Language Reference

Adding Custom Procedures to a Library File
A library file contains one or more sub procedures and functions that are called
from procedures in other files.

SQABasic supports these kinds of library files:

► SQABasic library files. SQABasic library source files can have either a .sbl or
.rec extension. Compiled SQABasic library files have the extension .sbx.

Note that .rec files can be used as script files or as library files, but .sbl files
can only be used as library files.

► Dynamic-link library files (extension .dll).

The following table summarizes the differences between library files:

.sbl .rec .dll

Location Repository
(folder SQABas32)

Project
(folder Script)

User assigned

Scope Available to all files
in the repository

Available to all
files in the project

Depends on
location

Verification
points

No support Supports all
standard Robot
verification points

Supports custom
verification points

Any .rec file can be used as a library file. However, if a .rec file is also to be used as a
script (that is, if it is to be executable directly from Robot or from the CallScript
command), it must have a Main sub procedure.

To see a working example of a library file, open the Rational Robot Help and
search the index for library source files.

The following sections describe how to work with library files.

Working With SQABasic Library Files

Adding custom procedures to an SQABasic library file is the same as adding
custom procedures to a script. For information, see the following sections of
Chapter 6, Command Reference:

► Sub . . . End Sub to define a sub procedure

► Function . . . End Function to define a function

Customizing Scripts

SQABasic Scripts 4-27

Creating SQABasic Library Files

To create a new .sbl library file:

1. In Robot, click File � New � SQABasic File.

2. Click Library Source File, and then click OK.

You name the file (or accept the default name) the first time you save it.

A library file cannot have the same name as the script file that calls it. For instance,
myscript.rec cannot call a function in myscript.sbl.

NOTE: For your convenience, Robot provides a blank library source file called
global.sbl. You can add your custom procedures to this file and/or create new
library source files. To open this file in Robot, click File � Open � SQABasic
File, select global.sbl, and then click Open.

To create a new .rec library file:

1. In Robot, click File � New � Script.

2. Type the name of the file to create and optionally, a description.

3. Click the file type GUI if it is not already selected.

4. Click OK.

Editing SQABasic Library Files

To open an existing .sbl library file:

1. In Robot, click File � Open � SQABasic File.

2. In Files of type, select Library Source Files (*.sbl).

3. Click the file to edit, and then click Open.

To open an existing .rec library file:

1. In Robot, click File � Open � Script.

2. Click the name of the file to edit, and then click OK.

Compiling SQABasic Library Files

Compile the SQABasic library file before you attempt to access it at test runtime.

Compiling SQABasic library files is the same for both .sbl files and .rec files. The
fastest way to compile is to click the Compile button on the Robot toolbar.
Compiling the file also saves it.

Compiled .sbl and .rec library files have the extension .sbx.

Customizing Scripts

4-28 SQABasic Language Reference

Declaring a Procedure Residing in an SQABasic Library File

If a custom procedure is in an SQABasic library file, you declare the library file in
the same Declare statement you use to declare the procedure.

Here is an example of a declaration of a custom procedure (MySub) and an
SQABasic library file (MyLib):

Declare Sub MySub BasicLib "MyLib" (arg1 As String, arg2 As Integer)

Note the differences (shown in bold type) between this procedure declaration and
the module-level procedure declaration example on page 4-24:

► The word BasicLib is added to the declaration, indicating that the declared
procedure MySub is in an SQABasic library file.

► The name of the library file (MyLib), in quote marks, follows the BasicLib
designation.

Because the BasicLib keyword indicates that a .sbx library file (as opposed
to a .dll library file) is being declared, the .sbx extension in the declaration is
not required or recommended.

Where to Declare an SQABasic Library File

You can declare an SQABasic library file in any of these locations:

► In a script or other library file, for use by the procedures in that module only

► In a header file, for use by any module that references the header file

Working With DLL Files

SQABasic procedures can call procedures stored in DLL files. For example, they
can call the procedures stored in Microsoft Windows DLLs such as Kernel32.dll.

Robot does not provide a tool for creating DLLs. To add procedures to a DLL file,
you need a tool such as Microsoft Visual C++ or Visual Basic.

Declaring a Procedure Residing in a DLL File

If a procedure is in a DLL file, you declare the DLL file in the same Declare
statement you use to declare the procedure.

Here is an example of a declaration of a custom procedure (MySub) and a DLL
file (MyDLL):

Declare Sub MySub Lib "MyDLL" (ByVal arg1 As String, ByVal arg2 As Integer)

Customizing Scripts

SQABasic Scripts 4-29

Note the differences (shown in bold type) between this procedure declaration and
the module-level procedure declaration example on page 4-24:

► The word Lib is added to the declaration, indicating that the declared
procedure MySub is in a .dll library file (as opposed to a .sbl or .rec SQABasic
library file).

► The name of the library file (MyDLL), in quote marks, follows the Lib
designation.

► Argument declarations include the keyword ByVal. For information about
using the keyword ByVal (or Any) with argument declarations for DLL
procedures, see the Declare statement in Chapter 6, Command Reference.

If the compiled library file (.dll) is located in the repository’s SQABas32 directory
or in the system path, you don’t need to specify a path in the declaration. If the
library file is not in SQABas32 or in the system path, you do need to specify the
path — for example:

Declare Sub MySub Lib "E:\MyDLL" (ByVal arg1 As String, ByVal arg2 As Integer)

Where to Declare a DLL File

You can declare a DLL file in any of these locations:

► In a script or SQABasic library file, for use by the procedures in that module
only

► In a header file, for use by any module that references the header file

Using SQABasic Header Files
An SQABasic header file contains a list of declarations. You can use header files to
declare constants, variables, custom sub procedures, and custom functions.

The declarations in a header file apply to any module (script or library file)
that references the header file. Use '$Include to reference a header file.

SQABasic supports two types of header files:

► Header files are stored in the SQABas32 folder of the repository. They can
be accessed by all modules within the repository.

► Project header files are stored in the Script folder of the project. They can be
accessed by all modules within the project.

Both types of SQABasic header files have the extension .sbh.

To see a working example of a header file, open the Rational Robot Help and
search the index for header files.

Customizing Scripts

4-30 SQABasic Language Reference

Creating and Editing a Repository-Wide Header File

To create a new header file that can be accessed by any module in the repository:

1. In Robot, click File � New � SQABasic File.

2. Click Header File, and then click OK.

You name the file (or accept the default name) the first time you save it.

NOTE: For your convenience, Robot provides a blank repository-wide header
file called global.sbh. You can add your global declarations to this file and/or create
new header files. To open this file in Robot, click File � Open � SQABasic
File, select global.sbh, and then click Open.

To edit an existing repository-wide header file:

1. In Robot, click File � Open � SQABasic File.

2. In Files of type, select Header Files (*.sbh).

3. Click the file to edit, and then click Open.

Creating and Editing a Project Header File

To create a new project header file:

► In Robot, click File � New � Project Header File.

You name the file (or accept the default name) the first time you save it.

To edit an existing project header file:

1. In Robot, click File � Open � Project Header File.

2. Click the file to edit, and then click Open.

Saving SQABasic Header Files

After you add declarations to an SQABasic header file, save the file. When you
create or edit an SQABasic header file, save it before you compile a script or
library file that references the SQABasic header file. You don’t compile SQABasic
header files.

Customizing Scripts

SQABasic Scripts 4-31

Scope of Declarations in SQABasic Header Files

At compile time, the '$Include command logically inserts the SQABasic
header file declarations into the script at the line where the '$Include
command is located (logically, because the script is not physically changed).

As a result, the scope of the declarations in the SQABasic header file is
determined, in part, by the location of the '$Include command. When the
'$Include command is located before the first procedure in the module, the
SQABasic header file declarations apply to all the procedures in the module.

Scope is also determined by whether you declare a variable or constant as global.
For more information, see Declaring Global Variables and Constants on page 4-22.

Declaring Global Variables and Constants Inside Header Files

You can declare global variables and constants inside an SQABasic header file, just
as you can declare them inside a module. For information, see Declaring Global
Variables and Constants on page 4-22.

Declaring Global Procedures inside Header Files

You declare sub procedures and functions in an SQABasic header file exactly as
you declare them in a script:

► For information about declaring procedures that reside in a script file, see
Declaring a Procedure Residing in a Script on page 4-23.

► For information about declaring procedures that reside in an SQABasic
library file, see Declaring a Procedure Residing in an SQABasic Library File on
page 4-28.

► For information about declaring procedures that reside in a DLL file, see
Declaring a Procedure Residing in a DLL File on page 4-28.

Referencing an SQABasic Header File

For the procedures in a script or SQABasic library file to be able to use the
variables, constants, and procedures declared in an SQABasic header file, the script
or library file needs to reference the header file. You reference a header file through
the '$Include command.

To have header file declarations apply to all the procedures in a module, place
'$Include at the beginning of the module — for example:

'$Include "global.sbh"

Sub Main
. . .

End Sub

Customizing Scripts

4-32 SQABasic Language Reference

Note that:

► The SQABasic header file name is enclosed in double quotation marks (").

► SQABasic header file names are not case sensitive.

► If a repository-wide header file resides in the default location SQABas32, or a
project header file resides in the default Script folder for the Project, no path
is necessary in the '$Include command. If an SQABasic header file is
located in any other folder, specify the full path.

The '$Include command begins with a single quotation mark ('), which
normally indicates a comment. But when a single quotation mark is followed by a
dollar sign ($), a special SQABasic command is indicated.

Sample Library and Header Files
The following figure contains the same code as the script DB5 on page 4-25. But
now, the variable and constant declarations have been moved to the global header
file MyHeader.sbh, and the custom procedure has been moved to the library file
MyLibrary.sbl.

Customizing Scripts

SQABasic Scripts 4-33

Note that:

► The variable and constant declarations in the header file have a different
syntax than they did when declared inside the script.

► The declaration of the function GetProp now includes the fact that it resides
within an SQABasic library (through the keyword BasicLib). The
declaration also specifies the name of the compiled library (MyLibrary).

► For the script TestDB5 and the library file MyLibrary to access the same
variables and constants, both files '$Include the header file MyHeader.sbh,
where the variable and constant declarations reside.

► Because the custom procedure GetProp is declared inside the script DB5, it
can be called by all procedures (such as Main) in that script.

GetProp can also be declared in a header file, so that procedures in any script
can call it. However, GetProp cannot be declared in the header file
MyHeader.sbh, because the library where GetProp resides (MyLibrary)
references that header file. A library file cannot '$Include a header file that
contains a declaration of a procedure residing within that library file.

If the declaration of GetProp resided in a header file named MyProcs.sbh,
this is how the script TestDB5 would begin:

'$Include "MyHeader.sbh"
'$Include "MyProcs.sbh"

Sub Main
. . .

End Sub

Using the Template File
The template file testproc.tpl lets you automatically add entries such as comments
and include statements to new scripts. Any text you add to the testproc.tpl file is
automatically added to each new script you create.

Template entries are only added to new scripts. They are not added to new library
files or header files.

To edit the testproc.tpl template file:

1. In Robot, click File � Open � SQABasic File.

2. In Files of type, select Template Files (*.tpl).

3. Select testproc.tpl, and then click Open.

Customizing Scripts

4-34 SQABasic Language Reference

4. Define the template entries you want — for example:

5. Click File � Save.

6. Click File � Close.

5-1

► ► ► C H A P T E R 5

Enhancements to Recorded Scripts
During recording, Rational Robot automatically generates most of the activities
that you will need a script to perform. However, there are some activities that
Robot does not generate during recording. These activities include:

► Object scripting

► Managing custom verification points

► Comparing environment states

► Displaying messages in Robot

► Using datapools

► Accessing external applications

Object Scripting
SQABasic’s powerful Object Scripting commands let you access an application’s
objects and object properties from within a script. The tasks you can perform with
Object Scripting commands include retrieving and setting an object’s properties.
For example, you could use the SQAGetProperty command to retrieve
properties such as the height, location, or value of an edit box.

You can also perform other kinds of tasks with Object Scripting commands, such
as executing a method associated with an object, and checking to see if an object
exists before performing actions against the object.

Object Scripting commands can only be inserted by manually editing the script.
Robot does not generate these commands during recording.

See Object Scripting Commands in Chapter 2, Functional List, for a summary of each
Object Scripting command.

Object Scripting

5-2 SQABasic Language Reference

Specifying an Object
You specify the object you want to access through a recognition string in the
recognition method (recMethod) argument of an Object Scripting command.

The recognition method values you use to identify an object depend on the object
you’re accessing. For example, if you’re accessing a push button object, use the
recognition method values listed for the PushButton user action command. (See
the description of the PushButton command in Chapter 6, Command Reference.)

In addition, you might need to specify one or both of the following kinds of
information to uniquely identify an object for an Object Scripting command:

► Object type

► Object context

Object Type

With Object Scripting commands, just as with user action and verification point
commands, the recognition method argument uniquely identifies the object to be
accessed. However, where the object type is implicit in the specific user action or
verification point command name itself, you sometimes have to explicitly define
the object type in Object Scripting commands.

For example, suppose you record a mouse click on an OK push button. Robot
records the user action with this command:

PushButton Click, "Text=OK"

The object type, a push button, is made clear from the command name itself.

But suppose you want to determine whether the OK button’s Enabled property
is set to True or False. If you call the Object Scripting command
SQAGetProperty to retrieve this information, and the command uses the same
recMethod value that the above PushButton command used, this is the way
the new command looks:

Result=SQAGetProperty("Text=OK","Enabled",value)

Nowhere in this command is the object type — a push button — specified. If no
other object on the current context window contains the text OK, there is no
confusion about the object you’re accessing. But if another object uses the same
label as the push button (for example, a check box with the caption OK), the
command can’t be sure which object you want and may retrieve the wrong value.

To be sure that you uniquely identify the object you want to access, include the
object type in the recMethod argument, as follows:

Result=SQAGetProperty("Type=PushButton;Text=OK","Enabled",value)

Object Scripting

Enhancements to Recorded Scripts 5-3

SQABasic Object Type Names

The table below lists the valid object types you can specify in the recMethod
argument of an Object Scripting command.

The names may not be exactly the same as the names used in the development
environment. (For example, the SQABasic object type ComboBox may be called
DropDownList in the development environment.)

Object type names are not case sensitive.

Note that some development environments offer special object types beyond
those available to all development environments.

Here is the table of valid recMethod object types:

Development
environment

Valid values for Type= in recMethod

Microsoft Windows
objects available to all
development
environments

AnimateControl LVItem
Calendar Pager
CheckBox ProgressBar
ComboBox PushButton
ComboEditBox RadioButton
ComboListBox Rebar
DateTime RichEdit
Desktop ScrollBar
EditBox SpinControl
Generic StatusBar
GroupBox TabControl
HDItem TBItem
Header TCItem
HotKeyControl Toolbar
Image Trackbar
IPAddress TreeView
Label TVItem
ListBox Window
ListView

HTML HTML HTMLImage
HTMLActiveX HTMLLink
HTMLDocument HTMLTable
HTMLHidden

► ► ►

Object Scripting

5-4 SQABasic Language Reference

► ► ►

Development
environment

Valid values for Type= in recMethod

Java JavaCanvas JavaSplitPane
JavaListView JavaSplitter
JavaMenu JavaTable
JavaObject JavaTableHeader
JavaPanel JavaTree
JavaPopupMenu JavaWindow

Oracle Block LOV*
Canvas OLEContainer
ChartItem RadioGroup
DisplayItem RecordGroup*
Form UserArea
Image

PeopleSoft Border PSNavigator
Calendar PSPanel
Field PSSpin
Frame PSTtimeSpin
Image PSTree
LongEdit PSTreeItem
PSCalendar PSTreeHeader
PSColumn SecondaryPanel
PSGrid SubPanel
PSGridHeader StaticImage
PSMapItem Text
PSMenu

PowerBuilder DataWindow DWLine
DropDownDataWindow DWOLE
DropDownListBox DWRectangle
DWBitmap DWReport
DWColumn DWRoundRectangle
DWComputedField DWTableBlob
DWEllipse DWText
DWGraph

Visual Basic Image OLE
Line Shape

* This object can only be accessed through Object Scripting commands. It can’t
be accessed when you record user actions or verification points with Robot.

Object Scripting

Enhancements to Recorded Scripts 5-5

NOTE: Developers assign a name to an object to uniquely identify the object in
the development environment. Because object names are usually unique, you
typically can use Name= to identify an object without using Type=.

Object Context

By default, the context for an object you specify in the recognition method
argument is the current context window. For example, the following push button
object is assumed to be in the current context window (recMethod is the first
argument in the SQAGetProperty command):

Result=SQAGetProperty("Type=PushButton;Text=OK","Enabled",value)

If the object you want to access isn’t a direct child of the current context window,
or if you want to define a full object path for the Object Scripting command, you
define the context through context notation, as described in the section Establishing
Context through Context Notation in Chapter 4, SQABasic Scripts.

For example, the following two code fragments each access a combo box object in a
window whose caption is Make An Order. The first SQAGetProperty example
uses the current context window:

Window SetContext, "Caption=Make An Order",""
Result=SQAGetProperty("Type=ComboBox;Name=cmbCardType","Text",value)

The second SQAGetProperty example uses context notation to establish
context:

Result=SQAGetProperty("\;Caption=Make An Order;\;Type=ComboBox;
Name=cmbCardType","Text",value)

Remember, context notation assigns context locally — it only affects the command
in which the context notation appears. Context notation does not change the
current context window.

Other Ways to Specify an Object

The following recMethod values are useful when you don’t know the name of
the object you want to access:

CurrentWindow – Specifies the currently active window as the window object
to access. For example, the following command retrieves the text displayed in the
title bar of the currently active window:

Result=SQAGetProperty("CurrentWindow","Caption",value)

CurrentFocus – Specifies the object that currently has the Windows focus as
the object to access. For example, the following command retrieves the height of
the object with the Windows focus:

Result=SQAGetProperty("CurrentFocus","Height",value)

Object Scripting

5-6 SQABasic Language Reference

Specifying the Object Property
To specify a property to access with an Object Scripting command, assign the
property name to the command’s property argument.

The following sections describe how you can find out which properties you can
access through an Object Scripting command.

Properties Assigned in the Development Environment

The properties you can access for a given object include the properties you can
define for the object in the development environment.

These are the same properties you see when you perform an Object Properties
verification point for the object. For example, suppose you capture verification
point information for the Months field object of the Windows NT Date/Time
Properties dialog box. These are the object properties you see listed on the Object
Properties Verification Point dialog box:

The properties you can access for the Month field (a combo box) are listed in the
Name column in the preceding figure. To specify a property to access in an
Object Scripting command, insert the property name in the property argument
of the Object Scripting command you’re using.

NOTE: Property names are case sensitive. Names must be typed exactly as listed
in the Name column of the Object Properties Verification Point dialog box.

Object Scripting

Enhancements to Recorded Scripts 5-7

Here’s an example of how to use the SQAGetProperty command to retrieve
the current value of the Month field on the Windows NT Date/Time Properties
dialog box. The property argument is in bold type:
Sub Main

Dim Result As Integer
Dim value as Variant
Window SetContext,"Caption=Date/Time Properties",""
Result=SQAGetProperty("Type=ComboBox;ObjectIndex=1","Text",value)
MsgBox "Current month is " + value

End Sub

To display this dialog box before running the script, double-click the date in the
Windows NT taskbar.

Additional Properties

In addition to the properties that are captured when you record an Object
Properties verification point for a given object, you can access the following
properties for any object:

Property Description

Class The object’s class name.

ClientRect The coordinates of the object, in pixels, relative to the
client area of the window (in the format "x1,y1 to
x2,y2").

Environment The name of the development environment (such as
Visual Basic or PowerBuilder) in which the object
was created.

FullRecognition A full-path recognition string that identifies the object
and all its parent objects up to the desktop.

hWnd The window handle, if any, associated with an object.

ModuleFileName The full path and file name of the library file or
executable file that controls the specified object. For
example, ModuleFileName could be:

 The application’s executable file name (as is often
the case for top-level windows).

 A .DLL (for example, objects within a standard File
Open dialog box may have a ModuleFileName
of C:\WIN95\SYSTEM\COMDLG32.DLL, which
is the common dialog box library).

► ► ►

Object Scripting

5-8 SQABasic Language Reference

► ► ►

Property Description

Name The object name that is assigned in the development
environment.

ObjectType The SQABasic name for the object’s type. For a list of
the object names that SQABasic supports, see the
table beginning on page 5-3.

ParentRecognition A full-path recognition string that uniquely identifies
the object’s immediate parent.

Recognition A recognition string that uniquely identifies the object
within its parent.

ScreenRect The coordinates of the object, in pixels, relative to the
screen (in the format "x1,y1 to x2,y2").

NOTE: Because a Rect can’t be stored as a Variant, you can’t use
SQAGetProperty to retrieve a value for the ClientRect or ScreenRect
property. Instead, use SQAGetPropertyAsString to retrieve the value in
String form ("x1,y1 to x2,y2").

Array of Property Values
Some property values are stored as arrays — for example, the list of items stored in
a combo box control.

Specifying Individual Elements in an Array

You use standard SQABasic array notation to access the elements in an array of
property values. For example, in the following code, the property argument
(argument 2) shows how to specify the third item in a combo box:

SQAGetPropertyAsString "Type=ComboBox;ObjectIndex=1","List(2)",item

Note that the array is 0-based. Indices to arrays of property values are almost
always 0-based. The only exceptions are some Visual Basic or OCX/ActiveX
controls where the array has been specifically declared as 1-based.

Because 1-based arrays of property values are rare, assume that the array you’re
accessing is 0-based. If you have a problem accessing an OCX/ActiveX array,
consult the documentation for the OCX/ActiveX control to find out how the
array is indexed.

Object Scripting

Enhancements to Recorded Scripts 5-9

Retrieving an Entire Array

You can retrieve the entire array of values for a property by calling either of these
commands:

► SQAGetPropertyArray

► SQAGetPropertyArrayAsString

These commands return values as a Basic array which is always 0-based.

NOTE: SQAGetProperty and SQAGetPropertyAsString retrieve just a
single element in an array. If you use these commands to try to retrieve an entire
array (by not specifying an index value in the property argument), the error
sqaArraysNotSupported is returned.

Retrieving the Number of Elements in an Array

If you want to retrieve the number of elements in an array, use the command
SQAGetPropertyArraySize.

Getting Help Defining Recognition Methods
When specifying the object to access, you have to uniquely identify the object in
the recMethod argument of the Object Scripting command.

Multi-object recognition method paths can be difficult to construct. The following
sections describe two ways you can get help in defining recognition method
values:

► Letting Robot define recognition method values for you

► Finding recognition method values programmatically

Letting Robot Define Recognition Method Values

In many cases, Robot can define recognition method values for you. To have
Robot do so, perform these steps:

1. Record a temporary script, click on the object you want to define a
recognition method for, and then stop recording.

2. Copy the recorded recognition method.

3. Open your own script and paste the recognition method into the recMethod
argument of the appropriate command.

Object Scripting

5-10 SQABasic Language Reference

When using this method, keep the following points in mind:

► Make sure that the context window is the same for the command in your
script and the Click action you recorded in the temporary script.

For information about the context window, see the section Establishing
Context through a Window Command in Chapter 4, SQABasic Scripts.

► If you are defining a recognition method for an Object Scripting command,
and the above method doesn’t work, you might need to add a Type= value to
the recognition method.

For information about Type= values, see the section Object Type on page 5-2.

Finding Recognition Method Values Programmatically

The following Object Scripting commands may be useful if you need to construct
a recognition method path programmatically within your script:

► SQAGetProperty or SQAGetPropertyAsString, when used to
retrieve a Recognition, ParentRecognition, or FullRecognition
property. These properties are listed in the table on page 5-7.

► SQAGetChildren.

When you retrieve recognition methods through these commands, a Type=
object definition is included in all returned values.

Examples

All of the following examples are in the context of the Classics Online window
(Name=frmMain) shown below. The clicked item is Bach (ItemText=Bach),
an item in the tree view object (Name=treMain):

lblPerformer

lblPrice

lblDollarSign

Object Scripting

Enhancements to Recorded Scripts 5-11

► To find the recognition method of the currently active window:
Result=SQAGetProperty(".\","Recognition",value)

Returned value:
Type=Window;Name=frmMain

► To find the immediate parent of the tree view item Bach:
Result=SQAGetProperty("Name=treMain;\;ItemText=Bach",

"ParentRecognition",value)

Returned value:
Type=TreeView;Name=treMain

► To find the complete object path of the tree view item Bach, beginning with
the desktop and ending with the target object itself:

Result=SQAGetProperty("Name=treMain;\;ItemText=Bach",
"FullRecognition",value)

Returned value:
Type=Window;Name=frmMain;\;Type=TreeView;Name=treMain;\;

Type=TVItem;ItemText=Bach

► To find the full-path recognition method for each child object in the currently
active window and store it in the array children():

Dim children() as String
Result=SQAGetChildren(".\",children)

The first three items in the array are:
"\;Type=Window;Name=frmMain;\;Type=Label;Name=lblDollarSign"
"\;Type=Window;Name=frmMain;\;Type=Label;Name=lblPrice"
"\;Type=Window;Name=frmMain;\;Type=Label;Name=lblPerformer"

Object Scripting Status Codes
Object Scripting commands return sqaSuccess upon successful execution. If
an error occurs, most Object Scripting commands return a status code that
identifies the problem. See Appendix C for a listing of the status codes that an
Object Scripting command can pass back.

NOTE: If an error occurs during the execution of an Object Scripting command,
the command will never log an error message or cause a script to fail. If you want
to respond to an error in a particular way, test for the status code and program your
response manually.

You can use the SQABasic Error function to retrieve a string description of a
status code — for example:

Result=SQAGetProperty("Name=myObject","Enabled",value)
If Result <> sqaSuccess Then

SQALogMessage sqaFail, Error$(Result),""
End If

Managing Custom Verification Points

5-12 SQABasic Language Reference

Managing Custom Verification Points
Robot provides a variety of ways you can verify standard objects — for example,
Robot can automatically verify an object’s properties (Object Properties
verification point), data (Object Data verification point), and text (Alphanumeric
verification point).

After script playback, you can view the baseline data (captured during recording)
in the LogViewer. If the baseline result is different than the actual data
(captured during playback), you can view both the baseline data and the actual
data in a LogViewer Comparator.

You can also verify objects through custom procedures, and perform the same
kind of verification and LogViewer tasks that Robot performs automatically. For
example, if you need to verify the properties of a custom object from build to
build, you could write one or more procedures that:

► Retrieve the target object’s properties (similar to recording a standard
verification point in Robot).

► Store the captured data in a .csv file or other file type. This is the baseline file.

► Play back the custom procedure, and compare the data captured during
playback with the data stored in the baseline file (similar to playing back a
standard verification point in Robot).

► Write the baseline data and, if necessary, the actual data, to a log.

The SQABasic verification point management commands can help you with some
of these tasks, as described next.

After you capture data for a custom verification point, you can view the data
through the LogViewer and the Comparators. The LogViewer and the Comparators
display the contents of files of type .csv and .txt. With other file types (such as .doc),
the LogViewer opens the appropriate editor to display the file contents.

NOTE: In most cases, the LogViewer and Comparators use the same conventions
for .csv files that Microsoft Excel uses. However, the LogViewer and the
Comparators ignore leading white space (space or tab characters), where Excel
considers leading space characters to be part of the field’s value.

Managing Custom Verification Points

Enhancements to Recorded Scripts 5-13

Summary of Verification Point Management Commands
To help you perform custom object verification, SQABasic provides a set of
verification point management commands.

Most of the verification point management commands return a file name and path
— that is, the name and location where LogViewer expects to find a particular data
file. For example, if the LogViewer can find a data file, it can display the baseline or
actual data in the file.

Here is a summary of the commands:

Command Purpose

SQAVpGetBaselineFileName Generates the full path and name of a baseline
data file.

The baseline data file is a copy of the current
baseline data file. It is stored in a log for a
particular test.

SQAVpGetActualFileName Generates the full path and name of an actual
data file captured during playback.

SQAVpGetCurrentBaselineFileName Generates the full path and name of the current
baseline data file.

You never store the contents of this file in a log
directly. Instead, in any given test, you copy the
contents of this file to a baseline data file. The
latter file is stored in a log for that particular test.

SQAVpLog Writes a custom verification point record to a
log. The record is viewable in the LogViewer.

See Chapter 6, Command Reference, for syntax information on these commands.

Managing Custom Verification Points

5-14 SQABasic Language Reference

Current Baseline and Logged Baseline
It is important to understand the difference between the current baseline and the
historic, or logged, baseline:

► The current baseline data file contains the data that is currently available for
comparison against data captured during playback of a particular test. There is
only one current baseline data file per custom verification point.

The current baseline data file can change. For example, suppose a button has
the caption OK. In your initial test, you capture this information and store it
in the current baseline data file. In subsequent builds, you test to make sure
the caption has not changed. But suppose usability testing demonstrates that
the caption of this button should be Accept. You change the object’s caption,
and then you change the current baseline data file so that subsequent tests can
be compared against the new caption.

To view the current baseline for a particular verification point, double-click
the verification point name in the Robot Asset pane (to left of the script).

► The historic, or logged, baseline represents the current baseline as it appears
in a particular test. The logged baseline data file is copied from the current
baseline data file and stored in a log. There is a separate logged baseline data
file for each playback result stored in a log. Logs are stored in the repository
and can be accessed through a LogViewer Comparator.

To view the logged baseline (and if present, the actual data), double-click the
verification point name in the Log Event column of the LogViewer.

You can’t change a logged baseline data file through the LogViewer. A logged
baseline data file represents the contents of the current baseline data file
during a particular test. If you change baseline data through the LogViewer,
you are changing the current baseline, not the logged baseline.

You can have many logged baseline data files stored for a given custom verification
point. But you can have only one current baseline data file associated with that
custom verification point.

Managing Custom Verification Points

Enhancements to Recorded Scripts 5-15

In the following figure, the caption OK is changed to Accept between Test3 and
Test4. The current baseline data file is modified to accommodate the change:

OK
…
…
…

Accept
…
…
…

OK
…
…
…

OK
…
…
…

OK
…
…
…

Accept
…
…
…

Accept
…
…
…

Accept
…
…
…

Current baseline data file for
the custom verification point

Logged baseline data files viewable with the LogViewer

Test1 Test2 Test3 Test4 Test6Test5

In each test, copy
the current baseline
data file to a logged
baseline data file

Actual Data Files

Note that there is not a “current” version of an actual data file. If the actual data
captured during playback of a particular test doesn’t match the contents of the
current baseline data file:

► Create an actual data file.

► Copy the both actual data file and a copy of the current baseline data file to a
log. Both files remain part of the log entry for that particular test.

Managing Custom Verification Points

5-16 SQABasic Language Reference

Using the Verification Point Management Commands
This section contains a high-level scenario of typical tasks you perform in custom
verification point procedures. It is a guide to help you determine where in your
script to use the SQABasic verification point management commands.

All of these tasks are performed in your custom verification point procedures:

1. Create the current baseline data file, as follows:

− Capture data for the target object. Store the data in a file of any format
you choose (such as a .csv file).

− Call SQAVpGetCurrentBaselineFileName to get the file’s path
and name.

After you call this command, the referenced custom verification point is
listed in the Robot Asset pane (to the left of the script) with the script’s
other verification points. You might have to click View � Refresh to see
it.

This step is equivalent to recording a standard verification point in Robot.

2. Play back your first test in Robot. During script playback:

− Copy the current baseline data file. Assign the new file the name and path
returned by SQAVpGetBaselineFileName. This action creates a
baseline file for this test only and stores it in a log.

If the baseline data and the actual data (captured during playback) don’t
match, you will typically want to keep the baseline data file and the actual
data file stored in the log. But even if the baseline data and the actual data
do match, you might find it useful to keep a historic record of the
baseline data in the log for each test you run.

− Capture data for the target object (just the way you captured it in step 1).
This is the actual data for this test.

− Compare the contents of the baseline file against the actual data you just
captured. If the baseline data matches the actual data (that is, if the custom
verification point passes), skip to step 3.

− If the baseline data does not match the actual data, create a file and write
the actual data to it. Store this actual data file in the name and location
returned by SQAVpGetActualFileName. These actions create an
actual data file for this test and store the data file in a log.

The LogViewer can now display the baseline data and the actual data for
this test.

Managing Custom Verification Points

Enhancements to Recorded Scripts 5-17

3. Call SQAVpLog to enter a record into the LogViewer, based on the results of
the data comparison in step 2. This record includes the verification point
name or a message, and optionally, the notation Pass, Fail, or Warning, in the
LogViewer Result column.

4. Repeat steps 2 and 3 for each regression test.

For each test, there is a different copy of the baseline data file saved in a log. If
the actual data captured during a test doesn’t match the baseline data, an actual
data file is also logged for that test.

5. Modify the current baseline data file whenever necessary. There is only one
current baseline data file per custom verification point.

You can change the contents of the current baseline data file by changing the
baseline data displayed in the log (for example, you can replace the baseline
data with the actual data).

Example

The following example illustrates the steps in the previous section:

► If the script is executed with runType="GET BASELINE", the current
baseline data is captured and stored in a file (as described in step 1). This step
is similar to recording a standard verification point with Robot.

► If the script is executed with runType="GET ACTUAL", the captured actual
data is compared against the baseline. The baseline data and, on verification
point failure, the actual data, are stored in a log for this test run, and the test
results are reported in the log (as described in steps 2 and 3). These steps are
similar to playing back a standard verification point.

To run this example, copy it from the SQABasic online Help. Run the Help and
search for custom verification points, example of managing in the Help Index tab.

' Script performs the custom verification point MyVP

' Procedure captures data and writes it to the file specified by
' argument DataPath. Returns True if successful, False on error.
Declare Function CustomCaptureData(DataPath As String) As Integer

' Procedure compares the two data files. Returns True if
' successful, False on error.
Declare Function CustomCompareData(BaselinePath As String, _

ActualPath As String) As Integer

Dim runType as String ' Flag retrieval of baseline or actual data

Managing Custom Verification Points

5-18 SQABasic Language Reference

Sub Main()

Dim currFilepath As String ' Current baseline data file path
Dim loggedFilepath As String ' Logged baseline data file path
Dim actFilepath As String ' Actual data file path
Dim captureResult as Integer ' Result of MyVP data capture
Dim compareResult as Integer ' Result of custom verif. pt. MyVP

compareResult = True ' Default to true.
captureResult = True ' Default to true.

' ***** TO SIMULATE BASELINE AND ACTUAL DATA CAPTURES: *****
' ==
' * Set runType to "GET BASELINE" to capture baseline data.
' * Set runType to "GET ACTUAL" to capture actual data and
' to compare it against the baseline.
runType = "GET BASELINE"
'runType = "GET ACTUAL"

If runType = "GET BASELINE" Then

' Step 1
' ==
' This portion captures baseline data. It is similar to
' recording a standard verification point.
' ==

' Get path and file name for current baseline data file
currFilepath = SQAVpGetCurrentBaselineFileName("MyVP","CSV")

' Procedure captures data for custom object and records it in
' the correct repository location for current baseline files
captureResult = CustomCaptureData(currFilePath)

Else

' Step 2
' ==
' This portion captures the actual data for a particular build
' and compares it against the baseline data generated earlier.
' Run this portion during playback when testing a build.
' ==

' Get path and file name for current baseline data file
currFilepath = SQAVpGetCurrentBaselineFileName("MyVP","CSV")

' Get LogViewer's path and file name for logged baseline file
loggedFilepath = SQAVpGetBaselineFileName("MyVP","CSV")

' Copy contents of current baseline file to file name/location
' where LogViewer expects to find baseline file for this test run
Call FileCopy(currFilepath,loggedFilepath)

' Get LogViewer's path and file name for actual data file
' for the data captured in this test run
actFilepath = SQAVpGetActualFileName("MyVP","CSV")

Managing Custom Verification Points

Enhancements to Recorded Scripts 5-19

' Procedure captures actual data for custom object
captureResult=CustomCaptureData(actFilepath)

' Procedure compares actual data with baseline data
compareResult=CustomCompareData(loggedFilePath,actFilepath)

' Step 3
' Log the results of the custom verification point appropriately
If compareResult = False Then

Call SQAVpLog(sqaFail,"MyVP","",loggedFilepath,actFilepath)
Else
Call SQAVpLog(sqaPass,"MyVP","",loggedFilepath,"")

End If

End If

End Sub

' ===================
' *** Subroutines ***
' ===================

' Call this function to "capture" data and write it to a file
Function CustomCaptureData(DataPath As String) As Integer

Dim Message As String
Dim captureType As String

Open DataPath For Output As #1
' Write to baseline or actual data file
If runType="GET BASELINE" Then

Write #1,"Baseline data captured during 'recording'"
captureType = "baseline"

Else
Write #1,"Actual data captured during playback"
captureType = "actual"

End If
Close #1

Message="Now capturing " + captureType + " data." + Chr$(13)
Message=Message + "Data file path: " + DataPath + Chr$(13)
MsgBox Message

CustomCaptureData = True

If runType="GET BASELINE" Then
Message="Before you run this example again to simulate "
Message=Message + "test playback, change" _

+ Chr$(13) + Chr$(13)
Message=Message + " runType = ""GET BASELINE""" _

+ Chr$(13) + Chr$(13) + "to" + Chr$(13) + Chr$(13)
Message=Message + " runType = ""GET ACTUAL"""
MsgBox Message

End If

End Function

Managing Custom Verification Points

5-20 SQABasic Language Reference

' Call this fuction to compare two data files
Function CustomCompareData(BaselinePath As String, _

ActualPath As String) As Integer

Dim Message As String
Message="Now comparing baseline and actual data." + Chr$(13)
Message=Message + "Baseline file path: " + BaselinePath + _

Chr$(13) + Chr$(13)
Message=Message + "Actual file path: " + ActualPath
MsgBox Message

' If the function returns True, Pass is reported in the log,
' and the actual data file is not stored in the log record
CustomCompareData = False ' Baseline/actual data don’t match

Message = "To see the data comparison, double-click "
Message = Message + """Fail"" in the LogViewer Result column "
Message = Message + "for the verification point MyVP."
MsgBox Message

End Function

Ownership of Custom Verification Point Files
Verification point files are associated with, or “owned” by, the following Robot or
LogViewer features:

► LogViewer log – If you delete a log, all of that log’s events (including standard
and custom verification point entries) are deleted. This includes the logged
baseline and actual data files pointed to by SQAVpGetBaselineFileName
and SQAVpGetActualFileName. However, the current baseline data file
pointed to by SQAVpGetCurrentBaselineFileName remains.

► Robot verification point – If you delete a custom verification point from the
verification point list in the Asset pane, the associated current baseline data file
pointed to by SQAVpGetCurrentBaselineFileName is deleted.
However, the logged baseline and actual data files remain.

► Robot script – If you delete a script, all verification points and associated
current baseline files are deleted. However, the log associated with the script
as well as the logged baseline and actual data files remain.

Comparing Environment States

Enhancements to Recorded Scripts 5-21

Comparing Environment States
Robot is shipped with a utility called the VeriTest-Rational Installation Analyzer .
This utility is designed to help you detect changes in the environment of a
Windows system before and after the performance of some task (such as the
installation of an application-under-test) that affects the system’s environment.

You can run the Installation Analyzer directly by running ANALYZER.EXE in the
default Rational Test 7 directory. Alternatively, you can run the Analyzer within a
Robot script, as this section describes.

For more information about the Installation Analyzer, see USING.HTM in the
Rational Test 7 directory.

Why Compare Environment States?
Comparing environment states is useful in situations such as these:

► To test whether a given task in the application-under-test has the unintended
result of changing the system’s environment.

► To test whether a given task causes intended changes in the system’s
environment, and whether these changes remain consistent in build after
build of the application-under-test.

What Environment State Changes Are Detected?
The Installation Analyzer detects environment changes such as:

► Registry settings

► Changes to the files WIN.INI, SYSTEM.INI, AUTOEXEC.BAT,
and CONFIG.SYS

► File and file extension changes

Using the Environment State Comparison Commands
You must manually script an environment state comparison.

Comparing Environment States

5-22 SQABasic Language Reference

Use the following SQABasic commands when setting up an environment
state comparison:

Command Purpose

SQAEnvCreateBaseline Creates a snapshot of a “clean machine” —
that is, the state of the environment before
one or more tasks are performed that change
or are suspected of changing the environment.

SQAEnvCreateCurrent Creates a snapshot of the environment state
just after some task is performed that changes
or is suspected of changing the environment.

SQAEnvCreateDelta Creates a comparison report of the pre-task and
post-task snapshots. Optionally, displays the
comparison report in a browser.

See Chapter 6, Command Reference, for syntax information on these commands.

When To Use the Environment State Comparison Commands

Follow these guidelines when using the environment state comparison commands
in a script:

► Call SQAEnvCreateBaseline near the beginning of your script, before
performing any tasks with your application-under-test that might affect the
environment state.

► After you perform a task with the application-under-test and you want to see
if the task has affected the environment state, do the following:

− Call SQAEnvCreateCurrent to capture a snapshot of the current state
of the environment.

− Call SQAEnvCreateDelta to compare the current snapshot with the
baseline snapshot. Optionally, this command lets you display the
comparison results in a browser.

Typically, you call SQAEnvCreateBaseline only once in a script. You call
SQAEnvCreateCurrent and SQAEnvCreateDelta whenever you want to
test the current state of the environment.

A snapshot captured with SQAEnvCreateCurrent can be used as both a post-
task snapshot and, at a later point in the script, as a pre-task snapshot. For example,
you might want to compare the post-task snapshot captured after you installed the
application-under-test with a current snapshot taken after you perform a particular

Comparing Environment States

Enhancements to Recorded Scripts 5-23

task with the application-under-test. In this case, both snapshots are created with
SQAEnvCreateCurrent.

Specifying the Areas of the Environment To Test
By default, the environment state commands take snapshots of the following areas:

► Your local hard drive

► The following Registry hives:

− HKEY_LOCAL_MACHINE

− HKEY_CURRENT_USER

− HKEY_CLASSES_ROOT

► File extensions

Before you run a script that takes a snapshot of the environment, you can change
the defaults as follows:

1. Run the Installation Analyzer ANALYZER.EXE. By default, it is located in
the Rational Test 7 directory.

2. Click Tools � Options.

3. Specify the areas you want to test.

4. To set the areas you specified as the default areas to test, select Save Settings.

5. Click OK, and then close the Installation Analyzer.

Example of an Environment State Comparison
The following example uses SQAEnvCreateBaseline to capture a snapshot of
a “clean machine” — that is, a snapshot of the environment before any tasks are
performed that might change the state of the environment. The example then calls
SQAEnvCreateCurrent to capture a snapshot of the environment after each of
the following tasks is performed:

► The sample application Classics Online is installed.

► The Classics Online application is executed.

► The Classics Online application is uninstalled.

After each of these tasks, the example calls SQAEnvCreateDelta to compare
the current state of the environment to the “clean-machine” state captured with
SQAEnvCreateBaseline. The results are displayed in a browser.

This example requires either Microsoft Systems Installer (MSI) or Windows 2000.

Comparing Environment States

5-24 SQABasic Language Reference

To run this example, copy it from the SQABasic online Help. Run the Help and
search for environment state, complete example in the Help Index tab.

'===
'
' Script Copyright (c) 2000 by Rational Software
' Author: Pete Jenney - pjenney@rational.com
' Date: 18-Jan-2000
' Notes: Script to demonstrate the use of the SQAEnv* commands in
' the testing process.
' Depends: Microsoft System Installer (MSI) and/or Windows 2000
'
'===

'$Include "sqautil.sbh"

Sub Main
Dim Result As Integer
Dim szSampleInstall As String

' Create a baseline snapshot
Result = SQAEnvCreateBaseLine("CleanMachine")
If(Result = 0) Then

MsgBox "Failed to create Environment Baseline!",16,"Error!"
SQALogMessage sqaFail,"Failed to create Baseline Snapshot!",""
Exit Sub

End If

' Install the application
szSampleInstall = "msiexec /qb+ /i """ & _

SQAGetDir(SQA_DIR_REPOSITORY) & "Samples\" & _
"ClassicsOnline.msi"""

StartApplication szSampleInstall

Result = WindowVP (Exists, _
"Caption=Rational Test Samples - Classics Online", _
"VP=Complete Dialog;Wait=1,120")

If(Result = 0) Then
MsgBox "Completion Dialog never appeared", 16, "Error!"
SQALogMessage sqaFail,"Completion Dialog never appeared",""
Exit Sub

End If

Window SetContext, _
"Caption=Rational Test Samples – ClassicsOnline;" + _
"Level=2;State=Disabled", "Activate=0"

Label Click, "Text=Please wait while Windows configures " + _
"Rational Test Samples - Classics"

Window SetContext, _
"Caption=Rational Test Samples - Classics Online", ""

PushButton Click, "Text=OK"

' Create the PostInstall snapshot
Result = SQAEnvCreateCurrent("PostInstall")
If(Result = 0) Then
MsgBox "Failed to create PostInstall Environment Snapshot!", _

16, "Error!"
SQALogMessage sqaFail, "Failed to create PostInstall " + _

"Environment Snapshot!", ""
Exit Sub

End If

Comparing Environment States

Enhancements to Recorded Scripts 5-25

' Create the Delta Report
Result = SQAEnvCreateDelta("CleanMachine", "PostInstall", 1)
If(Result = 0) Then
MsgBox "Failed to create CleanMachine/PostInstall Report!", _

16, "Error!"
SQALogMessage sqaFail, + _

"Failed to create CleanMachine/PostInstall Report!",""
Exit Sub

End If

' Prompt the user to continue or abort
Result=MsgBox("Press OK to continue or Cancel to halt testing", _

65, "Action")
If(Result = 2) Then

SQALogMessage sqaFail, "Testing halted by user at " + _
"CleanMachine/PostInstall Report", ""

Exit Sub
End If

' Exercise the application
CallScript "PlayWithClassics"

' Create the PostRun snapshot
Result = SQAEnvCreateCurrent("PostRun")
If(Result = 0) Then

MsgBox "Failed to create PostRun Environment Snapshot!", _
16, "Error!"

SQALogMessage sqaFail, _
"Failed to create PostRun Environment Snapshot!", ""

Exit Sub
End If

' Create the Delta Report
Result = SQAEnvCreateDelta("PostInstall", "PostRun", 1)
If(Result = 0) Then

MsgBox "Failed to create PostInstall/PostRun Report!", _
16, "Error!"

SQALogMessage sqaFail, _
"Failed to create PostInstall/PostRun Report!", ""

Exit Sub
End If

' Prompt the user to continue or abort
Result=MsgBox("Press OK to continue or Cancel to halt testing", _

65, "Action")
If(Result = 2) Then

SQALogMessage sqaFail, "Testing halted by user at " + _
"PostInstall/PostRun Report", ""

Exit Sub
End If

' Uninstall the application
szSampleInstall = "msiexec /qb+ /x """ & _

SQAGetDir(SQA_DIR_REPOSITORY) & "Samples\" & _
"ClassicsOnline.msi"""

StartApplication szSampleInstall

Result = WindowVP (Exists, _
"Caption=Rational Test Samples - Classics Online", _
"VP=Complete Dialog;Wait=1,120")

Displaying Messages in Robot

5-26 SQABasic Language Reference

If(Result = 0) Then
MsgBox "Error!", 16, "Completion Dialog never appeared"
SQALogMessage sqaFail,"Completion Dialog never appeared",""
Exit Sub

End If

Window SetContext, _
"Caption=Rational Test Samples - Classics Online;" + _
"Level=2;State=Disabled", "Activate=0"

Label Click, "Text=Please wait while Windows configures " + _
"Rational Test Samples - Classics"

Window SetContext, _
"Caption=Rational Test Samples - Classics Online", ""

PushButton Click, "Text=OK"

' Create the PostUninstall snapshot
Result = SQAEnvCreateCurrent("PostUninstall")
If(Result = 0) Then
MsgBox "Failed to create PostUninstall Environment " + _

"Snapshot!", 16, "Error!"
SQALogMessage sqaFail, "Failed to create PostUninstall " + _

"Environment Snapshot!", ""
Exit Sub

End If

' Create the Delta Report
Result = SQAEnvCreateDelta("CleanMachine", "PostUninstall", 1)
If(Result = 0) Then

MsgBox "Failed to create PostUninstall/CleanMachine " + _
"Report!", 16, "Error!"

SQALogMessage sqaFail, "Failed to create " + _
"PostUninstall/CleanMachine Report!", ""

Exit Sub
End If

End Sub

Displaying Messages in Robot
During playback, you can use the following commands to display messages in the
Robot console window and in the LogViewer:

Command Purpose

SQAConsoleWrite Displays text in the Robot console window.

SQAConsoleClear Remove all text in the Robot console window.

SQALogMessdage Write a message in the LogViewer, and optionally
add the notation Pass, Fail, or Warning.

SQAScriptCmdFailure Report a serious runtime error in the LogViewer and
stop script playback.

SQAVpLog Write information about custom verification point
results to the LogViewer.

Displaying Messages in Robot

Enhancements to Recorded Scripts 5-27

For more information about SQAVpLog, see Managing Custom Verification Points on
page 5-12. The following sections describe the other messaging commands.

NOTE: You can also display a message in a dialog box during runtime with the
SQABasic command MsgBox. However, the dialog box must be explicitly
dismissed before the script can continue running.

Displaying Messages in the Console Window
The console window is the area just below the Robot script area. Typically, this
area is reserved for your messages.

However, Robot may write certain system messages to the console window. For
example:

► Robot reports script command failures in the console window.

► Robot may display a message in the console window if it detects that you are
testing a Java environment that is not ready for Robot due to the use of old
class libraries or the lack of a Java enabler.

Displaying the Console Window

If the console window is not displayed, take either or both of these actions to
display it:

► Make sure the Output choice on the View menu is checked.

► If the Output choice is checked but the console window is still not displayed,
click the Console tab in the lower left corner of the Robot main window:

Console tab
Console window

Displaying Messages in Robot

5-28 SQABasic Language Reference

Writing to the Console Window

Use SQAConsoleWrite to write text to the console window.

You can insert a carriage return through Chr$(13). For example, to display a
blank line between the text Line1 and Line2, call:

SQAConsoleWrite "Line1" + Chr$(13) + Chr$(13) + "Line2"

If SQAConsoleWrite is called multiple times during playback, subsequent
messages are appended to the original message.

Removing Messages from the Console Window

Robot clears the console window at the beginning of playback.

To explicitly clear text from the console window, call SQAConsoleClear.

Displaying Messages in the LogViewer
You can display messages in the LogViewer through SQALogMessage and
through SQAScriptCmdFailure.

NOTE: SQAVpLog also writes messages to the LogViewer. For more
information, see Managing Custom Verification Points on page 5-12.

Using SQALogMessage

This command writes an entry in the Log Event column of the LogViewer. You
can use this command to report the success or failure of an event, or to display any
informational text you choose.

In addition to the information in the Log Event column, you can insert the
notation Pass, Fail, or Warning in the Result column. If you insert Fail, the
LogViewer reports Fail for the entire script.

You can also include a description of the event or informational text you display.
The description appears in the Result tab of the Log Event Properties dialog box.

Here is an example of an SQALogMessage command and how its arguments are
displayed in the LogViewer:

SQALogMessage sqaPass, "Fixed button float!", "Button keeps floating"

Displaying Messages in Robot

Enhancements to Recorded Scripts 5-29

This is the text that is displayed in the LogViewer:

Argument 2 Argument 1

And this is the text that’s displayed in the Log Event Properties dialog box:

Argument 2 Argument 3

To display the Result tab of the Log Event Properties dialog box:

1. In the LogViewer, right-click the message you displayed in the Log Event
column.

2. Click Properties.

3. Click the Result tab.

Using SQAScriptCmdFailure

This command writes and message to the LogViewer and stops the execution of the
script. Use this command only for reporting serious events.

SQAScriptCmdFailure takes just one argument — the description of the event.

Using Datapools

5-30 SQABasic Language Reference

This command displays the following text in the LogViewer:

► The text “Script Command Failure” appears in the Log Event column. You
can’t modify this text.

► The notation Fail appears in the Result column. You can’t modify it.

► The text you provide through this command is displayed in the Result tab of
the Log Event Properties dialog box.

In addition, the description you provide of the script command failure and the line
where it occurs are displayed in the Robot console window.

Using Datapools
A datapool is a test dataset. It supplies data values to the variables in a script
during script playback.

Datapools let you automatically pump test data to a script that is being played back
repeatedly, allowing the script to send a different set of data to the server in each
iteration.

If you do not use a datapool during script playback, the same values (the values
that were captured when you recorded the script) are sent to the server each time
the script is executed.

For example, suppose you record a script that sends order number 53328 to a
database server. If you play back this script 100 times, order number 53328 is sent
to the server 100 times. If you use a datapool, each iteration of the script can send a
different order number to the server.

You use TestManager to automatically generate datapool data. To access the data
in a datapool from a GUI script, you must add the datapool commands manually.
For information about creating datapools and manually coding datapool
commands for GUI scripts, see the Using Rational Robot manual.

Summary of Datapool Commands

These are the SQABasic commands that let you access the data in a datapool.

► SQADatapoolClose – Close the specified datapool.

► SQADatapoolFetch – Move the datapool cursor to the next row.

► SQADatapoolOpen – Open the specified datapool.

► SQADatapoolRewind – Reset the cursor for the specified datapool.

► SQADatapoolValue – Retrieve the value of the specified datapool column.

See Chapter 6, Command Reference, for syntax information about these commands.

Accessing External Applications

Enhancements to Recorded Scripts 5-31

Accessing External Applications
SQABasic lets you access applications through dynamic data exchange (DDE) and
through object linking and embedding (OLE).

Dynamic Data Exchange (DDE)
DDE is a process by which two applications communicate and exchange data.
One application can be an SQABasic script.

Opening a DDE Channel

To “talk” to another application and send it data, open a connection (called a DDE
channel) using the statement DDEInitiate.

DDEInitiate requires two arguments:

► DDE application name. This name is usually the name of the .EXE file used
to start the application. Specify the name without the .EXE extension. For
example, the DDE name for Microsoft Word is WINWORD.

► Topic name. This name is usually a filename to get or send data to, although
there are some reserved DDE topic names, such as System. See the
application’s documentation for a list of the available topic names.

The application must already be running before you can open a DDE channel. To
start an application, use the Shell command.

Communicating with the Application

After you open a channel to an application, you can get text and numbers
(DDERequest), send text and numbers (DDEPoke), or send commands
(DDEExecute). See the application’s documentation for a list of supported
DDE commands.

To make sure the application performs a DDE task as expected, use
DDEAppReturnCode. If an error does occur, your program can notify the user.

Closing the Channel

When you’re finished communicating with the application, you should close the
DDE channel using DDETerminate. Because you have a limited number of
channels available at once (depending on the operating system in use and the
amount of memory you have available), it’s a good idea to close a channel as soon
as you finish using it.

Accessing External Applications

5-32 SQABasic Language Reference

Objects
SQABasic supports OLE2 Object Handling. OLE2 provides the ability to link and
embed objects from one application into another. Key OLE2 terms:

► Objects are the end products of a software application, such as a spreadsheet,
graph, or document objects, and OLE Automation objects. Each application
has its own set of properties and methods that change the characteristics of an
object.

► Properties affect how an object behaves. For example, width is a property of
a range of cells in a spreadsheet, colors are a property of graphs, and margins
are a property of word processing documents.

► Methods cause the application to do something to an object. Examples are
Calculate for a spreadsheet, Snap to Grid for a graph, and AutoSave for a
document.

SQABasic lets you access an external object and use the originating application to
change properties and methods of that object.

Before you can use an object in a procedure, you must access the application
associated with the object by assigning the object to an object variable. Then you
attach an object name (with or without properties and methods) to the variable to
manipulate the object.

For example code, see the Overview topic for the Set statement in the SQABasic
online Help.

Step 1: Create an Object Variable to Access the Application

In the lines of code below, the Dim statement creates an object variable called
visio. The Set statement associates the variable visio with the VISIO
application by calling the GetObject function:

Dim visio as Object
...
Set visio = GetObject(,"visio.application") ' find Visio

Note that GetObject is used if the application is already open on the Windows
desktop. Use CreateObject if the application is not open.

Accessing External Applications

Enhancements to Recorded Scripts 5-33

Step 2: Use Methods and Properties to Act on Objects

To access an object, property or method, use this syntax:

appvariable.object
appvariable.object.property
appvariable.object.method

For example, visio.documents.count references the Count method of the
Document object for the VISIO application.

Optionally, you can create a second object variable and assign the Document object
to it using VISIO’s Document method, as the following Set statement shows:

dim doc as Object
dim I as Integer, doccount as Integer
dim msgtext as String
...
doccount = visio.documents.count
If doccount = 0 then

MsgBox "No open Visio documents."
else

msgtext = "The open files are: " & Chr$(13)
For i = 1 to doccount

Set doc = visio.documents(i)
msgtext = msgtext & chr$(13) & doc.name

Next I
End If

NOTE: Object, property, and method names vary from one application to
another. See the application’s documentation for the applicable names to use.

Accessing External Applications

5-34 SQABasic Language Reference

► ► ► Part III

Command Reference

6-1

► ► ► C H A P T E R 6

Command Reference

This command reference contains the following categories of information:

► The Microsoft Basic functions, statements, and operators that
SQABasic supports.

► SQABasic command additions to standard Basic. Most additions fall into
these categories:

Datapool commands – Access data in a datapool.

Object Scripting commands – Access objects and object properties.

Timing and Coordination commands – Time user activities and control the
rate of script playback.

User Action commands – Capture a user’s keyboard and mouse actions
during recording.

Utility commands – Perform a variety of tasks in an SQABasic script.

Verification Point commands – Compare the results of a user action during
recording to the results of the same action when it’s later played back.

In addition to the above categories of command additions, SQABasic provides the
following new commands — the Assert statement, the GetField function,
the SetField function, and the metacommands '$CStrings, '$Include,
and 'NoCStrings.

NOTE: The icon in the margin appears next to the names of SQABasic
command additions. You may find this icon useful when scanning for the
additions.

Abs

6-2 SQABasic Language Reference

Abs
Function

Returns the absolute value of a number.

Abs(number)

Syntax Element Description

number Any valid numeric expression.

The data type of the return value matches the type of the number. If number is
a Variant string (VarType 8), the return value will be converted to VarType
5 (Double). If the absolute value evaluates to VarType 0 (Empty), the return
value will be VarType 3 (Long).

This example finds the difference between two variables, oldacct and newacct.
Sub main
Dim oldacct, newacct, count

oldacct=InputBox("Enter the oldacct number")
newacct=InputBox("Enter the newacct number")
count=Abs(oldacct-newacct)
MsgBox "The absolute value is: " &count

End Sub

Exp Rnd
Fix Sgn
Int Sqr
Log Variant

AnimateControl
User Action Command

Performs an action on an animation control.

AnimateControl action%, recMethod$, parameters$

Description

Syntax

Comments

Example

See Also

Description

Syntax

AnimateControl

Command Reference 6-3

Syntax Element Description

action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When
action% contains a mouse-click value,
parameters$ must contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 None.

 Comments

AnimateControlVP

6-4 SQABasic Language Reference

 This example clicks the first animation control in the window
(ObjectIndex=1) at x,y coordinates of 50,25.

 AnimateControl Click, "ObjectIndex=1", "Coords=50,25"

 AnimateControlVP

 AnimateControlVP
 Verification Point Command

 Establishes a verification point for an animation control.

 Result = AnimateControlVP(action%,recMethod$,parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareNumeric. Captures the numeric value of

the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.

► ► ►

 Example

 See Also

 Description

 Syntax

AnimateControlVP

Command Reference 6-5

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a

Comments

AppActivate

6-6 SQABasic Language Reference

substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

This example captures the properties of the first animation control in the window
(ObjectIndex=1) and compares them to the recorded baseline in verification
point TEST1A.

Result = AnimateControlVP (CompareProperties, "ObjectIndex=1",
"VP=TEST1A")

AnimateControl

AppActivate
Statement

Activates an application window.

AppActivate title$

Syntax Element Description

title$ A string expression for the title-bar name of the
application window to activate.

Title must match the name of the window character for character, but the
comparison is not case-sensitive. For example, “Notepad” is the same as “notepad”
or “NOTEPAD”. If there is more than one window with a name matching
title, a window is chosen at random.

AppActivate changes the focus to the specified window but does not change
whether the window is minimized or maximized. Use AppActivate with the
InputKeys statement to send keys to another application.

This example runs Microsoft Notepad and types some text into the editor.

Sub Main
StartApplication("notepad.exe")
AppActivate "Untitled - Notepad"
DoEvents
InputKeys "Hello, world.{ENTER}"

End Sub

InputKeys
Shell

Example

See Also

Description

Syntax

Comments

Example

See Also

Asc

Command Reference 6-7

Asc
Function

Returns an integer corresponding to the character code of the first character in the
specified string.

Asc(string$)

Syntax Element Description

string$ A string expression of one or more characters.

To change a character code to a character string, use Chr.

To obtain the first byte of a string, use AscB.

This example asks the user for a letter and returns its ASCII value.
Sub main

Dim userchar
userchar=InputBox("Type a letter:")
MsgBox "The ASC value for " & userchar & " is: " & Asc(userchar)

End Sub

Chr

Assert
Statement

Triggers a runtime error if the condition specified is FALSE.

Assert condition

Syntax Element Description

condition A numeric or string expression that can evaluate to TRUE
or FALSE.

The Assert statement should be used to handle an application-specific error. An
assertion error cannot be trapped by the On Error statement.

Use the Assert statement to ensure that a script is performing as expected.

None.

None.

Description

Syntax

Comments

Example

See Also

Description

Syntax

Comments

Example

See Also

Atn

6-8 SQABasic Language Reference

Atn
Function

Returns the angle (in radians) for the arc tangent of the specified number.

Atn(number)

Syntax Element Description

number Any valid numeric expression.

The Atn function assumes number is the ratio of two sides of a right triangle: the
side opposite the angle to find and the side adjacent to the angle. The function
returns a single-precision value for a ratio expressed as an integer, a currency, or a
single-precision numeric expression. The return value is a double-precision value
for a long, Variant or double-precision numeric expression.

To convert radians to degrees, multiply by (180/PI). The value of PI is
approximately 3.14159.

This example finds the roof angle necessary for a house with an attic ceiling of 8
feet (at the roof peak) and a 16 foot span from the outside wall to the center of
the house.

Sub main
Dim height, span, angle, PI
PI=3.14159
height=8
span=16
angle=Atn(height/span)*(180/PI)
MsgBox "The angle is " & Format(angle, "##.##") & " degrees"

End Sub

Cos
Sin
Tan
Derived Trigonometric functions (Appendix D)

Beep
Statement

Produces a tone through the computer speaker.

Beep

Description

Syntax

Comments

Example

See Also

Description

Syntax

Begin Dialog...End Dialog

Command Reference 6-9

The frequency and duration of the tone depends on the hardware.

This example beeps and displays a message in a box if the variable balance is less
than 0. (If you have a set of speakers hooked up to your computer, you might need
to turn them on to hear the beep.)

Sub main
Dim expenses, balance, msgtext
balance=InputBox("Enter your account balance")
expenses=1000
balance=balance-expenses
If balance<0 then

Beep
MsgBox "I'm sorry, your account is overdrawn."

Else
MsgBox "Your balance minus expenses is: " & balance

End If
End Sub

InputBox Print
MsgBox

Begin Dialog...End Dialog
Statement

Begins and ends a definition of a dialog box record.

Begin Dialog dialogName [x, y,] dx, dy [, caption$]
[, .dialogfunction]

... ' dialog box definition statements
End Dialog

Syntax Element Description

dialogName The record name for the dialog box definition.

x, y The coordinates for the upper left corner of the dialog box.

dx, dy The width and height of the dialog box (relative to x and y).

caption$ The title for the dialog box.

.dialogfunction A function to process user actions in the dialog box.

Comments

Example

See Also

Description

Syntax

Begin Dialog...End Dialog

6-10 SQABasic Language Reference

To create and display a dialog box:

1. Define the dialog box and its controls using the Begin Dialog...End
Dialog statements and the object definition statements (such as TextBox,
OKButton).

2. Optionally, use the .dialogfunction argument to call a function you
define to handle user actions in the dialog box.

3. Use the Dim statement to declare an instance of the dialog box you defined
in step 1.

4. Display the dialog box using either the Dialog function or the Dialog
statement.

For example code, see the Overview topic for the Begin Dialog...End
Dialog statement in the SQABasic online Help.

The x and y coordinates are relative to the upper left corner of the client area of
the parent window. The x argument is measured in units that are 1/4 the average
width of the system font. The y argument is measured in units 1/8 the height of
the system font. For example, to position a dialog box 20 characters in, and 15
characters down from the upper left hand corner, enter 80, 120 as the x, y
coordinates. If these arguments are omitted, the dialog box is centered in the client
area of the parent window.

The dx argument is measured in 1/4 system-font character-width units. The dy
argument is measured in 1/8 system-font character-width units. For example, to
create a dialog box 80 characters wide, and 15 characters in height, enter 320, 120
for the dx, dy coordinates.

If the caption$ argument is omitted, a standard default caption is used.

The optional .dialogfunction function must be defined (using the
Function statement) or declared (using Dim) before being used in the Begin
Dialog statement. Define the dialogfunction with the following three
arguments:

Function dialogfunction% (id$, action%, suppvalue&)
... 'function body
End Function

Comments

Begin Dialog...End Dialog

Command Reference 6-11

Here are the descriptions of the arguments:

Argument Description

id$ The text string that identifies the dialog control that
triggered the call to the dialog function (usually because
the user changed this control).

id$ is the same value for the dialog control that you use
in the definition of that control. For example, the id$
value for a text box is Text1 if it is defined this way:

Textbox 271, 78, 33, 18, .Text1

id$ values are case-sensitive and don't include the dot (.)
that appears before the ID in the definition of the control.

action% One of the following values. The values identify the
reason why the dialog function was called.
1. Dialog box initialization. This value is passed before
the dialog box becomes visible.
2. Command button selected or dialog box control
changed (except typing in a text box or combo box).
3. Change in a text box or combo box. This value is
passed when the control loses the input focus: the user
presses the TAB key or clicks another control.
4. Change of control focus. Id$ is the id of the dialog
control gaining focus. Suppvalue& contains the
numeric id of the control losing focus. A dialog function
cannot display a message box or dialog box in response to
an action value 4.
5. An idle state. As soon as the dialog box is initialized
(action% = 1), the dialog function will be
continuously called with action% = 5 if no other
action occurs. If dialog function wants to receive
this message continuously while the dialog box is idle,
return a non-zero value. If 0 (zero) is returned,
action% = 5 will be passed only while the user is
moving the mouse. For this action, Id$ is equal to
empty string ("") and suppvalue& is equal to the
number of times action 5 was passed before.

Suppvalue& Gives more specific information about why the dialog
function was called. If the user clicks a command button
or changes a dialog box control, action% returns 2 or 3
and suppvalue& identifies the control affected. The
value returned depends on the type of control or button
the user changed or clicked. See the table below for valid
Suppvalue& values.

Begin Dialog...End Dialog

6-12 SQABasic Language Reference

The following table summarizes the possible values for suppvalue&:

Value Control

Any number List box. Number of the item selected, 0-based.

1 - selected

0 - cleared

-1 - grayed

Check box.

Any number Option button. Number of the option button in the
option group, 0-based.

Any number Text box. Number of characters in the text box.

Any number Combo box. The number of the item selected (0-based)
when action%=2, or the number of characters in its text
box when action%= 3.

1 OK button.

2 Cancel button.

In most cases, the return value of dialogfunction is ignored. The exceptions are
a return value of 2 or 5 for action%. If the user clicks the OK button, Cancel
button, or a command button (as indicated by an action% return value of 2 and
the corresponding id$ for the button clicked), and the dialog function returns a
non-zero value, the dialog box will not be closed.

Unless the Begin Dialog statement is followed by at least one other dialog-box
definition statement and the End Dialog statement, an error will result. The
definition statements must include an OKButton, CancelButton or Button
statement. If this statement is left out, there will be no way to close the dialog box,
and the script will be unable to continue executing.

This example defines and displays a dialog box with each type of item in it: list
box, combo box, buttons, etc.

Sub main
Dim ComboBox1() as String
Dim ListBox1() as String
Dim DropListBox1() as String
Dim x as Integer
ReDim ListBox1(0)
ReDim ComboBox1(0)
ReDim DropListBox1(3)
ListBox1(0)="C:\"
ComboBox1(0)=Dir("C:*.*")
For x=0 to 2
DropListBox1(x)=Chr(65+x) & ":"
Next x

Example

Browser

Command Reference 6-13

Begin Dialog UserDialog 274, 171, "SQABasic Dialog Box"
ButtonGroup .ButtonGroup1
Text 9, 3, 69, 13, "Filename:", .Text1
DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
Text 106, 2, 34, 9, "Directory:", .Text2
ListBox 106, 12, 83, 39, ListBox1(), .ListBox2
Text 106, 52, 42, 8, "Drive:", .Text3
DropListBox 106, 64, 95, 44, DropListBox1(), .DropListBox1
CheckBox 9, 142, 62, 14, "List .TXT files", .CheckBox1
GroupBox 106, 111, 97, 57, "File Range"
OptionGroup .OptionGroup2

OptionButton 117, 119, 46, 12, "All pages", .OptionButton3
OptionButton 117, 135, 67, 8, "Range of pages", .OptionButton4

Text 123, 146, 20, 10, "From:", .Text6
Text 161, 146, 14, 9, "To:", .Text7
TextBox 177, 146, 13, 12, .TextBox4
TextBox 145, 146, 12, 11, .TextBox5
OKButton 213, 6, 54, 14
CancelButton 214, 26, 54, 14
PushButton 213, 52, 54, 14, "Help", .Push1

End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."

End If
End Sub

Button Dialog OptionGroup
ButtonGroup DropComboBox Picture
CancelButton GroupBox StaticComboBox
Caption ListBox Text
CheckBox OKButton TextBox
ComboBox OptionButton

Browser
Utility Command

Performs an action on a Web browser.

Browser action$, recMethod$, parameters$

Syntax Element Description

action$ The following actions:
► Back. Navigate back one page in the history list. The

equivalent of clicking the Back button on the browser
toolbar.

► Forward. Navigate forward one page in the history
list. The equivalent of clicking the Forward button on
the browser toolbar.

► ► ►

See Also

Description

Syntax

Browser

6-14 SQABasic Language Reference

► ► ►

Syntax Element Description

 ► GotoURL. Navigate to the specified URL. Specify the
URL ID string as the recMethod$.

► NewPage. Robot waits for a new Web page to load
before continuing with the next script command.
Robot records a NewPage action just before the first
action or verification point recorded on the current page.
You can use the optional parameter$ Wait with this
action.

► Refresh. Reload the current page in the browser. The
equivalent of clicking the Refresh button on the
browser toolbar.

► SetApplet. Indicates that the Browser command is
specifying the parent Java object for subsequent Java
commands. The parent object is identified in
recMethod$.

► SetFrame. Specifies the Web page frame for
subsequent script commands. Requires the
recMethod$ Name.

► StopLoading. Stop loading the current page in the
browser. The equivalent of clicking the Stop button on
the browser toolbar.

► CloseWin. Close the browser.

 recMethod$ Valid values:
► [empty quotes]. Robot waits for the page to load in

the top-most frame.
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLTitle=$. The text from the Title attribute of

the HTML object. Used with action$ NewPage.
If the document has no title, HTMLTitle is blank.
If recMethod$ identifies a document through a
frame (with the Type qualifier) but no title, Robot
assumes that the next documented loaded is the
intended new page.

► Index=%. The number of the object among all objects
identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► ► ►

Browser

Command Reference 6-15

► ► ►

Syntax Element Description

 ► JavaCaption=$. The text of the Java window
caption. The caption can be used to identify the parent
Java object when the object has no programmatic name.
The wildcards ? and * are supported. (See Establishing
Context through a Window Command in Chapter 4 for
information.)
Used only with window-based parent objects, not with
browser-based applets.

► JavaClass=$. The Java class name. The class name
can be used to identify the parent Java object when the
object has no programmatic name or window caption.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for an
applet might be Color Chooser.

► Type=$. Used to identify the specific frame within a
Frameset.

 parameters$ Valid value:
► Wait=%. An optional identifier that specifies the

number of seconds that Robot will wait for the page
specified in recMethod$ to load (or, if no page is
specified, for the next page to load).
If a page is specified in recMethod$, the Wait value
applies to that page only, not to any pages that may load
between the time the Browse command is executed
and the loading of the specified page.
If the page does not load within the specified time,
Robot issues a warning, and the script continues
executing.
If you do not specify a Wait time, Robot waits 30
seconds.
Wait applies only to action$ NewPage.

 Before using this command, use StartBrowser to run the browser and enable
Web object recognition.

 You can also enable Web object recognition by opening the Web page rbtstart.htm.
This web page references the Rational ActiveX Test Control, which enables object
recognition in subsequent activity within the browser. By default, rbtstart.htm is
located in:

C:\Program Files\Rational\Rational Test 7

 Comments

Button

6-16 SQABasic Language Reference

 Once you enable Web object recognition in Robot, Web object recognition is
enabled for all subsequent actions against that browser and any new browser
windows opened from that browser. For example, if you run StartBrowser to
open Browser1, and then from Browser1 you open Browser2 through a JavaScript
command or by holding down the Shift key and clicking on a link in Internet
Explorer, Web testing is enabled for both Browser1 and Browser2.

 If a timeout occurs during a NewPage action, Robot returns a warning.

 Browser can be used to specify the parent Java object for subsequent user action
and verification point commands that act upon child objects in the Java
environment. However, Browser cannot be used in this way with Object
Scripting commands. For more information about parent and child Java objects,
see Recognition Methods in Java Commands in Chapter 4.

 This example waits for a new Web page to load before executing the next
script command.

 Browser NewPage,"HTMLTitle=My Web Page",""

 StartBrowser

 Button
 Statement

 Defines a custom push button.

 Syntax A Button x, y, dx, dy, text$ [, .id]

 Syntax B PushButton x, y, dx, dy, text$ [, .id]

 Syntax Element Description

 x, y The position of the button relative to the upper left corner
of the dialog box.

 dx, dy The width and height of the button.

 text$ The name for the push button. If the width of this string
is greater than dx, trailing characters are truncated.

 .id An optional identifier used by the dialog statements that
act on this control.

 Example

 See Also

 Description

 Syntax

ButtonGroup

Command Reference 6-17

 A dy value of 14 typically accommodates text in the system font.

 Use this statement to create buttons other than OK and Cancel. Use this
statement in conjunction with the ButtonGroup statement. The two forms of
the statement (Button and PushButton) are equivalent.

 Use the Button statement only between a Begin Dialog and an End
Dialog statement.

 This example defines a dialog box with a combination list box and three buttons.

 Sub main
 Dim fchoices as String
 fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
 Begin Dialog UserDialog 185, 94, "SQABasic Dialog Box"
 Text 9, 5, 69, 10, "Filename:", .Text1
 DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
 ButtonGroup .ButtonGroup1
 OKButton 113, 14, 54, 13
 CancelButton 113, 33, 54, 13
 Button 113, 57, 54, 13, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
 End Sub

 Begin Dialog ComboBox OptionButton
 End Dialog DropComboBox OptionGroup
 ButtonGroup DropListBox Picture
 CancelButton GroupBox StaticComboBox
 Caption ListBox Text
 CheckBox OKButton TextBox

 ButtonGroup
 Statement

 Begins the definition of a group of custom buttons for a dialog box.

 ButtonGroup .field

 Syntax Element Description

 .field The field to contain the user’s custom button selection.

 Comments

 Example

 See Also

 Description

 Syntax

Calendar

6-18 SQABasic Language Reference

 If ButtonGroup is used, it must appear before any PushButton (or Button)
statement that creates a custom button (one other than OK or Cancel). Only one
ButtonGroup statement is allowed within a dialog box definition.

 Use the ButtonGroup statement only between a Begin Dialog and an End
Dialog statement.

 This example defines a dialog box with a group of three buttons.

 Sub main
 Begin Dialog UserDialog 34,0,231,140, "SQABasic Dialog Box"
 ButtonGroup .bg
 PushButton 71,17,88,17, "&Button 0"
 PushButton 71,50,88,17, "&Button 1"
 PushButton 71,83,88,17, "&Button 2"
 End Dialog
 Dim mydialog as UserDialog
 Dialog mydialog
 MsgBox "Button " & mydialog.bg & " was pressed."
 End Sub

 Begin Dialog ComboBox OptionButton
 End Dialog DropComboBox OptionGroup
 Button DropListBox Picture
 CancelButton GroupBox StaticComboBox
 Caption ListBox Text
 CheckBox OKButton TextBox

 Calendar
 User Action Command

 Performs an action on a month calendar control.

 Calendar action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.
► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

Calendar

Command Reference 6-19

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Label=$. The text of the label object that immediately

precedes the control in the internal order (Z order) of
windows.

► Name=$. A unique name that a developer assigns to an
object to identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its prior label. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 None.

 This example clicks the month calendar control labeled “Select a Date” at x,y
coordinates of 135,105.

 Calendar Click, "Label=Select a Date", "Coords=135,105"

 CalendarVP
 DateTime

 Comments

 Example

 See Also

CalendarVP

6-20 SQABasic Language Reference

 CalendarVP
 Verification Point Command

 Establishes a verification point for a month calendar control.

 Result = CalendarVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Label=$. The text of the label object that immediately

precedes the control in the Z order of windows.
► Name=$. A unique name that a developer assigns to an

object to identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its prior label. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 Description

 Syntax

Call

Command Reference 6-21

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example captures the properties of the month calendar control labeled “Select
a Date” and compares them to the recorded baseline in verification point
CALENDAR1.

 Result = CalendarVP (CompareProperties, "Label=Select a Date",
"VP=CALENDAR1")

 Calendar

 Call
 Statement

 Transfers control to a sub procedure or function.

 Syntax A Call subprocedure-name [(argumentlist)]

 Syntax B subprocedure-name argumentlist

 Syntax Element Description

 subprocedure-name The name of the sub procedure or function to call.

 argumentlist The arguments for the sub procedure or function (if any).

 Use the Call statement to call a sub procedure or function written in SQABasic
or to call C procedures in a DLL. These C procedures must be described in a
Declare statement or be implicit in the application.

 If a procedure accepts named arguments, you can use the names to specify the
argument and its value. Order is not important. For example, if a procedure is
defined as follows:

 Sub mysub(aa, bb, optional cc, optional dd)
 The following calls to this procedure are all equivalent:

 call mysub(1, 2, , 4)
mysub aa := 1, bb := 2, dd :=4
call mysub(aa := 1, dd:=4, bb := 2)
mysub 1, 2, dd:=4

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

Call

6-22 SQABasic Language Reference

 Note that the syntax for named arguments is as follows:

 argname:= argvalue
 where argname is the name for the argument as supplied in the Sub or
Function statement and argvalue is the value to assign to the argument when
you call it. The advantage to using named arguments is that you do not have to
remember the order specified in the procedure’s original definition, and if the
procedure takes optional arguments, you do not need to include commas (,) for
arguments that you leave out.

 The procedures that use named arguments include:

► All functions defined with the Function statement.

► All sub procedures defined with the Sub statement.

► All procedures declared with Declare statement.

► Many built-in functions and statements (such as InputBox).

► Some externally registered DLL functions and methods.

 Arguments are passed by reference to procedures written in SQABasic. If you pass a
variable to a procedure that modifies its corresponding formal parameter, and you
do not want to have your variable modified, enclose the variable in parentheses in
the Call statement. This will tell SQABasic to pass a copy of the variable. Note
that this will be less efficient, and should not be done unless necessary.

 When a variable is passed to a procedure that expects its argument by reference,
the variable must match the exact type of the formal parameter of the function.
(This restriction does not apply to expressions or Variants.)

 When calling an external DLL procedure, arguments can be passed by value rather
than by reference. This is specified either in the Declare statement, the Call
itself, or both, using the ByVal keyword. If ByVal is specified in the declaration,
then the ByVal keyword is optional in the call. If present, it must precede the
value. If ByVal was not specified in the declaration, it is illegal in the call unless
the data type specified in the declaration was Any.

 This example calls a sub procedure named CREATEFILE to open a file, write the
numbers 1 to 10 in it and leave it open. The calling procedure then checks the
file’s mode. If the mode is 1 (open for Input) or 2 (open for Output), the
procedure closes the file.

 Declare Sub createfile()
 Sub main
 Dim filemode as Integer
 Dim attrib as Integer
 Call createfile
 attrib=1
 filemode=FileAttr(1,attrib)

 Example

CallScript

Command Reference 6-23

 If filemode=1 or 2 then
 MsgBox "File was left open. Closing now."
 Close #1
 End If
 Kill "C:\TEMP001"
 End Sub

 Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
 End Sub

 Declare

 CallScript
 Utility Command

 Causes a script to be executed from within the currently-running script.

 CallScript script$

 Syntax Element Description

 script$ Name of the script to be called and executed.

 This event control statement causes a script to call another script. The called, or
nested, script executes completely, and then control returns to the calling script.
The calling script is suspended while the called script finishes. You can nest scripts
up to 16 levels deep (the original script plus up to 15 scripts below it).

 This statement corresponds to the Call Script option in the Robot Insert menu.
During script recording, use this option to insert a call to another script. You can
select the Run Now check box to execute the called script while recording, or
deselect it to execute the called script at playback only.

 This example plays back the script MyScript from within the currently
executing script.

 CallScript "MyScript"

 None.

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

CancelButton

6-24 SQABasic Language Reference

 CancelButton
 Statement

 Sets the position and size of a Cancel button in a dialog box.

 CancelButton x, y, dx, dy [, .id]

 Syntax Element Description

 x, y The position of the Cancel button relative to the upper
left corner of the dialog box.

 dx, dy The width and height of the button.

 .id An optional identifier for the button.

 A dy value of 14 can usually accommodate text in the system font.

 .Id is used by the dialog statements that act on this control. If you use the
Dialog statement to display the dialog box and the user clicks Cancel, the box is
removed from the screen and an Error 102 is triggered. If you use the Dialog
function to display the dialog box, the function will return 0 and no error occurs.

 Use the CancelButton statement only between a Begin Dialog and an End
Dialog statement.

 This example defines a dialog box with a combo box and buttons.

 Sub main
 Dim fchoices as String
 fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
 Begin Dialog UserDialog 185, 94, "SQABasic Dialog Box"
 Text 9, 5, 69, 10, "Filename:", .Text1
 DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
 ButtonGroup .ButtonGroup1
 OKButton 113, 14, 54, 13
 CancelButton 113, 33, 54, 13
 PushButton 113, 57, 54, 13, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
 End Sub

 Begin Dialog ComboBox OptionButton
 End Dialog DropComboBox OptionGroup
 Button DropListBox Picture
 CancelButton GroupBox StaticComboBox
 Caption ListBox Text
 CheckBox OKButton TextBox

 Description

 Syntax

 Comments

 Example

 See Also

Caption

Command Reference 6-25

 Caption
 Statement

 Defines the title of a dialog box.

 Caption text$

 Syntax Element Description

 text$ A string expression containing the title of the dialog box.

 Use the Caption statement only between a Begin Dialog and an End
Dialog statement.

 If no Caption statement is specified for the dialog box, a default caption is used.

 This example defines a dialog box with a combination list box and three buttons.
The Caption statement changes the dialog box title to Example-Caption
Statement.

 Sub main
 Dim fchoices as String
 fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
 Begin Dialog UserDialog 185, 94
 Caption "Example-Caption Statement"
 Text 9, 5, 69, 10, "Filename:", .Text1
 DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
 ButtonGroup .ButtonGroup1
 OKButton 113, 14, 54, 13
 CancelButton 113, 33, 54, 13
 PushButton 113, 57, 54, 13, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
 End Sub

 Begin Dialog ComboBox OptionButton
 End Dialog DropComboBox OptionGroup
 Button DropListBox Picture
 CancelButton GroupBox StaticComboBox
 Caption ListBox Text
 CheckBox OKButton TextBox

 Description

 Syntax

 Comments

 Example

 See Also

CCur

6-26 SQABasic Language Reference

 CCur
 Function

 Converts an expression to the data type Currency.

 CCur(expression)

 Syntax Element Description

 expression Any expression that evaluates to a number.

 CCur accepts any type of expression. Numbers that do not fit in the
Currency data type result in an Overflow error. Strings that cannot be
converted result in a Type Mismatch error. Variants containing null result in an
Illegal Use of Null error.

 This example converts a yearly payment on a loan to a currency value with four
decimal places. A subsequent Format statement formats the value to two decimal
places before displaying it in a message box.

 Sub main
 Dim aprate, totalpay,loanpv
 Dim loanfv, due, monthlypay
 Dim yearlypay, msgtext
 loanpv=InputBox("Enter the loan amount: ")
 aprate=InputBox("Enter the annual percentage rate: ")
 If aprate > 1 then
 Aprate = aprate/100
 End If
 aprate=aprate/12
 totalpay=InputBox("Enter the total number of pay periods: ")
 loanfv=0
 Rem Assume payments are made at end of month
 due=0
 monthlypay=Pmt(aprate,totalpay,-loanpv,loanfv,due)
 yearlypay=CCur(monthlypay*12)
 msgtext="The yearly payment is: " & Format(yearlypay,"Currency")
 MsgBox msgtext
 End Sub

 CDbl CStr
 CInt CVar
 CLng CVDate
 CSng

 Description

 Syntax

 Comments

 Example

 See Also

CDbl

Command Reference 6-27

 CDbl
 Function

 Converts an expression to the data type Double.

 CDbl(expression)

 Syntax Element Description

 expression Any expression that evaluates to a number.

 CDbl accepts any type of expression. Strings that cannot be converted to a
double-precision floating point result in a Type Mismatch error. Variants
containing null result in an Illegal Use of Null error.

 This example calculates the square root of 2 as a double-precision floating point
value and displays it in scientific notation.

 Sub main
 Dim value
 Dim msgtext
 value=CDbl(Sqr(2))
 msgtext= "The square root of 2 is: " & Value
 MsgBox msgtext
 End Sub

 CCur CStr
 CInt CVar
 CLng CVDate
 CSng

 ChDir
 Statement

 Changes the default directory for the specified drive. .

 ChDir path$

 Syntax Element Description

 path$ A string expression identifying the new default directory.

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

ChDrive

6-28 SQABasic Language Reference

 The syntax for path$ is:

 [drive:][\]directory[\directory]
 If the drive argument is omitted, ChDir changes the default directory on the
current drive. The ChDir statement does not change the default drive. To change
the default drive, use ChDrive.

 This example changes the current directory to C:\WINDOWS, if it is not already
the default.

 Sub main
 Dim newdir as String
 newdir="c:\windows"
 If CurDir <> newdir then
 ChDir newdir
 End If
 MsgBox "The default directory is now: " & newdir
 End Sub

 ChDrive MkDir
 CurDir RmDir
 Dir

 ChDrive
 Statement

 Changes the default drive.

 ChDrive drive$

 Syntax Element Description

 drive$ A string expression designating the new default drive.

 This drive must exist and must be within the range specified by the LASTDRIVE
statement in the CONFIG.SYS file. If a null argument ("") is supplied, the default
drive remains the same. If the drive$ argument is a string, ChDrive uses the
first letter only. If the argument is omitted, an error message is produced. To
change the current directory on a drive, use ChDir.

 Comments

 Example

 See Also

 Description

 Comments

CheckBox (Statement)

Command Reference 6-29

 This example changes the default drive to A:.
 Sub main
 Dim newdrive as String
 newdrive="A:"
 If Left(CurDir,2) <> newdrive then
 ChDrive newdrive
 End If
 MsgBox "The default drive is now " & newdrive
 End Sub

 ChDir MkDir
 CurDir RmDir
 Dir

 CheckBox (Statement)
 Statement

 Creates a check box in a dialog box.

 CheckBox x, y , dx, dy, text$, .field

 Syntax Element Description

 x, y The upper left corner coordinates of the check box,
relative to the upper left corner of the dialog box.

 dx The sum of the widths of the check box and text$.

 dy The height of text$.

 text$ The title shown to the right of the check box.

 .field The name of the dialog-record field that will hold the
current check box setting (0=unchecked, -1=grey,
1=checked).

 The x argument is measured in 1/4 system-font character-width units. The y
argument is measured in 1/8 system-font character-height units. (See Begin
Dialog for more information.)

 Because proportional spacing is used, the dx argument width will vary with the
characters used. To approximate the width, multiply the number of characters in the
text$ field (including blanks and punctuation) by 4 and add 12 for the check box.

 A dy value of 12 is standard, and should cover typical default fonts. If larger fonts
are used, the value should be increased. As the dy number grows, the check box
and the accompanying text will move down within the dialog box.

 Example

 See Also

 Description

 Syntax

 Comments

CheckBox (User Action Command)

6-30 SQABasic Language Reference

 If the width of the text$ field is greater than dx, trailing characters will be
truncated. If you want to include underlined characters so that the check box
selection can be made from the keyboard, precede the character to be underlined
with an ampersand (&).

 SQABasic treats any other value of .field the same as a 1. The .field
argument is also used by the dialog statements that act on this control.

 Use the CheckBox statement only between a Begin Dialog and an End
Dialog statement.

 This example defines a dialog box with a combination list box, a check box, and
three buttons.

 Sub main
 Dim ComboBox1() as String
 ReDim ComboBox1(0)
 ComboBox1(0)=Dir("C:*.*")
 Begin Dialog UserDialog 166, 76, "SQABasic Dialog Box"
 Text 9, 3, 69, 13, "Filename:", .Text1
 DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
 CheckBox 10, 39, 62, 14, "List .TXT files", .CheckBox1
 OKButton 101, 6, 54, 14
 CancelButton 101, 26, 54, 14
 PushButton 101, 52, 54, 14, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
 End Sub

 Begin Dialog ComboBox OptionButton
 End Dialog DropComboBox OptionGroup
 Button DropListBox Picture
 CancelButton GroupBox StaticComboBox
 Caption ListBox Text
 CheckBox OKButton TextBox

 CheckBox (User Action Command)
 User Action Command

 Performs an action on a check box control.

 Example

 See Also

 Description

CheckBox (User Action Command)

Command Reference 6-31

 CheckBox action%, recMethod$

 Syntax Element Description

 action% The following mouse action:

 MouseClick. The clicking of the left, center, or right
mouse button, either alone or in combination with one or
more shifting keys (Ctrl, Alt, Shift). Coordinates are not
required. See Appendix E for a list of mouse click values.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of a check box in a Web page

INPUT form element. The text is from the Value
attribute of the INPUT tag.

► HTMLTitle=$. The text from the Title attribute of
the HTML object.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A unique name that a developer assigns to an
object to identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default state
is the state of the current context window (as set in the
most recent Window SetContext statement), or
Enabled if the state has not been otherwise declared.

► Text=$. The text displayed on the object.
► Type=$. An optional qualifier for recognition methods.

Used to identify the object within a specific context or
environment. The Type qualifier uses the following
form: Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

 Syntax

CheckBoxVP

6-32 SQABasic Language Reference

 None.

 This example clicks the check box with the Visual Basic object name of
"Overdraft".

 CheckBox Click, "Name=Overdraft"

 This example clicks the check box with a Value attribute of 2. The check box is
located within the Web page frame named Main.

 CheckBox Click,
 "Type=HTMLFrame;HTMLId=Main;\;Type=CheckBox;HTMLText=2"

 Label Radiobutton
 PushButton

 CheckBoxVP
 Verification Point Command

 Establishes a verification point for a check box control.

 Result = CheckBoxVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the contents or HTML text

of the object and compares it to a recorded baseline.
parameters$ VP is required; ExpectedResult
and Wait are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► VerifyIsBlank. Checks that the object has no text.
parameters$ VP is required; ExpectedResult
and Wait are optional.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

CheckBoxVP

Command Reference 6-33

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The visible text of a check box in a Web

page INPUT form element. The text is from the
Name attribute of the INPUT tag.

► HTMLTitle=$. The text from the Title attribute of
the HTML object.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text= $. The text displayed on the object.
► Type=$. An optional qualifier for recognition

methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► ► ►

CheckBoxVP

6-34 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when performing a numeric equivalence comparison,
as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

This example captures the properties of the check box identified by the text Read
Only and compares them to the recorded baseline in verification point VPTEN. At
playback, the comparison is retried every 6 seconds and times out after 30 seconds.

Result = CheckBoxVP (CompareProperties, "Text=Read Only",
"VP=VPTEN;Wait=6,30")

Comments

Example

Chr

Command Reference 6-35

This example captures the properties of the check box with a Name attribute of
Check1. The check box is located within the Web page frame named Main.
CheckBoxVP compares the properties to the recorded baseline in verification
point CHKVPTEN. At playback, the comparison is retried every 2 seconds and
times out after 30 seconds.

Result = CheckBoxVP (CompareData,
"Type=HTMLFrame;HTMLId=Main;\;Type=CheckBox;Name=Check1",
"VP=CHKVPTEN;Wait=2,30")

LabelVP
PushButton
RadioButtonVP

Chr
Function

Returns a one-character string corresponding to a character code.

Chr[$](charcode%)

Syntax Element Description

$ Optional. If specified, the return type is String. If
omitted, the function will return a Variant of VarType
8 (String).

charcode% A number representing the character to be returned.

To obtain a byte representing a given character, use ChrB.

This example displays the character equivalent for an ASCII code between 65 and
122 typed by the user.

Sub main
Dim numb as Integer
Dim msgtext
Dim out
out=0
Do Until out

numb=InputBox("Type a number between 65 and 122:")
If Chr$(numb)>="A" AND Chr$(numb)<="Z" OR

Chr$(numb)>="a" AND Chr$(numb)<="z" then
msgtext="The letter for the number " & numb &"
is: " & Chr$(numb)

out=1
ElseIf numb=0 then

Exit Sub

See Also

Description

Syntax

Comments

Example

CInt

6-36 SQABasic Language Reference

Else
Beep
msgtext="Does not convert to a character; try again."

End If
MsgBox msgtext

Loop
End Sub

Asc CLng CVDate
CCur CSng Format
CDbl CStr Val
CInt CVar

CInt
Function

Converts an expression to the data type Integer by rounding.

CInt(expression)

Syntax Element Description

expression Any expression that can evaluate to a number.

After rounding, the resulting number must be within the range of -32767 to
32767, or an error occurs.

Strings that cannot be converted to an integer result in a Type Mismatch error.
Variants containing null result in an Illegal Use of Null error.

This example calculates the average of ten golf scores.
Sub main

Dim score As Integer
Dim x, sum
Dim msgtext
Let sum=0
For x=1 to 10

score=InputBox("Enter golf score #"&x &":")
sum=sum+score

Next x
msgtext = "Your average is: " & Format(CInt(sum/(x-1))
MsgBox msgtext

End Sub

CCur CStr
CDbl CVar
CLng CVDate
CSng

See Also

Description

Syntax

Comments

Example

See Also

Class List

Command Reference 6-37

Class List
The Object class can be used in a Dim statement, a Typeof expression, or with
the New operator.

Object

Provides access to OLE2 automation.

None.

None.

Clipboard

The Windows Clipboard can be accessed directly in your program to enable you
to get text from and put text into other applications that support the Clipboard.

Clipboard.Clear
Clipboard.GetText()
Clipboard.SetText string$
Clipboard.GetFormat(1)

Syntax Element Description

string$ A string or string expression containing the text to send to
the Clipboard. Used with the .SetText method.

The following Clipboard methods are supported:

Method Description
.Clear Clears the contents of the Clipboard.

.GetText Returns a text string from the Clipboard.

.SetText Puts a text string to the Clipboard.

.GetFormat This method always takes the argument 1. Returns TRUE
(non-0) if the format of the item on the Clipboard is text.
Otherwise, returns FALSE (0).

Data on the Clipboard is lost when another set of data of the same format is placed
on the Clipboard (either through code or a menu command).

Description

Syntax

Comments

Example

See Also

Description

Syntax

Comments

ClipboardVP

6-38 SQABasic Language Reference

This example places the text string Hello, world on the Clipboard.
Sub main

Dim mytext as String
mytext="Hello, World"
Clipboard.Settext mytext
MsgBox "The text: '" & mytext & "' added to the Clipboard."

End Sub

None.

ClipboardVP
Verification Point Command

Establishes a verification point for the contents of the Windows Clipboard.

Result = ClipboardVP (action%, "", parameters$)

Syntax Element Description

action% The type of verification to perform. Valid value:
► Compare. Captures the text of the Clipboard and

compares it to a recorded baseline. parameters$ VP is
required; ExpectedResult and Wait are optional.

 "" The second argument is always left blank.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect this

verification point to pass (baseline result matches playback
result) or fail (baseline result does not match playback
result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not match
as expected, the LogViewer reports Pass. If they do
match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and Timeout value, as in
Wait=1,30 where 1 indicates the verification point is to
be retried every second but timed-out after 30 seconds.

Example

See Also

Description

CLng

Command Reference 6-39

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 Only textual data on the Clipboard can be compared.

 This example captures the contents of the Clipboard and compares it to a recorded
baseline in verification point CBOARDA.

 Result = ClipboardVP (Compare, "", "VP=CBOARDA")

 None.

 CLng
 Function

 Converts an expression to the data type Long by rounding.

 CLng(expression)

 Syntax Element Description

 expression Any expression that can evaluate to a number.

 After rounding, the resulting number must be within the range of -2,147,483,648
to 2,147,483,647, or an error occurs.

 Strings that cannot be converted to a long result in a Type Mismatch error.
Variants containing null result in an Illegal Use of Null error.

 This example divides the US national debt by the number of people in the country
to find the amount of money each person would have to pay to wipe it out. This
figure is converted to a Long integer and formatted as Currency.

 Sub Main
 Dim debt As Single
 Dim msgtext
 Const Populace = 250000000
 debt=InputBox("Enter the current US national debt:")
 msgtext = "The debt per citizen is: "
 msgtext = msgtext + Format(CLng(Debt/Populace), "Currency")
 MsgBox msgtext
 End Sub

 CCur CStr
 CDbl CVar
 CInt CVDate
 CSng

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

Close

6-40 SQABasic Language Reference

 Close
 Statement

 Closes a file, concluding input/output to that file.

 Close [[#]filenumber%[, [#]filenumber%]]

 Syntax Element Description

 filenumber% An integer expression identifying the number of the file to
close. If omitted, all open files are closed.

 Filenumber% is the number assigned to the file in the Open statement. Once a
Close statement is executed, the association of a file with filenumber% is
ended, and the file can be reopened with the same or a different file number.

 When the Close statement is used, the final output buffer is written to the
operating system buffer for that file. Close frees all buffer space associated with
the closed file. Use the Reset statement so that the operating system will flush its
buffers to disk.

