
Using Rational SoDA for Word
Version 2001.03.00

®

support@rational.com
http://www.rational.com

IMPORTANT NOTICE

Copyright Notice
Copyright  1998-2000 Rational Software Corporation. All rights reserved.

Trademarks
Rational, the Rational logo, Requisite, RequisitePro, ClearCase, ClearQuest,
Purify, Quantify, Rational Rose, Rational Unified Process, and SoDA, are
trademarks or registered trademarks of Rational Software Corporation in the
United States and in other countries. All other names are used for
identification purposes only and are trademarks or registered trademarks of
their respective companies.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of
GLOBEtrotter Software, Inc. Licensee shall not incorporate any Globetrotter
software (FLEXlm libraries and utilities) into any product or application the
primary purpose of which is software license management.

Microsoft, MS, ActiveX, BackOffice, Developer Studio, Visual Basic, Visual
C++, Visual InterDev, Visual J++, Visual Studio, Win32, Windows, and
Windows NT are trademarks or registered trademarks of Microsoft
Corporation.

Oracle and Oracle7 are trademarks or registered trademarks of Oracle
Corporation.

U.S. Government Rights
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions set forth in the applicable Rational License Agreement and in
DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii)
(Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as
applicable.

Patent
U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,835,701.
Additional patents pending.

Warranty Disclaimer
This document and its associated software may be used as stated in the
underlying license agreement, and, except as explicitly stated otherwise in
such license agreement, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software
product and its documentation, including without limitation, the warranties
of merchantability or fitness for a particular purpose or arising from a course
of dealing, usage or trade practice.
ii Using Rational SoDA for Word

U S I N G R A T I O N A L S O D A F O R W O R D

Contents
1 Installing Rational SoDA for Word
Installation Overview . 1
Installing Rational Software Products and License Keys 1

Installation Quick Start . 2
Before You Start the SoDA Installation . 3

Installation Requirements . 3
Installation Types . 4
Installing Shared Components . 5

Installing SoDA for Word with Rational Software Setup 6
Typical Installation . 6
Possible Reboot Required . 7

Setting the Template Path . 8
 Removing Rational SoDA for Word . 8

Preparing to Remove SoDA . 8
To Remove SoDA . 8

Installation Messages . 9
Technical Support Information . 9

Required Information for Technical Support . 10
Problems with Templates in Dynamic Domains 10
Licensing Support . 10

2 SoDA License Management
The Rational Software Licensing Model . 13
License Types and License Key Types . 14
Installing a Startup License on a Client System . 16

To Install a Startup License Key on a Client System 17
Configuring Your Client System to Use a Node-Locked License 17
Configuring Your Client System to Use a Floating License 17
Acquiring a Node-Locked Permanent Key for Your Client System 18

3 Generating Reports and Documents
Starting SoDA . 19
iii

New user .19
Experienced user .19

Understanding SoDA .20
SoDA Templates vs. Word Templates .21
A SoDA template is a Word document It is a .DOC file that is based on
the Word template: soda.dot. As such, it contains SoDA commands and
text specific to the document. .21
Information Retrieval .21
Document Generation .22
Report Generation .22
Template Customization .23

Generating Web Pages, Reports, and Documents .23
Choosing a Template .23
 Maintaining Generated Documents .24

4 Customizing a Template
Making Templates Available for Other Users .27
Template Customization Concepts .27
Customizing a SoDA Template .31
SoDA�s Use of Annotations .32
Choosing a Domain .33
Testing SoDA Templates .34

SoDA Commands .35
Viewing the SoDA Commands .35
Modifying Existing Commands .35
Adding SoDA Commands .36
Deleting SoDA Commands .37
Creating Hyperlinks .38
OPEN Command .39
REPEAT Command .40
DISPLAY Command .44
LIMIT Command .45
Special LIMIT Commands .47

5 Wizards and Dialog Boxes
Getting Started Wizard .52
Template View .56

Template View: Establishing the Source Kind 57
iv Rational Software Installation Guide

Template View: Adding Values . 58
Template View: Other Template View Commands 60

SoDA Generator Dialog Box . 61
Identify the <Class> Dialog Box . 63
Select Command to Add Dialog Box . 65
OPEN Command Dialog Box . 66
DISPLAY Command Dialog Box . 69

