
VU Language
Reference
Version 2000.02.10

ii

VU Language Reference

Copyright 1999-2000 Rational Software Corporation. All rights reserved. The contents of this
manual and the associated software are the property of Rational Software Corporation and are
copyrighted. Any reproduction in whole or in part is strictly prohibited. For additional copies of this
manual or software, please contact Rational Software Corporation.

Rational, the Rational logo, PerformanceStudio, SiteCheck, TestFactory, TestStudio,
Object-Oriented Recording, and O bject Testing are trademarks or registered trademarks of Rational
Software Corporation in the U nited States and in other countries. Java and all Java-based marks are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U nited States and other
countries. All other names are used for identification purposes only and are trademarks or registered
trademarks of their respective companies.

U .S. GO VERMEN T RIGH TS. U se, duplication, or disclosure by the U .S. Government is subject to
restrictions set forth in the applicable Rational License Agreement and in DFARS 227.7202-1(a) and
227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR
52.227-19, or FAR 52.227-14, as applicable.

Revised 04/2000

This manual prepared by:
Rational Software Corporation
20 Maguire Road
Lexington, MA 02421
U .S.A.

Phone:
800-433-5444
408-863-4000

E-mail: support@rational.com
Web: http://www.rational.com

P/N 800-023370-000

ã ã ã Contents

Preface
Resources. .xv

U sing the VU H elp .xv

Contacting Rational Technical Publications . xvi

Contacting Rational Technical Support . xvi

Part I Introducing VU

1 What Is VU ?
Automated Script Generation .1-1

Working with Scripts .1-2

Your Work Environment .1-2

Source and Runtime Files .1-3

VU Additions to the C Language .1-3

SQ ABasic Scripting Language .1-4

2 Functional List
H TTP Emulation Commands and Functions .2-1

SQ L Emulation Commands and Functions. .2-2

VU Toolkit Functions .2-3

TU XEDO Emulation Commands and Functions .2-4

IIOP Emulation Commands and Functions .2-6

Socket Emulation Commands and Functions .2-6

Emulation Commands That Can Be U sed with Any Protocol 2-7

Flow Control Commands .2-7

I/O Routines. .2-8
ii i

Contents
Conversion Routines. 2-8

String Routines . 2-9

Random N umber Routines . 2-10

Timing Routines . 2-10

Miscellaneous Routines . 2-10

Synchronization Functions . 2-11

Datapool Functions . 2-11

Environment Control Commands . 2-11

Statements . 2-12

Part II Using VU

3 VU Fundamentals
Data Types . 3-1

Integer . 3-2

String . 3-2

Bank. 3-2

Language Elements . 3-3

Identifiers . 3-3

Constants . 3-3

Operators . 3-6

Operator Precedence and Associativity . 3-14

Expressions. 3-15

Statements . 3-16

Comments . 3-18

Arrays . 3-18

Array Constants . 3-18

Declaring an Array . 3-19

Initializing an Array . 3-20

Array Subscripts . 3-22

Array Operators . 3-22

Flow Control . 3-24

Loops . 3-24

Break and Continue . 3-24
iv VU Language Reference

Contents
Scope of Variables. .3-25

Shared Variables .3-25

Persistent Variables .3-26

Examples .3-27

Initial Values of Variables. .3-28

VU Regular Expressions .3-29

General Rules .3-29

Single-Character Regular Expression Operators.3-29

O ther Regular Expression Operators. .3-30

Regular Expression Examples. .3-31

Regular Expression Errors .3-32

H ow a VU Script Represents U nprintable Data .3-34

U nprintable String and Character Constants .3-34

U nprintable H TTP or Socket Data .3-35

4 Scripts, Subroutines, and C Libraries
Program Structure .4-1

H eader Files .4-2

VU .h .4-2

VU _tux.h .4-3

sme/data.h .4-3

sme/file.h .4-3

Preprocessor Features .4-3

Token Replacement .4-3

Creating a Script That H as More than One Source File 4-4

Compiling Parts of a Script .4-4

Defining Your Own Subroutines .4-6

Defining a Function .4-6

Calling a Function. .4-7

Example .4-7

Defining a Procedure .4-8

Calling a Procedure. .4-8

Example .4-8
Contents v

Contents
Accessing External C Data and Functions . 4-9

External C Variables . 4-9

Declaring External C Subroutines. 4-10

Accessing Values Returned from C Functions . 4-10

Passing Arguments to External C Functions . 4-11

Memory Management of VU Data . 4-13

Memory Management of C Data . 4-13

Specifying External C Libraries . 4-13

Creating a Dynamic-Link Library on Windows N T 4-14

Creating a Shared Library on U N IX. 4-15

5 U ser Emulation
Emulation Commands . 5-1

H TTP Emulation Commands . 5-2

SQL Emulation Commands . 5-5

VU Toolkit Functions: File I/O . 5-6

TU XEDO Emulation Commands . 5-7

IIO P Emulation Commands . 5-11

Socket Emulation Commands. 5-17

Emulation Functions . 5-18

VU Environment Variables . 5-18

Changing Environment Variables Within a Script 5-21

Initializing Environment Variables through a Schedule 5-21

Client/Server Environment Variables . 5-21

Connect Environment Variables . 5-25

Exit Sequence Environment Variables . 5-26

H TTP-Related . 5-29

IIO P-Related. 5-30

Private Environment Variables . 5-31

Reporting Environment Variables . 5-32

Response Timeout Environment Variables . 5-40

Think Time Variables . 5-42

Read-Only Variables . 5-48

Initialization of Read-Only Variables . 5-52

Example. 5-52
vi VU Language Reference

Contents
Supplying a Script with Meaningful Data. .5-53

Datapools .5-53

Dynamic Data Correlation .5-53

Part III Command Reference

6 Command Reference
abs .6-2

AppendData .6-2

atoi .6-4

bank .6-5

break .6-6

cindex .6-7

base64_decode() .6-7

base64_encode() .6-8

close. .6-9

continue .6-9

CO OKIE_CACH E .6-11

ctos. .6-12

datapool_close. .6-13

DATAPO OL_CON FIG .6-13

datapool_fetch. .6-20

datapool_open .6-21

datapool_rewind .6-23

datapool_value .6-24

delay. .6-25

display .6-25

do-while .6-26

else-if .6-27

emulate .6-28

eval. .6-31

expire_cookie .6-31

feof. .6-32

fflush .6-33

fgetc .6-34
Contents vii

Contents
for . 6-34

fputc, fputs . 6-35

FreeAllData . 6-36

FreeData . 6-37

fseek . 6-38

ftell . 6-39

GetData. 6-40

GetData1. 6-41

getenv . 6-42

hex2mixedstring. 6-42

http_disconnect . 6-43

http_find_values. 6-44

http_header_info . 6-46

http_header_recv . 6-47

http_nrecv . 6-50

http_recv. 6-51

http_request . 6-53

http_url_encode . 6-54

if-else . 6-56

iiop_bind . 6-57

iiop_invoke . 6-58

iiop_release . 6-60

IndexedField. 6-61

IndexedSubField . 6-63

itoa . 6-65

lcindex . 6-65

log_msg. 6-66

lsindex. 6-67

match . 6-68

mixed2hexstring. 6-69

mkprintable . 6-70

negexp. 6-71

N extField . 6-71

N extSubField . 6-74

open . 6-75
viii VU Language Reference

Contents
pop. .6-77

print .6-78

printf, fprintf, sprintf .6-79

push .6-80

putenv .6-82

rand .6-82

ReadLine .6-83

reset .6-85

restore .6-86

save .6-87

SaveData .6-88

scanf, fscanf, sscanf .6-89

script_exit .6-91

set. .6-92

set_cookie .6-92

SH ARED_READ .6-93

show .6-95

sindex .6-96

sock_connect. .6-97

sock_create .6-98

sock_disconnect .6-99

sock_fdopen .6-99

sock_isinput .6-100

sock_nrecv. .6-101

sock_open .6-102

sock_recv. .6-103

sock_send .6-104

sqlalloc_cursor .6-105

sqlalloc_statement. .6-106

sqlclose_cursor .6-107

sqlcommit .6-108

sqlconnect .6-109

sqlcursor_rowtag .6-111

sqlcursor_setoption .6-112

sqldeclare_cursor .6-113
Contents ix

Contents
sqldelete_cursor . 6-114

sqldisconnect . 6-115

sqlexec. 6-116

sqlfetch_cursor . 6-124

sqlfree_cursor . 6-126

sqlfree_statement . 6-127

sqlinsert_cursor . 6-128

sqllongrecv . 6-129

sqlnrecv. 6-130

sqlopen_cursor . 6-132

sqlposition_cursor . 6-134

sqlprepare . 6-135

sqlrefresh_cursor . 6-137

sqlrollback . 6-139

sqlsetoption . 6-139

sqlsysteminfo . 6-141

sqlupdate_cursor . 6-143

sqtrans. 6-144

srand . 6-146

start_time . 6-147

stoc . 6-149

stop_time . 6-150

strlen . 6-151

strneg . 6-151

strrep . 6-152

strset . 6-153

strspan . 6-154

strstr . 6-155

subfield . 6-155

substr . 6-156

sync_point . 6-157

system . 6-158

tempnam. 6-159

testcase . 6-160

time. 6-161
x VU Language Reference

Contents
tod .6-162

trans .6-162

tux_allocbuf .6-163

tux_allocbuf_typed .6-164

tux_bq .6-165

tux_freebuf .6-166

tux_getbuf_ascii .6-166

tux_getbuf_int. .6-167

tux_getbuf_string .6-168

tux_reallocbuf .6-168

tux_setbuf_ascii .6-169

tux_setbuf_int .6-170

tux_setbuf_string .6-170

tux_sizeofbuf .6-171

tux_tpabort .6-172

tux_tpacall .6-173

tux_tpalloc. .6-174

tux_tpbegin .6-175

tux_tpbroadcast. .6-176

tux_tpcall. .6-177

tux_tpcancel .6-178

tux_tpchkauth .6-178

tux_tpcommit .6-179

tux_tpconnect .6-180

tux_tpdequeue .6-180

tux_tpdiscon .6-182

tux_tpenqueue .6-182

tux_tpfree .6-184

tux_tpgetrply. .6-184

tux_tpinit. .6-185

tux_tpnotify. .6-186

tux_tppost .6-187

tux_tprealloc .6-188

tux_tprecv .6-189

tux_tpresume .6-190
Contents xi

Contents
tux_tpscmt . 6-191

tux_tpsend . 6-191

tux_tpsprio . 6-192

tux_tpsubscribe . 6-193

tux_tpsuspend . 6-194

tux_tpterm . 6-194

tux_tptypes . 6-195

tux_tpunsubscribe . 6-196

tux_typeofbuf . 6-196

tux_userlog. 6-197

ungetc . 6-198

uniform. 6-199

unlink . 6-200

user_exit . 6-200

usergroup_member . 6-202

usergroup_size . 6-202

wait . 6-203

while . 6-207

Part IV Appendixes

A Jolt-Specific VU Functions
Jolt O verview .A-1

PerformanceStudio/Jolt Function Overview .A-2

Request Construction Functions. .A-2

Message Construction Functions .A-3

Response Query Functions .A-3

 Message Query Functions .A-3

Session Control Functions. .A-4

Application Service Functions .A-4

Request Construction .A-5

Response Query .A-7

PerformanceStudio/Jolt Function Reference .A-8

Request Construction Functions. .A-8

Message Construction Functions .A-8
xii VU Language Reference

Contents
Attribute List Construction Functions . A-9

Parameter List Construction Functions. A-11

Response Query Functions . A-12

Message Query Functions . A-12

Response Attribute Query Functions . A-13

Response Parameter Query Functions . A-14

B SAP-Specific VU Functions
Event Manipulation and Communication . B-2

Functions . B-2

Event Structure Access. B-4

Functions . B-5

U tilities . B-6

Functions . B-6

Glossary

Index
Contents xiii

Contents
xiv VU Language Reference

ã ã ã Preface
This manual describes the statements and conventions of the VU scripting language.
VU includes most of the syntax rules and core statements found in the C language.

This manual is intended to help application developers and system testers read
and customize virtual user scripts generated with Rational Robot. Familiarity with
Robot and other Rational Suite software is assumed. Familiarity with programming
language practices is also assumed.

Other Resources
ã This product contains complete online H elp. For information, see the following

section.

ã All manuals for this product are available online in PDF format. The manuals
are on the Rational Solutions for Windows Online Documentation CD.

ã For information about training opportunities, see the Rational U niversity
Web site: http://www.rational.com/university.

Using the VU Help
You can access the VU H elp in a variety of ways:

ã From the Start menu, click VU Language Reference in the installation
directory of your Rational product (typically, Rational Test).

ã From within Robot, click H elp > VU Language Reference.

ã While you are editing a script in Robot, you can display context-sensitive
information about a particular VU command. To do so:

1 . Place the insertion point immediately before, after, or anywhere within the
command name.

2 . Press F1.

If a single H elp topic is associated with the command name, reference
information about that command appears immediately.

If multiple H elp topics are associated with the command, the topics are listed
in the Topics Found dialog box. Select the topic you want and click D isplay.
xv

Preface
Contacting Rational Technical Publications
To send feedback about documentation for Rational products, please send e-mail
to our technical publications department at techpubs@rational.com.

Contacting Rational Technical Support
If you have questions about installing, using, or maintaining this product,
contact Rational Technical Support as follows:

Rational Technical Support

Location Contact Information Notes

North America Telephone:
800-433-5444
408-863-4000

E-mail:
support@rational.com

Please be prepared to supply
the following information:

– Your name, telephone number,
and company name

– Computer make and model

– Operating system and
version number

– Product release number
and serial number

– Your Case ID number (if you
are calling about a previously
reported problem)

Europe Telephone:
+31 (0) 20 4546 200

E-mail:
support@europe.rational.com

Asia Pacific Telephone:
+61-2-9419-0111

E-mail:
support@apac.rational.com

World Wide Web http://www.rational.com Click the Technical Support link.
xvi

ã ã ã P a r t I

In troducing VU

n.
 them
ã ã ã C H A P T E R 1

What Is VU?
The VU language is the Rational Software corporation language for building virtual
user scripts.

The VU language is based on the C programming language. In addition to
supporting many C language features, VU includes commands and environment
variables specifically designed for use in Rational Performance Studio scripts.

Automated Script Generation

When you record client/server conversations, Rational Robot automatically
generates a script for you in the VU language. You can either play back the script as
it was generated, or you can make modifications in Robot.

During virtual user recording, Robot “listens in” on the client/server conversatio
Robot translates the raw conversation into a series of VU commands and stores
in the script.

SELECT * FRO M PRO D U CTS W H ERE . . .

 stmt_2_2 = sqlprepare ["CD ORDE013"] "SELECT * FROM PRODUCTS WHERE "...

Rational
Robot

Client Server
1 -1

What Is VU ?

t.

ver,

 back
Working with Scripts

Although Robot generates complete, executable scripts, sometimes you may want to
edit a recorded script — for example, to:

ã Add for, while, and do-while loops to simplify repetitive actions.

ã Add conditional branching.

ã Modify think time variables.

ã Respond to runtime errors.

Your Work Environment
With VU as your scripting language, you view, edit, and compile scripts in Robo

You play back virtual user scripts through a Rational LoadTest schedule. Howe
if you are in Robot and want to play back a script, click File → Playback. Robot
automatically creates a schedule for you and invokes LoadTest so you can play
the schedule for that script.
1 -2

Source and Runtim e Files

 set

nd
ve

t

. You

s do
 log
Source and Runtime Files

The VU language supports the following kinds of files:

VU Additions to the C Language

The VU language contains a number of commands in addition to standard C
programming language commands. The following categories of commands are
provided to help you test your applications and analyze the results:

Environm ent control comm ands – Enable you to control a virtual user’s
environment by changing the VU environment variables. For example, you can
the level of detail logged or the number of times to try a connection.

Flow control statements – Enable you to add conditional execution structures a
looping structures to your virtual user script. The flow control statements beha
like their C counterparts, with enhancements added to break and continue.

Library routines – Provide your virtual user script with predefined functions tha
handle file I/O , string manipulation, and conversion of data types and formats.

Send and receive em ulation com m ands – Emulate client activity and evaluate the
server’s responses, as well as performing communication and timing operations
can log emulation commands in a log file.

Em ulation functions – Like emulation commands, emulation functions emulate
client activity and evaluate the server’s responses. However, emulation function
not perform communication and timing operations, and they are not logged in a
file.

File type Extension Location

Script files .s The Script directory of your repository and project.

Watch files
(also called
session files)

 .wch The Session directory of your repository and project.

H eader files .h The VU .h file shipped with LoadTest is located in
\Rational\Rational Test 7\Include by default.
1 -3

What Is VU ?

t is
e the

, it is

tions.
U I
ic
D atapool functions – Retrieve data from a datapool. A datapool is a source of data
that you can use to access variable data from a script. This enables a script tha
executed more than once to use different values for each execution. You creat
datapool with Robot or TestManager.

VU toolkit functions – These functions, which come with PerformanceStudio,
enable you to parse data returned by sqlnrecv into rows and columns.

SQABasic Scripting Language

Because the VU scripting language lets you capture client/server conversations
the language to use for testing how your client/server system performs.

But for testing GU I objects, you need to record a user’s keyboard and mouse ac
You also need to insert verification points into the script to compare the way G
objects look and work across successive builds of the application. The SQABas
scripting language is required for testing GU I objects.

For more information about the SQABasic scripting language, see the SQABasic
Language Reference.
1 -4

ã ã ã C H A P T E R 2

Functional List
This chapter organizes the VU commands into functional categories. For
information on the VU commands pertaining to Jolt and SAP, see Appendixes
A and B.

HTTP Emulation Commands and Functions

HTTP Send Emulation Commands

HTTP Receive Emulation Commands

HTTP Emulation Functions

http_request Sends an H TTP request to a Web server.

http_header_recv Receives header metadata from a Web server.

http_nrecv Receives a user-specified number of bytes from a Web server.

http_recv Receives data from a Web server until the specified text string
occurs.

http_disconnect Closes the connection to a Web server.

http_find_values Searches for the specified values on the current connection.

http_header_info Gets individual header values from header metadata.

http_url_encode Prepares strings for inclusion in an HTTP request.

expire_cookie Expires a cookie in the cookie cache.

set_cookie Adds a cookie to the cookie cache.
2 -1

Functional List
SQL Emulation Commands and Functions

SQL Send Emulation Commands

SQL Receive Emulation Commands

SQL Emulation Functions

sqlclose_cursor Closes the indicated cursor.

sqldeclare_cursor Associates a SQL statement with a cursor ID, which is
required to open the cursor.

sqldelete_cursor Deletes the current row using the indicated cursor.

sqlexec Executes SQL statements.

sqlopen_cursor Opens the specified cursor.

sqlposition_cursor Positions a cursor within a result set.

sqlprepare Prepares a SQ L statement for execution.

sqlrefresh_cursor Refreshes the result set of a cursor.

sqlupdate_cursor U pdates the current row of the indicated cursor.

sqlsysteminfo Queries the server for system information.

sqlfetch_cursor Fetches the requested rows from the cursor indicated.

sqllongrecv Retrieves longbinary and longchar results.

sqlnrecv Retrieves row results after sqlexec is executed.

sqlalloc_cursor Allocates a cursor for use in cursor-oriented SQL emulation
commands and functions.

sqlalloc_statement Allocates a cursor data area for Oracle playback.

sqlcommit Commits the current transaction.

sqlconnect Logs on to a SQL database server.

sqlcursor_rowtag Returns the tag of the last row fetched.

sqlcursor_setoption Sets a SQL cursor option.

sqldisconnect Closes the specified connection.

sqlfree_cursor Frees a cursor.
2 -2

VU Toolkit Functions
VU Toolkit Functions

VU Toolkit Functions: Data

VU Toolkit Functions: File I/O

sqlfree_statement Frees all of the client and server resources for a prepared
statement.

sqlinsert_cursor Inserts rows via a cursor.

sqlrollback Rolls back the current transaction.

sqlsetoption Sets a SQL database server option.

N O TE: See VU Toolkit Functions: Data for additional SQL emulation functions.

AppendData Adds the data returned by sqlnrecv to the specified data
set.

FreeAllData Frees all data sets saved with SaveData and AppendData.

FreeData Frees specified data sets saved with SaveData and
AppendData.

GetData Retrieves a specific row from the data set created with
SaveData or AppendData.

GetData1 Retrieves a value in the first row of a data set created with
SaveData or AppendData.

SaveData Stores the data returned by the most recent sqlnrecv
command into a data set.

IndexedField Parses the line read by the ReadLine function and returns
the field designated by index.

IndexedSubField Parses the field set by the NextField or IndexedField
function and returns the subfield designated by index.

NextField Parses the line read by the ReadLine function.

NextSubField Parses the field returned by the most recent call to
NextField or IndexedField.

ReadLine Reads a line from the open file designated by
file_descriptor.

SHARED_READ Allows multiple users to share a file.
2 -3

Functional List
TUXEDO Emulation Commands and Functions

TUXEDO Send Emulation Commands

TUXEDO Receive Emulation Commands

tux_bq Queues a U N IX command for background processing.

tux_tpabort Aborts the current transaction.

tux_tpacall Sends a service request.

tux_tpbroadcast Broadcasts notification by name.

tux_tpcall Sends a service request and awaits its reply.

tux_tpcommit Commits the current transaction.

tux_tpconnect Establishes a conversational service connection.

tux_tpdequeue Removes a message from a queue.

tux_tpdiscon Takes down a conversational service connection.

tux_tpenqueue Queues a message.

tux_tpgetrply Gets a reply from a previous request.

tux_tpinit Joins an application.

tux_tpnotify Sends notification by client identifier.

tux_tppost Posts an event.

tux_tprecv Receives a message in a conversational service connection.

tux_tpresume Resumes a global transaction.

tux_tpsend Sends a message in a conversational service connection.

tux_tpsubscribe Subscribes to an event.

tux_tpsuspend Suspends a global transaction.

tux_tpterm Leaves an application.

tux_tpunsubscribe U nsubscribes to an event.

N one.
2 -4

TU X ED O Em ulation Com m ands and Functions
TUXEDO Emulation Functions

tux_allocbuf Allocates a free buffer.

tux_allocbuf_typed Allocates a TU XEDO-typed buffer.

tux_freebuf Deallocates a free buffer.

tux_getbuf_ascii Gets a free buffer or buffer member and converts it into a
string.

tux_getbuf_int Gets a free buffer or buffer member and converts it into an
VU integer.

tux_getbuf_string Gets a free buffer or buffer member and converts it into a
string without converting nonprintable characters.

tux_reallocbuf Resizes a free buffer.

tux_setbuf_ascii Writes a string value into a buffer or buffer member.

tux_setbuf_int Sets a free buffer or buffer member with an VU integer value.

tux_setbuf_string Sets a free buffer or buffer member with an VU string value,
without converting nonprintable characters.

tux_sizeofbuf Returns the size of a buffer.

tux_tpalloc Allocates TU XEDO -typed buffers.

tux_tpbegin Begins a transaction.

tux_tpcancel Cancels a call descriptor for an outstanding reply.

tux_tpchkauth Checks whether authentication is required to join an
application.

tux_tpfree Frees a typed buffer.

tux_tprealloc Changes the size of a typed buffer.

tux_tpscmt Sets when tpcommit() should return.

tux_tpsprio Sets the service request priority.

tux_tptypes Provides information about a typed buffer.

tux_typeofbuf Returns the type of a buffer.

tux_userlog Writes a message to the TU XEDO central event log.
2 -5

Functional List
IIOP Emulation Commands and Functions

IIOP Send Emulation Commands

IIOP Emulation Functions

Socket Emulation Commands and Functions

Socket Send Emulation Commands

Socket Receive Emulation Commands

Socket Emulation Functions

iiop_bind Binds an interface name to an Object Reference pseudo-
object.

iiop_invoke Initiates a synchronous IIO P request to an interface
implementation.

iiop_release Releases storage associated with a pseudo-object.

sock_send Sends data to the server.

sock_nrecv Receives n bytes from the server.

sock_recv Receives data until the specified delimiter string is found.

sock_connect Opens a socket connection.

sock_create Creates a socket to which another process may connect.

sock_disconnect Disconnects a socket connection.

sock_fdopen Associates a file descriptor with a socket connection.

sock_isinput Checks for available input on a socket connection.

sock_open Waits for a socket connection from another process.
2 -6

Em ula tion Com m ands That Can Be U sed with Any Protocol
Emulation Commands That Can Be Used with Any Protocol

Send Emulation Commands

Other Emulation Commands

Flow Control Commands

emulate Provides generic emulation command services to support a
proprietary protocol.

start_time Marks the start of a block of actions to be timed.

stop_time Marks the end of a block of actions being timed.

testcase Checks a response for specific results, and reports and logs
them.

break Stops execution of for, while, and do-while statements.

continue Skips remaining statements in a loop and continues with the
next iteration of the loop.

do-while Repeatedly executes a VU statement while a condition is true.

else-if Conditionally executes a VU statement.

for Repeatedly executes a VU statement.

if-else Conditionally executes a VU statement.

script_exit Exits from a script.

user_exit Exits an entire virtual user emulation from within any point
in a virtual user script.

while Repeatedly executes a VU statement.
2 -7

Functional List

g
I/O Routines

Conversion Routines

close Writes out buffered data to a file and then closes the file.

feof Returns a value indicating whether or not the end of a file has
been encountered.

fflush Causes any buffered data for a file to be written to that file.

fgetc Provides unformatted character input capability.

printf, fprintf,
sprintf

Writes specified output to a file, standard output, or a string
variable.

fputc, fputs Write unformatted output for characters or strings.

fseek Repositions the file pointer.

ftell Returns the file pointer’s offset in the specified file.

open Opens a file for reading or writing.

scanf, fscanf,
sscanf

Reads specified input from standard input, a file, or a strin
expression.

tempnam Generates unique temporary file names.

ungetc Provides unformatted character input capability.

unlink Removes files.

atoi Converts strings to integers.

base64_decode Decodes a base 64–encoded string.

base64_encode Encodes a string using base-64 encoding.

ctos Converts characters to strings.

hex2mixedstring Returns a mixed ascii/hex version of a VU string.

itoa Converts integers to strings.

mixed2hexstring Returns a pure hex version of a VU string.

stoc Returns a selected character from a string argument.
2 -8

String Routines
String Routines

cindex Returns the position within str of the first occurrence of the
character char.

lcindex Returns the position of the last occurrence of a user-supplied
character.

match Determines whether a subject string matches a specified
pattern.

mkprintable Creates printable versions of strings that contain
nonprintable characters.

sindex Returns the position of the first occurrence of any character
from a specified set.

sqtrans Creates string expressions based on character translations of
string expressions, squeezing out any repeated characters.

strlen Returns the length of a string expression.

strneg Creates a string expression based on character set negation
(complements).

strrep Creates a string expression based on character repetition.

strset Creates a string expression based on user-supplied characters.

strstr Searches for one string within another.

strspan Returns the length of the initial segment within a string
expression, beginning at the specified position.

subfield Extracts substrings from string expressions based on field
position.

substr Extracts substrings from string expressions based on
character position.

trans Substitutes or deletes selected characters in a string
expression.
2 -9

Functional List
Random Number Routines

Timing Routines

Miscellaneous Routines

negexp Returns a random integer from a negative exponential
distribution with the specified mean.

rand Returns a random integer in the range 0 to 32767.

srand Reseeds the random number generator, essentially resetting
it to a specific starting place.

uniform Returns a random integer uniformly distributed in the
specified range.

delay Delays script execution for a specified time period.

time Returns the current time in integer format.

tod Returns the current time in string format.

abs Returns the absolute value of its argument as an integer.

bank Creates bank expressions for assignments to the bank
environment variables Escape_seq and Logout_seq.

display Provides a string to the monitor for display in message view.

getenv Obtains the values of Windows N T or U N IX environment
variables from within a virtual user script.

log_msg Writes messages to the log file with a standard header format.

putenv Sets the values of Windows N T or U N IX environment
variables from within a virtual user script.

system Allows an escape mechanism to the U N IX shell from within
a virtual user script running on a U N IX system.

usergroup_member Returns the position of a virtual user within a user group

usergroup_size Returns the number of members in a user group.
2 -1 0

Synchron ization Functions

of

o

.

Synchronization Functions

Datapool Functions

Environment Control Commands

wait Blocks a virtual user from further execution until a user-
defined global event occurs.

sync_point Waits for users in a LoadTest schedule to synchronize.

datapool_close Closes an open datapool.

datapool_fetch Moves the datapool cursor to the next record.

datapool_open Opens a datapool.

datapool_rewind Resets the cursor for the datapool.

datapool_value Retrieves the value of a specified column.

eval Returns the value and data type at the top of a VU
environment variable’s stack.

pop Removes the value of a VU environment variable from the
top of the stack.

push Pushes the value of a VU environment variable to the top
the stack.

reset Changes the current value of a VU environment variable t
its default value, and discards all other values in the stack.

restore Makes the saved value of a VU environment variable the
current value.

save Saves the value of a VU environment variable.

set Sets a VU environment variable to the specified expression

show Writes the current values of the specified VU environment
variables to standard output.
2 -1 1

Functional List
Statements

COOKIE_CACHE Indicates the state of the cookie cache at the beginning of a
session.

DATAPOOL_CONFIG Provides configuration information about a datapool.

print Writes to standard output when the formatting capability of
printf is not required.
2 -1 2

ã ã ã P a r t I I

U sing VU

ã ã ã C H A P T E R 3

VU Fundamentals
The fundamentals of the VU scripting language are similar to the C programming
language. This chapter describes the following features of VU program scripting:

ã Data types

ã Language elements

ã Expressions

ã Statements

ã Comments

ã Arrays

ã Flow control

ã Scope of variables

ã Initial values of variables

ã VU regular expressions

ã H ow a VU script represents unprintable data

Data Types

The VU language supports the following data types:

ã Integer

ã String

ã Bank

Mixing different data types in a single expression is generally not allowed. For
example, an integer expression cannot be compared to a string expression, nor can a
character constant be assigned to a string expression. Expressions formed with the
comma (,) and conditional (?:) operators, however, do allow you to mix data types.
3 -1

VU Fundam entals
The data type of a variable or function can be declared or is an integer by default. The
data type of an expression is predefined in the VU language or depends on its own
operators and operands.

Integer
An integer can be of any class, but only integers can be shared. Characters and shared
variables are special cases of the integer data type. Integer expressions, including
character constants, have 32-bit integer values. Although the default type of a variable
is integer, a variable can be explicitly declared integer for clarity.

int int_name_1, int_name2;

String
The string data type is a basic VU data type, just like int. In the C language, a string
is an array of characters, but the VU programmer need not allocate or deallocate
storage. The value of a string expression is a set of characters. The following
statement declares two variables as the string data type:

string string_name_1, string_name_2;

Bank
A bank is a nonscalar (composite) data type that consists of a collection of zero or
more scalar data items (integers, strings, or both). The position of data items within
a bank is significant only within data items of the same data type; the position is
insignificant within data items of different data types. Bank expressions are used with
the environment variables Escape_seq, Logout_seq, and Mybstack. The VU
language does not allow you to define bank variables or bank functions.

Bank expressions can be created in the following ways:

ã With the built-in function bank.

ã By evaluating the value of a bank environment variable with the eval
environment control command.

ã By creating a union of two bank expressions with the + operator.

Information about the contents of a bank expression can be determined as follows:

ã bank_exp[int] returns the number of integer data items in bank_exp.

ã bank_exp[string] returns the number of string data items in bank_exp.
3 -2

Language Elem ents
ã bank_exp[int][n] returns the nth integer data item in bank_exp, where n
is an integer expression such that 0 < n ≤ bank_exp[int]. If n is outside this
range, a VU runtime error is generated.

ã bank_exp[string][n] returns the nth string data item in bank_exp, where
n is an integer expression such that 0 < n ≤ bank_exp[string]. If n is
outside this range, a VU runtime error is generated.

Language Elements

A VU script contains identifiers, constants, operators, and keywords. For a list of
keywords, see Appendix A, Keywords.

Identifiers
Identifiers are named by the programmer. An identifier must begin with an
alphabetic character, and it consists of any combination of alphabetic characters,
underscores (_), and digits. U ppercase and lowercase alphabetic characters are
differentiated, so, for example, RATIONAL and rational are both unique
identifiers.

Identifiers are used to represent:

ã Variables

ã N ames of functions and procedures

ã Arguments of functions or procedures

ã Datapools

Constants
The VU language supports integer, character, string, and array constants. For
information about arrays and array constants, see Arrays on page 3-18.

Integer Constants
Integer constants can be specified in decimal, octal, or hexadecimal format. A leading
0 (zero) on an integer constant means octal; a leading 0x or 0X means hexadecimal;
otherwise, the integer constant is considered decimal. For example, decimal 63
written as 63 in decimal, 077 in octal, or 0x3F, 0X3F, 0x3f, or 0X3f in hexadecimal
format. All integer constants are treated as 32-bit integers. N egative numbers are
obtained by prefacing the integer constant with the unary negation operator (-).
3 -3

VU Fundam entals
Character Constants
Character constants are specified by enclosing the constant in single quotation
marks. A character constant always represents a single character.

String Constants
The VU language allows two types of string constants: standard and pattern. The
difference between standard and pattern string constants is in how they treat the
backslash character. Pattern string constants allow you to use the backslash character
to specify patterns.

To specify a standard string constant, enclose the constant in double quotation marks
(""). To specify a pattern string constant, enclose the constant in single quotation
marks (’’). If a null character (\0) is placed in a string constant, the null character
and all remaining characters in the string constant are ignored. A double quotation
mark can be included in a standard string constant by prefacing the quotation mark
with a backslash (\).

For standard string and character constants, the backslash character is represented by
two backslashes (\\). A single backslash is ignored unless it occurs in a sequence. For
pattern string constants, the backslash character is never ignored. If it is part of a
sequence, the escape sequence (including the backslash itself) represents the
corresponding ASCII character. If it precedes the single quotation mark, it indicates
that the quotation mark is part of the string instead of the final string delimiter. For
example, the backslash and single quotation mark represent a single quotation mark.
O therwise, the backslash and the character that follow it have no special
interpretation.

Since both pattern string constants and character constants are delimited by single
quotation marks, the characters inside the quotation marks determine whether the
constant is a character constant or a pattern string constant. If the characters enclosed
by the quotation marks can be interpreted as representing a single character, the
constant is a character constant. O therwise, it is a pattern string constant.

Adjacent string constants are concatenated at compile time as in AN SI C.

For example, "good-bye," "cruel world" is equivalent to "good-bye,
cruel world" . This is useful for splitting long string constants across multiple
lines, and applies to both standard and pattern string constants, or to any
combination of the two types.
3 -4

Language Elem ents
Examples of Constants
The following table lists examples of character constants, standard string constants,
and pattern string constants:

Constant Type Description

’a’ character Simplest form of character constant.

’\’’ character Represents a single quotation mark. It is preceded
by a backslash.

’ab’ pattern string Simple two-character pattern string constant.

’\7’ character Represents the character constant with ASCII
value 7 (bell). There is no way to specify the two-
character pattern string \7 . A string containing
these characters can be specified with the standard
string constant "\\7" .

’\9’ character Represents the character 9 since the backslash is
ignored.

’7\\’ pattern string The pattern string constant contains the three
characters 7\\ .

’\\’ character Represents the backslash character.

’\141’ character Equivalent to ’a’ since the ASCII value of a is
141.

’\148’ pattern string The pattern string contains two characters: form
feed (ASCII 014) and 8. This is not interpreted as
a character constant as the previous example
because 148 is not an octal number.

’a\r\8\b’ pattern string The pattern string constant contains five
characters: a, carriage return, backslash, 8, and
backspace.

"\a\r\\8\b" standard string Equivalent to the pattern string constant of the
previous example.

"\a\r" ’\8\b’ concatenated
string

Also equivalent to the previous example, using
string constant concatenation of a standard string
constant and a pattern string constant.
3 -5

VU Fundam entals

, and
Operators
The VU language offers a full range of operators for integer, string, and bank
expressions. N ot all operators are valid with all expressions. When used with
expressions whose data type is integer, the VU operators generally perform the same
as operators in C, except that VU integers are always 32 bits in size. To simplify
common string operations, the VU language also defines operators on string
expressions that are not provided in C.

For information about operators that work with arrays, see Array Operators on page
3-22. The following conventions are used in this section:

ã int1, int2, and int3 refer to arbitrary integer expressions.

ã str1, str2, and str3 refer to arbitrary string expressions.

ã exp1, exp2, exp3, and exp4 refer to arbitrary expressions of either integer or
string type.

ã bank_exp1 and bank_exp2 refer to arbitrary bank expressions.

ã any_exp1 and any_exp2 refer to arbitrary expressions of any type such as:

– integer

– string

– array

– bank

’\\\n’ pattern string The pattern string constant contains three
characters: backslash, backslash, and newline.

’\\n’ pattern string The pattern string constant contains three
characters: backslash, backslash, and n. This is not
interpreted as a backslash followed by newline,
since — processing left to right — the second
backslash is associated with the first backslash
not the n.

 (Continued)

Constant Type Description
3 -6

Language Elem ents
Binary Arithmetic Operators
The binary arithmetic operators are + , -, *, /, and %. The data type of an expression
containing a binary arithmetic operator is the same as the type of the operands. N one
of these operators change the values of their operands. Binary arithmetic operators
require two operands of the same data type.

O perators for In tegers
The binary arithmetic operators + , -, *, /, % support integer operands. They provide
32-bit addition, subtraction, multiplication, integer division, and modulus (int1 %
int2 = the remainder of int1 divided by int2).

O perators for Strings
The only binary arithmetic operator to support string operands is the concatenation
operator + . The string expression str1 + str2 returns str2 concatenated to
str1. The string expression str3 = str1 + str2 is equivalent to the C
statement strcat(strcpy(str3,str1),str2).

O perators for Bank Expressions
The only binary arithmetic operator to support bank operands is the union operator,
+ . The bank expression bank_exp1 + bank_exp2 returns a bank containing all
of the integer and string data items of both bank_exp1 and bank_exp2. For
example, if bank_exp1 is equivalent to bank(1, "ab",2,"xy") and
bank_exp2 is equivalent to bank("def",3,4,"ghi"), then bank_exp1 +
bank_exp2 is equivalent to bank(1,2,3,4,"ab","xy","def","ghi").

Ordering among data items of the same type is retained; therefore, the + operator is
not commutative for the bank operands.

Binary Bitwise Operators
The binary bitwise operators require two integer operands and always operate on all
32 bits of each operand. The operations are identical to that of their C language
counterparts when operating on unsigned 32-bit quantities. The data type of an
expression containing a binary bitwise operator is integer. N one of these operators
change the values of their operands.
3 -7

VU Fundam entals
The following table shows the binary bitwise operators:

Assignment Operators
Assignment operators require two operands of the same type. The first operand of
an assignment operator must be a variable. The type and value of an expression
containing an assignment operator is always equivalent to the type and value of its
second (rightmost) operand.

The value on the left of the operator (int1) changes to the value specified; the value
on the right of the operator (int2) does not change.

If you are reading and updating a shared variable, your read-and-update operation is
mutually exclusive of any other virtual user’s update of that variable.

Operator Description

& bitwise AN D
int1 & int2 has bits set to 1 that are set to 1 in both int1 and int2;
the remaining bits are set to 0.

| bitwise OR
int1 | int2 has bits set to 1 that are set to 1 in either int1 or int2;
the remaining bits are set to 0.

^ bitwise exclusive OR
int1 ^ int2 has bits set to 1 in each bit position where int1 and
int2 have different bits; the remaining bits are set to 0.

< < left shift
int1 < < int2 has the value of int1 shifted left by int2 bit
positions, filling vacated bits with 0; int2 must be positive.

> > right shift
int1 > > int2 has the value of int1 shifted right by int2 bit
positions, filling vacated bits with 0; int2 must be positive.
3 -8

Language Elem ents
The following table shows the assignment operators:

Operator Description

= int1= int2 changes the value of int1 to that of int2.

+ = int1 + = int2 changes the value of int1 to that of int1 + int2.

-= int1 -= int2 changes the value of int1 to that of int1 - int2.

*= int1 *= int2 changes the value of int1 to that of int1 * int2.

/= int1 /= int2 changes the value of int1 to that of int1 / int2.

%= int1 %= int2 changes the value of int1 to that of int1 % int2.

&= int1 &= int2 changes the value of int1 to that of int1 & int2.

| = int1 | = int2 changes the value of int1 to that of int1 | int2.

^ = int1 ^ = int2 changes the value of int1 to that of int1 ^ int2.

< < = int1 < < = int2 changes the value of int1 to that of int1< < int2.

> > = int1 > > = int2 changes the value of int1 to that of int1> > int2.

= str1= str2 changes the value of str1 to that of str2; str2 is
unchanged.

+ = str1+ = str2 changes the value of str1 to the concatenation of str1
and str2; str2 is unchanged.
3 -9

VU Fundam entals
Unary Operators
U nary operators require one integer or string operand. The type of an expression
containing a unary operator is the type of the operand.

The following table describes the unary operators:

Operator Description

! logical negation

If the value of int1 is nonzero, !int1 equals 0; if the value of int1 is
0, !int1 equals 1. In either case, int1 is unchanged.

& address of

The & operator is valid in an external C function expecting the passed
address of a variable and in the following function calls:

ã fscanf

ã scanf

ã sscanf

ã match

ã wait

ã sprintf

For integer operands, &int1 equals the address of int1; int1 is
unchanged. The operand of & must be an integer variable or integer
array element. Semantically, the integer operand of & must be a normal
integer variable (or array element) or a shared integer variable, depending
on the associated function definition.

For string operands, &str1 equals the address of str1; str1 is
unchanged. The operand of & must be a string variable or string array
element.

+ + increment

(+ + int1) equals int1+1 when evaluated in an expression; (int1++)
equals int1 when evaluated, and is incremented after evaluation. The
operand must be a variable or integer array element.

If you are reading and incrementing a shared variable, your read-and-
update operation is mutually exclusive of any other virtual user’s update
of that variable.
3 -1 0

Language Elem ents
Relational Operators
The relational operators consist of &&, ||, >, <, >=, <=, ==, and !=. The data type
of an expression containing a relational operator is always integer. N one of the
relational operators change their operands. Relational operators require two
operands of the same data type.

As in C, the implementations of && and || guarantee left-to-right evaluation and do
not perform unnecessary operand evaluation. In other words, the second operand of
&& is not evaluated if the first operand has the value 0; likewise, the second operand
of | | is not evaluated if the first operand has a nonzero value.

The following table shows the relational operators for integer operands:

-- decrement

(--int1) equals int1-1 when evaluated in an expression; (int1--)
equals int1 when evaluated, and is decremented after evaluation. The
operand must be a variable or integer array element.

If you are reading and decrementing a shared variable, your read-and-
update operation is mutually exclusive of any other virtual user’s update
of that variable.

- negation

-int1 equals the additive inverse of int1. int1 is unchanged.

~ bitwise one’s complement

sets bits to one that are zero in int1; the remaining bits are set to zero.
int1 is unchanged.

 (Continued)

Operator Description

Operator Description

&& logical AN D

int1 && int2 equals 1 if both int1 and int2 have nonzero values.
Otherwise, it equals 0.

| | logical OR

int1 | | int2 equals 0 if both int1 and int2 have the value 0.
Otherwise, it equals 1.

> greater than

int1> int2 equals 1 if int1 is greater than int2. Otherwise, it
equals 0.
3 -1 1

VU Fundam entals
The following table shows the relational operators for string operands:

< less than

int1 < int2 equals 1 if int1 is less than int2. O therwise, it equals 0.

> = greater than or equal to

int1 > = int2 equals 1 if int1 is not less than int2. O therwise, it
equals 0.

< = less than or equal to

int1 < = int2 equals 1 if int1 is not greater than int2. O therwise,
it equals 0.

= = equality

int1 = = int2 equals 1 if int1 and int2 have the same value.
Otherwise, it equals 0.

!= inequality

int1 != int2 equals 0 if int1 and int2 have the same value.
Otherwise, it equals 1.

 (Continued)

Operator Description

Operator Description

> greater than

str1 > str2 equals 1 if str1 is greater (based on the machine’s
collating sequence) than str2. Otherwise, it equals 0. Equivalent to the
C expression (1 = = strcmp(str1,str2)).

< less than

str1 < str2 equals 1 if str1 is less (based on the machine’s collating
sequence) than str2. Otherwise, it equals 0. Equivalent to the C
expression (-1 = = strcmp(str1,str2)).

> = greater than or equal to

str1 > = str2 equals 1 if str1 is not less than str2. Otherwise, it
equals 0. Equivalent to the C expression (-1 != strcmp(str1,str2)).

< = less than or equal to

str1 < = str2 equals 1 if str1 is not greater than str2. O therwise,
it equals 0. Equivalent to the C expression (1 != strcmp(str1,str2)).
3 -1 2

Language Elem ents

 the
Other Operators
The VU language offers two additional operators — the comma operator (,) and
conditional operator (?:). The following table describes these operators:

= = equality

str1 = = str2 equals 1 if str1 and str2 have the same value.
Otherwise, it equals 0. Equivalent to the C expression
(!strcmp(str1,str2)).

!= inequality

str1 != str2 equals 0 if str1 and str2 have the same value.
Otherwise, it equals 1. Equivalent to the C expression
(strcmp(str1,str2)).

 (Continued)

Operator Description

Operator Description

, comma

The comma operator allows operands of different types. For any two
expressions exp1 and exp2, the resulting value of the "exp1, exp2" is the
value of exp2, and the resulting type is the type of exp2. The operands of
the comma operator are not changed. The comma operator is used only in
the for statement, as in for (exp1; exp2; exp3,exp4) and cannot have
bank expressions as its operand. The comma is also used as a grammatical
symbol in other places in the VU language — for example, to separate
arguments in a function call.

?: The conditional operator requires three operands. The expression int1
? any_exp1 : any_exp2 has the value and type of any_exp1 if int1
is nonzero. Otherwise, the expression has the value and type of any_exp2.
any_exp1 and any_exp2 must have the same type. N one of
any_exp1, any_exp2, or int1 are changed.
3 -1 3

VU Fundam entals

 are
dence

ssion
red.
Operator Precedence and Associativity
The following table shows the operator precedence and associativity of each VU
operator. (“Associativity” is the order in which operators of the same precedence
evaluated.) Operators in the same row have the same precedence. The prece
decreases with each row.

U se parentheses to change the order of evaluation of an expression. An expre
inside parentheses is always evaluated first, and the extra parentheses are igno

Operator Associativity

() [] left-to-right

- (unary) ! ~ & (address of) + + -- right-to-left

* / % left-to-right

+ - (binary) left-to-right

> > < < left-to-right

> > = < < = left-to-right

= = != left-to-right

& (bitwise AN D) left-to-right

^ left-to-right

| left-to-right

&& left-to-right

| | left-to-right

?: right-to-left

= + = -= *= /= %= &= | = ^ = < < = > > = right-to-left

, left-to-right
3 -1 4

Expressions
Expressions

An expression contains one or more VU identifiers, constants, keywords, and
operators. Every expression has a data type and a value. The data type of an
expression determines how its value is interpreted. Each of the following VU
language constructs is an expression:

ã Constant

ã Variable

ã Argument

ã Read-only variable

ã eval environment_variable

ã unary_operator expression

ã expression unary_operator

ã expression binary_operator expression

ã expression ? expression : expression

ã bank_expression[int]

ã bank_expression[string]

ã bank_expression[int][int_expression]

ã bank_expression[string][int_expression]

ã array_variable[int_expression]

ã array_variable[int_expression][int_expression]

ã array_variable[int_expression][int_expression]
[int_expression]

ã Function (a function invocation or call)

ã Emulation command

ã limitof array
3 -1 5

VU Fundam entals
Statements

Statements contain one or more VU expressions. N ot all statements are valid
everywhere in a VU script. For example, argument assignments and return
statements are invalid outside of function or procedures, and the break and
continue statements are invalid outside of loops.

The following table shows the VU statements:

Statement Description

; N ull statement.

variable asgn_op exp; Variable assignment.
asgn_op is any assignment operator;
exp is an integer or string expression.

int_exp; int_exp is an integer expression, which
includes integer function calls and emulation
commands. (String function calls cannot be
used as VU statements by themselves, but
only as a part of a VU expression.)

environment_control_command
env_var;

push, pop, etc.
env_var is any environment variable.

environment_control_command
[env_var_list];

push, pop, etc.
env_var_list is a comma-separated list of
one or more environment variables.

break; Break.

break integer_constant; Multilevel break.

continue; Continue.

continue integer_constant; Multilevel continue.

DATAPOOL_CONFIG See DATAPOOL_CON FIG on page 6-13
for detailed syntax.

COOKIE_CACHE See COOKIE_CACHE on page 6-11 for
detailed syntax.

if (int_exp) statement int_exp is an integer expression;
statement is any valid statement form,
defined recursively.

if (int_exp) statement
else statement

int_exp is an integer expression;
statement is any valid statement form,
defined recursively.
3 -1 6

Sta tem ents
procedure_name (exp_list); Procedure call.
exp_list is a comma-separated list of 0 or
more expressions.

print exp_list; exp_list is a comma-separated list of one
or more expressions.

return; Return

return exp; exp is an integer, array, or string expression
that is returned to the calling function or
procedure.

sync_point string_const string_const is the name of a
synchronization point.

while (int_exp) statement int_exp is an integer expression;
statement is any valid statement form,
defined recursively.

do statement while (int_exp); statement is any valid statement form,
defined recursively;
int_exp is an integer expression.

for (exp_list ; int_exp ;
exp_list)
statement

exp_list is a comma-separated list of zero
or more expressions;
int_exp is an optional integer expression;
statement is any valid statement form,
defined recursively.

{ declaration_list
statement_list }

declaration_list contains 0 or more
declarations.
statement_list contains 0 or more
statements.

declaration class type name_list:

ã class (optional) can be: shared,
persistent, or external_C. Only
type int may be shared.

ã type may be int or string. type may
be omitted for integer declarations.

ã name_list is a comma-separated list of
one or more identifiers; each identifier is
optionally followed by the initializer
= constant, where constant is the
same type as the identifier.

 (Continued)

Statement Description
3 -1 7

VU Fundam entals
Comments

Comments are delimited by the characters /* and */. The following example shows
a one-line comment and a two-line comment:

/* This is the main body of the script */
/* This comment contains
more than one line */

Comments cannot include other comments.

Arrays

The VU language supports arrays of up to three dimensions of all scalar data types,
such as integer and string.

Array elements are referenced by integer expression subscripts enclosed in brackets
([]). Array indexing is zero based. The first element of an array is referenced by
index 0. Multidimensional arrays are subscripted by multiple pairs of brackets.
Arrays are declared as a fixed size or as expandable. Expandable arrays grow as
necessary up to an optional maximum size.

Array Constants
Array constants are specified as a list of scalar constants enclosed in braces. All scalar
constants in the list must be of the same type. For example, { 1, 2, 3, 4 } is
an array constant of four integers. A multidimensional array constant is specified as
a list of array constants enclosed in braces:

{ { "this", "is" },
 { "a", "two", "dimensional", "array" },
 { "of", "strings" } }

All arrays in a multidimensional array constant must be of the same type but not
necessarily the same size.

You can use the repeat operator (:) to specify repetition of a constant element array.
The array constant:

{ 1:5, 2:3, 3:4 }

contains 12 elements and is the same as the constant:

{1,1,1,1,1,2,2,2,3,3,3,3}

The repeat operator is also used to repeat array constants:

{ { { 1:3, 2:2 }, { 5:6 }:3 }:2 }
3 -1 8

Arrays

ray.

 the
is the same as:

{ { { 1, 1, 1, 2, 2 },
 { 5, 5, 5, 5, 5, 5 },
 { 5, 5, 5, 5, 5, 5 },
 { 5, 5, 5, 5, 5, 5 } },
 { { 1, 1, 1, 2, 2 },
 { 5, 5, 5, 5, 5, 5 },
 { 5, 5, 5, 5, 5, 5 },
 { 5, 5, 5, 5, 5, 5 } } }

Array constants are allowed only as the right-hand side of an array assignment or in
an array initialization.

Declaring an Array
An array declaration has the form:

class type name [m..M,g];
class type name [m..M,g] [m..M,g];
class type name [m..M,g] [m..M,g] [m..M,g];

The declaration has these parts:

ã class is optional (only persistent and external_C are allowed).

ã type is the scalar type, which can be int or string.

ã name is the name of the array.

ã [m..M,g] is a dimension specification. It indicates the minimum and
maximum number of elements the array can contain, and a growth size.

– m is an integer constant that specifies the minimum (initial) size of the ar
The minimum initial size of a dimension is useful when combined with
initialization as described below.

– M is an integer constant that specifies the maximum size of the array.

– g is an integer constant that specifies the growth size of the array. For
efficiency, declare a expandable array with a growth size, which specifies
number of elements by which to grow the array.
3 -1 9

VU Fundam entals
m,M,g can be combined in the following ways:

In all cases, up to three independent sets of [m..M,g] are allowed, one per
dimension.

Arrays can be declared persistent:

persistent type name [m..M,g]...;

Arrays cannot be declared shared.

Initializing an Array
Arrays of all types can be initialized by specifying an array constant of the appropriate
type and number of dimensions in the declaration.

int a[5] = { 1, 2, 3, 4, 5 };

If the initializer has fewer elements than the array variable, the remaining elements
are undefined.

Initialized arrays with a non-fixed size are created at least large enough to hold all of
the elements in the initializer.

If array initializers are too large to fit in the declared array, a fatal compilation error
results.

An array initializer constant can contain one or more occurrences of the colon (:)
repeat operator. The repeat operator specifies repetition of a constant element. It is
a binary operator with the following form:

constant_element : n_reps

Combination Meaning

[M] fixed size

[] no limit, growth determined at runtime

[m..M] initial size m, limit M, growth determined at runtime

[M,g] no minimum, first access allocates a minimum of g elements

[m..M,g] initial size m, limit M, grow by g elements

[g] no limit, grow by g elements

[m..] initial size m, no limit, growth determined at runtime

[m..,g] initial size m, no limit, grow by g elements
3 -2 0

Arrays

nts.
The operator has these parts:

ã constant_element is a scalar or array constant of the same type as the array
initialized.

ã n_reps is an integer constant specifying the number of times
constant_element is repeated.

If n_reps is an asterisk (*), constant_element is repeated as many times
as necessary until the rest of the array has been initialized. With arrays of non-
fixed size, constant_element is repeated until the rest of the minimum size
of the array is initialized. If the minimum size of the array is already initialized,
:* has no effect.

Example of Array Initialization
The following declaration initializes the first 5 elements of a to the values 1 through
5 and the next 95 elements (the rest of the array) to 0.

int a[100] = { 1, 2, 3, 4, 5, 0:95 };

The following declarations initialize all elements of the arrays to 0.

int a[100] = { 0:* };
int b[10..50] = { 0:* };

N ote that b[10..50] declares b with a minimum size of 10 and a maximum of 50
elements. The initialization sets elements 0–9 of b to 0. All other elements of b are
undefined.

In the following example, array aa above is initialized such that aa[x][0] == 1
and aa[x][1] == 0 for all 0 <= x <= 4. All other elements of aa are
undefined.

All types of array initializers can use the repeat operator, including array consta

string sa[10] = { "hello", "world", "":* };
int aa[10][3] = { {1, 0}:5 };

The following array initialization:

int a[10] = { 1, 2, 0:* };

is the same as:

int a[10] = { 1, 2, 0, 0, 0, 0, 0, 0, 0, 0 };

The following two-dimensional array initialization:

int aa[7][] = { { 1, 2, 3, 4 }:3, { 0 }:* };
3 -2 1

VU Fundam entals
is the same as:

int aa[7][] = { { 1, 2, 3, 4},
 { 1, 2, 3, 4},
 { 1, 2, 3, 4},
 { 0 },
 { 0 },
 { 0 },
 { 0 } };

The following three-dimensional array initialization initializes all 1000 elements of
aaa to 0:

int aaa[10][10][10] = { { { 0:* }:* }:* };

The following string array initializations:

string sa[10] = { "abc", "123", "":* };
string saa[7][] = { { "one", "two", "three", "four" }:3, { "" }:* };

are the same as:

string sa[10] = { "abc", "123", "", "", "", "", "", "", "", "" };
string saa[7][] =
 { { "one", "two", "three", "four"},
 { "one", "two", "three", "four"},
 { "one", "two", "three", "four"},
 { "" },
 { "" },
 { "" },
 { "" } };

This declaration initializes all 1000 elements of saaa to "":

string saaa[10][10][10] = { { { "":* }:* }:* };

Array Subscripts
Array elements are selected by enclosing an integer expression in brackets ([]). The
first element is selected by subscript 0. Multidimensional arrays can be subscripted
by adjacent subscripts, each enclosed in brackets.

string saa[7][] = { { "one", "two", "three", "four" }:3, { "" }:* };

saa[0] is a one-dimensional array of strings with value { "one", "two",
"three", "four" }.

saa[4][0] is a string with value "".

saa[4][1] is an undefined string.

Array Operators
In this section, ary1 and ary2 are arbitrary arrays of any type and any number of
dimensions.
3 -2 2

Arrays
Binary Concatenation Operator for Arrays
The only binary arithmetic operator to support array operands is the concatenation
operator + . The array expression ary1 + ary2 returns an array containing all of
the elements of ary1 followed by all of the elements of ary2. The elements of
ary1 and ary2 are not changed. ary1 and ary2 must be array expressions of the
same number of dimensions and same base type.

Assignment Operators for Arrays
The assignment operators that support array operands are = and + = .

ary1 = ary2 changes the value all elements in ary1 to the values of the
corresponding elements in ary2, including any undefined elements. The elements
of ary2 are not changed.

ary1 + = ary2 is equivalent to ary1 = ary1 + (ary2).

Unary limitof Operator for Arrays
limitof is the only unary operator with an array operand. It returns the value of
the highest subscript of any defined element in the operand. For multidimensional
arrays, limitof returns the maximum defined subscript of the outermost (first)
dimension. When used on a subarray, limitof returns the maximum subscript for
the subarray. If all elements of an array are undefined, limitof returns -1.

The maximum defined subscript returned by limitof means that no larger
subscript has a defined value, not that all smaller subscripts of the same array have
defined values. This VU script clarifies the use of limitof:

{
 int a[25];
 int b[][];
 a[10] = 1;
 a[8] = 2;
 b[3][20] = 5;
 b[2][15] = 7;
 printf("limitof a is %d\n", limitof a);
 printf("limitof b is %d\n", limitof b);
 printf("limitof b[3] subarray= %d\n", limitof b[3]);
 printf("limitof b[2] subarray= %d\n", limitof b[2]);
 printf("limitof b[1] subarray= %d\n", limitof b[1]);
}

3 -2 3

VU Fundam entals
The output is:

limitof a is 10
limitof b is 3
limitof b[3] subarray= 20
limitof b[2] subarray= 15
limitof b[1] subarray= -1

Arrays as Subroutine Arguments
U ser-defined functions and procedures can have array arguments. An array
argument is declared the same as an array variable. Array arguments are always passed
by address, not by value. Functions and procedures can freely modify the elements
of any array argument.

Flow Control

The VU language offers two types of flow control: conditional execution (the if-
else and else-if structures) and looping (for, while, and do-while
structures). The VU language also features break and continue statements to
allow for controlled exit from a loop. Except for enhancements added to break and
continue, the VU control structures behave like their C counterparts.

Loops
VU loops allow VU statements to be executed repeatedly. Loops include for,
while, and do-while.

Break and Continue
The VU break and continue statements allow for more flexible control over the
execution of for, while, and do-while loops. As in C, if the break statement
is encountered as one of the statements in a for, while, or do-while loop,
execution of that loop stops immediately. Also, as in C, if the continue statement
is encountered as one of the statements in a while or do-while loop, the
remaining statements in the loop are skipped, and execution continues with the
evaluation step of the loop.

U nlike C, however, the VU break and continue statements have an optional
argument, which specifies the nested loop level where the break or continue
statement is executed.
3 -2 4

Scope of Variables

 that
.

Scope of Variables

By default, the scope of a variable is limited to one runtime instance of a script for
one virtual user. H owever, you can declare a variable as shared or persistent.

The following table lists the differences between shared variables and persistent
variables:

Other VU variables and functions are global in scope within a runtime instance of a
script but private to each virtual user. Subroutine arguments are local to that
subroutine and are unknown to the rest of the script.

Shared Variables
A shared variable is an integer variable. Any discussion of integer variables also
applies to shared variables, and you can use a shared variable anywhere you can use
an integer variable except as the operand for the address-of operator (&).

You can use a shared variable to:

ã Set loop maximums when you repeat operations, to set transaction rates, and to
set average delay times.

ã Block a virtual user from further execution until a global event occurs. For
example, if you are re-indexing a SQ L table, you would want to block access to
that table until the indexing is complete. You can use the wait library function
with a shared variable to do this.

ã Pause a script’s execution until a specified number of virtual users arrive at
point. However, it is simpler to use the synchronization functions to do this

You create a shared variable within a VU script.

Shared Variable Persistent Variable

One copy for all virtual users to access. Each virtual user has its own copy.

Maintains its value across all scripts. Maintains its value across scripts of that
virtual user only.

Data type must be integer. Data type is an integer or string, or is an
array of integers and strings.
3 -2 5

VU Fundam entals

ltiple

nteger

le will

ts to
able
To declare shared variables, use the shared keyword. You do not need to declare
the shared variable as integer because all shared variables are integer variables. The
following two examples declare both first_shared and second_shared as
shared variables, but the second example includes the keyword int for
documentation:

shared first_shared, second_shared;
shared int first_shared, second_shared;

Shared variables have an initial value of 0 for a run. You can set a different initial
value in the schedule, and you can modify the initial value anywhere in a VU script.

The following example modifies the value of first_shared to 17:

shared first_shared;
first_shared = 17;

Once you have started playing back the script, you can change the value of a shared
variable when you monitor the schedule.

A variable that is not declared shared is local to both the script and the virtual user,
and is unrelated to any shared variable of the same name in other scripts.

U pdating a shared variable takes more time than updating a normal integer variable.
This is because if two virtual users try to update a shared variable, extra
communication is necessary to make sure that the variable is locked from the second
user until the first user’s update completes. If the schedule run involves Agent
computers, further communication is necessary to coordinate access among mu
computers.

Reading a shared variable takes the same amount of time as reading a normal i
variable if the schedule is run only on the Master computer. However, if the
schedule run involves Agent computers, extra communication is necessary to
coordinate access among multiple computers, and thus reading a shared variab
take more time.

Persistent Variables
Persistent variables are useful when you want to retain the value of a variable
between scripts. For example:

ã You have opened a file in persistent mode, and you want subsequent scrip
access the file without reopening it. You could use a persistent integer vari
to hold the return value from open.

ã You want a virtual user to randomly choose a record from a file. You could
declare a persistent array of integers, and load the keys into that array.
3 -2 6

Scope of Variables
The initial value of a persistent variable in a script is determined as follows:

1 . If a persistent variable has the same name (and type) in a previously executed
script in the session (by that virtual user), the initial value of the persistent
variable in the current script is inherited from the final value of that persistent
variable in the most recently executed script in which it was declared.
O therwise:

2 . If the declaration of the persistent variable included an initializer, then the initial
value is taken from the initializer. O therwise:

3 . The initial value is undefined (like any non-persistent variable).

A persistent variable must be declared persistent in any script that accesses it.

A non-shared variable declared persistent without a type is integer by default.

A variable that is not declared persistent is local to that script and is unrelated to any
persistent variables of the same name in other scripts.

Shared variables and function or procedure arguments cannot be declared persistent.

If a persistent variable has a type conflict with a persistent variable of the same name
but in a previous instance of the same script, a fatal error occurs.

Examples
The comments in the following examples illustrate many of the points made in the
preceding section. These examples are based on the assumption that the scripts are
run in the order A, B, C.

Script A
persistent fd;
persistent string user_nickname, s1, s2;
persistent int where_am_i;
{

fd = open("foo", "pw+"); /* open persistent */
user_nickname = "Slick";
s1 = "hello world";

}

3 -2 7

VU Fundam entals
Script B
persistent fd;
persistent string user_nickname, s2;
persistent p1=10;
string s1; /* not persistent */
/* fd contains the file descriptor returned by
 * script A’s open call. user_nickname == "Slick"
 * s2 is undefined. p1==10;
 * s1 is not persistent and therefore does not
 * inherit the final value of s1 from the
 * previous script, thus it is undefined.
 */
{

s1 = "good-bye world";
}

Script C
persistent string s1= "ignored_value";
int where_am_i;
/* s1 == "hello world" (from script A)
 * int where_am_i is undefined and unrelated
 * to int where_am_i from script A.
 */
{ ... }

Initial Values of Variables

You set the initial values for unshared variables in a script. There is no default value
for unshared variables.

You can initialize a variable when you declare it. In this example, i is 5, s1 and, s2
are "hello", s3 is "there", and first_shared is 0:

int i = 5;
string s1, s2 = "hello", s3 = "there";
shared first_shared;

You can set the initial values for shared variables when you run a schedule. H owever,
if you do not declare a value for a shared variable, its value is 0.

You get a runtime error if an expression contains an undefined variable or an
uninitialized, declared variable.

For information about initializing an array variable, see Initializing an Array on page
3-20.
3 -2 8

VU Regu lar Expressions

of the

gs in

ator

ch

acter

er.
VU Regular Expressions

A regular expression is a string that specifies a pattern of characters. The match
library routine, for example, accepts strings that are interpreted as regular
expressions.

VU regular expressions are like U N IX regular expressions. VU , however, offers two
additional operators: ? and |. In addition, VU regular expressions can include ASCII
control characters in the range 0 to 7F hex (0 to 127 decimal).

General Rules
VU regular expressions have the following characteristics:

ã The concatenation of single-character operators matches the concatenation of
the characters individually matched by each of the single-character operators.

ã Parentheses () can be used within a regular expression for grouping single-
character operators. A group of single-character operators can be used anywhere
one single-character operator can be used — for example, as the operand
* operator.

ã Parentheses and the following non-ordinary operators have special meanin
regular expressions. They must be preceded by a backslash if they are to
represent themselves:

– The ̂ operator must be preceded by a backslash when it is the first oper
of a regular expression or the first character inside brackets.

– The $ operator must be proceeded by a backslash when it is the last
operator of a regular expression or it immediately follows a right
parenthesis.

– Operators inside brackets do not need to be preceded by a backslash.

Single-Character Regular Expression Operators
The following rules apply to single-character regular expression operators, whi
match at most a single character:

ã Any ordinary character (any character not described below) is a single-char
operator that matches itself.

ã The \ (backslash) operator and any following character match that charact
3 -2 9

VU Fundam entals

e on

he

the

 zero

 or

y

s that
ã The brackets operator [str], where str is a non-empty string, matches any
single character contained in str, unless the first character of str is ^
(circumflex), in which case the operator matches any single character except
those in str.

A range of characters can be represented in str using a dash character (-)—
for example, [a-z] matches all lowercase alphabetic characters. If - occurs
either as the first (or after an initial ^) or last character of str, it specifies itself
rather than a range. If] occurs as the first (or after an initial ^) character in str,
it specifies itself rather than ending the brackets operator. The characters .
(period), * (asterisk), \ (backslash), ? (question mark), | (pipe), ()
(parentheses), [(left bracket), and + (plus) lose their special meanings in str
and therefore are not preceded by a backslash.

ã The . (period) operator matches any single character.

Other Regular Expression Operators
The following rules apply to all other regular expression operators, which operat
single-character operators or groups of single-character operators:

ã The ̂ (circumflex) operator, only when it is the first operator, indicates that t
next operator must match the first character of the string matched.

ã The $ (dollar sign) operator, only when it is the last operator, indicates that
preceding operator must match the last character of the string matched.

ã The * (asterisk) operator and a preceding single-character operator match
or more occurrences of any character matched by that operator.

ã The + (plus) operator and a preceding single-character operator match one
more occurrences of any character matched by that operator.

ã The {m,n} (braces) operator, where m < = n < = 254, and a preceding single-
character operator match from m to n occurrences of any character matched b
that operator. Matching exactly m occurrences of the operators specified by {m}.
{m,} indicates m or more occurrences.

ã The ? (question mark) operator and a preceding single-character operator
match zero or one occurrence of any character matched by that operator.
Therefore, ? is equivalent to {0,1}.

ã The | (pipe) operator indicates alternation. When placed between n groups of
operators, it matches the characters matched by the left group of operator
matches a non-empty set of characters.
3 -3 0

VU Regu lar Expressions
Regular Expression Examples
The following examples show the use of VU regular expressions:

VU Regular Expression Matches

"ab?c" The strings "abc" and "ac", as well as the
strings "defabcghi" and "123acc",
since the regular expression need not specify
the entire string to match. H owever, the
strings "ab" and "abbc" do not match.

"^ab?c$" Only the strings "abc" and "ac".

" [A-Za-z]{1,5}ly " Any blank-surrounded word of three to
seven characters ending with ly.

"^[^aeiouAEIOU]+$" Any sequence of characters that does not
contain a vowel.

"[0-9]+" Any integer.

"^[dr]etract$" Only the words detract and retract.

"((Mon)|(Tues)|(Wednes)|(Thurs)
|(Fri)|(Satur)|(Sun))day"

Any day of the week.

"(abc\\(){1,2}" One or two occurrences of the string
"abc(". Because the pattern is specified as
a standard string constant, two backslashes
must be used to escape the special meaning
of (. The pattern could also be specified as
‘(abc\(){1,2}’ using a pattern string
constant.

"((abbcc)|(a+b+c)|(abc+))0" If the string matched is "abc" , the second
alternative ("a+b+c") is matched and the
string " abc" is returned. If the string
matched is "aabbcc" , the first alternative
is matched, and the string "abbcc" is
returned. If the string matched is
"abcccc" , the third alternative is matched
and the string "abcccc" is returned. If the
string matched is "abbbcc" , none of the
alternatives match.
3 -3 1

VU Fundam entals

oss-
Regular Expression Errors
If a VU regular expression contains an error, when you run a schedule, LoadTest
writes the message to stderr output prefixed with the following header:

sqa7vui#xxx: fatal orig type error: tname: sname, line lineno

where #xxx identifies the user ID (not present if 0), fatal signifies that error
recovery is not possible (otherwise not present), orig specifies the error origination
(user, system, server, or program), and type specifies the general error category
(initialization, argument parsing, script initialization, or runtime).

If the error occurred during execution of a script (run-time category), tname
specifies the name of the script being executed when the error occurred, sname
specifies the name of the VU source file that contains the VU statement causing the
error, and lineno specifies the line number of this VU statement in the source file.
N ote that the source file information will not be available if the script’s source cr
reference section has been stripped.

"(to+ chea[pt].*){2}" The strings "We would rather sell
too cheap than to cheat" and
"Expect one to cheat who is too
cheap", as well as "‘too cheat’
makes no more sense than ‘to
cheap’" .

"^$(([0-9]{200}){50}){100,}" Any sequence of a million or more digits
starting with $.

"[a-fA-F0-9]{1,4}" Any hexadecimal number with a decimal
value in the range 0 to 65535.