 This example opens a file for Random access, gets the contents of one variable,
and closes the file again. The sub procedure CREATEFILE creates the file
C:\TEMP001 used by the main sub procedure.

 Declare Sub createfile()
 Sub main
 Dim acctno as String*3
 Dim recno as Long
 Dim msgtext as String
 Call createfile
 recno=1
 newline=Chr(10)
 Open "C:\TEMP001" For Random As #1 Len=3
 msgtext="The account numbers are:" & newline & newline
 Do Until recno=11
 Get #1,recno,acctno
 msgtext=msgtext & acctno
 recno=recno+1
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
 End Sub

 Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
 Close #1
 End Sub

 Description

 Syntax

 Comments

ComboBox (Statement)

Command Reference 6-41

 Open
 Reset
 Stop

 ComboBox (Statement)
 Statement

 Creates a combination text box and list box in a dialog box.

 Syntax A ComboBox x, y, dx, dy, text$, .field

 Syntax B ComboBox x, y, dx, dy, stringarray$, .field

 Syntax Element Description

 x, y The upper left corner coordinates of the list box, relative
to the upper left corner of the dialog box.

 dx, dy The width and height of the combo box in which the user
enters or selects text.

 text$ A string containing the selections for the combo box.

 stringarray$ An array of dynamic strings for the selections in the
combo box.

 .field The name of the dialog-record field that will hold the text
string entered in the text box or chosen from the list box.

 The x argument is measured in 1/4 system-font character-width units. The y
argument is measured in 1/8 system-font character-width units. (See Begin
Dialog for more information.)

 The text$ argument must be defined, using a Dim statement, before the Begin
Dialog statement is executed. The arguments in the text$ string are entered as
shown in the following example:

 dimname="listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...
 The string in the text box will be recorded in the field designated by the .field
argument when the OK button (or any push button other than Cancel) is pushed.
The field argument is also used by the dialog statements that act on this control.

 Use the ComboBox statement only between a Begin Dialog and an End
Dialog statement.

 See Also

 Description

 Syntax

 Comments

ComboBox (User Action Command)

6-42 SQABasic Language Reference

 This example defines a dialog box containing a combo box and three buttons.
 Sub main
 Dim ComboBox1() as String
 ReDim ComboBox1(0)
 ComboBox1(0)=Dir("C:*.*")
 Begin Dialog UserDialog 166, 142, "SQABasic Dialog Box"
 Text 9, 3, 69, 13, "Filename:", .Text1
 ComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
 OKButton 101, 6, 54, 14
 CancelButton 101, 26, 54, 14
 PushButton 101, 52, 54, 14, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
 End Sub

 Begin Dialog ComboBox OptionGroup
 End Dialog DropComboBox Picture
 Button DropListBox StaticComboBox
 ButtonGroup GroupBox Text
 CancelButton ListBox TextBox
 Caption OKButton
 CheckBox OptionButton

 ComboBox (User Action Command)
 User Action Command

 Performs an action on a combo box control.

 ComboBox action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MakeSelection. Selects the specified item from a Java

combo box. Used only for the Java environment.
recMethod$ must contain one of the Java recognition
methods, and parameters$ must contain either Text
or Index.

► MouseClick. The clicking of the left, center, or right
mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When
action% contains a mouse-click value,
parameters$ must contain Coords=x,y.

► ► ►

 Example

 See Also

 Description

 Syntax

ComboBox (User Action Command)

Command Reference 6-43

► ► ►

 Syntax Element Description

 ► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The visible text of a Web page SELECT

form element. The text is from the Value attribute of
the OPTION tag.

► HTMLTitle=$. The text from the Title attribute of
the HTML object.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Label=$. The text of the label object that immediately
precedes the combo box in the Z order of windows.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default state
is the state of the current context window (as set in the
most recent Window SetContext command), or
Enabled if the state has not been otherwise declared.

► Type=$. An optional qualifier for recognition methods.
Used to identify the object within a specific context or
environment. The Type qualifier uses the following
form: Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its prior label. It is for user clarification
only and does not affect object recognition.

► ► ►

ComboBoxVP

6-44 SQABasic Language Reference

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

► Index=%. If action% is MakeSelection,
identifies the index of an item in the list.

► Text=$. If action% is MakeSelection, identifies
the text of an item in the list.

 None.

 This example clicks the second combo box in the window (ObjectIndex=2) at
x,y coordinates of 49,14. The combo box is preceded by a label with the text
“Name:”.

 ComboBox Click, "ObjectIndex=2;VisualText=Name:", "Coords=49,14"

 This example clicks the combo box with a Name attribute of Selectlist. The
combo box is located within the Web page frame named Main.

 ComboBox Click, "Type=HTMLFrame;HTMLId=Main;\;Type=ComboBox;
 Name=Selectlist", ""

 ComboEditBox EditBox
 ComboListBox ListBox

 ComboBoxVP
 Verification Point Command

 Establishes a verification point for a combo box control.

 Result = ComboBoxVP (action%, recMethod$, parameters$)

 Comments

 Example

 See Also

 Description

 Syntax

ComboBoxVP

Command Reference 6-45

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► Compare. Captures the entire textual contents of the

object into a grid and compares it to a recorded
baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareData. Captures the contents or HTML text
of the object and compares it to a recorded baseline.
parameters$ VP is required; ExpectedResult
and Wait are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► VerifyIsBlank. Checks that the object has no text.
parameters$ VP is required; ExpectedResult
and Wait are optional.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The visible text of a Web page SELECT

form element. The text is from the Value attribute of
the OPTION tag.

► HTMLTitle=$. The text from the Title attribute of
the HTML object.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Label=$. The text of the label object that immediately
precedes the combo box in the Z order of windows.

► ► ►

ComboBoxVP

6-46 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text

► ► ►

ComboBoxVP

Command Reference 6-47

► ► ►

 Syntax Element Description

 ► Value=&. Used with the action CompareNumeric
when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the properties of the first combo box control in the window
(ObjectIndex=1) and compares them to the recorded baseline in verification
point VPFIVE. At playback, the comparison is retried every 4 seconds and times
out after 30 seconds.

 Result = ComboBoxVP (CompareProperties, "ObjectIndex=1",
 "VP=VPFIVE; Wait=4,30")

 This example captures the properties of the select list with a Name attribute of
Sselectlist. The list is located within the Web page frame named Main.
ComboBoxVP compares the properties to the recorded baseline in verification
point SELECTVP1. At playback, the comparison is retried every 2 seconds and
times out after 30 seconds.

 Result = ComboBoxVP (CompareData,
 "Type=HTMLFrame;HTMLId=Main;\;Type=ComboBox;Name=Selectlist",
 "VP=SELECTVP1;Wait=2,30")

 ComboEditBoxVP EditBoxVP
 ComboListBoxVP ListBoxVP

 Comments

 Example

 See Also

ComboEditBox

6-48 SQABasic Language Reference

 ComboEditBox
 User Action Command

 Performs an action on a combo edit box control.

 ComboEditBox action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The visible text of a Web page SELECT

form element. The text is from the Value attribute of
the OPTION tag.

► HTMLTitle=$. The text from the Title attribute of
the HTML object.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Label=$. The text of the label object that immediately
precedes the combo edit box in the internal order (Z
order) of windows.

► ► ►

 Description

 Syntax

ComboEditBox

Command Reference 6-49

► ► ►

 Syntax Element Description

 ► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► VisualText=$. An optional setting used to identify
an object by its prior label. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates of the drag. The coordinates are
relative to the top left of the object.

 None.

 This example clicks the second combo edit box in the window
(ObjectIndex=2) at x,y coordinates of 59,10.

 ComboEditBox Click, "ObjectIndex=2", "Coords=59,10"

 ComboBox EditBoxVP
 ComboListBox ListBoxVP

 Comments

 Example

 See Also

ComboEditBoxVP

6-50 SQABasic Language Reference

 ComboEditBoxVP
 Verification Point Command

 Establishes a verification point for a combo edit box control.

 Result = ComboEditBoxVP (action%,recMethod$,parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareNumeric. Captures the numeric value of

the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► VerifyIsBlank. Checks that the object has no text.
parameters$ VP is required; ExpectedResult
and Wait are optional.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The visible text of a Web page SELECT

form element. The text is from the Value attribute of
the OPTION tag.

► HTMLTitle=$. The text from the Title attribute of
the HTML object.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Label=$. The text of the label object that immediately
precedes the combo edit box in the internal order (Z
order) of windows.

► ► ►

 Description

 Syntax

ComboEditBoxVP

Command Reference 6-51

► ► ►

 Syntax Element Description

 ► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function.
— Function=$. The name of the custom function to

use in comparing the text.
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

ComboListBox

6-52 SQABasic Language Reference

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the text of the second combo edit box in the window
(ObjectIndex=2) and performs a case-sensitive comparison with the recorded
baseline in verification point VPNESTED. At playback, the comparison is retried
every 3 seconds and times out after 30 seconds.

 Result = ComboEditBoxVP (CompareText, "ObjectIndex=2",
"VP=VPNESTED;Type=CaseSensitive;Wait=3,30")

 ComboBoxVP EditBoxVP
 ComboListBoxVP ListBoxVP

 ComboListBox
 User Action Command

 Performs an action on a combo list box (the list box part of a combo box).

 ComboListBox action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these actions:
► MakeSelection. Selects the specified item from a Java

combo box. Used only for the Java environment.
recMethod$ must contain one of the Java recognition
methods, and parameters$ must contain either Text
or Index.

► MouseClick. The clicking of the left, center, or right
mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When
action% contains a mouse-click value,
parameters$ must contain one of the following:
Text, ItemData, Index, or Coords=x,y.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

ComboListBox

Command Reference 6-53

► ► ►

 Syntax Element Description

 ► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag values.

► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.
If Robot cannot interpret the action being applied to a
scroll bar, which happens with certain custom standalone
scroll bars, it records the action as a click or drag.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of an item in a Web page

SELECT form element. The text is from the Value
attribute of the OPTION tag.

► HTMLTitle=$. The text from the Title attribute of
the HTML object.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Label=$. The text of the label object that immediately
precedes the combo list box in the internal order (Z
order) of windows.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► ► ►

ComboListBox

6-54 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext command),
or Enabled if the state has not been otherwise
declared.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
environment.

► VisualText=$. An optional setting used to identify
an object by its prior label. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object. Robot uses this parameter only if the item
contents or index cannot be retrieved — for example, if
the combo list box is empty or disabled.

► Coords=x1,x2,y1,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

► Index=%. If action% is a mouse click or
MakeSelection, identifies the index of an item in
the list.

► ItemData=&. If action% is a mouse click, identifies
the internal value, or ItemData, associated with an item
in the list. All items in a list have an associated value.
The uniqueness and significance of this value is entirely
up to the application. Robot uses this parameter only if
the combo list box item’s text cannot be retrieved (for
example, if it is an OwnerDrawn combo box), and if
the Identify List Selections By recording option is set
to Contents.

► Position=%. If action% is a VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position. Every scroll bar has an internal
range, and this value is specific to that range.

► Text=$. If action% is a mouse click or
MakeSelection, identifies the text of an item in
the list.

ComboListBoxVP

Command Reference 6-55

 None.

 This example clicks the item identified by the text VGA in the combo list box
identified by the label Display.

 ComboListBox Click, "Label=Display:", "Text=VGA"

 This example clicks a select list item with a Value attribute of 1. The list is located
within the Web page frame named Main.

 ComboListBox Click,
 "Type=HTMLFrame;HTMLId=Main;\;Type=ComboListBox;
 Name=Selectlist", "Index=1"

 ComboBox EditBox
 ComboEditBox ListBox

 ComboListBoxVP
 Verification Point Command

 Establishes a verification point for a combo list box.

 Result = ComboListBoxVP (action%,recMethod$,parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► Compare. Captures the entire textual contents of the

object into a grid and compares it to a recorded
baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the currently
selected item and compares it to a recorded baseline.
parameters$ VP and Type are required;
ExpectedResult and Wait are optional.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

ComboListBoxVP

6-56 SQABasic Language Reference

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of an item in a Web page

SELECT form element. The text is from the Value
attribute of the OPTION tag.

► HTMLTitle=$. The text from the Title attribute of
the HTML object.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Label=$. The text of the label object that immediately
precedes the combo list box in the internal order (Z
order) of windows.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► ► ►

ComboListBoxVP

Command Reference 6-57

► ► ►

 Syntax Element Description

 ► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function.
— Function=$. The name of the custom function to

use in comparing the text.
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the properties of the combo list box control identified by
the label Display and compares them to the recorded baseline in verification
point VPNEW. At playback, the comparison is retried every 2 seconds and times out
after 30 seconds.

 Result = ComboListBoxVP (CompareProperties,
"Label=Display:", "VP=VPNEW;Wait=2,30")

 ComboBox EditBox
 ComboEditBox ListBox

 Comments

 Example

 See Also

Command

6-58 SQABasic Language Reference

 Command
 Function

 Returns the command line specified when the MAIN sub procedure was invoked.

 Command[$]

 Syntax Element Description

 $ Optional. If specified, the return type is String. If
omitted, the function returns a Variant of VarType 8
(String).

 After the MAIN sub procedure returns, further calls to the Command function will
yield an empty string. This function might not be supported in some
implementations of SQABasic.

 This example opens the file entered by the user on the command line.

 Sub main
 Dim filename as String
 Dim cmdline as String
 Dim cmdlength as Integer
 Dim position as Integer
 cmdline=Command
 If cmdline="" then
 MsgBox "No command line information."
 Exit Sub
 End If
 cmdlength=Len(cmdline)
 position=InStr(cmdline,Chr(32))
 filename=Mid(cmdline,position+1,cmdlength-position)
 On Error Resume Next
 Open filename for Input as #1
 If Err<>0 then
 MsgBox "Error loading file."
 Exit Sub
 End If
 MsgBox "File " & filename & " opened."
 Close #1
 MsgBox "File " & filename & " closed."
 End Sub

 AppActivate InputKeys
 DoEvents Shell
 Environ

 Description

 Syntax

 Comments

 Example

 See Also

Const

Command Reference 6-59

 Const
 Statement

 Declares symbolic constants for use in an SQABasic program.

 [Global] Const constantName [As type]= expression
[,constantName [As type]= expression]...

 Syntax Element Description

 constantName The variable name to contain a constant value.

 type The data type of the constant (Number or String).

 expression Any expression that evaluates to a constant number.

 Instead of using the As clause, the type of the constant can be specified by using a
type-declaration character as a suffix (# for numbers, $ for strings) to the
constantName. If no type-declaration character is specified, the type of the
constantName is derived from the type of the expression.

 If Global is specified, the constant is validated at module load time. If the constant
has already been added to the runtime global area, the constant’s type and value are
compared to the previous definition, and the load fails if a mismatch is found. This
is useful as a mechanism for detecting version mismatches between modules.

 This example divides the US national debt by the number of people in the country
to find the amount of money each person would have to pay to wipe it out. This
figure is converted to a Long integer and formatted as Currency.

 Sub main
 Dim debt As Single
 Dim msgtext
 Const Populace = 250000000
 debt=InputBox("Enter the current US national debt:")
 msgtext = "The debt per citizen is: "
 msgtext = msgtext + Format(CLng(Debt/Populace), "Currency")
 MsgBox msgtext
 End Sub

 Declare Let
 Deftype Type
 Dim

 Description

 Syntax

 Comments

 Example

 See Also

Cos

6-60 SQABasic Language Reference

 Cos
 Function

 Returns the cosine of an angle.

 Cos(number)

 Syntax Element Description

 number An angle in radians.

 The return value will be between -1 and 1. The return value is a single-precision
number if the angle has a data type Integer, Currency, or is a single-precision
value. The return value will be a double precision value if the angle has a data type
Long, Variant, or is a double-precision value.

 The angle can be either positive or negative. To convert degrees to radians,
multiply by (PI/180). The value of PI is approximately 3.14159.

 This example finds the length of a roof, given its pitch and the distance of the
house from its center to the outside wall.

 Sub Main
 Dim bwidth, roof, pitch
 Dim msgtext
 Const PI=3.14159
 Const conversion=PI/180
 pitch=InputBox("Enter roof pitch in degrees")
 pitch=Cos(pitch*conversion)
 bwidth=InputBox("Enter 1/2 of house width in feet")
 roof=bwidth/pitch
 msgtext = "The length of the roof is "
 msgtext = msgtext + Format(roof, "##.##") & " feet."
 MsgBox msgtext
 End Sub

 Atn
 Sin
 Tan
 Derived Trigonometric Functions (Appendix D)

 Description

 Syntax

 Comments

 Example

 See Also

CreateObject

Command Reference 6-61

 CreateObject
 Function

 Creates a new OLE2 automation object.

 CreateObject(class)

 Syntax Element Description

 class The name of the application, a period, and the name of
the object to be used.

 To create an object, you first must declare an object variable, using Dim, and then
Set the variable equal to the new object, as follows:

 Dim OLE2 As Object
Set OLE2 = CreateObject("spoly.cpoly")

 To refer to a method or property of the newly created object, use the syntax
objectvar.property or objectvar.method, as follows:

 OLE2.reset
 Refer to the documentation provided with your OLE2 automation server
application for correct application and object names.

 This example uses the CreateObject function to open the software product VISIO
(if it is not already open).

 Sub main
 Dim visio as Object
 Dim doc as Object
 Dim i as Integer, doccount as Integer

 'Initialize Visio
 on error resume next
 Set visio = GetObject(,"visio.application")
 If (visio Is Nothing) then
 Set visio = CreateObject("visio.application")
 If (visio Is Nothing) then
 MsgBox "Couldn't find Visio!"
 Exit Sub
 End If
 End If
 MsgBox "Visio is open."
 End Sub

 Class List Nothing
 GetObject Object Class
 Is Typeof
 New

 Description

 Syntax

 Comments

 Example

 See Also

CSng

6-62 SQABasic Language Reference

 CSng
 Function

 Converts an expression to the data type Single.

 CSng(expression)

 Syntax Element Description

 expression Any expression that can evaluate to a number.

 The expression must have a value within the range allowed for the Single
data type, or an error occurs.

 Strings that cannot be converted to an integer result in a Type Mismatch error.
Variants containing null result in an Illegal Use of Null error.

 This example calculates the factorial of a number. A factorial (represented as an
exclamation mark, !) is the product of a number and each integer between it and
the number 1. For example, 5 factorial, or 5!, is the product of 5*4*3*2*1, or
the value 120.

 Sub main
 Dim number as Integer
 Dim factorial as Double
 Dim x as Integer
 Dim msgtext
 number=InputBox("Enter an integer between 1 and 170:")
 If number<=0 then
 Exit Sub
 End If
 factorial=1
 For x=number to 2 step -1
 factorial=factorial*x
 Next x
 Rem If number =<35, then its factorial is small enough to
Rem be stored as a single-precision number
 If number<35 then
 factorial=CSng(factorial)
 End If
 msgtext="The factorial of " & number & " is: " & factorial
 MsgBox msgtext
 End Sub

 CCur CStr
 CDbl CVar
 CInt CVDate
 CLng

 Description

 Syntax

 Comments

 Example

 See Also

CStr

Command Reference 6-63

 CStr
 Function

 Converts an expression to the data type String.

 CStr(expression)

 Syntax Element Description

 expression Any expression that can evaluate to a number. The CStr
statement accepts any type of expression:
► Boolean. A String containing TRUE or FALSE.
► Date. A String containing a date.
► Empty. A zero-length String ("").
► Error. A String containing the word Error followed

by the error number.
► Null. A runtime error.
► Other Numeric. A String containing the number.

 None.

 This example converts a variable from a value to a string and displays the result.
Variant type 5 is Double and type 8 is String.

 Sub main
 Dim var1
 Dim msgtext as String
 var1=InputBox("Enter a number:")
 var1=var1+10
 msgtext="Your number plus 10 is: " & var1 & Chr(10)
 msgtext=msgtext & "making its Variant type: " & Vartype(var1)
 MsgBox msgtext
 var1=CStr(var1)
 msgtext="After conversion to a string," & Chr(10)
 msgtext=msgtext & "the Variant type is: " & Vartype(var1)
 MsgBox msgtext
 End Sub

 Asc CInt CVar
 CCur CLng CVDate
 CDbl CSng Format
 Chr

 Description

 Syntax

 Comments

 Example

 See Also

'$CStrings

6-64 SQABasic Language Reference

 ''''$CStrings
 Metacommand

 Tells the compiler to treat a backslash character (\) inside a string as an escape
character.

 '$CStrings [Save | Restore]

 Syntax Element Description

 Save Saves the current '$CStrings setting.

 Restore Restores a previously saved $CStrings setting.

 This treatment of a backslash in a string is based on the C language.

 All metacommands must begin with an apostrophe (') and are recognized by the
compiler only if the command starts at the beginning of a line.

 Save and Restore operate as a stack and allow the user to change the setting for
a range of the program without impacting the rest of the program.

 The supported special characters are:

 \n Newline (Linefeed) \f Formfeed
 \t Horizontal Tab \\ Backslash
 \v Vertical Tab \' Single Quote
 \b Backspace \" Double Quote
 \r Carriage Return \0 Null Character

 The instruction "Hello\r World" is the equivalent of "Hello" +
Chr$(13) + "World".

 In addition, any character can be represented as a 3-digit octal code or a 3-digit
hexadecimal code:

 \ddd Octal Code \xddd Hexadecimal Code

 For both hexadecimal and octal, fewer than 3 characters can be used to specify the
code as long as the subsequent character is not a valid (hex or octal) character.

 To tell the compiler to return to the default string processing mode, where
the backslash character has no special meaning, use the '$NoCStrings
metacommand.

 Description

 Syntax

 Comments

CurDir

Command Reference 6-65

 This example displays two lines, the first time using the C-language characters \n
for a carriage return and line feed.

 Sub main
 '$CStrings
 MsgBox "This is line 1\n This is line 2 (using C Strings)"
 '$NoCStrings
 MsgBox "This is line 1" +Chr$(13)+Chr$(10)+"This is

line 2 (using Chr)"
 End Sub

 $Include Rem
 $NoCStrings

 CurDir
 Function

 Returns the default directory (and drive) for the specified drive.

 CurDir[$] [(drive$)]

 Syntax Element Description

 $ Optional. If specified, the return type is String. If
omitted, the function will return a Variant of VarType
8 (String).

 drive$ A string expression containing the drive to search.

 The drive must exist, and must be within the range specified in the LASTDRIVE
statement of the CONFIG.SYS file. If a null argument ("") is supplied, or if no
drive$ is indicated, the path for the default drive is returned.

 To change the current drive, use ChDrive. To change the current directory,
use ChDir.

 This example changes the current directory to C:\WINDOWS, if it is not already
the default.

 Sub main
 Dim newdir as String
 newdir="c:\windows"
 If CurDir <> newdir then
 ChDir newdir
 End If
 MsgBox "The default directory is now: " & newdir
 End Sub

 ChDir MkDir
 ChDrive RmDir
 Dir

 Example

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

CVar

6-66 SQABasic Language Reference

 CVar
 Function

 Converts an expression to the data type Variant.

 CVar(expression)

 Syntax Element Description

 expression Any expression that can evaluate to a number.

 CVar accepts any type of expression.

 CVar generates the same result as you would get by assigning the expression
to a Variant variable.

 This example converts a string variable to a variant variable.

 Sub main
 Dim answer as Single
 answer=100.5
 MsgBox "'Answer' is DIMed as Single with the value: " & answer
 answer=CVar(answer)
 answer=Fix(answer)
 MsgBox "'Answer' is now a variant with type: " & VarType(answer)
 End Sub

 CCur CLng CStr
 CDbl CSng CVDate
 CInt

 CVDate
 Function

 Converts an expression to the data type Variant Date.

 CVDate(expression)

 Syntax Element Description

 expression Any expression that can evaluate to a number.

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

CVDate

Command Reference 6-67

 CVDate accepts both string and numeric values.

 The CVDate function returns a Variant of VarType 7 (date) that represents a
date from January 1, 100 through December 31, 9999. A value of 1 represents
December 31, 1899, and a value of -1 represents December 29, 1899. Times are
represented as fractional days.

 With this function, a two-digit year is converted to a four-digit year, as follows:

► 00 through 29 is converted to 2000 through 2029

► 30 through 99 is converted to 1930 through 1999

 When exchanging data information with external data sources or external
programs, you should use double-precision floating point numbers or data strings
with at least four characters for identifying the century.

 This example displays the date for one week from the date entered by the user.

 Sub main
 Dim str1 as String
 Dim x as Integer
 Dim nextweek
 Dim msgtext
 i: str1=InputBox$("Enter a date:")
 answer=IsDate(str1)
 If answer=-1 then
 str1=CVDate(str1)
 nextweek=DateValue(str1)+7
 msgtext="One week from the date entered is:"
 msgtext=msgtext & Format(nextweek,"dddddd")
 MsgBox msgtext
 Else
 MsgBox "Invalid date or format. Try again."
 Goto i
 End If
 End Sub

 Asc CInt CVar
 CCur CLng Format
 CDbl CSng Val
 Chr CStr

 Comments

 Example

 See Also

DataWindow

6-68 SQABasic Language Reference

 DataWindow
 User Action Command

 Performs an action on a PowerBuilder DataWindow.

 DataWindow action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift).

► When action% contains a mouse-click value,
parameters$ identifies the DataWindow row that
was clicked. See Comments for more information.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag
values.

► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

HScrollTo and VScrollTo take the required
parameter Position=%.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. Applies to both the DataWindow itself
and to its child objects (such as columns). For example
a clicked column might be identified as follows:
"Name=datawindow;\;Name=col_custid"

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► ► ►

 Description

 Syntax

DataWindow

Command Reference 6-69

► ► ►

 Syntax Element Description

 ► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default state
is the state of the current context window (as set in the
most recent Window SetContext command), or
Enabled if the state has not been otherwise declared.

► Text=$. The caption of the DataWindow. Wildcards
are not supported.

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Col=%;Value=x. If action% is a mouse click, these

two parameters specify the row being clicked:
— Col is the numeric position of a column in the

DataWindow (the leftmost column = 1, the next
column = 2, and so forth)

— Value is the contents of the cell located at the
intersection of column Col and the clicked row

► ColName=$;Value=x. If action% is a mouse click,
these two parameters specify the row being clicked:
— ColName is the developer-assigned object name of a

column in the DataWindow
— Value is the contents of the cell located at the

intersection of column ColName and the clicked row
► Coords=x,y. If action% is a mouse click, specifies

the x,y coordinates of the click, relative to the top left of
the cell or column being clicked.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object or the item.

► CurrentRow. If action% is a mouse click, the
currently selected row in the DataWindow is clicked.

► Index=%. An optional 1-based clarifier for Text=$ or
column/value parameters$. For example,
Text=Yes;Index=3 specifies the third DataWindow
row containing the value Yes.

► LastRow. If action% is a mouse click, the last row in
the DataWindow is clicked.

► ► ►

DataWindow

6-70 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position in the scroll box. Every scroll bar
has an internal range, and this value is specific to that
range.

► Row=%. If action% is a mouse click, the number of
the DataWindow row being clicked (first row = 1).

► Text=$. If action% is a mouse click, the visible text
in the row being clicked.

► VisibleRow=%. If action% is a mouse click, the
number of the visible row being clicked. The range of
row numbers begins with the first visible row (first
visible row = 1).

With mouse-click actions, recMethod$ specifies the column being clicked, and
parameters$ specifies the row being clicked.

Whenever possible during recording, Robot specifies the clicked row by using one
of these parameters$ values (or pairs of values) in the following default order
of priority:

1. CurrentRow (when the user action takes place in the currently selected row,
and the user's previous action also took place in that row).

2. One or more pairs of a column identifier (Col=% or ColName=$) followed
by Value=x. Robot uses as many column/value pairs as necessary to
uniquely identify the clicked row — for example:

ColName=acct_type;Value=Savings;ColName=acct_number;Value=388217

3. Text=$ (when the DataWindow is not editable and has less than four visible
columns).

4. Row=%. If the current user action is in the last row of the DataWindow, and
the action occurs in an editable column, Robot uses LastRow.

5. Coords=x,y.

Note the following points about column/value pairs:

► Value must immediately follow Col or ColName.

► The values are separated by a semicolon (;) — for example:
 "ColName=custid;Value=0253319"

Comments

DataWindow

Command Reference 6-71

► The column identifier (Col or ColName) isn’t necessarily the column that
was clicked. Robot looks for one or more key columns of unique values. If a
key column is found:

− The column identifier specifies the key column

− Value specifies the contents of the cell at the intersection of the key
column and the row that the user clicked

► If there are no key columns, Robot uses as many column/value pairs as
necessary to uniquely identify the clicked row, starting with the leftmost
column.

► parameters$ has a maximum length of 968 characters. If multiple
column/row pairs cause parameters$ to exceed the maximum length,
Robot uses another way to uniquely identify the clicked row.

 Robot treats the following pairs of parameters$ values equally:

 Row=0 and CurrentRow

 Row=-1 and LastRow

 This example clicks the DataWindow cell that’s identified by the column
custname and the row specified by the column/value pair
Col=1;Value=11739.

 DataWindow Click,"Name=dw;\;Name=custname","Col=1;Value=11739"
 This example uses the relative row indicator CurrentRow and the coordinates of
the click to specify the row being clicked.

 DataWindow Click,"Name=dw;\;Name=custname","CurrentRow;Coords=5,5"
 This example uses the relative row indicator VisibleRow=% to specify that the
second visible row is being clicked. Note that the clicked row may or may not be
the second row in the entire DataWindow table.

 DataWindow Click,"Name=dw;\;Name=custname","VisibleRow=2"

 DataWindowVP

 Example

 See Also

DataWindowVP

6-72 SQABasic Language Reference

 DataWindowVP
 Verification Point Command

 Establishes a verification point for a PowerBuilder DataWindow.

 Result = DataWindowVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► Compare. Captures the data of the object into a grid

and compares it to a recorded baseline. parameters$
VP is required; ExpectedResult and Wait are
optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the caption of the
DataWindow and compares it to a recorded baseline.
parameters$ VP and Type are required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The caption of the DataWindow. Wildcards
are not supported.

► ► ►

 Description

 Syntax

DataWindowVP

Command Reference 6-73

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function.
— Function=$. The name of the custom function to

use in comparing the text.
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 Comments

Date (Function)

6-74 SQABasic Language Reference

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the contents of the DataWindow control identified by the
PowerBuilder object name dw_trans and compares it to a recorded baseline in
verification point QBDW1.

 Result = DataWindowVP (Compare, "Name=dw_trans", "VP=QBDW1")

 None.

 Date (Function)
 Function

 Returns a string representing the current date.

 Date[$]

 Syntax Element Description

 $ Optional. If specified, the return type is String. If
omitted, the function will return a Variant of
VarType 8 (String).

 The Date function returns a ten character string.

 This example displays the date for one week from the today’s date (the current
date on the computer).

 Sub main
 Dim nextweek
 nextweek=CVar(Date)+7
 MsgBox "One week from today is: " & Format(nextweek, "ddddd")
 End Sub

 CVDate Time function
 Date statement Time statement
 Format Timer
 Now TimeSerial

 Example

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

Date (Statement)

Command Reference 6-75

 Date (Statement)
 Statement

 Sets the system date.

 Date = expression

 Syntax Element Description

 Expression A string in one of the following forms:
 mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

 where mm denotes a month (01-12), dd denotes a day
(01-31), and yy or yyyy denotes a year (1980-2099).

 If expression is not already a Variant of VarType 7 (date), Date attempts
to convert it to a valid date from January 1, 1980 through December 31, 2099.
Date uses the Short Date format in the International section of Windows Control
Panel to recognize day, month, and year if a string contains three numbers
delimited by valid date separators. In addition, Date recognizes month names in
either full or abbreviated form.

 With this function, a two-digit year is converted to a four-digit year, as follows:

► 80 through 99 is converted to 1980 through 1999

► 00 through 79 is converted to 2000 through 2079

 When exchanging data information with external data sources or external
programs, you should use double-precision floating point numbers or data strings
with at least four characters for identifying the century.

 This example changes the system date to a date entered by the user.

 Sub main
 Dim userdate
 Dim answer
 i: userdate= InputBox("Enter date for the system clock:")
 If userdate="" then
 Exit Sub
 End If
 answer=IsDate(userdate)
 If answer=-1 then
 Date=userdate
 Else
 MsgBox "Invalid date or format. Try again."
 Goto i
 End If
 End Sub

 Description

 Syntax

 Comments

 Example

DateSerial

6-76 SQABasic Language Reference

 Date function
 Time function
 Time statement

 DateSerial
 Function

 Returns a date value for year, month, and day specified.

 DateSerial(year%, month%, day%)

 Syntax Element Description

 year% A year between 100 and 9999, or a numeric expression.

 month% A month between 1 and 12, or a numeric expression.

 day% A day between 1 and 31, or a numeric expression.

 The DateSerial function returns a Variant of VarType 7 (date) that
represents a date from January 1, 100 through December 31, 9999.

 A numeric expression can be used for any of the arguments to specify a relative
date: a number of days, months, or years before or after a certain date.

 This example finds the day of the week New Year’s day will be for the year 2000.

 Sub main
 Dim newyearsday
 Dim daynumber
 Dim msgtext
 Dim newday as Variant
 Const newyear=2000
 Const newmonth=1
 Let newday=1
 newyearsday=DateSerial(newyear, newmonth, newday)
 daynumber=Weekday(newyearsday)
 msgtext="New Year's day 2000 is a " & Format(daynumber, "dddd")
 MsgBox msgtext
 End Sub

 DateValue Now Weekday
 Day TimeSerial Year
 Month TimeValue

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

DateTime

Command Reference 6-77

 DateTime
 User Action Command

 Performs an action on a date and time picker (DTP) control.

 DateTime action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Label=$. The text of the label object that immediately

precedes the control in the Z order of windows.
► Name=$. A unique name that a developer assigns to an

object to identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its prior label. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 Description

 Syntax

DateTimeVP

6-78 SQABasic Language Reference

 None.

 This example clicks the date and time picker control labeled “Select a Date” at x,y
coordinates of 77,15.

 DateTime Click, "Label=Select a Date", "Coords=77,15"

 Calendar
 DateTimeVP

 DateTimeVP
 Verification Point Command

 Establishes a verification point for a date and time picker (DTP) control.

 Result = DateTimeVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Label=$. The text of the label object that immediately

precedes the control in the internal order (Z order) of
windows.

► Name=$. A unique name that a developer assigns to an
object to identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its prior label. It is for user clarification
only and does not affect object recognition.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

DateValue

Command Reference 6-79

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example captures the properties of the date and time picker control labeled
“Select a Date” and compares them to the recorded baseline in the verification
point DATETIME1.

 Result = DateTimeVP (CompareProperties, "Label=Select a Date",
"VP=DATETIME1")

 DateTime

 DateValue
 Function

 Returns a date value for the string specified.

 DateValue(date$)

 Syntax Element Description

 date$ A string representing a valid date.

 Comments

 Example

 See Also

 Description

 Syntax

Day

6-80 SQABasic Language Reference

 The DateValue function returns a Variant of VarType 7 (date) that
represents a date from January 1, 100 through December 31, 9999.

 DateValue accepts several different string representations for a date. It makes use
of the operating system’s international settings for resolving purely numeric dates.

 With this function, a two-digit year is converted to a four-digit year, as follows:

► 00 through 29 is converted to 2000 through 2029

► 30 through 99 is converted to 1930 through 1999

 When exchanging data information with external data sources or external
programs, you should use double-precision floating point numbers or data strings
with at least four characters for identifying the century.

 This example displays the date for one week from the date entered by the user.

Sub main
Dim str1 as String
Dim answer as Integer
Dim nextweek
Dim msgtext

i: str1=InputBox$("Enter a date:")
answer=IsDate(str1)
If answer=-1 then

str1=CVDate(str1)
nextweek=DateValue(str1)+7
msgtext = "One week from your date is: "
msgtext = msgtext + Format(nextweek,"dddddd")
MsgBox msgtext

Else
MsgBox "Invalid date or format. Try again."
Goto i

End If
End Sub

 DateSerial Now Weekday
 Day TimeSerial Year
 Month TimeValue

 Day
 Function

 Returns the day of the month (1-31) of a date-time value.

 Comments

 Example

 See Also

 Description

DDEAppReturnCode

Command Reference 6-81

 Day(date)

 Syntax Element Description

 date Any expression that can evaluate to a date.

 Day attempts to convert the input value of date to a date value. The return value
is a Variant of VarType 2 (integer). If the value of date is null, a Variant of
VarType 1 (null) is returned.

 This example finds the month (1-12) and day (1-31) values for this Thursday.
 Sub main
 Dim x, today, msgtext
 Today=DateValue(Now)
 Let x=0
 Do While Weekday(Today+x)<> 5
 x=x+1
 Loop
 msgtext="This Thursday is: " & Month(Today+x) & "/" & Day(Today+x)
 MsgBox msgtext
 End Sub

 Date function Minute Second
 Date statement Month Weekday
 Hour Now Year

 DDEAppReturnCode
 Function

 Returns a code received from an application on an open dynamic data exchange
(DDE) channel.

 DDEAppReturnCode()

 To open a DDE channel, use DDEInitiate. Use DDEAppReturnCode to
check for error return codes from the server application after using
DDEExecute, DDEPoke or DDERequest.

 None.

 DDEExecute DDERequest
 DDEInitiate DDETerminate
 DDEPoke

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

DDEExecute

6-82 SQABasic Language Reference

 DDEExecute
 Statement

 Sends one or more commands to an application via a dynamic-data exchange
(DDE) channel.

 DDEExecute channel%, cmd$

 Syntax Element Description

 channel% An integer or expression for the channel number of the
DDE conversation as returned by DDEInitiate.

 cmd$ One or more commands recognized by the application.

 If channel does not correspond to an open channel, an error occurs.

 You can also use the format described under InputKeys to send specific key
sequences. If the server application cannot perform the specified command, an
error occurs.

 In many applications that support DDE, cmd$ can be one or more statements or
functions in the application’s macro language. Note that some applications require
that each command received through a DDE channel be enclosed in brackets and
quotation marks.

 You can use a single DDEExecute instruction to send more than one command
to an application.

 Many commands require arguments in the form of strings enclosed in quotation
marks. Because quotation marks indicate the beginning and end of a string in
SQABasic, use Chr$(34) to include a quotation mark in a command string. For
example, the following instruction tells Microsoft Excel to open MYFILE.XLS:

 DDEExecute channelno, "[OPEN(" + Chr$(34) + "MYFILE.XLS" +
 Chr$(34) + ")]"

 This example opens Microsoft Word, uses DDEPoke to write the text Hello,
World to the open document (Untitled) and uses DDEExecute to save the text
to the file TEMP001. The example assumes that WINWORD.EXE is in the path
C:\MSOFFICE\WINWORD.

 Sub main
 Dim channel as Integer
 Dim appname as String
 Dim topic as String
 Dim testtext as String
 Dim item as String
 Dim pcommand as String
 Dim msgtext as String

 Description

 Syntax

 Comments

 Example

DDEInitiate

Command Reference 6-83

 Dim answer as String
 Dim x as Integer
 Dim path as String
 appname="WinWord"
 path="c:\msoffice\winword\"
 topic="System"
 item="Page1"
 testtext="Hello, world."
 On Error Goto Errhandler
 x=Shell(path & appname & ".EXE")
 channel = DDEInitiate(appname, topic)
 If channel=0 then
 MsgBox "Unable to open Word."
 Exit Sub
 End If
 DDEPoke channel, item, testtext
 pcommand="[FileSaveAs .Name = "
 pcommand=pcommand + Chr$(34) & "C:\TEMP001" & Chr$(34) & "]"
 DDEExecute channel, pcommand
 pcommand="[FileClose]"
 DDEExecute channel, pcommand
 msgtext="The text: " & testtext & " saved to C:\TEMP001."
 msgtext=msgtext & Chr$(13) & "Delete? (Y/N)"
 answer=InputBox(msgtext)
 If answer="Y" or answer="y" then
 Kill "C:\TEMP001.doc"
 End If
 DDETerminate channel
 Exit Sub
 Errhandler:
 If Err<>0 then
 MsgBox "DDE Access failed."
 End If
 End Sub

 DDEAppReturnCode DDETerminate
 DDEInitiate DDEPoke
 DDERequest

 DDEInitiate
 Function

 Opens a dynamic-data exchange (DDE) channel and returns the DDE channel
number (1,2, etc.).

 DDEInitiate(appname$, topic$)

 Syntax Element Description

 appname$ A string or expression for the name of the DDE
application to talk to.

 topic$ A string or expression for the name of a topic recognized
by appname$.

 See Also

 Description

 Syntax

DDEInitiate

6-84 SQABasic Language Reference

 If DDEInitiate is unable to open a channel, it returns zero (0).

 Appname$ is usually the name of the application’s .EXE file without the .EXE file
name extension. If the application is not running, DDEInitiate cannot open a
channel and returns an error. Use Shell to start an application.

 Topic$ is usually an open file name. If appname$ does not recognize topic$,
DDEInitiate generates an error. Many applications that support DDE recognize
a topic named System, which is always available and can be used to find out
which other topics are available. For more information on the System topic, see
DDERequest.

 The maximum number of channels that can be open simultaneously is
determined by the operating system and your system’s memory and resources. If
you aren’t using an open channel, you should conserve resources by closing it
using DDETerminate.

 This example uses DDEInitiate to open a channel to Microsoft Word. It uses
DDERequest to obtain a list of available topics (using the System topic).
The example assumes that WINWORD.EXE is in the path C:\MSOFFICE\WINWORD.

 Sub main
 Dim channel as Integer
 Dim appname as String
 Dim topic as String
 Dim item as String
 Dim msgtext as String
 Dim path as String
 appname="winword"
 topic="System"
 item="Topics"
 path="c:\msoffice\winword\"
 channel = -1
 x=Shell(path & appname & ".EXE")
 channel = DDEInitiate(appname, topic)
 If channel= -1 then
 msgtext="M/S Word not found -- please place on your path."
 Else
 On Error Resume Next
 msgtext="The Word topics available are:" & Chr$(13)
 msgtext=msgtext & Chr$(13) & DDERequest(channel,item)
 DDETerminate channel
 If Err<>0 then
 msgtext="DDE Access failed."
 End If
 End If
 MsgBox msgtext
 End Sub

 DDEAppReturnCode DDERequest
 DDEExecute DDETerminate
 DDEPoke

 Comments

 Example

 See Also

DDEPoke

Command Reference 6-85

 DDEPoke
 Statement

 Sends data to an application on an open dynamic-data exchange (DDE) channel.

 DDEPoke channel%, item$, data$

 Syntax Element Description

 channel% An integer or expression for the open DDE channel
number.

 item$ A string or expression for the name of an item in the
currently opened topic.

 data$ A string or expression for the information to send to the
topic.

 If channel% does not correspond to an open channel, an error occurs.

 When you open a channel to an application using DDEInitiate, you also specify
a topic, such as a file name, to communicate with. The item$ is the part of the
topic you want to send data to. DDEPoke sends data as a text string; you cannot
send text in any other format, nor can you send graphics.

 If the server application does not recognize item$, an error occurs.

 This example opens Microsoft Word, uses DDEPoke to write the text Hello,
World to the open document (Untitled) and uses DDEExecute to save the text
to the file TEMP001. The example assumes that WINWORD.EXE is in the path
C:\MSOFFICE\WINWORD.

 Sub main
 Dim channel as Integer
 Dim appname as String
 Dim topic as String
 Dim testtext as String
 Dim item as String
 Dim pcommand as String
 Dim msgtext as String
 Dim answer as String
 Dim x as Integer
 Dim path as String
 appname="WinWord"
 path="c:\msoffice\winword\"
 topic="System"
 item="Page1"
 testtext="Hello, world."
 On Error Goto Errhandler
 x=Shell(path & appname & ".EXE")
 channel = DDEInitiate(appname, topic)

 Description

 Syntax

 Comments

 Example

DDERequest

6-86 SQABasic Language Reference

 If channel=0 then
 MsgBox "Unable to open Word."
 Exit Sub
 End If
 DDEPoke channel, item, testtext
 pcommand="[FileSaveAs .Name = " & Chr$(34)
 pcommand=pcommand & "C:\TEMP001" & Chr$(34) & "]"
 DDEExecute channel, pcommand
 pcommand="[FileClose]"
 DDEExecute channel, pcommand
 msgtext="The text " & testtext & " is saved to C:\TEMP001."
 msgtext=msgtext & Chr$(13) & "Delete? (Y/N)"
 answer=InputBox(msgtext)
 If answer="Y" or answer="y" then
 Kill "C:\TEMP001.doc"
 End If
 DDETerminate channel
 Exit Sub
 Errhandler:
 If Err<>0 then
 MsgBox "DDE Access failed."
 End If
 End Sub

 DDEAppReturnCode DDERequest
 DDEExecute DDETerminate
 DDEInitiate

 DDERequest
 Function

 Returns data from an application through an open dynamic data exchange
(DDE) channel.

 DDERequest[$] (channel%, item$)

 Syntax Element Description

 channel% An integer or expression for the open DDE channel
number.

 item$ A string or expression for the name of an item in the
currently opened topic to get information about.

 Many applications that support DDE recognize a topic
named System. Three standard items in the System
topic are as follows:
► SysItems. A list of all items in the System topic
► Topics. A list of available topics
► Formats. A list of all the Clipboard formats supported

 See Also

 Description

 Syntax

DDETerminate

Command Reference 6-87

 If channel% does not correspond to an open channel, an error occurs.

 If the server application does not recognize item$, an error occurs.

 If DDERequest is unsuccessful, it returns an empty string ("").

 When you open a channel to an application using DDEInitiate, you also specify
a topic, such as a file name, to communicate with. The item$ is the part of the
topic whose contents you are requesting.

 DDERequest returns data as a text string. Data in any other format cannot be
transferred, nor can graphics.

 This example uses DDEInitiate to open a channel to Microsoft Word. It uses
DDERequest to obtain a list of available topics (using the System topic).
The example assumes that WINWORD.EXE is in the path C:\MSOFFICE\WINWORD.

 Sub main
 Dim channel as Integer
 Dim appname as String
 Dim topic as String
 Dim item as String
 Dim msgtext as String
 Dim path as String
 appname="winword"
 topic="System"
 item="Topics"
 path="c:\msoffice\winword\"
 channel = -1
 x=Shell(path & appname & ".EXE")
 channel = DDEInitiate(appname, topic)
 If channel= -1 then
 msgtext="M/S Word not found -- please place on your path."
 Else
 On Error Resume Next
 msgtext="The Word topics available are:" & Chr$(13)
 msgtext=msgtext & Chr$(13) & DDERequest(channel,item)
 DDETerminate channel
 If Err<>0 then
 msgtext="DDE Access failed."
 End If
 End If
 MsgBox msgtext
 End Sub

 DDEAppReturnCode DDEPoke
 DDEExecute DDETerminate
 DDEInitiate

 DDETerminate
 Statement

 Closes the specified dynamic data exchange (DDE) channel.

 Comments

 Example

 See Also

 Description

DDETerminate

6-88 SQABasic Language Reference

 DDETerminate channel%

 Syntax Element Description

 channel% An integer or expression for the open DDE channel
number.

 To free system resources, you should close channels you aren’t using. If
channel% does not correspond to an open channel, an error occurs.

 This example uses DDEInitiate to open a channel to Microsoft Word. It uses
DDERequest to obtain a list of available topics (using the System topic), and
then terminates the channel using DDETerminate. The example assumes that
WINWORD.EXE is in the path C:\MSOFFICE\WINWORD.

 Sub main
 Dim channel as Integer
 Dim appname as String
 Dim topic as String
 Dim item as String
 Dim msgtext as String
 Dim path as String
 appname="winword"
 topic="System"
 item="Topics"
 path="c:\msoffice\winword\"
 channel = -1
 x=Shell(path & appname & ".EXE")
 channel = DDEInitiate(appname, topic)
 If channel= -1 then
 msgtext="M/S Word not found -- please place on your path."
 Else
 On Error Resume Next
 msgtext="The Word topics available are:" & Chr$(13)
 msgtext=msgtext & Chr$(13) & DDERequest(channel,item)
 DDETerminate channel
 If Err<>0 then
 msgtext="DDE Access failed."
 End If
 End If
 MsgBox msgtext
 End Sub

 DDEAppReturnCode DDEPoke
 DDEExecute DDERequest
 DDEInitiate

 Syntax

 Comments

 Example

 See Also

Declare

Command Reference 6-89

 Declare
 Statement

 Declares a procedure in a module or dynamic link library (DLL).

 Syntax A Declare Sub name [libSpecification]

[(arg [As type],...)]

 Syntax B Declare Function name [libSpecification]
 [(arg [As type],...)] [As functype]

 Syntax Element Description

 name The sub procedure or function procedure to declare.

 libSpecification The location of the procedure (module or DLL).

 arg An argument to pass to the procedure or function when it
is called. Multiple arguments are separated by commas.

 type The data type of an argument in arg.

 functype The data type of the return value for a function procedure.

 A Sub procedure does not return a value. A Function procedure returns a value
and can be used in an expression. To specify the data type for the return value of a
function, end the function name with a type declaration character or use the As
functype clause shown above. If no type is provided, the return value defaults
to data type Variant.

 If the libSpecification is of the format:

 BasicLib "libName" [Alias "aliasname"]
 the procedure is in another SQABasic module (.sbl or .rec) named libName. The
Alias keyword specifies that the procedure in libName is called aliasname.
The other module will be loaded on demand whenever the procedure is called.
SQABasic will not automatically unload modules that are loaded in this fashion.
SQABasic will detect errors of mis-declaration.

 If the libSpecification is of the format:

 Lib "libName" [Alias ["]ordinal["]] or
 Lib "libName" [Alias "aliasname"]

 the procedure is in a Dynamic Link Library (DLL) named libName. The
ordinal argument specifies the ordinal number of the procedure within the
external DLL. Alternatively, aliasname specifies the name of the procedure
within the external DLL. If neither ordinal nor aliasname is specified, the
DLL function is accessed by name. It is recommended that the ordinal be used

 Description

 Syntax

 Comments

Declare

6-90 SQABasic Language Reference

whenever possible, since accessing functions by name might cause the module to
load more slowly.

 A forward declaration is needed only when a procedure in the current module is
referenced before it is defined. In this case, the BasicLib, Lib and Alias
clauses are not used.

 arg contains an argument being passed to the sub procedure or function. An
argument is represented by a variable name. Multiple arguments are separated by
commas. Note the following information about the arguments being passed:

► The data type of an argument can be specified through a type declaration
character or through the As clause.

► Arguments of a User-Defined data type are declared through an As clause
and a type that has previously been defined through the Type statement.

► If an argument is an array, use empty parentheses after the argument name.
The array dimensions are not specified within the Declare statement.

 External DLL procedures are called with the PASCAL calling convention (the
actual arguments are pushed on the stack from left to right). By default, the actual
arguments are passed by Far reference. For external DLL procedures, there are two
additional keywords, ByVal and Any, that can be used in the argument list.

 When ByVal is used, it must be specified before the argument it modifies. When
applied to numeric data types, ByVal indicates that the argument is passed by
value, not by reference. When applied to string arguments, ByVal indicates that
the string is passed by Far pointer to the string data. By default, strings are passed
by Far pointer to a string descriptor.

 Any can be used as a type specification, and permits a call to the procedure to pass
a value of any data type. When Any is used, type checking on the actual argument
used in calls to the procedure is disabled (although other arguments not declared
as type Any are fully type-safe). The actual argument is passed by Far reference,
unless ByVal is specified, in which case the actual value is placed on the stack (or
a pointer to the string in the case of string data). ByVal can also be used in the
call. It is the external DLL procedure’s responsibility to determine the type and
size of the passed-in value.

 When an empty string ("") is passed ByVal to an external procedure, the external
procedure will receive a valid (non-NULL) pointer to a character of 0. To send a
NULL pointer, Declare the procedure argument as ByVal As Any, and call the
procedure with an argument of 0.

Deftype

Command Reference 6-91

 This example declares a function that is later called by the main sub procedure. The
function does nothing but set its return value to 1.

 Declare Function SBL_exfunction()
 Sub main
 Dim y as Integer
 Call SBL_exfunction
 y=SBL_exfunction
 MsgBox "The value returned by the function is: " & y
 End Sub

 Function SBL_exfunction()
 SBL_exfunction=1
 End Function

 Call Dim
 Const Static
 Deftype Type

 Deftype
 Statement

 Declares the default data type for variables whose names start with the specified
characters.

 DefCur letterrange DefInt letterrange
 DefLng letterrange DefSng letterrange
 DefDbl letterrange DefStr letterrange
 DefVar letterrange

 Syntax Element Description

 letterrange The first letter of a variable name. The value can be a
single letter, a comma-separated list of letters, or a range
of letters. For example, a-d specifies a, b, c and d.

 The case of the letters is not important, even in a letter range. The letter range
a-z is treated as a special case. It denotes all alphabetic characters, including
international characters.

 The Deftype statement affects only the module in which it is specified. It must
precede any variable definition within the module.

 Example

 See Also

 Description

 Syntax

 Comments

DelayFor

6-92 SQABasic Language Reference

 The following table shows the variable type for each statement:

 Statement Declares variables of type

 DefCur Currency

 DefInt Integer

 DefLng Long

 DefSng Single

 DefDbl Double

 DefStr String

 DefVar Variant

 Variables defined using the Global or Dim can override the Deftype statement
by using an As clause or a type character.

 This example finds the average of bowling scores entered by the user. Since the
variable average begins with a, it is automatically defined as a single-precision
floating point number. The other variables will be defined as Integers.

 DefInt c,s,t
 DefSng a
 Sub main
 Dim count
 Dim total
 Dim score
 Dim average
 Dim msgtext
 For count=0 to 4
 score=InputBox("Enter bowling score #" & count+1 & ":")
 total=total+score
 Next count
 average=total/count
 msgtext="Your average is: " & average
 MsgBox msgtext
 End Sub

 Declare Let
 Dim Type

 DelayFor
 Utility Command

 Delays execution of the script for a specified number of milliseconds.

 Example

 See Also

 Description

Desktop

Command Reference 6-93

 DelayFor TimeInterval&

 Syntax Element Description

 TimeInterval& Time in milliseconds to delay.

 This command pauses execution of the script for a specified period of time.
During this time, Robot yields control to Windows, which may service other
applications.

 This command corresponds to the Delay option in Robot’s Wait States menu.

 For Wait parameters in verification points, see the individual verification point
(VP) commands.

 This example pauses playback for 2000 milliseconds, or 2 seconds.

 DelayFor 2000

 None.

 Desktop
 User Action Command

 Performs an action on the Windows desktop.

 Desktop action%, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

► ► ►

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

Dialog (Function)

6-94 SQABasic Language Reference

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 No recognition methods are used to identify the desktop object type because there
is only one Windows desktop and it is automatically recognized.

 Since screen coordinates are used in this statement, it fails after the automatic
timeout period if a window obscures the specified position on the desktop.

 This example double-clicks the desktop at x,y coordinates of 306,223. (Double-
clicking the desktop accesses the Windows Task List.)

 Desktop DblClick, "Coords=306,223"

 This example performs a left drag against the desktop at the designated
x1,y1,x2,y2 coordinates.

 Desktop Left_Drag, "Coords=219,335,118,326"

 ComboBox EditBox
 ComboListBox ListBox

 Dialog (Function)
 Function

 Displays a dialog box and returns a number for the button selected (-1= OK,
0=Cancel).

 Dialog (recordName)

 Syntax Element Description

 recordName A variable name declared as a dialog box record.

 Comments

 Example

 See Also

 Description

 Syntax

Dialog (Function)

Command Reference 6-95

 If the dialog box contains additional command buttons (for example, Help), the
Dialog function returns a number greater than 0. 1 corresponds to the first
command button, 2 to the second, and so on.

 The dialog box recordName must have been declared using the Dim statement
with the As parameter followed by a dialog box definition name. This name
comes from the name argument used in the Begin Dialog statement.

 To trap a user’s selections within a dialog box, you must create a function and
specify it as the last argument to the Begin Dialog statement. See Begin
Dialog for more information.

 The Dialog function does not return until the dialog box is closed.

 This example creates a dialog box with a drop down combo box in it and three
buttons: OK, Cancel, and Help. The Dialog function used here enables the sub
procedure to trap when the user clicks on any of these buttons.

 Sub main
 Dim cchoices as String
 Dim answer as Integer
 cchoices="All"+Chr$(9)+"Nothing"
 Begin Dialog UserDialog 180, 95, "SQABasic Dialog Box"
 ButtonGroup .ButtonGroup1
 Text 9, 3, 69, 13, "Filename:", .Text1
 ComboBox 9, 17, 111, 41, cchoices, .ComboBox1
 OKButton 131, 8, 42, 13
 CancelButton 131, 27, 42, 13
 PushButton 132, 48, 42, 13, "Help", .Push1
 End Dialog
 Dim mydialogbox As UserDialog
 answer= Dialog(mydialogbox)
 Select Case answer
 Case -1
 MsgBox "You pressed OK"
 Case 0
 MsgBox "You pressed Cancel"
 Case 1
 MsgBox "You pressed Help"
 End Select
 End Sub

 Begin Dialog Dialog statement
 End Dialog

 Comments

 Example

 See Also

Dialog (Statement)

6-96 SQABasic Language Reference

 Dialog (Statement)
 Statement

 Displays a dialog box.

 Dialog recordName

 Syntax Element Description

 recordName A variable name declared as a dialog box record.

 The dialog box recordName must have been declared using the Dim statement
with the As parameter followed by a dialog box definition name. This name
comes from the name argument used in the Begin Dialog statement.

 If the user exits the dialog box by pushing the Cancel button, the runtime error
102 is triggered, which can be trapped using On Error.

 To trap a user’s selections within a dialog box, you must create a function and
specify it as the last argument to the Begin Dialog statement. See Begin
Dialog for more information.

 The Dialog statement does not return until the dialog box is closed.

 This example defines and displays a dialog box defined as UserDialog and
named mydialogbox. If the user presses the Cancel button, an error code of
102 is returned and is trapped by the If...Then statement listed after the
Dialog statement.

 Sub main
 Dim cchoices as String
 On Error Resume Next
 cchoices="All"+Chr$(9)+"Nothing"
 Begin Dialog UserDialog 180, 95, "SQABasic Dialog Box"
 ButtonGroup .ButtonGroup1
 Text 9, 3, 69, 13, "Filename:", .Text1
 ComboBox 9, 17, 111, 41, cchoices, .ComboBox1
 OKButton 131, 8, 42, 13
 CancelButton 131, 27, 42, 13
 End Dialog
 Dim mydialogbox As UserDialog
 Dialog mydialogbox
 If Err=102 then
 MsgBox "You pressed Cancel."
 Else
 MsgBox "You pressed OK."
 End If
 End Sub

 Begin Dialog
 End Dialog
 Dialog statement

 Description

 Syntax

 Comments

 Example

 See Also

Dim

Command Reference 6-97

 Dim
 Statement

 Declares variables for use in an SQABasic program.

 Dim [Shared] variableName [As [New] type] [,variableName
[As [New] type]] ...

 Syntax Element Description

 variableName The name of the variable to declare.

 type The data type of the variable. Valid values include:

 Integer String (variable)

 Long String * length (fixed)

 Single Object

 Double Variant

 Currency
 In addition, you can specify any User-Defined data
type, including a dialog box record.

 VariableName must begin with a letter and contain only letters, numbers and
underscores. A name can also be delimited by brackets, and any character can be
used inside the brackets, except for other brackets.

 Dim my_1st_variable As String
Dim [one long and strange! variable name] As String

 Basic is a strongly typed language. All variables must be assigned a data type or
they will be automatically assigned the data type Variant.

 If the As clause is not used, the type of the variable can be specified by using a
type-declaration character as a suffix to variableName. The two different type-
specification methods can be intermixed in a single Dim statement (although not
on the same variable).

 Regardless of which mechanism you use to declare a global variable, you can choose
to use or omit the type-declaration character when referring to the variable in the
rest of your program. The type suffix is not considered part of the variable name.

 Description

 Syntax

 Comments

Dim

6-98 SQABasic Language Reference

 Arrays
 Arrays support all SQABasic data types. Arrays of arrays and dialog box records are
not supported.

 Array variables are declared by including a subscript list as part of the
variableName. The syntax to use for variableName is:

 Dim variable([subscriptRange, ...]) As typeName or
Dim variable_with_suffix([subscriptRange, ...])

 where subscriptRange is of the format:

 [startSubscript To] endSubscript
 If startSubscript is not specified, 0 is used as the default. The Option
Base statement can be used to change the default.

 Both the startSubscript and the endSubscript are valid subscripts for
the array. The maximum number of subscripts that can be specified in an array
definition is 60. The maximum total size for an array is only limited by the
amount of memory available.

 If no subscriptRange is specified for an array, the array is declared as a
dynamic array. In this case, the ReDim statement must be used to specify the
dimensions of the array before the array can be used.

 Numbers
 Numeric variables can be declared using the As clause and one of the following
numeric types: Currency, Integer, Long, Single, Double. Numeric
variables can also be declared by including a type character as a suffix to the name.
Numeric variables are initialized to 0.

 Objects
 Object variables are declared using an As clause and a typeName of a class.
Object variables can be Set to refer to an object, and then used to access
members and methods of the object using dot notation.

 Dim OLE2 As Object
Set OLE2 = CreateObject("spoly.cpoly")
OLE2.reset

 An object can be declared as New for some classes. In such instances, the object
variable does not need to be Set; a new object will be allocated when the variable
is used.

 Dim variableName As New className
variableName.methodName

 Note: The class Object does not support the New operator.

Dim

Command Reference 6-99

 Strings
 SQABasic supports two types of strings: fixed-length and dynamic. Fixed-length
strings are declared with a specific length (between 1 and 32,767) and cannot be
changed later. Use the following syntax to declare a fixed-length string:

 Dim variableName As String*length
 Dynamic strings have no declared length, and can vary in length from 0 to 32,767.
The initial length for a dynamic string is 0. Use the following syntax to declare a
dynamic string:

 Dim variableName$ or
Dim variableName As String

 When initialized, fixed-length strings are filled with zeros. Dynamic strings are
initialized as zero-length strings.

 User-Defined
 Variables of a user-defined type are declared by using an As clause and a
typeName that has been defined previously using the Type statement. The
syntax is:

 Dim variableName As typeName
 Variables of a user-defined type are made up of a collection of data elements called
fields. These fields can be of any numeric, string, Variant, or other user-defined
type. See Type for details on accessing fields within a user-defined type.

 You can also use the Dim statement to declare an instance of a dialog box record.
In this case, typeName is specified as dialogName, where dialogName
matches a dialog box record previously defined using Begin Dialog. The
declared dialog box variable can then be used in a Dialog statement.

 Variants
 Declare variables as Variants when the type of the variable is not known at the start
of, or might change during, the procedure. For example, a Variant is useful for
holding input from a user when valid input can be either text or numbers. Use the
following syntax to declare a Variant:

 Dim variableName or
Dim variableName As Variant

 Variant variables are initialized to VarType Empty.

 Variables can be shared across modules. A variable declared inside a procedure has
scope Local to that procedure. A variable declared outside a procedure has scope
Local to the module. If you declare a variable with the same name as a module
variable, the module variable is not accessible. See the Global statement for details.

 The Shared keyword is included for backward compatibility with older versions
of Basic. It is not allowed in Dim statements inside a procedure. It has no effect.

Dir

6-100 SQABasic Language Reference

 It is considered good programming practice to declare all variables. To force all
variables to be explicitly declared use the Option Explicit statement. It is also
recommended that you place all procedure-level Dim statements at the beginning
of the procedure.

 Regardless of which mechanism you use to declare a variable, you can choose to
use or omit the type character when referring to the variable in the rest of your
program. The type suffix is not considered part of the variable name.

 This example shows a Dim statement for each of the possible data types.

 Rem Must define a user-defined type before you can declare a
variable of that type
 Type TestType
 Custno As Integer
 Custname As String
 End Type

 Sub main
 Dim counter As Integer
 Dim fixedstring As String*25
 Dim varstring As String
 Dim MyType As TestType
 Dim ole2var As Object
 Dim F(1 to 10), A()
 ... Code here
 End Sub

 Global Set
 Option Base Static
 ReDim Type

 Dir
 Function

 Returns a file name that matches the specified pattern.

 Dir[$] [(pathname$ [,attributes%)]

 Syntax Element Description

 $ Optional. If specified the return type is String. If
omitted the function will return a Variant of VarType
8 (String).

 pathname$ A string expression identifying a path or file name.

► ► ►

 Example

 See Also

 Description

 Syntax

Dir

Command Reference 6-101

► ► ►

 Syntax Element Description

 attributes% An integer expression specifying the file attributes to
select. Valid attributes:

 0. Return normal files
 2. Add hidden files
 4. Add system files
 8. Return volume label
 16. Add directories

 Pathname$ can include a drive specification and wildcard characters (? and *).
Dir returns the first file name that matches the pathname$ argument. An empty
string ("") passed as pathname$ is interpreted as the current directory (same as
"."). To retrieve additional matching file names, call the Dir function again,
omitting the pathname$ and attributes% arguments. If no file is found, an
empty string ("") is returned.

 The default value for attributes% is 0. In this case, Dir returns only files
without directory, hidden, system, or volume label attributes set.

 The attributes% values can be added together to select multiple attributes. For
example, to list hidden and system files in addition to normal files set
attributes% to 6 (6=2+4).

 If attributes% is set to 8, the Dir function returns the volume label of the
drive specified in the pathname$, or of the current drive if drive is not explicitly
specified. If volume label attribute is set, all other attributes are ignored.

 This example lists the contents of the diskette in drive A.

 Sub main
 Dim msgret
 Dim directory, count
 Dim x, msgtext
 Dim A()
 msgret=MsgBox("Insert a disk in drive A.")
 count=1
 ReDim A(100)
 directory=Dir ("A:*.*")
 Do While directory<>""
 A(count)=directory
 count=count+1
 directory=Dir
 Loop
 msgtext="Contents of drive A:\ is:" & Chr(10) & Chr(10)
 For x=1 to count
 msgtext=msgtext & A(x) & Chr(10)
 Next x
 MsgBox msgtext
 End Sub

 Comments

 Example

DlgControlID

6-102 SQABasic Language Reference

 ChDir MkDir
 ChDrive RmDir
 CurDir

 DlgControlID
 Function

 Returns the numeric ID of a dialog box control with the specified Id$ in the
active dialog box.

 DlgControlID (Id$)

 Syntax Element Description

 Id$ The string ID for a dialog control.

 The DlgControlID function translates a string Id$ into a numeric ID. This
function can only be used from within a dialog box function. The value of the
numeric identifier is based on the position of the dialog box control with the
dialog; it will be 0 (zero) for the first control, 1 (one) for the second control, and
so on.

 Given the following example, the statement DlgControlID("doGo") will
return the value 1.

 Begin Dialog newdlg 200, 200
 PushButton 40, 50, 80, 20, "&Stop", .doStop
 PushButton 40, 80, 80, 20, "&Go", .doGo
 End Dialog

 The advantage of using a dialog box control’s numeric ID is that it is more
efficient, and numeric values can sometimes be more easily manipulated.

 Rearranging the order of a control within a dialog box will change its numeric ID.
For example, if a PushButton control originally had a numeric value of 1, and a
TextBox control is added before it, the PushButton control’s new numeric value
will be 2. This is shown in the following example:

 CheckBox 40, 110, 80, 20, "CheckBox", .CheckBox1
 TextBox 40, 20, 80, 20, .TextBox1 this is the new added control
 PushButton 40, 80, 80, 20, "&Go", .doGo

 The string IDs come from the last argument in the dialog definition statement that
created the dialog control, such as the TextBox or ComboBox statements. The
string ID does not include the period (.) and is case-sensitive.

 Use DlgControlID only while a dialog box is running. See the Begin
Dialog statement for more information.

 See Also

 Description

 Syntax

 Comments

DlgControlID

Command Reference 6-103

 This example displays a dialog box similar to File Open.
 Declare Sub ListFiles(str1$)
 Declare Function FileDlgFunction(identifier$, action, suppvalue)

 Sub main
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Dim filetypes as String
 Dim exestr$()
 Dim button as Integer
 Dim x as Integer
 Dim directory as String
 filetypes="Program files (*.exe)"+Chr$(9)+ "All Files (*.*)"
 Begin Dialog newdlg 230, 145, "Open", .FileDlgFunction
 '$CStrings Save
 Text 8, 6, 60, 11, "&Filename:"
 TextBox 8, 17, 76, 13, .TextBox1
 ListBox 9, 36, 75, 61, exestr$(), .ListBox1
 Text 8, 108, 61, 9, "List Files of &Type:"
 DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
 Text 98, 7, 43, 10, "&Directories:"
 Text 98, 20, 46, 8, "c:\\windows"
 ListBox 99, 34, 66, 66, "", .ListBox2
 Text 98, 108, 44, 8, "Dri&ves:"
 DropListBox 98, 120, 68, 12, "", .DropListBox2
 OKButton 177, 6, 50, 14
 CancelButton 177, 24, 50, 14
 PushButton 177, 42, 50, 14, "&Help"
 '$CStrings Restore
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
 End Sub

 Sub ListFiles(str1$)
 DlgText 1,str1$
 x=0
 Redim exestr$(x)
 directory=Dir$("c:\windows\" & str1$,16)
 If directory<>"" then
 Do
 exestr$(x)=LCase$(directory)
 x=x+1
 Redim Preserve exestr$(x)
 directory=Dir
 Loop Until directory=""
 End If
 DlgListBoxArray 2,exestr$()
 End Sub

 Example

DlgEnable (Function)

6-104 SQABasic Language Reference

 Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 str1$="*.exe" 'dialog box initialized
 ListFiles str1$
 Case 2 'button or control value changed
 If DlgControlID(identifier$) = 4 Then
 If DlgText(4)="All Files (*.*)" then
 str1$="*.*"
 Else
 str1$="*.exe"
 End If
 ListFiles str1$
 End If
 Case 3 'text or combo box changed
 str1$=DlgText$(1)
 ListFiles str1$
 Case 4 'control focus changed
 Case 5 'idle
 End Select
 End Function

 Begin Dialog DlgSetPicture statement
 End Dialog DlgText function
 DlgEnable function DlgText statement
 DlgEnable statement DlgValue function
 DlgFocus function DlgValue statement
 DlgFocus statement DlgVisible function
 DlgListBoxArray function DlgVisible statement
 DlgListBoxArray statement

 DlgEnable (Function)
 Function

 Returns the enable state for the specified dialog control (1=enabled, 0=disabled).

 DlgEnable (Id)

 Syntax Element Description

 Id The control ID for the dialog control.

 If a dialog box control is enabled, it is accessible to the user. You might want to
disable a control if its use depends on the selection of other controls.

 Use the DlgControlID function to find the numeric ID for a dialog control,
based on its string identifier.

 Use DlgEnable only while a dialog box is running. See the Begin Dialog
statement for more information.

 See Also

 Description

 Syntax

 Comments

DlgEnable (Statement)

Command Reference 6-105

 This example displays a dialog box with two check boxes, one labeled Either, the
other labeled Or. If the user clicks on Either, the Or option is grayed. Likewise, if
Or is selected, Either is grayed. The example uses the DlgEnable statement to
toggle the state of the buttons.

 Declare Function FileDlgFunction(identifier$, action, suppvalue)
 Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186,92,"DlgEnable example",.FileDlgFunction
 OKButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 CheckBox 34, 25, 75, 19, "Either", .CheckBox1
 CheckBox 34, 43, 73, 25, "Or", .CheckBox2
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
 End Sub

 Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 2 'button or control value changed
 If DlgControlID(identifier$) = 2 Then
 DlgEnable 3
 Else
 DlgEnable 2
 End If
 End Select
 End Function

 Begin Dialog DlgSetPicture statement
 End Dialog DlgText function
 DlgControlID function DlgText statement
 DlgEnable function DlgValue function
 DlgFocus function DlgValue statement
 DlgFocus statement DlgVisible function
 DlgListBoxArray function DlgVisible statement
 DlgListBoxArray statement

 DlgEnable (Statement)
 Statement

 Enables, disables, or toggles the state of the specified dialog control.

 DlgEnable Id [, mode]

 Syntax Element Description

 Id The control ID for the dialog control to change.

 mode An integer representing the enable state (1=enable,
0=disable).

 Example

 See Also

 Description

 Syntax

DlgEnable (Statement)

6-106 SQABasic Language Reference

 If mode is omitted, the DlgEnable toggles the state of the dialog control specified
by Id. If a dialog box control is enabled, it is accessible to the user. You might want
to disable a control if its use depends on the selection of other controls.

 Use the DlgControlID function to find the numeric ID for a dialog control,
based on its string identifier. The string IDs come from the last argument in the
dialog definition statement that created the dialog control, such as the TextBox
or ComboBox statements.

 Use DlgEnable only while a dialog box is running. See the Begin Dialog
statement for more information.

 This example displays a dialog box with one check box, labeled Show More, and a
group box, labeled More, with two option buttons, Option 1 and Option 2. It uses
the DlgEnable function to enable the More group box and its options if the
Show More check box is selected.

 Declare Function FileDlgFunction(identifier$, action, suppvalue)
 Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186,92,"DlgEnable example",.FileDlgFunction
 OKButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 CheckBox 13, 6, 75, 19, "Show more", .CheckBox1
 GroupBox 16, 28, 94, 50, "More"
 OptionGroup .OptionGroup1
 OptionButton 23, 40, 56, 12, "Option 1", .OptionButton1
 OptionButton 24, 58, 61, 13, "Option 2", .OptionButton2
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
 End Sub

 Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 DlgEnable 3,0
 DlgEnable 4,0
 DlgEnable 5,0
 Case 2 'button or control value changed
 If DlgControlID(identifier$) = 2 Then
 If DlgEnable (3)=0 then
 DlgEnable 3,1
 DlgEnable 4,1
 DlgEnable 5,1
 Else
 DlgEnable 3,0
 DlgEnable 4,0
 DlgEnable 5,0
 End If
 End If
 End Select
 End Function

 Comments

 Example

DlgEnd

Command Reference 6-107

 Begin Dialog DlgSetPicture statement
 End Dialog DlgText function
 DlgControlID function DlgText statement
 DlgEnable statement DlgValue function
 DlgFocus function DlgValue statement
 DlgFocus statement DlgVisible function
 DlgListBoxArray function DlgVisible statement
 DlgListBoxArray statement

 DlgEnd
 Statement

 Closes the active dialog box.

 DlgEnd exitCode

 Syntax Element Description

 exitCode The return value after closing the dialog box
(-1=OK, 0=Cancel).

 ExitCode contains a return value only if the dialog box was displayed using
the Dialog function. That is, if you used the Dialog statement, exitCode
is ignored.

 If the dialog box contains additional command buttons (for example, Help), the
Dialog function returns a number greater than 0. 1 corresponds to the first
command button, 2 to the second, and so on.

 Use DlgEnd only while a dialog box is running. See the Begin Dialog
statement for more information.

 This example displays a dialog box with the message You have 30 seconds
to cancel. The dialog box counts down from 30 seconds to 0. If the user
clicks OK or Cancel during the countdown, the dialog box closes. If the
countdown reaches 0, however, the DlgEnd statement closes the dialog box.

 Function timeout(id$,action%,suppvalue&)
 Static timeoutStart as Long
 Static currentSecs as Long
 Dim thisSecs as Long

 See Also

 Description

 Syntax

 Comments

 Example

DlgEnd

6-108 SQABasic Language Reference

 Select Case action%
 Case 1
 'initialize the dialog box. Set the ticker value to 30
 'and remember when we put up the dialog box
 DlgText "ticker", "30"
 timeoutStart = timer
 currentSecs = 30
 Case 5
 'this is an idle message - set thisSecs to the number
 'of seconds left until timeout
 thisSecs = timer
 If thisSecs < timeoutStart Then thisSecs =

thisSecs + 24*60*60
 thisSecs = 30 - (thisSecs - timeoutStart)
 ' if there are negative seconds left, timeout!
 If thisSecs < 0 Then DlgEnd -1
 ' If the seconds left has changed since last time,
 ' update the dialog box
 If thisSecs <> currentSecs Then
 DlgText "ticker", trim$(str$(thisSecs))
 currentSecs = thisSecs
 End If
 ' make sure to return non-zero so we keep getting
 ' idle messages
 timeout = 1
 End Select
 End Function

 Sub main
 Begin Dialog newdlg 167, 78, "Do You Want to Continue?", .timeout
 '$CStrings Save
 OKButton 27, 49, 50, 14
 CancelButton 91, 49, 50, 14
 Text 24, 14, 119, 8, "This is your last chance to bail out."
 Text 27, 30, 35, 8, "You have"
 Text 62, 30, 13, 8, "30", .ticker
 Text 74, 30, 66, 8, "seconds to cancel."
 '$CStrings Restore
 End Dialog
 Dim dlgVar As newdlg
 If dialog(dlgvar) = 0 Then
 Exit Sub ' abort
 End If
 ' do whatever it is we want to do
 End Sub

 BeginDialog DlgListBoxArray statement
 End Dialog DlgSetPicture statement
 DlgControlID function DlgText function
 DlgEnable function DlgText statement
 DlgEnable statement DlgValue function
 DlgFocus function DlgValue statement
 DlgFocus statement DlgVisible function
 DlgListBoxArray function DlgVisible statement

 See Also

DlgFocus (Function)

Command Reference 6-109

 DlgFocus (Function)
 Function

 Returns the control ID of the dialog control having the input focus.

 DlgFocus[$]()

 A control has focus when it is active and responds to keyboard input.

 Use DlgFocus only while a dialog box is running. See the Begin Dialog
statement for more information.

 This example displays a dialog box with a check box, labeled Check1, and a text
box, labeled Text Box 1, in it. When the box is initialized, the focus is set to the
text box. As soon as the user clicks the check box, the focus goes to the OK button.

 Declare Function FileDlgFunction(identifier$, action, suppvalue)
 Sub main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186, 92, "DlgFocus Example", .FileDlgFunction
 OKButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 TextBox 15, 37, 82, 12, .TextBox1
 Text 15, 23, 57, 10, "Text Box 1"
 CheckBox 15, 6, 75, 11, "Check1", .CheckBox1
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
 End Sub

 Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 DlgFocus 2
 Case 2 'user changed control or clicked a button
 If DlgFocus() <> "OKButton" then
 DlgFocus 0
 End If
 End Select
 End Function

 Begin Dialog DlgSetPicture statement
 End Dialog DlgText function
 DlgControlID function DlgText statement
 DlgEnable function DlgValue function
 DlgEnable statement DlgValue statement
 DlgFocus statement DlgVisible function
 DlgListBoxArray function DlgVisible statement
 DlgListBoxArray statement

 Description

 Syntax

 Comments

 Example

 See Also

DlgFocus (Statement)

6-110 SQABasic Language Reference

 DlgFocus (Statement)
 Statement

 Sets the focus for the specified dialog control.

 DlgFocus Id

 Syntax Element Description

 Id The control ID for the dialog control to make active.

 Use the DlgControlID function to find the numeric ID for a dialog control,
based on its string identifier. The string IDs come from the last argument in the
dialog definition statement that created the dialog control, such as the TextBox
or ComboBox statements.

 Use DlgFocus only while a dialog box is running. See the Begin Dialog
statement for more information.

 This example displays a dialog box with a check box, labeled Check1, and a text
box, labeled Text Box 1, in it. When the box is initialized, the focus is set to the
text box. As soon as the user clicks the check box, the focus goes to the OK
button.

 Declare Function FileDlgFunction(identifier$, action, suppvalue)
 Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186, 92, "DlgFocus Example", .FileDlgFunction
 OKButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 TextBox 15, 37, 82, 12, .TextBox1
 Text 15, 23, 57, 10, "Text Box 1"
 CheckBox 15, 6, 75, 11, "Check1", .CheckBox1
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
 End Sub

 Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 DlgFocus 2
 Case 2 'user changed control or clicked a button
 If DlgFocus() <> "OKButton" then
 DlgFocus 0
 End If
 End Select
 End Function

 Description

 Syntax

 Comments

 Example

DlgListBoxArray (Function)

Command Reference 6-111

 BeginDialog DlgSetPicture statement
 End Dialog DlgText function
 DlgControlID function DlgText statement
 DlgEnable function DlgValue function
 DlgEnable statement DlgValue statement
 DlgFocus function DlgVisible function
 DlgListBoxArray function DlgVisible statement
 DlgListBoxArray statement

 DlgListBoxArray (Function)
 Function

 Returns the number of elements in a list or combo box.

 DlgListBoxArray (Id[, Array$])

 Syntax Element Description

 Id The control ID for the list or combo box.

 Array$ The entries in the list box or combo box returned.

 Array$ is a one-dimensional array of dynamic strings. If array$ is dynamic, its
size is changed to match the number of strings in the list or combo box. If
array$ is not dynamic and it is too small, an error occurs. If array$ is omitted,
the function returns the number of entries in the specified dialog control.

 Use the DlgControlID function to find the numeric ID for a dialog control,
based on its string identifier. The string IDs come from the last argument in the
dialog definition statement that created the dialog control, such as the TextBox
or ComboBox statements.

 Use DlgListBoxArray only while a dialog box is running. See the Begin
Dialog statement for more information.

 See Also

 Description

 Syntax

 Comments

DlgListBoxArray (Function)

6-112 SQABasic Language Reference

 This example displays a dialog box with a check box, labeled Display List, and
an empty list box. If the user clicks the check box, the list box is filled with the
contents of the array called myarray. The DlgListBox Array function makes
sure the list box is empty.

 Declare Function FileDlgFunction(identifier$, action, suppvalue)
 Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186,92,"DlgListBoxArray Example",.FileDlgFunction
 '$CStrings Save
 OKButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 ListBox 19, 26, 74, 59, "", .ListBox1
 CheckBox 12, 4, 86, 13, "Display List", .CheckBox1
 '$CStrings Restore
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
 End Sub

 Function FileDlgFunction(identifier$, action, suppvalue)
 Dim myarray$(3)
 Dim msgtext as Variant
 Dim x as Integer
 For x= 0 to 2
 myarray$(x)=Chr$(x+65)
 Next x
 Select Case action
 Case 1
 Case 2 'user changed control or clicked a button
 If DlgControlID(identifier$)=3 then
 If DlgListBoxArray(2)=0 then
 DlgListBoxArray 2, myarray$()
 End If
 End If
 End Select
 End Function

 BeginDialog DlgSetPicture statement
 End Dialog DlgText function
 DlgControlID function DlgText statement
 DlgEnable function DlgValue function
 DlgEnable statement DlgValue statement
 DlgFocus function DlgVisible function
 DlgFocus statement DlgVisible statement
 DlgListBoxArray statement

 Example

 See Also

DlgListBoxArray (Statement)

Command Reference 6-113

 DlgListBoxArray (Statement)
 Statement

 Fills a list or combo box with an array of strings.

 DlgListBoxArray Id, Array$

 Syntax Element Description

 Id The control ID for the list or combo box.

 Array$ The entries for the list box or combo box.

 Array$ has to be a one-dimensional array of dynamic strings. One entry appears
in the list box for each element of the array. If the number of strings changes
depending on other selections made in the dialog box, you should use a dynamic
array and ReDim the size of the array whenever it changes.

 Use DlgListBoxArray only while a dialog box is running. See the Begin
Dialog statement for more information.

 This example displays a dialog box similar to File Open.

 Declare Sub ListFiles(str1$)
 Declare Function FileDlgFunction(identifier$, action, suppvalue)

 Sub main
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Dim filetypes as String
 Dim exestr$()
 Dim button as Integer
 Dim x as Integer
 Dim directory as String
 filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
 Begin Dialog newdlg 230, 145, "Open", .FileDlgFunction
 '$CStrings Save
 Text 8, 6, 60, 11, "&Filename:"
 TextBox 8, 17, 76, 13, .TextBox1
 ListBox 9, 36, 75, 61, exestr$(), .ListBox1
 Text 8, 108, 61, 9, "List Files of &Type:"
 DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
 Text 98, 7, 43, 10, "&Directories:"
 Text 98, 20, 46, 8, "c:\\windows"
 ListBox 99, 34, 66, 66, "", .ListBox2
 Text 98, 108, 44, 8, "Dri&ves:"
 DropListBox 98, 120, 68, 12, "", .DropListBox2
 OKButton 177, 6, 50, 14
 CancelButton 177, 24, 50, 14
 PushButton 177, 42, 50, 14, "&Help"
 '$CStrings Restore
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
 End Sub

 Description

 Syntax

 Comments

 Example

DlgSetPicture

6-114 SQABasic Language Reference

 Sub ListFiles(str1$)
 DlgText 1,str1$
 x=0
 Redim exestr$(x)
 directory=Dir$("c:\windows\" & str1$,16)
 If directory<>"" then
 Do
 exestr$(x)=LCase$(directory)
 x=x+1
 Redim Preserve exestr$(x)
 directory=Dir
 Loop Until directory=""
 End If
 DlgListBoxArray 2,exestr$()
 End Sub

 Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 str1$="*.exe" 'dialog box initialized
 ListFiles str1$
 Case 2 'button or control value changed
 If DlgControlId(identifier$) = 4 Then
 If DlgText(4)="All Files (*.*)" then
 str1$="*.*"
 Else
 str1$="*.exe"
 End If
 ListFiles str1$
 End If
 Case 3 'text or combo box changed
 str1$=DlgText$(1)
 ListFiles str1$
 Case 4 'control focus changed

 Case 5 'idle
 End Select
 End Function

 BeginDialog DlgSetPicture statement
 End Dialog DlgText function
 DlgControlID function DlgText statement
 DlgEnable function DlgValue function
 DlgFocus function DlgValue statement
 DlgFocus statement DlgVisible function
 DlgListBoxArray function DlgVisible statement
 DlgEnable

 DlgSetPicture
 Statement

 Changes the picture in a picture dialog control for the current dialog box.

 See Also

 Description

DlgSetPicture

Command Reference 6-115

 DlgSetPicture Id, filename$, type

 Syntax Element Description

 Id The control ID for the picture dialog control.

 filename$ The name of the bitmap file (.BMP) to use.

 type An integer representing the location of the file
(0= filename$, 3=Clipboard)

 Use the DlgControlID function to find the numeric ID for a dialog control,
based on its string identifier. The string IDs come from the last argument in the
dialog definition statement that created the dialog control, such as the TextBox
or ComboBox statements.

 Use DlgListBoxArray only while a dialog box is running. See the Begin
Dialog statement for more information.

 See the Picture statement for more information about displaying pictures in
dialog boxes.

 This example displays a picture in a dialog box and changes the picture if the user
clicks the check box labeled Change Picture. The example assumes the picture
bitmaps are in the C:\WINDOWS directory.

 Declare Function FileDlgFunction(identifier$, action, suppvalue)
 Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186,92,"DlgSetPicture Example",.FileDlgFunction
 OKButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 Picture 43, 28, 49, 31, "C:\WINDOWS\CIRCLES.BMP", 0
 CheckBox 30, 8, 62, 15, "Change Picture", .CheckBox1
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
 End Sub

 Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 Case 2 'user changed control or clicked a button
 If DlgControlID(identifier$)=3 then
 If suppvalue=1 then
 DlgSetPicture 2, "C:\WINDOWS\TILES.BMP",0
 Else
 DlgSetPicture 2, "C:\WINDOWS\CIRCLES.BMP",0
 End If
 End If
 End Select
 End Function

 Syntax

 Comments

 Example

DlgText (Function)

6-116 SQABasic Language Reference

 BeginDialog DlgFocus statement
 End Dialog DlgText function
 DlgControlID function DlgText statement
 DlgEnable function DlgValue function
 DlgEnable statement DlgValue statement
 DlgListBoxArray function DlgVisible function
 DlgListBoxArray statement DlgVisible statement
 DlgFocus function

 DlgText (Function)
 Function

 Returns the text associated with a dialog control for the current dialog box.

 DlgText[$] (Id)

 Syntax Element Description

 Id The control ID for a dialog control.

 If the control is a text box or a combo box, DlgText function returns the text
that appears in the text box. If it is a list box, the function returns its current
selection. If it is a text box, DlgText returns the text. If the control is a command
button, option button, option group, or a check box, the function returns its label.

 Use DlgText only while a dialog box is running. See the Begin Dialog
statement for more information.

 This example displays a dialog box similar to File Open. It uses DlgText to
determine what group of files to display.

 Declare Sub ListFiles(str1$)
 Declare Function FileDlgFunction(identifier$, action, suppvalue)

 Sub main
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Dim filetypes as String
 Dim exestr$()
 Dim button as Integer
 Dim x as Integer
 Dim directory as String
 filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"

 See Also

 Description

 Syntax

 Comments

 Example

DlgText (Function)

Command Reference 6-117

 Begin Dialog newdlg 230, 145, "Open", .FileDlgFunction
 '$CStrings Save
 Text 8, 6, 60, 11, "&Filename:"
 TextBox 8, 17, 76, 13, .TextBox1
 ListBox 9, 36, 75, 61, exestr$(), .ListBox1
 Text 8, 108, 61, 9, "List Files of &Type:"
 DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
 Text 98, 7, 43, 10, "&Directories:"
 Text 98, 20, 46, 8, "c:\\windows"
 ListBox 99, 34, 66, 66, "", .ListBox2
 Text 98, 108, 44, 8, "Dri&ves:"
 DropListBox 98, 120, 68, 12, "", .DropListBox2
 OKButton 177, 6, 50, 14
 CancelButton 177, 24, 50, 14
 PushButton 177, 42, 50, 14, "&Help"
 '$CStrings Restore
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
 End Sub

 Sub ListFiles(str1$)
 DlgText 1,str1$
 x=0
 Redim exestr$(x)
 directory=Dir$("c:\windows\" & str1$,16)
 If directory<>"" then
 Do
 exestr$(x)=LCase$(directory)
 x=x+1
 Redim Preserve exestr$(x)
 directory=Dir
 Loop Until directory=""
 End If
 DlgListBoxArray 2,exestr$()
 End Sub

 Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 str1$="*.exe" 'dialog box initialized
 ListFiles str1$
 Case 2 'button or control value changed
 If DlgControlId(identifier$) = 4 Then
 If DlgText(4)="All Files (*.*)" then
 str1$="*.*"
 Else
 str1$="*.exe"
 End If
 ListFiles str1$
 End If
 Case 3 'text or combo box changed
 str1$=DlgText$(1)
 ListFiles str1$
 Case 4 'control focus changed

 Case 5 'idle
 End Select
 End Function

DlgText (Statement)

6-118 SQABasic Language Reference

 BeginDialog DlgFocus function
 End Dialog DlgSetPicture statement
 DlgControlID function DlgText statement
 DlgEnable function DlgValue function
 DlgEnable statement DlgValue statement
 DlgListBoxArray function DlgVisible function
 DlgListBoxArray statement DlgVisible statement
 DlgFocus statement

 DlgText (Statement)
 Statement

 Changes the text associated with a dialog control for the current dialog box.

 DlgText Id, text$

 Syntax Element Description

 Id The control ID for a dialog control.

 text$ The text to use for the dialog control.

 If the dialog control is a text box or a combo box, DlgText sets the text that
appears in the text box. If it is a list box, a string equal to text$ or beginning with
text$ is selected. If the dialog control is a text control, DlgText sets it to
text$. If the dialog control is a command button, option button, option group,
or a check box, the statement sets its label.

 The DlgText statement does not change the identifier associated with the control.

 Use DlgText only while a dialog box is running. See the Begin Dialog
statement for more information.

 This example displays a dialog box similar to File Open. It uses the DlgText
statement to display the list of files in the Filename list box.

 Declare Sub ListFiles(str1$)
 Declare Function FileDlgFunction(identifier$, action, suppvalue)

 Sub main
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Dim filetypes as String
 Dim exestr$()
 Dim button as Integer
 Dim x as Integer
 Dim directory as String
 filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"

 See Also

 Description

 Syntax

 Comments

 Example

DlgText (Statement)

Command Reference 6-119

 Begin Dialog newdlg 230, 145, "Open", .FileDlgFunction
 '$CStrings Save
 Text 8, 6, 60, 11, "&Filename:"
 TextBox 8, 17, 76, 13, .TextBox1
 ListBox 9, 36, 75, 61, exestr$(), .ListBox1
 Text 8, 108, 61, 9, "List Files of &Type:"
 DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
 Text 98, 7, 43, 10, "&Directories:"
 Text 98, 20, 46, 8, "c:\\windows"
 ListBox 99, 34, 66, 66, "", .ListBox2
 Text 98, 108, 44, 8, "Dri&ves:"
 DropListBox 98, 120, 68, 12, "", .DropListBox2
 OKButton 177, 6, 50, 14
 CancelButton 177, 24, 50, 14
 PushButton 177, 42, 50, 14, "&Help"
 '$CStrings Restore
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
 End Sub

 Sub ListFiles(str1$)
 DlgText 1,str1$
 x=0
 Redim exestr$(x)
 directory=Dir$("c:\windows\" & str1$,16)
 If directory<>"" then
 Do
 exestr$(x)=LCase$(directory)
 x=x+1
 Redim Preserve exestr$(x)
 directory=Dir
 Loop Until directory=""
 End If
 DlgListBoxArray 2,exestr$()
 End Sub

 Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 str1$="*.exe" 'dialog box initialized
 ListFiles str1$
 Case 2 'button or control value changed
 If DlgControlId(identifier$) = 4 Then
 If DlgText(4)="All Files (*.*)" then
 str1$="*.*"
 Else
 str1$="*.exe"
 End If
 ListFiles str1$
 End If
 Case 3 'text or combo box changed
 str1$=DlgText$(1)
 ListFiles str1$
 Case 4 'control focus changed

 Case 5 'idle
 End Select
 End Function

DlgValue (Function)

6-120 SQABasic Language Reference

 BeginDialog DlgFocus statement
 End Dialog DlgSetPicture statement
 DlgControlID function DlgText function
 DlgEnable function DlgValue function
 DlgEnable statement DlgValue statement
 DlgListBoxArray function DlgVisible function
 DlgListBoxArray statement DlgVisible statement
 DlgFocus function

 DlgValue (Function)
 Function

 Returns a numeric value for the state of a dialog control for the current dialog box.

 DlgValue (Id)

 Syntax Element Description

 Id The control ID for a dialog control.

 The values returned depend on the type of dialog control:
► CheckBox

 1 = Selected, 0=Cleared, -1=Grayed
► Option Group

 0 = 1st button selected, 1 = 2nd button selected, etc.
► ListBox

 0 = 1st item, 1= 2nd item, etc.
► ComboBox

 0 = 1st item, 1 = 2nd item, etc.
► Text, Textbox, Button

 Error occurs

 Use DlgValue only while a dialog box is running. See the Begin Dialog
statement for more information.

 See Also

 Description

 Syntax

 Comments

DlgValue (Function)

Command Reference 6-121

 This example changes the picture in the dialog box if the check box is selected and
changes the picture to its original bitmap if the check box is turned off. The
example assumes the picture bitmaps are in the C:\WINDOWS directory.

 Declare Function FileDlgFunction(identifier$, action, suppvalue)
 Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186,92,"DlgSetPicture Example",.FileDlgFunction
 OKButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 Picture 43, 28, 49, 31, "C:\WINDOWS\CIRCLES.BMP", 0
 CheckBox 30, 8, 62, 15, "Change Picture", .CheckBox1
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
 End Sub

 Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 Case 2 'user changed control or clicked a button
 If DlgControlID(identifier$)=3 then
 If DlgValue(3)=1 then
 DlgSetPicture 2, "C:\WINDOWS\TILES.BMP",0
 Else
 DlgSetPicture 2, "C:\WINDOWS\CIRCLES.BMP",0
 End If
 End If
 End Select
 End Function

 BeginDialog DlgFocus statement
 End Dialog DlgSetPicture statement
 DlgControlID function DlgText function
 DlgEnable function DlgText statement
 DlgEnable statement DlgValue statement
 DlgListBoxArray function DlgVisible function
 DlgListBoxArray statement DlgVisible statement
 DlgFocus function

 Example

 See Also

DlgValue (Statement)

6-122 SQABasic Language Reference

 DlgValue (Statement)
 Statement

 Changes the value associated with the dialog control for the current dialog box.

 DlgValue Id, value%

 Syntax Element Description

 Id The control ID for a dialog control.

 value% The new value for the dialog control.

 The values you use to set the control depend on the type
of the control:
► CheckBox

 1 = Select, 0=Clear, -1=Gray.
► Option Group

 0 = Select 1st button, 1 = Select 2nd button.
► ListBox

 0 = Select 1st item, 1= Select 2nd item, etc.
► ComboBox

 0 = Select 1st item, 1 = Select 2nd item, etc.
► Text, Textbox, Button

 Error occurs

 Use DlgValue only while a dialog box is running. See the Begin Dialog
statement for more information.

 This example displays a dialog box with a check box, labeled Change Option, and
a group box with two option buttons, labeled Option 1 and Option 2. When the
user clicks the Change Option button, Option 2 is selected.

 Declare Function FileDlgFunction(identifier$, action, suppvalue)
 Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186, 92, "DlgValue Example", .FileDlgFunction
 OKButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 CheckBox 30, 8, 62, 15, "Change Option", .CheckBox1
 GroupBox 28, 34, 79, 47, "Group"
 OptionGroup .OptionGroup1
 OptionButton 41, 47, 52, 10, "Option 1", .OptionButton1
 OptionButton 41, 62, 58, 11, "Option 2", .OptionButton2
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
 End Sub

 Description

 Syntax

 Comments

 Example

DlgVisible (Function)

Command Reference 6-123

 Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 Case 2 'user changed control or clicked a button
 If DlgControlID(identifier$)=2 then
 If DlgValue(2)=1 then
 DlgValue 4,1
 Else
 DlgValue 4,0
 End If
 End If
 End Select
 End Function

 BeginDialog DlgFocus statement
 End Dialog DlgSetPicture statement
 DlgControlID function DlgText function
 DlgEnable function DlgText statement
 DlgEnable statement DlgValue function
 DlgListBoxArray function DlgVisible function
 DlgListBoxArray statement DlgVisible statement
 DlgFocus function

 DlgVisible (Function)
 Function

 Returns -1 if a dialog control is visible, 0 if it is hidden.

 DlgVisible (Id)

 Syntax Element Description

 Id The control ID for a dialog control.

 Use DlgVisible only while a dialog box is running. See the Begin Dialog
statement for more information.

 This example displays Option 2 in the Group box if the user clicks the check box
labeled Show Option 2. If the user clicks the box again, Option 2 is hidden.