Text Value Modifiers . 69
Graphic Value Modifiers . 70

REPEAT Command Dialog Box . 71
LIMIT Command Dialog Box . 74
Edit Link Dialog Box . 75
Adjust Links Dialog Box . 76
SoDA Options Dialog Box . 79

6 SoDA Template Library
Apex NT Templates . 83
ClearCase Templates . 83
Rose and Rose RealTime Templates . 84
RequisitePro Templates . 92
TeamTest Templates . 93

7 Rational SoDA for Word Domains
Overview . 96

Domain Aliases . 96
Domain Extensions . 96

Apex NT Domain . 100
Apex NT Domain Classes . 100

Apex NT CompositeType Class . 100
Apex NT CompUnit Class . 101
Apex NT Configuration Class . 102
Apex NT Declaration Class . 102
Apex NT Entry Class . 104
Apex NT Exception Class . 104
Apex NT File Class . 104
Apex NT FunctionBody Class . 105
Apex NT FunctionSpec Class . 105
Apex NT Object Class . 106
 v

Apex NT PackageBody Class .106
Apex NT PackageSpec Class .106
Apex NT Parameter Class .107
Apex NT PrimitiveType Class .107
Apex NT ProtectedType Class .107
Apex NT Statement Class .108
Apex NT SubprogramBody Class .108
Apex NT SubprogramSpec Class .109
Apex NT Subsystem Class .109
Apex NT SubunitBody Class .110
Apex NT Task Class .110
Apex NT TaskType Class .110
Apex NT Type Class .111
Apex NT UnitBody Class .111
Apex NT UnitSpec Class .112
Apex NT View Class .112
Apex NT ViewDirectory Class .113
Subsystem Structure for Apex NT Templates115

ClearCase Domain .120
Accessing Objects with Pathnames .120

ClearCase Domain Classes .121
ClearCase Activity Class .121
ClearCase Attribute Class .122
ClearCase AttributeType Class .122
ClearCase Baseline Class .123
ClearCase BaselineComparison Class .124
ClearCase Branch Class .124
ClearCase BranchType Class .126
ClearCase CheckedOutFile Class .126
ClearCase Component Class .127
ClearCase Element Class .127
ClearCase File Class .128
ClearCase Folder Class. .129
ClearCase HistoryRecord Class .130
ClearCase Hyperlink Class .130
ClearCase HyperlinkType Class .131
ClearCase Label Class .132
vi Rational Software Installation Guide

ClearCase LabelType Class . 132
ClearCase Lock Class . 133
ClearCase Name Class . 134
ClearCase Project Class . 134
ClearCase ProjectPolicy Class . 135
ClearCase ProjectVOB Class . 135
ClearCase Region Class . 136
ClearCase Stream Class . 137
ClearCase Trigger Class . 137
ClearCase TriggerType Class . 138
ClearCase UCMObject Class . 139
ClearCase Value Class . 140
ClearCase Version Class . 140
ClearCase View Class . 141
ClearCase VOB Class . 141
ClearCase VOBObject Class . 143

ClearQuest Domain . 145
Regarding Queries . 145
Filtering Query Results . 145

ClearQuest Domain Classes . 146
ClearQuest Attachments Class . 146
ClearQuest Groups Class . 148
ClearQuest History Class . 148
ClearQuest Users Class . 149

File System Domain . 151
File System Domain Classes . 151

File System DirectoryObject Class . 151
File System Directory Class . 152
File System File Class . 152
File System FileRecord Class . 153

MSProject Domain . 155
MSProject Project Class . 155
MSProject Task Class . 156
MSProject Resource Class . 156
MSProject Assignment Class . 157

RAdmin Domain . 159
RAdmin RAProject Class . 159
RAdmin RoseModel Class . 159
 vii

RAdmin RAServerClass .160
RequisitePro Domain .161

Generating a SoDA Report directly from RequisitePro161
Accessing Project-specific Attributes .161
Improving Generation Performance of RequisitePro Templates 162

RequisitePro Domain Classes .164
RequisitePro AttributeValue Class .164
RequisitePro Discussion Class .165
RequisitePro Document Class .165
RequisitePro DocumentType Class .166
RequisitePro Project Class .167
RequisitePro Relationship Class .168
RequisitePro Requirement Class .168
<Project-Specific Type>Requirement Class .170
RequisitePro RequirementType Class .170
RequisitePro Reply Class .171
RequisitePro Revision Class .171
RequisitePro User Class .172
RequisitePro Group Class .172