"[ACF-IK-PR-W][a-y]{2,4}
[a-y][CDIJMVY]?[a-z]{0,7}"

The name of any state in the U nited States.

"((K[a-zA-Z]*)$0
(D[a-zA-Z]*)$1
(S[a-zA-Z]*)$2)
|((S[a-zA-Z]*)$0
(J[a-zA-Z]*)$1
(D[a-zA-Z]*)$2)"

The full name (first, middle, and last names)
of anyone with the initials KDS or SJD,
provided the name contains only alphabetic
characters. Strings matching the first,
middle, and last names are returned.

"^(([a-zA-Z]+)|([0-9]+))$" Any string containing only alphabetic or
only numeric characters. The outermost set
of parentheses is necessary because the $
operator has precedence over the | operator.

 (Continued)

VU Regular Expression Matches
3 -3 2

VU Regu lar Expressions
If a run-time error occurs due to an improper regular expression pattern in the
match library function, a diagnostic message of the following form follows the
header:

Regular Expression Error = errno
where errno is an error code which indicates the type of regular expression error.
The following table lists the possible errno values and explains each.

errno Explanation

2 Illegal assignment form. Character after)$ must be a digit.
Example: "([0-9]+)$x"

3 Illegal character inside braces. Expecting a digit.
Example: "x{1,z}"

11 Exceeded maximum allowable assignments. Only $0 through $9 are valid.
Example: "([0-9]+)$10"

30 Missing operand to a range operator (? {m,n} + *).
Example: "?a"

31 Range operators (? {m,n} + *) must not immediately follow a left
parenthesis.
Example: "(?b)"

32 Two consecutive range operators (? {m,n} + *) are not allowed.
Example: "[0-9]+?"

34 Range operators (? {m,n} + *) must not immediately follow an
assignment operation.
Example: "([0-9]+)$0{1-4}"
Correction: "(([0-9]+)$0){1-4}"

36 Range level exceeds 254.
Example: "[0-9]{1-255}"

39 Range nesting depth exceeded maximum of 18 during matching of subject
string.

41 Pattern must have non-zero length.
Example: ""

42 Call nesting depth exceeded 80 during matching of subject string.

44 Extra comma not allowed within braces.
Example: "[0-9]{3,4,}"

46 Lower range parameter exceeds upper range parameter.
Example: "[0-9]{4,3}"
3 -3 3

VU Fundam entals
How a VU Script Represents Unprintable Data

A VU script can contain unprintable data. For example, you can include a carriage
return in a string or character constant. A session that recorded H TTP or socket
traffic can generate scripts that contain binary data. The following sections describe
how unprintable data is represented within a VU script.

Unprintable String and Character Constants
The following table shows how you represent unprintable characters in a string or
character constant. The VU compiler interprets the character sequence as a single
character:

49 ‘\0’ not allowed within brackets, or missing right bracket.
Example: "[\0] or [0-9"

55 Parenthesis nesting depth exceeds maximum of 18.
Example: "(((((((((((((((((((x)))))))))))))))))))"

56 U nbalanced parentheses. More right parentheses than left parentheses.
Example: "([0-9]+)$1)"

57 Program error. Please report.

70 Program error. Please report.

90 U nbalanced parentheses. More left parentheses than right parentheses.
Example: "(([0-9]+)$1"

91 Program error. Please report.

100 Program error. Please report.

errno Explanation

Character
Sequence

Description ASCII value (octal)

\r A single character representing a carriage
return.

ASCII 015

\f A single character representing a form feed. ASCII 014

\n A single character representing a newline. ASCII 012
3 -3 4

H ow a VU Scrip t Represents U nprin tab le D ata

 on.
s,
trings:

t (
Unprintable HTTP or Socket Data
If you are working with H TTP data or raw socket data, in addition to carriage returns
and form feeds, you can send or receive binary data — images, sounds, and so
With string arguments in the following HTTP and socket emulation command
binary data can be represented within the string data through embedded hex s

ã http_request, http_recv, and http_nrecv

ã sock_send, sock_recv, and sock_nrecv

An embedded hex string represents binary characters by their two-character
hexadecimal values. The entire hexadecimal string is delimited by grave accen‘)
characters.

Similarly, if you are coding a VU script by hand, you can represent binary characters
by using a two-character hex format and delimiting the string with a grave accent.
The string can contain these characters: 0123456789ABCDEFabcdef . To
represent a grave accent, use \\‘ or ‘60‘ .

\t A single character representing a horizontal tab. ASCII 011

\b A single character representing a backspace. ASCII 010

\0 The null character (the character with value 0).

\ddd A single character representing the character
ddd.

ddd represents 1, 2,
or 3 digits; for
example, \141
represents the
character a

 (Continued)

Character
Sequence

Description ASCII value (octal)
3 -3 5

VU Fundam entals
3 -3 6

ã ã ã C H A P T E R 4

Scripts, Subroutines, and C Libraries
This chapter describes the script and header files that Robot compiles after recording
or editing. It also describes the external library files that you can create and maintain
outside of the Robot environment, as well as the subroutines that you can add to
scripts and external files. The chapter includes the following topics:

ã Program structure

ã Preprocessor features

ã Defining your own subroutines

ã Accessing external C data and functions

Program Structure

VU program structure is similar to the structure of the C programming language.

The following sample of code shows the structure of a VU script. Your script is not
required to have all of the elements in the sample. For example, if your script does
not include another source file, it would not use the #include file name directives.
If your script does not contain any user-defined procedures, it would not include the
proc section.

#include <VU.h>
#include <VU_tux.h>
/* Use either of these forms to include another source file */
#include <filename>
#include "filename"
#define orig_ident new_token
/* Any user-defined procedures would be here*/
proc proc_name()
{ /* body of procedure */ }
/* Any user-defined functions would be here*/
func function_name()
{ /* body of function */ }
/* additional procedures and functions */
/* main body of script follows: */
{
string declarations;
shared declarations;
/* VU code goes here*/
}

4 -1

Scripts, Subroutines, and C Libraries

of
You must define all subroutines before they are referenced; otherwise, you will
get a syntax error. Subroutines included after the main body of the script are not
referenced. They are ignored if they are syntactically correct.

Header Files

VU header files contain a collection of definitions and macros. VU.h is automatically
included in scripts generated from recording H TTP, SQL, and socket sessions.
VU_tux.h is automatically included in scripts generated from recording a
TU XEDO session.

If you are manually writing a script, include the following preprocessor statement:

#include <VU.h>

If you are manually writing a script that accesses a TU XEDO application, include
both VU_tux.h and VU.h as preprocessor statements:

#include <VU.h>
#include <VU_tux.h>

VU.h
The VU.h file includes definitions for:

ã The EOF value returned by various VU functions.

ã The file descriptors for the standard files.

ã ENV_VARS, which lets you operate on the environment variables as a unit.

ã The HOURS, MINUTES, and SECONDS macros, which enable you to specify
time units other than milliseconds.

– HOURS(A) returns the milliseconds in A hours.

– MINUTES(A) returns the milliseconds in A minutes.

– SECONDS(A) returns the milliseconds in A seconds.

The value A must be an integer expression.

ã All error codes (_error) that are not provided by the SQL database server.

ã All options recognized by sqlsetoption().

Some constants defined in VU.h are vendor-specific. For example, the names
Oracle-specific values begin with ORA_; the names of Sybase-specific values
begin with SYB_.
4 -2

Preprocessor Features
VU_tux.h
The VU_tux.h file includes definitions for symbolic constants and flag values used
with TU XEDO emulation commands and functions.

sme/data.h
The sme/data.h file includes definitions for functions that come with Rational
Suite PerformanceStudio. These functions let you parse data returned by
sqlnrecv into rows and columns. Typically, this is useful in dynamic data
correlation for SQL, where you extract data from queries and use that data in
subsequent statements.

sme/file.h
The sme/file.h file includes definitions for functions that read a line of data from
a file, parse the line that was read, and then reset the pointer to the next line of data,
so that each emulated user can parse a line. Typically, this is useful as an alternative
to datapools.

Preprocessor Features

LoadTest comes with the GN U C preprocessor. The preprocessor commands
enable you to:

ã Replace tokens.

ã Include more than one source file in a script.

ã Compile parts of a script.

Token Replacement
Token replacement and macro substitution can be specified with the #define
preprocessor command. To indicate simple replacement throughout the entire
script, use a command of the form:

#define orig_ident new_token

This replaces all occurrences of the identifier orig_ident with the token
new_token.

To specify a macro definition with arguments, use a command of the form:

#define macro_name (arg1,arg2,...) macro_defn
4 -3

Scripts, Subroutines, and C Libraries
Subsequent occurrences of macro_name(var1,var2,...) are replaced by
macro_defn, and occurrences of arg1,arg2,... inside the macro definition are
replaced by the corresponding varx. To continue a definition on the next line, put
a backslash (\) at the end of the line.

Example
This example substitutes var1 for x, var2 for y, and assigns var3 the greater of
var1 and var2:

#define greater(x,y) (((x)>(y))?(x):(y))
#define lesser(x,y) (((x)<(y))?(x):(y))
...
var3 = greater(var1,var2);

Creating a Script That Has More than One Source File
The #include preprocessor command lets you include another source file in your
script at compile time. This command has two forms:

#include <filename>
#include "filename"

The first form looks only in a standard location for filename. The standard
location is not specified in the VU language; it is the same set of directories used by
the C preprocessor. The second form checks the current directory for filename
before searching the standard location. In both cases, the contents of filename are
inserted into the script at the point where the #include appears.

Compiling Parts of a Script
Conditional compilation commands allow you to conditionally compile parts of a
script. There are three ways to specify conditional compilation:

ã #if-#else-#endif

ã #ifdef-#else-#endif

ã #ifndef-#else-#endif

The first has the form:

#if const1
t_stmnt1
...
t_stmntn
#else
f_stmnt1
...
f_stmntm
#endif
4 -4

Preprocessor Features
where const1 must be a constant (or an expression which has a value at compile
time), and t_stmnt1 through t_stmntn and f_stmnt1 through f_stmntm
are any VU statements or preprocessor commands. If the value of const1 is
nonzero, t_stmnt1 through t_stmntn are compiled; otherwise: f_stmnt1
through f_stmntn are compiled. You can omit the #else and f_stmnt1
through f_stmntn if no compilation is desired when const1 has the value 0.

The other two forms compile a portion of code if the token has been set through a
#define or through LoadTest’s Tools → O ptions. Click the VU Com pilation tab
and enter the name of the tokens under D efines. They are:

#ifdef token1
d_stmnt1
...
d_stmntn
#else
n_stmnt1
...
n_stmntm
#endif

and

#ifndef token1
n_stmnt1
...
n_stmntn
#else
d_stmnt1
...
d_stmntm
#endif

token1 must be an identifier and d_stmnt1 through d_stmntn and n_stmnt1
through n_stmntn are any VU statements or preprocessor commands.

If the #ifdef format is used, d_stmnt1 through d_stmntn are compiled if
token1 was defined; otherwise, n_stmnt1 through n_stmntm are compiled.

If the #ifndef format is used, n_stmnt1 through n_stmntn are compiled if
token1 has not been defined; otherwise, d_stmnt1 through d_stmntm are
compiled.

As in the #if command, you can omit the #else portion in either of these forms.
4 -5

Scripts, Subroutines, and C Libraries

s

h is

cify
stant

ay is

 the

 not

e

fore
Defining Your Own Subroutines

The VU language lets you define the following kinds of subroutines:

ã Functions – Subroutines that return a value through a return statement.
You define functions with the func keyword.

ã Procedures – Subroutines that do not return a value. You define procedure
with the proc keyword.

Defining a Function
You can declare an integer function, which returns an integer value, or a string
function, which returns a string value. An array function can return a value whic
an array of integers or strings.

To define a function, use the following format:

[type] func fname [array_spec] (arg_list)
arg_declar;
{
 stmnt1;
 stmnt2;
 ...
 stmntn;
 return ret_exp;
}

You can define type as int or string. The default is int, so you can omit it if
you are declaring an integer function.

fname is the name of the function you want to define.

array_spec, used only in array functions, is a list of integer constants that spe
the size of the first, second, and third dimensions of the array. Each integer con
is enclosed in brackets. A one-dimensional array is [c1], a two-dimensional arr
[c1] [c2], and a three-dimensional array is [c1] [c2] [c3].

arg_list lists the function’s arguments. If the function has more than one
argument, separate them by commas. If the function has no arguments, follow
name of the function with a pair of empty parentheses, such as func1().

arg_declar is the declaration of the arguments. Arguments whose data type is
integer must be declared before the opening brace of the function.

stmnt1, stmnt2, stmntn are the VU language statements in the function. If th
function contains only one statement, you can omit the braces.

A function must have at least one return statement. If a function has more than
one return statement, only one is executed per call. The return is executed be
the function completes execution.
4 -6

D efin ing Your O wn Subroutines
ret_exp is an expression whose type matches the type of the function. If you have
defined an array function, the number of dimensions of ret_exp must match the
number of dimensions of the function. U se a null ret_exp (return "";) to
return a null string from a string function.

The order and data type of the arguments in the function call must coincide with the
order and data type of the arguments in the function definition. If they do not
coincide, a compilation error results.

You might get a warning message if the number of arguments in the function call and
function definition do not match. If you have extra arguments in the function
definition, you are not able to reference them while the function is executing. If there
are extra arguments in the function call, they are ignored.

The value returned by a function must match the type of the function. For example,
the expression following the return must have an integer value if the function is
an integer function and a string value if the function is a string function.

Calling a Function
To call a function, simply use the function name and the argument list:

fname (arg_list)

where fname specifies the name of the function, and arg_list lists the
arguments of the function call.

Example
The following example defines a function with more than one return statement.
The function, called strcomp, compares two strings:

func strcomp(str1, str2)
string str1, str2;
{
 if (str1 == str2)
 return 0;
 else if (str1 < str2)
 return -1;
 else
 return 1;
}

4 -7

Scripts, Subroutines, and C Libraries

 one
w the

 not

he

ling
Defining a Procedure
To define a procedure, use the following format:

proc pname (arg_list)
arg_declar;
{
 stmnt1;
 stmnt2;
 ...
 stmntn;
)

pname is the name of the procedure you want to define.

arg_list is a list of the procedure’s arguments. If the procedure has more than
argument, separate them by commas. If the procedure has no arguments, follo
name of the procedure with a pair of empty parentheses, such as proced1().

arg_declar is the declaration of the arguments. Arguments whose data type is
integer must be declared before the opening brace of the procedure.

stmnt1, stmnt2, stmntn are the VU language statements in the procedure. If t
procedure contains only one statement, you can omit the braces.

Although procedures do not return values, you can include the statement return;
to return control to the caller.

Calling a Procedure
To call a procedure, simply use the procedure name and the argument list:

pname (arg_list)

Example
The following example defines the procedure dis_time, which displays the time
and sounds a tone (ASCII 007). The procedure then returns control to the cal
program:

proc dis_time(time_str)
string time_str;
{
 printf("At the tone%c, the time will be %s", ’\007’, time_str);
 return;
}

4 -8

Accessing Externa l C D ata and Functions
Accessing External C Data and Functions

The VU language supports access to external C data and functions. A VU script can
call functions written in C and pass values as arguments to the C functions.

 C functions can return values to VU scripts. External C objects are declared in VU
using the keyword external_C.

VU integers are signed 32-bit integers. These are usually declared in C as int or
long (this section refers to them as C type int). VU strings have no exact C
counterpart but are accessed as C character pointers (char *). VU arrays are
accessed in C as a pointer to a block of data of the appropriate type. Multidimensional
arrays are passed as a pointer to a block of contiguous memory containing the data in
row-major (normal C) order.

External C Variables
A C pointer can access a VU array of 1, 2, or 3 dimensions.

The following table shows the C data types that can be accessed by VU . Other data
types are not supported and give unpredictable results.

An external C char *, or array of char, must be null terminated. VU interprets
these as strings. VU does not perform memory management on external C strings or
external C string arrays.

In a script an external C string is read-only unless its VU declaration includes its
maximum size. The C code must allocate space for the string greater than or equal
to maxsize bytes. The maximum size must include room for the C null-
terminator character ’\0’ ; it is specified with a colon and an integer constant, as in:

external_C string:81 extc_line;

Space for the string might be declared in C as:

char extc_space[81];
char *extc_line = extc_space;

C Variable Type VU Variable Type

int int

char * string /* read only */

char * string:maxsize /* writable */

int * int [], int[][], int[][][]

char ** string [], string [][], string [][][]
4 -9

Scripts, Subroutines, and C Libraries
In the preceding example, VU could write up to 80 characters to extc_line. An
attempt to write more than 80 characters causes a runtime error.

VU declarations of C variables that are pointers to int or char * must be declared
as VU arrays with a fixed size and must have no more than 3 dimensions. The data
pointed to by the C variable is interpreted as a VU array of the declared type. VU
does not perform memory management on the C pointers.

External C data cannot be declared persistent or shared. Values of external C
variables persist for the duration of the run.

Declaring External C Subroutines
An external C subroutine is declared the same way as a VU function or procedure,
with an empty statement block for the body.

The following VU declarations:

external_C func foo(i, s)
string s;
{}
external_C proc bar(limit, ia)
int limit;
int ia[];
{}
external_C int func[10][20] afunc()
{}

are used for the C functions whose prototypes are:

int foo(int, char *);
void bar(int, int *);
int *afunc(void);

The VU compiler performs type and number checking for argument variables
between their declaration and their use.

An external C function is called in the same way that a VU function or procedure is
called. Any VU data type can be passed to an external C subroutine.

Accessing Values Returned from C Functions
A C function returns a pointer accessed as a VU array of 1, 2, or 3 dimensions.
4 -1 0

Accessing Externa l C D ata and Functions
The following table shows the only C data types that can be returned from an
external C function. O ther data types are explicitly not supported, and give
unpredictable results.

A char * returned by a C function must point to a null terminated block of
characters. VU interprets this as a string and does not attempt to perform memory
management on strings returned from C functions.

VU declarations of C functions that return pointers to int or char * must be
declared as VU functions that return arrays with a fixed size, and have no more than
three dimensions. The data pointed to by the actual return value is interpreted as a
VU array of the declared type. VU does not attempt to perform any memory
management on the returned pointers.

Passing Arguments to External C Functions
Arguments are passed to external C functions by value or by reference. The default
is to pass arguments by value. Arguments declared with the keyword reference
are passed by reference (address). Reference arguments are passed as pointers to the
appropriate types. Arrays are always passed as a pointer to a block of data of the
appropriate type. Arguments declared reference are passed with the & operator,
allowing the VU compiler to type-check the arguments.

Arrays are always passed by reference; you should not use the reference keyword
and the & operator with array arguments.

When passing VU arguments to external C functions, the data type of the
corresponding C argument must match this list. O ther data types are not supported,
and yield unpredictable results.

C Return Type VU Return Type

void proc

int int func

char * string func

int * int func[], int func[][], int func[][][]

char ** string func[], string func[][],
string func[][][]
4 -1 1

Scripts, Subroutines, and C Libraries

ction
 You
ter in
The following table shows how VU arguments are passed:

Integers
Integer arguments behave exactly as in C, except for integer arrays.

Strings
The nearest equivalent C type to a VU string is a char *.

A nonreference string argument is passed as a pointer to a copy of the null-
terminated string data. The external C function can locally change characters in this
copy, but these changes do not affect the original string value upon return to the VU
script. In addition, the external C function must not attempt to modify storage
beyond the end of the string, including the null terminator.

A reference string argument allows the C function to change the VU string’s
characters and also to reassign the actual pointer. If you want the external C fun
to modify the contents of the VU string, you must pass the string by reference.
must also pass a string by reference if the C function reassigns the string’s poin
order to cause a VU string to become longer. For more information, see Memory
Management of VU Data on page 4-13.

An array of strings is passed as a pointer to a block of character pointers.

VU Data Type Is Passed as C Data Type

int int

string char *

reference int s32 *

reference string char **

int [] s32 *

string [] char **

int [][] s32 *

string [][] char **

int [][][] s32 *

string [][][] char **
4 -1 2

Accessing Externa l C D ata and Functions

l of

.
tring
tion
free
l to

,
he

d as

 have
re
s 0.
d
f
value

r

dio
Arrays
An array is passed as a pointer to a block of data of the appropriate type (int,
char *) just as C programmers expect to pass arrays.

A multidimensional array is passed as a pointer to a block of contiguous memory
containing the data in row-major (normal C) order.

Memory Management of VU Data
Data created in VU is “owned” by VU . VU performs memory management on al
its data.

Strings that VU creates point to malloc’ed data, and VU can free them at any time
C functions that use VU strings as arguments must not save the value of a VU s
in static (global) C variables, or unpredictable results occur. In addition, a C func
modifying a reference argument originating from a string created by VU should
or reallocate the original pointer, and the new value must be the result of a cal
realloc or malloc.

The same is true for pointers to VU array data. The storage is managed by VU
and C functions must not save the values of such pointers in static variables. T
elements of a VU array are essentially passed by reference, and may be treate
such. String array elements may be treated as reference strings.

All VU variables and scalar array elements are created in an undefined state and
no value. When passed to C functions as reference arguments, these values a
converted to default values. U ndefined strings are passed as N U LL, integers a
U pon return from the C function, strings with value N U LL are again considere
undefined. U pon return from the C function, all integers are considered defined. I
the C function did not assign a value to such an argument, it retains the default
of 0.

Memory Management of C Data
Data created in C modules, and all pointer values returned from C functions o
external C variables, are “owned” by C. VU does not perform any memory
management on this data — all memory management must be performed by C
modules.

Specifying External C Libraries
You can specify external C libraries for use by all VU scripts in a PerformanceStu
project. In LoadTest, select Tools → O ptions, and then click the VU Com pilation
tab. U nder External C Libraries, select the libraries you want to add and click > .
4 -1 3

Scripts, Subroutines, and C Libraries
To make a library available to a particular script, modify the script properties for that
script. You can modify script properties using TestManager, Robot, or LoadTest. In
LoadTest, open a schedule that includes the script, right-click on the script, and then
select Script Properties from the menu. Click the VU Com pilation tab. U nder
External C Libraries, click Add, and then enter the name of the library you want to
add.

It is recommended that you enter the name of the library without the .DLL
extension. This way the script can be run on U N IX Agent computers by posting the
library to the Agent.

Creating a Dynamic-Link Library on Windows NT
To access C code and data from a VU script, compile the C code into a dynamic-link
library (DLL).

There are three steps involved in creating a DLL:

1 . Write and compile the C source code to be called from your VU script.

2 . Examine the VU script, and note which functions and variables the script needs
to access.

3 . Create the DLL, and export the necessary symbols.

The following are the general steps you take to create the external library file
c_prog and make it available to a script:

1 . Write c_prog.c, which contains code that you want to call from your script,
script.s. Invoke the Microsoft C compiler to compile c_prog.c and
produce c_prog.obj:

cl /c c_prog.c

2 . Examine your VU script script.s. The example script on page 4-16 uses
external C notation to indicate that the symbols s_func, afunc, and
addr_message are defined in a C module.

3 . Issue the link command to create a DLL and export the external C symbols.
The following command produces c_prog.lib, c_prog.exp and
c_prog.dll, and exports s_func, afunc, and addr_message:

link c_prog.obj /dll /export:s_func /export:afunc
/export:addr_message

N O TE: On Windows N T systems, in order for VU scripts to access data items
defined in .DLLs, you must provide a function that returns the address of the data
item. The function must be named the same as the data item with addr_ added
to the beginning of the function name.
4 -1 4

Accessing Externa l C D ata and Functions

ing
4 . Once you have created the DLL, copy it to each project that needs to access it.
The directory location is:

 Project\project_name...\Script\externC

For more detailed information on creating a DLL, consult the documentation for a
Microsoft C development tool such as Microsoft Visual Studio.

Creating a Shared Library on UNIX
To access C code and data from a VU script, compile the C code into a shared library
or shared object. C source (.c) files are compiled into object (.o) files by cc(1),
then one or more object files are combined into a shared library (.so) by ld(1). The
cc and ld options are system-dependent; see cc(1) and ld(1) for more
information. The following example shows how to compile a program and create a
shared library:

$ cc -Kpic -O -c foo.c
$ cc -Kpic -O -c bar.c
$ ld -dy -G -Bsymbolic foo.o bar.o -o foo.so -lc
$

Or, equivalently (on most systems),

$ cc -KPIC -O -dy -G -Bsymbolic foo.c bar.c -o foo.so -lc
$

The -c option specifies that cc generates an .o file, and the -KPIC option requests
position-independent code. The -dy option of ld specifies dynamic linking; the
-G option specifies that ld should produce a shared object; the -Bsymbolic
option binds references to global symbols to their definitions within the object; and
the -lc option is needed in conjunction with the -Bsymbolic option to resolve
references to the C library.

Once you have created the shared library, copy it to each U N IX Agent that needs to
access it. The default directory location is /tmp/externC. You can change the
directory through Load Test. Open a schedule, click the Com puters button, and
change the Local D irectory name. You must create an externC subdirectory under
the local directory name.

Libraries can be shared only across the same U N IX operating system vendor’s
agents. You must create a shared library version for each distinct U N IX operat
system type.
4 -1 5

Scripts, Subroutines, and C Libraries

Examples

C module: lib/c_script.c

include <stdlib.h>
static int table[10][20];
char msg_data[100];
char *message = msg_data;
char **addr_message()
{
return &message;
}
int foo(int i, char **s)
{
*s = *s? realloc(*s, 18): malloc(18);
strcpy(*s, "hello from C land");
return 10 * i;
}

void bar(int max, int *a)
{
int i;
printf("message in bar(): [%s]\n", message);
for (i = 0; i <= max; i++)
 a[i] = i;
}

char *s_func(char *s)
{
printf("C output: [%s]\n", s);
return "s_func return value";
}

int *afunc(void)
{
return &(table[0][0]);
}

VU module: script.s

external_C string:100 message;
external_C func foo(i, s)
reference string s;
{}

external_C proc bar(limit, ia)
int limit;
int ia[];
{}

external_C int func[10][20] afunc()
{}

external_C string func s_func(s)
string s;
{}

N O TE: DLLs on Windows N T systems cannot print directly to the virtual user’s
stdout or stderr files. Therefore, the following script produces different
output on U N IX Agents than on Windows N T Agents.
4 -1 6

Accessing Externa l C D ata and Functions
string vs, s;
int ary[10][100];

{
vs = "hello world";
s = s_func(vs);

message = s + ", this is a test.";

ary = afunc();

foo_res = foo(5, &vs);
printf("result of foo: %d\n", foo_res);
printf("message = [%s]\n", message);

size = limitof ary[5];
bar(size, ary[5]);

for (i = 0; i <= size; i++)
printf("ary[5][%d] = %d\n", i, ary[5][i]);
}

Create the shared library:

$ cd lib
$ cc -KPIC -O -dy -G -Bsymbolic c_script.c -o c_script.so -lc
$ cd ..

Run the schedule.

Contents of user output on U N IX Agents:

C output: [hello world]
result of foo: 50
message = [s_func return value, this is a test.]
message in bar(): [hello world, this is a test.]
ary[5][0] = 0
ary[5][1] = 1
ary[5][2] = 2
ary[5][3] = 3
ary[5][4] = 4
ary[5][5] = 5
ary[5][6] = 6
ary[5][7] = 7
ary[5][8] = 8
ary[5][9] = 9
ary[5][10] = 10
ary[5][11] = 11
ary[5][12] = 12
ary[5][13] = 13
ary[5][14] = 14
ary[5][15] = 15
ary[5][16] = 16
ary[5][17] = 17
ary[5][18] = 18
ary[5][19] = 19
4 -1 7

Scripts, Subroutines, and C Libraries
Contents of user output on N T Agents:

result of foo: 50
message = [s_func return value, this is a test.]
ary[5][0] = 0
ary[5][1] = 1
ary[5][2] = 2
ary[5][3] = 3
ary[5][4] = 4
ary[5][5] = 5
ary[5][6] = 6
ary[5][7] = 7
ary[5][8] = 8
ary[5][9] = 9
ary[5][10] = 10
ary[5][11] = 11
ary[5][12] = 12
ary[5][13] = 13
ary[5][14] = 14
ary[5][15] = 15
ary[5][16] = 16
ary[5][17] = 17
ary[5][18] = 18
ary[5][19] = 19
4 -1 8

ã ã ã C H A P T E R 5

User Emulation
In addition to its C-like features, VU provides features designed to emulate actual
users running client applications and sending requests to a server. This chapter
describes these features in the following topics:

ã Emulation commands

ã Emulation functions

ã VU environment variables

ã Read-only variables

ã Supplying a script with meaningful data

Emulation Commands

An emulation command causes a script to communicate with a server in the same
manner as an actual client application. The communication may involve sending one
or more requests to a server, or involve receiving and evaluating responses from it.
The specific communication is recorded during script creation, or possibly added
during subsequent script editing. An example is to query for a row of data. Emulation
commands consist of:

ã H TTP emulation commands for emulating H TTP clients.

ã SQL emulation commands for emulating database client applications.

ã TU XEDO emulation commands for emulating TU XEDO clients.

ã IIO P emulation commands for emulating IIOP clients that communicate with
CORBA components.

ã Socket emulation commands for emulating raw socket clients.
5 -1

U ser Em ula tion
There are a number of emulation commands that you can add to your scripts. These
provide measurement timers, customization of test cases, and inclusion of external
C. These emulation commands are independent of the particular type of client (for
example, H TTP, SQL, or socket), so the same additions can be used for all script
types. The commands are as follows:

ã The start_time and stop_time commands. You can insert these
commands during recording through the Robot Insert menu. With these
commands, you can time a block of user actions, typically for a single user level
transaction.

ã The testcase command. This command lets you customize your own test
cases. For example, you can check a response for specific results and have the
success or failure logged in the LoadTest report output.

ã The emulate command. This command lets you use external C linkage to
support a proprietary protocol or interface. You can wrap VU or external C
function calls with the emulate command, and thus obtain the full set of
services normally associated with the standard emulation commands, including
time stamping and reporting on success or failure.

Emulation commands that succeed return a value of 1 or greater. Emulation
commands that fail return a value of 0 or less.

HTTP Emulation Commands
If you have recorded Web traffic, your resulting script will contain VU emulation
commands and functions pertaining to H TTP. These commands and functions have
the prefix http.

In general, you will not have to alter an H TTP script extensively; it should typically
run without errors.

HTTP Commands that You Insert Manually
LoadTest also provides H TTP emulation commands and functions that you can
insert manually into your script. These are:

ã http_header_info. This function lets you retrieve the values of the header
information. For example, you can retrieve the content length of the page or
when the page was last modified.

ã http_recv. This command enables the script to receive data until a specified
string appears in the data. At the end of the specified string, the script stops
reading data.
5 -2

Em ula tion Com m ands

ipt
r

hen
cess
Monitoring Computer Resources
To monitor computer resources for H TTP servers, you must add an INFO SERVER
declaration for that computer in at least one VU script in the schedule.

The syntax for this statement is as follows:

INFO SERVER label=addr [, label=addr]

label is a string that gives the logical name of the server. This is the name you see
associated with the resource data in LoadTest reports and graphs.

addr is a string that gives the network name or IP address of the Web server.

Although you can add this line in the script anywhere you can declare a VU variable,
you should generally add it at the start of the script (after the opening brace) or
immediately before the first http_request that communicates to that server. If
you add it before the first http_request, enclose the INFO SERVER declaration
in braces.

You need to add a declaration for each different H TTP server you want to monitor.
You can declare the same INFO SERVER in different scripts; however the
definitions must be consistent for all scripts included in a LoadTest schedule. There
is no requirement that the INFO SERVER declaration occur in each H TTP script,
or for that matter in an H TTP script at all (as long as it occurs in at least one VU
script included in the schedule). In fact, you could create a special “servers” scr
just for this purpose, and assign that “declaration-only” script to any (or all) use
groups in the schedule. However, the advantage of putting the appropriate INFO
SERVER declarations in each HTTP script is that less maintenance is involved w
creating schedules since you don’t have to be concerned with which scripts ac
which HTTP servers.
5 -3

U ser Em ula tion

st
isting
Example
The following example shows a portion of an H TTP script, with comments and two
INFO SERVER declarations added. One INFO SERVER declaration is at the start
of the script and one is before the first http_request (enclosed in braces).

Each server makes two requests — one for each page of data received. Only the fir
request contains the connection parameters. The second request uses the ex
connection specified by the Server_connection environment variable.

{
INFO SERVER "CAPRICORN_WEB" = "capricorn-web";
CAPRICORN_WEB_80 = http_request "CAPRICORN-WEB:80", "",
HTTP_CONN_DIRECT,

"GET / HTTP/1.0\r\n"
"Accept: application/vnd.ms-excel, application/mswo"
"rd, application/vnd.ms-powerpoint, image/gif, imag"
"e/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n"
"Accept-Language: en\r\n"
"UA-pixels: 1152x864\r\n"
"UA-color: color8\r\n"
"UA-OS: Windows NT\r\n"
"UA-CPU: x86\r\n"
"User-Agent: Mozilla/2.0 (compatible; MSIE 3.01; Windows NT)\r\n"
"Host: capricorn-web\r\n” “Connection: Keep-Alive\r\n\r\n";

set Server_connection = CAPRICORN_WEB_80;
http_header_recv 200;/* OK */
/* more data (4853) than expected >> 100 % */
http_nrecv 100 %% ; /* 4853/4051 bytes */
http_disconnect(CAPRICORN_WEB_80);
{
INFO SERVER "GEMINI_WEB" = "gemini-web";
}
GEMINI_WEB_80 = http_request "GEMINI-WEB:80", "",
HTTP_CONN_DIRECT,

"GET / HTTP/1.0\r\n"
"Accept: application/vnd.ms-excel, application/mswo"
"rd, application/vnd.ms-powerpoint, image/gif, imag"
"e/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n"
"Accept-Language: en\r\n"
"UA-pixels: 1152x864\r\n"
"UA-color: color8\r\n"
"UA-OS: Windows NT\r\n"
"UA-CPU: x86\r\n"
"User-Agent: Mozilla/2.0 (compatible; MSIE 3.01; Windows NT)\r\n"
"Host: capricorn-web\r\n” “Connection: Keep-Alive\r\n\r\n";

set Server_connection = GEMINI_WEB_80;
http_header_recv 200;/* OK */
/* more data (4853) than expected >> 100 % */
http_nrecv 100 %% ; /* 4853/4051 bytes */
http_disconnect(GEMINI_WEB_80);
}

5 -4

Em ula tion Com m ands

ill
r not

m a
letes a
ecause

s not
e

ging

ta or
SQL Emulation Commands
If you have recorded a SQ L application, your resulting script contains VU emulation
commands and functions pertaining to SQL. These commands and functions have
the prefix sql.

A script that simply reads records will probably play back without errors. H owever,
if you read the same record from the database over and over, your script technically
“works,” but may not reflect a realistic workload. This is because the database w
cache the record, which may or may not be desirable, depending on whether o
cached records reflect the workload you are emulating.

You probably need to alter a script that inserts records in or deletes records fro
database before it plays back as intended. This is because if one virtual user de
record and does not restore the database, the second virtual user’s delete fails b
the record is already deleted.

Processing Data from SQL Queries
The sqlnrecv command reads the data returned from the database, but it doe
parse it into rows and columns. The following VU toolkit functions, which com
with Rational Suite PerformanceStudio, enable you parse data returned by
sqlnrecv into rows and columns.

ã proc SaveData(data_name)

ã proc AppendData(data_name)

ã proc FreeData(data_name)

ã proc FreeAllData()

ã string func GetData(data_name, row, column)

ã string func GetData1(data_name, column)

SaveData stores the data returned by the most recent sqlnrecv command, tag
it with the value of the data_name argument.

AppendData adds data to an existing named data set. FreeData and
FreeAllData release the data and associated storage for the named set of da
for all sets of data respectively. GetData retrieves the specified row and column
from the data associated with data_name.

GetData1 is similar to GetData, but GetData1 always retrieves the specified
column from the first data row.
5 -5

U ser Em ula tion

ent
s not

 the

d
re:

e

ld
SQL Error Conditions
SQL emulation commands return a value of >=1 if execution was normal, or <=0
if an error occurred (that is, Timeout_val expired or _error has a nonzero
value). SQL emulation commands set _error and _error_text to indicate the
status of the emulated SQ L statements. If _error has a nonzero value and
Log_level is set to "ALL" or "ERROR," the log file entry indicates that the
command failed, and the values of _error and _error_text are logged.

You can also set the SQL emulation commands to “expect” certain errors. The
EXPECT_ERROR clause causes the emulation command to “pass” (match the
expected response) if the expected error occurs. Conversely, if the SQL statem
produces no error, but an error is expected, the emulation command “fails” (doe
match the expected response), and is logged and recorded accordingly.

VU Toolkit Functions: File I/O
A common task in performance testing is to read a set of data from a file, parse
line read, and then use the fields of data as send parameters. The VU toolbar
functions provide a set of routines and variables to implement this process, an
include the capability of processing comments in the input file. The variables a

ã string Last_Line

ã string Last_Field

ã string Last_Subfield

These contain the most recently read line, field, and subfield as produced by th
following functions:

ã func ReadLine(file_descriptor)

ã string func NextField()

ã string func IndexedField(index)

ã string func NextSubField()

ã string func IndexedSubField(index)

ã SHARED_READ(filename, prefix)

The ReadLine function reads a line from the currently open file designated by
file descriptor. The function has many options to define comment lines, fie
delimiters, and end-of-file behavior.

The NextField function parses the line read by ReadLine. Each successive call
returns the next field on the line. The variable Last_Field contains the string
returned by the most recent call to this function.
5 -6

Em ula tion Com m ands
The IndexedField function parses the line read by ReadLine and returns the
field indicated by the index argument. A call to IndexedField resets the field
pointer so that a subsequent call to NextField returns the field following the
index. The variable Last_Field contains the string returned by the most recent
call to this function.

The NextSubField function parses the field returned by the most recent call to
NextField or IndexedField. Each successive call returns the next subfield
within the field. The variable Last_Subfield contains the string returned by the
most recent call to this function.

The IndexedSubField function parses the field returned by the most recent call
to NextField or IndexedField, returning the subfield indicated by index. A
call to IndexedSubField resets the field pointer so that a subsequent call to
NextField returns the field following the index. The variable Last_Subfield
contains the string returned by the most recent call to this function.

SHARED_READ allows multiple users to share filename, so that no two users read
the same line. It depends on two externally defined shared variables named
prefix_lock and prefix_offset.

TUXEDO Emulation Commands
If you recorded a TU XEDO application, your resulting script contains VU
emulation commands and functions pertaining to TU XEDO .

The names for VU emulation commands follow the names of the TU XEDO API
calls, but they have the preface tux_. So, for example, the VU emulation command
tux_tpacall corresponds to the TU XEDO API call tpacall.

There are two basic types of commands:

ã Commands that return a pass/fail indicator. These commands return 1 (logical
true) if the commands succeeds, and 0 (logical false) if it fails.

ã The commands that return a value that other commands use later. If these
commands fail, they return -1.

How VU Represents TUXEDO Pointers
Some TU XEDO API calls use pointers. H owever, pointers are not supported in the
VU language. Therefore, the VU language uses free buffers to represent pointers.

A free buffer can be simple, representing a single buffer member, or composite,
containing many individually named buffer members. Within VU and TU XEDO,
free buffers can represent simple data types, such as pass-by-reference long integers,
as well as composite data types, such as nested C structures and TU XEDO typed
buffers.
5 -7

U ser Em ula tion
Since simple buffers have no members, you should use an empty string ("")
whenever a simple buffer member name is required.

For composite buffers, use the following syntax to specify a member:

name ["." name ["." name] ...] [":" instance]

where name is the name string given to the member, and instance is an integer
value representing the cardinal occurrence of a multiply defined member name.
Instance numbers begin with zero.

The following example loads the "msgid" string of the "qctl" member of a
BUFTYP_TPEVCTL buffer for tux_tpsubscribe:

tpevctl = tux_allocbuf(BUFTYP_TPEVCTL);
tux_setbuf_string(tpevctl, "qctl.msgid", "somevalue");
...

The following example loads the fourth occurrence of the field named "QUANTITY"
(converting value to an integer) from an FML buffer named odata_ populated by
tux_tpcall:

quantity = tux_getbuf_int(odata_, "QUANTITY:3");

With FML buffers, omitting instance implies the first occurrence of that member
name. For example, "QUANTITY:0" and "QUANTITY" are equivalent.

The free buffer types, their member names, and the corresponding VU data types are
as follows:

Buffer Type/Member Names VU Data Type Equivalent

BUFTYP_CARRAY string (user-defined maximum length).
N onprintable characters are converted to
hexadecimal strings delimited by grave
accent characters.

BUFTYP_CLIENTID
"clientdata0"
"clientdata1"
"clientdata2"
"clientdata3"

(composite)
int
int
int
int

BUFTYP_FML
U ser-defined field names and values

(composite)

BUFTYP_FML32
U ser-defined field names and values

(composite)

BUFTYP_REVENT int

BUFTYP_STRING string (user-defined maximum length)
5 -8

Em ula tion Com m ands
BUFTYP_SUBTYPE string (maximum length = 15)

BUFTYP_TPEVCTL
"flags"
"name1"
"name2"
"qctl"

"qctl.flags"
"qctl.deq_time"
"qctl.priority"
"qctl.diagnostic"
"qctl.msgid"
"qctl.corrid"
"qctl.replyqueue"
"qctl.failurequeue"
"qctl.cltid"

"qctl.cltid.clientdata0"
"qctl.cltid.clientdata1"
"qctl.cltid.clientdata2"
"qctl.cltid.clientdata3"
"qctl.urcode"
"qctl.appkey"

(composite)
int
string (maximum length = 31)
string (maximum length = 31)
string. N onprintable characters are
converted to hexadecimal strings delimited
by grave accent characters.
int
int
int
int
string (maximum length = 31)
string (maximum length = 31)
string (maximum length = 15)
string (maximum length = 15)
string. N onprintable characters are
converted to hexadecimal strings delimited
by grave accent characters.
int
int
int
int
int
int

BUFTYP_TPINIT
"usrname"
"cltname"
"passwd"
"grpname"
"flags"
"datalen"
"data"

(composite)
string (maximum length = 30)
string (maximum length = 30)
string (maximum length = 30)
string (maximum length = 30)
int
int
string (user-defined maximum length).
N onprintable characters are converted to
hexadecimal strings delimited by grave
accent characters.

 (Continued)

Buffer Type/Member Names VU Data Type Equivalent
5 -9

U ser Em ula tion
BUFTYP_TPQCTL
"flags"
"deq_time"
"priority"
"diagnostic"
"msgid"
"corrid"
"replyqueue"
"failurequeue"
"cltid"

"cltid.clientdata0"
"cltid.clientdata1"
"cltid.clientdata2"
"cltid.clientdata3"
"urcode"
"appkey"

(composite)
int
int
int
int
string (maximum length = 31)
string (maximum length = 31)
string (maximum length = 15)
string (maximum length = 15)
string. N onprintable characters are
converted to hexadecimal strings delimited
by grave accent characters.
int
int
int
int
int
int

BUFTYP_TPTRANID
"info0"
"info1"
"info2"
"info3"
"info4"
"info5"

(composite)
int
int
int
int
int
int

BUFTYP_TYPE string (maximum length = 7)

BUFTYP_VIEW string (user-defined maximum length).
N onprintable characters are converted to
hexadecimal strings delimited by grave
accent characters.

BUFTYP_VIEW32 string (user-defined maximum length).
N onprintable characters are converted to
hexadecimal strings delimited by grave
accent characters.

BUFTYP_X_C_COMMON string (user-defined maximum length).
N onprintable characters are converted to
hexadecimal strings delimited by grave
accent characters.

 (Continued)

Buffer Type/Member Names VU Data Type Equivalent
5 -1 0

Em ula tion Com m ands

t
Free buffers are allocated with the tux_allocbuf and tux_allocbuf_typed
functions, which return a buffer handle that can be used to reference the allocation
by other API calls. O nce a free buffer is no longer needed, deallocate it with the
tux_freebuf function. Functions for loading, unloading, resizing, and describing
buffers and buffer members also are available.

TUXEDO Error Conditions
Error conditions differ slightly between TU XEDO and the VU language.
Consistent with the VU language, TU XEDO emulation commands set the _error
and _error_text read-only variables. They also set _error_type, a variable
used only with TU XEDO. Although you need to check the value of _error or the
return value to determine whether an error occurred, you should then check the
_error_type, which indicates how to interpret the value in _error. For
example, _error_type tells you if the value in _error is a TU XEDO system
error code or an FML error code. To see the actual message, you read
_error_text, just as with any other VU emulation command.

Four VU emulation commands (tux_tpcall, tux_tpgetrply,
tux_tprecv, and tux_tpsend) update the read-only variable
_tux_tpurcode. This variable contains the same information as the TU XEDO
global variable tpurcode, and will help diagnose playback errors related to a failure
in the server.

IIOP Emulation Commands
This section describes how the VU language emulates Internet Inter-ORB Protocol
(IIOP) activity. VU ’s IIOP emulation commands and functions currently suppor
the CORBA model.

BUFTYP_X_C_TYPE string (user-defined maximum length).
N onprintable characters are converted to
hexadecimal strings delimited by grave
accent characters.

BUFTYP_X_OCTET string (user-defined maximum length).
N onprintable characters are converted to
hexadecimal strings delimited by grave
accent characters.

 (Continued)

Buffer Type/Member Names VU Data Type Equivalent
5 -1 1

U ser Em ula tion

in its
turn
nse.

jects.

annot
hese

iated
Interfaces, Interface Implementations and Operations
CORBA (Common O bject Request Broker Architecture) defines an architecture for
remote method invocation between distributed objects. The methods of an object in
the CORBA model are exposed to other objects via its IDL interface definition, or
interface. Once a reference to an object is obtained, operations (methods) may be
invoked on that object. Remote invocation occurs via IIOP request messages.

Within this section the terms object and interface implementation may be used
interchangeably. Likewise the terms method and operation are equivalent. H owever,
VU /IIOP is concerned only with the CO RBA/IIO P interface model and not the
larger CORBA object model. Therefore object model terminology is only used
when it serves to clarify a subject.

Request Contexts and Result Sets
Within VU /IIOP, every operation invocation is associated with a request context that
encapsulates all of the information required to perform the operation. This includes
all of the information needed to construct an IIOP Request message (object key,
operation name, parameters, service context, requesting principal, and so on) as well
as the information required to retrieve the response (request ID, and so on).

The operation’s response data, known as the result set, is also encapsulated with
associated request context. This includes any operation out parameters, the re
value and any exception information that may have been returned in the respo

Therefore all interactions with an interface implementation are done through a
request context. VU /IIOP implements request contexts via Request pseudo-ob

VU/IIOP Pseudo-Objects
VU uses a number of abstract data types to represent collections of data that c
be represented by the native VU language scalars (such as ints and strings). T
types, called pseudo-objects, are referenced by their pseudo-object handles.

Handles are integer values that uniquely identify pseudo-objects and their assoc
variables.

Two pseudo-objects supporting IIOP messaging are:

ã Object Reference

ã Request
5 -1 2

Em ula tion Com m ands

ter

t
.

e
O bject Reference Pseudo-O bjects
An Object Reference pseudo-object represents a reference to an interface
implementation that implements the operations of a specific interface. O nce an
interface specification is bound to an active interface implementation by the
iiop_bind emulation command, a pseudo-object representing this binding is
created and assigned a unique handle. The handle may then be used by the
emulation commands to send operation requests to the interface implementation.

When an interface binding is no longer needed, that O bject Reference pseudo-object
may then be released by the iiop_release emulation function. Once released,
the binding to the object implementation is destroyed.

Request Pseudo-O bjects
A Request pseudo-object represents an active request context. They are created by
the iiop_invoke emulation command.

Once created a Request pseudo-object persists until it is explicitly destroyed by a call
to iiop_release, after which all request context information associated with that
pseudo-object is destroyed and its handle becomes invalid.

Parameter Expressions
A parameter expression is a string expression used to specify the names, input values
and output binding variables for an operation’s argument list and corresponding
result set members (collectively known as the operation’s parameters). Parame
expressions are used by all emulation commands that invoke operations on an
interface implementation.

The syntax for a parameter expression is:

parameter-name-expr ":" [input-bind-expr] [":" &output-bind-var]

where

parameter-name-expr is a string naming the parameter to be bound.

input-bind-expr is an optional VU language expression specifying the inpu
value to the named parameter, which must be an IDL “in” or “inout” parameter

output-bind-var is an optional VU variable that will contain the output valu
of the named parameter, which must be an IDL “inout” or “out” parameter.
5 -1 3

U ser Em ula tion
Param eter N am e Expressions
Parameters that represent single data values are known as scalar parameters.
Parameters that represent data structures containing multiple data values are known
as aggregate param eters. VU /IIOP can address any IDL basic data type, or any IDL
basic data type member of any IDL constructed data type, used as a scalar or aggregate
operation argument, result value or exception when identified with a parameter
name expression.

The parameter name expression form for a scalar operation argument or exception
member is simply:

parameter-name

where parameter-name is the IDL operation argument or exception member
name. The name for an operation result value is the empty string ("").

There are four aggregate IDL constructed data types: struct, union, array, and
sequence. The expression form for identifying an aggregate parameter’s member is:

member-expr[member-expr...]

where member-expr has four possible forms:

ã For IDL basic types the form is:

member-name

where member-name is the name of the member, which may be the name of
the parameter if it is the topmost node.

ã For struct types the form for identifying struct members is:

struct-name"."member-expr

where struct-name is the name of the struct, which may be the name of the
parameter if it is the topmost node or the name of a member if it is embedded.

ã For union types the expression form for identifying union members is:

union-name":"discriminator-value"."member-expr

where union-name is the name of the union, which may be the name of the
parameter if it is the topmost node or the name of a member if it is embedded,
and discriminator-value is the value of the IDL union
switch_type_spec for the member being referenced.

ã For array and sequence types the member expression form for identifying array
and sequence members is:

member-expr"["element-id"]"

where element-id is an integer identifying the ordinal position of the
member within the array or sequence, starting at 0.
5 -1 4

Em ula tion Com m ands
Interface Definition Language (IDL)
You must provide access to the IDL for your application to LoadTest. The IDL for
an application usually consists of several files with a .idl extension. These files
describe the operations and parameters that the objects of your application support.
Developers can create the IDL manually using a text editor. The IDL can also be
generated from a modeling tool such as Rational Rose.

Without access to the IDL, LoadTest can create only opaque scripts. An opaque script
shows the names of the operations, but it does not show parameter names. For
example, the command below specifies that the deposit operation is to be invoked,
but it does so opaquely:

iiop_invoke ["deposit"] "deposit", objref_2,
"IIOP_RETURN" : : &iiop_return,
"*" : "‘010000007d000000‘";

If you load the IDL by clicking Tools → Interfaces in Robot, before recording a
script, Robot will create more meaningful scripts. The following is an example of an
operation created with an IDL available:

iiop_invoke ["deposit"] "deposit", objref_2,
"account_number" : "2938845",
"amount" : "125";

If explicit path information is not provided within #include directives in IDL files,
not all IDL may be loaded. To ensure that all IDL files are loaded, create a user
environment variable called IDLINCLUDE. Set IDLINCLUDE to the path for IDL
files accessed by #include. For example:

d:\idl; d:\sysidl

Exceptions and Errors
Any operation may return an exception instead of its normal result set.

Error reporting takes advantage of the three error-related VU read-only variables:
_error, _error_type and _error_text:

_error contains the status code of the most recent VU /IIOP emulation command.
If the command completes successfully, _error is set to IIOP_OK. If the
command fails, _error contains a value greater than 0.The exact interpretation of
_error is then determined by the value of _error_type. _error_text contains
a textual definition of a non-zero _error code.
5 -1 5

U ser Em ula tion
The VU language recognizes three types of errors:

ã server-reported CORBA system exceptions.

CORBA defines a set of standard exception definitions used by ORBs to report
system-level error events.

ã server-reported CORBA user exceptions.

ã LoadTest-reported errors. These errors are in the _error read-only variable,.

LoadTest reports error conditions that do not fall under the classification of
CORBA exceptions.

The following table lists the server-reported CO RBA system exceptions.

if _error_type is 1 and _error is then _error_text is

1 IIOP_BAD_PARAM an invalid parameter was passed

2 IIOP_NO_MEMORY dynamic memory allocation failure

3 IIOP_IMP_LIMIT violated implementation limit

4 IIOP_COMM_FAILURE communication failure

5 IIOP_INV_OBJREF invalid object reference

6 IIOP_NO_PERMISSION no permission for attempted operation

7 IIOP_INTERNAL ORB Internal error

8 IIOP_MARSHAL error marshalling parameter/result

9 IIOP_INITIALIZE ORB initialization failure

10 IIOP_NO_IMPLEMENT operation implementation unavailable

11 IIOP_BAD_TYPECODE1 bad typecode

12 IIOP_BAD_OPERATION invalid operation

13 IIOP_NO_RESOURCES insufficient resources for request

14 IIOP_NO_RESPONSE response to request not yet available

15 IIOP_PERSIST_STORE persistent storage failure

16 IIOP_BAD_INV_ORDER routine invocations out of order

17 IIOP_TRANSIENT transient failure, reissue request

18 IIOP_FREE_MEM cannot free memory

19 IIOP_INV_IDENT invalid identifier syntax
5 -1 6

Em ula tion Com m ands
The following table lists the server-reported CO RBA user exceptions:

The following table lists the LoadTest-reported errors:

Socket Emulation Commands
If you have recorded an unsupported protocol as a stream of bytes, your resulting
script will contain VU emulation commands and functions pertaining to raw socket
data. These commands and functions have the prefix sock.

20 IIOP_INV_FLAG invalid flag was specified

21 IIOP_INTF_REPOS error accessing interface repository

22 IIOP_BAD_CONTEXT error processing context object

23 IIOP_OBJ_ADAPTER failure detected by object adapter

24 IIOP_DATA_CONVERSION data conversion error

25 IIOP_OBJECT_NOT_EXIST nonexistent object, delete reference

26 IIOP_TRANSACTION_REQUIRED transaction required

27 IIOP_TRANSACTION_ROLLEDBACK transaction rolled back

28 IIOP_INVALID_TRANSACTION invalid transaction

29 IIOP_UNKNOWN unknown exception

 (Continued)

if _error_type is 1 and _error is then _error_text is

if _error_type is 2 and _error is then _error_text is

1 IIOP_USER_EXCEPTION user exception

if _error_type is 3 and _error is then _error_text is

1 IIOP_TIMEOUT command timed out

2 IIOP_BINDFAIL unable to bind with any modus

3 IIOP_OP_UNKNOWN operation not found in IDL information
5 -1 7

U ser Em ula tion

an

ink

Although socket recording will capture network traffic, you need to be familiar with
the network protocol to obtain a script you can work with and understand. If the
protocol is clear text, the process is fairly straightforward. If the protocol is not clear
text, you must understand the structure of the protocol messages.

Emulation Functions

Like emulation commands, the VU emulation functions are related to virtual user
emulation. H owever, emulation functions differ from emulation commands in the
following ways:

ã Emulation functions do not increment the emulation command count
(_cmdcnt).

ã Emulation functions are neither logged in the standard log file nor recorded in
the standard result files; hence they are not available to LoadTest reports.

ã Emulation functions do not generate think time delays nor do they time out.

VU Environment Variables

Environment variables specify the virtual users’ environments. For example, you c
use an environment variable to specify:

ã A virtual user’s average think time, the maximum think time, and how the th
time is mathematically distributed around a mean value.

ã How long to wait for a response from the server before timing out.

ã The level of information that is logged and is available to reports.

The following table summarizes the VU environment variables:

N O TE: VU supports the Jolt protocol by using macros and user-defined VU
functions that call socket emulation commands. For information about the Jolt
protocol, see Appendix A.

Environment Variable Category Values Default

CS_blocksize client/server integer 1 - 32767 1

Check_unread reporting string "FIRST_INPUT_CMD"
"OFF" "EVERY_INPUT_CMD"

"FIRST_INPUT_CMD"

Column_headers client/server string "ON" "OFF" "ON"

Connect_retries connect integer 0-2000000000 100
5 -1 8

VU Environm ent Variables
Connect_retry_interval connect integer 0-2000000000 ms 200

Cursor_id client/server integer: a value returned by
sqldeclare_cursor,
sqlopen_cursor, or
sqlalloc_cursor

0

Delay_dly_scale think time integer 0-2000000000 percent 100

Escape_seq exit sequence any bank expression; two
optional integer expressions

null bank expression

Http_control H TTP-related integer indicating 0 or more
of:
0 (exact match)
HTTP_PARTIAL_OK
HTTP_PERM_REDIRECT_OK
HTTP_TEMP_REDIRECT_OK
HTTP_REDIRECT_OK
HTTP_CACHE_OK

0

Iiop_bind_modi IIOP-related colon-separated list of one or
more of the following strings:
"File" "Nameservice"
"IOR" "Visibroker"

null string

Line_speed H TTP-related integer indicating bits per
second: 0-2000000000

0 (no delay)

Log_level reporting string "ALL" "TIMEOUT"
"OFF" "ERROR"
"UNEXPECTED"

"TIMEOUT"

Logout_seq exit sequence any bank expression; two
optional integer expressions

null bank expression

Max_nrecv_saved reporting integer 0-2000000000 2000000000

Mybstack private a bank expression NULL (empty)

Mysstack private a string expression ""

Mystack private an integer expression 0

Record_level reporting "MINIMAL" "TIMER"
"FAILURE" "COMMAND"
"ALL"

"COMMAND"

Server_connection client/server A value returned by
sqlconnect

1

 (Continued)

Environment Variable Category Values Default
5 -1 9

U ser Em ula tion
Sqlexec_control_oracle client/server string "" "STATIC_BIND" ""

Sqlexec_control_
sqlserver

client/server string "LANGUAGE" "RPC" "LANGUAGE"

Sqlexec_control_sybase client/server string "LANGUAGE" "RPC"
"IMMEDIATE"

"LANGUAGE"

Sqlnrecv_long client/server integer 0-2000000000 20

Statement_id client/server integer 0, or a value returned
by sqlprepare or
sqlalloc_statement

0

Suspend_check reporting string "ON" "OFF" "ON"

Table_boundaries client/server string "ON" "OFF" "OFF"

Think_avg think time integer 0-2000000000 ms 5000

Think_cpu_threshold think time integer 0-2000000000 ms 0

Think_cpu_dly_scale think time integer 0-2000000000 ms 100

Think_def think time string "FS" "LS" "FR"
"LR" "FC" "LC"

"LR"

Think_dist think time string "CONSTANT"
"UNIFORM" "NEGEXP"

"CONSTANT"

Think_dly_scale think time integer 0-2000000000 ms 100

Think_max think time integer 0-2000000000 ms 2000000000

Think_sd think time integer 0-2000000000 ms 0

Timeout_act response timeout string "IGNORE" "FATAL" "IGNORE"

Timeout_scale response timeout integer 0-2000000000 ms 100

Timeout_val response timeout integer 0-2000000000 ms 120000 ms

 (Continued)

Environment Variable Category Values Default
5 -2 0

VU Environm ent Variables

trol

fault

ay to

h
ply
nds.

an
ule.

e

alues
Changing Environment Variables Within a Script
Environment control commands allow a VU script to control a virtual user’s
environment by operating on the environment variables. The environment con
commands are eval, pop, push, reset, restore, save, set, and show.

Every environment variable has, instead of a single value, a group of values: a de
value, a saved value, and a current value.

ã default – The value of an environment variable before any commands are
applied to it. Environment variables are automatically initialized to a default
value, and, like persistent variables, retain their values across scripts. The reset
command resets the default value, as listed in the previous table.

ã saved – The saved value of an environment variable can be used as one w
retain the present value of the environment variable for later use. The save and
restore commands manipulate the saved value.

ã current – The VU language supports a last-in-first-out “value stack” for eac
environment variable. The current value of an environment variable is sim
the top element of that stack. The current value is used by all of the comma
The push and pop commands manipulate the stack.

Initializing Environment Variables through a Schedule
In addition to changing VU environment variables directly within a script, you c
also initialize the most commonly used environment variables through a sched
To initialize the values through a schedule, display the schedule and click the U ser
Settings button.

The environment variable values that you set in a schedule are in effect until th
script changes that value.

Client/Server Environment Variables
This section discusses the client/server environment variables.

Column_headers

This string environment variable, used by sqlnrecv and sqlfetch_cursor,
indicates whether column headers should be included with the retrieved data. V
are "ON" (the default) or "OFF." When the value is "ON," sqlnrecv or
sqlfetch_cursor includes column names in _alltext and in the log file.
_response never includes column headers.
5 -2 1

U ser Em ula tion
You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Cursor_id

This integer environment variable has a default value of 0 and may contain any value
returned by sqldeclare_cursor, sqlopen_cursor, or
sqlalloc_cursor.

If the value of Cursor_id is zero, then sqldeclare_cursor allocates new
resources for a cursor and returns the cursor id associated with those resources. If the
value of Cursor_id is non-zero, sqldeclare_cursor does not allocate new
resources, and instead reuses the resources associated with that cursor.

The sqlopen_cursor command behaves the same way when it is given a SQ L
statement. If sqlopen_cursor is given a Cursor_id argument, Cursor_id
has no effect.

CS_blocksize
This integer environment variable, used by sqlnrecv and sqlfetch_cursor,
specifies the maximum number of rows to receive with a single SQL database
request. If sqlnrecv or sqlfetch_cursor must retrieve more than the
number of rows specified by CS_blocksize, the rows are retrieved by multiple
requests.

The minimum and default value is 1 row. Although the maximum value is 32767
rows, your system resources or database server may limit you to a considerably
smaller maximum value.

This environment variable affects system performance and response time
measurements. You should set it to the same value that the client application uses.
This may vary from one command to another.

If you set CS_blocksize too small, your system performs too many fetch
commands. If you set it too large, your system performs too few fetch commands.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.
5 -2 2

VU Environm ent Variables
Server_connection
This integer environment variable identifies the current server connection over
which emulation commands operate. Values are integer expressions obtained by
calling sqlconnect, http_request, or sock_connect.

If Record_level is "COMMAND" or "ALL," Server_connection is
recorded. This is to inform LoadTest reports which Server_connection an
emulation command uses.

You can initialize this environment variable only by editing a script.

Sqlexec_control variables
These string environment variables, used by sqlexec, control the method used to
transmit the SQL statement to the SQL database server.

The Sqlexec_control variables are as follows:

You can initialize this environment variable only by editing a script.

Variable Description

Sqlexec_control_sybase Values can be:

ã LANGUAGE. Default. Commands are sent as
regular SQL text.

ã RPC. Commands are initiated and executed as a
remote procedure call. Arguments are optional.

ã IMMEDIATE. Commands are executed as
dynamically prepared statements, with or
without arguments.

Sqlexec_control_sqlserver Values can be:

ã LANGUAGE. Default. Commands are sent as
regular SQL text.

ã RPC. Commands are initiated and executed as a
remote procedure call. Arguments are optional.

Sqlexec_control_oracle Values can be:

ã "". Default. Arguments are bound for each call
to sqlexec.

ã STATIC_BIND. Arguments are bound to a
static memory location, and argument values are
copied to that location for execution by
sqlexec.
5 -2 3

U ser Em ula tion
Sqlnrecv_long

This integer environment variable, which is used by sqlnrecv and
sqlfetch_cursor, specifies the number of bytes of longbinary and longchar
columns to be fetched from the server, and included in the _response read-only
variable and logged.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Statement_id

Statement_id allows you to reuse cursor structures. You can allocate it once
(using sqlalloc_statement) and then prepare different SQL statements on
the same structure, by setting the Statement_id environment variable to the
value returned from sqlalloc_cursor. This improves performance on the
database by taking up fewer resources.

Statement_id holds the statement IDs returned by sqlprepare and
sqlalloc_statement. These IDs can be used by sqlexec, as well as the
sqlcursor commands, in place of a string representation of a SQL statement.
Statement_id is also used by sqlfree_statement, and affects sqlnrecv
and sqllongrecv.

Exam ple 1
stmtid_1 = sqlalloc_statement();
set Statment_id = stmtid_1;
/* since we set Statement_id = stmtid_1, sqlprepare will operate on
that id
instead of creating a
new one */
sqlprepare "select * from employees";
sqlexec stmtid_1;
/* this statement will also operate on the stmtid_1 instead of
creating a
new structure since Statement_id is still set */
sqlprepare "select * from users";
sqlexec stmtid_1;

Exam ple 2
The Statement_id also allows you to interleave sqlexec and sqlnrecv
commands. U p until now, it has always been a requirement that sqlnrecv
commands immediately follow sqlexec commands. If you use the
Statement_id environment variable, you can do an exec on one statement
(stmtid_1), do a prepare, exec, and fetch on another statement (stmtid_2),
and then go back and do a fetch on stmtid_1.
5 -2 4

VU Environm ent Variables
For example:

stmtid_1 = sqlalloc_statement();
stmtid_2 = sqlalloc_statement();

set Statement_id = stmtid_1;

/* this operates on stmtid_1 */
sqlprepare "select * from employees";

sqlexec stmtid_1;

set Statement_id = stmtid_2;

/* this operates on stmtid_2 */
sqlprepare "select * from users";

sqlexec stmtid_2;

/* this operates on stmtid_2 since that is what Statement_id is set
to */
sqlnrecv ALL_ROWS;

set Statement_id = stmtid_1;

/* this operates on stmtid_1 since that is what Statement_id is now
set to
*/
sqlnrecv ALL_ROWS;

Table_boundaries

This string environment variable, used by sqlnrecv and sqlfetch_cursor,
halts data retrieval at table boundaries. Values are "ON" or "OFF."

When the value is "ON":

ã sqlnrecv halts at the end of the current table, even if fewer than n rows were
retrieved. The next call to sqlnrecv retrieves the next table.

ã sqlfetch_cursor does not cross table boundaries when fetching from a
multitable result set.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Connect Environment Variables
This section describes the connect environment variables. This group of
environment variables applies to H TTP and socket schedule runs only. Specifically,
these environment variables apply to the http_request and sock_connect
emulation commands.
5 -2 5

U ser Em ula tion

ffect

fault

ffect

f

 to

Connect_retries
Connect_retries is the number of retries before giving up the connection. Its
values are 0–2000000000; the default is 100.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in e
until the script changes that value.

Connect_retry_interval
Connect_retry_interval is the delay (in milliseconds) after a connection
failure before the next connection attempt. Its values are 0–2000000000; the de
is 200.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in e
until the script changes that value.

Exit Sequence Environment Variables
This section describes the exit sequence environment variables. This group of
environment variables applies to SQL schedule runs only.

Escape_seq and Logout_seq
The environment variables Escape_seq and Logout_seq make the exit from an
SQL schedule run as graceful as possible. These variables each specify a SQL
command to be sent to the SQL database server by sqlexec when certain
circumstances occur.

The values of Escape_seq and Logout_seq are bank expressions, consisting o

ã A required string expression containing the SQL statements that you want
send to the server through sqlexec.

ã An optional integer expression to temporarily override the Think_avg value
when sending the sequence to the SQL database server.

ã A second optional integer expression to temporarily override the
Server_connection value, which is the default value used if there are
multiple open connections.

Escape_seq and Logout_seq both have as a default value a bank expression
containing a null string and no optional integer override values.
5 -2 6

VU Environm ent Variables

d.

n
as

urs.
Exam ple
This example begins a database transaction and then pushes an escape sequence of
"rollback work" using a think time value of 0 seconds. After the transaction is
complete, the escape sequence is restored to its original value by pop.

#include <VU.h>
. . .
sqlexec "begin transaction";
push Escape_seq = bank("rollback work", 0);
. . .
sqlexec "commit work";
pop Escape_seq;

When Exit Sequence Variables Are Sent
The following list describes the circumstances under which Escape_seq and
Logout_seq are sent to the server.

ã Both Escape_seq and Logout_seq are sent if:

– The virtual user is executing a script when a schedule run is to be
terminated and the LoadTest option User_term_mode has the value
"COMMAND." The sending of Escape_seq and Logout_seq is delayed
until the virtual user completes the current or next emulation comman

– The library routine user_exit is called with a negative status value.

ã Only Logout_seq is sent if:

– The virtual user terminates normally after completing his last assigned
script.

– The virtual user is executing a script when a schedule run is to be
terminated and the LoadTest option User_term_mode has the value
"SCRIPT." The sending of Logout_seq is delayed until the virtual user
completes the current script.

– The library routine user_exit is called with a zero status value.

ã N either Escape_seq nor Logout_seq are sent if:

– Emulation has not started before the termination is triggered; that is, a
initialization error occurred before the first instruction in the first script w
executed.

– The virtual user has not run any SQL emulation commands.

– A fatal runtime error, other than a fatal receive command time-out, occ

– The library routine user_exit is called with a positive status value.
5 -2 7

U ser Em ula tion

e,

r for
ã Escape_seq or Logout_seq may be sent partially or not at all if a schedule
run is terminating, the virtual user is executing a script, and the time period
specified in the Cleanup_time option expires before or during the time that
Escape_seq or Logout_seq are sent. To avoid this, be sure that
Cleanup_time is set long enough.

Given that either or both of the sequences are sent to the server, the following
conditions apply:

ã If both Escape_seq and Logout_seq are sent, Escape_seq is sent first.

ã Escape_seq is executed via sqlexec for the connection indicated by each
Server_connection if a non-null Escape_seq string is defined. The
current value of Escape_seq is executed first, followed by each successive
Escape_seq string on the stack until the Escape_seq environment stack is
empty.

ã Logout_seq is executed via sqlexec for each connection for which a non-
null Logout_seq string is defined. The current value of Logout_seq is
executed first, followed by each successive Logout_seq string on the stack
until that Logout_seq environment stack is empty.

ã The sqlexec command uses the current environment variables
(Think_avg, Think_dist, Think_def, Think_sd,
Think_dly_scale, Think_max, Log_level, and Record_level),
when it submits the sequences, except:

– If an optional Think_avg override value was provided with the sequenc
it temporarily replaces the current Think_avg value and additionally
enforces a Think_dist of "CONSTANT" (for the specific sequence only).

– N o attempt is made to receive any results from the SQL database serve
the sequences. Therefore, for both sequences, if Think_def is "LR" or
"FR," it is changed to "CONSTANT" after the very first string of either
sequence was sent.
5 -2 8

VU Environm ent Variables

fore
nges
HTTP-Related
This section discusses the H TTP environment variables.

Http_control
This integer environment variable controls which status values are acceptable when
a virtual user script is played back. A value of 0, the default, indicates that only exact
matches are accepted. H owever, you can set this variable so that a script plays back
successfully even if

ã The response was cached during record or playback.

ã The server responds with partial or full page data during record or playback.

ã The script was redirected to another http server during playback.

Http_control can have one or more of the following values:

You can set Http_control to accept multiple values — for example:

Http_control = HTTP_REDIRECT_OK | HTTP_CACHE_OK;

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or in a script—either by editing the script or by setting the option be
you record. The values you set in the schedule are in effect until the script cha
that value.