 Declare Function FileDlgFunction(identifier$, action, suppvalue)
 Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer

 See Also

 Description

 Syntax

 Comments

 Example

DlgVisible (Statement)

6-124 SQABasic Language Reference

 Begin Dialog newdlg 186,92,"DlgVisible Example",.FileDlgFunction
 OKButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 CheckBox 30, 8, 62, 15, "Show Option 2", .CheckBox1
 GroupBox 28, 34, 79, 47, "Group"
 OptionGroup .OptionGroup1
 OptionButton 41, 47, 52, 10, "Option 1", .OptionButton1
 OptionButton 41, 62, 58, 11, "Option 2", .OptionButton2
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
 End Sub

 Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 DlgVisible 6,0
 Case 2 'user changed control or clicked a button
 If DlgControlID(identifier$)=2 then
 If DlgVisible(6)<>1 then
 DlgVisible 6
 End If
 End If
 End Select
 End Function

 BeginDialog DlgFocus statement
 End Dialog DlgSetPicture statement
 DlgControlID function DlgText function
 DlgEnable function DlgText statement
 DlgEnable statement DlgValue function
 DlgListBoxArray function DlgValue statement
 DlgListBoxArray statement DlgVisible statement
 DlgFocus function

 DlgVisible (Statement)
 Statement

 Hides or displays a dialog control for the current dialog box.

 DlgVisible Id[,mode]

 Syntax Element Description

 Id The control ID for a dialog control.

 mode Value to use to set the dialog control state:
 1. Display a previously hidden control.
 0. Hide the control.

 See Also

 Description

 Syntax

DlgVisible (Statement)

Command Reference 6-125

 If you omit the mode, the dialog box state is toggled between visible and hidden.

 Use DlgVisible only while a dialog box is running. See the Begin Dialog
statement for more information.

 This example displays Option 2 in the Group box if the user clicks the check box.
labeled Show Option 2. If the user clicks the box again, Option 2 is hidden.

 Declare Function FileDlgFunction(identifier$, action, suppvalue)
 Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186,92,"DlgVisible Example",.FileDlgFunction
 OKButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 CheckBox 30, 8, 62, 15, "Show Option 2", .CheckBox1
 GroupBox 28, 34, 79, 47, "Group"
 OptionGroup .OptionGroup1
 OptionButton 41, 47, 52, 10, "Option 1", .OptionButton1
 OptionButton 41, 62, 58, 11, "Option 2", .OptionButton2
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
 End Sub

 Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 DlgVisible 6,0
 Case 2 'user changed control or clicked a button
 If DlgControlID(identifier$)=2 then
 If DlgVisible(6)<>1 then
 DlgVisible 6
 End If
 End If
 End Select
 End Function

 BeginDialog DlgFocus function
 End Dialog DlgFocus statement
 DlgControlID function DlgSetPicture statement
 DlgEnable function DlgText function
 DlgEnable statement DlgText statement
 DlgListBoxArray function DlgValue function
 DlgListBoxArray statement DlgVisible function

 Comments

 Example

 See Also

Do...Loop

6-126 SQABasic Language Reference

 Do...Loop
 Statement

 Repeats a series of program lines as long as (or until) an expression is TRUE.

 Syntax A Do [{While | Until} condition]
 [statement_block]
 [Exit Do]
 [statement_block]
 Loop

 Syntax B Do
 [statement_block]
 [Exit Do]
 [statement_block]
 Loop [{While | Until} condition]

 Syntax Element Description

 Condition Any expression that evaluates to TRUE (nonzero) or
FALSE (0).

 statement_block(s) Program lines to repeat while (or until) condition is
TRUE.

 When an Exit Do statement is executed, control goes to the statement after the
Loop statement. When used within a nested loop, an Exit Do statement moves
control out of the immediately enclosing loop.

 This example lists the contents of the diskette in drive A.

 Sub main
 Dim msgret
 Dim directory, count
 Dim x, msgtext
 Dim A()
 msgret=MsgBox("Insert a disk in drive A.")
 count=1
 ReDim A(100)
 directory=Dir ("A:*.*")
 Do While directory<>""
 A(count)=directory
 count=count+1
 directory=Dir
 Loop
 msgtext="Directory of drive A:\ is:" & Chr(10)
 For x=1 to count
 msgtext=msgtext & A(x) & Chr(10)
 Next x
 MsgBox msgtext
 End Sub

 Description

 Syntax

 Comments

 Example

DoEvents

Command Reference 6-127

 Exit Stop
 For...Next While...Wend

 DoEvents
 Statement

 Yields execution to Windows for processing operating system events.

 DoEvents

 DoEvents does not return until Windows has finished processing all events in
the queue and all keys sent by the InputKeys statement.

 DoEvents should not be used if other tasks can interact with the running
program in unforeseen ways. Since SQABasic yields control to the operating
system at regular intervals, DoEvents should only be used to force SQABasic to
allow other applications to run at a known point in the program.

 This example activates the Windows Phone Dialer application, dials the number,
and then allows the operating system to process events.

 Sub Main
 Dim phoneNumber, msgtext
 Dim i
 InputKeys "{LeftWin}"
 InputKeys "r"
 InputKeys "dialer.exe{enter}"
 phoneNumber=InputBox("Type telephone number to call:")
 AppActivate "Phone Dialer"
 For i = 1 to 5
 DoEvents
 Next i
 InputKeys phoneNumber + "{Enter}"
 msgtext="Dialing..."
 MsgBox msgtext
 DoEvents
 End Sub

 AppActivate
 InputKeys
 Shell

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

DropComboBox

6-128 SQABasic Language Reference

 DropComboBox
 Statement

 Creates a combination of a drop-down list box and a text box.

 Syntax A DropComboBox x, y, dx, dy, text$, .field

 Syntax B DropComboBox x, y, dx, dy, stringarray$(), .field

 Syntax Element Description

 x, y The upper left corner coordinates of the list box, relative
to the upper left corner of the dialog box.

 dx, dy The width and height of the combo box in which the user
enters or selects text.

 text$ A string containing the selections for the combo box.

 stringarray$ An array of dynamic strings for the selections in the
combo box.

 .field The name of the dialog-record field that will hold the text
string entered in the text box or chosen from the list box.

 The x argument is measured in 1/4 system-font character-width units. The y
argument is measured in 1/8 system-font character-width units. (See Begin
Dialog for more information.)

 The text$ argument must be defined, using a Dim statement, before the Begin
Dialog statement is executed. The arguments in the text$ string are entered as
shown in the following example:

 dimname="listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...
 The string in the text box will be recorded in the field designated by the .field
argument when the OK button (or any PushButton other than Cancel) is pushed.
The field argument is also used by the dialog statements that act on this control.

 You use a drop combo box when you want the user to be able to edit the contents
of the list box (such as file names or their paths). You use a drop list box when the
items in the list should remain unchanged.

 Use the DropComboBox statement only between a Begin Dialog and an End
Dialog statement.

 Description

 Syntax

 Comments

DropListBox

Command Reference 6-129

 This example defines a dialog box with a drop combo box and the OK and
Cancel buttons.

 Sub main
 Dim cchoices as String
 On Error Resume Next
 cchoices="All"+Chr$(9)+"Nothing"
 Begin Dialog UserDialog 180, 95, "SQABasic Dialog Box"
 ButtonGroup .ButtonGroup1
 Text 9, 3, 69, 13, "Filename:", .Text1
 DropComboBox 9, 17, 111, 41, cchoices, .ComboBox1
 OKButton 131, 8, 42, 13
 CancelButton 131, 27, 42, 13
 End Dialog
 Dim mydialogbox As UserDialog
 Dialog mydialogbox
 If Err=102 then
 MsgBox "You pressed Cancel."
 Else
 MsgBox "You pressed OK."
 End If
 End Sub

 Begin Dialog CheckBox OptionButton
 End Dialog ComboBox OptionGroup
 Button DropListBox Picture
 ButtonGroup GroupBox StaticComboBox
 CancelButton ListBox Text
 Caption OKButton TextBox

 DropListBox
 Statement

 Creates a drop-down list of choices.

 Syntax A DropListBox x, y, dx, dy, text$, .field

 Syntax B DropListBox x, y, dx, dy, stringarray$(), .field

 Syntax Element Description

 x, y The upper left corner coordinates of the list box, relative
to the upper left corner of the dialog box.

 dx, dy The width and height of the combo box in which the user
enters or selects text.

 text$ A string containing the selections for the combo box.

 stringarray$ An array of dynamic strings for the selections in the
combo box.

 .field The name of the dialog-record field that will hold the text
string entered in the text box or chosen from the list box.

 Example

 See Also

 Description

 Syntax

DropListBox

6-130 SQABasic Language Reference

 The x argument is measured in 1/4 system-font character-width units. The y
argument is measured in 1/8 system-font character-width units. (See Begin
Dialog for more information.)

 The text$ argument must be defined, using a Dim statement, before the Begin
Dialog statement is executed. The arguments in the text$ string are entered as
shown in the following example:

 dimname="listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...
 The string in the text box will be recorded in the field designated by the .field
argument when the OK button (or any PushButton other than Cancel) is pushed.
The field argument is also used by the dialog statements that act on this control.

 A drop list box is different from a list box. The drop list box only displays its list
when the user selects it; the list box also displays its entire list in the dialog box.

 Use the DropListBox statement only between a Begin Dialog and an End
Dialog statement.

 This example defines a dialog box with a drop list box and the OK and Cancel
buttons.

 Sub main
 Dim DropListBox1() as String
 Dim x as Integer
 ReDim DropListBox1(3)
 For x=0 to 2
 DropListBox1(x)=Chr(65+x) & ":"
 Next x
 Begin Dialog UserDialog 186, 62, "SQABasic Dialog Box"
 Text 8, 4, 42, 8, "Drive:", .Text3
 DropListBox 8, 16, 95, 44, DropListBox1(), .DropListBox1
 OKButton 124, 6, 54, 14
 CancelButton 124, 26, 54, 14
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
 End Sub

 Begin Dialog CheckBox OptionGroup
 End Dialog ComboBox Picture
 Button DropComboBox StaticComboBox
 ButtonGroup ListBox Text
 CancelButton OKButton TextBox
 Caption OptionButton

 Comments

 Example

 See Also

EditBox

Command Reference 6-131

 EditBox
 User Action Command

 Performs an action on an edit box control.

 EditBox action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag values.

► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The visible text of a Web page INPUT

form element where the type is either Text or Textarea.
► HTMLTitle=$. The text from the Title attribute of

the HTML object.
► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Label=$. The text of the label object that immediately
precedes the edit box in the Z order of windows.

► ► ►

 Description

 Syntax

EditBox

6-132 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its prior label. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the x,y coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position in the scroll box. Every scroll bar has
an internal range, and this value is specific to that range.

 None.

 This example double-clicks the first edit box in the window (ObjectIndex=1)
at x,y coordinates of 33,75.

 EditBox DblClick, "ObjectIndex=1", "Coords=33,75"

 Comments

 Example

EditBoxVP

Command Reference 6-133

 This example clicks the edit box with a Name attribute of Email. The edit box is
located within the Web page frame named Main.

 EditBox Click,
 "Type=HTMLFrame;HTMLId=Main;\;Type=EditBox;Name=Email",
 "Coords=42,16"

 ComboBox ComboListBox
 ComboEditBox ListBox

 EditBoxVP
 Verification Point Command

 Establishes a verification point for an edit box control.

 Result = EditBoxVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► Compare. Captures the entire textual contents of the

object into a grid and compares it to a recorded
baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareData. Captures the contents or HTML text
of the object and compares it to a recorded baseline.
parameters$ VP is required; ExpectedResult
and Wait are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► VerifyIsBlank. Checks that the object has no text.
parameters$ VP is required; ExpectedResult
and Wait are optional.

► ► ►

 See Also

 Description

 Syntax

EditBoxVP

6-134 SQABasic Language Reference

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The visible text of a Web page INPUT

form element where the type is either Text or Textarea.
► HTMLTitle=$. The text from the Title attribute of

the HTML object.
► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Label=$. The text of the label object that immediately
precedes the edit box in the internal order (Z order) of
windows.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► ► ►

EditBoxVP

Command Reference 6-135

► ► ►

 Syntax Element Description

 ► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the properties of the edit box identified by the label Name
and compares them to the recorded baseline in verification point VPTWO. At
playback, the comparison is retried every 6 seconds and times out after 30 seconds.

 Result = EditBoxVP(CompareProperties, "Label=Name:", "VP=VPTWO;
 Wait=6,30")

 Comments

 Example

EndSaveWindowPositions

6-136 SQABasic Language Reference

 This example captures the data of the edit box with a Name attribute of Email.
The edit box is located within the Web page frame named Main. EditBoxVP
compares the data to the recorded baseline in verification point TXTVP1. At
playback, the comparison is retried every 2 seconds and times out after 30 seconds.

 Result = EditBoxVP (CompareData,
 "Type=HTMLFrame;HTMLId=Main;\;Type=EditBox;Name=Email",
 "VP=TXTVP1;Wait=2,30")

 LabelVP
 PushButtonVP
 RadioButtonVP

EndPlay
 Flow Control Command

 This command is obsolete in the current version of SQABasic and should no
longer be used. To maintain the upward compatibility of your existing scripts, the
command does not cause an error, but it has no effect on script execution.

 EndSaveWindowPositions
 Utility Command

 Marks the end of the script commands that save the window positions for
restoration at playback.

 EndSaveWindowPositions

 When you record a script, Robot optionally saves the positions of all windows at
the beginning of the recording. Scripts have Window SetPosition and
Window MoveTo statements between StartSaveWindowPositions and
EndSaveWindowPositions commands, identifying the locations and status of
the windows to be restored.

 StartSaveWindowPositions sets all playback synchronization and timeout
values to zero to speed up the processing of the Window commands.
EndSaveWindowPositions resets all sync and timeout values to their
default values.

 Script commands between StartSaveWindowPositions and
EndSaveWindowPositions generate a Warning in the LogViewer if not
executed properly on playback.

 See Also

 Description

 Syntax

 Comments

Environ

Command Reference 6-137

 If you do not want to store the window position information, you can turn off this
feature in the Recording Options dialog box.

 On playback, the Unexpected Active Window checking is turned off between the
StartSaveWindowPositions and EndSaveWindowPositions
commands.

 This example marks the end of the script commands that save the window
positions for restoration at playback.

 StartSaveWindowPositions
 Window SetPosition, "Caption=TEXT.DOC",
 "Coords=21,408,36,36;Status=MINIMIZED"
 Window SetPosition, "Caption=Program Manager",
 "Coords=-4,-4,648,488;Status=MAXIMIZED"
 EndSaveWindowPositions

 StartSaveWindowPositions
 Window (Actions - SetPosition and MoveTo)

 Environ
 Function

 Returns the string setting for a keyword in the operating system’s environment
table.

 Syntax A Environ[$](environment-string$)

 Syntax B Environ[$](numeric expression%)

 Syntax Element Description

 $ Optional. If specified the return type is String. If
omitted the function will return a Variant of VarType
8 (String).

 environment-string$ The name of a keyword in the operating system
environment.

 numeric expression% A number for the position of the string in the
environment table. (1st, 2nd, 3rd, etc.)

 Example

 See Also

 Description

 Syntax

Eof

6-138 SQABasic Language Reference

 If you use the environment-string$ parameter, enter it in uppercase, or
Environ returns a null string (""). The return value for Syntax A is the string
associated with the keyword requested.

 If you use the numeric expression% parameter, the numeric expression is
automatically rounded to a whole number, if necessary. The return value for
Syntax B is a string in the form keyword=value.

 Environ returns a null string if the specified argument cannot be found.

 This example lists all the strings from the operating system environment table.

 Sub main
 Dim str1(100)
 Dim msgtext
 Dim count, x
 Dim newline
 newline=Chr(10)
 x=1
 str1(x)= Environ(x)
 Do While Environ(x)<>""
 str1(x)= Environ(x)
 x=x+1
 str1(x)=Environ(x)
 Loop
 msgtext="The Environment Strings are:" & newline & newline
 count=x
 For x=1 to count
 msgtext=msgtext & str1(x) & newline
 Next x
 MsgBox msgtext
 End Sub

 None.

 Eof
 Function

 Returns the value -1 if the end of the specified open file has been reached, 0
otherwise.

 Eof(filenumber%)

 Syntax Element Description

 filenumber% An integer expression identifying the open file to use.

 See the Open statement for more information about assigning numbers to files
when they are opened.

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

Erase

Command Reference 6-139

 This example uses the Eof function to read records from a Random file, using a
Get statement. The Eof function keeps the Get statement from attempting to
read beyond the end of the file. The sub procedure CREATEFILE creates the file
C:\TEMP001 used by the main sub procedure.

 Declare Sub createfile()
 Sub main
 Dim acctno
 Dim msgtext as String
 Dim newline as String
 newline=Chr(10)
 Call createfile
 Open "C:\temp001" For Input As #1
 msgtext="The account numbers are:" & newline
 Do While Not Eof(1)
 Input #1,acctno
 msgtext=msgtext & newline & acctno & newline
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
 End Sub

 Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
 Close #1
 End Sub

 Get Loc
 Input function Lof
 Input statement Open
 Line Input

 Erase
 Statement

 Reinitializes the contents of a fixed array or frees the storage associated with a
dynamic array.

 Erase Array[, Array]

 Syntax Element Description

 Array The name of the array variable to re-initialize.

 Example

 See Also

 Description

 Syntax

Erase

6-140 SQABasic Language Reference

 The effect of using Erase on the elements of a fixed array varies with the type of
the element:

 Element Type Erase Effect

 numeric Each element set to zero.

 variable length

string

 Each element set to zero length string.

 fixed length string Each element’s string is filled with zeros.

 Variant Each element set to Empty.

 user-defined type Members of each element are cleared as if the members
were array elements, i.e. numeric members have their
value set to zero, etc.

 object Each element is set to the special value Nothing.

 This example prompts for a list of item numbers to put into an array and clears
array if the user wants to start over.

 Sub main
 Dim msgtext
 Dim inum(100) as Integer
 Dim x, count
 Dim newline
 newline=Chr(10)
 x=1
 count=x
 inum(x)=0
 Do
 inum(x)=InputBox("Enter item #" & x & " (99=start over; 0=end):")
 If inum(x)=99 then
 Erase inum()
 x=0
 ElseIf inum(x)=0 then
 Exit Do
 End If
 x=x+1
 Loop
 count=x-1
 msgtext="You entered the following numbers:" & newline
 For x=1 to count
 msgtext=msgtext & inum(x) & newline
 Next x
 MsgBox msgtext
 End Sub

 Dim LBound
 ReDim UBound

 Comments

 Example

 See Also

Erl

Command Reference 6-141

 Erl
 Function

 Returns the line number where an error was trapped.

 Erl

 If you use a Resume or On Error statement after Erl, the return value for Erl
is reset to 0. To maintain the value of the line number returned by Erl, assign it
to a variable.

 The value of the Erl function can be set indirectly through the Error statement.

 This example prints the error number using the Err function and the line
number using the Erl statement if an error occurs during an attempt to open a
file. Line numbers are automatically assigned, starting with 1, which is the Sub
main statement.

 Sub main
 Dim msgtext, userfile
 On Error GoTo Debugger
 msgtext="Enter the filename to use:"
 userfile=InputBox$(msgtext)
 Open userfile For Input As #1
 MsgBox "File opened for input."
 'etc....
 Close #1
 done:
 Exit Sub
 Debugger:
 msgtext="Error number " & Err & " occurred at line: " & Erl
 MsgBox msgtext
 Resume done
 End Sub

 Err function On Error
 Err statement Resume
 Error function Trappable Error Codes (Appendix B)
 Error statement

 Description

 Syntax

 Comments

 Example

 See Also

Err (Function)

6-142 SQABasic Language Reference

 Err (Function)
 Function

 Returns the runtime error code for the last error trapped.

 Err

 If you use a Resume or On Error statement after Erl, the return value for Err
is reset to 0. To maintain the value of the line number returned by Erl, assign it
to a variable.

 The value of the Err function can be set directly through the Err statement, and
indirectly through the Error statement.

 This example prints the error number using the Err function and the line
number using the Erl statement if an error occurs during an attempt to open a
file. Line numbers are automatically assigned, starting with 1, which is the Sub
main statement.

 Sub main
 Dim msgtext, userfile
 On Error GoTo Debugger
 msgtext="Enter the filename to use:"
 userfile=InputBox$(msgtext)
 Open userfile For Input As #1
 MsgBox "File opened for input."
 'etc....
 Close #1
 done:
 Exit Sub
 Debugger:
 msgtext="Error number " & Err & " occurred at line: " & Erl
 MsgBox msgtext
 Resume done
 End Sub

 Erl On Error
 Err statement Resume
 Error function Trappable Error Codes (Appendix B)
 Error statement

 Description

 Syntax

 Comments

 Example

 See Also

Err (Statement)

Command Reference 6-143

 Err (Statement)
 Statement

 Sets a runtime error code.

 Err = n%

 Syntax Element Description

 n% An integer expression for the error code (between 1 and
32,767) or 0 for no runtime error.

 The Err statement is used to send error information between procedures.

 This example generates an error code of 10000 and displays an error message if a
user does not enter a customer name when prompted for it. It uses the Err
statement to clear any previous error codes before running the loop the first time
and it also clears the error to allow the user to try again.

 Sub main
 Dim custname as String
 On Error Resume Next
 Do
 Err=0
 custname=InputBox$("Enter customer name:")
 If custname="" then
 Error 10000
 Else
 Exit Do
 End If
 Select Case Err
 Case 10000
 MsgBox "You must enter a customer name."
 Case Else
 MsgBox "Undetermined error. Try again."
 End Select
 Loop Until custname<>""
 MsgBox "The name is: " & custname
 End Sub

 Erl On Error
 Err function Resume
 Error function Trappable Error Codes (Appendix B)
 Error statement

 Description

 Syntax

 Comments

 Example

 See Also

Error (Function)

6-144 SQABasic Language Reference

 Error (Function)
 Function

 Returns the error message that corresponds to the specified error code.

 Error[$] [(errornumber%)]

 Syntax Element Description

 $ Optional. If specified, the return type is a String. If
omitted, the function returns a Variant of VarType 8
(String).

 errornumber% An Integer between 1 and 32,767 specifying the error code.

 If the argument is omitted, SQABasic returns the error message for the most
recent runtime error.

 If no error message is found to match the error code in errornumber%, an
empty string ("")is returned.

 This example prints the error number, using the Err function, and the text of
the error, using the Error$ function, if an error occurs during an attempt to
open a file.

 Sub main
 Dim msgtext, userfile
 On Error GoTo Debugger
 msgtext="Enter the filename to use:"
 userfile=InputBox$(msgtext)
 Open userfile For Input As #1
 MsgBox "File opened for input."
 'etc....
 Close #1
 done:
 Exit Sub
 Debugger:
 msgtext="Error " & Err & ": " & Error$
 MsgBox msgtext
 Resume done
 End Sub

 Erl On Error
 Err function Resume
 Err statement Trappable Error Codes (Appendix B)
 Error statement

 Description

 Syntax

 Comments

 Example

 See Also

Error (Statement)

Command Reference 6-145

 Error (Statement)
 Statement

 Simulates the occurrence of an SQABasic or user-defined error.

 Error errornumber%

 Syntax Element Description

 errornumber% An integer between 1 and 32,767 for the error code.

 If an errornumber% is one that SQABasic already uses, the Error statement
will simulate an occurrence of that error.

 User-defined error codes should employ values greater than those used for
standard SQABasic error codes. To help ensure that non-SQABasic error codes
are chosen, user-defined codes should work down from 32,767.

 If an Error statement is executed, and there is no error-handling routine
enabled, SQABasic produces an error message and halts program execution. If an
Error statement specifies an error code not used by SQABasic, the message
User-defined error is displayed.

 This example generates an error code of 10000 and displays an error message if a
user does not enter a customer name when prompted for it.

 Sub main
 Dim custname as String
 On Error Resume Next
 Do
 Err=0
 custname=InputBox$("Enter customer name:")
 If custname="" then
 Error 10000
 Else
 Exit Do
 End If
 Select Case Err
 Case 10000
 MsgBox "You must enter a customer name."
 Case Else
 MsgBox "Undetermined error. Try again."
 End Select
 Loop Until custname<>""
 MsgBox "The name is: " & custname
 End Sub

 Erl On Error
 Err function Resume
 Err statement Trappable Error Codes (Appendix B)
 Error function

 Description

 Syntax

 Comments

 Example

 See Also

Exit

6-146 SQABasic Language Reference

 Exit
 Statement

 Terminates Loop statements or transfers control to a calling procedure.

 Exit {Do | For | Function | Sub}

 Use Exit Do inside a Do...Loop statement. Use Exit For inside a
For...Next statement. When the Exit statement is executed, control transfers
to the statement after the Loop or Next statement. When used within a nested
loop, an Exit statement moves control out of the immediately enclosing loop.

 Use Exit Function inside a Function...End Function procedure. Use
Exit Sub inside a Sub...End Sub procedure.

 This example uses the On Error statement to trap runtime errors. If there is an
error, the program execution continues at the label Debugger. The example uses
the Exit statement to skip over the debugging code when there is no error.

 Sub main
 Dim msgtext, userfile
 On Error GoTo Debugger
 msgtext="Enter the filename to use:"
 userfile=InputBox$(msgtext)
 Open userfile For Input As #1
 MsgBox "File opened for input."
 'etc....
 Close #1
 done:
 Exit Sub
 Debugger:
 msgtext="Error " & Err & ": " & Error$
 MsgBox msgtext
 Resume done
 End Sub

 Do...Loop Stop
 For...Next Sub...End Sub
 Function...End Function

 Description

 Syntax

 Comments

 Example

 See Also

Exp

Command Reference 6-147

 Exp
 Function

 Returns the value e (the base of natural logarithms) raised to a power.

 Exp(number)

 Syntax Element Description

 number The exponent value for e.

 If the variable to contain the return value has a data type Integer, Currency,
or Single, the return value is a single-precision value. If the variable has a
date type of Long, Variant, or Double, the value returned is a double-
precision number.

 The constant e is approximately 2.718282.

 This example estimates the value of a factorial of a number entered by the user. A
factorial (represented as an exclamation mark, !) is the product of a number and
each integer between it and the number 1. For example, 5 factorial, or 5!, is the
product of 5*4*3*2*1, or the value 120.

 Sub main
 Dim x as Single
 Dim msgtext, PI
 Dim factorial as Double
 PI=3.14159
 i: x=InputBox("Enter an integer between 1 and 88: ")
 If x<=0 then
 Exit Sub
 ElseIf x>88 then
 MsgBox "The number you entered is too large. Try again."
 Goto i
 End If
 factorial=Sqr(2*PI*x)*(x^x/Exp(x))
 msgtext="The estimated factorial is: "
 msgtext=msgtext + Format(factorial, "Scientific")
 MsgBox msgtext
 End Sub

 Abs Rnd
 Fix Sgn
 Int Sqr
 Log

 Description

 Syntax

 Comments

 Example

 See Also

FileAttr

6-148 SQABasic Language Reference

 FileAttr
 Function

 Returns the file mode or the operating system handle for the open file.

 FileAttr(filenumber%, returntype)

 Syntax Element Description

 filenumber% An integer expression identifying the open file to use.

 returntype 1=Return file mode, 2=Return operating system handle

 The following table lists the return values and
corresponding file modes if returntype is 1:

 1 - Input
 2 - Output
 8 - Append

 The argument filenumber% is the number used in the Open statement to
open the file.

 This example closes an open file if it is open for Input or Output. If open for
Append, it writes a range of numbers to the file. The second sub procedure,
CREATEFILE, creates the file and leaves it open.

 Declare Sub createfile()
 Sub main
 Dim filemode as Integer
 Dim attrib as Integer
 Dim x as Integer
 Call createfile
 attrib=1
 filemode=FileAttr(1,attrib)
 If filemode=1 or 2 then
 MsgBox "File was left open. Closing now."
 Close #1
 Else
 For x=11 to 15
 Write #1, x
 Next x
 Close #1
 End If
 Kill "C:\TEMP001"
 End Sub

 Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
 End Sub

 Description

 Syntax

 Comments

 Example

FileCopy

Command Reference 6-149

 GetAttr
 Open
 SetAttr

 FileCopy
 Statement

 Copies the contents of a file.

 FileCopy source$, destination$

 Syntax Element Description

 source$ A string expression for the name (and path) of the file to
copy.

 destination$ A string expression for the name (and path) of the file
receiving the contents of source$.

 The contents of the file source$ are copied to the file destination$. The
original contents of destination$ are overwritten.

 Wildcards (* or ?) are not allowed for either the source$ or destination$.
The source$ file cannot be copied if it is opened by SQABasic for anything
other than Read access.

 This example copies one file to another. Both file names are specified by the user.

 Sub main
 Dim oldfile, newfile
 Dim msgtext as String
 On Error Resume Next
 oldfile= InputBox("Copy which file?")
 newfile= InputBox("Copy to?")
 FileCopy oldfile,newfile
 If Err<>0 then
 msgtext="Error during copy. Rerun program."
 Else
 msgtext="Copy successful."
 End If
 MsgBox msgtext
 End Sub

 FileAttr Kill
 FileDateTime Name
 GetAttr

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

FileDateTime

6-150 SQABasic Language Reference

 FileDateTime
 Function

 Returns the last modification date and time for the specified file.

 FileDateTime(pathname$)

 Syntax Element Description

 pathname$ A string expression for the name of the file to query.

 Pathname$ can contain path and disk information, but cannot include wildcards
(* and ?).

 This example writes data to a file if it hasn’t been saved within the last 2 minutes.

 Sub main
 Dim tempfile
 Dim filetime, curtime
 Dim msgtext
 Dim acctno(100) as Single
 Dim x, I
 tempfile="C:\TEMP001"
 Open tempfile For Output As #1
 filetime=FileDateTime(tempfile)
 x=1
 I=1
 acctno(x)=0
 Do
 curtime=Time
 acctno(x)=InputBox("Enter an account number (99 to end):")
 If acctno(x)=99 then
 For I=1 to x-1
 Write #1, acctno(I)
 Next I
 Exit Do
 ElseIf (Minute(filetime)+2)<=Minute(curtime) then
 For I=I to x
 Write #1, acctno(I)
 Next I
 End If
 x=x+1
 Loop
 Close #1
 x=1
 msgtext="Contents of C:\TEMP001 is:" & Chr(10)
 Open tempfile for Input as #1
 Do While Eof(1)<>-1
 Input #1, acctno(x)
 msgtext=msgtext & Chr(10) & acctno(x)
 x=x+1
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
 End Sub

 Description

 Syntax

 Comments

 Example

FileLen

Command Reference 6-151

 FileLen
 GetAttr

 FileLen
 Function

 Returns the length of the specified file.

 FileLen(pathname$)

 Syntax Element Description

 pathname$ A string expression that contains the name of the file
to query.

 Pathname$ can contain path and disk information, but cannot include wildcards
(* and ?).

 If the specified file is open, this function returns the length of the file before the
file was opened.

 This example returns the length of a file.

 Sub main
 Dim length as Long
 Dim userfile as String
 Dim msgtext
 On Error Resume Next
 msgtext="Enter a filename:"
 userfile=InputBox(msgtext)
 length=FileLen(userfile)
 If Err<>0 then
 msgtext="Error occurred. Rerun program."
 Else
 msgtext="The length of " & userfile & " is: " & length
 End If
 MsgBox msgtext
 End Sub

 FileDateTime GetAttr
 FileLen Lof

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

FileVP

6-152 SQABasic Language Reference

 FileVP
 Verification Point Command

 Establishes a verification point for a file or files. Tests for the existence of a file or
compares two different files.

 Result = FileVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► Compare. Performs a binary comparison of two

specified files. recMethod$ File1 and File2 are
required. Also, parameters$ VP is required;
ExpectedResult and Wait are optional.

► Exists. Checks whether a specified file exists at
playback. recMethod$ Name is required. Also,
parameters$ VP is required; ExpectedResult
and Wait are optional.

 recMethod$ Valid values:
► File1=$;File2=$. The full path and file names of

the two files that should be compared for the action
Compare.

► Name=$. Name specifies the full path and file name of
the file that should be tested for the action Exists.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 Description

 Syntax

Fix

Command Reference 6-153

 The file names specified in recMethod$ should contain a fully qualified path. If
a drive and path are not specified, Robot uses the current directory, which is
undetermined at the time of playback and will likely vary depending upon the
environment and application being tested.

 Verification points established through FileVP are not stored in the repository
and do not appear in Robot’s Asset pane.

 This example tests for the existence of the MYPROG.INI file, located in the
C:\WINDOWS directory. At playback, the test is retried every 4 seconds and times
out after 30 seconds.

 Result = FileVP (Exists, "Name=C:\WINDOWS\MYPROG.INI",
 "VP=FXMYPROG;Wait=4,30")

 This example compares the contents of the files C:\MYPROG.EXE and
C:\OLDPROG.EXE.

 Result = FileVP (Compare, "File1=C:\MYPROG.EXE;
 File2=C:\OLDPROG.EXE", "VP=FCMYPROG")

 ModuleVP

 Fix
 Function

 Returns the integer part of a number.

 Fix(number)

 Syntax Element Description

 number Any valid numeric expression.

 The return value’s data type matches the type of the numeric expression. This
includes Variant expressions, unless the numeric expression is a string
(VarType 8) that evaluates to a number, in which case the data type for its return
value is VarType 5 (double). If the numeric expression is VarType 0 (empty),
the data type for the return value is VarType 3 (long).

 For both positive and negative numbers, Fix removes the fractional part of the
expression and returns the integer part only. For example, Fix (6.2) returns 6;
Fix (-6.2) returns -6.

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

For...Next

6-154 SQABasic Language Reference

 This example returns the integer portion of a number provided by the user.
 Sub main
 Dim usernum
 Dim intvalue
 usernum=InputBox("Enter a number with decimal places:")
 intvalue=Fix(usernum)
 MsgBox "The integer portion of " & usernum & " is: " & intvalue
 End Sub

 Abs Int Sgn
 CInt Log Sqr
 Exp Rnd

 For...Next
 Statement

 Repeats a series of program lines a fixed number of times.

 For counter = start TO end [STEP increment]
 [statement_block]
 [Exit For]
 [statement_block]
 Next [counter]

 Syntax Element Description

 counter A numeric variable for the loop counter.

 start The beginning value of the counter.

 end The ending value of the counter.

 increment The amount by which the counter is changed each time
the loop is run. (The default is one.)

 statement_block Basic functions, statements, or methods to be executed.

 The start and end values must be consistent with increment: If end is
greater than start, increment must be positive. If end is less than start,
increment must be negative. SQABasic compares the sign of (start-end)
with the sign of increment. If the signs are the same, and end does not equal
start, the For...Next loop is started. If not, the loop is omitted in its entirety.

 With a For...Next loop, the program lines following the For statement are
executed until the Next statement is encountered. At this point, the Step amount
is added to the counter and compared with the final value, end. If the beginning
and ending values are the same, the loop executes once, regardless of the Step
value. Otherwise, the Step value controls the loop as described in the next table:

 Example

 See Also

 Description

 Syntax

 Comments

For...Next

Command Reference 6-155

 Step Value Loop Execution

 Positive If counter is less than or equal to end, the Step value
is added to counter. Control returns to the statement
after the For statement and the process repeats. If
counter is greater than end, the loop is exited;
execution resumes with the statement following the Next
statement.

 Negative The loop repeats until counter is less than end.

 Zero The loop repeats indefinitely.

 Within the loop, the value of the counter should not be changed, as changing
the counter will make programs more difficult to maintain and debug.

 For...Next loops can be nested within one another. Each nested loop should
be given a unique variable name as its counter. The Next statement for the
inside loop must appear before the Next statement for the outside loop. The
Exit For statement can be used as an alternative exit from For...Next loops.

 If the variable is left out of a Next statement, the Next statement will match the
most recent For statement. If a Next statement occurs prior to its corresponding
For statement, SQABasic will return an error message.

 Multiple consecutive Next statements can be merged together. If this is done, the
counters must appear with the innermost counter first and the outermost counter
last. For example:

 For i = 1 To 10
 [statement_block]
 For j = 1 To 5
 [statement_block]
 Next j, I

 This example calculates the factorial of a number. A factorial (represented as an
exclamation mark, !) is the product of a number and each integer between it and
the number 1. For example, 5 factorial, or 5!, is the product of 5*4*3*2*1, or
the value 120.

 Sub main
 Dim number as Integer
 Dim factorial as Double
 Dim msgtext
 Dim x as Integer
 number=InputBox("Enter an integer between 1 and 170:")
 If number<=0 then
 Exit Sub
 End If
 factorial=1
 For x=number to 2 step -1
 factorial=factorial*x
 Next x

 Example

Format

6-156 SQABasic Language Reference

 Rem If number<= 35, then its factorial is small enough
 Rem to be stored as a single-precision number
 If number<35 then
 factorial=CSng(factorial)
 End If
 msgtext="The factorial of " & number & " is: " & factorial
 MsgBox msgtext
 End Sub

 Do...Loop
 Exit
 While...Wend

 Format
 Function

 Returns a formatted string of an expression based on a given format.

 Format[$](expression [, format])

 Syntax Element Description

 $ Optional. If specified the return type is String. If
omitted the function will return a Variant of VarType
8 (String).

 expression The value to be formatted. It can be a number, Variant, or
string.

 format A string expression representing the format to use. See the
tables in the Comments section for the string values you
can assign to this argument.

 Format formats the expression as a number, date, time, or string depending
upon the format argument. As with any string, you must enclose the format
argument in quotation marks ("").

 Numeric values are formatted as either numbers or date/times. If a numeric
expression is supplied and the format argument is omitted or null, the number
will be converted to a string without any special formatting.

 Both numeric values and Variants can be formatted as dates. When formatting
numeric values as dates, the value is interpreted according the standard Basic date
encoding scheme. The base date, December 30, 1899, is represented as zero, and
other dates are represented as the number of days from the base date.

 Strings are formatted by transferring one character at a time from the input
expression to the output string.

 See Also

 Description

 Syntax

 Comments

Format

Command Reference 6-157

 When exchanging data information with external data sources or external
programs, you should use double-precision floating point numbers or data strings
with at least four characters for identifying the century.

 Formatting Numbers
 The predefined numeric formats with their meanings are as follows:

 Format Description

 General Number Display the number without thousand separator.

 Fixed Display the number with at least one digit to the left and
at least two digits to the right of the decimal separator.

 Standard Display the number with thousand separator and two
digits to the right of decimal separator.

 Scientific Display the number using standard scientific notation.

 Currency Display the number using a currency symbol as defined in
the International section of the Control Panel. Use
thousand separator and display two digits to the right of
decimal separator. Enclose negative value in parentheses.

 Percent Multiply the number by 100 and display with a percent
sign appended to the right; display two digits to the right
of decimal separator.

 TRUE/FALSE Display FALSE for 0, TRUE for any other number.

 Yes/No Display No for 0, Yes for any other number.

 On/Off Display Off for 0, On for any other number.

 To create a user-defined numeric format, follow these guidelines:

 For a simple numeric format, use one or more digit characters and (optionally) a
decimal separator. The two format digit characters provided are zero (0) and
number sign (#). A zero forces a corresponding digit to appear in the output;
while a number sign causes a digit to appear in the output if it is significant (in the
middle of the number or non-zero).

 Number Format Result

 1234.56 # 1235

 1234.56 #.## 1234.56

 1234.56 #.# 1234.6

 1234.56 ######.## 1234.56

 1234.56 00000.000 01234.560

 0.12345 #.## .12

 0.12345 0.## 0.12

Format

6-158 SQABasic Language Reference

 A comma placed between digit characters in a format causes a comma to be placed
between every three digits to the left of the decimal separator.

 Number Format Result

 1234567.8901 #,#.## 1,234,567.89

 1234567.8901 #,#.#### 1,234,567.8901

 Note: Although a comma and period are used in the format to denote separators
for thousands and decimals, the output string will contain the appropriate
character, based upon the current international settings for your machine.

 Numbers can be scaled either by inserting one or more commas before the
decimal separator or by including a percent sign in the format specification. Each
comma preceding the decimal separator (or after all digits if no decimal separator
is supplied) will scale (divide) the number by 1000. The commas will not appear
in the output string. The percent sign will cause the number to be multiplied by
100. The percent sign will appear in the output string in the same position as it
appears in format.

 Number Format Result

 1234567.8901 #,.## 1234.57

 1234567.8901 #,,.#### 1.2346

 1234567.8901 #,#,.## 1,234.57

 0.1234 #0.00% 12.34%

 Characters can be inserted into the output string by being included in the format
specification. The following characters will be automatically inserted in the output
string in a location matching their position in the format specification:

 - + $ () space : /

 Any set of characters can be inserted by enclosing them in double quotes. Any
single character can be inserted by preceding it with a backslash (\).

 Number Format Result

 1234567.89 $#,0.00 $1,234,567.89

 1234567.89 "TOTAL:" $#,#.00 TOTAL: $1,234,567.89

 1234 \=\>#,#\<\= =>1,234<=

 You can use the SQABasic '$CStrings metacommand or the Chr function if
you need to embed quotation marks in a format specification. The character code
for a quotation mark is 34.

Format

Command Reference 6-159

 Numbers can be formatted in scientific notation by including one of the following
exponent strings in the format specification:

 E- E+ e- e+

 The exponent string should be preceded by one or more digit characters. The
number of digit characters following the exponent string determines the number
of exponent digits in the output. Format specifications containing an upper case
E will result in an upper case E in the output. Those containing a lower case e will
result in a lower case e in the output. A minus sign following the E will cause
negative exponents in the output to be preceded by a minus sign. A plus sign in
the format will cause a sign to always precede the exponent in the output.

 Number Format Result

 1234567.89 ###.##E-00 123.46E04

 1234567.89 ###.##e+# 123.46e+4

 0.12345 0.00E-00 1.23E-01

 A numeric format can have up to four sections, separated by semicolons. If you
use only one section, it applies to all values. If you use two sections, the first
section applies to positive values and zeros, the second to negative values. If you
use three sections, the first applies to positive values, the second to negative values,
and the third to zeros. If you include semicolons with nothing between them, the
undefined section is printed using the format of the first section. The fourth
section applies to Null values. If it is omitted and the input expression results in a
NULL value, Format will return an empty string.

 Number Format Result

 1234567.89 #,0.00;(#,0.00);"Zero";"NA" 1,234,567.89

 -1234567.89 #,0.00;(#,0.00);"Zero";"NA" (1,234,567.89)

 0.0 #,0.00;(#,0.00);"Zero";"NA#" Zero

 0.0 #,0.00;(#,0.00);;"NA" 0.00

 Null #,0.00;(#,0.00);"Zero";"NA" NA

 Null "The value is: " 0.00

Format

6-160 SQABasic Language Reference

 Formatting Dates and Times
 As with numeric formats, there are several predefined formats for formatting dates
and times:

 Format Description

 General Date If the number has both integer and real parts, display both
date and time. (for example, 11/8/1993 1:23:45 PM); if the
number has only integer part, display it as a date; if the
number has only fractional part, display it as time.

 The year value is generated into the formatted output as a
four-digit year.

 Long Date Display a Long Date. Long Date is defined in the
International section of the Control Panel.

 Medium Date Display the date using the month abbreviation and
without the day of the week. (as in 08-Nov-93).

 The year value is generated into the formatted output as a
two-digit year.

 Short Date Display a Short Date. Short Date is defined in the
International section of the Control Panel.

 The year value is generated into the formatted output as a
four-digit year.

 Long Time Display Long Time. Long Time is defined in the
International section of the Control Panel and includes
hours, minutes, and seconds.

 Medium Time Do not display seconds; display hours in 12-hour format
and use the AM/PM designator.

 Short Time Do not display seconds; use 24-hour format and no
AM/PM designator.

Format

Command Reference 6-161

 When using a user-defined format for a date, the format specification contains a
series of tokens. Each token is replaced in the output string by its appropriate value.

 A complete date can be output using the following tokens:

 Token Output

 c The date time as if the format was: “ddddd ttttt”. See the
definitions below.

 The year value is generated into the formatted output as a
four-digit year.

 ddddd The date including the day, month, and year according to
the machine’s current Short Date setting. The default
Short Date setting for the United States is m/d/yyyy.

 The year value is generated into the formatted output as a
four-digit year.

 dddddd The date including the day, month, and year according to
the machine’s current Long Date setting. The default
Long Date setting for the United States is mmmm dd,
yyyy.

 ttttt The time including the hour, minute, and second using
the machine’s current time settings The default time
format is h:mm:ss AM/PM.

 Finer control over the output is available by including format tokens that deal
with the individual components of the date time. These tokens are:

 Token Output

 d The day of the month as a one or two digit number (1-31).

 dd The day of the month as a two digit number (01-31).

 ddd The day of the week as a three letter abbreviation (Sun-
Sat).

 dddd The day of the week without abbreviation (Sunday-
Saturday).

 w The day of the week as a number (Sunday as 1, Saturday
as 7).

 ww The week of the year as a number (1-53).

 m The month of the year or the minute of the hour as a one
or two digit number. The minute will be output if the
preceding token was an hour; otherwise, the month will
be output.

► ► ►

Format

6-162 SQABasic Language Reference

► ► ►

 Token Output

 mm The month or the year or the minute of the hour as a two
digit number. The minute will be output if the preceding
token was an hour; otherwise, the month will be output.

 mmm The month of the year as a three letter abbreviation
(Jan-Dec).

 mmmm The month of the year without abbreviation(January-
December).

 q The quarter of the year as a number (1-4).

 y The day of the year as a number (1-366).

 yy The year as a two-digit number (00-99).

 yyyy The year as a four-digit number (100-9999).

 h The hour as a one or two digit number (0-23).

 hh The hour as a two digit number (00-23).

 n The minute as a one or two digit number (0-59).

 nn The minute as a two digit number (00-59).

 s The second as a one or two digit number (0-59).

 ss The second as a two digit number (00-59).

 By default, times will be displayed using a military (24-hour) clock. Several tokens
are provided in date time format specifications to change this default. They all
cause a 12 hour clock to be used. These are:

 Token Output

 AM/PM An uppercase AM with any hour before noon; an
uppercase PM with any hour between noon and 11:59
PM.

 am/pm A lowercase am with any hour before noon; a lowercase
pm with any hour between noon and 11:59 PM.

 A/P An uppercase A with any hour before noon; an uppercase
P with any hour between noon and 11:59 PM.

 a/p A lowercase a with any hour before noon; a lowercase p
with any hour between noon and 11:59 PM.

 AMPM The contents of the 1159 string (s1159) in the WIN.INI
file with any hour before noon; the contents of the 2359
string (s2359) with any hour between noon and 11:59
PM. Note, ampm is equivalent to AMPM.

Format

Command Reference 6-163

 Any set of characters can be inserted into the output by enclosing them in double
quotes. Any single character can be inserted by preceding it with a backslash (\).
See number formatting above for more details.

 Formatting Strings
 By default, string formatting transfers characters from left to right. The
exclamation point (!), when added to the format specification, causes characters
to be transferred from right to left.

 By default, characters being transferred will not be modified. The less than (<)
and the greater than (>) characters can be used to force case conversion on the
transferred characters. Less than forces output characters to be in lowercase.
Greater than forces output characters to be in uppercase.

 Character transfer is controlled by the at sign (@) and ampersand (&) characters
in the format specification. These operate as follows:

 Character Interpretation

 @ Output a character or a space. If there is a character in the
string being formatted in the position where the @ appears
in the format string, display it; otherwise, display a space
in that position.

 & Output a character or nothing. If there is a character in the
string being formatted in the position where the &
appears, display it; otherwise, display nothing.

 A format specification for strings can have one or two sections separated by a
semicolon. If you use one section, the format applies to all string data. If you use
two sections, the first section applies to string data, the second to Null values and
zero-length strings.

 This example calculates the square root of 2 as a double-precision floating point
value and displays it in scientific notation.

 Sub main
 Dim value
 Dim msgtext
 value=CDbl(Sqr(2))
 msgtext="The square root of 2 is " & Format(Value,"Scientific")
 MsgBox msgtext
 End Sub

 Asc CInt CVar
 CCur CLng CVDate
 CDbl CSng Str
 Chr CStr

 Example

 See Also

FreeFile

6-164 SQABasic Language Reference

 FreeFile
 Function

 Returns the lowest unused file number.

 FreeFile

 The FreeFile function is used when you need to supply a file number and want
to make sure that you are not choosing a file number that is already in use. The
value returned can be used in a subsequent Open statement.

 This example opens a file and assigns to it the next file number available.

 Sub main
 Dim filenumber
 Dim filename as String
 filenumber=FreeFile
 filename=InputBox("Enter a file to open: ")
 On Error Resume Next
 Open filename For Input As filenumber
 If Err<>0 then
 MsgBox "Error loading file. Re-run program."
 Exit Sub
 End If
 MsgBox "File " & filename & " opened as number: " & filenumber
 Close #filenumber
 MsgBox "File now closed."
 End Sub

 Open

 Function...End Function
 Statement

 Defines a function procedure.

 [Static] [Private] Function name [([Optional] arg [As
type],...)] [As functype]
 name = expression
 End Function

 Syntax Element Description

 name A function name.

 arg An argument to pass to the function when it is called.
Multiple arguments are separated by commas.

► ► ►

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

Function...End Function

Command Reference 6-165

► ► ►

 Syntax Element Description

 type The data type of an argument in arg.

 functype The data type of the return value.

 name=expression The expression that sets the return value for the function.

 The purpose of a function is to produce and return a single value of a specified
type. Recursion is supported.

 The data type of name determines the type of the return value. Use a type
declaration character as part of the name, or use the As functype clause to
specify the data type. If you don’t specify a data type, the default data type
Variant is used. When calling the function, you need not specify the type
declaration character.

 arg contains an argument being passed to the function. An argument is
represented by a variable name. Multiple arguments are separated by commas.
Note the following information about the arguments being passed:

► The data type of an argument can be specified through a type declaration
character or through the As clause.

► Arguments of a User-Defined data type are declared through an As clause
and a type that has previously been defined through the Type statement.

► If an argument is an array, use empty parentheses after the argument name.
The array dimensions are not specified within the Function statement. All
references to the array within the body of the function must have a consistent
number of dimensions.

► If you declare an argument as Optional, a procedure can omit its value
when calling the function. Only arguments with Variant data types can be
declared as optional, and all optional arguments must appear after any
required arguments in the Function statement. Use the function
IsMissing to check whether an optional argument was actually sent to the
function or was omitted.

► Arguments can be listed in a particular order, or they can be identified by
name. See the Call statement for information on named arguments.

 You specify the return value for the function name using the name=expression
assignment, where name is the name of the function and expression evaluates
to a return value. If omitted, the value returned is 0 for numeric functions, an
empty string ("") for string functions, and VarType 0 (Empty) for functions that
return a Variant.

 Comments

FV

6-166 SQABasic Language Reference

 The function returns to the caller when the End Function statement is reached
or when an Exit Function statement is executed.

 The Static keyword specifies that all the variables declared within the function
will retain their values as long as the program is running, regardless of the way the
variables are declared.

 The Private keyword specifies that the function will not be accessible to
functions and sub procedures from other modules. Only procedures defined in the
same module will have access to a Private function.

 SQABasic procedures use the call-by-reference convention by default. This means
that if the called procedure changes the value of an argument passed in arg, the
new value will apply in the calling procedure as well. This feature should be used
with great care.

 Use Sub to define a procedure with no return value.

 This example declares a function that is later called by the main sub procedure.
The function does nothing but set its return value to 1.

 Declare Function SBL_exfunction()
 Sub main
 Dim y as Integer
 Call SBL_exfunction
 y=SBL_exfunction
 MsgBox "The value returned by the function is: " & y
 End Sub

 Function SBL_exfunction()
 SBL_exfunction=1
 End Function

 Call Option Explicit
 Dim Static
 Global Sub...End Sub
 IsMissing

 FV
 Function

 Returns the future value for a constant periodic stream of cash flows as in an
annuity or a loan.

 Example

 See Also

 Description

FV

Command Reference 6-167

 FV (rate, nper, pmt, pv, due)

 Syntax Element Description

 rate Interest rate per period.

 nper Total number of payment periods.

 pmt Constant periodic payment per period.

 pv Present value or the initial lump sum amount paid (as in
the case of an annuity) or received (as in the case of a
loan).

 due An integer value for when the payments are due (0=end
of each period, 1= beginning of the period).

 The given interest rate is assumed constant over the life of the annuity.

 If payments are on a monthly schedule and the annual percentage rate on the
annuity or loan is 9%, the rate is 0.0075 (.0075=.09/12).

 This example finds the future value of an annuity, based on terms specified by
the user.

 Sub main
 Dim aprate, periods
 Dim payment, annuitypv
 Dim due, futurevalue
 Dim msgtext
 annuitypv=InputBox("Enter present value of the annuity: ")
 aprate=InputBox("Enter the annual percentage rate: ")
 If aprate > 1 then
 Aprate = aprate/100
 End If
 periods=InputBox("Enter the total number of pay periods: ")
 payment=InputBox("Enter the initial amount paid to you: ")
 Rem Assume payments are made at end of month due=0
 futurevalue=FV(aprate/12,periods,-payment,- annuitypv,due)
 msgtext="The future value is: " & Format(futurevalue,"Currency")
 MsgBox msgtext
 End Sub

 IPmt PPmt
 IRR PV
 NPV Rate
 Pmt

 Syntax

 Comments

 Example

 See Also

GenericObject

6-168 SQABasic Language Reference

 GenericObject
 User Action Command

 Performs an action on a generic object.

 GenericObject action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag values.

► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.
 If Robot cannot interpret the action being applied to a
scroll bar, which happens with certain custom standalone
scroll bars, it records the action as a click or drag.

 recMethod$ Valid values:
► Class=$. The object’s class name. Class and

ClassIndex are used together as a single recognition
method.

► ClassIndex=%. The index or number count of the
object among all objects of the same class within a
given window. Class and ClassIndex are used
together as a single recognition method.

► ID=%. The object’s internal Windows ID.

► ► ►

 Description

GenericObject

Command Reference 6-169

► ► ►

 Syntax Element Description

 ► Index=%. The number of the object among all objects
identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other recognition
method. There are two possible values for this setting:
Enabled and Disabled. The default state is the state of
the current context window (as set in the most recent
Window SetContext statement), or Enabled if the
state has not been otherwise declared.

► Text=$. The text displayed on the object.
► Type=$. An optional qualifier for recognition

methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position in the scroll box. Every scroll bar has an
internal range, and this value is specific to that range.

GenericObjectVP

6-170 SQABasic Language Reference

 This example double-clicks the first generic object in the window
(ObjectIndex=1) at x,y coordinates of 276,329.

 GenericObject DblClick, "ObjectIndex=1", "Coords=276,329"

 GenericObjectVP

 GenericObjectVP
 Verification Point Command

 Establishes a verification point for a generic object.

 Result = GenericObjectVP (action%,recMethod$,parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareNumeric. Captures the numeric value of

the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► CompareVBXData. Captures the data from an
OCX/ActiveX or VBX control and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► VerifyIsBlank. Checks that the object has no text.
parameters$ VP is required; ExpectedResult
and Wait are optional.

► ► ►

 Example

 See Also

 Description

 Syntax

GenericObjectVP

Command Reference 6-171

► ► ►

 Syntax Element Description

recMethod$ Valid values:
► Class=$. The object’s class name. Class and

ClassIndex are used together as a single recognition
method.

► ClassIndex=%. The index or number count of the
object among all objects of the same class within a
given window. Class and ClassIndex are used
together as a single recognition method.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► Type=$. An optional qualifier for recognition

methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► ► ►

GenericObjectVP

6-172 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the text of the first generic object in the window
(ObjectIndex=1) and performs a case-sensitive comparison with the recorded
baseline in verification point NEWVP.

 Result = GenericObjectVP (CompareText, "ObjectIndex=1",
 "VP=NEWVP;Type=CaseSensitive")

 ComboBoxVP GenericObject
 ComboListBoxVP ListBoxVP
 EditBoxVP

 Comments

 Example

 See Also

Get

Command Reference 6-173

 Get
 Statement

 Reads data from a file opened in Random or Binary mode and puts it in a
variable.

 Get [#]filenumber%, [recnumber&], varname

 Syntax Element Description

 filenumber% An integer expression identifying the open file to use.

 recnumber& A Long expression containing the number of the record
(for Random mode) or the offset of the byte (for Binary
mode) at which to start reading.

 varname The name of the variable into which Get reads file data.
Varname can be any variable except Object or Array
variables (single array elements can be used).

 For more information about how files are numbered when they’re opened, see the
Open statement.

 recnumber& is in the range 1 to 2,147,483,647. If omitted, the next record or
byte is read.

 Note: The commas before and after the recnumber& are required, even if you
do not supply a recnumber&.

 For Random mode, the following rules apply:

► Blocks of data are read from the file in chunks whose size is equal to the size
specified in the Len clause of the Open statement. If the size of varname is
smaller than the record length, the additional data is discarded. If the size of
varname is larger than the record length, an error occurs.

► For variable length String variables, Get reads two bytes of data that
indicate the length of the string, then reads the data into varname.

► For Variant variables, Get reads two bytes of data that indicate the type of
the Variant, then it reads the body of the Variant into varname. Note that
Variants containing strings contain two bytes of data type information
followed by two bytes of length followed by the body of the string.

► User defined types are read as if each member were read separately, except no
padding occurs between elements.

 Description

 Syntax

 Comments

Get

6-174 SQABasic Language Reference

 Files opened in Binary mode behave similarly to those opened in Random
mode, except:

► Get reads variables from the disk without record padding.

► Variable length Strings that are not part of user defined types are not
preceded by the two-byte string length. Instead, the number of bytes read is
equal to the length of varname.

 This example opens a file for Random access, gets its contents, and closes the file
again. The second sub procedure, CREATEFILE, creates the C:\TEMP001 file used
by the main sub procedure.

 Declare Sub createfile()
 Sub main
 Dim acctno as String*3
 Dim newline as String
 Dim recno as Long
 Dim msgtext as String
 Call createfile
 recno=1
 newline=Chr(10)
 Open "C:\TEMP001" For Random As #1 Len=3
 msgtext="The account numbers are:" & newline
 Do Until recno=11
 Get #1,recno,acctno
 msgtext=msgtext & acctno
 recno=recno+1
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
 End Sub

 Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
 Close #1
 End Sub

 Open
 Put
 Type

 Example

 See Also

GetAttr

Command Reference 6-175

 GetAttr
 Function

 Returns the attributes of a file, directory, or volume label.

 GetAttr(pathname$)

 Syntax Element Description

 pathname$ A String expression for the name of the file, directory,
or label to query.

 Pathname$ cannot contain wildcards (* and ?).

 The file attributes returned by GetAttr are as follows:

 Value Meaning

 0 Normal file

 1 Read-only file

 2 Hidden file

 4 System file

 8 Volume label

 16 Directory

 32 Archive - file has changed since last backup

 This example tests the attributes for a file and if it is hidden, changes it to a non-
hidden file.

 Sub main
 Dim filename as String
 Dim attribs, saveattribs as Integer
 Dim answer as Integer
 Dim archno as Integer
 Dim msgtext as String
 archno=32
 On Error Resume Next
 msgtext="Enter name of a file:"
 filename=InputBox(msgtext)
 attribs=GetAttr(filename)
 If Err<>0 then
 MsgBox "Error in filename. Re-run Program."
 Exit Sub
 End If
 saveattribs=attribs
 If attribs>= archno then
 attribs=attribs-archno
 End If

 Description

 Syntax

 Comments

 Example

GetField

6-176 SQABasic Language Reference

 Select Case attribs
 Case 2,3,6,7
 msgtext=" File: " &filename & " is hidden." & Chr(10)
 msgtext=msgtext & Chr(10) & " Change it?"
 answer=MsgBox(msgtext,308)
 If answer=6 then
 SetAttr filename, saveattribs-2
 MsgBox "File is no longer hidden."
 Exit Sub
 End If
 MsgBox "Hidden file not changed."
 Case Else
 MsgBox "File was not hidden."
 End Select
 End Sub

 FileAttr
 SetAttr

 GetField
 Function

 Returns a substring from a source string.

 GetField[$](string$, field_number%, separator_chars$)

 Syntax Element Description

 $ Optional. If specified, the return type is String. If
omitted, the function typically returns a Variant of
VarType 8 (String).

 string$ A list of fields, divided by separator characters.

 field_number% The number of the field to return, starting with 1.

 separator_chars$ The characters separating each field.

 Multiple separator characters can be specified. If field_number is greater than
the number of fields in the string, an empty string ("") is returned.

 This example finds the third value in a string, delimited by plus signs (+).

 Sub main
 Dim teststring,retvalue
 Dim msgtext
 teststring="9+8+7+6+5"
 retvalue=GetField(teststring,3,"+")
 MsgBox "The third field in: " & teststring & " is: " & retvalue
 End Sub

 See Also

 Description

 Syntax

 Comments

 Example

GetLastVPResult

Command Reference 6-177

 Left Mid statement SetField
 LTrim Right StrComp
 Mid function RTrim Trim

 GetLastVPResult
 Utility Command

 Returns the result of the last verification point to have been evaluated in the
current playback session.

 Result = GetLastVPResult()

 Each time a verification point is evaluated, a PASS or FAIL result is saved. This
command returns, as an integer, the result of the last verification point to have
been evaluated. The result is either PASS (integer value of 1) or FAIL (integer
value of 0).

 This command is useful for determining the result of a verification point that is
executed in a nested script.

 This example shows conditional execution of a script based on the result of the last
verification point evaluated.

 LastResult% = GetLastVPResult()
 If LastResult% = PASS Then
 ... '(If-Then routine)
 End If

 None.

 GetObject
 Function

 Returns an OLE2 object associated with the file name or the application name.

 Syntax A GetObject(pathname)

 Syntax B GetObject(pathname, class)

 Syntax C GetObject(, class)

 Syntax Element Description

 pathname The path and file name for the object to retrieve.

 class A string containing the class of the object.

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

GetObject

6-178 SQABasic Language Reference

 Use GetObject with the Set statement to assign a variable to the object for
use in an SQABasic procedure. The variable used must first be dimensioned as
an Object.

 Syntax A of GetObject accesses an OLE2 object stored in a file. For example, the
following two lines dimension the variable, FILEOBJECT as an Object and assign
the object file PAYABLES to it. PAYABLES is located in the subdirectory
SPREDSHT:

 Dim FileObject As Object
Set FileObject = GetObject("\spredsht\payables")

 If the application supports accessing component OLE2 objects within the file, you
can append an exclamation point and a component object name to the file name,
as follows:

 Dim ComponentObject As Object
Set ComponentObject = GetObject("\spredsht\payables!R1C1:R13C9")

 Syntax B of GetObject accesses an OLE2 object of a particular class that is stored
in a file. Class uses the syntax: appname.objtype, where appname is the
name of the application that provides the object, and objtype is the type or class
of the object. For example:

 Dim ClassObject As Object
Set ClassObject =
GetObject("\spredsht\payables","turbosht.spreadsheet")

 The third form of GetObject accesses the active OLE2 object of a particular
class. For example:

 Dim ActiveSheet As Object
SetActiveSheet = GetObject(, "turbosht.spreadsheet")

 This example displays a list of open files in the software application, VISIO. It uses
the GetObject function to access VISIO. To see how this example works, you
need to start VISIO and open one or more documents.

 Sub main
 Dim visio as Object
 Dim doc as Object
 Dim msgtext as String
 Dim i as Integer, doccount as Integer

 'Initialize Visio
 Set visio = GetObject(,"visio.application") ' find Visio
 If (visio Is Nothing) then
 MsgBox "Couldn't find Visio!"
 Exit Sub
 End If

 Comments

 Example

Global

Command Reference 6-179

 'Get # of open Visio files
 doccount = visio.documents.count 'OLE2 call to Visio
 If doccount=0 then
 msgtext="No open Visio documents."
 Else
 msgtext="The open files are: " & Chr$(13)
 For i = 1 to doccount
 ' access Visio's document method
 Set doc=visio.documents(i)
 msgtext=msgtext & Chr$(13) & doc.name
 Next i
 End If
 MsgBox msgtext
 End Sub

 Class List Nothing
 CreateObject Object Class
 Is Typeof
 New

 Global
 Statement

 Declare Global variables for use in an SQABasic program.

 Global variableName [As type] [,variableName [As type]]...

 Syntax Element Description

 variableName A variable name

 type The data type of the variable. Valid values include:

 Integer String (variable)

 Long String * length (fixed)

 Single Object

 Double Variant

 Currency
 In addition, you can specify any User-Defined data
type, including a dialog box record.

 Global data is shared across all loaded modules. If an attempt is made to load a
module that has a global variable declared that has a different data type than an
existing global variable of the same name, the module load will fail.

 Basic is a strongly typed language. All variables must be assigned a data type or
they will be automatically assigned a type of Variant.

 See Also

 Description

 Syntax

 Comments

Global

6-180 SQABasic Language Reference

 If the As clause is not used, the type of the global variable can be specified by
using a type-declaration character as a suffix to variableName. The two
different type-specification methods can be intermixed in a single Global
statement (although not on the same variable).

 Regardless of which mechanism you use to declare a global variable, you can
choose to use or omit the type-declaration character when referring to the variable
in the rest of your program. The type suffix is not considered part of the variable
name.

 Arrays
 Arrays support all SQABasic data types. Arrays of arrays and dialog box records are
not supported.

 Array variables are declared by including a subscript list as part of the
variableName. The syntax to use for variableName is:

 Global variable([subscriptRange, ...]) [As typeName]
 where subscriptRange is of the format:

 [startSubscript To] endSubscript
 If startSubscript is not specified, 0 is used as the default. The Option
Base statement can be used to change the default.

 Both the startSubscript and the endSubscript are valid subscripts for the array. The
maximum number of subscripts that can be specified in an array definition is 60.

 If no subscriptRange is specified for an array, the array is declared as a dynamic
array. In this case, the ReDim statement must be used to specify the dimensions of
the array before the array can be used.

 Numbers
 Numeric variables can be declared using the As clause and one of the following
numeric types: Currency, Integer, Long, Single, Double. Numeric
variables can also be declared by including a type character as a suffix to the name.

 User-Defined
 Variables of a user-defined type are declared by using an As clause and a type
that has been defined previously using the Type statement. The syntax is:

 Global variableName As typeName
 Variables of a user-defined type are made up of a collection of data elements called
fields. These fields can be of any numeric, string, Variant, or other user-defined
type. See Type for details on accessing fields within a user-defined type.

Global

Command Reference 6-181

 You cannot use the Global statement to declare a dialog box record (as you can
with the Dim statement).

 Strings
 SQABasic supports two types of strings, fixed-length and dynamic. Fixed-length
strings are declared with a specific length (between 1 and 32767) and cannot be
changed later. Use the following syntax to declare a fixed-length string:

 Global variableName As String*length
 Dynamic strings have no declared length, and can vary in length from 0 to 32767.
The initial length for a dynamic string is 0. Use the following syntax to declare a
dynamic string:

 Global variableName$ or
Global variableName As String

 Variants
 Declare variables as Variants when the type of the variable is not known at the start
of, or might change during, the procedure. For example, a Variant is useful for
holding input from a user when valid input can be either text or numbers. Use the
following syntax to declare a Variant:

 Global variableName or
Global variableName As Variant

 Variant variables are initialized to VarType Empty.

 This example contains two sub procedures that share the variables TOTAL and
ACCTNO, and the user-defined type GRECORD.

 Type acctrecord
 acctno As Integer
 End Type
 Global acctno as Integer
 Global total as Integer
 Global grecord as acctrecord
 Declare Sub createfile
 Sub main
 Dim msgtext
 Dim newline as String
 Dim x as Integer
 newline=Chr$(10)
 Call createfile
 Open "C:\TEMP001" For Input as #1
 msgtext="The new account numbers are: " & newline
 For x=1 to total
 Input #1, grecord.acctno
 msgtext=msgtext & newline & grecord.acctno
 Next x
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
 End Sub

 Example

GoTo

6-182 SQABasic Language Reference

 Sub createfile
 Dim x
 x=1
 grecord.acctno=1
 Open "C:\TEMP001" For Output as #1
 Do While grecord.acctno<>0
 grecord.acctno=InputBox("Enter 0 or new account #" & x & ":")
 If grecord.acctno<>0 then
 Print #1, grecord.acctno
 x=x+1
 End If
 Loop
 total=x-1
 Close #1
 End Sub

 Const ReDim
 Dim Static
 Option Base Type

 GoTo
 Statement

 Transfers program control to the specified label.

 GoTo {label}

 Syntax Element Description

 label A name beginning in the first column of a line of code and
ending with a colon (:).

 A label has the same format as any other SQABasic name. See Appendix A for
more information about SQABasic labels and names.

 To be recognized as a label, a name must begin in the first column of a line of
code, and must be immediately followed by a colon (:). Keywords (such as
command names) are reserved words and are not valid labels.

 GoTo cannot be used to transfer control out of the current function or sub
procedure.

 This example displays the date for one week from the date entered by the user. If
the date is invalid, the Goto statement sends program execution back to the
beginning.

 Sub main
 Dim str1 as String
 Dim answer as Integer
 Dim nextweek, msgtext as String

 See Also

 Description

 Syntax

 Comments

 Example

GroupBox (Statement)

Command Reference 6-183

 i: str1=InputBox$("Enter a date:")
 answer=IsDate(str1)
 If answer=-1 then
 str1=CVDate(str1)
 nextweek=DateValue(str1)+7
 msgtext="One week from the date entered is:"
 msgtext=msgtext & Format(nextweek,"dddddd")
 MsgBox msgtext
 Else
 MsgBox "Invalid date or format. Try again."
 GoTo i
 End If
 End Sub

 Do...Loop Select Case
 For...Next While...Wend
 If...Then...Else

 GroupBox (Statement)
 Statement

 Defines and draws a box that encloses sets of dialog box items, such as option
boxes and check boxes.

 GroupBox x, y, dx, dy, text$[,.id]

 Syntax Element Description

 x, y The upper left corner coordinates of the group box,
relative to the upper left corner of the dialog box.

 dx, dy The width and height of the group box.

 text$ A string containing the title for the top border of the
group box.

 .id The optional string ID for the group box, used by the
dialog statements that act on this control.

 The x argument is measured in 1/4 system-font character-width units. The y
argument is measured in 1/8 system-font character-width units. (See Begin
Dialog for more information.)

 If text$ is wider than dx, the additional characters are truncated. If text$ is an
empty string (""), the top border of the group box will be a solid line.

 Use the GroupBox statement only between a Begin Dialog and an End
Dialog statement.

 See Also

 Description

 Syntax

 Comments

GroupBox (User Action Command)

6-184 SQABasic Language Reference

 This example creates a dialog box with two group boxes.
 Sub main
 Begin Dialog UserDialog 242, 146, "Print Dialog Box"
 '$CStrings Save
 GroupBox 115, 14, 85, 57, "Page Range"
 OptionGroup .OptionGroup2
 OptionButton 123, 30, 46, 12, "All Pages", .OptionButton1
 OptionButton 123, 50, 67, 8,"Current Page",.OptionButton2
 GroupBox 14, 12, 85, 76, "Include"
 CheckBox 26, 17, 54, 25, "Pictures", .CheckBox1
 CheckBox 26, 36, 54, 25, "Links", .CheckBox2
 CheckBox 26, 58, 63, 25, "Header/Footer", .CheckBox3
 PushButton 34, 115, 54, 14, "Print"
 PushButton 136, 115, 54, 14, "Cancel"
 '$CStrings Restore
 End Dialog
 Dim mydialog as UserDialog
 Dialog mydialog
 End Sub

 Begin Dialog CheckBox OptionButton
 End Dialog ComboBox OptionGroup
 Button Dialog Picture
 ButtonGroup DropComboBox StaticComboBox
 CancelButton ListBox Text
 Caption OKButton TextBox

 GroupBox (User Action Command)
 User Action Command

 Performs an action on a group box control.

 GroupBox action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

► ► ►

 Example

 See Also

 Description

 Syntax

GroupBox (User Action Command)

Command Reference 6-185

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 None.

 This example clicks the group box identified by the text CountryCodes at x,y
coordinates of 306,223.

 GroupBox Click, "Text=CountryCodes", "Coords=306,223"

 ComboBox EditBox
 ComboListBox ListBox

 Comments

 Example

 See Also

GroupBoxVP

6-186 SQABasic Language Reference

 GroupBoxVP
 Verification Point Command

 Establishes a verification point for a group box control.

 Result = GroupBoxVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareNumeric. Captures the numeric value of

the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► VerifyIsBlank. Checks that the object has no text.
parameters$ VP is required; ExpectedResult
and Wait are optional.

recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.

► ► ►

 Description

 Syntax

GroupBoxVP

Command Reference 6-187

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 Comments

Header

6-188 SQABasic Language Reference

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the properties of the group box identified by the text
Icons and compares them to the recorded baseline in verification point GRPVP.

 Result = GroupBoxVP (CompareProperties, "Text=Icons", "VP=GRPVP")

 ComboBoxVP EditBoxVP
 ComboListBoxVP ListBoxVP

 Header
 User Action Command

 Performs an action on a header control.

 Header action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ► ►

 Example

 See Also

 Description

 Syntax

Header

Command Reference 6-189

► ► ►

 Syntax Element Description

 ► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x1,y1. If action% is a mouse click,

specifies the x,y coordinates of the click, relative to the
top left of the object.

► Coords=x1,x2,y1,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 None.

 This example clicks the first header control in the window (ObjectIndex=1) at
x,y coordinates of 50,25.

 Header Click, "ObjectIndex=1", "Coords=50,25"

 HeaderVP

 Comments

 Example

 See Also

HeaderVP

6-190 SQABasic Language Reference

 HeaderVP
 Verification Point Command

 Establishes a verification point for a header control.

 Result = HeaderVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.

► ► ►

 Description

 Syntax

HeaderVP

Command Reference 6-191

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a

 Comments

Hex

6-192 SQABasic Language Reference

substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the properties of the first header control in the window
(ObjectIndex=1) and compares them to the recorded baseline in verification
point TEST1A.

 Result = HeaderVP (CompareProperties, "ObjectIndex=1", "VP=TEST1A")

 Header

 Hex
 Function

 Returns the hexadecimal representation of a number as a string.

 Hex[$](number)

 Syntax Element Description

 $ Optional. If specified the return type is String. If
omitted the function will return a Variant of VarType
8 (String).

 number Any numeric expression that evaluates to a number.

 If number is an integer, the return string contains up to four hexadecimal digits;
otherwise, the value will be converted to a Long Integer, and the string can
contain up to 8 hexadecimal digits.

 To represent a hexadecimal number directly, precede the hexadecimal value with
&H. For example, &H10 equals decimal 16 in hexadecimal notation.

 This example returns the hex value for a number entered by the user.

 Sub main
 Dim usernum as Integer
 Dim hexvalue
 usernum=InputBox("Enter a number to convert to hexadecimal:")
 hexvalue=Hex(usernum)
 MsgBox "The HEX value is: " & hexvalue
 End Sub

 Oct
 Format

 Example

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

HotKeyControl

Command Reference 6-193

 HotKeyControl
 User Action Command

 Performs an action on a hot key control.

 HotKeyControl action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Label=$. The text of the label object that immediately

precedes the hot key control in the Z order of windows.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set in
the most recent Window SetContext command), or
Enabled if the state has not been otherwise declared.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 Description

 Syntax

HotKeyControlVP

6-194 SQABasic Language Reference

 None.

 This example clicks the first hot key control in the window (ObjectIndex=1)
at x,y coordinates of 50,25.

 HotKeyControl Click, "ObjectIndex=1", "Coords=50,25"

 HotKeyControlVP

 HotKeyControlVP
 Verification Point Command

 Establishes a verification point for a hot key control.

 Result = HotKeyControlVP (action%,recMethod$,parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Label=$. The text of the label object that immediately

precedes the hot key control in the Z order of windows.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

Hour

Command Reference 6-195

► ► ►

 Syntax Element Description

 ► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example captures the properties of the first hot key control in the window
(ObjectIndex=1) and compares them to the recorded baseline in verification
point TEST1A.

 Result = HotKeyControlVP (CompareProperties, "ObjectIndex=1",
"VP=TEST1A")

 HotKeyControl

 Hour
 Function

 Returns the hour of day component (0-23) of a date-time value.

 Hour(time)

 Syntax Element Description

 time Any numeric or string expression that can evaluate to a
date and time.

 Hour accepts any type of time including strings and will attempt to convert the
input value to a date value.

 The return value is a Variant of VarType 2 (integer). If the value of time is
Null, a Variant of VarType 1 (null) is returned.

 Time is a double-precision value. The numbers to the left of the decimal point
denote the date and the decimal value denotes the time (from 0 to .99999). Use
the TimeValue function to obtain the correct value for a specific time.

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

HTML

6-196 SQABasic Language Reference

 This example extracts just the time (hour, minute, and second) from a file’s last
modification date and time.

 Sub main
 Dim filename as String
 Dim ftime
 Dim hr, min
 Dim sec
 Dim msgtext as String
 i: msgtext="Enter a filename:"
 filename=InputBox(msgtext)
 If filename="" then
 Exit Sub
 End If
 On Error Resume Next
 ftime=FileDateTime(filename)
 If Err<>0 then
 MsgBox "Error in file name. Try again."
 Goto i:
 End If
 hr=Hour(ftime)
 min=Minute(ftime)
 sec=Second(ftime)
 MsgBox "The file's time is: " & hr &":" &min &":" &sec
 End Sub

 DateSerial Now TimeValue
 DateValue Second Weekday
 Day Time function Year
 Minute Time statement
 Month TimeSerial

 HTML
 User Action Command

 Performs a mouse action on an HTML tag.

 HTML action%, recMethod$, parameters$

 Syntax Element Description

 action% The following mouse action:
► Click. The clicking of the left, center, or right mouse

button, either alone or in combination with one or
more shifting keys (Ctrl, Alt, Shift). parameters$
must contain Coords=x,y.

► ► ►

 Example

 See Also

 Description

 Syntax

HTML

Command Reference 6-197

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of a Web page.
► HTMLTitle=$. The text from the Title attribute of

the HTML object.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Name=$. The Name attribute that an HTML
developer assigns to an object to uniquely identify the
object in the development environment.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a
Frameset. The Type qualifier uses the form:
Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid value:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

 None.

 This example clicks on the Web page with the ID Obj2. This page is located
within the second frame of the page.

 Browser SetFrame, "Type=HTMFrame;Index=2",""
 Browser NewPage,"",""
 HTML Click, "HTMLId=Obj2", "Coords=481,8"

 HTMLVP

 Comments

 Example

 See Also

HTMLVP

6-198 SQABasic Language Reference

 HTMLVP
 Verification Point Command

 Establishes a verification point for HTML tag.

 Result = HTMLVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP
is required; ExpectedResult and Wait are
optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of a Web page.
► HTMLTitle=$. The text from the Title attribute of

the HTML object.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Name=$. The Name attribute that an HTML
developer assigns to an object to uniquely identify the
object in the development environment.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a
Frameset. The Type qualifier uses the following form:
Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

► ► ►

 Description

 Syntax

HTMLVP

Command Reference 6-199

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example captures data from the tag with the ID cmdGo. HTMLVP compares
the data to the recorded baseline in verification point WebTest2. At playback, the
comparison is retried every 2 seconds and times out after 30 seconds.

 Window SetContext, "WindowTag=WEBBrowser", ""
 Browser NewPage, "", ""
 Result = HTMLVP (CompareData, "HTMLId=cmdGo",
 "VP=WebTest2;Wait=2,30")

 HTML

 Comments

 Example

 See Also

HTMLActiveX

6-200 SQABasic Language Reference

 HTMLActiveX
 User Action Command

 Performs a mouse action on ActiveX controls embedded in the page.

 HTMLActiveX action%, recMethod$, parameters$

 Syntax Element Description

 action% The following mouse action:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When
action% contains a mouse-click value,
parameters$ must contain Coords=x,y.

 See Appendix E for a list of mouse click values.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of a Web page.
► HTMLTitle=$. The text from the Title attribute of

the HTML object.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Name=$. The Name attribute that an HTML
developer assigns to an object to uniquely identify the
object in the development environment.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a
Frameset. The Type qualifier uses the following form:
Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid value:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

 None.

 Description

 Syntax

 Comments

HTMLActiveXVP

Command Reference 6-201

 This example clicks on the ActiveX element with the ID of cmdGo.
 Window SetContext, "WindowTag=WEBBrowser", ""
 HTMLActiveX Click, "HTMLId=cmdGo", "Coords=25,11"

 HTMLActiveXVP

 HTMLActiveXVP
 Verification Point Command

 Establishes a verification point for an ActiveX control embedded in the page.

 Result = HTMLActiveXVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of a Web page.
► HTMLTitle=$. The text from the Title attribute of

the HTML object.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Name=$. The Name attribute that an HTML
developer assigns to an object to uniquely identify the
object in the development environment.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a
Frameset. The Type qualifier uses the following form:
Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

► ► ►

 Example

 See Also

 Description

 Syntax

HTMLActiveXVP

6-202 SQABasic Language Reference

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example captures properties for the ActiveX with the ID cmdGo.
HTMLActiveXVP compares the properties to the recorded baseline in verification
point WebTest2. At playback, the comparison is retried every 2 seconds and
times out after 30 seconds.

 Window SetContext, "WindowTag=WEBBrowser", ""
 Browser NewPage, "", ""
 Result = HTMLActiveXVP (CompareProperties, "HTMLId=cmdGo",
 "VP=WebTest2;Wait=2,30")

 HTMLActiveX

 Comments

 Example

 See Also

HTMLDocument

Command Reference 6-203

 HTMLDocument
 User Action Command

 Performs a mouse action on the text of a Web page. Primarily used to position the
cursor.

 HTMLDocument action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► Click. The clicking of the left, center, or right mouse

button, either alone or in combination with one or
more shifting keys (Ctrl, Alt, Shift). parameters$
must contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of a Web page.
► HTMLTitle=$. The text from the Title attribute of

the HTML object.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Name=$. The Name attribute that an HTML
developer assigns to an object to uniquely identify the
object in the development environment.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a
Frameset. The Type qualifier uses the following form:
Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

► ► ►

 Description

 Syntax

HTMLDocumentVP

6-204 SQABasic Language Reference

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 None.

 This example clicks on the Web page with the title My Web Page. This page is
located within the second frame of the page.

 Browser SetFrame, "Type=HTMFrame;Index=2",""
 Browser NewPage,"HTMLTitle=My Web Page",""
 HTMLDocument Click, "HTMLTitle=My Web Page", "Coords=481,8"

 HTMLDocumentVP

 HTMLDocumentVP
 Verification Point Command

 Establishes a verification point for Web page data.

 Result = HTMLDocumentVP (action%,recMethod$,parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP
is required; ExpectedResult and Wait are
optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

HTMLDocumentVP

Command Reference 6-205

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of a Web page.
► HTMLTitle=$. The text from the Title attribute of

the HTML object.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Name=$. The Name attribute that an HTML
developer assigns to an object to uniquely identify the
object in the development environment.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a
Frameset. The Type qualifier uses the following form:
Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 Comments

HTMLHiddenVP

6-206 SQABasic Language Reference

 This example captures data from the Web page titled My Web Page. The page is
located within the second frame of the page. HTMLDocumentVP compares the
data to the recorded baseline in verification point WebTest2. At playback, the
comparison is retried every 2 seconds and times out after 30 seconds.

 Browser SetFrame, "Type=HTMFrame;Index=2",""
 Browser NewPage, "HTMLTitle=My Web Page",""
 Result = HTMLDocumentVP (CompareData, "HTMLTitle=My Web Page",
 "VP=WebTest2;Wait=2,30")

 HTMLDocument

HTMLHidden
 Keyword

 HTMLHidden is an unused reserved keyword.

 HTMLHiddenVP
 Verification Point Command

 Establishes a verification point for a hidden element.

 Result = HTMLHiddenVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP is
required; ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of a Web page.
► HTMLTitle=$. The text from the Title attribute of

the HTML object.
► Index=%. The number of the object among all objects

identified with the same base recognition method.

► ► ►

 Example

 See Also

 Description

 Syntax

HTMLHiddenVP

Command Reference 6-207

► ► ►

 Syntax Element Description

 Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Name=$. The Name attribute that an HTML
developer assigns to an object to uniquely identify the
object in the development environment.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a
Frameset. The Type qualifier uses the following form:
Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example captures data from the hidden element with the ID Hidden. The
element is located within the second frame of the page. HTMLHiddenVP
compares the data to the recorded baseline in verification point WebTest2. At
playback, the comparison is retried every 2 seconds and times out after 30 seconds.

 Browser SetFrame, "Type=HTMFrame;Index=2",""
 Browser NewPage,"",""
 Result = HTMLHiddenVP (CompareData, "HTMLId=Hidden",
 "VP=WebTest2;Wait=2,30")

 Comments

 Example

HTMLImage

6-208 SQABasic Language Reference

None.

 HTMLImage
 User Action Command

 Performs a mouse click on an image of a Web page.

 HTMLImage action%, recMethod$, parameter$

 Syntax Element Description

 action% The following mouse action:
► Click. A mouse click on an image.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of a Web page.
► HTMLTitle=$. The text from the Title attribute of

the HTML object.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Name=$. The Name attribute that an HTML
developer assigns to an object to uniquely identify the
object in the development environment.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a
Frameset. The Type qualifier uses the following form:
Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameter$ Valid values:
► AreaId=$. An ID assigned to an area in an HTML

image map. Used with client-side image maps.
► AreaIndex=%. An ID assigned to an HTML image

map. The number of the area among all areas of the
same type within an HTML image map. Used with
client-side image maps.

► ► ►

 See Also

 Description

 Syntax

HTMLImageVP

Command Reference 6-209

► ► ►

 Syntax Element Description

 ► AreaName=$. A name assigned to an area in an
HTML image map. Used with client-side image maps.

► Coords=x,y. If action% is a mouse click, specifies
the coordinates of the click, relative to the top left of
the object. Used with server-side image maps.

 This command supports both client-side and server-side image maps.

 This example clicks the image with a Value attribute of Button. The image is
located within the second frame of the page.

 Browser SetFrame, "Type=HTMFrame;Index=2",""
 Browser NewPage, "HTMLTitle=My Web Page",""
 HTMLImage Click, "Type=HTMLImage;HTMLText=Button","Coords=12,13"

 HTMLImageVP

 HTMLImageVP
 Verification Point Command

 Establishes a verification point for a Web page image.

 Result = HTMLImageVP (action%, recMethod$, parameter$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP is
required; ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of a Web page.
► HTMLTitle=$. The text from the Title attribute of

the HTML object.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

HTMLImageVP

6-210 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Index=%. The number of the object among all objects
identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Name=$. The Name attribute that an HTML
developer assigns to an object to uniquely identify the
object in the development environment.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a
Frameset. The Type qualifier uses the following form:
Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameter$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example captures data from the image with the Name attribute of Red
Button. The image is located within the second frame of the page. HTMLImageVP
compares the data to the recorded baseline in verification point ImageData2.

 Browser SetFrame, "Type=HTMFrame;Index=2",""
 Browser NewPage,"HTMLTitle=My Web Page",""
 Result = HTMLImageVP (CompareData, " Type=HTMLImage;
 Name=Red Button", "VP=ImageData2")

 Comments

 Example

HTMLLink

Command Reference 6-211

 HTMLImage

 HTMLLink
 User Action Command

 Performs a mouse click on a Web page link.

 HTMLLink action%, recMethod$, parameter$

 Syntax Element Description

 action% The following mouse action:
► Click. A mouse click on a link.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of a Web page link.
► HTMLTitle=$. The text from the Title attribute of

the HTML object.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Name=$. The Name attribute that an HTML
developer assigns to an object to uniquely identify the
object in the development environment.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a
Frameset. The Type qualifier uses the following form:
Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameter$ Valid value:
► [empty quotes]. Robot performs the click based

upon the recognition method.

 None.

 See Also

 Description

 Syntax

 Comments

HTMLLinkVP

6-212 SQABasic Language Reference

 This example clicks on the Web page link with the text Home Page. The link is
located within the second frame of the page.

 Browser SetFrame, "Type=HTMFrame;Index=2",""
 Browser NewPage,"HTMLTitle=My Web Page",""
 HTMLLink Click, "Type=HTMLLink;HTMLText=Home Page", ""

 HTMLLinkVP

 HTMLLinkVP
 Verification Point Command

 Establishes a verification point for a Web page link.

 Result = HTMLLinkVP (action%, recMethod$, parameter$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP is
required; ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of a Web page link.
► HTMLTitle=$. The text from the Title attribute of

the HTML object.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Name=$. The Name attribute that an HTML
developer assigns to an object to uniquely identify the
object in the development environment.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a
Frameset. The Type qualifier uses the following form:
Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► ► ►

 Example

 See Also

 Description

 Syntax

HTMLLinkVP

Command Reference 6-213

► ► ►

 Syntax Element Description

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

parameter$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example captures the text of the Web page link Home Page and compares the
data to the recorded baseline in verification point WebLink1. At playback, the
comparison is retried every 2 seconds and times out after 30 seconds.

 Browser SetFrame, "Type=HTMFrame;Index=2",""
 Browser NewPage,"HTMLTitle=My Web Page",""
 Result = HTMLLinkVP (CompareData, "HTMLText=Home Page",
 "VP=WebLink1";Wait=2,30")

 HTMLLink

 Comments

 Example

 See Also

HTMLTable

6-214 SQABasic Language Reference

 HTMLTable
 User Action Command

 Performs a mouse action on the text of a Web page. Primarily used to position
the cursor.

 HTMLDocument action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When
action% contains a mouse-click value,
parameters$ must contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of a Web page.
► HTMLTitle=$. The caption of the table.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Name=$. The Name attribute that an HTML
developer assigns to an object to uniquely identify the
object in the development environment.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a
Frameset. The Type qualifier uses the following form:
Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

► ► ►

 Description

 Syntax

HTMLTableVP

Command Reference 6-215

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► Col=%. The column number of the table.
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

► Row=%. The row number of the table.

 None.

 This example clicks on the Web table with the title My Table. This page is located
within the second frame of the page.

 Browser SetFrame, "Type=HTMFrame;Index=2",""
 Browser NewPage,"HTMLTitle=My Web Page",""
 HTMLTable Click, "Type=HTMLTable;HTMLTitle=My Table", "Row=6,Col=1"

 HTMLDocumentVP

 HTMLTableVP
 Verification Point Command

 Establishes a verification point for a Web page table.

 Result = HTMLTableVP (action%, recMethod$, parameter$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP is
required; ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

HTMLTableVP

6-216 SQABasic Language Reference

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The text of a Web page link.
► HTMLTitle=$. The caption of the table.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► Name=$. The Name attribute that an HTML
developer assigns to an object to uniquely identify the
object in the development environment.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a
Frameset. The Type qualifier uses the following form:
Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

parameter$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

If...Then...Else

Command Reference 6-217

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example captures the text of the first Web page table and compares the data to
the recorded baseline in verification point WebTable1. At playback, the
comparison is retried every 2 seconds and times out after 30 seconds.

 Browser SetFrame, "Type=HTMFrame;Index=2",""
 Browser NewPage,"HTMLTitle=My Web Page",""
 Result = HTMLTableVP (CompareData, "Type=HTMLTable;HTMLIndex=1",
 "VP=WebTable1";Wait=2,30")

 HTMLLink

 If...Then...Else
 Statement

 Executes alternative blocks of program code based on one or more expressions.

 Syntax A If condition Then then_statement [Else
 else_statement]

 Syntax B If condition Then
 statement_block
 [ElseIf expression Then
 statement_block]...
 [Else
 statement_block]
 End If

 Syntax Element Description

 condition Any expression that evaluates to TRUE (non-zero) or
FALSE (zero).

 then_statement Any valid single expression.

 else_statement Any valid single expression.

 expression Any expression that evaluates to TRUE (non-zero) or
FALSE (zero).

 statement_block 0 or more valid expressions, separated by colons (:), or on
different lines.

 When multiple statements are required in either the Then or Else clauses, use
the block version (Syntax B) of the If statement.

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

'$Include

6-218 SQABasic Language Reference

 This example checks the time and the day of the week, and returns an appropriate
message.

 Sub main
 Dim h, m, m2, w
 h = hour(now)
 If h > 18 then
 m= "Good evening, "
 Elseif h >12 then
 m= "Good afternoon, "
 Else
 m= "Good morning, "
 End If
 w = weekday(now)
 If w = 1 or w = 7 then m2 = "the office is closed."

else m2 = "please hold for company operator."
 MsgBox m & m2
 End Sub

 Do...Loop On...Goto
 For...Next Select Case
 Goto While...Wend

 '$Include
 Metacommand

 Includes statements from the specified header file.

 '$Include: "filename"

 Syntax Element Description

 filename The name and location of the file to include.

 It is recommended (although not required) that you specify a file extension of
.SBH if filename is a header file.

 SQABasic header files can be accessed by modules within the project or within the
entire repository. For information, see Using SQABasic Header Files in Chapter 4.

 All metacommands must begin with an apostrophe (') and are recognized by the
compiler only if the command starts at the beginning of a line.

 Typically, the '$Include metacommand is located before the beginning of the
sub procedure. It is also possible to place the metacommand inside the sub
procedure. However, it is not recommended that you do so, since compiler errors
occur if the metacommand is located after a reference to a variable or constant that
the included file defines, or if the included file contains a function definition used
in the sub procedure.

 Example

 See Also

 Description

 Syntax

 Comments

'$Include

Command Reference 6-219

 If no directory or drive is specified, the compiler will search for filename on the
source file search path.

 For compatibility with other versions of Basic, you can enclose the filename in
single quotation marks (').

 A comment after an '$Include statement results in a compiler error if the
included file is enclosed in double quotes. However, a comment can be added
successfully if the included file is enclosed in single quotes. For example, the first
line below is correct, but the second line results in an error:

'$Include 'header1.sbh' ' Compiles correctly
'$Include "header2.sbh" ' Results in compiler error

 Use of the colon (:) after the metacommand name is optional.

 This example includes a file containing the list of global variables, called
GLOBALS.SBH. For this example to work correctly, you must create the
GLOBALS.SBH file with at least the following statement: Dim msgtext as
String. The Option Explicit statement is included in this example to prevent
SQABasic from automatically dimensioning the variable as a Variant.

 Option Explicit
 '$Include: "c:\globals.sbh"
 Sub main
 Dim msgtext as String
 gtext=InputBox("Enter a string for the global variable:")
 msgtext="The variable for the string '"
 msgtext=msgtext & gtext & " ' was DIM'ed in GLOBALS.SBH."
 MsgBox msgtext
 End Sub

 '$CStrings
 '$NoCStrings

InitPlay
 Flow Control Command

 This command is obsolete in the current version of SQABasic and should no
longer be used. To maintain the upward compatibility of your existing scripts, the
command does not cause an error, but it has no effect on script execution.

 Example

 See Also

Input (Function)

6-220 SQABasic Language Reference

 Input (Function)
 Function

 Returns a string containing the characters read from a file.

 Input[$](number%, [#]filenumber%)

 Syntax Element Description

 $ Optional. If specified the return type is String. If
omitted the function will return a Variant of VarType
8 (String).

 number% The number of characters to be read from the file.

 filenumber% An integer expression identifying the open file to use.

 The file pointer is advanced the number of characters read. Unlike the Input
statement, Input returns all characters it reads, including carriage returns, line
feeds, and leading spaces.

 To return a given number of bytes from a file, use InputB.

 This example opens a file and prints its contents to the screen.
 Sub main
 Dim fname
 Dim fchar()
 Dim x as Integer
 Dim msgtext
 Dim newline
 newline=Chr(10)
 On Error Resume Next
 fname=InputBox("Enter a filename to print:")
 If fname="" then
 Exit Sub
 End If
 Open fname for Input as #1
 If Err<>0 then
 MsgBox "Error loading file. Re-run program."
 Exit Sub
 End If
 msgtext="The contents of " & fname & " is: " & newline & newline
 Redim fchar(Lof(1))
 For x=1 to Lof(1)
 fchar(x)=Input(1,#1)
 msgtext=msgtext & fchar(x)
 Next x
 MsgBox msgtext
 Close #1
 End Sub

 Get Open
 Input statement Write
 Line Input

 Description

 Syntax

 Comments

 Example

 See Also

Input (Statement)

Command Reference 6-221

 Input (Statement)
 Statement

 Reads data from a sequential file and assigns the data to variables.

 Syntax A Input [#]filenumber%, variable[, variable]...

 Syntax B Input [prompt$,] variable[, variable]...

 Syntax Element Description

 filenumber% An integer expression identifying the open file to read
from.

 variable The variable(s) to contain the value(s) read from the file.

 prompt$ An optional string that prompts for keyboard input.

 The filenumber% is the number used in the Open statement to open the file.
The list of variables is separated by commas.

 If filenumber% is not specified, the user is prompted for keyboard input, either
with prompt$ or with a question mark (?), if prompt$ is omitted.

 This example prompts a user for an account number, opens a file, searches for the
account number and displays the matching letter for that number. It uses the
Input statement to increase the value of x and at the same time get the letter
associated with each value. The second sub procedure, CREATEFILE, creates the
file C:\TEMP001 used by the main sub procedure.

 Declare Sub createfile()
 Global x as Integer
 Global y(100) as String

 Sub main
 Dim acctno as Integer
 Dim msgtext
 Call createfile
 i: acctno=InputBox("Enter an account number from 1-10:")
 If acctno<1 Or acctno>10 then
 MsgBox "Invalid account number. Try again."
 Goto i:
 End if
 x=1
 Open "C:\TEMP001" for Input as #1
 Do Until x=acctno
 Input #1, x,y(x)
 Loop
 msgtext="The letter for account number " & x & " is: " & y(x)
 Close #1
 MsgBox msgtext
 Kill "C:\TEMP001"
 End Sub

 Description

 Syntax

 Comments

 Example

InputBox

6-222 SQABasic Language Reference

 Sub createfile()
 ' Put the numbers 1-10 and letters A-J into a file
 Dim startletter
 Open "C:\TEMP001" for Output as #1
 startletter=65
 For x=1 to 10
 y(x)=Chr(startletter)
 startletter=startletter+1
 Next x
 For x=1 to 10
 Write #1, x,y(x)
 Next x
 Close #1
 End Sub

 Get Open
 Input function Write
 Line Input

 InputBox
 Function

 Displays a dialog box containing a prompt and returns a string entered by the user.

 InputBox[$](prompt$, [title$], [default$], [xpos%, ypos%])

 Syntax Element Description

 $ Optional. If specified the return type is String. If
omitted the function will return a Variant of VarType
8 (String).

 prompt$ A string expression containing the text to show in the
dialog box.

 title$ The caption to display in the dialog box’s title bar.

 default$ The string expression to display in the edit box as the
default response.

 xpos%, ypos% Numeric expressions, specified in dialog box units, that
determine the position of the dialog box.