Rose Domain .174
Generating a SoDA Report directly from Rose 174
How to Display the Contents of Files Referenced by ExternalDocs . .175

Rose Domain Classes .175
Rose Action Class .175
Rose Association Class .176
Rose Activity Class .176
Rose Attribute Class .177
Rose Class Class .178
Rose ClassDiagram Class .181
Rose ClassUtility Class .181
Rose Component Class .182
Rose ComponentDiagram Class .183
Rose Decision Class .183
Rose DeploymentDiagram Class .184
Rose Device Class .184
Rose HasRelationship Class .185
Rose InheritsRelationship Class .185
viii Rational Software Installation Guide

Rose InstantiatedClass Class . 186
Rose InstantiatedClassUtility Class . 186
Rose InteractionDiagram Class . 187
Rose Link Class . 188
Rose Message Class . 188
Rose MetaClass Class . 189
Rose Model Class . 189
Rose ModuleVisibilityRelationship Class . 190
Rose Node Class . 191
Rose Object Class . 191
Rose Operation Class . 192
Rose Package Class . 194
Rose PackageDependency Class . 196
Rose Parameter Class . 197
Rose ParameterizedClass Class . 197
Rose ParameterizedClassUtility Class . 198
Rose Process Class . 198
Rose Processor Class . 199
Rose Property Class . 199
Rose RealizeRelationship Class . 200
Rose Relationship Class . 200
Rose Role Class . 201
Rose State Class . 202
Rose StateActivityDiagram Class . 203
Rose StateDiagram Class . 204
Rose StateActivityModel Class . 204
Rose StateTransition Class . 206
Rose String Class . 206
Rose Subsystem Class . 207
Rose Synchronization Class . 208
Rose UseCase Class . 208
Rose UsesRelationship Class . 210
Rose UseCaseDiagram Class . 210

Rose RealTime Domain . 212
How to Display the Contents of Files Referenced by ExternalDocs . 212

Rose RealTime Domain Classes . 213
Rose RealTime Action Class . 213
 ix

Rose RealTime Association Class .213
Rose RealTime AssociationEnd Class .214
Rose RealTime AssociationRole Class .215
Rose RealTime AssociationEndRole Class .215
Rose RealTime Attribute Class .215
Rose RealTime Class Class .216
Rose RealTime ClassDiagram Class .217
Rose RealTime Classifier Class .218
Rose RealTime ClassifierRole Class .219
Rose RealTime CallAction Class .220
Rose RealTime Capsule Class .220
Rose RealTime CapsuleRole Class .220
Rose RealTime CapsuleStructure Class .221
Rose RealTime ChoicePoint Class .221
Rose RealTime ClassUtility Class .222
Rose RealTime Collaboration Class .222
Rose RealTime CollaborationDiagram Class .222
Rose RealTime Component Class .223
Rose RealTime ComponentAggregation Class224
Rose RealTime ComponentDependency Class225
Rose RealTime ComponentDiagram Class .225
Rose RealTime ComponentInstance Class .226
Rose RealTime ComponentPackage Class .226
Rose RealTime Connector Class .227
Rose RealTime Coregion Class .227
Rose RealTime CreateAction Class .228
Rose RealTime DeploymentDiagram Class .228
Rose RealTime DeploymentPackage Class .228
Rose RealTime DestroyAction Class .229
Rose RealTime Device Class .229
Rose RealTime Diagram Class .229
Rose RealTime Element Class .230
Rose RealTime Environment Class .230
Rose RealTime File Class .231
Rose RealTime FinalState Class .231
Rose RealTime Generalization Class .231
Rose RealTime InitialPoint Class .232
x Rational Software Installation Guide