A value of Indicates that playback script will accept

0 exact matches only

HTTP_PARTIAL_OK 206 for 200 and 200 for 206

HTTP_PERM_REDIRECT_OK 301 for 200 and 200 for 301

HTTP_TEMP_REDIRECT_OK 302 for 200 and 200 for 302

HTTP_REDIRECT_OK 301 and 302 for 200, and 200 for 301 and 302

HTTP_CACHE_OK 304 for 200 and 200 for 304

N O TE: For information on how to set this option before you record, see
Controlling the Values Accepted When an HT TP Script Is Played Back on page 3-20 of
the Using Rational LoadTest manual.
5 -2 9

U ser Em ula tion
Line_speed
When you play back a script, the data is sent and received at network speed, with no
delays. This integer environment variable enables you to emulate a user who is
sending and receiving data through a modem.

Different users can use different line speeds; in fact different connections can be set
up with different line speeds. This variable is useful to gauge the effect of dial-up
versus direct network connection line speeds on user response times.

You can set Line_speed to any integer from 0 to 2000000000 bits per second.
A value of 0 means that the data is sent and received at network speed.

IIOP-Related
This section discusses the IIO P-related environment variables.

Iiop_bind_modi
To send requests to an interface implementation, it must be bound to the requestor.
The VU emulation command iiop_bind establishes a binding method, called a
bind modus, for all subsequent emulation commands. The default bind modus for
iiop_bind is IOR (Interoperable Object Reference), which depends on the
optional argument ior.

The string environment variable Iiop_bind_modi contains a list of bind modi
to be used. Each item in the list is separated with a vertical bar. Each modus is tried
in the order given. If a mapping is found, it is used and the search ends.

The following table lists the values of Iiop_bind_modi:

Value Description

File (Filename) A CSV-formatted file of interface name/IOR pairs.

IOR An IOR specification (that is, a string representation of an
object reference).

NameService (IOR) A CO RBA-compliant N ame Service interface
implementation.

Visibroker Visibroker osagent locator service (vendor-specific).

VisibrokerNameService U ses the Visibroker osagent location service to access the
N ameService.
5 -3 0

VU Environm ent Variables
Private Environment Variables
This section describes the private environment variables.

Mystack, Mybstack, and Mysstack

The environment variables Mystack, Mybstack, and Mysstack are private stack
variables for each of the three VU data types (integer, bank, and string). These three
variables are not used by any of the emulation commands, allowing you complete
freedom in their use. These variables can be manipulated and accessed by the
environment control commands in a manner identical to the other environment
variables.

Like persistent variables, private stack variables are an effective means to preserve
data values for a virtual user across scripts, since environment variables are
maintained across scripts for the duration of the emulation. This example measures
a turn-around time that spans multiple scripts:

/* start time of EV1 is recorded & saved on stack */
set Mystack = start_time ["EV1"];
... /* one or more script executions elapse */ ...
endtime = time(); /* actual end time of "EV1": */
/* start time re-recorded from stack to satisfy
 "same script" requirement: */
start_time eval Mystack;
/* "EV1" start/end times recorded: */
stop_time ["EV1"] endtime;

Although arrays are recommended as more convenient and efficient, a potential use
of Mybstack is for quick access to small tables of integer or string data. For
example, the following code fragment sets up a table of 20 user names:

/* initialize table; preserve Mybstack with push*/
push Mybstack = bank("RUSSELL", "EADIE", "BRIGGS", "RYAN", "COUNTS",
"KWOR", "ALLAN", "BROWN", "WALTON", "HARDING");

/* prepare query */
sqlprepare "select * from Student where Surname = ?";
for (i = 1; i <= 10; i++)
{

/* run the query with the selected name */
sqlexec _statement_id, eval Mybstack[string][i];

}

/* return to old environment */
pop Mybstack;

As indicated in this example, you can initialize and access one table in a given
environment. By using the save and restore environment control commands,
you can initialize, maintain, and access two tables per environment. H owever, you
cannot access data from more than two tables per environment.
5 -3 1

U ser Em ula tion

ffect

 of

e

Reporting Environment Variables
This section discusses the reporting environment variables.

Check_unread
Check_unread controls when sqlexec commands should check for unread row
results from the previous sqlexec.

The value of Check_unread is one of three string expressions:

ã "O FF" – Do not check for unread row results.

ã "FIRST_IN PU T_CM D " (default) – The first sqlexec following a sqlnrecv
checks for unread row results from the previous sqlexec.

ã "EVERY_IN PU T_CM D " – Every sqlexec checks for unread row results from
the previous sqlexec.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in e
until the script changes that value.

Max_nrecv_saved
Max_nrecv_saved lets you control the maximum number of rows (SQL) or
bytes (HTTP and socket) saved by the receive emulation commands.

Max_nrecv_saved is an integer environment variable that affects the behavior
the sqlnrecv, sqllongrecv, sqlfetch_cursor, http_header_recv,
http_recv, http_nrecv, sock_recv, and sock_nrecv emulation
commands.

Its default value is 2000000000; the range is 0–2000000000.

The typical reason for using Max_nrecv_saved is to save memory and disk spac
by not having to store and log the results of a very large database query — for
example, one that returns thousands of rows.

Max_nrecv_saved does not affect the data actually retrieved from the server.
Therefore:

ã The _nrecv read-only variable still contains the number of rows or bytes
processed by the last receive emulation command

ã _total_rows still contains the total number of rows actually received

ã _total_nrecv still holds the total number of bytes actually received.
5 -3 2

VU Environm ent Variables

ffect

r

If the number of rows or bytes you receive exceeds Max_nrecv_saved:

ã The emulation command does not necessarily fail.

ã If your Log_level is ALL, the log file entry will note both the number of rows
or bytes received and the number of rows or bytes logged.

ã Any excess rows are discarded instead of being saved in _response.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Log_level
The value of Log_level determines what information is written to the standard
log file, in the log’s perfdata directory. The log file is called lxxx, where xxx is
a user ID.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in e
until the script changes that value.

The values of Log_level are as follows:

ã "O FF" – N othing is logged. Log_level can also be given the value "OFF"
during a portion of the emulation so that no log entries are made for that
portion.

ã "T IM EO U T" (default) – Logs emulation command timeouts. If a receive
emulation command fails due to a timeout, the preceding sqlexec,
http_request, or sock_send command is logged, followed by an entry fo
the failed receive emulation command. If the Log_level is "TIMEOUT" and
if the scripts for a virtual user contain no emulation commands that timed out,
no log file is created.

For the testcase and emulate commands, fail_string is logged. If
there is no fail_string, log_string is logged.

ã "U N EX PECTED " – Logs timeouts and unexpected responses from SQL
emulation commands.

For all other emulation commands, "UNEXPECTED" is equivalent to
"TIMEOUT."

ã "ERRO R" – Logs all SQL emulation commands that set _error to a nonzero
value. All timeouts also are logged, as described in TIMEOUT. All log entries
include _error and _error_text. Their values typically are supplied by the
SQL database server.
5 -3 3

U ser Em ula tion

r

h it.

.

ule,

for

For all other emulation commands, "ERROR" is equivalent to "TIMEOUT."

ã "ALL" – Signifies that complete logging is to be done. A log entry is made fo
every emulation command. This log entry contains the following:

– The type of emulation command and any command ID associated wit

– Identification of the VU script and source file containing the command

– The line number of the command in the source file and the emulation
command count of the VU script. The emulation command count is
incremented for every emulation command. When you monitor a sched
it is useful to distinguish between executions of the same command on
different loop iterations, since the script line number would be identical
each iteration.

– The command-specific information listed in the following table. If the
scripts for a virtual user contain no emulation commands, no log file is
created.

 Command Specific Information Logged

http_nrecv The response from the server. If response is unexpected, the
number of EXPECTED characters and the number of
RECEIVED characters are both logged.

http_recv The response from the server. If response is unexpected, the
number of EXPECTED characters and the number of
RECEIVED characters are both logged.

http_request O ne line after the header indicating the success or failure of
the connection, and one line containing the request data
transmitted to the server.

http_header_recv O ne line containing the status from the H TTP header.

iiop_bind The repository id string, the instance id string, the IOR string
if present, and the modus actually used to create the binding.

iiop_invoke Connection information if a connection was established for
this operation, followed by the operation, all input (or input/
output) parameter values, and either the values of all output
(or input/output) parameters, or the values of all exception
parameters.

Jolt-related VU
commands

Jolt emulation is implemented by the emulation commands
sock_send and sock_nrecv.

SAP-related VU
commands

SAP emulation is implemented by external C functions and
the emulate command.
5 -3 4

VU Environm ent Variables
sock_send The characters submitted to the server. Any data that is not
printable and cannot be represented by a standard C escape
sequence (graphic images, for example) is represented as an
embedded hex string.

sock_nrecv The response from the server. If a response is unexpected, the
number of EXPECTED characters and the number of
RECEIVED characters are both logged. Any data that is not
printable and cannot be represented by a standard C escape
sequence (graphic images, for example) is represented as an
embedded hex string.

sock_recv The response from the server. If a response is unexpected, the
expected characters (in standard string constant format) are
preceded by EXPECT= , and the actual response is preceded by
ACTUAL= . Any data that is not printable and cannot be
represented by a standard C escape sequence (graphic images,
for example) is represented as an embedded hex string.

sqlprepare The statement ID returned and the SQL statements that were
prepared.

sqlclose_cursor The cursor ID and the SQL statements (including the
statement ID for prepared statements).

sqldeclare_cursor
sqldelete_cursor

The SQL statements (including the statement ID for prepared
statements), any arguments supplied, the number of rows
processed (_total_rows), and the cursor ID.

sqlexec The SQL statements (including the statement ID for prepared
statements), any arguments supplied, and the number of rows
processed (_total_rows). If present, the arguments are
logged as a comma-separated list of values enclosed in brackets
[]. String arguments are enclosed in single quotation marks
(’ value’) and integer arguments are shown in decimal
without quotation marks (12345). The values of named
arguments are preceded by their names; positional argument
values are logged without any prefix.

sqlfetch_cursor The SQL statements (including the statement ID for prepared
statements), any arguments supplied, the number of rows
processed (_total_rows), the cursor ID, the number of
rows received, the number of rows logged if different from the
number received, and the number of tables read to fetch the
requested number of rows.

 (Continued)

 Command Specific Information Logged
5 -3 5

U ser Em ula tion
sqlinsert_cursor The SQL statements (including the statement ID for prepared
statements), any argument supplied, the argument values, the
number of rows processed (_total_rows), and the cursor
ID.

sqlopen_cursor The SQL statements (including the statement ID for prepared
statements), any arguments supplied, the argument values, the
number of rows processed (_total_rows), the cursor ID,
and the number of rows received.

sqlnrecv The number of rows received, a two-line column header
(_column_headers) if the value of the environment
variable Column_headers is "ON," and a character
representation of the rows received (_response).

If the number of rows received (_nrows) exceeds the value of
Max_nrecv_saved, the log file entry notes both the
number of rows received and the number of rows logged. For
example:

10439 rows received (1000 logged) from 1
table

sqlposition_cursor The SQL statements (including the statement ID for prepared
statements), the number of rows processed (_total_rows),
and the cursor ID.

sqlrefresh_cursor The SQL statements (including the statement ID for prepared
statements), the number of rows processed (_total_rows),
and the cursor ID.

 sqlsysteminfo The operation, all the argument values given for that
operation, the number of rows processed (_total_rows),
and the cursor ID.

sqlupdate_cursor The SQL statements (including the statement ID for prepared
statements), any arguments supplied, the argument values, the
number of rows processed (_total_rows), and the cursor
ID.

TU XEDO commands Any arguments supplied and their argument values.

Tuxedo buffer commands include the type and value of the
buffer.

 (Continued)

 Command Specific Information Logged
5 -3 6

VU Environm ent Variables
Exam ple
The sample SQL script for sqlexec (page 6-123) produces the following log file.
In this example, the log file entries are designed to be easily accessible. The script is
doc and the source file is doc.s. When the value of _error is not zero, <<< and
>>> are replaced by ***, so that these occurrences are quickly located. The
command ID (if any) is shown in brackets after the command. The numbers in
parentheses after the script and script names are the emulation command count and
the source line number. In this example, the first emulation command began on
source line 22.

<<< sqlexec[school]: script = doc(1), source = doc.s(22) >>>
use school
0 rows processed
<<< sqlexec[]: script = doc(2), source = doc.s(24) >>>
select Empnum, Empname, Roomnum from Employee where Rank=’TUTOR’
0 rows processed
<<< sqlnrecv[Tutors]: script = doc(3), source = doc.s(28) >>>
10 rows received from 1 table
Empnum Empname Roomnum
----------- -------------------- -------
78062 CRESSMAN 2005
79069 PEARSON 2220
80075 BOSTMAN 2220
80079 ROWLANDS 2005
80166 WOODLEY 1307
81494 DIXON 1180
81931 CAMPBELL 2111
82631 FESSERMAN 2111
83418 PORTER 1307
84229 KRAEMER 1307
*** sqlnrecv[Tutors]: script = doc(4), source = doc.s(28) ***
5 rows received from 1 table
EXPECTED 10 rows

start_time
stop_time

N o logging done.

testcase
emulate

If no log_string is specified, nothing is logged. If
log_string but no fail_string is specified,
log_string is logged. If both are specified, log_string
is logged if the command succeeds; otherwise,
fail_string is logged.

 (Continued)

 Command Specific Information Logged
5 -3 7

U ser Em ula tion
ERROR 40012: End of results
Empnum Empname Roomnum
----------- -------------------- -------
84555 SEARLE 2005
85082 NORRIS 2111
85609 O’DONNELL 1180
85718 ASHE 1180
86080 PALMER 2220
<<< sqlexec[]: script = doc(5), source = doc.s(35) >>>
select * from Dept
0 rows processed
<<< sqlnrecv[dept (a)]: script = doc(6), source = doc.s(36) >>>
4 rows received from 1 table
DEPTNO DNAME LOC
------ -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON
<<< sqlprepare[prep inser]: script = doc(7), source = doc.s(39) >>>
1= insert into Dept values (:no, :name, :place)
<<< sqlexec[]: script = doc(8), source = doc.s(42) >>>
(1) insert into Dept values (:no, :name, :place) [:no=’50’,
:name=’testing’, :place=’Raleigh’]
1 row processed
<<< sqlexec[]: script = doc(9), source = doc.s(42) >>>
(1) insert into Dept values (:no, :name, :place) [:no=’60’,
:name=’shipping’, :place=’Durham’]
1 row processed
<<< sqlexec[]: script = doc(10), source = doc.s(42) >>>
(1) insert into Dept values (:no, :name, :place) [:no=’70’,
:name=’receiving’, :place=’Chapel Hill’]
1 row processed
<<< sqlexec[]: script = doc(11), source = doc.s(45) >>>
select * from Dept
0 rows processed
<<< sqlnrecv[dept (b)]: script = doc(12), source = doc.s(46) >>>
7 rows received from 1 table
DEPTNO DNAME LOC
------ -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON
 50 testing Raleigh
 60 shipping Durham
 70 receiving Chapel Hill
<<< sqlexec[]: script = doc(13), source = doc.s(49) >>>
delete from Dept where deptno >= 50
3 rows processed
<<< sqlexec[]: script = doc(14), source = doc.s(51) >>>
select * from Dept
0 rows processed
<<< sqlnrecv[dept (c)]: script = doc(15), source = doc.s(52) >>>
4 rows received from 1 table
DEPTNO DNAME LOC
------ -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO

40 OPERATIONS BOSTON
5 -3 8

VU Environm ent Variables

ffect

e
ser’s

n
. In

ss,
ts in

tion

on
Record_level
The value of Record_level determines what information is written to the
standard result file, in the log’s perfdata directory. The result file is called rxxx,
where xxx is a user ID. Since the result file is in binary form, it is not directly
readable; instead, it is input to LoadTest reports.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in e
until the script changes that value.

Record_level can be set to one of the following strings:

ã "MINIMAL" – Record only items necessary for reports to run. However, th
reports will contain no real data. U se this value when you do not want the u
activity included in the reports.

ã "TIMER" – MINIMAL plus start_time and stop_time emulation
commands. Your reports will not contain response times for each emulatio
command, and an emulation command failure will not show up as a a failure
addition, the result file for each virtual user will be small. A small result file
means that disk consumption and CPU overhead for each virtual user is le
results are retrieved quickly from Agent computers, and you can run repor
a relatively short time. Set Record_level to this value if you are not
concerned with the response times or pass/fail status of an individual emula
command.

ã "FAILURE" – TIMER plus emulation command failures and some
environment variable changes. Set Record_level to this value if you want
the advantages of a small result file but you also want to make sure that no
emulation command failed.

ã "COMMAND" – FAILURE plus emulation command successes and some
environment variable changes (default).

ã "ALL" – COMMAND plus all environment variable changes. Complete
recording is done. A binary entry is written to the result file for every emulati
command and for the set, reset, restore, push, and pop environment
control commands. You can view these entries in Trace report output.

N O TE: Most report output is the same with "ALL" or "COMMAND." The
exception is the Trace report output. With "ALL," the Trace report output
includes every emulation command as well as the set, reset, restore, push,
and pop environment control commands. With "COMMAND," the Trace report
output includes every emulation command but includes the set, reset,
restore, push, and pop environment control commands only when they
affect the Server_connection environment variable.
5 -3 9

U ser Em ula tion

st is

 of

e

ingle

p of
.
Suspend_check
The string environment variable Suspend_check controls whether you can
suspend a virtual user from a Monitor view. The value of Suspend_check must
be one of the following strings:

ã "O N " (default) – N ormal suspend checking is performed (A suspend reque
checked before beginning the think time interval by each send emulation
command.)

ã "O FF" – Disables suspend checking. Checking resumes only after the value
Suspend_check is changed to "ON," and the next think time interval is
encountered.

You can use Suspend_check to encapsulate a critical portion of the script wher
you do not want it to stop. You can also use Suspend_check on a script run by a
single virtual user and then suspend all virtual users through the Monitor. The s
virtual user is not suspended.

U se Suspend_check carefully. In particular, be careful to pair push and pop
operations, and to set Suspend_check back to "ON" after temporarily changing it
to "OFF."

Response Timeout Environment Variables
This section describes the response timeout environment variables. This grou
environment variables applies to HTTP, SQL, IIOP, and socket schedule runs

Specifically, the response timeout environment variables affect the following
commands:

ã H TTP send em ulation com m ands: http_request

ã H TTP receive em ulation com m ands: http_header_recv, http_recv,
http_nrecv

ã SQ L send em ulation com m ands: sqlprepare, sqlexec,
sqldeclare_cursor, sqlopen_cursor, sqldelete_cursor,
sqlupdate_cursor, sqlclose_cursor, sqlposition_cursor,
sqlrefresh_cursor, sqlinsert_cursor.

ã SQ L receive em ulation com m ands: sqlnrecv, sqllongrecv,
sqlfetch_cursor

ã I IO P send em ulation com m ands: iiop_bind, iiop_invoke
5 -4 0

VU Environm ent Variables
ã Socket receive emulation commands: sock_recv, sock_nrecv

ã O ther send em ulation com m ands: emulate

An emulation command generally waits for a response from the server. If a response
is received, the appropriate logging and recording is done, and the emulation
continues with the execution of the next statement. O n the other hand, if the elapsed
time an emulation command has been waiting exceeds the value of Timeout_val
(subject to scaling by Timeout_scale), the emulation command times out. In this
case, after appropriate logging and recording is done, the value of Timeout_act is
examined to determine whether this timeout is ignored and emulation continued
normally, or whether this timeout is considered a fatal error, resulting in steps taken
to end the emulation.

Timeout_act

The values for Timeout_act are the strings "IGNORE" and "FATAL."

If the value of Timeout_act is "IGNORE," the emulation continues normally,
after the appropriate logging and recording, when a timeout occurs. Recall that an
emulation command that returns 0 signals that a timeout has occurred, allowing the
script to dynamically react as appropriate to an unexpected response.

If the value of Timeout_act is "FATAL," the time out of an emulation command
is considered a fatal runtime error. The appropriate logging and recording is done,
followed by termination of the virtual user.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Timeout_scale

This integer environment variable controls the percentage multiplier applied to the
time-out delay (Timeout_val). The default value of 100% represents no change.
A value of 50% means one-half the delay, which is twice as fast; 200% means twice
the delay, which is half as fast as the original.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

N O TE: The socket send emulation command, sock_send, does not wait for a
server response, and therefore the response timeout environment variables do not
affect it.
5 -4 1

U ser Em ula tion

en

s. To

e a

Timeout_val

The value of Timeout_val can be any integer in the range 0 to15000000. This
value specifies in milliseconds, starting from when the emulation command begins
communication with the server, the time an emulation command waits for a server
response before it times out. The default value of Timeout_val is 120000
milliseconds (2 minutes).

Choose the value of Timeout_val with care. If it is too small, commands
requesting large amounts of data or complex operations time out, even though the
server may respond correctly.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Think Time Variables
The think time environment variables control the virtual user’s “think time”
behavior. This is simply the time that a typical user would delay, or think, betwe
submitting commands.

In a virtual user script, the Think_avg is usually set before each http_request
emulation command, each sqlexec and sqlprepare emulation command, all
TU XEDO emulation commands, and each sock_send emulation command. You
need to decide whether to preserve the think times as is, or vary the think time
preserve the think times, simply run the script.

You can truncate think times that are too long. For example, you might examin
script and see a few very long settings of Think_avg. To truncate these think times,
set the value of Think_max to your maximum acceptable think time.

If you are using the script for a multiuser run, you may also want to set the
Think_dist environment variable to "NEGEXP" rather than "CONSTANT" so
that each virtual user does not pause the same amount of time between each
command.

You may decide to further refine your script by dividing the think time into user
think time and CPU think time. To do this, set the cpu_threshold environment
variable.
5 -4 2

VU Environm ent Variables

lt

ffect

r to

 50%
e the
med

ffect
Delay_dly_scale
This integer environment variable globally scales the delay times of all delay library
routines by applying a percentage multiplier. A value of 100%, which is the default,
means no change. A value of 50% means one-half the delay, which is twice as fast as
the original, 200% means twice the delay, which is half as fast. A value of zero means
no delay.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Think_avg
Specifies the duration, in milliseconds, of the “average” think time interval. The
value of Think_avg can be any integer in the range 0-2000000000. The defau
value is 5000 milliseconds.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in e
until the script changes that value.

Think_cpu_dly_scale

This integer environment variable enables you “change” from a slower compute
a faster computer, and vice versa by multiplying the CPU think time value by a
percentage. A value of 100%, which is the default, means no change. A value of
means one-half the delay, which is twice as fast as the original; 200% means twic
delay, which is half as fast. A value of zero means no delay. Delay scaling is perfor
before truncation (if any) by Think_max.

For user think times (Think_avg is greater that or equal to
Think_cpu_threshold), Think_dly_scale is used instead.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in e
until the script changes that value.
5 -4 3

U ser Em ula tion

ime.

erate

 from
he
e

 think
st

 CPU

ch

6 to

ffect
Think_cpu_threshold
There are actually two kinds of delays — user think time and CPU processing t

U ser think time is the time a typical user delays, or thinks, between submitting
commands. CPU processing time is the time it takes for the application to gen
internal commands from the user’s data.

For example, an actual user may pause to think before selecting a student name
a SQL database. This is recorded as user think time. Once the user clicks on t
student name, the time spent generating the SQL command and accessing th
database is a CPU delay.

Similarly, when a user thinks about which Web page to access, this delay is user
time. Once the user provides the U RL for the desired Web page, the CPU mu
issue commands to get that Web page and display it to the user. This delay is a
processing delay.

The environment variable Think_cpu_threshold lets you to divide delay time
into user think time delays and CPU processing time delays. You then scale ea
time individually with the environment variables Think_cpu_delay_scale and
Think_dly_scale.

If the value of Think_avg is greater than Think_cpu_threshold, the delay is
considered user think time. The value of Think_dly_scale is used to calculate
the think time.

If the value of Think_avg is less than Think_cpu_threshold, the delay is
considered CPU think time. With CPU think time:

ã The value of Think_cpu_dly_scale is used to calculate the delay. This
allows CPU processing delays to be scaled differently from user think time
delays. For example, typical usage would be to “change” the CPU from a 48
a Pentium by scaling the CPU processing delays downward.

ã The value of Think_dist is ignored. All application CPU processing delays
are assumed to be "CONSTANT." This allows user think time distributions to be
used without affecting the calculation of CPU processing delays.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in e
until the script changes that value.
5 -4 4

VU Environm ent Variables

r
Think_def
Specifies the starting point of the think time interval. The values for Think_def
can be the following string expressions:

ã "FS" – The think time interval for the current send emulation command begins
at the time the previous send emulation command is submitted.

ã "LS" – The think time interval for the current send emulation command begins
at the time the previous send emulation command is completed.

ã "FR" – The think time interval for the current send emulation command begins
at the time the first data of the previous receive emulation command is received.
If there was no intervening receive emulation command, the think time interval
begins when the previous send emulation command is completed.

ã "LR" – The think time interval for the current send emulation command begins
at the time the last data of the previous receive emulation command is received.
If there was no intervening receive emulation command, the think time interval
begins when the previous send emulation command is completed.

ã "FC" – The think time interval for the current send emulation command begins
at the time the previous H TTP connection (http_request with address
information) or socket connection (sock_connect) is submitted. "FC"
(“first connect”) uses the _fc_ts integer read-only variable.

ã "LC" – The think time interval for the current send emulation command begins
at the time the previous H TTP connection (http_request with address
information) or socket connection (sock_connect) is completed. "LC"
(“last connect”) uses the _lc_ts integer read-only variable.

If you are running SQL-based script, you will probably not want to change the
default value of Think_def. This is because the values FS, LS, and FR for
sqlexec and sqlprepare are usually almost equivalent.

The following figure shows how the different starting points produce a longer o
shorter think time interval:

First Sen t Last Sen t First Recv Last Recv First Sen t

"FS"

"LS"

"FR"

"LR" (default)
5 -4 5

U ser Em ula tion
You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Think_dist
Specifies think time distribution for virtual user think times. It has no effect for CPU
think times. The Think_dist environment variable can have the following values:

ã "CO N STAN T" – Sets a constant think time interval equal to the value of
Think_avg. This is the default value.

ã "U N IFO RM " – Sets a random think time interval distributed uniformly in the
range: [Think_avg - Think_sd, Think_avg + Think_sd]

ã "N EGEX P" – This is the recommended setting for multiuser runs. It provides a
random think time interval and approximates a bell curve around the think
average that you have set. The average think time and standard deviation are
equal. In mathematical terms, this setting supplies a random think time interval
from a negative exponential distribution with a mean equal to the value of
Think_avg.

The random number generator used to generate think times for the "UNIFORM"
and "NEGEXP" think time distributions is not reseeded by default at each script
invocation with an identical seed for each virtual user. To modify default behavior of
the random number generator, set the Seed and Seed Flags options in the schedule.
By default, Seed generates the same sequence of random numbers. H owever, it sets
unique seeds for each virtual user so that each virtual user will have a different
random number sequence.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Think_dly_scale
This integer environment variable controls the percentage multiplier to be applied
to the user think time value. A value of 100%, which is the default, means no change.
A value of 50% means one-half the delay, which is twice as fast as the original; 200%
means twice the delay, which is half as fast. A value of zero means no delay. Delay
scaling is performed before truncation (if any) by Think_max.

For CPU think times (Think_avg is less than Think_cpu_threshold),
Think_cpu_dly_scale is used instead.
5 -4 6

VU Environm ent Variables
You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Think_max
Provides a maximum threshold for think times. Think_max specifies, in
milliseconds, the maximum value that a generated think time can have. If the
normally generated think time value (as defined by Think_avg, Think_dist,
Think_dly_scale, and optionally Think_sd) exceeds Think_max, it is set to
the value of Think_max. The default value of Think_max is 2,000,000,000
milliseconds, which effectively disables the truncation.

Think_max is useful with scripts that mimic the actual user think times. You can
truncate longer-than-desired think times, which speeds up playback, without having
to search for and edit each long think time. Think_max has the additional benefit
of keeping the original think times. To restore these times, simply remove or
comment out the lines that modified the default value of Think_max.

Think_max is also useful with the Think_dist value of "NEGEXP" (which
ordinarily produces negative exponentially generated think times) to instead produce
truncated negative exponentially generated think times.

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.

Think_sd
Specifies the think time standard deviation. Think_sd has meaning only when the
value of Think_dist is "UNIFORM." O therwise, Think_sd has no effect.

The value of Think_sd is an integer in the range 0-2000000000. The default value
is 0. This value specifies a range around the mean think time interval (Think_avg).
The actual think time intervals are distributed uniformly throughout this range.

If the value of Think_dist is "UNIFORM" and the value of Think_sd is greater
than the value of Think_avg, then the think time intervals are still distributed
uniformly throughout the range, and any resulting negative think time intervals are
treated as having a zero value (no delay).

You can initialize this environment variable by clicking the U ser Settings button in
a schedule, or by editing the script. The values you set in the schedule are in effect
until the script changes that value.
5 -4 7

U ser Em ula tion
Examples of Think Time Variables
The following examples further describe the use of the think time variables.

sqlexec "select * from publishers";
sqlnrecv ALL_ROWS;
set Think_avg = 3000;
set Think_def = "LS";
set Think_dist = "CONSTANT";
sqlexec "select * from authors";
sqlnrecv ALL_ROWS;

Assume that the sqlexec "select * from publishers" command was
completed at time 12000 and that the sqlexec "select * from authors"
command was invoked at time 13750. Therefore, the second sqlexec would wait
approximately 1250 milliseconds (that is, 3000 - (13750 - 12000)) before submitting
the select * from authors command.

The following example uses the macros SECONDS and MINUTES defined in the
VU.h header file. SECONDS converts its argument from seconds to milliseconds;
MINUTES converts its argument from minutes to milliseconds. For details, see VU.h
on page 4-2.

#include <VU.h>

sqlexec "select * from publishers";
sqlnrecv ALL_ROWS;
set Think_avg = MINUTES(2);
set Think_dist = "UNIFORM";
set Think_sd = SECONDS(30);
sqlexec "select * from authors";
sqlnrecv ALL_ROWS;
sqlexec "select * from titles";
sqlnrecv ALL_ROWS;

The think time intervals for the select * from authors and select *
from titles commands is uniformly distributed in the range [90000,150000]
milliseconds (90000 = 120000 - 30000, 150000 = 120000 + 30000). Since the
default value of "LR" is used for Think_def, the think time intervals for these two
commands begin when the end of the result set is received by the previous
sqlnrecv command.

Read-Only Variables

The VU read-only variables provide access to data items collected during the
schedule run. These data items provide information about the commands and
responses submitted and received during the emulation, plus information about the
progress of the emulation. In fact, all of the log file information in stdlog and most
of the result file information in stdrec is maintainable directly from the read-only
variables. Therefore, by using the read-only variables, you can customize log or
result files to perform detailed logging and recording.
5 -4 8

Read-O nly Variables
All read-only variables begin with the underscore character (_). They can be used in
expressions in the same way a variable of the same type could be used, except that
they cannot be used as the first operand of any assignment operator, nor as the
operand of the &, ++, or -- operators.

The following table shows the string-valued read-only variables:

Variable Contains

_alltext The same as _response.

_cmd_id The ID of the most recent emulation command.

_command The text of the most recent:

ã http_request

ã sqlprepare, sqlexec, sqldeclare_cursor,
sqlfetch_cursor, sqlopen_cursor,
sqldelete_cursor, sqlupdate_cursor,
sqlclose_cursor

ã tux_bq, tux_tpabort, tux_tpacall,
tux_tpbroadcast, tux_tpcall, tux_tpconnect,
tux_tpdequeue, tux_tpenqueue, tux_tppost,
tux_tpsubscribe

ã sock_send

ã The operation of the most recent iiop_invoke

_column_headers The two-line column header if Column_headers is ON;

otherwise, it contains "".

_error_text The full text of the error from the last emulation command. If
_error is 0, _error_text returns "". For an SQL database
or TU XEDO error, the text is provided by the server.

_host The host name of the computer on which the script is running.

_response The text of up to the value of Max_nrecv_saved

ã rows received in the most recent sqlnrecv,
sqllongrecv, or sqlfetch_cursor

ã bytes received in the most recent http_header_recv,
http_recv, http_nrecv

ã bytes received in the most recent sock_nrecv or
sock_recv

This read-only variable is the same as _alltext.
5 -4 9

U ser Em ula tion
The following table shows the integer-valued read-only variables:

_script The name of the VU script currently being executed.

_source_file The name of the file that was the source for the portion of the VU
script being executed.

_user_group The name of the user group (from the schedule) of the user
running the script.

_version The full version string of LoadTest (for example 7.5.0.1045).

 (Continued)

Variable Contains

Variable Contains

_cmdcnt A running count of the number of emulation commands the script
has executed.

_cursor_id The last cursor declared by sqldeclare_cursor or opened by
sqlopen_cursor.

_error The status of the last emulation command. Most values for
_error are supplied by the server.

_error_type If you are emulating a TU XEDO session and _error is nonzero,
_error_type contains one of the following values:

0 (no error)

1 VU /TU X U sage Error

2 TU XEDO System/T Error

3 TU XEDO FML Error

4 TU XEDO FML32 Error

5 SU T Error

6 VU /TU X Internal Error

If you are emulating an IIOP session and _error is nonzero,
_error_type contains one of the following values:

0 (no error)

1 IIOP_EXCEPTIO N _SYSTEM

2 IIOP_EXCEPTIO N _U SER

3 IIOP_ERROR

_fc_ts The “first connect” timestamp for http_request and
sock_connect.
5 -5 0

Read-O nly Variables

d
_lc_ts The “last connect” timestamp for http_request and
sock_connect.

_total_nrecv The total number of bytes received for all HTTP and socket receive
emulation commands issued on a particular connection.

_fr_ts The timestamp of the first received data of sqlnrecv,
http_nrecv, http_recv, http_header_recv,
sock_nrecv, or sock_recv. For sqlexec and
sqlprepare, _fr_ts is set to the time the SQL database server
responded to the SQL statement.

_fs_ts The time the SQL statement was submitted to the server by
sqlexec or sqlprepare, or the time when the first data was
submitted to the server by http_request or sock_send.

_lineno The line number in _source_file of the previously executed
emulation command.

_lr_ts The timestamp of the last received data for sqlnrecv,
http_nrecv, http_recv, http_header_recv,
sock_nrecv, or sock_recv. For sqlexec and
sqlprepare, _lr_ts is set to the time the SQL database server
responded to the SQL statement.

_ls_ts The time the SQL statement was submitted to the server by
sqlexec or sqlprepare, or the time the last data was
submitted to the server by http_request or sock_send.

_nrecv The number of rows processed by the last sqlnrecv, or the
number of bytes received by the last http_nrecv, http_recv,
sock_nrecv, or sock_recv.

_nusers The number of total users in the current LoadTest session.

_nxmit The total number of characters contained in the SQL statements
transmitted to the server in the last sqlexec or sqlprepare
command, or the number of bytes transmitted by the last
http_request or sock_send.

_statement_id The value assigned as the prepared statement ID, which is returne
by sqlprepare and sqlalloc_statement.

 (Continued)

Variable Contains
5 -5 1

U ser Em ula tion
Initialization of Read-Only Variables
At the beginning of a schedule run, before the execution of the first script:

ã The timestamp variables, _fs_ts, _ls_ts, _fr_ts, _lr_ts, _fc_ts,
and _lc_ts, are initialized to the current time.

ã _uid is initialized to the correct user ID. All other integer read-only variables
are initialized to 0.

ã All string read-only variables are initialized to null strings.

After a script executes, read-only variables are reinitialized, except for the timestamp
variables. By default, timestamp variables carry over their values from the previous
script. However, the timestamp variables are reinitialized if you open a schedule,
click the Runtim e button, and check Initia lize timestamps for each script.

Example
Besides supporting customized logging and recording, the read-only variables serve
other purposes within a script. For example, a particularly useful application of _uid
is to create a common script with commands and responses tailored to specific virtual
users. The following example shows a common login script, which is identical for
each user except for SQL database user IDs and passwords:

string name;
name = "usr"+itoa(_uid);
con=sqlconnect ("", name, "pswd" +itoa(_uid),"","");
set Server_connection = con;
...
sqlexec "insert into sales values ("+name +", 12, 10.00)";

_tux_tpurcode TU XEDO user return code, which mirrors the TU XEDO API
global variable tpurcode. It can be set only by the tux_tpcall,
tux_tpgetrply, tux_tprecv, and tux_tpsend emulation
commands.

_total_rows Set to the number of rows processed by the SQL statements. If the
SQL statements do not affect any rows, _total_rows is set to 0.
If the SQL statements return row results, _total_rows is set to
0 by sqlexec, then incremented by sqlnrecv as the row results
are retrieved.

_uid The numeric ID of the current virtual user.

 (Continued)

Variable Contains
5 -5 2

Supplying a Script w ith M ean ing fu l D ata
In this segment, it is assumed that usrxxx and pswdxxx are the SQL database
server ID and password strings for user xxx. For example, the login ID and
password of virtual user 12 would be usr12 and pswd12.

Supplying a Script with Meaningful Data

When you play back a script, the script uses the exact values that you recorded.
Assume, for example, that you record a script that adds a record with a primary key
of John Doe to a database. When you play back the script, to emulate thousands of
users, you will get errors after the first John Doe is added. To correct this situation,
you use datapools, which supply unique test values to the server.

Although varying test values may work for those transactions that depend on the
result of an earlier transaction, other transactions may depend on values received
from the server. If a script contains these transactions, you must manually edit the
script to replace some of the missing client logic so that the values correlate
dynamically. This is called dynam ic data correlation.

Datapools
A datapool is a convenient way to supply variable data values to a script. Typically,
you use a datapool with a script so that:

ã Each virtual user that runs the script can send realistic values, including unique
values, to the server.

ã A single virtual user that performs the same transaction multiple times can send
realistic values to the server in each transaction.

If you do not use a datapool with a script, each virtual user sends the same values to
the server (which are the values you provided when you recorded the script).

U sually, you create a datapool immediately after you record a virtual user script,
using the datapool capability in Rational Robot.

For more information about creating and managing datapools, see the Using Rational
LoadTest manual.

Dynamic Data Correlation
Dynamic data correlation is a technique to supply variable data values to a script
when the transactions in a script depend on values supplied from the server.

For example, when you record an http script, the Web server may send back a unique
string, or session ID, to your browser. The next time your browser makes a request,
it must send back the same session ID to authenticate itself with the server.
5 -5 3

U ser Em ula tion
The session ID can be stored in three places:

ã In the Cookie field of the H TTP header.

ã In an arbitrarily named field of the H TTP header.

ã In an arbitrary hidden field in an actual H TML page.

Rational Suite PerformanceStudio finds the session IDs (and other correlated
variables) and, when you run the schedule, automatically generates the proper script
commands to extract their actual values.

Before you record a script, you can choose whether PerformanceStudio correlates all
possible values (the default), does not correlate any values, or correlates only a
specific list of variables that you provide.
5 -5 4

ã ã ã P a r t I I I

Com m and Reference

 can

s
ts

d

tion
are

on

al
once
ã ã ã C H A P T E R 6

Command Reference
This command reference contains the following categories of information:

ã Environm ent control commands – Enable you to control a virtual user’s
environment by changing the VU environment variables. For example, you
set the level of detail logged or the number of times to try a connection.

ã Flow control statements – Enable you to add conditional execution structure
and looping structures to your virtual user script. The flow control statemen
behave like their C counterparts, with enhancements added to break and
continue.

ã Library routines – Provide your virtual user script with predefined functions
that handle file I/O , string manipulation, and conversion of data types and
formats.

ã Send and receive em ulation com m ands – Emulate client activity and evaluate
the server’s responses. These commands also perform communication an
timing operations. You can log emulation commands in a log file.

ã Em ulation functions – Like emulation commands, emulation functions
emulate client activity and evaluate the server’s responses. However, emula
functions do not perform communication and timing operations, and they
not logged in a log file.

ã Synchronization statem ent – Causes a script to pause execution until all
participating virtual users rendezvous. Generally, you control synchronizati
points through a LoadTest schedule, but you can use the VU sync_point
statement to insert a synchronization point anywhere in a script.

ã D atapool functions – Retrieve data from a datapool and assign the individu
values to script variables. This enables a script that is executed more than
to use different values in each execution.

ã VU toolkit functions – These functions, which come with Rational Suite
PerformanceStudio, enable you to parse data returned by sqlnrecv into
rows and columns.
6 -1

abs
abs
Library Rou tine

Description Returns the absolute value of its argument.

Syntax int abs (int)

Comments N one.

Example This example prints the absolute values of the integers 34 and -10:

int var1 = 34;
int var2 = -10;
int result;
result = abs(var1)
printf ("The absolute value of %d is %d\n", var1, result);
result = abs(var2)
printf ("The absolute value of %d is %d\n", var1, result);

See Also N one.

AppendData
VU Toolkit Function: D ata

Description Adds the data returned by sqlnrecv to the specified data set.

Syntax #include <sme/data.h>
string func AppendData(data_name)
string data_name;

Comments The AppendData function adds the data returned by the most recent sqlnrecv
command to the data set specified by the data_name argument. Before data can be
added to a set, the set must be created with a call to SaveData. N o check is made
to ensure that the data to be added has the same structure as the existing data stored
under that name. If they do not match, a valid return is generated, but subsequent
results are undefined.

Syntax Element D escription

int The integer expression for which to return an absolute value.

Syntax Element D escription

data_name The name of the data set to receive the data from
sqlnreceive.
6 -2 VU Language Reference

AppendD ata

oop
ord
is
g

 of
t of
 at
ows
 text
ws to
If the specified data set does not exist, the function calls SaveData to create a data
set with the matching characteristics. In either case, it returns the length of the data
set including the data just appended.

Because data is stored using only the results of the most recent sqlnrecv
command, any VU environment variables that affect the data returned also affect this
function. In particular, it assumes that only one table was fetched. If
Table_boundaries is set to "OFF" and multiple tables are retrieved, the results
of this function and subsequent data commands on the stored data have undefined
results.

Example This example first frees any previously saved data from the “parts” text buffer. A l
is started to query the database five times. The script then obtains the next rec
from a file being shared by all virtual users that execute this script. The record
parsed by selection of the first field and direct selection of the third field, skippin
the second field. The third field is composed of four or more subfields. Parsing
the third field continues by selection of the first subfield, which provides a coun
the number of remaining subfields. One of the remaining subfields is selected
random to form a part of the query. After the query is performed, the returned r
are saved. If this is the first iteration of the loop, the rows are saved to the “parts”
buffer. Subsequent iterations of the loop append the data from the returned ro
the “parts” text buffer.

#include <VU.h>
#include <sme/data.h>
#include <sme/fileio.h>

{
 shared int file_tag_lock, file_tag_offset;
 string product_id, part_id, subassm_id;
 string temp_str;
 int subassm_cnt;

 /* This script assumes a connection was made to the database. */

 /* Record layout of "myfile" */
 /* product | part | subassm_cnt ; subassm_1; subassm_2 ; subassm_3;
... */

 /* There will be a minimum of three subassemblies in each record. */

 FreeData("parts");

 /* Perform 5 queries for parts. */

 for (i=0; i<=4; i++)
 {
 SHARED_READ ("myfile", file_tag);

 /* Parse the record. */
 product_id = NextField();

 temp_str = IndexedField(3);
 /* Note: The entire unparsed field is returned but it is not
 used directly. So the returned text string is not used. */
Com m and Reference 6 -3

atoi
 subassm_cnt = atoi(NextSubField());
 subassm_id = IndexSubField(uniform(2,subassm_cnt+1));

 /* Query for the part. */
 sqlexec ["test_001"]
 "select part_name from product_db "
 "where product=’"+product_id+"’ "
 "and subassembly=’"+subassm_id+"’";
 sqlnrecv ["test_002"] ALL_ROWS;

 if i = 0
 SaveData("parts");
 else
 AppendData("parts");
 }
 }

See Also FreeAllData FreeData GetData GetData1 SaveData

atoi
Library Rou tine

Description Converts strings to integers.

Syntax int atoi (str)

Comments The atoi routine behaves like the C atoi function, returning an integer
corresponding to a sequence of ASCII digits (0 to 9).

The atoi routine begins the conversion with the first character in str and
continues converting until it encounters the end of the string str or until a non-
digit is found. If the first character is a negative sign, atoi returns a negative integer.
Leading tabs, spaces, and zeros in str are ignored. If the first character of str is not
a digit, space, tab, or negative sign, atoi returns the integer value 0. In all other cases
it returns the integer corresponding to the digit string.

The atoi routine is also useful for stripping leading zeros from a string. Execute
atoi on the string, and then run itoa on the value returned.

Example This example returns the integer value 9302:

atoi(" 9302");

This example returns the integer value 32:

atoi("32.1");

Syntax Element D escription

str A string expression of digits to convert.
6 -4 VU Language Reference

bank
This example returns the integer value 1023:

atoi("102" + "3yz");

See Also itoa

bank
Library Rou tine

Description Creates bank expressions for assignments to the bank environment variables
Escape_seq and Logout_seq.

Syntax bank bank (expr1, expr2,... exprN)

Comments The bank routine returns a bank expression consisting of the collection of its
arguments. The position of arguments is important only within the same expression
type (that is, integer or string). For example, in the following three calls to bank, the
first two calls return equivalent bank expressions; the third call does not:

bank(int1, int2, str1, str2)
bank(str1, int1, int2, str2)
bank(int1, int2, str2, str1)

A single call to bank is limited by the maximum number of arguments per VU
subroutine. U se the arithmetic operator (+) to create a union of bank expressions.

Example These two examples return a bank expression containing the three strings "ab",
"cd", and "ef" (in that specific order) and the single integer 4:

bank("ab", 4, "cd", "ef");
bank("ab") + bank (4) + bank ("cd", "ef");

This example returns an empty (null) bank expression:

bank();

This example returns a bank expression containing no strings and the integer 149:

bank(atoi("149"));

See Also N one.

Syntax Element D escription

expr1, expr2, exprN A collection of zero or more integer expressions, string
expressions, or both.
Com m and Reference 6 -5

break
break
Flow Con trol Sta tem ent

Description Stops execution of for, while, and do-while statements.

Syntax break [level_constant]

Comments The break statement enables you to control the execution of for, while, and
do-while loops. As in C, if the break statement is encountered as one of the
statements in a for, while, or do-while loop, execution of that loop stops
immediately.

U nlike C, however, break can be specified with an optional argument, which
allows it to affect a specified level of nested looping structures. Without this
argument, or if the argument is 1, it behaves like its counterpart in C.

Example In this example, if the value of level_constant is 1, execution of the break
statement causes the do-while loop to end, and the next statement executed is
print "Completed do-while." If the value of level_constant is 2,
execution of both the do-while and while loops stops and the next statement
executed is the printf statement. If the value of level_constant is 3 or
greater, execution of the do-while, while, and for loops stops and the next
statement executed is cnt *= 7.

cnt = inner_cnt = 0;
for (i = 0; i < 10; i++) {

cnt++;
j = 0;
while (j < cnt) {

j++;
inner_cnt = j;
do {

inner_cnt++;
break level_constant;

} while (inner_cnt <= 4);
print "Completed do-while";

}
printf ("Now on iteration %d", i);

}
cnt *= 7;

See Also for while do-while continue

Syntax Element D escription

level_constant An optional integer that specifies the number of nested loop
levels to break out of.
6 -6 VU Language Reference

cindex
cindex
Library Rou tine

Description Returns the position within str of the first occurrence of the character char.

Syntax int cindex (str, char)

Comments The cindex (character index) routine returns the integer zero if no occurrences of
char are found.

The cindex, lcindex, sindex, and lsindex routines return positional
information about either the first or last occurrence of a specified character or set of
characters within a string expression. The strspan routine returns distance
information about the span length of a set of characters within a string expression.

 Example This example returns the integer value 1, because a is the first letter in the string
aardvark:

cindex("aardvark", ’a’);

This example returns the integer value 0, because the letter b does not occur in the
string aardvark:

cindex("aardvark", ’b’);

See Also lcindex sindex lsindex strspan strstr

base64_decode()
Library Rou tine

Description Decodes a base 64–encoded string.

Syntax string base64_decode(str)

Syntax Element D escription

str The string to search.

char The character to search for within str.

Syntax Element D escription

str1 A string expression containing the encoded text.
Com m and Reference 6 -7

base6 4_encode()

t of
Comments The base64_decode() function returns the clear text string equivalent of the
given base64–encoded string. If base64_decode() fails, it returns an empty
string, "".

Example This example uses base64_decode() to extract the login ID and password
contained in the given request text.

string auth_str, key, log_pass, request_text;
int start, end;

key = "Authorization:Basic";
start = strstr(request_text, key);
start += strlen(key);
auth_str = substr(request_text, start, 10000);
end = strstr(auth_str, "\r\n");
auth_str = substr(auth_str, 1, end – 1);
log_pass = base64_decode(auth_str);

See Also base64_encode()

base64_encode()
Library Rou tine

Description Encodes a string using base-64 encoding.

Syntax string base64_encode(str)

Comments The base64_encode() function returns the base 64–encoded string equivalen
the given string. If base64_encode() fails, it returns an empty string, "".

This function allows users to parameterize http login IDs and passwords.

Example This example uses base64_encode() to build an authorization string for a login
ID and password and then incorporates the result into an http_request.

string auth_str;
auth_str = base64_encode("mylog" +":"+ "mypass");
if (auth_str == “”)
{
user_exit(1,"Can’t convert login/password\n");
}
rational_com_80 = http_request["HTTP_lo~004"]
"rational.com:80", HTTP_CON_DIRECT,
"GET/HTTP/1.0\r\n",
. . .
"Authorization:Basic" + auth_str + "\r\n"
"\r\n";

See Also base64_decode()

Syntax Element D escription

str A string expression containing the clear text.
6 -8 VU Language Reference

close
close
Library Rou tine

Description Writes out buffered data to a file and then closes the file.

Syntax int close(file_des)

Comments The close routine returns 0 when it closes a file successfully; otherwise, a runtime
error is generated. Specifying an arbitrary integer not corresponding to a file
descriptor as file_des causes close to generate a runtime error.

Any non-persistent open files not closed by close are automatically closed when
the virtual user script completes. All open files, including persistent files, are closed
at the end of a run. Your script cannot close standard input, output, error, record, and
log files; any attempt to close one of them generates a runtime error.

Example This example declares the variable theline as a string. It then does the following:

ã Opens data_file for reading and assigns it the file descriptor file1.

ã Positions the character pointer so that each user reads a different line. File
pointer for user 1 is 80 (_uid*80) bytes from the beginning of the file, file
pointer for user 2 is 160 bytes from the beginning of the file, and so on.

ã Reads an entire line (anything but a new line followed by a new line) and stores
it in theline.

string theline;
file1=open("data_file","r");
fseek(file1, (_uid*80),0);
fscanf(file1, "%[^\n]\n", &theline);
close(file1);

See Also open

continue
Flow Con trol Sta tem ent

Description Skips remaining statements in a loop and continues with the next iteration of the
loop.

Syntax Element D escription

file_des An integer expression specifying the file to close. file_des
is the file descriptor returned by open.
Com m and Reference 6 -9

continue
Syntax continue [level_constant]

Comments The continue statement enables you to control the execution of for, while, and
do-while loops.

As in C, if the continue statement is encountered in a while or do-while loop,
the remaining statements in the loop are skipped, and execution continues with the
evaluation step of the loop. If the continue statement is encountered in a for
loop, the remaining statements in the loop are skipped, and execution continues with
the increment step.

U nlike C, however, continue is specified with an optional argument, which
allows it to affect a specified level of nested looping structures. Without this
argument, or if the argument is 1, it behaves like its counterpart in C.

Example In this example, if the value of level_constant is 1, the continue statement
causes the program execution to skip execution of loop_cnt = inner_cnt.
Execution continues at inner_cnt <= 4.

If the value of level_constant is 2, the do-while loop ends, the print
"Completed do-while" statement is skipped, and execution continues at
j < cnt.

If the value of level_constant is 3, both the do-while and while loops stop,
the printf statement is skipped, and execution continues at i++.

cnt = inner_cnt = 0;
for (i = 0; i < 10; i++) {

cnt++;
j = 0;
while (j < cnt) {

j++;
inner_cnt = j;
do {

inner_cnt++;
continue level_constant;
loop_cnt = inner_cnt;

} while (inner_cnt <= 4);
print "Completed do-while";

}
printf ("Now on iteration %d", i);

}
cnt *= 7;

See Also for while do-while break

Syntax Element D escription

level_constant An optional integer that specifies how many nested loop levels
to break out of.
6 -1 0 VU Language Reference

CO O KIE_CACH E
COOKIE_CACHE
Statem ent

Description Indicates the state of the cookie cache at the beginning of a session.

Syntax COOKIE_CACHE
{
 name = value, domain, path [, secure];
 ...
}

Comments When you begin recording an http session, LoadTest queries your browser for any
cookies that it has stored. These cookies are loaded into memory during script
playback, thus making playback more accurate with respect to initial cookie values.
This occurs automatically, but your VU script will contain a COOKIE_CACHE
section.

This COOKIE_CACHE section reflects the state of the cookie cache at the beginning
of a recording session. Automatically generated scripts have this section at the end of
the script, but it may appear anywhere outside the main body of the script.

The cookies in the COOKIE_CACHE section are added to the user’s cookie cache
automatically before any commands in the script are executed. Cookies are created
with expiration dates sufficiently in the future to ensure that they do not expire when
you play back the script.

Syntax Element D escription

name A string constant giving the name of the cookie.

value A string constant giving the value of the cookie.

domain A string constant giving the domain for which the cookie is
valid.

path A string constant giving the path for which the cookie is valid.

secure An optional string expression that, if given, provides the
secure modifier for the cookie. The value of this parameter
should be "secure".
Com m and Reference 6 -1 1

ctos
Example A cookie with the following data:

 Name: <AA002>
 Value: <00932743683-101023411/933952959>
 Path: <avenuea.com/>
 Secure: <0>
Comment: <*>
 Expire: <Monday, 20-Jul-2009 00:00:00 GMT>
 Create: <Friday, 23-Jul-1999 15:27:31 GMT>

Appears in the COOKIE_CACHE as:

COOKIE_CACHE
{
 "AA002" = "00932743683-101023411/933952959",

"avenuea.com", "/";
}

See Also expire_cookie set_cookie

ctos
Library Rou tine

Description Converts characters to strings.

Syntax string ctos (char)

Comments The ctos (character to string) routine returns a string of length one, containing
the character char if char is nonzero; otherwise, ctos returns a string of length
zero ("").

The stoc routine is the converse of ctos; stoc converts strings to characters.

Example These examples return the string "a":

ctos("a");
ctos(256 + ‘a’);

This example returns the string "\n":

ctos(’\n’);

These examples return the string "":

ctos(’\0’);
ctos(0);

See Also stoc

Syntax Element D escription

char An integer expression representing the character to convert.
6 -1 2 VU Language Reference

datapool_close
datapool_close
D atapool Function

Description Closes an open datapool.

Syntax int datapool_close(datapool_id)

Comments If datapool_close completes successfully, it returns a value of 1. O therwise, it
returns a value of 0.

Example This example opens repo_pool in the repository and then closes it:

dp_id = datapool_open ("repo_pool");
datapool_close (dp_id);

See Also datapool_open

DATAPOOL_CONFIG
Statem ent

Description Controls datapool creation and datapool access.

Syntax DATAPOOL_CONFIG datapool_name flags
{
 directive, "col_name" [,"data_type" [,"data_value"]];
 ...
 directive, "col_name" [,"data_type" [,"data_value"]];
}

Syntax Element D escription

datapool_id An integer expression returned by datapool_open
specifying the datapool to close.

Syntax Element D escription

datapool_name A string constant specifying the datapool name.
Com m and Reference 6 -1 3

D ATAPO O L_CO N FIG

f

.

s
t

for
o
lue,

ns.

d

flags Values that define the datapool access method. Choose at
most one value from each of the following four groups:

DP_WRAP or DP_NOWRAP
Specifies what happens after the last row in the datapool row
access order is reached:

ã DP_NOWRAP – End access to the datapool. This is the
default.
If you attempt to retrieve a datapool value after the end o
the datapool is reached, a runtime error occurs.

ã DP_WRAP – Resume at the beginning of the access order

To ensure that unique datapool rows are fetched, specify
DP_NOWRAP, and make sure that the datapool has at least a
many rows as the number of users (and user iterations) tha
will request rows at runtime.

DP_SHARED or DP_PRIVATE
Specifies whether the datapool cursor is shared by all users
accessing the datapool (DP_SHARED) or is unique to each
user (DP_PRIVATE):

ã DP_SHARED – With a shared cursor, all users work from
the same access order. For example, if the access order
a Colors column is Red, Blue, and Green, the first user t
request a value is assigned Red, the second is assigned B
and the third is assigned Green. This is the default.
A shared cursor can also be persistent across schedule ru
U se the DP_PERSISTENT flag to make a shared cursor
persistent.

ã DP_PRIVATE – With a private cursor, each user starts at
the top of its access order. With DP_RANDOM or
DP_SHUFFLE, the access order is unique for each user an
operates independently of the others. With
DP_SEQUENTIAL, the access order is the same for each
user (ranging from the first row in the file to the last).

 (Continued)

Syntax Element D escription
6 -1 4 VU Language Reference

D ATAPO O L_CO N FIG

y

ule

irst

me

r
ule
 at

e
ã DP_SEQU EN TIAL, DP_RAN DOM, or
DP_SHU FFLE

ã Determines datapool row access order (the sequence in
which datapool rows are accessed):

ã DP_SEQU EN TIAL – Rows are accessed in the order in
which they are physically stored in the datapool file,
beginning with the first row in the file and ending with the
last. This is the default.

ã DP_RAN DOM – Rows are accessed in any order, and an
given row can be accessed multiple times or not at all.

ã DP_SHU FFLE – Each time LoadTest rearranges, or
“shuffles,” the access order of all datapool rows, a unique
sequence results. Each row is referenced in a shuffled
sequence only once.

DP_PERSISTENT

Specifies that the datapool cursor is persistent across sched
runs. For example, if both the DP_PERSISTENT and
DP_SEQUENTIAL flags are set, and datapool row number
100 was the last row accessed in the last schedule run, the f
row accessed in the next schedule run is 101.

A persistent cursor resumes row access based on the last ti
the cursor was accessed as a persistent cursor. For example,
suppose a cursor is persistent, and the last row accessed fo
that cursor in a schedule run is 100. Then, the same sched
is run again, but the cursor is now private. Row access ends
50. If the cursor is set back to persistent the next time the
schedule is run, row access resumes with row 101, not 51.

DP_PERSISTENT is only valid when the DP_SHARED flag
exists and when either the DP_SEQUENTIAL or
DP_SHUFFLE flag exists.

OVERRIDE or EXCLUDE

Specifies whether you want to use an optional global directiv
to override the individual directives specified in directive:

ã OVERRIDE – The OVERRIDE directive is applied globally
to all datapool columns. This is the default.

ã EXCLUDE – The EXCLUDE directive is applied globally to
all datapool columns.

These values allow the script to ignore datapool_open
and datapool_fetch calls. As a result, these values let you
run the script even if the datapool file is missing.

See the directive argument for more information about
these values.

 (Continued)

Syntax Element D escription
Com m and Reference 6 -1 5

D ATAPO O L_CO N FIG

r

r

s

e.
Comments If you select U se datapools on the Generator tab of the Virtual U ser Record
Options dialog box, Robot automatically includes a DATAPOOL_CONFIG statement
in the script that it generates after recording.

directive A keyword that specifies the columns to add to the datapool as
well as the source of values returned by the function
datapool_value:

ã INCLUDE
– During datapool creation, creates a datapool column fo
col_name. The column is assigned the same name.

– During schedule runtime, datapool_value returns
a value for col_name from the corresponding datapool
column.

ã EXCLUDE

– During datapool creation, does not create a datapool
column for col_name.
When the flags value contains EXCLUDE, no
datapool is created.

– During schedule runtime, datapool_value returns
a value for col_name from the recorded value in
data_value, not from the datapool.

ã OVERRIDE
– During datapool creation, creates a datapool column fo
col_name. The column is assigned the same name.

– During schedule runtime, datapool_value returns
a value for col_name from the recorded value in
data_value, not from the datapool.

You can override all of the directives in this column by
specifying the flags value OVERRIDE or EXCLUDE. These
global values treat all columns in the configuration section a
either OVERRIDE or EXCLUDE.

col_name The name of the datapool item. If a datapool column is
created for this item (if directive is either INCLUDE or
OVERRIDE), the datapool column is assigned the same nam

data_type The data type of the value in data_value column. The
value is always string.

data_value A value that was provided during recording. The function
datapool_value supplies col_name with a recorded
value rather than a datapool value if the directive OVERRIDE
or EXCLUDE is specified.

 (Continued)

Syntax Element D escription
6 -1 6 VU Language Reference

D ATAPO O L_CO N FIG

ight

ume

er
ript,

 user
h the

 the
s row

e last

 the
s row
To edit a DATAPOOL_CONFIG statement through the Robot user interface, click
Edit → D atapool Inform ation.

Think of non-sequential access order (DP_SHUFFLE and DP_RANDOM) as being
like a shuffled deck of cards. With DP_SHUFFLE, each time you pick a card (access
a row), you place the card at the bottom of the pack. But with DP_RANDOM, the
selected card is returned anywhere in the pack — which means that one card m
be selected multiple times before another is selected once.

Also, with DP_SHUFFLE, after each card has been selected once, you either res
selecting from the top of the same access order (DP_WRAP), or no more selections
are made (DP_NOWRAP).

With DP_RANDOM, you never reach the end of the pack (there is no end-of-file
condition, so DP_WRAP and DP_NOWRAP are ignored).

In a private cursor with DP_SEQUENTIAL access order, you typically have each us
run multiple instances of the script. If each user runs a single iteration of the sc
each would access the same datapool row (the first row in the datapool).

The following are the possible flags combinations that affect datapool access.
These combinations include all flags values except OVERRIDE and EXCLUDE.

ã DP_SHARED DP_SHUFFLE DP_WRAP

LoadTest calculates a unique row access order for all users to share. After a
reaches the last row in the access order, the next user resumes access wit
first row.

ã DP_SHARED DP_SHUFFLE DP_WRAP DP_PERSISTENT

Same as above, but the cursor is also persistent across schedule runs. For
example, suppose row number 14 immediately follows row number 128 in
shuffled access order. If the last row accessed in the current schedule run i
128, the first row accessed in the next schedule run is 14.

ã DP_SHARED DP_SHUFFLE DP_NOWRAP

LoadTest calculates a unique row access order for all users to share. After th
row in the access order is reached, access to the datapool ends.

ã DP_SHARED DP_SHUFFLE DP_NOWRAP DP_PERSISTENT

Same as above, but the cursor is also persistent across schedule runs. For
example, suppose row number 14 immediately follows row number 128 in
shuffled access order. If the last row accessed in the current schedule run i
128, the first row accessed in the next schedule run is 14.
Com m and Reference 6 -1 7

D ATAPO O L_CO N FIG
ã DP_PRIVATE DP_SHUFFLE DP_WRAP

Loadtest calculates a unique row access order for each user. After a user reaches
the last row in its access order, it resumes access with the first row.

ã DP_PRIVATE DP_SHUFFLE DP_NOWRAP

LoadTest calculates a unique row access order for each user. After a user reaches
the last row in its access order, access to the datapool ends.

ã DP_SHARED DP_RANDOM

LoadTest calculates a random access order that all users share. A given row can
appear in the access order multiple times. Because no end-of-file condition is
possible, DP_WRAP and DP_NOWRAP are ignored.

ã DP_PRIVATE DP_RANDOM

LoadTest calculates a unique random access order for each user. A given row can
appear in the access order multiple times. Because no end-of-file condition is
possible, DP_WRAP and DP_NOWRAP are ignored.

ã DP_SHARED DP_SEQUENTIAL DP_WRAP

LoadTest provides all users with the same sequential access to datapool rows,
starting with the first row in the datapool file and ending with the last. After a
user reaches the last row in the datapool, the next user resumes access with the
first row.

ã DP_SHARED DP_SEQUENTIAL DP_WRAP DP_PERSISTENT

Same as above, but the cursor is also persistent across schedule runs. For
example, if the last row accessed in the current schedule run is row 128, the first
row accessed in the next schedule run is 129.

ã DP_SHARED DP_SEQUENTIAL DP_NOWRAP

LoadTest provides all users with the same sequential access to datapool rows,
starting with the first row in the datapool file and ending with the last. After the
last row in the sequence is reached, access to the datapool ends.

ã DP_SHARED DP_SEQUENTIAL DP_NOWRAP DP_PERSISTENT

Same as above, but the cursor is also persistent across schedule runs. For
example, if the last row accessed in the current schedule run is row 128, the first
row accessed in the next schedule run is 129.
6 -1 8 VU Language Reference

D ATAPO O L_CO N FIG

ol ends.

nnot

er

ine

hese
e the
r
ã DP_PRIVATE DP_SEQUENTIAL DP_WRAP

LoadTest provides each user with individual sequential access to datapool rows,
starting with the first row in the datapool file and ending with the last. After a
user accesses the last row in the sequence, it resumes access with the first row in
the sequence.

ã DP_PRIVATE DP_SEQUENTIAL DP_NOWRAP

LoadTest provides each user with individual sequential access to datapool rows,
starting with the first row in the datapool file and ending with the last. After a
user accesses the last row in the sequence, the user’s access to the datapo

Comments are not allowed in the DATAPOOL_CONFIG section of a script.

Commas (,) double-quotes ("), and carriage return and line feed characters ca
be used in keywords, names, or recorded values in the DATAPOOL_CONFIG section
of a script.

Example This example shows a DATAPOOL_CONFIG statement for a datapool named
CD_ORDER. The datapool is accessed by an application that lets a customer ord
CDs from a music retailer.

This first line of the example contains the datapool name and the flags that def
how the datapool is accessed when the script is played back in LoadTest.

Each subsequent line has four columns of information, separated by commas. T
lines serve as a datapool blueprint, giving Robot the information it needs to creat
datapool. During script playback, these lines also tell Loadtest where to look fo
values to assign the variables in the script.
Com m and Reference 6 -1 9

datapool_fetch

In this example, a datapool column is generated for every variable listed except the
last one, xV010. Also, during script playback, LoadTest assigns a datapool value to
each variable listed except for xV006 and xV010. These two variables are assigned
the values 12/31/99 and Order Initiated, respectively, each time the script is
executed.

DATAPOOL_CONFIG "CD ORDER"DP_NOWRAP DP_SEQUENTIAL DP_SHARED
{

INCLUDE, "CUSTID", "string", "329781";
INCLUDE, "PRODUCTS_COMPOSER", "string", "Bach";
INCLUDE, "PRODUCTS_COMPOSER_4", "string", "Schubert";
INCLUDE, "PRODUCTS_COMPOSER_3", "string", "Mozart";
INCLUDE, "PRODUCTS_COMPOSER_2", "string", "Haydn";
INCLUDE, "PRODUCTS_COMPOSER_1", "string", "Beethoven";
INCLUDE, "xV001", "string", "33822";
INCLUDE, "xV001_2", "string", "87";
INCLUDE, "xV001_1", "string", "99383";
INCLUDE, "xV002", "string", "2";
INCLUDE, "xV003", "string", "10-APR-1998";
INCLUDE, "xV004", "string", "MasterCard";
INCLUDE, "xV005", "string", "1234567890000";
OVERRIDE, "xV006", "string", "12/31/99";
INCLUDE, "xV007", "string", "99383";
INCLUDE, "xV008", "string", "2";
INCLUDE, "xV009", "string", "$35.98";
EXCLUDE, "xV010", "string", "Order Initiated";

}

See Also datapool_open

datapool_fetch
D atapool Function

Description Moves the datapool cursor to the next row.

Syntax int datapool_fetch(datapool_id)

Comments If datapool_fetch completes successfully, it returns a value of 1. O therwise, it
returns a value of 0.

datapool_fetch retrieves the next row in the datapool. The “next row” in the
datapool is determined by the flags you set in the DATAPOOL_CONFIG section of
the script or in the datapool_open command.

Syntax Element D escription

datapool_id An integer expression returned by datapool_open and
representing an open datapool.
6 -2 0 VU Language Reference

datapoo l_open
If cursor wrapping is disabled, and the last row of the datapool has been retrieved, a
call to datapool_fetch returns an error. If datapool_value is then called, a
runtime error occurs. (Cursor wrapping is disabled when the flags argument of
DATAPOOL_CONFIG or datapool_open includes DP_NOWRAP.)

Example This example opens a datapool, fetches the next record in the datapool, and then
closes the datapool:

dp_id = datapool_open ("repo_pool");
datapool_fetch(dp_id);
datapool_close (dp_id);

See Also datapool_open datapool_rewind datapool_value

datapool_open
D atapool Function

Description Opens the specified datapool and defines the datapool’s row access order.

Syntax int datapool_open (datapool_name [, flags])

Syntax Element D escription

datapool_name The name of the datapool to open.

flags Flags that define how the datapool is accessed when the script
is played back in a LoadTest schedule.

If you do not specify any values for flags, row access order
is determined by the flags value of DATAPOOL_CONFIG.
This is the preferred method for providing flags values.

If you do define flags in datapool_open, it cannot
contradict the values set in DATAPOOL_CONFIG.

For example, if DATAPOOL_CONFIG does not specify the
datapool access method (DP_SEQUENTIAL or
DP_RANDOM), you can specify it as DP_SHU FFLE in the
datapool_open. H owever, if DATAPOOL_CONFIG
declares a datapool cursor as DR_PRIVATE, you cannot open
it with DP_SHARED.

For details about flags values, see the description of this
argument in the DATAPOOL_CONFIG statement.
Com m and Reference 6 -2 1

datapool_open

s, to
here

w in

pool as

a

to the
Comments datapool_open returns a datapool identifier that other datapool functions use to
perform operations on the datapool. U pon failure, the function returns 0.

The cursor for a datapool opened for shared access (DP_SHARED) is initialized by
LoadTest once for an entire schedule run. When initializing a datapool cursor
opened for both shared and persistent access (DP_SHARED and DP_PERSISTENT),
LoadTest sets the row pointer to the next row in the row access order — that i
the row that immediately follows the last row accessed in the last schedule run w
the cursor was persistent.

The cursor for a datapool opened for private access (DP_PRIVATE) is initialized by
each user once for an entire schedule run. When initializing a datapool cursor
opened for private access, LoadTest sets the row-pointer to the first datapool ro
the row access order.

With a private-access datapool, closing the datapool with datapool_close, and
then reopening the same datapool with another call to datapool_open with the
same flags and in the same or a subsequent script, resumes access to the data
if it had never been closed.

If multiple users (GU I users and/or virtual users) access the same datapool in
LoadTest schedule, the datapool cursor is managed as follows:

ã For shared cursors, the first call to datapool_open initializes the cursor. In
the same schedule run (and, with the DP_PERSISTENT flag, in subsequent
schedule runs), users that subsequently call datapool_open to open the
same datapool share the initialized cursor.