 The length of prompt$ is restricted to 255 characters. This figure is approximate
and depends on the width of the characters used. Note that a carriage return and a
line-feed character must be included in prompt$ if a multiple-line prompt is used.

 If either prompt$ or default$ is omitted, nothing is displayed.

 See Also

 Description

 Syntax

 Comments

InputChars

Command Reference 6-223

 Xpos% determines the horizontal distance between the left edge of the screen and
the left border of the dialog box. Ypos% determines the horizontal distance from
the top of the screen to the dialog box’s upper edge. If these arguments are not
entered, the dialog box is centered roughly one third of the way down the screen.
A horizontal dialog box unit is 1/4 of the average character width in the system
font; a vertical dialog box unit is 1/8 of the height of a character in the system font.

 Note: If you want to specify the dialog box’s position, you must enter both of
these arguments. If you enter one without the other, the default positioning is set.

 If the user presses Enter, or selects the OK button, InputBox returns the text
contained in the input box. If the user selects Cancel, the InputBox function
returns a null string ("").

 This example uses InputBox to prompt for a file name and then prints the file
name using MsgBox.

 Sub main
 Dim filename
 Dim msgtext
 msgtext="Enter a filename:"
 filename=InputBox$(msgtext)
 MsgBox "The file name you entered is: " & filename
 End Sub

 Dialog Boxes MsgBox function
 Input function MsgBox statement
 Input statement PasswordBox

InputChars
User Action Command

Sends one or more characters to the active window as if they had been entered at
the keyboard.

InputChars Keytext$

Syntax Element Description

Keytext$ String of characters to be sent to the active window.

 Example

 See Also

Description

Syntax

InputKeys

6-224 SQABasic Language Reference

Do not confuse InputChars with InputKeys:

► InputChars treats all characters as literal characters to be entered into the
active window.

► InputKeys treats some characters as being representative of a keypress.

For example, if Keytext is {NumDelete}, InputKeys causes the Delete
key on the numeric keypad to be pressed, but InputChars prints the literal
string {NumDelete}.

Strings that represent special characters (for example, Tab or Enter in Basic) can
be included in an InputChars statement.

 This example enters the characters This is Robot.{Enter} into the
current window. Compare this example with the example for InputKeys.

 InputChars "This is Robot.{Enter}"

InputKeys

 InputKeys
 User Action Command

 Sends one or more keystrokes to the active window as if they had been entered at
the keyboard.

 InputKeys Keytext$

 Syntax Element Description

 Keytext$ String of characters representing the keys to be sent to the
active window.

 Multiple keys can be included in one InputKeys command — for example:
 InputKeys "notepad{ENTER}"

Do not confuse InputChars with InputKeys:

► InputChars treats all characters as literal characters to be entered into the
active window.

► InputKeys treats some characters as being representative of a keypress.

For example, if Keytext is {NumDelete}, InputKeys causes the Delete
key on the numeric keypad to be pressed, but InputChars prints the literal
string {NumDelete}.

Comments

Example

See Also

 Description

 Syntax

 Comments

InputKeys

Command Reference 6-225

 Each keyboard key is represented by one or more characters. Use the following
table to determine the Keytext value for the keyboard key you want:

 Keytext value Keyboard equivalent

 Actual printable character.
Examples: A1.&

 Letters A–Z, a–z, numbers 0–9, punctuation, special
characters.

 {Alt} Default Alt key (either left or right). Default is left if there
are no preceding {LKeys} or {RKeys}.

 {Apps} Applications key (Microsoft Natural Keyboard).

 {LeftAlt} Left Alt.

 {RightAlt} Right Alt.

 {Backspace} or
{BS} or
{BkSp}

 Backspace.

 {Break} Break or Pause.

 {CapsLock} Caps Lock.

 {Clear} Clear (key 5 on the numeric keypad when Num Lock is
unlocked).

 {Ctrl} Default Control key (either left or right). Default is left if
there are no preceding {LKeys} or {RKeys}.

 {LeftCtrl} Left Control.

 {RightCtrl} Right Control.

 {Delete} or
{Del} or
{NumDelete} or
{ExtDelete}

 Delete.

 {Down} or
{NumDown} or
{ExtDown}

 Down Arrow.

 {End} or
{NumEnd} or
{ExtEnd}

 End.

 {Enter} or
~ or
{NumEnter} or
{Num~}

 Enter.

 {Escape} or
{Esc}

 Escape.

 {Help} Help (a non-standard key on some PC keyboards).

► ► ►

InputKeys

6-226 SQABasic Language Reference

► ► ►

 Keytext value Keyboard equivalent

 {Home} or
{NumHome} or
{ExtHome}

 Home.

 {Insert} or
{NumInsert} or
{ExtInsert}

 Insert.

 {Left} or
{NumLeft} or
{ExtLeft}

 Left Arrow.

 {LKeys} Sets the default for {Alt}, {Ctrl}, {Shift}, and {Win}
entries as left Alt, Control, Shift, and Windows keys.

 {Numlock} Num Lock.

 {PgDn} or

{NumPgDn} or
{ExtPgDn}

 Page Down.

 {PgUp} or
{NumPgUp} or
{ExtPgUp}

 Page Up.

 {PrtSc} Print Screen.

 {RKeys} Sets the default for {Alt}, {Ctrl}, {Shift}, and {Win}
entries as right Alt, Control, Shift, and Windows keys.

 {Right} or
{NumRight} or
{ExtRight}

 Right Arrow.

 {ScrollLock} Scroll Lock.

 {Shift} Default Shift key (either left or right). Default is left if
there are no preceding {LKeys} or {RKeys}.

 {LeftShift} Left Shift.

 {RightShift} Right Shift.

 {Tab} Tab.

 {Up} or
{NumUp} or
{ExtUp}

 Up Arrow.

 {Win} Default Windows key (either left or right). Default is left
if there are no preceding {LKeys} or {RKeys}. (Used on
the Microsoft Natural Keyboard.)

 {LeftWin} Left Windows (Microsoft Natural Keyboard).
► ► ►

InputKeys

Command Reference 6-227

► ► ►

 Keytext value Keyboard equivalent

 {RightWin} Right Windows (Microsoft Natural Keyboard).

 {Numn}, where n is a
number from 0 through 9
Example: {Num5}

 0-9 (numeric keypad).

 {Num.} or . . (period, decimal).

 {Num-} or - - (dash, subtraction sign).

 {Num*} or * * (asterisk, multiplication sign).

 {Num/} or / / (slash, division sign).

 {Num+} or {+} + (addition sign).

 {^} ̂ (caret).

 {%} % (percent).

 {~} ~ (tilde).

 {(} ((left parenthesis).

 }) (right parenthesis).

 {{} { (left brace).

 } } (right brace).

 [[(left bracket).

]] (right bracket).

 {F#}
Example: {F6}

 F# (function keys 1-12).

 +
Example: +{F6}

 Shift (used while pressing down another key).

 ̂
Example: ^{F6}

 Control (used while pressing down another key).

 %
Example: %{F6}

 Alt (used while pressing down another key).

 {key n}, where key is any
key, and n is the number of
times that key is pressed.
Example: {a 10}

 Repeats the key press n number of times.

 {key KeyDn}, where key is
any key.
Example: {a KeyDn}

 Presses and holds down key, and generates continuous
WM_KEYDOWN events, until{key KeyUp} appears in
InputKeys, or until the end of the InputKeys statement.

 {key KeyUp}, where key is
any key.
Example: {a KeyUp}

 Generates a WM_KEYUP event for key.

InputKeys

6-228 SQABasic Language Reference

Table notes:

► Keytext values for special words that represent keys are not case-sensitive.
For example, {alt}, {Alt}, and {ALT} are all valid Keytext values.

► Keytext values with the prefix Num represent keys in the numeric keypad.
Keytext values with the prefix Ext represent keys in the extended keypad
(in between the main keypad and the numeric keypad).

► Keytext values for keys that appear in both the numeric and extended
keypads, but do not have a Num or Ext prefix, are assumed to be in the
numeric keypad.

► Keytext values for keys that appear in both the main and numeric keypads,
but do not have a Num prefix, are assumed to be in the main keypad.

► If {CapsLock} appears in an InputKeys statement an odd number of
times, the CapsLock state of the keyboard changes when the execution of
InputKeys is complete. However, a {CapsLock} entry has no effect on
subsequent keys within an InputKeys statement. Within InputKeys, the
CapsLock state is always off.

► {Alt}, {Ctrl}, and {Shift} and the left/right designations of these keys
can’t be recorded. They can only be scripted manually. However, if you press
Alt, Ctrl, and/or Shift in combination with other keys, Robot does record
them, but as%, ^, and +, respectively.

► When{NumLock} or {ScrollLock} appears in an InputKeys statement
an odd number of times, the corresponding state of the keyboard changes.
However, these entries have no effect on the way subsequent keys within an
InputKeys statement are recognized.

► {key KeyDn} and {key KeyUp} do not have to reflect the expected
sequence of events for an actual keypress. For example, you can use
{key KeyUp} with no preceding {key KeyDn}, or you can use two
consecutive {key KeyUp} entries.

 This example enters This is Robot. into the current window and adds a
carriage return after it. Compare this example with the example for InputChars.

 InputKeys "This is Robot.{Enter}"

 InputChars
 SQAQueryKey

 Example

 See Also

InStr

Command Reference 6-229

 InStr
 Function

 Returns the position of the first occurrence of one string within another string.

 Syntax A InStr([start%,] string1$, string2$)

 Syntax B InStr(start, string1$, string2$[, compare])

 Syntax Element Description

 start% The position in string1$ to begin the search. (1=first
character in string.)

 string1$ The string to search.

 string2$ The string to find.

 compare An integer expression for the method to use to compare
the strings. (0=case-sensitive, 1=case-insensitive.)

 If not specified, the search starts at the beginning of the string (equivalent to a
start% of 1). string1$ and string2$ can be of any type. They will be
converted to strings.

 InStr returns a zero under the following conditions:

► start% is greater than the length of string2$.

► string1$ is a null string.

► string2$ is not found.

 If either string1$ or string2$ is a null Variant , Instr returns a null
Variant.

 If string2$ is a null string (""), Instr returns the value of start%.

 If compare is 0, a case-sensitive comparison based on the ANSI character set
sequence is performed. If compare is 1, a case-insensitive comparison is done
based upon the relative order of characters as determined by the country code
setting for your system. If compare is omitted, the module level default, as
specified with Option Compare, is used.

 To obtain the byte position of the first occurrence of one string within another
string, use InStrB.

 Description

 Syntax

 Comments

Int

6-230 SQABasic Language Reference

 This example generates a random string of characters then uses InStr to find the
position of a single character within that string.

 Sub main

 Dim x as Integer
 Dim y
 Dim str1 as String
 Dim str2 as String
 Dim letter as String
 Dim randomvalue
 Dim upper, lower
 Dim position as Integer
 Dim msgtext, newline

 upper=Asc("z")
 lower=Asc("a")
 newline=Chr(10)

 For x=1 to 26
 Randomize timer() + x*255
 randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
 letter=Chr(randomvalue)
 str1=str1 & letter

 'Need to waste time here for fast processors
 For y=1 to 1000
 Next y

 Next x

 str2=InputBox("Enter a letter to find")
 position=InStr(str1,str2)

 If position then
 msgtext="The position of " & str2 & " is: " & position

msgtext=msgtext & newline & "in string: " & str1
 Else
 msgtext="Letter: " & str2 & " was not found in: " & newline
 msgtext=msgtext & str1
 End If

 MsgBox msgtext

 End Sub

 GetField Mid statement Str
 Left Option Compare StrComp
 Mid function Right

 Int
 Function

 Returns the integer part of a number.

 Example

 See Also

 Description

Int

Command Reference 6-231

 Int(number)

 Syntax Element Description

 number Any numeric expression.

 For positive numbers, Int removes the fractional part of the expression and
returns the integer part only. For negative numbers, Int returns the largest
integer less than or equal to the expression. For example, Int (6.2) returns 6;
Int(-6.2) returns -7.

 The return type matches the type of the numeric expression. This includes
Variant expressions that will return a result of the same VarType as input
except VarType 8 (string) will be returned as VarType 5 (double) and
VarType 0 (empty) will be returned as VarType 3 (long).

 This example uses Int to generate random numbers in the range between the
ASCII values for lowercase a and z (97 and 122). The values are converted to
letters and displayed as a string.

 Sub main
 Dim x as Integer
 Dim y
 Dim str1 as String
 Dim letter as String
 Dim randomvalue
 Dim upper, lower
 Dim msgtext, newline
 upper=Asc("z")
 lower=Asc("a")
 newline=Chr(10)
 For x=1 to 26
 Randomize timer() + x*255
 randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
 letter=Chr(randomvalue)
 str1=str1 & letter
 'Need to waste time here for fast processors
 For y=1 to 1500
 Next y
 Next x
 msgtext="The string is:" & newline
 msgtext=msgtext & str1
 MsgBox msgtext
 End Sub

 Exp Rnd
 Fix Sgn
 Log Sqr

 Syntax

 Comments

 Example

 See Also

IPAddress

6-232 SQABasic Language Reference

 IPAddress
 User Action Command

 Performs an action on an IP Address control.

 IPAddress action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Label=$. The text of the label object that immediately

precedes the control in the internal order (Z order) of
windows.

► Name=$. A unique name that a developer assigns to an
object to identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its prior label. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 Description

 Syntax

IPAddressVP

Command Reference 6-233

 None.

 This example clicks the IP Address control labeled “IP Address” at x,y coordinates
of 47,5.

 IPAddress Click, "Label=IP Address:", "Coords=47,5"

 IPAddressVP

 IPAddressVP
 Verification Point Command

 Establishes a verification point for an IP Address control.

 Result = IPAddressVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Label=$. The text of the label object that immediately

precedes the control in the internal order (Z order) of
windows.

► Name=$. A unique name that a developer assigns to an
object to identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its prior label. It is for user clarification
only and does not affect object recognition.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

IPmt

6-234 SQABasic Language Reference

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example captures the properties of the IP Address calendar control labeled
“IP Address” and compares them to the recorded baseline in verification point
IPADDR1.

 Result = IPAddressVP (CompareProperties, "Label=IP Address:",
"VP=IPADDR1")

 IPAddress

 IPmt
 Function

 Returns the interest portion of a payment for a given period of an annuity.

 IPmt(rate, per, nper, pv, fv, due)

 Syntax Element Description

 rate Interest rate per period.

 per Particular payment period in the range 1 through nper.
► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

IPmt

Command Reference 6-235

► ► ►

 Syntax Element Description

 nper Total number of payment periods.

 pv Present value of the initial lump sum amount paid (as in
the case of an annuity) or received (as in the case of a
loan).

 fv Future value of the final lump sum amount required (as in
the case of a savings plan) or paid (0 as in the case of a
loan).

 due 0 if payments are due at the end of each payment period,
and 1 if they are due at the beginning of the period.

 The given interest rate is assumed constant over the life of the annuity. If
payments are on a monthly schedule, then rate will be 0.0075 if the annual
percentage rate on the annuity or loan is 9%.

 This example finds the interest portion of a loan payment amount for payments
made in last month of the first year. The loan is for $25,000 to be paid back over 5
years at 9.5% interest.

 Sub main
 Dim aprate, periods
 Dim payperiod
 Dim loanpv, due
 Dim loanfv, intpaid
 Dim msgtext
 aprate=.095
 payperiod=12
 periods=120
 loanpv=25000
 loanfv=0
 Rem Assume payments are made at end of month
 due=0
 intpaid=IPmt(aprate/12,payperiod,periods,-loanpv,loanfv,due)
 msgtext="For a loan of $25,000 @ 9.5% for 10 years," & Chr(10)
 msgtext=msgtext+ "the interest paid in month 12 is: "
 msgtext=msgtext + Format(intpaid, "Currency")
 MsgBox msgtext
 End Sub

 FV Pmt
 IRR PV
 NPV Rate
 Pmt

 Comments

 Example

 See Also

IRR

6-236 SQABasic Language Reference

 IRR
 Function

 Returns the internal rate of return for a stream of periodic cash flows.

 IRR(valuearray(), guess)

 Syntax Element Description

 valuearray() An array containing cash flow values.

 guess A ballpark estimate of the value returned by IRR.

 valuearray() must have at least one positive value (representing a receipt) and
one negative value (representing a payment). All payments and receipts must be
represented in the exact sequence. The value returned by IRR will vary with the
change in the sequence of cash flows.

 In general, a guess value of between 0.1 (10 percent) and 0.15 (15 percent)
would be a reasonable estimate.

 IRR is an iterative function. It improves a given guess over several iterations until
the result is within 0.00001 percent. If it does not converge to a result within 20
iterations, it signals failure.

 This example calculates an internal rate of return (expressed as an interest rate
percentage) for a series of business transactions (income and costs). The first value
entered must be a negative amount, or IRR generates an Illegal Function
Call error.

 Sub main
 Dim cashflows() as Double
 Dim guess, count as Integer
 Dim i as Integer
 Dim intnl as Single
 Dim msgtext as String
 guess=.15
 count=InputBox("How many cash flow amounts do you have?")
 ReDim cashflows(count+1)
 For i=0 to count-1
 cashflows(i)=InputBox("Enter income for month " & i+1 & ":")
 Next i
 intnl=IRR(cashflows(),guess)
 msgtext="The IRR for your cash flow amounts is: "
 msgtext=msgtext & Format(intnl, "Percent")
 MsgBox msgtext
 End Sub

 FV PPmt
 IPmt PV
 NPV Rate
 Pmt

 Description

 Syntax

 Comments

 Example

 See Also

Is

Command Reference 6-237

 Is
 Operator

 Compares two object expressions and returns -1 if they refer to the same object,
0 otherwise.

 objectExpression Is objectExpression

 Syntax Element Description

 objectExpression Any valid object expression.

 Is can also be used to test if an object variable has been Set to Nothing.

 This example displays a list of open files in the software application, VISIO. It uses
the Is operator to determine whether VISIO is available. To see how this example
works, you need to start VISIO and open one or more documents.

 Sub main
 Dim visio as Object
 Dim doc as Object
 Dim msgtext as String
 Dim i as Integer, doccount as Integer

 'Initialize Visio
 Set visio = GetObject(,"visio.application") ' find Visio
 If (visio Is Nothing) then
 MsgBox "Couldn't find Visio!"
 Exit Sub
 End If
 'Get # of open Visio files
 doccount = visio.documents.count 'OLE2 call to Visio
 If doccount=0 then
 msgtext="No open Visio documents."
 Else
 msgtext="The open files are: " & Chr$(13)
 For i = 1 to doccount
 ' access Visio's doc method
 Set doc = visio.documents(i)
 msgtext=msgtext & Chr$(13) & doc.name
 Next i
 End If
 MsgBox msgtext
 End Sub

 Class List Nothing
 Create Object Object
 Get Object Typeof

 Description

 Syntax

 Comments

 Example

 See Also

IsDate

6-238 SQABasic Language Reference

 IsDate
 Function

 Returns -1 (TRUE) if an expression is a legal date, 0 (FALSE) if it is not.

 IsDate(expression)

 Syntax Element Description

 expression Any valid expression.

 IsDate returns -1 (TRUE) if the expression is of VarType 7 (date) or a string
that can be interpreted as a date.

 This example accepts a string from the user and checks to see if it is a valid date.

 Sub main
 Dim theDate
 theDate = InputBox("Enter a date:")
 If IsDate(theDate) = -1 Then
 MsgBox "The new date is: " & Format(CVDate(theDate), "dddddd")
 Else
 MsgBox "The date is not valid."
 End If
 End Sub

 CVDate IsNumeric
 IsEmpty VarType
 IsNull

 IsEmpty
 Function

 Returns -1 (TRUE) if a Variant has been initialized. 0 (FALSE) otherwise.

 IsEmpty(expression)

 Syntax Element Description

 expression Any expression with a data type of Variant.

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

IsMissing

Command Reference 6-239

 IsEmpty returns -1 (TRUE) if the Variant is of VarType 0 (empty). Any
newly-defined Variant defaults to being of Empty type, to signify that it contains
no initialized data. An Empty Variant converts to zero when used in a numeric
expression, or an empty string ("") in a string expression.

 This example prompts for a series of test scores and uses IsEmpty to determine
whether the maximum allowable limit has been hit. (IsEmpty determines when
to exit the Do...Loop.)

 Sub main
 Dim arrayvar(10)
 Dim x as Integer
 Dim msgtext as String
 Dim tscore as Single
 Dim total as Integer
 x=1
 Do
 tscore=InputBox("Enter test score #" & x & ":")
 arrayvar(x)=tscore
 x=x+1
 Loop Until IsEmpty(arrayvar(10))<>-1
 total=x-1
 msgtext="You entered: " & Chr(10)
 For x=1 to total
 msgtext=msgtext & Chr(10) & arrayvar(x)
 Next x
 MsgBox msgtext
 End Sub

 IsDate IsNumeric
 IsNull VarType

 IsMissing
 Function

 Returns -1 (TRUE) if an optional argument was not supplied by the user, 0
(FALSE) otherwise.

 IsMissing(argname)

 Syntax Element Description

 argname An optional argument for an SQABasic command.

 Comments

 Example

 See Also

 Description

 Syntax

IsNull

6-240 SQABasic Language Reference

 IsMissing is used in procedures that have optional arguments to find out
whether the argument’s value was supplied or not.

 This example prints a list of letters. The number printed is determined by the
user. If the user wants to print all letters, the sub procedure myfunc is called
without any argument. The sub procedure uses IsMissing to determine
whether to print all the letters or just the number specified by the user.

 Sub myfunc(Optional arg1)
 If IsMissing(arg1)=-1 then
 arg1=26
 End If
 msgtext="The letters are: " & Chr$(10)
 For x= 1 to arg1
 msgtext=msgtext & Chr$(x+64) & Chr$(10)
 Next x
 MsgBox msgtext
 End Sub

 Sub Main
 Dim arg1
 arg1=InputBox("How many letters to print (0 for all):")
 If arg1=0 then
 myfunc
 Else
 myfunc arg1
 End If
 End Sub

 Function...End Function

 IsNull
 Function

 Returns -1 (TRUE) if a Variant expression contains the Null value, 0 (FALSE)
otherwise.

 IsNull(expression)

 Syntax Element Description

 expression Any expression with a data type of Variant.

 Null Variants have no associated data and serve only to represent invalid or
ambiguous results. Null is not the same as Empty, which indicates that a Variant
has not yet been initialized.

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

IsNumeric

Command Reference 6-241

 This example asks for ten test score values and calculates the average. If any score
is negative, the value is set to Null. Then IsNull is used to reduce the total
count of scores (originally 10) to just those with positive values before calculating
the average.

 Sub main
 Dim arrayvar(10)
 Dim count as Integer
 Dim total as Integer
 Dim x as Integer
 Dim msgtext as String
 Dim tscore as Single
 count=10
 total=0
 For x=1 to count
 tscore=InputBox("Enter test score #" & x & ":")
 If tscore<0 then
 arrayvar(x)=Null
 Else
 arrayvar(x)=tscore
 total=total+arrayvar(x)
 End If
 Next x
 Do While x<>0
 x=x-1
 If IsNull(arrayvar(x))=-1 then
 count=count-1
 End If
 Loop
 msgtext="The average (excluding negative values) is: " & Chr(10)
 msgtext=msgtext & Format (total/count, "##.##")
 MsgBox msgtext
 End Sub

 IsDate IsNumeric
 IsEmpty VarType

 IsNumeric
 Function

 Returns -1 (TRUE) if an expression has a data type of Numeric, 0 (FALSE)
otherwise.

 IsNumeric(expression)

 Syntax Element Description

 expression Any valid expression.

 Example

 See Also

 Description

 Syntax

JavaCanvas

6-242 SQABasic Language Reference

 IsNumeric returns -1 (TRUE) if the expression is of VarType 2 through
VarType 6 (numeric) or a string that can be interpreted as a number.

 This example uses IsNumeric to determine whether a user selected an option
(1-3) or typed Q to quit.

 Sub main
 Dim answer
 answer=InputBox("Enter a choice (1-3) or type Q to quit")
 If IsNumeric(answer)=-1 then
 Select Case answer
 Case 1
 MsgBox "You chose #1."
 Case 2
 MsgBox "You chose #2."
 Case 3
 MsgBox "You chose #3."
 End Select
 Else
 MsgBox "You typed Q."
 End If
 End Sub

 IsDate IsNull
 IsEmpty VarType

JavaCanvas
User Action Command

Performs an action on a Java canvas component.

JavaCanvas action%, recMethod$, parameters$

Syntax Element Description

action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y, AreaIndex=%, or
AreaName=$.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

See Appendix E for a list of mouse click and drag values.

► ► ►

 Comments

 Example

 See Also

Description

Syntax

JavaCanvas

Command Reference 6-243

► ► ►

Syntax Element Description

recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object. For example, the
object name for a command button might be
Command1.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► AreaIndex=%. An ID assigned to a Java canvas. The

number of the area among all areas of the same type
within a Java canvas. Used with client-side canvasses.

► AreaName=$. A name assigned to an area in a Java
canvas. Used with client-side canvasses.

► Coords=x,y. If action% is a mouse click, specifies
the coordinates of the click, relative to the top left of
the object. Robot uses this parameter only if the item
contents or index cannot be retrieved — for example, if
the list view is empty or disabled.

► Coords=x1,x2,y1,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

In earlier releases of Robot, Java canvas components were treated as Java panel
components. Consequently, for backward compatibility, the recognition method
value Index=% includes panel components as well as canvas components. For
example, a canvas component that is the first canvas component but that is nested

Comments

JavaCanvasVP

6-244 SQABasic Language Reference

inside several panels can be specified as Index=4 — because the panel components
are included in the index.

If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

This example performs a left-mouse click at the specified coordinates relative to
the top left corner of the canvas component.

JavaCanvas Click,
"JavaCaption="Sample App\;\Type=JavaCanvas;Index=3",
"Coords=10,16"

JavaCanvasVP

JavaCanvasVP
Verification Point Command

Establishes a verification point for a Java canvas component.

Result = JavaCanvasVP(action%, recMethod$, parameters$)

Syntax Element Description

action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP is
required; ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all obje*cts identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object. For example, the
object name for a command button might be Command1.

► ► ►

Example

See Also

Description

Syntax

JavaCanvasVP

Command Reference 6-245

► ► ►

Syntax Element Description

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

This example captures the properties of a Java canvas component.

Result = JavaCanvasVP(CompareProperties,
"JavaCaption="Sample App;\;Type=JavaCanvas;Index=4,
"VP=Object Properties")

JavaCanvas

Comments

Example

See Also

JavaListView

6-246 SQABasic Language Reference

JavaListView
User Action Command

Performs an action on a Java multi-column list component.

JavaListView action%, recMethod$, parameters$

Syntax Element Description

action% One of these actions:
► Deselect. Deselects the specified item from an

extended Java list view component in multipleMode.
recMethod$ must contain one of the Java recognition
methods, and parameters$ must contain either Text
or Index.

► ExtendSelection. Selects the specified item from an
extended Java list view component in multipleMode.
recMethod$ must contain one of the Java recognition
methods, and parameters$ must contain either Text
or Index.

► MakeSelection. Selects the specified item in a Java
list view. recMethod$ must contain one of the Java
recognition methods, and parameters$ must contain
either Text or Index.

► MouseClick. The clicking of the left, center, or right
mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag values.

► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.
If Robot cannot interpret the action being applied to a
scroll bar, which happens with certain custom standalone
scroll bars, it records the action as a click or drag.

► ► ►

Description

Syntax

JavaListView

Command Reference 6-247

► ► ►

Syntax Element Description

recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object. For example, the
object name for a command button might be
Command1.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object. Robot uses this parameter only if the item
contents or index cannot be retrieved — for example, if
the list view is empty or disabled.

► Coords=x1,x2,y1,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

► Index=%. If action% is a select or deselect action,
identifies the index of an item in the list.

► Position=%. If action% is a VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position. Every scroll bar has an internal
range, and this value is specific to that range.

► Text=$. If action% is a select or deselect action,
identifies the text of an item in the list.

JavaListViewVP

6-248 SQABasic Language Reference

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

This example selects a row in a Java list view component.

JavaListView MakeSelection,
"JavaCaption=Sample App;\;Type=JavaListView;Index=1",
"Text=Hooked on Java"

JavaListViewVP

JavaListViewVP
Verification Point Command

Establishes a verification point for a Java multi-column list component.

Result = JavaListViewVP(action%, recMethod$, parameters$)

Syntax Element Description

action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP
is required; ExpectedResult and Wait are
optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► ► ►

Comments

Example

See Also

Description

Syntax

JavaListViewVP

Command Reference 6-249

► ► ►

Syntax Element Description

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

This example captures the properties of a Java list view component.

Result = JavaListViewVP(CompareProperties,
"JavaCaption=Sample App;\;Type=JavaListView;Index=1",
VP=ObjectProperties")

JavaListView

Comments

Example

See Also

JavaMenu

6-250 SQABasic Language Reference

 JavaMenu
 User Action Command

 Performs an action on a Java menu.

 JavaMenu action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MakeSelection. Selects the specified item from a

Java menu.
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.
See Appendix E for a list of mouse click values.

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object. For example, the
object name for a command button might be
Command1.

► Path=$. If action% is MakeSelection, identifies
the text of the item as a path. Sub-menus are separated
by a pointer (->).

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

► ► ►

 Description

 Syntax

JavaMenuVP

Command Reference 6-251

► ► ►

 Syntax Element Description

parameters$ Valid value:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

Robot can recognize menus and sub-menus up to five levels deep.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

This example selects the Java menu option Color Chooser from the Choosers
menu. The menu bar is located within the Java applet named Main.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
JavaMenu MakeSelection, "Type=JavaMenu;Name=Swing
menus;Path=Choosers->Color Chooser", ""

JavaMenuVP

JavaMenuVP
Verification Point Command

Establishes a verification point for a Java menu.

Result = JavaMenuVP (action%, recMethod$, parameters$)

Syntax Element Description

action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► ► ►

Comments

Example

See Also

Description

Syntax

JavaMenuVP

6-252 SQABasic Language Reference

► ► ►

Syntax Element Description

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object. For example, the
object name for a command button might be
Command1.

► Path=$. Identifies the text of the item as a path. Sub-
menus are separated by a pointer (->).

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

JavaObject

Command Reference 6-253

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 Robot can recognize menus and sub-menus up to five levels deep.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example captures the properties of the Java menu with a Name attribute of
MainMenu. The menu is located within the Java applet named Main.
JavaMenuVP compares the properties to the recorded baseline in verification
point MENUVP1. At playback, the comparison is retried every 2 seconds and times
out after 30 seconds.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 Result = JavaMenuVP(CompareProperties,"Type=JavaMenu;Name=MainMenu",

"VP=MENUVP1;Wait=2,30")

 JavaMenu

 JavaObject
 User Action Command

 Performs an action on an unrecognized Java component.

 JavaObject action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

See Appendix E for a list of mouse click and drag values.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

JavaObject

6-254 SQABasic Language Reference

► ► ►

 Syntax Element Description

recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example clicks a Java object titled MyObject at coordinates 20,40. The object
is located within the Java applet named Main.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 JavaObject Click, "Type=JavaObject;Name=MyObject","Coords=20,40"

 JavaObjectVP

 Comments

 Example

 See Also

JavaObjectVP

Command Reference 6-255

 JavaObjectVP
 Verification Point Command

 Establishes a verification point for an unrecognized Java component.

 Result = JavaObjectVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► ► ►

 Description

 Syntax

JavaPanel

6-256 SQABasic Language Reference

► ► ►

 Syntax Element Description

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example captures the properties of the Java object named MyObject. The
object is located within the Java applet named Main. JavaObjectVP compares
the properties to the recorded baseline in verification point JOBJECTVP1. At
playback, the comparison is retried every 2 seconds and times out after 30 seconds.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 Result = JavaObjectVP (CompareProperties,
 "Type=JavaObject;Name=MyObject", "VP=JOBJECTVP1;Wait=2,30")

 JavaObject

 JavaPanel
 User Action Command

 Performs an action on a Java panel or canvas.

 JavaPanel action%, recMethod$, parameters$

 Comments

 Example

 See Also

 Description

 Syntax

JavaPanel

Command Reference 6-257

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

See Appendix E for a list of mouse click and drag values.

recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more

 Comments

JavaPanelVP

6-258 SQABasic Language Reference

information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example clicks the panel titled EmployeeList at coordinates 25,50. The panel
is located within the Java applet named Main.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 JavaPanel Click, "Type=JavaPanel;Name=EmployeeList", "Coords=25,50"

 JavaPanelVP

 JavaPanelVP
 Verification Point Command

 Establishes a verification point for a Java panel or canvas.

 Result = JavaPanelVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

► ► ►

 Example

 See Also

 Description

 Syntax

JavaPanelVP

Command Reference 6-259

► ► ►

 Syntax Element Description

parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example captures the properties of the Java panel named EmployeeList. The
panel is located within the Java applet named Main. JavaPanelVP compares the
properties to the recorded baseline in verification point JPANELVP1. At playback,
the comparison is retried every 2 seconds and times out after 30 seconds.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 Result = JavaPanelVP (CompareProperties,
 "Type=JavaPanel;Name=EmployeeList", "VP=JPANELVP1;Wait=2,30")

 JavaPanel

 Comments

 Example

 See Also

JavaPopupMenu

6-260 SQABasic Language Reference

 JavaPopupMenu
 User Action Command

 Performs an action on a Java popup menu.

 JavaPopupMenu action%, recMethod$, parameters$

 Syntax Element Description

 action% The following action:
► MakeSelection. Selects the specified item from a

Java menu.
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Path=$. If action% is MakeSelection, the name
of the popup menu and menu item. Sub-menus are
separated by a pointer (->).

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid value:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

 Description

 Syntax

JavaPopupMenuVP

Command Reference 6-261

Robot can recognize menus and sub-menus up to five levels deep.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example opens the Java popup menu with a Name attribute of PopMenu1
and selects the Open option. The popup menu is located within the Java applet
named Main.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 JavaPopupMenu MakeSelection, "Type=JavaPopupMenu;Index=1;
 Path=PopMenu1->Open",""

 JavaPopupMenuVP

 JavaPopupMenuVP
 Verification Point Command

 Establishes a verification point for a Java popup menu.

 Result = JavaPopupMenuVP(action%,recMethod$,parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

JavaPopupMenuVP

6-262 SQABasic Language Reference

► ► ►

 Syntax Element Description

► Path=$. The name of the popup menu and menu
item. Sub-menus are separated by a pointer (->).

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

Robot can recognize menus and sub-menus up to five levels deep.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 Comments

JavaSplitPane

Command Reference 6-263

 This example captures the properties of the first Java popup menu in the applet
(Index=1). The menu bar is located within the Java applet named Main.
JavaPopupMenuVP compares the properties to the recorded baseline in
verification point POPMENUVP1. At playback, the comparison is retried every 2
seconds and times out after 30 seconds.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 Result = JavaPopupMenuVP (CompareProperties,
 "Type=JavaPopupMenu;Index=1","VP=POPMENUVP1;Wait=2,30")

 JavaPopupMenu

 JavaSplitPane
 User Action Command

 Performs an action on a Java split pane.

 JavaSplitPane action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.
 See Appendix E for a list of mouse click values.

► ScrollAction. One of these scroll actions:
 HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► ► ►

 Example

 See Also

 Description

 Syntax

JavaSplitPaneVP

6-264 SQABasic Language Reference

► ► ►

 Syntax Element Description

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position. Every scroll bar has an internal
range and this parameter value is specific to that range.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

This example clicks the Java split pane at coordinates 36, 25. The popup menu is
located within the Java applet named Main.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
JavaSplitPane Click, "Type=JavaSplitPane;Name=SplitPane example",

"Coords=36,25"

JavaSplitPaneVP JavaSplitter

JavaSplitPaneVP
Verification Point Command

Establishes a verification point for a Java split pane.

Result = JavaSplitPaneVP(action%,recMethod$,parameters$)

Comments

Example

See Also

Description

Syntax

JavaSplitPaneVP

Command Reference 6-265

Syntax Element Description

action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

JavaSplitter

6-266 SQABasic Language Reference

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example captures the properties of the first Java split pane named
SplitPane example. The split pane is located within the Java applet named
Main. JavaSplitPaneVP compares the properties to the recorded baseline in
verification point SPLITPVP1. At playback, the comparison is retried every 2
seconds and times out after 30 seconds.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 Result = JavaSplitPaneVP (CompareProperties,
 "Type=JavaSplitPane;Name=SplitPane example",
 "VP=SPLITPVP1;Wait=2,30")

 JavaSplitPane

 JavaSplitter
 User Action Command

 Performs an action on a Java splitter.

 JavaSplitter action%, recMethod$, parameters$

 Syntax Element Description

 action% Valid values:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.
 See Appendix E for a list of mouse click values.

► ScrollAction. One of these scroll actions:
 HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

JavaSplitter

Command Reference 6-267

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position. Every scroll bar has an internal
range and this parameter value is specific to that range.

 JavaSplitter acts on the splitter object itself. JavaSplitPane relies on the
split pane to perform the splitter action.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

This example sets the scroll-to position of a Java splitter component as 234.
Sub Main

Dim Result As Integer
'Initially Recorded: 06/09/99 14:15:21
'Script Name: JavaSplitter
Window SetContext, "Caption=Project1", ""
JavaSplitter VScrollTo,

"JavaCaption=Project1;\;Type=JavaSplitter;Index=1",
"Position=234"

Window SetTestContext, "Caption=Project1", ""
Result = JavaSplitterVP (CompareProperties,

"JavaCaption=Project1;\;Type=JavaSplitter;Index=1",
"VP=Object Properties")

Window ResetTestContext, "", ""
End Sub

Comments

Example

JavaSplitterVP

6-268 SQABasic Language Reference

JavaSplitPane JavaSplitterVP

JavaSplitterVP
Verification Point Command

Establishes a verification point for a Java splitter.

Result = JavaSplitterVP(action%,recMethod$,parameters$)

Syntax Element Description

action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► ► ►

See Also

Description

Syntax

JavaSplitterVP

Command Reference 6-269

► ► ►

Syntax Element Description

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 The following example establishes an object properties verification point for a Java
splitter component.

Sub Main
Dim Result As Integer

'Initially Recorded: 06/09/99 14:15:21
'Script Name: JavaSplitter

Window SetContext, "Caption=Project1", ""
JavaSplitter VScrollTo,

"JavaCaption=Project1;\;Type=JavaSplitter;Index=1",
"Position=234"

Window SetTestContext, "Caption=Project1", ""
Result = JavaSplitterVP (CompareProperties,

"JavaCaption=Project1;\;Type=JavaSplitter;Index=1",
"VP=Object Properties")

Window ResetTestContext, "", ""

End Sub

 JavaSplitter

 Comments

 Example

 See Also

JavaTable

6-270 SQABasic Language Reference

 JavaTable
 User Action Command

 Performs an action on a Java table.

 JavaTable action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

See Appendix E for a list of mouse click and drag values.

recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

► ► ►

 Description

 Syntax

JavaTable

Command Reference 6-271

► ► ►

 Syntax Element Description

parameters$ Valid values:
► Coords=x,y. If action% is a mouse click in a

writeable cell, specifies the coordinates of the click,
relative to the top left of the cell being acted upon.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag in a writeable cell, specifies the coordinates, where
x1,y1 are the starting coordinates of the drag, and
x2,y2 are the ending coordinates. The coordinates are
relative to the top left of the cell being acted upon.

► Col=%. Identifies the index of a column in the table.
► ColTitle=$. Identifies the title of the table column.
► EndCol= %. Identifies the index of the ending column

in the table.
► EndColTitle=$. Identifies the title of the ending

column for a MouseDrag action.
► Row=%. Identifies the index of a row in the table.
► StartCol= %. Identifies the index of the starting

column.
► StartColTitle=$. Identifies the title of the starting

column.
► Text=$. Identifies the text of an item in the table.
► Value=%. The current value of the table item.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example clicks the first table in the Java applet named Main. The click occurs
in the column titled Favorite Number at coordinates 36, 10. The value is 2.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 JavaTable Click, "Type=JavaTable;Index=1",
 "StartColTitle=LastName;ColTitle=FavoriteNumber;Value=2;
 Coords=36,10"

 JavaTableVP

 Comments

 Example

 See Also

JavaTableVP

6-272 SQABasic Language Reference

 JavaTableVP
 Verification Point Command

 Establishes a verification point for a Java table.

 Result = JavaTableVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► ► ►

 Description

 Syntax

JavaTableHeader

Command Reference 6-273

► ► ►

 Syntax Element Description

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example captures the properties of the Java table named EmployeeList. The
table is located within the Java applet named Main. JavaTableVP compares the
properties to the recorded baseline in verification point TABLEVP1. At playback,
the comparison is retried every 2 seconds and times out after 30 seconds.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 Result = JavaTableVP (CompareProperties,
 "Type=JavaTable;Name=EmployeeList", "VP=TABELVP1;Wait=2,30")

 JavaTable

 JavaTableHeader
 User Action Command

 Performs an action on a Java table header.

 JavaTableHeader action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When
action% contains a mouse-click value,
parameters$ must contain Coords=x,y.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

JavaTableHeader

6-274 SQABasic Language Reference

► ► ►

 Syntax Element Description

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

See Appendix E for a list of mouse click and drag values.

recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► Coords=x1,y1,x2,y2. If action% is a mouse

drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the specified start column header cell.

► Col=%. Identifies the index of a column in the table.
► ColTitle=$. Identifies the title of the table column.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example clicks the table column header title Employee Number in a table
named EmployeeList. The table is located within the Java applet named Main.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 JavaTableHeader Click, "Type=JavaTable;Name=EmployeeList",
 "ColTitle=Employee Number"

 Comments

 Example

JavaTableHeaderVP

Command Reference 6-275

 JavaTable
 JavaTableVP
 JavaTableHeaderVP

 JavaTableHeaderVP
 Verification Point Command

 Establishes a verification point for a Java table header.

 Result = JavaTableHeaderVP (action%,recMethod$,parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

► ► ►

 See Also

 Description

 Syntax

JavaTableHeaderVP

6-276 SQABasic Language Reference

► ► ►

 Syntax Element Description

parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example captures the properties of the Java table header named
EmployeeList. The table is located within the Java applet named Main.
JavaTableHeaderVP compares the properties to the recorded baseline in
verification point TABLEHEADERVP1. At playback, the comparison is retried
every 2 seconds and times out after 30 seconds.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 Result=JavaTableHeaderVP (CompareProperties,
 "Type=JavaTableHeader; Name=EmployeeList",
 "VP=TABELHEADERVP1;Wait=2,30")

 JavaTable
 JavaTableHeader

 Comments

 Example

 See Also

JavaTree

Command Reference 6-277

 JavaTree
 User Action Command

 Performs an action on a Java tree component.

 JavaTree action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► Collapse. Collapses the tree. recMethod$ must

contain one of the Java recognition methods, and
parameters$ must contain either Text or
JavaRow.

► Deselect. Deselects the specified item from an
extended Java tree component in multipleMode.
recMethod$ must contain one of the Java recognition
methods, and parameters$ must contain either Text
or JavaRow.

► Expand. Expands the tree. recMethod$ must contain
one of the Java recognition methods, and
parameters$ must contain either Text or
JavaRow.

► ExtendSelection. Selects the specified item from an
extended Java tree component in multipleMode.
recMethod$ must contain one of the Java recognition
methods, and parameters$ must contain either Text
or JavaRow.

► MakeSelection. Selects the specified item in a Java
tree. recMethod$ must contain one of the Java
recognition methods, and parameters$ must contain
either Text or JavaRow.

► MouseClick. The clicking of the left, center, or right
mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.
See Appendix E for a list of mouse click values.

► ► ►

 Description

 Syntax

JavaTree

6-278 SQABasic Language Reference

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► JavaRow=%. Identifies the row number of an item in
the list.

► Text=$. Identifies the text of an item in the list. The
tree items are separated by a pointer (->).

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example expands the Jazz node of the Java tree with a Name attribute of
Music. The menu bar is located within the Java applet named Main.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 JavaTree Expand, "Type=JavaTree;Name=Music", "Text=Music->Jazz"

 JavaTreeVP

 Comments

 Example

 See Also

JavaTreeVP

Command Reference 6-279

 JavaTreeVP
 Verification Point Command

 Establishes a verification point for a Java tree component.

 Result = JavaTreeVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► ► ►

 Description

 Syntax

JavaWindow

6-280 SQABasic Language Reference

► ► ►

 Syntax Element Description

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example captures the properties of the Java tree with a Name attribute of
JavaTree1. The tree is located within the Java applet named Main. JavaTreeVP
compares the properties to the recorded baseline in verification point TREEVP1. At
playback, the comparison is retried every 2 seconds and times out after 30 seconds.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 Result = JavaTreeVP (CompareProperties,
 "Type=JavaTree;Name=JavaTree1", "VP=TREEVP1;Wait=2,30")

 JavaTree

 JavaWindow
 User Action Command

 Performs an action on a Java window.

 JavaWindow action%, recMethod$, parameters$

 Comments

 Example

 See Also

 Description

 Syntax

JavaWindow

Command Reference 6-281

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

See Appendix E for a list of mouse click and drag values.

recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more

 Comments

JavaWindowVP

6-282 SQABasic Language Reference

information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example clicks the window titled EmployeeList. The window is located
within the Java applet named Main.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 JavaWindow Click,"Type=JavaWindow;Name=EmployeeList","Coords=25,50"

 JavaWindowVP

 JavaWindowVP
 Verification Point Command

 Establishes a verification point for a Java window.

 Result = JavaWindowVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► Index=%. The number of the parent or child object

among all objects identified with the same base
recognition method. Typically, Index is used after
another recognition method qualifier — for example,
Name=$;Index=%.

► JavaText=$. A label that identifies the child object in
the user interface.

► Name=$. A name that a developer assigns to a parent or
child object to identify the object.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

See Recognition Methods in Java Commands in Chapter 4 for
other recognition methods that specify the parent object.

► ► ►

 Example

 See Also

 Description

 Syntax

JavaWindowVP

Command Reference 6-283

► ► ►

 Syntax Element Description

parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 If the parent object is not specified in the recMethod argument of this
command, it must be specified in a preceding Browser command. For more
information about specifying parent and child Java objects, see Recognition Methods
in Java Commands in Chapter 4.

 This example captures the properties of the Java window named EmployeeList.
The table is located within the Java applet named Main. JavaWindowVP
compares the properties to the recorded baseline in verification point
JAVAWINDOWVP1. At playback, the comparison is retried every 2 seconds and
times out after 30 seconds.

Window SetContext, "Caption=Java demo", ""
Browser SetApplet,"Name=Main",""
 Result = JavaWindowVP (CompareProperties,
 "Type=JavaWindow;Name=EmployeeList","VP=JAVAWINDOWVP1;Wait=2,30")

 JavaWindow

 Comments

 Example

 See Also

Kill

6-284 SQABasic Language Reference

 Kill
 Statement

 Deletes files from a hard disk or diskette.

 Kill pathname$

 Syntax Element Description

 pathname$ An expression that specifies a valid DOS file specification.

 The pathname$ specification can contain paths and wildcards. Kill deletes files
only, not directories. Use the RmDir function to delete directories.

 This example prompts a user for an account number, opens a file, searches for the
account number and displays the matching letter for that number. The second sub
procedure, CREATEFILE, creates the file C:\TEMP001 used by the main sub procedure.
After processing is complete, the first sub procedure uses Kill to delete the file.

 Declare Sub createfile()
 Global x as Integer
 Global y(100) as String
 Sub main
 Dim acctno as Integer
 Dim msgtext
 Call createfile
 i: acctno=InputBox("Enter an account number from 1-10:")
 If acctno<1 Or acctno>10 then
 MsgBox "Invalid account number. Try again."
 Goto i:
 End if
 x=1
 Open "C:\TEMP001" for Input as #1
 Do Until x=acctno
 Input #1, x,y(x)
 Loop
 msgtext="The letter for account number " & x & " is: " & y(x)
 Close #1
 MsgBox msgtext
 Kill "C:\TEMP001"
 End Sub
 Sub createfile()
 ' Put the numbers 1-10 and letters A-J into a file
 Dim startletter
 Open "C:\TEMP001" for Output as #1
 startletter=65
 For x=1 to 10
 y(x)=Chr(startletter)
 startletter=startletter+1
 Next x
 For x=1 to 10
 Write #1, x,y(x)
 Next x
 Close #1
 End Sub

 Description

 Syntax

 Comments

 Example

Label

Command Reference 6-285

 FileAttr GetAttr
 FileDateTime RmDir

 Label
 User Action Command

 Performs an action on a label control.

 Label action%, recMethod$

 Syntax Element Description

 action% The following mouse action:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). Does not require
coordinate information.

 See Appendix E for a list of mouse click values.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Text=$. The text displayed on the object.

► ► ►

 See Also

 Description

 Syntax

LabelVP

6-286 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

 None.

 This example clicks the label identified with the text Tuesday, March 12, 1999.

 Label Click, "Text=Tuesday, March 12, 1999"

 CheckBox
 PushButton
 RadioButton

 LabelVP
 Verification Point Command

 Establishes a verification point for a label control.

 Result = LabelVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareNumeric. Captures the numeric value of

the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

LabelVP

Command Reference 6-287

► ► ►

 Syntax Element Description

 ► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► VerifyIsBlank. Checks that the object has no text.
parameters$ VP is required; ExpectedResult
and Wait are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► Type=$. An optional qualifier for recognition

methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► ► ►

LabelVP

6-288 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function.
— Function=$. The name of the custom function to

use in comparing the text.
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the text of the second label object in the window
ObjectIndex=2 and performs a case-sensitive comparison with the recorded
baseline in verification point VPTRIAL.

 Result = LabelVP (CompareText, "ObjectIndex=2",
 "VP=VPTRIAL;Type=CaseSensitive")

 ComboBoxVP EditBoxVP
 ComboListBoxVP ListBoxVP

 Comments

 Example

 See Also

LBound

Command Reference 6-289

 LBound
 Function

 Returns the lower bound of the subscript range for the specified array.

 LBound(arrayname [, dimension])

 Syntax Element Description

 arrayname The name of the array to use.

 dimension The dimension to use.

 The dimensions of an array are numbered starting with 1. If the dimension is
not specified, 1 is used as a default.

 LBound can be used with UBound to determine the length of an array.

 This example resizes an array if the user enters more data than can fit in the array.
It uses LBound and UBound to determine the existing size of the array and
ReDim to resize it. Option Base sets the default lower bound of the array to 1.

 Option Base 1
 Sub main
 Dim arrayvar() as Integer
 Dim count as Integer
 Dim answer as String
 Dim x, y as Integer
 Dim total
 total=0
 x=1
 count=InputBox("How many test scores do you have?")
 ReDim arrayvar(count)
 start:
 Do until x=count+1
 arrayvar(x)=InputBox("Enter test score #" &x & ":")
 x=x+1
 Loop
 answer=InputBox$("Do you have more scores? (Y/N)")
 If answer="Y" or answer="y" then
 count=InputBox("How many more do you have?")
 If count<>0 then
 count=count+(x-1)
 ReDim Preserve arrayvar(count)
 Goto start
 End If
 End If
 x=LBound(arrayvar,1)
 count=UBound(arrayvar,1)
 For y=x to count
 total=total+arrayvar(y)
 Next y
 MsgBox "Average of " & count & " scores is: " & Int(total/count)
 End Sub

 Description

 Syntax

 Comments

 Example

LCase

6-290 SQABasic Language Reference

 Dim ReDim
 Global Static
 Option Base UBound

 LCase
 Function

 Returns a copy of a string, with all uppercase letters converted to lowercase.

 LCase[$](string$)

 Syntax Element Description

 $ Optional. If specified the return type is String. If
omitted the function will typically return a Variant of
VarType 8 in the function name is (String).

 string$ A string, or an expression containing the string to use.

 The translation is based on the country specified in the Windows Control Panel.
LCase accepts expressions of type String. LCase accepts any type of argument
and will convert the input value to a string.

 If the value of string$ is NULL, a Variant of VarType 1 (Null) is returned.

 This example converts a string entered by the user to lowercase.

 Sub main
 Dim userstr as String
 userstr=InputBox$("Enter a string in upper and lowercase letters")
 userstr=LCase$(userstr)
 MsgBox "The string now is: " & userstr
 End Sub

 UCase

 Left
 Function

 Returns a string of a specified number of characters copied from the beginning of
another string.

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

 Description

Left

Command Reference 6-291

 Left[$](string$, length%)

 Syntax Element Description

 $ Optional. If specified, the return type is String. If
omitted, the function will typically return a Variant of
VarType 8 (String).

 string$ A string or an expression containing the string to copy.

 length% The number of characters to copy.

 If length% is greater than the length of string$, this function returns the
whole string.

 Left accepts expressions of type String. Left accepts any type of string$,
including numeric values, and will convert the input value to a string.

 If the value of string$ is NULL, a Variant of VarType 1 (Null) is returned.

 To obtain a string of a specified number of bytes, copied from the beginning of
another string, use LeftB.

 This example extracts a user’s first name from the entire name entered.

 Sub main
 Dim username as String
 Dim count as Integer
 Dim firstname as String
 Dim charspace
 charspace=Chr(32)
 username=InputBox("Enter your first and last name")
 count=InStr(username,charspace)
 firstname=Left(username,count)
 MsgBox "Your first name is: " &firstname
 End Sub

 GetField Mid statement StrComp
 Len Right Trim
 LTrim RTrim
 Mid function Str

 Syntax

 Comments

 Example

 See Also

Len

6-292 SQABasic Language Reference

 Len
 Function

 Returns the length of a string or variable.

 Syntax A Len(string$)

 Syntax B Len(varname)

 Syntax Element Description

 string$ A string or an expression that evaluates to a string.

 varname A variable that contains a string.

 If the argument is a string, the number of characters in the string is returned. If
the argument is a Variant variable, Len returns the number of bytes required to
represent its value as a string. Otherwise, the length of the built-in data type or
user-defined type is returned.

 If syntax B is used, and varname is a Variant containing a NULL, Len will
return a Null Variant.

 To return the number of bytes in a string, use LenB.

 This example returns the length of a name entered by the user (including spaces).

 Sub Main
 Dim username as String
 Dim Count as Integer
 username=InputBox("Enter your name")
 count=Len(username)
 MsgBox "The length of your name is: " &count
 End Sub

 Instr

 Let
 Statement

 Assigns an expression to an SQABasic variable.

 [Let] variable = expression

 Syntax Element Description

 variable The name of a variable to assign to the expression.

 expression The expression to assign to the variable.

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

Like

Command Reference 6-293

 The keyword Let is optional.

 The Let statement can be used to assign a value or expression to a variable of
Numeric, String, Variant or User-Defined type. You can also use the
Let statement to assign to an element of an array.

 When assigning a value to a numeric or string variable, standard conversion rules
apply.

 Let differs from Set in that Set assigns a variable to an OLE object. For example:

► Set o1 = o2 sets the object reference.

► Let o1 = o2 sets the value of the default member.

 This example uses the Let statement to assign an initial value to the variable sum.
The sub procedure finds an average of 10 golf scores.

 Sub main
 Dim score As Integer
 Dim x, sum
 Dim msgtext
 Let sum=0
 For x=1 to 10
 score=InputBox("Enter your last ten golf scores #" & x & ":")
 sum=sum+score
 Next x
 msgtext="Your average is: " & CInt(sum/(x-1))
 MsgBox msgtext
 End Sub

 Const
 Lset
 Set

 Like
 Operator

 Returns the value -1 (TRUE) if a string matches a pattern, 0 (FALSE) otherwise.

 string$ LIKE pattern$

 Syntax Element Description

 string$ Any string expression.

 pattern$ Any string expression to match to string$.

 Comments

 Example

 See Also

 Description

 Syntax

Line Input

6-294 SQABasic Language Reference

 pattern$ can include the following special characters:

 Character: Matches:

 ? A single character

 * A set of zero or more characters

 # A single digit character (0-9)

 [chars] A single character in chars

 [!chars] A single character not in chars

 [schar-echar] A single character in range schar to echar

 [!schar-echar] A single character not in range schar to echar

 Both ranges and lists can appear within a single set of square brackets. Ranges
are matched according to their ANSI values. In a range, schar must be less
than echar.

 If either string$ or pattern$ is NULL then the result value is NULL.

 The Like operator respects the current setting of Option Compare.

 This example tests whether a letter is lowercase.

 Sub main
 Dim userstr as String
 Dim revalue as Integer
 Dim retvalue as Integer
 Dim msgtext as String
 Dim pattern
 pattern="[a-z]"
 userstr=InputBox$("Enter a letter:")
 retvalue=userstr LIKE pattern
 If retvalue=-1 then
 msgtext="The letter " & userstr & " is lowercase."
 Else
 msgtext="Not a lowercase letter."
 End If
 MsgBox msgtext
 End Sub

 Expressions Option Compare
 Instr StrComp

 Line Input
 Statement

 Reads a line from the a sequential file or from the keyboard into a string variable.

 Comments

 Example

 See Also

 Description

Line Input

Command Reference 6-295

 Syntax A Line Input [#]filenumber%, varname$

 Syntax B Line Input [prompt$,] varname$

 Syntax Element Description

 filenumber% An integer expression identifying the open file to use.

 prompt$ An optional string that can be used to prompt for
keyboard input; it must be a literal string.

 varname$ A string variable to contain the line read.

 If specified, the filenumber% is the number used in the Open statement to open
the file. If filenumber% is not provided, the line is read from the keyboard.

 If prompt$ is not provided, a prompt of a question mark (?) is used.

 This example reads the contents of a sequential file line by line (to a carriage
return) and displays the results. The second sub procedure, CREATEFILE, creates
the file C:\TEMP001 used by the main sub procedure.

 Declare Sub createfile()
 Sub main
 Dim msgtext as String
 Dim testscore as String
 Dim x
 Dim y
 Dim newline
 Call createfile
 Open "c:\temp001" for Input as #1
 x=1
 newline=Chr(10)
 msgtext= "The contents of c:\temp001 is: " & newline
 Do Until x=Lof(1)
 Line Input #1, testscore
 x=x+1
 y=Seek(1)
 If y>Lof(1) then
 x=Lof(1)
 Else
 Seek 1,y
 End If
 msgtext=msgtext & testscore & newline
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
 End Sub
 Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
 Close #1
 End Sub

 Syntax

 Comments

 Example

ListBox (Statement)

6-296 SQABasic Language Reference

 Get InputBox
 Input function Open
 Input statement

 ListBox (Statement)
 Statement

 Defines a list box of choices for a dialog box.

 Syntax A ListBox x, y, dx, dy, text$, .field

 Syntax B ListBox x, y, dx, dy, stringarray$(), .field

 Syntax Element Description

 x, y The upper left corner coordinates of the list box, relative
to the upper left corner of the dialog box.

 dx, dy The width and height of the list box.

 text$ A string containing the selections for the list box.

 stringarray$ An array of dynamic strings for the selections in the list
box.

 .field The name of the dialog-record field that will hold a
number for the choice made in the list box.

 The x argument is measured in 1/4 system-font character-width units. The y
argument is measured in 1/8 system-font character-width units. (See Begin
Dialog for more information.)

 The text$ argument must be defined, using a Dim statement, before the Begin
Dialog statement is executed. The arguments in the text$ string are entered as
shown in the following example:

 dimname="listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...
 A number representing the selection’s position in the text$ string is recorded in
the field designated by the .field argument when the OK button (or any
PushButton other than Cancel) is pushed. The numbers begin at 0. If no item is
selected, it is -1. The field argument is also used by the dialog statements that
act on this control.

 Use the ListBox statement only between a Begin Dialog and an End
Dialog statement.

 See Also

 Description

 Syntax

 Comments

ListBox (User Action Command)

Command Reference 6-297

 This example defines a dialog box with a list box and two buttons.
 Sub main
 Dim ListBox1() as String
 ReDim ListBox1(0)
 ListBox1(0)="C:\"
 Begin Dialog UserDialog 133, 66, 171, 65, "SQABasic Dialog Box"
 Text 3, 3, 34, 9, "Directory:", .Text2
 ListBox 3, 14, 83, 39, ListBox1(), .ListBox2
 OKButton 105, 6, 54, 14
 CancelButton 105, 26, 54, 14
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
 End Sub

 Begin/End Dialog ComboBox OptionGroup
 Button Dialog Picture
 ButtonGroup DropComboBox StaticComboBox
 CancelButton GroupBox Text
 Caption OKButton TextBox
 CheckBox OptionButton

 ListBox (User Action Command)
 User Action Command

 Performs an action on a list box control.

 ListBox action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these actions:
► Deselect. Deselects the specified item from an extended

Java listbox in multipleMode. Used only for the Java
environment. recMethod$ must contain one of the Java
recognition methods, and parameters$ must contain
either Text or Index.

► ExtendSelection. Selects the specified item from an
extended Java listbox in multipleMode. Used only for the
Java environment. recMethod$ must contain one of the
Java recognition methods, and parameters$ must
contain either Text or Index.

► MakeSelection. Selects the specified item from a Java
listbox. Used only for the Java environment. recMethod$
must contain one of the Java recognition methods, and
parameters$ must contain either Text or Index.

► ► ►

 Example

 See Also

 Description

 Syntax

ListBox (User Action Command)

6-298 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► MouseClick. The clicking of the left, center, or right
mouse button, either alone or in combination with one or
more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain one of the following: Text, ItemData, Index,
or Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are pressed.
When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag values.

► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.
If Robot cannot interpret the action being applied to a
scroll bar, which happens with certain custom standalone
scroll bars, it records the action as a click or drag.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The visible text of a Web page SELECT

form element. The text is from the Value attribute of the
OPTION tag.

► HTMLTitle=$. The text from the Title attribute of the
HTML object.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Label=$. The text of the label object that immediately
precedes the list box in the Z order of windows.

► Name=$. A name that a developer assigns to an object to
uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ► ►

ListBox (User Action Command)

Command Reference 6-299

► ► ►

 Syntax Element Description

 ► ObjectIndex=%. The number of the object among all
objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default state
is the state of the current context window (as set in the
most recent Window SetContext command), or
Enabled if the state has not been otherwise declared.

► Type=$. An optional qualifier for recognition methods.
Used to identify the object within a specific context or
environment. The Type qualifier uses the following
form: Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify an
object by its prior label. It is for user clarification only
and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of the
object. Robot uses this parameter only if the item
contents or index cannot be retrieved — for example, if
the list box is empty or disabled.

► Coords=x1,x2,y1,y2. If action% is a mouse drag,
specifies the coordinates, where x1,y1 are the starting
coordinates of the drag, and x2,y2 are the ending
coordinates. The coordinates are relative to the top left of
the object.

► Index=%. If action% is a select or deselect action,
identifies the index of an item in the list.

► ItemData=&. If action% is a mouse click, identifies
the internal value, or ItemData, associated with an item
in the list. All items in a list have an associated value. The
uniqueness and significance of this value is entirely up to
the application. Robot uses this parameter only if the list
box item’s text cannot be retrieved (for example, if it is
an Owner Drawn list box), and if the Identify List
Selections By recording option is set to Contents.

► Position=%. If action% is a VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position. Every scroll bar has an internal
range, and this value is specific to that range.

► Text=$. If action% is a select or deselect action,
identifies the text of an item in the list.

ListBoxVP

6-300 SQABasic Language Reference

 None.

 This example clicks the item identified by the text Epson on LPT1: in the first
list box control in the window (ObjectIndex=1).

 ListBox Click, "ObjectIndex=1", "Text=Epson on LPT1:"

 This example clicks the item identified by the text Option 1 in the list box named
SelectList1. The list box is located within the Web page frame named Main.

 ListBox Click,
 "Type=HTMLFrame;HTMLId=Main;\;Type=ListBox; Name=SelectList1",
 "Text=Option 1"

 ComboBox ComboListBox
 ComboEditBox EditBox

 ListBoxVP
 Verification Point Command

 Establishes a verification point for a list box control.

 Result = ListBoxVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► Compare. Captures the entire contents of the list box

into a grid and compares it to a recorded baseline.
parameters$ VP is required; ExpectedResult
and Wait are optional.

► CompareData. Captures the contents or HTML text
of the object and compares it to a recorded baseline.
parameters$ VP is required; ExpectedResult
and Wait are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

ListBoxVP

Command Reference 6-301

► ► ►

 Syntax Element Description

 ► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► VerifyIsBlank. Checks that the object has no text.
parameters$ VP is required; ExpectedResult
and Wait are optional.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The visible text of a Web page SELECT

form element. The text is from the Value attribute of
the OPTION tag.

► HTMLTitle=$. The text from the Title attribute of
the HTML object.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Label=$. The text of the label object that immediately
precedes the list box in the Z order of windows.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result).

► ► ►

ListBoxVP

6-302 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ExpectedResult takes either of these values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

Comments

ListView

Command Reference 6-303

This example captures the properties of the list box labeled Files: and compares
them to the recorded baseline in verification point FILELIST.

Result = ListBoxVP(CompareProperties,"Label=Files:","VP=FILELIST")

This example captures the data from the list box identified by the name
SelectList1. The list is located within the Web page frame named Main.
ListBoxVP compares the data to the recorded baseline in verification point
WebList1.

Result = ListBoxVP (CompareData,
"Type=HTMLFrame;HTMLId=main;\;Type=ListBox;Name=SelectList1",
"VP=WebList1")

ComboBoxVP EditBoxVP
ComboEditBoxVP

ListView
User Action Command

Performs an action on a list view control.

ListView action%, recMethod$, parameters$

Syntax Element Description

action% One of these actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag values.

► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.
If Robot cannot interpret the action being applied to a
scroll bar, which happens with certain custom standalone
scroll bars, it records the action as a click or drag.

► ► ►

Example

See Also

Description

Syntax

ListView

6-304 SQABasic Language Reference

► ► ►

Syntax Element Description

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► ItemIndex=%. The index of the list view item acted

upon. Used only after one of these parent values:
ID=%, ObjectIndex=%, Name=$, Text=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

► ItemText=$. The text of the list view item acted
upon. Used only after one of these parent values:
ID=%, ObjectIndex=%, Name=$, Text=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default state
is the state of the current context window (as set in the
most recent Window SetContext command), or
Enabled if the state has not been otherwise declared.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its prior label. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the x,y coordinates of the click, relative to the top left of
the object or the item.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object or the item.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position in the scroll box. Every scroll bar has
an internal range, and this value is specific to that range.

ListViewVP

Command Reference 6-305

 None.

 This example clicks the item identified by the text System at x,y coordinates of
50,25 in the first list view control in the window (ObjectIndex=1).

 ListView Click, "ObjectIndex=1;\;ItemText=System", "Coords=50,25"

 ListViewVP

 ListViewVP
 Verification Point Command

 Establishes a verification point for a list view control.

 Result = ListViewVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP
is required; ExpectedResult and Wait are
optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► ItemIndex=%. The index of the list view item acted

upon. Used only after one of these parent values:
ID=%, ObjectIndex=%, Name=$, Text=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

ListViewVP

6-306 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► ItemText=$. The text of the list view item acted
upon. Used only after one of these parent values:
ID=%, ObjectIndex=%, Name=$, Text=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► ► ►

Loc

Command Reference 6-307

► ► ►

 Syntax Element Description

 ► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the properties of the first list view control in the window
(ObjectIndex=1) and compares them to the recorded baseline in verification
point TEST1A.

 Result = ListViewVP (CompareProperties,"ObjectIndex=1","VP=TEST1A")

 ListView

 Loc
 Function

 Returns the current offset within an open file.

 Loc(filenumber%)

 Syntax Element Description

 filenumber% An integer expression identifying the open file to query.

 The filenumber% is the number used in the Open statement of the file.

 For files opened in Random mode, Loc returns the number of the last record
read or written. For files opened in Append, Input, or Output mode, Loc
returns the current byte offset divided by 128. For files opened in Binary mode,
Loc returns the offset of the last byte read or written.

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

Lock

6-308 SQABasic Language Reference

 This example creates a file of account numbers as entered by the user. When the
user finishes, the example displays the offset in the file of the last entry made.

 Sub main
 Dim filepos as Integer
 Dim acctno() as Integer
 Dim x as Integer
 x=0
 Open "c:\TEMP001" for Random as #1
 Do
 x=x+1
 Redim Preserve acctno(x)
 acctno(x)=InputBox("Enter account #" & x & " or 0 to end:")
 If acctno(x)=0 then
 Exit Do
 End If
 Put #1,, acctno(x)
 Loop
 filepos=Loc(1)
 Close #1
 MsgBox "The offset is: " & filepos
 Kill "C:\TEMP001"
 End Sub

 Eof
 Lof
 Open

 Lock
 Statement

 Keeps other processes from accessing an open file.

 Lock [#]filenumber% [, [start&] [To end&]]

 Syntax Element Description

 filenumber% An integer expression identifying the open file.

 start& Number of the first record or byte offset to lock/unlock.

 end& Number of the last record or byte offset to lock/unlock.

 The filenumber% is the number used in the Open statement of the file.

 For Binary mode, start&, and end& are byte offsets. For Random mode,
start&, and end& are record numbers. If start& is specified without end&,
only the record or byte at start& is locked. If To end& is specified without
start&, all records or bytes from record number or offset 1 to end& are locked.

 For Input, Output and Append modes, start&, and end& are ignored and
the whole file is locked.

 Example

 See Also

 Description

 Syntax

 Comments

Lock

Command Reference 6-309

 Lock and Unlock always occur in pairs with identical parameters. All locks on
open files must be removed before closing the file or unpredictable results occur.

 This example locks a file that is shared by others on a network, if the file is already
in use. The second sub procedure, CREATEFILE, creates the file used by the main
sub procedure.

 Declare Sub createfile
 Sub main
 Dim btngrp, icongrp
 Dim defgrp
 Dim answer
 Dim noaccess as Integer
 Dim msgabort
 Dim msgstop as Integer
 Dim acctname as String
 noaccess=70
 msgstop=16
 Call createfile
 On Error Resume Next
 btngrp=1
 icongrp=64
 defgrp=0
 answer=MsgBox("Open the account file?" & Chr(10),

btngrp+icongrp+defgrp)
 If answer=1 then
 Open "C:\TEMP001" for Input as #1
 If Err=noaccess then
 msgabort=MsgBox("File Locked",msgstop,"Aborted")
 Else
 Lock #1
 Line Input #1, acctname
 MsgBox "The first account name is: " & acctname
 Unlock #1
 End If
 Close #1
 End If
 Kill "C:\TEMP001"
 End Sub

 Sub createfile()
 Rem Put the letters A-J into the file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, Chr(x+64)
 Next x
 Close #1
 End Sub

 Open
 Unlock

 Example

 See Also

Lof

6-310 SQABasic Language Reference

 Lof
 Function

 Returns the length in bytes of an open file.

 Lof(filenumber%)

 Syntax Element Description

 filenumber% An integer expression identifying the open file.

 The filenumber% is the number used in the Open statement of the file.

 This example opens a file and prints its contents to the screen.

 Sub main
 Dim fname
 Dim fchar()
 Dim x as Integer
 Dim msgtext
 Dim newline
 newline=Chr(10)
 fname=InputBox("Enter a filename to print:")
 On Error Resume Next
 Open fname for Input as #1
 If Err<>0 then
 MsgBox "Error loading file. Re-run program."
 Exit Sub
 End If
 msgtext="The contents of " & fname & " is: " &

newline &newline
 Redim fchar(Lof(1))
 For x=1 to Lof(1)
 fchar(x)=Input(1,#1)
 msgtext=msgtext & fchar(x)
 Next x
 MsgBox msgtext
 Close #1
 End Sub

 Eof Loc
 FileLen Open

 Description

 Syntax

 Comments

 Example

 See Also

Log

Command Reference 6-311

 Log
 Function

 Returns the natural logarithm of a number.

 Log(number)

 Syntax Element Description

 number Any valid numeric expression.

 The return value is single-precision for an integer, currency or single-precision
numeric expression, double precision for a long, Variant or double-precision
numeric expression.

 This example uses the Log function to determine which number is larger:
999^1000 (999 to the 1000 power) or 1000^999 (1000 to the 999 power). Note
that you cannot use the exponent (^) operator for numbers this large.

 Sub main
 Dim a as Integer
 Dim b as Integer
 Dim x
 Dim y
 x=999
 y=1000
 a=y*(Log(x))
 b=x*(Log(y))
 If a>b then
 MsgBox "999^1000 is greater than 1000^999"
 Else
 MsgBox "1000^999 is greater than 999^1000"
 End If
 End Sub

 Exp Rnd
 Fix Sgn
 Int Sqr

 Description

 Syntax

 Comments

 Example

 See Also

Lset

6-312 SQABasic Language Reference

 Lset
 Statement

 Copies one string to another, or assigns a user-defined type variable to another.

 Syntax A Lset string$ = string-expression

 Syntax B Lset variable1 = variable2

 Syntax Element Description

 string$ A string or string expression to contain the copied
characters.

 string-expression An expression containing the string to copy.

 variable1 A variable with a user-defined type to contain the copied
variable.

 variable2 A variable with a user-defined type to copy.

 If string$ is shorter than string-expression, Lset copies the leftmost
character of string-expression into string$. The number of characters
copied is equal to the length of string$.

 If string$ is longer than string-expression, all characters of string-
expression are copied into string$, filling it from left to right. All leftover
characters of string$ are replaced with spaces.

 In Syntax B, the number of characters copied is equal to the length of the shorter
of variable1 and variable2.

 Lset cannot be used to assign variables of different user-defined types if either
contains a Variant or a variable-length string.

 This example puts a user’s last name into the variable LASTNAME. If the name is
longer than the size of LASTNAME, then the user’s name is truncated. If you have
a long last name and you get lots of junk mail, you’ve probably seen how this
works already.

 Sub main
 Dim msgtext, lastname as String
 Dim strlast as String*8
 lastname=InputBox("Enter your last name")
 Lset strlast=lastname
 msgtext="Your last name is: " & strlast
 MsgBox msgtext
 End Sub

 Rset

 Description

 Syntax

 Comments

 Example

 See Also

LTrim

Command Reference 6-313

 LTrim
 Function

 Returns a copy of a string with all leading space characters removed.

 LTrim[$](expression)

 Syntax Element Description

 $ Optional. If specified, the return type is String. If
omitted, the function typically returns a Variant of
VarType 8 (String).

 expression The expression to trim. The expression can be a string, or
it can be a numeric data type which Robot passes to the
command as a string.

 If the value of string$ is NULL, a Variant of VarType 1 (Null) is returned.

 This example trims the leading spaces from a string padded with spaces on the left.

 Sub main
 Dim userinput as String
 Dim numsize
 Dim str1 as String*50
 Dim strsize
 strsize=50
 userinput=InputBox("Enter a string of characters:")
 numsize=Len(userinput)
 str1=Space(strsize-numsize) & userinput
 ' Str1 has a variable number of leading spaces.
 MsgBox "The string is: " &str1
 str1=LTrim$(str1)
 ' Str1 now has no leading spaces.
 MsgBox "The string now has no leading spaces: " & str1
 End Sub

 GetField Right
 Left RTrim
 Mid function Trim
 Mid statement

 Description

 Syntax

 Comments

 Example

 See Also

MenuIDSelect

6-314 SQABasic Language Reference

 MenuIDSelect
 User Action Command

 Performs a menu selection based on the internal ID of the menu item.

 MenuIDSelect MenuID&

 Syntax Element Description

 MenuID& The internal ID of a menu item.

 This command is necessary for making selections from menu items that do not
contain text, such as owner drawn or bitmap menus.

 This example selects the menu item identified by the internal ID 1145 from the
current context window.

 MenuIDSelect 1145

 MenuSelect SysMenuIDSelect
 PopupMenuIDSelect SysMenuSelect
 PopupMenuSelect

 MenuSelect
 User Action Command

 Selects a menu item through one or more mouse clicks.

 MenuSelect menuPath$

 Syntax Element Description

 menuPath$ A sequential list of the menu, any sub-menus, and the
target menu item that a user clicks. Each is separated by a
pointer (->).

 If you are specifying an item by position or by ID rather
than by name, menuPath must begin with Menu=. For
example, Menu=File->pos(3) selects the third item in
the File menu. See Comments for more information.

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

MenuSelect

Command Reference 6-315

 During recording, Robot identifies menu item selections by item name. Each
name represents a mouse click. For example, Robot might record a command to
open a file as follows:

MenuSelect "File->Open..." ' User clicks File, then Open

 During manual scripting, you can reference a menu item selection in any of the
following ways. All of the following examples select the About Rational
Administrator... item of the Rational Administrator Help menu:

► Through the menu item name:
MenuSelect "Help->About Rational Administrator..."

► Through the position of the menu item on the menu:
MenuSelect "Menu=Help->pos(4)"

The first item in a menu is position 1, not 0. Also, ignore menu item
separators when counting the position of an item in a menu.

► Through the menu item ID:
MenuSelect "Menu=Help->id(32884)"

 You can use any of the above methods to represent both intermediate menu items
and the target menu item.

 When using MenuSelect to select a menu item, you must reference the top-level
menu and every lower-level menu up to and including the menu where the target
item is located. However, you can select a menu item directly by its item ID,
without specifying any menu or sub-menu, by calling MenuIDSelect.

During manual scripting, you can select a menu item through a series of
InputKeys commands, or through a combination of MenuSelect and
InputKeys commands. This feature lets you play back a menu item selection
entirely through keystrokes, or through a combination of keystrokes and mouse
clicks, rather than through mouse clicks alone. For example, the following
commands select the menu item Computer from the Microsoft Explorer’s Tools
menu and Find sub-menu:

Window SetContext, "Caption={Exploring*}", ""
MenuSelect "Tools" ' MenuSelect "menu=pos(4)" also works
InputKeys "f"
InputKeys "c"

 If a menu is selected, you can clear it by calling MenuSelect "".

 This example selects the sub-menu item Change System Settings... from the
top-level Options menu of the current context window.

 MenuSelect "Options->Change System Settings..."

 MenuIDSelect SysMenuIDSelect
 PopupMenuIDSelect SysMenuSelect
 PopupMenuSelect

 Comments

 Example

 See Also

Mid (Function)

6-316 SQABasic Language Reference

 Mid (Function)
 Function

 Returns a portion of a string, starting at a specified character position.

 Mid[$](string$, start% [, length%])

 Syntax Element Description

 $ Optional. If specified, the return type is String. If
omitted, the function typically returns a Variant of
VarType 8 (String).

 string$ A string or expression that contains the string to retrieve.

 start% The starting position in string$ where the string to retrieve
begins.

 length% An optional argument specifying the number of characters
to retrieve.

 Upon successful execution, Mid returns the string retrieved from string$.

 Mid accepts any type of string$, including numeric values, and will convert the
input value to a string.

 If the length% argument is omitted, or if string$ is smaller than length%,
Mid returns all characters from start% through the end of string$. If
start% is larger than string$, Mid returns a null string ("").

 The index of the first character in a string is 1.

 If the value of string$ is Null, a Variant of VarType 1 (Null) is returned.
Mid$ requires the string argument to be of type string or variant. Mid allows the
string argument to be of any data type.

 To modify a portion of a string value, see Mid Statement.

 To return a specified number of bytes from a string, use MidB. With MidB,
start% specifies a byte position, and length% specifies a number of bytes.

 Description

 Syntax

 Comments

Mid (Statement)

Command Reference 6-317

 This example uses the Mid function to find the last name in a string.
 Sub main
 Dim username as String
 Dim position as Integer
 username=InputBox("Enter your full name:")
 Do
 position=InStr(username," ")
 If position=0 then
 Exit Do
 End If
 position=position+1
 username=Mid(username,position)
 Loop
 MsgBox "Your last name is: " & username
 End Sub

 GetField Len Right
 LCase LTrim RTrim
 Left Mid statement Trim

 Mid (Statement)
 Statement

 Replaces part (or all) of one string with another, starting at a specified location.

 Mid (stringvar$, start% [, length%]) = string$

 Syntax Element Description

 stringvar$ The string to change.

 start% The position where character replacement begins.

 length% The number of characters to replace.

 string$ The string to place into stringvar$.

 If the length% argument is omitted, or if there are fewer characters in string$
than specified in length%, then Mid replaces all the characters from the start%
to the end of the string$. If start% is larger than the number of characters in
the indicated stringvar$, then Mid appends string% to stringvar$.

 If length% is greater than the length of string$, then length% is set to the
length of string$. If start% is greater than the number of characters in
stringvar$, an illegal function call error will occur at runtime. If length%
plus start% is greater than the length of stringvar$, then only the characters
up to the end of stringvar$ are replaced.

 Mid never changes the number of characters in stringvar$.

 Example

 See Also

 Description

 Syntax

 Comments

Minute

6-318 SQABasic Language Reference

 The index of the first character in a string is 1.

 To replace a specified number of bytes in a string with those from another string,
use MidB. With MidB, start% specifies a byte position, and length% specifies
a number of bytes.

 This example uses the Mid statement to replace the last name in a user-entered
string to asterisks(*).

 Sub main
 Dim username as String
 Dim position as Integer
 Dim count as Integer
 Dim uname as String
 Dim replacement as String
 Dim x as Integer
 username=InputBox("Enter your full name:")
 uname=username
 replacement="*"
 Do
 position=InStr(username," ")
 If position=0 then
 Exit Do
 End If
 username=Mid(username,position+1)
 count=count+position
 Loop
 For x=1 to Len(username)
 count=count+1
 Mid(uname,count)=replacement
 Next x
 MsgBox "Your name now is: " & uname
 End Sub

 GetField Mid function
 Left Right
 Len RTrim
 LTrim Trim

 Minute
 Function

 Returns an integer for the minute component (0-59) of a date-time value.

 Minute(time)

 Syntax Element Description

 time Any expression that can evaluate to a date-time value.

 Example

 See Also

 Description

 Syntax

MkDir

Command Reference 6-319

 Minute accepts any type of time, including strings, and will attempt to convert
the input value to a date value.

 The return value is a Variant of VarType 2 (Integer). If the value of time is
null, a Variant of VarType 1 (null) is returned.

 This example extracts just the time (hour, minute, and second) from a file’s last
modification date and time.

 Sub main
 Dim filename as String
 Dim ftime
 Dim hr, min
 Dim sec
 Dim msgtext as String
 i: msgtext="Enter a filename:"
 filename=InputBox(msgtext)
 If filename="" then
 Exit Sub
 End If
 On Error Resume Next
 ftime=FileDateTime(filename)
 If Err<>0 then
 MsgBox "Error in file name. Try again."
 Goto i:
 End If
 hr=Hour(ftime)
 min=Minute(ftime)
 sec=Second(ftime)
 MsgBox "The file's time is: " & hr &":" &min &":" &sec
 End Sub

 DateSerial Now TimeValue
 DateValue Second Weekday
 Day Time function Year
 Hour Time statement
 Month TimeSerial

 MkDir
 Statement

 Creates a new directory.

 MkDir path$

 Syntax Element Description

 path$ A string expression identifying the new default directory
to create.

 Comments

 Example

 See Also

 Description

 Syntax

ModuleVP

6-320 SQABasic Language Reference

 The syntax for path$ is:

 [drive:][\]directory[\directory]
 The drive argument is optional. If drive is omitted, MkDir makes a new
directory on the current drive. The directory argument is any directory name.

 This example makes a new temporary directory in C:\ and then deletes it.

 Sub main
 Dim path as String
 Dim C as String
 On Error Resume Next
 path=CurDir(C)
 If path<>"C:\" then
 ChDir "C:\"
 End If
 MkDir "C:\TEMP01"
 If Err=75 then
 MsgBox "Directory already exists"
 Else
 MsgBox "Directory C:\TEMP01 created"
 MsgBox "Now removing directory"
 RmDir "C:\TEMP01"
 End If
 End Sub

 ChDir Dir
 ChDrive RmDir
 CurDir

 ModuleVP
 Verification Point Command

 Verifies whether a specified module is in memory during playback.

 Result = ModuleVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► Exists. Checks whether the specified module is in

memory. parameters$ VP is required;
ExpectedResult and Wait are optional.

► DoesNotExist. Checks whether the specified
module is not in memory. parameters$ VP is
required; ExpectedResult and Wait are optional.

► Note: This action cannot be accessed during recording.
It must be inserted manually.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

ModuleVP

Command Reference 6-321

► ► ►

 Syntax Element Description

 recMethod$ Valid value:
► Name=$. The name of the module to be verified. The

name must include the three-character extension and
may optionally include a fully qualified path.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry and Timeout values, as in Wait=10,40
(retry the test every 10 seconds, and timeout after 40
seconds).

 Within Microsoft Windows, modules are defined as programs (.EXE), libraries
(.DLL or other), device drivers (.SYS or .DRV), and display fonts (.FON).

 Verification points that check for a module’s existence are not stored in the
repository and do not appear in Robot’s Asset pane.

 This example verifies the existence in memory of the module named USER.EXE.

 Result = ModuleVP (Exists, "Name=USER.EXE", "VP=MOD01")

 FileVP

 Comments

 Example

 See Also

Month

6-322 SQABasic Language Reference

 Month
 Function

 Returns an integer for the month component (1-12) of a date-time value.

 Month(date)

 Syntax Element Description

 date Any expression that evaluates to a date-time value.

 This function accepts any type of date, including strings, and will attempt to
convert the input value to a date value.

 The return value is a Variant of VarType 2 (integer). If the value of date is
null, a Variant of VarType 1 (null) is returned.

 This example finds the month (1-12) and day (1-31) values for this Thursday.

 Sub main
 Dim x, today
 Dim msgtext
 Today=DateValue(Now)
 Let x=0
 Do While Weekday(Today+x)<> 5
 x=x+1
 Loop
 msgtext="This Thursday is: " & Month(Today+x)&"/"&Day(Today+x)
 MsgBox msgtext
 End Sub

 Date function Hour TimeValue
 Date statement Minute Weekday
 DateSerial Now Year
 DateValue Second
 Day TimeSerial

 MsgBox (Function)
 Function

 Displays a message box and returns a value (1-7) indicating which button the
user selected.

 Description

 Syntax

 Comments

 Example

 See Also

 Description

MsgBox (Function)

Command Reference 6-323

 MsgBox(prompt$,[buttons%][, title$])

 Syntax Element Description

 prompt$ The text to display in a dialog box.

 buttons% An integer value for the buttons, the icon, and the default
button choice to display in a dialog box. buttons% is the
sum of three values, one from each of the following groups:
► Group 1: Buttons

 0. OK only
 1. OK, Cancel
 2. Abort, Retry, Ignore
 3. Yes, No, Cancel
 4. Yes, No
 5. Retry, Cancel

► Group 2: Icons
 16. Critical Message (STOP)
 32. Warning Query (?)
 48. Warning Message (!)
 64. Information Message (i)

► Group 3: Defaults
 0. First button
 256. Second button
 512. Third button

 If buttons% is omitted, MsgBox displays a single
OK button.

 title$ A string expression containing the title for the message box.

 Prompt$ does not accept strings of more than 1,023 characters.

 After the user clicks a button, MsgBox returns a value indicating the user’s choice.
The return values for the MsgBox function are:

 Value Button Pressed

 1 OK

 2 Cancel

 3 Abort

 4 Retry

 5 Ignore

 6 Yes

 7 No

 Syntax

 Comments

MsgBox (Function)

6-324 SQABasic Language Reference

 This example displays one of each type of message box.
 Sub main

 Dim btngrp as Integer
 Dim icongrp as Integer
 Dim defgrp as Integer
 Dim msgtext as String

 icongrp=16
 defgrp=0
 btngrp=0

 Do Until btngrp=6

 Select Case btngrp
 Case 1, 4, 5
 defgrp=0
 Case 2
 defgrp=256
 Case 3
 defgrp=512
 End Select

 msgtext=" Icon group = " & icongrp & Chr(10)
 msgtext=msgtext + " Button group = " & btngrp &

Chr(10)
 msgtext=msgtext + " Default group = " & defgrp &

Chr(10)
 msgtext=msgtext + Chr(10) + " Continue?"
 answer = MsgBox(msgtext, btngrp+icongrp+defgrp)

 Select Case answer
 Case 2,3,7
 Exit Do
 End Select

 If icongrp<>64 then
 icongrp=icongrp+16
 End If

 btngrp=btngrp+1

 Loop

 End Sub

 Dialog Boxes MsgBox statement
 InputBox PasswordBox

 Example

 See Also

MsgBox (Statement)

Command Reference 6-325

 MsgBox (Statement)
 Statement

 Displays a prompt in a message box.

 MsgBox prompt$, [buttons%][, title$]

 Syntax Element Description

 prompt$ The text to display in a dialog box.

 buttons% An integer value for the buttons, the icon, and the default
button choice to display in a dialog box. buttons% is the
sum of three values, one from each of the following groups:
► Group 1: Buttons

 0. OK only
 1. OK, Cancel
 2. Abort, Retry, Ignore
 3. Yes, No, Cancel
 4. Yes, No
 5. Retry, Cancel

► Group 2: Icons
 16. Critical Message (STOP)
 32. Warning Query (?)
 48. Warning Message (!)
 64. Information Message (i)

► Group 3: Defaults
 0. First button
 256. Second button
 512. Third button

 If buttons% is omitted, MsgBox displays a single
OK button.

 title$ A string expression containing the title for the message box.

 Prompt$ does not accept strings of more than 1,023 characters.

 Description

 Syntax

 Comments

Name

6-326 SQABasic Language Reference

 This example finds the future value of an annuity, whose terms are defined by the
user. It uses the MsgBox statement to display the result.

 Sub main
 Dim aprate, periods
 Dim payment, annuitypv
 Dim due, futurevalue
 Dim msgtext
 annuitypv=InputBox("Enter present value of the annuity: ")
 aprate=InputBox("Enter the annual percentage rate: ")
 If aprate > 1 then
 Aprate = aprate/100
 End If
 periods=InputBox("Enter the total number of pay periods: ")
 payment=InputBox("Enter the initial amount paid to you: ")
 Rem Assume payments are made at end of month
 due=0
 futurevalue=FV(aprate/12,periods,-payment,- annuitypv,due)
 msgtext="The future value is: " & Format(futurevalue,"Currency")
 MsgBox msgtext
 End Sub

 InputBox
 MsgBox function
 PasswordBox

 Name
 Statement

 Renames a file or moves a file from one directory to another.

 Name oldfilename$ As newfilename$

 Syntax Element Description

 oldfilename$ A string expression containing the file to rename.

 newfilename$ A string expression containing the name for the file.

 A path can be part of either file name argument. If the paths are different, the file
is moved to the new directory.

 A file must be closed in order to be renamed. If the file oldfilename$ is open or
if the file newfilename$ already exists, SQABasic generates an error message.

 Example

 See Also

 Description

 Syntax

 Comments

New

Command Reference 6-327

 This example creates a temporary file, C:\TEMP001, renames the file to
C:\TEMP002, then deletes them both. It calls the sub procedure CREATEFILE to
create the C:\TEMP001 file.

 Declare Sub createfile()
 Sub main
 Call createfile
 On Error Resume Next
 Name "C:\TEMP001" As "C:\TEMP002"
 MsgBox "The file has been renamed"
 MsgBox "Now deleting both files"
 Kill "TEMP001"
 Kill "TEMP002"
 End Sub

 Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Dim y()
 Dim startletter
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
 Close #1
 End Sub

 FileAttr GetAttr
 FileCopy Kill

 New
 Operator

 Allocates and initializes a new OLE2 object of the named class.

 Set objectVar = New className

 Dim objectVar As New className

 Syntax Element Description

 objectVar The OLE2 object to allocate and initialize.

 className The class to assign to the object.

 In the Dim statement, New marks objectVar so that a new object will be
allocated and initialized when objectVar is first used. If objectVar is not
referenced, then no new object will be allocated.

 Note: An object variable that was declared with New will allocate a second object
if objectVar is Set to Nothing and referenced again.

 Example

 See Also

 Description

 Syntax

 Comments

'$NoCStrings

6-328 SQABasic Language Reference

 None.

 Dim Set
 Global Static

 ''''$NoCStrings
 Metacommand

 Tells the compiler to treat a backslash (\) inside a string as a normal character.

 '$NoCStrings [Save]

 Syntax Element Description

 Save Saves the current '$CStrings setting before restoring
the treatment of the backslash (\) to a normal character.

 Use the '$CStings Restore command to restore a previously saved setting.
Save and Restore operate as a stack and allow the user to change the
'$CStrings setting for a range of the program without impacting the rest of
the program.

 Use the '$CStrings metacommand to tell the compiler to treat a backslash
(\) inside of a string as an Escape character.

 All metacommands must begin with an apostrophe (') and are recognized by the
compiler only if the command starts at the beginning of a line.

 This example displays two lines, the first time using the C-language characters \n
for a carriage return and line feed.

 Sub main
 '$CStrings
 MsgBox "This is line 1\n This is line 2 (using C

Strings)"
 '$NoCStrings
 MsgBox "This is line 1" +Chr$(13)+Chr$(10)+"This

is line 2 (using Chr)"
 End Sub

 '$CStrings
 '$Include
 Rem

 Example

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

Nothing

Command Reference 6-329

 Nothing
 Function

 Returns an object value that does not refer to an object.

 Set variableName = Nothing

 Syntax Element Description

 variableName The name of the object variable to set to nothing.

 Nothing is the value object variables have when they do not refer to an object,
either because the have not been initialized yet or because they were explicitly Set
to Nothing. For example:

 If Not objectVar Is Nothing then
objectVar.Close
Set objectVar = Nothing

End If

 This example displays a list of open files in the software application VISIO. It uses
the Nothing function to determine whether VISIO is available. To see how this
example works, you need to start VISIO and open one or more documents.

 Sub main
 Dim visio as Object
 Dim doc as Object
 Dim msgtext as String
 Dim i as Integer, doccount as Integer

 'Initialize Visio
 ' find Visio

Set visio = GetObject(,"visio.application")
 If (visio Is Nothing) then
 MsgBox "Couldn't find Visio!"
 Exit Sub
 End If
 'Get # of open Visio files
 'OLE2 call to Visio

doccount = visio.documents.count
 If doccount=0 then
 msgtext="No open Visio documents."
 Else
 msgtext="The open files are: " & Chr$(13)
 For i = 1 to doccount
 ' access Visio's document method

Set doc = visio.documents(i)
 msgtext=msgtext & Chr$(13) & doc.name
 Next i
 End If
 MsgBox msgtext
 End Sub

 Is
 New

 Description

 Syntax

 Comments

 Example

 See Also

Now

6-330 SQABasic Language Reference

 Now
 Function

 Returns the current date and time.

 Now()

 The Now function returns a Variant of VarType 7 (date) that represents
the current date and time according to the setting of the computer’s system
date and time.

 This example finds the month (1-12) and day (1-31) values for this Thursday.

 Sub main
 Dim x, today
 Dim msgtext
 Today=DateValue(Now)
 Let x=0
 Do While Weekday(Today+x)<> 5
 x=x+1
 Loop
 msgtext="This Thursday is: " & Month(Today+x)&"/"&Day(Today+x)
 MsgBox msgtext
 End Sub

 Date function Minute Time statement
 Date statement Month Weekday
 Day Second Year
 Hour Time function

 NPV
 Function

 Returns the net present value of an investment based on a stream of periodic cash
flows and a constant interest rate.

 NPV (rate, valuearray())

 Syntax Element Description

 rate Discount rate per period.

 valuearray() An array containing cash flow values.

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

Null

Command Reference 6-331

 Valuearray() must have at least one positive value (representing a receipt) and
one negative value (representing a payment). All payments and receipts must be
represented in the exact sequence. The value returned by NPV will vary with the
change in the sequence of cash flows.

 If the discount rate is 12% per period, rate is the decimal equivalent, i.e. 0.12.

 NPV uses future cash flows as the basis for the net present value calculation. If the
first cash flow occurs at the beginning of the first period, its value should be added
to the result returned by NPV and must not be included in valuearray().

 This example finds the net present value of an investment, given a range of cash
flows by the user.

 Sub main
 Dim aprate as Single
 Dim varray() as Double
 Dim cflowper as Integer
 Dim x as Integer
 Dim netpv as Double
 cflowper=InputBox("Enter number of cash flow periods")
 ReDim varray(cflowper)
 For x= 1 to cflowper
 varray(x)=InputBox("Cash flow amount for period #" & x & ":")
 Next x
 aprate=InputBox("Enter discount rate: ")
 If aprate>1 then
 aprate=aprate/100
 End If
 netpv=NPV(aprate,varray())
 MsgBox "The net present value is: " & Format(netpv, "Currency")
 End Sub

 FV PPmt
 IPmt PV
 IRR Rate
 Pmt

 Null
 Function

 Returns a Variant value set to NULL.

 Null

 Comments

 Example

 See Also

 Description

 Syntax

Object Class

6-332 SQABasic Language Reference

 Null is used to set a Variant to the Null value explicitly, as follows:

 variableName = Null
 Note that Variants are initialized by SQABasic to the empty value, which is
different from the null value.

 This example asks for ten test score values and calculates the average. If any score
is negative, the value is set to Null. Then IsNull is used to reduce the total
count of scores (originally 10) to just those with positive values before calculating
the average.

 Sub main
 Dim arrayvar(10)
 Dim count as Integer
 Dim total as Integer
 Dim x as Integer
 Dim msgtext as String
 Dim tscore as Single
 count=10
 total=0
 For x=1 to count
 tscore=InputBox("Enter test score #" & x & ":")
 If tscore<0 then
 arrayvar(x)=Null
 Else
 arrayvar(x)=tscore
 total=total+arrayvar(x)
 End If
 Next x
 Do While x<>0
 x=x-1
 If IsNull(arrayvar(x))=-1 then
 count=count-1
 End If
 Loop
 msgtext="Average (excluding negative values) is: " & Chr(10)
 msgtext=msgtext & Format (total/count, "##.##")
 MsgBox msgtext
 End Sub

 IsEmpty
 IsNull
 VarType

 Object Class
 A class that provides access to OLE2 automation objects.

 Comments

 Example

 See Also

 Description

Object Class

Command Reference 6-333

 Dim variableName As Object

 Syntax Element Description

 variableName The name of the object variable to declare.

 To create a new object, first dimension a variable, using the Dim statement,
then Set the variable to the return value of CreateObject or GetObject,
as follows:

 Dim OLE2 As Object
 SetOLE2 = CreateObject("spoly.cpoly")

 To refer to a method or property of the newly created object, use the syntax:
objectvar.property or objectvar.method, as follows:

 OLE2.reset

 This example displays a list of open files in the software application VISIO. It uses
the Object class to declare the variables used for accessing VISIO and its document
files and methods.