Rose RealTime InstantiatedClass Class . 232
Rose RealTime InstantiatedClassUtility Class 232
Rose Realtime InstantiateRelationship Class 232
Rose RealTime Interaction Class . 233
Rose RealTime InteractionInstance Class . 233
Rose RealTime JunctionPoint Class . 234
Rose RealTime LocalState Class . 234
Rose RealTime Message Class . 234
Rose RealTime MetaClass Class . 235
Rose RealTime Model Class . 235
Rose RealTime ModelElement Class . 237
Rose RealTime NoteView Class . 237
Rose RealTime Operation Class . 238
Rose RealTime Package Class . 240
Rose RealTime PackageDependency Class . 241
Rose RealTime Parameter Class . 242
Rose RealTime ParameterizedClass Class . 242
Rose RealTime ParameterizedClassUtility Class 243
Rose RealTime Port Class . 243
Rose RealTime PortRole Class . 244
Rose RealTime Processor Class . 244
Rose RealTime Property Class . 244
Rose RealTime Protocol Class . 245
Rose RealTime RealizeRelationship . 245
Rose RealTime Relationship Class . 246
Rose RealTime ReplyAction Class . 246
Rose RealTime RequestAction Class . 247
Rose RealTime ResponseAction Class . 247
Rose RealTime ReturnAction Class . 248
Rose RealTime SendAction Class . 248
Rose RealTime SequenceDiagram Class . 248
Rose RealTime Signal Class . 248
Rose RealTime State Class . 249
Rose RealTime StateDiagram Class . 249
Rose RealTime StateMachine Class . 250
Rose RealTime StateVertex Class . 250
Rose RealTime String Class . 251
 xi

Rose RealTime TerminateAction Class . 251
Rose RealTime Transition Class . 251
Rose RealTime Trigger Class . 252
Rose RealTime UninterpretedAction Class . 252
Rose RealTime UseCase Class . 252
Rose RealTime UsesRelationship Class . 253

TeamTest Domain . 255
TeamTest Domain Classes . 255

TeamTest Project Class . 255
TeamTest Build Class . 256
TeamTest Computer Class . 256
TeamTest ConfiguredTestCase Class . 257
TeamTest Event Class . 258
TeamTest Group Class . 259
TeamTest Iteration Class . 260
TeamTest Log Class . 260
TeamTest LogEvent Class . 261
TeamTest LogFolder Class . 262
Relationships available for LogFolder . 263
TeamTest Name Class . 263
TeamTest Port Class . 263
TeamTest Requirement Class . 263
TeamTest ReqtAttribute Class . 264
TeamTest Schedule Class . 264
TeamTest Script Class . 265
TeamTest Session Class . 266
TeamTest TestCase Class . 267
TeamTest TestCaseFolder Class . 268
TeamTest TestCaseResult Class . 269
TeamTest TestDocument Class . 269
TeamTest TestInput Class . 269
TeamTest TestPlan Class . 270
TeamTest User Class . 271
TeamTest Variant Class . 271
TeamTest VerificationPoint Class . 271

Word Domain . 273
Word Domain Classes . 273

Word Document Class . 273
xii Rational Software Installation Guide

Word Paragraph Class . 274
Word Heading Class . 274
Word Bookmark Class . 275
 275

8 Index
 xiii

xiv Rational Software Installation Guide

U S I N G R A T I O N A L S O D A F O R W O R D
1
 Installing Rational SoDA for Word
Installation Overview
The Rational Software Setup program lets you perform standard
and custom installations of Rational software products.

This document provides you with:

! An overview of the installation procedures for Rational software
products, included in this chapter.

! Software licensing description and procedures. The online help
for Rational License Key Administrator contains detailed
information about licensing activities.

! Information needed to perform a typical installation of Rational
SoDA for Word. Release notes are available in your SoDA
installation �docs� directory in Microsoft Word format. Online
documentation is available in PDF. Adobe Acrobat Reader is
required to view PDF files. A copy of the Adobe Acrobat Reader
installation kit is available on the Rational Solutions for
Windows CD in the [extras] directory. Rational Suite and
other Rational products are on a separate Rational Solutions for
Windows � Online Documentation CD.

! Support information, including references to additional sources
of information for Rational software and licensing. See
�Technical Support Information� on page 9.

Installing Rational Software Products and License Keys
This section provides a summary of the steps for installing
Rational software products and the FLEXlm licensing software.

Note This guide assumes drive C as your default installation drive.
Substitute your actual installation drive name, as needed.
1

Installation Quick Start

Table 1, Installation Quick Start Guide, summarizes the steps for
installing Rational software and license keys:

Table 1: Installation Quick Start Guide

Step For More Information

Install Rational software from the
Rational Solutions for Windows CD.
Make certain that you are installing the
product you have purchased.

See the �Installing SoDA for Word with
Rational Software Setup� on page 6
installation options and configuration
procedures.

Use the Rational License Key
Administrator to install the startup
license key.

See the Rational License Key
Administrator online help for detailed
instructions. The information you need
to install the startup license key is
included on your Startup License Key
Certificate in your media kit.
See �SoDA License Management� on
page 13 for more information.