ã For private cursors, the first call to datapool_open initializes the user’s
private cursor. In the user’s subsequent calls to datapool_open in the same
schedule run, the cursor is set to the last row accessed by that user.

Example This example declares a datapool from the customer file. At declaration, access
datapool is sequential, and DP_WRAP or DP_NOWRAP is unspecified. The datapool
is opened to reuse records:

DATAPOOL_CONFIG "repo_pool" DP_SHARED DP_SEQUENTIAL
{
 INCLUDE, "column1", "string";
 INCLUDE, "column2", "string";
 INCLUDE, "column3", "string";
}

dp_id = datapool_open ("repo_pool", DP_WRAP);

See Also DATAPOOL_CONFIG datapool_fetch datapool_value
datapool_close datapool_rewind
6 -2 2 VU Language Reference

datapool_rewind
datapool_rewind
D atapool Function

Description Resets the datapool cursor to the start of the datapool access order.

Syntax int datapool_rewind(datapool_id)

Comments This command rewinds the private cursor for the datapool referenced by the
datapool_id. If datapool_rewind completes successfully, it returns a value of 1.
O therwise, it returns a value of 0.

The datapool is rewound as follows:

ã For datapools opened DP_SEQUENTIAL, datapool_rewind resets the
cursor to the first record in the datapool file.

ã For datapools opened DP_RANDOM or DP_SHUFFLE, datapool_rewind
restarts the random number sequence.

ã For datapools opened DP_SHARED, datapool_rewind has no effect.

At the start of a schedule, datapool cursors always point to the first row.

If you rewind the datapool during a schedule run, previously accessed rows are
fetched again.

Example This example shows a datapool configured with the defaults, opened for private
access, and then rewound.

DATAPOOL_CONFIG "repo_pool" DP_NOWRAP DP_SEQUENTIAL
{
 INCLUDE, "column1", "string";
 INCLUDE, "column2", "string";
 INCLUDE, "column3", "string";
}

dp_id = datapool_open ("repo_pool", DP_PRIVATE);
datapool_rewind (dp_id);

See Also datapool_fetch

Syntax Element D escription

datapool_id An integer expression returned by datapool_open and
representing an open datapool.
Com m and Reference 6 -2 3

datapool_va lue
datapool_value
D atapool Function

Description Retrieves the value of the specified datapool column.

Syntax string datapool_value(datapool_id, column)

Comments datapool_value returns the string value of the specified column.

If cursor wrapping is disabled, and the last row of the datapool has been retrieved, a
call to datapool_fetch returns an error. If datapool_value is then called, a
runtime error occurs. (Cursor wrapping is disabled when the flags argument of
DATAPOOL_CONFIG or datapool_open includes DP_NOWRAP.)

You can retrieve a value even if the datapool column has been excluded from the
datapool (through the EXCLUDE directive in DATAPOOL_CONFIG). In this case, the
value retrieved is the recorded value contained in the data_value argument of the
DATAPOOL_CONFIG statement.

Example This example retrieves the value of "column3" and stores it in dp_value:

DATAPOOL_CONFIG "repo_pool" DP_NOWRAP DP_SHARED DP_SEQUENTIAL
{
 INCLUDE, "column1", "string";
 INCLUDE, "column2", "string";
 INCLUDE, "column3", "string";
}

dp_id = datapool_open ("repo_pool" DP_WRAP);
datapool_fetch(dp_id);
dp_value = datapool_value(dp_id, "column3");

See Also datapool_fetch

Syntax Element D escription

datapool_id An integer expression returned by datapool_open and
representing an open datapool.

column A string that specifies the name of the datapool column to
retrieve. The name must match a datapool column name
listed in the TestManager Datapool Specification dialog box.
Column names are case sensitive.
6 -2 4 VU Language Reference

delay
delay
Library Rou tine

Description Delays script execution for a specified time period.

Syntax int delay (m_time)

Comments The delay routine returns, as an integer, the number of milliseconds actually
delayed. If m_time is ≤ 0, delay returns 0 immediately.

The delay routine delays script execution for a specified time period before
continuing. When this time period has elapsed, execution continues with the next
statement.

Your system may round the delay to a lower resolution, typically in the range of 10
to 20 milliseconds.

Example This example sets a random delay. It first defines a maximum delay of 10 seconds,
and then delays a random amount of time from 0 to 10 seconds:

#define MaxDelay 10

(
delay_time = rand() % (MaxDelay + 1);
delay(delay_time * 1000);

}
See Also N one.

display
Library Rou tine

Description Provides a string to the monitor for display in message view.

Syntax int display (str)

Syntax Element D escription

m_time An integer expression specifying the delay in milliseconds.
This is subject to scaling by the environment variable
Delay_dly_scale.

Syntax Element D escription

str A string expression to be displayed by monitor.
Com m and Reference 6 -2 5

do-wh ile
Comments The display routine always returns 1 for success. display accepts any string
expression, but the length of the string is truncated to 20 characters when monitoring
a schedule.

This function is most useful as a script debugging tool because it allows a short
message to be easily viewed in real time.

Example display ("beginning transaction");

See Also N one.

do-while
Flow Con trol Sta tem ent

Description Repeatedly executes a VU statement while a condition is true.

Syntax do
statement1;

while (exp1);

Comments The do-while loop is executed in the following steps:

1 . statement1 is executed.

2 . exp1 is evaluated.

3 . If the value of exp1 is not 0, steps 1 and 2 are repeated. If the value of exp1 is 0,
execution of the while loop ends.

Example This example reads and prints a string from a file whose file descriptor is
file_des. Execution continues until the end of the file is reached.

do
{
 if (fscanf(file_des, "%s", &key)==1)
 printf("Key is <%s>\n" key);
}
while (!feof(file_des))

See Also for while

Syntax Element D escription

statement1 One or more VU language statements enclosed in braces.

exp1 The integer expression to evaluate.
6 -2 6 VU Language Reference

else-if
else-if
Flow Con trol Sta tem ent

Description Conditionally executes a VU statement.

Syntax if (exp1)
 statement1;

else if (exp2)
 statement2;

...
else if (expn)

statementn;
else

statementx;

Comments The else-if structure follows these conventions:

ã If the value of exp1 is not 0, only statement1 is executed.

ã If exp1 is 0 and the value of exp2 is not 0, only statement2 is executed.

ã If exp1, exp2 ... expn-1 are 0 and the value of expn is not 0, only
statementn is executed.

ã If all of exp1, exp2 ... expn are 0, then only statementx is executed.
The final else is omitted if no action is required when all of exp1, exp2
... expn are 0.

As with the if-else structure, if a statement is replaced by multiple VU language
statements, all statements are enclosed in braces.

The indentation is optional but recommended.

Syntax Element D escription

exp1, exp2, expn An integer expression whose value determines whether the
corresponding statement is executed. If the value is 0, the
statement is not executed.

statement1,

statement2,

statementn,

statementx

VU language statements that are executed conditionally.
Com m and Reference 6 -2 7

em ula te

ol.
Example In this example, one of three options are possible. If x is less then target, the
string “too small” is printed. If x is greater than target, the string “too large” is
printed; otherwise, the string “just right!” is printed.

if (x < target)
 printf("too small\n");
else if (x > target)
 printf("too large\n");
else
 printf("just right!\n");

See Also if-else

emulate
Send Em u lation Com m and

Description Provides generic emulation command services to support a proprietary protoc

Syntax int emulate [cmd_id] condition [, log_string
[, fail_string]]

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

condition An integer expression. If the value of condition is > 0, the
emulate command passes; otherwise, it fails. emulate
returns the value of condition.

Typically, condition is a VU function or an external C
function.

condition is executed before evaluation of log_string
and fail_string. Therefore, either string could contain
variables set during execution of condition.

log_string An optional string expression used when logging a passed
emulate command, or a failed, emulate command if
fail_string is not provided. If log_string is not
specified, no log entry is generated for emulate.

Either log_string or fail_string is evaluated, but not
both.

fail_string An optional string expression used when logging a failed
emulate command. If fail_string is not specified,
log_string is used for both pass and fail cases.

Either log_string or fail_string is evaluated, but not
both.
6 -2 8 VU Language Reference

em ulate

s

ary.

at

 API
or
Comments The emulate command returns the value of condition.

The emulate command provides generic emulation command services to VU
or external C function calls. This extends VU emulation support to proprietary
protocols or interfaces. You can use the emulate command as a wrapper for
external C function calls, and thus obtain the full set of services associated with the
standard emulation commands.

The external C dynamic-link library (shared library on U N IX Agents) contains the
C functions to perform the desired client-side API functions that access the server.
These C functions are wrapped in the emulate command, so that the results and
timing of the API functions are paced, recorded, logged, and made available for
analysis by LoadTest reports.

The C code generally performs response verification and error detection, and passes
an integer return code to emulate.

The emulate command is affected by the following VU environment variables: the
think time variables, Log_level, Record_level, Suspend_check,
Timeout_val, Timeout_scale, and Timeout_act.

For more information, see Accessing External C Data and Functions on page 4-9.

Example In this simple example, api_x is called with two string constants and an integer
constant. N o logging is performed, but if api_x returns a value > 0, the command
is recorded as passed in the virtual user’s record file; otherwise, it is recorded a
failed. The label associated with the command is action 1. The response time is
the time from calling api_x until it returns.

emulate["action 1"] api_x("John Doe", "$100.43", 4);

In this more complete example, an API has been linked into a dynamic-link libr
The virtual user script calls the API with an emulate wrapper.

The API is a simple interface to a school database. The API consists of:

ã An open function, which takes a student’s name and returns a handle to th
student’s record.

ã A cmd function, which performs operations on the records.

ã A close function, which releases the record handle.

The actual C code for the shared library includes a wrapper C function for each
call; each call has the prefix my. The dynamic-link library creates the log message f
each API call.

N O TE: VU supports the SAP protocol by using external C functions and the
emulate command. For information about the SAP protocol, see Appendix B.
Com m and Reference 6 -2 9

em ula te
The header file, myAPI.h, is included in the virtual user script. The header file
defines three constants that are used by the API, and makes the C string
api_logmsg, and functions myapi_open, myapi_cmd, and myapi_close
available to the virtual user script:

#define REGISTER_CLASS 1
#define ASSIGN_GRADE 2
#define REVISE_GRADE 3

external_c string api_logmsg;

external_c func myapi_open(name, student_handle)
string name;
reference int student_handle;

{}

external_C func myapi_cmd(student_handle, command, sval, ival)
int student_handle;
int command;
string sval;
int val;

{}

external_C func myapi_close(student_handle)
int student_handle;

{}

The virtual user script has an emulate command for each API call, and references
the shared external C string api_logmsg to log the results. The script opens the
record for Joe Smith, returns the handle needed by subsequent calls (handle_1),
assigns two grades, and closes the record. A think time has been added to simulate
user processing:

#include <VU.h>
#include <myAPI.h>

{
set Think_avg = 3000;
emulate ["step001"] myapi_open("Joe Smith", &handle_1), api_logmsg;
emulate ["step002"] myapi_cmd(handle_1, ASSIGN_GRADE, "Biology",
94), api_logmsg;
emulate ["step003"] myapi_cmd(handle_1, ASSIGN_GRADE, "Chemistry",
82), api_logmsg;
emulate ["step004"] myapi_close(handle_1), api_logmsg;
}

See Also testcase
6 -3 0 VU Language Reference

eva l

k.

e
eval
Environm ent Contro l Com m and

Description Returns the value and data type at the top of a VU environment variable’s stac

Syntax type eval env_var;

Comments The eval command returns an expression having the same type as env_var
(integer, string, or bank) and the current value of env_var. The value of env_var
is not altered.

Example In this example, values for Timeout_val and Log_level are set. The integer
value 2000 is assigned to the variable t. Then, the integer value 1 is assigned to th
variable e, because the expression (eval Log_level == "ALL") is true. The
value of Timeout_val and Log_level remain unchanged.

set [Timeout_val = 2000, Log_level="ALL"];
t = eval Timeout_val;
e=(eval Log_level=="ALL");

See Also N one.

expire_cookie
Em ulation Function

Description Expires a cookie in the cookie cache.

Syntax expire_cookie(name, domain, path)

Syntax Element D escription

type int, string, or bank depending on type of env_var.

env_var Any VU environment variable defined as a integer, string, or
bank.

Syntax Element D escription

name A string expression that specifies the name of the cookie.

domain A string expression that specifies the domain for which this
cookie is valid.

path A string expression that specifies the path for which this
cookie is valid.
Com m and Reference 6 -3 1

feof
Comments The expire_cookie function causes the named cookie to no longer be valid for
the given domain and path. This effectively removes the cookie from the cache.

Example This example expires the cookie named AA002 for domain avenuea.com and
path /.

expire_cookie("AA002", ".avenuea.com", "/");

See Also COOKIE_CACHE set_cookie

feof
Library Rou tine

Description Determines if the end of a file was encountered.

Syntax int feof (file_des)

Comments The feof routine returns a nonzero value if the end of file has previously been
detected reading the named input file; otherwise, feof returns zero.

The related routines fseek repositions the file pointer and ftell returns
information on the file pointer.

Example In this example, if the file with the descriptor infile_des contains the characters
abcde, then the characters abcde are written to the file whose descriptor is
outfile_des ten times. At the end of the example, the variables copies and
total have values of 10 and 50, respectively:

fseek(file_des, 0, 2);
for (copies = total = 0; copies < 10; copies++)
{
 while (1)
 {
 c = fgetc(infile_des);
 if (feof(infile_des))
 {
 total += ftell(infile_des);
 fseek(infile_des, 0, 0); /* rewind */
 break;
 }
 else
 fputc(c, outfile_des);
 }
}

See Also fseek ftell

Syntax Element D escription

file_des The integer file descriptor of the file to check. The file
descriptor was returned from open.
6 -3 2 VU Language Reference

ff lush
fflush
Library Rou tine

Description Causes any buffered data for a file to be written to that file.

Syntax int fflush (file_des)

Comments The fflush routine returns zero for success, or EOF (as defined in the standard
VU header file) upon encountering an error. All VU files except standard error are
buffered for efficiency.

fflush temporarily overrides the buffering mechanism by writing the buffered
data to the named file. This is particularly useful for ensuring timely output of status
messages, as shown in the following example.

Example This example writes the strings "Processing Phase 1", "2 ", "3 ",
"4 ", "5 ", and "DONE\n" to be successively written to the standard output
file immediately as each respective phase is processed, instead of waiting until the file
is closed or the current output buffer is filled.

for (phase_no = 1; phase_no <= 5; phase_no++)
{

if (phase_no == 1)
printf("Processing Phase ");

printf("%d ", phase_no);
fflush(stdout);
do_phase(phase_no);

}
printf("DONE\n");
fflush(stdout);

See Also N one.

Syntax Element D escription

file_des The integer file descriptor, obtained from the open, the file
to flush.
Com m and Reference 6 -3 3

fgetc
fgetc
Library Rou tine

Description Provides unformatted character input capability.

Syntax int fgetc (file_des)

Comments The fgetc routine returns the next character, as an integer, from the named file.
This provides a shortened, more efficient alternative to the fscanf routine for the
case where only a single character needs input. fgetc returns EOF (as defined in
the standard VU header file) at end-of-file or upon an error.

Example In this example, assume the file with the descriptor infile_des contains the
characters ABZ14. The characters ABZ are written to the file whose descriptor is
outfile_des, and the character 1 is returned to the input buffer associated with
infile_des.

#include <VU.h>
while ((c = fgetc(infile_des)) != EOF)
if (c >= ‘A’ && c <= ‘Z’)

fputc(c, outfile_des);
else
{

ungetc(c, infile_des);
break;

}

See Also ungetc

for
Flow Con trol Sta tem ent

Description Repeatedly executes a VU statement.

Syntax Element D escription

file_des The integer file descriptor, obtained from open, that refers to
the file to read.
6 -3 4 VU Language Reference

fpu tc, fpu ts
Syntax for (exp1; exp2; exp3)
statement1;

Comments The execution of the for loop occurs in the following steps:

1 . exp1 is evaluated.

2 . exp2 is evaluated and if its value is not 0, statement1 is executed. If its value is
0, execution of the for loop ends.

3 . If the execution of the for loop has not ended, exp3 is evaluated.

4 . Steps 2 and 3 are repeated until execution of the for loop ends.

Example This example prints out a line 10 times:

for (i=0; i<10; i++)
printf ("this line is displayed 10 times\n");

See Also while do-while

fputc, fputs
Library Rou tine

Description Writes unformatted output for characters or strings.

Syntax int fputc (out_char, file_des)
int fputs (out_str, file_des)

Syntax Element D escription

exp1, exp3 A VU language expression.

exp2 An integer expression to evaluate.

statement1 A VU language statement. You can include multiple VU
language statements if all of the statements are enclosed in
braces and terminated by semicolons.

Syntax Element D escription

out_char An integer expression (interpreted as a character) that
specifies the character to write.

out_str A string expression that specifies the string to write.

file_des The integer file descriptor, obtained from open, of the file to
receive the output.
Com m and Reference 6 -3 5

FreeAllD ata
Comments The fputc and fputs routines provide a shortened, more efficient alternative to
the fprintf routine when only a single character or string needs to be output.

Example In this example, assume that the value of char1 is M. Therefore, the character M is
written to the file whose descriptor is outfile_des.

fputc(char1, outfile_des);

In this example, assume that the value of the string expression str1 is xyz.
Therefore, the characters xyz are written to the file whose descriptor is
outfile_des.

fputs(str1, outfile_des);

See Also fprintf

FreeAllData
VU Toolkit Function: D ata

Description Frees all data sets saved with SaveData and AppendData.

Syntax #include <sme/data.h>
proc FreeAllData()

Comments The FreeAllData procedure frees all data sets saved using SaveData and
AppendData.

Example This example saves the data in the tmp_results buffer, stores the second field in
accessprofile_id, then frees all the data.

#include <VU.h>
#include <sme/data.h>

{
 string accessprofile_id;

 sqlexec ["test_gr003"]
 "select PASSWORD, ACCESSPROFILEID, INACTIVE, "
 "PW_UPDATE_DT from USERACCOUNT where NAME = ’davidj’";
 sqlnrecv ["test_gr004"] ALL_ROWS;

 SaveData ("tmp_results");
 accessprofile_id = GetData1("tmp_results", 2);
 FreeAllData ();

 sqlexec ["test_gr005"]
 "select LOGONNAME, LOGONPASSWORD, EXP_DAYS from "
 "ACCESSPROFILE where ACCESSPROFILEID = "
 + accessprofile_id;
}

See Also AppendData FreeData GetData GetData1 SaveData
6 -3 6 VU Language Reference

FreeD ata
FreeData
VU Toolkit Function: D ata

Description Frees specified data sets saved with SaveData and AppendData.

Syntax #include <sme/data.h>
proc FreeData(data_name)
string data_name;

Comments The FreeData function frees the data set associated with data_name, where the
named data set was created using the SaveData or AppendData functions.

Example This example saves the data in the tmp_results buffer, stores the second field in
accessprofile_id, then frees tmp_results.

#include <VU.h>
#include <sme/data.h>

{
 string accessprofile_id;

 sqlexec ["test_gr003"]
 "select PASSWORD, ACCESSPROFILEID, INACTIVE, "
 "PW_UPDATE_DT from USERACCOUNT where NAME = ’davidj’";
 sqlnrecv ["test_gr004"] ALL_ROWS;

 SaveData ("tmp_results");
 accessprofile_id = GetData1("tmp_results", 2);
 FreeData ("tmp_results");

 sqlexec ["test_gr005"]
 "select LOGONNAME, LOGONPASSWORD, EXP_DAYS from "
 "ACCESSPROFILE where ACCESSPROFILEID = "
 + accessprofile_id;
}

See Also AppendData FreeAllData GetData GetData1 SaveData

Syntax Element D escription

data_name The name of the data set to free.
Com m and Reference 6 -3 7

fseek
fseek
Library Rou tine

Description Repositions the file pointer.

Syntax int fseek (file_des, offset, position)

Comments The fseek routine returns zero for successful seeks, and nonzero for unsuccessful
seeks.

The related routines feof and ftell return information about the file pointer.

Example In this example, fseek repositions the file pointer of the file whose descriptor is
file_des to the beginning of the file:

fseek(file_des, 0, 0);

In this example, if the current file pointer offset is 45, fseek repositions the file
pointer of the file whose descriptor is file_des to an offset of 35:

fseek(file_des, -10, 1);

In this example, fseek repositions the file pointer of the file whose descriptor is
file_des to the end of the file:

fseek(file_des, 0, 2);

See Also feof ftell

Syntax Element D escription

file_des The integer file descriptor, obtained from open, of the file
whose pointer you want to reposition.

offset An integer expression that indicates the number of bytes that
the file pointer is to move. The offset can be a negative
number.

position An integer expression that indicates whether the offset is from
the beginning of the file (if position equals 0), from the
current position (if position equals 1), or from the end of
the file (if position equals 2).
6 -3 8 VU Language Reference

f tell

et

ftell
Library Rou tine

Description Returns the file pointer’s offset in the specified file.

Syntax int ftell (file_des)

Comments The ftell routine returns the current byte’s offset on the named file. This offs
is relative to the beginning of the file.

The related routines fseek repositions the file pointer and feof returns
information on the file pointer.

Example In this example, if the file with the descriptor infile_des contains the characters
abcde, then the characters abcde are written to the file whose descriptor is
outfile_des ten times. At the end of the example, the variables copies and
total have values of 10 and 50, respectively:

fseek(file_des, 0, 2);
for (copies = total = 0; copies < 10; copies++)
{

while (1)
{

c = fgetc(infile_des);
if (feof(infile_des))
{

total += ftell(infile_des);
fseek(infile_des, 0, 0); /* rewind */
break;

}
else

fputc(c, outfile_des);
}

}

See Also feof fseek

Syntax Element D escription

file_des The integer file descriptor, obtained from open, of the file
whose pointer you want to obtain.
Com m and Reference 6 -3 9

GetD ata
GetData
VU Toolkit Function: D ata

Description Retrieves a specific row from the dataset created with SaveData or AppendData.

Syntax #include <sme/data.h>
string func GetData(data_name, row, column)
string data_name;
int row;
int column;

Comments The GetData function retrieves a data value from a specific row and column of a
data set created with the SaveData or AppendData functions. Regardless of the
database definition of the column, the returned value is a string. Returned values are
of variable length, with any trailing white space trimmed from the end of the value.

A null string is returned if no data is saved under this name, or if the row or column
values exceed the limits of the stored data.

Example This example saves the data in the tmp_results buffer, and gets the second field
in the first row of tmp_results.

#include <VU.h>
#include <sme/data.h>

{
 string accessprofile_id;

 sqlexec ["test_gr003"]
 "select PASSWORD, ACCESSPROFILEID, INACTIVE, "
 "PW_UPDATE_DT from USERACCOUNT where NAME = ’davidj’";
 sqlnrecv ["test_gr004"] ALL_ROWS;

 SaveData ("tmp_results");
 accessprofile_id - GetData("tmp_results", 1, 2);
 FreeData ("tmp_results");

 sqlexec ["test_gr005"]
 "select LOGONNAME, LOGONPASSWORD, EXP_DAYS from "
 "ACCESSPROFILE where ACCESSPROFILEID = "
 + accessprofile_id;
}

See Also AppendData FreeAllData FreeData GetData1 SaveData

Syntax Element D escription

data_name The name of the data set to retrieve.

row The row of data_name to retrieve.

column The column of data_name to retrieve.
6 -4 0 VU Language Reference

GetD ata1
GetData1
VU Toolkit Function: D ata

Description Retrieves a value in the first row of a data set created with SaveData or
AppendData.

Syntax #include <sme/data.h>
string func GetData1(data_name, column)
string data_name;
int column;

Comments The GetData1 function retrieves a data value from a specific column of the first
row of a data set created with the SaveData or AppendData functions. To
retrieve data from a different row, use the GetData function. Regardless of the
database definition of the column, the returned value is a string. Returned values are
of variable length, with any trailing white space trimmed from the end of the value.

A null string is returned if no data is saved under this name, or if the row or column
values exceed the limits of the stored data.

Example This example saves the data in the tmp_results buffer, and gets the second field
in the first row of tmp_results.

#include <VU.h>
#include <sme/data.h>

{
 string accessprofile_id;

 sqlexec ["test_gr003"]
 "select PASSWORD, ACCESSPROFILEID, INACTIVE, "
 "PW_UPDATE_DT from USERACCOUNT where NAME = ’davidj’";
 sqlnrecv ["test_gr004"] ALL_ROWS;

 SaveData ("tmp_results");
 accessprofile_id - GetData1("tmp_results", 2);
 FreeData ("tmp_results");

 sqlexec ["test_gr005"]
 "select LOGONNAME, LOGONPASSWORD, EXP_DAYS from "
 "ACCESSPROFILE where ACCESSPROFILEID = "
 + accessprofile_id;
}

See Also AppendData FreeData FreeAllData GetData SaveData

Syntax Element D escription

data_name The name of the data set to retrieve.

column The column of data_name to retrieve.
Com m and Reference 6 -4 1

getenv

t
getenv
Library Rou tine

Description Obtains the values of Windows N T or U N IX environment variables from within a
virtual user script.

Syntax string getenv (name)

Comments The getenv routine behaves like the C routine of the same name.

If a string of the form name=value is not found in the virtual user’s environmen
list or if value is null (zero-length), getenv returns a string of zero length.

Example This example prints a random number in the range 1 to limit, where limit is the
value (after conversion to an integer) of the LIMIT environment variable if defined;
otherwise, limit equals 100:

string value;

if ((value = getenv("LIMIT")) == "")
/* set default value if LIMIT is undefined */
limit = 100;

else
limit = atoi(value);

print uniform(1, limit);

See Also putenv

hex2mixedstring
Library Rou tine

Description Returns a mixed ASCII/hexadecimal version of a VU string.

Syntax string hex2mixedstring(str)

Syntax Element D escription

name A string expression specifying the environment variable
whose value is returned as a string.

Syntax Element D escription

str VU string expression
6 -4 2 VU Language Reference

http_disconnect
Comments The returned string consists of printable ASCII characters mixed with hexadecimal
characters where a string of consecutive hexadecimal characters are surrounded by
grave accent (‘) characters. Strings used (and returned) by VU with socket and
H TTP emulation commands are in mixed ASCII and hexadecimal format.

Example #include <VU.h>
string func build_new_request(s)
 string s;
 {
 /* code to create a request out of an earlier response */
 }
{
 string hexstr;
 string mixstr;
 calvin_700 = http_request ["cal001"] "calvin:700", "", 2,

"GET / HTTP/1.0\r\n"
"Connection: Keep-Alive\r\n"
"User-Agent: Mozilla/4.03 [en] (X11; I; SunOS 5.5.1 sun4u)\r\n"
"Pragma: no-cache\r\n"
"Host: calvin:700\r\n"
"Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

/\r\n"
"Accept-Language: en\r\n"
"Accept-Charset: iso-8859-1,*,utf-8\r\n"
"\r\n";

 set Server_connection = calvin_700;
 http_header_recv ["cal002"] 200;/* OK */
 http_nrecv ["cal003"] 100 %% ; /* 1316 bytes */
 hexstr = mixed2hexstring(_response);
 hexstr = build_new_request(hexstr);
 mixstr = hex2mixedstring(hexstr);
 calvin_700 = http_request ["cal011"] "calvin:700", "", 2, mixstr;
 set Server_connection = calvin_700;
 http_header_recv ["cal012"] 200;/* OK */
 http_nrecv ["cal013"] 100 %% ;
 http_disconnect(calvin_700);
}

See Also mixed2hexstring http_request http_nrecv http_recv

http_disconnect
Em ulation Function

Description Closes the connection to a Web server.

Syntax int http_disconnect (connection_id)

Syntax Element D escription

connection_id An integer expression specifying a connection number
returned by http_request, and not previously
disconnected with http_disconnect().
Com m and Reference 6 -4 3

http_find_va lues
Comments The http_disconnect function returns 1 for success and 0 for failure. If
connection_id is invalid, http_disconnect generates a fatal runtime error.

Example This example connects to a Web server, sets the server connection, and then closes
the connection:

#include <VU.h>
{
CAPRICORN_WEB_80 = http_request "CAPRICORN-WEB:80",
 HTTP_CONN_DIRECT,
 "GET / HTTP/1.0\r\n"
 "Accept: application/vnd.ms-excel, application/mswo"
 "rd, application/vnd.ms-powerpoint, image/gif, imag"
 "e/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n"
 "Accept-Language: en\r\n"
 "UA-pixels: 1152x864\r\n"
 "UA-color: color8\r\n"
 "UA-OS: Windows NT\r\n"
 "UA-CPU: x86\r\n"
 "User-Agent: Mozilla/2.0 (compatible; MSIE 3.01; Windows NT)\r\n"
 "Host: capricorn-web\r\n"
 "Connection: Keep-Alive\r\n\r\n";
set Server_connection = CAPRICORN_WEB_80;
http_header_recv 200;/* OK */
/* more data (4853) than expected >> 100 % */
http_nrecv 100 %% ; /* 4853/4051 bytes */
http_disconnect(CAPRICORN_WEB_80);
}

See Also N one.

http_find_values
Em ulation Function

Description Searches for the specified values on the current connection.

Syntax string[] http_find_values(name, type, tag
[, name, type, tag ...])

Syntax Element D escription

name A string expression that specifies the name of the
desired value.

type An integer expression that specifies the type of the value. The
value of type should be one of: HTTP_FORM_DATA,
HTTP_HREF_DATA, or HTTP_COOKIE_DATA. These
values are defined in VU .h

tag An integer expression that specifies which instance of
the value is requested.
6 -4 4 VU Language Reference

http_find_values
Comments The http_find_values() function may occur in a VU script if you have told
Robot to correlate all or some of your http data. You typically will not need to
program this function yourself.

This function returns an array of strings containing the values specified. Each set of
name, type and tag specifies a single requested value. U p to 21 values may be
requested in a call to http_find_values(). If any of the requested values cannot
be found, the corresponding element of the results array is "".

The http_find_values() function can be used to extract FORM, HREF, or Set-
Cookie values.

FORM data appears in the response as:

<INPUT TYPE=xxx [xxx]NAME=yyy [xxx]VALUE=zzz[xxxxxxxx]>

Given the above data in the response, http_find_values("yyy",
HTTP_FORM_DATA, 1) returns {"zzz"}.

HREF data appears in the response as:

Given the above data in the response, http_find_values("yyy",
HTTP_HREF_DATA, 1, "y1y1", HTTP_HREF_DATA, 1) returns
{"zzz","z1z1"}.

Set-Cookie data appears in the response as:

Set-Cookie: yyy=zzz[; y1y1=z1z1]\r\n

Given the above data in the response, http_find_values("yyy",
HTTP_COOKIE_DATA, 1, "y1y1", HTTP_COOKIE_DATA, 1)returns
{"zzz","z1z1"}.

All available data for the current connection (specified by the
Server_connection VU environment variable) is searched regardless of
whether or not that data has been processed by an http receive command.

Example This example finds the first occurrence of the FORM data identified by foo and the
second occurrence of the HREF data identified by homepage. Assuming that the
response data for the current connection contains:

<INPUT TYPE=xxx NAME=foo VALUE=John>

. . .
A HREF=\"xxxx?nnnnn=&homepage=www.myhome2.com\">
Com m and Reference 6 -4 5

http_header_in fo
 The following call returns an array of strings equal to {"John",
"www.myhome2.com"} and assigns it to the array SgenRes_001.

string SgenRes_001[];
SgenRes_001 = http_find_values("foo", HTTP_FORM_DATA, 1,
"homepage", HTTP_HREF_DATA, 2);

See Also http_request http_recv

http_header_info
Em ulation Function

Description Gets individual header values from header metadata.

Syntax string http_header_info "header_var_name"

Comments The http_header_info function scans the headers received by
http_header_recv to locate lines beginning with the requested attribute, and
returns a string containing the value of this attribute. It returns an empty string ("")
on error.

If an attribute is listed more than once, only one value is returned.

Example Assume that http_header_recv reads the following header information:

HTTP/1.1 200 OK
Date: Mon, 24 Nov 1997 22:57:44 GMT
Server: Apache/1.2.4
Last-Modified: Fri, 21 Nov 1997 20:45:11 GMT
ETag: "7a398-cf1-3475f2d7"
Content-Length: 3313
Accept-Ranges: bytes
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

The following call returns 3313:

http_header_info ("Content-Length")

See Also http_header_recv

Syntax Element D escription

header_var_name A string that is the name of a header metadata field. This string
is case-insensitive.
6 -4 6 VU Language Reference

http_header_recv
http_header_recv
Receive Em ulation Com m and

Description Receives header metadata from a Web server.

Syntax int http_header_recv [cmd_id] status_code

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].
Com m and Reference 6 -4 7

http_header_recv
status_code The expected H TTP status code for this response. You can
use either the code number or the equivalent text string. The
status codes are defined as follows:

100 "Continue"
101 "Switching Protocols"
200 "OK"
201 "Created
202 "Accepted"
203 "Non-Authoritative Information"
204 "No Content"
205 "Reset Content"
206 "Partial Content"
300 "Multiple Choices"
301 "Moved Permanently"
302 "Moved Temporarily"
303 "See Other"
304 "Not Modified"
305 "Use Proxy"
307 "Temporary Redirect"
400 "Bad Request"
401 "Unauthorized"
402 "Payment Required"
403 "Forbidden"
404 "Not Found"
405 "Method Not Allowed"
406 "Not Acceptable"
407 "Proxy Authentication Required"
408 "Request Time-out"
409 "Conflict"
410 "Gone"
411 "Length Required"
412 "Precondition Failed"
413 "Request Entity Too Large"
414 "Request-URI Too Large"
415 "Unsupported Media Type"
500 "Internal Server Error"
501 "Not Implemented"
502 "Bad Gateway"
503 "Service Unavailable"
504 "Gateway Time-out"
505 "HTTP Version not supported"

 (Continued)

Syntax Element D escription
6 -4 8 VU Language Reference

http_header_recv
Comments If http_header_recv completes successfully, it returns a value of 1. O therwise,
it returns a value of 0.

This command occurs in response to an http_request command.

The metadata is sent from the Web server when a client requests a page. For example,
metadata might contain protocol; type; U RL address; size of page; date created, date
last modified, and date last updated; as well as an indication of the security status of
your connection.

The metadata received is stored in the read-only variable _response and is
overwritten when you issue other receive emulation commands.

The http_header_recv emulation command is affected by the following VU
environment variables: Http_control, Timeout_act, Timeout_val,
Timeout_scale, Log_level, Record_level, and Server_connection.

The Http_control environment variable can affect how the
http_header_recv emulation command interprets the received status. For
more information, see Http_control on page 5-29.

Example This example connects to a Web server, sets the server connection, receives the
header information, and then receives a complete page of data (100 percent of the
page, as indicated by 100 %%).

#include <VU.h>
{
CAPRICORN_WEB_80 = http_request "CAPRICORN-WEB:80",
 HTTP_CONN_DIRECT,
 "GET / HTTP/1.0\r\n"
 "Accept: application/vnd.ms-excel, application/mswo"
 "rd, application/vnd.ms-powerpoint, image/gif, imag"
 "e/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n"
 "Accept-Language: en\r\n"
 "UA-pixels: 1152x864\r\n"
 "UA-color: color8\r\n"
 "UA-OS: Windows NT\r\n"
 "UA-CPU: x86\r\n"
 "User-Agent: Mozilla/2.0 (compatible; MSIE 3.01; Windows NT)\r\n"
 "Host: capricorn-web\r\n"
 "Connection: Keep-Alive\r\n\r\n";
set Server_connection = CAPRICORN_WEB_80;
http_header_recv 200;/* OK */
/* more data (4853) than expected >> 100 % */
http_nrecv 100 %% ; /* 4853/4051 bytes */
http_disconnect(CAPRICORN_WEB_80);
}

Com m and Reference 6 -4 9

http_nrecv
The header information received looks like the following:

HTTP/1.1 200 OK
Date: Mon, 24 Nov 1997 22:57:44 GMT
Server: Apache/1.2.4
Last-Modified: Fri, 21 Nov 1997 20:45:11 GMT
ETag: "7a398-cf1-3475f2d7"
Content-Length: 3313
Accept-Ranges: bytes
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

See Also http_request

http_nrecv
Receive Em ulation Com m and

Description Receives a user-specified number of bytes from a Web server.

Syntax int http_nrecv [cmd_id] {count | count %%}

Comments If http_nrecv completes successfully, it returns a value of 1. O therwise, it returns
a value of 0.

The http_nrecv emulation command succeeds when it receives count bytes
from the server. Binary data is translated into embedded hexadecimal strings. See
Unprintable HTTP or Socket Data on page 3-35.

The http_nrecv command sets the “first received” (_fr_ts) and “last received”
(_lr_ts) read-only variables.

The data received is stored in the read-only variable _response and is overwritten
when you issue another receive emulation command.

If Timeout_val (subject to scaling) milliseconds elapses before the http_nrecv
is satisfied, http_nrecv fails and returns 0. Otherwise, http_nrecv passes and
returns 1.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

count The number of bytes to receive from the connection.

count %% The number of bytes to receive as a percentage of the size of
the last page processed. The size is calculated from the
information in the last header processed for the connection.
6 -5 0 VU Language Reference

http_recv

,
The http_nrecv emulation command is affected by the following VU
environment variables: Timeout_act, Timeout_val, Timeout_scale,
Log_level, Record_level, Max_nrecv_saved, and
Server_connection. Max_nrecv_saved applies to the actual data received,
before any binary data is translated into embedded hexadecimal strings.

Example This example sets the server connection, receives the header metadata, and then
receives a complete page of data (100 percent of the page, as indicated by 100 %%).

set Server_connection = CONN1;
http_header_recv 200;
http_nrecv 100 %%;

See Also http_recv

http_recv
Receive Em ulation Com m and

Description Receives data from a Web server until the specified text string occurs.

Syntax int http_recv [cmd_id] recv_str

Comments The data received is stored in the read-only variable _response and is overwritten
when you issue other receive emulation commands.

If Timeout_val (subject to scaling) milliseconds elapses before the http_nrecv
is satisfied, http_recv fails and returns 0. O therwise, http_nrecv passes and
returns 1.

The http_nrecv command sets the “first received” (_fr_ts) and “last received”
(_lr_ts) read-only variables.

The http_recv emulation command is affected by the following VU
environment variables: Timeout_act, Timeout_val, Timeout_scale,
Log_level, Record_level, Max_nrecv_saved, and
Server_connection. Max_nrecv_saved applies to the actual data received
before any binary data is translated into embedded hexadecimal strings.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

recv_str A string that marks the point at which to stop retrieving data.
Com m and Reference 6 -5 1

http_recv
Example This example reads until the end of the connection or a timeout.

http_recv ["cmd003r"] "$";

This example matches as soon as EXCEL Home Page</title>\r\n is found
anywhere within the response:

Set Server_connection = conn1;
http_recv ["cmd001r"] "EXCEL Home Page</title>\r\n";

This example reads until the end of the connection, and passes only if _response
is exactly equal to "EXCEL Home Page</title>\r\n". This is because the ^
forces the comparison to begin at the start of _response, and the $ forces the
comparison to begin at the start of _response.

http_recv ["cmd002r"] "^EXCEL Home Page</title>\r\n$";

This example matches only if the first 5 characters of _response =="EXCEL". If
the first 5 characters do not match, http_recv continues to read until the end of
the connection or a timeout.

http_recv ["cmd003r"] "^EXCEL";
See Also http_nrecv
6 -5 2 VU Language Reference

http_request
http_request
Send Em u lation Com m and

Description Sends an H TTP request to a Web server.

Syntax int http_request [cmd_id] primary_addr [, secondary_addr]
[, flags], text

Comments The http_request command returns a connection ID that is used as a reference
for subsequent interactions with the Web server until the http_disconnect is
issued. It returns an integer value: 0 or less for failure, or a unique connection
number greater than or equal to 1 for success.

This command emulates all H TTP protocol request primitives: GET, HEAD, POST,
PUT, TRACE, LINK, UNLINK, DELETE, OPTIONS, COPY.

Binary data is translated into embedded hexadecimal strings. See Unprintable HTTP
or Socket Data on page 3-35.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

primary_addr A string expression that contains the host computer name and
port number of the Web server to which you are connecting.

secondary_addr A string expression that contains the host computer name and
port number of the Web server. If flag is
HTTP_CONN_DIRECT, this field is not used.

flags An integer expression that indicates:

ã The type of connection (HTTP_CONN_DIRECT,
HTTP_CONN_PROXY, HTTP_CONN_GATEWAY,
HTTP_CONN_TUNNEL). HTTP_CONN_GATEWAY and
HTTP_CONN_TUNNEL are currently unused.

ã Whether or not the connection is secure and the strength
of the encryption (HTTP_CONN_SECURE,
HTTP_CONN_SECURE_40, HTTP_CONN_SECURE_56,
HTTP_CONN_SECURE_128)

These connection flags are defined in the VU.h file.

text A string that contains the request headers. If you are sending
information, this string also contains the request body. For
example, if you fill in a form, the information you provide in
the form is the request body.
Com m and Reference 6 -5 3

http_url_encode

ver,
alue
The http_request command sets the “first connect” (_fc_ts), “last connect”
(_lc_ts), “first sent” (_fs_ts), and “last sent” (_ls_ts) read-only variables.

The http_request command is affected by the following VU environment
variables: Connect_retries, Connect_retry_interval, the think time
variables, Timeout_val, Timeout_scale, Timeout_act, Log_level,
Record_level, and Suspend_check. The think time is applied before the
connect, and suspend checking is done (as normal) after the think time delay.

The http_request command automatically parameterizes cookie information
during script playback. When dynamic cookie information is available from a ser
that cookie value replaces the values in the VU script. O therwise, the scripted v
is used.

Example This example connects to a Web server. The variable CAPRICORN_WEB_80 holds
the returned ID for the connection.

#include <VU.h>
{
CAPRICORN_WEB_80 = http_request "CAPRICORN-WEB:80",
 HTTP_CONN_DIRECT,
 "GET / HTTP/1.0\r\n"
 "Accept: application/vnd.ms-excel, application/mswo"
 "rd, application/vnd.ms-powerpoint, image/gif, imag"
 "e/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n"
 "Accept-Language: en\r\n"
 "UA-pixels: 1152x864\r\n"
 "UA-color: color8\r\n"
 "UA-OS: Windows NT\r\n"
 "UA-CPU: x86\r\n"
 "User-Agent: Mozilla/2.0 (compatible; MSIE 3.01; Windows NT)\r\n"
 "Host: capricorn-web\r\n"
 "Connection: Keep-Alive\r\n\r\n";
set Server_connection = CAPRICORN_WEB_80;
http_header_recv 200;/* OK */
http_nrecv 100 %% ; /* 4051 bytes */
http_disconnect(CAPRICORN_WEB_80);
}

See Also N one.

http_url_encode
Em ulation Function

Description Prepares a VU string for inclusion in http_request data.

Syntax string http_url_encode(str)

Syntax Element D escription

str VU string expression.
6 -5 4 VU Language Reference

http_url_encode
Comments The returned string consists of the original VU string expression with all H TTP
special characters in the proper escape sequence format.

If your recording contains H TTP traffic, and datapooling is enabled, then your script
contains a call to the http_url_encode function for every call to the
datapool_value function to ensure that the data sent to the Web server is in the
correct format.

Example This example script fragment sends a POST request containing datapool values to a
previously established connection, and then closes the connection.

set Server_connection = bonnie_rational_com_80
http_request ["NewHttp058"] /* Keep-Alive request */

"POST /cgi-bin/www/prcat.cgi HTTP/1.1\r\n"
"Accept: application/vnd.ms-excel, application/msword"
"application/vnd.ms-powerpoint, image/gif, imag"
"e/x-xbitmap, image/jpeg, image/pjpeg, */*\r\n"
"Referer: http://www.rational.com/world/press/releases/\r\n"
"Accept-Language: en-us\r\n"
"User-Agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows NT) \r\n"
Host: www.rational.com\r\n"
Content-Length: 28\r\n"
"\r\n"
"financials="
+http_url_encode(datapool_value(DP1, "financial")) +
"&chapter="
+http_url_encode(datapool_value(DP1, "chapter")) +
"";

http_disconnect (bonnie_rational_com_80);

See Also http_request datapool_value
Com m and Reference 6 -5 5

if-else
if-else
Flow Con trol Sta tem ent

Description Conditionally executes a VU statement.

Syntax if (exp1)
statement1;

else
statement2;

Comments Multiple statements can appear in braces, such as:

if (exp1) {
 statement3;
 statement4;
 statement5;
} else {
 statement6;
 statement7;
 statement8;
}

It is advisable to indent statements for readability.

Example This example aborts script execution if the string is ERROR. If the string is not
ERROR, the script continues processing and writes a message to the log file:

if (string1=="ERROR")
user_exit(-1, "Fatal Error - Aborting");

else
log_msg("Emulation proceeding normally");

See Also else-if

Syntax Element D escription

exp1 An integer expression to be evaluated.

statement1 A VU language statement that is executed if the value of exp1
is not 0.

statement2 A VU language statement that is executed if the value of exp1
is 0.
6 -5 6 VU Language Reference

iiop_bind

by

(“-

s

o

le
s.
iiop_bind
Send Em u lation Com m and

Description Binds an interface name to an Object Reference pseudo-object.

Syntax int iiop_bind [cmd_id] repository_id, instance_id [,ior]

Comments If iiop_bind completes successfully, it returns a handle to the Object Reference
pseudo-object bound to the interface implementation specified by the
repository_id. O therwise it returns NULL_HANDLE.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

repository_id A string constant specifying the name of the interface to bind
to. It is invalid to pass the empty string ("") if ior is not
specified. The only interface specification format supported is
the CORBA IDL RepositoryId format.

The repository_id consists of three components, separated
by colons:

ã The first component is the format name, “IDL.”
ã The second component is a list of identifiers, separated

“/” characters. These identifiers are arbitrarily long
sequences of alphabetic, digit, underscore (“_”), hyphen
”), and period (“.”) characters. Typically, the first identifier
is a unique prefix, and the rest are the OMG IDL Identifier
that make up the scoped name of the definition.

ã The third component is made up of major and minor
version numbers, in decimal format, separated by a “.”.
When two interfaces have repository_ids differing only
in minor version number, you can assume that the
definition with the higher version number is upwardly
compatible with the one with the lower minor version
number.

instance_id A string expression identifying a particular instance of an
interface implementation. Some ORBs require this string t
identify persistent implementations. An empty string ("")
means any instance is acceptable.

ior An optional string expression specifying an IIOP Interoperab
Object Reference (IOR) to be used by the IOR bind modu
Com m and Reference 6 -5 7

iiop_invoke
The iiop_bind command binds an interface implementation, identified by
repository_id, to an Object Reference pseudo-object. The result of binding is
a handle to an O bject Reference pseudo-object which contains (among other things)
an IIOP object key used in later IIOP requests to the implementation.

The actual mechanism used by the playback engine to execute the bind is ORB
vendor-dependent.

The iiop_bind command sets the first sent (_fs_ts), last sent (_ls_ts), first
received (_fr_ts), last received (_ls_ts), and error information
(_error_type, _error, and _error_text) read-only variables.

The iiop_bind command is affected by the following VU environment variables:
Timeout_val, Timeout_scale, Timeout_act, Log_level,
Record_level, and Suspend_check.

Example This example binds an interface name to an Object Reference pseudo-object. O bject
references are the only way for a client to reach target objects. The iiop_bind
command takes information about an object and uses it to try and obtain a reference
to the object for use in invoking methods on the object.

objref = iiop_bind ["bind001"]
"IDL:Bank/BranchManager:1.0", "Branch15", " ";

See Also N one.

iiop_invoke
Send Em u lation Com m and

Description Initiates a synchronous IIOP request to an interface implementation

Syntax Form 1: initialize and invoke a Request pseudo-object

int iiop_invoke [cmd_id] [&request,]
object_ref, operation,
[parameter_expr,...]

Form 2: reuse a Request pseudo-object

int iiop_invoke [cmd_id] request
[,parameter_expr,...]

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

request An integer variable for the handle of the created request.
6 -5 8 VU Language Reference

iiop_invoke
Comments The iiop_invoke emulation command has two forms. The first form constructs
an IIO P Request message by creating and initializing a new Request pseudo-object.
The second form constructs an IIOP Request message by overriding an existing
Request pseudo-object with a new set of parameters.

In the first form, specifying the optional request argument causes the handle of the
new Request pseudo-object to be stored in the VU integer variable referenced by
request. The pseudo-object referenced by the handle persists until it is released by a
call to iiop_release. If the request argument is not supplied, then a temporary
internal Request pseudo-object is created to store the request context and is
automatically released before the command returns.

In the second form, the request argument is the handle to the Request pseudo-object
to be reused for storing the request context.

After the message is constructed, it is sent to the interface implementation and the
command then awaits its reply. After successful completion, the associated INOUT,
OUT, and RETURN parameter variables are loaded with the results of the operation
invocation.

This command is equivalent to the CORBA::Object::_create_request()
and CORBA::Request::invoke() function pairs.

The iiop_invoke command sets the first sent (_fs_ts), last sent (_ls_ts),
first received (_fr_ts), last received (_ls_ts), and error information
(_error_type, _error, and _error_text) read-only variables.

The iiop_invoke command is affected by the following VU environment
variables: the think time variables, Timeout_val, Timeout_scale,
Timeout_act, Log_level, Record_level, and Suspend_check.

object_ref An integer handle to the Object Reference pseudo-object
bound to the interface implementation to be invoked.

object_ref cannot be NULL_HANDLE.

operation A string expression containing the name of the interface
operation to be invoked.

parameter_expr An optional list of one or more parameter binding expressions
for the IN , IN OU T, and OU T arguments and return value
of the invoked operation.

 (Continued)

Syntax Element D escription
Com m and Reference 6 -5 9

iiop_release
Example This example initiates a synchronous IIO P request to an interface implementation.
The iiop_invoke command is used to invoke methods on an object.

/* bind to the Branch15 instance of the BranchManager interface */
bm_ref = iiop_bind ["bind001"]

"IDL:Bank/BranchManager/1.0", "Branch15";

/* fetch account balance, using global request context */
{ string Balance; }
iiop_invoke ["Balance001"] "Balance", bm_ref,

"Account":Account, "Balance"::&Balance;

/* log the balance query to the transaction log, preserving
the request context in a new Request pseudo-object
referenced by log_req */

iiop_invoke ["LogTransaction001"] &log_req, "Log Transaction", bm_ref,
"LogTransaction", "Account":Account,
"TransactionType":"Balance";

/* withdraw all funds from account, again using the global
request context but re-initializing it */

iiop_invoke ["Withdraw001"] "Withdraw", bm_ref,
"Account":Account, "Amount":Balance;

/* log the withdraw transaction to the log, reusing the
previous LogTransaction request context */

iiop_invoke ["LogTransaction002"] log_req,
"TransactionType":"Withdraw";

/* release log_req Request pseudo-object */
iiop_release(log_req);

See Also iiop_bind

iiop_release
Em ulation Function

Description Releases storage associated with a pseudo-object.

Syntax int iiop_release (handle[, ...])

Comments The iiop_release function deletes and releases the storage associated with one
or more pseudo-objects. When a handle is released, it becomes invalid and cannot be
used again.

U pon success the function returns 1, else it returns 0 indicating an error.

Syntax Element D escription

handle A list of integer handles to pseudo-objects of any type.
At least one handle argument must be supplied.
6 -6 0 VU Language Reference

IndexedField
Example This example releases storage associated with a pseudo-object. You can use
iiop_release to free memory used for storing requests or object
references.

iiop_release(objref);

See Also None.

IndexedField
 VU Toolkit Function : File I/O

Description Parses the line read by the ReadLine function and returns the field designated by
index.

Syntax #define _PV_FILEIO_FIELD "delimiter characters"
#include <sme/fileio.h>
string func IndexedField(index)
int index;

Comments The IndexedField function parses the data returned by the most recent call to
the ReadLine function. A null string is returned when index is greater than the
number of fields in the line. Multiple contiguous occurrences of the delimiter are
considered a single delimiter.

The IndexedField function affects the order of the results returned by
NextField. Either functions modify the field pointer, which is the starting point
for the next invocation of this function.

If IndexedField is called before the first call to ReadLine, the return value is
undefined. The SHARED_READ macro uses the ReadLine function to read from
the file, so it also may be used to retrieve the data to be parsed.

The string variable Last_Field contains the value returned by the most recent use
of the IndexedField or NextField function.

The list of characters to be considered as field delimiters is contained in the macro
definition _PV_FILEIO_FIELD. Define this macro constant (# define) before
the inclusion of the header file fileio.h.

Syntax Element D escription

delimiter characters The characters that delimit the fields in the index. The default
field delimiter is a vertical bar (|).

index The number of the field to be retrieved (begins with 1).
Com m and Reference 6 -6 1

IndexedField

oop
ord
is
g

 of
t of
 at
ows
 text
ws to
Example This example first frees any previously saved data from the “parts” text buffer. A l
is started to query the database five times. The script then obtains the next rec
from a file being shared by all virtual users that execute this script. The record
parsed by selection of the first field and direct selection of the third field, skippin
the second field. The third field is composed of four or more subfields. Parsing
the third field continues by selection of the first subfield, which provides a coun
the number of remaining subfields. One of the remaining subfields is selected
random to form a part of the query. After the query is performed, the returned r
are saved. If this is the first iteration of the loop, the rows are saved to the “parts”
buffer. Subsequent iterations of the loop append the data from the returned ro
the “parts” text buffer.

#include <VU.h>
#include <sme/data.h>
#include <sme/fileio.h>

{
 shared int file_tag_lock, file_tag_offset;
 string product_id, part_id, subassm_id;
 string temp_str;
 int subassm_cnt;

 /* This script assumes a connection was made to the database. */

 /* Record layout of "myfile" */
 /* product | part | subassm_cnt ; subassm_1; subassm_2 ; subassm_3;
... */

 /* There will be a minimum of three subassemblies in each record. */

 FreeData("parts");

 /* Perform 5 queries for parts. */

 for (i=0; i<=4; i++)
 {
 SHARED_READ ("myfile", file_tag);

 /* Parse the record. */
 product_id = NextField();

 temp_str = IndexedField(3);
 /* Note: The entire unparsed field is returned but it is not
 used directly. So the returned text string is not used. */

 subassm_cnt = atoi(NextSubField());
 subassm_id = IndexSubField(uniform(2,subassm_cnt+1));

 /* Query for the part. */
 sqlexec ["test_001"]
 "select part_name from product_db "
 "where product=’"+product_id+"’ "
 "and subassembly=’"+subassm_id+"’";
 sqlnrecv ["test_002"] ALL_ROWS;
6 -6 2 VU Language Reference

IndexedSubField
 if i = 0
 SaveData("parts");
 else
 AppendData("parts");
 }
 }

See Also IndexedSubField NextField NextSubField ReadLine SHARED_READ

IndexedSubField
VU Toolkit Function: File I/O

Description Parses the field set by the NextField or IndexedField function and returns the
subfield designated by index.

Syntax #define _PV_FILEIO_SUBFIELD "delimiter characters"
#include <sme/fileio.h>
string func IndexedSubField(index)
int index;

Comments The IndexedSubField function parses the field returned by the most recent call
to the NextField or IndexedField function. The index argument, which
begins at 1, is the number of the field to be retrieved. A null string is returned when
index is greater than the number of fields in the line.

The IndexedSubField function affects the order of the results returned by
NextSubField. Either functions modifies the subfield pointer, which is the
starting point for the next invocation of this function.

If IndexedSubField is called before the first call to NextField or
IndexedField, the return value is undefined.

The string variable Last_SubField contains the value returned by the most
recent use of IndexedSubField or NextSubField function.

The list of characters to be considered as subfield delimiters is contained in the
macro definition _PV_FILEIO_SUBFIELD. Define this macro constant
(# define) before the inclusion of the header file fileio.h.

Syntax Element D escription

delimiter characters The characters that delimit the subfields in the index. The
default delimiter is a colon (:). Do not separate delimiter
characters with white space or any other character. Multiple
contiguous occurrences of the delimiter are considered as a
single delimiter.

index The number of the field to be retrieved (begins with 1).
Com m and Reference 6 -6 3

IndexedSubField

 text
ws to
Example This example first frees any previously saved data from the "parts" text buffer. A loop
is started to query the database five times. The script then obtains the next record
from a file being shared by all virtual users that execute this script. The record is
parsed by selection of the first field and direct selection of the third field, skipping
the second field. The third field is composed of four or more subfields. Parsing of
the third field continues by selection of the first subfield, which provides a count of
the number of remaining subfields. O ne of the remaining subfields is selected at
random to form a part of the query. After the query is performed, the returned rows
are saved. If this is the first iteration of the loop, the rows are saved to the “parts”
buffer. Subsequent iterations of the loop append the data from the returned ro
the “parts” text buffer.

#include <VU.h>
#include <sme/data.h>
#include <sme/fileio.h>

{
 shared int file_tag_lock, file_tag_offset;
 string product_id, part_id, subassm_id;
 string temp_str;
 int subassm_cnt;

 /* This script assumes a connection was made to the database. */

 /* Record layout of "myfile" */
 /* product | part | subassm_cnt ; subassm_1; subassm_2 ; subassm_3;
... */

 /* There will be a minimum of three subassemblies in each record. */

 FreeData("parts");

 /* Perform 5 queries for parts. */

 for (i=0; i<=4; i++)
 {
 SHARED_READ ("myfile", file_tag);

 /* Parse the record. */
 product_id = NextField();

 temp_str = IndexedField(3);
 /* Note: The entire unparsed field is returned but it is not
 used directly. So the returned text string is not used. */

 subassm_cnt = atoi(NextSubField());
 subassm_id = IndexSubField(uniform(2,subassm_cnt+1));

 /* Query for the part. */
 sqlexec ["test_001"]
 "select part_name from product_db "
 "where product=’"+product_id+"’ "
 "and subassembly=’"+subassm_id+"’";
 sqlnrecv ["test_002"] ALL_ROWS;
6 -6 4 VU Language Reference

itoa
 if i = 0
 SaveData("parts");
 else
 AppendData("parts");
 }
 }

See Also IndexedField NextField NextSubField ReadLine SHARED_READ

itoa
Library Rou tine

Description Converts integers to strings.

Syntax string itoa(int)

Comments The itoa routine returns a string expression, the ASCII form of the integer. If int
is negative, then the returned string expression is prefixed with a negative sign.

The itoa routine is the converse of atoi. It takes an integer argument and returns
a string expression made up of digits representing the integer in ASCII.

Example This example returns the string "93":

itoa(93);

This example returns the string "30":

itoa(21 + 9);

This example returns the string "23":

itoa(atoi("23"));

See also atoi

lcindex
Library Rou tine

Description Returns the position of the last occurrence of a user-supplied character.

Syntax Element D escription

int The integer expression to convert to a string.
Com m and Reference 6 -6 5

log_m sg
Syntax int lcindex (str, char)

Comments The lcindex (last character index) routine returns the position within str of the
last occurrence of the character char. If no occurrences are found, lcindex
returns the integer zero.

The routines cindex, lcindex, sindex, and lsindex return positional
information about either the first or last occurrence of a specified character or set of
characters within a string expression. strspan returns distance information about
the span length of a set of characters within a string expression.

Example This example returns the integer value 6, which is the position of the last occurrence
of the letter a in the string aardvark:

lcindex("aardvark", ’a’);

See Also cindex sindex lsindex strspan strstr

log_msg
Library Rou tine

Description Writes messages to the log file with a standard header format.

Syntax int log_msg (msg_str)

Comments The log_msg routine returns an integer expression equal to the value of T.

log_msg writes msg_str to the standard log file, preceded by the following
explanatory text:

<<< log_msg(): script = script_name, time = T >>>

Syntax Element D escription

str The string to search.

char The character to search for within str.

Syntax Element D escription

msg_str A string expression containing the message to write to the
log file.
6 -6 6 VU Language Reference

lsindex

—
ences

t.

et of

script_name is replaced by the script name (corresponding to the read-only
variable _script). T is replaced by the current time, in milliseconds format. The
text of msg_str is printed in a manner consistent with other logged information
for example, unprintable characters are replaced by their VU -style escape sequ
as described in How a VU Script Represents Unprintable Data on page 3-34.

Example In this example, assume the current script’s name is db2, the value of trans_no
before the log_msg statement is executed is 3, and the current time is 29130:

log_msg("Beginning Transaction " + {itoa(++trans_no));

The following is message is logged:

<<< log_msg(): script = db2, time = 29130 >>>
Beginning Transaction 4

See Also N one.

lsindex
Library Rou tine

Description Returns the position of the last occurrence of any character from a specified se

Syntax int lsindex (str, char_set)

Comments The lsindex (last string index) routine returns the position within str of the last
occurrence of any character from char_set. If no occurrences are found,
lsindex returns an integer value of 0.

The routines cindex, lcindex, sindex, and lsindex return positional
information about either the first or last occurrence of a specified character or s
characters within a string expression. strspan returns distance information about
the span length of a set of characters within a string expression.

Syntax Element D escription

str The string expression to search.

char_set The characters to search for within str.
Com m and Reference 6 -6 7

m atch
Example This example returns the integer value 14, because a is the last vowel in the string
"moo goo gai pan" and it is the 14th character.

lsindex("moo goo gai pan", "aeiou");

See Also cindex lcindex sindex strspan strstr

match
Library Rou tine

Description Determines whether a subject string matches a specified pattern.

Syntax int match (pattern, subject [, &arg] ...)

Comments The match routine returns the integer value 1 if the subject string matches
pattern; O therwise it returns a value of 0.

In making assignments to argn variables, match follows these rules:

ã Assignments are made unconditionally.

ã The value of recursive assignments are undefined.

ã If an assignment is not made, the original values of argn variables are
unchanged.

Syntax Element D escription

pattern A string expression specifying the pattern to match, as
expressed in VU regular expression notation. (The section
VU Regular Expressions on page 3-29 discusses regular
expression notation.)

To assign the results of the match to &arg, place the regular
expression portion of the pattern in the format
(regular_exp)$n, where n is an integer representing the
position of the argument.

For example, (regular_exp)$0 places the results in arg1,
(regular_exp)$1 places the results in arg2, and so on.

subject A string expression specifying the string to match. subject
is often the read-only variable _response, because you may
want to match a certain pattern in your response.

argn The optional string output variable that contains the results of
the match. The number of argn variables must be equal to or
greater than the number of (regular_exp)$n, even if some
variables are left unassigned.
6 -6 8 VU Language Reference

m ixed2hexstring
Example This example uses match to check whether the database contains Smith A.E.,
and, if not, adds his name and relevant data:

sqlexec "SELECT * FROM dbo.Student WHERE Studid < 5000";
sqlnrecv ["test001"] ALL_ROWS;
if (!match(’Smith *A\.E.\’, _response))
{

sqlexec "INSERT dbo.Student VALUES"
 "1005, ’Smith", "A.E.’, "215 Charles St.’, ’050263", ’M");
}

In this example, match returns a 1, "4" is assigned to str1, and "def" is
assigned to str2:

match("abc([0-9]+)$0 ([A-Za-z]+)$1", "abc4 def", &str1, &str2);

See Also N one.

mixed2hexstring
Library Rou tine

Description Returns a pure hexadecimal version of a VU string.

Syntax string mixed2hexstring(str)

Comments The returned string consists of a leading grave accent (‘), the hexadecimal
representation of the string expression, and a trailing grave accent (‘). Strings used
(and returned) by VU with socket and H TTP emulation commands are in mixed
ASCII and hexadecimal format.

Example #include <VU.h>
{
 string hexstr;
 calvin_700 = http_request ["cal001"] "calvin:700", "", 2,
 "GET / HTTP/1.0\r\n"
 "Connection: Keep-Alive\r\n"
 "User-Agent: Mozilla/4.03 [en] (X11; I; SunOS 5.5.1 sun4u)\r\n"
 "Pragma: no-cache\r\n"
 "Host: calvin:700\r\n"
 "Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
 /\r\n"
 "Accept-Language: en\r\n"
 "Accept-Charset: iso-8859-1,*,utf-8\r\n"
 "\r\n";
 set Server_connection = calvin_700;
 http_header_recv ["cal002"] 200;/* OK */
 http_nrecv ["cal003"] 100 %% ; /* 1316 bytes */
 hexstr = mixed2hexstring(_response);
 http_disconnect(calvin_700);
}

Syntax Element D escription

str VU string expression.
Com m and Reference 6 -6 9

m kprin tab le
See Also hex2mixedstring http_request
http_nrecv http_recv

mkprintable
Library Rou tine

Description Creates printable versions of strings that contain nonprintable characters.

Syntax string mkprintable (str)

Comments The mkprintable routine returns a printable version of str by replacing all
unprintable characters with their corresponding VU -style escape sequences, as
follows:

Example This example returns a string equivalent to the string constant "\\033". Although
the strings look similar, they are quite different; the length of the subject string is 1
character and the length of the returned string is 4 characters.

mkprintable ("\033");

This example returns a string equivalent to the string constant "\\t\\t\\t",
escaping each tab character with the two-character combination \t.

mkprintable("\t\t\t");

See Also print

Syntax Element D escription

str A string expression that serves as the subject string.

\r A single character representing a carriage return.

\f A single character representing a formfeed.

\n A single character representing a newline.

\t A single character representing a horizontal tab.

\b A single character representing a backspace.

\0 The null character (the character with value 0).

\ddd A single character representing the character ddd.
6 -7 0 VU Language Reference

negexp
negexp
Library Rou tine

Description Returns a random integer from a negative exponential distribution with the specified
mean.

Syntax int negexp (mean_value)

Comments The rand, srand, uniform, and negexp routines enable the VU language to
generate random numbers. The behavior of these random number routines is
affected by the way you set the Seed and Seed Flags options in a LoadTest schedule.
By default, the Seed generates the same sequence of random numbers but sets
unique seeds for each virtual user, so that each virtual user has a different random
number sequence. For more information about setting the seed and seed flags in a
schedule, see the Using Rational LoadTest manual.

srand uses the argument seed as a seed for a new sequence of random numbers
returned by subsequent calls to negexp. If srand is then called with the same seed
value, the sequence of random numbers is repeated. If negexp is called before any
calls are made to srand, the same sequence is generated as when srand is first
called with a seed value of 1.

Example In this example, seeds the random number generator with the current time and
prints the first 10 random numbers with a mean of 10.

srand(time());
for (i = 0; i < 10; i++)
printf("random number (%d): %d\n", i, negexp(10));

See Also rand uniform srand

NextField
VU Toolkit Function: File I/O

Description Parses the line read by the ReadLine function.

Syntax Element D escription

mean_value An integer expression whose value specifies the mean of the
negative exponentially distributed random integers returned
by negexp. The value of mean_value must be non-
negative.
Com m and Reference 6 -7 1

N extField

oop
ord
is
g

 of
t of
 at
ows
 text
ws to
Syntax #define _PV_FILEIO_FIELD "delimiter characters"
#include <sme/fileio.h>
string func NextField()

Comments The NextField function retrieves the next available field from the data returned
by the most recent call to the ReadLine function. The null string is returned when
the fields in the line have been exhausted.

The IndexedField function affects the order of the results returned by
NextField. Either function modifies the field pointer, which is the starting point
for the next invocation of this function.

If NextField is called before the first call to ReadLine the return value is
undefined. The SHARED_READ macro uses the ReadLine function to perform the
read from the file, so it also may be used to retrieve the data to be parsed.

The string variable Last_Field contains the value returned by the most recent use
of IndexedField or NextField function.

The list of characters to be considered as field delimiters is contained in the macro
definition _PV_FILEIO_FIELD. Define this macro constant (# define) before
the inclusion of the header file fileio.h.

Example This example first frees any previously saved data from the “parts” text buffer. A l
is started to query the database five times. The script then obtains the next rec
from a file being shared by all virtual users that execute this script. The record
parsed by selection of the first field and direct selection of the third field, skippin
the second field. The third field is composed of four or more subfields. Parsing
the third field continues by selection of the first subfield, which provides a coun
the number of remaining subfields. One of the remaining subfields is selected
random to form a part of the query. After the query is performed, the returned r
are saved. If this is the first iteration of the loop, the rows are saved to the “parts”
buffer. Subsequent iterations of the loop append the data from the returned ro
the “parts” text buffer.

Syntax Element D escription

delimiter character The characters that delimit the fields in the index. The default
delimiter is a vertical bar (|). Do not separate delimiter
characters with white space or any other character. Multiple
contiguous occurrences of the delimiter are considered as a
single delimiter.
6 -7 2 VU Language Reference

N extField
#include <VU.h>
#include <sme/data.h>
#include <sme/fileio.h>

{
 shared int file_tag_lock, file_tag_offset;
 string product_id, part_id, subassm_id;
 string temp_str;
 int subassm_cnt;

 /* This script assumes a connection was made to the database. */

 /* Record layout of "myfile" */
 /* product | part | subassm_cnt ; subassm_1; subassm_2 ; subassm_3;
... */

 /* There will be a minimum of three subassemblies in each record. */

 FreeData("parts");

 /* Perform 5 queries for parts. */

 for (i=0; i<=4; i++)
 {
 SHARED_READ ("myfile", file_tag);

 /* Parse the record. */
 product_id = NextField();

 temp_str = IndexedField(3);
 /* Note: The entire unparsed field is returned but it is not
 used directly. So the returned text string is not used. */

 subassm_cnt = atoi(NextSubField());
 subassm_id = IndexSubField(uniform(2,subassm_cnt+1));

 /* Query for the part. */
 sqlexec ["test_001"]
 "select part_name from product_db "
 "where product=’"+product_id+"’ "
 "and subassembly=’"+subassm_id+"’";
 sqlnrecv ["test_002"] ALL_ROWS;

 if i = 0
 SaveData("parts");
 else
 AppendData("parts");
 }
 }

See Also IndexedField IndexedSubField NextSubField ReadLine
SHARED_READ
Com m and Reference 6 -7 3

N extSubField

oop
ord
is
g

 of
t of
 at
ows
 text
ws to
NextSubField
VU Toolkit Function: File I/O

Description Parses the field returned by the most recent call to NextField or
IndexedField.

Syntax #define _PV_FILEIO_SUBFIELD "delimiter characters"
string func NextSubField()

Comments The NextSubField function retrieves the next available subfield returned by the
most recent call to the NextField or IndexedField function. The null string
is returned when the subfields within the field have been exhausted.

The IndexedSubField function affects the order of the results returned by
NextSubField. Either function modifies the subfield pointer, which is the
starting point for the next invocation of this function.

If NextSubField is called before the first call to NextField or
IndexedField, the return value is undefined.

The string variable Last_SubField contains the value returned by the most
recent use of IndexedSubField or NextSubField function.

The list of characters to be considered as subfield delimiters is contained in the
macro definition _PV_FILEIO_SUBFIELD. Define this macro constant (# define)
before the inclusion of the header file fileio.h.