 Sub main
 Dim visio as Object
 Dim doc as Object
 Dim msgtext as String
 Dim i as Integer, doccount as Integer

 'Initialize Visio
 ' find Visio

Set visio = GetObject(,"visio.application")
 If (visio Is Nothing) then
 MsgBox "Couldn't find Visio!"
 Exit Sub
 End If
 'Get # of open Visio files
 'OLE2 call to Visio

doccount = visio.documents.count
 If doccount=0 then
 msgtext="No open Visio documents."
 Else
 msgtext="The open files are: " & Chr$(13)
 For i = 1 to doccount
 ' access Visio's document method

Set doc = visio.documents(i)
 msgtext=msgtext & Chr$(13) & doc.name
 Next i
 End If
 MsgBox msgtext
 End Sub

 Class List New
 Create Object Nothing
 Get Object Typeof

 Syntax

 Comments

 Example

 See Also

Oct

6-334 SQABasic Language Reference

 Oct
 Function

 Returns the octal representation of a number, as a string.

 Oct[$](number)

 Syntax Element Description

 $ Optional. If specified the return data type is String. If
omitted the function will return a Variant of VarType 8
(string).

 number A numeric expression for the number to convert to octal.

 If the numeric expression has a data type of Integer, the string contains up to
six octal digits; otherwise, the expression will be converted to a data type of Long,
and the string can contain up to 11 octal digits.

 To represent an octal number directly, precede the octal value with &O. For
example, &O10 equals decimal 8 in octal notation.

 This example prints the octal values for the numbers from 1 to 15.

 Sub main
 Dim x,y
 Dim msgtext
 Dim nofspaces
 msgtext="Octal numbers from 1 to 15:" & Chr(10)
 For x=1 to 15
 nofspaces=10
 y=Oct(x)
 If Len(x)=2 then
 nofspaces=nofspaces-2
 End If
 msgtext=msgtext & Chr(10) & x & Space(nofspaces) & y
 Next x
 MsgBox msgtext
 End Sub

 Hex

 Description

 Syntax

 Comments

 Example

 See Also

OKButton

Command Reference 6-335

 OKButton
 Statement

 Determines the position and size of an OK button in a dialog box.

 OKButton x, y, dx, dy[, .id]

 Syntax Element Description

 x, y The position of the OK button relative to the upper left
corner of the dialog box.

 dx, dy The width and height of the button.

 .id An optional identifier for the button.

 A dy value of 14 typically accommodates text in the system font.

 .id is an optional identifier used by the dialog statements that act on this control.

 Use the OKButton statement only between a Begin Dialog and an End
Dialog statement.

 This example defines a dialog box with a DropComboBox and the OK and Cancel
buttons.

 Sub main
 Dim cchoices as String
 On Error Resume Next
 cchoices="All"+Chr$(9)+"Nothing"
 Begin Dialog UserDialog 180, 95, "SQABasic Dialog Box"
 ButtonGroup .ButtonGroup1
 Text 9, 3, 69, 13, "Filename:", .Text1
 DropComboBox 9, 17, 111, 41, cchoices, .ComboBox1
 OKButton 131, 8, 42, 13
 CancelButton 131, 27, 42, 13
 End Dialog
 Dim mydialogbox As UserDialog
 Dialog mydialogbox
 If Err=102 then
 MsgBox "You pressed Cancel."
 Else
 MsgBox "You pressed OK."
 End If
 End Sub

 Begin/End Dialog ComboBox OptionGroup
 Button Dialog Picture
 ButtonGroup DropComboBox StaticComboBox
 CancelButton GroupBox Text
 Caption ListBox TextBox
 CheckBox OptionButton

 Description

 Syntax

 Comments

 Example

 See Also

On...GoTo

6-336 SQABasic Language Reference

 On...GoTo
 Statement

 Branch to a label in the current procedure based on the value of a numeric
expression.

 ON numeric-expression GoTo label1[, label2,...]

 Syntax Element Description

 numeric-expression Any numeric expression that evaluates to a positive
number.

 label1, label2 A label in the current procedure to branch to if
numeric-expression evaluates to 1, 2, and so on.

 If numeric expression evaluates to 0 or to a number greater than the
number of labels following GoTo, the program continues at the next statement. If
numeric-expression evaluates to a number less than 0 or greater than 255,
an Illegal function call error is issued.

 A label has the same format as any other SQABasic name. See Appendix A for
more information about SQABasic labels and names.

 This example sets the current system time to the user’s entry. If the entry cannot
be converted to a valid time value, this sub procedure sets the variable to Null. It
then checks the variable and if it is Null, uses the On...GoTo statement to ask
again.

 Sub main
 Dim answer as Integer
 answer=InputBox("Enter a choice (1-3) or 0 to quit")
 On answer GoTo c1, c2, c3
 MsgBox("You typed 0.")
 Exit Sub
 c1: MsgBox("You picked choice 1.")
 Exit Sub
 c2: MsgBox("You picked choice 2.")
 Exit Sub
 c3: MsgBox("You picked choice 3.")
 Exit Sub
 End Sub

 Goto
 Select Case

 Description

 Syntax

 Comments

 Example

 See Also

On Error

Command Reference 6-337

 On Error
 Statement

 Specifies the location of an error-handling routine within the current procedure.

 ON [Local] Error {GoTo label [Resume Next]
GoTo 0}

 Syntax Element Description

 label A string used as a label in the current procedure to identify
the lines of code that process errors.

 On Error can also be used to disable an error-handling routine. Unless an On
Error statement is used, any runtime error will be fatal (SQABasic will terminate
the execution of the program).

 An On Error statement is composed of the following parts:

 Part Definition

 Local Keyword allowed in error-handling routines at the
procedure level. Used to ensure compatibility with other
Variants of SQABasic.

 GoTo label Enables the error-handling routine that starts at label. If
the designated label is not in the same procedure as the On
Error statement, SQABasic generates an error message.

 Resume Next Designates that error-handling code is handled by the
statement that immediately follows the statement that
caused an error. At this point, use the Err function to
retrieve the error-code of the runtime error.

 GoTo 0 Disables any error handler that has been enabled.

 When it is referenced by an On Error GoTo label statement, an error-handler
is enabled. Once this enabling occurs, a runtime error will result in program
control switching to the error-handling routine and “activating” the error handler.
The error handler remains active from the time the runtime error has been
trapped until a Resume statement is executed in the error handler.

 If another error occurs while the error handler is active, SQABasic will search for
an error handler in the procedure that called the current procedure (if this fails,
SQABasic will look for a handler belonging to the caller’s caller, and so on). If a
handler is found, the current procedure will terminate, and the error handler in
the calling procedure will be activated.

 Description

 Syntax

 Comments

Open

6-338 SQABasic Language Reference

 It is an error (No Resume) to execute an End Sub or End Function statement
while an error handler is active. The Exit Sub or Exit Function statement
can be used to end the error condition and exit the current procedure.

 A label has the same format as any other SQABasic name. See Appendix A for
more information about SQABasic labels and names.

 This example prompts the user for a drive and directory name and uses On
Error to trap invalid entries.

 Sub main
 Dim userdrive, userdir, msgtext
 in1: userdrive=InputBox("Enter drive:",,"C:")
 On Error Resume Next
 ChDrive userdrive
 If Err=68 then
 MsgBox "Invalid Drive. Try again."
 Goto in1
 End If
 in2: On Error Goto Errhdlr1
 userdir=InputBox("Enter directory path:")
 ChDir userdrive & userdir
 MsgBox "New default directory is: " & userdrive & userdir
 Exit Sub
 Errhdlr1:
 Select Case Err
 Case 75
 msgtext="Path is invalid."
 Case 76
 msgtext="Path not found."
 Case 70
 msgtext="Permission denied."
 Case Else
 msgtext="Error " & Err & ": " & Error$ & "occurred."
 End Select
 MsgBox msgtext & " Try again."
 Resume in2
 End Sub

 Erl Error function
 Err function Error statement
 Err statement Resume

 Open
 Statement

 Opens a file or device for input or output.

 Example

 See Also

 Description

Open

Command Reference 6-339

 Open filename$ [For mode] [Access access] [lock] As
[#]filenumber% [Len = reclen]

 Syntax Element Description

 filename$ A string or string expression for the name of the file to
open.

 mode One of the following keywords:
► Input. Read data from the file sequentially.
► Output. Put data into the file sequentially.
► Append. Add data to the file sequentially.
► Random. Get data from the file by random access.
► Binary. Get binary data from the file.

 access One of the following keywords:
► Read. Read data from the file only.
► Write. Write data to the file only.
► Read Write. Read or write data to the file.

 lock One of the following keywords to designate access by
other processes:
► Shared. Read or write available on the file.
► Lock Read. Read data only.
► Lock Write. Write data only.
► Lock Read Write. No read or write available.

 filenumber% An integer or expression containing the integer to assign
to the open file (between 1 and 255).

 reclen The length of the records (for Random or Binary files
only).

 A file must be opened before any input/output operation can be performed on it.

 If filename$ does not exist, it is created when opened in Append, Binary,
Output or Random modes.

 If mode is not specified, it defaults to Random.

 If access is not specified for Random or Binary modes, access is attempted
in the following order: Read Write, Write, Read.

 If lock is not specified, filename$ can be opened by other processes that do
not specify a lock, although that process cannot perform any file operations on
the file while the original process still has the file open.

 Use the FreeFile function to find the next available value for filenumber%.

 Reclen is ignored for Input, Output, and Append modes.

 Syntax

 Comments

Option Base

6-340 SQABasic Language Reference

 This example opens a file for Random access, gets the contents of the file, and
closes the file again. The second sub procedure, CREATEFILE, creates the file
C:\TEMP001 used by the main sub procedure.

 Declare Sub createfile()
 Sub main
 Dim acctno as String*3
 Dim recno as Long
 Dim msgtext as String
 Dim newline as String
 Call createfile
 recno=1
 newline=Chr(10)
 Open "C:\TEMP001" For Random As #1 Len=3
 msgtext="The account numbers are:" & newline
 Do Until recno=11
 Get #1,recno,acctno
 msgtext=msgtext & acctno
 recno=recno+1
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
 End Sub

 Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
 Close #1
 End Sub

 Close
 FreeFile

 Option Base
 Statement

 Specifies the default lower bound to use for array subscripts.

 Option Base lowerBound%

 Syntax Element Description

 lowerBound% A number or expression containing a number for the
default lower bound: either 0 or 1.

 Example

 See Also

 Description

 Syntax

Option Base

Command Reference 6-341

 If no Option Base statement is specified, the default lower bound for array
subscripts will be 0.

 The Option Base statement is not allowed inside a procedure, and must
precede any use of arrays in the module. Only one Option Base statement is
allowed per module.

 This example resizes an array if the user enters more data than can fit in the array.
It uses LBound and UBound to determine the existing size of the array and
ReDim to resize it. Option Base sets the default lower bound of the array to 1.

 Option Base 1
 Sub main

 Dim arrayvar() as Integer
 Dim count as Integer
 Dim answer as String
 Dim x, y as Integer
 Dim total

 total=0
 x=1
 count=InputBox("How many test scores do you have?")
 ReDim arrayvar(count)

 start:
 Do until x=count+1
 arrayvar(x)=InputBox("Enter test score #" &x & ":")
 x=x+1
 Loop

 answer=InputBox$("Do you have more scores? (Y/N)")

 If answer="Y" or answer="y" then
 count=InputBox("How many more do you have?")
 If count<>0 then
 count=count+(x-1)
 ReDim Preserve arrayvar(count)
 Goto start
 End If
 End If

 x=LBound(arrayvar,1)
 count=UBound(arrayvar,1)
 For y=x to count
 total=total+arrayvar(y)
 Next y

 MsgBox "The average of " & count & " scores is " & Int(total/count)

 End Sub

 Dim ReDim
 Global Static
 LBound

 Comments

 Example

 See Also

Option Compare

6-342 SQABasic Language Reference

 Option Compare
 Statement

 Specifies the default method for string comparisons: either case-sensitive or
case-insensitive.

 Option Compare { Binary | Text }

 Syntax Element Description

 Binary Comparisons are case-sensitive (lowercase and uppercase
letters are different).

 Text Comparisons are not case-sensitive.

 Binary comparisons compare strings based upon the ANSI character set. Text
comparisons are based upon the relative order of characters as determined by the
country code setting for your system.

 This example compares two strings: “Jane Smith” and “jane smith”. When Option
Compare is Text, the strings are considered the same. If Option Compare is
Binary, they will not be the same. Binary is the default. To see the difference,
run the example once, and then run it again, commenting out the Option
Compare statement.

 Option Compare Text
 Sub main
 Dim strg1 as String
 Dim strg2 as String
 Dim retvalue as Integer
 strg1="JANE SMITH"
 strg2="jane smith"
 i:
 retvalue=StrComp(strg1,strg2)
 If retvalue=0 then
 MsgBox "The strings are identical"
 Else
 MsgBox "The strings are not identical"
 Exit Sub
 End If
 End Sub

 Instr
 StrComp

 Description

 Syntax

 Comments

 Example

 See Also

Option Explicit

Command Reference 6-343

 Option Explicit
 Statement

 Specifies that all variables in a module must be explicitly declared.

 Option Explicit

 By default, SQABasic automatically declares any variables that do not appear in a
Dim, Global, Redim, or Static statement. Option Explicit causes such
variables to produce a Variable Not Declared error.

 This example specifies that all variables must be explicitly declared, thus
preventing any mistyped variable names.

 Option Explicit
 Sub main
 Dim counter As Integer
 Dim fixedstring As String*25
 Dim varstring As String
 ... Code here
 End Sub

 Const End function Sub
 Deftype Global End Sub
 Dim ReDim
 Function Static

 OptionButton
 Statement

 Defines the position and text associated with an option button in a dialog box.

 OptionButton x, y, dx, dy, text$[, .id]

 Syntax Element Description

 x, y The position of the button relative to the upper left corner
of the dialog box.

 dx, dy The width and height of the button.

 text$ A string to display next to the option button. If the width
of this string is greater than dx, trailing characters are
truncated.

 .id An optional identifier used by the dialog statements that
act on this control.

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

OptionGroup

6-344 SQABasic Language Reference

 You must have at least two OptionButton statements in a dialog box. You use
these statements in conjunction with the OptionGroup statement.

 A dy value of 12 typically accommodates text in the system font.

 To enable the user to select an option button by typing a character from the
keyboard, precede the character in text$ with an ampersand (&).

 Use the OptionButton statement only between a Begin Dialog and an End
Dialog statement.

 This example creates a dialog box with a group box with two option buttons: All
pages and Range of pages.

 Sub main
 Begin Dialog UserDialog 183, 70, "SQABasic Dialog Box"
 GroupBox 5, 4, 97, 57, "File Range"
 OptionGroup .OptionGroup2
 OptionButton 16, 12, 46, 12, "All pages", .OptionButton3
 OptionButton 16, 28, 67, 8, "Range of pages", .OptionButton4
 Text 22, 39, 20, 10, "From:", .Text6
 Text 60, 39, 14, 9, "To:", .Text7
 TextBox 76, 39, 13, 12, .TextBox4
 TextBox 44, 39, 12, 11, .TextBox5
 OKButton 125, 6, 54, 14
 CancelButton 125, 26, 54, 14
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
 End Sub

 Begin/End Dialog ComboBox OptionGroup
 Button Dialog Picture
 ButtonGroup DropComboBox StaticComboBox
 CancelButton GroupBox Text
 Caption ListBox TextBox
 CheckBox OKButton

 OptionGroup
 Statement

 Groups a series of option buttons under one heading in a dialog box.

 Comments

 Example

 See Also

 Description

OptionGroup

Command Reference 6-345

 OptionGroup .field

 Syntax Element Description

 .field A value for the option button selected by the user: 0 for
the first option button, 1 for the second button, and so
on.

 The OptionGroup statement is used in conjunction with OptionButton
statements to set up a series of related options. The OptionGroup statement
begins the definition of the option buttons and establishes the dialog-record field
that will contain the option selection.

 Use the OptionGroup statement only between a Begin Dialog and an End
Dialog statement.

 This example creates a dialog box with a group box with two option buttons:
All Pages and Range of Pages.

 Sub main

 Begin Dialog UserDialog 192, 71, "SQABasic Dialog Box"
 GroupBox 7, 6, 97, 57, "File Range"
 OptionGroup .OptionGroup2
 OptionButton 18, 14, 46, 12,"All Pages", .OptionButton3
 OptionButton 18, 30, 67, 8,"Range of Pages",.OptionButton4
 Text 24, 41, 20, 10, "From:", .Text6
 Text 62, 41, 14, 9, "To:", .Text7
 TextBox 78, 41, 13, 12, .TextBox4
 TextBox 46, 41, 12, 11, .TextBox5
 OKButton 126, 6, 54, 14
 CancelButton 126, 26, 54, 14
 End Dialog

 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog

 If Err=102 then
 MsgBox "Dialog box canceled."
 End If

 End Sub

 Begin/End Dialog ComboBox OptionButton
 Button Dialog Picture
 ButtonGroup DropComboBox StaticComboBox
 CancelButton GroupBox Text
 Caption ListBox TextBox
 CheckBox OKButton

 Syntax

 Comments

 Example

 See Also

Pager

6-346 SQABasic Language Reference

 Pager
 User Action Command

 Performs an action on a Pager control.

 Pager action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Label=$. The text of the label object that immediately

precedes the control in the Z order of windows.
► Name=$. A unique name that a developer assigns to an

object to identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its prior label. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 Description

 Syntax

PagerVP

Command Reference 6-347

 None.

 This example clicks the first pager control in the window (ObjectIndex=1) at
x,y coordinates of 202,12.

 Pager Click, "ObjectIndex=1", "Coords=202,12"

 PagerVP

 PagerVP
 Verification Point Command

 Establishes a verification point for a pager control.

 Result = PagerVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Label=$. The text of the label object that immediately

precedes the control in the internal order (Z order) of
windows.

► Name=$. A unique name that a developer assigns to an
object to identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its prior label. It is for user clarification
only and does not affect object recognition.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

PasswordBox

6-348 SQABasic Language Reference

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example captures the properties of the first pager control in the window
(ObjectIndex=1) and compares them to the recorded baseline in verification
point PAGER1.

 Result = PagerVP (CompareProperties, "ObjectIndex=1", "VP=PAGER1")

 Pager

 PasswordBox
 Function

 Returns a string entered by the user without echoing it to the screen.

 PasswordBox[$](prompt$,[title$],[default$][,xpos%,ypos%])

 Syntax Element Description

 $ Optional. If specified the return type is String. If
omitted, the function will return a Variant of VarType
8 (String).

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

PasswordBox

Command Reference 6-349

► ► ►

 Syntax Element Description

 prompt$ A string expression containing the text to show in the
dialog box.

 title$ The caption for the dialog box’s title bar.

 default$ The string expression shown in the edit box as the default
response.

 xpos% , ypos% The position of the dialog box, relative to the upper left
corner of the screen.

 The PasswordBox function displays a dialog box containing a prompt. Once the
user has entered text, or made the button choice being prompted for, the contents
of the box are returned.

 The length of prompt$ is restricted to 255 characters. This figure is approximate
and depends on the width of the characters used. Note that a carriage return and a
line-feed character must be included in prompt$ if a multiple-line prompt is used.

 If either prompt$ or default$ is omitted, nothing is displayed.

 Xpos% determines the horizontal distance between the left edge of the screen and
the left border of the dialog box, measured in dialog box units. Ypos% determines
the horizontal distance from the top of the screen to the dialog box’s upper edge,
also in dialog box units. If these arguments are not entered, the dialog box is
centered roughly one third of the way down the screen. A horizontal dialog box
unit is 1/4 of the average character width in the system font; a vertical dialog box
unit is 1/8 of the height of a character in the system font.

 Note: To specify the dialog box’s position, you must enter both of these
arguments. If you enter one without the other, the default positioning is used.

 Once the user presses Enter, or selects the OK button, PasswordBox returns
the text contained in the password box. If the user selects Cancel, the
PasswordBox function returns a null string ("").

 This example asks the user for a password.

 Sub main
 Dim retvalue
 Dim a
 retvalue=PasswordBox("Enter your login password",Password)
 If retvalue<>"" then
 MsgBox "Verifying password"
 ... 'Continue code here
 Else
 MsgBox "Login canceled"
 End If
 End Sub

 Comments

 Example

Picture

6-350 SQABasic Language Reference

 InputBox
 MsgBox

 Picture
 Statement

 Defines a picture control in a dialog box.

 Picture x, y, dx, dy, filename$, type[, .id]

 Syntax Element Description

 x, y The position of the picture relative to the upper left corner
of the dialog box.

 dx, dy The width and height of the picture.

 filename$ The name of the bitmap file (a file with .BMP extension)
where the picture is located.

 type An integer for the location of the bitmap
(0= filename$, 3=Windows Clipboard).

 .id An optional identifier used by the dialog statements that
act on this control.

 The Picture statement can only be used between a Begin Dialog and an
End Dialog statement.

 Note: The picture will be scaled equally in both directions and centered if the
dimensions of the picture are not proportional to dx and dy.

 If type% is 3, filename$ is ignored.

 If the picture is not available (the file filename$ does not exist, does not contain
a bitmap, or there is no bitmap on the Clipboard), the picture control will display
the picture frame and the text (missing picture). This behavior can be
changed by adding 16 to the value of type%. If type% is 16 or 19 and the picture
is not available, a runtime error occurs.

 This example defines a dialog box with a picture along with the OK and Cancel
buttons. The example assumes that your Windows directory is named Windows.

 Sub main
 Begin Dialog UserDialog 148, 73, "SQABasic Dialog Box"
 Picture 8, 7, 46, 46, "C:\WINDOWS\CIRCLES.BMP", 0
 OKButton 80, 10, 54, 14
 CancelButton 80, 30, 54, 14
 End Dialog

 See Also

 Description

 Syntax

 Comments

 Example

PlayJrnl

Command Reference 6-351

 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
 End Sub

 Begin/End Dialog ComboBox OptionButton
 Button Dialog OptionGroup
 ButtonGroup DropComboBox StaticComboBox
 CancelButton GroupBox Text
 Caption ListBox TextBox
 CheckBox OKButton

 PlayJrnl
 Utility Command

 Starts playback of a series of low-level recorded mouse and keyboard actions.

 PlayJrnl scriptID

 Syntax Element Description

 scriptID A unique number that Robot assigns to the low-level
script file.

 When you click Record → Turn Low-Level Recording On in Robot during
recording, subsequent mouse and keyboard actions are automatically stored in an
external file. Robot inserts the PlayJrnl command into the script to reference
the external low-level file.

 Low-level scripts are listed in the Robot Asset pane (to the left of the SQABasic
script area of the Robot window). To display the contents of a low-level file,
double-click the file's ID.

 To return to Object-Oriented Recording, click Record → Turn Low-Level
Recording Off.

 This example plays back the low-level actions stored in the file referenced by
ID 001.

 PlayJrnl "001"

 None.

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

Pmt

6-352 SQABasic Language Reference

 Pmt
 Function

 Returns a constant periodic payment amount for an annuity or a loan.

 Pmt (rate, nper, pv, fv, due)

 Syntax Element Description

 rate Interest rate per period.

 nper Total number of payment periods.

 pv Present value of the initial lump sum amount paid (as in
the case of an annuity) or received (as in the case of a
loan).

 fv Future value of the final lump sum amount required (as in
the case of a savings plan) or paid (0 as in the case of a
loan).

 due An integer value for when the payments are due (0=end
of each period, 1= beginning of the period).

 Rate is assumed to be constant over the life of the loan or annuity. If payments
are on a monthly schedule, then rate will be 0.0075 if the annual percentage rate
on the annuity or loan is 9%.

 This example finds the monthly payment on a given loan.

 Sub main
 Dim aprate, totalpay
 Dim loanpv, loanfv
 Dim due, monthlypay
 Dim yearlypay, msgtext
 loanpv=InputBox("Enter the loan amount: ")
 aprate=InputBox("Enter the loan rate percent: ")
 If aprate > 1 then
 Aprate = aprate/100
 End If
 totalpay=InputBox("Enter the total number of monthly payments: ")
 loanfv=0
 'Assume payments are made at end of month
 due=0
 monthlypay=Pmt(aprate/12,totalpay,-loanpv,loanfv,due)
 msgtext="The monthly payment is: " & Format(monthlypay,"Currency")
 MsgBox msgtext
 End Sub

 FV PV
 IPmt PPmt
 IRR Rate
 NPV

 Description

 Syntax

 Comments

 Example

 See Also

PopupMenuIDSelect

Command Reference 6-353

 PopupMenuIDSelect
 User Action Command

 Performs a popup menu selection based on the internal ID of the menu item.

 PopupMenuIDSelect MenuID&

 Syntax Element Description

 MenuID& The internal ID of the menu item.

 This command is usually preceded by a command containing a mouse-click action
required to activate the popup menu.

 This command is necessary for making selections from popup menu items that do
not contain text, such as owner drawn or bitmap menus.

 This example clicks the right mouse button at the x,y coordinates of 50,43 in the
current context window and then selects the menu item identified by the internal
ID 1145 from the pop-up menu that appears.

 Window Right_Click, "", "Coords=50,43"
 PopupMenuIDSelect 1145

 MenuIDSelect SysMenuIDSelect
 MenuSelect SysMenuSelect
 PopupMenuSelect

 PopupMenuSelect
 User Action Command

 Selects a popup menu item through one or more mouse clicks.

 PopupMenuSelect menuPath$

 Syntax Element Description

 menuPath$ A sequential list of the popup menu’s sub-menus, if any,
and the target menu item that a user clicks. Each is
separated by a pointer (->).

 If you are specifying an item by position or by ID rather
than by name, menuPath must begin with Menu=. For
example, Menu=pos(3) selects the third item in the
popup menu. See Comments for more information.

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

PopupMenuSelect

6-354 SQABasic Language Reference

 This command is usually preceded by a command containing a mouse-click action
required to activate the popup menu.

 During recording, Robot identifies menu item selections by item name. Each
name represents a mouse click. For example, Robot might record a command to
add a new account to a database as follows:

PopupMenuSelect "Add Account..." User clicks Add Account

 During manual scripting, you can reference a popup menu item selection in any of
the following ways:

► Through the menu item name:
PopupMenuSelect "Add Account..."

► Through the position of the menu item on the menu:
PopupMenuSelect "menu=pos(3)"

The first item in a menu is position 1, not 0. Also, ignore menu item
separators when counting the position of an item in a menu.

► Through the menu item ID:
PopupMenuSelect "menu=id(9270)"

 You can use any of the above methods to represent both intermediate menu items
and the target menu item.

 When using PopupMenuSelect to select a menu item, you must reference every
sub-menu, if any, up to and including the menu where the target item is located.
However, you can select a menu item directly by its item ID, without specifying
any sub-menu, by calling PopupMenuIDSelect.

During manual scripting, you can select a popup menu item through a series of
InputKeys commands, or through a combination of PopupMenuSelect and
InputKeys commands. This feature lets you play back a menu item selection
entirely through keystrokes, or through a combination of keystrokes and mouse
clicks, rather than through mouse clicks alone. For example, the following
commands select the menu item Folder from the Windows Desktop popup menu
and New sub-menu:

Window SetContext, "Caption=Program Manager", ""
ListView Right_Click, "ObjectIndex=1", "Coords=27,966"
PopupMenuSelect "New" ' PopupMenuSelect "menu=pos(6)" also works
InputKeys "f"

 If a popup menu is displayed, you can clear it by calling PopupMenuSelect "".

 Comments

PPmt

Command Reference 6-355

 This example clicks the right mouse button at the x,y coordinates of 50,43 in
the current context window and then select the menu item Attributes... from the
pop-up menu that appears.

 Window Right_Click, "", "Coords=50,43"
 PopupMenuSelect "Attributes..."

 MenuIDSelect SysMenuIDSelect
 MenuSelect SysMenuSelect
 PopupMenuIDSelect

 PPmt
 Function

 Returns the principal portion of the payment for a given period of an annuity.

 PPmt (rate, per, nper, pv, fv, due)

 Syntax Element Description

 rate Interest rate per period.

 per Particular payment period in the range 1 through nper.

 nper Total number of payment periods.

 pv Present value of the initial lump sum amount paid (as in
the case of an annuity) or received (as in the case of a
loan).

 fv Future value of the final lump sum amount required (as in
the case of a savings plan) or paid (0 as in the case of a
loan).

 due An integer value for when the payments are due (0=end
of each period, 1= beginning of the period).

 Rate is assumed to be constant over the life of the loan or annuity. If payments
are on a monthly schedule, then rate will be 0.0075 if the annual percentage rate
on the annuity or loan is 9%.

 Example

 See Also

 Description

 Syntax

 Comments

Print

6-356 SQABasic Language Reference

 This example finds the principal portion of a loan payment amount for payments
made in last month of the first year. The loan is for $25,000 to be paid back over 5
years at 9.5% interest.

 Sub main
 Dim aprate, periods
 Dim payperiod
 Dim loanpv, due
 Dim loanfv, principal
 Dim msgtext
 aprate=9.5/100
 payperiod=12
 periods=120
 loanpv=25000
 loanfv=0
 Rem Assume payments are made at end of month
 due=0
 principal=PPmt(aprate/12,payperiod,periods,- loanpv,loanfv,due)
 msgtext="Given a loan of $25,000 @ 9.5% for 10 years," & Chr(10)
 msgtext=msgtext & " the principal paid in month 12 is: "
 MsgBox msgtext & Format(principal, "Currency")
 End Sub

 FV Pmt
 IPmt PV
 IRR Rate
 NPV

 Print
 Statement

 Prints data to an open file or to the screen.

 Print [[#filenumber%,] expressionlist [{;|,}]]

 Syntax Element Description

 #filenumber% An integer expression identifying the open file to write to.
The pound sign (#) preceding the file number is
required.

 expressionlist A numeric, string, and Variant expression containing the
list of values to print.

 The Print statement outputs data to the specified filenumber%.
filenumber% is the number assigned to the file when it was opened. See the
Open statement for more information. If this argument is omitted, the Print
statement outputs data to the screen.

 If the expressionlist is omitted, a blank line is written to the file.

 Example

 See Also

 Description

 Syntax

 Comments

Print

Command Reference 6-357

 The values in expressionlist are separated by either a semicolon (;) or a
comma (,). A semicolon indicates that the next value should appear immediately
after the preceding one without intervening white space. A comma indicates that
the next value should be positioned at the next print zone. Print zones begin every
14 spaces.

 The optional [{;|,}] argument at the end of the Print statement determines
where output for the next Print statement to the same output file should begin.
A semicolon will place output immediately after the output from this Print
statement on the current line; a comma will start output at the next print zone on
the current line. If neither separator is specified, a CR-LF pair will be generated
and the next Print statement will print to the next line.

 Special functions Spc and Tab can be used inside Print statement to insert a
given number of spaces and to move the print position to a desired column.

 The Print statement supports only elementary SQABasic data types. See Input
for more information on parsing this statement.

 This example prints to the screen the octal values for the numbers 1 through 25.

 Sub Main
 Dim x as Integer
 Dim y
 For x=1 to 25
 y=Oct$(x)
 Print x Tab(10) y
 Next x
 End Sub

This example prints the string myString to the file sFilename.
Sub Main

Dim myString as String
Dim sFilename as String
myString = "ABCDEFGHIJ0123456789"
sFilename = "C:\Temp0001.txt"
Open sFilename For Output As #1
Print #1, myString
Close #1

End Sub

 Open Tab
 Spc Write

Private
 Keyword

 Private is an unused reserved keyword.

 Example

 See Also

ProgressBar

6-358 SQABasic Language Reference

 ProgressBar
 User Action Command

 Performs an action on a progress bar control.

 ProgressBar action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its prior label. It is for user clarification
only and does not affect object recognition.

► ► ►

 Description

 Syntax

ProgressBarVP

Command Reference 6-359

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 None.

 This example clicks the first progress bar control in the window
(ObjectIndex=1) at x,y coordinates of 50,25.

 ProgressBar Click, "ObjectIndex=1", "Coords=50,25"

 ProgressBarVP

 ProgressBarVP
 Verification Point Command

 Establishes a verification point for a progress bar control.

 Result = ProgressBarVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareNumeric. Captures the numeric value of

the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

ProgressBarVP

6-360 SQABasic Language Reference

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text= $. The text displayed on the object.

parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library

that contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

ProgressBarVP

Command Reference 6-361

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the properties of the first progress bar control in the
window (ObjectIndex=1) and compares them to the recorded baseline in
verification point TEST1A.

 Result = ProgressBarVP (CompareProperties, "ObjectIndex=1",
"VP=TEST1A")

 ProgressBar

PSCalendar
 User Action Command

This command is obsolete and should not be used. It continues to be supported to
maintain the upward compatibility of your existing scripts.

PSCalendarVP
 Verification Point Command

This command is obsolete and should not be used. It continues to be supported to
maintain the upward compatibility of your existing scripts.

 Comments

 Example

 See Also

PSGrid

6-362 SQABasic Language Reference

 PSGrid
 User Action Command

 Performs an action on a PeopleTools grid.

 PSGrid action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift).

► When action% contains a mouse-click value,
parameters$ identifies the grid row that was clicked.
See Comments for more information.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag values.

► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.

 recMethod$ Valid values:
► ColIndex=%. In grids that let you select individual

cells (such as the Data Designer), a zero based value
that identifies the column that was clicked. Used only
after one of these parent values: ID=%,
ObjectIndex=%, Text=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► Heading=$. In grids that let you select individual cells
(such as the Data Designer), identifies the column that
was clicked. Used only after one of these parent values:
ID=%, ObjectIndex=%, Text=$. Parent/child
values are separated by a backslash and semicolons
(;\;).

► ID=%. The object’s internal Windows ID.

► ► ►

 Description

 Syntax

PSGrid

Command Reference 6-363

► ► ►

 Syntax Element Description

 ► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default state
is the state of the current context window (as set in the
most recent Window SetContext command), or
Enabled if the state has not been otherwise declared.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its prior label. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Col=%;Value=x. If action% is a mouse click, these

two parameters specify the row that was clicked:
— Col is the numeric position of a column in the grid

(the leftmost column = 1, the next column = 2, etc.)
— Value is the contents of the cell located at the

intersection of column Col and the clicked row
► ColTitle=$;Value=x. If action% is a mouse

click, these two parameters specify the row that was
clicked:
— ColTitle is a column heading
— Value is the contents of the cell located at the

intersection of the column with the heading
ColTitle and the clicked row

► Coords=x,y. If action% is a mouse click, specifies
the x,y coordinates of the click, relative to the top left
of the clicked cell or column.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object or the item.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position in the scroll box. Every scroll bar has
an internal range, and this value is specific to that range.

► Row=%. If action% is a mouse click, the number of
the row that was clicked (the topmost row = 1).

► Text=$. If action% is a mouse click, the visible text in
the row that was clicked.

PSGrid

6-364 SQABasic Language Reference

 With mouse-click actions, recMethod$ may specify the column that was
clicked, and parameters$ may specify the row that was clicked.

 Robot specifies the clicked row by using one of these parameters$ values (or
pairs of values):

► One or more pairs of a column identifier (Col=% or ColTitle=$) followed
by Value=x. Robot uses as many column/value pairs as necessary to
uniquely identify the clicked row — for example:

 "ColTitle=Cntry;Value=USA;ColTitle=St;Value=AR;Col=3;Value=18"
► Text=$. Text values from multiple columns are separated with a pipe

separator (|) — for example:
 "Text=9|0|Edit|Drop Down List|AE_MENU_EDIT|AE_WRK"
► Optionally, you can use the tab separator Chr$ (9) instead of the pipe separator.

► Row=%.

► Coords=x,y.

 Note the following points about column/value pairs:

► Value must immediately follow Col or ColTitle.

► The values are separated by a semicolon (;) — for example:
 "ColTitle=Customer ID;Value=0253319"

► The column identifier (Col or ColTitle) isn’t necessarily the column that
was clicked. Robot looks for one or more columns of unique values. If a key
column is found:

− The column identifier specifies the key column

− Value specifies the contents of the cell at the intersection of the key
column and the row that the user clicked

 parameters$ has a maximum length of 968 characters. If multiple column/row
pairs cause parameters$ to exceed the maximum length, Robot uses another
way to uniquely identify the clicked row.

 In this example, a PeopleSoft grid is clicked. The grid is identified as object 1 in
the current context window. The column that was clicked is identified by the
heading Count.

 PSGrid Click, "ObjectIndex=1",Text=6| 0|Message Underline|Frame||"

 PSGridHeader PSNavigator PSSpinVP
 PSGridHeaderVP PSNavigatorVP PSTree
 PSGridVP PSPanel PSTreeHeader
 PSMenu PSPanelVP PSTreeHeaderVP
 PSMenuVP PSSpin PSTreeVP

 Comments

 Example

 See Also

PSGridHeader

Command Reference 6-365

 PSGridHeader
 User Action Command

 Performs an action on a column header in a PeopleTools grid.

 PSGridHeader action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► ObjectIndex=%. The number of the object among

all objects of the same type in the same window.
► State=$. An optional qualifier for any other

recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the x,y coordinates of the click, relative to the top left of
the object or the item.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object or the item.

 Description

 Syntax

PSGridHeaderVP

6-366 SQABasic Language Reference

 Robot only supports actions against visible headers.

 In this example, a PeopleSoft grid header is clicked. The grid is identified as
object 1 in the current context window.

 PSGridHeader Click, "ObjectIndex=1", "Coords=328,4"

 PSGrid PSNavigator PSSpinVP
 PSGridHeaderVP PSNavigatorVP PSTree
 PSGridVP PSPanel PSTreeHeader
 PSMenu PSPanelVP PSTreeHeaderVP
 PSMenuVP PSSpin PSTreeVP

 PSGridHeaderVP
 Verification Point Command

 Establishes a verification point for a column header in a PeopleTools grid.

 Result = PSGridHeaderVP (action%,recMethod$,parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

PSGridHeaderVP

Command Reference 6-367

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► ObjectIndex=%. The number of the object among

all objects of the same type in the same window.
► Text=$. The text displayed on the object.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

PSGridVP

6-368 SQABasic Language Reference

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 Robot only supports the testing of visible headers.

 In this example, an object data verification point is established for a PeopleSoft
grid header. The grid is identified as object 1 in the current context window.

 Result = PSGridHeaderVP (CompareData, "ObjectIndex=1", "VP=GRDTST")

 PSGrid PSNavigator PSSpinVP
 PSGridHeader PSNavigatorVP PSTree
 PSGridVP PSPanel PSTreeHeader
 PSMenu PSPanelVP PSTreeHeaderVP
 PSMenuVP PSSpin PSTreeVP

 PSGridVP
 Verification Point Command

 Establishes a verification point for a PeopleTools grid.

 Result = PSGridVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

PSGridVP

Command Reference 6-369

► ► ►

 Syntax Element Description

 ► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the selected row
and compares it to a recorded baseline. parameters$
VP and Type are required; ExpectedResult and
Wait are optional.

 recMethod$ Valid values:
► ColIndex=%. In grids that let you select individual

cells (such as the Data Designer), a zero based value
that identifies the column that was clicked. Used only
after one of these parent values: ID=%,
ObjectIndex=%, Text=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► Heading=$. In grids that let you select individual cells
(such as the Data Designer), identifies the column that
was clicked. Used only after one of these parent values:
ID=%, ObjectIndex=%, Text=$. Parent/child
values are separated by a backslash and semicolons
(;\;).

► ID=%. The object’s internal Windows ID.
► ObjectIndex=%. The number of the object among

all objects of the same type in the same window.
► Text=$. The text displayed on the object.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► ► ►

PSGridVP

6-370 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 Robot supports the testing of all columns in the grid, whether or not a column
is visible.

 In this example, an object properties verification point is established for a
PeopleSoft grid. The grid is identified as object 1 in the current context window.

 Result = PSGridVP(CompareProperties,"ObjectIndex=1","VP=GRDPRPS")

 PSGrid PSNavigator PSSpinVP
 PSGridHeader PSNavigatorVP PSTree
 PSGridHeaderVP PSPanel PSTreeHeader
 PSMenu PSPanelVP PSTreeHeaderVP
 PSMenuVP PSSpin PSTreeVP

 Comments

 Example

 See Also

PSMenu

Command Reference 6-371

 PSMenu
 User Action Command

 Performs an action on a PeopleTools menu object.

 PSMenu action%, recMethod$, parameters$

 Syntax Element Description

 action% The following mouse action:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). Does not require
coordinate information.
See Appendix E for a list of mouse click values.

 recMethod$ Valid values:
► ObjectIndex=%. The number of the object among

all objects of the same type (PSMenu) in the same
window.

► If the action occurs on a menu item, recMethod$
includes one or more of these child values:
— Class=$. The class name of the menu item.
— ClassIndex=%. Index of the object with the same

class name value.
— Index=%. Index of the menu item acted upon.
— Name=$. Object name of the menu item.
— Type=$. Either PSMenuBarItem or PSMenuItem.

► These child values are used only after the parent value
ObjectIndex=%. Parent/child values are separated by
a backslash and semicolons (;\;).

 parameters$ Valid value:
► Coords=x,y. Specifies the x,y coordinates of the

click, relative to the top left of the object or the item.
► If no coordinates are specified, the coordinates at the

center of the object or item are used.

 None.

 In this example, the user clicks a menu item in a PeopleTools design window. The
object name of the menu item is MENUITEM1.

 Window SetContext, "Caption=DATA_DESIGNER (MENU);Childwindow", ""
 PSMenu Click, "ObjectIndex=1;\;Name=MENUITEM1, "Coords=2,8"

 Description

 Syntax

 Comments

 Example

PSMenuVP

6-372 SQABasic Language Reference

 PSGrid PSNavigator PSSpinVP
 PSGridHeader PSNavigatorVP PSTree
 PSGridHeaderVP PSPanel PSTreeHeader
 PSGridVP PSPanelVP PSTreeHeaderVP
 PSMenuVP PSSpin PSTreeVP

 PSMenuVP
 Verification Point Command

 Establishes a verification point for a PeopleTools menu object.

 Result = PSMenuVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid value:
► Compare. Captures the properties of the menu objects

and compares them to the recorded baseline.
parameters$ VP is required; ExpectedResult is
optional.

 recMethod$ Valid value:
► ObjectIndex=%. The number of the object among

all objects of the same type in the same window.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example verifies a PeopleTools menu object.

 Result = PSMenuVP (Compare,"ObjectIndex=1", "VP=FILEMNEU")

 See Also

 Description

 Syntax

 Comments

 Example

PSNavigator

Command Reference 6-373

 PSGrid PSNavigator PSSpinVP
 PSGridHeader PSNavigatorVP PSTree
 PSGridHeaderVP PSPanel PSTreeHeader
 PSGridVP PSPanelVP PSTreeHeaderVP
 PSMenu PSSpin PSTreeVP

 PSNavigator
 User Action Command

 Performs an action on a PeopleTools Navigator window or a Navigator map in
the PeopleTools Business Process Designer.

 PSNavigator action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag values.

► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► ItemID=%. A zero-based value that identifies the map

item that was clicked. Used only after one of these
parent values: ID=%, Name=$, ObjectIndex=%,
Text=$. Parent/child values are separated by a
backslash and semicolons (;\;).

► ► ►

 See Also

 Description

 Syntax

PSNavigator

6-374 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. Name can specify the Navigator object
name or a map item name.

► When Name specifies a map item, it is used only after
one of these parent values: ID=%, Name=$,
ObjectIndex=%, Text=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the x,y coordinates of the click, relative to the top left of
the object or the item.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object or the item.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position in the scroll box. Every scroll bar
has an internal range, and this value is specific to that
range.

 Robot recognizes a Navigator window by its internal map name.

 Navigator windows are made up of items such as text, links, and steps. Robot
considers all items inside a Navigator window to be map items. Different map
items have different properties.

 Comments

PSNavigatorVP

Command Reference 6-375

 When you perform an action against a map item, Robot identifies the map item by
an item ID or by its internal name as defined in the Business Process Designer.

 For example, suppose you double click on a map item named Administrator
Workflow in a Navigator window named PTDMO Default. Robot might define
the recMethod$ argument as follows:

 "Name=PTDMO Default;\;Name=Administrator Workflow"
 Remember that the backslash character (\) indicates a parent-child relationship —
in this case, between the Navigator window and a map item within the window.

 This example clicks the PTDMO Default Navigator window.

 PSNavigator Click, "Name=PTDMO Default", "Coords=10,5"
 This example clicks the map item identified as item 0 in the Administer Workflow
Navigator window.

 PSNavigator Click, "Name=Administer Workflow;\;ItemID=0", ""

 PSGrid PSMenuVP PSSpinVP
 PSGridHeader PSNavigatorVP PSTree
 PSGridHeaderVP PSPanel PSTreeHeader
 PSGridVP PSPanelVP PSTreeHeaderVP
 PSMenu PSSpin PSTreeVP

 PSNavigatorVP
 Verification Point Command

 Establishes a verification point for a PeopleTools Navigator window or a
Navigator map in the PeopleTools Business Process Designer.

 Result = PSNavigatorVP(action%,recMethod$,parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► ► ►

 Example

 See Also

 Description

 Syntax

PSNavigatorVP

6-376 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► ItemID=%. A zero-based value that identifies the map

item that was clicked. Used only after one of these
parent values: ID=%, Name=$, ObjectIndex=%,
Text=$. Parent/child values are separated by a
backslash and semicolons (;\;).

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. Name can specify the Navigator object
name or a map item name.

► When Name specifies a map item, it is used only after
one of these values: ID=%, Name=$,
ObjectIndex=%, Text=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► ► ►

PSNavigatorVP

Command Reference 6-377

► ► ►

 Syntax Element Description

 ► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 Robot recognizes a Navigator window by its internal map name.

 Navigator windows are made up of items such as text, links, and steps. Robot
considers all items inside a Navigator window to be map items. Different map
items have different properties.

 When you verify a map item, Robot identifies the map item by an item ID or by
an internal name as defined in the Business Process Designer. For example,
suppose you establish a verification point for a map item named Administrator
Workflow in a Navigator window named PTDMO Default. Robot might define
the recMethod$ argument as follows:

 "Name=PTDMO Default;\;Name=Administrator Workflow"

 Comments

PSPanel

6-378 SQABasic Language Reference

 Remember that the backslash character (\) indicates a parent-child relationship —
in this case, between the Navigator window and a map item within the window.

 This example establishes an object properties verification point for the Navigator
window Employee Training.

 Result = PSNavigatorVP (CompareProperties,
 "Name=Employee Training", "VP=NAV")

 This example establishes an object properties verification point for a map item.
The map item is identified as object 4, which is in the Navigator object named
Employee Training.

 Result = PSNavigatorVP (CompareProperties,
 "Name=Employee Training;\;ItemID=4", "VP=NAVTRN")

 PSGrid PSMenuVP PSSpinVP
 PSGridHeader PSNavigator PSTree
 PSGridHeaderVP PSPanel PSTreeHeader
 PSGridVP PSPanelVP PSTreeHeaderVP
 PSMenu PSSpin PSTreeVP

 PSPanel
 User Action Command

 Performs an action on a PeopleTools panel. The panel can be encountered at
application runtime or while you’re editing the panel in the PeopleTools
Panel Designer.

 PSPanel action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

See Appendix E for a list of mouse click and drag values.

► ► ►

 Example

 See Also

 Description

 Syntax

PSPanel

Command Reference 6-379

► ► ►

 Syntax Element Description

 ► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

HScrollTo and VScrollTo take the required
parameter Position=%.

 recMethod$ Valid values:
► FieldID=%. A unique ID that identifies a particular

field on a panel. Used only after one of these parent
values: ID=%, Name=$, ObjectIndex=%, Text=$.
Parent/child values are separated by a backslash and
semicolons (;\;). See Comments for more information.

► FieldIndex=%. A numeric value used to distinguish
between multiple panel fields with the same name. Used
only after one of these parent values: ID=%, Name=$,
ObjectIndex=%, Text=$. Parent/child values are
separated by a backslash and semicolons (;\;). See
Comments for more information.

► FieldLabel=$. The displayed name of a particular
field on a panel. Used only after one of these parent
values: ID=%, Name=$, ObjectIndex=%, Text=$.
Parent/child values are separated by a backslash and
semicolons (;\;). See Comments for more information.

► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. Name can specify the name of the panel
or an object on the panel.

► When Name specifies an object on the panel, it is used
only after one of these parent values: ID=%, Name=$,
ObjectIndex=%, Text=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► ► ►

PSPanel

6-380 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the x,y coordinates of the click, relative to the top left of
the object or the item.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object or the item.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position in the scroll box. Every scroll bar
has an internal range, and this value is specific to that
range.

Robot can recognize all objects (fields) within a PeopleTools panel and can test
each field object according to its type. Robot recognizes the following PeopleSoft
field objects (names in parentheses are the associated SQA object names):

Check Box Push Button
Drop Down List Box (ComboBox) Radio Button
Edit Box Scroll Bar
Frame Secondary Panel
Group Box Static Image (GenericObject)
Image (GenericObject) SubPanel
Long Edit Box (EditBox) Text (Label)

Note that SubPanels and Secondary panels are only available when you’re editing a
panel in the Panel Designer. These objects might not exist at application runtime.

Comments

PSPanel

Command Reference 6-381

To uniquely identify fields that appear as objects on panels, Robot uses one of
these identifiers:

Combined record/field name – In some cases, a field that appears on a panel is
associated with a field in a PeopleTools database. Robot constructs a unique panel
object name for these fields by combining the database record name that the field
appears in plus the field name. The record name and field name are separated by a
period character (.). For example, the following recognition method uniquely
identifies the ABSENCE_TYPE field within the ABSENCE_HIST record as a
panel object (an edit box):

EditBox Click, "Name=ABSENCE_HIST.ABSENCE_TYPE", "Coords=113,11"

Record/field syntax has these additional features:

− When multiple occurrences of the same field appear within a panel (for example,
when the OccursCount for an associated Scroll Bar is greater than 1), Robot
distinguishes each field through a zero-based index value. The index value
appears in parentheses after the record/field name. For example, suppose an
Edit Box field is associated with a scroll bar with an OccursCount of 3. In the
database, the Edit Box field, named EMPLYEES, is in a record named
ABSENCE_HIST. The following recognition method identifies the second
occurrence of the Edit Box on the panel:
 EditBox Click, "Name=ABSENCE_HIST.EMPLYEES(1)", "Coords=101,9"

− If a field on a panel is a Related Display (that is, its value is derived from the
value of another field), Robot uses the record/field names of the source field
as part of the destination field’s name. The record/field names are separated by
a pointer (->). For example, if the value of field PANEL2.FIELD2 is derived
from the value of PANEL1.FIELD1, Robot identifies FIELD 2 as follows:
 PANEL1.FIELD1->PANEL2.FIELD2

 FieldLabel – If multiple fields on a panel have the same record/field name and
occurrence index (such as groups of radio buttons), Robot identifies the field
through both its panel object name and its field label (or possibly just its field label
if there is no associated record/field). For example:

 RadioButton Click, "FieldLabel=Female;Name=Personal_Data.Sex"
 If Robot can’t recognize a field by a record/field name or a field label, it uses
FieldIndex or FieldID identifiers.

 FieldIndex – This number specifies a particular field within a field type. For
example, the second GroupBox on a panel might be recognized as
FieldIndex=2. Field index numbers begin with 1.

 FieldID – This number is a unique zero-based identifier assigned to each field
object in a panel. For example;

 ScrollBar Click, "FieldID=9", "Coords=9,68"

PSPanelVP

6-382 SQABasic Language Reference

 This example clicks a panel with the internal object name ABSENCE_HISTORY.

 PSPanel Click, "Name=ABSENCE_HISTORY", "Coords=10,5"

 PSGrid PSMenuVP PSSpinVP
 PSGridHeader PSNavigator PSTree
 PSGridHeaderVP PSNavigatorVP PSTreeHeader
 PSGridVP PSPanelVP PSTreeHeaderVP
 PSMenu PSSpin PSTreeVP

 PSPanelVP
 Verification Point Command

 Establishes a verification point for a PeopleTools panel. The panel can be
encountered at application runtime or while you’re editing the panel in the
PeopleTools Panel Designer.

 Result = PSPanelVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► ► ►

 Example

 See Also

 Description

 Syntax

PSPanelVP

Command Reference 6-383

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► FieldID=%. A unique ID that identifies a particular

field on a panel. Used only after one of these parent
values: ID=%, Name=$, ObjectIndex=%, Text=$.
Parent/child values are separated by a backslash and
semicolons (;\;). See Comments for more information.

► FieldIndex=%. A numeric value used to distinguish
between multiple panel fields with the same name. Used
only after one of these parent values: ID=%, Name=$,
ObjectIndex=%, Text=$. Parent/child values are
separated by a backslash and semicolons (;\;). See
Comments for more information.

► FieldLabel=$. The displayed name of a particular
field on a panel. Used only after one of these parent
values: ID=%, Name=$, ObjectIndex=%, Text=$.
Parent/child values are separated by a backslash and
semicolons (;\;). See Comments for more information.

► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. Name can specify the name of the panel
or an object on the panel.

► When Name specifies an object on the panel, it is used
only after one of these parent values: ID=%, Name=$,
ObjectIndex=%, Text=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► ► ►

PSPanelVP

6-384 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 Robot can recognize all objects (fields) within a PeopleTools panel and can test
each field object according to its type. Robot recognizes the following PeopleSoft
field objects (names in parentheses are the associated SQA object names):

 Check Box Push Button
 Drop Down List Box (ComboBox) Radio Button
 Edit Box Scroll Bar
 Frame Secondary Panel
 Group Box Static Image (GenericObject)
 Image (GenericObject) SubPanel
 Long Edit Box (EditBox) Text (Label)

 Comments

PSPanelVP

Command Reference 6-385

 Note that SubPanels and Secondary panels are only available when you’re editing a
panel in the Panel Designer. These objects might not exist at application runtime.

 To uniquely identify fields that appear as objects on panels, Robot uses one of
these identifiers:

 Combined record/field name – In some cases, a field that appears on a panel is
associated with a field in a PeopleTools database. Robot constructs a unique panel
object name for these fields by combining the database record name that the field
appears in plus the field name. The record name and field name are separated by a
period character (.). For example, the following recognition method uniquely
identifies the ABSENCE_TYPE field within the ABSENCE_HIST record as a
panel object:

 Result = EditBoxVP, (CompareProperties,
"Name=ABSENCE_HIST.ABSENCE_TYPE", "VP=EMPABS")

 Record/field syntax has these additional features:

− When multiple occurrences of the same field appear within a panel (for example,
when the OccursCount for an associated Scroll Bar is greater than 1), Robot
distinguishes each field through a zero-based index value. The index value
appears in parentheses after the record/field name. For example, suppose an
Edit Box field is associated with a scroll bar with an OccursCount of 3. In the
database, the Edit Box field, named EMPLYEES, is in a record named
ABSENCE_HIST. The following recognition method identifies the second
occurrence of the Edit Box on the panel:
 Result = EditBoxVP (CompareProperties,

"Name=ABSENCE_HIST.EMPLYEES(1)", "VP=EMPNAME")
− If a field on a panel is a Related Display (that is, its value is derived from the

value of another field), Robot uses the record/field names of the source field
as part of the destination field’s name. The record/field names are separated by
a pointer (->). For example, if the value of field PANEL2.FIELD2 is derived
from the value of PANEL1.FIELD1, Robot identifies FIELD 2 as follows:
 PANEL1.FIELD1->PANEL2.FIELD2

 FieldLabel – If multiple fields on a panel have the same record/field name and
occurrence index (such as groups of radio buttons), Robot identifies the field
through both its panel object name and its field label (or possibly just its field label
if there is no associated record/field). For example:

 Result = RadioButonVP (CompareProperties,
"FieldLabel=Female;Name=Personal_Data.Sex", "VP=EMPABSNC")

 If Robot can’t recognize a field by a record/field name or a field label, it uses
FieldIndex or FieldID identifiers.

PSSpin

6-386 SQABasic Language Reference

 FieldIndex – This number specifies a particular field within a field type. For
example, the second GroupBox on a panel might be recognized as
FieldIndex=2. Field index numbers begin with 1.

 FieldID – This number is a unique zero-based identifier assigned to each field
object in a panel. For example:

 Result=ScrollBarVP(CompareProperties,"FieldID=4","VP=SCRLPROP")

 This example establishes an object properties verification point for the
PeopleTools panel with the internal object name AE_REQUEST.

 Result = PSPanelVP (CompareProperties, "Name=AE_REQUEST", "VP=QRY4")

 PSGrid PSMenuVP PSSpinVP
 PSGridHeader PSNavigator PSTree
 PSGridHeaderVP PSNavigatorVP PSTreeHeader
 PSGridVP PSPanel PSTreeHeaderVP
 PSMenu PSSpin PSTreeVP

 PSSpin
 User Action Command

 Performs an action on a PeopleTools spin control.

 PSSpin action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag values.

► ► ►

 Example

 See Also

 Description

 Syntax

PSSpin

Command Reference 6-387

► ► ►

 Syntax Element Description

 ► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.
If Robot cannot interpret the action being applied to a
scroll bar, which happens with certain custom standalone
scroll bars, it records the action as a click or drag.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Label=$. The text of the label object that immediately

precedes the PeopleSoft spin control in the internal
order (Z order) of windows.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► VisualText=$. An optional setting used to identify
an object by its prior label. It is for user clarification
only and does not affect object recognition.

parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the x,y coordinates of the click, relative to the top left of
the object or the item.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object or the item.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position in the scroll box. Every scroll bar has
an internal range, and this value is specific to that range.

PSSpinVP

6-388 SQABasic Language Reference

 None.

 None.

 PSGrid PSMenuVP PSSpinVP
 PSGridHeader PSNavigator PSTree
 PSGridHeaderVP PSNavigatorVP PSTreeHeader
 PSGridVP PSPanel PSTreeHeaderVP
 PSMenu PSPanelVP PSTreeVP

 PSSpinVP
 Verification Point Command

 Establishes a verification point for a PeopleTools spin control.

 Result = PSSpinVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareNumeric. Captures the numeric value of

the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Label=$. The text of the label object that immediately

precedes the PeopleSoft spin control in the internal
order (Z order) of windows.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

PSSpinVP

Command Reference 6-389

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 Comments

PSTree

6-390 SQABasic Language Reference

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 None.

 PSGrid PSMenuVP PSSpin
 PSGridHeader PSNavigator PSTree
 PSGridHeaderVP PSNavigatorVP PSTreeHeader
 PSGridVP PSPanel PSTreeHeaderVP
 PSMenu PSPanelVP PSTreeVP

 PSTree
 User Action Command

 Performs an action on a PeopleTools tree object.

 PSTree action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag values.

► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.

► ► ►

 Example

 See Also

 Description

 Syntax

PSTree

Command Reference 6-391

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► ItemIndex=%. The index of the tree view item acted

upon. Used only after one of these parent values:
ID=%, ObjectIndex=%, Text=$. Parent/child
values are separated by a backslash and semicolons
(;\;).

► ItemText=$. The text of the tree view item acted
upon. Used only after one of these parent values:
ID=%, ObjectIndex=%, Text=$. Parent/child
values are separated by a backslash and semicolons
(;\;).

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the x,y coordinates of the click, relative to the top left of
the object or the item.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object or the item.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position in the scroll box. Every scroll bar has
an internal range, and this value is specific to that range.

PSTreeHeader

6-392 SQABasic Language Reference

 The tree object can appear in the PeopleTools Tree Manager environment.

 When you act on a particular item in a tree object, Robot uses the text of the item
(plus the text of any parent items) to identify it. In the following recMethod$
value, the tree item labeled REPORT_VIEWS is a child of the tree item labeled
HR_ACCESS_GROUP.

 "ObjectIndex=1;\;ItemText=HR_ACCESS_GROUP->REPORT_VIEWS"
 Note the two different parent/child separators — the backslash (\) separates the
window object and its child object. The pointer (->) separates the parent text item
from its child text item in the tree hierarchy.

 This example clicks an item in a PeopleTools tree object. The clicked item is
identified by the text 10100.

 PSTree Click, "ObjectIndex=1;\;ItemText=00001->10100",
"Coords=19,12"

 PSGrid PSMenuVP PSSpin
 PSGridHeader PSNavigator PSSpinVP
 PSGridHeaderVP PSNavigatorVP PSTreeHeader
 PSGridVP PSPanel PSTreeHeaderVP
 PSMenu PSPanelVP PSTreeVP

 PSTreeHeader
 User Action Command

 Performs an action on a column header in a PeopleTools tree object.

 PSTreeHeader action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

See Appendix E for a list of mouse click and drag values.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

PSTreeHeader

Command Reference 6-393

► ► ►

 Syntax Element Description

recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► ObjectIndex=%. The number of the object among

all objects of the same type in the same window.
► State=$. An optional qualifier for any other

recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the x,y coordinates of the click, relative to the top left of
the object or the item.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object or the item.

 The tree object can appear in the PeopleTools Tree Manager environment.

 In this example, the user double-clicks a tree header. The tree object is identified
as object 1 in the current context window.

 PSTreeHeader DblClick, "ObjectIndex=1", "Coords=232,9"

 PSGrid PSMenuVP PSSpin
 PSGridHeader PSNavigator PSSpinVP
 PSGridHeaderVP PSNavigatorVP PSTree
 PSGridVP PSPanel PSTreeHeaderVP
 PSMenu PSPanelVP PSTreeVP

 Comments

 Example

 See Also

PSTreeHeaderVP

6-394 SQABasic Language Reference

 PSTreeHeaderVP
 Verification Point Command

 Establishes a verification point for a column header in a PeopleTools tree object.

 Result = PSTreeHeaderVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.

► ► ►

 Description

 Syntax

PSTreeHeaderVP

Command Reference 6-395

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a

 Comments

PSTreeVP

6-396 SQABasic Language Reference

substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 The tree object can appear in the PeopleTools Tree Manager environment.

 This example establishes an object properties verification point for a tree header.
The tree object is identified as object 1 in the current context window.

 Result = PSTreeHeaderVP (CompareProperties, "ObjectIndex=1",
"VP=COLTST")

 PSGrid PSMenuVP PSSpin
 PSGridHeader PSNavigator PSSpinVP
 PSGridHeaderVP PSNavigatorVP PSTree
 PSGridVP PSPanel PSTreeHeader
 PSMenu PSPanelVP PSTreeVP

 PSTreeVP
 Verification Point Command

 Establishes a verification point for a PeopleTools tree object.

 Result = PSTreeVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► ► ►

 Example

 See Also

 Description

 Syntax

PSTreeVP

Command Reference 6-397

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► ItemIndex=%. The index of the tree view item acted

upon. Used only after one of these parent values:
ID=%, ObjectIndex=%, Text=$. Parent/child
values are separated by a backslash and semicolons
(;\;).

► ItemText=$. The text of the tree view item acted
upon. Used only after one of these parent values:
ID=%, ObjectIndex=%, Text=$. Parent/child
values are separated by a backslash and semicolons
(;\;).

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text

► ► ►

PSTreeVP

6-398 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Value=&. Used with the action CompareNumeric
when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 The tree object can appear in the PeopleTools Tree Manager environment.

 When you act on a particular item in a tree object, Robot uses the text of the item
(plus the text of any parent items) to identify it. In the following recMethod$
value, the tree item labeled REPORT_VIEWS is a child of the tree item labeled
HR_ACCESS_GROUP.

 "ObjectIndex=1;\;ItemText=HR_ACCESS_GROUP->REPORT_VIEWS"
 Note the two different parent/child separators — the backslash (\) separates the
window object and its child object. The pointer (->) separates the parent text item
from its child text item in the tree hierarchy.

 This example establishes an object data verification point for a PeopleTools tree
object. The tree is identified as object 1 in the current context window.

 Result = PSTreeVP (CompareData, "ObjectIndex=1", "VP=TREEDATA")

 PSGrid PSMenuVP PSSpin
 PSGridHeader PSNavigator PSSpinVP
 PSGridHeaderVP PSNavigatorVP PSTree
 PSGridVP PSPanel PSTreeHeader
 PSMenu PSPanelVP PSTreeHeaderVP

 Comments

 Example

 See Also

PushButton (Statement)

Command Reference 6-399

 PushButton (Statement)
 Statement

 Defines a custom push button.

 Syntax A PushButton x, y, dx, dy, text$[, .id]

 Syntax B Button x, y, dx, dy, text$[, .id]

 Syntax Element Description

 x, y The position of the button relative to the upper left corner
of the dialog box.

 dx, dy The width and height of the button.

 text$ The name for the push button. If the width of this string
is greater than dx, trailing characters are truncated.

 .id An optional identifier used by the dialog statements that
act on this control.

 A dy value of 14 typically accommodates text in the system font.

 Use this statement to create buttons other than OK and Cancel. Use this
statement in conjunction with the ButtonGroup statement. The two forms of
the statement (Button and PushButton) are equivalent.

 Use the Button statement only between a Begin Dialog and an End
Dialog statement.

 This example defines a dialog box with a combination list box and three buttons.

 Sub main
 Dim fchoices as String
 fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
 Begin Dialog UserDialog 185, 94, "SQABasic Dialog Box"
 Text 9, 5, 69, 10, "Filename:", .Text1
 DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
 ButtonGroup .ButtonGroup1
 OKButton 113, 14, 54, 13
 CancelButton 113, 33, 54, 13
 PushButton 113, 57, 54, 13, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
 End Sub

 Description

 Syntax

 Comments

 Example

PushButton (User Action Command)

6-400 SQABasic Language Reference

 Begin Dialog ComboBox OptionButton
 End Dialog DropComboBox OptionGroup
 ButtonGroup DropListBox Picture
 CancelButton GroupBox StaticComboBox
 Caption ListBox Text
 CheckBox OKButton TextBox

 PushButton (User Action Command)
 User Action Command

 Performs an action on a push button control.

 PushButton action%, recMethod$

 Syntax Element Description

 action% The following mouse action:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). Does not require
coordinate information.

 See Appendix E for a list of mouse click values.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The visible text of a Button, Reset, or

Submit button of a Web page INPUT form element.
The text is from the Value attribute of the INPUT tag
or a BUTTON tag.

► HTMLTitle=$. The text from the Title attribute of
the HTML object.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► ► ►

 See Also

 Description

 Syntax

PushButton (User Action Command)

Command Reference 6-401

► ► ►

 Syntax Element Description

 ► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Text=$. The text displayed on the object.
► Type=$. An optional qualifier for recognition

methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

None.

This example clicks the push button identified by the text OK.

PushButton Click, "Text=OK"

This example clicks the push button with the Value attribute Send. The button is
located within the Web page frame named Main.

PushButton Click,
"Type=HTMLFrame;HTMLId=Main;\;Type=PushButton;HTMLText=Send"

CheckBox
Label
RadioButton

Comments

Example

See Also

PushButtonVP

6-402 SQABasic Language Reference

PushButtonVP
Verification Point Command

Establishes a verification point for a push button control.

Result = PushButtonVP (action%, recMethod$, parameters$)

Syntax Element Description

action% The type of verification to perform. Valid values:
► CompareData. Captures the contents or HTML text

of the object and compares it to a recorded baseline.
parameters$ VP is required; ExpectedResult
and Wait are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► VerifyIsBlank. Checks that the object has no text.
parameters$ VP is required; ExpectedResult
and Wait are optional.

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The visible text of a Button, Reset, or

Submit button of a Web page INPUT form element.
The text is from the Value attribute of the INPUT tag
or a BUTTON tag.

► HTMLTitle=$. The text from the Title attribute of
the HTML object.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► ► ►

Description

Syntax

PushButtonVP

Command Reference 6-403

► ► ►

Syntax Element Description

 ► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► Type=$. An optional qualifier for recognition

methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text

► ► ►

PushButtonVP

6-404 SQABasic Language Reference

► ► ►

Syntax Element Description

 ► Value=&. Used with the action CompareNumeric
when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the properties of the push button identified by the text
Cancel and compares them to the recorded baseline in verification point
STBUTTN.

 Result=PushButtonVP(CompareProperties,"Text=Cancel","VP=STBUTTN")

 This example captures the data of the push button identified by the Value attribute
Clear Form. The button is located within the Web page frame named Main.
PushButtonVP compares the data to the recorded baseline in verification point
BtnData1.

 Result = PushButtonVP (CompareData,
 "Type=HTMLFrame;HTMLId=Main;\;Type=PushButton;HTMLText=Clear Form",
 "VP=BtnData1")

 LabelVP
 RadioButtonVP

 Comments

 Example

 See Also

Put

Command Reference 6-405

 Put
 Statement

 Writes a variable to a file opened in Random or Binary mode.

 Put [#]filenumber%, [recnumber&], varname

 Syntax Element Description

 filenumber% An integer expression identifying the open file to use.

 recnumber& A Long expression containing the record number or the
byte offset at which to start writing.

 varname The name of the variable containing the data to write.

 Filenumber% is the number assigned to the file when it was opened. See the
Open statement for more information.

 Recnumber& is in the range 1 to 2,147,483,647. If recnumber& is omitted, the
next record or byte is written.

 Note: The commas before and after recnumber% are required, even if no
recnumber& is specified.

 Varname can be any variable except Object, Application Data Type or
Array variables (single array elements can be used).

 For Random mode, the following rules apply:

► Blocks of data are written to the file in chunks whose size is equal to the size
specified in the Len clause of the Open statement. If the size of varname is
smaller than the record length, the record is padded to the correct record size.
If the size of variable is larger than the record length, an error occurs.

► For variable length String variables, Put writes two bytes of data that
indicate the length of the string, then writes the string data.

► For Variant variables, Put writes two bytes of data that indicate the type of the
Variant, then it writes the body of the Variant into the variable. Note that
Variants containing strings contain two bytes of type information, followed by
two bytes of length, followed by the body of the string.

► User-defined types are written as if each member were written separately,
except no padding occurs between elements.

 Description

 Syntax

 Comments

PV

6-406 SQABasic Language Reference

 Files opened in Binary mode behave similarly to those opened in Random mode
except:

► Put writes variables to the disk without record padding.

► Variable length Strings that are not part of user defined types are not
preceded by the two-byte string length.

 This example opens a file for Random access, puts the values 1-10 in it, prints the
contents, and closes the file again.

 Sub main
 ' Put the numbers 1-10 into a file
 Dim x, y
 Dim msgtext as String
 Open "C:\TEMP001" as #1
 For x=1 to 10
 Put #1,x, x
 Next x
 msgtext="The contents of the file is:" & Chr(10)
 For x=1 to 10
 Get #1,x, y
 msgtext=msgtext & y & Chr(10)
 Next x
 Close #1
 MsgBox msgtext
 Kill "C:\TEMP001"
 End Sub

 Close Open
 Get Write

 PV
 Function

 Returns the present value of a constant periodic stream of cash flows as in an
annuity or a loan.

 PV (rate, nper, pmt, fv, due)

 Syntax Element Description

 rate Interest rate per period.

 nper Total number of payment periods.

 pmt Constant periodic payment per period.

 fv Future value of the final lump sum amount required (in
the case of a savings plan) or paid (0 in the case of a loan).

 due An integer value for when the payments are due (0=end
of each period, 1= beginning of the period).

 Example

 See Also

 Description

 Syntax

RadioButton

Command Reference 6-407

 Rate is assumed constant over the life of the annuity. If payments are on a
monthly schedule, then rate will be 0.0075 if the annual percentage rate on the
annuity or loan is 9%.

 This example finds the present value of a 10-year $25,000 annuity that will pay
$1,000 a year at 9.5%.

 Sub main
 Dim aprate, periods
 Dim payment, annuityfv
 Dim due, presentvalue
 Dim msgtext
 aprate=9.5
 periods=120
 payment=1000
 annuityfv=25000
 Rem Assume payments are made at end of month
 due=0
 presentvalue=PV(aprate/12,periods,-payment, annuityfv,due)
 msgtext="The present value for a 10-year $25,000 annuity @ 9.5%"
 msgtext=msgtext & " with a periodic payment of $1,000 is: "
 msgtext=msgtext & Format(presentvalue, "Currency")
 MsgBox msgtext
 End Sub

 FV Pmt
 IPmt PPmt
 IRR Rate
 NPV

 RadioButton
 User Action Command

 Performs an action on an option button control.

 RadioButton action%, recMethod$

 Syntax Element Description

 action% The following mouse action:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). Does not require
coordinate information.

 See Appendix E for a list of mouse click values.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

RadioButton

6-408 SQABasic Language Reference

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The visible text of a Web page INPUT

form element. The text is from the Name attribute of
the INPUT tag.

► HTMLTitle=$. The text from the Title attribute of
the HTML object.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Text=$. The text displayed on the object.
► Type=$. An optional qualifier for recognition

methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

 None.

 Comments

RadioButtonVP

Command Reference 6-409

 This example clicks the second option button in the window (ObjectIndex of 2).

 RadioButton Click, "ObjectIndex=2"

 This example clicks the option button with the Name attribute of Over 50. The
option button is located within the Web page frame named Main.

 RadioButton Click,
 "Type=HTMLFrame;HTMLId=Main;\;Type=RadioButton;Name=Over 50"

 CheckBox
 Label
 PushButton

 RadioButtonVP
 Verification Point Command

 Establishes a verification point for an option button control.

 Result = RadioButtonVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the contents or HTML text

of the object and compares it to a recorded baseline.
parameters$ VP is required; ExpectedResult
and Wait are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► VerifyIsBlank. Checks that the object has no text.
parameters$ VP is required; ExpectedResult
and Wait are optional.

► ► ►

 Example

 See Also

 Description

 Syntax

RadioButtonVP

6-410 SQABasic Language Reference

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► HTMLId=$. The text from the ID attribute of the

HTML object.
► HTMLText=$. The visible text of a Web page INPUT

form element. The text is from the Name attribute of
the INPUT tag.

► HTMLTitle=$. The text from the Title attribute of
the HTML object.

► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► Type=$. An optional qualifier for recognition

methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► ► ►

RadioButtonVP

Command Reference 6-411

► ► ►

 Syntax Element Description

 ► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

Comments

Randomize

6-412 SQABasic Language Reference

This example captures the text of the second option button in the window
ObjectIndex=2 and performs a case-insensitive comparison with the recorded
baseline in verification point RADIO.

Result = RadioButtonVP (CompareText, "ObjectIndex=2",
"VP=RADIO;Type=CaseInsensitive")

This example captures the data from the option button with the Name attribute of
Over 50. The option button located within the Web page frame named Main.
RadioButtonVP compares the data with the recorded baseline in verification
point RadioData2.

Result = RadioButtonVP (CompareData,
"Type=HTMLFrame;HTMLId=Main;\;Type=RadioButton;Name=Over 50",
"VP=RadioData2")

CheckBoxVP
LabelVP
PushButtonVP

Randomize
Statement

Seeds the random number generator.

Randomize [number%]

Syntax Element Description

number% An integer value between -32768 and 32767.

If no number% argument is given, SQABasic uses the Timer function to
initialize the random number generator.

This example generates a random string of characters using the Randomize
statement and Rnd function. The second For...Next loop is to slow down
processing in the first For...Next loop so that Randomize can be seeded with
a new value each time from the Timer function.

Sub main
Dim newline as Integer
Dim x as Integer
Dim y
Dim str1 as String
Dim str2 as String
Dim letter as String
Dim randomvalue
Dim upper, lower
Dim msgtext

Example

See Also

Description

Syntax

Comments

Example

Rate

Command Reference 6-413

upper=Asc("z")
lower=Asc("a")
newline=Chr(10)
For x=1 to 26

Randomize timer() + x*255
randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
letter=Chr(randomvalue)
str1=str1 & letter
For y = 1 to 1500
Next y

Next x
msgtext=str1
MsgBox msgtext

End Sub

Rnd
Timer

Rate
Function

Returns the interest rate per period for an annuity or a loan.

Rate (nper, pmt, pv, fv, due, guess)

Syntax Element Description

nper Total number of payment periods.

pmt Constant periodic payment per period.

pv Present value of the initial lump sum amount paid (as in
the case of an annuity) or received (as in the case of a
loan).

fv Future value of the final lump sum amount required (in
the case of a savings plan) or paid (0 in the case of a loan).

due An integer value for when the payments are due (0=end
of each period, 1= beginning of the period)

guess A ballpark estimate for the rate returned.

In general, a guess of between 0.1 (10 percent) and 0.15 (15 percent) would be a
reasonable value for guess.

Rate is an iterative function: it improves the given value of guess over several
iterations until the result is within 0.00001 percent. If it does not converge to a
result within 20 iterations, it signals failure.

See Also

Description

Syntax

Comments

Rebar

6-414 SQABasic Language Reference

This example finds the interest rate on a 10-year $25,000 annuity, that pays $100
per month.

Sub main
Dim aprate
Dim periods
Dim payment, annuitypv
Dim annuityfv, due
Dim guess
Dim msgtext as String
periods=120
payment=100
annuitypv=0
annuityfv=25000
guess=.1

Rem Assume payments are made at end of month
due=0
aprate=Rate(periods,-payment,annuitypv,annuityfv, due, guess)
aprate=(aprate*12)
msgtext= "The percentage rate for a 10-year $25,000 annuity "
msgtext=msgtext & "that pays $100/month has "
msgtext=msgtext & "a rate of: " & Format(aprate, "Percent")
MsgBox msgtext

End Sub

FV Pmt
IPmt PPmt
IRR PV
NPV

Rebar
User Action Command

Performs an action on a rebar control.

Rebar action%, recMethod$, parameters$

Syntax Element Description

action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.
► ► ►

Example

See Also

Description

Syntax

Rebar

Command Reference 6-415

► ► ►

Syntax Element Description

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► ItemID=%. The application defined ID of the band.

Used only after one of these parent values: ID=%,
ObjectIndex=%, Name=$, Text=$. Parent/child
values are separated by a backslash and semicolons
(;\;).

► ItemIndex=%. The index of the rebar item acted
upon. Used only after one of these parent values:
ID=%, ObjectIndex=%, Name=$, Text=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

► ItemText=$. The text of the rebar item acted upon.
Used only after one of these parent values: ID=%,
ObjectIndex=%, Name=$, Text=$. Parent/child
values are separated by a backslash and semicolons
(;\;).

► Name=$. A unique name that a developer assigns to an
object to identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its prior label. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 None.

 Comments

RebarVP

6-416 SQABasic Language Reference

 This example clicks the on the item with the text “links” in the first rebar control
in the window (ObjectIndex=1) at x,y coordinates of 21,10.

 Rebar Click, "ObjectIndex=1;\;ItemText=Links", "Coords=21,10"

 RebarVP

 RebarVP
 Verification Point Command

 Establishes a verification point for a rebar control.

 Result = RebarVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A unique name that a developer assigns to an

object to identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its prior label. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► ► ►

 Example

 See Also

 Description

 Syntax

ReDim

Command Reference 6-417

► ► ►

 Syntax Element Description

 ► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example captures the properties of the first Rebar control in the window
(ObjectIndex=1) and compares them to the recorded baseline in verification
point REBAR1.

 Result = RebarVP (CompareProperties, "ObjectIndex=1", "VP=REBAR1")

 Rebar

 ReDim
 Statement

 Changes the upper and lower bounds of a dynamic array’s dimensions.

 ReDim [Preserve] variableName (subscriptRange, ...) [As
[New] type],...

 Syntax Element Description

 variableName The variable array name to redimension.

 subscriptRange The new upper and lower bounds for the array.

 type The type for the data elements in the array.

 ReDim re-allocates memory for the dynamic array to support the specified
dimensions, and can optionally re-initialize the array elements. ReDim cannot be
used at the module level; it must be used inside of a procedure.

 The Preserve option is used to change the last dimension in the array while
maintaining its contents. If Preserve is not specified, the contents of the array
are re-initialized. Numbers will be set to zero (0). Strings and variants will be set
to empty ("").

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

ReDim

6-418 SQABasic Language Reference

 The subscriptRange is of the format:

 [startSubscript To] endSubscript
 If startSubscript is not specified, 0 is used as the default. The Option
Base statement can be used to change the default.

 A dynamic array is normally created by using Dim to declare an array without a
specified subscriptRange. The maximum number of dimensions for a
dynamic array created in this fashion is 8. If you need more than 8 dimensions,
you can use the ReDim statement inside of a procedure to declare an array that has
not previously been declared using Dim or Global. In this case, the maximum
number of dimensions allowed is 60.

 Arrays support all SQABasic data types. Arrays of arrays, dialog box records, and
objects are not supported.

 If the As clause is not used, the type of the variable can be specified by using a
type character as a suffix to the name. The two different type-specification
methods can be intermixed in a single ReDim statement (although not on the
same variable).

 The ReDim statement cannot be used to change the number of dimensions of a
dynamic array once the array has been given dimensions. It can only change the
upper and lower bounds of the dimensions of the array. The LBound and
UBound functions can be used to query the current bounds of an array variable’s
dimensions.

 Care should be taken to avoid redimensioning an array in a procedure that has
received a reference to an element in the array in an argument; the result is
unpredictable.

 This example finds the net present value for a series of cash flows. The array
variable that holds the cash flow amounts is initially a dynamic array that is
redimensioned after the user enters the number of cash flow periods they have.

 Sub main
 Dim aprate as Single
 Dim varray() as Double
 Dim cflowper as Integer
 Dim x as Integer
 Dim netpv as Double
 cflowper=InputBox("Enter number of cash flow periods:")
 ReDim varray(cflowper)
 For x= 1 to cflowper
 varray(x)=InputBox("Cash flow amount for period #" &x &":")
 Next x
 aprate=InputBox ("Enter discount rate:")
 If aprate>1 then aprate=aprate/100
 netpv=NPV(aprate,varray())
 MsgBox "The Net Present Value is: " & Format(netpv,"Currency")
 End Sub

 Example

RegionVP

Command Reference 6-419

 Dim Option Base
 Global Static

 RegionVP
 Verification Point Command

 Establishes a verification point for a specified rectangular screen region.

 Result = RegionVP (action%, "", parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareImage. Captures a bitmap image of the

specified region on the screen and compares it to a
recorded baseline. parameters$ Coords and VP are
required; ExpectedResult and Wait are optional.

► WaitNegative. Captures a bitmap image of the
specified region on the screen and waits until it does
not match the recorded baseline. parameters$
Name, Wait, and Coords are required.
 Note: Unlike CompareImage, this action does not
use a verification point ID and does not create a failed
image file if the comparison reaches timeout before
failing.

► WaitPositive. Captures a bitmap image of the
specified region on the screen and waits until it
matches the recorded baseline. parameters$ Name,
Wait, and Coords are required.
 Note: Unlike CompareImage, this action does not
use a verification point ID and does not create a failed
image file if the comparison reaches timeout before
passing.

 "" The second argument is always left blank.

► ► ►

 See Also

 Description

 Syntax

RegionVP

6-420 SQABasic Language Reference

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► Coords=x1,y1,x2,y2. Specifies the top-left and

bottom-right screen coordinates of the region to test.
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Name=$. For WaitPositive and WaitNegative
actions, this parameter specifies the image file name to
be used as a baseline in the comparison. This file is
located in the same directory as the script.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and Timeout value, as in
Wait=1,30 where 1 indicates the test is to be retried
every second but timed-out after 30 seconds.

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example establishes a Region verification point identified by screen
coordinates. The example compares the image to the record baseline in
verification point QBMAINRG.

 Result = RegionVP (CompareImage, "", "VP=QBMAINRG;
 Coords=231,253,361,343")

 WindowVP

 Comments

 Example

 See Also

Rem

Command Reference 6-421

 Rem
 Statement

 Identifies a line of code as a comment in an SQABasic program.

 Rem comment

 Syntax Element Description

 comment The text of the comment.

 Everything from Rem to the end of the line is ignored. No characters (other than
spaces or tabs) can appear on the line before Rem.

 The single quote (') can also be used to initiate a comment. However, note that
the metacommands 'CStrings, '$Include, and '$NoCStrings are
preceded by a single quote as part of their command syntax.

 This example defines a dialog box with a combination list box and two buttons.
The Rem statements describe each block of definition code.

 Sub main
 Dim fchoices as String
 fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
 Begin Dialog UserDialog 185, 94, "SQABasic Dialog Box"
 Rem The next two lines create the combo box
 Text 9, 5, 69, 10, "Filename:", .Text1
 DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
 Rem The next two lines create the command buttons
 OKButton 113, 14, 54, 13
 CancelButton 113, 33, 54, 13
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
 End Sub

 None.

 Description

 Syntax

 Comments

 Example

 See Also

Reset

6-422 SQABasic Language Reference

 Reset
 Statement

 Closes all open disk files and writes any data in the operating system buffers to disk.

 Reset

 None.

 This example creates a file, puts the numbers 1-10 in it, then attempts to Get past
the end of the file. The On Error statement traps the error and execution goes
to the Debugger code which uses Reset to close the file before exiting.

 Sub main
 ' Put the numbers 1-10 into a file
 Dim x as Integer
 Dim y as Integer
 On Error Goto Debugger
 Open "C:\TEMP001" as #1 Len=2
 For x=1 to 10
 Put #1,x, x
 Next x
 Close #1
 msgtext="The contents of the file is:" & Chr(10)
 Open "C:\TEMP001" as #1 Len=2
 For x=1 to 10
 Get #1,x, y
 msgtext=msgtext & Chr(10) & y
 Next x
 MsgBox msgtext
 done:
 Close #1
 Kill "C:\TEMP001"
 Exit Sub
 Debugger:
 MsgBox "Error " & Err & " occurred. Closing open file."
 Reset
 Resume done
 End Sub

 Close

 Description

 Syntax

 Comments

 Example

 See Also

ResetTime

Command Reference 6-423

 ResetTime
 Utility Command

 Resets the delay between execution of script commands to the default delay.

 ResetTime

 The default delay between commands is set in the Playback Options dialog box
in Robot.

 This example resets the time between execution of script commands back to the
value set in the Playback Options dialog box.

 ResetTime

 SetTime

 Resume
 Statement

 Halts an error-handling routine.

 Syntax A Resume Next

 Syntax B Resume label

 Syntax C Resume [0]

 Syntax Element Description

 label The label that identifies the statement to go to after
handling an error.

 When the Resume Next statement is used, control is passed to the statement
that immediately follows the statement in which the error occurred.

 When the Resume [0] statement is used, control is passed to the statement in
which the error occurred.

 The location of the error handler that has caught the error determines where
execution will resume. If an error is trapped in the same procedure as the error
handler, program execution will resume with the statement that caused the error.
If an error is located in a different procedure from the error handler, program

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

RichEdit

6-424 SQABasic Language Reference

control reverts to the statement that last called out the procedure containing the
error handler.

 This example prints an error message if an error occurs during an attempt to open
a file. The Resume statement jumps back into the program code at the label,
done. From here, the program exits.

 Sub main
 Dim msgtext, userfile
 On Error GoTo Debugger
 msgtext="Enter the filename to use:"
 userfile=InputBox$(msgtext)
 Open userfile For Input As #1
 MsgBox "File opened for input."
 'etc....
 Close #1
 done:
 Exit Sub
 Debugger:
 msgtext="Error number " & Err & " occurred at line: " & Erl
 MsgBox msgtext
 Resume done
 End Sub

 Erl Error function
 Err function On Error
 Err statement Trappable Error Codes (Appendix B)
 Error

 RichEdit
 User Action Command

 Performs an action on a rich edit control.

 RichEdit action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

See Appendix E for a list of mouse click and drag values.

► ► ►

 Example

 See Also

 Description

 Syntax

RichEdit

Command Reference 6-425

► ► ►

 Syntax Element Description

 ► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.
If Robot cannot interpret the action being applied to a
scroll bar, which happens with certain custom standalone
scroll bars, it records the action as a click or drag.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Label=$. The text of the label object that immediately

precedes the rich edit control in the Z order.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default state
is the state of the current context window (as set in the
most recent Window SetContext command), or
Enabled if the state has not been otherwise declared.

► VisualText=$. An optional setting used to identify
an object by its prior label. It is for user clarification
only and does not affect object recognition.

parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the x,y coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position in the scroll box. Every scroll bar has
an internal range, and this value is specific to that range.

RichEditVP

6-426 SQABasic Language Reference

 None.

 This example clicks the first rich edit control in the window ObjectIndex=1 at
x,y coordinates of 50,25.

 RichEdit Click, "ObjectIndex=1", "Coords=50,25"

 RichEditVP

 RichEditVP
 Verification Point Command

 Establishes a verification point for a rich edit control.

 Result = RichEditVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareNumeric. Captures the numeric value of

the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► VerifyIsBlank. Checks that the object has no text.
parameters$ VP is required; ExpectedResult
and Wait are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Label=$. The text of the label object that immediately

precedes the rich edit control in the internal order (Z
order) of windows.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

RichEditVP

Command Reference 6-427

► ► ►

 Syntax Element Description

 ► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

Right

6-428 SQABasic Language Reference

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the properties of the first rich edit control in the window
ObjectIndex=1 and compares them to the recorded baseline in verification
point TEST1A.

 Result=RichEditVP(CompareProperties,"ObjectIndex=1","VP=TEST1A")

 RichEdit

 Right
 Function

 Returns a string of a specified number of characters copied from the end of
another string.

 Right[$](string$, length%)

 Syntax Element Description

 $ Optional. If specified, the return type is String. If
omitted, the function will typically return a Variant of
VarType 8 (String).

 string$ A string or expression containing the string to copy.

 length% The number of characters to copy.

 If length% is greater than the length of string$, this function returns the
whole string.

 Right accepts any type of string$, including numeric values, and will convert
the input value to a string. If the value of string$ is NULL, a Variant of
VarType 1 (Null) is returned.

 To obtain a string of a specified number of bytes, copied from the end of another
string, use RightB.

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

RmDir

Command Reference 6-429

 This example checks for the extension .BMP in a file name entered by a user and
activates the Paint application if the file is found. Note this uses the Option
Compare statement to accept either uppercase or lowercase letters for the file
name extension.

 Option Compare Text
 Sub main
 Dim extension as String
 Dim filename as String
 Dim x, i
 filename=InputBox("Enter a .BMP file and path: ")
 extension=Right(filename,3)
 If extension="BMP" then
 StartApplication "pbrush.exe"
 for i = 1 to 10
 DoEvents
 next I
 AppActivate "untitled - Paint"
 DoEvents
 InputKeys "%FO" & filename & "{Enter}"
 Else
 MsgBox "File not found or extension not .BMP."
 End If
 End Sub

 GetField Len Mid statement
 Instr LTrim RTrim
 Left Mid function Trim

 RmDir
 Statement

 Removes a directory.

 RmDir path$

 Syntax Element Description

 path$ A string expression identifying the directory to remove.

 The syntax for path$ is:

 [drive:][\]directory[\directory]

 The drive argument is optional. The directory argument is a directory name.

 The directory to be removed must be empty, except for the working (.) and
parent (..) directories.

 Example

 See Also

 Description

 Syntax

 Comments

Rnd

6-430 SQABasic Language Reference

 This example makes a new temporary directory in C:\ and then deletes it.
 Sub main
 Dim path as String
 On Error Resume Next
 path=CurDir(C)
 If path<>"C:\" then
 ChDir "C:\"
 End If
 MkDir "C:\TEMP01"
 If Err=75 then
 MsgBox "Directory already exists"
 Else
 MsgBox "Directory C:\TEMP01 created"
 MsgBox "Now removing directory"
 RmDir "C:\TEMP01"
 End If
 End Sub

 ChDir Dir
 ChDrive MkDir
 CurDir

 Rnd
 Function

 Returns a single precision random number between 0 and 1.

 Rnd [(number!)]

 Syntax Element Description

 number! A numeric expression to specify how to generate the
random numbers. (<0=use the number specified,
>0=use the next number in the sequence, 0=use the
number most recently generated.)

 If number! is omitted, Rnd uses the next number in the sequence to generate a
random number. The same sequence of random numbers is generated whenever
Rnd is run, unless the random number generator is re-initialized by the
Randomize statement.

 Example

 See Also

 Description

 Syntax

 Comments

Rset

Command Reference 6-431

 This example generates a random string of characters within a range. The Rnd
function is used to set the range between lowercase a and z. The second
For...Next loop slows down processing in the first For...Next loop so that
Randomize can be seeded with a new value each time from the Timer function.

 Sub main
 Dim x as Integer
 Dim y
 Dim str1 as String
 Dim str2 as String
 Dim letter as String
 Dim randomvalue
 Dim upper, lower
 Dim msgtext
 Dim newline as Integer
 upper=Asc("z")
 lower=Asc("a")
 newline=Chr(10)
 For x=1 to 26
 Randomize timer() + x*255
 randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
 letter=Chr(randomvalue)
 str1=str1 & letter
 For y = 1 to 1500
 Next y
 Next x
 msgtext=str1
 MsgBox msgtext
 End Sub

 Exp Log Sqr
 Fix Randomize
 Int Sgn

 Rset
 Statement

 Right aligns one string inside another string.

 Rset string$ = string-expression

 Syntax Element Description

 string$ The string to contain the right-aligned characters.

 string-expression The string containing the characters to put into string$.

 Example

 See Also

 Description

 Syntax

RTrim

6-432 SQABasic Language Reference

 If string$ is longer than string-expression, the leftmost characters of
string$ are replaced with spaces.

 If string$ is shorter than string-expression, only the leftmost characters
of string-expression are copied.

 Rset cannot be used to assign variables of different user-defined types.

 This example uses Rset to right-align an amount entered by the user in a field
that is 15 characters long. It then pads the extra spaces with asterisks (*) and adds
a dollar sign ($) and decimal places (if necessary).

 Sub main
 Dim amount as String*15
 Dim x
 Dim msgtext
 Dim replacement
 Dim position as Integer
 Dim length as Integer
 replacement="*"
 amount=InputBox("Enter an amount:")
 position=InStr(amount,".")
 If Right(amount,3)<>".00" then
 amount=Rtrim(amount) & ".00"
 End If
 Rset amount="$" & Rtrim(amount)
 length=15-Len(Ltrim(amount))
 For x=1 to length
 Mid(amount,x)=replacement
 Next x
 MsgBox "Formatted amount: " & amount
 End Sub

 Lset

 RTrim
 Function

 Copies a string and removes any trailing spaces.

 RTrim[$](expression)

 Syntax Element Description

 $ Optional. If specified the return type is String. If
omitted the function will typically return a Variant of
VarType 8 (string).

 expression The expression to trim. The expression can be a string, or
it can be a numeric data type which Robot passes to the
command as a string.

 Comments

 Example

 See Also

 Description

 Syntax

ScrollBar

Command Reference 6-433

 If the value of string$ is NULL, a Variant of VarType 1 (Null) is returned.

 This example asks for an amount and then right-aligns it in a field that is 15
characters long. It uses Rtrim to trim any trailing spaces in the amount string, if
the number entered by the user is less than 15 digits.

 Sub main
 Dim position as Integer
 Dim length as Integer
 Dim amount as String*15
 Dim x, msgtext, replacement
 replacement="X"
 amount=InputBox("Enter an amount:")
 position=InStr(amount,".")
 If position=0 then
 amount=Rtrim(amount) & ".00"
 End If
 Rset amount="$" & Rtrim(amount)
 length=15-Len(Ltrim(amount))
 For x=1 to length
 Mid(amount,x)=replacement
 Next x
 MsgBox "Formatted amount: " & amount
 End Sub

 GetField Mid function
 Left Mid statement
 Len Right
 LTrim Trim

 ScrollBar
 User Action Command

 Performs an action on a scroll bar.

 ScrollBar action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

See Appendix E for a list of mouse click and drag values.
► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

ScrollBar

6-434 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.
If Robot cannot interpret the action being applied to a
scroll bar, which happens with certain custom standalone
scroll bars, it records the action as a click or drag.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

► ► ►

ScrollBarVP

Command Reference 6-435

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position. Every scroll bar has an internal
range, and this parameter value is specific to that range.

 None.

 This example moves the thumb of the first scroll bar in the window
(ObjectIndex=1) to the 159th position.

 ScrollBar HScrollTo, "ObjectIndex=1", "Position=159"

 ComboBox
 ComboListBox
 ListBox

 ScrollBarVP
 Verification Point Command

 Establishes a verification point for a scroll bar.

 Result = ScrollBarVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid value:
► CompareProperties. Captures object properties

information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

ScrollBarVP

6-436 SQABasic Language Reference

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 Comments

Second

Command Reference 6-437

 This example captures the properties of the first scroll bar control in the window
ObjectIndex=1 and compares them to the recorded baseline in verification
point SCRLLBAR.

 Result=ScrollBarVP(CompareProperties,"ObjectIndex=1","VP=SCRLLBAR")

 ComboBoxVP
 ComboListBoxVP
 ListBoxVP

 Second
 Function

 Returns the second component (0-59) of a date-time value.

 Second(time)

 Syntax Element Description

 time An expression containing a date time value.

 Second accepts any type of time including strings and will attempt to convert
the input value to a date value.

 The return value is a Variant of VarType 2 (integer). If the value of time is
NULL, a Variant of VarType 1 (Null) is returned.

 This example displays the last saved date and time for a file whose name is entered
by the user.

 Sub main
 Dim filename as String
 Dim ftime
 Dim hr, min
 Dim sec
 Dim msgtext as String
 i: msgtext="Enter a filename:"
 filename=InputBox(msgtext)
 If filename="" then Exit Sub
 On Error Resume Next
 ftime=FileDateTime(filename)
 If Err<>0 then
 MsgBox "Error in file name. Try again."
 Goto i:
 End If
 hr=Hour(ftime)
 min=Minute(ftime)
 sec=Second(ftime)
 MsgBox "The file's time is: " & hr &":" &min &":" &sec
 End Sub

 Example

 See Also

 Description

 Syntax

 Comments

 Example

Seek (Function)

6-438 SQABasic Language Reference

 Day Time function
 Hour Time statement
 Minute Weekday
 Month Year
 Now

 Seek (Function)
 Function

 Returns the current file position for an open file.

 Seek(filenumber%)

 Syntax Element Description

 filenumber% An integer expression identifying an open file to query.

 Filenumber% is the number assigned to the file when it was opened. See the
Open statement for more information.

 For files opened in Random mode, Seek returns the number of the next record
to be read or written. For all other modes, Seek returns the file offset for the next
operation. The first byte in the file is at offset 1, the second byte is at offset 2, and
so on. The return value is a Long.

 This example reads the contents of a sequential file line by line (to a carriage
return) and displays the results. The second sub procedure, CREATEFILE, creates
the file C:\TEMP001 used by the main sub procedure.