Request permanent license keys from
Rational using the License Key
Administrator.
Make certain that you are requesting
keys for the product you have
purchased and installed.

See the Rational License Key
Administrator online help.

If you are using node-locked
licenses: Install the new permanent
license key on your client system.
If you are using floating licenses:
Install the new permanent license key
on your license server system.

See the Rational License Key
Administrator online help.

If you are using floating licenses:
Set up your client systems to use the
licenses from the license server system.

See the Rational License Key
Administrator online help.

Use the Start menu to select and start
the program.

See the program�s online help.
2 Using Rational SoDA for Word

Note Startup license key information is included with your Rational
Suite software media kit. The startup license expiration date is
noted on your startup license key certificate. For additional
licensing information, see the Rational License Key Administrator
online help.

Caution Make certain that you select the product you purchased
when you use the Rational Software Setup program.
Review the License Key Certificate that you received with
your purchase. If you install a program other than the one
you purchased and for which you do not have a license
key, you will not be able to use that program.

Before You Start the SoDA Installation
The following sections proved the steps you must take and
information you must review prior to installing SoDA.

Note For the most current information related to SoDA for Word
features and known issues, refer to the Release Notes document
that is, by default, at the following location on your system after
installation:
c:\Program Files\Rational\SoDAWord\docs\relnote.doc

Installation Requirements

The following table describes the system and software
requirements for installing Rational SoDA for Word:

Table 2: SoDA for Word Requirements

Item Requirement

Operating Systems Windows NT 4.0, Service Pack 3 or greater
Windows 95, Service Pack 2 or greater
Windows 98

Processor 166 MHz or greater

Memory 32 MB

Disk Space 50 MB

Word Processor Microsoft Word 95, 97, or 2000
Installing Rational SoDA for Word 3

Caution Installation of Rational SoDA for Word on dual-boot systems is not
supported.

Make certain that you have a current backup of your Registry and
system directories prior to running the Rational Software
Installation procedure.

You must install either a startup or permanent license key to use
this software. The Rational License Key Administrator online help
provides detailed instructions for installing startup and
permanent license keys.

The installation program requires specific versions of Microsoft
files. The installation program will install them or you may choose
to install them yourself from other sources.

To use the Rational Software Setup program on a Windows NT
system, you must have Windows NT administrator privileges on
the local machine.

Installation Types

The Rational Software Setup program provides you with several
installation types, letting you install the configuration most
appropriate for your system. Table 3, Installation Types, describes
the installation types supported with the Rational Software Setup
program.

Monitor 800 X 600 X 256-color video resolution, or greater

Mouse/pointing device Microsoft Mouse or compatible pointing device

Automated License
Key Requests

Internet connection required for automated license
requests

Table 3: Installation Types

Type Description

Typical Installs the most commonly used features for a product.
Use this option for standard installations.

Custom/Full Allows you to add or remove features.

Table 2: SoDA for Word Requirements
4 Using Rational SoDA for Word

Rational Software Setup lets you choose the Custom Installation
option; you can set or clear the check box for products or product
features on the Choose Features page. Setting or clearing
installation options lets you install selected components of
Rational software.

Installing Shared Components

The Rational Software Setup program needs to install shared
components. A shared component is software provided by a
company other than Rational. It is potentially available to other
applications on your system.

If the setup program needs to update shared components, the
setup program displays a list of the required files. The files listed
must be installed on your system before the installation can
proceed.

Setup installs U.S. English versions of the files. It does not
overwrite newer file versions.

The check box, Replace files with newer versions in English, is
enabled when you have installed earlier versions of the files that
are localized to a non-U.S. English language. If you select this
check box, the U.S. English versions of the files will replace your
versions. If you clear this check box, the files will not be updated
and you will need to update them yourself.

Compact/Laptop Installs a subset of the standard configuration. May omit
optional files, including online documentation or online
help. Use this option on systems with limited disk space.

Minimal Installs the files needed to run the program from a CD or
network location.
Use this option to run the program from a centrally
managed location.

Table 3: Installation Types

Type Description
Installing Rational SoDA for Word 5

When to Install Files Yourself

In general, we recommend that you allow the installation
procedure to install shared files for you. Under some
circumstances, you may want to install the files yourself:

! You are using a U.S. English system, but installing new files
may invalidate your current environment. In this case, you need
to determine how to correct your environment so that you can
run existing tools and the Rational products you want to install.