Example This example first frees any previously saved data from the “parts” text buffer. A l
is started to query the database five times. The script then obtains the next rec
from a file being shared by all virtual users that execute this script. The record
parsed by selection of the first field and direct selection of the third field, skippin
the second field. The third field is composed of four or more subfields. Parsing
the third field continues by selection of the first subfield, which provides a coun
the number of remaining subfields. One of the remaining subfields is selected
random to form a part of the query. After the query is performed, the returned r
are saved. If this is the first iteration of the loop, the rows are saved to the “parts”
buffer. Subsequent iterations of the loop append the data from the returned ro
the “parts” text buffer.

Syntax Element D escription

delimiters The characters that delimit the subfields in the index. The
default delimiter is a colon (:). Do not separate delimiter
characters with white space or any other character. Multiple
contiguous occurrences of the delimiter are considered as a
single delimiter.
6 -7 4 VU Language Reference

open
#include <VU.h>
#include <sme/data.h>
#include <sme/fileio.h>

{
 shared int file_tag_lock, file_tag_offset;
 string product_id, part_id, subassm_id;
 string temp_str;
 int subassm_cnt;

 /* This script assumes a connection was made to the database. */

 /* Record layout of "myfile" */
 /* product | part | subassm_cnt ; subassm_1; subassm_2 ; subassm_3;
... */

 /* There will be a minimum of three subassemblies in each record. */

 FreeData("parts");

 /* Perform 5 queries for parts. */

 for (i=0; i<=4; i++)
 {
 SHARED_READ ("myfile", file_tag);

 /* Parse the record. */
 product_id = NextField();

 temp_str = IndexedField(3);
 /* Note: The entire unparsed field is returned but it is not
 used directly. So the returned text string is not used. */

 subassm_cnt = atoi(NextSubField());
 subassm_id = IndexSubField(uniform(2,subassm_cnt+1));

 /* Query for the part. */
 sqlexec ["test_001"]
 "select part_name from product_db "
 "where product=’"+product_id+"’ "
 "and subassembly=’"+subassm_id+"’";
 sqlnrecv ["test_002"] ALL_ROWS;

 if i = 0
 SaveData("parts");
 else
 AppendData("parts");
 }
 }

See Also IndexedField IndexedSubField ReadLine NextField SHARED_READ

open
Library Rou tine

Description Opens a file for reading or writing.
Com m and Reference 6 -7 5

open
Syntax int open (filename, mode)

Comments If open can successfully open the file, it returns an integer file descriptor. You use
this file descriptor to make subsequent references to the file. If open cannot open
the file as specified, open generates a runtime error.

The open routine specifies a file to open for reading or writing. A file must be
opened before it is used. You do not have to open the standard input, output, error,
log, or record files, however, because they are automatically opened by the system.

The VU language open routine corresponds to the C language fopen library
routine. The options on your computer determine the maximum number of open
files. The number of reserved files for VU is seven.

Syntax Element D escription

filename A string expression specifying the file to be opened.

mode A string expression specifying how the file is to open. Valid
values:

ã "r" opens the file for reading. If the file does not exist, a
runtime error is generated.

ã "w" opens the file for writing. If the file exists, its contents
are discarded. If it does not exist, it is created.

ã "a" opens the file for appending. If the file exists, its
contents are retained and any new output to the file is
appended to what is already in the file. If the file does not
exist, it is created. Information already in the file is never
overwritten. If multiple processes open the same file for
appending, their output is intermixed in the file in the
order in which it is written.

ã "r+" opens the file for update. You can read or write to a
file for update. If the file does not exist, a runtime error is
generated. If the file does exist and new output is written to
it, the new output is written at the beginning of the file,
overwriting what is already there.

ã "w+" opens the file for update and create or truncate. You
can read or write to a file for update in this mode. If the file
does not exist, it is created. If the file exists, its current
contents are discarded.

ã "a+" opens the file for update and append. You can read
or write to a file for update in this mode. If the file does not
exist, it is created. If the file does exist, data written to it is
appended.

ã "p" opens the file in persistent mode. "p" can accompany
any other mode (the mode string for open() can include
a"p" anywhere in the string). A persistent file remains
open across scripts in a single run.
6 -7 6 VU Language Reference

pop
To enable subsequent scripts to access a persistent file without reopening the file, use
a persistent integer variable to hold the file descriptor returned from open.

Example This example declares the variable theline as a string. It then:

ã Opens data_file for reading and assigns it the file descriptor file1.

ã Positions the character pointer so that each user reads a different line (file
pointer for user1 is 80 (_uid*80) bytes from the beginning of the file, file
pointer for user 2 is 160 bytes from the beginning of the file, and so on).

ã Reads an entire line (anything but a new line followed by a new line) and stores
it in theline.

ã Closes the file after reading 10 lines.

string theline;
for (i=0; i<10; I++) {

file1=open("data_file","r");
fseek(file1, (_uid*80),0);
fscanf(file1, "%[^\n]\n", &theline);

}
close(file1);

See Also close

pop
Environm ent Contro l Com m and

Description Removes the value of a VU environment variable from the top of the stack.

Syntax pop [env_var_list];

Comments The pop command removes and discards the element at the top of the stack of each
variable in env_var_list. Thus, the next-to-top element of each stack moves to
the top of that stack and becomes the current value of that variable. A runtime error
occurs if you attempt to pop a stack that contains only one element.

Syntax Element D escription

env_var_list U se one of the following for env_var_list:

ã A list of one or more environment variables, separated by
commas and optionally by white space. If
env_var_list contains one item, the brackets are
optional. If env_var_list contains more than one
item, pop operates on the items from left to right.

ã ENV_VARS. This specifies all the environment variables.
Com m and Reference 6 -7 7

prin t
Example This example sets the value for Timeout_val to 120000 ms, pushes the value of
30000 to the top of the Timeout_val stack (so that 30000 is now the current value
and 120000 is the second element on the stack), and then removes 30000 from the
stack (so that 120000 is the only element left on the stack).

/* Set values for Timeout_val and Log_level. */
set [Timeout_val = 120000, Log_level = TIMEOUT];
push Timeout_val = 30000;
pop Log_level;

This example disables the normal checking for any queued suspend requests, and
encapsulates this disabling within the push and pop commands:

push Suspend_check off;
/* code that performs input emulation commands where you do not want
suspend or step operations to stop */
pop Suspend_check;

See Also push eval set

print
Sta tem ent

Description Writes to standard output when the formatting capability of printf is not required.

Syntax print exp_list;

Comments The print routine writes the values of each expression to standard output, each
followed by a single blank, in the order in which they are specified in exp_list.
Specifically, the printf format equivalents for print output are "%d " for
integer expressions and "%s " for string expressions. Because it does not return a
value, print cannot be used as an expression.

Example This example writes the string The square of 7 is 49 \n to standard output.
The newline is added to the print output because it was explicitly requested:

print "The square of", 7, "is", 7*7, "\n";

Syntax Element D escription

exp_list One or more expressions separated by commas, and
optionally by white space. The expressions can have string or
integer values; print automatically handles the conversion
of integer values to ASCII.
6 -7 8 VU Language Reference

prin tf, fprin tf, sprin tf
This example writes the string 0 1 2 3 4 to standard output. Recall that the srand
routine always returns the integer value 1.

i = 4;
j = 2;
print i<j, j<i, j, srand(i+j) + j, i;

See Also mkprintable printf fprintf sprintf

printf, fprintf, sprintf
Library Rou tine

Description Writes specified output to standard output, to a file, or to a string variable.

Syntax int printf (format_str [, arg_list])
int fprintf (file_des, format_str [, arg_list])
int sprintf (location, format_str [, arg_list])

Comments If printf, fprintf, or sprintf successfully writes the requested output, it
returns the number of characters written. If the routine is unable to write the output
as requested, it generates a runtime error.

The printf, fprintf, and sprintf routines are closely related; the difference
among them is where they write the specified output: a file, standard output, or a
string variable.

format_str and arg_list are like the output format and arguments in the C
library routines printf, fprintf, and sprintf, with the following exceptions:

ã Floating-point conversion characters (e, E, f, F, g, G) are not allowed. They are
unnecessary because the VU language does not have floating-point values.

ã The use of * to specify a field width or precision taken from the corresponding
argument is not supported.

Syntax Element D escription

format_str A string expression that specifies the format in which the
output is written.

arg_list The output to be written. Separate multiple arguments with a
comma.

file_des The integer file descriptor, obtained from open, of the file to
which the output is written

location The address of the string variable (&str1) to which the
output is written. Additional space is allocated if the output
exceeds the size of the current string.
Com m and Reference 6 -7 9

push

its.

 that

ivisor
ã Integer conversion characters (d, o, u, x, X) are automatically prefixed by the
character ‘l’ in keeping with the VU language treatment of all integers as 32 b
This is transparent; if you explicitly specify the ‘l’, no change is made.

ã format_str and arg_list are checked at runtime to ensure that their
syntax is correct, that every conversion specification has an argument, and
each argument is the correct type for the corresponding conversion
specification. As in C, extra arguments are ignored.

Example In this example, assume that the value of the dividend is 3 and the value of the d
is 9:

printf("%d is %d%% of %d",
dividend, (100*dividend)/divisor, divisor);

The following line is printed on standard output:

 3 is 33% of 9

In this example, assume that the value of arg1 is 12 and the value of arg2 is 6:

fprintf(outfile_des,
"%X (HEX) is %s than %d (decimal)", arg1,
arg1 > arg2 ? "greater" : "equal to or less", arg2);

The following line is written to the file whose descriptor is outfile_des:

C (HEX) is greater than 6 (decimal)

If arg1 is 63 and arg2 is 64, the line written to the file is:

3F (HEX) is equal to or less than 64 (decimal)

In this example, if the value of char_arg is the character $, then data_str is
assigned the value \044:

sprintf(&data_str, "\%.3o", char_arg);

See Also print mkprintable

push
Environm ent Contro l Com m and

Description Pushes the value of a VU environment variable to the top of the stack.
6 -8 0 VU Language Reference

push

at

 and
Syntax push [env_assign_list];

Comments For each env_var in env_assign_list, the corresponding value of expr is
pushed to the top of that env_var’s stack. Thus, expr becomes the current value
of that env_var and the previous value becomes the next-to-top element of th
env_var’s stack.

Example This example disables the normal checking for any queued suspend requests,
encapsulates this disabling within the push and pop commands:

push Suspend_check off;
/* code that performs input emulation commands where you do not want
suspend or step operations to stop */
pop Suspend_check;

This example shows how to change the values in the stack:

/* Set values for Timeout_val and Log_level. */
set [Timeout_val = 120000, Log_level = TIMEOUT];

/* Set the current values of Timeout_val to 60000, and save the value.
The current and saved values of are 60000. */
set Timeout_val = 60000;
save Timeout_val;

/* Push 30000 to the top of the Timeout_val stack, making it the cur-
rent value. 60000 is now the second element on the stack. */
push Timeout_val = 30000;

/* Write values to standard output. */
show [Timeout_val, Log_level];
Timeout_val = 30000
Log_level = TIMEOUT

/* Set the current value of Timeout_val to 20000. The Timeout_val
stack now contains 20000 and 60000. */
set Timeout_val = 20000;

/* Push ALL to the top of the Log_level stack, making it the current
value. TIMEOUT is now the second element on that stack. */
push Log_level = "ALL";

See Also pop eval set

Syntax Element D escription

env_assign_list A list of one or more environment variable assignments, of the
form env_var = expr, where env_var is any VU
environment variable and expr is an expression separated by
commas and optionally by white space. If
env_assign_list contains one item, the brackets are
optional. If env_assign_list contains more than one
item, push operates on them from left to right.
Com m and Reference 6 -8 1

putenv
putenv
Library Rou tine

Description Sets the values of Windows N T or U N IX environment variables from within a
virtual user script.

Syntax int putenv (string)

Comments The putenv routine, like the C routine of the same name, sets the values of
Windows N T or U N IX environment variables from within a virtual user script.

If putenv completes successfully, it returns a value of 0. O therwise, it returns a
nonzero value.

Example This example sets LIMIT to 100:

string name;
string value;

name = "LIMIT";
value = "100";

putenv (name + "=" + value);

See Also getenv

rand
Library Rou tine

Description Returns a random integer in the range 0 to 32767.

Syntax int rand ()

Comments The rand routine is similar to its corresponding C library routine but does a better
job of generating random numbers.

Syntax Element D escription

string A string expression of the form name=value specifying the
environment variable name and value.
6 -8 2 VU Language Reference

ReadLine
The rand, srand, uniform, and negexp routines enable the VU language to
generate random numbers. The behavior of these random number routines is
affected by the way you set the Seed and Seed Flags options in a LoadTest schedule.
By default, the Seed generates the same sequence of random numbers but sets
unique seeds for each virtual user, so that each virtual user has a different random
number sequence. For more information about setting the seed and seed flags in a
schedule, see the Using Rational LoadTest manual.

srand uses the argument seed as a seed for a new sequence of random numbers
to be returned by subsequent calls to the rand routine. If srand is then called with
the same seed value, the sequence of random numbers is repeated. If rand is called
before any calls are made to srand, the same sequence is generated as when srand
is first called with a seed value of 1.

Example This example sets a random delay. It first defines a maximum delay of 10 seconds,
and then uses the rand routine to delay a random amount of time from 0 to 10
seconds:

#define MaxDelay 10

(
delay_time = rand() % (MaxDelay + 1);
delay(delay_time * 1000);

}
See Also uniform negexp srand

ReadLine
VU Toolkit Function: File I/O

Description Reads a line from the open file designated by file_descriptor.

Syntax #define _PV__FILEIO_NOWRAP
#define _PV_FILEIO_COMMENT "delimiter characters"
#define _PV_FILEIO_WHITESPACE "whitespace characters"
#define _PV_FILEIO_BLANKLINE
#include <sme/fileio.h>
func ReadLine(file_descriptor)
int file_descriptor;
Com m and Reference 6 -8 3

ReadLine

the
, and

 the

s
Comments The ReadLine function returns a single line of data from the open file identified
by file_descriptor. In processing the file, the following actions occur:

ã Lines beginning with a comment delimiter are skipped.

ã Trailing comments are removed from the line.

ã All white space is removed from the end of the line (trimming occurs after
comments have been removed).

ã Blank lines (after trimming comments and white space) are skipped.

ã A line consisting only of the tilde character (~) results in a blank line being read.

ã ReadLine returns 1 if successful, and –1 if no data is read.

By default, ReadLine skips any line that is only white space, and wraps back to
top of the file when the end of file is reached. The function returns 1 on success
–1 on failure. The string variable Last_Line contains the line read by the most
recent successful invocation of ReadLine.

When the macro constant _PV_FILEIO_NOWRAP is defined, ReadLine returns
failure after reaching the end of the file. The default behavior is to wrap back to
top of the file.

The macro constant _PV_FILEIO_COMMENT allows you to redefine the character
that are considered as comment delimiters.

Syntax Element D escription

delimiter characters The characters that delimit comments. The default delimiter
is a # . All text following a comment delimiter, up to end of
line, is removed.

Do not separate delimiter characters with white space or any
other character. Multiple contiguous occurrences of the
delimiter are considered as a single delimiter. All text
following a comment delimiter, up to end of line, is removed.

whitespace characters The characters that are considered as white space for
trimming the line read. The default is the tab character (\t).

Do not separate delimiter characters with white space or any
other character. Multiple contiguous occurrences of the
delimiter are considered as a single delimiter.

file_descriptor The open file that you want to read.
6 -8 4 VU Language Reference

reset
The macro constant _PV_FILEIO_WHITESPACE defines the characters that are
considered as white space for trimming the line read. The default is the tab character
(\t).

The macro constant _PV_FILEIO_BLANKLINE defines a string that, when read as
the only item in a line, returns a blank line. The default string is "~". Setting this
string to null ("") disables skipping of blank lines, and returns a blank line if the
input contains only white space, or white space followed by a comment.

Example This example opens a file and inserts data until the end of the file:

#include <VU.h>
#define _PV_FILEIO_NOWRAP 1
#define _PV_FILEIO_FIELD ","
#include <sme/fileio.h>

#define IDX_STUDENT 1 /* STUDENT is 1st field */
#define IDX_CLASS 2 /* CLASS is 2nd field */
#define IDX_GRADE 3 /* GRADE is 3rd field */

{
 /* open input data file for transaction A */
 transA_fd = open ("transA_input_file", "r");

 /* loop until input data is exhausted */
 while (ReadLine(transA_fd) != -1)
 {
 sqlexec ["Insert A"]
 "INSERT INTO REPORTCARD (STUDENT, CLASS, GRADE) VALUES ("
 + IndexedField(IDX_STUDENT) + ", "
 + IndexedField(IDX_CLASS) + ", "
 + IndexedField(IDX_GRADE) + ") ";
 }
}

See Also NextField IndexedField NextSubField IndexedSubField
SHARED_READ

reset
Environm ent Contro l Com m and

Description Changes the current value of a VU environment variable to its default value, and
discards all other values in the stack.
Com m and Reference 6 -8 5

restore

ved
Syntax reset [env_var_list];

Comments The current value of each variable in env_var_list is set to that variable’s default
value. All other values on that variable’s stack are discarded. The default and sa
values of the variables in env_var_list are unchanged.

Example This example changes the values for Timeout_val and Log_level, clears the
stack, and then sets the values to their default values.

/* Set values for Timeout_val and Log_level. */
set [Timeout_val = 120000, Log_level = TIMEOUT];

/* Set the current values of Timeout_val to 60000, and save the value.
The current and saved values of are 60000. */
set Timeout_val = 60000;
save Timeout_val;

/* Push 30000 to the top of the Timeout_val stack, making it the cur-
rent value. 60000 is now the second element on the stack. */
push Timeout_val = 30000;

/* Reset the Timeout_val and Log_level */
reset [Timeout_val, Log_level];
show [Timeout_val, Log_level];
Timeout_val = 120000
Log_level = TIMEOUT

See Also set

restore
Environm ent Contro l Com m and

Description Makes the saved value of a VU environment variable the current value.

Syntax Element D escription

env_var_list U se one of the following for env_var_list:

ã A list of one or more environment variables, separated by
commas and optionally by white space. If
env_var_list contains one item, the brackets are
optional. If env_var_list contains more than one
item, reset operates on them from left to right.

ã ENV_VARS. This specifies all of the environment
variables.
6 -8 6 VU Language Reference

save

Syntax restore [env_var_list];

Comments The current value of each variable in env_var_list is set to that variable’s saved
value. The saved values of the variables in env_var_list are unchanged. This is
the inverse of the save command.

Example This example sets Timeout_val to 60000 ms, saves this value to the stack, sets
Timeout_val to 30000 ms, and then restores the value to 60000 ms:

set Timeout_val = 60000;
save Timeout_val;
set Timeout_val = 30000;
restore Timeout_val;
show Timeout_val;

See Also save reset

save
Environm ent Contro l Com m and

Description Saves the value of a VU environment variable.

Syntax save [env_var_list];

Syntax Element D escription

env_var_list U se one of the following for env_var_list:

ã A list of one or more environment variables, separated by
commas and optionally by white space. If
env_var_list contains one item, the brackets are
optional. If env_var_list contains more than one
item, restore operates on them from left to right.

ã ENV_VARS. This specifies all of the environment
variables.

Syntax Element D escription

env_var_list U se one of the following for env_var_list:

ã A list of one or more environment variables, separated by
commas and optionally by white space. If
env_var_list contains one item, the brackets are
optional. If env_var_list contains more than one
item, save operates on them from left to right.

ã ENV_VARS. This specifies all of the environment
variables.
Com m and Reference 6 -8 7

SaveD ata

ument

mber
t
tion, it
he

d
e
o
s, or

.

Comments The saved value of each variable in env_var_list is set to that variable’s current
value. The current values of the variables in env_var_list are unchanged. This
is the inverse of the restore command.

Example This example sets Timeout_val to 60000 ms, saves this value to the stack, sets
Timeout_val to 30000 ms, and then restores the value to 60000 ms:

set Timeout_val = 60000;
save Timeout_val;
set Timeout_val = 30000;
restore Timeout_val;
show Timeout_val;
Timeout_val = 60000

See Also restore

SaveData
VU Toolkit Function: D ata

Description Stores the data returned by the most recent sqlnrecv command into a data set.

Syntax #define _PV_FILEIO_REBUILD
#include <sme/data.h>
proc SaveData(data_name)
string data_name;

Comments This procedure stores the data retrieved by the most recent sqlnrecv command.
Once saved, the data can be referenced using the name given in the string arg
data_name.

After the data is stored, the column headers are examined to determine the nu
and size of the columns. This information is stored for use by the functions tha
parse the data based on rows and columns. Because this is an expensive opera
is performed only the first time a data set is created using this name, or when t
name has been cleared using the FreeData command.

If a data set already exists with the given name, the data is replaced but the fiel
definitions are retained. If the new data does not have the same structure as th
original, the results of subsequent attempts to parse the fields are undefined. T
avoid this problem, you can create different data sets for different sets of querie
you can explicitly clear the data set with FreeData before doing the next
SaveData.

The stored data sets and their field definitions persist across script boundaries

Syntax Element D escription

data_name A string that names the data that is saved.
6 -8 8 VU Language Reference

scanf, fscanf, sscanf
The macro constant _PV_DATA_REBUILD, when defined, forces SaveData to re-
compute field counts and sizes for every call, even if the data set already exists with
this name. While it provides an extra degree of protection from using the same name
for different types of data sets, if also increases the amount of processing required in
the script.

Because data is stored using only the results of the most recent sqlnrecv
command, any VU environment variables that affect the data returned also affect this
function. In particular, it assumes that only one table was fetched. If
Table_boundaries is set to "OFF" and multiple tables are retrieved, the results
of this function and subsequent data commands on the stored data have undefined
results.

Example This example saves the data retrieved in the tmp_results buffer, stores the
second field in accessprofile_id, then frees tmp_results.

#include <VU.h>
#include <sme/data.h>

{
 string accessprofile_id;

 sqlexec ["test_gr003"]
 "select PASSWORD, ACCESSPROFILEID, INACTIVE, "
 "PW_UPDATE_DT from USERACCOUNT where NAME = ’davidj’";
 sqlnrecv ["test_gr004"] ALL_ROWS;

 SaveData ("tmp_results");
 accessprofile_id = GetData1("tmp_results", 2);
 FreeData ("tmp_results");

 sqlexec ["test_gr005"]
 "select LOGONNAME, LOGONPASSWD, EXP_DAYS from "
 "ACCESSPROFILE where ACCESSPROFILEID = "
 + accessprofile_id;
}

See Also AppendData FreeAllData FreeData GetData GetData1

scanf, fscanf, sscanf
Library Rou tine

Description Reads specified input from standard input, a file, or a string expression.
Com m and Reference 6 -8 9

scanf, fscanf, sscanf
Syntax int scanf (control_str [, ptr_list])
int fscanf (file_des, control_str [, ptr_list])
int sscanf (str, control_str [, ptr_list])

Comments The scanf, fscanf, and sscanf routines return the number of input items
successfully read and assigned even if this is less than the requested number. Each
returns EOF (as defined in the standard VU header file) if the input ends before the
first attempt to match the format control string.

The scanf, fscanf, and sscanf routines are closely related, the difference
among them is where they read the specified input.

Specify control_str and ptr_list like the format control string and pointer
arguments in the C library routines scanf, fscanf, and sscanf, with the
following exceptions:

ã If a maximum field width is not given for a string conversion specification (for
example as in %s or %[a-z]), a width of 100 is inserted. Therefore, if you
expect a string exceeding 100 characters, specify an appropriately large field
width. U nused space is freed after the assignment is made, so a large field width
does not waste space.

ã Floating-point conversion characters (e, E, f, F, g, G) are not allowed. They are
unnecessary, because the VU language does not have floating-point values.

ã Integer conversion characters (d, o, u, x) are transparently changed to uppercase
to indicate that their corresponding pointer arguments are addresses of 32-bit
(non-shared) integer variables.

ã control_str and ptr_list are checked at runtime to ensure that their
syntax is correct, that every conversion specification has a pointer argument, and
that each pointer argument is an address of the correct variable type (non-shared
integer or string) for the corresponding conversion specification. Pointers to
arguments are not allowed. As in C, extra pointer arguments are ignored.

Syntax Element D escription

control_str A string expression that specifies how to interpret the input
that is read.

ptr_list Specifies where the input is placed after it is read.

file_des The integer file descriptor, obtained from open, of the file
from which the input is read.

str A string expression from which the input is taken.
6 -9 0 VU Language Reference

script_exit
These routines stop reading input if they encounter the end of the file, after they
have handled the entire control_str, or if input data conflicts with the format
control string. The conflicting data is left unread.

Example In this example, if the string abcdefg is supplied on standard input, then the string
abc is assigned to part1 and the string defg is assigned to part2.

scanf("%3s%s", &part1, &part2);
In this example, if the file with file descriptor infile_des contains the characters
abcde 12345, then the string abcde is assigned to str1 and num is assigned the
integer 12345.

fscanf(infile_des, "%[a-zA-Z]%d", &str1, &num);

In this example, if the value of the string data_str is \044, then the character $ (or
equivalently the decimal value 36) is assigned to char_arg:

sscanf(data_str, "\%3o", &char_arg);

See Also N one.

script_exit
Library Rou tine

Description Exits from a script.

Syntax int script_exit (msg_str)

Comments The script_exit routine causes the current script to exit immediately. If
msg_str is not of zero length, it is written (before exiting the script) to standard
error, preceded by the following explanatory line of text:

Script script_name exited at user’s request with message:

script_name is replaced by the appropriate script name (corresponding to the
read-only variable _script). Virtual user execution continues with the next
scheduled script, just as if the current script had completed normally. Therefore,
script_exit never returns, although for syntactical purposes its return value is
considered to be an integer.

Syntax Element D escription

msg_str A string expression specifying an optional message to be
written to the standard error file.
Com m and Reference 6 -9 1

set
Example This example causes the current script to exit. N o message is written to standard
error. Emulation proceeds with the next scheduled script, if any:

script_exit("");

See Also user_exit

set
Environm ent Contro l Com m and

Description Sets a VU environment variable to the specified expression.

Syntax set [env_assign_list];

Comments The current value of each env_var in env_assign_list is replaced by the
value of the corresponding expr.

Example This example sets the Timeout_val and Log_level values and writes them to
standard output.

set [Timeout_val = 60000, Log_level= ALL];
show [Timeout_val, Log_level];

See Also N one.

set_cookie
Em ulation Function

Description Adds a cookie to the cookie cache.

Syntax set_cookie(name, value, domain, path [, secure])

Syntax Element D escription

env_assign_list A list of one or more environment variable assignments, of the
form env_var = expr, where env_var is any VU
environment variable and expr is an expression separated by
commas and optionally by white space. If
env_assign_list contains one item, the brackets are
optional. If env_assign_list contains more than one
item, set operates on them from left to right.

Syntax Element D escription

name A string expression that specifies the name of the cookie.

value A string expression that specifies the value for the cookie.
6 -9 2 VU Language Reference

SH ARED _READ
Comments The set_cookie function creates the named cookie with the given value. If a
cookie already exists with this name for the given domain and path then
set_cookie() sets the value of that cookie to value.

The expiration date of the cookie is set sufficiently in the future that it will not expire
during the run.

Example This example adds a secure cookie named AA002 for domain avenuea.com and
path /.

set_cookie("AA002", "00932743683-
101023411/933952959", ".avenuea.com", "/",
"secure");

See Also COOKIE_CACHE expire_cookie

SHARED_READ
VU Toolkit Function: File I/O

Description Allows multiple users to share a file.

Syntax #define _PV__FILEIO_NOWRAP
#define _PV_FILEIO_COMMENT "delimiter characters"
#define _PV_FILEIO_WHITESPACE "whitespace characters"
#define _PV_FILEIO_BLANKLINE
#include <sme/fileio.h>
shared prefix_lock, prefix_offset;
SHARED_READ(filename, prefix)

domain A string expression that specifies the domain for which this
cookie is valid.

path A string expression that specifies the path for which this
cookie is valid.

secure An optional string expression that, if given, provides the
secure modifier for the cookie. The value of this parameter
should be "secure".

Syntax Element D escription
Com m and Reference 6 -9 3

SH ARED _READ
Comments SHARED_READ provides coordinated access by multiple users to the file specified by
the filename argument, such that no two users retrieve the same line of data.

Two shared variables are used to coordinate the reads. These must be defined in your
script with the names matching the format prefix_lock and prefix_offset.

SHARED_READ opens the file and closes it again upon exiting. SHARED_READ uses
the ReadLine function to perform the actual file I/O , therefore all of the comments
and white space processing described under ReadLine apply to SHARED_READ.
The NextField and IndexedField functions can also be used after a
SHARED_READ.

The string variable Last_Line contains the line of data returned by the most
recent call to SHARED_READ.

When the macro constant _PV_FILEIO_NOWRAP is defined, SHARED_READ
returns failure after reaching the end of the file. The default behavior is to wrap back
to the top of the file.

Syntax Element D escription

delimiter characters The characters that delimit comments. The default delimiter
is a # . All text following a comment delimiter, up to end of
line, is removed.

Do not separate delimiter characters with white space or any
other character. Multiple contiguous occurrences of the
delimiter are considered as a single delimiter. All text
following a comment delimiter, up to end of line, is removed.

whitespace characters The characters that are considered as white space for
trimming the line read. The default is the tab character (\t).

Do not separate delimiter characters with white space or any
other character. Multiple contiguous occurrences of the
delimiter are considered as a single delimiter.

prefix_lock A variable to ensure that only one user at a time accesses the
file.

prefix_offset A variable to keep track of the next location to be read.

filename The name of the shared file.

prefix Any string constant (for example, myfile_lock and
myfile_offset). prefix is not a string constant, but is a
tag the precompiler uses to create the actual variable name; do
not enclose the prefix tags in quotes.
6 -9 4 VU Language Reference

show
The macro constant _PV_FILEIO_COMMENT allows you to redefine the characters
that are considered as comment delimiters. All text following a comment delimiter,
up to end of line, is removed.

The macro constant _PV_FILEIO_WHITESPACE defines the characters that are
considered as white space for trimming the line read. The default is the tab character
(\t).

The macro constant _PV_FILEIO_BLANKLINE defines a string that, when read as
the only item in a line, returns a blank line. The default string is "~". Setting this
string to null ("") disables skipping of blank lines, and returns a blank line if the
input contains only white space, or white space followed by a comment.

Example

#include <VU.h>
#define _PV_FILEIO_NOWRAP 1
#define _PV_FILEIO_FIELD ","
#include <sme/fileio.h>

#define IDX_STUDENT 1 /* STUDENT is 1st field */
#define IDX_CLASS 2 /* CLASS is 2nd field */
#define IDX_GRADE 3 /* GRADE is 3rd field */
{
 shared transA_lock, transA_offset;

 while (1)
 {
 SHARED_READ("transA_input_file", transA);
 if (Last_line == "")
 break;
 sqlexec [Insert A"]
 "INSERT INTO REPORTCARD (STUDENT, CLASS, GRADE) VALUES ("
 + IndexedField(IDX_STUDENT) + ", "
 + IndexedField(IDX_CLASS) + ", "
 + IndexedField(IDX_GRADE) + ") ";
 }
}

See Also IndexedField IndexedSubField NextField ReadLine NextSubField

show
Environm ent Contro l Com m and

Description Writes the current values of the specified variables to standard output.
Com m and Reference 6 -9 5

sindex
Syntax show [env_var_list];

Comments The show command does not alter any values of environment variables. show does
not escape unprintable characters when printing string expression values. For bank
variables, strings are listed first (enclosed in double quotation marks), followed by
integers.

Example This example writes the values of Timeout_val and Log_level to standard
output:

show [Timeout_val,Log_level];
Timeout_val = 120000
Log_level = TIMEOUT

See Also N one.

sindex
Library Rou tine

Description Returns the position of the first occurrence of any character from a specified set.

Syntax int sindex (str, char_set)

Comments The sindex (string index) routine returns the ordinal position within str of the
first occurrence of any character from char_set. If no occurrences are found,
sindex returns an integer value of 0.

Syntax Element D escription

env_var_list U se one of the following for env_var_list:

ã A list of one or more environment variables, separated by
commas and optionally by white space. If
env_var_list contains one item, the brackets are
optional. If env_var_list contains more than one
item, show operates on them from left to right.

ã ENV_VARS. This specifies all of the environment
variables.

Syntax Element D escription

str The string expression to search.

char_set The characters to search for within str.
6 -9 6 VU Language Reference

sock_connect
The routines cindex, lcindex, sindex, and lsindex return positional
information about either the first or last occurrence of a specified character or set of
characters within a string expression. strspan returns distance information about
the span length of a set of characters within a string expression.

Example This example returns the integer value 2, because 2 is the position of the first vowel
in the string "moo goo gai pan":

sindex("moo goo gai pan", "aeiou");

See Also cindex lcindex lsindex strspan strstr

sock_connect
Em ulation Function

Description Opens a socket connection.

Syntax int sock_connect (label, address)

Comments The sock_connect function returns an integer value: 0 or less for failure, or a
unique connection number greater than or equal to 1 for success. If
sock_connect fails, an entry is written to _error and error_text.

The sock_connect function makes a connection to the server defined by
address, and identifies the name of this connection as label (for the Trace report
output). Supply a descriptive name to make it easier to identify the connection when
you examine the outputs.

The sock_connect function sets the “first connect” (_fc_ts) and “last connect”
(_lc_ts) read-only variables.

The sock_connect function is affected by the following VU environment
variables: Record_level, Timeout_val, Timeout_scale, Timeout_act,
Connect_retries, and Connect_retry_interval.

Syntax Element D escription

label A string expression that identifies the name of the connection.

address A string expression of the form host:port. port is
required. host is a symbolic host name or an IP address in
dotted-decimal form. Equivalent examples: "calvin:80"
and "152.52.110.86:80" (Assuming calvin’s IP address
is 152.52.110.86).
Com m and Reference 6 -9 7

sock_create
Example This example connects to a computer named calvin. The connection number is
returned in the variable conn1:

int conn1
conn1 = sock_connect("calvin", "152.52.110.86:25");

See Also sock_disconnect

sock_create
Em ulation Function

Description Creates a socket to which another process may connect.

Syntax int sock_create ([service | port [, type [, backlog]]])

Comments LoadTest automatically generates the VU code necessary to accept incoming socket
connections from a server by inserting the following emulation commands in your
socket script: sock_create, sock_fdopen, sock_isinput, and
sock_open.

The sock_create function creates an Internet socket and prepares for incoming
connections. It returns the port of the created socket.

The desired port for the created socket may be specified by either a service name or
by a port number. If the port is not specified or is given as 0, the socket uses a system-
assigned port.

Syntax Element D escription

service A string expression that names the service whose port is to be
used.

port An integer expression specifying the port to use.

type An integer specifying the type of socket to create The only
currently supported type is SOCK_TYPE_STREAM,
defined in VU .h.

backlog An integer specifying the maximum number of pending
incoming connections. The default is 1.
6 -9 8 VU Language Reference

sock_disconnect
Example This example creates a socket on port 80 and then waits for a connection to be made
on that socket:

int port, con;

port = sock_create(80);

/* do something here to let other process know that
 socket is ready for connections. */

con = sock_open(“sock_open”, port);
set Server_connection = con;
sock_nrecv 1;

See Also sock_open sock_connect sock_fdopen

sock_disconnect
Em ulation Function

Description Disconnects a socket connection.

Syntax int sock_disconnect (connection)

Comments The sock_disconnect function returns 1 for success and 0 for failure.

Example This example disconnects the connection conn1:

sock_disconnect(conn1);

See Also sock_connect

sock_fdopen
Em ulation Function

Description Associates a file descriptor with a socket connection.

Syntax Element D escription

connection An integer expression specifying a connection number that
has been returned by sock_connect and has not been
disconnected. If connection is invalid,
sock_disconnect generates a fatal runtime error.
Com m and Reference 6 -9 9

sock_isinput
Syntax int sock_fdopen (label, fd)

Comments LoadTest automatically generates the VU code necessary to accept incoming socket
connections from a server by inserting the following emulation commands in your
socket script: sock_create, sock_fdopen, sock_isinput, and
sock_open.

The sock_fdopen function returns an integer value: 0 or less for failure, or a
unique connection number greater than or equal to 1 for success. The
sock_fdopen function assigns the given file descriptor to a connection and
identifies the name of this connection as label (for the Trace report output). The fd
parameter must be a file descriptor for a socket connection created by an external C
function.

The sock_fdopen function is affected by the Record_level VU environment
variable.

 Example This example creates a specialized socket via the external C function and then uses
that socket as the current Server_connection.

external_C int func make_socket()
{}

int fd, con;

fd = make_socket();

con = sock_fdopen(“sock_fdopen”, fd);

set Server_connection = con;

sock_nrecv 1;

See Also sock_create sock_connect sock_open

sock_isinput
Em ulation Function

Description Checks for available input on a socket connection.

Syntax int sock_isinput ()

Syntax Element D escription

label A string expression that identifies the name of the connection.

fd An integer expression that identifies the file descriptor of a
socket created by external C code.
6 -1 00 VU Language Reference

sock_nrecv
Comments LoadTest automatically generates the VU code necessary to accept incoming socket
connections from a server by inserting the following emulation commands in your
socket script: sock_create, sock_fdopen, sock_isinput, and
sock_open.

The sock_isinput function returns an integer value equal to the number of
characters currently available on the socket connection that have not been read by
any of the socket receive commands. This function does not process the incoming
data. Incoming data is still available for processing by a socket receive emulation
command.

The sock_isinput function is affected by the Server_connection VU
environment variable.

Example This example conditionally reads the data from the socket until no more data exists.
This example is useful as a substitute for a sock_nrecv [cmd_id]$ command.
Although the $ tells LoadTest to read until the end of file, the command does not
terminate if the socket is not closed by the server.

Set Server_connection = conn1;
if (n = sock_isinput())

sock_nrecv n;

See Also sock_nrecv

sock_nrecv
Receive Em ulation Com m and

Description Receives n bytes from the server.

Syntax int sock_nrecv [cmd_id] n_bytes

Comments The sock_nrecv command receives n_bytes from the server specified by the
VU environment variable Server_connection. Binary data is translated into
embedded hexadecimal strings. See Unprintable HTTP or Socket Data on page 3-35.

If Timeout_val (subject to scaling) milliseconds elapses before sock_nrecv is
satisfied, it fails and returns 0. O therwise, it passes and returns 1.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

n_bytes An integer expression, specifying the number of bytes to read
from the connection identified by Server_connection.
Com m and Reference 6 -10 1

sock_open

:
The sock_nrecv command is affected by the following VU environment
variables: Timeout_act, Timeout_val, Timeout_scale, Log_level,
Record_level, Max_nrecv_saved, and Server_connection.

Max_nrecv_saved applies to the actual data received, before expanding any
binary data into embedded hexadecimal strings.

Example This example receives 1355 bytes from the server conn1:

Set Server_connection = conn1;
sock_nrecv ["cmd001"] 1355;

See Also sock_recv sock_send sock_isinput

sock_open
Em ulation Function

Description Waits for a socket connection from another process.

Syntax int sock_open (label, port)

Comments LoadTest automatically generates the VU code necessary to accept incoming socket
connections from a server by inserting the following emulation commands in your
socket script: sock_create, sock_fdopen, sock_isinput, and
sock_open.

The sock_open function returns an integer value: 0 or less for failure, or a unique
connection number greater than or equal to 1 for success. If sock_open fails, an
entry is written to _error and _error_text.

The sock_open function waits for a connection from another process and
identifies the name of this connection as label (for the Trace report output). The
port parameter must be a port returned by sock_create.

 The sock_open function sets the “first connect” (_fc_ts) and “last connect”
(_lc_ts) read-only variables.

The sock_open function is affected by the following VU environment variables
Record_level, Timeout_val, Timeout_scale, and Timeout_act.

Syntax Element D escription

label A string expression that identifies the name of the connection

port An integer expression that identifies the port of a socket
created by sock_create.
6 -1 02 VU Language Reference

sock_recv
Example This example creates a socket on port 80 and then waits for a connection to be made
on that socket:

int port, con;

port = sock_create(80);
/* do something here to let other process know that
 socket is ready for connections */

con = sock_open("sock_open", port);
set Server_connection = con;
sock_nrecv 1;

See Also sock_create sock_connect sock_fdopen

sock_recv
Receive Em ulation Com m and

Description Receives data until the specified delimiter string is found.

Syntax int sock_recv [cmd_id] reply

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

reply A string expression specifying the desired reply from the
server. Data is received from the connection identified by
Server_connection until reply is encountered.

reply can contain the following special characters:

ã ^ (carat). As the first character in reply, the carat signifies
binding to the beginning of the response, such as that used
in VU regular expressions for the match() built-in
function. It is considered an error if no characters follow
the ^.

ã $ (dollar sign). As the last character in reply, the dollar
sign signifies binding to the end of the response (for
example, the end of the connection) such as that used in
VU regular expressions for the match() built-in function.
If no characters precede the $, sock_recv reads until the
end of connection, thus matching any combination of 0 or
more received characters.

To override the special meaning of ̂ and $, escape them with
a backslash or use embedded hex string notation (5e for the
carat and 24 for the dollar sign). When used anywhere else
within reply, the carat and dollar sign have no special
meaning.
Com m and Reference 6 -10 3

sock_send
Comments This command returns data until the specified pattern appears. Binary data is
translated into embedded hexadecimal strings. See Unprintable HTTP or Socket Data
on page 3-35.

If Timeout_val (subject to scaling) milliseconds elapses before sock_recv is
satisfied, it fails and return 0. O therwise, it passes and returns 1.

The sock_recv command is affected by the following VU environment variables:
Timeout_act, Timeout_val, Timeout_scale, Log_level,
Record_level, Max_nrecv_saved, and Server_connection.

Max_nrecv_saved applies to the actual data received, before expanding any
binary data into embedded hexadecimal strings.

Example This example matches as soon as the string "This is an extremely small
file\r\n" is found anywhere within the response:

sock_recv ["cmd001r"] "This is an extremely small file\r\n";

This example reads until the end of the connection, and passes only if _response
ends with "This is an extremely small file\r\n":

sock_recv ["cmd002r"] "This is an extremely small file\r\n$";

This example matches only if the first 20 characters of _response =="This is
an extremely". If the first 20 characters do not match, sock_recv continues
to read until the end of the connection or a timeout.

sock_recv ["cmd003r"] "^This is an extremely";

This example reads until the end of the connection. It fails only if Timeout_val
(subject to scaling) milliseconds expires before reaching the end of the connection:

sock_recv ["cmd003r"] "$";

See Also sock_nrecv sock_recv

sock_send
Send Em u lation Com m and

Description Sends data to the server.
6 -1 04 VU Language Reference

sqla lloc_cursor

s:
Syntax int sock_send [cmd_id] data

Comments The sock_send command sends data to the connection specified by the VU
environment variable Server_connection. The sock_send command
returns an integer value — 0 for failure, and 1 for success.

The sock_send command is affected by the following VU environment variable
the think time variables, Log_level, Record_level, Server_connection,
Suspend_check, Timeout_val, and Timeout_scale.

Example This example sends "data to send" to the server conn1:

set Server_connection = conn1;
set Think_avg = 27;
sock_send ["cmd001"] "data to send";

See Also sock_nrecv sock_recv

sqlalloc_cursor
Em ulation Function

Description Allocates a cursor for use in cursor oriented SQL emulation commands and
functions.

Syntax int sqlalloc_cursor()

Comments The sqlalloc_cursor function allocates a cursor for use by
sqldeclare_cursor, sqlopen_cursor, sqlcursor_setoption, or
sqlsysteminfo. The returned cursor ID is placed in the read-only
variable_cursor_id.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

data A string expression that is parsed for embedded hexadecimal
strings delimited by grave accent (‘) characters. See
Unprintable HTTP or Socket Data on page 3-35.
Com m and Reference 6 -10 5

sqla lloc_statem ent
Example This example allocates a cursor with sqlalloc_cursor and then uses that cursor
to execute a query.

stmt_2_1_id = sqlalloc_cursor();

sqlcursor_setoption(stmt_2_1_id, ODBC_CURSOR_TYPE,
 ODBC_CURSOR_KEYSET_DRIVEN);

sqlcursor_setoption(stmt_2_1_id, ODBC_CONCURRENCY,
 ODBC_CONCUR_VALUES);

set Cursor_id = stmt_2_1_id;
sqlopen_cursor ["val_6001"] "", "select @@servername";

push CS_blocksize = 100;

sqlfetch_cursor ["val_6002"] stmt_2_1_id, ALL_ROWS;
set Cursor_id = 0;

sqlfree_cursor(stmt_2_1_id);

See Also sqlfree_cursor sqlopen_cursor
sqldeclare_cursor sqlcursor_setoption

sqlalloc_statement
Em ulation Function

Description Allocates a cursor data area for Oracle playback.

Syntax int sqlalloc_statement ();

Comments The sqlalloc_statement function allocates a cursor data area (CDA) for
Oracle playback. The returned statement ID is placed in the read-only variable
_statement_id.

Example This example does a select on stmtid_1 and fetches one row, then it does a
select on stmtid_2 and fetches all rows. It then returns to stmtid_1 and
fetches the remaining rows.

stmtid_1=sqlalloc_statement();
set Statement_id = stmtid_1;
sqlprepare "select * from customers";

sqlexec stmtid_1;
sqlnrecv 1;
stmtid_2=sqlalloc_statement();
set Statement_id = stmtid_2;
sqlprepare "select distinct composer from products";
sqlexec stmtid_2;
sqlnrecv ALL_ROWS;
set Statement_id=stmtid_1;
sqlnrecv ALL_ROWS;

See Also sqlfree_statement
6 -1 06 VU Language Reference

sqlclose_cursor
sqlclose_cursor
Send Em u lation Com m and

Description Closes the indicated cursor.

Syntax int sqlclose_cursor [cmd_id]
[EXPECT_ERROR ary,] [EXPECT_ROWS n,] csr_id

Comments If the cursor ID is not valid for the connection indicated by the value of
Server_connection or if the cursor is not open, an error is reported to both the
error file and the log file.

After a cursor is closed, all cursor commands will fail except for sqlopen_cursor
and sqlfree_cursor.The cursor is reopened by sqlopen_cursor.

sqlclose_cursor is affected by the VU environment variable
Server_connection.

Example This example declares and opens the cursor, manipulates the rows in the table, and
then closes the cursor:

/* sqlopen_cursor implicitly declares and then opens the cursor */
cursor_65537 = sqlopen_cursor ["hand002"] "cur",

"SELECT * FROM Room \tFOR UPDATE OF Roomnum, Type, Capacity"
UPDATE_CURSOR;

/* CS_blocksize is set to 1 to control the fetch api calls */
set CS_blocksize = 1;

/* 4 TDS_CURFETCH NEXT packets of 1 row each are combined
 * into a single sqlfetch_cursor command. */
sqlfetch_cursor ["hand003"] cursor_65537 FETCH_NEXT, 4;

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error numbers
for this SQL command. The default value is {0}, which
indicates that no error is acceptable. If a SQL command sets
_error to a value not in ary, the response is unexpected.

n An integer that assigns the of rows this command affects. The
default is -1, which indicates any number of rows. If n is
> = 0, and the number of rows the SQL command processes
does not equal n, the response is unexpected.

csr_id The integer cursor identifier of an opened cursor.
Com m and Reference 6 -10 7

sqlcom m it
sqldelete_cursor ["hand004"] cursor_65537, "Room",
 "Roomnum=’2017 ’ Type=’OFF ’ Capacity=’2’";
sqlfetch_cursor ["hand005"] cursor_65537 FETCH_NEXT;
sqlupdate_cursor ["hand006"] cursor_65537, "Room",
 "UPDATE Room Set Roomnum = @sql0_num , Type = @slq1_type ,"
 " Capacity = @sql2_cap ","Roomnum=’2065 ’ Type=’OFF ’"
 "Capacity=’2’","2056", "lab", 4;
sqlfetch_cursor ["hand007"] cursor_65537 FETCH_NEXT;
sqldelete_cursor ["hand008"] cursor_65537, "Room",
 "Roomnum=’2111 ’ Type=’OFF ’ Capacity=’3’";
sqlfetch_cursor ["hand009"] cursor_65537 FETCH_NEXT;
sqlupdate_cursor ["hand010"] cursor_65537, "Room",
 "UPDATE Room Set Roomnum = @sql0_num , Type = @slq1_type ,"
 "Capacity = @sql2_cap ","Roomnum=’2220 ’ Type=’OFF ’"
 "Capacity=’3’","1111", "off", 3;
sqlfetch_cursor ["hand011"] cursor_65537 FETCH_NEXT, 2;
sqlclose_cursor ["hand012"] cursor_65537;

See Also sqlopen_cursor

sqlcommit
Em ulation Function

Description Commits the current transaction.

Syntax int sqlcommit()

Comments The sqlcommit function is not supported for Sybase and Microsoft SQL Server
databases. For Sybase and Microsoft SQL Server databases, use:

sqlexec "commit transaction";

U sing sqlcommit on Sybase or Microsoft SQL Server database produces a fatal
runtime error.

sqlcommit is affected by the VU environment variable Server_connection.

Example In this example, a connection is made to the t:calvin:PAC server. The sqlexec
expects commands to modify data in an Oracle database. The data is committed to
the database and, then the connection is disconnected.

#include <VU.h>
{
t_calvin_PAC = sqlconnect("t_calvin_PAC", "scott", "tiger",
 "t:calvin:PAC", "oracle7.3");
set Server_connection = t_calvin_PAC;
sqlexec ["school001"] "alter session set nls_language= 'AMERICAN' "
 "nls_te"rritory= 'AMERICA'";
sqlexec ["school002"] "select * from student";
sqlnrecv ["school003"] ALL_ROWS;

sqlexec ["school004"] "insert into student VALUES (1,'LAURA', "
 "'L.L.R.', '63 Greenwood Drive, TORONTO ONT', "
 "'12-Jun-95', 'F')";
sqlcommit();
sqldisconnect(t_calvin_PAC);
}

6 -1 08 VU Language Reference

sqlconnect
See Also sqlrollback

sqlconnect
Em ulation Function

Description Logs on to a SQ L database server.

Syntax int sqlconnect (label,database_login,pwd,
server,server_info [, connection_opts])

Comments The sqlconnect function connects database_login to server with
password pwd. If the connection is successful, sqlconnect returns a connection
ID, which is an integer for use with the Server_connection environment
variable. If the connection is not successful, sqlconnect returns 0 and sets
_error and _error_text.

Syntax Element D escription

label A string expression that is used as the label for this server
connection in LoadTest report output. If label has the value
"", database_login and server arguments are
combined into the default label
"database_login@server".

database_login A string expression that specifies the database login ID for the
connection.

pwd A string expression that specifies the password of the database
login ID.

server A string expression that specifies the server.

server_info A string expression that specifies a product ID that is used to
locate the correct API library for playback.

connection_opts An optional string expression that contains one or more
name= ’value’ pairs which give vendor-specific connection-
oriented options. All connection_opts in automatically
generated scripts are taken from the recorded session. The
supported names are described below.
Com m and Reference 6 -10 9

sqlconnect

s
on
. If
er

es

he

ze
r.

e

ad,

e
Supported connection options are as follows:

The sqlconnect function is affected by the VU environment variables
Timeout_val, Timeout_scale, and Record_level.

Example This example connects to a Sybase server, sets the server connection, and then
disconnects:

SYBASE=sqlconnect("SERVER","ron","rondo","SYBASEC","sybase",
 "TDS_VERSION=’5.0.0.0’ APP_NAME=’Sample App’");
set Server_connection = SYBASE;
/* emulation functions */
sqldisconnect (SYBASE);

See Also sqldisconnect

N ame Value

TDS_VERSION (‘n.n.n.n.‘). For Sybase and Microsoft SQL Server database
only, a sequence of integer digits that indicate the TDS versi
used to communicate with the server. The default is 5.0.0.0
the server cannot support the requested TDS version, a low
version is negotiated.

APP_NAME (’a.b.c.d.e.f.’). For Sybase and Microsoft SQL Server databas
only, an optional string that indicates the application name.
The value of APP_NAME is taken from the client login request,
if present in the session. Otherwise, it does not appear in t
connection option string.

PACKET_SIZE (’x’). For Sybase only, an optional integer that indicates the si
of the network packet used to communicate with the serve

DRIVER_INFO (’value’). For ODBC only, a string that contains various
ODBC related information such as 'U ID= DEFAU LT;
PWD= DEFAU LT' which causes the connect box to use th
default username and password that were set up with the
ODBC driver. To use the database login and password inste
remove the U ID and PWD from the DRIVER_IN FO value.

SQL_ODBC_CURSORS (’value’). For ODBC only, controls what type of cursors to us
for playback. The value can be set to any of the following:

SQL_CU R_U SE_IF_N EEDED
SQL_CU R_U SE_ODBC

SQL_CU R_U SE_DRIVER
6 -1 10 VU Language Reference

sqlcursor_rowtag
sqlcursor_rowtag
Em ulation Function

Description Returns the tag of the last row fetched.

Syntax string sqlcursor_rowtag(csr_id)

Comments The sqlcursor_rowtag function returns a string that contains a tag, or
bookmark, for the last row fetched from a cursor. In custom scripts, you can use this
tag later in sqlcursor_update and sqlcursor_delete statements to update
or delete the specific row identified by the tag value.

The returned string is used as an argument to the emulation commands
sqldelete_cursor and sqlupdate_cursor.

If you capture a SQL Server application that uses embedded SQL cursors, your script
includes the sqlcursor_rowtag emulation function.

If you capture a Sybase application session that uses SQL cursors, this emulation
function is not included in generated scripts. This is because the current row tag is
always the last row fetched. Any updates or deletes are always applied to the last row
fetched.

If an error occurs, sqlcursor_rowtag returns an empty string.

Example In this example, a cursor is opened, five rows are fetched, the current row position is
saved in the rowtag_cursor_a_id string. The next three rows are fetched, and
then the row identified by the rowtag_cursor_a_id value is updated.

#include <VU.h>
{
SYBASE = sqlconnect("SYBASE", "myuserid", "mypassword",
 "SYBASE_SERVER", "sybase11", "TDS_VERSION=’5.0.0.0’,
 APP_NAME=’csr_disp’");

set Server_connection = SYBASE;

sqlexec ["csrforu001"] "use pubs2";

push CS_blocksize = 5;

cursor_a_id = sqlopen_cursor ["csr002"] "cursor_a", "select * from "
 "titles where title_id in (’TC7777’, "

Syntax Element D escription

csr_id The integer cursor identifier of an opened cursor.
Com m and Reference 6 -11 1

sqlcursor_setoption
 ’TC3218’,’TC4203’)",UPDATE_CURSOR;

sqlfetch_cursor ["csr003"] cursor_a_id, 5;

{string rowtag_cursor_a_id;}
rowtag_cursor_a_id = sqlcursor_rowtag(cursor_a_id);

sqlfetch_cursor ["csr003"] cursor_a_id, 3;

sqlcursor_update ["csr004"] cursor_a_id, "titles","update "
 "titles set total_sales = 9999", rowtag_cursor_a_id;

sqlfree_cursor(cursor_a_id);

sqldisconnect(SYBASE);

pop CS_blocksize;
}

See Also sqldelete_cursor sqlupdate_cursor

sqlcursor_setoption
Em ulation Function

Description Sets a SQL cursor option.

Syntax int sqlcursor_setoption(csr_id, optioncode [, optarg …])

Comments The sqlcursor_setoption function returns 1 for success and 0 for failure. The
function sets _error and _error_text , and prints an appropriate message to
standard error when _error is nonzero.

The sqlcursor_setoption function is affected by the VU environment
variable Server_connection .

Syntax Element D escription

csr_id The integer cursor identifier of an opened cursor.

optioncode The integer that indicates the cursor option you want to set.
The values for optioncode are vendor-specific. The
recognized values for optioncode and any symbolic
constants for optarg are defined in the file VU .h. Comments
accompany each optioncode, giving the number and type
of optargs expected.

optarg The value that you want to supply to the cursor option. The
number and type of optargs depend on the value of
optioncode. The number and type of optargs are
checked at runtime; mismatches result in a fatal runtime
error.
6 -1 12 VU Language Reference

sqldeclare_cursor
If the cursor ID is not valid for the connection indicated by the value of
Server_connection, an error is reported to both the error file and the log file.

Example This example allocates a cursor with sqlalloc_cursor and then uses
sqlcursor_setoption to set two O DBC cursor attributes before using that
cursor to execute a query.

stmt_2_1_id = sqlalloc_cursor();

sqlcursor_setoption(stmt_2_1_id, ODBC_CURSOR_TYPE,
 ODBC_CURSOR_KEYSET_DRIVEN);

sqlcursor_setoption(stmt_2_1_id, ODBC_CONCURRENCY,
 ODBC_CONCUR_VALUES);

set Cursor_id = stmt_2_1_id;
sqlopen_cursor ["val_6001"] "", "select @@servername";

push CS_blocksize = 100;

sqlfetch_cursor ["val_6002"] stmt_2_1_id, ALL_ROWS;
set Cursor_id = 0;

sqlfree_cursor(stmt_2_1_id);

See Also N one.

sqldeclare_cursor
Send Em u lation Com m and

Description Associates a SQL statement with a cursor ID, which is required to open the cursor.

Syntax int sqldeclare_cursor [cmd_id] [EXPECT_ERROR ary,]
csr_name, sqlstmt
[READ_ONLY_CURSOR | UPDATE_CURSOR [col_ary]]

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error numbers
for this SQL command. The default value is {0}, which
indicates that no error is acceptable. If a SQL command sets
_error to a value not in ary, the response is unexpected.

csr_name A string expression giving the name of the cursor.

sqlstmt A previously prepared statement ID or a SQL statement string
expression associated with the cursor.

col_ary An array of strings whose values are the updatable column
names. The default is all columns are updatable.
Com m and Reference 6 -11 3

sqldelete_cursor
Comments The sqldeclare_cursor command returns an integer cursor ID for future
reference by other sql*_cursor commands and functions. The returned cursor
ID is placed in the read-only variable _cursor_id.

The READ_ONLY_CURSOR keyword indicates that the cursor is read-only. The
UPDATE_CURSOR keyword indicates that the cursor is updatable. If neither type of
cursor is specified, the text of sqlstmt determines whether the cursor is updatable.

The sqldeclare_cursor command is affected by the VU environment
variables Cursor_id and Server_connection.

Example In this example, a connection is made to the Sybase database and a SQL statement is
prepared for a SQL execution command. A cursor is then declared for the prepared
SQL statement.

SYBASE = sqlconnect("SYBASE", "prevue", "prevue", "SYBASEC",
 "sybase", "TDS_VERSION=’5.0.0.0’");
set Server_connection = SYBASE;
sqlexec ["csrdyne001"] "USE pubs2";
stmt = sqlprepare ["csrdyne002"] "SELECT\tau_id, au_lname, au_fname,"
 "\t\t\tphone, address, city, state, \t\t\tpostalcode\t\tFROM
 \tauthors";
authors_id = sqldeclare_cursor["csrdyne003"] "authors", stmt;
sqlopen_cursor ["csrdyne004"] authors_id;
sqlfetch_cursor ["csrdyne005"] EXPECT_ROWS 5, authors_id FETCH_NEXT,
5;

See Also sqlopen_cursor

sqldelete_cursor
Send Em u lation Com m and

Description Deletes the a row using the indicated cursor.

Syntax int sqldelete_cursor [cmd_id] [EXPECT_ERROR ary,]
[EXPECT_ROWS n,] csr_id, tbl_name, rowtag

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error numbers
for this SQL command. The default value is {0}, which
indicates that no error is acceptable. If a SQL command sets
_error to a value not in ary, the response is unexpected.

n An integer that gives the number of rows this command
affects. The default is -1, which indicates any number of rows.
If n is > = 0, and the number of rows the SQL command
processes does not equal n, the response is unexpected.
6 -1 14 VU Language Reference

sqld isconnect
Comments If the cursor ID is not valid for the connection indicated by the value of
Server_connection, an error is reported to both the error file and the log file.

The sqldelete_cursor command is affected by the VU environment variable
Server_connection.

Example This example opens and fetches 4 rows from a cursor, and then deletes a row and
closes the cursor:

/* sqlopen_cursor implicitly declares and then opens the cursor */
cursor_65537 = sqlopen_cursor ["hand002"] "cur",
 "SELECT * FROM Room \tFOR UPDATE OF Roomnum, Type, Capacity"
 UPDATE_CURSOR;

/* CS_blocksize is set to 1 to control the fetch api calls */
set CS_blocksize = 1;

/* 4 TDS_CURFETCH NEXT packets of 1 row each are combined
 * into a single sqlfetch_cursor command. */
sqlfetch_cursor ["hand003"] cursor_65537 FETCH_NEXT, 4;
sqldelete_cursor ["hand004"] cursor_65537, "Room",
 "Roomnum=’2017 ’ Type=’OFF ’ Capacity=’2’";
sqlclose_cursor ["hand012"] cursor_65537;

See Also sqlcursor_rowtag

sqldisconnect
Em ulation Function

Description Closes the specified connection.

Syntax int sqldisconnect (connection_id)

csr_id The integer cursor identifier of an opened cursor.

tbl_name A string expression containing the name of the table from
which to delete.

rowtag A string expression identifying the row to delete. The format
of the string is SQ L database vendor-specific. A valid rowtag
can be obtained by calling sqlcursor_rowtag(). If
rowtag is "", no row identification is used and the current
row is deleted.

 (Continued)

Syntax Element D escription

Syntax Element D escription

connection_id An integer expression, returned by sqlconnect, which
specifies the connection to close.
Com m and Reference 6 -11 5

sqlexec
Comments The sqldisconnect function returns 1 upon success, and 0 upon failure. The
sqldisconnect function sets _error and _error_text.

The sqldisconnect function is affected by the VU environment variable
Record_level.

Example This example connects to a Sybase server, sets the server connection, and then
disconnects:

SYBASE=sqlconnect("SERVER","ron","rondo","SYBASEC","sybase11",
 "TDS_VERSION=’5.0.0.0’ APP_NAME=’Sample App’");
set Server_connection = SYBASE;
/* emulation functions */
sqldisconnect (SYBASE);

See Also sqlconnect

sqlexec
Send Em u lation Com m and

Description Executes SQL statements.

Syntax int sqlexec [cmd_id] [EXPECT_ERROR ary,] [EXPECT_ROWS n,]
stmt, arg_spec1, arg_spec2...

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error numbers
for this SQL command. The default value is {0}, which
indicates that no error is acceptable. If a SQL command sets
_error to a value not in ary, the response is unexpected.

n An integer that gives the number of rows this command
affects. The default is -1, which indicates any number of rows.
If n is > = 0, and the number of rows the SQL command
processes does not equal n, the response is unexpected.

stmt A string expression containing a SQ L statement or an integer
expression indicating a prepared statement ID.

arg_specN One or more optional argument specifications used when
executing stmt. U se these argument specifications for
dynamic SQL placeholders (?’s) or stored procedure
arguments.
6 -1 16 VU Language Reference

sqlexec
Format for Specifying sqlexec Arguments
An argument specification has the form:

expr [: &VUvar [: &VUind]]

expr is required and is either a string or an integer expression.

If expr is a string expression, its value is interpreted at runtime as:

 name=’value’ <type :(p,s)[c]: I | O | IO >

The syntax has these elements:

ã name= indicates the name of the argument as it occurs in the SQL statement
that is executed.

name= is required for O racle and is optional for Sybase and SQ LServer. With
Sybase and SQLServer, if the name is omitted, the argument is associated with
the next SQL placeholder from the beginning of the SQL statement.

ã value is the string representation of the argument value. If name= indicates
a scalar argument, enclose the value portion of the string in single quotation
marks for clarity. These quotation marks are not part of the argument value.

If name= indicates an array argument, the value portion of the string has the
form:

 { ’v1’, ’v2’, ... ’vN’ }

where ’v1’ through ’vN’ are string values for the array elements. You can
specify a N U LL array element as SQL_NULL as in:

 { ’v1’, ’v2’, SQL_NULL, ’v4’ }

ã type is the optional VU language database type of the argument. The default
type is varchar .

ã (p,s) are optional integer constants that represent the precision and scale.
Generally, precision indicates the length (in bytes) of the internal format of the
data. If present, this information is used in the conversion to the SQL database
vendor-specific SQL database type as appropriate for that type.

The value portion of a binary, varbinary, or longbinary argument is
represented as pairs of hexadecimal characters.

For Oracle, the presence of a scale value for a character data type (char or
varchar) indicates a null conversion character. Any character equal to the scale is
converted to a null (\0) character internally before transmission to the SQL
database server.
Com m and Reference 6 -11 7

sqlexec

gth

gth

, the

ut/

t

ch
ã [c] specifies the number of elements in an array argument. [c] is not specified
for scalar arguments.

For output array arguments, the array size is required.

For input array arguments, the array size is optional, for example, you can
specify empty []. If not specified, the number of elements in the array value is
transmitted. If specified, the number of elements transmitted is:

MAX(actual values, c)

Example of array arguments:

sqlexec "proc(:a, :b, :c)",
 ":a=4<numeric(21):I>",
 ":b= {1, 2, 3, 4} <numeric(21)[]:I>",
 ":c= {’one’, ’two’, SQL_NULL, ’four’}

 <varchar(10)[]:I>”;

In the example:

– :a is an input scalar argument, type numeric, value 4 with precision len
of 21.

– :b is an input array of 4 numerics, values 1, 2, 3, and 4 with precision len
of 21.

– :c is an input array of 4 varchars (maximum length 10 characters each)
third of which is SQL_NULL.

ã I, O, or IO indicates whether the argument is input (default), output, or inp
output.

If an argument is output (O) or input/output (IO), the output parameter value is no
valid until the next receive emulation command is executed.

White space characters within a string expression are optional, surrounding ea
portion of the string and between the name and = .

The following are some names, data types, and values obtained from Oracle
arguments:

String N ame Type Value

":spid=50<int4>" :spid O_VARN U M 50

":logname=’george’" :logname O_VARCH AR2 "george"

":c1=’random=text’" :c1 O_VARCH AR2 "random=text"

":c2=’01/17/96’<date>" :c2 O_DATE "01/17/96"
6 -1 18 VU Language Reference

sqlexec
The following are some names, data types, and values obtained from Sybase and SQL
Server arguments:

If expr is an integer, its value is the value of the integer. It has no name and it
represents an input argument with the VU language database type is int4. N ote that
Oracle expressions require a name.

You get a syntax error if you use a type specification with an integer expression. To
specify a type for an integer expression, use a string expression containing the value
and type. For example:

sqlexec ["exec001"] stmt_id, "50 <int1>";

The following list shows the data type conversions performed by the VU playback
libraries for each VU language data type. The SQ L database server could perform
further conversions.

":foo=’hi\377pat’<char(6,0377):I>" :foo O_VARCH AR2 "hi\0pat"

":bin=’00010203’<binary(4):I>" :bin O_BIN ARY "\000\001\002\003"

String N ame Type Value

String N ame Type Value

"@spid=50<int4>" @spid CS_IN T_TYPE 50

"@logname=’george’" @logname CS_CH AR_TYPE "george"

"’random=text’" CS_CH AR_TYPE "random=text"

"01/17/96’<datetime4>" CS_D ATETIM E4 _TYPE "01/17/96"

VU Sybase, SQ L Server (ct-lib) O racle O D BC

default CS_CHAR_TYPE O_VARCH AR2 SQL_C_CH AR

binary CS_BIN ARY_TYPE O_BIN ARY SQL_C_BIN ARY

bit CS_BIT_TYPE O_VARCH AR2 SQL_C_CH AR

char CS_CHAR_TYPE O_VARCH AR2 SQL_C_CH AR

datetime4 CS_DATETIME4_TYPE O_DATE SQL_C_CH AR

datetime8 CS_DATETIME_TYPE O_DATE SQL_C_TIMESTAMP

decimal CS_DECIMAL_TYPE O_VARN U M SQL_C_CH AR

float4 CS_REAL_TYPE O_FLO AT SQL_C_CH AR
Com m and Reference 6 -11 9

sqlexec
You can specify any numeric argument as a string. N on-integer numeric arguments
(such as floating point) must be specified as strings.

The sqlexec command accepts both named and positional arguments in the same
command, and passes them on to the server. Any restrictions regarding mixing of
named and positional arguments are enforced by the SQL server.

:&VUvar and :&VUind indicate VU language variable bindings. When VUvar and
VUind are arrays, the & is not required. If present, a warning is generated.

The optional VUvar is a string, integer, array variable, or array element that indicates
that the corresponding SQ L argument is bound to this VU variable. If the SQL
argument is a scalar, the VU variable must be a scalar. If the SQL argument is an
array, the VU variable must be an array.

float8 CS_FLOAT_TYPE O_FLOAT SQL_C_CH AR

int1 CS_TIN YIN T_TYPE O_VARN U M SQL_C_SLON G

int2 CS_SMALLIN T_TYPE O_VARN U M SQL_C_SLON G

int4 CS_IN T_TYPE O_VARN U M SQL_C_SLON G

money4 CS_MO N EY4_TYPE O_VARCH AR2 SQL_C_CH AR

money8 CS_MO N EY_TYPE O_VARCH AR2 SQL_C_CH AR

numeric CS_N U MERIC_TYPE O_VARN U M SQL_C_CH AR

varchar CS_VARCH AR_TYPE O_VARCH AR2 SQL_C_CH AR

text CS_TEXT_TYPE O_VARCH AR2 SQL_C_CH AR

image CS_IMAGE_TYPE O_VARCH AR2 SQL_C_CH AR

void not supported O_VARCH AR2 SQL_C_CH AR

varbinary CS_VARBIN ARY_TYPE O_BIN ARY SQL_C_BIN ARY

longbinary not supported O_LON GBIN SQL_C_BIN ARY

longchar not supported O_LON G SQL_C_CH AR

sensitivity not supported O_VARCH AR2 SQL_C_CH AR

boundary not supported O_VARCH AR2 SQL_C_CH AR

date not supported O_DATE SQL_C_DATE

 (Continued)

VU Sybase, SQ L Server (ct-lib) O racle O D BC
6 -1 20 VU Language Reference

sqlexec
These bindings are interpreted as in the following table, depending on whether the
SQL argument is input, output, or input/output:

The optional VUind is an integer VU variable for scalar arguments and an array of
integers for array arguments. VUind represents the SQL NULL indicator or array of
SQL NULL indicators, as follows:

SQL Argument How VUvar Is Bound

input If expr has no value component, the value of VUvar is used as the
input value. If VUvar is not set, a runtime error occurs (unless
VUind is present and has value -1). If expr has a value component,
the value of VUvar is ignored.

output VUvar receives the value of the SQL arguments after execution of
the SQL statement. If VUvar is omitted, the SQL result is returned
into an internal temporary space and discarded.

input/output Same as input and output, above.

SQL Argument How VUind Is Bound

input If expr has no value component, the value of VUind has the
following meaning:

ã -1. The input value used is SQL_NULL
ã > = 0. The input value is the value of VUvar

If VUind is unset, it is a runtime error.

output VUind receives the value assigned by the SQL server. Possible
values for VUind are:

ã -2. The return value (in VUvar) has been truncated and the
actual length is greater than 65535.