 Declare Sub createfile
 Sub main
 Dim msgtext as String
 Dim testscore as String
 Dim x, y, newline
 Call createfile
 Open "C:\TEMP001" for Input as #1
 x=1
 newline=Chr(10)
 msgtext= "The test scores are: " & newline
 Do Until x=Lof(1)
 Line Input #1, testscore
 x=x+1
 y=Seek(1)
 If y>Lof(1) then
 x=Lof(1)
 Else
 Seek 1,y
 End If
 msgtext=msgtext & newline & testscore
 Loop

 See Also

 Description

 Syntax

 Comments

 Example

Seek (Statement)

Command Reference 6-439

 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
 End Sub

 Sub createfile()
 Rem Put the numbers 10-100 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=10 to 100 step 10
 Write #1, x
 Next x
 Close #1
 End Sub

 Get Put
 Open Seek statement

 Seek (Statement)
 Statement

 Sets the position within an open file for the next read or write operation.

 Seek [#]filenumber%, position&

 Syntax Element Description

 filenumber% An integer expression identifying an open file to query.

 position& A numeric expression for the starting position of the next
read or write operation (record number or byte offset).

 The Seek statement. If you write to a file after seeking beyond the end of the file,
the file’s length is extended. SQABasic will return an error message if a Seek
operation is attempted that specifies a negative or zero position.

 Filenumber% is an integer expression identifying the open file to Seek in. See
the Open statement for more details.

 For files opened in Random mode, position& is a record number; for all other
modes, position& is a byte offset. Position& is in the range 1 to
2,147,483,647. The first byte or record in the file is at position 1, the second is at
position 2, and so on.

 See Also

 Description

 Syntax

 Comments

Seek (Statement)

6-440 SQABasic Language Reference

 This example reads the contents of a sequential file line by line (to a carriage
return) and displays the results. The second sub procedure, CREATEFILE, creates
the file C:\TEMP001 used by the main sub procedure.

 Declare Sub createfile
 Sub main
 Dim msgtext as String
 Dim testscore as String
 Dim x
 Dim y
 Dim newline
 Call createfile
 Open "C:\TEMP001" for Input as #1
 x=1
 newline=Chr(10)
 msgtext= "The test scores are: " & newline
 Do Until x=Lof(1)
 Line Input #1, testscore
 x=x+1
 y=Seek(1)
 If y>Lof(1) then
 x=Lof(1)
 Else
 Seek 1,y
 End If
 msgtext=msgtext & newline & testscore
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
 End Sub

 Sub createfile()
 Rem Put the numbers 10-100 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=10 to 100 step 10
 Write #1, x
 Next x
 Close #1
 End Sub

 Get Put
 Open Seek function

 Example

 See Also

Select Case

Command Reference 6-441

 Select Case
 Statement

 Executes a series of statements, depending on the value of an expression.

 Select Case testexpression
 [Case expressionlist
 [statement_block]]
 [Case expressionlist
 [statement_block]]
 [Case Else
 [statement_block]]
 End Select

 Syntax Element Description

 testexpression Any expression containing a variable to test.

 expressionlist One or more expressions that contain a possible value for
testexpression.

 statement_block The statements to execute if testexpression equals
expressionlist.

 When there is a match between testexpression and one of the values in
expressionlist, the statement_block following the Case clause is
executed. When the next Case clause is reached, execution control goes to the
statement following the End Select statement.

 The expressionlist(s) can be a comma-separated list of expressions of the
following forms:

 expression
expression To expression
Is comparison_operator expression

 The type of each expression must be compatible with the type of
testexpression.

 Note that when the To keyword is used to specify a range of values, the smaller
value must appear first. The comparison_operator used with the Is
keyword is one of: <, >, =, <=, >=, <>.

 Each statement_block can contain any number of statements on any number
of lines.

 Description

 Syntax

 Comments

Select Case

6-442 SQABasic Language Reference

 This example tests the attributes for a file and if it is hidden, changes it to a non-
hidden file.

 Sub main

 Dim filename as String
 Dim attribs, saveattribs as Integer
 Dim answer as Integer
 Dim archno as Integer
 Dim msgtext as String

 archno=32
 On Error Resume Next
 msgtext="Enter name of a file:"
 filename=InputBox(msgtext)
 attribs=GetAttr(filename)

 If Err<>0 then
 MsgBox "Error in filename. Re-run Program."
 Exit Sub
 End If

 saveattribs=attribs

 If attribs>= archno then
 attribs=attribs-archno
 End If

 Select Case attribs

 Case 2,3,6,7
 msgtext=" File: " &filename & " is hidden." & Chr(10)
 msgtext=msgtext & Chr(10) & " Change it?"
 answer=MsgBox(msgtext,308)
 If answer=6 then
 SetAttr filename, saveattribs-2
 MsgBox "File is no longer hidden."
 Exit Sub
 End If
 MsgBox "Hidden file not changed."

 Case Else
 MsgBox "File was not hidden."
 End Select

 End Sub

 If...Then...Else
 On...Goto
 Option Compare

 Example

 See Also

SendKeys

Command Reference 6-443

 SendKeys
 Statement

 This command should no longer be used. Use the InputKeys command
instead. To maintain the upward compatibility of your existing scripts, the
command does not cause an error.

 Set
 Statement

 Assigns a variable to an OLE2 object.

 Set variableName = expression

 Syntax Element Description

 variableName An object variable or a Variant variable.

 expression An expression that evaluates to an object--typically a
function, an object member, or Nothing.

 The following example shows the syntax for the Set statement:

 Dim OLE2 As Object
Set OLE2 = CreateObject("spoly.cpoly")
OLE2.reset

 Note: If you omit the keyword Set when assigning an object variable, SQABasic
will try to copy the default member of one object to the default member of
another. This usually results in a runtime error:

 ' Incorrect code - tries to copy default member!
OLE2 = GetObject(,"spoly.cpoly")

 Set differs from Let in that Let assigns an expression to an SQABasic variable.
For example,

 Set o1 = o2 'Sets the object reference
 Let o1 = o2 'Sets the value of the default member

 Description

 Syntax

 Comments

SetAttr

6-444 SQABasic Language Reference

 This example displays a list of open files in the software application, VISIO. It uses
the Set statement to assign VISIO and its document files to object variables. To see
how this example works, you need to start VISIO and open one or more documents.

 Sub main

 Dim visio as Object
 Dim doc as Object
 Dim msgtext as String
 Dim i as Integer, doccount as Integer

 'Initialize Visio
 Set visio = GetObject(,"visio.application") ' find Visio
 If (visio Is Nothing) then
 MsgBox "Couldn't find Visio!"
 Exit Sub
 End If

 'Get # of open Visio files
 doccount = visio.documents.count 'OLE2 call to Visio
 If doccount=0 then
 msgtext="No open Visio documents."
 Else
 msgtext="The open files are: " & Chr$(13)
 For i = 1 to doccount
 ' access Visio's document method
 Set doc = visio.documents(i)
 msgtext=msgtext & Chr$(13) & doc.name
 Next i
 End If
 MsgBox msgtext

 End Sub

 Class List Nothing
 CreateObject Object Class
 Is Typeof
 New

 SetAttr
 Statement

 Sets the attributes for a file.

 SetAttr pathname$, attributes%

 Example

 See Also

 Description

 Syntax

SetAttr

Command Reference 6-445

 Syntax Element Description

 pathname$ A string expression containing the file name to modify.

 attributes% An integer containing the new attributes for the file.
Valid attributes:

 0. Normal file
 1. Read-only file
 2. Hidden file
 4. System file
 32. Archive - file has changed since last backup

 Wildcards are not allowed in pathname$. If the file is open, you can modify its
attributes, but only if it is opened for Read access.

 This example tests the attributes for a file and if it is hidden, changes it to a normal
(not hidden) file.

 Sub main
 Dim filename as String
 Dim attribs, saveattribs as Integer
 Dim answer as Integer
 Dim archno as Integer
 Dim msgtext as String
 archno=32
 On Error Resume Next
 msgtext="Enter name of a file:"
 filename=InputBox(msgtext)
 attribs=GetAttr(filename)
 If Err<>0 then
 MsgBox "Error in filename. Re-run Program."
 Exit Sub
 End If
 saveattribs=attribs
 If attribs>= archno then
 attribs=attribs-archno
 End If
 Select Case attribs
 Case 2,3,6,7
 msgtext=" File: " &filename & " is hidden." & Chr(10)
 msgtext=msgtext & Chr(10) & " Change it?"
 answer=MsgBox(msgtext,308)
 If answer=6 then
 SetAttr filename, saveattribs-2
 MsgBox "File is no longer hidden."
 Exit Sub
 End If
 MsgBox "Hidden file not changed."
 Case Else
 MsgBox "File was not hidden."
 End Select
 End Sub

 FileAttr
 GetAttr

 Comments

 Example

 See Also

SetField

6-446 SQABasic Language Reference

 SetField
 Function

 Replaces a field within a string and returns the modified string. .

 SetField[$](string$, field_number%, field$,
separator_chars$)

 Syntax Element Description

 $ Optional. If specified, the return type is String. If
omitted, the function typically returns a Variant of
VarType 8 (String).

 string$ A string consisting of a series of fields, separated by
separator_char$.

 field_number% An integer for the field to replace within string$.

 field$ An expression containing the new value for the field.

 separator_char$ A string containing the character(s) used to separate the
fields in string$.

 separator_char$ can contain multiple separator characters, although the first
one will be used as the separator character.

 The field_number% starts with 1. If field_number% is greater than the
number of fields in the string, the returned string will be extended with separator
characters to produce a string with the proper number of fields.

 It is legal for the new field$ value to be a different size than the old value.

 This example extracts the last name from a full name entered by the user.

 Sub main
 Dim username as String
 Dim position as Integer
 username=InputBox("Enter your full name:")
 Do
 position=InStr(username," ")
 If position=0 then
 Exit Do
 End If
 username=SetField(username,1," "," ")
 username=Ltrim(username)
 Loop
 MsgBox "Your last name is: " & username
 End Sub

 GetField

 Description

 Syntax

 Comments

 Example

 See Also

SetThinkAvg

Command Reference 6-447

SetProcID
 Flow Control Command

 This command is obsolete in the current version of SQABasic and should no
longer be used. To maintain the upward compatibility of your existing scripts, the
command does not cause an error, but it has no effect on script execution.

 SetThinkAvg
 Timing and Coordination Command

 Sets the average “think time” delay for the next user action.

 SetThinkAvg avgThinkTime%

 Syntax Element Description

 avgThinkTime% The delay, in milliseconds Robot observed between two
actions during recording. During playback in Robot,
Robot used avgThinkTime as the actual think time
delay. During playback in LoadTest, LoadTest uses
avgThinkTime to calculate the think time delay.

 Robot records this command if Record Think Time is selected in the General tab
of the GUI Record Options dialog box. During playback, Robot performs think
time delays only if Use recorded think time is selected in the Playback tab of the
GUI Playback Options dialog box.

 Robot delays execution of the next user action during synchronized testing. If
running in a LoadTest Schedule, LoadTest may adjust the AvgThinkTime% to
prevent playback of simultaneous GUI agents running in lock step. If running as a
stand-alone Robot script, the avgThinkTime% is the actual delay time.

 This example sets an average think time of 1500 milliseconds (1.5 seconds).

 SetThinkAvg 1500

 TypingDelays

 Description

 Syntax

 Comments

 Example

 See Also

SetTime

6-448 SQABasic Language Reference

 SetTime
 Utility Command

 Sets the delay between script commands to the specified number of millisecond.

 SetTime (TimeInterval&)

 Syntax Element Description

 TimeInterval& The number of millisecond to delay between commands.

 This command overrides the Delay Between Commands setting in the Playback
Options dialog box in Robot.

 This example sets the delay between execution of script commands to 1000
milliseconds (1 second).

 SetTime (1000)

 ResetTime

 Sgn
 Function

 Returns a value indicating the sign of a number.

 Sgn(number)

 Syntax Element Description

 number An expression for the number to use.

 The value that the Sgn function returns depends on the sign of number:

► For numbers > 0, Sgn (number) returns 1.

► For numbers = 0, Sgn (number) returns 0.

► For numbers < 0, Sgn (number) returns -1.

This example tests the value of the variable profit and displays 0 for profit if it is a
negative number. The sub procedure uses Sgn to determine whether profit is
positive, negative or zero.

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

Example

Shell

Command Reference 6-449

Sub main
Dim profit as Single
Dim expenses, sales
expenses=InputBox("Enter total expenses: ")
sales=InputBox("Enter total sales: ")
profit=Val(sales)-Val(expenses)
If Sgn(profit)=1 then

MsgBox "Yeah! We turned a profit!"
ElseIf Sgn(profit)=0 then

MsgBox "Okay. We broke even."
Else

MsgBox "Uh, oh. We lost money."
End If

End Sub

Exp Log
Fix Rnd
Int Sqr

Shell
Function

Starts a Windows application and returns its task ID.

Shell(pathname$, [windowstyle%])

Syntax Element Description

pathname$ The name of the program to execute.

windowstyle% An integer value for the style of the program’s window
(1-7). Windowstyle% is one of the following values:
1. Normal window with focus
2. Minimized with focus
3. Maximized with focus
4. Normal window without focus
7. Minimized without focus

If windowstyle% is not specified, the default of
windowstyle% = 1 is assumed (normal window with
focus).

Shell runs an executable program. Pathname$ can be the name of any valid
.COM, .EXE, .BAT, or .PIF file. Arguments or command line switches can be
included. If pathname$ is not a valid executable file name, or if Shell cannot
start the program, an error message occurs.

Shell returns the task ID for the program, a unique number that identifies the
running program.

See Also

Description

Syntax

Comments

Sin

6-450 SQABasic Language Reference

This example runs Notepad in maximized format.
Sub main

Shell "Notepad.exe",3
InputKeys "Hello, world.{enter}Notepad is maximized."

End sub

AppActivate
Command
InputKeys

Sin
Function

Returns the sine of an angle specified in radians.

Sin(number)

Syntax Element Description

number An expression containing the angle in radians.

The return value will be between -1 and 1. The return value is single-precision if
the angle is an integer, currency or single-precision value, double precision for a
long, Variant or double-precision value. The angle is specified in radians, and can
be either positive or negative.

To convert degrees to radians, multiply by (PI/180). The value of PI is 3.14159.

This example finds the height of the building, given the length of a roof and the
roof pitch.

Sub main
Dim height, rooflength
Dim pitch
Dim msgtext
Const PI=3.14159
Const conversion= PI/180
pitch=InputBox("Enter the roof pitch in degrees:")
pitch=pitch*conversion
rooflength=InputBox("Enter the length of the roof in feet:")
height=Sin(pitch)*rooflength
msgtext="The height of the building is "
msgtext=msgtext & Format(height, "##.##") & " feet."
MsgBox msgtext

End Sub

Example

See Also

Description

Syntax

Comments

Example

Space

Command Reference 6-451

Atn
Cos
Tan
Derived Trigonometric functions (Appendix D)

Space
Function

Returns a string of spaces.

Space[$](number)

Syntax Element Description

$ Optional. If specified the return type is String. If
omitted, the function will return a Variant of VarType
8 (String).

number A numeric expression for the number of spaces to return.

number can be any numeric data type, but will be rounded to an integer. number
must be between 0 and 32,767.

This example prints the octal numbers from 1 to 15 as a two-column list and uses
Space to separate the columns.

Sub main
Dim x,y
Dim msgtext
Dim nofspaces
msgtext="Octal numbers from 1 to 15:" & Chr(10)
For x=1 to 15
nofspaces=10
y=Oct(x)
If Len(x)=2 then

nofspaces=nofspaces-2
End If
msgtext=msgtext & Chr(10) & x & Space(nofspaces) & y

Next x
MsgBox msgtext

End Sub

Spc
String

See Also

Description

Syntax

Comments

Example

See Also

Spc

6-452 SQABasic Language Reference

Spc
Function

Prints a number of spaces.

Spc (n)

Syntax Element Description

n An integer for the number of spaces to output.

The Spc function can be used only inside Print statement.

When the Print statement is used, the Spc function will use the following rules
for determining the number of spaces to output:

1. If n is less than the total line width, Spc outputs n spaces.

2. If n is greater than the total line width, Spc outputs n Mod width spaces.

3. If the difference between the current print position and the output line width
(call this difference x) is less than n or n Mod width, then Spc skips to the
next line and outputs n - x spaces.

To set the width of a print line, use the Width statement.

This example puts five spaces and the string ABCD to a file. The five spaces are
derived by taking 15 MOD 10, or the remainder of dividing 15 by 10.

Sub main
Dim str1 as String
Dim x as String*10
str1="ABCD"
Open "C:\TEMP001" For Output As #1
Width #1, 10
Print #1, Spc(15); str1
Close #1
Open "C:\TEMP001" as #1 Len=12
Get #1, 1,x
MsgBox "The contents of the file is: " & x
Close #1
Kill "C:\TEMP001"

End Sub

Print Tab
Space Width

Description

Syntax

Comments

Example

See Also

SpinControl

Command Reference 6-453

SpinControl
User Action Command

Performs an action on a spin control.

SpinControl action%, recMethod$, parameters$

Syntax Element Description

action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its visible text. It is for user clarification
only and does not affect object recognition.

► ► ►

Description

Syntax

SpinControlVP

6-454 SQABasic Language Reference

► ► ►

Syntax Element Description

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 None.

 This example clicks the first spin control in the window (ObjectIndex=1) at
x,y coordinates of 50,25.

 SpinControl Click, "ObjectIndex=1", "Coords=50,25"

 SpinControlVP

 SpinControlVP
 Verification Point Command

 Establishes a verification point for a spin control.

 Result = SpinControlVP (action%,recMethod$,parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareNumeric. Captures the numeric value of

the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

SpinControlVP

Command Reference 6-455

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

SQAConsoleClear

6-456 SQABasic Language Reference

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the properties of the first spin control in the window
(ObjectIndex=1) and compares them to the recorded baseline in verification
point TEST1A.

 Result=SpinControlVP(CompareProperties,"ObjectIndex=1","VP=TEST1A")

 SpinControl

 SQAConsoleClear
 Utility Command

 Clears the text currently displayed in the Robot console window.

 SQAConsoleClear

 None.

 This example clears the contents of the Robot console window.

 SQAConsoleClear

 SQAConsoleWrite

 SQAConsoleWrite
 Utility Command

 Writes the specified text to the Robot console window.

 SQAConsoleWrite text$

 Syntax Element Description

 text$ The text to write to the Robot console window.

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

SQADatapoolClose

Command Reference 6-457

 The message remains in the Robot console window until you clear it with
SQAConsoleClear or until it is overwritten.

 The SQAConsoleWrite command includes a carriage return/line feed with the
line of text.

 Use the command Chr$(13) to insert a carriage return into the message. For
example, this command adds a blank line between “Line1” and “Line2”:

SQAConsoleWrite "Line1" + Chr$(13) + Chr$(13) + "Line2"

 This example writes the text “Start of Playback” to the Robot console window.

 SQAConsoleWrite "Start of Playback"

 SQAConsoleClear

 SQADatapoolClose
 Datapool Command

 Closes the specified datapool.

 return& = SQADatapoolClose (datapool_id&)

 Syntax Element Description

 datapool_id& An ID returned by SQADatapoolOpen specifying the
datapool to close.

 This command requires that you include the header file SQAUTIL.SBH with the
SQABasic metacommand '$Include.

 This function has the following possible return values (Long):

 sqaDpSuccess 0
sqaDpUninitialized -1
sqaDpFailure -2
sqaDpExtendedError -999

 This example opens a datapool named repo_dp1 and then closes it.

 '$Include "sqautil.sbh"
 DIM dp_id as Long
 DIM dp_Result as Long
 dp_id=SQADatapoolOpen ("repo_dp1", FALSE, SQA_DP_SEQUENTIAL, FALSE)
 dp_Result = SQADatapoolClose (dp_id)

 SQADatapoolOpen

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

SQADatapoolFetch

6-458 SQABasic Language Reference

 SQADatapoolFetch
 Datapool Command

 Moves the datapool cursor to the next row.

 return& = SQADatapoolFetch (datapool_id&)

 Syntax Element Description

 datapool_id& An ID returned by SQADatapoolOpen that represents
an open datapool.

 This command requires that you include the header file SQAUTIL.SBH with the
SQABasic metacommand '$Include.

 This function has the following possible return values (Long):

 sqaDpSuccess 0
sqaDpUninitialized -1
sqaDpFailure -2
sqaDpEOF -3
sqaDpExtendedError -999

 SQADatapoolFetch retrieves the next row in the datapool. The “next row” in the
datapool is determined by the arguments you set in SQADatapoolOpen.

 If cursor wrapping is disabled, and the last row of the datapool has been retrieved,
a call to SQADatapoolFetch returns sqaDpEOF. If SQADatapoolValue is
called after sqaDpEOF is returned, a runtime error occurs. (Cursor wrapping is
disabled when the wrap argument of SQADatapoolOpen is False.)

 This example opens a datapool named repo_dp1, moves the cursor to the next
row, and then closes the datapool.

 '$Include "sqautil.sbh"
 DIM dp_id as Long
 DIM dp_Result as Long
 dp_id=SQADatapoolOpen ("repo_dp1", FALSE, SQA_DP_SEQUENTIAL, FALSE)
 dp_Result = SQADatapoolFetch (dp_id)
 dp_Result = SQADatapoolClose (dp_id)

 SQADatapoolOpen SQADatapoolValue
 SQADatapoolRewind

 Description

 Syntax

 Comments

 Example

 See Also

SQADatapoolOpen

Command Reference 6-459

 SQADatapoolOpen
 Datapool Command

 Opens the specified datapool and provides information about the datapool cursor.

 return& = SQADatapoolOpen ("name$", [wrap], [sequence],
[exclusive])

 Syntax Element Description

 name$ The name of the datapool to open.

 wrap A optional Variant that indicates whether the datapool
cursor should return to the first row in the row access
order after the last row has been reached. Valid values:
► True. After the last row in the access order has been

reached, the cursor returns to the first row.
► False. The default. After the last row in the access

order has been reached, datapool access ends.
 If you attempt to retrieve a datapool value after the end
of the datapool is reached, a runtime error occurs.

 To ensure that unique datapool rows are fetched, specify
False, and make sure the datapool has at least as many
rows as the number of users (and user iterations) that will
be requesting rows at runtime.

 This argument is ignored when sequence is
SQA_DP_RANDOM.

 sequence An optional Variant that determines row access order.
Valid values:
► SQA_DP_SEQUENTIAL. The default. Datapool access

is in sequential order. Access begins with the first
row stored in the datapool file, and it ends with the last
row.

► SQA_DP_RANDOM. Datapool access is in random
order. Rows are retrieved in any order, and any given
row can be retrieved multiple times or not at all.

► SQA_DP_SHUFFLE. Datapool access is in shuffled
order. Each time Robot or LoadTest rearranges, or
“shuffles,” the access order of all datapool rows, a
unique sequence results. Each row is referenced in a
shuffled sequence only once.

► ► ►

 Description

 Syntax

SQADatapoolOpen

6-460 SQABasic Language Reference

► ► ►

 Syntax Element Description

 exclusive An optional Variant that indicates whether the datapool
cursor is shared with other users or is exclusive for an
individual user. Valid values:
► True. Indicates exclusive use of the datapool cursor.

Each user’s cursor operates independently of the
others.

► False. The default. Indicates a shared datapool
cursor.

This argument applies only to GUI scripts played back
within a LoadTest schedule.

 This command requires that you include the header file SQAUTIL.SBH with the
SQABasic metacommand '$Include.

 Upon successful execution, this function returns a handle (a positive Long value)
for subsequent datapool commands. If the command is not successful, one of
these values is returned (Long):

 sqaDpUninitialized -1
sqaDpFailure -2
sqaDpInvalidArgument -998
sqaDpExtendedError -999

 With a shared cursor (shareType=True), all users work from the same access
order. For example, if the access order for a Colors column is Red, Blue, and
Green, the first user to request a value is assigned Red, the second is assigned
Blue, and the third is assigned Green.

 With a private cursor (shareType=False), each user starts at the top of its
exclusive access order. With random order (sequence=SQA_DP_RANDOM) or
shuffle access (sequence=SQA_DP_SHUFFLE), the access order is unique for
each user. With sequential access (sequence=SQA_DP_SEQUENTIAL), the
access order is the same for each user (ranging from the first row stored in the file
to the last).

 When using a private cursor with a sequential access order, you typically have each
user run multiple iterations of the script. If each user runs a single iteration of the
script, they each would access the same datapool row (the first row in the datapool).

 Think of non-sequential access order (SQA_DP_SHUFFLE and SQA_DP_RANDOM)
as being like a shuffled deck of cards. With SQA_DP_SHUFFLE access order, each
time you pick a card (access a row), you remove the card from the pack. But with
SQA_DP_RANDOM access order, the selected card is returned somewhere in the
pack, making it available for selection again.

 Comments

SQADatapoolOpen

Command Reference 6-461

 Also, with SQA_DP_SHUFFLE, after you reach the last card in the pack, you
either reshuffle the pack and start again (wrap=True), or no more selections are
made (wrap=False).

 With SQA_DP_RANDOM, you never reach the end of the pack (there is no end-of-
file condition) so wrap is ignored).

 If multiple users (GUI users and/or virtual users) access the same datapool in a
LoadTest schedule, the datapool cursor is managed as follows:

► For shared cursors, the first call to SQADatapoolOpen initializes the cursor.
In the same schedule run, users that subsequently call SQADatapoolOpen
to open the same datapool share the initialized cursor.

► For private cursors, the first call to SQADatapoolOpen initializes the user's
private cursor. In the user's subsequent calls to SQADatapoolOpen in the
same schedule, the cursor is set to the last row accessed by that user.

 In SQABasic, SQADatapoolOpen is the only way to define the datapool’s cursor
and row access order. Unlike the VU scripting language, SQABasic does not
include a DATAPOOL_CONFIG statement.

 Only one emulated user can exist during Robot playback. If a script contains
multiple transactions, or if a shell script executes multiple scripts, playback is
considered to be one user performing multiple transactions. As a result, the
concept of a shared cursor doesn’t apply when scripts are played back in Robot.

 This example opens a datapool named repo_dp1 using the default access order
settings. In this example, the datapool is opened for sequential access. All users
share the same cursor, meaning that the first user to request a row retrieves the
first row in the file, the second user retrieves the second row, and so on. After the
last row in the datapool is reached, access to the datapool ends.

 '$Include "sqautil.sbh"
 DIM dp_id as Long
 dp_id = SQADatapoolOpen ("repo_dp1", FALSE, SQA_DP_SEQUENTIAL, FALSE)

 This example opens a datapool named repo_dp2. In this example, the datapool is
opened for shuffle access. Each user maintains an exclusive cursor, meaning that
each user retrieves rows according to a unique access order. After a user reaches
the last row in the datapool, the user’s exclusive cursor returns to the first row.

 '$Include "sqautil.sbh"
 DIM dp_id as Long
 dp_id = SQADatapoolOpen ("repo_dp2", TRUE, SQA_DP_SHUFFLE, TRUE)

 This example opens a datapool named repo_dp3. In this example, the datapool is
opened for random access. All users share the same cursor, meaning that the first
user to request a row retrieves the first row in the random order, the second user
retrieves the second row, and so on. Because rows can appear in the access order

 Example

SQADatapoolRewind

6-462 SQABasic Language Reference

multiple times, there is no actual end to the access order. Therefore, the wrap
argument is ignored.

 '$Include "sqautil.sbh"
 DIM dp_id as Long
 dp_id = SQADatapoolOpen ("repo_dp3", FALSE, SQA_DP_RANDOM, FALSE)

 SQADatapoolClose
 SQADatapoolFetch
 SQADatapoolRewind
 SQADatapoolValue

 SQADatapoolRewind
 Datapool Command

 Resets the datapool cursor to the start of the datapool access order.

 return& = SQADatapoolRewind (datapool_id&)

 Syntax Element Description

 datapool_id& An ID returned by SQADatapoolOpen that represents
an open datapool.

 This command requires that you include the header file SQAUTIL.SBH with the
SQABasic metacommand '$Include.

 This function has the following possible return values (Long):

 sqaDpSuccess 0
sqaDpUninitialized -1
sqaDpFailure -2
sqaDpExtendedError -999

 This command rewinds the private cursor for the datapool referenced by
datapool_id.

 The datapool is rewound as follows:

► With datapools opened for SQA_DP_SEQUENTIAL access,
SQADatapoolRewind resets the cursor to the first record in the datapool file.

► With datapools opened for SQA_DP_RANDOM or SQA_DP_SHUFFLE access,
SQADatapoolRewind restarts the random number sequence.

► With datapools opened for SQA_DP_SHARED access,
SQADatapoolRewind has no effect.

 See Also

 Description

 Syntax

 Comments

SQADatapoolValue

Command Reference 6-463

 See the sequence argument of SQADatapoolOpen for descriptions of
SQA_DP_SEQUENTIAL, SQA_DP_RANDOM, and SQA_DP_SHUFFLE.

 At the start of a test, datapool cursors always point to the first row.

 If you rewind the datapool during a test, previously accessed rows will be
fetched again.

 This example opens a datapool named repo_dp1, moves the cursor to the next
row, resets the cursor, and then closes the datapool.

 '$Include "sqautil.sbh"
 DIM dp_id as Long
 DIM dp_Result as Long
 dp_id=SQADatapoolOpen ("repo_dp1", FALSE, SQA_DP_SEQUENTIAL, FALSE)
 dp_Result = SQADatapoolFetch (dp_id)
 dp_Result = SQADatapoolRewind (dp_id)
 dp_Result = SQADatapoolClose (dp_id)

 SQADatapoolFetch

 SQADatapoolValue
 Datapool Command

 Retrieves the value of the specified datapool column.

 return& = SQADatapoolValue (datapool_id&, column, value$)

 Syntax Element Description

 datapool_id& An ID returned by SQADatapoolOpen that represents
an open datapool.

 column A Variant that specifies the name or ID of the datapool
column to retrieve. The value can be either a number (a
Long or Integer) indicating the column number, or a
String indicating the column name. Column names are
case sensitive.

 The column is in the current row retrieved with
SQADatapoolFetch.

 value$ Contains the value from the datapool column upon
successful return.

 Example

 See Also

 Description

 Syntax

SQADatapoolValue

6-464 SQABasic Language Reference

 This command requires that you include the header file SQAUTIL.SBH with the
SQABasic metacommand '$Include.

 This function has the following possible return values (Long):

 sqaDpSuccess 0
sqaDpUninitialized -1
sqaDpFailure -2
sqaDpInvalidArgument -998
sqaDpExtendedError -999

 If cursor wrapping is disabled, and the last row of the datapool has been retrieved,
a call to SQADatapoolFetch returns sqaDpEOF. If SQADatapoolValue is
called after sqaDpEOF is returned, a runtime error occurs. (Cursor wrapping is
disabled when the wrap argument of SQADatapoolOpen is False.)

 If you use a column number rather than a column name in column, note that the
first datapool column listed in the TestManager Datapool Specification dialog box
is datapool column 1.

 Type checking for the column argument is done at runtime, since a Variant
can contain data types other than a Long or String.

 This example opens a datapool named repo_dp1, moves the cursor to the next
row, retrieves the value from column 1, and then closes the datapool.

 '$Include "sqautil.sbh"
 DIM dp_id as Long
 DIM dp_Result as Long
 dp_id = SQADatapoolOpen ("repo_dp1", FALSE, SQA_DP_SEQUENTIAL,
 FALSE)
 dp_Result = SQADatapoolFetch (dp_id)
 dp_Result = SQADatapoolValue (dp_id, 1, dp_Value)
 dp_Result = SQADatapoolClose (dp_id)

 SQADatapoolFetch

 Comments

 Example

 See Also

SQAEnvCreateBaseline

Command Reference 6-465

SQAEnvCreateBaseline
Utility Command

Captures a snapshot of the environment state before one or more tasks are
performed that change or are suspected of changing the environment.

Result = SQAEnvCreateBaseline(fileName$)

Syntax Element Description

fileName$ The name of the pre-task snapshot. This name is used as
the file name for the snapshot data.

Returns 1 if the function call succeeds or 0 if it fails.

This command requires that you include the header file SQAUTIL.SBH with the
SQABasic metacommand '$Include.

You cannot view the snapshot data in fileName$. However, by calling
SQAEnvCreateDelta, you can view a comparison report of two snapshot files.

You can reuse file names. Using an existing name when creating a new pre-task
snapshot destroys the previous version of the snapshot.

The following code fragment captures a snapshot of the environment just before
and after the application-under-test is installed.

'$Include "sqautil.sbh"
...

' Capture a pre-task snapshot
Result = SQAEnvCreateBaseline("PreInstall")
If Result = 0 Then

MsgBox "Error capturing the pre-task snapshot. "
End If

' Install the application-under-test
...

' Capture a post-task snapshot
Result = SQAEnvCreateCurrent("PostInstall")
If Result = 0 Then

MsgBox "Error capturing the post-task snapshot. "
End If
...

SQAEnvCreateCurrent
SQAEnvCreateDelta

Description

Syntax

Comments

Example

See Also

SQAEnvCreateCurrent

6-466 SQABasic Language Reference

SQAEnvCreateCurrent
Utility Command

Generates a snapshot of the environment state just after some task is performed
that changes or is suspected of changing the environment.

Result = SQAEnvCreateCurrent(fileName$)

Syntax Element Description

fileName$ The name of the post-task snapshot. This name is used as
the file name for the snapshot data.

Returns 1 if the function call succeeds or 0 if it fails.

This command requires that you include the header file SQAUTIL.SBH with the
SQABasic metacommand '$Include.

You cannot view the snapshot data in fileName$. However, by calling
SQAEnvCreateDelta, you can view a comparison report of two snapshot files.

A snapshot captured with SQAEnvCreateCurrent can be used as both a post-
task snapshot and, at a later point in the script, as a pre-task snapshot. For example,
you might want to compare the post-task snapshot captured after you installed the
application-under-test with a current snapshot taken after you perform a particular
task with the application-under-test. In this case, both snapshots are created with
SQAEnvCreateCurrent.

You can reuse file names. Using an existing name when creating a new post-task
snapshot destroys the previous version of the snapshot.

The following code fragment captures a snapshot of the environment just before
and after the application-under-test is installed.

'$Include "sqautil.sbh"
...

' Capture a pre-task snapshot
Result = SQAEnvCreateBaseline("PreInstall")
If Result = 0 Then

MsgBox "Error capturing the pre-task snapshot. "
End If

' Install the application-under-test
...

' Capture a post-task snapshot
Result = SQAEnvCreateCurrent("PostInstall")
If Result = 0 Then

MsgBox "Error capturing the post-task snapshot. "
End If

Description

Syntax

Comments

Example

SQAEnvCreateDelta

Command Reference 6-467

SQAEnvCreateBaseline
SQAEnvCreateDelta

SQAEnvCreateDelta
Utility Command

Creates a comparison report of the data captured in the pre-task and post-task
snapshots.

Result=SQAEnvCreateDelta(preTask$,postTask$,showReport%)

Syntax Element Description

preTask$ The name of the file containing the pre-task snapshot
captured with either SQAEnvCreateBaseline or
SQAEnvCreateCurrent.

postTask$ The name of the file containing the post-task snapshot
captured with SQAEnvCreateCurrent.

showReport% Specifies whether you want to show the snapshot
comparison report in a browser. Valid values:
► 1. Show the report in a browser.
► 0. Do not show the report in a browser.

Returns 1 if the function call succeeds or 0 if it fails.

This command requires that you include the header file SQAUTIL.SBH with the
SQABasic metacommand '$Include.

SQAEnvCreateDelta compares any two snapshots of the environment. For
example, you might capture and compare a snapshot of the current environment
state (captured with SQAEnvCreateCurrent) with either of these snapshots:

► A snapshot of a “clean machine” captured with SQAEnvCreateBaseline.
Typically, you capture a clean-machine state early in your script, before you
begin to install the application-under-test or perform other tasks that might
affect the environment.

► A snapshot captured previously with SQAEnvCreateCurrent. For
example, you might want to compare the post-task snapshot captured after
you installed the application-under-test with a current snapshot taken after
you perform a particular task with the application-under-test. In this case,
both snapshots are created with SQAEnvCreateCurrent.

See Also

Description

Syntax

Comments

SQAEnvCreateDelta

6-468 SQABasic Language Reference

The snapshot comparison report is stored in a .HTM file. If you pass the value 1
in showReport%, this file is automatically displayed in a browser. If you want to
locate this file yourself, you can find the path and file name as follows:

► The path is the log path plus the subdirectory \RESULTS. To find the log
path, call SQAGetLogDir.

► The file is a .HTM file with the following root name structure:

postTask$ - preTask$

The following code fragment captures a snapshot of the environment just before and
after the application-under-test is installed. It then calls SQAEnvCreateDelta to
compare the two snapshots and display a comparison report.

'$Include "sqautil.sbh"
...

' Capture a pre-task snapshot
Result = SQAEnvCreateBaseline("PreInstall")
If Result = 0 Then

MsgBox "Error capturing the pre-task snapshot. "
End If

' Install the application-under-test
...

' Capture a post-task snapshot
Result = SQAEnvCreateCurrent("PostInstall")
If Result = 0 Then

MsgBox "Error capturing the post-task snapshot. "
End If

' Compare the pre-task and post-task snapshots and
' generate a report
Result = SQAEnvCreateDelta("PreInstall","PostInstall",1)
If Result = 0 Then

MsgBox "Error generating the comparison report."
End If
...

SQAEnvCreateBaseline
SQAEnvCreateCurrent
SQAGetLogDir

Example

See Also

SQAFindObject

Command Reference 6-469

 SQAFindObject
 Object Scripting Command

 Searches for a specified object.

 status% = SQAFindObject(recMethod$)

 Syntax Element Description

 recMethod$ The recognition method values you use to identify an
object depend on the object you’re accessing. For example,
if you’re accessing a push button object, use the
recognition method values listed for the PushButton
user action command.

 In addition, you might need to use Type= to specify the
object type, and/or use context notation to specify the
context for the object. For details, see Specifying an Object
in Chapter 5.

 Returns the Integer 0 (sqaSuccess) if SQAFindObject finds the specified
object. If an error occurs, returns a status code that specifies the error. See the list
of Object Scripting status codes in Appendix C.

 This command is useful to test if an object exists before you query its properties
or act upon it in some other way.

 If SQAFindObject doesn’t locate the specified object immediately, it returns
sqaObjectNotFound. If you want to wait a certain time period for the object
to appear, use SQAWaitForObject.

 If this command acts upon a Java object, any parent Java object must be referenced
in the command’s recMethod$ argument. This command ignores any parent
object information in a preceding Browser command. For more information, see
Using Object Scripting Commands with Java Objects in Chapter 4.

 In this example, the user-defined function CheckForOKCancelButtons()
verifies that the current window contains an OK and a Cancel button. It returns
either sqaPass or sqaFail.

 Function CheckForOKCancelButtons () As Integer
 Dim Result as Integer
 If SQAFindObject("Type=PushButton;Text=OK") = sqaSuccess And

SQAFindObject("Type=PushButton;Text=Cancel") = sqaSuccess
Then Result = sqaPass

 Else
 Result = sqaFail
 End If

 Description

 Syntax

 Comments

 Example

SQAGetCaptionTerminatorChar

6-470 SQABasic Language Reference

 'Get the recognition information for current context window
 Dim CurrentWindow As Variant
 SQAGetProperty ".\", "Recognition", CurrentWindow
 SQALogMessage Result, "Test for existence of OK and Cancel

buttons", "Window being tested: " + CurrentWindow
 CheckForOKCancelButtons = Result
 End Function

 'Example of using above function in a script
 Sub Main
 Dim Result As Integer
 Window SetContext, "Name=myApp", ""
 MenuSelect "File->Open..."
 Result = CheckForOKCancelButtons()
 End Main

 SQAGetChildren
 SQAWaitForObject

 SQAGetCaptionTerminatorChar
 Utility Command

 Retrieves the character that Robot is currently using as the window caption
terminator character.

 charcode% = SQAGetCaptionTerminatorChar()

 Syntax Element Description

 charcode% The ANSI code of the character currently being used as
the caption terminator.

 If no caption terminator is set, the return value is zero (0).

 You can use Chr$ to convert the return value into its string equivalent.

 SQAGetCaptionTerminatorChar is the new name for the command
PLAGetCaptionTerminatorChar.

 This example retrieves the character currently being used as the Robot caption
terminator, and then checks to determine if this character is the dash symbol (-).

 charcode% = SQAGetCaptionTerminatorChar()
 If Chr$(charcode%) = "-" Then
 'Caption terminator is the dash symbol...
 End If

 SQASetCaptionTerminatorChar

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

SQAGetChildren

Command Reference 6-471

 SQAGetChildren
 Object Scripting Command

 Retrieves an array containing recognition methods that identify each of an object’s
child objects.

 status% = SQAGetChildren(recMethod$,aChildren())

 Syntax Element Description

 recMethod$ The recognition method values you use to identify an
object depend on the object you’re accessing. For example,
if you’re accessing a push button object, use the
recognition method values listed for the PushButton
user action command.

 In addition, you might need to use Type= to specify the
object type, and/or use context notation to specify the
context for the object. For details, see Specifying an Object
in Chapter 5.

 aChildren An output argument that the command fills with an array
of strings. This is a 0-based array that is defined as follows:
 Dim aChildren() as String

 Returns the Integer 0 (sqaSuccess) if SQAGetChildren executes
successfully. If an error occurs, returns a status code that specifies the error. See
the list of Object Scripting status codes in Appendix C.

 This command requires that you include the header file SQAUTIL.SBH with the
SQABasic metacommand '$Include.

 The full recognition method for the child object is retrieved. The full recognition
method includes the parent object’s recognition method, a backslash (\), and the
child object’s recognition method — for example:
 "\;Name=ParentObj;\;Name=ChildObj"

 If this command acts upon a Java object, any parent Java object must be referenced
in the command’s recMethod$ argument. This command ignores any parent
object information in a preceding Browser command. For more information, see
Using Object Scripting Commands with Java Objects in Chapter 4.

 Description

 Syntax

 Comments

SQAGetChildren

6-472 SQABasic Language Reference

 In this example, the user-defined function TestForLabelAccelerators() tests that all
Label objects within a window have an accelerator key.

 '$Include "sqautil.sbh"
 Function TestForLabelAccelerators (WindowRec As String) As Integer
 Dim Result As Integer
 Dim ChildRec() As String
 Result = sqaPass
 If SQAGetChildren(WindowRec, ChildRec) = sqaSuccess Then
 'cycle through children, looking for labels
 Dim ObjectType, LabelText
 Dim n As Integer
 For n = 0 To UBound(ChildRec)
 SQAGetProperty ChildRec(n), "ObjectType", ObjectType
 If ObjectType = "Label" Then
 'look for & character within each label
 SQAGetProperty ChildRec(n), "Text", LabelText
 If LabelText <> "" And InStr(LabelText, "&") Then
 SQALogMessage sqaFail, "Test for label

accelerators","Object """ + ChildRec(n) + """"
 Result = sqaFail
 End If
 End If
 Next n
 End If
 If Result = sqaPass Then
 SQALogMessage sqaPass, "Test for label accelerators",

"All labels within """ + WindowRec + """"
 End If
 TestForLabelAccelerators = Result
 End Function

 'Example of using above function in a script
 Sub Main
 Window SetContext, "Caption=Notepad - (Untitled)", ""
 MenuSelect "File->Open..."
 TestForLabelAccelerators "\;Type=Window;Caption=Open"
 Window SetContext, "Caption=Open",""
 PushButton Click, "Text=Cancel"
 End Sub

 SQAFindObject
 SQAGetPropertyNames
 SQAWaitForObject

 Example

 See Also

SQAGetDir

Command Reference 6-473

SQAGetDir
Utility Command

Retrieves the path of standard directories used by Rational test applications.

path$ = SQAGetDir(dirType%)

Syntax Element Description

dirType% The type of directory to locate. Valid values:
► SQA_DIR_PROJECT. Retrieve the path of the project

directory.
► SQA_DIR_REPOSITORY. Retrieve the path of the

repository.
► SQA_DIR_RUNFILES. Retrieve the path of the

runtime files.
► SQA_DIR_SCRIPTS. Retrieve the path of script files.
► SQA_DIR_VPS. Retrieve the path of verification point

files.

Returns the path of the specified directory type.

This command requires that you include the header file SQAUTIL.SBH with the
SQABasic metacommand '$Include.

SQAGetDir retrieves paths based on the current structure of the Rational
repository. If the repository structure changes in a future version of the product,
some or all of the paths that SQAGetDir retrieves may not be applicable.

This example prints to the console the paths of various standard directories.
'$Include "sqautil.sbh"

Sub Main

SQAConsoleWrite "Current project: " + SQAGetDir(SQA_DIR_PROJECT)
SQAConsoleWrite "Repository: " + SQAGetDir(SQA_DIR_REPOSITORY)
SQAConsoleWrite "Runtime files: " + SQAGetDir(SQA_DIR_RUNFILES)
SQAConsoleWrite "Scripts: " + SQAGetDir(SQA_DIR_SCRIPTS)
SQAConsoleWrite "Verification points: " + SQAGetDir(SQA_DIR_VPS)

End Sub

SQAGetLogDir

Description

Syntax

Comments

Example

See Also

SQAGetLogDir

6-474 SQABasic Language Reference

SQAGetLogDir
Utility Command

Returns the full path of the runtime log.

logDir$ = SQAGetLogDir

Returns a string containing the path of the runtime log file. If the Log
management GUI playback option is disabled in Robot, this command returns
Robot’s temporary path.

The following example prints the log path in the Robot console.
Sub Main

Dim logPath as String
logPath = SQAGetLogDir
SQAConsoleWrite "The log path is " + logPath

End Sub

SQAEnvCreateDelta
SQAGetDir

SQAGetOcrRegionRect
Utility Command

Retrieves the coordinates of the specified OCR region.

Result=SQAGetOcrRegionRect(parameter$,region%,rectangle)

Syntax Element Description

parameter$ Valid value:

VP=$. The ID of the Window Image or Region Image
verification point that tests the specified OCR region.

region% The number of the OCR region for which you are
retrieving coordinates. This number is listed in the
Number column of the Image Comparator’s Mask/OCR
List pane.

► ► ►

Description

Syntax

Comments

Example

See Also

Description

Syntax

SQAGetOcrRegionRect

Command Reference 6-475

► ► ►

Syntax Element Description

rectangle An output variable for the retrieved object-relative
coordinates of the OCR region.

The coordinates are returned in the following User-
Defined data type:
Type SQARectangle

top as Integer
bottom as Integer
left as Integer
right as Integer

End Type

Returns 1 if coordinates are successfully retrieved, or 0 if the operation fails.

The User-Defined data type SQARectangle is already declared and ready to
use. You do not have to reference a .SBH file to use it.

This command uses the information in the baseline data file for the Window
Image or Region Image verification point where the specified OCR region has
been defined.

SQAGetOcrRegionRect must be used in conjunction with a Window Image or
Region Image verification point that tests the specified OCR region.

For information about defining an OCR region, run the Image Comparator for
the specified Window Image or Region Image verification point. Open the online
Help and search the index for OCR.

The following example retrieves the coordinates of an OCR region within a
window image of a Web page. The example then calculates the center of the OCR
region and clicks it.

Sub Main
Dim Result As Integer
Dim ocrResult as Integer
Dim rect as SQARectangle
Dim coords as String

'Initially Recorded: 1/17/00 3:38:33 PM
'Script Name: ocr rect IE

Result = GenericObjectVP (CompareImage, "Class=Internet
Explorer_Server;ClassIndex=1", "VP=Window Image")

ocrResult = SQAGetOcrRegionRect("VP=Window Image",1,rect)

Comments

Example

SQAGetOcrRegionText

6-476 SQABasic Language Reference

If ocrResult = 1 Then
'Calculate center of the OCR Region
coords = "Coords=" + Str$(rect.left +

(Int(rect.right-rect.left)/2)) + "," + Str$(rect.top
+

(Int(rect.bottom-rect.top)/2))
'Click the object at center point of OCR region
GenericObject Click,"Class=Internet Explorer_Server;

ClassIndex=1",coords
Else
SQAConsoleWrite "Problem retrieving coordinates of OCR region"

End If
End Sub

SQAGetOcrRegionText

SQAGetOcrRegionText
Utility Command

Retrieves the text in the specified OCR region.

Result = SQAGetOcrRegionText(parameter$, region%, text$)

Syntax Element Description

parameter$ Valid value:
► VP=$. The ID of the Window Image or Region Image

verification point that tests the specified OCR region.

region% The number of the OCR region for which you are
retrieving text. This number is listed in the Number
column of the Image Comparator’s Mask/OCR List pane.

text$ An output variable for the retrieved text from the specified
OCR region of the referenced Window Image or Region
Image verification point. See Comments for more
information.

Returns 1 if text is successfully retrieved, or 0 if the operation fails.

This command retrieves the text in the specified OCR region, as follows:

► Retrieves the text in the most recent Actual data file, if one exists. An Actual
data file is created when the baseline data captured during recording does not
match the current, or actual, data captured during playback.

► Retrieves the text in the baseline data file if no Actual data file exists.

See Also

Description

Syntax

Comments

SQAGetOcrRegionText

Command Reference 6-477

SQAGetOcrRegionText must be used in conjunction with a Window Image or
Region Image verification point that tests the specified OCR region.

For information about defining an OCR region, run the Image Comparator for
the specified Window Image or Region Image verification point. Open the online
Help and search the index for OCR.

The following example verifies the text in two OCR regions defined in the region
image verification point B’s9th.

Sub Main
Dim Result as Integer
Dim ocrResult as Integer
Dim region as Integer
Dim ocrText as String

'Initially Recorded: 1/17/00 1:27:14 PM
'Script Name: ocr text

StartApplication """C:\Program Files\ClassicsOnline
\ClassicsB.exe"""

Window SetContext, "Name=frmMain", ""
TreeView Click, "Name=treMain;\;ItemText=Beethoven",

"Location=Button"
TreeView Click, "Name=treMain;\;ItemText=Beethoven->Symphony

No. 9", ""
Result = RegionVP (CompareImage, "",

"VP=B's9th;Coords=604,389,811,580")

For region = 1 to 2
ocrResult=SQAGetOcrRegionText("VP=B's9th",region,ocrText)
If ocrResult = 1 Then

SQAConsoleWrite "OCR region" + Str$(region) + ":"
SQAConsoleWrite ocrText
SQAConsoleWrite ""

Else
SQAConsoleWrite "Problem retrieving text for region"

+ Str$(region)
End If

Next region
End Sub

SQAGetOcrRegionRect

Example

See Also

SQAGetProperty

6-478 SQABasic Language Reference

 SQAGetProperty
 Object Scripting Command

 Retrieves the value of the specified property.

 status% = SQAGetProperty(recMethod$,property$,value)

 Syntax Element Description

 recMethod$ The recognition method values you use to identify an
object depend on the object you’re accessing. For example,
if you’re accessing a push button object, use the
recognition method values listed for the PushButton
user action command.

 In addition, you might need to use Type= to specify the
object type, and/or use context notation to specify the
context for the object. For details, see Specifying an Object
in Chapter 5.

 property$ A case-sensitive property name. See Specifying the Object
Property in Chapter 5 for information on the property
names you can specify for a given object.

 value An output argument of type Variant that will contain
the retrieved property value.

 Returns the Integer 0 (sqaSuccess) if SQAGetProperty successfully
retrieves the value of the specified property. If an error occurs, returns a status
code that specifies the error. See the list of Object Scripting status codes in
Appendix C.

 The contents of value is a Variant that’s based on the native data type of the
property being retrieved. For example:

► A Boolean property is retrieved as the Integer value 0 (for False) or -1
(for True).

► A color is retrieved as a Long. For example, 12632256 is retrieved for a shade
of gray instead of RGB(192,192,192).

► A State property for a check box is retrieved as an Integer (which is how
the property value is stored internally). For example, if a check box is
checked, the value 1 might be retrieved rather than the associated String
value Checked.

 To retrieve a property value in String form, use SQAGetPropertyAsString.

 Description

 Syntax

 Comments

SQAGetProperty

Command Reference 6-479

 If the value of the specified property is stored in an array, you must specify a
particular element in the array through an array index — for example:
 Result=SQAGetProperty("Name=myList","List(0)",value)
 Other notes about arrays of property values:

► If you don’t specify an array index in a call to SQAGetProperty,
sqaArraysNotSupported is returned.

► To find out how many elements are in an array, call
SQAGetPropertyArraySize.

► To retrieve all the elements in an array, call SQAGetPropertyArray or
SQAGetPropertyArrayAsString.

 The maximum supported size for Variant strings is 32 KB. If the actual
property value is larger than 32 KB, the contents of value is clipped to 32 KB.

 If this command acts upon a Java object, any parent Java object must be referenced
in the command’s recMethod$ argument. This command ignores any parent
object information in a preceding Browser command. For more information, see
Using Object Scripting Commands with Java Objects in Chapter 4.

 In this example, the user-defined function CheckButton() clicks on a check box
only if it is currently unchecked.

 Sub CheckButton (ObjectRec As String)
 Dim Result As Integer
 Dim CheckState As Variant
 'Note: A "State" of 0 means that it is unchecked
 Result = SQAGetProperty (ObjectRec, "State", CheckState)
 If Result = sqaSuccess And CheckState = 0 Then

CheckBox Click, ObjectRec
 End If
 End Sub

 'Example of using above function in a script
 Sub Main
 Window SetContext, "Caption=Find", ""
 CheckButton "Text=Match case"
 End Sub

 This example performs the same operation as the previous example, but without
calling a user-defined function.

 Sub Main
 Dim Result As Integer
 Dim CheckState As Variant
 Window SetContext, "Caption=Find", ""
 Result = SQAGetProperty("Type=CheckBox;Text=Match case",
 "State", CheckState)
 'Note: A "State" of 0 means that it is unchecked
 If CheckState = 0 Then
 CheckBox Click, "Text=Match case"
 End If
 End Sub

 Example

SQAGetPropertyArray

6-480 SQABasic Language Reference

 SQAGetPropertyArray SQAGetPropertyNames
 SQAGetPropertyArrayAsString SQASetProperty
 SQAGetPropertyArraySize SQAWaitForPropertyValue
 SQAGetPropertyAsString

 SQAGetPropertyArray
 Object Scripting Command

 Retrieves an array of values for the specified property.

 status% = SQAGetPropertyArray(recMethod$,property$,
aPropValues())

 Syntax Element Description

 recMethod$ The recognition method values you use to identify an
object depend on the object you’re accessing. For example,
if you’re accessing a push button object, use the
recognition method values listed for the PushButton
user action command.

 In addition, you might need to use Type= to specify the
object type, and/or use context notation to specify the
context for the object. For details, see Specifying an Object
in Chapter 5.

 property$ A case-sensitive property name. See Specifying the Object
Property in Chapter 5 for information on the property
names you can specify for a given object.

 aPropValues An output argument that the command fills with an array
of values for the specified property. This is a 0-based array
that is defined as follows:
 Dim aPropValues() as Variant

 Returns the Integer 0 (sqaSuccess) if SQAGetPropertyArray
successfully retrieves the array of values for the specified property. If an error
occurs, returns a status code that specifies the error. See the list of Object
Scripting status codes in Appendix C.

 This command requires that you include the header file SQAUTIL.SBH with the
SQABasic metacommand '$Include.

 See Also

 Description

 Syntax

 Comments

SQAGetPropertyArray

Command Reference 6-481

 SQAGetPropertyArray retrieves a property’s value as a Variant. To retrieve
the value in String form (for example, to retrieve a Boolean as "True" or "False"
rather than as -1 or 0), use SQAGetPropertyArrayAsString.

 If this command acts upon a Java object, any parent Java object must be referenced
in the command’s recMethod$ argument. This command ignores any parent
object information in a preceding Browser command. For more information, see
Using Object Scripting Commands with Java Objects in Chapter 4.

 This example compares the contents of two list boxes.

 '$Include "sqautil.sbh"

 Sub Main
 Window SetContext, "Caption=Copy Files", ""
 Dim List1Content() As Variant
 Dim List2Content() As Variant
 'Get the contents of the two listboxes
 SQAGetPropertyArray "Type=ListBox;ObjectIndex=1", "List",

List1Content
 SQAGetPropertyArray "Type=ListBox;ObjectIndex=2", "List",

List2Content
 'Compare the number of elements in each listbox

 If UBound(List1Content) <> UBound(List2Content) Then
 SQALogMessage sqaFail, "Dynamic Listbox Comparison",

"Listboxes contain different number of elements"
 Else
 Dim n As Integer
 Result = sqaPass
 For n = 0 to UBound(List1Content)
 If List1Content(n) <> List2Content(n) Then
 Result = sqaFail
 Exit For
 End If
 Next n
 SQALogMessage Result, "Dynamic Listbox Comparison", ""
 End If

 End Sub

 SQAGetProperty SQAGetPropertyNames
 SQAGetPropertyArrayAsString SQASetProperty
 SQAGetPropertyArraySize SQAWaitForPropertyValue
 SQAGetPropertyAsString

 Example

 See Also

SQAGetPropertyArrayAsString

6-482 SQABasic Language Reference

 SQAGetPropertyArrayAsString
 Object Scripting Command

 Retrieves an array of values for the specified property in String form.

 status% = SQAGetPropertyArrayAsString(recMethod$,
property$,aPropValues())

 Syntax Element Description

 recMethod$ The recognition method values you use to identify an
object depend on the object you’re accessing. For example,
if you’re accessing a push button object, use the
recognition method values listed for the PushButton
user action command.

 In addition, you might need to use Type= to specify the
object type, and/or use context notation to specify the
context for the object. For details, see Specifying an Object
in Chapter 5.

 property$ A case-sensitive property name. See Specifying the Object
Property in Chapter 5 for information on the property
names you can specify for a given object.

 aPropValues An output argument that the command fills with an array
of values for the specified property. This is a 0-based array
that is defined as follows:
 Dim aPropValues() as String

 Returns the Integer 0 (sqaSuccess) if SQAGetPropertyArrayAsString
successfully retrieves the array of values for the specified property. If an error
occurs, returns a status code that specifies the error. See the list of Object
Scripting status codes in Appendix C.

 This command requires that you include the header file SQAUTIL.SBH with the
SQABasic metacommand '$Include.

 SQAGetPropertyArrayAsString retrieves values as strings. To retrieve
property values in their native data types (for example, to retrieve a Boolean as
-1 or 0 rather than as "True" or "False"), use SQAGetPropertyArray.

 If this command acts upon a Java object, any parent Java object must be referenced
in the command’s recMethod$ argument. This command ignores any parent
object information in a preceding Browser command. For more information, see
Using Object Scripting Commands with Java Objects in Chapter 4.

 Description

 Syntax

 Comments

SQAGetPropertyArraySize

Command Reference 6-483

 This example logs all hidden columns within a grid.
 '$Include "sqautil.sbh"
 Sub Main
 Window SetContext, "Name=myApp", ""
 Dim VisibleStatus() As String
 Dim n As Integer
 SQAGetPropertyArrayAsString "Name=myGrid", "ColsVisible",

VisibleStatus
 'Cycle through property values, looking for hidden columns
 For n = 0 to UBound(VisibleStatus)
 If VisibleStatus(n) = "False" Then
 SQALogMessage sqaNone, "Column" + Str$(n) + " is

hidden", ""
 End If
 Next n
 End Sub

 SQAGetProperty SQAGetPropertyNames
 SQAGetPropertyArray SQASetProperty
 SQAGetPropertyArraySize SQAWaitForPropertyValue
 SQAGetPropertyAsString

 SQAGetPropertyArraySize
 Object Scripting Command

 Retrieves the number of elements in an array of property values.

 status% = SQAGetPropertyArraySize(recMethod$,property$,
size%)

 Syntax Element Description

 recMethod$ The recognition method values you use to identify an
object depend on the object you’re accessing. For example,
if you’re accessing a push button object, use the
recognition method values listed for the PushButton
user action command.

 In addition, you might need to use Type= to specify the
object type, and/or use context notation to specify the
context for the object. For details, see Specifying an Object
in Chapter 5.

 property$ A case-sensitive property name. See Specifying the Object
Property in Chapter 5 for information on the property
names you can specify for a given object.

 size% An output value that will contain the number of elements
in the array.

 Example

 See Also

 Description

 Syntax

SQAGetPropertyArraySize

6-484 SQABasic Language Reference

 Returns the Integer 0 (sqaSuccess) if the property specified in property$
is an array. If an error occurs, returns a status code that specifies the error. See the
list of Object Scripting status codes in Appendix C.

 If property$ is not an array, but it is a valid property name, the command
returns sqaPropertyIsNotArray

 If the command returns sqaSuccess and size% is 0, the array is empty.

 Calling this command is a good way to test whether a property is an array before
you try to retrieve the property value with SQAGetProperty.

 If this command acts upon a Java object, any parent Java object must be referenced
in the command’s recMethod$ argument. This command ignores any parent
object information in a preceding Browser command. For more information, see
Using Object Scripting Commands with Java Objects in Chapter 4.

 This example logs the number of elements within a combo box.

 Sub Main

 Dim Result As Integer
 Dim NumElements As Integer

 Window SetContext, "Name=frmMain", ""
 Result = SQAGetPropertyArraySize("Type=ComboBox;Name=Title",

"List", NumElements)

 If Result = sqaSuccess Then
 SQALogMessage sqaNone, "The Title combobox contains" +

Str$(NumElements) + " items", ""
 Else
 SQALogMessage sqaWarning, "Unable to obtain number of items

in Title combobox", "Error" + Str$(Result) + ": " +
Error$(Result)

 End If

 End Sub

 SQAGetProperty SQAGetPropertyNames
 SQAGetPropertyArray SQASetProperty
 SQAGetPropertyArrayAsString SQAWaitForPropertyValue
 SQAGetPropertyAsString

 Comments

 Example

 See Also

SQAGetPropertyAsString

Command Reference 6-485

 SQAGetPropertyAsString
 Object Scripting Command

 Retrieves a property value in String form.

 status% = SQAGetPropertyAsString(recMethod$,property$,
value)

 Syntax Element Description

 recMethod$ The recognition method values you use to identify an
object depend on the object you’re accessing. For example,
if you’re accessing a push button object, use the
recognition method values listed for the PushButton
user action command.

 In addition, you might need to use Type= to specify the
object type, and/or use context notation to specify the
context for the object. For details, see Specifying an Object
in Chapter 5.

 property$ A case-sensitive property name. See Specifying the Object
Property in Chapter 5 for information on the property
names you can specify for a given object.

 value An output argument of type Variant that will contain
the retrieved property value.

 Returns the Integer 0 (sqaSuccess) if SQAGetPropertyAsString
successfully retrieves the value of the specified property. If an error occurs, returns
a status code that specifies the error. See the list of Object Scripting status codes in
Appendix C.

 SQAGetPropertyAsString retrieves a value as a Variant of VarType 8
(String). Compare the command with SQAGetProperty, which retrieves a
value as a Variant that’s based on the native data type of the property being
retrieved. For example, with SQAGetPropertyAsString:

► Boolean properties are retrieved as the value "True" or "False" rather than as
-1 or 0.

► A color is retrieved as the string "RGB(##,##,##)", not as a Long. For
example, a shade of gray might be retrieved as the string RGB(192,192,192),
not as the number 12632256.

► A State property for a check box is retrieved in String form. For example,
if a check box is checked, the value Checked might be retrieved rather than
the value 1 (which is how Checked might be stored internally).

 Description

 Syntax

 Comments

SQAGetPropertyAsString

6-486 SQABasic Language Reference

 If the value of the specified property is stored in an array, you must specify a
particular element in the array through an array index — for example:
 Result=SQAGetPropertyAsString("Name=myList","List(0)",value)
 Other notes about arrays of property values:

► If you don’t specify an array index in a call to SQAGetPropertyArray,
sqaArraysNotSupported is returned.

► To find out how many elements are in an array, call
SQAGetPropertyArraySize.

► To retrieve all the elements in an array, call SQAGetPropertyArray or
SQAGetPropertyArrayAsString.

 The maximum supported size for Variant strings is 32 KB. If the actual
property value is larger than 32 KB, the contents of value$ is clipped to 32 KB.

 If this command acts upon a Java object, any parent Java object must be referenced
in the command’s recMethod$ argument. This command ignores any parent
object information in a preceding Browser command. For more information, see
Using Object Scripting Commands with Java Objects in Chapter 4.

 This example logs the state of the Notepad window.

 Sub Main
 Dim Result As Integer
 Dim StateString As Variant
 Result = SQAGetPropertyAsString("\;Caption=Notepad -

(Untitled)", "WindowState", StateString)
 If Result = sqaSuccess Then
 SQALogMessage sqaNone, "WindowState is currently: " +

StateString, ""
 End If
 End Sub

 This example logs the background color of the TotalIncome edit box.
 Sub Main
 Dim Result As Integer
 Dim MyColor As Variant
 Window SetContext, "Name=frmMain", ""
 Result = SQAGetPropertyAsString("Type=EditBox;

Name=TotalIncome", "BackColor", MyColor)
 If Result = sqaSuccess Then
 SQALogMessage sqaNone, "Background color of TotalIncome: "

+ MyColor, ""
 End If
 End Sub

 SQAGetProperty SQAGetPropertyNames
 SQAGetPropertyArray SQASetProperty
 SQAGetPropertyArrayAsString SQAWaitForPropertyValue
 SQAGetPropertyArraySize

 Example

 See Also

SQAGetPropertyNames

Command Reference 6-487

 SQAGetPropertyNames
 Object Scripting Command

 Retrieves an array containing the names of all the object’s properties.

 status% = SQAGetPropertyNames(recMethod$, aPropNames())

 Syntax Element Description

 recMethod$ The recognition method values you use to identify an
object depend on the object you’re accessing. For example,
if you’re accessing a push button object, use the
recognition method values listed for the PushButton
user action command.

 In addition, you might need to use Type= to specify the
object type, and/or use context notation to specify the
context for the object. For details, see Specifying an Object
in Chapter 5.

 aPropNames() An output argument that the command fills with an array
of strings. This is a 0-based array that is defined as follows:
 Dim aPropNames() as String

 Returns the Integer 0 (sqaSuccess) if SQAGetPropertyNames
successfully retrieves the names of the object’s properties. If an error occurs,
returns a status code that specifies the error. See the list of Object Scripting status
codes in Appendix C.

 This command requires that you include the header file SQAUTIL.SBH with the
SQABasic metacommand '$Include.

 If this command acts upon a Java object, any parent Java object must be referenced
in the command’s recMethod$ argument. This command ignores any parent
object information in a preceding Browser command. For more information, see
Using Object Scripting Commands with Java Objects in Chapter 4.

 This example logs the total number of properties of the specified object.

 '$Include "sqautil.sbh"
 Sub Main
 Dim Result As Integer
 Dim Properties() As String
 Window SetContext, "Name=frmMain", ""
 Result = SQAGetPropertyNames("Name=cmdNext", Properties)
 If Result = sqaSuccess Then
 SQALogMessage sqaNone, "The cmdNext object has" +

Str$(UBound(Properties)+1) + " properties", ""
 End If
 End Sub

 Description

 Syntax

 Comments

 Example

SQAGetSystemLong

6-488 SQABasic Language Reference

 In this example, the user-defined function SaveAllPropertyValues() writes the
values of all of an object’s properties to a file.

 Sub SaveAllPropertyValues (ObjectRec As String, Filename As String)
 Dim Result As Integer
 Dim Properties() As String
 Dim Value As Variant
 Dim n As Integer
 Open Filename For Output As #1
 Result = SQAGetPropertyNames(ObjectRec, Properties)
 If Result <> sqaSuccess Then
 SQALogMessage sqaWarning, "Unable to capture """ +

ObjectRec + """ properties", "Error" + Str$(Result) +
": " + Error$(Result)

 Exit Sub
 End If
 For n = 0 to UBound(Properties)
 Result = SQAGetPropertyAsString(ObjectRec, Properties(n),

Value)
 If Result = sqaSuccess Then
 Write #1, Properties(n), Value
 End If
 Next n
 Close #1
 SQALogMessage sqaNone, "Properties of " + ObjectRec + " saved

in " + Filename, ""
 End Sub

 'Example of using above function in a script
 Sub Main
 Window SetContext, "Name=frmMain", ""
 SaveAllPropertyValues "Name=cmdNext", "C:\BTNPROPS.TXT"
 End Sub

 SQAGetProperty SQAGetPropertyAsString
 SQAGetPropertyArray SQASetProperty
 SQAGetPropertyArrayAsString SQAWaitForPropertyValue
 SQAGetPropertyArraySize

 SQAGetSystemLong
 Utility Command

 Retrieves a system value.

 See Also

 Description

SQAGetSystemLong

Command Reference 6-489

 longValue& = SQAGetSystemLong (code%)

 Syntax Element Description

 longValue& A system value.

 code% Valid values:
► SQA_MajorVersion. The major version number of

Robot.
► SQA_MinorVersion. The minor version number of

Robot.
► SQA_OS. The current operating system. Returns one of

the following:
► SQA_OS_Win95

SQA_OS_Win2000
SQA_OS_WinNT
SQA_OS_WinNT40

SQA_OS_Win95 represents both the Windows 95 and
Windows 98 operating systems. See Comments for
information on distinguishing between these operating
systems.

► SQA_OS_MajorVersion. The major version
number of the operating system.

► SQA_OS_MinorVersion. The minor version
number of the operating system.

 SQAGetSystemLong is the new name for the command
PLAGetSystemLong.

 With both Windows 95 and Windows 98 operating systems, SQA_OS returns
SQA_OS_WIN95, and SQA_OS_MajorVersion returns 4. Use
SQA_OS_MinorVersion to distinguish between Windows 95 and Windows 98,
as follows:

► With Windows 95, SQA_OS_MinorVersion returns 0.

► With Windows 98, SQA_OS_MinorVersion returns 10.

 Syntax

 Comments

SQAInvokeMethod

6-490 SQABasic Language Reference

 This example detects the current operating system and writes it to the
Robot console.

 Sub Main
 Dim OS As Long
 OS = SQAGetSystemLong (SQA_OS)

 Select Case OS
 Case SQA_OS_Win95
 If SQAGetSystemLong(SQA_OS_MinorVersion) = 10 Then
 SQAConsoleWrite "You are running Windows 98"
 Else
 SQAConsoleWrite "You are running Windows 95"
 End If
 Case SQA_OS_WinNT
 If SQAGetSystemLong(SQA_OS_MajorVersion) = 5 Then
 SQAConsoleWrite "You are running Windows NT 5"
 Else
 SQAConsoleWrite "You are running Windows NT 4"
 End If
 Case Else
 SQAConsoleWrite "Not sure what OS you're running"
 End Select
 End Sub

 SQASetCaptionTerminatorChar

 SQAInvokeMethod
 Object Scripting Command

 Executes the specified method of an object.

 status% = SQAInvokeMethod(recMethod$,objMethod$,args$)

 Syntax Element Description

 recMethod$ The recognition method values you use to identify an
object depend on the object you’re accessing. For example,
if you’re accessing a push button object, use the
recognition method values listed for the PushButton
user action command.

 In addition, you might need to use Type= to specify the
object type, and/or use context notation to specify the
context for the object. For details, see Specifying an Object
in Chapter 5.

 objMethod$ The name of the method to execute.

 args$ Any arguments that the method takes. Both required and
optional arguments must be specified. Separate each
argument with a comma.

 Example

 See Also

 Description

 Syntax

SQAInvokeMethod

Command Reference 6-491

 Returns the Integer 0 (sqaSuccess) if SQAInvokeMethod successfully
calls the method. If an error occurs, returns a status code that specifies the error.
See the list of Object Scripting status codes in Appendix C.

 SQAInvokeMethod is only supported for Visual Basic and OCX/ActiveX objects.

 The only values returned are the values in the above table. This command does
not return the value that the method returns, if any.

 If this command acts upon a Java object, any parent Java object must be referenced
in the command’s recMethod$ argument. This command ignores any parent
object information in a preceding Browser command. For more information, see
Using Object Scripting Commands with Java Objects in Chapter 4.

 This example moves the Visual Basic data control to the last record and then back
to the first, to force all records to be retrieved.

 Sub Main
 Window SetContext, "Name=frmSamples", ""
 SQAInvokeMethod "Name=datOrderInfo", "Recordset.MoveLast", ""
 SQAInvokeMethod "Name=datOrderInfo", "Recordset.MoveFirst", ""
 End Sub

 This example cycles through all customers (within a VB data control) that meet a
certain criteria and then checks that they have a phone number.

 Sub Main
 Dim Result As Integer
 Dim NoMatch As Integer
 Dim CustName, PhoneNum
 Window SetContext, "Name=frmSamples", ""
 SQALogMessage sqaNone, "Customers starting with 'A' in their

name...", ""
 SQAInvokeMethod "Name=datCustomerInfo", "Recordset.FindFirst",

"CustomerName Like 'A*'"
 SQAGetProperty "Name=datCustomerInfo", "Recordset.NoMatch",

NoMatch
 Do While Not NoMatch
 SQAGetProperty "Name=datCustomerInfo",

"Recordset.Fields(1).Value", CustName
 SQAGetProperty "Name=datCustomerInfo",

"Recordset.Fields(7).Value", PhoneNum
 If PhoneNum <> "" Then
 SQALogMessage sqaPass, "Checking for phone number",

"Customer " + CustName + " has phone number " +
PhoneNum

 Else
 SQALogMessage sqaFail, "Checking for phone number",
 "Customer " + CustName + " does not have a phone
 number"
 End If
 'Find next match
 SQAInvokeMethod "Name=datCustomerInfo",

"Recordset.FindNext", "CustomerName Like 'A*'"
SQAGetProperty "Name=datCustomerInfo",

"Recordset.NoMatch", NoMatch
 Loop
 End Sub

 None.

 Comments

 Example

 See Also

SQALogMessage

6-492 SQABasic Language Reference

 SQALogMessage
 Utility Command

 Writes a message to a log and optionally inserts a result flag (Pass, Fail, or
Warning) in the Result column.

 SQALogMessage code%,message$,description$

 Syntax Element Description

 code% Lets you insert a result flag in the Result column of the
LogViewer, next to the message entry. Valid values:
► sqaPass or True. Inserts Pass in the Result column.
► sqaFail or False. Inserts Fail in the Result

column.
► sqaWarning. Inserts Warning in the Result column.
► sqaNone. Leaves the Result column blank for the

message entry.

 message$ The message to insert in the log. The message appears in
the Log Event column of the LogViewer.

 description$ A description of the message. The description appears in the
Description field of the Log Event Properties dialog box.

For more information about SQALogMessage, including an illustration of where
messages are displayed, see Displaying Messages in Robot in Chapter 5.

To send a message to the log and end script execution, use
SQAScriptCmdFailure.

SQALogMessage replaces the command WriteLogMessage.

 This example writes several messages to the log.

 Sub Main
 Dim Result As Integer
 Dim Value As Variant
 SQALogMessage sqaNone, "Starting test of Acme Application...", ""
 Window SetContext, "Caption=Acme Inc.", ""
 Result=SQAGetProperty("Type=PushButton;Text=OK","Enabled",Value)
 If Result = sqaSuccess Then
 If Value = TRUE Then
 Result = sqaPass
 Else
 Result = sqaFail
 End If
 SQALogMessage Result,"Test to see if OK button is enabled",""
 Else
 SQALogMessage sqaWarning, "Unable to perform OK button

test", "Error" + Str$(Result) + ": " + Error$(Result)
 End If
 End Sub

 Description

 Syntax

 Comments

 Example

SQAQueryKey

Command Reference 6-493

 SQAScriptCmdFailure

SQAQueryKey
Utility Command

Returns the state of a locking key (Caps Lock, Num Lock, and Scroll Lock).

state% = SQAQueryKey(keyType%)

Syntax Element Description

keyType% One of these literal values:
► sqaCapsLock. Reports the state of the Caps Lock

key.
► sqaNumLock. Reports the state of the Num Lock key.
► sqaScrollLock. Reports the state of the Scroll Lock

key.

Returns -1 if the key state is locked (indicator light is on), or 0 if the key state is
not locked.

The following example unlocks the Num Lock feature if it is locked in the
ON state.

If SQAQueryKey(sqaNumLock)= -1 Then
InputKeys "{NumLock}"

End If

InputKeys

 SQAResumeLogOutput
 Utility Command

 Resumes the output of verification point and wait state results to the log.

 SQAResumeLogOutput

 SQAResumeLogOutput is the new name for the command
PLAResumeLogOutput.

 None.

 See Also

Description

Syntax

Comments

Example

See Also

 Description

 Syntax

 Comments

 Example

SQAScriptCmdFailure

6-494 SQABasic Language Reference

 SQASuspendLogOutput

 SQAScriptCmdFailure
 Utility Command

 Generates a script command failure and ends script execution.

 SQAScriptCmdFailure description$

 Syntax Element Description

 description$ A description of the failure. The description appears in the
Result tab of the Log Event Properties dialog box.

This command displays the following text in the LogViewer:

► The text “Script Command Failure” appears in the Log Event column. You
can’t modify this text.

► The notation Fail appears in the Result column. You can’t modify it.

► The text you provide through this command is displayed in the Result tab of
the Log Event Properties dialog box.

In addition, the description you provide of the script command failure and the line
where it occurs are displayed in the Robot console window.

 To send a message to the LogViewer without ending script execution, use
SQALogMessage.

 SQAScriptCmdFailure is the new name for the command
PLAScriptCmdFailure.

 This example checks the current operating system and generates a script
command failure if the operating system is Windows 3.x.

 If SQAGetSystemLong (SQA_OS) = SQA_OS_Win16 then
 SQAScriptCmdFailure "This test does not work under Windows 3.x"
 End If

 None.

 SQASetAssignmentChar
 Utility Command

 Sets the character to be used by Robot as the assignment character in SQABasic
user action and verification point commands.

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

 Description

SQASetCaptionTerminatorChar

Command Reference 6-495

 SQASetAssignmentChar charcode%

 Syntax Element Description

 charcode% The ANSI code of the character to be used as the
assignment character.

 The Asc function can be used to convert the first character in a string to the
correct format to be passed to the SQASetAssignmentChar statement.

 The assignment character is used in recMethod$ and parameters$
arguments of SQABasic user action and verification point commands to assign
values specific to that command. By default, this character is the equal sign (=).

 SQASetAssignmentChar is the new name for the command
PLASetAssignmentChar.

 This example sets the Robot assignment character to be the equal sign (=).

 SQASetAssignmentChar Asc("=")

 SQASetSeparatorChar

 SQASetCaptionTerminatorChar
 Utility Command

 Sets the character that Robot uses as the window caption terminator character.

 SQASetCaptionTerminatorChar charcode%

 Syntax Element Description

 charcode% The ANSI code of the character to be used as the caption
terminator.

 The caption terminator character allows partial matches between a window caption
retrieved during recording and a window caption retrieved during playback.

 If this feature is enabled, Robot does not require a match of any characters that
appear after the caption terminator character. For example, if the caption
terminator is a dash (-), the following window captions are considered a match:

 Mortgage Prequalifier - Customer Name
 Mortgage Prequalifier - Name

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

SQASetDefaultBrowser

6-496 SQABasic Language Reference

 To enable partial caption matching, you must select either of the following buttons
on the Caption Matching tab of the Robot Playback Options dialog box:

► On each window search

► After automatic wait has timed out

 The caption terminator character can also be set through the Robot Playback
Options dialog box. A caption terminator character set through
SQASetCaptionTerminatorChar overrides a caption terminator character
set through the Playback Options dialog box.

 The Asc function can be used to convert the first character in a string to the correct
format to be passed to the SQASetCaptionTerminatorChar statement.

 SQASetCaptionTerminatorChar is the new name for the command
PLASetCaptionTerminatorChar.

 This example sets the Robot caption terminator to be the dash symbol (-).

 SQASetCaptionTerminatorChar Asc("-")

 SQAGetCaptionTerminatorChar

SQASetDefaultBrowser
Utility Command

Sets the default browser to use during playback.

SQASetDefaultBrowser(browser$)

Syntax Element Description

browser$ The browser to use during playback. Valid values:
► Explorer. Sets Microsoft Internet Explorer as the

default browser to use during playback.
► Navigator. Sets Netscape Navigator as the default

browser to use during playback.
You can also specify a path for a particular Navigator
executable. See Comments for syntax information.

 Example

 See Also

Description

Syntax

SQASetDefaultBrowser

Command Reference 6-497

Navigator can be set as the default browser only for playback. During recording,
Internet Explorer is always used as the browser.

You can use browser$ to specify a path for the particular Netscape Navigator
executable you want to use. For example:

SQASetDefaultBrowser "Navigator=c:\program files\netscape\
communicator\program\netscape.exe"

Using SQASetDefaultBrowser to change the default playback browser also
changes the default browser setting as defined in the Web Browser tab of the
Robot GUI Playback Options dialog box (Tools � GUI Playback Options).

If you specify an incorrect value in browser$, no runtime error occurs.
However, the default browser remains as defined in the Robot Web Browser tab.

If you are specifying Navigator as the default browser, and the location of
Navigator’s executable file isn’t in the Registry, the full path must appear in the
browser$ argument or in the Robot Web Browser tab.

To enable HTML recording, be sure that the HTML-MSIE check box is selected
in the Robot Extension Manager dialog box before you begin recording against
your Web page. To enable HTML playback, be sure that the HTML-MSIE and/or
HTML-Navigator check boxes are selected before you play back a script against
HTML objects. To display the Extension Manager dialog box in Robot, click
Tools � Extension Manager.

SQASetDefaultBrowser can only be inserted into a script programmatically.
Robot does not record this command.

This example sets Netscape Navigator as the default playback browser, and then
uses Navigator to open Rational’s Web page.

SQASetDefaultBrowser "Navigator"
StartBrowser "www.rational.com", "WindowTag=PlaybackNavigator"

StartBrowser

Comments

Example

See Also

SQASetProperty

6-498 SQABasic Language Reference

 SQASetProperty
 Object Scripting Command

 Assigns a value to a specified property.

 status% = SQASetProperty(recMethod$,property$,value)

 Syntax Element Description

 recMethod$ The recognition method values you use to identify an
object depend on the object you’re accessing. For example,
if you’re accessing a push button object, use the
recognition method values listed for the PushButton
user action command.

 In addition, you might need to use Type= to specify the
object type, and/or use context notation to specify the
context for the object. For details, see Specifying an Object
in Chapter 5.

 property$ A case-sensitive property name. See Specifying the Object
Property in Chapter 5 for information on the property
names you can specify for a given object.

 value A Variant containing the value you’re assigning to the
specified property.

 Returns the Integer 0 (sqaSuccess) if SQASetProperty successfully
assigns value% to the specified property. If an error occurs, returns a status code
that specifies the error. See the list of Object Scripting status codes in Appendix C.

 The value argument can provide a value in the property’s native data type (as
would be retrieved by SQAGetProperty) or in String form (as would be
retrieved by SQAGetPropertyAsString). For example, both of the following
commands cause the Classics Online window to minimize:
 Result=SQASetProperty("Caption=Classics Online","WindowState",1)
 Result=SQASetProperty("Caption=Classics Online","WindowState",
 "Minimized")
 Here are more examples of the alternatives you have for specifying value:

 Specify Booleans as True or False (with or without quote marks) or as the
Variant values -1 or 0.

 Specify colors as a Long, a hexadecimal value (&H notation), or as a String
in the form "RGB(##,##,##)". For example, a shade of gray could be
specified as 12632256, &HC0C0C0, or RGB(192,192,192).

 Description

 Syntax

 Comments

SQASetProperty

Command Reference 6-499

► Specify a State property for a check box as an Integer (which is how the
property value is stored internally) or as a descriptive String value
associated with each Integer. For example, if a check box is checked, the
internal Integer value for State might be 1, and the associated String
value might be Checked.

 This command changes the value of a property for a given instance of an object. It
does not permanently change the application under test. Closing and restarting the
application undoes any change you make with SQASetProperty.

 If the specified property has an array of values, you must specify an array index.

 Many properties are not modifiable through SQASetProperty. For example,
SQASetProperty can’t modify DataWindow properties in PowerBuilder
applications. If SQASetProperty can’t modify a property, it returns the status
code sqaPropertyIsReadOnly.

 You can’t change a property value if it’s part of an array of values.

 For the following reasons, use SQASetProperty with caution:

► Changing a property value with SQASetProperty can cause unpredictable
results in an application-under-test. SQASetProperty uses internal
mechanisms for changing properties. These mechanisms may or may not
trigger events within the application-under-test.

► Using SQASetProperty to change a property’s value may not have the
same effect as changing the value through some script actions. For example,
the SQASetProperty change may not become visible until the object is
redrawn.

 A safer way to change a property value is to record the change as a sequence of
script actions, when possible.

 If this command acts upon a Java object, any parent Java object must be referenced
in the command’s recMethod$ argument. This command ignores any parent
object information in a preceding Browser command. For more information, see
Using Object Scripting Commands with Java Objects in Chapter 4.

 This example uses SQASetProperty to fill out certain fields of a form.

 Sub Main
 Window SetContext, "Name=frmMain", ""
 'To change the value of a combobox, modify the "ItemSelected"

' property
 SQASetProperty "Name=Title", "ItemSelected", "Mr."
 'To change the value of an editbox, modify the "Text" property
 SQASetProperty "Name=FirstName", "Text", "Michael"
 SQASetProperty "Name=LastName", "Text", "Mulligan"
 End Sub

 Example

SQASetSeparatorChar

6-500 SQABasic Language Reference

 This example gets the data out of a specific row of a Grid OCX.
 Sub Main
 Dim CustName, CurrentRow
 Window SetContext, "Name=frmSamples", ""
 'First get value of current row, so we can restore it later
 SQAGetProperty "Name=grdCustomer", "Row", CurrentRow
 SQASetProperty "Name=grdCustomer", "Row", 2
 SQAGetProperty "Name=grdCustomer", "Columns(1).Text", CustName
 SQALogMessage sqaNone, "Customer at row 2 of grid: " +
 CustName, ""
 'Restore row to its original setting
 SQASetProperty "Name=grdCustomer", "Row", CurrentRow
 End Sub

 SQAGetProperty SQAGetPropertyNames
 SQAGetPropertyArray SQAInvokeMethod
 SQAGetPropertyArrayAsString SQAWaitForPropertyValue
 SQAGetPropertyAsString

 SQASetSeparatorChar
Utility Command

 Sets the character to be used by Robot as the separator character in SQABasic
commands.

 SQASetSeparatorChar charcode%

 Syntax Element Description

 charcode% The ANSI code of the character to be used as the
separator character.

 The Asc function can be used to convert the first character in a string to the
correct format to be passed to the SQASetSeparatorChar command.

 The separator character is used to separate multiple values in SQABasic user
action and verification point command arguments (recMethod$ and
parameters$). By default, this character is the semicolon (;).

 SQASetSeparatorChar is the new name for the command
PLASetSeparatorChar.

 This example sets the Robot separator character to be the semicolon (;).

 SQASetSeparatorChar Asc(";")

 SQASetAssignmentChar

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

SQAShellExecute

Command Reference 6-501

 SQAShellExecute
Utility Command

 Opens an application or a file.

 SQAShellExecute filename$,directory$,parameters$

 Syntax Element Description

 filename$ The full path and file name of the application or file.

 directory$ The application’s default directory. If you choose not to
set the default directory, pass an empty string ("").

 parameters$ Optional command-line parameters to pass to the
application. If filename specifies a non-executable file,
parameters should contain an empty string ("").

 If filename references an application, SQAShellExecute runs the
application.

 If filename references a file other than an application executable,
SQAShellExecute opens the file through the application that has a Windows
association with the file type. (Windows maintains associations between an
application and its file types by associating the application with a particular file
extension.) For example, Microsoft Word typically has a Windows association with
.DOC files. If filename references MEMO.DOC, SQAShellExecute runs
Word and opens MEMO.DOC in the Word environment.

 On Windows 95 or Windows NT 4.0 platforms, filename can reference a
Windows link file (.LNK). SQAShellExecute uses the link file to locate the
application to run or the file to open. Link files are also called shortcuts.

 On Windows 95 or Windows NT 4.0 platforms, Robot generates an
SQAShellExecute command when you open an application, a file associated
with an application, or a link file by clicking Start � Programs � ... or
Start � Documents � ... on the Windows taskbar. Robot doesn’t generate
SQAShellExecute with Windows versions earlier than Windows 95 or
Windows NT 4.0.

 The maximum length of filename plus parameters is 259 characters.

 Values you pass in parameters are application-specific. See the application’s
documentation for any supported command-line parameters.

 SQAShellExecute is the new name for the command PLAShellExecute.

 Description

 Syntax

 Comments

SQASuspendLogOutput

6-502 SQABasic Language Reference

 This example opens the Notepad text editor through the Windows 95 Start menu.

 SQAShellExecute "C:\WIN95\Start Menu\Programs\Accessories\
 Notepad.lnk", "", ""

 StartApplication

 SQASuspendLogOutput
 Utility Command

 Suspends the output of verification point and wait state results to the log.

 SQASuspendLogOutput

 This command is useful if you want to test for a condition without logging a result
to the log.

 SQASuspendLogOutput is the new name for the command
PLASuspendLogOutput.

 None.

 SQAResumeLogOutput

 SQASyncPointWait
 Timing and Coordination Command

 Inserts a synchronization point for coordinating users in a LoadTest schedule.

 return& = SQASyncPointWait (syncpointID$)

 Syntax Element Description

 syncpointID$ A user-defined ID that identifies the synchronization
point. The ID can have from 1 to 40 characters.

 This command requires that you include the header file SQAUTIL.SBH with the
SQABasic metacommand '$Include.

 Example

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

SQAVpGetActualFileName

Command Reference 6-503

 SQASyncPointWait has the following possible return values (Long):

 sqaSPSuccess 0
sqaSPUninitialized -1
sqaSPFailure -2
sqaSPExtendedError -999

 A script pauses at a synchronization point until the release criteria specified by the
schedule have been met. At that time, the script delays a random time specified in
the schedule, and then resumes execution.

 Typically, you will include a synchronization point in a test by inserting it into a
LoadTest schedule rather than by inserting SQASyncPointWait into a script.
For more information, see Scheduling Tests in the Using Rational LoadTest manual.

 If you insert a synchronization point through a schedule, synchronization occurs
at the beginning of the script. If you insert a synchronization point into a script
through the SQASyncPointWait command, synchronization occurs at that
point in the script where you inserted the command. You can insert the command
anywhere in the script.

 For more information about synchronization points, see the Using Rational Robot
manual.

 This example defines a sync point identified as syncpoint1.

 SQASyncPointWait ("syncpoint1")

 None.

 SQAVpGetActualFileName
 Utility Command

 Generates a unique path and name for an actual data file used in a custom
verification point.

 return$ = SQAVpGetActualFileName(VpName$, VpFileType$)

 Syntax Element Description

 VpName$ The name of the custom verification point.

 VpFileType$ The file type of the actual data file. For example, if you are
comparing data stored in .csv files, specify csv as the file
type. VpFileType$ can have up to three characters and
must not begin with the characters VP.

 Example

 See Also

 Description

 Syntax

SQAVpGetBaselineFileName

6-504 SQABasic Language Reference

 Returns a String containing the full path and name for an actual data file.

 An actual data file contains the data captured for an object during the playback of a
custom procedure. A baseline data file contains the data captured for the same
object during a previous execution of the same custom procedure. (The actions
are similar to the playback and recording of a standard verification point.)

 For the LogViewer to display the actual data, the actual data file must be in the
path returned by SQAVpGetActualFileName.

 If the actual data captured during playback does not match the baseline data, create
a file and write the actual data to it. Store this actual data file in the name and
location returned by SQAVpGetActualFileName. These actions create an
actual data file for this test and store the data file in a directory where the
LogViewer expects to find it.

 For information about custom verification points, see Managing Custom Verification
Points in Chapter 5, Enhancements to Recorded Scripts.

 This example retrieves the full path and name of the actual data file for the custom
verification point VPCHECK.

 DIM VpActual As String
 VpActual = SQAVpGetActualFileName ("VPCHECK", "CSV")

 SQAVpGetBaselineFileName
 SQAVpLog

 SQAVpGetBaselineFileName
 Utility Command

 Generates a unique path and name for a baseline data file used in a custom
verification point.

 return$ = SQAVpGetBaselineFileName(VpName$, VpFileType$)

 Syntax Element Description

 VpName$ The name of the custom verification point.

 VpFileType$ The file type of the baseline data file. For example, if you
are comparing data stored in .csv files, specify csv as the
file type. VpFileType$ can have up to three characters
and must not begin with the characters VP.

 Comments

 Example

 See Also

 Description

 Syntax

SQAVpGetCurrentBaselineFileName

Command Reference 6-505

 Returns a String containing the full path and name for a baseline data file.

 A baseline data file contains the data captured for an object during the execution of
a custom procedure. An actual data file contains the data captured for the same
object during the subsequent playback of the same custom procedure. (The
actions are similar to the recording and playback of a standard verification point.)

 For the LogViewer to display the baseline data, the baseline data file must be in the
path returned by SQAVpGetBaselineFileName.

 During the playback of a test, copy the current baseline data file pointed to by
SQAVpGetCurrentBaselineFileName to the name and location returned by
SQAVpGetBaselineFileName. This action stores the baseline data file (called a
logged baseline data file) into the directory where the LogViewer expects to find it
for this test.

 For information about custom verification points, see Managing Custom Verification
Points in Chapter 5, Enhancements to Recorded Scripts.

 This example retrieves the full path and name of the baseline data file for the
custom verification point VPBUTTON.

 DIM VpBaseline As String
 VpBaseline = SQAVpGetBaselineFileName ("VPBUTTON", "CSV")

 SQAVpGetActualFileName
 SQAVpGetCurrentBaselineFileName
 SQAVpLog

 SQAVpGetCurrentBaselineFileName
 Utility Command

 Generates the path and name for the current baseline data file used in a custom
verification point.

 return$ = SQAVpGetCurrentBaselineFileName(VpName$,
VpFileType$)

 Syntax Element Description

 VpName$ The name of the custom verification point.

 VpFileType$ The file type of the current baseline data file. For example,
if you are comparing data stored in .csv files, specify csv as
the file type. VpFileType$ can have up to three
characters and must not begin with the characters VP.

 Comments

 Example

 See Also

 Description

 Syntax

SQAVpLog

6-506 SQABasic Language Reference

 Returns a String containing the full path and name for a current baseline
data file.

 A current baseline data file contains the data captured for an object during the
execution of a custom procedure. This action is similar to recording a standard
verification point with Robot.

 During the playback of a test, copy the current baseline data file pointed to by
SQAVpGetCurrentBaselineFileName to the name and location returned by
SQAVpGetBaselineFileName. This action stores the baseline data file (called a
logged baseline data file) into the directory where the LogViewer expects to find it
for this test.

 There is only one current baseline data file per custom verification point.
However, in the LogViewer, there can be one logged baseline data file for each
verification point entry.

 When you capture current baseline data and save it to the current baseline data file,
the custom verification point referenced by VpName$ appears in the Robot Asset
pane (to the right of the script). You might have to click View � Refresh to see it.

 For information about custom verification points, see Managing Custom Verification
Points in Chapter 5, Enhancements to Recorded Scripts.

 This example retrieves the full path and name of the current baseline data file for
the custom verification point VPBUTTON.

 DIM VpCurrBaseline As String
 VpCurrBaseline = SQAVpGetCurrentBaselineFileName ("VPBUTTON",
"CSV")

 SQAVpGetBaselineFileName
 SQAVpLog

 SQAVpLog
 Utility Command

 Writes a custom verification point record to a log and optionally inserts a result
flag (Pass, Fail, or Warning) in the Result column of the LogViewer.

 SQAVpLog code%,name$,description$,baselineFile$,actualFile$

 Comments

 Example

 See Also

 Description

 Syntax

SQAVpLog

Command Reference 6-507

 Syntax Element Description

 code% Lets you insert a result flag in the Result column next to
the message entry. Valid values:
► sqaPass or True. Inserts Pass in the Result column.
► sqaFail or False. Inserts Fail in the Result

column.
► sqaWarning. Inserts Warning in the Result column.
► sqaNone. Leaves the Result column blank for the

message entry.

 name$ The name of the custom verification.

 description$ A description of the verification point.

 baselineFile$ The full path and name of the baseline data file. Use
SQAVpGetBaselineFileName to retrieve the path
and name information. Use empty quotes to leave the
entry blank.

 actualFile$ The full path and name of the actual data file. Use
SQAVpGetActualFileName to retrieve the path
and name information. Use empty quotes to leave the
entry blank.

 For information about custom verification points, see Managing Custom Verification
Points in Chapter 5, Enhancements to Recorded Scripts.

 This example retrieves the full path and name of the baseline and actual data files
for the Verification Point VPBUTTON, and then writes a log entry.

 DIM VpBaseline As String
 DIM VpActual As String
 VpBaseline = SQAVpGetBaselineFileName ("VPBUTTON", "CSV")
 VpActual = SQAVpGetActualFileName ("VPBUTTON", "CSV")
 SQAVpLog sqaNone, "VPBUTTON", "Verify the Button Properties",
 VpBaseline, VpActual

 SQAVpGetActualFileName
 SQAVpGetBaselineFileName

 Comments

 Example

 See Also

SQAWaitForObject

6-508 SQABasic Language Reference

 SQAWaitForObject
 Object Scripting Command

 Pauses execution of the script until the specified object can be found.

 status% = SQAWaitForObject(recMethod$,timeout&)

 Syntax Element Description

 recMethod$ The recognition method values you use to identify an
object depend on the object you’re accessing. For example,
if you’re accessing a push button object, use the
recognition method values listed for the PushButton
user action command.

 In addition, you might need to use Type= to specify the
object type, and/or use context notation to specify the
context for the object. For details, see Specifying an Object
in Chapter 5.

 timeout& The maximum number of milliseconds to look for the
object. If the object doesn’t appear within the timeout
period, sqaTimeout is returned.

 Returns the Integer 0 (sqaSuccess) if SQAWaitForObject locates the
object within the timeout period. If an error occurs, returns a status code that
specifies the error. See the list of Object Scripting status codes in Appendix C.

 This command is useful to call for objects that take some time to appear.

 If this command acts upon a Java object, any parent Java object must be referenced
in the command’s recMethod$ argument. This command ignores any parent
object information in a preceding Browser command. For more information, see
Using Object Scripting Commands with Java Objects in Chapter 4.

 This example waits up to two minutes for a particular push button to appear.

 Sub Main
 Dim Result As Integer
 Window SetContext, "Caption=MyApp", ""
 MenuSelect "File->Open..."
 Window SetContext, "Caption=Open", ""
 'The OK button may take a long time to appear. We can use

' SQAWaitForObject to synchronize our script without
' increasing the default wait period of all other actions

 Result = SQAWaitForObject("Type=PushButton;Text=OK", 120000)
 If Result = sqaSuccess Then
 ... 'add the rest of the actions/tests here
 End If
 End Sub

 Description

 Syntax

 Comments

 Example

SQAWaitForPropertyValue

Command Reference 6-509

 SQAFindObject
 SQAGetChildren

 SQAWaitForPropertyValue
 Object Scripting Command

 Pauses execution of the script until a property is set to the specified value.

 status% = SQAWaitForPropertyValue(recMethod$,property$,
value,timeout&)

 Syntax Element Description

 recMethod$ The recognition method values you use to identify an
object depend on the object you’re accessing. For example,
if you’re accessing a push button object, use the
recognition method values listed for the PushButton
user action command.

 In addition, you might need to use Type= to specify the
object type, and/or use context notation to specify the
context for the object. For details, see Specifying an Object
in Chapter 5.

 property$ A case-sensitive property name. For the command to
succeed, the value of this property must match the value
argument. See Specifying the Object Property in Chapter 5 for
information on the property names you can specify for a
given object.

 value A Variant that you want the specified property to be
set to.

 timeout& The maximum number of milliseconds to wait for the
value of the specified property to match value. If the
values never match within the timeout period,
sqaTimeout is returned.

 Returns the Integer 0 (sqaSuccess) if SQAWaitForPropertyValue sets
the specified property to value within the timeout period. If an error occurs,
returns a status code that specifies the error. See the list of Object Scripting status
codes in Appendix C.

 The value argument can provide a value in the property’s native data type (as
would be retrieved by SQAGetProperty) or in String form (as would be
retrieved by SQAGetPropertyAsString). For examples, see the Comments
section for the SQASetProperty command.

 See Also

 Description

 Syntax

 Comments

SQAWaitForPropertyValue

6-510 SQABasic Language Reference

 SQAWaitForPropertyValue waits for the object to appear, then waits for the
value of the specified property to match the value argument. The total wait time is
expressed in the timeout argument. For example, if timeout is 8000, and it
takes 5 seconds for the object to appear, SQAWaitForPropertyValue will only
wait an additional 3 seconds for the value of the specified property to match value.

 If the specified property has an array of values, you must specify an array index.
For example, this command specifies the fourth item in the List array:
 Result=SQAWaitForPropertyValue("Name=ColorList","List(3)","Blue")
 If this command acts upon a Java object, any parent Java object must be referenced
in the command’s recMethod$ argument. This command ignores any parent
object information in a preceding Browser command. For more information, see
Using Object Scripting Commands with Java Objects in Chapter 4.

 This example opens a customer dialog box and waits for the OK button to be
enabled before continuing.

 Sub Main

 Dim Result As Integer

 Window SetContext, "Name=frmMain", ""
 MenuSelect "File->Open Customer..."
 Window SetContext, "Name=SelectCustomer", ""

 'Wait up to 10 seconds for the OK button to become enabled...
 Result = SQAWaitForPropertyValue("Name=cmdOK", "Enabled",

TRUE, 10000)

 If Result <> sqaSuccess Then
 SQALogMessage sqaFail, "Waiting for cmdOK button to be

enabled", "Error" + Str$(Result) + ": " +
Error$(Result)

 Else
 ListBox Click, "Name=lstCustomers", "Text=Harry Houdini"
 PushButton Click, "Name=cmdOK"
 End If

 End Sub

 SQAGetProperty SQAGetPropertyAsString
 SQAGetPropertyArray SQAGetPropertyNames
 SQAGetPropertyArrayAsString SQASetProperty
 SQAGetPropertyArraySize

 Example

 See Also

SQLClose

Command Reference 6-511

 SQLClose
 Function

 Disconnects from an ODBC data source connection that was established by
SQLOpen.

 SQLClose (connection&)

 Syntax Element Description

 connection& A named argument that must be a long integer, returned
by SQLOpen.

 The return is a variant. Success returns 0 and the connection is subsequently
invalid. If the connection is not valid, -1 is returned.

 This example opens the data source named SblTest, gets the names in the ODBC
data sources, and closes the connection.

 Sub main
 ' Declarations
 '
 Dim outputStr As String
 Dim connection As Long
 Dim prompt As Integer
 Dim datasources(1 To 50) As Variant
 Dim retcode As Variant
 Dim action1 as Integer
 Dim qualifier as String

 prompt = 5
 ' Open the datasource "SblTest"
 connection = SQLOpen("DSN=SblTest", outputStr, prompt:=5)

 action1 = 1 'Get the names of the ODBC datasources
 retcode = SQLGetSchema(connection:=connection,action:=1,
 qualifier:=qualifier, ref:=datasources())

 ' Close the datasource connection
 retcode = SQLClose(connection)

 End Sub

 SQLError SQLRequest
 SQLExecQuery SQLRetrieve
 SQLGetSchema SQLRetrieveToFile
 SQLOpen

 Description

 Syntax

 Comments

 Example

 See Also

SQLError

6-512 SQABasic Language Reference

 SQLError
 Function

 Can be used to retrieve more detailed information about errors that might have
occurred when making an ODBC function call. Returns errors for the last ODBC
function and the last connection.

 SQLError (destination())

 Syntax Element Description

 destination() A two dimensional array in which each row contains one
error. A named argument that is required, must be an
array of variants.

 There is no return value. The fields are: 1) character string indicating the ODBC
error class/subclass, 2) numeric value indicating the data source native error code,
3) text message describing the error.

 If there are no errors from a previous ODBC function call, then a 0 is returned in
the caller’s array at (1,1). If the array is not two dimensional or does not provide
for the return of the three fields above, then an error message is returned in the
caller’s array at (1,1).

 This example forces an error to test SQLError function.

 sub main
 ' Declarations
 Dim connection As long
 Dim prompt as integer
 Dim retcode as long
 Dim errors(1 To 3, 1 To 10) as Variant
 Dim outputStr as String

 ' Open the datasource
 connection = SQLOpen("DSN=SBLTESTW;UID=DBA;

PWD=SQL",outputStr, prompt:=3)

 ' force an error to test SQLError select a
' nonexistent table
 retcode = SQLExecQuery(connection:=connection,

query:="select * from notable ")

 ' Retrieve the detailed error message information
' into the errors array
 SQLError destination:=errors
 retcode = SQLClose(connection)
 end sub

 SQLClose SQLRequest
 SQLExecQuery SQLRetrieve
 SQLGetSchema SQLRetrieveToFile
 SQLOpen

 Description

 Syntax

 Comments

 Example

 See Also

SQLExecQuery

Command Reference 6-513

 SQLExecQuery
 Function

 Executes an SQL statement on a connection established by SQLOpen.

 SQLExecQuery (connection&, query$)

 Syntax Element Description

 connection& A named argument, required. A long integer, returned by
SQLOpen.

 query$ A string containing a valid SQL statement. The return is a
Variant.

 It returns the number of columns in the result set for SQL SELECT statements; for
UPDATE, INSERT, or DELETE it returns the number of rows affected by the
statement. Any other SQL statement returns 0. If the function is unable to execute
the query on the specified data source, or if the connection is invalid, a negative
error code is returned.

 If SQLExecQuery is called and there are any pending results on that connection,
the pending results are replaced by the new results.

 This example performs a query on the data source.

 Sub main
 ' Declarations
 '
 Dim connection As Long
 Dim destination(1 To 50, 1 To 125) As Variant
 Dim retcode As long
 Dim outputStr as String
 Dim query as String

 ' open the connection
 connection = SQLOpen("DSN=SblTest",outputStr,prompt:=3)
 '
 ' Execute the query
 query = "select * from customer"
 retcode = SQLExecQuery(connection,query)
 '
 ' retrieve the first 50 rows with the first 6
' columns of each row into
 ' the array destination, omit row numbers and put
' column names in the first row of the array
 '
 retcode = SQLRetrieve(connection:=connection,

destination:=destination, columnNames:=1,
rowNumbers:=0,maxRows:=50,maxColumns:=6,
fetchFirst:=0)

 Description

 Syntax

 Comments

 Example

SQLGetSchema

6-514 SQABasic Language Reference

 ' Get the next 50 rows of from the result set
 retcode = SQLRetrieve(connection:=connection,

destination:=destination, columnNames:=1,
rowNumbers:=0,maxRows:=50, maxColumns:=6)

 ' Close the connection
 retcode = SQLClose(connection)
 End Sub

 SQLClose SQLRequest
 SQLError SQLRetrieve
 SQLGetSchema SQLRetrieveToFile
 SQLOpen

 SQLGetSchema
 Function

 Returns a variety of information, including information on the data sources
available, current user ID, names of tables, names and types of table columns, and
other data source/database related information.

 SQLGetSchema (connection&, action%, qualifier$, ref())

 Syntax Element Description

 connection& A long integer returned by SQLOpen.

 action% Required. Valid values:
 1. List of available data sources (dimension of ref()
is one)
 2. List of databases on the current connection (not
supported)
 3. List of owners in a database on the current
connection (not supported)
 4. List of tables on the specified connection
 5. List of columns in a the table specified by
qualifier. (ref() must be two dimensions).
Returns column name and SQL data type.
 6. The user ID of the current connection user.
 7. The name of the current database.
 8. The name of the data source for the current
connection.
 9. The name of the DBMS the data source uses (for
example. Oracle).
 10. The server name for the data source.

► ► ►

 See Also

 Description

 Syntax

SQLGetSchema

Command Reference 6-515

► ► ►

 Syntax Element Description

 11. The terminology used by the data source to refer
to owners.
 12. The terminology used by the data source to refer
to a table.
 13. The terminology used by the data source to refer
to a qualifier.

 14. The terminology used by the data source to refer
to a procedure.

 qualifier$ Required.

 ref() A Variant array for the results appropriate to the action
requested. Value must be an array even if only one
dimension with one element. The return is a Variant.

 A negative return value indicates an error. A -1 is returned if the requested
information cannot be found or if the connection is not valid. The destination
array must be properly dimensioned to support the action or an error will be
returned. Actions 2 and 3 are not currently supported. Action 4 returns all tables
and does not support the use of the qualifier. Not all database products and
ODBC drivers support all actions.

 This example opens the data source named SblTest, gets the names in the
ODBC data sources, and closes the connection.

 Sub main
 ' Declarations
 '
 Dim outputStr As String
 Dim connection As Long
 Dim prompt As Integer
 Dim datasources(1 To 50) As Variant
 Dim retcode As Variant
 Dim action1 as Integer
 Dim qualifier as String

 prompt = 5
 ' Open the datasource "SblTest"
 connection = SQLOpen("DSN=SblTest", outputStr, prompt:=5)

 action1 = 1 'Get the names of the ODBC datasources
 retcode = SQLGetSchema(connection:=connection,

action:=1, qualifier:=qualifier, ref:=datasources())

 ' Close the datasource connection
 retcode = SQLClose(connection)

 End Sub

 Comments

 Example

SQLOpen

6-516 SQABasic Language Reference

 SQLClose SQLRequest
 SQLError SQLRetrieve
 SQLExecQuery SQLRetrieveToFile
 SQLOpen

 SQLOpen
 Function

 Establishes a connection to an ODBC data source specified in connectStr and
returns a connection ID in the return, and the completed connection string in
outputStr. If the connection cannot be established, then a negative number
ODBC error is returned.

 SQLOpen (connectStr$[,outputStr$][,prompt%])

 Syntax Element Description

 connectStr$ A named argument, a required parameter.

 OutputStr$ Optional.

 Prompt% Optional. prompt specifies when the driver dialog box is
displayed. Valid values:

 1. Driver dialog is always displayed.
 2. Driver dialog is displayed only when the
specification is not sufficient to make the connection.
 3. The same as 2, except that dialogs that are not
required are grayed and cannot be modified.
 4. Driver dialog is not displayed. If the connection is
not successful, an error is returned.

 When prompt is omitted, SQLOpen uses 2 as the default.

 The content of connectStr is described in the Microsoft Programmer’s
Reference Guide for ODBC. An example string might be
"DSN=datasourcename; UID=myid; PWD=mypassword". The return
must be a Long.

 This example opens the data source named SblTest, gets the names in the
ODBC data sources, and closes the connection.

 Sub main
 Dim outputStr, qualifier As String
 Dim connection As Long
 Dim prompt As Integer
 Dim datasources(1 To 50) As Variant
 Dim retcode As Variant
 Dim action1 as Integer

 See Also

 Description

 Syntax

 Comments

 Example

SQLRequest

Command Reference 6-517

 prompt = 5
 ' Open the datasource "SblTest"
 connection = SQLOpen("DSN=SblTest", outputStr, prompt:=5)
 action1 = 1 'Get the names of the ODBC datasources
 retcode = SQLGetSchema(connection:=connection,

action:=1, qualifier:=qualifier, ref:=datasources())
 ' Close the datasource connection
 retcode = SQLClose(connection)

 End Sub

 SQLClose SQLRequest
 SQLError SQLRetrieve
 SQLExecQuery SQLRetrieveToFile
 SQLGetSchema

 SQLRequest
 Function

 Establishes a connection to the data source specified in connectionStr,
executes the SQL statement contained in query, returns the results of the request
in the ref() array, and closes the connection.

 SQLRequest(connectionStr$, query$, outputStr$, prompt%,
columnNames%, ref())

 Syntax Element Description

 connectionStr$ A required argument.

 query$ A required argument.

 outputStr$ Contains the completed connection string.

 prompt% An integer that specifies when driver dialog boxes are
displayed (see SQLOpen).

 columnNames% An integer with a value of 0 or nonzero. When
columnNames is nonzero, column names are returned as
the first row of the ref() array. If columnNames is
omitted, the default is 0.

 ref() A required argument that is a two dimensional Variant
array.

 In the event that the connection cannot be made, the query is invalid, or other error
condition, a negative number error is returned. In the event the request is successful,
the positive number of results returned or rows affected is returned. Other SQL
statements return 0.

 The arguments are named arguments. The return is a Variant.

 See Also

 Description

 Syntax

 Comments

SQLRetrieve

6-518 SQABasic Language Reference

 This example will open the data source SBLTESTW and execute the query
specified by query and return the results in destination

 Sub main
 ' Declarations
 '
 Dim destination(1 To 50, 1 To 125) As Variant
 Dim prompt As integer
 Dim retcode as Variant
 Dim query as String
 Dim outputStr as String

 ' The following will open the datasource SBLTESTW and
' execute the query
 ' specified by query and return the results in
' destination
 '
 query = "select * from class"
 retcode = SQLRequest("DSN=SBLTESTW;UID=DBA;PWD=SQL",

query, outputStr, prompt, 0, destination())

 End Sub

 SQLClose SQLOpen
 SQLError SQLRetrieve
 SQLExecQuery SQLRetrieveToFile
 SQLGetSchema

 SQLRetrieve
 Function

 Fetches the results of a pending query on the connection specified by
connection and returns the results in the destination() array.

 SQLRetrieve(connection&, destination(), maxColumns%,
maxRows%, columnNames%, rowNumbers%, fetchFirst%)

 Syntax Element Description

 connection& A long.

 destination() A two dimensional Variant array.

 maxColumns% An optional parameter used to specify the number of
columns to be retrieved in the request.

 maxRows% An optional parameter used to specify the number of rows
to be retrieved in the request.

 columnNames% An optional parameter that defaults to 0.

 rowNumbers% An optional parameter that defaults to 0.

 fetchFirst% An optional parameter that defaults to 0.

 Example

 See Also

 Description

 Syntax

SQLRetrieve

Command Reference 6-519

 The return value is the number of rows in the result set or the maxRows
requested. If the function is unable to retrieve the results on the specified
connection, or if there are not results pending, -1 is returned. If no data is found,
the function returns 0.

 The arguments are named arguments. The return is a Variant.

 If maxColumns or maxRows are omitted, the array size is used to determine the
maximum number of columns and rows retrieved, and an attempt is made to
return the entire result set. Extra rows can be retrieved by using SQLRetrieve
again and by setting fetchFirst to 0. If maxColumns specifies fewer columns
than are available in the result, SQLRetrieve discards the rightmost result
columns until the results fit the specified size.

 When columnNames is nonzero, the first row of the array will be set to the
column names as specified by the database schema. When rowNumbers is
nonzero, row numbers are returned in the first column of destination().
SQLRetrieve will clear the user’s array prior to fetching the results.

 When fetchFirst is nonzero, it causes the result set to be repositioned to the
first row if the database supports the function. If the database does not support
repositioning, the result set -1 error will be returned.

 If there are more rows in the result set than can be contained in the
destination() array or than have been requested using maxRows, the user
can make repeated calls to SQLRetrieve until the return value is 0.

 This example retrieves information from a data source.

 Sub main
 ' Declarations
 '
 Dim connection As Long
 Dim destination(1 To 50, 1 To 125) As Variant
 Dim retcode As long
 Dim query as String
 Dim outputStr as String
 connection = SQLOpen("DSN=SblTest",outputStr, prompt:=3)
 '
 ' Execute the query
 query = "select * from customer"
 retcode = SQLExecQuery(connection,query)

 ' retrieve the first 50 rows with the first 6 columns
' of each row into the array destination, omit row
 ' numbers and put column names in the first row
 ' of the array

 retcode = SQLRetrieve(connection:=connection,

destination:=destination, columnNames:=1,
rowNumbers:=0,maxRows:=50, maxColumns:=6,
fetchFirst:=0)

 Comments

 Example

SQLRetrieveToFile

6-520 SQABasic Language Reference

 ' Get the next 50 rows of from the result set
 retcode = SQLRetrieve(connection:=connection,

destination:=destination, columnNames:=1,
rowNumbers:=0,maxRows:=50, maxColumns:=6)

 ' Close the connection
 retcode = SQLClose(connection)
 End Sub

 SQLClose SQLOpen
 SQLError SQLRequest
 SQLExecQuery SQLRetrieveToFile
 SQLGetSchema

 SQLRetrieveToFile
 Function

 Fetches the results of a pending query on the connection specified by
connection and stores them in the file specified by destination.

 SQLRetrieveToFile(connection&, destination$,
columnNames%, columnDelimiter$)

 Syntax Element Description

 connection& A required argument. A long integer.

 destination$ A required argument. A string containing the file and path
to be used for storing the results.

 columnNames% An integer; when nonzero, the first row of the file will be
set to the column names as specified by the database
schema. If columnNames is omitted, the default is 0.

 columnDelimiter$ Specifies the string to be used to delimit the fields within
each row. If columnDelimiter is omitted, a horizontal
tab is used to delimit fields.

 Upon successful completion of the operation, the return value is the number of
rows in the result set. If the function is unable to retrieve the results on the
specified connection, or if there are not results pending, -1 is returned.

 The arguments are named arguments. The return is a Variant.

 See Also

 Description

 Syntax

 Comments

Sqr

Command Reference 6-521

 This example opens a connection to a data source and retrieves information to a file.
 Sub main
 ' Declarations
 '
 Dim connection As Long
 Dim destination(1 To 50, 1 To 125) As Variant
 Dim retcode As long
 Dim query as String
 Dim outputStr as String
 Dim filename as String
 Dim columnDelimiter as String
 '
 ' Execute the query
 '
 query = "select * from customer"
 retcode = SQLExecQuery(connection,query)

 ' Place the results of the previous query in the file
' named by filename and put the column names in the
 ' file as the first row. The field delimiter is %

 filename = "c:\myfile.txt"
 columnDelimiter = "%"
 retcode = SQLRetrieveToFile(connection:=connection,

destination:=filename, columnNames:=1,
columnDelimiter:=columnDelimiter)

 retcode = SQLClose(connection)

 End Sub

 SQLClose SQLOpen
 SQLError SQLRequest
 SQLExecQuery SQLRetrieve
 SQLGetSchema

 Sqr
 Function

 Returns the square root of a number.

 Sqr(number)

 Syntax Element Description

 number An expression containing the number to use.

 The return value is single-precision for an Integer, Currency, or single-
precision numeric expression, and double-precision for a Long, Variant, or
double-precision numeric expression.

 Example

 See Also

 Description

 Syntax

 Comments

StartApplication

6-522 SQABasic Language Reference

 This example calculates the square root of 2 as a double-precision floating point
value and displays it in scientific notation.

 Sub main
 Dim value as Double
 Dim msgtext
 value=CDbl(Sqr(2))
 msgtext= "The square root of 2 is: " &
Format(Value,"Scientific")
 MsgBox msgtext
 End Sub

 Exp Log
 Fix Rnd
 Int Sgn

 StartApplication
 Utility Command

 Starts the specified application from within the currently running script.

 StartApplication Pathname$

 Syntax Element Description

 Pathname$ The full path and file name of the application to start.
Arguments can be included.

 This statement writes a message to the log indicating whether the application
started successfully or failed.

 To specify a quoted string within Pathname, use two consecutive double-quote
characters ("") at the beginning and the end of the enclosed string. For example,
double quotes are necessary if the file name or one of the arguments contains a
space. Here are some examples:

StartApplication "notepad c:\autoexec.bat"
StartApplication "write ""c:\program files\rational\

rational test 7\readme.wri"""
StartApplication """c:\program files\rational\

rational test 7\sqa7ins.exe"""

 This example starts the Windows Clock Application (and writes a message to the
log indicating if the application was started successfully).

 StartApplication "C:\WINDOWS\CLOCK.EXE"

 SQAShellExecute StartJavaApplication

 Example

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

StartBrowser

Command Reference 6-523

 StartBrowser
 Utility Command

 Starts an instance of the browser, enables Web testing, and loads a Web page if
one is specified.

 StartBrowser [URL$,] [WindowTag=Name$]

 Syntax Element Description

 URL$ The Universal Resource Locator of the Web page to load.

 Name$ An optional name that identifies this instance of the
browser. In subsequent user actions, WindowTag=Name$
is used in the recMethod$ argument of the Window
SetContext command to identify this instance of the
browser.

 The StartBrowser command enables Web object recognition. If you start a
Web browser outside of Robot (that is, without using the StartBrowser
command), you must open rbtstart.htm in your browser, or run the Rational
ActiveX Test Control that rbtstart.htm references, before loading Web pages for
testing. By default, rbtstart.htm is located in:

C:\Program Files\Rational\Rational Test 7

Once you run StartBrowser or the Rational ActiveX Test Control for a particular
browser, Web object recognition is enabled for all subsequent actions against that
browser and any new browser windows opened from that browser. For example,
if your run StartBrowser to open Browser1, and then from Browser1 you open
Browser2 through a JavaScript command or by holding down the Shift key and
clicking on a link in Internet Explorer, Web testing is enabled for both Browser1
and Browser2.

 This example enables Web object recognition and starts an instance of the Web
browser (identified as Instance1). It then loads the www.rational.com Web page,
which is now ready for testing.

 StartBrowser "http://www.rational.com/", "WindowTag=Instance1"

 HTMLDocument HTMLImageVP HTMLTable
 HTMLDocumentVP HTMLLink HTMLTableVP
 HTMLImage HTMLLinkVP SQASetDefaultBrowser

 Description

 Syntax

 Comments

 Example

 See Also

StartJavaApplication

6-524 SQABasic Language Reference

StartJavaApplication
Utility Command

Starts the specified Java application from within the currently running script.

StartJavaApplication Class:=classname$ [,CP:=classpath$]
[,Working:=workingfolder$] [,JvmKey:=jvmkey$]
[,JvmFile:=jvmfile$] [,JvmOpts:=jvmoptions$]

Syntax Element Description

Class:=classname$ The application’s main class name.
The class name is required. Optionally, you can include
class arguments with the class name.

CP:=classpath$ The class path for the class file and any required
components. This value overrides any classpath
environment setting.
You can specify the current directory by inserting a dot
(.) into the class path.
If you specify multiple directories in the class path,
separate them with semi-colons (;).

Working:=workingfolder$ The full path to a working directory. Use this
argument to set the working directory before running
the Java application. Doing so sets the current directory
to the specified working directory for that instance of
the application.

JvmKey:=jvmkey$ A Robot-defined keyword that identifies a particular
JVM. If a JvmFile is also specified, JvmKey takes
precedence.
See Comments for the list of possible keywords.

JvmFile:=jvmfile$ The executable file name of a JVM. This argument can
include the path as well as the file name.
If a JvmKey is also specified, JvmKey takes
precedence.

JvmOpts:=jvmoptions$ Option parameters for the specified JVM.

StartJavaApplication uses named arguments. Named arguments can
appear in any order after the command name. Further, optional named arguments
can be omitted. With StartJavaApplication, only Class:=classname$
is required. All other arguments are optional. For more information about named
arguments, see Passing Named Arguments in Chapter 3.

Description

Syntax

Comments

StartJavaApplication

Command Reference 6-525

Use StartJavaApplication if you want to play back the script under
Quantify or PureCoverage.

If you use StartJavaApplication, you cannot start the Java application from
a batch file.

To specify a particular JVM, you can use either JvmKey or JvmFile. Note that:

► If you specify both JvmKey and JvmFile, JvmKey takes precedence.

► If you specify neither JvmKey nor JvmFile, Robot uses the JavaSoft Sun
JVM (java.exe) that it finds using the PATH environment variable.

JvmKey can take the following keyword values:

JvmKey keyword JVM used

Java The JavaSoft Sun JVM (java.exe) found using the PATH
environment variable. This keyword is the default.

Jview The Microsoft JVM (jview.exe) found using the PATH
environment variable.

JavaSoft JDK n.n The JavaSoft installed JDK JVM. Robot uses the Registry to
find the executable for the JVM.

Note that n.n identifies the version number (for example,
JavaSoft JDK 1.2).

JavaSoft JRE n.n The JavaSoft installed JRE JVM. Robot uses the Registry to
find the executable for the JVM.

Note that n.n identifies the version number (for example,
JavaSoft JRE 1.2).

This example runs the Java application with the class name Notepad. The class
path is the current directory, as indicated by the dot (.) in the CP argument. Also, a
particular working directory is specified on the D drive. In this example, Robot
runs the JDK JVM executable file that it finds in the Registry.

StartJavaApplication Class:="Notepad",CP:=".",
Working:="d:\jdk1.2\demo\jfc\notepad",JvmKey:="JavaSoft JDK 1.2"

This example runs the Java application with the class name AwtSimple. Two
directories are specified in the class path. In this example, Robot runs the
Microsoft JVM (jview.exe), which it finds using the PATH environment variable.

StartJavaApplication Class:="AwtSimple",
CP:="E:\VisualCafePDE\BIN\COMPONENTS\SYMBEANS.JAR;
C:\JviewJavaApps\AwtSimple.Jar",JvmKey:="Jview"

Example

StartSaveWindowPositions

6-526 SQABasic Language Reference

None.

 StartSaveWindowPositions
 Utility Command

 Marks the start of the script commands that save the window positions for
restoration at playback.

 StartSaveWindowPositions

 When you record a script, Robot optionally saves the positions of all windows at
the beginning of the recording. Scripts have Window SetPosition statements
between StartSaveWindowPositions and EndSaveWindowPositions
statements, identifying the locations and status of the windows to be restored.

 StartSaveWindowPositions sets all playback synchronization and timeout
values to zero to speed up the processing of the Window commands.
EndSaveWindowPositions resets all sync and timeout values to their default
values.

 Script commands between StartSaveWindowPositions and
EndSaveWindowPositions generate a Warning in the log if not executed
properly on playback.

 If you do not want to store the window position information, you can turn off this
feature in the Recording Options dialog box.

 On playback, the Unexpected Active Window checking is turned off between
the StartSaveWindowPositions and EndSaveWindowPositions
statements.

 This example marks the start of the script commands that save the window
positions for restoration at playback.

 StartSaveWindowPositions
 Window SetPosition, "Caption=Text.Doc",
 "Coords=455,186,161,101;Status=NORMAL"
 Window MoveTo, "Caption=QuarterByte Savings Bank",
 "Coords=151,10,490,248;Status=NORMAL"
 EndSaveWindowPositions

 EndSaveWindowPositions
 Window (Action - SetPosition)

See Also

 Description

 Syntax

 Comments

 Example

 See Also

StartTimer

Command Reference 6-527

 StartTimer
 Utility Command

 Starts the specified timer in the currently running GUI script and writes a message
to the log.

 StartTimer TimerID$

 Syntax Element Description

 TimerID$ ID of the timer to be started.

 When the timer starts, a log message indicating when the timer was started is
written to the log.

 A GUI script can have up to 20 simultaneously active timers.

 If the specified timer name is already in use in the GUI script, the timer is stopped
and the elapsed time is reported to Rational LoadTest. The timer is then restarted,
beginning with an elapsed time of 0.

 This example starts timer 001, establishes a verification point for a window, and
then stops timer 001.

 StartTimer "001"
 Result = WindowVP (CompareMenu,
 "Caption=Untitled - Notepad", "VP=QBMPTSTA")
 StopTimer "001"

 StopTimer

 Static
 Statement

 Declares variables and allocate storage space.

 Static variableName [As type] [,variableName [As type]]
...

 Syntax Element Description

 variableName The name of the variable to declare.

 Type The data type of the variable.

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

Static

6-528 SQABasic Language Reference

 Variables declared with the Static statement retain their value as long as the
program is running. The syntax of Static is exactly the same as the syntax of the
Dim statement.

 All variables of a procedure can be made static by using the Static keyword in a
definition of that procedure See Function or Sub for more information.

 This example puts account numbers to a file using the variable grecord and
then prints them again.

 Type acctrecord
 acctno as Integer
 End Type

 Sub main
 Static grecord as acctrecord
 Dim x
 Dim total
 Dim msgtext as String
 On Error Resume Next
 Open "C:\TEMP001" For Output as #1
 Do While grecord.acctno<>0
 i: grecord.acctno=InputBox("Enter 0 or new account #" & x & ":")
 If Err<>0 then
 MsgBox "Error occurred. Try again."
 Err=0
 Goto i
 End If
 If grecord.acctno<>0 then
 Print #1, grecord.acctno
 x=x+1
 End If
 Loop
 Close #1
 total=x-1
 msgtext="The account numbers are: " & Chr(10)
 Open "C:\TEMP001" For Input as #1
 For x=1 to total
 Input #1, grecord.acctno
 msgtext=msgtext & Chr(10) & grecord.acctno
 Next x
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
 End Sub

 Dim Option Base
 Function ReDim
 End Function Sub...End Sub
 Global

 Comments

 Example

 See Also

StaticComboBox

Command Reference 6-529

 StaticComboBox
 Statement

 Creates a combination of a list of choices and a text box.

 Syntax A StaticComboBox x, y, dx, dy, text$, .field

 Syntax B StaticComboBox x, y, dx, dy, stringarray$(),
.field

 Syntax Element Description

 x, y The upper left corner coordinates of the list box, relative
to the upper left corner of the dialog box.

 dx, dy The width and height of the combo box in which the user
enters or selects text.

 text$ A string containing the selections for the combo box.

 stringarray$ An array of dynamic strings for the selections in the
combo box.

 .field The name of the dialog-record field that will hold the text
string entered in the text box or chosen from the list box.

 The StaticComboBox statement is equivalent to the ComboBox or
DropComboBox statement, but the list box of StaticComboBox always stays
visible. All dialog functions and statements that apply to the ComboBox apply to
the StaticComboBox as well.

 The x argument is measured in 1/4 system-font character-width units. The y
argument is measured in 1/8 system-font character-width units. (See Begin
Dialog for more information.)

 The text$ argument must be defined, using a Dim statement, before the Begin
Dialog statement is executed. The arguments in the text$ string are entered as
shown in the following example:

 dimname="listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...
 The string in the text box will be recorded in the field designated by the .field
argument when the OK button (or any PushButton other than Cancel) is pushed.
The field argument is also used by the dialog statements that act on this control.

 Use the StaticComboBox statement only between a Begin Dialog and an
End Dialog statement.

 Description

 Syntax

 Comments

StatusBar

6-530 SQABasic Language Reference

 This example defines a dialog box with a static combo box labeled Installed
Drivers and the OK and Cancel buttons.

 Sub main
 Dim cchoices as String
 cchoices="MIDI Mapper"+Chr$(9)+"Timer"
 Begin Dialog UserDialog 182, 116, "SQABasic Dialog Box"
 StaticComboBox 7, 20, 87, 49, cchoices, .StaticComboBox1
 Text 6, 3, 83, 10, "Installed Drivers", .Text1
 OKButton 118, 12, 54, 14
 CancelButton 118, 34, 54, 14
 End Dialog
 Dim mydialogbox As UserDialog
 Dialog mydialogbox
 If Err=102 then
 MsgBox "You pressed Cancel."
 Else
 MsgBox "You pressed OK."
 End If
 End Sub

 Begin Dialog ComboBox OptionGroup
 End Dialog Dialog Picture
 Button DropComboBox StaticComboBox
 ButtonGroup GroupBox Text
 CancelButton ListBox TextBox
 Caption OKButton
 CheckBox OptionButton

 StatusBar
 User Action Command

 Performs an action on a status bar control.

 StatusBar action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.
► ► ►

 Example

 See Also

 Description

 Syntax

StatusBar

Command Reference 6-531

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 None.

 This example clicks the first status bar control in the window (ObjectIndex=1)
at x,y coordinates of 50,25.

 StatusBar Click, "ObjectIndex=1", "Coords=50,25"

 StatusBarVP

 Comments

 Example

 See Also

StatusBarVP

6-532 SQABasic Language Reference

 StatusBarVP
 Verification Point Command

 Establishes a verification point for a status bar control.

 Result = StatusBarVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► ► ►

 Description

 Syntax

StatusBarVP

Command Reference 6-533

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive and
UserDefined. If UserDefined is specified, two
additional parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

 This example captures the properties of the first status bar control in the window
(ObjectIndex=1) and compares them to the recorded baseline in verification
point TEST1A.

 Result = StatusBarVP(CompareProperties,"ObjectIndex=1","VP=TEST1A")

 StatusBar

 Comments

 Example

 See Also

Stop

6-534 SQABasic Language Reference

 Stop
 Statement

 Halts program execution.

 Stop

 Stop statements can be placed anywhere in a program to suspend its execution.
Although the Stop statement halts program execution, it does not close files or
clear variables.

 This example stops program execution at the user’s request.

 Sub main
 Dim str1
 str1=InputBox("Stop program execution? (Y/N):")
 If str1="Y" or str1="y" then Stop
 MsgBox "Program complete."
 End Sub

 None.

 StopTimer
 Utility Command

 Stops the specified timer in the currently running GUI script and writes the
elapsed time in milliseconds to the log.

 StopTimer TimerID$

 Syntax Element Description

 TimerID$ ID of the timer to be stopped.

 When the timer stops, a log message indicating when the timer was stopped and
the elapsed time in milliseconds is written to the log.

 This example starts timer 001, establishes a verification point for a window, and
then stops timer 001.

 StartTimer "001"
 Result = WindowVP (CompareMenu, "Caption=Untitled - Notepad",
 "VP=QBMPTSTA")
 StopTimer "001"

 StartTimer

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

Str

Command Reference 6-535

 Str
 Function

 Returns a string representation of a number.

 Str[$](number)

 Syntax Element Description

 $ Optional. If specified the return type is String. If
omitted, the function will return a Variant of VarType
8 (String).

 number The number to represent as a string.

 The precision in the returned string is single-precision for an integer or single-
precision numeric expression, double precision for a long or double-precision
numeric expression, and currency precision for currency. Variants return the
precision of their underlying VarType.

 This example prompts for two numbers, adds them, then shows them as a
concatenated string.

 Sub main
 Dim x as Integer
 Dim y as Integer
 Dim str1 as String
 Dim value1 as Integer
 x=InputBox("Enter a value for x: ")
 y=InputBox("Enter a value for y: ")
 MsgBox "The sum of these numbers is: " & x+y
 str1=Str(x) & Str(y)
 MsgBox "The concatenated string for these numbers is: " & str1
 End Sub

 Format
 Val

 StrComp
 Function

 Compares two strings and returns an integer specifying the result of the comparison.

 Description

 Syntax

 Comments

 Example

 See Also

 Description

StrComp

6-536 SQABasic Language Reference

 StrComp(string1$, string2$[, compare%])

 Syntax Element Description

 string1$ Any expression containing the first string to compare.

 string2$ The second string to compare.

 compare% An integer for the method of comparison (0=case-
sensitive, 1=case-insensitive).

 StrComp returns one of the following values:

 Value Meaning

 -1 string1$ < string2$

 0 string1$ = string2$

 >1 string1$ > string2$

 Null string1$ = Null or string2$ = Null

 If compare% is 0, a case sensitive comparison based on the ANSI character set
sequence is performed. If compare% is 1, a case insensitive comparison is done
based upon the relative order of characters as determined by the country code
setting for your system. If omitted, the module level default, as specified with
Option Compare is used.

 The string1 and string2 arguments are both passed as variants. Therefore,
any type of expression is supported. Numbers will be automatically converted
to strings.

 This example compares a user-entered string to the string Smith.

 Option Compare Text
 Sub main
 Dim lastname as String
 Dim smith as String
 Dim x as Integer
 smith="Smith"
 lastname=InputBox("Type your last name")
 x=StrComp(lastname,smith,1)
 If x=0 then
 MsgBox "You typed 'Smith' or 'smith'."
 Else
 MsgBox "You typed: " & lastname & " not 'Smith'."
 End If
 End Sub

 Instr
 Option Compare

 Syntax

 Comments

 Example

 See Also

String

Command Reference 6-537

 String
 Function

 Returns a string consisting of a repeated character.

 Syntax A String[$](number, Character%)

 Syntax B String[$](number, string-expression$)

 Syntax Element Description

 $ Optional. If specified the return type is String. If
omitted, the function returns a Variant of VarType 8
(String).

 number The length of the string to be returned.

 Character% A numeric expression that contains an integer for the
decimal ANSI code of the character to use.

 string-expression$ A string argument, the first character of which becomes
the repeated character.

 number must be between 0 and 32,767.

 Character% must evaluate to an integer between 0 and 255.

 This example places asterisks (*) in front of a string that is printed as a
payment amount.

 Sub main
 Dim str1 as String
 Dim size as Integer
 i: str1=InputBox("Enter an amount up to 999,999.99: ")
 If Instr(str1,".")=0 then str1 = str1 + ".00"
 If Len(str1)>10 then
 MsgBox "Amount too large. Try again."
 Goto i
 End If
 size=10-Len(str1)
 ' Print amount in a space on a check allotted for 10 characters
 str1=String(size,Asc("*")) & str1
 MsgBox "The amount is: $" & str1
 End Sub

 Space
 Str

 Description

 Syntax

 Comments

 Example

 See Also

Sub...End Sub

6-538 SQABasic Language Reference

 Sub...End Sub
 Statement

 Defines a sub procedure.

 [Static] [Private] Sub name [([Optional] arg [As
type],...)]

 End Sub

 Syntax Element Description

 name The name of the sub procedure.

 arg An argument to pass to the sub procedure when it is called.
Multiple arguments are separated by commas.

 type The data type of an argument in arg.

 A call to a sub procedure stands alone as a separate statement. (See the Call
statement). Recursion is supported.

 arg contains an argument being passed to the sub procedure. An argument is
represented by a variable name. Multiple arguments are separated by commas.
Note the following information about the arguments being passed:

► The data type of an argument can be specified through a type declaration
character or through the As clause.

► Arguments of a User-Defined data type are declared through an As clause
and a type that has previously been defined through the Type statement.

► If an argument is an array, use empty parentheses after the argument name.
The array dimensions are not specified within the Sub statement. All
references to the array within the body of the sub procedure must have a
consistent number of dimensions.

► If you declare an argument as Optional, its value can be omitted when the
sub procedure is called. Only arguments with Variant data types can be
declared as optional, and all optional arguments must appear after any
required arguments in the Sub statement. Use the function IsMissing
to check whether an optional argument was actually sent to the sub procedure
or was omitted.

► Arguments can be listed in a particular order, or they can be identified by
name. See the Call statement for information on named arguments.

The sub procedure returns to the caller when the End Sub statement is reached
or when an Exit Sub statement is executed.

 Description

 Syntax

 Comments

SysMenuIDSelect

Command Reference 6-539

The Static keyword specifies that all the variables declared within the sub
procedure will retain their values as long as the program is running, regardless of
the way the variables are declared.

The Private keyword specifies that the procedures will not be accessible to
functions and sub procedures from other modules. Only procedures defined in
the same module will have access to a Private sub procedure.

SQABasic procedures use the call-by-reference convention by default. This means
that if the called procedure changes the value of an argument passed in arg, the
new value will apply in the calling procedure as well. This feature should be used
with great care.

The MAIN sub procedure has a special meaning. In many implementations of
Basic, MAIN will be called when the module is run. The MAIN sub procedure is
not allowed to take arguments.

Use Function to define a procedure that has a return value.

This example is a sub procedure that uses the Sub...End Sub statement.

Sub main
MsgBox "Hello, World."

End Sub

Call Global
Dim Option Explicit
Function Static
End Function

SysMenuIDSelect
User Action Command

Performs a system menu selection based on the internal ID of the menu item. A
system menu is the menu that appears when you click on the control box in the
upper-left corner of a window.

SysMenuIDSelect MenuID&

Syntax Element Description

MenuID& The internal ID of the menu item.

Example

See Also

Description

Syntax

SysMenuSelect

6-540 SQABasic Language Reference

This command is necessary for making selections from System menu items that
do not contain text, such as owner drawn or bitmap menus.

This example selects the menu item identified by the internal ID 2034 from the
System menu of the current context window.

SysMenuIDSelect 2034

MenuIDSelect PopupMenuSelect
MenuSelect SysMenuIDSelect
PopupMenuIDSelect

SysMenuSelect
User Action Command

Perform a system menu selection based on the text of the menu item. A system
menu is the menu that appears when you click on the control box in the upper-
left corner of a window.

SysMenuSelect menuPath$

Syntax Element Description

menuPath$ The name of the menu item.

The sub-menus are delimited by a pointer (->). Robot can recognize menus and
sub-menus up to 5 levels deep.

This example selects the menu item Switch To... from the System menu of the
current context window.

SysMenuSelect "Switch To..."

MenuIDSelect PopupMenuSelect
MenuSelect SysMenuSelect
PopupMenuIDSelect

Comments

Example

See Also

Description

Syntax

Comments

Example

See Also

Tab

Command Reference 6-541

Tab
Function

Moves the current print position to the column specified.

Tab (n)

Syntax Element Description

n The new print position to use.

The Tab function can be used only inside Print statement. The leftmost print
position is position number 1.

When the Print statement is used, the Tab function uses the following rules for
determining the next print position:

1. If n is less than the total line width, the new print position is n.

2. If n is greater than the total line width, the new print position is n Mod
width.

3. If the current print position is greater than n or n Mod width, Tab skips
to the next line and sets the print position to n or n Mod width.

To set the width of a print line, use the Width statement.

This example prints the octal values for the numbers from 1 to 25. It uses Tab to
put five character spaces between the values.

Sub main
Dim x as Integer
Dim y
For x=1 to 25

y=Oct$(x)
Print x Tab(10) y

Next x
End Sub

Print Spc
Space Width

Description

Syntax

Comments

Example

See Also

TabControl

6-542 SQABasic Language Reference

TabControl
User Action Command

Performs an action on a tab control.

TabControl action%, recMethod$, parameters$

Syntax Element Description

action% One of these actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag values.

► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.
 If Robot cannot interpret the action being applied to a
scroll bar, which happens with certain custom standalone
scroll bars, it records the action as a click or drag.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier.

► ItemIndex=%. The index of the tab item acted upon.
Used only after one of these parent values: ID=%,
ObjectIndex=%, Name=$, Text=$. Parent/child
values are separated by a backslash and semicolons
(;\;).

► ► ►

Description

Syntax

TabControl

Command Reference 6-543

► ► ►

Syntax Element Description

 ► ItemText=$. The text of the tab item acted upon.
Used only after one of these parent values: ID=%,
ObjectIndex=%, Name=$, Text=$. Parent/child
values are separated by a backslash and semicolons (;\;).

► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A name that a developer assigns to an object to
uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among all
objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default state
is the state of the current context window (as set in the
most recent Window SetContext command), or
Enabled if the state has not been otherwise declared.

► Text=$. The text displayed on the object.
► Type=$. An optional qualifier for recognition methods.

Used to identify the object within a specific context or
environment. The Type qualifier uses the following
form: Type=$;recMethod=$. Parent/child values are
separated by a backslash and semicolons (;\;).

► VisualText=$. An optional setting used to identify an
object by its prior label. It is for user clarification only
and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the x,y coordinates of the click, relative to the top left of
the object or the item.

► Coords=x1,y1,x2,y2. If action% is a mouse drag,
specifies the coordinates, where x1,y1 are the starting
coordinates of the drag, and x2,y2 are the ending
coordinates. The coordinates are relative to the top left of
the object or the item.

► Index=%. In Java environments, specifies the index of the
tab being acted upon.

► Position=%. If action% is VScrollTo or
HscrollTo, specifies the scroll bar value of the new
scrolled-to position in the scroll box. Every scroll bar has
an internal range, and this value is specific to that range.

► Text=$. In Java environments, specifies the label of the
tab being acted upon.

 None.

 Comments

TabControlVP

6-544 SQABasic Language Reference

 This example clicks the item identified by the text System at x,y coordinates of
50,25 in the first tab control in the window (ObjectIndex=1). The clicked tab
is labeled System.

 TabControl Click, "ObjectIndex=1;\;ItemText=System","Coords=50,25"

 TabControlVP

 TabControlVP
 Verification Point Command

 Establishes a verification point for a tab control.

 Result = TabControlVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► CompareNumeric. Captures the numeric value of
the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► ► ►

 Example

 See Also

 Description

 Syntax

TabControlVP

Command Reference 6-545

► ► ►

 Syntax Element Description

recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier.

► ItemIndex=%. The index of the tab item acted upon.
Used only after one of these parent values: ID=%,
ObjectIndex=%, Name=$, Text=$. Parent/child
values are separated by a backslash and semicolons
(;\;).

► ItemText=$. The text of the tab item acted upon.
Used only after one of these parent values: ID=%,
ObjectIndex=%, Name=$, Text=$. Parent/child
values are separated by a backslash and semicolons
(;\;).

► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.
► Type=$. An optional qualifier for recognition

methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► ► ►

TabControlVP

6-546 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the properties of the first tab control in the window
(ObjectIndex=1) and compares them to the recorded baseline in verification
point TEST1A.

 Result=TabControlVP(CompareProperties,"ObjectIndex=1","VP=TEST1A")

 TabControl

 Comments

 Example

 See Also

Tan

Command Reference 6-547

 Tan
 Function

 Returns the tangent of an angle in radians.

 Tan(number)

 Syntax Element Description

 number An expression containing the angle in radians.

 number is specified in radians, and can be either positive or negative.

 The return value is single-precision if the angle is an integer, currency or single-
precision value, double precision for a long, Variant or double-precision value.

 To convert degrees to radians, multiply by PI/180. The value of PI is 3.14159.

 This example finds the height of the exterior wall of a building, given its roof pitch
and the length of the building.

 Sub main
 Dim bldglen, wallht
 Dim pitch
 Dim msgtext
 Const PI=3.14159
 Const conversion= PI/180
 On Error Resume Next
 pitch=InputBox("Enter the roof pitch in degrees:")
 pitch=pitch*conversion
 bldglen=InputBox("Enter the length of the building in feet:")
 wallht=Tan(pitch)*(bldglen/2)
 msgtext="The building height is: " & Format(wallht,"##.00")
 MsgBox msgtext
 End Sub

 Atn
 Cos
 Sin
 Derived Trigonometric functions (Appendix D)

 Description

 Syntax

 Comments

 Example

 See Also

Text

6-548 SQABasic Language Reference

 Text
 Statement

 Places line(s) of text in a dialog box.

 Text x, y, dx, dy, text$[, .id]

 Syntax Element Description

 x, y The upper left corner coordinates of the text area, relative
to the upper left corner of the dialog box.

 dx, dy The width and height of the text area.

 text$ A string containing the text to appear in the text area
defined by x, y.

 .id An optional identifier used by the dialog statements that
act on this control.

 If the width of text$ is greater than dx, the spillover characters wrap to the next
line. This will continue as long as the height of the text area established by dy is
not exceeded. Excess characters are truncated.

 By preceding an underlined character in text$ with an ampersand (&), you
enable a user to press the underlined character on the keyboard and position the
cursor in the combo or text box defined in the statement immediately following
the Text statement.

 Use the Text statement only between a Begin Dialog and an End Dialog
statement.

 This example defines a dialog box with a combination list and text box and three
buttons.

 Sub main
 Dim ComboBox1() as String
 ReDim ComboBox1(0)
 ComboBox1(0)=Dir("C:*.*")
 Begin Dialog UserDialog 166, 142, "SQABasic Dialog Box"
 Text 9, 3, 69, 13, "Filename:", .Text1
 DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
 OKButton 101, 6, 54, 14
 CancelButton 101, 26, 54, 14
 PushButton 101, 52, 54, 14, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then MsgBox "Dialog box canceled."
 End Sub

 Description

 Syntax

 Comments

 Example

TextBox

Command Reference 6-549

 Begin Dialog CheckBox OKButton
 End Dialog ComboBox OptionButton
 Button Dialog OptionGroup
 ButtonGroup DropComboBox Picture
 CancelButton GroupBox StaticComboBox
 Caption ListBox TextBox

 TextBox
 Statement

 Creates a text box in a dialog box.

 TextBox [NoEcho] x, y, dx, dy, .field

 Syntax Element Description

 x, y The upper left corner coordinates of the text box, relative
to the upper left corner of the dialog box.

 dx, dy The width and height of the text box area.

 .field The name of the dialog-record field to hold the text string.

 A dy value of 12 will usually accommodate text in the system font.

 When the user selects the OK button, or any PushButton other than cancel, the
text string entered in the text box will be recorded in .field.

 The NoEcho keyword is often used for passwords; it displays all characters
entered as asterisks (*).

 Use the TextBox statement only between a Begin Dialog and an End
Dialog statement.

 This example creates a dialog box with a group box, and two buttons.

 Sub main
 Begin Dialog UserDialog 194, 76, "SQABasic Dialog Box"
 GroupBox 9, 8, 97, 57, "File Range"
 OptionGroup .OptionGroup2
 OptionButton 19, 16, 46, 12, "All pages", .OptionButton3
 OptionButton 19, 32, 67, 8, "Range of pages", .OptionButton4
 Text 25, 43, 20, 10, "From:", .Text6
 Text 63, 43, 14, 9, "To:", .Text7
 TextBox 79, 43, 13, 12, .TextBox4
 TextBox 47, 43, 12, 11, .TextBox5
 OKButton 135, 6, 54, 14
 CancelButton 135, 26, 54, 14
 End Dialog

 See Also

 Description

 Syntax

 Comments

 Example

Time (Function)

6-550 SQABasic Language Reference

 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
 End Sub

 Begin Dialog CheckBox OKButton
 End Dialog ComboBox OptionButton
 Button Dialog OptionGroup
 ButtonGroup DropComboBox Picture
 CancelButton GroupBox StaticComboBox
 Caption ListBox Text

 Time (Function)
 Function

 Returns a string representing the current time.

 Time[$]

 Syntax Element Description

 $ Optional. If specified, the return type is String. If
omitted, the function returns a Variant of VarType 8
(String).

 The Time function returns an eight character string. The format of the string is
hh:mm:ss where hh is the hour, mm is the minutes and ss is the seconds. The
hour is specified in military style, and ranges from 0 to 23.

 This example writes data to a file if it hasn’t been saved within the last 2 minutes.

 Sub main
 Dim tempfile
 Dim filetime, curtime
 Dim msgtext
 Dim acctno(100) as Single
 Dim x, I
 tempfile="C:\TEMP001"
 Open tempfile For Output As #1
 filetime=FileDateTime(tempfile)
 x=1
 I=1
 acctno(x)=0
 Do
 curtime=Time
 acctno(x)=InputBox("Enter an account number (99 to end):")
 If acctno(x)=99 then
 For I=1 to x-1
 Write #1, acctno(I)
 Next I
 Exit Do

 See Also

 Description

 Syntax

 Comments

 Example

Time (Statement)

Command Reference 6-551

 ElseIf (Minute(filetime)+2)<=Minute(curtime) then
 For I=I to x
 Write #1, acctno(I)
 Next I
 End If
 x=x+1
 Loop
 Close #1
 x=1
 msgtext="Contents of C:\TEMP001 is:" & Chr(10)
 Open tempfile for Input as #1
 Do While Eof(1)<>-1
 Input #1, acctno(x)
 msgtext=msgtext & Chr(10) & acctno(x)
 x=x+1
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
 End Sub

 Date function Timer
 Date statement TimeSerial
 Time statement TimeValue

 Time (Statement)
 Statement

 Sets the system time.

 Time = expression

 Syntax Element Description

 expression An expression that evaluates to a valid time. When Time
(with the dollar sign $) is used, the expression must
evaluate to a string of one of the following forms:
► hh. Set the time to hh hours 0 minutes and 0 seconds.
► hh:mm. Set the time to hh hours mm minutes and 0

seconds.
► hh:mm:ss. Set the time to hh hours mm minutes and

ss seconds.

 Time uses a 24-hour clock. Thus, 6:00 P.M. must be entered as 18:00:00.

 If expression is not already a Variant of VarType 7 (date), Time attempts to
convert it to a valid time. It recognizes time separator characters defined in the
International section of the Windows Control Panel. Time (without the $) accepts
both 12 and 24 hour clocks.

 See Also

 Description

 Syntax

 Comments

Timer

6-552 SQABasic Language Reference

 This example changes the time on the system clock.
 Sub main
 Dim newtime, answer as String
 On Error Resume Next
 i: newtime=InputBox("What time is it?")
 answer=InputBox("Is this AM or PM?")
 If answer="PM" or answer="pm" then newtime=newtime & "PM"
 Time=newtime
 If Err<>0 then
 MsgBox "Invalid time. Try again."
 Err=0
 Goto i
 End If
 End Sub

 Date function TimeSerial
 Date statement TimeValue
 Time function

 Timer
 Function

 Returns the number of seconds that have elapsed since midnight.

 Timer

 The Timer function can be used in conjunction with the Randomize statement
to seed the random number generator.

 This example uses the Timer function to find a Megabucks number.

 Sub main
 Dim msgtext, nextvalue, x, y
 Dim value(9)
 msgtext="Your Megabucks numbers are: "
 For x = 1 to 8
 Do
 value(x)=Timer
 value(x)=value(x)*100
 value(x)=Str(value(x))
 value(x)=Val(Right(value(x),2))
 Loop Until value(x)>1 and value(x)<36
 For y=1 to 1500
 Next y
 Next x
 For y = 1 to 8
 For x = 1 to 8
 If y <> x then
 If value(y)=value(x) then value(x)=value(x)+1
 End If
 Next x
 Next y
 For x = 1 to 8
 msgtext=msgtext & value(x) & " "
 Next x
 MsgBox msgtext
 End Sub

 Randomize

 Example

 See Also

 Description

 Syntax

 Comments

 Example

 See Also

TimeSerial

Command Reference 6-553

 TimeSerial
 Function

 Returns a time as a Variant of type 7 (date/time) for a specific hour, minute,
and second.

 TimeSerial(hour%, minute%, second%)

 Syntax Element Description

 hour% A numeric expression for an hour (0-23).

 minute% A numeric expression for a minute (0-59).

 second% A numeric expression for a second (0-59).

 You also can specify relative times for each argument by using a numeric
expression representing the number of hours, minutes, or seconds before or after
a certain time.

 This example displays the current time using TimeSerial.
 Sub main
 Dim y
 Dim msgtext
 Dim nowhr
 Dim nowmin
 Dim nowsec
 nowhr=Hour(Now)
 nowmin=Minute(Now)
 nowsec=Second(Now)
 y=TimeSerial(nowhr,nowmin,nowsec)
 msgtext="The time is: " & y
 MsgBox msgtext
 End Sub

 DateSerial Now
 Date Value Second
 Hour TimeValue
 Minute

 Description

 Syntax

 Comments

 Example

 See Also

TimeValue

6-554 SQABasic Language Reference

 TimeValue
 Function

 Returns a time value for a specified string.

 TimeValue(time$)

 Syntax Element Description

 time$ A valid date time value.

 The TimeValue function returns a Variant of VarType 7 (date/time) that
represents a time between 0:00:00 and 23:59:59, or 12:00:00 A.M. and 11:59:59
P.M., inclusive.

 This example writes a variable to a disk file based on a comparison of its last saved
time and the current time. Note that all the variables used for the TimeValue
function are dimensioned as Double, so that calculations based on their values
will work properly.

 Sub main
 Dim tempfile
 Dim ftime
 Dim filetime as Double
 Dim curtime as Double
 Dim minutes as Double
 Dim acctno(100) as Integer
 Dim x, I
 Dim msgtext as String
 tempfile="C:\TEMP001"
 Open tempfile For Output As 1
 ftime=FileDateTime(tempfile)
 filetime=TimeValue(ftime)
 minutes= TimeValue("00:02:00")
 x=1
 I=1
 acctno(x)=0
 Do
 curtime= TimeValue(Time)
 acctno(x)=InputBox("Enter an account number (99 to end):")
 If acctno(x)=99 then
 For I=I to x-1
 Write #1, acctno(I)
 Next I
 Exit Do
 ElseIf filetime+minutes<=curtime then
 For I=I to x
 Write #1, acctno(I)
 Next I
 End If
 x=x+1
 Loop
 Close #1

 Description

 Syntax

 Comments

 Example

Toolbar

Command Reference 6-555

 x=1
 msgtext="You entered:" & Chr(10)
 Open tempfile for Input as #1
 Do While Eof(1)<>-1
 Input #1, acctno(x)
 msgtext=msgtext & Chr(10) & acctno(x)
 x=x+1
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
 End Sub

 DateSerial Now
 Date Value Second
 Hour TimeSerial
 Minute

 Toolbar
 User Action Command

 Performs an action on a toolbar control.

 Toolbar action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.

 See Appendix E for a list of mouse click and drag values.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► ► ►

 See Also

 Description

 Syntax

ToolbarVP

6-556 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext
command), or Enabled if the state has not been
otherwise declared.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

 None.

 This example clicks the item identified by the text System at x,y coordinates of
50,25 in the first toolbar control in the window (ObjectIndex=1).

 Toolbar Click, "ObjectIndex=1;ItemText=System", "Coords=50,25"

 ToolbarVP

 ToolbarVP
 Verification Point Command

 Establishes a verification point for a toolbar control.

 Result = ToolbarVP (action%, recMethod$, parameters$)

 Comments

 Example

 See Also

 Description

 Syntax

ToolbarVP

Command Reference 6-557

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareNumeric. Captures the numeric value of

the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Name=$. A name that a developer assigns to an object

to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.

► ► ►

ToolbarVP

6-558 SQABasic Language Reference

► ► ►

 Syntax Element Description

 If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the properties of the first toolbar control in the window
(ObjectIndex=1) and compares them to the recorded baseline in verification
point TEST1A.

 Result = ToolbarVP (CompareProperties,"ObjectIndex=1","VP=TEST1A")

 Toolbar

 Comments

 Example

 See Also

Trackbar

Command Reference 6-559

 Trackbar
 User Action Command

 Performs an action on a trackbar control.

 Trackbar action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these mouse actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag values.

► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.

 If Robot cannot interpret the action being applied to a
trackbar, which happens with certain custom standalone
trackbars, it records the action as a click or drag.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ► ►

 Description

 Syntax

Trackbar

6-560 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext command),
or Enabled if the state has not been otherwise
declared.

► Text=$. The text displayed on the object.
► Type=$. An optional qualifier for recognition

methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the coordinates of the click, relative to the top left of
the object.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position. Every trackbar has an internal
range and this parameter value is specific to that range.

 None.

 This example clicks the item identified by the text System at x,y coordinates of
50,25 in the first trackbar control in the window (ObjectIndex=1).

 Trackbar Click, "ObjectIndex=1;ItemText=System", "Coords=50,25"

 TrackbarVP

 Comments

 Example

 See Also

TrackbarVP

Command Reference 6-561

 TrackbarVP
 Verification Point Command

 Establishes a verification point for a trackbar control.

 Result = TrackbarVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareNumeric. Captures the numeric value of

the text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► Index=%. The number of the object among all objects

identified with the same base recognition method.
Typically, Index is used after another recognition
method qualifier — for example, Name=$;Index=%.

► JavaText=$. A label that identifies the object in the
user interface.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► Text=$. The text displayed on the object.

► ► ►

 Description

 Syntax

TrackbarVP

6-562 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Type=$. An optional qualifier for recognition
methods. Used to identify the object within a specific
context or environment. The Type qualifier uses the
following form: Type=$;recMethod=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

TreeView

Command Reference 6-563

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 This example captures the properties of the first trackbar control in the window
(ObjectIndex=1) and compares them to the recorded baseline in verification
point TEST1A.

 Result = TrackbarVP(CompareProperties,"ObjectIndex=1","VP=TEST1A")

 Trackbar

 TreeView
 User Action Command

 Performs an action on a tree view control.

 TreeView action%, recMethod$, parameters$

 Syntax Element Description

 action% One of these actions:
► MouseClick. The clicking of the left, center, or right

mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag values.

► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

► ► ►

 Comments

 Example

 See Also

 Description

 Syntax

TreeView

6-564 SQABasic Language Reference

► ► ►

 Syntax Element Description

 HScrollTo and VScrollTo take the required
parameter Position=%.
If Robot cannot interpret the action being applied to a
scroll bar, which happens with certain custom standalone
scroll bars, it records the action as a click or drag.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► ItemIndex=%. The index of the tree view item acted

upon. Used only after one of these parent values:
ID=%, ObjectIndex=%, Name=$, Text=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

► ItemText=$. The text of the tree view item acted
upon. Used only after one of these parent values:
ID=%, ObjectIndex=%, Name=$, Text=$.
Parent/child values are separated by a backslash and
semicolons (;\;).

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among
all objects of the same type in the same window.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. The default
state is the state of the current context window (as set
in the most recent Window SetContext command),
or Enabled if the state has not been otherwise
declared.

► Text=$. The text displayed on the object.
► VisualText=$. An optional setting used to identify

an object by its prior label. It is for user clarification
only and does not affect object recognition.

 parameters$ Valid values:
► Coords=x,y. If action% is a mouse click, specifies

the x,y coordinates of the click, relative to the top left of
the object or the item.

► ► ►

TreeView

Command Reference 6-565

► ► ►

 Syntax Element Description

 ► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object or the item.

► Location=$. The part of the tree where the click
occurred. Valid values:
— Text or Label (the default). The text displayed on

the clicked item.
— Button. The plus or minus sign used to expand or

collapse branches of the tree.
— Icon. The icon displayed on the clicked item.
— StateIcon. The icon that displays the state of the

tree.
— Left or Indent. A point to the left of the clicked

item.
— Right. A point to the right of the clicked item.

► During playback, Robot clicks in the center of
the specified location.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
scrolled-to position in the scroll box. Every scroll bar
has an internal range, and this value is specific to that
range.

 When you act on a particular item in a tree object, Robot uses the text of the item
(plus the text of any parent items) to identify it. In the following recMethod$
value, the tree item labeled Service Division is a child of the tree item labeled Star
Distribution Co.

 "Name=tv_product;\;ItemText=Star Distribution Co->Service Division"
 Note the two different parent/child separators — the backslash (\) separates the
window object and its child object. The pointer (->) separates the parent text item
from its child text item in the tree hierarchy.

 Comments

TreeView

6-566 SQABasic Language Reference

 When clicking on a branch that’s very low in the tree hierarchy, or if branches
have very long names, the maximum length for recMethod$ strings might be
exceeded. (The limit is 2,048 characters or less, depending on the circumstances.)
If the limit is exceeded, Robot removes parent text items until the string length is
within limits.

 Here are some examples:

 Tree Item Syntax Meaning

 ItemA->ItemB This is a standard parent/child relationship used when the string
limit has not been exceeded. It instructs Robot to look for ItemB
in ItemA.

 ->ItemB In this example, one or more parent items have been dropped. It
instructs Robot to look for ItemB anywhere in the tree.

 ->ItemB->->ItemC In this example, Robot looks for ItemC anywhere in the ItemB
subhierarchy and only in the ItemB subhierarchy.

 .->ItemB This example introduces a new syntax element — the dot (.).
A dot instructs Robot to look in the currently selected level of
the tree. In this example, Robot looks for ItemB as a child of the
currently selected item.

 .->ItemB->->ItemC In this example, Robot looks for ItemC anywhere in the ItemB
subhierarchy. ItemB is a child of the currently selected item.

 Using dot syntax is useful to avoid confusion when there are duplicate text items in
the tree. It involves a sequence of at least two clicks — one to specify the current
tree item, and one to specify some child (direct or indirect) of the current tree item.

 This example clicks the expand button (+ sign) on the item identified by the text
Employee Training. The item is in the first tree view control in the current context
window (ObjectIndex=1). It is a child of the item Human Resources.

 TreeView Click, "ObjectIndex=1;\;ItemText=Human Resources->
Employee Training", "Location=Button"

 TreeViewVP

 Example

 See Also

TreeViewVP

Command Reference 6-567

 TreeViewVP
 Verification Point Command

 Establishes a verification point for a tree view control.

 Result = TreeViewVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareData. Captures the data of the object and

compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

► CompareNumeric. Captures the numeric value of the
text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures object properties
information for the object and compares it to a recorded
baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.

► CompareText. Captures the text of the object and
compares it to a recorded baseline. parameters$ VP
and Type are required; ExpectedResult and Wait
are optional.

 recMethod$ Valid values:
► ID=%. The object’s internal Windows ID.
► ItemIndex=%. The index of the tree view item acted

upon. Used only after one of these parent values: ID=%,
ObjectIndex=%, Name=$, Text=$. Parent/child
values are separated by a backslash and semicolons (;\;).

► ItemText=$. The text of the tree view item acted
upon. Used only after one of these parent values: ID=%,
ObjectIndex=%, Name=$, Text=$. Parent/child
values are separated by a backslash and semicolons (;\;).

► Name=$. A name that a developer assigns to an object to
uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ObjectIndex=%. The number of the object among all
objects of the same type in the same window.

► Text=$. The text displayed on the object.
► ► ►

 Description

 Syntax

TreeViewVP

6-568 SQABasic Language Reference

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect this

verification point to pass (baseline result matches playback
result) or fail (baseline result does not match playback
result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not match
as expected, the LogViewer reports Pass. If they do
match, the LogViewer reports Fail.

► Range=&,&. Used with the action CompareNumeric
when a numeric range comparison is being performed, as
in Range=2,12 (test for numbers in this range). The
values are inclusive.

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional parameters
are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to use

in comparing the text
► Value=&. Used with the action CompareNumeric

when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but time
out the test after 40 seconds).

 This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere

 Comments

TreeViewVP

Command Reference 6-569

in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

 When you act on a particular item in a tree object, Robot uses the text of the item
(plus the text of any parent items) to identify it. In the following recMethod$
value, the tree item labeled Service Division is a child of the tree item labeled Star
Distribution Co.

 "Name=tv_product;\;ItemText=Star Distribution Co->Service Division"
 Note the two different parent/child separators — the backslash (\) separates the
window object and its child object. The pointer (->) separates the parent text item
from its child text item in the tree hierarchy.

 When clicking on a branch that’s very low in the tree hierarchy, or if branches
have very long names, the maximum length for recMethod$ strings might be
exceeded. (The limit is 2,048 characters or less, depending on the circumstances.)
If the limit is exceeded, Robot removes parent text items until the string length is
within limits. Here are some examples:

 Tree Item Syntax Meaning

 ItemA->ItemB This is a standard parent/child relationship used when the string
limit has not been exceeded. It instructs Robot to look for ItemB
in ItemA.

 ->ItemB In this example, one or more parent items have been dropped. It
instructs Robot to look for ItemB anywhere in the tree.

 ->ItemB->->ItemC In this example, Robot looks for ItemC anywhere in the ItemB
subhierarchy and only in the ItemB subhierarchy.

 .->ItemB This example introduces a new syntax element — the dot (.).
A dot instructs Robot to look in the currently selected level of
the tree. In this example, Robot looks for ItemB as a child of the
currently selected item.

 .->ItemB->->ItemC In this example, Robot looks for ItemC anywhere in the ItemB
subhierarchy. ItemB is a child of the currently selected item.

 Using dot syntax is useful to avoid confusion when there are duplicate text items in
the tree. It involves a sequence of at least two clicks — one to specify the current
tree item, and one to specify some child (direct or indirect) of the current tree item.

 This example captures the properties of the first tree view control in the window
(ObjectIndex=1) and compares them to the recorded baseline in verification
point TEST1A.

 Result=TreeViewVP (CompareProperties,"ObjectIndex=1","VP=TEST1A")

 TreeView

 Example

 See Also

Trim

6-570 SQABasic Language Reference

 Trim
 Function

 Returns a copy of a string after removing all leading and trailing spaces.

 Trim[$](expression)

 Syntax Element Description

 $ Optional. If specified, the return type is String. If
omitted, the function typically returns a Variant of
VarType 8 (String).

 expression The expression to trim. The expression can be a string, or
it can be a numeric data type which Robot passes to the
command as a string.

 If the value of string$ is NULL, a Variant of VarType 1 (Null) is returned.

 This example removes leading and trailing spaces from a string entered by
the user.

 Sub main
 Dim userstr as String
 userstr=InputBox("Enter a string with leading/trailing spaces")
 MsgBox "String is: " & Trim(userstr) & " with nothing after it."
 End Sub

 GetField Mid function
 Left Mid statement
 Len Right
 LTrim RTrim

 Type
 Statement

 Declares a User-Defined data type.

 Type userType
 field1 As type1
 field2 As type2
 ...
 End Type

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

Type

Command Reference 6-571

 Syntax Element Description

 userType The name of the user-defined type.

 field1 , field2 The name of a field in the user-defined type.

 type1 , type2 A data type: Integer, Long, Single, Double, Currency,
String, String*length (for fixed-length strings), Variant, or
another user-defined type.

 The User-Defined data type declared by Type is then used in a Dim statement
to declare a variable of that type. A user-defined type is sometimes referred to as a
record type or a structure type.

 field cannot be an array. However, arrays of user-defined types are allowed.

 The Type statement is not valid inside of a procedure definition. To access the
fields of a user-defined type, use this syntax:

 TypeName.FieldName
 To access the fields of an array of user-defined types, use this syntax:

 ArrayName(index).FieldName

 This example illustrates a Type and Dim statement. You must define a user-
defined type before you can declare a variable of that type. The sub procedure then
references a field within the user-defined type.

 Type TestType ' name of User-Defined type
 Custno As Integer ' customer id field
 Custname As String ' customer name field
 End Type

 Sub main
 Dim MyType As TestType ' declare a variable for TestType
 Dim answer as String
 i: MyType.custname=InputBox("Enter a customer name:")
 If MyType.custname="" then
 Exit Sub
 End If
 answer=InputBox("Is the name: " & MyType.custname &
 " correct? (Y/N)")
 If answer="Y" or answer="y" then
 MsgBox "Thank you."
 Else
 MsgBox "Try again."
 Goto i
 End If
 End Sub

 Deftype
 Dim

 Comments

 Example

 See Also

Typeof

6-572 SQABasic Language Reference

 Typeof
 Function

 Returns a value indicating whether an object is of a given class (-1=TRUE,
0=FALSE).

 If Typeof objectVariable Is className then. . .

 Syntax Element Description

 objectVariable The object to test.

 className The class to compare the object to.

 Typeof can only be used in an If statement and cannot be combined with other
Boolean operators. That is, Typeof can only be used exactly as shown in the
syntax above.

 To test if an object does not belong to a class, use the following code structure:

 If Typeof objectVariable Is className Then
Rem Perform some action

Else
Rem Perform some other action.

End If

 None.

 CreateObject Nothing
 GetObject Object Class
 Is Class List
 New

 TypingDelays
 Timing and Coordination Command

 Sets one or more keystroke delays during playback of the next InputKeys
command.

 TypingDelays delayString$

 Syntax Element Description

 delayString$ A string containing one or more integers separated by
commas. Each integer represents a delay time in
milliseconds between keystrokes in the next InputKeys
command.

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

UBound

Command Reference 6-573

 Robot records this command if Record Think Time is selected in the General tab
of the GUI Record Options dialog box. During playback, Robot performs the
keystroke delays only if Use recorded typing delays is selected in the Playback
tab of the GUI Playback Options dialog box.

 The first integer value in delayString$ is always 0. Successive integers in
delayString$ represent the delay time between keystrokes for the
corresponding characters in the InputKeys command that follows the
TypingDelays command.

 Each TypingDelays command is preceded by a SetThinkAvg command,
which sets the GUI think time between user actions.

 Typing delays duration is the same in both Robot and LoadTest.

 This example sets the typing delay between the keystrokes of the text “My Text”
in the following InputKeys command.

 SetThinkAvg 1500
 TypingDelays "0, 160, 150, 650, 270, 270, 190"
 InputKeys "My Text"

 SetThinkAvg
 InputKeys

 UBound
 Function

 Returns the upper bound of the subscript range for the specified array.

 UBound(arrayname [, dimension])

 Syntax Element Description

 arrayname The name of the array to use.

 dimension The dimension to use.

 The dimensions of an array are numbered starting with 1. If the dimension is
not specified, 1 is used as a default.

 LBound can be used with UBound to determine the length of an array.

 Comments

 Example

 See Also

 Description

 Syntax

 Comments

UBound

6-574 SQABasic Language Reference

 This example resizes an array if the user enters more data than can fit in the array.
It uses LBound and UBound to determine the existing size of the array and
ReDim to resize it. Option Base sets the default lower bound of the array to 1.

 Option Base 1

 Sub main
 Dim arrayvar() as Integer
 Dim count as Integer
 Dim answer as String
 Dim x, y as Integer
 Dim total
 total=0
 x=1
 count=InputBox("How many test scores do you have?")
 ReDim arrayvar(count)

 start:

 Do until x=count+1
 arrayvar(x)=InputBox("Enter test score #" &x & ":")
 x=x+1
 Loop

 answer=InputBox$("Do you have more scores? (Y/N)")

 If answer="Y" or answer="y" then
 count=InputBox("How many more do you have?")
 If count<>0 then
 count=count+(x-1)
 ReDim Preserve arrayvar(count)
 Goto start
 End If
 End If

 x=LBound(arrayvar,1)
 count=UBound(arrayvar,1)

 For y=x to count
 total=total+arrayvar(y)
 Next y

 MsgBox "The average of the " & count & " scores is:

" & Int(total/count)

 End Sub

 Dim Option Base
 Global ReDim
 LBound Static

 Example

 See Also

UCase

Command Reference 6-575

 UCase
 Function

 Returns a copy of a string after converting all lowercase letters to uppercase.

 UCase[$](string$)

 Syntax Element Description

 $ Optional. If specified, the return type is String. If
omitted, the function typically returns a Variant of
VarType 8 (String).

 string$ An expression that evaluates to a string.

 The translation is based on the country specified in the Windows Control Panel.

 UCase accepts expressions of type string. UCase accepts any type of argument
and will convert the input value to a string.

 If the value of string$ is Null, a Variant of VarType 1 (Null) is returned.

 This example converts a file name entered by a user to all uppercase letters.

 Option Base 1
 Sub main
 Dim filename as String
 filename=InputBox("Enter a filename: ")
 filename=UCase(filename)
 MsgBox "The filename in uppercase is: " & filename
 End Sub

 Asc LCase

 Unlock
 Statement

 Restores access to an open file (releases the lock).

 Unlock [#]filenumber% [, {record& | [start&] To end&}]

 Syntax Element Description

 filenumber% An integer expression identifying the open file.

 record& Number of the starting record to unlock.

 start& Number of the first record or byte offset to lock/unlock.

 end& Number of the last record or byte offset to lock/unlock.

 Description

 Syntax

 Comments

 Example

 See Also

 Description

 Syntax

Unlock

6-576 SQABasic Language Reference

 The filenumber% is the number used in the Open statement of the file.

 For Binary mode, start&, and end& are byte offsets. For Random mode,
start&, and end& are record numbers. If start& is specified without end&,
only the record or byte at start& is locked. If To end& is specified without
start&, all records or bytes from record number or offset 1 to end& are locked.

 For Input, Output and Append modes, start&, and end& are ignored and
the whole file is locked.

 Lock and Unlock always occur in pairs with identical parameters. All locks on
open files must be removed before closing the file or unpredictable results occur.

 This example locks a file that is shared by others on a network, if the file is already
in use. The second sub procedure, CREATEFILE, creates the file used by the main
sub procedure.

 Declare Sub createfile
 Sub main
 Dim btngrp, icongrp, defgrp, answer, msgabort
 Dim noaccess as Integer
 Dim msgstop as Integer
 Dim acctname as String
 noaccess=70
 msgstop=16
 Call createfile
 On Error Resume Next
 btngrp=1
 icongrp=64
 defgrp=0
 answer=MsgBox("Open the account file?" & Chr(10),
 btngrp + icongrp + defgrp)
 If answer=1 then
 Open "C:\TEMP001" for Input as #1
 If Err=noaccess then
 msgabort=MsgBox("File Locked",msgstop,"Aborted")
 Else
 Lock #1
 Line Input #1, acctname
 MsgBox "The first account name is: " & acctname
 Unlock #1
 End If
 Close #1
 End If
 Kill "C:\TEMP001"
 End Sub
 Sub createfile()
 Rem Put the letters A-J into the file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, Chr(x+64)
 Next x
 Close #1
 End Sub

 Lock Open

 Comments

 Example

 See Also

Val

Command Reference 6-577

UserDefinedTC
 Verification Point Command

 This command is obsolete and should not be used. It continues to be supported to
maintain the upward compatibility of your existing scripts.

 Val
 Function

 Returns the numeric value of the first number found in the specified string.

 Val(string$)

 Syntax Element Description

 string$ A string expression containing a number.

 If no number is found, Val returns 0.

 Val ignores spaces anywhere in the source string. Val also ignores non-numeric
characters that appear after the number. If non-numeric characters appear before
the number, Val returns 0.

 This example tests the value of the variable profit and displays 0 for profit if it is a
negative number. The sub procedure uses Sgn to determine whether profit is
positive, negative or zero.

 Sub main
 Dim profit as Single
 Dim expenses
 Dim sales
 expenses=InputBox("Enter total expenses: ")
 sales=InputBox("Enter total sales: ")
 profit=Val(sales)-Val(expenses)
 If Sgn(profit)=1 then
 MsgBox "Yeah! We turned a profit!"
 ElseIf Sgn(profit)=0 then
 MsgBox "Okay. We broke even."
 Else
 MsgBox "Uh, oh. We lost money."
 End If
 End Sub

 CCur CSng Format
 CDbl CStr Str
 CInt CVar
 CLng CVDate

 Description

 Syntax

 Comments

 Example

 See Also

VarType

6-578 SQABasic Language Reference

 VarType
 Function

 Returns the Variant type of the specified Variant variable (0-9).

 VarType(varname)

 Syntax Element Description

 varname The Variant variable to use.

 The value returned by VarType is one of the following:

 Ordinal Representation

 0 (Empty)

 1 Null

 2 Integer

 3 Long

 4 Single

 5 Double

 6 Currency

 7 Date

 8 String

 9 Object

 This example returns the type of a variant.
 Sub main

 Dim x
 Dim myarray(8)
 Dim retval
 Dim retstr
 myarray(1)=Null
 myarray(2)=0
 myarray(3)=39000
 myarray(4)=CSng(10^20)
 myarray(5)=10^300
 myarray(6)=CCur(10.25)
 myarray(7)=Now
 myarray(8)="Five"

 Description

 Syntax

 Comments

 Example

WebSiteVP

Command Reference 6-579

 For x=0 to 8
 retval=Vartype(myarray(x))
 Select Case retval
 Case 0
 retstr=" (Empty)"
 Case 1
 retstr=" (Null)"
 Case 2
 retstr=" (Integer)"
 Case 3
 retstr=" (Long)"
 Case 4
 retstr=" (Single)"
 Case 5
 retstr=" (Double)"
 Case 6
 retstr=" (Currency)"
 Case 7
 retstr=" (Date)"
 Case 8
 retstr=" (String)"
 End Select
 If retval=1 then
 myarray(x)="[null]"
 ElseIf retval=0 then
 myarray(x)="[empty]"
 End If
 MsgBox "The variant type for " &myarray(x) & " is:

" &retval &retstr
 Next x
 End Sub

 IsDate IsNull
 IsEmpty IsNumeric

 WebSiteVP
 Verification Point Command

 Tests for defects (such as missing or broken links) on a Web site, or compares
Web sites.

 Result = WebSiteVP(action%,"",parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► SiteCheck. Scans for defects on a single Web site.
► Compare. Compares two Web sites. These can be the

same Web site at two different periods of time, mirror
sites, or different Web sites. parameters$ VP is
required; ExpectedResult is optional.

► ► ►

 See Also

 Description

 Syntax

WebSiteVP

6-580 SQABasic Language Reference

► ► ►

 Syntax Element Description

 "" The second argument is always left blank.

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

 This function returns 1 if the verification point passes or 0 if the verification
point fails.

 When action is set to SiteCheck, WebSiteVP tests for the type of defects
that you specify in the Rational SiteCheck Scan Options dialog box. You specify
the types of defects to test for when you select the Web Site Scan verification
point during recording (click Insert � Verification Point � Web Site Scan).

 You can use the SiteCheck setting to save the current version of a site in a site
map. Then, you can perform a WebSiteVP Compare and use this site map as a
baseline to compare against a later version of the site.

 When action is set to Compare, WebSiteVP compares a baseline site and a
comparison site. For example, you can compare a previously saved site map with
the current version of a site, compare mirror sites, or compare any two sites. The
comparison is based on files that have been added, modified, or deleted since the
baseline scan. The comparison involves these areas:

► HTML files

► Image files

► Orphan files

► External links

► Other files and links

 A WebSiteVP verification point passes if no defects or differences are found in
any of the areas you specify on the Scan Options dialog box. If one or more

 Comments

Weekday

Command Reference 6-581

defects or differences are found in any of the areas you specify, the verification
point fails.

 Both PASS and FAIL results are reported in the LogViewer. For an explanation of
any failure, double-click on the entry in the LogViewer.

 For information about SiteCheck, see the Rational SiteCheck Help.

 This example establishes the Web site verification point CKLINKSA.

 Result = WebSiteVP(SiteCheck,"","VP=CKLINKSA")

 None.

 Weekday
 Function

 Returns the day of the week for the specified date-time value.

 Weekday(date)

 Syntax Element Description

 date An expression containing a date time value.

 The Weekday function returns an integer between 1 and 7, inclusive (1=Sunday,
7=Saturday).

 Weekday accepts any expression, including strings, and attempts to convert the
input value to a date value.

 The return value is a Variant of VarType 2 (Integer). If the value of date is
NULL, a Variant of VarType 1 (Null) is returned.

 This example finds the day of the week on which New Year’s Day will fall in the
year 2000.

 Sub main
 Dim newyearsday, daynumber, msgtext
 Dim newday as Variant
 Const newyear=2000
 Const newmonth=1
 Let newday=1
 newyearsday=DateSerial(newyear, newmonth, newday)
 daynumber=Weekday(newyearsday)
 msgtext="New Year's day 2000 is a " & Format(daynumber, "dddd")
 MsgBox msgtext
 End Sub

 Example

 See Also

 Description

 Syntax

 Comments

 Example

While...Wend

6-582 SQABasic Language Reference

 Date function Hour Now
 Date statement Minute Second
 Day Month Year

 While...Wend
 Statement

 Controls a repetitive action.

 While condition
 statement_block
 Wend

 Syntax Element Description

 condition An expression that evaluates to TRUE (non-zero) or
FALSE (zero).

 statement_block A series of statements to execute if condition is
TRUE.

 The statement_block statements are until condition becomes 0 (FALSE).

 The While statement is included in SQABasic for compatibility with older
versions of Basic. The Do statement is a more general and powerful flow control
statement.

 This example opens a series of customer files and checks for the string
Overdue in each file. It uses While...Wend to loop through the
C:\TEMP00? files. These files are created by the sub procedure CREATEFILES.

 Declare Sub createfiles
 Sub main
 Dim custfile as String
 Dim aline as String
 Dim pattern as String
 Dim count as Integer

 Call createfiles
 Chdir "C:\"
 custfile=Dir$("TEMP00?")
 pattern="*" + "Overdue" + "*"

 See Also

 Description

 Syntax

 Comments

 Example

While...Wend

Command Reference 6-583

 While custfile <> ""
 Open custfile for input as #1
 On Error goto atEOF
 Do
 Line Input #1, aline
 If aline Like pattern Then
 count=count+1
 End If
 Loop
 nxtfile:
 On Error GoTo 0
 Close #1
 custfile = Dir$
 Wend

 If count<>0 then
 MsgBox "Number of overdue accounts: " & count
 Else
 MsgBox "No accounts overdue"
 End If

 Kill "C:\TEMP001"
 Kill "C:\TEMP002"
 Exit Sub

 atEOF:
 Resume nxtfile

 End Sub

 Sub createfiles()

 Dim odue as String
 Dim ontime as String
 Dim x

 Open "C:\TEMP001" for OUTPUT as #1
 odue="*" + "Overdue" + "*"
 ontime="*" + "On-Time" + "*"

 For x=1 to 3
 Write #1, odue
 Next x

 For x=4 to 6
 Write #1, ontime
 Next x

 Close #1
 Open "C:\TEMP002" for Output as #1
 Write #1, odue
 Close #1

 End Sub

 Do...Loop See Also

Width

6-584 SQABasic Language Reference

 Width
 Statement

 Sets the output line width for an open file.

 Width [#]filenumber%, width%

 Syntax Element Description

 filenumber% An integer expression for the open file to use.

 width% An integer expression for the width of the line (0 to 255).

 Filenumber% is the number assigned to the file when it is opened. See the
Open statement for more information.

 A value of zero (0) for width% indicates there is no line length limit. The default
width% for a file is zero (0).

 This example puts five spaces and the string ABCD to a file. The five spaces are
derived by taking 15 MOD 10, or the remainder of dividing 15 by 10.

 Sub main
 Dim str1 as String
 Dim x as String*10

 str1="ABCD"
 Open "C:\TEMP001" For Output As #1
 Width #1, 10
 Print #1, Spc(15); str1
 Close #1
 Open "C:\TEMP001" as #1 Len=12
 Get #1, 1,x
 MsgBox "The contents of the file is: " & x
 Close #1
 Kill "C:\TEMP001"
 End Sub

 Open
 Print

 Description

 Syntax

 Comments

 Example

 See Also

Window

Command Reference 6-585

 Window
 User Action Command

 Performs an action on a window.

 Window action%, recMethod$, parameters$

 Syntax Element Description

 action% Valid values:
► CloseWin. Closes the specified window.

parameters$ is left blank for this action, as in:
► Window CloseWin, "Caption=App1", ""

► MouseClick. The clicking of the left, center, or right
mouse button, either alone or in combination with one
or more shifting keys (Ctrl, Alt, Shift). When action%
contains a mouse-click value, parameters$ must
contain Coords=x,y.

► MouseDrag. The dragging of the mouse while mouse
buttons and/or shifting keys (Ctrl, Alt, Shift) are
pressed. When action% contains a mouse-drag value,
parameters$ must contain Coords=x1,y1,x2,y2.
See Appendix E for a list of mouse click and drag values.

► MoveTo. A repositioning action for which the x,y
coordinates specify the position of the top left corner to
which the window is to be moved, relative to its parent
window, as in:

► Window MoveTo, "Caption=Mortgage-
Prequalifier", "Coords=99,109"

► OpenIcon. Opens an iconized window.
parameters$ is left blank for this action, as in:

► Window OpenIcon, "Caption=App1", ""

► ResetTestContext. Restores the test context to be
the context window. In other words, the test context is
set back to its state prior to the last SetTestContext
action.

► Resize. Resizes the specified window, based on its
top left and bottom right coordinates (x1,y1,x2,y2)
as in:

► Window Resize, "Caption=Program
Manager", "Coords=5,2,100,80"

► ► ►

 Description

 Syntax

Window

6-586 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► RestorePos. Restores the specified window to its
original size and position. parameters$ is left blank
for this action, as in:

► Window RestorePos,"Caption=App1",""

► ScrollAction. One of these scroll actions:
 ScrollPageRight ScrollPageDown
ScrollRight ScrollLineDown
ScrollPageLeft ScrollPageUp
ScrollLeft ScrollLineUp
HScrollTo VScrollTo

 HScrollTo and VScrollTo take the required
parameter Position=%.
 If Robot cannot interpret the action being applied to a
scroll bar, which happens with certain custom standalone
scroll bars, it records the action as a click or drag.

► SetContext. Establishes the context window for all
Object commands that follow.
 During playback, Robot locates the specified window.
If the window is the active window, it remains active. If
the window is not the active window, Robot takes one
of these actions:
— If parameters$ is an empty string ("") or contains
Activate=1, Robot makes the window the active
window.

— If parameters$ contains Activate=0, Robot will
not make the window the active window.

— If recMethod$ does not contain the
State=Disabled qualifier, Robot makes the
window the active window.

 Setting the context window defines an internal state for
Robot. If this command fails during playback (for
example, if the specified window cannot be found), an
error is logged, but playback continue=regardless of the
playback option for script command failures.
 The context for all Object commands that follow is
assumed to be the current context window. For
example, when Robot plays back a Command button
command, it assumes the button is in the current
context window.

► ► ►

Window

Command Reference 6-587

► ► ►

 Syntax Element Description

 ► SetPosition. Sets the size, position, and state of a
window. The size and position are specified by top left
and bottom right coordinates: x1,y1,x2,y2 (relative
to the parent window or Desktop). The state is
specified by one of the following keywords:
MINIMIZED, MAXIMIZE, or NORMAL. For example:

 Window SetPosition, "Caption=File",
"Coords=5,2,100,80;Status=NORMAL"

► SetTestContext. Establishes the test context for
subsequent verification point commands. It has no
effect on standard Object commands. parameters$
is left blank for this action, as in:

 Window SetTestContext,
"Caption=Classics Online", ""

 By default, the test context is the same as the context
window as set by the SetContext action.
SetTestContext is used when you need to insert a
verification point for an object or window that is
outside of the current context window (for example, if
you want to test the properties of a button in one dialog
box while acting on a different dialog box).
 Note: The SetContext action sets both the context
window and the test context. In other words,
SetContext overrides any prior SetTestContext
action.

► WMaximize. Maximizes the specified window.
parameters$ is left blank for this action, as in:

 Window WMaximize,
"Caption=Classics Online", ""

► WMinimize. Minimizes the specified window.
parameters$ is left blank for this action, as in:

 Window WMinimize,
"Caption=Classics Online", ""

► ► ►

Window

6-588 SQABasic Language Reference

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► [empty quotes]. If the recognition method is

empty, Robot performs the action on the current
context window, as specified by the last SetContext
action. For example, the following commands
minimize the window identified by the caption App1:

 Window SetContext,"Caption=App1",""
 Window WMinimize, "", ""

► Caption=$. The text that appears in the window’s
title bar. 512 characters maximum. The wildcards ? and
* are supported. (See Establishing Context through a
Window Command in Chapter 4 for information.)

► ChildWindow. Indicates that the window specified by
the recognition method is a child of the current context
window. It is only used in conjunction with another
method. This qualifier is necessary when setting the
context or acting upon windows that are children of
other windows.
 The following example minimizes the window Book1
in Microsoft Excel:

 Window SetContext,
 "Caption=Microsoft Excel",""

 Window WMinimize,
 "Caption=Book1;ChildWindow",""

► Class=$. The window’s class name.
► CurrentWindow. Sets the context to the currently-

active window. Used only programmatically, as in:
 Window SetContext,"CurrentWindow",""

 This recognition method is useful when you want to
set the context or act upon the window that is currently
active, even though that may not be the same window
each time the command is played back. This
recognition method should not be used in conjunction
with any other recognition methods.

► Level=%. Level is combined with another
recognition method when the other method does not
uniquely identify the windows. For example, if there
are multiple windows with the same caption, and
Caption is the recognition method being used. The
Level qualifier tells Robot which one of the similarly-
identified windows should be targeted for the action,
based on the Windows’ Z-Order.

► ► ►

Window

Command Reference 6-589

► ► ►

 Syntax Element Description

 The first window is assigned Level=1, the second
Level=2, and so on. Level serves as a clarifier only
and is used only after all other methods have been
attempted.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► State=$. An optional qualifier for any other
recognition method. There are two possible values for
this setting: Enabled and Disabled. When Robot
looks for a specified window, it checks the state of that
window against an expected value (State=Enabled
is the default). Robot only records this setting if the
object is disabled.

► VisualText=$. An optional setting used to identify
an object by its visible text. It is for user clarification
only and does not affect object recognition.

► WindowTag=$. An optional setting used during
Web testing to identify a particular instance of the
browser. If a browser ID exists, it is defined in the
StartBrowser command.

 parameters$ Valid values:
► If action% is SetContext, parameters$

contains one of these values:
— Activate=1. Robot makes the window the active

window.
 This is the default setting. If parameters$ is an

empty string (""), Robot makes the window the
active window.

— Activate=0. Robot does not make the window the
active window.

► Note: During recording, Robot generates a
parameters$ value of either "" if the window is to
be made the active window, or Activate=0 if the
window is not to be made the active window.

► ► ►

Window

6-590 SQABasic Language Reference

► ► ►

 Syntax Element Description

 ► Coords=x,y. If action% is a mouse click, specifies
the x,y coordinates of the click, relative to the top left of
the object.
If action% is MoveTo, specifies the x,y coordinates to
which the window object is to be moved. The
coordinates are relative to the top left of the parent
window or Desktop, if there is no parent.

► Coords=x1,y1,x2,y2. If action% is a mouse
drag, specifies the coordinates, where x1,y1 are the
starting coordinates of the drag, and x2,y2 are the
ending coordinates. The coordinates are relative to the
top left of the object.
If action% is Resize or SetPosition, the
coordinates correspond to the top left and bottom right
coordinates of the resized window. If action% is
SetPosition, the "Status=" parameter is also
used.

► Position=%. If action% is VScrollTo or
HScrollTo, specifies the scroll bar value of the new
position of the scroll box Every scroll bar has an
internal range and this parameter value is specific to
that range.

► Status=$. If action% is SetPosition, specifies
the state of the window: NORMAL, MINIMIZED or
MAXIMIZED.

 In this document, a window is a top-level object on the desktop. For example, a
dialog box is typically a top-level desktop object.

 This example double-clicks the window identified by the caption
International at the x,y coordinates of 184,15.

 Window DblClick, "Caption=International","Coords=184,15"

 ComboListBox ListBox
 EditBox ScrollBar

 Comments

 Example

 See Also

WindowVP

Command Reference 6-591

 WindowVP
 Verification Point Command

 Establishes a verification point for a window.

 Result = WindowVP (action%, recMethod$, parameters$)

 Syntax Element Description

 action% The type of verification to perform. Valid values:
► CompareDataWindow. Captures the data stored in the

PowerBuilder DataWindow and compares it to a
recorded baseline. parameters$ VP is required;
ExpectedResult and Wait are optional.
 Note: This action is only used when the DataWindow
object is a Window itself.

► CompareImage. Captures a bitmap image of the specified
window and compares it to a recorded baseline.
parameters$ VP is required; ExpectedResult and
Wait are optional.

► CompareMenu. Captures the specified window’s menu
information and compares it to a recorded baseline.
parameters$ VP is required; ExpectedResult and
Wait are optional.

► CompareNumeric. Captures the numeric value of the
text of the object and compares it to the value of
parameters$ Value or Range. parameters$ VP
and either Value or Range are required;
ExpectedResult and Wait are optional.

► CompareProperties. Captures the object properties
information of the Window and all of its children, and
compares this to the recorded baseline. parameters$ VP
is required; ExpectedResult and Wait are optional.

► CompareText. Captures the text in the title bar of a
specified window and compares it to a recorded baseline.
parameters$ VP and Type are required;
ExpectedResult and Wait are optional.

► DoesNotExist. Checks whether a specified window no
longer exists at playback. parameters$ VP is required;
ExpectedResult, Status, and Wait are optional.
 Note: This action cannot be accessed during recording.
It must be inserted manually.

► Exists. Checks whether a specified window exists at
playback. parameters$ VP is required;
ExpectedResult, Status, and Wait are optional.

► ► ►

 Description

 Syntax

WindowVP

6-592 SQABasic Language Reference

► ► ►

 Syntax Element Description

 recMethod$ Valid values:
► [empty quotes]. If the recognition method is

empty, Robot performs the action on the current test
context window, as specified by the last SetContext
or SetTestContext action.

► Caption=$. The text that appears in the window’s
title bar. 512 characters maximum. The wildcards ? and
* are supported. (See Establishing Context through a
Window Command in Chapter 4 for information.)

► ChildWindow. Indicates that the window specified by
the recognition method is a child of the current context
window. It is only used in conjunction with another
method. This qualifier is necessary when acting upon
windows that are children of other windows.

► Class=$. The window’s class name.
► CurrentWindow. Specifies the windows that is

currently active. This recognition method is useful
when you want to act upon the active window, even
though that may not be the same window each time the
command is played back. This recognition method
should not be used in conjunction with any other
methods.

► Level=%. Level is combined with another
recognition method when the other recognition
method does not uniquely identify the windows. For
example, if there are multiple windows with the same
caption, and Caption is the recognition method being
used. The Level qualifier tells Robot which one of
the similarly-identified windows should be targeted for
the action, based on the Windows’ Z-Order. The first
window is assigned "Level=1", the second
"Level=2", and so on. Level serves as a clarifier
only and is used only after all other methods have been
attempted.

► Name=$. A name that a developer assigns to an object
to uniquely identify the object in the development
environment. For example, the object name for a
command button might be Command1.

► ► ►

WindowVP

Command Reference 6-593

► ► ►

 Syntax Element Description

 parameters$ Valid values:
► ExpectedResult=%. Specifies whether you expect

this verification point to pass (baseline result matches
playback result) or fail (baseline result does not match
playback result). Valid values:
— PASS. The default. If the baseline and playback results

match as expected, the LogViewer reports Pass. If they
do not match, the LogViewer reports Fail.

— FAIL. If the baseline and playback results do not
match as expected, the LogViewer reports Pass. If they
do match, the LogViewer reports Fail.

► Range=&,&. Used with the action
CompareNumeric when a numeric range comparison
is being performed, as in Range=2,12 (test for
numbers in this range). The values are inclusive.

► Status=$. An optional parameter used with the
Exists action. When used, the status of the window is
also verified. The possible values for this parameter are:
NORMAL, MINIMIZED, and MAXIMIZED

► Type=$. Specifies the verification method to use for
CompareText actions. The possible values are:
CaseSensitive, CaseInsensitive,
FindSubStr, FindSubStrI (case insensitive), and
UserDefined. See Comments for more information.
If UserDefined is specified, two additional
parameters are required:
— DLL=$. The full path and file name of the library that

contains the function
— Function=$. The name of the custom function to

use in comparing the text. For example:
 Result = WindowVP (CompareText,

"Class=MyWndClass",
"VP=UDTEXT;Type=UserDefined;
DLL=C:\MYFUNC.DLL;
Function=VerifyLength")

► Value=&. Used with the action CompareNumeric
when a numeric equivalence comparison is being
performed, as in Value=25 (test against the value 25).