ã -1. The return value is SQL_N U LL (VUvar is unchanged).
ã 0. The return value is intact and stored in VUvar.
ã > 0. The return value has been truncated and VUind contains

the length before truncation.

input/output Same as input and output, above.
Com m and Reference 6 -12 1

sqlexec

or

ay

e

ified

 of
n,

 to

:
To specify a SQL N U LL input value, use any of the following formats:

ã SQL_NULL

ã "SQL_NULL"

ã "name=SQL_NULL<type:I>"

ã "name= <type:I> " : &VUvar : &VUind /* where VUind = = -1 */

How sqlexec Processes Statements
The sqlexec command executes any SQL statement. It does not return until the
SQL statement has completed, or until Timeout_val elapses. sqlexec returns 1
indicating success, and returns 0 indicating an error. When sqlexec returns 0,
_error and _error_text are set appropriately. If stmt is a prepared statement
ID that is invalid for the current value of Server_connection, sqlexec fails.
Zero is never a valid statement ID. The values of arg_spec1 ... arg_specN are
passed to the statement (stmt), prepared or not, as values for placeholders (?’s)
stored procedure arguments.

The sqlexec command can be used to execute statements using Oracle's arr
interface. If sqlsetoption() is used to set ORA_EXECCOUNT to a value greater
than 1, then each input parameter to sqlexec must be an array containing the sam
number of elements as the value of ORA_EXECCOUNT. The sqlexec command
then executes the statement using the array interface which performs the spec
SQL statement multiple times with a single call to the SQL database server.

The sqlexec command delays execution of the SQL statement for the duration
a think time interval controlled by the think time variables. For more informatio
see Think T ime Variables on page 5-42.

The read-only variable _fs_ts is set to the time the SQL statement is submitted
the server. The read-only variables _ls_ts, _fr_ts, and _lr_ts are set to the
time the server has completed execution of the SQL statement.

The sqlexec command is affected by the following VU environment variables
Log_level, Record_level, Server_connection,
Sqlexec_control_oracle, Sqlexec_control_sybase,
Sqlexec_control_sqlserver, Statement_id, the think time variables,
Timeout_act, Timeout_val, Timeout_scale, and Suspend_check.

Sqlexec_control_* controls precisely how sqlexec executes the SQL
statement. See Client/Server Environment Variables on page 5-21.
6 -1 22 VU Language Reference

sqlexec
Example In this example, assume two SQL database servers: SYBORG (a Sybase 11.0 server)
and ORCA (an Oracle 7.3 server). The following script accesses both servers and
generates a log file (shown on page 5-37).

#include <VU.h>
{
 /* connection variables */
 int syborg, syberspace, orca;

 int deptno[] = { 50, 60, 70 };
 string deptname[] = { "testing", "shipping", "receiving" };
 string deptloc[] = { "Raleigh", "Durham", "Chapel Hill" };
 set Log_level = "ALL";

 /* connect to both servers */

 /* sybase connection, use all defaults */
 syborg = sqlconnect("", "hugh", "3ofFive", "sybserver",
 "sybase11");

 /* oracle connection, override defaults */
 orca = sqlconnect("", "willy", "wonka", "SEA.world", "oracle7.3");

 /* access syborg */
 set Server_connection = syborg;
 sqlexec ["school"] "use school";

 sqlexec"select Empnum, Empname, Roomnum from Employee where
 Rank=’TUTOR’";

 set CS_blocksize = 3;
 while (_error == 0)
 sglnrecv ["Tutors"] 10;

 /* switch to orca */
 set Server_connection = orca;

 sqlsetoption(ORA_AUTOCOMMIT, 1);

 sqlexec "select * from Dept";
 sqlnrecv ["dept (a)"] ALL_ROWS;
 /* insert some rows */
 sqlprepare ["prep insert"]
 "insert into Dept values (:no, :name, :place)";

 for (i = 0; i <= limitof deptno; i++)
 sqlexec _statement_id, ":no="+itoa(deptno[i]),

 ":name="+deptname[i], ":place="+deptloc[i];

 sqlexec "select * from Dept";
 sqlnrecv ["dept (b)"] ALL_ROWS;

 /* now delete rows */
 sqlexec "delete from Dept where deptno >= "+itoa(deptno[0]);

 sqlexec "select * from Dept";
 sqlnrecv ["dept (c)"] ALL_ROWS;

 /* done with orca */
 sqldisconnect(orca);

 /* done with syborg */
 sqldisconnect(syborg);
}

Com m and Reference 6 -12 3

sqlfetch_cursor
See Also N one.

sqlfetch_cursor
Receive Em ulation Com m and

Description Fetches the requested rows from the specified cursor.

Syntax int sqlfetch_cursor [cmd_id]
[EXPECT_ERROR ary,] [EXPECT_ROWS n,]
csr_id [row] [, count]

Comments The first call to sqlfetch_cursor retrieves the column header information if
Column_headers is "ON." The column headers are stored in the read-only
variable _column_headers in two lines.

The rows returned by the SQL database server are stored in the read-only variable
_response. A maximum of Max_nrecv_saved rows are stored. If more than
Max_nrecv_saved rows are requested, the excess rows are fetched but not
returned in _response and not logged.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error numbers
for this SQL command. The default value is {0}, which
indicates that no error is acceptable. If a SQL command sets
_error to a value not in ary, the response is unexpected.

n An integer that gives the number of rows this command
affects. The default is -1, which indicates any number of rows.
If n is > = 0, and the number of rows the SQL command
processes does not equal n, the response is unexpected.

csr_id The cursor identifier returned by sqldeclare_cursor
(or sqlopen_cursor) and opened by
sqlopen_cursor.

row Can be FETCH_NEXT (default), FETCH_FIRST,
FETCH_LAST, FETCH_PREV, FETCH_RELATIVE x, or
FETCH_ABSOLUTE x, where x is an integer that specifies the
row to fetch.

count Specifies the number of rows to fetch or ALL_ROWS. The
default is 1.
6 -1 24 VU Language Reference

sqlfetch_cursor
If the cursor ID is not valid for the connection indicated by the value of
Server_connection or if the cursor is not open, an error is reported to both the
error file and the log file.

Rows are fetched in groups of CS_blocksize until the requested number of rows
is returned or the end of the results is encountered. If ALL_ROWS are requested, then
rows are fetched until the end of the result set (or table if Table_boundaries is
"ON") is reached. If fewer than count rows are retrieved, an error is logged.

The sqlfetch_cursor command is affected by the following VU environment
variables: CS_blocksize, Max_nrecv_saved, Column_headers,
Table_boundaries, Server_connection, and Sqlnrecv_long.

Example This example prepares a statement, declares and opens a cursor on the prepared
statement, and fetches five rows from the cursor result set. The last row fetched is
updated using a parameterized update statement, and the next four rows from the
cursor set are fetched for a total of nine rows fetched:

#include <VU.h>
{

SYBASE = sqlconnect("SYBASE", "prevue", "prevue", "PROXYC",
"sybase11sybase11", "TDS_VERSION=’5.0.0.0’");

set Server_connection = SYBASE;

sqlexec ["csrdyne001"] "USE pubs2";
stmt = sqlprepare ["csrdyne002"] "SELECT au_id, au_lname, au_fname,"
 "phone, address, city, state, postalcode FROM authors";

authors_id = sqldeclare_cursor["csrdyne003"] "authors", stmt;

sqlopen_cursor ["csr004"] authors_id;

sqlfetch_cursor ["csr005"] EXPECT_ROWS 5, authors_id FETCH_NEXT, 5;
sqlupdate_cursor ["csr006"] EXPECT_ROWS 1, authors_id, "authors",
 "UPDATE "
 "authors SET au_lname = @sql0_m_au_lname , au_fname = "
 "@sql1_m_au_fname , phone = @sql2_m_phone , "
 "address = @sql3_m_address , city = @sql4_m_city ,"
 " state = @sql5_m_state , postalcode = "
 "@sql6_m_zip ", "",
 "’Smith ’",
 "’Meander ’",
 "913 843-0462",
 "’10 Mississippi Dr. ’",
 "’Lawrence ’"
 "KS", "’66044 ’";

sqlfetch_cursor ["csr007"] EXPECT_ROWS 9, authors_id FETCH_NEXT, 4;

sqlclose_cursor ["csr008"] authors_id ;

sqldisconnect(SYBASE);
}

See Also sqlconnect
Com m and Reference 6 -12 5

sqlfree_cursor
sqlfree_cursor
Em ulation Function

Description Frees a cursor.

Syntax int sqlfree_cursor(csr_id)

Comments After a cursor ID is freed, any cursor emulation command or function that attempts
to use that cursor ID produces a nonfatal error, which is reported in the error file.

If you are emulating a Sybase, ODBC, or Microsoft SQL Server application that uses
embedded SQ L cursors, your script includes the sqlfree_cursor emulation
function. This function closes (if necessary), then deallocates the cursor ID declared
with the emulation commands sqldeclare_cursor or sqlopen_cursor.

Example In this example, a cursor is opened, some cursor rows are fetched, and the cursor is
freed.

#include <VU.h>
{
SYBASE = sqlconnect("SYBASE", "myuid", "mypasswrd","SYBASE_SERVER",
 "sybase11", "TDS_VERSION=’5.0.0.0’, APP_NAME=’csr_disp’");

set Server_connection = SYBASE;

sqlexec ["csr_upd001"] "use pubs2";

push CS_blocksize = 5;

cursor_a_id = sqldeclare_cursor ["csr_upd002"] "cursor_a",
 "select * from titles" UPDATE_CURSOR{"total_sales","type"};
sqlopen_cursor cursor_a_id;

sqlfetch_cursor ["csr_upd003"] cursor_a_id FETCH_NEXT, 1;

sqlfree_cursor(cursor_a_id);

sqldisconnect(SYBASE);

pop CS_blocksize;
}

See Also sqldeclare_cursor sqlopen_cursor sqlopen_cursor

Syntax Element D escription

csr_id The identifier of the cursor to free. If csr_id is not declared
by either sqldeclare_cursor or sqlopen_cursor, or
allocated by sqlalloc_cursor, a nonfatal error is
reported in the error file.
6 -1 26 VU Language Reference

sqlfree_statem ent
sqlfree_statement
Em ulation Function

Description Frees all of the client and server resources for a prepared statement.

Syntax int sqlfree_statement(stmt_id)

Comments The sqlfree_statement function is affected by the VU environment variable
Server_connection.

Example In this example, a SQL SELECT statement is prepared, for which the statement ID
stmt is returned. A cursor is declared for stmt, and the cursor is opened on the
prepared statement with an argument of 2. The server processes the prepared
statement and returns a cursor result set. The cursor rows are fetched, and the
prepared statement is freed.

#include <VU.h>
{
SYBASE = sqlconnect("SYBASE", "myuserid", "mypassword",
 "SYBASE_SERVER", "sybase11", "TDS_VERSION=’5.0.0.0’");
set Server_connection = SYBASE;

sqlexec ["csrsimp001"] "USE pubs2";

stmt = sqlprepare ["csrsimp002"] "SELECT * FROM mytable where id = ?";

simple_id = sqldeclare_cursor["csrsimp003"] "simple", stmt;

sqlopen_cursor ["csrsimp004"] simple_id, 2;

sqlfetch_cursor ["csrsimp005"] simple_id FETCH_NEXT, 1;

sqlfree_statement(stmt);

sqlclose_cursor ["csrsimp008"] simple_id ;

sqldisconnect(SYBASE);
}

See Also N one.

Syntax Element D escription

stmt_id An integer value returned by the sqlprepare emulation
command. If stmt_id is not the result of the sqlprepare
emulation command or stmt_id has already been freed by
sqlfree_statement, an error message is printed and
_error and _error_text are set.
Com m and Reference 6 -12 7

sqlinsert_cursor

r

d

.

e
h
sqlinsert_cursor
Send Em u lation Com m and

Description Inserts rows via a cursor.

Syntax int sqlinsert_cursor [cmd_id] [EXPECT_ERROR ary,]
[EXPECT_ROWS n,] [CURSOR_LOCK | CURSOR_UNLOCK ,] csr_id,
tbl_name, rowtag [, values]

Comments If the cursor ID is not valid for the connection indicated by the value of
Server_connection, an error is reported to both the error file and the log file.

If CURSOR_LOCK is specified, the sqlinsert_cursor command locks the
inserted rows. If CURSOR_UNLOCK is specified, sqlinsert_cursor unlocks the
inserted rows.

The sqlinsert_cursor command is affected by the VU environment variable
Server_connection.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error numbers
for this SQL command. The default value is {0}, which
indicates that no error is acceptable. If a SQL command sets
_error to a value not in ary, the response is unexpected.

n An integer that gives the number of rows this command
should affect. The default is –1, which indicates any numbe
of rows. If n is > = 0, and the number of rows the SQL
command processes does not equal n, then response is
unexpected.

csr_id The integer cursor identifier of an opened cursor.

tbl_name A string expression containing the name of the table affecte
by the insert.

rowtag A string expression identifying the row to position the cursor
The format of the string is SQL database vendor-specific. A
valid rowtag can be obtained by calling
sqlcursor_rowtag().

values A list of string values, integer values, or both to insert into th
table via the cursor. Values may include type specifiers. Eac
value is the string representation of the argument value as
described for the sqlexec emulation command.
6 -1 28 VU Language Reference

sqllongrecv
Example This example inserts the row Dodsworth, Anne into the employees table.

stmt_2_1_id=sqlalloc_cursor();

set Cursor_id = stmt_2_1_id;
sqlopen_cursor "C1", "select lastname, firstname from employees";

sqlfetch_cursor stmt_2_1_id, 8;

sqlinsert_cursor stmt_2_1_id, "", "1", "’Dodsworth’<varchar(21):I>",
"’Anne’<varchar(16):I>";

sqlfree_cursor(stmt_2_1_id);

See Also sqlexec sqlcursor_rowtag

sqllongrecv
Receive Em ulation Com m and

Description Retrieves longbinary and longchar results.

Syntax int sqllongrecv [cmd_id] [EXPECT_ERROR ary,]
column, offset, size, count

Comments The sqllongrecv command retrieves count * size bytes from a column of
type longbinary or longchar. If fewer than count * size bytes are retrieved,
_error and _error_text are set to indicate the reason.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error numbers
for this SQL command. The default value is {0}, which
indicates that no error is acceptable. If a SQL command sets
_error to a value not in ary, the response is unexpected.

column An integer expression indicating the column that contains the
long data type. The first column in the row is 1.

offset An integer expression indicating the beginning offset within
the column.

size An integer expression indicating the number of bytes to
retrieve from the column at one time.

count An integer expression indicating the number of blocks of
size bytes to retrieve.
Com m and Reference 6 -12 9

sqlnrecv
The sqllongrecv command operates on the last row retrieved by sqlnrecv or
sqlfetch_cursor, and thus can be called after sqlnrecv or
sqlfetch_cursor was called.

The sqllongrecv command is affected by the following VU environment
variables: Timeout_val, Timeout_scale, Timeout_act, Log_level,
Record_level, Max_nrecv_saved, and Server_connection.

The sqllongrecv command is also affected by Statement_id if
Statement_id is not zero. O therwise sqllongrecv operates on the last
sqlexec command.

Example In this example, sqlnrecv fetches the first 100 bytes of column 3. The next
sqllongrecv fetches 3 blocks, each 65536 bytes in size, of column 3. The last
sqllongrecv fetches the last 3392 bytes of column 3, starting at offset 199608.

sqlprepare "select msg_id, msg_len, msg from voicemail"
"where msg_id=100";

push CS_blocksize = 1;
set sqlnrecv_long=100;
sqlnrecv 1;
sqllongrecv 3, 65536, 3;
sqllongrecv 3, 196608, 3392, 1;

See Also N one.

sqlnrecv
Receive Em ulation Com m and

Description Retrieves row results after sqlexec is executed.

Syntax int sqlnrecv [cmd_id]
[EXPECT_ERROR ary,] [EXPECT_ROWS n,] m

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error numbers
for this SQL command. The default value is {0}, which
indicates that no error is acceptable. If a SQL command sets
_error to a value not in ary, the response is unexpected.

n An integer that gives the number of rows that this command
affects. The default is -1, which indicates any number of rows.
If n is > = 0, and the number of rows the SQL command
processes does not equal n, the response is unexpected.
6 -1 30 VU Language Reference

sqlnrecv
Comments The sqlnrecv command retrieves m rows from the last command processed by
sqlexec. sqlnrecv repeatedly requests CS_blocksize rows from the SQL
database server until m rows have been retrieved, an error occurs, or it reaches the
end of the table and Table_boundaries is ON.

If fewer than m rows are retrieved, _error is set to indicate the reason. If m is not
ALL_ROWS, and if the end of the row results (or the end of the table) is reached,
_error and _error_text are set to indicate the condition that terminated the
command. If there are no more row results, sqlnrecv returns immediately, setting
_error and _error_text appropriately.

The sqlnrecv command processes the first Sqlnrecv_long bytes of columns
of type longbinary or longchar. Any remaining data in these columns must be
processed by sqllongrecv.

The sqlnrecv command is affected by the following VU environment variables:
CS_blocksize, Column_headers, Timeout_val, Timeout_scale,
Log_level, Record_level, Max_nrecv_saved, Server_connection,
Timeout_act, Table_boundaries, Sqlnrecv_long. It is also affected by
Statement_id if Statement_id is not zero. O therwise sqlnrecv operates
on the last sqlexec command.

m An integer that gives the number of rows requested or
ALL_ROWS, which receives all remaining rows. The default is
1.

 (Continued)

Syntax Element D escription
Com m and Reference 6 -13 1

sqlopen_cursor
Example This example issues a select query. The sqlnrecv fetches and processes all rows
returned by the query. The same select query is issued, and the first twenty-five
rows are fetched and process. The next sqlnrecv fetches and processes the
remaining rows held in the fetch buffer.

#include <VU.h>
{
SERVER = sqlconnect("SERVER", "myuserid", "mypassword",
 "NTSQL_SERVER","sqlserver", "TDS_VERSION=’4.2.0.0’,"
 "APP_NAME=’isql’");
set Server_connection = SERVER;

sqlexec ["sql_1001"] "use school";

sqlexec ["sql_1002"] "select * from Assignment";

/* Get all rows returned */
sqlnrecv ["sql_1003"] EXPECT_ROWS 50, ALL_ROWS;
sqlexec ["sql_1004"] "select * from Assignment";

/* Get first twenty-five rows returned */
sqlnrecv ["sql_1005"] EXPECT_ROWS 25, 25;

/* Get rest of rows returned */
sqlnrecv ["sql_1005"] EXPECT_ROWS 25, ALL_ROWS;

sqldisconnect(SERVER);
}

See Also sqllongrecv

sqlopen_cursor
Send Em u lation Com m and

Description Opens the specified cursor.

int sqlopen_cursor [cmd_id]
[EXPECT_ERROR ary,] [EXPECT_ROWS n,]
 csr_spec [, values]

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error numbers
for this SQL command. The default value is {0}, which
indicates that no error is acceptable. If a SQL command sets
_error to a value not in ary, the response is unexpected.

n An integer that gives the number of rows that this command
affects. The default is -1, which indicates any number of rows.
If n is > = 0, and the number of rows the SQL command
processes does not equal n, the response is unexpected.
6 -1 32 VU Language Reference

sqlopen_cursor
csr_spec Choose one of the following:

ã A cursor ID returned by sqldeclare_cursor
ã csr_name, sqlstmt [,{ READ_ONLY_CURSOR |
UPDATE_CURSOR [col_ary] }]
csr_name is a string expression giving the name of the
cursor.

sqlstmt is either a previously prepared statement ID or a
SQL statement string expression associated with the
cursor. sqlopen_cursor implicitly declares a cursor for
that statement and then opens that cursor.

READ_ONLY_CURSOR indicates that the cursor is read-
only.

UPDATE_CURSOR indicates that the cursor is updatable. If
neither type of cursor is specified, the text of sqlstmt
determines whether the cursor is updatable.

col_ary is an array of strings whose values are the
updatable column names. The default is all columns are
updatable.

values A list of string values, integer values, or both to use for
opening the cursor. values could include type specifiers.

Each value is the string representation of the argument
value. If name= indicates a scalar argument, enclose the value
portion of the string in single quotation marks for clarity.
These quotation marks are not part of the argument value. If
name= indicates an array argument, the value portion of the
string has the form:

{ ’v1’, ’v2’, ... ’vN’’}

where ’ v1’ through ’ vN’ are string values for the array
elements. You can specify a N U LL array element as
SQL_NULL, as in:

{ ’v1’, ’v2’, SQL_NULL, ’v4’ }

 (Continued)

Syntax Element D escription
Com m and Reference 6 -13 3

sqlposit ion_cursor
Comments The sqlopen_cursor command returns an integer cursor ID for future
reference by other sql*_cursor command and functions. The returned cursor
ID is placed in the read-only variable _cursor_id.

If csr_spec is a cursor ID and is not a valid declared cursor (with
sqldeclare_cursor) for the connection indicated by the value of
Server_connection, then an error is reported to both the error file and the log
file.

The sqlopen_cursor command is affected by the VU environment variables
Cursor_id, Sqlexec_control_*, and Server_connection.

Example This example opens a cursor, fetches the results, and closes the cursor. N ote that the
cursor was not freed and deallocated. The cursor is reopened at a later point in the
script without redeclaring it.

#include <VU.h>
{
SYBASE = sqlconnect("SYBASE", "myuserid", "mypassword",
 "SYBASE_SERVER","sybase11", "TDS_VERSION=’5.0.0.0’,
APP_NAME=’csr_disp’");
set Server_connection = SYBASE;
sqlexec ["csr_upd001"] "use pubs2";
push CS_blocksize = 5;
cursor_a_id = sqldeclare_cursor ["csr_upd002"] "cursor_a",
 "select * from titles" UPDATE_CURSOR {"total_sales","type"};
sqlopen_cursor cursor_a_id;
sqlfetch_cursor ["csr_upd003"] cursor_a_id FETCH_NEXT, 1;
sqlclose_cursor(cursor_a_id);
sqlexec ["csr_upd004"] "select * from authors";
sqlopen_cursor cursor_a_id;
sqlfetch_cursor ["csr_upd003"] cursor_a_id FETCH_NEXT, 1;
sqlclose_cursor(cursor_a_id);
sqlfree_cursor(cursor_a_id);
sqldisconnect(SYBASE);
pop CS_blocksize;
}

See Also sqlclose_cursor sqlexec sqldeclare_cursor sqlfree_cursor

sqlposition_cursor
Send Em u lation Com m and

Description Positions a cursor within a result set.
6 -1 34 VU Language Reference

sqlprepare
Syntax int sqlposition_cursor [cmd_id] [EXPECT_ERROR ary,]
[CURSOR_LOCK | CURSOR_UNLOCK ,] csr_id, rowtag

Comments If the cursor ID is not valid for the connection indicated by the value of
Server_connection, an error is reported to both the error file and the log file.

If CURSOR_LOCK is specified, the sqlposition_cursor command locks the
inserted rows. If CURSOR_UNLOCK is specified, sqlposition_cursor unlocks
the inserted rows.

The sqlposition_cursor command is affected by the VU environment
variable Server_connection.

Example This example sets the current row position to row 1 in the result set.

sqlopen_cursor "C1", "select lastname, firstname from employees";
sqlfetch_cursor stmt_2_1_id, 8;
sqlposition_cursor stmt_2_1_id, "1";

See Also sqlcursor_rowtag

sqlprepare
Send Em u lation Com m and

Description Prepares a SQ L statement for execution.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error numbers
for this SQL command. The default value is {0}, which
indicates that no error is acceptable. If a SQL command sets
_error to a value not in ary, the response is unexpected.

csr_id The integer cursor identifier of an opened cursor.

rowtag A string expression identifying the row to position the cursor.
The format of the string is SQL database vendor-specific. A
valid rowtag can be obtained by calling
sqlcursor_rowtag().
Com m and Reference 6 -13 5

sqlprepare
Syntax int sqlprepare [cmd_id] [EXPECT_ERROR ary,] stmt

Comments The sqlprepare command prepares SQL statements. It does not return until the
server has parsed the SQL statement, or until Timeout_val elapses. U pon success,
sqlprepare returns the value assigned as the prepared statement ID, and sets
_statement_id to the value. U pon failure, sqlprepare sets
_statement_id to a negative value, returns the value of _statement_id, and
sets _error and _error_text. The sqlprepare command associates the
statement ID with the connection indicated by Server_connection. Because
sqlprepare sets and returns the value of _statement_id, the statement ID is
saved in an integer variable, either by:

stmt_id = sqlprepare ...

or

sqlprepare ...
stmt_id = _statement_id;

The sqlprepare command delays submitting the SQL statement to the server for
the duration of a think time interval controlled by the think time environment
variables.

The read-only variable _fs_ts is set to the time the SQ L statement is submitted to
the server. The read-only variables _ls_ts, _fr_ts, and _lr_ts are set to the
time the server has completed parsing the SQL statement.

The sqlprepare command is affected by the following VU environment
variables: the think time variables, Timeout_val, Timeout_scale,
Log_level, Record_level, Server_connection, Statement_id, and
Suspend_check.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error numbers
for this SQL command. The default value is {0}, which
indicates that no error is acceptable. If a SQL command sets
_error to a value not in ary, the response is unexpected.

stmt A string expression containing a SQ L statement.
6 -1 36 VU Language Reference

sqlrefresh_cursor
Example This example shows a script that prepares a select statement and assigns the
statement ID to stmtid_1. The prepared statement stmtid_1 is executed with a
runtime parameter of :id=’12345’. Any rows returned are fetched and
processed. Statement stmtid_1 is freed and deallocated. The same variable
stmtid_1 is reused for another sqlprepare on a different select statement.
The prepared statement is executed and any rows returned are fetched and
processed. The statement ID stopped in stmtid_1 is freed and deallocated.

#include <VU.h>
{
t_calvin_PAC = sqlconnect("t_calvin_PAC", "oracle", "oracle",
 "t:calvin:PAC", "oracle7.3");

push Sqlexec_control_oracle = "STATIC_BIND";
set Server_connection = t_calvin_PAC;
stmtid_1 = sqlprepare ["oraclee016"] "select * from Student where id"
 "= :id";
sqlexec ["oraclee017"] stmtid_1,":id=’12345’";
sqlnrecv ["oraclee018"] EXPECT_ROWS 1, ALL_ROWS;
sqlfree_statement(stmtid_1);
stmtid_1 = sqlprepare ["oraclee019"] "select * from Course";
sqlexec ["oraclee020"] stmtid_1;
sqlnrecv ["oraclee021"] EXPECT_ROWS 14, ALL_ROWS;
sqlfree_statement(stmtid_1);
sqldisconnect(t_calvin_PAC);
pop CS_blocksize;
}

See Also sqlexec

sqlrefresh_cursor
Send Em u lation Com m and

Description Refreshes the result set of a cursor.

Syntax int sqlrefresh_cursor [cmd_id] [EXPECT_ERROR ary,]
[EXPECT_ROWS n ,][CURSOR_LOCK | CURSOR_UNLOCK ,]
csr_id, rowtag

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error numbers
for this SQL command. The default value is {0}, which
indicates that no error is acceptable. If a SQL command sets
_error to a value not in ary, the response is unexpected.
Com m and Reference 6 -13 7

sqlrefresh_cursor

r

.

Comments If the cursor ID is not valid for the connection indicated by the value of
Server_connection, an error is reported to both the error file and the log file.

If CURSOR_LOCK is specified, the sqlrefresh_cursor command locks the
inserted rows. If CURSOR_UNLOCK is specified, sqlrefresh_cursor unlocks
the inserted rows.

The sqlrefresh_cursor command is affected by the VU environment variable
Server_connection.

Example This example refreshes row 2 in the rowset. This is done, because the update on row
2 invalidated the row currently stored in the rowset.

stmt_2_1_id=sqlalloc_cursor();

set Cursor_id = stmt_2_1_id;
sqlopen_cursor "C1", "select lastname, firstname from employees";

sqlfetch_cursor stmt_2_1_id, 8;

sqlupdate_cursor stmt_2_1_id, "", "", "2", "’Buchanan’<var-
char(21):I>",
"’Anne’<varchar(16):I>";

sqlrefresh_cursor stmt_2_1_id, "2";

sqlfree_cursor(stmt_2_1_id);

See Also sqlcursor_rowtag

n An integer that gives the number of rows this command
should affect. The default is –1, which indicates any numbe
of rows. If n is > = 0, and the number of rows the SQL
command processes does not equal n, then response is
unexpected.

csr_id The integer cursor identifier of an opened cursor.

rowtag A string expression identifying the row to position the cursor
The format of the string is SQL database vendor-specific. A
valid rowtag can be obtained by calling
sqlcursor_rowtag().

Syntax Element D escription
6 -1 38 VU Language Reference

sqlro llback
sqlrollback
Em ulation Function

Description Rolls back the current transaction.

Syntax int sqlrollback()

Comments The sqlrollback function is not supported for Sybase and Microsoft SQL
server, and produces a fatal runtime error. For Sybase and Microsoft SQ L server
databases, use the following:

sqlexec "rollback transaction";

The sqlrollback function is affected by the VU environment variable
Server_connection.

Example In this example, an update statement is sent to the server. The sqlrollback
function restores the affected rows of the updated table to their original value.

#include <VU.h>
{
t_calvin_PAC = sqlconnect("t_calvin_PAC", "oracle", "oracle",
 "t:calvin:PAC", "oracle7.3");

set Server_connection = t_calvin_PAC;

sqlexec ["oracle003"] "INSERT INTO voice_mail (msg_id, msg_len, msg)"
"VALUES (100, 5, Hello";

sqlrollback();

sqldisconnect(t_calvin_PAC);

pop CS_blocksize;
}

See Also sqlcommit

sqlsetoption
Em ulation Function

Description Sets a SQL database server option.
Com m and Reference 6 -13 9

sqlsetoption
Syntax int sqlsetoption(optioncode [, optarg ...])

Comments The sqlsetoption function returns 1 for success and 0 for failure.
sqlsetoption sets _error and _error_text, and prints an appropriate
message to standard error when _error is nonzero.

The sqlsetoption function sets the server option indicated by the integer
optioncode to the value given by optarg for the server indicated by the current
value of Server_connection.

The sqlsetoption function is affected by the VU environment variable
Server_connection.

Example This example sets options for a Sybase server:

SYBASE = sqlconnect("", "sybase", "sybase", "", "sybase11");
set Server_connection = SYBASE;
/* assorted options */
sqlsetoption(SYB_OPT_ANSINULL, 1);
sqlsetoption(SYB_OPT_STR_RTRUNC, 1);
sqlsetoption(SYB_OPT_ARITHABORT, 0);
sqlsetoption(SYB_OPT_TRUNCIGNORE, 1);
sqlsetoption(SYB_OPT_ARITHIGNORE, 0);
sqlsetoption(SYB_OPT_ISOLATION, SYB_OPT_LEVEL3);
sqlsetoption(SYB_OPT_CHAINXACTS, 1);
sqlsetoption(SYB_OPT_CURCLOSEONXACT, 1);
sqlsetoption(SYB_OPT_QUOTED_IDENT, 1);

See Also N one.

Syntax Element D escription

optioncode The integer that indicates the server option you want to set.
The values for optioncode are vendor-specific. The
recognized values for optioncode and any symbolic
constants for optarg are defined in the file VU.h.
Comments accompany each optioncode, giving the
number and types of optarg’s expected. All definitions for
Sybase options are prefixed by SYB_; all definitions for
Oracle options are prefixed by ORA_.

optarg The value that you want to supply to the server option. All
options require at least one optarg. The number and type of
optarg’s depends on the value of optioncode. The
number and type of optarg’s are checked at runtime;
mismatches result in a fatal runtime error.
6 -1 40 VU Language Reference

sqlsystem in fo
sqlsysteminfo
Send Em u lation Com m and

Description Queries the server for various types of system information.

Syntax sqlsysteminfo [cmd_id] [EXPECT_ERROR ary ,]
 [EXPECT_ROWS n ,] operation , arglist ...

Comments The sqlsysteminfo command performs any of several specific system
information requests depending on the value of operation.

List of Operations
The valid values for operation and their purpose are shown in the following table:

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

operation A string expression specifying what type of information
to retrieve.

arglist A comma-seperated list of string or integer expressions.
The interpretation of each argument depends on the
value of operation.

O peration Purpose

Tables Retrieves a list of table names stored in a specific data
source’s system catalog.

TablePrivileges Retrieves a list of table names stored and privileges
associated with them.

Columns Retrieves a list of column names associated with a
specified table.

ColumnPrivileges Retrieves a list of column names and privileges for a
specified table.

SpecialColumns Retrieves a unique row ID for a specified table.

Statistics Retrieves statistical information about a specified table
and its associated indexes.

PrimaryKeys Retrieves the list of column names that make up the
primary key for a specified table.
Com m and Reference 6 -14 1

sqlsystem info
List of Operation Arguments
The valid values for arglist for each operation are shown in the following table.
All arguments are strings unless marked with a (*).

If Cursor_id is non-zero, sqlsysteminfo will perform the operation using
the cursor specified by Cursor_id. O therwise, sqlsysteminfo will allocate a
new cursor (and set _cursor_id) for the operation. sqlsysteminfo returns
the cursor ID used for the operation.

ForeignKeys Retrieves information about the foreign keys defined for
a specified table and what primary keys in other tables
they access.

Procedures Retrieves a list of stored procedure names that have been
registered in a specified data source.

ProcedureColumns Retrieves a list of I/O parameters to a stored procedure.

O peration arglist

Tables catalogName, schemaName, tableName,
tableType

TablePrivileges catalogName, schemaName, tableName

Columns catalogName, schemaName, tableName,
columnName

ColumnPrivileges catalogName, schemaName, tableName,
columnName

SpecialColumns rowid(*), catalogName, schemaName,
tableName, columnName, scope(*),
nullable(*)

Statistics catalogName, schemaName, tableName,
indexType(*), accuracy(*)

PrimaryKeys catalogName, schemaName, tableName

ForeignKeys PKcatalogName, PKschemaName, PKtableName,
FKcatalogName, FKschemaName, FKtableName

(PK = primary key, FK = foreign key)

Procedures catalogName, schemaName, procedureName

ProcedureColumns catalogName, schemaName, procedureName
columnName

 (Continued)

O peration Purpose
6 -1 42 VU Language Reference

sqlupdate_cursor
The sqlsysteminfo command is affected by the VU environment variables
Cursor_id, Server_connection, the think time variables, Timeout_val,
Timeout_scale, Timeout_act, Log_level, Record_level, and
Suspend_check.

Example x = sqlalloc_cursor();
set Cursor_id = x;

sqlsysteminfo ["info001"] "Tables", "catalog_1",
"schema_1", "Cities", "user";

sqlfetch_cursor x, ALL_ROWS;

sqlupdate_cursor
Send Em u lation Com m and

Description U pdates the current row of the indicated cursor.

Syntax int sqlupdate_cursor [cmd_id] [EXPECT_ERROR ary,]
[EXPECT_ROWS n,] [CURSOR_LOCK | CURSOR_UNLOCK]
csr_id, tbl_name, set_clause, rowtag [, values]

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

ary An array of integers that contains all acceptable error numbers
for this SQL command. The default value is {0}, which
indicates that no error is acceptable. If a SQL command sets
_error to a value not in ary, the response is unexpected.

n An integer that gives the number of rows this command
affects. The default is -1, which indicates any number of rows.
If n is > = 0, and the number of rows the SQL command
processes does not equal n, the response is unexpected.

csr_id The integer cursor identifier of an opened cursor.

tbl_name A string expression containing the name of the table to update.

set_clause A string expression containing the SET clause of that SQL
update statement.

rowtag A string expression identifying the row to update and which is
obtained by calling sqlcursor_rowtag(). The format of
the string is vendor-specific. If rowtag is "", no row
identification is used and the current row is updated.
Com m and Reference 6 -14 3

sqtrans
Comments If the cursor ID is not valid for the connection indicated by the value of
Server_connection or if the cursor is not open, an error is reported to both the
error file and the log file.

If CURSOR_LOCK is specified, the sqlupdate_cursor command locks the
updated rows. If CURSOR_UNLOCK is specified sqlupdate_cursor unlocks the
updated rows.

The sqlupdate_cursor command is affected by the VU environment variable
Server_connection.

Example This example positions the cursor at the next row and updates that row:

sqlfetch_cursor ["hand009"] cursor_65537 FETCH_NEXT;
sqlupdate_cursor ["hand010"] cursor_65537, "Room",
 "UPDATE Room Set Roomnum = @sql0_num , Type = @slq1_type ,"
 "Capacity = @sql2_cap ","Roomnum=’2220 ’ Type=’OFF ’"
 "Capacity=’3’","1111", "off", 3;

See Also sqlcursor_rowtag

sqtrans
Library Rou tine

Description Creates string expressions based on character translations of string expressions,
squeezing out any repeated characters.

values A list of string values, integer values, or both to use for
updating the current row of the cursor. values may include
type specifiers.

Each value is the string representation of the argument value.
If name= indicates a scalar argument, enclose the value
portion of the string in single quotation marks for clarity.
These quotation marks are not part of the argument value. If
name= indicates an array argument, the value portion of the
string has the form:

{ ’ v1’, ’ v2’, ... ’ vN’}

where ’ v1’ through ’ vN’ are string values for the array
elements. You can specify a N U LL array as SQL_NULL as in:

{ ’ v1’, ’ v2’, SQL_NULL, ’ v4’ }

 (Continued)

Syntax Element D escription
6 -1 44 VU Language Reference

sqtrans

, and
nd each
Syntax string sqtrans (str, in_str, out_str)

Comments The sqtrans routine returns a translated version of str by substituting or deleting
selected characters and then squeezing all strings of repeated characters in the
returned string that occur in out_str to single characters. Any character in str not
found in in_str is copied unmodified to the returned string. Characters found in
in_str are substituted by the corresponding character in out_str (based on
character position). If there is not a corresponding character in out_str, the
character is deleted (not copied to the returned string).

A special convention is useful for padding out_str. If out_str has at least two
characters and ends in an asterisk (*), out_str is automatically padded with the
character preceding the * until the length of out_str is the same as the length of
in_str. For example, if out_str is "abc*" and the length of in_str is 10,
out_str is converted to abcccccccc before the translation begins. If this action
is undesirable, the ordering of the characters in in_str and out_str must be
changed such that out_str does not end in *.

The trans routine also translates string expressions, except that it does not perform
the “squeeze” translation.

Example This example removes each tab in the input string and replaces it with a space
then squeezes the repeated spaces so that the result has only one space arou
word:

sqtrans("\t\tHello,\t\tworld\t\t" "\t", " ");

See Also trans

Syntax Element D escription

str The subject string expression.

in_str A string expression that specifies the set of characters within
str that is translated or deleted.

out_str A string expression that specifies the corresponding set of
characters to which the characters in in_str are translated.
Com m and Reference 6 -14 5

srand

.

dom
s in a

m

. If
d

then
srand
Library Rou tine

Description Reseeds the random number generator, essentially resetting it to a specific starting
place.

Syntax int srand (seed)

Comments The srand routine is similar to its corresponding C library routine but generates
random numbers with better “randomness.”

The rand, srand, uniform, and negexp routines enable the VU language to
generate random numbers. The behavior of these random number routines is
affected by the way you set the Seed and Seed Flags options in a LoadTest schedule
By default, the Seed generates the same sequence of random numbers but sets
unique seeds for each virtual user, so that each virtual user has a different ran
number sequence. For more information about setting the seed and seed flag
schedule, see the Using Rational LoadTest manual.

The srand routine uses the argument seed as a seed for a new sequence of rando
numbers to be returned by subsequent calls to the rand routine. If srand is then
called with the same seed value, the sequence of random numbers is repeated
rand is called before any calls are made to srand, the same sequence is generate
as when srand is first called with a seed value of 1.

Example This example seeds the random number generator with the current time and
prints the first 10 random numbers:

srand(time());
for (i = 0; i < 10; i++)
printf("random number (%d): %d\n", i, rand());

See Also rand uniform negexp

Syntax Element D escription

seed The integer expression used to seed the random number
generator. Its value must be non-negative.
6 -1 46 VU Language Reference

start_tim e

n that
start_time
Em ulation Com m and

Description Marks the start of a block of actions to be timed.

Syntax int start_time;
int start_time time;
int start_time [time_id];
int start_time [time_id] time;

Comments The start_time command associates a starting timestamp with time_id for
later reference by stop_time, and returns an integer expression equal to the
starting timestamp.

VU automatically timestamps the time that any send emulation command is sent to
the SQL database server as _fs_ts, and the time that the command returns as
_ls_ts. VU also timestamps the time of the first and last results received by any
receive emulation command, allowing six possible “response time” definition
choices with LoadTest reports. If these are not sufficient, use start_time and
stop_time when generating report output.

The start_time and stop_time commands can span multiple emulation
commands in the same script, such as the elapsed time for a logical transactio
consists of several commands.

Example This example shows how IDs are used with start_time to measure nested
transactions. The ID T2.x on the second start_time is not necessary, but it is
recommended for clarity:

start_time ["T2"];/* beginning of entire T2 */
...
start_time ["T2.x"];/* beginning of subset of T2 */
...
stop_time ["T2.x"];/* ending of subset of T2 */
...
stop_time ["T2"];/* ending of entire T2 */

Syntax Element D escription

time An integer expression specifying a timestamp that overrides
the current time.

time_id An optional ID, similar to a command ID, that has the form
[string_exp]. If time_id is not specified, the starting
timestamp is saved internally.
Com m and Reference 6 -14 7

start_tim e
This example shows how IDs can be used with start_time to measure
overlapping transactions:

start_time ["T3"];/* beginning of T3 */
...
start_time ["T4"];/* beginning of T4 */
...
stop_time ["T3"];/* ending of transaction T3 */
...
stop_time ["T4"];/* ending of transaction T4 */

This example shows how transactions can easily share the same starting time. The
example would not work correctly if a previous start_time in the script had been
given an ID T1, T2, or T3, because stop_time selects prev_time as the starting
time only if a matching ID is not found:

start_time;/* beginning of T1, T2 & T3*/
...
stop_time ["T1"];/* ending of transaction T1 */
...
stop_time ["T2"];/* ending of transaction T2 */
...
stop_time ["T3"];/* ending of transaction T3 */

This alternative example removes the potential problem by providing separately
labeled start times for T1, T2, and T3, all using a common starting timestamp.

beg = start_time ["T1"];/* beginning of T1, T2 & T3*/
start_time ["T2"] beg;/* associate time with ID T2 */
start_time ["T3"] beg;/* associate this with ID T3 */
...
stop_time ["T1"];/* ending of transaction T1 */
...
stop_time ["T2"];/* ending of transaction T2 */
...
stop_time ["T3"];/* ending of transaction T3 */

Because the starting timestamps for T2 and T3 were user-defined, their associated
start_time commands could have been executed at any time before their
respective stop_time command. H owever, because the Trace report output
displays all emulation commands in order of execution, you execute the
start_time as close to the actual starting time as possible, as shown in the
previous example.

With the creative use of start_time and stop_time, emulation commands,
and the read-only timestamp variables _fs_ts, _ls_ts, _fr_ts, and _lr_ts,
you can measure a complex transaction using any statement submitted to the server
or data received from the server as end points. Avoid measuring very short
transactions; your operating system could restrict timing resolution.
6 -1 48 VU Language Reference

stoc
This example splits a response into arbitrary units, each measured as separate
transactions.

sqlexec "select * from Student";

start_time ["p1_wait"] _lr_ts;

sqlnrecv 10/* fetch the first 10 rows */

/* wait for phase 1 ends and output for phase 1 begins*/
stop_time ["p1_wait"] _fr_ts;
start_time ["p1_out"] _fr_ts;

/* output for phase 1 ends and wait for phase 2 begins*/
stop_time ["p1_out"] _lr_ts;
start_time ["p2_wait"] _lr_ts;

sqlnrecv ALL_ROWS/* fetch rest of results */

/* wait for phase2 ends; output for phase2 begins*/
stop_time ["p2_wait"] _fr_ts;
start_time ["p2_out"] _fr_ts;

/* output for phase 2 ends: */
stop_time ["p2_out"] _lr_ts;

time_ids are truncated to 40 characters during command recording.

See Also stop_time

stoc
 Library Routine

Description Returns a selected character from a string argument.

Syntax int stoc (str, n)

N O TE: The use of multiple sqlnrecv commands per sqlexec lets
Performance reports automatically calculate separate response times for individual
parts of a response. H owever, each sqlnrecv command’s response time must
share the same starting time, namely that of the common sqlexec command.
This restriction does not apply to start_time/stop_time.

Syntax Element D escription

str The string expression to search.

n An integer expression used to specify the position of one
character to extract.
Com m and Reference 6 -14 9

stop_tim e
Comments The stoc routine returns the nth character (as an integer) of the string str. If n is
less than 1 or exceeds the length of str, stoc returns the integer 0.

The ctos routine is the converse of stoc; ctos converts characters to strings.

Example This example returns the character ’n’ :

stoc("manual", 3);

These examples both return the character ’\0’ (zero):

stoc("guide", 6);
stoc("guide", 0);

See Also ctos

stop_time
Em ulation Com m and

Description Marks the end of a block of actions being timed.

Syntax int stop_time time_id ;
int stop_time time_id time;

Comments The stop_time command returns an integer expression equal to the ending
timestamp.

The stop_time command associates an ending timestamp with the time_id,
and records both the starting time and ending time for use by LoadTest reports.

One stop_time command is normally used with each start_time command.
H owever, multiple stop_time commands per start_time command are
allowed.

Example This example shows a simple use of start_time and stop_time :

start_time; /* beginning of T1 */
. . . /* T1 commands & responses */
stop_time ["T1"]; /* ending of transaction T1 */

Syntax Element D escription

time_id A required ID, similar to a command ID, that has the form
[string_exp]. If time_id has not been specified in a
previous start_time in the current script, the most recent
start time without a label is used instead.

time An integer expression specifying a timestamp that overrides
the current time. If time is not specified, the current time is
used.
6 -1 50 VU Language Reference

strlen

ith
See Also start_time

strlen
Library Rou tine

Description Returns the length of a string expression.

Syntax int strlen (str)

Comments The strlen routine, equivalent to the C library routine of the same name, returns
an integer specifying the number of characters in its argument.

Example In this example, the integer returned has the value 26; note that ’\n’ is a single
character.

strlen("A string of 26 characters\n");

In this example, strlen returns the number of characters in the read-only variable
_response and assigns them to var .

var = strlen(_response);

See Also strneg strspan

strneg
Library Rou tine

Description Creates a string expression based on character set negation (complements).

Syntax string strneg (str)

Comments The strneg routine returns a string consisting of the negation of string str with
respect to the 255-character native character set on the computer on which LoadTest
is installed. Every character, numerical values 1–255, not occurring in str is
included once in the returned string, sorted numerically. This routine is useful w
several others, such as strspan and strlen.

Syntax Element D escription

str The string expression whose length you want to obtain.

Syntax Element D escription

str The string expression to negate.
Com m and Reference 6 -15 1

strrep
The strrep, strset, and strneg routines create string expressions based on
character repetition, character sets, or character negation.

Example In this example, the integer value 8 is assigned to unique, equivalent to the number
of unique characters in polyethylene:

unique = 255 - strlen(strneg("polyethylene"));

In this example, strneg returns the string abcd, which lists each of the unique
characters in ddccbbaa in alphabetical order:

strneg(strneg("ddccbbaa"));

In this example, strspan returns 22 (the number of consecutive nondigit
characters beginning with the first character of the string "up to the first
digit 0 - 9").

strspan("up to the first digit 0 - 9", strneg(strset(’0’,’9’)), 1);

In this example, strneg returns the string "".

strneg(strset(’\1’, ’\377’));

See Also strspan strlen strset

strrep
Library Rou tine

Description Creates a string expression based on character repetition.

Syntax string strrep (rep_char, len)

Comments The strrep routine returns a string of length len consisting of len repetitions of
the character rep_char. If rep_char or len is less than 1, or if rep_char is
greater than 255 (’\377’), strrep returns a string of length zero ("").

The strrep , strset , and strneg routines create string expressions based on
character repetition, character sets, or character negation.

Example This example returns the string "aaaaa":

strrep(’a’, 5);

Syntax Element D escription

rep_char An integer expression specifying the character to repeat.

len An integer expression specifying the desired length.
6 -1 52 VU Language Reference

strset
These examples both return the string "":

strrep(’a’, 0);
strrep(256, 5);

See Also strset strneg

strset
Library Rou tine

Description Creates a string expression based on user-supplied characters.

Syntax string strset (beg_char, end_char)

Comments The strset routine returns a string consisting of the set of characters between (and
including) the characters beg_char and end_char.

The strrep, strset, and strneg routines create string expressions based on
character repetition, character sets, or character negation.

Example This example returns the string "abcdefghijklmnopqrstuvwxyz":

strset(’a’, ’z’);

This example returns the string "":

strset(’B’, ’A’);

This example returns the set of characters between temp1 and temp2, and stores
the returned string in var:

var = strset(temp1, temp2);

See Also strrep strneg

Syntax Element D escription

beg_char An integer expression (interpreted as a character) that
indicates the first character in the expression. If beg_char is
less than 1 or exceeds the value of end_char, strset
returns a string of length zero ("").

end_char An integer expression (interpreted as a character) that
indicates the last character in the expression. If end_char is
greater than 255 (’\377’), its value is silently changed to
255.
Com m and Reference 6 -15 3

strspan
strspan
Library Rou tine

Description Returns the length of the initial segment within a string expression, beginning at the
specified position.

Syntax int strspan (str, char_set, pos)

Comments The strspan routine returns distance information about the span length of a set of
characters within a string expression. Specifically, it returns the length of the initial
segment within str, beginning at the ordinal position pos, which consists entirely
of characters from char_set. If pos is less than 1 or exceeds the length of str,
strspan returns an integer value of 0.

The cindex, lcindex, sindex, and lsindex routines return positional
information about either the first or last occurrence of a specified character or set of
characters within a string expression.

Example This example returns the fifth field in the read-only variable _response and stores
the value in var:

var= strspan(_response ",", 5);

This example returns the integer value 2:

strspan("moo goo gai pan", "aeiou", 2);

This example returns the integer value 3:

strspan("aeiou", "eieio", 3);

This example returns the integer value 0:

strspan("had a farm", "eieio", 11);

In this example, strspan returns 22 (the number of consecutive nondigit
characters beginning with the first character of the string "up to the first
digit 0 - 9").

strspan("up to the first digit 0 - 9", strneg(strset(’0’,’9’)), 1);

See Also cindex lcindex sindex lsindex strstr

Syntax Element D escription

str The string to search.

char_set A set of characters to search for within str.

pos An integer expression that specifies the position within str
where the search should begin.
6 -1 54 VU Language Reference

strstr

strstr
Library Rou tine

Description Searches for one string within another.

Syntax int strstr(str1, str2)

Comments The strstr() function returns the ordinal position within str1 of the first
occurrence of str2. If str2 is not found in str1, strstr() returns 0. This
function is equivalent to the standard C library function of the same name.

Example This example uses strstr() to find the base64–encoded login ID and password
contained in the given request text.

string auth_str, key, log_pass, request_text;
int start, end;

key = "Authorization:Basic";
start = strstr(request_text, key);
start += strlen(key);
auth_str = substr(request_text, start, 10000);
end = strstr(auth_str, "\r\n");
auth_str = substr(auth_str, 1, end – 1);

See Also cindex lcindex lsindex sindex strspan

subfield
Library Rou tine

Description Extracts substrings from string expressions based on field position.

Syntax string subfield (str, field_sep, n)

Syntax Element D escription

str1 The string expression to search.

str2 The string expression to find.

Syntax Element D escription

str The string to search.

field_sep A string expression containing a set of field separator
characters.

n An integer expression indicating the desired field to search
within str.
Com m and Reference 6 -15 5

substr
Comments The subfield routine returns a string representing the nth field within the string
str, where fields are delimited within str by one or more consecutive separator
characters contained in the string field_sep. If n is less than 1, or if str contains
fewer than n fields, or if n equals 1 and str begins with a separator character,
subfield returns a string of zero length ("").

Example This example returns the fifth field in the read-only variable _response and stores
the value in var:

var= subfield(_response ",", 5);

This example returns the string "b":

subfield("a,b,c,d", ",", 2);

This example returns the string "104":

subfield("104.13", ".", 1);

This example returns the string "9":

subfield("1,000.9", ",.", 3);

This example returns the string (""):

subfield("xxyzxxx", "xyz", 1);

This example returns the string "3":

subfield(",1,2,3"", ",", 4);

See Also substr

substr
Library Rou tine

Description Extracts substrings from string expressions based on character position.

Syntax string substr (str, pos, len)

Syntax Element D escription

str The string to search.

pos An integer expression specifying the position of the first
character of the substring.

len An integer expression specifying the maximum length of the
returned substring.
6 -1 56 VU Language Reference

sync_point
Comments The substr routine returns the substring within the string str, beginning at the
ordinal position pos with (maximum) length len. If either len or pos is less than
1 or if pos exceeds the length of str, substr returns a string of zero length ("").

Example This example returns the first five characters in the read-only variable _response
and stores the value in var:

var = substr(_response 1, 5);

This example returns the string "knack":

substr("knackwurst", 1, 5);

This example returns the string "wurst":

substr("knackwurst", 6, 100);

This example returns the string (""):

substr("knackwurst", 11, 1);

See Also subfield

sync_point
Statem ent

Description Waits for users in a LoadTest schedule to synchronize.

Syntax sync_point sync_point_name;

Comments A script pauses at a synchronization point until the release criteria specified by the
schedule have been met. At that time, the script delays a random time specified in the
schedule, and then resumes execution.

Typically, you will want to insert synchronization points into a LoadTest schedule
rather than inserting the sync_point command into a script.

If you insert a synchronization point through a schedule, synchronization occurs at
the beginning of the script. If you insert a synchronization point into a script through
the sync_point command, synchronization occurs at that point in the script
where you inserted the command. You can insert the command anywhere in the
script.

For more information about inserting synchronization points in a schedule, see the
Using Rational LoadTest manual.

Syntax Element D escription

sync_point_name A string constant that names the synchronization point. The
name can have from 1 to 40 characters.
Com m and Reference 6 -15 7

system
Example In this example, a user makes a database connection and then synchronizes with
other users before proceeding.

t_calvin_PAC = sqlconnect("t_calvin_PAC", "scott", "tiger",
 "t:calvin:PAC", "oracle7.3");
set Server_connection = t_calvin_PAC;
sync_point "logon";
sqlexec ["school001"] "alter session set nls_language= ’AMERICAN’ "
 "nls_te"rritory= ’AMERICA’";
sqlexec ["school002"] "select * from student";
sqlnrecv ["school003"] ALL_ROWS;

See Also wait

system
Library Rou tine

Description Allows an escape mechanism to the U N IX shell from within a virtual user script
running on a U N IX system.

Syntax system (cmd_str)

Comments The system routine behaves like the C routine of the same name.

system causes cmd_str given to the U N IX shell /bin/sh(1) as input, as if the
string had been typed as a command at a terminal. system waits until the shell has
completed execution of cmd_str, and then returns the exit status of the shell (as an
integer expression). cmd_str must be accessible from the PATH environment
variable and must have execute permissions set. The standard input, standard output,
and standard error files used by the shell correspond to the same files used by VU . If
standard output, or any other user-specified file opened for writing, is accessed by
both the virtual user script and the invoked system command, all previous buffered
output by VU is written out with fflush before the call to system to ensure
correct file I/O operation.

The U N IX process environment available to cmd_str is identical to the
environment of the virtual user, as described under getenv on on page 6-42.
Therefore, if cmd_str requires values of certain predetermined environment
variables to be different from those in the virtual users environment, they should be
explicitly mentioned on the system command line, as shown in the second
example below.

Syntax Element D escription

cmd_str A string expression specifying the U N IX command to
execute.
6 -1 58 VU Language Reference

tem pnam

g
l
Example In this example, if the virtual user’s ID has the value 1, then the current workin
directory is output to the file dir1, and system returns an integer expression equa
to the shell’s exit status. After completion of system, the VU I/O library routines
are used to access dir1, and then used to incorporate the result of the pwd
command in further processing.

system("pwd > dir" + itoa(_uid));

This example defines the environment variables HOME and MAIL to the script
read_my_mail; executes read_my_mail; and then returns its exit status.

system("HOME=/u/tester1 MAIL=/u/tester1/mail read_my_mail");

See Also N one.

tempnam
Library Rou tine

Description Generates unique temporary file names.

Syntax string tempnam (dir, prefix)

Comments The unlink routine, which deletes files, and tempnam are often used together
because temporary files are removed as soon as their usefulness has expired.

Example If the Windows N T or U N IX environment variable TMPDIR is undefined,
tempnam returns a temporary file name in the current (.) directory, such as ./
AAAa02179. The actual file name of the temporary file returned by tempnam will
vary.

tempnam(".", "");

Syntax Element D escription

dir A string expression that qualifies the pathname. The directory
part of the pathname is chosen as the first accessible directory
name from the following four sources (in the order shown):

ã The Windows N T or U N IX environment variable
TMPDIR (the getenv library routine discusses the U N IX
process environment available to virtual user scripts)

ã dir
ã P_tmpdir as defined in <stdio.h>
ã /tmp

prefix A string expression that indicates the prefix added to the
temporary file name.
Com m and Reference 6 -15 9

testcase
If the Windows N T or U N IX environment variable TMPDIR has the value /tmp,
tempnam returns a temporary file name in the /tmp directory, prefixed by mine,
such as /tmp/mineBAAa02179:

tempnam(".", "mine");

If the Windows N T or U N IX environment variable TMPDIR is undefined, and
P_tmpdir is defined in < stdio.h> to have the value /usr/tmp, tempnam
returns a temporary file name in the /usr/tmp directory, such as /usr/tmp/
CAAa02179. After the file has been opened, processed, and closed, unlink
removes it:

string temp_filename;

temp_filename = tempnam("", "");
tmpfile_des = open(temp_filename, "w");

/* do file processing on the temporary file */

close(tmpfile_des);
unlink(temp_filename);

See Also unlink getenv

testcase
Em ulation Com m and

Description Checks a response for specific results, and reports and logs them.

Syntax int testcase [cmd_id] condition [, log_string [, fail_string]]

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

condition An integer expression. If the value of condition is > 0, the
testcase command passes; otherwise, it fails. testcase
returns the value of condition.

log_string An optional string expression used when logging a passed
testcase (or a failed testcase if fail_string is not
specified). If log_string is not specified, no log entry is
generated for testcase.

fail_string An optional string expression used when logging a failed
testcase. If fail_string is not specified,
log_string is used for both pass and fail cases.
6 -1 60 VU Language Reference

tim e

s:

ds.
 when

. The
Comments The testcase command enables you to check a response for specific results, and
to record or log a pass or fail status based on conditions that you specify.

Like emulate, the arguments (condition, log_string, and fail_string)
are not evaluated before calling the command. Instead, testcase operates much
like the conditional operator (?:). condition is evaluated, and based on the result
of condition, either log_string or fail_string is evaluated.

Another difference between testcase and most other emulation commands is
that testcase does not “think” before evaluating the condition.

The testcase command is affected by the following VU environment variable
Log_level and Record_level.

Example In this example, test001 is not logged, but test002 and test003 are logged,
depending on the value of Log_level.

testcase ["test001"] match ("XYZ", _response);
testcase ["test002"] match ("XYZ", _response), "XYZ test";
testcase ["test003"] match ("XYZ", _response), "Found XYZ",
"Could not find XYZ";

See Also emulate

time
Library Rou tine

Description Returns the current time in integer format.

Syntax int time ()

Comments The time routine returns an integer representing the current time in millisecon
time uses the same time source and format used by the emulation commands
timestamping input and output. This time source is reset to zero during
initialization.

A related routine, tod, returns the current time in string format.

Example This example prints the current time and then prints the time that has elapsed
_lr_ts read-only variable contains the timestamp of the last received data.

printf ("The time of day is %s.", tod());
printf ("%d milliseconds have elapsed since the \
last rows received from the server",
time() - _lr_ts);

See Also tod
Com m and Reference 6 -16 1

tod

. The

tod
Library Rou tine

Description Returns the current time in string format.

Syntax string tod ()

Comments The tod routine returns a 24-character string representing the current time in time-
of-day format (such as “Fri Apr 11 15:29:02 1997”).

A related routine, time, returns the current time in integer format.

Example This example prints the current time and then prints the time that has elapsed
_lr_ts read-only variable contains the timestamp of the last received data.

printf ("The time of day is %s.", tod());
printf ("%d milliseconds have elapsed since the \
last rows received from the server",
time() - _lr_ts);

See Also time

trans
Library Rou tine

Description Substitutes or deletes selected characters in a string expression.

Syntax string trans (str, in_str, out_str)

Comments The trans routine returns a translated version of str by substituting or deleting
selected characters. Any character in str not found in in_str is copied
unmodified to the returned string. Characters found in in_str are substituted by
the corresponding character in out_str (based on character position). If there is
not a corresponding character in out_str, the character is deleted (not copied to
the returned string).

Syntax Element D escription

str The subject string expression.

in_str A string expression that specifies the set of characters within
str that should be translated or deleted.

out_str A string expression that specifies the set of characters to which
the characters in in_str are translated.
6 -1 62 VU Language Reference

tux_a llocbuf

f

e.
A special abbreviated convention is useful for padding out_str. If out_str has at
least two characters and ends in an asterisk (*), out_str is automatically padded
with the character preceding the asterisk until the length of out_str is the same as
the length of in_str. For example, if out_str is "abc*" and the length of
in_str is 10, out_str is converted to abcccccccc before the translation begins.
If this action is undesirable, change the order of the characters in in_str and
out_str so that out_str does not end in an asterisk.

The sqtrans routine is the same as trans, except that it “squeezes” all strings o
repeated characters in the returned string that occur in out_str to single
characters.

Example This example takes the string rational and translates each letter into uppercas
The strset routine specifies a range of letters.

trans("rational", strset(’a’,’z’), strset(’A’,’Z’));

This example produces the string "Spanish." When trans finds the letter g, it
substitutes a; when it finds the letter l it substitutes n, and so on:

trans("English", "glnE", "anpS");

This example produces the string "rmv my vwls." When trans finds the letter
a, e, i, o, or u, it deletes it (substitutes nothing).

trans("remove my vowels", "aeiou", "");

These two examples are equivalent and produce the string "$XXX.XX":

trans("$141.19", strset(’0’,’9’), "X*");
trans("$141.19", "0123456789", "XXXXXXXX");

This example, without the asterisk, produces the string "$.":

trans("$141.19", strset(’0’,’9’), "X");
trans("$141.19", "0123456789", "X");

This example removes each tab in the input string and replaces it with a space, so two
spaces surround each word:

trans("\t\tHello,\t\tworld\t\t" "\t", " ");

See Also sqtrans

tux_allocbuf
Em ulation Function

Description Allocates a free buffer.
Com m and Reference 6 -16 3

tux_allocbuf_typed
Syntax int tux_allocbuf (buftype)

Comments Buffers allocated by tux_allocbuf are freed with tux_freebuf.

If tux_allocbuf completes successfully, it returns a buffer handle. O therwise, it
returns a value of NUM_BUF and sets _error, _error_type, and _error_text
to indicate the error condition.

Example This example allocates a buffer of type TPQCTL (queue control) and sets an integer
field.

tpqctl = tux_allocbuf(BUFTYP_TPQCTL);
tux_setbuf_int(tpqctl, "flags", TPQCORRID | TPQFAILUREQ | TPQREPLYQ |

TPQGETBYCORRID | TPQMSGID);

See Also tux_freebuf

tux_allocbuf_typed
Em ulation Function

Description Allocates a TU XEDO-typed buffer.

Syntax int tux_allocbuf_typed (buftype, subtype, size)

Syntax Element D escription

buftype Must be one of the following buffer types:
BUFTYP_CLIENTID, BUFTYP_REVENT,
BUFTYP_SUBTYPE, BUFTYP_TPEVCTL,
BUFTYP_TPQCTL, BUFTYP_TPTRANID, BUFTYP_TYPE.

Syntax Element D escription

buftype Must be one of the following buffer types:
BUFTYP_CARRAY, BUFTYP_FML, BUFTYP_FML32,
BUFTYP_STRING, BUFTYP_TPINIT,
BUFTYP_X_OCTET, BUFTYP_VIEW, BUFTYP_VIEW32,
BUFTYP_X_C_TYPE, or BUFTYP_X_COMMON.

subtype A string expression that identifies the user-defined structure
contained within the VIEW, VIEW32, X_C_TYPE, or
X_COMMON typed buffer. You must have defined the U N IX
environment variables VIEWFILES and VIEWDIR.
O therwise, subtype is an empty string.

size The requested buffer size, in bytes.
6 -1 64 VU Language Reference

tux_bq
Comments If tux_allocbuf_typed completes successfully, it returns a buffer handle.
O therwise, it returns a value of NULL_BUF and sets _error, _error_type, and
_error_text to indicate the error condition.

This function is equivalent to the function tux_tpalloc. When you record
TU XEDO traffic, the resulting script contains tux_tpalloc, not
tux_allocbuf_typed.

Example This example allocates string-typed buffer of 30 bytes and then sets the string "Jake
Brake" to the buffer.

name = tux_allocbuf_typed(BUFTYP_STRING, "", 30);
tux_setbuf_string(name, "", "Jake Brake");

See Also tux_tpalloc tux_freebuf

tux_bq
Send Em u lation Com m and

Description Queues a U N IX command for background processing.

Syntax int tux_bq [cmd_id] cmd

Comments If tux_bq completes successfully, it returns a value of 1. O therwise, it returns a
value of 0 and sets _error, _error_type, and _error_text to indicate the
error condition.

tux_bq is affected by the think time, Log_level, and Record_level VU
environment variables.

Example This example queues a U N IX command for background printing of a file.

tux_bq ["tbq_001"] "lp -d hp5mp /home/tuxedo/tux.env";

See Also N one.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

cmd A string expression that contains the U N IX command
executed.
Com m and Reference 6 -16 5

tux_freebuf
tux_freebuf
Em ulation Function

Description Deallocates a free buffer.

Syntax int tux_freebuf (bufhnd)

Comments If tux_freebuf completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

Example This example deallocates the buffer tpqctl.

/* tux_allocbuf ... */

tux_freebuf(tpqctl);

See Also tux_allocbuf tux_allocbuf_typed

tux_getbuf_ascii
Em ulation Function

Description Gets a free buffer or buffer member and converts it to a string.

Syntax string tux_getbuf_ascii (bufhnd, mbrspec)

Comments If tux_getbuf_ascii completes successfully, it returns a string representation
of the buffer or buffer member. N onprintable characters are converted to hex or
backslash format. (See How a VU Script Represents Unprintable Data on page 3-34.)
O therwise, tux_getbuf_ascii returns an empty string and sets _error,
_error_type, and _error_text to indicate the error condition.

You should check _error explicitly after every call to tux_getbuf_ascii.

Syntax Element D escription

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

Syntax Element D escription

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

mbrspec A buffer member specification.
6 -1 66 VU Language Reference

tux_getbuf_int
Example This example gets the buffer odata and returns an ASCII representation.

idata = tux_tpalloc("CARRAY", "", 16);
tux_setbuf_ascii(idata, "", "@S8‘b42fff48ba‘@R‘13e2228114‘E");
odata = tux_tpalloc("CARRAY", "", 8);
tux_tpcall ["k1_cnx020"] "math::mul", idata, odata, (TPSIGRSTRT);

{ string asciified_result; }
asciified_result = tux_getbuf_ascii(odata, "");
if (_error)

... /* asciified_result is invalid */

See Also N one.

tux_getbuf_int
Em ulation Function

Description Gets a free buffer or buffer member and converts it to a VU integer.

Syntax int tux_getbuf_int (bufhnd, mbrspec)

Comments If tux_getbuf_int completes successfully, it returns an integer representation of
the buffer or buffer member. O therwise, it returns a 0 and sets _error,
_error_type, and _error_text to indicate the error condition.

You must check _error explicitly after every call to tux_getbuf_int.

Example This example gets the buffer result_buf and returns an integer representation.

args_buf = tux_tpalloc("FML32", "", 0);
tux_setbuf_int(args_buf, ".FLD_LONG:0", 123);
tux_setbuf_int(args_buf, ".FLD_LONG:1", 456);
tux_tpcall "Add", args_buf, result_buf, TPNOFLAGS;

result = tux_getbuf_int(result_buf, ".FLD_LONG:2");
if (_error)

... /* result is invalid */

See Also tux_setbuf_int

Syntax Element D escription

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

mbrspec A buffer member specification.
Com m and Reference 6 -16 7

tux_getbuf_string
tux_getbuf_string
Em ulation Function

Description Gets a free buffer or buffer member and converts it to a string without converting
nonprintable characters.

Syntax string tux_getbuf_string (bufhnd, mbrspec)

Comments If tux_getbuf_string completes successfully, it returns a string representation
of the buffer or buffer member. O therwise, it returns an empty string and sets
_error, _error_type, and _error_text to indicate the error condition.

You must check _error explicitly after every call to tux_getbuf_string.

Example This example gets the buffer result_buf and returns a string representation.

args_buf = tux_tpalloc("FML32", "", 0);
tux_setbuf_int(args_buf, ".FLD_LONG:0", 123);
tux_setbuf_int(args_buf, ".FLD_LONG:1", 456);
tux_tpcall "Add", args_buf, result_buf, TPNOFLAGS;

{ string result_str; }
result_str = tux_getbuf_string(result_buf, ".FLD_LONG:2");
if (_error)

... /* result_str is invalid */

See Also tux_setbuf_string

tux_reallocbuf
Em ulation Function

Description Resizes a free buffer.

Syntax Element D escription

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

mbrspec A buffer member specification.
6 -1 68 VU Language Reference

tux_setbu f_ascii
Syntax int tux_reallocbuf (bufhnd, size)

Comments If tux_reallocbuf completes successfully, it returns a buffer handle. O therwise,
it returns a value of NULL_BUF and sets _error, _error_type, and
_error_text to indicate the error condition.

Example This example allocates the string-type buffer msgbuf, checks the length of a
message string, and then resizes msgbuf to the length of msglen.

msgbuf = tux_allocbuf_typed(BUFTYP_STRING, "", 0);

/* ... */

msglen = strlen(message) + 1;
if (tux_sizeofbuf(msgbuf) < msglen)

msgbuf = tux_reallocbuf(msgbuf, msglen);

See Also tux_allocbuf

tux_setbuf_ascii
Em ulation Function

Description Writes a string value into a buffer or buffer member.

Syntax int tux_setbuf_ascii (bufhnd, mbrspec, ascval)

Comments If tux_setbuf_ascii completes successfully, it returns a value of 1. O therwise
it returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

Syntax Element D escription

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

size The requested buffer size, in bytes.

Syntax Element D escription

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

mbrspec A buffer member specification.

ascval A string expression with nonprintable characters in
hexadecimal format or backslash format. (See How a VU Script
Represents Unprintable Data on page 3-34.)
Com m and Reference 6 -16 9

tux_setbu f_in t
Example This example allocates the buffer idata and then writes a string value to the buffer.

idata = tux_tpalloc("CARRAY", "", 16);
tux_setbuf_ascii(idata, "", "@S8‘b42fff48ba‘@R‘13e2228114‘E");

See Also tux_getbuf_ascii

tux_setbuf_int
Em ulation Function

Description Sets a free buffer or buffer member with a VU integer value.