► VP=$. The verification point ID. IDs must be unique
within a script. Required for all verification points.

► Wait=%,%. A Wait State that specifies the verification
point’s Retry value and a Timeout value, as in
Wait=10,40 (retry the test every 10 seconds, but
time out the test after 40 seconds).

With

6-594 SQABasic Language Reference

This function returns 1 if the action performed passes or 0 if the action performed
fails. See the LogViewer for an explanation of any failures.

In this document, a window is a top-level object on the desktop. For example, a
dialog box is typically a top-level desktop object.

With the Type=$ parameter, CaseSensitive and CaseInsensitive
require a full match between the current baseline text and the text captured during
playback. With FindSubStr and FindSubStrI, the current baseline can be a
substring of the text captured during playback. The substring can appear anywhere
in the playback text. To modify the current baseline text, double-click the
verification point name in the Robot Asset pane (to the left of the script).

Verification points that check for a window’s existence are not stored in the
repository and do not appear in Robot’s Asset pane.

This example captures a bitmap image of the window identified by the Caption
Paint and compares it to a recorded baseline in verification point PICT1A.

Result = WindowVP (CompareImage, "Caption=Paint", "VP=PICT1A")

ComboListBoxVP ListBoxVP
EditBoxVP ScrollBarVP

With
Statement

Executes a series of statements on a specified variable.

With variable
statement_block

End With

Syntax Element Description

variable The variable to be changed by the statements in
statement_block.

statement_block The statements to execute.

Variable can be an Object data type or a user-defined data type.

With statements can be nested.

Comments

Example

See Also

Description

Syntax

Comments

Write

Command Reference 6-595

This example creates a user-defined data type named CustType, declares an
instance of the data type called Customer, then uses the With statement to fill in
values for the fields in Customer.

Type CustType
name as String
ss as String
salary as Single
dob as Variant
street as String
apt as Variant
city as String
state as String

End Type

Sub main
Dim Customer as CustType
Dim msgtext
With Customer

.name="John Jones"

.ss="037-67-2947"

.salary=60000

.dob=#10-09-65#

.street="15 Chester St."

.apt=28

.city="Cambridge"

.state="MA"
End With
msgtext=Chr(10) & "Name:" & Space(5) & Customer.name & Chr(10)
msgtext=msgtext & "SS#: " & Space(6) & Customer.ss & chr(10)
msgtext=msgtext & "D.O.B:" & Space(4) & Customer.dob
MsgBox "Done with: " & Chr(10) & msgtext

End Sub

Type...End Type

Write
Statement

Writes data to an open sequential file.

Write #filenumber% [,expressionlist]

Syntax Element Description

filenumber% An integer expression for the open file to use.

expressionlist One or more values to write to the file.

Example

See Also

Description

Syntax

Write

6-596 SQABasic Language Reference

The file must be opened in Output or Append mode. filenumber% is
the number assigned to the file when it is opened. See the Open statement for
more information.

If expressionlist is omitted, the Write statement writes a blank line to the
file. (See Input for more information.)

This example writes a variable to a disk file based on a comparison of its last saved
time and the current time.

Sub main
Dim tempfile
Dim filetime, curtime
Dim msgtext
Dim acctno(100) as Single
Dim x, I
tempfile="C:\TEMP001"
Open tempfile For Output As #1
filetime=FileDateTime(tempfile)
x=1
I=1
acctno(x)=0
Do

curtime=Time
acctno(x)=InputBox("Enter an account number (99 to end):")
If acctno(x)=99 then

If x=1 then Exit Sub
For I=1 to x-1

Write #1, acctno(I)
Next I
Exit Do

ElseIf (Minute(filetime)+2)<=Minute(curtime) then
For I=I to x-1

Write #1, acctno(I)
Next I

End If
x=x+1

Loop
Close #1
x=1
msgtext="Contents of C:\TEMP001 is:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1)<>-1

Input #1, acctno(x)
msgtext=msgtext & Chr(10) & acctno(x)
x=x+1

Loop
MsgBox msgtext
Close #1
Kill "C:\TEMP001"

End Sub

Close Print
Open Put

Comments

Example

See Also

Year

Command Reference 6-597

WriteTestCaseResult
Utility Command

This command is obsolete and should not be used. It continues to be supported to
maintain the upward compatibility of your existing scripts.

Year
Function

Returns the year component of a date or date/time value.

Year(date)

Syntax Element Description

date A date or date/time value.

Year returns a year between 100 and 9999, inclusive.

Year accepts valid date and date/time formats, including numbers and strings, and
will attempt to convert the input value to a date value. Examples of valid date
values:

12/27/98
12/27/98 11:53:49 AM
Dec 27 1948
27 Dec 1948
December 27, 1998

The return value is a Variant of VarType 2 (Integer). If the value of date
is NULL, a Variant of VarType 1 (Null) is returned.

 With this function, a two-digit year is converted to a four-digit year, as follows:

► 00 through 29 is converted to 2000 through 2029

► 30 through 99 is converted to 1930 through 1999

When exchanging data information with external data sources or external
programs, you should use double-precision floating point numbers or data strings
with at least four characters for identifying the century.

Description

Syntax

Comments

Year

6-598 SQABasic Language Reference

This example returns the year for the current date.
Sub main

Dim nowyear
nowyear=Year(Now)
MsgBox "The current year is: " &nowyear

End Sub

Date function Month
Date statement Now
Day Second
Hour Time function
Minute Weekday

Example

See Also

► ► ► Appendixes

A-1

► ► ► A p p e n d i x A

SQABasic Syntax Summary

Arguments

Arguments are separated by commas. Arguments are sometimes enclosed in
parentheses, as follows:

 Function arguments are always enclosed in parentheses. See the Function
section for more information.

 Sub procedure arguments are not enclosed in parentheses unless you use the
Call statement. See the Sub Procedure section for more information.

 If you’re passing an argument by value, enclose that particular argument in
parentheses:

Call MySub((x),y)

Array Dimensions

When declaring an array, list the array dimensions after the array name. Array
dimensions are separated by commas and enclosed in parentheses:

Dim arrayname (6, 8, 500) As Integer

Array Elements

A particular element in an array is specified through the index value of each
dimension:

Dim MyArray(10, 50) As String ' First declare the array
Dim x, y
...
' Now check every element for an empty string
For x = 0 to 10

For y = 0 to 50
If MyArray(x,y) = "" then

GoTo ErrorRoutine
End If

Next y
Next x

SQABasic Syntax Summary

A-2 SQABasic Language Reference

Array Subscripts

Typically, only the subscript that sets the upper bound of an array dimension is
specified (as shown in Array Dimensions above). When the lower-bound subscript
is omitted, the lower bound defaults to either 0 or 1 (depending on the value of
the Option Base statement.

However, both the lower-bound and the upper-bound subscript can be specified,
as follows:

Dim arrayname (3 To 6, -8 To 8, 1 To 500) as Integer

Comments

Comments are prefixed by an apostrophe (') or the statement REM. The
SQABasic compiler ignores comments:

Const SIZE = 10 ' Set the size constant

NOTE: The metacommands '$CStrings, '$Include, and '$NoCStrings
are exceptions. Even though their names begin with an apostrophe, the SQABasic
compiler considers them to be commands, not comments.

Context Notation

Object context can be set through backslash (\) and dot-backslash (.\) notation.
These characters appear in the recognition method (recMethod) argument of
commands and are delimited by semicolons (;):

' Requires MyGrid to be in a window named MyWindow
"\;Name=MyWindow;\;Name=MyGrid;\;Name=MyColumn"

' MyGrid can be in whatever window is the current context window
".\;Name=MyGrid;\;Name=MyColumn"

Functions

Functions return a value. They have a slightly different calling syntax than sub
procedures:

' Use this form to retrieve the return value
ReturnValue=MyFunction([argument1,argumentn)

' Use this form to ignore the return value
Call MyFunction(argument1,argumentn)

SQABasic Syntax Summary

SQABasic Syntax Summary A-3

Labels

Labels allow you to jump to a particular line of code.

A label has the same format as any other SQABasic name. Keywords (such as
command names) are reserved words and are not valid labels.

To be recognized as a label, a name must begin in the first column of a line of
code, and must be immediately followed by a colon (:).

Use the GoTo statement to jump to the label:
GoTo MyLabel
.
.
.
MyLabel:

Line Continuation Syntax

Line continuation syntax allows long statements to extend to the next physical line.
Line continuation syntax consists of a space character followed by an underscore
character (_):

Dim trMonth As Integer, _ ' Month of transaction
trYear As Integer ' Year of transaction

Note that you can add a comment after the underscore.

Line Numbers

Line numbers are not supported in SQABasic.

Names

An SQABasic name (such as variable and label names) must start with a letter
(A through Z, a through z). The remaining part of a name can also contain
numeric digits (0 through 9) or an underscore character (_). A name cannot be
more than 40 characters in length. Type-declaration characters are not considered
part of a name.

Parameters (parameters$) Argument

Parameter values are used in many user action and verification point commands. If
more than one parameter is listed, separate them with semicolons (;):

Result = CheckBoxVP (CompareProperties, "Text=Read Only", _
"CaseID=VPTEN;Wait=6,30")

SQABasic Syntax Summary

A-4 SQABasic Language Reference

Recognition Method (recMethod$) Argument

The recMethod$ arguments are used in many user action and verification point
commands. If more than one recognition method is listed, separate them with
semicolons (;):

Result = FileVP (Compare, _
"File1= MYPROG.EXE;File2=C:\OLDPROG.EXE", _
"CaseID=FCMYPROG")

Strings

Strings are enclosed in double quotation marks ("):
CustName = "Robert Lentz"

Sub Procedures

Sub procedures don’t return a value. They have a slightly different calling syntax
than functions:

' If using this form, you need parentheses around your arguments
Call MySubProc (argument1, argumentn)

' If using this form, omit the parentheses
MySubProc argument1,argumentn

Variables of User-Defined Type

Variables of User-Defined type use dot notation to separate the name of the
variable from its elements:

Cust.fName = "John" ' Customer's first name
Cust.lName = "Smith" ' Customer's last name
Cust.ID = 12345 ' Customer's unique ID

B-1

► ► ► A p p e n d i x B

Trappable Error Codes

The following table lists the runtime errors SQABasic returns. These errors can
be trapped through the On Error statement.

Use the Err function to query the error code, and use the Error function to
query the error text.

Code Error Text Code Error Text

5 Illegal function call 70 Permission denied

6 Overflow 71 Disk not ready

7 Out of memory 74 Can’t rename with different drive

9 Subscript out of range 75 Path/File access error

10 Duplicate definition 76 Path not found

11 Division by zero 91 Object variable set to Nothing

13 Type Mismatch 93 Invalid pattern

14 Out of string space 94 Illegal use of NULL

19 No Resume 102 Command failed

20 Resume without error 429 Object creation failed

28 Out of stack space 438 No such property or method

35 Sub or Function not defined 439 Argument type mismatch

48 Error in loading DLL 440 Object error

52 Bad file name or number 901 Input buffer would be larger than 64K

53 File not found 902 Operating system error

Trappable Error Codes

B-2 SQABasic Language Reference

Code Error Text Code Error Text

54 Bad file mode 903 External procedure not found

55 File already open 904 Global variable type mismatch

58 File already exists 905 User-defined type mismatch

61 Disk full 906 External procedure interface mismatch

62 Input past end of file 907 Push button required

63 Bad record number 908 Module has no MAIN

64 Bad file name 910 Dialog box not declared

68 Device unavailable

C-1

► ► ► A p p e n d i x C

Object Scripting Status Codes

The following table contains the Integer values that are returned from the
SQABasic Object Scripting commands:

Numeric Literal Description

0 sqaSuccess Command executed successfully.

1001 sqaNoObjectSpecified Recognition Method is empty.

1002 sqaInvalidRecString Invalid syntax in Recognition
Method.

1003 sqaObjectNotFound The specified object couldn’t be found.

1004 sqaNoPropertySpecified The property$ argument is empty.

1005 sqaPropertyNotFound The specified property couldn’t be found.

1006 sqaErrorGettingProperty An error occurred while getting a property
value.

1007 sqaArraysNotSupported No index was specified for an array of
property values.

1008 sqaPropertyIsNotArray An index was specified for a property that
does not contain an array of values.

1009 sqaPropertyHasNoValue The property has no value or is currently
not applicable.
A property that has no value is not the
same as a property with a value of 0 or null.
For example, the ItemSelected property for
an empty list box has no value.

1010 sqaPropertyNotSupported The property is not supported.
This status typically results when the
operating system you’re testing on doesn’t
support a property — for example, the
NumbersOnly property for an edit box
isn’t supported under 16-bit Windows.

► ► ►

Object Scripting Status Codes

C-2 SQABasic Language Reference

► ► ►

Numeric Literal Description

1011 sqaUnableToConvertString Can’t convert the specified property value
to a String.

1012 sqaPropertyIsReadOnly The property value is read-only and can’t
be modified.

1013 sqaInvalidDataType The data type of the property can’t be
converted to a Variant. With
SQASetProperty commands, the
type (VarType) of Variant can’t be
converted to a property.

1014 sqaInvalidPropertyValue Invalid property value.
For example, this error occurs if you try to
set the State property for a check box to a
value that is not one of the property’s
choices (Checked or Unchecked).

1015 sqaIndexOutOfBounds The array index is not within the bounds
of the array.

1016 sqaTimeout The specified object couldn’t be found
within the specified time, or (with
SQAWaitForPropertyValue) was
not equal to the specified time.

1017 sqaNoMethodSpecified No method was specified in Object
Method.

1018 sqaMethodNotFound The method specified in Object
Method doesn’t exist.

1019 sqaErrorInvokingMethod An error occurred while attempting to
execute the method. A likely cause is
either that the method doesn’t exist or the
method arguments are invalid.

1020 sqaErrorSettingProperty An error occurred while setting a property
value with SQASetProperty.

1030 sqaOutOfMemory There isn’t enough memory to run this
command.

1031 sqaUserAbort The operation was canceled — for
example, by pressing F11.

1040 sqaUnknownError An unknown error occurred.

D-1

► ► ► A p p e n d i x D

Derived Trigonometric Functions

Many trigonometric operations can be constructed from built-in functions:

Function Computed By

Secant Sec(x) = 1/Cos(x)

CoSecant CoSec(x) = 1/Sin(x)

CoTangent CoTan(x) = 1/Tan(x)

ArcSine ArcSin(x) = Atn(x/Sqr(-x*x+1))

ArcCosine ArcCos(x) = Atn(-x/Sqr(-
x*x+1))+1.5708

ArcSecant ArcSec(x) = Atn(x/Sqr(x*x-1))+
Sgn(x-1)*1.5708

ArcCoSecant ArcCoSec(x) = Atn(x/Sqr(x*x-1))+
(Sgn(x)-1)*1.5708

ArcCoTangent ArcTan(x) = Atn(x)+1.5708

Hyperbolic Sine HSin(x) = (Exp(x)-Exp(-x))/2

Hyperbolic Cosine HCos(x) = (Exp(x)+Exp(-x))/2

Hyperbolic Tangent HTan(x) = (Exp(x)-Exp(-x))/
(Exp(x)+Exp(-x))

Hyperbolic Secant HSec(x) = 2/(Exp(x)+Exp(-x))

Hyperbolic CoSecant HCoSec(x) = 2/(Exp(x)-Exp(-x))

Hyperbolic Cotangent HCotan(x) = (Exp(x)+Exp(-x))/(Exp(x)-
Exp(-x))

Hyperbolic ArcSine HArcSin(x) = Log(x+Sqr(x*x+1))

Hyperbolic ArcCosine HArcCos(x) = Log(x+Sqr(x*x-1))

Hyperbolic ArcTangent HArcTan(x) = Log((1+x)/(1-x))/2

Hyperbolic ArcSecant HArcSec(x) = Log((Sqr(-x*x+1)+1)/x)

Hyperbolic ArcCoSecant HArcCoSec(x) =
Log((Sgn(x)*Sqr(x*x+1)+1)/x)

Hyperbolic ArcCoTangent HArcCoTan(x) = Log((x+1)/(x-1))/2

Derived Trigonometric Functions

D-2 SQABasic Language Reference

E-1

► ► ► A p p e n d i x E

Mouse Actions

Mouse click actions occur when you click or double-click any of the mouse
buttons while recording. The action written to the script depends on which button
was clicked and what combination of SHIFT, CTRL, and ALT keys was held
down at the time of the click. The same is true for mouse drag actions.

For example, if you double-click the left mouse button on an object while holding
the SHIFT key down, a Shift_DblClick action is recorded. If you press the
right mouse button down and drag an object while holding the CTRL and ALT
keys down, a CtrlAlt_Right_Drag action is recorded.

Mouse actions using the left mouse button do not contain the word Left because
the left button is the default for mouse actions. The button is specified only if the
Middle or Right button is used in the action.

When a mouse click occurs on a check box, label, push button, or radio button,
SQA Robot does not record coordinates of the click because the actual position
is not important. When playing back a recorded click on one of these objects,
SQA Robot clicks in the center of the specified object.

When a mouse click occurs on a combo list box or list box, SQA Robot records
the selection information, not the coordinates of the click. For example, a mouse
click on a list box would indicate the selected item, not the coordinates where the
click occurred. When playing back a recorded click on one of these objects,
SQA Robot selects the specified item, regardless of its position in the list or the
dimensions of the box.

Mouse Actions

E-2 SQABasic Language Reference

MouseClick Actions
These are the valid values for a MouseClick action:

Click
Middle_Click
Right_Click
Shift_Click
Shift_Middle_Click
Shift_Right_Click
Ctrl_Click
Ctrl_Middle_Click
Ctrl_Right_Click
Alt_Click
Alt_Middle_Click
Alt_Right_Click
ShiftCtrl_Click
ShiftCtrl_Middle_Click
ShiftCtrl_Right_Click
ShiftAlt_Click
ShiftAlt_Middle_Click
ShiftAlt_Right_Click
CtrlAlt_Click
CtrlAlt_Middle_Click
CtrlAlt_Right_Click
ShiftCtrlAlt_Click
ShiftCtrlAlt_Middle_Click
ShiftCtrlAlt_Right_Click

DblClick
Middle_DblClick
Right_DblClick
Shift_DblClick
Shift_Middle_DblClick
Shift_Right_DblClick
Ctrl_DblClick
Ctrl_Middle_DblClick
Ctrl_Right_DblClick
Alt_DblClick
Alt_Middle_DblClick
Alt_Right_DblClick
ShiftCtrl_DblClick
ShiftCtrl_Middle_DblClick
ShiftCtrl_Right_DblClick
ShiftAlt_DblClick
ShiftAlt_Middle_DblClick
ShiftAlt_Right_DblClick
CtrlAlt_DblClick
CtrlAlt_Middle_DblClick
CtrlAlt_Right_DblClick
ShiftCtrlAlt_DblClick
ShiftCtrlAlt_Middle_DblClick
ShiftCtrlAlt_Right_DblClick

MouseDrag Actions
These are the valid values for a MouseDrag action:

Left_Drag
Right_Drag
Middle_Drag
Shift_Drag
Shift_Middle_Drag
Shift_Right_Drag
Ctrl_Drag
Ctrl_Middle_Drag
Ctrl_Right_Drag
Alt_Drag
Alt_Middle_Drag
Alt_Right_Drag

ShiftCtrl_Drag
ShiftCtrl_Middle_Drag
ShiftCtrl_Right_Drag
ShiftAlt_Drag
ShiftAlt_Middle_Drag
ShiftAlt_Right_Drag
CtrlAlt_Drag
CtrlAlt_Middle_Drag
CtrlAlt_Right_Drag
ShiftCtrlAlt_Drag
ShiftCtrlAlt_Middle_Drag
ShiftCtrlAlt_Right_Drag

Glossary-1

► ► ► Glossary
action object – In TestFactory, an object in the application map that represents an
action to which a control in the application responds. Typical actions are mouse
left-click, mouse right-click, and mouse left-double-click; the corresponding action
objects in the application map are LeftClick, RightClick, and LeftDoubleClick.

ActiveX control – A reusable software control that takes advantage of Object
Linking and Embedding (OLE) and Component Object Modeling (COM)
technologies. Developers can use ActiveX controls to add specialized functions to
applications, software development tools, and Web pages. Robot can test ActiveX
controls in applications.

actual results – In a functional test, the outcome of testing an object through a
verification point in a GUI script. Actual results that vary from the recorded
baseline results are defects or intentional changes in the application. See also
baseline results.

Administrator – See Rational Administrator.

Agent computer – In LoadTest, a computer that has the Rational Agent software
installed and that plays back a virtual user or GUI script. In a LoadTest schedule,
you can identify the Agent computer on which to run a script. See also Rational
Agent.

API recording – In Robot, a virtual user recording method that captures API calls
between a specific client application and a server. These calls are captured on the
client computer.

application map – In TestFactory, a hierarchical list of controls and actions in the
application-under-test, as well as the states of the application-under-test and the
transitions between those states. An application map can include UI objects and
action objects, as well as TestFactory objects such as Pilots, Test Suites, and
scripts.

application-under-test – The software being tested. See also system-under-test.

Asset Browser – A window that displays testing resources such as builds, queries,
scripts, schedules, reports, report output, and logs. The Asset Browser is available
in TestManager and LoadTest.

AUT – See application-under-test.

Glossary

Glossary-2 SQABasic Language Reference

automated testing – A testing technique in which you use software tools to
replace repetitive and error-prone manual work. Automated testing saves time and
enables a reliable, predictable, and accurate testing process.

AutoPilot – In TestFactory, a tool for running scripts, Test Suites, and Pilots. The
scripts and Test Suites can run on your local computer or on computers in the
Test Lab. The Pilots run on your local computer, and the scripts they generate can
run on your local computer or on computers in the Test Lab.

base state – In TestFactory, the known, stable state in which you expect the
application-under-test to be at the start of each script segment. See also script
segment.

baseline results – In a functional test, the outcome of testing an object through a
verification point in a GUI script. The baseline results become the expected state
of the object during playback of the script. Actual test results that vary from the
baseline results are defects or intentional changes in the application. See also actual
results.

best script – In TestFactory, an optimized script generated by a Pilot. A best script
contains the fewest number of script segments that provide the most coverage of
the source code or user interface in the application-under-test.

breakpoint – A feature of the Robot debugger. When you assign a breakpoint to a
line of code, and then run the script in the debugger environment, the script stops
executing at that line of code. Control returns to you, and the breakpoint line is
displayed. From here you can view variables, perform other debugging activities,
and continue executing the script.

build – A version of the application-under-test. Typically, developers add new
features or enhancements to each incremental build. As team members test a
build, they enter defects against those features that do not behave as expected. You
use TestManager to define and manage builds.

built-in data test – A data test that comes with Robot and is used with the Object
Data verification point. A data test uses a specific property of the object, in
conjunction with other parameters, to determine the data to capture. Although
built-in data tests cannot be edited, renamed, or deleted, they can be copied and
then edited, and they can be viewed. See also custom data test.

ClearQuest – See Rational ClearQuest.

client/server – An architecture for cooperative processing in which the software
tasks are split between server tasks and client tasks. The client computer sends
requests to the server, and the server responds.

Glossary

Glossary Glossary-3

code coverage – In TestFactory, the percentage of code that is tested by a script.
This percentage is based on the portion of the code that a script touches, relative to
all code in the application-under-test. A Pilot can use code coverage to determine
the best script for a run. See also UI coverage.

command ID – In LoadTest’s VU language, an identifier for a command. Robot
automatically assigns a unique command ID, composed of an alphanumeric prefix
and a three-digit number, to each emulation command. Because command IDs
appear in both the virtual user script and the LoadTest report output, they enable
you to determine the relationship between an emulation command and its
response times.

command ID prefix – In LoadTest, a prefix for a unique emulation command ID.
The prefix defaults to the script name (up to the first seven characters). However,
you can define the prefix in the Generator tab of the Virtual User Record Options
dialog box.

custom data test – A customer-defined data test used with the Object Data
verification point. A data test uses a specific property of the object, in conjunction
with other parameters, to determine the data to capture. Custom data tests are
created within your organization and are stored in the repositories that were active
when they were created. They can be edited, renamed, and deleted. See also built-
in data test.

data test – A test that captures the data of an object with the Object Data
verification point. See also built-in data test and custom data test.

datapool – A source of test data that GUI scripts and virtual user scripts can
draw from during playback. You can automatically generate datapools using
TestManager, or you can import datapool data from other sources such as
your database.

dependency – In LoadTest, a method of coordinating an object in a schedule
with an event. For example, if the script Query is dependent upon the script
Connect, then Connect must finish executing before Query can begin executing.
See also event.

distributed architecture – Architecture in which computer systems work
together and communicate with each other across LAN, WAN, or other types of
networks. A client/server system is an example of distributed architecture.

distributed functional test – In LoadTest, a test that uses multiple Agent
computers to execute multiple GUI scripts written in the SQABasic language.

dynamic load balancing selector – A type of selector in a LoadTest schedule.
Items in the selector, such as scripts, are executed according to a weight you set.

Glossary

Glossary-4 SQABasic Language Reference

emulation commands – VU language statements or commands that emulate
client activity, evaluate the server’s responses, and perform communication and
timing operations. LoadTest stores the results of emulation commands in a log
file, which you can view from the LogViewer.

emulation functions – VU language functions that emulate client activity and
evaluate the server’s responses. Unlike emulation commands, emulation functions
do not perform communication and timing operations, and they are not logged.

environment control commands – VU language commands that let you control a
virtual user’s environment by changing the VU environment variables. For
example, you can set the level of detail that is logged or the number of times that
virtual users attempt to connect to a server.

event – An item in a LoadTest schedule upon which another item is dependent.
For example, if the script Connect sets an event and the script Query depends on
this event, Connect must finish executing before Query can begin executing. See
also dependency.

external script – A script that runs a program created with any tool. You plan and
run external scripts in TestManager.

fixed user group – In LoadTest, a group that contains a scalable number of users.
When you create a fixed user group, you indicate the maximum number of users
that you will run in the group. Typically, you use fixed user groups in functional
tests, which do not add a workload to the system.

flow control statements – In the VU and SQABasic languages, statements that let
you add conditional execution structures and looping structures to a script.

functional test – A test to determine whether a system functions as intended.
Functional tests are performed on GUI objects and objects such as hidden
DataWindows and Visual Basic hidden controls.

Grid Comparator – The Robot component for reviewing, analyzing, and editing
data files for text and numeric verification points in grid formats. The Grid
Comparator displays the differences between the recorded baseline data and the
actual data captured during playback.

GUI script – A type of script written in the SQABasic language. It contains GUI
actions such as keystrokes and mouse clicks. Typically, a GUI script also contains
verification points for testing objects over successive builds of the application-
under-test.

GUI user – The type of user that is emulated when a GUI script is executed.
Only one GUI user at a time can run on a computer.

Glossary

Glossary Glossary-5

hidden object – An object that is not visible through the user interface. Hidden
objects include objects with a visible property of False and objects with no GUI
component.

IDE – Integrated Development Environment. This environment consists of a set
of integrated tools that are used to develop a software application. Examples of
IDEs supported by Robot include Oracle Forms, PowerBuilder, Visual Basic, and
Java.

Image Comparator – The Robot component for reviewing and analyzing bitmap
image files for Region Image and Window Image verification points. The Image
Comparator displays differences between the recorded baseline image and the
actual image captured during playback. The Image Comparator also displays
unexpected active windows that appear during playback.

instrumentation – In TestFactory, the process of inserting code coverage counters
into the application-under-test. These counters record how much code is
executed during a script run. See also object code instrumentation and source code
instrumentation.

load – See workload.

load balancing – See workload balancing.

LoadTest – See Rational LoadTest.

log – A repository object that contains the record of events that occur while
playing back a script or running a schedule. A log includes the results of all
verification points executed as well as performance data that can be used to analyze
the system’s performance.

LogViewer – See Rational LogViewer.

low-level recording – A recording mode that uses detailed mouse movements and
keyboard actions to track screen coordinates and exact timing. During playback, all
actions occur in real time, exactly as recorded.

manual script – A set of testing instructions to be run by a human tester. The
script can consist of steps and verification points. You create manual scripts in
TestManager.

Master computer – A computer that executes LoadTest. From this computer,
you create, run, and monitor schedules. When the run is finished, you use it to
analyze test results.

mix-ins – See Pilot mix-ins.

network recording – In Robot, a virtual user recording method that records
packet-level traffic. This traffic is captured on the wire.

Glossary

Glossary-6 SQABasic Language Reference

next available selector – In LoadTest schedules, a selector that distributes each
item such as a script, delay, or other selector to an available computer or virtual
user. This type of selector is used in a GUI schedule. The next available selector
parcels out the items sequentially, based on which computers or virtual users are
available.

object – An item on a screen, such as a window, dialog box, check box, label, or
command button. An object has information (properties) associated with it and
actions that can be performed on it. For example, information associated with the
window object includes its type and size, and actions include clicking and
scrolling. In some development environments, a term other than object is used. For
example, the Java environment uses component, and the HTML environment uses
element.

object code instrumentation – In TestFactory, the process of inserting code
coverage counters into the executable file of the application-under-test. These
counters record how much of the program a script tests. See also instrumentation
and source code instrumentation.

Object-Oriented Recording® – A script recording mode that examines objects in
the application-under-test at the Windows layer. Robot uses internal object names
to identify objects, instead of using mouse movements or absolute screen
coordinates.

Object Properties Comparator – The Robot component that you use to review,
analyze, and edit the properties of objects captured by an Object Properties
verification point. The Object Properties Comparator displays differences between
recorded baseline data and the actual data captured during playback.

Object Scripting commands – A set of SQABasic commands for accessing an
application’s objects and object properties. You add Object Scripting commands
manually when editing a script.

Object Testing® – A technology used by Robot to test any object in the
application-under-test, including the object’s properties and data. Object Testing
lets you test standard Windows objects and IDE-specific objects, whether they are
visible in the interface or hidden.

OCI – Object Code Insertion. The Rational technology used in TestFactory to
instrument object code and measure how much of the application-under-test a
script tests. See also code coverage and object code instrumentation.

performance test – A test that determines whether a multi-client system
performs within user-defined standards under varying loads. Performance tests are
always run from a schedule in LoadTest.

Pilot – In TestFactory, a tool for generating scripts automatically.

Glossary

Glossary Glossary-7

Pilot mix-ins – In TestFactory, a list of Pilots that are executed on a random basis
during the run of a lead Pilot. Mix-ins are useful for randomly testing multiple
areas of the application-under-test. To make tests more realistic, you can combine
mix-ins and scenarios.

Pilot scenario – An ordered list of Pilots that are executed during the run of a
Pilot. A Pilot scenario is useful for testing UI objects that need to be exercised in a
specific order. To make tests more realistic, you can combine scenarios and mix-
ins.

project – A collection of data, including test assets, defects, requirements, and
models, that can facilitate the development and testing of one or more software
components.

proxy recording – In Robot, a virtual user recording method that captures the
client/ server conversation on the network wire rather than on the client
computer. Proxy recording allows Robot to capture network packets that are not
visible to it during network recording — for example, if the client and server are in
different network segments.

query – A request for information stored in the repository. A query consists of a
filter and several visible attributes — the columns of data to display, the width of
the column, and the sort order.

random selector – A type of selector in a LoadTest schedule. Items in the
selector, such as scripts, are randomly executed. Random selectors can be with
replacement, where the odds are the same, or without replacement, where the
odds change with each iteration.

Rational Administrator – The component for creating and maintaining
repositories, projects, users, groups, computers, and SQL Anywhere servers.

Rational Agent – The LoadTest software that resides on a shared network drive
and runs on each computer where testing occurs. The entries specified in a
schedule play back on the Agent computer, which reports on their progress and
status as they run. See also Agent computer.

Rational ClearQuest – The Rational product for tracking and managing defects
and change requests throughout the development process. With ClearQuest, you
can manage every type of change activity associated with software development,
including enhancement requests, defect reports, and documentation
modifications.

Rational LoadTest – The Rational Test component for running performance,
stress, scalability, multi-user, and distributed functional tests on multiple Agents
connected by a network. With LoadTest, you can initiate test runs and monitor
tests from a master computer that manages the test process. LoadTest is available
only in Rational Suite PerformanceStudio.

Glossary

Glossary-8 SQABasic Language Reference

Rational LogViewer – The Robot component for displaying logs, which contain
the record of events that occur while playing back a script or running a schedule.
Also, the component from which you start the four Comparators.

Rational PerformanceArchitect – The Rational component that lets you test the
performance of COM/DCOM applications. With Rational PerformanceArchitect,
you can create a Rose sequence or collaboration diagram, convert it to a virtual
user script, and then use Rational Suite PerformanceStudio to edit the script and
run the performance tests.

Rational repository – A database that stores application testing information, such
as test requirements, scripts, and logs. All Rational Suite TestStudio and Rational
Suite PerformanceStudio products and components on your computer update and
retrieve data from the same connected repository. A repository can contain either
a Microsoft Access or a Sybase SQL Anywhere database.

Rational RequisitePro – The Rational product for organizing, managing, and
tracking the changing requirements of your system.

Rational Robot – The Rational product for recording, playing back, debugging,
and editing scripts.

Rational SiteCheck – The Robot component for managing your intranet or
World Wide Web site. You can use SiteCheck to visualize the structure of your
Web site, and you can use it with Robot to automate Web site testing.

Rational Synchronizer – The Rational tool that ensures the consistency of data
across several Rational products.

Rational TestAccelerator – An agent application that executes scripts.
TestFactory uses computers running TestAccelerator as remote machines on
which to run automated distributed tests.

Rational TestFactory – The Rational Test component for mapping an
application-under-test and generating scripts automatically. TestFactory is
available in Rational Suite TestStudio and Rational Suite PerformanceStudio.

Rational TestManager – The Robot component for managing the overall testing
effort. You use it to define and store information about test documents,
requirements, scripts, schedules, and sessions.

Report Layout Editor – The TestManager component for customizing the layout
of reports.

repository – See Rational repository.

RequisitePro – See Rational RequisitePro.

Robot – See Rational Robot.

Glossary

Glossary Glossary-9

scalable user group – In LoadTest, a group that contains a varying number of
users. When you create a scalable user group, you assign it a percentage of the total
workload. Assume you have a scalable user group that is 50 percent of the
workload. If you run a test with 10 users, the group will contain 5 users. If you
run a test with 100 users, the group will contain 50 users.

scenario – In LoadTest, a modular group of scripts and other items in a schedule
that is used by more than one user group. A scenario can contain scripts, delays,
and synchronization points.

scenario – See Pilot scenario.

schedule – In LoadTest, structure that you create to specify how scripts should be
played back. A schedule can contain GUI scripts and virtual user scripts, and can
indicate the number of times to repeat a script and the computer on which the
script will run. In performance testing, a schedule is used to create a workload. In
distributed functional testing, a schedule is used to distribute scripts among
various computers.

script – A set of instructions used to navigate through and test an application. You
can generate scripts in a variety of ways. You can use Robot to record scripts used
in functional testing and performance testing. You can also use TestManager to
create and manage manual scripts, and to manage external scripts created with a
third-party testing tool. A script can have properties associated with it, such as the
purpose of the script and requirements for the script. See also external script, GUI
script, manual script, and virtual user script.

script outline – In TestFactory, the readable version of a script. A script outline
contains a description of the actions that Robot performs while running the script.

script segment – In TestFactory, a section of a script that tests a particular
element of product functionality. A Pilot generates a script segment by starting the
application-under-test in a base state, navigating through the part of the product
that you are testing, and returning the application-under-test to the base state. See
also base state.

seed – An initial number fed to a random number generator. Using the same seed
produces the same series of random numbers. In LoadTest, you use seeds to
generate think times.

selector – An item that you insert in a LoadTest schedule to indicate how often
and in what order to run scripts.

sequential selector – In a LoadTest schedule, a type of selector that executes each
script, delay, or other item in the same order in which it appears in the schedule.

Glossary

Glossary-10 SQABasic Language Reference

session – In virtual user recording, one or more scripts that you record from the
time you begin recording until the time you stop recording. Typically, the scripts
in a session represent a logical flow of tasks for a particular user, with each script
representing one task. For example, a session could be made up of three scripts:
login, testing, and logout. In TestFactory, a session is the period of time that the
TestFactory application or a window is open.

shared variable – An integer variable that multiple scripts and multiple virtual
users can read and write to. You can see the value of a shared variable while
monitoring a LoadTest schedule. For example, you can set a shared variable as a
flag to end a playback session. Each script can check the flag to see if the session
should end. When that flag is set, exit tasks can be performed.

shell script – A script that calls or groups several other GUI scripts and plays them
back in sequence. Shell scripts provide the ability to create comprehensive tests
and then store the results in a single log.

SiteCheck – See Rational SiteCheck.

source code instrumentation – In TestFactory, the process of inserting code into
the source code of the application-under-test. This code measures how much of
the source code a script tests. See also instrumentation and object code instrumentation.

SQABasic – The Robot scripting language for recording GUI actions
and verifying GUI objects. SQABasic contains most of the syntax rules and core
commands that are contained in the Microsoft Basic language. In addition,
SQABasic has commands that are specifically designed for automated testing.
See also VU.

stable load – In LoadTest, a condition that occurs when a specified number of
virtual users have logged on to the system-under-test and are active. When the
stable load criterion is met, LoadTest begins measuring the load.

streak – When running a virtual user schedule in LoadTest, a series of successes
or failures for emulation commands. You can see a streak while monitoring a
schedule.

structural test – A test to determine whether the structure of a Web site is
consistent and complete. A structural test ensures that an application’s
interdependent objects are properly linked together. You perform a structural test
using SiteCheck.

synchronization point – In LoadTest, a place where emulated virtual users stop
and wait until all other synchronized users reach that point. When all users reach
the synchronization point, they are released and continue executing.

Synchronizer – See Rational Synchronizer.

Glossary

Glossary Glossary-11

system tuning – In LoadTest, the process of optimizing a system’s performance
by changing hardware resources and software configuration parameters while
using a constant workload.

system-under-test – The system being tested. This includes the computers and
any software that can generate a load on the system, networks, user interfaces,
CPUs, and memory. See also application-under-test.

test assets – The resources that facilitate the planning or development phases of
the testing effort. Examples of test assets include scripts, schedules, sessions, test
documents, and test requirements.

test development – The process of developing tests to verify the operation of a
software application. This includes creating scripts that verify that the application-
under-test functions properly. Test development lets you establish the baseline of
expected behavior for the application-under-test.

test documents – Test plans, project schedules, resource requirements, and any
other documents that are important to your project. You develop your test
documents using your own word processing or scheduling program; you then
reference the name and location of the document in TestManager. This lets
members of the test and development team locate documents quickly.

Test Lab – A collection of computers on which TestAccelerator is running. In
TestFactory, you can distribute the scripts associated with a Pilot, a Test Suite, or
the AutoPilot to run on computers in the Test Lab. See also Rational TestAccelerator.

Test Suite – In TestFactory, a tool for running a collection of scripts as a group.

TestAccelerator – See Rational TestAccelerator.

TestFactory – See Rational TestFactory.

TestManager – See Rational TestManager.

Text Comparator – The Robot component for reviewing, analyzing, and editing
data files for text and numeric verification points in any format except grids. The
Text Comparator displays the differences between the recorded baseline results
and the actual results.

think time – In virtual user and GUI scripts, think times are delays that simulate a
user’s pauses to type or think while using an application. With virtual user scripts,
LoadTest calculates the think time at runtime, based on think time VU
environment variables that are set in the script. You can set a maximum think time
in Robot. With GUI scripts, Robot uses the actual delays captured between
keystrokes, menu choices, and other actions.

transaction – In LoadTest, a logical unit of work performed against a server. For
example, submitting a search query or submitting a completed form to a Web
server are both transactions.

Glossary

Glossary-12 SQABasic Language Reference

transaction rate – In LoadTest, the playback speed calculated as a function of
number of transactions per unit of time. For example, if a script contains one
transaction, and each script is started at half-second intervals, your transaction rate
would be 2 per second.

transactor – In LoadTest, an item that you insert in a LoadTest schedule to
indicate the number of user-defined transactions that a virtual user performs in a
given time period.

UI coverage – In TestFactory, the percentage of objects in the application map
that are tested by a Pilot-generated script. This percentage is the proportion of UI
objects that the script touches, relative to all UI objects available to the Pilot. A
Pilot can use UI coverage to determine the best script for a run. See also code
coverage.

UI object properties – Attributes of object classes and UI objects that TestFactory
uses to map applications and generate scripts.

unexpected active window – A window that appears during script playback that
interrupts the script playback process and prevents the expected window from
being active. For example, an error message generated by the application-under-
test is an unexpected active window. You can view unexpected active windows in
the Image Comparator.

user group – In LoadTest, a collection of users that execute similar tasks and
generate the same basic workload. Accountants and data entry operators are
examples of user groups.

verification – The process of comparing the test results from the current build of
the software to its baseline results.

verification point – A point in an SQABasic script that confirms the state of one
or more objects. During recording, a verification point captures object information
from the application-under-test and stores it as the baseline. During playback, a
verification point recaptures the object information and compares it to the
baseline. In a manual script, a verification point is a question about the state of the
application-under-test.

virtual user – In LoadTest, a type of user that is emulated when a virtual user
script is executed. A computer can run multiple virtual users simultaneously.

virtual user script – A type of script written in the VU language. Virtual user
scripts contain client/server requests and responses as well as user think times.

VU – The Robot scripting language for recording a client’s requests to a server.
VU provides most of the syntax rules and core commands available in the C
programming language. In addition, VU has emulation commands and functions
that are specifically designed for automated performance testing. See also
SQABasic.

Glossary

Glossary Glossary-13

wait state – A delay or timing condition that handles time-dependent activities.

workload – In LoadTest, the set of all activities that users perform in an actual
production setting of the system-under-test. You can use LoadTest to emulate a
workload.

workload balancing – In LoadTest, the act of distributing activities so no one
system or device becomes a bottleneck.

workload model – In LoadTest, the workload model is represented as a schedule.
You can play back this schedule and analyze the response times.

Glossary

Glossary-14 SQABasic Language Reference

Index-1

► ► ► Index

SymbolsSymbolsSymbolsSymbols
- numeric operator, 3-12
'$CStrings metacommand, 6-64
'$Include metacommand, 6-218
'$NoCStrings metacommand, 6-328
& string concatenation operator, 3-12
* numeric operator, 3-12
* wildcard, 4-17, 4-19
.\ separator, 4-18
.csv files, 5-12
.dll files, 3-4, 4-28
.lnk files, 6-501
.rec files, 1-3, 4-2

as library files, 4-26
.sbh files, 1-3, 4-29
.sbl files, 1-3, 4-26
.sbx files, 1-3, 4-2, 4-27
.tpl files, 4-33
/ numeric operator, 3-12
; separator, 6-500, A-3, A-4
? wildcard, 4-17, 4-19
\ escape character, 4-17, 4-20
\ numeric operator, 3-12
\ separator, 4-18
^ numeric operator, 3-12
_ line continuation character, A-3
| separator, 6-364
+ numeric operator, 3-12
+ string concatenation operator, 3-12
< comparison operator, 3-13
= comparison operator, 3-13
> comparison operator, 3-13
-> separator. See pointer separator

AAAA
Abs function, 6-2
absolute value, 6-2
access Clipboard, 6-37
action% argument, 4-8
activate window, 6-6
active window

AppActivate statement, 6-6
assigning context to, 4-16
Window user action command, 6-586

ActiveX Test Control, 6-523
actual data, 5-12, 5-15, 5-16
actual data files, 4-7

ownership, 5-20
retrieving the location, 6-503

additional property capture with Object Scripting, 5-7
additions to Basic commands, 1-1, 1-3, 6-1
alias, 6-89
Analyzer utility, 5-21
And logical operator, 3-13
angle

cosine, 6-60
sine, 6-450
tangent, 6-547

AnimateControl user action command, 6-2
AnimateControlVP verification point command, 6-4
ANSI characters, 6-35
AppActivate statement, 6-6
applications, starting

Shell command, 6-449
SQAShellExecute command, 6-501
StartApplication command, 6-522
StartJavaApplication command, 6-524

arc tangent, 6-8
arguments, 3-3, A-1

by-value and by-reference, 3-3
checking for presence of, 6-239
named, 3-4
passing, 6-22
user action and verification point commands, 4-8

Index

Index-2 SQABasic Language Reference

arrays, 3-10
command summary, 2-1
default lower-bound, 6-340
dimensions, 3-10, 6-98, 6-180, A-1
dynamic, 3-11
erasing, 6-139
global, 6-180
lower bound, 6-340
lower-bound subscripts, 6-289
of property values, 5-8
redimension, 6-417
retrieving property values as, 6-480, 6-482
size of, for property values, 6-483
subscripts, 3-10, 6-98, 6-180
upper bound, 6-573
upper-bound subscripts, 6-573

Asc function, 6-7
AscB, 6-7
Assert statement, 6-7
assign variables, 6-292
assignment character, 6-494
Atn function, 6-8
attributes of files and directories, 6-175
automatic script generation, 1-1

BBBB
backslash (\) and context, 4-18
baseline, 1-3, 4-7

custom verification points, 5-12
baseline data files, 4-7, 5-16

retrieving the location, 6-504
BasicLib, 6-89
Beep statement, 6-8
Begin Dialog...End Dialog statement, 6-9
Boolean data type, 3-7
branching

GoTo statement, 6-182
On...GoTo statement, 6-336

broken links, testing for, 6-579
Browser utility command, 6-13

browsers
default, for playback, 6-496
starting, 6-523

Button statement, 6-16
ButtonGroup statement, 6-17
by-reference arguments, 3-3
by-value arguments, 3-3, A-1

CCCC
C language characters, 6-64
C++ applications, order of recognition method

values, 4-13
Calendar user action command, 6-18
CalendarVP verification point command, 6-20
Call statement, 6-21
CallScript utility command, 6-23
CancelButton statement, 6-24
Caption statement, 6-25
caption terminator character

retrieving, 6-470
setting, 6-495

caption wildcard characters, 4-17, 4-19
case, 6-441
case-sensitive comparison, 6-342
CCur function, 6-26
CDbl function, 6-27
change directory, 6-27
change drive, 6-28
ChDir statement, 6-27
ChDrive statement, 6-28
CheckBox statement, 6-29
CheckBox user action command, 6-30
CheckBoxVP verification point command, 6-32
child objects, 6-471
child objects in recognition methods, 4-10, 4-18

Java commands, 4-13
ChildWindow value, 4-19
Chr function, 6-35
ChrB, 6-35
CInt function, 6-36

Index

Index Index-3

Class List, 6-37
Class property, 5-7
clear Clipboard, 6-37
clicking the mouse, E-1
ClientRect property, 5-7
Clipboard, 6-37
ClipboardVP verification point command, 6-38
CLng function, 6-39
Close statement, 6-40
combo box

elements in array, 6-111
fill with strings, 6-113

ComboBox statement, 6-41
ComboBox user action command, 6-42
ComboBoxVP verification point command, 6-44
ComboEditBox user action command, 6-48
ComboEditBoxVP verification point command, 6-50
ComboListBox user action command, 6-52
ComboListBoxVP verification point command, 6-55
Command function, 6-58
commands in SQABasic. See also SQABasic command

categories
additions to Basic, 1-3
functional listing of all commands, 2-1
types, 3-2

comments, 6-421, A-2
Comparators, displaying captured data, 5-12
compare strings, 6-535
comparing environment states, 5-21
comparing Web sites, 6-579
comparison operators, 3-13
compiler directives command summary, 2-1
compiling

library files, 4-27
scripts, 4-2

concatenation operators, 3-12
conditional execution, 6-217, 6-336, 6-441, 6-582
console window

displaying messages in, 5-27
SQAConsoleWrite, 6-456

Const statement, 6-59
constants

global scope, 4-22
header files, 4-31
local scope, 4-21
module-level scope, 4-22
scope of, 3-14, 4-21

contacting
technical publications, xxii
technical support, xxii

context, 4-15
current, 6-586
default, 4-20
establishing, through a Window command action,

4-15
establishing, through context notation, 4-18
notation syntax, 4-18, A-2
Object Scripting commands and, 5-5
test, 4-16, 6-585, 6-587
window, 4-15, 4-16, 6-586
Window actions for setting, 4-16

context window, 4-4
convert to type

currency, 6-26
double, 6-27
general rules, 3-9
integer, 6-36
long, 6-39
single, 6-62
string, 6-63
variant, 6-66
variant date, 6-66

Cos function, 6-60
cosine, 6-60
CreateObject function, 6-61
creating dialog boxes, 6-10
CSng function, 6-62
CStr function, 6-63
csv files, 5-12

Index

Index-4 SQABasic Language Reference

CurDir function, 6-65
Currency data type, 3-6
current

context window, 4-16, 6-586
date, 6-74, 6-75
directory, 6-65

current baseline data files
copying to a logged baseline data file, 5-16
creating, 5-16
ownership, 5-20
retrieving the location, 6-505
vs logged baseline data files, 5-14

CurrentFocus value, 5-5
CurrentWindow, 6-588
CurrentWindow value, 4-16, 5-5
custom buttons, 6-16, 6-17
custom code

header files, 4-29
library files, 4-26
scripts, 4-23
template file, 4-33

custom procedures
adding to a library file, 4-26
adding to a script, 4-23
declaring in a header file, 4-29
declaring in a script, 4-23

custom verification points
displaying captured data, 5-12
example, 5-17
managing, 5-12
retrieving actual file location, 6-503
retrieving baseline file location, 6-504
retrieving current baseline file location, 6-505
summary of management commands, 5-13
using, 5-16
writing results to the log, 6-506

customer support, xxii
customizing scripts, 4-20
CVar function, 6-66
CVDate function, 6-66

DDDD
data types

converting, 3-9
declaring, 3-5, 6-97
default, 6-91
list of, 3-6
signed, 3-7
user-defined, 3-8, 6-570

datapool commands, 1-3
overview, 5-30
summary, 2-2, 5-30

datapools, role of, 5-30
DataWindow user action command, 6-68
DataWindowVP verification point command, 6-72
date

day component, 6-80
format, 6-75, 6-160
is legal, 6-238
month component, 6-322
now, 6-330
value, 6-74, 6-76, 6-79
year component, 6-597

date and time command summary, 2-2
Date data types, 3-7, 3-8
Date function, 6-74
Date statement, 6-75
DateSerial function, 6-76
DateTime user action command, 6-77
DateTimeVP verification point command, 6-78
DateValue function, 6-79
Day function, 6-80
day of month, 6-80
day of week, 6-581
DDE, 5-31

command summary, 2-5
DDEAppReturnCode function, 6-81
DDEExecute statement, 6-82
DDEInitiate function, 6-83
DDEPoke statement, 6-85

Index

Index Index-5

DDERequest function, 6-86
DDETerminate statement, 6-88
declaration statements summary, 2-2
Declare statement, 6-89
declaring

.dll files, 4-28
arrays, 3-10
data types, 6-97
SQABasic library files, 4-28
variables of a User-Defined data type, 3-8

declaring procedures
in a header file, 4-29
in a script, 4-23

declaring variables and constants
global scope, 4-22
header files, 4-29, 4-31
local scope, 4-21
module-level scope, 4-22
scope, 3-14

default
context, 4-20
data type, 6-91
playback browser, 6-496

Deftype statement, 6-91
DelayFor utility command, 6-92
delete file, 6-284
derived trigonometric functions, D-1
Desktop user action command, 6-93
dialog box definition command summary, 2-3
dialog box services command summary, 2-4
dialog boxes, 6-9

as windows, 4-15
begin/end, 6-9
captions, 6-25
closing, 6-107
commands for handling user actions, 2-4
creating, 6-10
declaring in instance of, 6-10
defining, 6-9, 6-10
displaying, 6-10, 6-94, 6-96
enable state, 6-104, 6-105
focus, 6-109, 6-110

handling user actions in, 6-10
numeric ID, 6-102
OptionGroup, 6-344
password box, 6-348
records, 3-9, 6-10
SQABasic, 6-9
text in, 6-548

dialog controls
DropComboBox, 6-128
DropListBox, 6-129
hidden/visible, 6-123, 6-124
InputBox, 6-222
ListBox, 6-296
OK button, 6-335
OptionButton, 6-343
picture, 6-350
picture, 6-114
PushButton, 6-399
state, 6-120
StaticComboBox, 6-529
text, 6-116, 6-118
TextBox, 6-549
value, 6-122

Dialog function, 6-94
Dialog statement, 6-96
Dim statement, 6-97
dimension variables, 6-97
dimensions of an array, 3-10, 6-98, 6-180

default lower bound, 6-340
lower bound, 6-289
upper bound, 6-573
with dynamic arrays, 3-11, 6-418

Dir function, 6-100
directory

attributes, 6-175
change, 6-27
contents, 6-100
create new, 6-319
log, 6-474
remove, 6-429
standard, 6-473

disk and directory command summary, 2-4

Index

Index-6 SQABasic Language Reference

displaying
custom verification point data, 5-12
messages, 5-27

DlgControlID function, 6-102
DlgEnable function, 6-104
DlgEnable statement, 6-105, 6-107
DlgFocus function, 6-109
DlgFocus statement, 6-110
DlgListBoxArray function, 6-111
DlgListBoxArray statement, 6-113
DlgSetPicture statement, 6-114
DlgText function, 6-116
DlgText statement, 6-118
DlgValue function, 6-120
DlgValue statement, 6-122
DlgVisible function, 6-123
DlgVisible statement, 6-124
Do...Loop statement, 6-126
document files, 6-501
documentation feedback, xxii
DoEvents statement, 6-127
Double data type, 3-6
dragging the mouse, E-1
drive change, 6-28
DropComboBox statement, 6-128
DropListBox statement, 6-129
dynamic arrays, 3-11, 6-418
Dynamic Data Exchange, 5-31

close, 6-88
initiate, 6-83
receive data, 6-86
return code, 6-81
send commands, 6-82
send data, 6-85

Dynamic Link Library
declare procedure, 6-89
library name, 6-89

EEEE
EditBox user action command, 6-131
EditBoxVP verification point command, 6-133

editing scripts, 1-2
elements

of arrays, 3-10
of User-Defined types, 3-8

empty variant, 3-7
end of file, 6-138
EndSaveWindowPositions utility command, 6-136
Environ function, 6-137
Environment property, 5-7
environment state, 5-21

comparison report, 6-467
summary of commands, 5-21
test overview, 5-22

environmental control command summary, 2-5
Eof function, 6-138
Eqv logical operator, 3-14
Erase statement, 6-139
Erl function, 6-141
Err function, 6-142
Err statement, 6-143
error codes, B-1
Error function, 6-144
error handling, 3-16

command summary, 2-5
halting, 6-423
location of routine, 6-337
message text, 6-144
Object Scripting commands, 5-11
runtime code, 6-143
script command failure, 6-494
trap line number, 6-141
trap runtime code, 6-142
user-defined, 6-145

Error statement, 6-145
escape character for wildcards, 4-17, 4-20
execute query, 6-513
Exit statement, 6-146
Exp function, 6-147
explicit data type declaration, 3-5
exponent, 6-147
expressions, 3-12

Null, 6-240, 6-241

Index

Index Index-7

FFFF
factorials, 6-62, 6-155
feedback, xxii
field names and PeopleTools object names, 6-381,

6-385
fields replaced with strings, 6-446
file control command summary, 2-6
FileAttr function, 6-148
FileCopy statement, 6-149
FileDateTime function, 6-150
FileLen function, 6-151
files

actual data, 4-7, 5-12, 5-15, 5-16
attributes, 6-175
baseline, 4-7, 5-16
close all, 6-422
closing, 6-40
copying, 6-149
current baseline, 5-16
current offset, 6-307
date and time of, 6-150
deleting, 6-284
end of, 6-138
header, 4-29
in a directory, 6-100
included, 4-29, 6-218
input from, 6-220, 6-221, 6-294
length of, 6-151, 6-310
link, 6-501
locking, 6-308
logged baseline, 5-16
low-level journal, 6-351
moving, 6-326
opening, 6-338
output width, 6-584
printing to, 6-356
read data, 6-173
renaming, 6-326
reset, 6-422
seek position, 6-438, 6-439

set attributes, 6-444
summary of input/output commands, 2-6
system handle, 6-148
types of, 6-501
unlocking, 6-575
unused number, 6-164
writing data, 6-405, 6-595

FileVP verification point command, 6-152
financial

constant periodic payment, 6-352
function summary, 2-7
interest payment, 6-234
interest per period, 6-413
net present value, 6-330
present value, 6-406
principal amount, 6-355
rate of return, 6-236

Fix function, 6-153
fixed-length strings, 3-6
flow control statement summary, 2-7
For...Next statement, 6-154
Format function, 6-156
formatting

date and time, 6-160
numbers, 6-157
strings, 6-163

four-digit years, 3-15
FreeFile function, 6-164
FullRecognition property, 5-7
function procedures. See functions
Function...End Function statement, 6-164
functional listing of commands, 2-1
functional testing, 1-4
functions

adding to a library file, 4-26
adding to a script, 4-23
calling, 6-21
custom, 4-20
declaration syntax, A-2
declaring in a header file, 4-29
declaring in a script, 4-23, 4-24

Index

Index-8 SQABasic Language Reference

defining, 6-164
description of, 3-2
global scope, 4-26
module-level scope, 4-23

future value, 6-166
FV function, 6-166

GGGG
GenericObject user action command, 6-168
GenericObjectVP verification point command, 6-170
get schema, 6-514
Get statement, 6-173
GetAttr function, 6-175
GetField function, 6-176
GetLastVPResult utility command, 6-177
GetObject function, 6-177
global scope

constants, 4-22, 6-59
header files, 4-31
procedures, 4-26
variables, 4-22, 6-179

Global statement, 6-179
global.sbh, 4-30
global.sbl, 4-27
GoTo statement, 6-182
GroupBox statement, 6-183
GroupBox user action command, 6-184
GroupBoxVP verification point command, 6-186

HHHH
halt execution, 6-534
header files, 4-26, 4-29

declarations in, 4-31
referencing, 4-31
scope, 4-31

Header user action command, 6-188
HeaderVP verification point command, 6-190
help desk, xxii
Hex function, 6-192

hierarchical objects in recognition methods, 4-10,
4-18

HotKeyControl user action command, 6-193
HotKeyControlVP verification point command,

6-194
hotline support, xxii
Hour function, 6-195
HTML user action command, 6-196
HTMLActiveX user action command, 6-200
HTMLActiveX VP verification point command,

6-201
HTMLDocument user action command, 6-203
HTMLDocumentVP verification point command,

6-204
HTMLHiddenVP verification point command, 6-206
HTMLImage user action command, 6-208
HTMLImageVP verification point command, 6-209
HTMLLink user action command, 6-211
HTMLLinkVP verification point command, 6-212
HTMLTable user action command, 6-214
HTMLTableVP verification point command, 6-215
HTMLVP verification point command, 6-198
HTTP requests, 1-4
hWnd property, 5-7

IIII
If...Then...Else, 6-217
Imp logical operator, 3-14
implicit data type declaration, 3-5
inactive window, 6-586
Include files, 4-26, 4-31

adding to the template, 4-33
including files, 4-29, 6-218
initializing scripts, 4-2
Input # statement, 6-221
input boxes, 6-222
Input function, 6-220
InputB, 6-220
InputBox function, 6-222
InputChars user action command, 6-223
InputKeys user action command, 6-224

Index

Index Index-9

Installation Analyzer utility, 5-21
instance of a dialog box, 3-9
InStr function, 6-229
InStrB, 6-229
Int function, 6-230
Integer data type, 3-6
IPAddress user action command, 6-232
IPAddressVP verification point command, 6-233
IPmt function, 6-234
IRR function, 6-236
Is Operator, 6-237
IsDate function, 6-238
IsEmpty function, 6-238
IsMissing function, 6-239
IsNull function, 6-240
IsNumeric function, 6-241

JJJJ
Java applications, starting, 6-524
Java commands and recognition methods, 4-13
Java objects and Object Scripting commands, 4-14
JavaCanvas user action command, 6-242
JavaCanvasVP verification point command, 6-244
JavaListView user action command, 6-246
JavaListViewVP verification point command, 6-248
JavaMenu user action command, 6-250
JavaMenuVP verification point command, 6-251
JavaObject user action command, 6-253
JavaObjectVP verification point command, 6-255
JavaPanel user action command, 6-256
JavaPanelVP verification point command, 6-258
JavaPopupMenu user action command, 6-260
JavaPopupMenuVP verification point command,

6-261
JavaSplitPane user action command, 6-263
JavaSplitPaneVP verification point command, 6-264
JavaSplitter user action command, 6-266
JavaSplitterVP verification point command, 6-268
JavaTable user action command, 6-270
JavaTableHeader user action command, 6-273

JavaTableHeaderVP verification point command, 6-275
JavaTableVP verification point command, 6-272
JavaTree user action command, 6-277
JavaTreeVP verification point command, 6-279
JavaWindow user action command, 6-280
JavaWindowVP verification point command, 6-282

KKKK
keyboard input, 6-224
keystrokes

InputChars, 6-223
InputKeys, 6-224

Kill statement, 6-284

LLLL
Label user action command, 6-285
labels in SQABasic code, A-3
LabelVP verification point command, 6-286
language elements, 3-1
LBound function, 6-289
LCase function, 6-290
Left function, 6-290
LeftB, 6-291
Len function, 6-292
LenB, 6-292
Let statement, 6-292
library file location

.dll, 4-29
SQABasic library (.rec), 4-26
SQABasic library (.sbx), 4-26

library files
compiling, 4-27
creating, 4-27
declaring (.dll), 4-28
declaring (SQABasic .rec), 4-28
declaring (SQABasic .sbx), 4-28
including, 4-29, 6-218

library names and Dynamic Link Libraries, 6-89
Like Operator, 6-293

Index

Index-10 SQABasic Language Reference

line continuation syntax, A-3
Line Input statement, 6-294
line numbers not supported, A-3
link files, 6-501
links, testing for problems with, 6-579
list box

elements in array, 6-111
fill with strings, 6-113

ListBox Statement, 6-296
ListBox user action command, 6-297
ListBoxVP verification point command, 6-300
ListView user action command, 6-303
ListViewVP verification point command, 6-305
Loc function, 6-307
local scope

constants, 4-21
variables, 4-21

Lock statement, 6-308
Lof function, 6-310
Log function, 6-311
log messages

results of user-defined test, 6-597
SQALogMessage, 5-28
SQAScriptCmdFailure, 5-17, 5-29
writing, 5-28, 6-492

log path, finding, 6-474
logged baseline data files

copying from a current baseline data file, 5-16
ownership, 5-20
vs current baseline data files, 5-14

logical operators, 3-13
LogViewer

displaying captured data, 5-12
displaying messages in, 5-28
SQALogMessage, 6-492
SQAScriptCmdFailure, 6-494
SQAVpLog, 6-506

Long data type, 3-6
loops

Do/While, 6-126
exiting, 6-146
For/Next, 6-154

lower bound, 6-289
default, 6-340

lower case, 6-290
low-level files, 6-351
Lset statement, 6-312
LTrim function, 6-313

MMMM
managing custom verification points, 5-12
MDI windows, 4-19
menu items

MenuIDSelect, 6-314
MenuSelect, 6-314
PopupMenuIDSelect, 6-353
PopupMenuSelect, 6-353
SysMenuIDSelect, 6-539
SysMenuSelect, 6-540

MenuIDSelect user action command, 6-314
MenuSelect user action command, 6-314
message boxes, 6-322, 6-325
messages

console window, 5-27
LogViewer, 5-28
overview, 5-26
results of user-defined tests, 6-597
SQAConsoleWrite, 6-456
SQALogMessage, 6-492
SQAScriptCmdFailure, 6-494
SQAVpLog, 6-506

metacommands
'$CStrings, 6-64
'$Include, 4-29, 6-218
'$NoCStrings, 6-328

methods, 5-32
Clipboard, 6-37
execute an object’s methods, 6-490

Mid function, 6-316
Mid statement, 6-317
MidB, 6-316, 6-318
Minute function, 6-318

Index

Index Index-11

missing arguments, 6-239
missing links, testing for, 6-579
MkDir statement, 6-319
ModuleFileName property, 5-7
module-level scope

constants, 4-22
procedures, 4-23
variables, 4-22

modules, 4-22
ModuleVP verification point command, 6-320
Month function, 6-322
mouse actions, E-1
moving files, 6-326
MsgBox function, 6-322
MsgBox statement, 6-325

NNNN
name format in SQABasic, A-3
Name property, 5-8
Name statement, 6-326
named arguments, 3-4, 6-22
nested scripts, 6-23
net present value, 6-330
new directory, 6-319
New Operator, 6-327
Not logical operator, 3-13
Nothing function, 6-329
Now function, 6-330
NPV function, 6-330
null

expression, 6-240
variables, 6-331
variant, 3-8

Null function, 6-331
numbers

absolute value, 6-2
as string, 6-535
formatted, 6-157
global, 6-180
hexadecimal, 6-192
integer, 6-230

integer part, 6-153
logarithm, 6-311
octal, 6-334
random, 6-412, 6-430
sign of, 6-448
square root, 6-521
value in string, 6-577

numeric
operators, 3-12
variables, 6-98

numeric function summary, 2-8

OOOO
Object Class, 6-332
object command summary, 2-9
object context. See context
Object data type, 3-6
object handling, 5-32
Object Properties verification point, 5-6
Object Scripting commands, 1-3, 5-1

Java objects, 4-14
object context, 5-5
object types and, 5-2
specifying an object, 5-2
specifying an object property, 5-6
status codes for, 5-11
status codes for (list), C-1
summary, 2-8
types of properties to access, 5-6, 5-7

object variables, 6-98
objects

child, 6-471
class type, 6-572
compare, 6-237
current focus, 5-5
currently active window, 4-16, 5-5
data type, 3-6
getting a property value for, 6-478, 6-485
getting an array of a property’s values, 6-480, 6-482
hierarchical order, in context notation, 4-18
retrieving property names for, 6-487

Index

Index-12 SQABasic Language Reference

searching for, 6-469
setting property values for, 6-498
specifying, 5-2
SQABasic names for, 5-3
types of, 5-3
waiting for appearance of, 6-508

ObjectType property, 5-8
OCR region

coordinates, 6-474
text, 6-476

Oct function, 6-334
ODBC

close source, 6-511
errors, 6-512
function summary, 2-9
open source, 6-516

OKButton statement, 6-335
OLE2, 5-32

assign variable, 6-443
associated object, 6-177
automation object, 6-61
new object, 6-327
object class, 6-332

On Error statement, 6-337
On...GoTo statement, 6-336
Open statement, 6-338
opening files, 6-501
operating system, determining the type, 6-488
operators, 3-12

comparison, 3-13
logical, 3-13
numeric, 3-12
string concatenation, 3-12

Option Base statement, 6-340
Option Compare statement, 6-342
Option Explicit statement, 6-100, 6-343
OptionButton statement, 6-343
Or logical operator, 3-13
order of recognition method values, 4-10

changing, 4-12

ordinal, 6-89
output width, 6-584
ownership of custom verification point files, 5-20

PPPP
Pager user action command, 6-346
PagerVP verification point command, 6-347
panel objects on PeopleTools panels, 6-381, 6-385
parameters for user actions, 4-9, A-3
parameters$ argument, 4-9, A-3
parent objects in recognition methods, 4-10, 4-18

Java commands, 4-13
ParentRecognition property, 5-8
passing arguments, 3-3, 6-22
PasswordBox function, 6-348
pattern matching, 6-293
pause script execution, 6-92
PeopleTools panel object names, 6-381
performance testing, 1-4
Picture statement, 6-350
pictures in dialog controls, 6-114
pipe separator (|), 6-364
playback of a verification point, 4-7

custom verification points, 5-16
PlayJrnl utility command, 6-351
Pmt function, 6-352
pointer separator (->)

PeopleSoft derived fields, 6-381, 6-385
PSTree, 6-392
PSTreeVP, 6-398
TreeView, 6-565
TreeViewVP, 6-569

popup menus, 6-353
PopupMenuIDSelect user action command, 6-353
PopupMenuSelect user action command, 6-353
PPmt function, 6-355
Print statement, 6-356

Index

Index Index-13

procedures
adding to a library file, 4-26
adding to a script, 4-23
declaring in a header file, 4-29
declaring in a script, 4-23
global scope, 4-26
module-level scope, 4-23

ProgressBar user action command, 6-358
ProgressBarVP verification point command, 6-359
project header files, 4-29
projects, location, 6-473
properties, 5-32

additional, with Object Scripting commands, 5-7
retrieving a value, 6-478, 6-485
retrieving an array of values, 6-480, 6-482
retrieving the names of, 6-487
retrieving the number of elements in an array,

6-483
setting a value for, 6-498
specifying, 5-6
types you can access, 5-6
waiting for a particular value, 6-509

PSGrid user action command, 6-362
PSGridHeader user action command, 6-365
PSGridHeaderVP verification point command, 6-366
PSGridVP verification point command, 6-368
PSMenu user action command, 6-371
PSMenuVP verification point command, 6-372
PSNavigator user action command, 6-373
PSNavigatorVP verification point command, 6-375
PSPanel user action command, 6-378
PSPanelVP verification point command, 6-382
PSSpin user action command, 6-386
PSSpinVP verification point command, 6-388
PSTree user action command, 6-390
PSTreeHeader user action command, 6-392
PSTreeHeaderVP verification point command, 6-394
PSTreeVP verification point command, 6-396
PushButton statement, 6-399
PushButton user action command, 6-400

PushButtonVP verification point command, 6-402
Put statement, 6-405
PV function, 6-406

QQQQ
qualifiers in recognition methods, 4-10

RRRR
radians, 6-8
RadioButton user action command, 6-407
RadioButtonVP verification point command, 6-409
Randomize statement, 6-412
Rate function, 6-413
Rational ActiveX Test Control, 6-523
Rational technical publications, contacting, xxii
Rational technical support, xxii
Rebar user action command, 6-414
RebarVP verification point command, 6-416
rec files, 1-3, 4-2

as library files, 4-26
recMethod$ argument, 4-8, 5-2, A-4

context notation and, 4-18
getting help defining, 5-9
Java commands and, 4-13
multiple values in, 4-10

recognition method. See recMethod$ argument
recognition methods

changing the default order, 4-12
context notation and, 4-18
getting help defining, 5-9
Java commands and, 4-13
multiple values in, 4-10
order of values, 4-10
overview, 4-8
specifying when the object name is unknown, 4-16,

5-5
Recognition property, 5-8

Index

Index-14 SQABasic Language Reference

Record data type. See User-Defined data type
record names and PeopleTools object names, 6-381,

6-385
record of a dialog box, 3-9, 6-10
recorded baseline, 1-3, 4-7

custom verification points, 5-12
recording a verification point, 4-7

custom verification points, 5-16
rectangle of an OCR region, 6-474
ReDim statement, 6-417
referencing library files, 4-29, 6-218
RegionVP verification point command, 6-419
Registry changes, testing for, 5-21
Rem statement, 6-421
renaming files, 6-326
repeated character strings, 6-537
repetitive action, 6-582
repository, location, 6-473
repository-wide header files, 4-29
request data, 6-517
Reset statement, 6-422
ResetTime utility command, 6-423
restoring windows during playback, 4-3
Resume statement, 6-423
retrieve data, 6-518

to file, 6-520
return ASCII value, 6-7
RichEdit user action command, 6-424
RichEditVP verification point command, 6-426
Right function, 6-428
RightB, 6-428
RmDir statement, 6-429
Rnd function, 6-430
Rset statement, 6-431
RTrim function, 6-432
Run Now check box, 6-23
runtime

errors, 3-16
file location, 6-473
files, 1-3

SSSS
saving

header files, 4-30
library files, 4-27
scripts, 4-2

sbh files, 1-3, 4-29
sbl files, 1-3, 4-26
sbx files, 1-3, 4-2
scope

global, 4-22
header files, 4-29, 4-31
procedures, 4-23, 4-26
variables and constants, 3-14, 4-21

screen I/O command summary, 2-10
ScreenRect property, 5-8
scripts

automatic generation of, 1-1
body of, 4-4
calling from another script, 6-23
compiling, 4-2
customizing, 4-20
declarations in, 4-21, 4-23
ending, 4-4
example, 4-4
initializing, 4-2
location, 6-473
nested, 6-23
overview, 4-1
pausing execution of, 6-92
reasons for editing, 1-2
saving, 4-2
sections of, 4-2
syntax summary, A-1
template file, 4-33
window restoration section, 4-3

ScrollBar user action command, 6-433
ScrollBarVP verification point command, 6-435
Second function, 6-437
Seek function, 6-438

Index

Index Index-15

Seek statement, 6-439
Select Case statement, 6-441
select menu items

MenuIDSelect, 6-314
MenuSelect, 6-314
PopupMenuIDSelect, 6-353
PopupMenuSelect, 6-353
SysMenuIDSelect, 6-539
SysMenuSelect, 6-540

SendKeys statement, 6-443
separator character, 6-500
Set statement, 6-443
set system date, 6-75
set system time, 6-551
SetAttr statement, 6-444
SetField function, 6-446
SetThinkAvg timing and coordination command,

6-447
SetTime utility command, 6-448
Sgn function, 6-448
Shell function, 6-449
shortcut files, 6-501
signed data types, 3-7
Sin function, 6-450
sine, 6-450
Single data type, 3-6
socket-level requests, 1-4
source files, 1-3

library, 4-26
scripts, 4-2

Space function, 6-451
spaces

printing, 6-452
string of, 6-451

Spc function, 6-452
special characters, 6-64
SpinControl user action command, 6-453
SpinControlVP verification point command, 6-454
SQABasic

.rec files, 4-2, 4-26

.sbh files, 4-29

.sbl files, 4-26

.sbx files, 4-2, 4-27

.tpl files, 4-33
access to external objects, 5-31
additions to Basic commands, 1-1, 1-3, 6-1
commands, 3-2
context notation, 4-18
custom code, 4-23, 4-26
custom functions, 4-20
custom sub procedures, 4-20
dialog boxes, 6-9
error handling, 3-16
files, 1-3
header files, 4-29
language elements, 3-1
library files, 4-26
name format, A-3
object handling, 5-32
syntax summary, A-1
template file, 4-33
unique commands, 1-4

SQABasic command categories, 2-10
datapool, 2-2
Object Scripting, 2-8
overview, 1-3
timing and coordination, 2-12
user action, 2-12
utility, 2-14
verification point, 2-17

SQAConsoleClear utility command, 6-456
SQAConsoleWrite utility command, 6-456
SQADatapoolClose datapool command, 6-457
SQADatapoolFetch datapool command, 6-458
SQADatapoolOpen datapool command, 6-459
SQADatapoolRewind datapool command, 6-462
SQADatapoolValue datapool command, 6-463
SQAEnvCreateBaseline utility command, 6-465
SQAEnvCreateCurrent utility command, 6-466
SQAEnvCreateDelta utility command, 6-467
SQAFindObject Object Scripting command, 6-469
SQAGetCaptionTerminatorChar utility command,

6-470
SQAGetChildren Object Scripting command, 6-471

Index

Index-16 SQABasic Language Reference

SQAGetDir utility command, 6-473
SQAGetLogDir utility command, 6-474
SQAGetOcrRegionRect utility command, 6-474
SQAGetOcrRegionText utility command, 6-476
SQAGetProperty Object Scripting command, 6-478
SQAGetPropertyArray Object Scripting command,

6-480
SQAGetPropertyArrayAsString Object Scripting

command, 6-482
SQAGetPropertyArraySize, 6-483
SQAGetPropertyAsString Object Scripting command,

6-485
SQAGetPropertyNames Object Scripting command,

6-487
SQAGetSystemLong utility command, 6-488
SQAInvokeMethod Object Scripting command,

6-490
SQALogMessage utility command, 6-492
SQAQueryKey utility command, 6-493
SQARectangle User-Defined data type, 6-475
SQAResumeLogOutput Utility Command, 6-493
SQAScriptCmdFailure utility command, 6-494
SQASetAssignmentChar utility command, 6-494
SQASetCaptionTerminatorChar utility command,

6-495
SQASetDefaultBrowser utility command, 6-496
SQASetProperty Object Scripting command, 6-498
SQASetSeparatorChar utility command, 6-500
SQAShellExecute utility command, 6-501
SQASuspendLogOutput utility command, 6-502
SQASyncPointWait timing and coordination

command, 6-502
SQAVpGetActualFileName utility command, 6-503
SQAVpGetBaselineFileName utility command, 6-504
SQAVpGetCurrentBaselineFileName utility

command, 6-505
SQAVpLog utility command, 6-506
SQAWaitForObject Object Scripting command,

6-508
SQAWaitForPropertyValue, 6-509
SQL requests, 1-4
SQLClose function, 6-511

SQLError function, 6-512
SQLExecQuery function, 6-513
SQLGetSchema function, 6-514
SQLOpen function, 6-516
SQLRequest function, 6-517
SQLRetrieve function, 6-518
SQLRetrieveToFile function, 6-520
Sqr function, 6-521
square root, 6-521
start application

Shell command, 6-449
SQAShellExecute command, 6-501
StartApplication command, 6-522
StartJavaApplication command, 6-524

StartApplication utility command, 6-522
StartBrowser utility command, 6-523
starting a browser, 6-523
starting a timer, 6-527
StartJavaApplication utility command, 6-524
StartSaveWindowPositions utility command, 6-526
StartTimer utility command, 6-527
statements, 3-2
Static statement, 6-527
StaticComboBox statement, 6-529
status codes for Object Scripting commands, 5-11

list, C-1
StatusBar user action command, 6-530
StatusBarVP verification point command, 6-532
Stop statement, 6-534
stopping a timer, 6-534
StopTimer utility command, 6-534
Str function, 6-535
StrComp function, 6-535
String function, 6-537
string variable syntax, A-4
strings

comparing, 6-342
concatenation operator, 3-12
converting to lower case, 6-290
converting to upper case, 6-575
copying, 6-312
data type, 3-6

Index

Index Index-17

finding substrings in, 6-316, 6-317, 6-428
fixed-length, 3-6, 6-99
global, 6-181
pattern matching, 6-293
right align, 6-431
summary of conversion functions, 2-10
summary of manipulation functions, 2-11
trimming spaces, 6-313, 6-432, 6-570
types of, 6-99
variable length, 3-6, 6-99

sub procedures
adding to a library file, 4-26
adding to a script, 4-23
calling, 6-21
custom, 4-20
declaration syntax, A-4
declaring in a header file, 4-29
declaring in a script, 4-23
defining, 6-538
description of, 3-2
global scope, 4-26
module-level scope, 4-23

sub programs. See sub procedures
Sub...End Sub statement, 6-538
subscripts of an array, 3-10, 6-98, 6-180

default lower bound, 6-340
lower bound, 6-289
omitted with dynamic array declarations, 3-11
upper bound, 6-573

support, technical, xxii
suspend log output, 6-502
symbolic constants, 6-59
syntax of user action and verification point

commands, 4-8
syntax summary, A-1
SysMenuIDSelect user action command, 6-539
SysMenuSelect user action command, 6-540
system environment, 6-137
system events, 6-127

retrieve value, 6-488

System menu select
by ID, 6-539
by text, 6-540

TTTT
Tab function, 6-541
TabControl user action command, 6-542
TabControlVP verification point command, 6-544
Tan function, 6-547
tangent, 6-547
technical support, xxii
template file, 4-33
test context, 4-16, 6-585, 6-587
Text statement, 6-548
text to/from Clipboard, 6-37
TextBox statement, 6-549
think time, 6-447
time

as value, 6-554
as variant, 6-553
current, 6-550
format, 6-160
hour of day, 6-195
minute component, 6-318
now, 6-330
reset delay, 6-423
seconds component, 6-437
set average think, 6-447
set delay, 6-448
set system, 6-551

Time function, 6-550
Time statement, 6-551
Timer function, 6-552
timers

starting, 6-527
stopping, 6-534
system, 6-552

TimeSerial function, 6-553
TimeValue function, 6-554

Index

Index-18 SQABasic Language Reference

timing and coordination commands, 1-3
summary, 2-12

title bar wildcard characters, 4-17, 4-19
Toolbar user action command, 6-555
ToolbarVP verification point command, 6-556
Trackbar user action command, 6-559
TrackbarVP verification point command, 6-561
trappable errors, B-1
trapping errors, 3-16

line number, 6-141
message text, 6-144
runtime code, 6-142, 6-143
user-defined, 6-145

TreeView user action command, 6-563
TreeViewVP verification point command, 6-567
trigonometric function summary, 2-8
Trim function, 6-570
TUXEDO, 1-4
two-digit years, 3-15
Type statement, 6-570
type-declaration characters, 3-5
Typeof function, 6-572
types of

objects, 5-3
properties, 5-6

TypingDelays timing and coordination command,
6-572

UUUU
UBound function, 6-573
UCase function, 6-575
unique SQABasic commands, 1-4
Unlock statement, 6-575
upper bound, 6-573
upper case, 6-575
user action commands, 1-3

arguments in, 4-8
overview, 4-6
summary, 2-12
syntax, 4-8

user actions, 4-4, 4-8
context for, 4-15

User-Defined data type, 3-6, 3-8, 6-99
declaring, 3-8, 6-99
defining, 6-570
global, 6-180
reassigning to another variable, 6-312
referencing, A-4

user-defined errors, 3-17
utility commands, 1-3

summary, 2-14

VVVV
Val function, 6-577
value

absolute, 6-2
ASCII, 6-7
constant, 6-59
date, 6-74, 6-76, 6-79

variable-length strings, 3-6
variables

arrays, 6-98
assignment, 6-292
declare type, 6-97, 6-343
define default type, 6-91
empty, 6-99
global scope, 4-22, 6-179
header files, 4-31
length of, 6-292
local scope, 4-21
module-level scope, 4-22
name format, A-3
Null, 6-331
numeric, 6-98
object, 6-98
scope of, 3-14, 4-21
static, 6-527
string, 6-99
user-defined, 6-99, 6-570
variant, 6-99

Index

Index Index-19

Variant data type, 3-6
declaring, 6-99
empty, 6-238
explicit and implicit declaration, 3-7
global, 6-181
identifying the type of data stored, 3-8, 6-578
initialized, 6-238

Variants command summary, 2-17
VarType function, 6-578
verification point data files

retrieving actual file location, 6-503
retrieving baseline file location, 6-504
retrieving current baseline file location, 6-505

verification points
baseline, 4-7
command summary, 2-17
command syntax, 4-8
commands, 1-3
comparing baseline and actual data, 4-7
custom. See custom verification points
in library files, 4-26
in scripts, 4-4
location, 6-473
overview, 4-7
ownership, 5-20
pass or fail, 1-3

version of Robot, determining, 6-488

WWWW
Web

default playback browser, 6-496
starting a browser, 6-523
testing a site for defects, 6-579

WebSiteVP verification point command, 6-579
Weekday function, 6-581
While...Wend, 6-582

Width statement, 6-584
wildcards for window captions, 4-17, 4-19
window

activate, 6-6
caption terminator character, 6-495
context, 4-4
making active or keeping inactive, 6-586
property for window handle, 5-7
save position, 6-136, 6-526
wildcards in captions, 4-17, 4-19

Window user action command, 6-585
windows

child window, 4-19
context for actions, 4-15
definition of, 4-15
MDI, 4-19
restoring, 4-3

Windows operating system, determining the type,
6-488

WindowVP verification point command, 6-591
With statement, 6-594
Write statement, 6-595
writing

console window, 5-28
LogViewer, 5-28
to a file, 6-405

XXXX
Xor logical operator, 3-14

YYYY
year 2000 considerations, 3-15
year formats, 3-15
Year function, 6-597

Index

Index-20 SQABasic Language Reference

	SQABasic Language Reference
	Copyright
	Contents
	Preface
	Audience
	Other Resources
	Accessing SQABasic Help
	Using the Examples in Help
	Notes About the Examples

	Typographical Conventions
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Part I Introducing SQABasic
	Chapter 1 What Is SQABasic?
	Automatic Script Generation
	Working with Scripts
	Your Work Environment

	Source and Runtime Files
	SQABasic Additions to the Basic Language
	Other Commands Not Found in Basic

	VU Scripting Language

	Chapter 2 Functional List
	Arrays
	Compiler Directives
	Datapool Commands (SQABasic Additions)
	Dates & Times
	Declarations
	Dialog Box Definition
	Dialog Box Services
	Disk and Directory Control
	Dynamic Data Exchange (DDE)
	Environmental Control
	Error Handling
	File Control
	File Input/Output
	Financial Functions
	Flow Control
	Numeric and Trigonometric Functions
	Object Scripting Commands (SQABasic Additions)
	Objects
	ODBC
	Screen Input/Output
	SQABasic Commands
	String Conversions
	String Manipulation
	Timing and Coordination Commands (SQABasic Additions)
	User Action Commands (SQABasic Additions)
	Utility Commands (SQABasic Additions)
	Variants
	Verification Point Commands (SQABasic Additions)

	Part II Using SQABasic
	Chapter 3 SQABasic Fundamentals
	Commands
	Arguments
	Passing Arguments By Value or By Reference
	Syntax of By-Value and By-Reference Arguments
	Syntax for Passing Arguments to External Procedures

	Passing Named Arguments
	Syntax of Named Arguments

	Data Types
	Descriptions of SQABasic Data Types
	Data Type Notes

	Variant Data Types
	Valid Variant Data Types
	Identifying the Type of Data Stored in a Variant

	User-Defined Data Types
	Declaring a Variable as a User-Defined Data Type
	Dialog Box Records

	Data Type Conversions

	Arrays
	Declaring an Array
	Referencing an Array

	Dynamic Arrays
	Dimensions of a Dynamic Array
	Dynamic Array Example

	Expressions and Operators
	Numeric Operators
	String Concatenation Operators
	Comparison Operators
	Logical Operators

	Scope of Variables and Constants
	Year 2000 Compliance
	Suggestions for Avoiding Year 2000 Problems

	Trappable Errors
	Responding to Errors
	User-Defined Errors
	Error-Handling Examples

	Chapter 4 SQABasic Scripts
	What is a Script?
	Script Source Files
	Script Executable Files
	Script Structure
	Script Initialization
	Window Restoration
	Script Body
	Script Close

	Sample Script

	User Action and Verification Point Commands
	User Action Commands
	Verification Point Commands
	Syntax of User Action and Verification Point Commands
	Components of a Recognition Method String
	Recognition Method Order
	Changing the Default Order

	Recognition Methods in Java Commands
	Using Object Scripting Commands with Java Objects
	Specifying Parent Objects in recMethod

	Object Context
	Establishing Context through a Window Command
	Actions that Set Context
	Assigning Context to the Currently Active Window
	Using Wildcards in Window Captions
	Using Wildcard Characters as Ordinary Characters

	Establishing Context through Context Notation
	Using Wildcards in Window Captions
	Using Wildcard Characters as Ordinary Characters

	Default Context

	Customizing Scripts
	Script Editing Basics
	Declaring Variables and Constants
	Declaring Local Variables and Constants
	Declaring Module-Level Variables and Constants
	Declaring Global Variables and Constants

	Adding Custom Procedures to a Script
	Declaring a Procedure Residing in a Script
	Declaring a Sub Procedure
	Declaring a Function

	Using a Procedure Definition as a Declaration
	Example of a Custom Procedure

	Adding Custom Procedures to a Library File
	Working With SQABasic Library Files
	Creating SQABasic Library Files
	Editing SQABasic Library Files
	Compiling SQABasic Library Files
	Declaring a Procedure Residing in an SQABasic Library File
	Where to Declare an SQABasic Library File

	Working With DLL Files
	Declaring a Procedure Residing in a DLL File
	Where to Declare a DLL File

	Using SQABasic Header Files
	Creating and Editing a Repository-Wide Header File
	Creating and Editing a Project Header File
	Saving SQABasic Header Files
	Scope of Declarations in SQABasic Header Files
	Declaring Global Variables and Constants Inside Header Files
	Declaring Global Procedures inside Header Files
	Referencing an SQABasic Header File

	Sample Library and Header Files
	Using the Template File

	Chapter 5 Enhancements to Recorded Scripts
	Object Scripting
	Specifying an Object
	Object Type
	SQABasic Object Type Names

	Object Context
	Other Ways to Specify an Object

	Specifying the Object Property
	Properties Assigned in the Development Environment
	Additional Properties

	Array of Property Values
	Specifying Individual Elements in an Array
	Retrieving an Entire Array
	Retrieving the Number of Elements in an Array

	Getting Help Defining Recognition Methods
	Letting Robot Define Recognition Method Values
	Finding Recognition Method Values Programmatically
	Examples

	Object Scripting Status Codes

	Managing Custom Verification Points
	Summary of Verification Point Management Commands
	Current Baseline and Logged Baseline
	Actual Data Files

	Using the Verification Point Management Commands
	Example

	Ownership of Custom Verification Point Files

	Comparing Environment States
	Why Compare Environment States?
	What Environment State Changes Are Detected?
	Using the Environment State Comparison Commands
	When To Use the Environment State Comparison Commands

	Specifying the Areas of the Environment To Test
	Example of an Environment State Comparison

	Displaying Messages in Robot
	Displaying Messages in the Console Window
	Displaying the Console Window
	Writing to the Console Window
	Removing Messages from the Console Window

	Displaying Messages in the LogViewer
	Using SQALogMessage
	Using SQAScriptCmdFailure

	Using Datapools
	
	Summary of Datapool Commands

	Accessing External Applications
	Dynamic Data Exchange (DDE)
	Opening a DDE Channel
	Communicating with the Application
	Closing the Channel

	Objects
	Step 1: Create an Object Variable to Access the Application
	Step 2: Use Methods and Properties to Act on Objects

	Part III Command Reference
	Chapter 6 Command Reference
	Abs
	AnimateControl
	AnimateControlVP
	AppActivate
	Asc
	Assert
	Atn
	Beep
	Begin Dialog...End Dialog
	Browser
	Button
	ButtonGroup
	Calendar
	CalendarVP
	Call
	CallScript
	CancelButton
	Caption
	CCur
	CDbl
	ChDir
	ChDrive
	CheckBox (Statement)
	CheckBox (User Action Command)
	CheckBoxVP
	Chr
	CInt
	Class List
	Clipboard
	ClipboardVP
	CLng
	Close
	ComboBox (Statement)
	ComboBox (User Action Command)
	ComboBoxVP
	ComboEditBox
	ComboEditBoxVP
	ComboListBox
	ComboListBoxVP
	Command
	Const
	Cos
	CreateObject
	CSng
	CStr
	'$CStrings
	CurDir
	CVar
	CVDate
	DataWindow
	DataWindowVP
	Date (Function)
	Date (Statement)
	DateSerial
	DateTime
	DateTimeVP
	DateValue
	Day
	DDEAppReturnCode
	DDEExecute
	DDEInitiate
	DDEPoke
	DDERequest
	DDETerminate
	Declare
	Deftype
	DelayFor
	Desktop
	Dialog (Function)
	Dialog (Statement)
	Dim
	Dir
	DlgControlID
	DlgEnable (Function)
	DlgEnable (Statement)
	DlgEnd
	DlgFocus (Function)
	DlgFocus (Statement)
	DlgListBoxArray (Function)
	DlgListBoxArray (Statement)
	DlgSetPicture
	DlgText (Function)
	DlgText (Statement)
	DlgValue (Function)
	DlgValue (Statement)
	DlgVisible (Function)
	DlgVisible (Statement)
	Do...Loop
	DoEvents
	DropComboBox
	DropListBox
	EditBox
	EditBoxVP
	EndPlay
	EndSaveWindowPositions
	Environ
	Eof
	Erase
	Erl
	Err (Function)
	Err (Statement)
	Error (Function)
	Error (Statement)
	Exit
	Exp
	FileAttr
	FileCopy
	FileDateTime
	FileLen
	FileVP
	Fix
	For...Next
	Format
	FreeFile
	Function...End Function
	FV
	GenericObject
	GenericObjectVP
	Get
	GetAttr
	GetField
	GetLastVPResult
	GetObject
	Global
	GoTo
	GroupBox (Statement)
	GroupBox (User Action Command)
	GroupBoxVP
	Header
	HeaderVP
	Hex
	HotKeyControl
	HotKeyControlVP
	Hour
	HTML
	HTMLVP
	HTMLActiveX
	HTMLActiveXVP
	HTMLDocument
	HTMLDocumentVP
	HTMLHidden
	HTMLHiddenVP
	HTMLImage
	HTMLImageVP
	HTMLLink
	HTMLLinkVP
	HTMLTable
	HTMLTableVP
	If...Then...Else
	'$Include
	InitPlay
	Input (Function)
	Input (Statement)
	InputBox
	InputChars
	InputKeys
	InStr
	Int
	IPAddress
	IPAddressVP
	IPmt
	IRR
	Is
	IsDate
	IsEmpty
	IsMissing
	IsNull
	IsNumeric
	JavaCanvas
	JavaCanvasVP
	JavaListView
	JavaListViewVP
	JavaMenu
	JavaMenuVP
	JavaObject
	JavaObjectVP
	JavaPanel
	JavaPanelVP
	JavaPopupMenu
	JavaPopupMenuVP
	JavaSplitPane
	JavaSplitPaneVP
	JavaSplitter
	JavaSplitterVP
	JavaTable
	JavaTableVP
	JavaTableHeader
	JavaTableHeaderVP
	JavaTree
	JavaTreeVP
	JavaWindow
	JavaWindowVP
	Kill
	Label
	LabelVP
	LBound
	LCase
	Left
	Len
	Let
	Like
	Line Input
	ListBox (Statement)
	ListBox (User Action Command)
	ListBoxVP
	ListView
	ListViewVP
	Loc
	Lock
	Lof
	Log
	Lset
	LTrim
	MenuIDSelect
	MenuSelect
	Mid (Function)
	Mid (Statement)
	Minute
	MkDir
	ModuleVP
	Month
	MsgBox (Function)
	MsgBox (Statement)
	Name
	New
	'$NoCStrings
	Nothing
	Now
	NPV
	Null
	Object Class
	Oct
	OKButton
	On...GoTo
	On Error
	Open
	Option Base
	Option Compare
	Option Explicit
	OptionButton
	OptionGroup
	Pager
	PagerVP
	PasswordBox
	Picture
	PlayJrnl
	Pmt
	PopupMenuIDSelect
	PopupMenuSelect
	PPmt
	Print
	Private
	ProgressBar
	ProgressBarVP
	PSCalendar
	PSCalendarVP
	PSGrid
	PSGridHeader
	PSGridHeaderVP
	PSGridVP
	PSMenu
	PSMenuVP
	PSNavigator
	PSNavigatorVP
	PSPanel
	PSPanelVP
	PSSpin
	PSSpinVP
	PSTree
	PSTreeHeader
	PSTreeHeaderVP
	PSTreeVP
	PushButton (Statement)
	PushButton (User Action Command)
	PushButtonVP
	Put
	PV
	RadioButton
	RadioButtonVP
	Randomize
	Rate
	Rebar
	RebarVP
	ReDim
	RegionVP
	Rem
	Reset
	ResetTime
	Resume
	RichEdit
	RichEditVP
	Right
	RmDir
	Rnd
	Rset
	RTrim
	ScrollBar
	ScrollBarVP
	Second
	Seek (Function)
	Seek (Statement)
	Select Case
	SendKeys
	Set
	SetAttr
	SetField
	SetProcID
	SetThinkAvg
	SetTime
	Sgn
	Shell
	Sin
	Space
	Spc
	SpinControl
	SpinControlVP
	SQAConsoleClear
	SQAConsoleWrite
	SQADatapoolClose
	SQADatapoolFetch
	SQADatapoolOpen
	SQADatapoolRewind
	SQADatapoolValue
	SQAEnvCreateBaseline
	SQAEnvCreateCurrent
	SQAEnvCreateDelta
	SQAFindObject
	SQAGetCaptionTerminatorChar
	SQAGetChildren
	SQAGetDir
	SQAGetLogDir
	SQAGetOcrRegionRect
	SQAGetOcrRegionText
	SQAGetProperty
	SQAGetPropertyArray
	SQAGetPropertyArrayAsString
	SQAGetPropertyArraySize
	SQAGetPropertyAsString
	SQAGetPropertyNames
	SQAGetSystemLong
	SQAInvokeMethod
	SQALogMessage
	SQAQueryKey
	SQAResumeLogOutput
	SQAScriptCmdFailure
	SQASetAssignmentChar
	SQASetCaptionTerminatorChar
	SQASetDefaultBrowser
	SQASetProperty
	SQASetSeparatorChar
	SQAShellExecute
	SQASuspendLogOutput
	SQASyncPointWait
	SQAVpGetActualFileName
	SQAVpGetBaselineFileName
	SQAVpGetCurrentBaselineFileName
	SQAVpLog
	SQAWaitForObject
	SQAWaitForPropertyValue
	SQLClose
	SQLError
	SQLExecQuery
	SQLGetSchema
	SQLOpen
	SQLRequest
	SQLRetrieve
	SQLRetrieveToFile
	Sqr
	StartApplication
	StartBrowser
	StartJavaApplication
	StartSaveWindowPositions
	StartTimer
	Static
	StaticComboBox
	StatusBar
	StatusBarVP
	Stop
	StopTimer
	Str
	StrComp
	String
	Sub...End Sub
	SysMenuIDSelect
	SysMenuSelect
	Tab
	TabControl
	TabControlVP
	Tan
	Text
	TextBox
	Time (Function)
	Time (Statement)
	Timer
	TimeSerial
	TimeValue
	Toolbar
	ToolbarVP
	Trackbar
	TrackbarVP
	TreeView
	TreeViewVP
	Trim
	Type
	Typeof
	TypingDelays
	UBound
	UCase
	Unlock
	UserDefinedTC
	Val
	VarType
	WebSiteVP
	Weekday
	While...Wend
	Width
	Window
	WindowVP
	With
	Write
	WriteTestCaseResult
	Year

	Appendixes
	Appendix A SQABasic Syntax Summary
	Arguments
	Array Dimensions
	Array Elements
	Array Subscripts
	Comments
	Context Notation
	Functions
	Labels
	Line Continuation Syntax
	Line Numbers
	Names
	Parameters (parameters$) Argument
	Recognition Method (recMethod$) Argument
	Strings
	Sub Procedures
	Variables of User-Defined Type

	Appendix B Trappable Error Codes
	Appendix C Object Scripting Status Codes
	Appendix D Derived Trigonometric Functions
	Appendix E Mouse Actions
	MouseClick Actions
	MouseDrag Actions

	Glossary
	Index