Syntax int tux_setbuf_int (bufhnd, mbrspec, intval)

Comments If tux_setbuf_int completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

Example This example allocates the buffer data and then writes an integer value to the
buffer.

data = tux_tpalloc("FML", "", 0);
tux_setbuf_int(data, "XA_TYPE", 5);

See Also tux_getbuf_int

tux_setbuf_string
Em ulation Function

Description Sets a free buffer or buffer member with a VU string value, without converting
nonprintable characters.

Syntax Element D escription

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

mbrspec A buffer member specification.

ascval An integer expression.
6 -1 70 VU Language Reference

tux_sizeofbuf
Syntax int tux_setbuf_string (bufhnd, mbrspec, strval)

Comments If tux_setbuf_string completes successfully, it returns a value of 1.
O therwise, it returns a value of 0 and sets _error, _error_type, and
_error_text to indicate the error condition.

Example This example allocates the buffer tpqctl and then writes a string value to the
buffer.

tpqctl = tux_allocbuf(BUFTYP_TPQCTL);
tux_setbuf_string(tpqctl, "corrid", "req302");

See Also tux_getbuf_string

tux_sizeofbuf
Em ulation Function

Description Returns the size of a buffer.

Syntax int tux_sizeofbuf (bufhnd)

Comments If tux_sizeofbuf completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

Syntax Element D escription

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

mbrspec A buffer member specification.

strval A string expression. Do not convert nonprintable characters
into hexadecimal or backslash format. If you do, they are
loaded into bufhnd unmodified.

Syntax Element D escription

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.
Com m and Reference 6 -17 1

tux_tpabort
Example This example allocates the sting-type buffer msgbuf, checks the length of a message
string, and then resizes msgbuf if the size of msglen is greater than msgbuf.

msgbuf = tux_allocbuf_typed(BUFTYP_STRING, "", 0);

/* ... */

msglen = strlen(message) + 1;
if (tux_sizeofbuf(msgbuf) < msglen)

msgbuf = tux_reallocbuf(msgbuf, msglen);

See Also N one.

tux_tpabort
Send Em u lation Com m and

Description Aborts the current transaction.

Syntax int tux_tpabort [cmd_id] flags

Comments If tux_tpabort completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

The tux_tpabort command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example This example aborts a TU XEDO transaction in progress:

/* begin transaction, 180-sec timeout */
tux_tpbegin (180, TPNOFLAGS);

/* abort current transaction */
tux_tpabort ["tabo013"] TPNOFLAGS;

See Also tux_tpbegin

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

flags An integer expression whose value must be TPNOFLAGS.
The values of flags are defined in the TU XEDO header
file.
6 -1 72 VU Language Reference

tux_tpaca ll
tux_tpacall
 Send Em u lation Com m and

Description Sends a service request.

Syntax int tux_tpacall [cmd_id] svc, data, flags

Comments If tux_tpacall completes successfully, it returns a value of 1. O therwise it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

The tux_tpacall command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example This example allocates the buffer data, populates the buffer with transaction
information, and then sends a service request to the OPEN_ACCT service.

data = tux_tpalloc("FML", "", 0);
tux_setbuf_int(data, "XA_TYPE", 5);
tux_setbuf_int(data, "8194", 41162);
tux_setbuf_int(data, "8195", 0);
tux_setbuf_int(data, "BRANCH_ID", 1);
tux_setbuf_ascii(data, "ACCT_TYPE", "C");
tux_setbuf_ascii(data, "MID_INIT", "Q");
tux_setbuf_string(data, "40964", "F11");
tux_setbuf_string(data, "40966", "OPEN");
tux_setbuf_string(data, "40968", "OPEN_ACCT");
tux_setbuf_string(data, "PHONE", "919-870-8800");
tux_setbuf_string(data, "ADDRESS", "100 Happy Trail");
tux_setbuf_string(data, "SSN", "123-45-6789");
tux_setbuf_string(data, "LAST_NAME", "John");
tux_setbuf_string(data, "FIRST_NAME", "Customer");
tux_setbuf_string(data, "SAMOUNT", "1000");
tux_setbuf_ascii(data, "49170",
 "‘a071910800000000000091e8a072910800000000000091e8‘@s‘91080000000000009"
 "1e8a06f910800000000000091e8a06d910800000000000091e8a06c910800000000000"
 "091e8‘ h‘910800000000000091e8a0ca910800000000000091e8‘"
);
call_1 = tux_tpacall ["bankap002"] "OPEN_ACCT", data, (TPNOBLOCK |

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

svc A string expression that identifies the service.

data A string expression that must reference a buffer allocated by
tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOREPLY, TPNOTIME,
TPNOTRAN, or TPSIGRSTRT (ignored). The values of
flags are defined in the TU XEDO header file.
Com m and Reference 6 -17 3

tux_tpa lloc
TPSIGRSTRT);
call_1_fs_ts = _fs_ts;
tux_tpfree(data);

See Also tux_tpgetrply

tux_tpalloc
Em ulation Function

Description Allocates TU XEDO -typed buffers.

Syntax int tux_tpalloc (type, subtype, size)

Comments If tux_tpalloc completes successfully, it returns a buffer handle. O therwise, it
returns a value of NULL_BUF and sets _error, _error_type, and
_error_text to indicate the error condition.

The tux_tpalloc function is equivalent to the function tux_tpalloc, except
that it is an ATMI call.

Example This example allocates a buffer of 9 bytes that evaluates to STRING.

data = tux_tpalloc("STRING", "", 9);
tux_tpgetrply ["tget006"] call_6, data, TPNOFLAGS;

See Also tux_tpfree

Syntax Element D escription

type A string expression that evaluates to CARRAY, FML, FML32,
STRING, TPINIT, X_OCTET, VIEW, VIEW32, X_C_TYPE,
or X_COMMON.

subtype A string expression that identifies the user-defined structure
contained within the VIEW, VIEW32, X_C_TYPE, or
X_COMMON typed buffer. You must have defined the U N IX
environment variables VIEWFILES and VIEWDIR.
O therwise, subtype is an empty string.

size The requested buffer size, in bytes.
6 -1 74 VU Language Reference

tux_tpbeg in
tux_tpbegin
Em ulation Function

Description Begins a transaction.

Syntax int tux_tpbegin (timeout, flags)

Comments If tux_tpbegin completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

Example This example begins a TU XEDO transaction with a 60-second timeout.

tux_tpbegin(60, TPNOFLAGS);

See Also tux_tpabort tux_tpcommit

Syntax Element D escription

timeout The transaction timeout threshold, in seconds.

flags An integer expression whose value must be TPNOFLAGS.
The values of flags are defined in the TU XEDO header
file.
Com m and Reference 6 -17 5

tux_tpbroadcast

tux_tpbroadcast
Send Em u lation Com m and

Description Broadcasts notification by name.

Syntax int tux_tpbroadcast [cmd_id] lmid, usrname, cltname,
data, flags

Comments If tux_tpbroadcast completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

The tux_tpbroadcast command is affected by the think time, Log_level,
and Record_level VU environment variables.

Example This example allocated the buffer data, sets the string “Wake U p” in the buffer, and
then broadcasts the string to Jack on SERVER3.

data = tux_tpalloc("STRING", "", 0);
tux_setbuf_string(data, "", "Wake Up!");
tux_tpbroadcast ["tbro002"] "SERVER3", "Jack", "PCAE05", data,

TPNOFLAGS;
tux_tpfree(data);

See Also N one.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

lmid A string expression that evaluates to a logical computer ID.

usrname A string expression that selects the user name.

cltname A string expression that selects the target client set.

data Typed buffer data that must reference a buffer allocated by
tux_tpalloc()

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOTIME, or TPSIGRSTRT
(ignored). The values of flags are defined in the TU XEDO
header file.
6 -1 76 VU Language Reference

tux_tpca ll
tux_tpcall
Send Em u lation Com m and

Description Sends a service request and awaits its reply.

Syntax int tux_tpcall [cmd_id] svc, idata, odata, flags

Comments If tux_tpcall completes successfully, it returns a value of 1. O therwise, it returns
a value of 0 and sets _error, _error_type, and _error_text to indicate the
error condition.

The tux_tpcall command updates _tux_tpurcode.

The tux_tpcall command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example This example allocates the buffers idata and odata, and then sends a service
request to the "math::exp" service.

idata = tux_tpalloc("CARRAY", "", 16);
tux_setbuf_ascii(idata, "", "@S8‘b42fff48ba‘@R‘13e2228114‘E");
odata = tux_tpalloc("CARRAY", "", 8);
set Think_avg = 12;
tux_tpcall ["k1_cnx020"] "math::exp", idata, odata, (TPSIGRSTRT);
tux_tpfree(idata);
tux_tpfree(odata);

See Also N one.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

svc A string expression that identifies the service.

idata A buffer handle that must reference a buffer allocated by
tux_tpalloc().

odata A buffer handle that must reference a buffer allocated by
tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOCHANGE, TPNOTIME,
TPNOTRAN, or TPSIGRSTRT (ignored). The values of
flags are defined in the TU XEDO header file.
Com m and Reference 6 -17 7

tux_tpcancel
tux_tpcancel
Em ulation Function

Description Cancels a call descriptor for an outstanding reply.

Syntax int tux_tpcancel (cd)

Comments If tux_tpcancel completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

Example This example cancels the tux_tpacall represented by call_23.

call_23 = tux_tpacall "EDI-SENDJOB", jobdesc, TPNOFLAGS;

/* ... */

tux_tpcancel(call_23);

See Also tux_tpacall

tux_tpchkauth
Em ulation Function

Description Checks whether authentication is required to join an application.

Syntax int tux_tpchkauth ()

Comments If tux_tpchkauth completes successfully, it returns a valid authorization level.
O therwise, it returns a value of -1 and sets _error, _error_type, and
_error_text to indicate the error condition.

Example This example checks if authentication is required, and if so, prints a message
indicating the script requires authentication.

if (tux_tpchkauth() != TPNOAUTH)
print "Script requires authentication info!";

See Also N one.

Syntax Element D escription

cd The canceled call descriptor.
6 -1 78 VU Language Reference

tux_tpcom m it
tux_tpcommit
Send Em ulation Com m and

Description Commits the current transaction.

Syntax int tux_tpcommit [cmd_id] flags

Comments If tux_tpcommit completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

The tux_tpcommit command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example This example commits the current transaction.

/* tux_tpbegin ... */

tux_tpcommit ["tcom007"] TPNOFLAGS;

See Also tux_tpbegin

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

flags An integer expression whose value must be TPNOFLAGS.
The values of flags are defined in the TU XEDO header
file.
Com m and Reference 6 -17 9

tux_tpconnect
tux_tpconnect
Send Em u lation Com m and

Description Establishes a conversational service connection.

Syntax int tux_tpconnect [cmd_id] svc, data, flags

Comments If tux_tpconnect completes successfully, it returns a connection descriptor.
O therwise, it returns a value of -1 and sets _error, _error_type, and
_error_text to indicate the error condition.

The tux_tpconnect command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example This example establishes a conversational connection with the service AUDITC.

conn_1 = tux_tpconnect ["demo1.002"] "AUDITC", NULL_BUF, TPSENDONLY;

See Also tux_tpdiscon

tux_tpdequeue
Send Em u lation Com m and

Description Removes a message from a queue.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

svc A string expression that identifies the service.

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOTIME, TPNOTRAN,
TPRECVONLY, TPSENDONLY, or TPSIGRSTRT
(ignored). The values of flags are defined in the
TU XEDO header file.
6 -1 80 VU Language Reference

tux_tpdequeue
Syntax int tux_tpdequeue [cmd_id] qspace, qname, ctl, data,
flags

Comments If tux_tpdequeue completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

The tux_tpdequeue command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example This example removes the message represented by the buffer tpqctl from the
queue space TMQUEUE.

tpqctl = tux_allocbuf(BUFTYP_TPQCTL);
tux_setbuf_int(tpqctl, "flags", TPQCORRID | TPQFAILUREQ | TPQREPLYQ |

TPQGETBYCORRID | TPQMSGID);
tux_setbuf_string(tpqctl, "corrid", "req302");
odata = tux_tpalloc("STRING", "", 9);
tux_tpdequeue ["yang003"] "TMQUEUE", "APP_REPLY", tpqctl, odata,

TPNOFLAGS;
tux_freebuf(tpqctl);
tux_tpfree(odata);

See Also tux_tpenqueue

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

qspace A string expression that identifies the queue space.

qname A string expression that identifies the queue.

ctl Must reference a buffer of type BUFTYP_TPQCTL or
BUFTYP_NULL.

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOCHANGE, TPNOTIME,
TPNOTRAN, or TPSIGRSTRT (ignored). The values of
flags are defined in the TU XEDO header file.
Com m and Reference 6 -18 1

tux_tpd iscon
tux_tpdiscon
Send Em u lation Com m and

Description Takes down a conversational service connection.

Syntax int tux_tpdiscon [cmd_id] cd

Comments If tux_tpdiscon completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

The tux_tpdiscon command is affected by the VU environment variables think
time, Log_level, and Record_level.

Example This example takes down the service connection conn_1.

/* tux_tpconnect ... */

tux_tpdiscon ["demo1.002"] conn_1;

See Also tux_tpconnect

tux_tpenqueue
Send Em u lation Com m and

Description Queues a message.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

cd A call descriptor indicating the connection taken down. It
must be returned by tux_tpconnect().
6 -1 82 VU Language Reference

tux_tpenqueue
Syntax int tux_tpenqueue [cmd_id] qspace, qname, ctl, data,
flags

Comments If tux_tpenqueue completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

The tux_tpenqueue command is affected by the VU environment variables
think time, Log_level, and Record_level.

Example This example queues the message represented by tpqctl (queue control) to the
queue space TMQUEUE.

tpqctl = tux_allocbuf(BUFTYP_TPQCTL);
tux_setbuf_int(tpqctl, "flags", TPQCORRID | TPQFAILUREQ | TPQREPLYQ |

TPQMSGID);
tux_setbuf_string(tpqctl, "corrid", "req302");
tux_setbuf_string(tpqctl, "failurequeue", "APP_FAILURE");
tux_setbuf_string(tpqctl, "replyqueue", "APP_REPLY");
data = tux_tpalloc("STRING", "", 8);
tux_setbuf_string(data, "", "NC WAKE 302.82");
tux_tpenqueue ["yin002"] "TMQUEUE", "CalcSalesTax", tpqctl, data,

TPNOFLAGS;
tux_freebuf(tpqctl);
tux_tpfree(data);

See Also tux_tpdequeue

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

qspace A string expression that identifies the queue space.

qname A string expression that identifies the queue.

ctl Must reference a buffer of type BUFTYP_TPQCTL or
BUFTYP_NULL.

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOCHANGE, TPNOTIME,
TPNOTRAN, or TPSIGRSTRT (ignored). The values of
flags are defined in the TU XEDO header file.
Com m and Reference 6 -18 3

tux_tpfree
tux_tpfree
Em ulation Function

Description Frees a typed buffer.

Syntax int tux_tpfree (ptr)

 Comments If tux_freebuf completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

Example This example frees the buffer allocated as astring.

astring = tux_tpalloc("STRING", "", 0);

 /* ... */

tux_tpfree(astring);

See Also tux_tpalloc

tux_tpgetrply
Send Em u lation Com m and

Description Gets a reply from a previous request.

Syntax int tux_tpgetrply [cmd_id] cd, data, flags

Syntax Element D escription

ptr A buffer handle allocated with tux_tpalloc.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

cd A call descriptor returned by tux_tpacall().

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOCHANGE, TPNOTIME, or
TPSIGRSTRT (ignored). The values of flags are defined in
the TU XEDO header file.
6 -1 84 VU Language Reference

tux_tp in it

sible
n one
Comments If tux_tpgetrply completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

The tux_tpgetrply command updates _tux_tpurcode.

U nlike the other emulation commands, the order of the tux_tpgetrply
emulation commands in your VU script could differ from the TU XEDO
tpgetrply calls in your original client program. This is due to limitations of
TU XEDO workstation protocol decoding. Although the order of the commands are
different, they are scripted in a manner consistent with how tpgetrply is used by
the original client program based on information recorded during the capture.

In addition, a scripted tux_tpgetrply blocks waiting for specific asynchronous
request responses — for example, specific call descriptors — regardless of how
asynchronous responses were gathered by the original client program. It is pos
that reported response times for asynchronous calls are skewed when more tha
is outstanding.

The tux_tpgetrply command is affected by the VU environment variables
think time, Log_level, and Record_level.

Example This example gets the reply from a previous tux_tpacall represented by
call_6.

/* tux_tpacall ... */

data = tux_tpalloc("STRING", "", 9);
tux_tpgetrply ["tget006"] call_6, data, TPNOFLAGS;
start_time ["t15003"] call_6_fs_ts;
stop_time ["t15003"] _lr_ts;
tux_tpfree(data);

See Also tux_tpacall

tux_tpinit
Send Em u lation Com m and

Description Joins an application.

Syntax int tux_tpinit [cmd_id] tpinfo

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

tpinfo Must reference a buffer of type TPINIT allocated by
tux_tpalloc().
Com m and Reference 6 -18 5

tux_tpnotify
Comments In order for tux_tpinit to operate correctly, a TU XEDO-defined system
environment variable named WSN ADDR must be present. This variable is used by
the TU XEDO client library to determine which TU XEDO Workstation Listener
(WSL) to connect to.

The WSLH OST and WSLPO RT system environment variables are optional. If they
are defined, they will be used by tux_tpinit to generate a valid WSN ADDR. If
they are not defined, then tux_tpinit uses the value of WSN ADDR. If
WSN ADDR is not defined, then tux_tpinit fails, reporting a playback error
message indicating that none of the three variables were set.

If WSLH O ST and WSLPORT are set, the resulting WSN ADDR value overrides any
previous WSN ADDR value.

WSLH OST and WSLPORT can be set in the script, which is the default recorded
script action, or they may be set in a LoadTest schedule. If they are set in a script and
a schedule, the script values override the schedule values.

If tux_tpinit completes successfully, it returns a value of 1. O therwise it returns
a value of 0 and sets _error, _error_type, and _error_text to indicate the
error condition.

The tux_tpinit command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example This example connects to the TU XEDO Workstation Listener in the environment
variables WSLHOST and WSLPORT using the data set in the buffer tpinfo.

putenv("WSLHOST=hp715.nc.rational.com");
putenv("WSLPORT=36001");
tpinfo = tux_tpalloc("TPINIT", "", TPINITNEED(10));
tux_setbuf_string(tpinfo, "usrname", "dhinson");
tux_setbuf_string(tpinfo, "cltname", "rocinante");
tux_setbuf_int(tpinfo, "flags", TPNOFLAGS);
tux_setbuf_int(tpinfo, "datalen", 10);
tux_setbuf_ascii(tpinfo, "data", "GL‘0201‘AL‘0102‘NP");
tux_tpinit ["cx1001"] tpinfo;
tux_tpfree(tpinfo);

/* or */

tux_tpinit ["cx1001"] NULL_BUF;

See Also tux_tpterm

tux_tpnotify
Send Em u lation Com m and

Description Sends notification by client identifier.
6 -1 86 VU Language Reference

tux_tppost
Syntax int tux_tpnotify [cmd_id] clientid, data, flags

Comments If tux_tpnotify completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

The tux_tpnotify command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example This example sends the notification represented in the clientid_ typed-buffer.

clientid_ = tux_allocbuf(BUFTYP_CLIENTID);
tux_setbuf_ascii(clientid_, "",
"‘3383‘F&‘000000000000001c00000000‘");
set Think_avg = 1;
tux_tpnotify ["tnot006"] clientid_, NULL_BUF, TPNOFLAGS;
tux_freebuf(clientid_);

See Also N one.

tux_tppost
Send Em u lation Com m and

Description Posts an event.

Syntax int tux_tppost [cmd_id] eventname, data, flags

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

clientid Must reference a buffer of type BUFTYP_CLIENTID.

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOTIME, or TPSIGRSTRT
(ignored). The values of flags are defined in the TU XEDO
header file.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

eventname A string expression that identifies the name of the event.

data Must reference a buffer allocated by tux_tpalloc().
Com m and Reference 6 -18 7

tux_tprea lloc
Comments If tux_tppost completes successfully, it returns a value of 1. O therwise, it returns
a value of 0 and sets _error, _error_type, and _error_text to indicate the
error condition.

The tux_tppost command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example This example posts "Switch Power Failure" to an event previously subscribed to by
tux_tpsubscribe.

data = tux_tpalloc("STRING", "", 7);
tux_setbuf_string(data, "", "03-019");
tux_tppost ["swmon023"] "Switch_Power_Failure", data, TPNOFLAGS;
tux_tpfree(data);

See Also tux_tpsubscribe tux_tpunsubscribe

tux_tprealloc
Em ulation Function

Description Changes the size of a typed buffer.

Syntax int tux_tprealloc (ptr, size)

Comments If tux_tprealloc completes successfully, it returns a buffer handle. O therwise,
it returns a value of NULL_BUF and sets _error, _error_type, and
_error_text to indicate the error condition.

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOREPLY, TPNOTIME,
TPNOTRAN, or TPSIGRSTRT (ignored). The values of
flags are defined in the TU XEDO header file.

 (Continued)

Syntax Element D escription

Syntax Element D escription

ptr Must be a buffer handle allocated by tux_tpalloc().

size The requested buffer size, in bytes.
6 -1 88 VU Language Reference

tux_tprecv
Example This example allocates the string-type buffer idata, checks the length of a message
string, and then resizes idata to the length of msglen.

idata = tux_tpalloc("STRING", "", 0);

/* ... */

msglen = strlen(message) + 1;
if (tux_tptypes(idata, NULL_BUF, NULL_BUF) < msglen)

idata = tux_tprealloc(idata, msglen);

See Also tux_tpalloc

tux_tprecv
Send Em u lation Com m and

Description Receives a message in a conversational service connection.

Syntax int tux_tprecv [cmd_id] cd, data, flags, revent

Comments If tux_tprecv completes successfully, it returns a value of 1. O therwise, it returns
a value of 0 and sets _error, _error_type, and _error_text to indicate the
error condition.

The tux_tprecv command updates _tux_tpurcode.

The tux_tprecv command is affected by the think time, Log_level, and
Record_level VU environment variables.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

cd A call descriptor indicating the conversation in which to
receive data. It must be returned by tux_tpconnect().

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOCHANGE, TPNOTIME, or
TPSIGRSTRT (ignored). The values of flags are defined in
the TU XEDO header file.

revent Must reference a buffer of type BUFTYP_REVENT.
Com m and Reference 6 -18 9

tux_tpresum e
Example This example receives a message from the previously established conversational
service connection conn_1.

revent_ = tux_allocbuf(BUFTYP_REVENT);
data = tux_tpalloc("STRING", "", 47);
set Think_avg = 1;
tux_tprecv ["bankap004"] conn_1, data, (TPNOCHANGE), revent_;
tux_freebuf(revent_);
tux_tpfree(data);

See Also tux_tpconnect

tux_tpresume
Send Em u lation Com m and

Description Resumes a global transaction.

Syntax int tux_tpresume [cmd_id] tranid, flags

Comments If tux_tpresume completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

The tux_tpresume command is affected by the think time, Log_level, and
Record_level VU environment variables.

tux_tpresume resumes the currently suspended transaction. It must be preceded
by tux_tpbegin, 0 or more transacaction suboperations, and tux_tpsuspend.
The data argument to tux_tpresume must be created using tux_allocbuf,
and it must have been used in the call to tux_tpsuspend.

Example This example resumes a suspended transaction represented as tranid_40.

/* tux_tpsuspend ... */
set Think_avg = 3;
tux_tpresume tranid_40, TPNOFLAGS;
tux_freebuf(tranid_40);

See Also tux_tpsuspend tux_tpbegin

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

tranid Must reference a buffer of type BUFTYP_TRANID that was
suspended by tux_tpsuspend().

flags An integer expression whose value must be TPNOFLAGS.
The values of flags are defined in the TU XEDO header
file.
6 -1 90 VU Language Reference

tux_tpscm t
tux_tpscmt
Em ulation Function

Description Sets when tux_tpcommit() returns.

Syntax int tux_tpscmt (flags)

Comments If tux_tpscmt completes successfully, it returns the previous value of
TP__COMMIT_CONTROL. O therwise, it returns a value of -1 and sets _error,
_error_type, and _error_text to indicate the error condition.

Example This example sets the return instance for the following tux_tpcommit.

tux_tpscmt(TP_CMT_COMPLETE);

/* tux_tpcommit ... */

See Also tux_tpcommit

tux_tpsend
Send Em u lation Com m and

Description Sends a message in a conversational service connection.

Syntax int tux_tpsend [cmd_id] cd, data, flags, revent

Syntax Element D escription

flags An integer expression with one of the following values:
TP_CMT_LOGGED or TP_CMT_COMPLETE. The values of
flags are defined in the TU XEDO header file.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

cd A call descriptor indicating the conversation in which to send
data. It must be returned by tux_tpconnect().

data Must reference a buffer allocated by tux_tpalloc().

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOTIME, TPRECVONLY, or
TPSIGRSTRT (ignored). The values of flags are defined in
the TU XEDO header file.

revent Must reference a buffer of type BUFTYP_REVENT.
Com m and Reference 6 -19 1

tux_tpsprio
Comments If tux_tpsend completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

The tux_tpsend command updates _tux_tpurcode.

The tux_tpsend command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example This example sends message to the previously established conversational service
connection conn_1.

/* Must be preceded by tux_tpconnect to start the conversation.*/
revent_ = tux_allocbuf(BUFTYP_REVENT);
data = tux_tpalloc("STRING", "", 2);
tux_setbuf_string(data, "", "t");
set Think_avg = 5043;
tux_tpsend ["bankap003"] conn_1, data, (TPRECVONLY), revent_;
tux_freebuf(revent_);
tux_tpfree(data);
/* Part of conversation between client and server in Bankapp appli-
cation. Send a message during conversation. */
tux_tpsend ["tsen.003"] conn_1, data_, (TPRECVONLY), revent_;
tux_freebuf(revent_);
tux_tpfree(data);

See Also tux_tpconnect

tux_tpsprio
Em ulation Function

Description Sets the service request priority.

Syntax int tux_tpsprio (prio, flags)

Comments If tux_tpsprio completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

Example This example sets the service request priority for the following tux_tpcall.

tux_tpsprio(99, TPABSOLUTE);
/* tux_tpcall ... */

Syntax Element D escription

prio An integer expression that increments or decrements the
service request priority.

flags An integer expression with one of the following values:
TPABSOLUTE or TPNOFLAGS. The values of flags are
defined in the TU XEDO header file.
6 -1 92 VU Language Reference

tux_tpsubscribe
See Also tux_tpacall tux_tpcall

tux_tpsubscribe
Send Em u lation Com m and

Description Subscribes to an event.

Syntax int tux_tpsubscribe [cmd_id] eventexpr, filter, ctl, flags

Comments If tux_tpsubscribe completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

The tux_tpsubscribe command is affected by the think time, Log_level,
and Record_level VU environment variables.

Example This example subscribes to the event "Switch_Power_Failure".

tpevctl_ = tux_allocbuf(BUFTYP_TPEVCTL);
tux_setbuf_int(tpevctl_, "flags", TPEVSERVICE);
tux_setbuf_string(tpevctl_, "name1", "Panic");
subs_1 = tux_tpsubscribe ["tsub001"] "Switch_Power_Failure", "",

tpevctl_, TPNOFLAGS;
tux_freebuf(tpevctl_);

See Also tux_tpunsubscribe

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

eventexpr A string expression that identifies the event the caller wants to
subscribe to.

filter A string expression that contains the Boolean file rule
associated with eventexpr.

ctl Must reference a buffer of type BUFTYP_TPEVCTL or
BUFTYP_NULL.

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOTIME, or TPSIGRSTRT
(ignored). The values of flags are defined in the TU XEDO
header file.
Com m and Reference 6 -19 3

tux_tpsuspend
tux_tpsuspend
Send Em u lation Com m and

Description Suspends a global transaction.

Syntax int tux_tpsuspend [cmd_id] tranid, flags

Comments If tux_tpsuspend completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

The tux_tpsuspend command is affected by the think time, Log_level, and
Record_level VU environment variables.

tux_tpsuspend suspends the current transaction. It must be preceded by a call to
tux_tpbegin, which began the transaction.

Example This example suspends the previously established transaction tranid_40.

tranid_40 = tux_allocbuf(BUFTYP_TPTRANID);
set Think_avg = 11;
tux_tpsuspend tranid_40, TPNOFLAGS;

/* tux_tpresume ... */

See Also tux_tpbegin tux_tpresume

tux_tpterm
Send Em u lation Com m and

Description Leaves an application.

Syntax int tux_tpterm [cmd_id]

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

tranid Must reference a buffer of type BUFTYP_TRANID.

flags An integer expression whose value must be TPNOFLAGS.
The values of flags are defined in the TU XEDO header
file.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].
6 -1 94 VU Language Reference

tux_tptypes
Comments If tux_tpterm completes successfully, it returns a value of 1. O therwise, it returns
a value of 0 and sets _error, _error_type, and _error_text to indicate the
error condition.

The tux_tpterm command is affected by the think time, Log_level, and
Record_level VU environment variables.

Example This example exits the application represented by command ID tter002.

/* tux_tpinit ... */

tux_tpterm ["tter002"];}

See Also tux_tpinit

tux_tptypes
Em ulation Function

Description Provides information about a typed buffer.

Syntax int tux_tptypes (ptr, type, subtype)

Comments If tux_tptypes completes successfully, it returns the buffer size. O therwise, it
returns a value of -1, and sets _error, _error_type, and _error_text to
indicate the error condition.

Example This example gets information about the typed buffer odata and checks if is a
string-typed buffer.

/* tpcall ... */

type = tux_allocbuf(BUFTYP_TYPE);
tux_tptypes(odata, type, NULL_BUF);
{ string type_str; }
type_str = tux_getbuf_string(type, "");
if (type_str != "FML")

print "Invalid odata buffer type!";

See Also N one.

Syntax Element D escription

ptr A buffer allocated with tux_tpalloc.

type Must reference a buffer of type BUFTYP_TYPE.

subtype Must reference a buffer of type BUFTYP_SUBTYPE.
Com m and Reference 6 -19 5

tux_tpunsubscribe
tux_tpunsubscribe
Send Em u lation Com m and

Description U nsubscribes to an event.

Syntax int tux_tpunsubscribe [cmd_id] subscription, flags

Comments If tux_tpunsubscribe completes successfully, it returns a value of 1.
O therwise, it returns a value of 0 and sets _error, _error_type, and
_error_text to indicate the error condition.

The tux_tpunsubscribe command is affected by the think time, Log_level,
and Record_level VU environment variables.

Example This examples unsubscribes to previously subscribed to event services.

/* tux_tpsubscribe ... */

tux_tpunsubscribe ["tuns001"] -1, TPNOFLAGS;

See Also tux_tpsubscribe

tux_typeofbuf
Em ulation Function

Description Returns the type of a buffer.

Syntax Element D escription

cmd_id The optional command ID available in all emulation
commands. cmd_id has the form [string_exp].

subscription An event subscription handle returned by
tux_tpsubscribe.

flags An integer expression with one of the following values:
TPNOFLAGS, TPNOBLOCK, TPNOTIME, or TPSIGRSTRT
(ignored). The values of flags are defined in the TU XEDO
header file.
6 -1 96 VU Language Reference

tux_userlog
Syntax int tux_typeofbuf (bufhnd)

Comments If tux_typeofbuf completes successfully, it returns a valid buffer type.
O therwise, it returns a value of -1 and sets _error, _error_type, and
_error_text to indicate the error condition.

Example This example check if the odata buffer is of type BUFTYP_FML.

/* tpcall ... */

if (tux_typeofbuf(odata) != BUFTYP_FML)
print "Invalid odata buffer type!";

See Also N one.

tux_userlog
Em ulation Function

Description Writes a message to the TU XEDO central event log.

int tux_userlog (message)

Comments If tux_userlog completes successfully, it returns a value of 1. O therwise, it
returns a value of 0 and sets _error, _error_type, and _error_text to
indicate the error condition.

Example This example writes the User...completed message to the TU XEDO central
event log.

tux_userlog("User " + itoa(_uid) + " completed run.");

See Also N one.

Syntax Element D escription

bufhnd A buffer allocated with tux_allocbuf,
tux_allocbuf_typed, or tux_tpalloc.

Syntax Element D escription

message The string you want to write.
Com m and Reference 6 -19 7

ungetc

f it

ith
ungetc
Library Rou tine

Description Provides unformatted character input capability.

Syntax int ungetc (ret_char, file_des)

Comments The ungetc routine replaces the character ret_char in the input buffer
associated with the named file, thus providing an “undo” mechanism for fgetc.
This character is returned by the next fgetc (or other file input) call. The file
contents remain unchanged.

The ungetc routine returns EOF (as defined in the standard VU header file) i
cannot return the character — for example, if:

ã ret_char equals EOF

ã N o input has yet been read from the named file

ã More than one character of push back is attempted (via successive calls to
ungetc with no intervening file input routine call)

Example In this example, if the file with the descriptor infile_des contains the characters
ABZ14, then the characters ABZ are written to the file whose descriptor is
outfile_des, and the character 1 is returned to the input buffer associated w
infile_des.

#include <VU.h>
while ((c = fgetc(infile_des)) != EOF)
if (c >= ’A’ && c <= ’Z’)

fputc(c, outfile_des);
else
{

ungetc(c, infile_des);
break;

}

See Also fgetc

Syntax Element D escription

ret_char An integer expression (interpreted as a character) that
specifies the character to be returned to the input buffer.

file_des The integer file descriptor, obtained from open, of the file
associated with the input buffer.
6 -1 98 VU Language Reference

un iform
uniform
Library Rou tine

Description Returns a random integer uniformly distributed in the specified range.

Syntax int uniform (min_value, max_value)

Comments The uniform routine returns a random integer uniformly distributed in the
specified range.

The values of min_value and max_value can be negative as well as positive.
Although unconventional, min_value can exceed max_value. H owever, the
absolute value of the difference min_value - max_value must be less than
2147483647.

The rand, srand, uniform, and negexp routines enable the VU language to
generate random numbers. The behavior of these random number routines is
affected by the way you set the Seed and Seed Flags options in a LoadTest schedule.
By default, the Seed generates the same sequence of random numbers but sets
unique seeds for each virtual user, so that each virtual user has a different random
number sequence. For more information about setting the seed and seed flags in a
schedule, see the Using Rational LoadTest manual.

The srand routine uses the argument seed as a seed for a new sequence of random
numbers returned by subsequent calls to the function uniform. If srand is then
called with the same seed value, the sequence of random numbers is repeated. If
uniform is called before any calls are made to srand, the same sequence is
generated as when srand is first called with a seed value of 1.

Example In this example, srand seeds the random number generator with the current time
and then prints the first 10 random numbers between -10 and 10.

srand(time());
for (i = 0; i < 10; i++)
printf("random number (%d): %d\n", i, uniform(-10, 10));

See Also rand negexp srand

Syntax Element D escription

min_value An integer expression whose value generally specifies the
minimum random integer to be returned.

max_value An integer expression whose value generally specifies the
maximum random integer to be returned.
Com m and Reference 6 -19 9

un link
unlink
Library Rou tine

Description Removes files.

Syntax int unlink (filename)

Comments The unlink routine removes (unlinks) the directory entry named by filename.
When all links to a file have been removed, space occupied by the file is freed and the
file ceases to exist; however, this action is postponed if one or more processes still
have the file opened until all references to the file have been closed. unlink returns
0 upon successful completion; otherwise, a VU runtime error is generated.

The tempnam and unlink routines are often used together because you should
remove temporary files as soon as their usefulness has expired.

Example If the Windows N T or U N IX environment variable TMPDIR is undefined, and
P_tmpdir is defined in < stdio.h> to have the value /usr/tmp, tempnam
returns a temporary file name in the /usr/tmp directory, such as /usr/tmp/
CAAa02179. After the file has been opened, processed, and closed, unlink
removes it.

string temp_filename;

temp_filename = tempnam("", "");
tmpfile_des = open(temp_filename, "w");

/* do file processing on the temporary file */

close(tmpfile_des);
unlink(temp_filename);

See Also tempnam

user_exit
 Library Routine

Description Exits an entire virtual user emulation from within any point in a virtual user script.

Syntax Element D escription

filename A string expression specifying the name of the file to be
removed.
6 -2 00 VU Language Reference

user_exit

inates

t
Syntax int user_exit (status, msg_str)

Comments The user_exit routine causes the current script to exit immediately followed by
one of three user termination sequences (see the following example). Although
user_exit never returns, its return value is considered an integer type for
syntactical purposes. If msg_str is not of zero length, it is written (before exiting
the script) to standard error, preceded by the following explanatory line of text:

User exited from script script_name with status=N and message:

script_name is replaced by the appropriate script name (corresponding to the
read-only variable _script), and N is replaced by the value of status. After
termination of the current script, user termination is controlled according to the
value of status.

ã If status is greater than 0, no escape or logout sequences are executed, and the
user exit status reported to LoadTest is N ormal.

ã If status is equal to 0, any logout sequences are executed, and the user exit
status reported to LoadTest is N ormal.

ã If status is less than 0, any escape and logout sequences if any are executed,
and the user exit status reported to LoadTest is Abnormal.

Example In this example, assume that the script’s name is database4. If the value of
string1 is error, the script is exited; the error message is written to standard
error; all defined escape or logout sequences are executed, and the user term
the emulation session with an Abnormal exit status:

if (string1 = "ERROR")
 user_exit(-1, "Fatal Error - Aborting");

See Also script_exit

Syntax Element D escription

status An integer expression specifying the target virtual user’s exi
status.

msg_str A string expression specifying an optional message to be
written to the standard error file.
Com m and Reference 6 -20 1

usergroup_m em ber
usergroup_member
Library Rou tine

Description Returns the position of a virtual user within a user group.

Syntax int usergroup_member(group_name)

Comments The usergroup_member routine returns the position of a virtual user within a
user group. The first position is 1.

Example In this example, five user groups are defined. The example prints out the position of
each virtual user in the group.

#define MAX_GROUPS 5
{
 string groups[MAX_GROUPS] = {"Accountants", "Engineers",
 "DB Entry","Administration", "Operations"};
 int index, size;

 for (i = 0; i < MAX_GROUPS; i++)
 {
 index = usergroup_member(groups[i]);
 if (index)
 {
 size = usergroup_size(groups[i]);
 printf ("I am user number: %d in group: %s which has %d
 users", index, groups[i], size);
 break;
 }
 }
}

See Also usergroup_size

usergroup_size
Library Rou tine

Description Returns the number of members in a user group.

Syntax int usergroup_size(group_name)

Comments The usergroup_size routine returns the number of members in a user group.

Syntax Element D escription

group_name A string expression whose value is the name of the user group.

Syntax Element D escription

group_name A string expression whose value is the name of the user group.
6 -2 02 VU Language Reference

wait

r
t,
Example In this example, five user groups are defined. The example prints out the number of
members in each group.

#define MAX_GROUPS 5
{
 string groups[MAX_GROUPS] = {"Accountants", "Engineers",
 "DB Entry","Administration", "Operations"};
 int index, size;

 for (i = 0; i < MAX_GROUPS; i++)
 {
 index = usergroup_member(groups[i]);
 if (index)
 {
 size = usergroup_size(groups[i]);
 printf ("I am user number: %d in group: %s which has %d
 users", index, groups[i], size);,
index, groups[i], size);
 break;
 }
 }
}

See Also usergroup_member

wait
Library Rou tine

Description Blocks a virtual user from further execution until a user-defined global event occurs.

Syntax int wait (&sv, min [, max, adj, tmout, &retval])

Syntax Element D escription

sv A shared variable. wait considers an event to have occurred if
the value of sv is greater than or equal to min and less than or
equal to max. If max is not specified, max is assumed to equal
min.

min An integer expression that specifies the minimum value that
the shared variable can have.

max An integer expression. If omitted, it is assumed to equal min.

adj An integer expression. The value of adj is added to the value
of sv, if and when the event occurs. The adjustment is
performed with the “unblocking” of the associated virtual use
as a single atomic event. If you do not require an adjustmen
but do need a placeholder argument because additional
arguments need to be specified, set adj to 0.
Com m and Reference 6 -20 3

wait

fy

 virtual

 is
Comments The wait routine is an efficient method of blocking a virtual user until a user-
defined global event occurs. wait returns 1 when the event has occurred; it returns
0 if the event has not yet occurred when the time specified by tmout has expired.

If virtual users are blocked on an event utilizing the same shared variable, and if the
value of that shared variable is set to TRUE simultaneously, VU guarantees that the
users are unblocked in the same order in which they were blocked. Although this
alone does not ensure a deterministic multi-user timing order in which VU

statements following a wait is executed,1 the additional proper use of the wait
arguments min, max, and adj allows control over the order in which multiuser
operations occur.

If a shared variable’s value is modified (by a VU assignment statement,
autoincrement [sv++] operation, and so on), any subsequent attempt to modi
this value — other than through wait — blocks execution until all virtual users
already blocked on an event defined by sv have had an opportunity to unblock. This
ensures that events cannot appear and then quickly disappear before a blocked
user is unblocked. For example, if two virtual users were blocked waiting for sv to
equal or exceed N, and if another virtual user assigned the value N to sv, then VU
guarantees both users the opportunity to unblock before any other virtual user
allowed to modify sv.

tmout An integer expression that controls the number of milliseconds
wait waits for the event to occur. By default, wait does not
return until the event occurs. If tmout equals zero, wait is
nonblocking, and returns the value zero immediately if the
event is false. If tmout is greater than zero, wait enforces a
time out of tmout milliseconds, at which time if the event has
not occurred, wait returns zero. If no time-out is desired, but
tmout is required as a placeholder, set tmout to a negative
value.

retval A non-shared integer variable. If retval is specified, wait
sets retval to the value of sv as follows: if wait returns 1,
retval is set to the value of sv before the optional
adjustment; if wait returns 0, retval is set to the value of
sv when the timeout occurs.

 (Continued)

Syntax Element D escription

1. UNIX or Windows NT determines the order of the scheduling algorithms. For example, if two
virtual users are unblocked from a wait in a given order, the user unblocked last may be allowed
to execute its next VU statement before the user who unblocked first.
6 -2 04 VU Language Reference

wait
Offering the opportunity for all virtual users to unblock does not guarantee that all
users actually unblock, because if wait had been called with a nonzero value of adj
by one or more of the blocked users, the shared variable value would change during
the unblocking script. In the previous example, if the first user to unblock had called
wait with a negative adj value, the event waited on by the second user would no
longer be true after the first user unblocked. With proper choice of adj values, you
can control the order of events.

Example This example blocks until the value of the shared variable ev equals 2, 3, or 4, and
returns 1:

wait(&ev, 2, 4);

This example blocks until the value of the shared variable ev equals 0, and before
returning the integer value 1, adjusts the value of ev to 1 (by adding 1 to its value
of 0):

wait(&ev, 0, 0, 1);

This example blocks until the value of the shared variable ev is 1 (returning the
integer 1), or until 10 seconds have elapsed (returning the integer 0):

wait(&ev, 1, 1, 0, 10000);

This example blocks until the value of the shared variable ev is 2, 3, 4, or 5, and
before returning the integer value 1, assigns the value (2, 3, 4, or 5) to ret, and
subtracts 10 from ev:

wait(&ev, 2, 5, -10, -1, &ret);

This example allows only one user to access a critical section of code. The wait
routine blocks until inuse equals 0 (the initial value for all shared variables), and
upon obtaining access, uses an adj value of 1 to lock out all other virtual users.
U pon completion of the critical section, inuse is reset to zero to allow access to
other virtual users (who are executing identical code segments). Recall that if virtual
users are blocked concurrently, access is granted on a first-come, first-served basis.

shared inuse;
wait(&inuse, 0, 0, 1);
/* critical section of code */
inuse = 0;

Assume that an application is licensed for five users. This example sets the variable
inuse so that no more than five people can log on at one time. As a user logs on,
the value of inuse is decremented:

shared inuse;
wait(&inuse, 0, 4, 1);
/* critical section of code */
--inuse
Com m and Reference 6 -20 5

wait
Suppose that for stress testing purposes, all virtual users must submit a certain
transaction sequence at once. In this example, each virtual user increments nready
and proceeds when all virtual users are ready (_nusers contains the number of
virtual users in the emulation session).

shared nready;
nready++;
wait(&nready, _nusers, _nusers);
/* Synchronized activity takes place here */

This example resynchronizes so that the same condition can be tested repeatedly:

shared ready_cnt, control;
for (attempts = 0; attempts < 100; attempts++) {
 ready_cnt++;
 if (_uid == 1) {
 wait(&ready_cnt, _nusers, _nusers, -(_nusers));
 control = 2;
 }
 else
 wait(&control, _uid, _uid, 1);
 /* Synchronized activity takes place here */
}

Suppose that all virtual users are required to take turns at executing a certain
transaction in round-robin fashion, with no specific execution order. This example
successively grants access to the critical section of code to virtual users 1 through n
in ascending order of user ID (_uid). After the last virtual user has taken his turn,
he resets turn to 0, allowing the next iteration to begin anew with user 1:

shared turn;
for (attempts = 1; attempts < 100; attempts++) {
 wait(&turn, _uid-1, _uid-1);
 /* critical section of code */
 if (_uid == _nusers)
 turn = 0;
 else
 turn++;
}

In the following example, you need to execute code in a specific order, but it is
unrelated to ascending or descending order of user IDs. Ten virtual users are to
perform a certain transaction repeatedly in the following arbitrary order: 5, 1, 2, 6, 3,
10, 4, 7, 9, 8. Stated in a different way, user 1 is second, user 2 is third, user 3 is fifth,
user 4 is seventh, ... and user 10 is sixth.
6 -2 06 VU Language Reference

while
The example successively grants access to the critical section of code to virtual users
5, 1, 2, 6, 3, 10, 4, 7, 9, and 8 successively. After the last user (user 8) has taken his
turn, he resets turn to 0, allowing the next iteration to begin anew with the first
virtual user (user 5).

shared turn;
int exec_order[10] = {2,3,5,7,1,4,8,10,9,6};
myturn = exec_order[_uid - 1];
lastturn = limitof(exec_order) + 1;

for (attempts = 0; attempts < 100; attempts++) {
 wait(&turn, myturn - 1, myturn - 1);

 /* Critical section of code */
 if (myturn == lastturn)
 turn = 0;
 else
 turn++;
}

See Also sync_point

while
Flow Con trol Sta tem ent

Description Repeatedly executes a VU statement.

Syntax while (exp1)
statement1;

Comments The execution of the while loop occurs in the following steps:

1 . exp1 is evaluated.

2 . If the value of exp1 is not 0, statement1 is executed. If the value of exp1 is 0,
execution of the while loop ends.

3 . If the while loop execution has not ended, steps 1 and 2 are repeated.

Syntax Element D escription

exp1 The integer expression to evaluate.

statement1 A VU language statement or, if enclosed in braces, multiple
VU language statements.
Com m and Reference 6 -20 7

while
Example In this example, the statements within the while loop execute until the while
condition is false.

#include <VU.h>
while ((c = fgetc(infile_des)) != EOF)
if (c >= ‘A’ && c <= ‘Z’)

fputc(c, outfile_des);
else
 {

ungetc(c, infile_des);
break;

}

See Also for do-while
6 -2 08 VU Language Reference

ã ã ã Part I

Appendixes

outs,
ã ã ã A P P E N D I X A

Jolt-Specific VU Functions
This chapter provides a general introduction to the Jolt protocol. It includes the
following topics:

ã Jolt overview

ã PerformanceStudio/Jolt function overview

ã PerformanceStudio/Jolt function reference

Jolt Overview

The following sections describe how PerformanceStudio supports the Jolt protocol.

BEA Jolt is a product that extends the BEA TU XEDO middleware framework to
provide pure Java-based clients access to TU XEDO application services. This
enhanced functionality is provided by a combination of a new set of Jolt classes on
the client and some new Jolt system processes on the server.

Jolt clients (pure Java applications or applets) communicate with the Jolt system
processes via the Jolt protocol. PerformanceStudio emulates Jolt client activity by
reproducing the recorded native Jolt protocol messages originating from the client,
effectively becoming a Jolt client from the Jolt server’s perspective.

Jolt support is implemented with sock_send and sock_nrecv emulation
commands. Therefore, it uses the same set of VU environment variables, time
and so on, that the socket protocols use. Jolt, in effect, sits on top of socket.
A-1

Jolt-Specif ic VU Functions
PerformanceStudio models seven message types within the Jolt protocol:

The Data Transfer message is the primary means of exchanging application data
between the Jolt client and the Jolt server, hence it is called an application service
message. The other messages, called session control messages, establish and
maintain Jolt sessions. PerformanceStudio provides emulation functions that let you
construct request messages and extract information from response messages of these
types.

PerformanceStudio/Jolt Function Overview

PerformanceStudio provides a number of emulation functions that, with the
sock_send and sock_recv emulation commands, can create virtual user scripts
that communicate directly with Jolt application services using the native Jolt
protocol.

The following sections describe the main classes of Jolt emulation functions.

Request Construction Functions
The request construction function class contains only one function,
jolt_request(). This function builds a complete Jolt request that can then be
sent to a Jolt server via sock_send. It requires the assistance of a Message
Construction function to supply the body of the request.

Jolt Message Type Usage

 Authenticate/Challenge session management

 Authenticate/Ticket session management

 Check Authorization Level session management

 Close Connection session management

 Data Transfer application service

 Establish Connection session management

 Reconnect session management
A-2

Perform anceStudio/Jolt Function O verview
Message Construction Functions
Message construction functions build the body of a Jolt request as required by
jolt_request(). Each Jolt message type has a message construction function.
Some of the functions require message parameters, others do not. Message
construction functions contain two special subclasses:

ã Attribute construction functions, which build attribute lists used by Application
Service functions.

ã Parameter construction functions, which build parameter lists that may
accompany certain attributes.

Response Query Functions
The two primary response query functions are jolt_response_header() and
jolt_response_body(). These functions interface with the sock_recv
emulation command to retrieve response messages from the Jolt servers. A special
subclass of response query functions extracts information from the received Jolt
header.

Response Header Query Functions
Response H eader Query functions extract specific Jolt message header variables
from a Jolt response.

 Message Query Functions
These functions, which complement the message construction functions, extract
specific information from the body of Jolt responses. The two special subclasses of
message query functions are:

ã Attribute query functions, which extract specific attributes from a Jolt response.

ã Parameter query functions, which extract specific parameters from an attribute.

In addition to the function classes listed above, the Jolt emulation functions are
further classified into two functional areas, Jolt Session Control functions and Jolt
Application Service functions. In general, for automatically generated virtual user
scripts, you should be concerned only with Jolt Application Service functions. Jolt
Session Control functions set up the environment in which the Application Service
functions operate.
A-3

Jolt-Specif ic VU Functions
Session Control Functions
PerformanceStudio provides seven categories of session control functions. These
establish and maintain working sessions between PerformanceStudio and Jolt Server
H andlers (JSH s) during script playback. The following table lists each category and
its corresponding VU function prefix:

PerformanceStudio uses a number of session control functions to manage Jolt
sessions. H owever since proper use of these functions is critical to the correct Jolt
script playback, do not modify any PerformanceStudio-scripted session control
function calls. Improper use of session control functions may result in fatal Jolt
server failures.

Application Service Functions
Once a session is established, PerformanceStudio uses application service functions
to communicate application data with the Jolt services. There are five categories of
Application Service functions:

Category VU Function Prefix

 Authenticate/Challenge jolt_challenge

 Check Authorization Level jolt_checkauth

 Close Connection jolt_close

 Establish Connection jolt_estcon

 Reconnect jolt_reconnect

 Authenticate/Ticket jolt_ticket

 H eader Information jolt_header

Category VU Function Prefix

Data Transfer jolt_dataxfer

Attribute Construction jolt_setatt

Attribute Query jolt_getatt

Parameter Construction jolt_setpar

Parameter Query jolt_getpar
A-4

Perform anceStudio/Jolt Function O verview
The Data Transfer messages are the primary means of communicating with the Jolt
server. A Data Transfer request message encapsulates all of the data that a specific Jolt
service requires to execute. Likewise, a Data Transfer response message contains all
of the result data that a Jolt service produces. The Data Transfer functions manage
both message types.

A Data Transfer message may contain a list of name-value data components called
attributes. In general, attributes have predefined meanings and supply information
required by the Jolt system. Each attribute has a specific data type and a
corresponding value. The attribute construction functions build attribute lists when
constructing a request. The attribute query functions locate and extract specific
attributes from messages.

One attribute, the data attribute, may also contain a list of name-value data
components called parameters. U nlike attributes, parameters are user-defined and
encapsulate data required by the Jolt services themselves. Like their attribute
equivalents, the Parameter Construction functions build parameter lists for request
construction, and the attribute query functions extract specific parameters from
messages.

For details about the functions in each Application Service category, see
PerformanceStudio/Jolt Function Reference on page A-8.

Request Construction
Building a Jolt request involves associating a number of construction functions
together to create the correct raw octet sequence of the request message. The octet
sequence is then passed to the sock_send emulation command, which, in turn,
sends it to the Jolt server.

Associating Construction Functions
Construction functions are associated by passing the result of a construction
producer function as an input parameter to a construction consumer function. Each
construction consumer capable of associating a construction producer has an
association parameter of a specific construction type. Only a construction producer
function of the same construction type should be associated with a given association
parameter construction type. The three construction types are Message, Attribute
List, and Parameter List. The construction functions related to each type are
described below.
A-5

Jolt-Specif ic VU Functions
The following table lists the construction consumer functions:

The following table lists the construction producer functions:

Building Requests
The following steps show how to build a Jolt request:

1 . Construct a message by calling one of the message construction functions. Each
Jolt message type has its own construction function and may require one or
more parameters. If you are constructing a data transfer request you may also
need to call and associate the results of one or more attribute or parameter
construction functions.

string msg;
..msg = jolt_dataxfer(sessionid, JOLT_CALL_RQST, attlst));
/* see 2.3.2.1. example for attlst construction */

2 . Construct a Jolt request by associating the result of a message construction
function with the request construction function jolt_request().

string req;
...
req = jolt_request(0, sessionid, handlerid, 1, msg);

Construction Consumer
Function

Association Parameter Construction Type

jolt_request() message Message

jolt_dataxfer() attribute_list Attribute List

jolt_setatt_data() parameter_list Parameter List

Construction Type Construction Producer Function

Message jolt_challenge()
jolt_checkauth()
jolt_close()
jolt_dataxfer()
jolt_estcon()
jolt_reconnect()
jolt_ticket

 Attribute List See the Attribute List Construction functions.

 Parameter List See the Parameter List Construction
functions.
A-6

Perform anceStudio/Jolt Function O verview
3 . Pass the result of jolt_request() to the sock_send emulation function.

sock_send ["request1"] req;

You can combine these steps into one statement as follows:

sock_send
jolt_request(0, sessionid, handlerid, 1,

jolt_dataxfer(sessionid, JOLT_CALL_RQST,
jolt_setatt_name("TRANSFER") +
jolt_setatt_data(
jolt_setpar_long(1, 309270) +
jolt_setpar_long(2, 202463) +
jolt_setpar_double("9500.00"))));

Building Attribute Lists and Parameter Lists
Attribute lists and parameter lists are built by combining the results of individual
Attribute Construction and Parameter Construction functions with the VU string
concatenation operator (+). For example:

string attlst;
string parlst;
...
/* create parameter list with two longs and a double */
parlst = jolt_setpar_long(1, 309270) +/* from account */

jolt_setpar_long(2, 202463) +/* to account */
jolt_setpar_double("9500.00");/* transfer amount */

/* create attribute list with the NAME and DATA attributes set */
attlst = jolt_setatt_name("TRANSFER") +/* TRANSFER service */

jolt_setatt_data(parlst);/* parameter list */

N ote that attributes can be placed within an attribute list in any order.

Likewise, the order of parameters within a list is not significant.

Response Query
Once a Jolt request has been successfully constructed and sent to the Jolt server,
receiving and extracting information from the Jolt server response requires the use
of the response query functions.

These functions operate in conjunction with the sock_nrecv emulation
command to access the response data. Receiving the complete Jolt response is a two-
stage process. First the Jolt header must be received using a sock_nrecv/
jolt_response_header() combination statement. For example:

sock_nrecv ["rsphdr1"] jolt_response_header();
A-7

Jolt-Specif ic VU Functions
Once this is successfully executed, the contents of the Jolt header may be accessed
using the appropriate query functions. The second step is to receive the body of the
Jolt response. This is done using a sock_nrecv/jolt_response_body()
combination statement. For example:

sock_nrecv ["rspbod1"] jolt_response_body();

Once this is successfully executed, the contents of the response message, including
attributes and parameters, may be accessed using the message query functions.

PerformanceStudio/Jolt Function Reference

You should not modify PerformanceStudio-scripted Session Control function calls.
Therefore, only the Application Service functions of each function class are
described below.

The format is:

< functional area and category (when applicable)>

< VU function prototype>

< function description>

Request Construction Functions
string jolt_request (int flags, int sessionid, int handlerid, int msgid,
string message)

jolt_request() is the top-level Jolt request construction function. The result is
an asciified string containing a complete Jolt request that may be passed to the
sock_send emulation command.

flag contains protocol mode information (usually 0).

sessionid is the JSH -assigned identifier of the current Jolt session. handlerid is
the JSL-assigned handler identifier for the current session.

msgid is the incrementing per-session message sequence number of the current
request.

message is the association parameter for the Message construction.

Message Construction Functions
Application Service (Data Transfer)

string jolt_dataxfer (int sessionid, int opcode, string attribute_list)
A-8

Perform anceStudio /Jo lt Function Reference
This is the construction function for Data Transfer messages. sessionid is the
WSH -assigned identifier of the current Jolt session. opcode specifies the mode of
operation of the current Data Transfer request operation. Valid opcodes are:

attribute_list is the association parameter for the Attribute List construction.

Attribute List Construction Functions
These functions construct the attribute list associated with the Data Transfer
application service function jolt_dataxfer(). There is one construction
function per attribute. The results of the functions may be tied together using the
VU string concatenation operator (+) to form a complex attribute list.

Opcode Description

JOLT_CALL_RQST TU XEDO tpcall primitive

JOLT_DEQUEUE_RQST TU XEDO tpdequeue primitive

JOLT_CONNECT_RQST TU XEDO tpconnect primitive

JOLT_SEND_RQST TU XEDO tpsend primitive

JOLT_RECV_RQST TU XEDO tprecv primitive

JOLT_DISCONNECT_RQST TU XEDO tpdiscon primitive

JOLT_SUBSCRIBE_RQST TU XEDO tpsubscribe primitive

JOLT_UNSUBSCRIBE_RQST TU XEDO tpunsubscribe primitive

JOLT_NOTIFY_RQST TU XEDO tpnotify primitive

JOLT_POST_RQST TU XEDO tppost primitive

JOLT_UNSOL_RQST n/a

JOLT_CHKUNSOL_RQST n/a

JOLT_GETCONFIG_RQST n/a

JOLT_LOGON_RQST Jolt server logon

JOLT_LOGOFF_RQST Jolt server logoff

JOLT_GETDEF_RQST get Jolt Repository service definition

JOLT_GETDEFX_RQST get Jolt Repository service definition
A-9

Jolt-Specif ic VU Functions
The naming convention for the functions is jolt_setatt_attribute-name,
where attribute-name is the name of the Jolt attribute constructed. The value
argument, a VU language data type, will be mapped to the appropriate Jolt attribute
data representation by the function.

Application Service (Attribute Construction)

string jolt_setatt_appasswd (string value)

string jolt_setatt_authlevel (int value)

string jolt_setatt_clientdata (int value)

string jolt_setatt_corrid (string value)

string jolt_setatt_data (string parameter_list)*

string jolt_setatt_e_errno (int value)

string jolt_setatt_e_reason (string value)

string jolt_setatt_errno (int value)

string jolt_setatt_errorq (string value)

string jolt_setatt_event (string value)

string jolt_setatt_filter (string value)

string jolt_setatt_flags (int value)

string jolt_setatt_groupnm (string value)

string jolt_setatt_idle (int value)

string jolt_setatt_joltvers (int value)

string jolt_setatt_msgid (string value)

string jolt_setatt_name (string value)

string jolt_setatt_netmsgid (int value)

string jolt_setatt_numevents (int value)

string jolt_setatt_passwd (string value)

string jolt_setatt_priority (int value)

string jolt_setatt_reason (string value)

string jolt_setatt_replyq (string value)

string jolt_setatt_repname (string value)

string jolt_setatt_repnrecs (int value)
A-10

Perform anceStudio /Jo lt Function Reference

)
string jolt_setatt_reppattern (string value)

string jolt_setatt_repvalue (string value)

string jolt_setatt_sid (int value)

string jolt_setatt_timeout (int value)

string jolt_setatt_tuxvers (int value)

string jolt_setatt_type (int value)

string jolt_setatt_username (string value)

string jolt_setatt_userrole (string value)

string jolt_setatt_version (int value)

string jolt_setatt_xid (int value)

Parameter List Construction Functions
These functions construct the parameter list associated with the Attribute List
construction function jolt_setatt_data(). There is one construction
function per parameter. The results of the functions may be tied together using the
VU string concatenation operator (+) to form a complex parameter list.

The naming convention for the functions is jolt_setpar_parameter-name,
where parameter-name is the name of the Jolt parameter constructed. fieldid
is an identifier that uniquely identifies the parameter among other parameters within
a list. The value argument, a VU language data type, will be mapped to the
appropriate Jolt parameter data representation by the function. asciified-
value is the asciified form of the parameter value. text-value is the textual
representation of the floating point value (for example, “1.23”).

Application Service (Parameter Construction)

string jolt_setpar_carray (int fieldid, string asciified-
value)

string jolt_setpar_char (int fieldid, int value)

string jolt_setpar_double (int fieldid, string text-value)

string jolt_setpar_float (int fieldid, string text-value)

N O TE: The special attribute list construction function
jolt_setatt_data() accepts a single parameter list construction (see below
in place of a VU scalar value as an argument.
A-1 1

Jolt-Specif ic VU Functions
string jolt_setpar_long (int fieldid, int value)

string jolt_setpar_short (int fieldid, int value)

string jolt_setpar_string (int fieldid, string value)

Response Query Functions
The Response Q uery functions extract information from Jolt responses received by
the client. All of the query functions, except the Parameter Query group, accept no
arguments. They work implicitly with the VU _response read-only variable,
which is set by the sock_nrecv emulation command. Therefore, within a script
the Response Q uery functions must follow the sock_nrecv commands on which
they operate.

There are two main functions in this class:

int jolt_response_header ()
This function must be passed as an argument to the sock_nrecv emulation
command to prepare it to receive the header portion of a Jolt response. For example:

sock_nrecv ["header_1"] jolt_response_header();

This function must always precede its jolt_response_body() complement.

int jolt_response_body ()
This function must be passed as an argument to the sock_nrecv emulation
command to prepare it to receive the body portion of a Jolt response.

sock_nrecv ["body_1"] jolt_response_body();

This function must always follow its jolt_response_header() complement.

Message Query Functions
These functions extract specific field values from the message body portion of the
Jolt responses. The naming convention used for these functions is
jolt_message-name_field-name, where message-name is the name of
the message to be examined and field-name is the name of the field to be
extracted.

Application Service (Data Transfer)

string jolt_dataxfer_attribute_list ()
A-12

Perform anceStudio /Jo lt Function Reference
Response Attribute Query Functions
These functions extract specific attribute values from Jolt Data Transfer response
messages. The actual attribute value is mapped to an appropriate VU language data
type as necessary. The naming convention for these functions is
jolt_getatt_attribute-name, where attribute-name is the name of
the attribute to extract.

Application Service (Attribute Query)

string jolt_getatt_appasswd ()

int jolt_getatt_authlevel ()

int jolt_getatt_clientdata ()

string jolt_getatt_corrid ()

string jolt_getatt_data ()

int jolt_getatt_e_errno ()

string jolt_getatt_e_reason ()

int jolt_getatt_errno ()

string jolt_getatt_errorq ()

string jolt_getatt_event ()

string jolt_getatt_filter ()

int jolt_getatt_flags ()

string jolt_getatt_groupnm ()

int jolt_getatt_idle ()

int jolt_getatt_joltvers ()

string jolt_getatt_msgid ()

string jolt_getatt_name ()

int jolt_getatt_netmsgid ()

int jolt_getatt_numevents ()

string jolt_getatt_passwd ()

int jolt_getatt_priority ()

string jolt_getatt_reason ()

string jolt_getatt_replyq ()
A-1 3

Jolt-Specif ic VU Functions
string jolt_getatt_repname ()

int jolt_getatt_repnrecs ()

string jolt_getatt_reppattern ()

string jolt_getatt_repvalue ()

int jolt_getatt_sid ()

int jolt_getatt_timeout ()

int jolt_getatt_tuxvers ()

int jolt_getatt_type ()

string jolt_getatt_username ()

string jolt_getatt_userrole ()

int jolt_getatt_version ()

int jolt_getatt_xid ()

Response Parameter Query Functions
These functions extract specific parameter values from Jolt Data Transfer response
messages. The actual parameter value will be mapped to an appropriate VU language
data type as necessary. The naming convention for these functions is
jolt_getpar_parameter-name, where parameter-name is the name of
the parameter to extract. fieldid is the application-assigned identifier used to
distinguish a particular parameter from a list of parameters.

Application Service (Parameter Query)

string jolt_getpar_carray (int fieldid)

int jolt_getpar_char (int fieldid)

string jolt_getpar_double (int fieldid)

string jolt_getpar_float (int fieldid)

int jolt_getpar_long (int fieldid)

int jolt_getpar_short (int fieldid)

string jolt_getpar_string (int fieldid)
A-14

ã ã ã A P P E N D I X B

SAP-Specific VU Functions
If you have purchased a license to play back SAP protocol, and you record a session
that accesses a SAP R/3 server, the script that you generate will contain VU functions
that emulate SAP clients. This appendix lists the functions that the VU script can
contain. The functions begin with the prefix VuERP.

This appendix divides SAP-specific VU functions into the following categories:

ã Event Manipulation and Communication

ã Event Structure Access

ã U tilities

Because the VU functions serve as wrappers to the SAP GU LIB API, you need to be
familiar with the GU ILIB API. For information on the GU ILIB API, consult your
SAP documentation.

GU ILIB uses the term event to mean a data representation of a particular SAP
screen. The event data structure contains a complete description and instructions
necessary for rendering the SAP screen. Therefore, in this appendix, the terms event
and screen are synonymous.

The functions, properties, and fields defined in the GU ILIB documentation are
shown in bold italics.

For information on testing SAP applications, see the following on-line manuals on
the Documentation CD:

ã Rational LoadTest Try it! for Virtual User Testing of SAP Applications

ã Rational Robot Try it! for GUI Testing of SAP Applications
B-1

SAP-Specific VU Functions
Event Manipulation and Communication

Each function in this section is invoked via the VU emulate() command.
Therefore, all environment variables that affect the emulate() command also affect
the execution of the functions in this section. Those functions with Set in their
name set properties in the event or screen; those functions with Send in their name
send the screen, or event, information to the SAP R/3 server.

Functions
func VuErpSetHeight(Height) int Height; {}

Sets the screen.dimrow field of the event. If Height is greater than 255, it is set
to 255. If the event is a modal screen 0, the function returns 0. O therwise it
returns 1. A return of 0 indicates a failure since modal events/screens are not
resizable.

func VuErpSetWidth(Width) int Width; {}

Sets the screen.dimcol field of the event. If Width is greater than 255, it is set
to 255. If the event is a modal screen 0, the function returns 0. O therwise it
returns 1.

func VuErpSetHScroll(Pos) int Pos; {}

Sets the Pos field of the event and marks the event type with MES_HSCROLL
mask. This function always returns 1.

func VuErpSetVScroll(Pos) int Pos; {}

Sets the Pos field of the event and marks the event type with MES_VSCROLL mask.
This function always returns 1.

func VuErpSetCurPosByIndex(Index) int Index; {}

A wrapper for ItEv_SetCurPosByCtrl(). Returns 0 if
ItEv_SetCurPosByCtrl fails and 1 otherwise.

func VuErpSetCheck(Index,ck) int long, ck; {}

A wrapper for ItEv_SetCheck(). Returns 0 if ItEv_SetCheck fails and 1
otherwise.

func VuErpSetMenuId(id) int id; {}

A wrapper for ItEv_SetMenuID(). Returns 0 if ItEv_SetMenuID fails and 1
otherwise.
B-2

Event M an ipu lat ion and Com m unication
func VuErpSetOkCode(okCode) string okCode; {}

A wrapper for ItEv_SetOKCode(). Returns 0 if ItEv_SetOKCode fails and 1
otherwise.

func VuErpSetPfKey(KeyCode) int KeyCode; {}

A wrapper for ItEv_SetPFKey(). Returns 0 if ItEv_SetPFKey fails and 1
otherwise.

func VuErpSetValue(Index,value) int Index; string value; {}
A wrapper for ItEv_SetValue(). Returns 0 if ItEv_SetValue fails and 1
otherwise.

func VuErpSetValueDecrypt(Index,value) int Index; string
value; {}

A wrapper for ItEv_SetValue() that decrypts the encrypted value. Returns 0 if
ItEv_SetValue fails and 1 otherwise. By default, the user name and password are
encrypted in a capture script and are decrypted with the
VuErpSetValueDecrypt() function before being passed to
ItEv_SetValue().

U sers wishing to datapool unencrypted user names and passwords should replace
the VuErpSetValueDecrypt() calls with VuErpSetValue(), i.e.:

Line from captured script (that uses a datapool with encrypted password):

emulate ["RatlErp_sun_exception_on001"]
VuErpSetValueDecrypt(5,

datapool_value(VuErp_DP, "RSYST_BCODE")),
VuErp_log_message;

Line from modified script (uses a datapool with unencrypted password):

emulate ["RatlErp_sun_exception_on001"]
datapool_value(VuErp_DP, "RSYST_BCODE"),
VuErp_log_message;

func VuErpFreeConnection() {}

A wrapper for It_FreeConnection(). Returns 0 if It_FreeConnection fails
and 1 otherwise.

func VuErpFreeEvent() {}

A wrapper for It_FreeEvent(). Returns 0 if It_FreeEvent fails and 1
otherwise.
B-3

SAP-Specific VU Functions
func VuErpGetEventEx(long flags) {}

A wrapper for It_GetEventEx(). Returns 0 if It_GetEventEx fails and 1
otherwise.

func VuErpLogoff() {}

A wrapper for It_Logoff(). Returns 0 if It_Logoff fails and 1 otherwise.

func VuErpNewConnection(Host,SystemNo,flags)
string Host, SystemNo; int flags; {}

A wrapper for It_NewConnection(). Returns 0 if It_NewConnection fails
and 1 otherwise.

func VuErpSendEvent() {}

A wrapper for It_SendEvent(). Returns 0 if It_SendEvent fails and 1
otherwise.

func VuErpSendReturn() {}

A wrapper for It_SendReturn(). Returns 0 if It_SendReturn fails and 1
otherwise.

func VuErpSetCtlVScroll(Index, pos) int Index, pos; {}

Set TabVerScrollbarStartRow field of the IT_TABLEINFO structure for the
control indexed by Index. Returns 1 if successful and 0 otherwise.

Event Structure Access

Each function in this section is invoked via the VU Language emulate()
command. Therefore, all environment variables that affect the emulate()
command also affect the execution of the functions in this section. Each function
attempts to get the value of an event or screen returned from the server. If the value
is not assigned, each function continues to check the value until the value is assigned
or Timeout_val is reached. (This is true for any function called by emulate()).
B-4

Event Structure Access

h
iable

. The
 return

ed.
ve the
ain.
Functions
func VuErpGetEventPtr() {}

Returns a pointer to the current event structure. Returns a N U LL if there is no valid
event at the time of the call.

func VuErpGetCtrlCnt() {}

Returns screen.iCtrlCnt field of the event structure that indicates the number
of controls present in the current event.

string func VuErpGetCtrlName(Index) int Index; {}

Returns the name of the control indexed by Index. If Index is invalid, an empty
string is returned. The space allocated for the string is reused on each successive call.
To preserve the return value, assign it to another VU string variable before calling
this function again.

string func VuErpGetCtrlValue(Index) int Index; {}
Returns a value of the control indexed by Index. If Index is invalid, an empty
string is returned. The space allocated for the string is reused on each successive call.
To preserve the return value, assign it to another VU string variable before calling
this function again.

string func VuErpGetCtrlFieldName(Index) int Index; {}

Returns a field name of the control — a szFieldName field of the IT_CTRL
structure indexed by Index. If the field name is not available or Index is invalid,
an empty string is returned. The space allocated for the string is reused on eac
successive call. To preserve the return value, assign it to another VU string var
before calling this function again.

string func VuErpGetScrnName() {}

Returns a screen name of the event — a screen.szScreenName field of the
event structure. If the screen name is not available, an empty string is returned
space allocated for the string is reused on each successive call. To preserve the
value, assign it to another VU string variable before calling this function again.

string func VuErpGetProgName() {}

Returns a program name of the event — a screen.szProgramName field of the
event structure. If the program name is not available, an empty string is return
The space allocated for the string is reused on each successive call. To preser
return value, assign it to another VU string variable before calling this function ag
B-5

SAP-Specific VU Functions

cated
sign it

ng is
er VU

he
string func VuErpGetEventMsg() {}

Returns a status message of the event — a szMessage field of the event structure.
If the status message is not available, an empty string is returned. The space allo
for the string is reused on each successive call. To preserve the return value, as
to another VU string variable before calling this function again.

string func VuErpGetTitle() {}

Returns a title of the event — a szNormTitle field of the event structure. If the
title is not available, an empty string is returned. The space allocated for the stri
reused on each successive call. To preserve the return value, assign it to anoth
string variable before calling this function again.

Utilities

Each function in this section, except for VuErp_VerifyEvent(), is invoked via
the VU emulate() command. Therefore,, all VU environment variables that
affect the emulate() command also affect the execution of the functions in this
section. Each function, except the last two functions (VuErpDecrypt and
VuErpEncrypt), verifies that the value of a property of an event screen is the
expected value. The last two functions either encrypt or decrypt a text string.

Functions
int func
VuErp_VerifyEvent(scrn,prog,title,msg,ctrlCnt,verifyScrn,
verifyMsg,verifyCnt)()string scrn,prog,title,msg;
int ctrlCnt,verifyScrn,verifyMsg,verifyCnt;

This function verifies that the screen (event) returned from the SAP server is t
expected screen.

The verification is done by comparing the following five parameters of the
VuErp_VerifyEvent function call with the corresponding event properties
actually returned by the server:

scrn: Internal screen name as defined in Advanced Business Application
Programming (ABAP).

prog: Internal program name as defined in ABAP

title: Screen title (caption)

msg: Message appearing in the status bar of the screen

ctrlCnt: N umber of controls on the screen
B-6

U tilit ies
Comparison of attributes can be turned off with the last three parameters of
VuErp_VerifyEvent, as follows:

verifyScrn: If, and only if, the value of verifyScrn is 0, then scrn,
prog, and title are not compared with the actual values returned by the
server.

verifyMsg: If, and only if, the value of verifyMsg is 0, then msg are not
compared with the actual value returned by the server.

verifyCnt: If, and only if, the value of verifyCnt is 0, then verifyCnt
are not compared with the actual value returned by the server.

The default values for verifyScrn, verifyMsg, and verifyCnt (the
variables, VuErp_VerifyScreenInfo, VuErp_VerifyMessageLine,
and VuErp_VerifyCtrlCount) are defined as 1 by default. You can change
the values of these variables or substitute another integer for the parameters
verifyScrn, verifyMsg, and verifyCnt.

VuErp_VerifyEvent returns 1 if all compared parameters of the event returned
from the server match all compared parameters of the expected event. If one or more
compared parameters do not match, this function returns 0.

This function is added at capture time by the exception handler or by the user during
script editing.

VuErp_VerifyEvent() is written in the VU Language and is contained in the file
~ Program Files\Rational\Rational Test 7\include\vuerp1.h.

func VuErpCompareScreenName(in) string in; {}

Compares the in string against the screen name of the event. The function returns
1 if strings are equal and 0 otherwise. If in is N U LL, the function always returns 1.

func VuErpCompareProgramName(in) string in; {}

Compares the in string against the program name of the event. The function returns
1 if strings are equal and 0 otherwise. If in is N U LL, the function always returns 1.

func VuErpCompareTitle(in) string in; {}

Compares the in string against the title of the event. The function returns 1 if strings
are equal and 0 otherwise. If in is N U LL, the function always returns 1.

func VuErpCompareMessage(in) string in; {}

Compares the in string against the status message of the event. The function returns
1 if strings are equal and 0 otherwise. If in is N U LL, the function always returns 1.
B-7

SAP-Specific VU Functions
func VuErpCompareEvent(title,scrn,prog,msg,ctrlCnt)
string title,scrn,prog,msg; long ctrlCnt; {}

This function combines the functionality of the previous four and also compares the
number of controls. Just as for the previous functions, passing N U LL for any string
parameter causes the comparison of that parameter to always succeed. If ctrlCnt
is -1, the controls count comparison always succeeds.

string func VuErpCrypt(char *str)

Returns an encrypted version of str. The space allocated for the string is reused on
each successive call. To preserve the return value, assign it to another VU string
variable before calling this function again.

string func VuErpDecrypt(char *str)

Returns a decrypted version of str. The space allocated for the string is reused on
each successive call. To preserve the return value, assign it to another VU string
variable before calling this function again.
B-8

 an
e
ion

ing
.
s,

line

e
le,

ls
the

e
e

d
cripts.

s,
ble in
Glossary
action object – In TestFactory, an object in the application map that represents
action to which a control in the application responds. Typical actions are mous
left-click, mouse right-click, and mouse left-double-click; the corresponding act
objects in the application map are LeftClick, RightClick, and LeftDoubleClick.

ActiveX control – A reusable software control that takes advantage of Object Link
and Embedding (OLE) and Component Object Modeling (COM) technologies
Developers can use ActiveX controls to add specialized functions to application
software development tools, and Web pages. Robot can test ActiveX controls in
applications.

actual results – In a functional test, the outcome of testing an object through a
verification point in a GU I script. Actual results that vary from the recorded base
results are defects or intentional changes in the application. See also baseline results.

Adm inistrator – See Rational Administrator.

Agent computer – In LoadTest, a computer that has the Rational Agent softwar
installed and that plays back a virtual user or GU I script. In a LoadTest schedu
you can identify the Agent computer on which to run a script. See also Rational Agent.

API recording – In Robot, a virtual user recording method that captures API cal
between a specific client application and a server. These calls are captured on
client computer.

application m ap – In TestFactory, a hierarchical list of controls and actions in th
application-under-test, as well as the states of the application-under-test and th
transitions between those states. An application map can include U I objects an
action objects, as well as TestFactory objects such as Pilots, Test Suites, and s

application-under-test – The software being tested. See also system-under-test.

Asset Browser – A window that displays testing resources such as builds, querie
scripts, schedules, reports, report output, and logs. The Asset Browser is availa
TestManager and LoadTest.

AU T – See application-under-test.
Glossary-1

Glossary

ce
bles a

he
 Test
n on

 a
te of
eline

ript
of the

o a
tops
s
, and

 build,
use

ct

d then

s

t.
ive to
e the
autom ated testing – A testing technique in which you use software tools to repla
repetitive and error-prone manual work. Automated testing saves time and ena
reliable, predictable, and accurate testing process.

AutoPilot – In TestFactory, a tool for running scripts, Test Suites, and Pilots. T
scripts and Test Suites can run on your local computer or on computers in the
Lab. The Pilots run on your local computer, and the scripts they generate can ru
your local computer or on computers in the Test Lab.

base state – In TestFactory, the known, stable state in which you expect the
application-under-test to be at the start of each script segment. See also script segment.

baseline results – In a functional test, the outcome of testing an object through
verification point in a GU I script. The baseline results become the expected sta
the object during playback of the script. Actual test results that vary from the bas
results are defects or intentional changes in the application. See also actual results.

best script – In TestFactory, an optimized script generated by a Pilot. A best sc
contains the fewest number of script segments that provide the most coverage
source code or user interface in the application-under-test.

breakpoint – A feature of the Robot debugger. When you assign a breakpoint t
line of code, and then run the script in the debugger environment, the script s
executing at that line of code. Control returns to you, and the breakpoint line i
displayed. From here you can view variables, perform other debugging activities
continue executing the script.

build – A version of the application-under-test. Typically, developers add new
features or enhancements to each incremental build. As team members test a
they enter defects against those features that do not behave as expected. You
TestManager to define and manage builds.

built-in data test – A data test that comes with Robot and is used with the Obje
Data verification point. A data test uses a specific property of the object, in
conjunction with other parameters, to determine the data to capture. Although
built-in data tests cannot be edited, renamed, or deleted, they can be copied an
edited, and they can be viewed. See also custom data test.

ClearQ uest – See Rational ClearQuest.

client/server – An architecture for cooperative processing in which the software
tasks are split between server tasks and client tasks. The client computer send
requests to the server, and the server responds.

code coverage – In TestFactory, the percentage of code that is tested by a scrip
This percentage is based on the portion of the code that a script touches, relat
all code in the application-under-test. A Pilot can use code coverage to determin
best script for a run. See also UI coverage.
Glossary-2

Glossary

refix
s

e you
e

.
er,
ns

n
e
tive

tion

aw
ager,

ith
ct,

so

r
ks.

rs

s
.

ent
g

hich
com m and ID – In LoadTest’s VU language, an identifier for a command. Robot
automatically assigns a unique command ID, composed of an alphanumeric p
and a three-digit number, to each emulation command. Because command ID
appear in both the virtual user script and the LoadTest report output, they enabl
to determine the relationship between an emulation command and its respons
times.

com m and ID prefix – In LoadTest, a prefix for a unique emulation command ID
The prefix defaults to the script name (up to the first seven characters). Howev
you can define the prefix in the Generator tab of the Virtual U ser Record Optio
dialog box.

custom data test – A customer-defined data test used with the Object Data
verification point. A data test uses a specific property of the object, in conjunctio
with other parameters, to determine the data to capture. Custom data tests ar
created within your organization and are stored in the repositories that were ac
when they were created. They can be edited, renamed, and deleted. See also built-in
data test.

data test – A test that captures the data of an object with the Object Data verifica
point. See also built-in data test and custom data test.

datapool – A source of test data that GU I scripts and virtual user scripts can dr
from during playback. You can automatically generate datapools using TestMan
or you can import datapool data from other sources such as your database.

dependency – In LoadTest, a method of coordinating an object in a schedule w
an event. For example, if the script Query is dependent upon the script Conne
then Connect must finish executing before Query can begin executing. See al
event.

distributed architecture – Architecture in which computer systems work togethe
and communicate with each other across LAN , WAN , or other types of networ
A client/server system is an example of distributed architecture.

distributed functional test – In LoadTest, a test that uses multiple Agent compute
to execute multiple GU I scripts written in the SQABasic language.

dynam ic load balancing selector – A type of selector in a LoadTest schedule. Item
in the selector, such as scripts, are executed according to a weight that you set

em ulation com m ands – VU language statements or commands that emulate cli
activity, evaluate the server’s responses, and perform communication and timin
operations. LoadTest stores the results of emulation commands in a log file, w
you can view from the LogViewer.
Glossary-3

Glossary

tions
.

a
ple,
sers

t.
n this
lso

d

rs.
s that
s,

let

he

ins
der-

t of
Es

va.
em ulation functions – VU language functions that emulate client activity and
evaluate the server’s responses. U nlike emulation commands, emulation func
do not perform communication and timing operations, and they are not logged

environm ent control com m ands – VU language commands that let you control
virtual user’s environment by changing the VU environment variables. For exam
you can set the level of detail that is logged or the number of times that virtual u
attempt to connect to a server.

event – An item in a LoadTest schedule upon which another item is dependen
For example, if the script Connect sets an event and the script Query depends o
event, Connect must finish executing before Query can begin executing. See a
dependency.

external script – A script that runs a program created with any tool. You plan an
run external scripts in TestManager.

fixed user group – In LoadTest, a group that contains a scalable number of use
When you create a fixed user group, you indicate the maximum number of user
you will run in the group. Typically, you use fixed user groups in functional test
which do not add a workload to the system.

flow control statem ents – In the VU and SQABasic languages, statements that
you add conditional execution structures and looping structures to a script.

functional test – A test to determine whether a system functions as intended.
Functional tests are performed on GU I objects and objects such as hidden
DataWindows and Visual Basic hidden controls.

Grid Com parator – The Robot component for reviewing, analyzing, and editing
data files for text and numeric verification points in grid formats. The Grid
Comparator displays the differences between the recorded baseline data and t
actual data captured during playback.

GU I script – A type of script written in the SQABasic language. It contains GU I
actions such as keystrokes and mouse clicks. Typically, a GU I script also conta
verification points for testing objects over successive builds of the application-un
test.

GU I user – The type of user that is emulated when a GU I script is executed.
Only one GU I user at a time can run on a computer.

hidden object – An object that is not visible through the user interface. H idden
objects include objects with a visible property of False and objects with no GU I
component.

ID E – Integrated Development Environment. This environment consists of a se
integrated tools that are used to develop a software application. Examples of ID
supported by Robot include Oracle Forms, PowerBuilder, Visual Basic, and Ja
Glossary-4

Glossary

p

 actual
cted

ters
uted

ying
ints

nd
k, all

ou
lyze

et-

tem
. This
ut the
Im age Com parator – The Robot component for reviewing and analyzing bitma
image files for Region Image and Window Image verification points. The Image
Comparator displays differences between the recorded baseline image and the
image captured during playback. The Image Comparator also displays unexpe
active windows that appear during playback.

instrum entation – In TestFactory, the process of inserting code coverage coun
into the application-under-test. These counters record how much code is exec
during a script run. See also object code instrumentation and source code instrumentation.

load – See workload.

load balancing – See workload balancing.

LoadTest – See Rational LoadTest.

log – A repository object that contains the record of events that occur while pla
back a script or running a schedule. A log includes the results of all verification po
executed as well as performance data that can be used to analyze the system’s
performance.

LogViewer – See Rational LogViewer.

low-level recording – A recording mode that uses detailed mouse movements a
keyboard actions to track screen coordinates and exact timing. During playbac
actions occur in real time, exactly as recorded.

m anual script – A set of testing instructions to be run by a human tester. The
script can consist of steps and verification points. You create manual scripts in
TestManager.

M aster com puter – A computer that executes LoadTest. From this computer, y
create, run, and monitor schedules. When the run is finished, you use it to ana
test results.

m ix-ins – See Pilot mix-ins.

network recording – In Robot, a virtual user recording method that records pack
level traffic. This traffic is captured on the wire.

next available selector – In LoadTest schedules, a selector that distributes each i
such as a script, delay, or other selector to an available computer or virtual user
type of selector is used in a GU I schedule. The next available selector parcels o
items sequentially, based on which computers or virtual users are available.
Glossary-5

Glossary

r

the
ing.

es to

nates.

een

s

on-
est
 the

script

s
s run

sis
eas
x-ins

lot.
cific
object – An item on a screen, such as a window, dialog box, check box, label, o
command button. An object has information (properties) associated with it and
actions that can be performed on it. For example, information associated with
window object includes its type and size, and actions include clicking and scroll
In some development environments, a term other than object is used. For example,
the Java environment uses component, and the HTML environment uses element.

object code instrum entation – In TestFactory, the process of inserting code
coverage counters into the executable file of the application-under-test. These
counters record how much of the program a script tests. See also instrumentation and
source code instrumentation.

O bject-O riented Recording® – A script recording mode that examines objects in
the application-under-test at the Windows layer. Robot uses internal object nam
identify objects, instead of using mouse movements or absolute screen coordi

O bject Properties Comparator – The Robot component that you use to review,
analyze, and edit the properties of objects captured by an Object Properties
verification point. The Object Properties Comparator displays differences betw
recorded baseline data and the actual data captured during playback.

O bject Scripting com mands – A set of SQABasic commands for accessing an
application’s objects and object properties. You add Object Scripting command
manually when editing a script.

O bject Testing® – A technology used by Robot to test any object in the applicati
under-test, including the object’s properties and data. Object Testing lets you t
standard Windows objects and IDE-specific objects, whether they are visible in
interface or hidden.

O CI – Object Code Insertion. The Rational technology used in TestFactory to
instrument object code and measure how much of the application-under-test a
tests. See also code coverage and object code instrumentation.

perform ance test – A test that determines whether a multi-client system perform
within user-defined standards under varying loads. Performance tests are alway
from a schedule in LoadTest.

Pilot – In TestFactory, a tool for generating scripts automatically.

Pilot m ix-ins – In TestFactory, a list of Pilots that are executed on a random ba
during the run of a lead Pilot. Mix-ins are useful for randomly testing multiple ar
of the application-under-test. To make tests more realistic, you can combine mi
and scenarios.

Pilot scenario – An ordered list of Pilots that are executed during the run of a Pi
A Pilot scenario is useful for testing U I objects that need to be exercised in a spe
order. To make tests more realistic, you can combine scenarios and mix-ins.
Glossary-6

Glossary

e

ent/
roxy
ing
rk

lter

tor,
ment,
 with

es,

 and
le play
y run.

nd
can

tions.

s
tests
nly in

e
lso,

t,
l user
n the
project – A collection of data, including test assets, defects, requirements, and
models, that can facilitate the development and testing of one or more softwar
components.

proxy recording – In Robot, a virtual user recording method that captures the cli
server conversation on the network wire rather than on the client computer. P
recording allows Robot to capture network packets that are not visible to it dur
network recording — for example, if the client and server are in different netwo
segments.

query – A request for information stored in the repository. A query consists of a fi
and several visible attributes — the columns of data to display, the width of the
column, and the sort order.

random selector – A type of selector in a LoadTest schedule. Items in the selec
such as scripts, are randomly executed. Random selectors can be with replace
where the odds are the same, or without replacement, where the odds change
each iteration.

Rational Adm inistrator – The component for creating and maintaining repositori
projects, users, groups, computers, and SQL Anywhere servers.

Rational Agent – The LoadTest software that resides on a shared network drive
runs on each computer where testing occurs. The entries specified in a schedu
back on the Agent computer, which reports on their progress and status as the
See also Agent computer.

Rational ClearQ uest – The Rational product for tracking and managing defects a
change requests throughout the development process. With ClearQuest, you
manage every type of change activity associated with software development,
including enhancement requests, defect reports, and documentation modifica

Rational LoadTest – The Rational Test component for running performance,
stress, scalability, multi-user, and distributed functional tests on multiple Agent
connected by a network. With LoadTest, you can initiate test runs and monitor
from a master computer that manages the test process. LoadTest is available o
Rational Suite PerformanceStudio.

Rational LogViewer – The Robot component for displaying logs, which contain th
record of events that occur while playing back a script or running a schedule. A
the component from which you start the four Comparators.

Rational Perform anceArchitect – The Rational component that lets you test the
performance of COM/DCOM applications. With Rational PerformanceArchitec
you can create a Rose sequence or collaboration diagram, convert it to a virtua
script, and then use Rational Suite PerformanceStudio to edit the script and ru
performance tests.
Glossary-7

Glossary

 as
uite

er

nd

ld
ite,

ry

n-
ional

g

 of

rs.

load.
ith

 that
nd
Rational repository – A database that stores application testing information, such
test requirements, scripts, and logs. All Rational Suite TestStudio and Rational S
PerformanceStudio products and components on your computer update and
retrieve data from the same connected repository. A repository can contain eith
a Microsoft Access or a Sybase SQL Anywhere database.

Rational RequisitePro – The Rational product for organizing, managing, and
tracking the changing requirements of your system.

Rational Robot – The Rational product for recording, playing back, debugging, a
editing scripts.

Rational SiteCheck – The Robot component for managing your intranet or Wor
Wide Web site. You can use SiteCheck to visualize the structure of your Web s
and you can use it with Robot to automate Web site testing.

Rational Synchronizer – The Rational tool that ensures the consistency of data
across several Rational products.

Rational TestAccelerator – An agent application that executes scripts. TestFacto
uses computers running TestAccelerator as remote machines on which to run
automated distributed tests.

Rational TestFactory – The Rational Test component for mapping an applicatio
under-test and generating scripts automatically. TestFactory is available in Rat
Suite TestStudio and Rational Suite PerformanceStudio.

Rational TestM anager – The Robot component for managing the overall testin
effort. You use it to define and store information about test documents,
requirements, scripts, schedules, and sessions.

Report Layout Editor – The TestManager component for customizing the layout
reports.

repository – See Rational repository.

RequisitePro – See Rational RequisitePro.

Robot – See Rational Robot.

scalable user group – In LoadTest, a group that contains a varying number of use
When you create a scalable user group, you assign it a percentage of the total
workload. Assume you have a scalable user group that is 50 percent of the work
If you run a test with 10 users, the group will contain 5 users. If you run a test w
100 users, the group will contain 50 users.

scenario – In LoadTest, a modular group of scripts and other items in a schedule
is used by more than one user group. A scenario can contain scripts, delays, a
synchronization points.
Glossary-8

Glossary

 be
an
cript

rious

ou
ed in
reate
-party
of the

ipt.

 the
t that
 also

eed
nerate

and

ach
le.

ime

ts:

rs
ing a
 a
 When
scenario – See Pilot scenario.

schedule – In LoadTest, structure that you create to specify how scripts should
played back. A schedule can contain GU I scripts and virtual user scripts, and c
indicate the number of times to repeat a script and the computer on which the s
will run. In performance testing, a schedule is used to create a workload. In
distributed functional testing, a schedule is used to distribute scripts among va
computers.

script – A set of instructions used to navigate through and test an application. Y
can generate scripts in a variety of ways. You can use Robot to record scripts us
functional testing and performance testing. You can also use TestManager to c
and manage manual scripts, and to manage external scripts created with a third
testing tool. A script can have properties associated with it, such as the purpose
script and requirements for the script. See also external script, GUI script, manual script,
and virtual user script.

script outline – In TestFactory, the readable version of a script. A script outline
contains a description of the actions that Robot performs while running the scr

script segment – In TestFactory, a section of a script that tests a particular
element of product functionality. A Pilot generates a script segment by starting
application-under-test in a base state, navigating through the part of the produc
you are testing, and returning the application-under-test to the base state. See
base state.

seed – An initial number fed to a random number generator. U sing the same s
produces the same series of random numbers. In LoadTest, you use seeds to ge
think times.

selector – An item that you insert in a LoadTest schedule to indicate how often
in what order to run scripts.

sequentia l selector – In a LoadTest schedule, a type of selector that executes e
script, delay, or other item in the same order in which it appears in the schedu

session – In virtual user recording, one or more scripts that you record from the t
you begin recording until the time you stop recording. Typically, the scripts in a
session represent a logical flow of tasks for a particular user, with each script
representing one task. For example, a session could be made up of three scrip
login, testing, and logout. In TestFactory, a session is the period of time that the
TestFactory application or a window is open.

shared variable – An integer variable that multiple scripts and multiple virtual use
can read and write to. You can see the value of a shared variable while monitor
LoadTest schedule. For example, you can set a shared variable as a flag to end
playback session. Each script can check the flag to see if the session should end.
that flag is set, exit tasks can be performed.
Glossary-9

Glossary

em
s and

o
of the

e

 stable

es or
dule.

tent
jects

nd
e

 by
ng a

 any
s, and

 of
test

n-
e of
shell script – A script that calls or groups several other GU I scripts and plays th
back in sequence. Shell scripts provide the ability to create comprehensive test
then store the results in a single log.

SiteCheck – See Rational SiteCheck.

source code instrum entation – In TestFactory, the process of inserting code int
the source code of the application-under-test. This code measures how much
source code a script tests. See also instrumentation and object code instrumentation.

SQ ABasic – The Robot scripting language for recording GU I actions
and verifying GU I objects. SQABasic contains most of the syntax rules and cor
commands that are contained in the Microsoft Basic language. In addition,
SQABasic has commands that are specifically designed for automated testing.
See also VU .

stable load – In LoadTest, a condition that occurs when a specified number of
virtual users have logged on to the system-under-test and are active. When the
load criterion is met, LoadTest begins measuring the load.

streak – When running a virtual user schedule in LoadTest, a series of success
failures for emulation commands. You can see a streak while monitoring a sche

structura l test – A test to determine whether the structure of a Web site is consis
and complete. A structural test ensures that an application’s interdependent ob
are properly linked together. You perform a structural test using SiteCheck.

synchronization point – In LoadTest, a place where emulated virtual users stop a
wait until all other synchronized users reach that point. When all users reach th
synchronization point, they are released and continue executing.

Synchronizer – See Rational Synchronizer.

system tuning – In LoadTest, the process of optimizing a system’s performance
changing hardware resources and software configuration parameters while usi
constant workload.

system -under-test – The system being tested. This includes the computers and
software that can generate a load on the system, networks, user interfaces, CPU
memory. See also application-under-test.

test assets – The resources that facilitate the planning or development phases
the testing effort. Examples of test assets include scripts, schedules, sessions,
documents, and test requirements.

test development – The process of developing tests to verify the operation of a
software application. This includes creating scripts that verify that the applicatio
under-test functions properly. Test development lets you establish the baselin
expected behavior for the application-under-test.
Glossary-10

Glossary

y

r the

e
ts and

 a
ts,
ent
ith

r
erver

 rate

cate
 time

that
jects

 use
test docum ents – Test plans, project schedules, resource requirements, and an
other documents that are important to your project. You develop your test
documents using your own word processing or scheduling program; you then
reference the name and location of the document in TestManager. This lets
members of the test and development team locate documents quickly.

Test Lab – A collection of computers on which TestAccelerator is running. In
TestFactory, you can distribute the scripts associated with a Pilot, a Test Suite, o
AutoPilot to run on computers in the Test Lab. See also Rational TestAccelerator.

Test Suite – In TestFactory, a tool for running a collection of scripts as a group.

TestAccelerator – See Rational TestAccelerator.

TestFactory – See Rational TestFactory.

TestM anager – See Rational TestManager.

Text Com parator – The Robot component for reviewing, analyzing, and editing
data files for text and numeric verification points in any format except grids. Th
Text Comparator displays the differences between the recorded baseline resul
the actual results.

think tim e – In virtual user and GU I scripts, think times are delays that simulate
user’s pauses to type or think while using an application. With virtual user scrip
LoadTest calculates the think time at runtime, based on think time VU environm
variables that are set in the script. You can set a maximum think time in Robot. W
GU I scripts, Robot uses the actual delays captured between keystrokes, menu
choices, and other actions.

transaction – In LoadTest, a logical unit of work performed against a server. Fo
example, submitting a search query or submitting a completed form to a Web s
are both transactions.

transaction rate – In LoadTest, the playback speed calculated as a function of
number of transactions per unit of time. For example, if a script contains one
transaction, and each script is started at half-second intervals, your transaction
would be 2 per second.

transactor – In LoadTest, an item that you insert in a LoadTest schedule to indi
the number of user-defined transactions that a virtual user performs in a given
period.

U I coverage – In TestFactory, the percentage of objects in the application map
are tested by a Pilot-generated script. This percentage is the proportion of U I ob
that the script touches, relative to all U I objects available to the Pilot. A Pilot can
U I coverage to determine the best script for a run. See also code coverage.
Glossary-1 1

Glossary

ry

eing
t is an
age

amples

 the

or

 a
line.
tion-

ript

ts

.

ns

 a

m

le.
U I object properties – Attributes of object classes and U I objects that TestFacto
uses to map applications and generate scripts.

unexpected active window – A window that appears during script playback that
interrupts the script playback process and prevents the expected window from b
active. For example, an error message generated by the application-under-tes
unexpected active window. You can view unexpected active windows in the Im
Comparator.

user group – In LoadTest, a collection of users that execute similar tasks and
generate the same basic workload. Accountants and data entry operators are ex
of user groups.

verification – The process of comparing the test results from the current build of
software to its baseline results.

verification point – A point in an SQABasic script that confirms the state of one
more objects. During recording, a verification point captures object information
from the application-under-test and stores it as the baseline. During playback,
verification point recaptures the object information and compares it to the base
In a manual script, a verification point is a question about the state of the applica
under-test.

virtua l user – In LoadTest, a type of user that is emulated when a virtual user sc
is executed. A computer can run multiple virtual users simultaneously.

virtual user script – A type of script written in the VU language. Virtual user scrip
contain client/server requests and responses as well as user think times.

VU – The Robot scripting language for recording a client’s requests to a server
VU provides most of the syntax rules and core commands available in the C
programming language. In addition, VU has emulation commands and functio
that are specifically designed for automated performance testing. See also SQABasic.

wait state – A delay or timing condition that handles time-dependent activities.

workload – In LoadTest, the set of all activities that users perform in an actual
production setting of the system-under-test. You can use LoadTest to emulate
workload.

workload balancing – In LoadTest, the act of distributing activities so no one syste
or device becomes a bottleneck.

workload m odel – In LoadTest, the workload model is represented as a schedu
You can play back this schedule and analyze the response times.
Glossary-12

ã ã ã Index
A
abs library routine 6-2

absolute values of numbers 6-2

address of operator 3-10

_alltext read-only variable 5-21, 5-49

AppendData function 5-5, 6-2

arguments

arrays 3-24
integer 4-12
string 4-12

arithmetic operators 3-7
bank 3-7
integers 3-7
strings 3-7

arrays 3-18
arguments 3-24, 4-12
assignment operators 3-23
functions 4-6
initialization 3-21
limitof operator 3-23
operators 3-22
subroutine arguments 3-24
subscripts 3-22

ASCII to integer conversion 6-4

assignment operators 3-8, 3-23

associativity of operators (table) 3-14

asterisk operator 3-30

atoi library routine 6-4

B
bank

data type 3-2
library routine 6-5
union of expressions 3-7

base64_decode library routine 6-7

base64_encode library routine 6-8

bitwise operators 3-7
AN D 3-8
exclusive OR 3-8
left shift 3-8
OR 3-8
right shift 3-8

braces operator 3-30

break statement 3-24, 6-6

buffer (TU XEDO)

returning type of 6-196

C
C language, VU additions to 1-3

calling

procedures 4-8

character constants 3-4, 3-5

characters

input 6-34
nonprinting 3-34, 6-70
returning position of 6-65
string conversions 6-12
unformatted 6-198
writing unformatted output 6-35
Index-1

Index
Check_unread environment variable 5-18, 5-32

cindex library routine 6-7, 6-66, 6-67, 6-97, 6-154

circumflex operator 3-30

Cleanup_time argument

effect on Escape_seq and Logout_seq 5-28

client/server environment variables 5-21
Column_headers 5-18, 5-21, 5-22, 5-36,

5-49
CS_blocksize 5-18, 5-22, 6-131
Cursor_id 5-19
Server_connection 5-19, 5-23, 5-26
Sqlexec_control_oracle 5-20, 5-23
Sqlexec_control_sqlserver 5-20, 5-23
Sqlexec_control_sybase 5-20, 5-23
Sqlnrecv_long 5-20, 5-24, 6-131
Statement_id 5-20
Table_boundaries 5-20, 5-25, 6-3, 6-89,

6-131

close library routine 6-9

close server connection 6-43

closing a connection 6-115

closing an open datapool 6-13

_cmd_id read-only variable 5-49

_cmdcnt read-only variable 5-50, 5-18

Column_headers environment variable 5-18, 5-21,
5-22, 5-36, 5-49

_column_headers read-only variable 5-49

comma operator 3-13

command IDs

logging 5-34, 5-37
read-only variable 5-49

_command read-only variable 5-49

comments 3-18

compiling portions of a script 4-4

computer resouces

monitoring 5-3

computers, read-only variable containing
names of 5-49

concatenation operator 3-23

conditional operator 3-13

connect environment variables 5-25
Connect_retries 5-18, 5-26
Connect_retry_interval 5-19, 5-26

Connect_retries environment variable 5-18, 5-26

Connect_retry_interval environment variable 5-19,
5-26

connection

closing 6-115

constants 3-3
character 3-4
integer 3-3
string 3-4

continue statement 3-24, 6-9

conversion routines 2-8

COOKIE_CACH E statement 6-11

CORBA model 5-11

CPU think time 5-44

creating a string expression 6-144, 6-152

CS_blocksize environment variable 5-18, 5-22,
6-131

ctos library routine 6-12

Cursor_id environment variable 5-19

_cursor_id read-only variable 5-50

cursors 6-126
allocating 6-105
closing 6-107
declaring 6-113
inserting 6-128
opening 6-132
persistent 6-15
positioning 6-134
private vs. shared 6-15
refreshing 6-137
setting options 6-112

customer support xvi
Index-2 VU Language Reference

Index
D
data correlation 5-53

http function for 6-44

data types 3-1
bank 3-2
integer 3-2
string 3-2

datapool functions 2-11, 6-1

datapool_close datapool function 6-13

DATAPOO L_CON FIG datapool function 6-13

datapool_fetch datapool function 6-20

datapool_open datapool function 6-21

datapool_value datapool function 6-24

datapools 1-4, 5-53
closing 6-13
configuration information 6-13
DP_N OWRAP 6-14
DP_PRIVATE 6-14
DP_SHARED 6-14
DP_WRAP 6-14
persistent cursors 6-15
private user access to 6-15
retrieve value 6-24
shared user access to 6-15

decrement operator 3-11

defining

functions 4-6
procedures 4-6, 4-8
subroutines 4-6

delay library routine 6-25
scaling time of 5-43

Delay_dly_scale environment variable 3-2, 5-19,
5-43, 6-5, 6-25

deleting a row 6-114

dollar sign operator 3-30

do-while statement 3-24, 6-26

dynamic data correlation 5-53
header file for 4-3

E
else-if statement 6-27

emulate emulation command 5-2, 6-28
and SAP protocol 5-34
logging 5-37

emulation commands 5-1
expected and unexpected responses 5-6
H TTP 5-2

receive 2-1, 5-40
send 2-1, 5-40

http_recv 5-2
IIOP 5-11

send 2-6, 5-40
number executed 5-50
read-only variable containing 5-49
send 5-41
socket 5-17

receive 5-41
SQL 5-5

receive 2-2, 5-40
send 2-2, 5-40

TU XEDO 5-7
send 2-4

emulation functions 5-18, 6-1
command count not incremented by 5-18
H TTP 2-1
IIOP 2-6
SQL 2-2
TU XEDO 2-5

environment control commands 5-21, 6-1
eval 5-21, 6-31
pop 5-21, 6-77
push 5-21, 6-80
reset 5-21, 6-85
restore 5-21, 6-86
save 5-21, 6-87
set 5-21, 6-92
show 5-21, 6-95
Index Index-3

Index
environment variables 4-2, 5-18
client/server 5-21

Column_headers 5-18, 5-21, 5-22, 5-36,
5-49

CS_blocksize 5-18, 5-22, 6-131
Cursor_id 5-19
Server_connection 5-4, 5-19, 5-23, 5-26
Sqlexec_control_oracle 5-20, 5-23
Sqlexec_control_sqlserver 5-20, 5-23
Sqlexec_control_sybase 5-20, 5-23
Sqlnrecv_long 5-20, 5-24, 6-131
Statement_id 5-20
Table_boundaries 5-20, 5-25, 6-3, 6-89,

6-131
connect 5-25

Connect_retries 5-18, 5-26
Connect_retry_interval 5-19, 5-26

current 5-21
default 5-21
displaying values of 6-95
exit sequence 5-26

Escape_seq 5-19
Escapet_seq 5-26
Logout_seq 3-2, 5-19, 5-26, 6-5

getting values of 6-42
H TTP 5-29

H ttp_control 5-19
Line_speed 5-19

IIOP 5-30
Iiop_bind_modi 5-19

initializing 5-21
private 5-31

Mybstack 3-2, 5-19, 5-31
Mysstack 5-19, 5-31
Mystack 5-19, 5-31

reporting 5-32
Check_unread 5-18, 5-32
Log_level 5-6, 5-19, 5-33
Max_nrecv_saved 5-19, 5-32, 5-36, 5-49
Record_level 5-19, 5-23, 5-39
Suspend_check 5-20, 5-40

response timeout 5-40
Timeout_act 5-20, 5-41
Timeout_scale 5-20, 5-41
Timeout_val 5-6, 5-20, 5-41, 5-42,

6-122, 6-136
saved 5-21
setting to default value 6-85
setting values of 5-21, 6-82, 6-92
think time 5-42

Delay_dly_scale 3-2, 5-19, 5-43, 6-5,
6-25

Think_avg 5-20, 5-26, 5-43, 5-46, 5-47
Think_cpu_dly_scale 5-20, 5-43, 5-44
Think_cpu_threshold 5-20, 5-44
Think_def 5-20, 5-28, 5-45
Think_dist 5-20, 5-28, 5-44, 5-46, 5-47
Think_dly_scale 5-20, 5-46
Think_max 5-20, 5-47
Think_sd 5-20, 5-46, 5-47

equality operator 3-12, 3-13

error messages

read-only variable containing 5-6, 5-49

_error read-only variable 5-6, 5-11, 5-50

_error_text read-only variable 5-6, 5-11, 5-49

_error_type read-only variable 5-11, 5-50

Escape_seq environment variable 5-19, 5-26, 5-27

eval environment control command 5-21, 6-31

exit sequence environment variables 5-26
Escape_seq 5-19, 5-26
Logout_seq 3-2, 5-19, 5-26, 6-5

exiting from an emulation session 5-27

expected responses 5-6

expire_cookie emulation function 6-31

expressions 3-15

external C

arrays 4-13
shared library 4-15
Index-4 VU Language Reference

Index
external C functions 4-10
and SAP protocol 5-34
declaring 4-10
linkage 4-9
memory management 4-13
passing arguments 4-11
variables 3-17, 4-9

F
_fc_ts read-only variable 5-50

feof library routine 6-32

fflush library routine 6-33

fgetc library routine 6-34

files

closing 6-9
generating temporary name 6-159
multiple source 4-4
opening 6-75
pointer 6-32
reading input from 6-89
removing 6-200
repositioning pointer 6-38
returning pointer 6-39
sharing 6-93
temporary names 6-159
writing buffered data to 6-33
writing data to 6-79

flow control 2-7, 3-24
break statement 6-6
continue statement 6-9
do-while statement 6-26
else-if statement 6-27
for statement 6-34
if-else statement 6-56
loops 3-24
statements 6-1
while statement 6-207

for statement 3-24, 6-34

fprintf library routine 6-79

fputc library routine 6-35

fputs library routine 6-35

_fr_ts read-only variable 5-51

FreeAllData function 5-5, 6-36

FreeData function 5-5, 6-37

_fs_ts read-only variable 5-51

fscanf library routine 6-89

fseek library routine 6-38

ftell library routine 6-39

functions 4-6
arguments 4-6
defining 4-6
VU file I/O 2-3
VU toolkit 1-4, 2-3, 6-1

G
get header values 6-46

GetData function 5-5, 6-40

GetData1 function 5-5, 6-41

getenv library routine 6-42

greater than operator 3-11, 3-12

greater than or equal to operator 3-12

H
header files 1-3, 4-2

sme/data.h 4-3
sme/file.h 4-3
VU .h 4-2, 6-33, 6-34, 6-90, 6-198
VU _tux.h 4-3
with emulate command 6-30

help desk xvi

hex2mixedstring library routine 6-42

_host read-only variable 5-49

hotline support xvi

H OU RS macro 4-2
Index Index-5

Index
H TTP, monitoring computer resources 5-3

http, dynamic data correlation 5-53

H TTP emulation commands 2-1, 5-2
setting retries 5-25

H TTP emulation functions 2-1

H TTP environment variables 5-29
H ttp_control 5-19
Line_speed 5-19

H ttp_control environment variable 5-19

http_disconnect emulation function 6-43

http_find_values emulation function 6-44

http_header_info emulation function 6-46

http_header_recv emulation command 5-32, 6-47
bytes received 5-51
logging 5-34

http_nrecv emulation command 6-50
and Max_nrecv_saved 5-32
bytes processed by 5-51
bytes received 5-51
logging 5-34

http_recv emulation command 5-2, 6-51
and Max_nrecv_saved 5-32
bytes processed by 5-51
bytes received 5-51
logging 5-34

http_request emulation command 6-53
bytes sent to server 5-51
logging 5-34
setting retries 5-25
Think_avg set before each 5-42

http_url_encode emulation function 6-54

I
i/o routines 2-8

identifier 3-3

if-else statement 6-56

IIOP emulation commands 2-6, 5-11

IIOP emulation functions 2-6

IIOP environment variables 5-30
Iiop_bind_modi 5-19

Iiop_bind_modii environment variable 5-19

increment operator 3-10

IndexedField function 5-7, 6-61

IndexedSubField function 5-7, 6-63

inequality operator 3-12, 3-13

IN FO SERVER statement

location in virtual user script 5-3

initializing environment variables 5-21

initializing read-only variables 5-52

integer

constants 3-3
converting to string 6-4, 6-65

integer data type 3-2

integer-valued read-only variables 5-50

itoa library routine 6-65

J
Java A-1

Jolt protocol A-1
and socket emulation commands 5-17, 5-34,

A-1
building attribute and parameter lists A-7
extracting attribute values from responses A-13
extracting field values from responses A-12
response query functions A-7, A-12

Jolt Server H andlers A-4

L
_lc_ts read-only variable 5-51

lcindex library routine 6-7, 6-65, 6-66, 6-67, 6-97,
6-154

less than operator 3-12

less than or equal to operator 3-12

library routines 6-1

limitof operator 3-23
Index-6 VU Language Reference

Index
Line_speed environment variable 5-19

_lineno read-only variable 5-51

linkage to external C 4-9

LoadTest 5-2
read-only variable containing version 5-50

log files 5-37
writing messages to 6-66

Log_level environment variable 5-6, 5-19, 5-33
ALL 5-34
ERROR 5-33
OFF 5-33
TIMEOU T 5-33
U N EXPECTED 5-33

log_msg library routine 6-66

logical

AN D 3-11
negation 3-10
OR 3-11

logical negation operator 3-10

Logout_seq environment variable 3-2, 5-19, 5-26,
6-5

longbinary results

retrieving 6-129

longchar results

longbinary and longchar 6-129

loops 3-24

_lr_ts read-only variable 5-51

_ls_ts read-only variable 5-51

lsindex library routine 6-7, 6-66, 6-67, 6-97, 6-154

M
match library routine 6-68

Max_nrecv_saved environment variable 5-19, 5-32,
5-36, 5-49

Microsoft SQL Server 6-110

MIN U TES macro 4-2

mixed2hexstring library routine 6-69

mkprintable library routine 6-70

monitoring computer resources 5-3

move cursor to next datapool record 6-20

Mybstack environment variable 3-2, 5-19, 5-31

Mysstack environment variable 5-19, 5-31

Mystack environment variable 5-19, 5-31

N
negation operator 3-11

negexp library routine 6-71

N extField function 5-6, 6-71

N extSubField function 5-7, 6-74

nonprintable characters

representing in scripts 3-34, 6-70

_nrecv read-only variable 5-32, 5-51

null statement 3-16

numbers

absolute value 6-2

_nusers read-only variable 5-51

_nxmit read-only variable 5-51

O
one’s complement operator 3-11

open library routine 6-75

opening datapools 6-21

opening files 6-75

operators 3-6
address of 3-10
arithmetic 3-7
assignment 3-8, 3-23
associativity 3-14
asterisk 3-30
bitwise 3-7
bitwise AN D 3-8
bitwise left shift 3-8
bitwise OR 3-8
braces 3-30
circumflex 3-30
Index Index-7

Index
comma 3-13
concatenation 3-23
conditional 3-13
decrement 3-11
dollar sign 3-30
equality 3-12
exclusive OR 3-8
greater than 3-11, 3-12
greater than or equal to 3-12
increment 3-10
inequality 3-12, 3-13
less than 3-12
less than or equal to 3-12
limitof 3-23
logical AN D 3-11
logical negation 3-10
logical O R 3-11
one’s complement 3-11
pipe 3-30
plus 3-30
precedence 3-14
question mark 3-30
relational 3-11
right shift 3-8
unary 3-10
unary negation 3-11

Oracle

arguments 6-118
environment variables 5-20, 5-23
prefixes 4-2, 6-140

P
passing arguments

arrays 4-13
integers 4-12
strings 4-12

pattern matching 6-68

pattern string constants 3-4, 3-5

persistent datapool cursors 6-15

persistent variables 3-26, 6-77
in declarations 3-17
initial values 3-27

pipe operator 3-30

plus operator 3-30

pointer 6-32
repositioning 6-38
returning offset of 6-39

pop environment control command 5-21, 6-77

preprocessor 4-3
conditional compilation 4-4
features 4-3
file inclusion 4-4
for VU 4-3
token replacement 4-3

preVue.h. See VU .h header file

preVueCS.h. See VU .h header file

preVueCS_tux.h. See VU _tux.h header file

print statement 6-78

printf library routine 6-79

private datapool cursors 6-15

private environment variables 5-31
Mybstack 3-2, 5-19, 5-31
Mysstack 5-19, 5-31
Mystack 5-19, 5-31

procedures

calling 4-8
defining 4-6, 4-8
examples 4-8

program structure 4-1

push environment control command 5-21, 6-80

putenv library routine 6-82

Q
question mark operator 3-30
Index-8 VU Language Reference

Index
R
rand library routine 6-82

random numbers 6-71, 6-146, 6-199
rand library routine 6-82
routines 2-10

Rational technical support xvi

ReadLine function 5-6, 6-83

read-only variables 5-48
_alltext 5-21, 5-49
_cmd_id 5-49
_cmdcnt 5-18, 5-50
_column_headers 5-49
_command 5-49
_error 5-6, 5-11, 5-50
_error_text 5-6, 5-11, 5-49
_error_type 5-11, 5-50
_fc_ts 5-50
_fr_ts 5-51
_fs_ts 5-51
_host 5-49
_lc_ts 5-51
_lineno 5-51
_lr_ts 5-51
_ls_ts 5-51
_nrecv 5-32, 5-51
_nusers 5-51
_nxmit 5-51
_response 5-49, 6-49, 6-50, 6-51
_script 5-50
_source_file 5-50
_statement_id 5-51
_total_nrecv 5-32, 5-51
_total_rows 5-32, 5-52
_tux_tpurcode 5-52
_uid 5-52
_user_group 5-50
_version 5-50

cursor_id 5-50
initialization 5-52
integer-valued 5-50

receive emulation commands 6-1

receives

bytes from server 6-50
server header metadata 6-47
string data 6-103

Record_level environment variable 5-19, 5-23, 5-39
values 5-39

regular expressions 3-29, 3-31
errors 3-32
rules 3-29
single-character operators 3-29

relational operators 3-11
integer operands (table) 3-11
string operands 3-12

reporting environment variables 5-32
Check_unread 5-18, 5-32
Max_nrecv_saved 5-19, 5-32, 5-36, 5-49
Suspend_check 5-20, 5-40

reset environment control command 5-21, 6-85

reset random number generator 6-146

response

checking for specific results 6-160

_response read-only variable 5-49, 6-49, 6-50, 6-51

response timeout environment variables 5-40
Timeout_act 5-20, 5-41
Timeout_scale 5-20, 5-41
Timeout_val 5-6, 5-20, 5-41, 5-42, 6-122,

6-136

restore environment control command 5-21, 6-86

retrieve datapool value 6-24

return statements 4-6

returns

character data 6-67
random integers 6-71
rowtag 6-111
Index Index-9

Index
rows

deleting 6-114
fetching 6-124
number processed 5-32, 5-52
retrieving 6-130
updating 6-143

S
SAP protocol

and emulate emulation command 5-34

save environment control command 5-21, 6-87

SaveData function 5-5, 6-88

saving environment variables 6-87

_script read-only variable 5-50

script_exit library routine 6-91

scripts

delaying execution of 6-25
exiting from 6-91
read-only variable containing 5-50
representing nonprintable characters 3-34, 6-70

SECON DS macro 4-2

seed 5-46

seed flags 5-46

send emulation commands 6-1

send H TTP request 6-53

server

close connection 6-43
connection 6-97
receive header metadata 6-47

Server_connection environment variable 5-4, 5-19,
5-23, 5-26

session files 1-3

session ID 5-53
where stored 5-54

set environment control command 5-21, 6-92

set_cookie emulation function 6-92

shared datapool cursors 6-15

shared library 4-15

shared variables 3-25, 6-205
atomic read and update 3-8, 3-11
in declarations 3-17
initialization 3-26, 3-28
reading 3-26
scope 3-25
unary operators and 3-10
updating 3-26

SH ARED_READ function 5-7, 6-93

shell, escaping to 6-158

show environment control command 5-21, 6-95

sindex library routine 6-7, 6-66, 6-67, 6-96, 6-97,
6-154

sme/data.h header file 4-3

sme/file.h header file 4-3

sock_connect emulation function 6-97
setting retries 5-25

sock_create emulation function 6-98

sock_disconnect emulation function 6-99, 6-102

sock_fdopen emulation function 6-99

sock_isinput emulation function 6-100

sock_nrecv emulation command 5-32, 6-101
and Max_nrecv_saved 5-32
bytes processed by 5-51
Jolt protocol and A-7, A-12
logging 5-35

sock_recv emulation command 6-103
and Max_nrecv_saved 5-32
bytes processed by 5-51
Jolt protocol and A-2
logging 5-35

sock_send emulation command 6-104
bytes sent to server 5-51
Jolt protocol and A-2, A-5
logging 5-35
Think_avg set before each 5-42

socket emulation commands 5-17
and Jolt protocol 5-17, 5-34, A-1
Index-1 0 VU Language Reference

Index
sockets

checking for input 6-100
creating 6-98
disconnect 6-99, 6-102
sending data 6-104
setting retries 5-25

_source_file read-only variable 5-50

sprintf library routine 6-79

SQL

alloc_cursor 6-105
commit 6-108
connect 6-109
declare 6-113
delete cursor 6-114
disconnect 6-115
executing statements 6-116
fetch_cursor 6-124
free_cursor 6-126
open_cursor 6-132
prepare 6-135
retrieves row results 6-130
rollback 6-139
rowtag 6-111
set database server 6-139
update current row 6-143

SQL emulation commands 5-5
receive 2-2
send 2-2

SQL emulation functions 2-2

SQL Server

arguments 6-119
committing transactions 6-108
environment variables 5-20, 5-23
rolling back transactions 6-139
TDS protocol version 6-110

SQL VU file I/O functions 2-3

SQL VU toolkit functions 1-4, 2-3, 6-1

SQL_N U LL, specifying 6-122

sqlalloc_cursor emulation function 6-105

sqlalloc_statement emulation function 6-106
_statement_id returned by 5-51

sqlclose_cursor emulation command 6-107
logging 5-35

sqlcommit emulation function 6-108

sqlconnect emulation function 6-109
example 6-123

sqlcursor_rowtag emulation function 6-111, 6-115

sqlcursor_setoption emulation function 6-112

sqldeclare_cursor emulation command 6-113
logging 5-35

sqldelete_cursor emulation command 6-114
logging 5-35

sqldisconnect emulation function 6-115
example 6-123

sqlexec emulation command 6-116
example 6-123
logging 5-35
number of characters sent to server 5-51
sets rows processed to 0 5-52
Think_avg set before each 5-42

Sqlexec_control_oracle environment variable 5-20,
5-23

Sqlexec_control_sqlserver environment variable
5-20, 5-23

Sqlexec_control_sybase environment variable 5-20,
5-23

sqlfetch_cursor emulation command 6-124
and Max_nrecv_saved 5-32
and sqllongrecv 6-130
logging 5-35

sqlfree_cursor emulation function 6-126

sqlfree_statement emulation function 6-127

sqlinsert_cursor emulation command 6-128

sqllongrecv emulation command 5-32, 6-129
Index Index-11

Index
sqlnrecv emulation command 6-130
and Max_nrecv_saved 5-32
and sqllongrecv 6-130
increments total rows processed 5-52
logging 5-36
rows processed by 5-51

Sqlnrecv_long environment variable 5-20, 5-24,
6-131

sqlopen_cursor emulation command 6-132
logging 5-36

sqlposition_cursor emulation command 6-134

sqlprepare emulation command 6-135
_statement_id returned by 5-51
example 6-123
logging 5-35
number of characters sent to server 5-51
Think_avg set before each 5-42

sqlrefresh_cursor emulation command 6-137

sqlrollback emulation function 6-139

sqlsetoption emulation function 6-139, 6-140
example 6-123

sqlsysteminfo send emulation command 6-141

sqlupdate_cursor emulation command 6-143
logging 5-36

sqtrans library routine 6-144

srand library routine 6-146

sscanf library routine 6-89

standard input

reading data from 6-89

start_time emulation command 5-2, 6-147
logging not done 5-37

Statement_id environment variable 5-20

_statement_id read-only variable 5-51

statements 3-16
executing SQL 6-116
freeing client and server resources 6-127
preparing SQL 6-135
SQL free_statement 6-127

stoc library routine 6-149

stop_time emulation command 5-2, 6-150
logging not done 5-37

string

concatenating 3-7
constants 3-4
conversion to character 6-149
converting characters to 6-12
converting integer to 6-65
converting to hexadecimal 6-42, 6-69
create string expression 6-153
creating expressions 6-144, 6-152
data type 3-2
decoding 6-7
deleting characters in 6-162
extracting substring from 6-155, 6-156
operands 3-12
return 6-151
returning length of 6-151
returns

length 6-154
position of character within 6-7

substituting characters in 6-162
writing unformatted output for 6-35

strings 2-9
encoding 6-8

strlen library routine 6-151

strneg library routine 6-151

strrep library routine 6-152, 6-153

strspan library routine 6-7, 6-66, 6-67, 6-97, 6-154

subfield library routine 6-155

subroutines, defining 4-6

substr library routine 6-156

support, technical xvi

Suspend_check environment variable 5-20, 5-40

Sybase 6-110
arguments 6-119
committing transactions 6-108
environment variables 5-20, 5-23
prefixes 4-2, 6-140
Index-1 2 VU Language Reference

Index
rolling back transactions 6-139
TDS protocol version 6-110

sync_point statement 6-1, 6-157

synchronization points

setting 6-1, 6-157

system library routine 6-158

T
Table_boundaries environment variable 5-20, 5-25,

6-3, 6-89, 6-131
sqlfetch_cursor 5-25
sqlnrecv 5-25

_task_file. See scripts

task. See scripts

task_exit. See script_exit library routine

technical support xvi

tempnam library routine 6-159

testcase emulation command 5-2, 6-160
logging 5-37

think time

Think_dly_scale 5-46

think time environment variables 5-42
Delay_dly_scale 3-2, 5-19, 5-43, 6-5, 6-25
examples 5-48
Think_avg 5-20, 5-26, 5-43, 5-46, 5-47
Think_cpu_dly_scale 5-20, 5-43, 5-44
Think_cpu_threshold 5-20, 5-44
Think_def 5-20, 5-28, 5-45
Think_dist 5-20, 5-28, 5-44, 5-46, 5-47
Think_dly_scale 5-20, 5-46
Think_max 5-20, 5-47
Think_sd 5-20, 5-46, 5-47

Think_avg environment variable 5-20, 5-26, 5-43,
5-46, 5-47

Think_cpu_dly_scale environment variable 5-20,
5-43, 5-44

Think_cpu_threshold environment variable 5-20,
5-44

Think_def environment variable 5-20, 5-28, 5-45
values 5-45

Think_dist environment variable 5-20, 5-28, 5-44,
5-46, 5-47

constant 5-46
negexp 5-46
uniform 5-46

Think_dly_scale environment variable 5-20, 5-46

Think_max environment variable 5-20, 5-47

Think_sd environment variable 5-20, 5-46, 5-47

time

converting to hours 4-2
converting to minutes 4-2
converting to seconds 4-2
defining start 6-147
returning current 6-161, 6-162
setting delay 6-25
setting stop 6-150

time library routine 6-161

Timeout_act environment variable 5-20, 5-41

Timeout_scale environment variable 5-20, 5-41

Timeout_val environment variable 5-6, 5-20, 5-41,
5-42, 6-122, 6-136

timestamps 5-50, 5-51

tod library routine 6-162

tokens

replacing 4-3

_total_rows read-only variable 5-32, 5-52

_total_nrecv read-only variable 5-32, 5-51

trans library routine 6-162

transactions

aborting (TU XEDO) 6-172
committing 6-108
committing (TU XEDO) 6-179
datapools 5-53
rolling back 6-139
suspending (TU XEDO) 6-194

tux_allocbuf emulation function 6-163

tux_allocbuf_typed emulation function 6-164
Index Index-13

Index
tux_bq emulation command 6-165

tux_freebuf emulation function 6-166

tux_getbuf_ascii emulation function 6-166

tux_getbuf_int emulation function 6-167

tux_getbuf_string emulation function 6-168

tux_reallocbuf emulation function 6-168

tux_setbuf_ascii emulation function 6-169

tux_setbuf_int emulation function 6-170

tux_setbuf_string emulation function 6-170

tux_sizeofbuf emulation function 6-171

tux_tpabort emulation command 6-172

tux_tpacall emulation command 6-173

tux_tpalloc emulation function 6-174

tux_tpbegin emulation function

transactions 6-175

tux_tpbroadcast emulation command 6-176

tux_tpcall emulation command 6-177
sets TU XEDO user return code 5-52
updating _tux_tpurcode 5-11

tux_tpcancel emulation function 6-178

tux_tpchkauth emulation function 6-178

tux_tpcommit emulation command 6-179

tux_tpconnect emulation command 6-180

tux_tpdequeue emulation command 6-180

tux_tpdiscon emulation command 6-182

tux_tpenqueue emulation command 6-182

tux_tpfree emulation function 6-184

tux_tpgetrply emulation command 6-184
sets TU XEDO user return code 5-52
updating _tux_tpurcode 5-11

tux_tpinit emulation command 6-185

tux_tpnotify emulation command 6-186

tux_tppost emulation command 6-187

tux_tprealloc emulation function 6-188

tux_tprecv emulation command 6-189
sets TU XEDO user return code 5-52
updating _tux_tpurcode 5-11

tux_tpresume emulation command 6-190

tux_tpscmt emulation function 6-191

tux_tpsend emulation command 6-191
sets TU XEDO user return code 5-52
updating _tux_tpurcode 5-11

tux_tpsprio emulation function 6-192

tux_tpsubscribe emulation command 6-193

tux_tpsuspend emulation command 6-194

tux_tpterm emulation command 6-194

tux_tptypes emulation function 6-195

tux_tpunsubscribe emulation command 6-196

_tux_tpurcode read-only variable 5-52

tux_typeofbuf emulation function 6-196

tux_userlog emulation function 6-197

TU XEDO, interaction with Jolt A-1

TU XEDO emulation commands 2-4, 5-7
logging 5-36

TU XEDO emulation functions 2-5

U
_uid read-only variable 5-52

usage 5-52

unary negation operator 3-11

unary operators 3-10

unexpected responses 5-6

ungetc library routine 6-198

uniform library routine 6-199

union, bank expressions 3-7

unlink library routine 6-200

unprintable data 3-34

unprintable string and character constants 3-34

user think time 5-44

user_exit library routine 5-27, 6-200

_user group read-only variable 5-50

usergroup_member library routine 6-202

usergroup_size library routine 6-202

userlist_length. See usergroup_size library routine
Index-1 4 VU Language Reference

Index
userlist_member. See usergroup_member library
routine

users. See virtual users

V
values, absolute 6-2

variables

assignment 3-16
default data type 3-2
initial values of 3-28
naming rules 3-3
persistent 3-26, 3-27
Sqlexec_control 5-23
See also shared variables, persistent variables

_version read-only variable 5-50

virtual users

blocking 6-203
datapools 5-53
ID of 5-52
number of, in LoadTest session 5-51
terminating emulations 5-27, 6-200

VU file I/O functions 2-3

VU scripts 4-1

VU toolkit functions 1-4, 2-3, 6-1
AppendData 6-2
FreeAllData 6-36
FreeData 6-37
GetData 6-40
GetData1 6-41
SaveData 6-88

VU .h header file 1-3, 4-2, 6-33, 6-34, 6-90, 6-198

VU _tux.h header file 4-3

W
wait library routine 6-203, 6-204

watch files 1-3

while statement 3-24, 6-207
Index Index-15

Index
Index-1 6 VU Language Reference

	Contents
	Preface
	Other Resources
	Using the VU Help
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	What Is VU?
	Automated Script Generation
	Working with Scripts
	Your Work Environment

	Source and Runtime Files
	VU Additions to the C Language
	SQABasic Scripting Language

	Functional List
	HTTP Emulation Commands and Functions
	HTTP Send Emulation Commands
	HTTP Receive Emulation Commands
	HTTP Emulation Functions

	SQL Emulation Commands and Functions
	SQL Send Emulation Commands
	SQL Receive Emulation Commands
	SQL Emulation Functions

	VU Toolkit Functions
	VU Toolkit Functions: Data
	VU Toolkit Functions: File I/O

	TUXEDO Emulation Commands and Functions
	TUXEDO Send Emulation Commands
	TUXEDO Receive Emulation Commands
	TUXEDO Emulation Functions

	IIOP Emulation Commands and Functions
	IIOP Send Emulation Commands
	IIOP Emulation Functions

	Socket Emulation Commands and Functions
	Socket Send Emulation Commands
	Socket Receive Emulation Commands
	Socket Emulation Functions

	Emulation Commands That Can Be Used with Any Protocol
	Send Emulation Commands
	Other Emulation Commands

	Flow Control Commands
	I/O Routines
	Conversion Routines
	String Routines
	Random Number Routines
	Timing Routines
	Miscellaneous Routines
	Synchronization Functions
	Datapool Functions
	Environment Control Commands
	Statements

	VU Fundamentals
	Data Types
	Integer
	String
	Bank

	Language Elements
	Identifiers
	Constants
	Integer Constants
	Character Constants
	String Constants
	Examples of Constants

	Operators
	Binary Arithmetic Operators
	Binary Bitwise Operators
	Assignment Operators
	Unary Operators
	Relational Operators
	Other Operators

	Operator Precedence and Associativity

	Expressions
	Statements
	Comments
	Arrays
	Array Constants
	Declaring an Array
	Initializing an Array
	Example of Array Initialization

	Array Subscripts
	Array Operators
	Binary Concatenation Operator for Arrays
	Assignment Operators for Arrays
	Unary limitof Operator for Arrays
	Arrays as Subroutine Arguments

	Flow Control
	Loops
	Break and Continue

	Scope of Variables
	Shared Variables
	Persistent Variables
	Examples
	Script A
	Script B
	Script C

	Initial Values of Variables
	VU Regular Expressions
	General Rules
	Single-Character Regular Expression Operators
	Other Regular Expression Operators
	Regular Expression Examples
	Regular Expression Errors

	How a VU Script Represents Unprintable Data
	Unprintable String and Character Constants
	Unprintable HTTP or Socket Data

	Scripts, Subroutines, and C Libraries
	Program Structure
	Header Files
	VU.h
	VU_tux.h
	sme/data.h
	sme/file.h

	Preprocessor Features
	Token Replacement
	Example

	Creating a Script That Has More than One Source File
	Compiling Parts of a Script

	Defining Your Own Subroutines
	Defining a Function
	Calling a Function
	Example
	Defining a Procedure
	Calling a Procedure
	Example

	Accessing External C Data and Functions
	External C Variables
	Declaring External C Subroutines
	Accessing Values Returned from C Functions
	Passing Arguments to External C Functions
	Integers
	Strings
	Arrays

	Memory Management of VU Data
	Memory Management of C Data
	Specifying External C Libraries
	Creating a Dynamic-Link Library on Windows NT
	Creating a Shared Library on UNIX
	Examples

	User Emulation
	Emulation Commands
	HTTP Emulation Commands
	HTTP Commands that You Insert Manually
	Monitoring Computer Resources
	Example

	SQL Emulation Commands
	Processing Data from SQL Queries
	SQL Error Conditions

	VU Toolkit Functions: File I/O
	TUXEDO Emulation Commands
	How VU Represents TUXEDO Pointers
	TUXEDO Error Conditions

	IIOP Emulation Commands
	Interfaces, Interface Implementations and Operations
	Request Contexts and Result Sets
	VU/IIOP Pseudo-Objects
	Parameter Expressions
	Interface Definition Language (IDL)
	Exceptions and Errors

	Socket Emulation Commands

	Emulation Functions
	VU Environment Variables
	Changing Environment Variables Within a Script
	Initializing Environment Variables through a Schedule
	Client/Server Environment Variables
	Column_headers
	Cursor_id
	CS_blocksize
	Server_connection
	Sqlexec_control variables
	Sqlnrecv_long
	Statement_id
	Table_boundaries

	Connect Environment Variables
	Connect_retries
	Connect_retry_interval

	Exit Sequence Environment Variables
	Escape_seq and Logout_seq

	HTTP-Related
	Http_control
	Line_speed

	IIOP-Related
	Iiop_bind_modi

	Private Environment Variables
	Mystack, Mybstack, and Mysstack

	Reporting Environment Variables
	Check_unread
	Max_nrecv_saved
	Log_level
	Record_level
	Suspend_check

	Response Timeout Environment Variables
	Timeout_act
	Timeout_scale
	Timeout_val

	Think Time Variables
	Delay_dly_scale
	Think_avg
	Think_cpu_dly_scale
	Think_cpu_threshold
	Think_def
	Think_dist
	Think_dly_scale
	Think_max
	Think_sd
	Examples of Think Time Variables

	Read-Only Variables
	Initialization of Read-Only Variables
	Example

	Supplying a Script with Meaningful Data
	Datapools
	Dynamic Data Correlation

	Command Reference
	abs
	AppendData
	atoi
	bank
	break
	cindex
	base64_decode()
	base64_encode()
	close
	continue
	COOKIE_CACHE
	ctos
	datapool_close
	DATAPOOL_CONFIG
	datapool_fetch
	datapool_open
	datapool_rewind
	datapool_value
	delay
	display
	do-while
	else-if
	emulate
	eval
	expire_cookie
	feof
	fflush
	fgetc
	for
	fputc, fputs
	FreeAllData
	FreeData
	fseek
	ftell
	GetData
	GetData1
	getenv
	hex2mixedstring
	http_disconnect
	http_find_values
	http_header_info
	http_header_recv
	http_nrecv
	http_recv
	http_request
	http_url_encode
	if-else
	iiop_bind
	iiop_invoke
	iiop_release
	IndexedField
	IndexedSubField
	itoa
	lcindex
	log_msg
	lsindex
	match
	mixed2hexstring
	mkprintable
	negexp
	NextField
	NextSubField
	open
	pop
	print
	printf, fprintf, sprintf
	push
	putenv
	rand
	ReadLine
	reset
	restore
	save
	SaveData
	scanf, fscanf, sscanf
	script_exit
	set
	set_cookie
	SHARED_READ
	show
	sindex
	sock_connect
	sock_create
	sock_disconnect
	sock_fdopen
	sock_isinput
	sock_nrecv
	sock_open
	sock_recv
	sock_send
	sqlalloc_cursor
	sqlalloc_statement
	sqlclose_cursor
	sqlcommit
	sqlconnect
	sqlcursor_rowtag
	sqlcursor_setoption
	sqldeclare_cursor
	sqldelete_cursor
	sqldisconnect
	sqlexec
	Format for Specifying sqlexec Arguments
	How sqlexec Processes Statements

	sqlfetch_cursor
	sqlfree_cursor
	sqlfree_statement
	sqlinsert_cursor
	sqllongrecv
	sqlnrecv
	sqlopen_cursor
	sqlposition_cursor
	sqlprepare
	sqlrefresh_cursor
	sqlrollback
	sqlsetoption
	sqlsysteminfo
	List of Operations
	List of Operation Arguments

	sqlupdate_cursor
	sqtrans
	srand
	start_time
	stoc
	stop_time
	strlen
	strneg
	strrep
	strset
	strspan
	strstr
	subfield
	substr
	sync_point
	system
	tempnam
	testcase
	time
	tod
	trans
	tux_allocbuf
	tux_allocbuf_typed
	tux_bq
	tux_freebuf
	tux_getbuf_ascii
	tux_getbuf_int
	tux_getbuf_string
	tux_reallocbuf
	tux_setbuf_ascii
	tux_setbuf_int
	tux_setbuf_string
	tux_sizeofbuf
	tux_tpabort
	tux_tpacall
	tux_tpalloc
	tux_tpbegin
	tux_tpbroadcast
	tux_tpcall
	tux_tpcancel
	tux_tpchkauth
	tux_tpcommit
	tux_tpconnect
	tux_tpdequeue
	tux_tpdiscon
	tux_tpenqueue
	tux_tpfree
	tux_tpgetrply
	tux_tpinit
	tux_tpnotify
	tux_tppost
	tux_tprealloc
	tux_tprecv
	tux_tpresume
	tux_tpscmt
	tux_tpsend
	tux_tpsprio
	tux_tpsubscribe
	tux_tpsuspend
	tux_tpterm
	tux_tptypes
	tux_tpunsubscribe
	tux_typeofbuf
	tux_userlog
	ungetc
	uniform
	unlink
	user_exit
	usergroup_member
	usergroup_size
	wait
	while

	Jolt-Specific VU Functions
	Jolt Overview
	PerformanceStudio/Jolt Function Overview
	Request Construction Functions
	Message Construction Functions
	Response Query Functions
	Response Header Query Functions

	Message Query Functions
	Session Control Functions
	Application Service Functions
	Request Construction
	Associating Construction Functions
	Building Requests
	Building Attribute Lists and Parameter Lists

	Response Query

	PerformanceStudio/Jolt Function Reference
	Request Construction Functions
	Message Construction Functions
	Attribute List Construction Functions
	Parameter List Construction Functions
	Response Query Functions
	int jolt_response_header ()
	int jolt_response_body ()

	Message Query Functions
	Response Attribute Query Functions
	Response Parameter Query Functions

	SAP-Specific VU Functions
	Event Manipulation and Communication
	Functions

	Event Structure Access
	Functions�

	Utilities
	Functions

	Glossary
	Index