! Your site may mandate that you obtain shared files directly
from the source, for example, from Microsoft, rather than using
files supplied by a third party. Or your site may prohibit
end-users from installing shared components.

! Rational supplies U.S. English versions of shared files. You may
want to install equivalent files that are localized to your
language.

! There may be a later version of the files available. Rational
products should work with the supplied version of shared files or
any later versions.

Installing SoDA for Word with Rational Software Setup
The Rational Software Installation procedure uses
c:\Program Files\Rational as the default installation path. You
may specify another drive during the installation procedure.

Note If you have installed another Rational Suite product, you cannot
select an alternate location for your SoDA for Word installation.

Caution Canceling an installation that is in progress may leave your
system in an indeterminate state. If you click Cancel while the
installation is in progress, you are asked to confirm that you want
to exit from the incomplete installation.

Typical Installation

This section describes a typical installation of Rational SoDA for
Word.
6 Using Rational SoDA for Word

1 Insert the Rational Solutions for Windows CD into your
system�s CD drive. The setup program starts automatically.

If autorun is disabled on your system, click Start > Run. Using
the drive letter of your CD-ROM drive, enter
drive:\SETUP.EXE.

2 The Rational Software Setup wizard guides you through the
software installation. On each page, click Next to proceed to
the next page.

The Rational Software Setup program writes a log of the
installation activities. The log file is located in
<Install Path>\Rational\RSSetup\RSSetup.log.

3 At the Choose Products page, select Rational SoDA for Word.

4 At the Setup Configuration page, select the Custom/Full
installation if you want to choose integrations for specific
SoDA for Word domains. If not, select the Typical installation
option and complete the installation.

Possible Reboot Required

If files that are required for the installation are in use during the
installation procedure, the Rational Windows Setup program may
need to reboot your system to complete the installation.

1 After rebooting, log on as the same user to complete the
installation procedure.

Part 2 of the installation automatically starts on your system.

2 Click Finish to exit from the Rational Software Setup program.

If the Launch License Key Administrator check box is set, the
Rational License Key Administrator will start after you click
Finish.
Installing Rational SoDA for Word 7

Setting the Template Path
SoDA automatically configures access to SoDA wizards and
templates during installation. This default configuration requires
no intervention from you, as an installer.

An advanced feature in Microsoft Word allows you to configure
access to user templates (custom .dot files) using the File
Locations tab on the Tools > Options dialog box. The custom
templates are then available when you create a new office
document (File > New) in Word. During installation, SoDA
automatically sets this User Templates path on the File Locations
tab to the Program Files\Rational\SoDAWord\wizards directory.

If the User Templates path is changed, the SoDA wizards and
soda.dot file are no longer visible in the File > New dialog box. To
reset the access to these SoDA wizards and templates, run the
following utility from your Windows Start menu:

Start > Programs > Rational... >

Rational SoDA for Word > Set User Template Path

 Removing Rational SoDA for Word
This section describes how to remove SoDA from your system.

Preparing to Remove SoDA

Make sure that no one is using SoDA and any associated files. You
will not be able to remove files that are in use.

To remove SoDA from a Windows NT system, you must have
Windows NT administrator privileges on the local machine.

To Remove SoDA

Use the Add/Remove Programs control panel to select and
remove SoDA. The Rational Software Setup removes SoDA from
your system.

Note Removing SoDA does not remove directories that contain files that
you have created using any Rational Suite products.
8 Using Rational SoDA for Word

Installation Messages
Contact Rational Customer Support for information and
assistance regarding any error messages you encounter while
installing Rational software. Table 4 below, provides contact
information.

Technical Support Information
At Rational Software Corporation, we welcome your comments on
our products and services. If you have product suggestions or
recommendations, please contact our Technical Support staff or
your Rational Account Manager.

Rational Software Corporation offers telephone, fax, and e-mail
support to customers with an active maintenance contract. If your
maintenance contract has expired, please contact your Rational
Account Manager. Potential customers using evaluation copies of
SoDA for Word should contact their Rational Account Manager
instead of Technical Support for assistance.

Before calling for assistance, please consult the online help or this
SoDA for Word User's Guide. For late-breaking updates, see the
Release Notes. Technical notes for SoDA for Word are available on
the Rational Software Web site at:
http://www.rational.com/products/soda/support/index.jtmpl

If you still cannot find the information you need, contact Rational
Customer Support:

Table 4: Rational Technical Support Contact

Customer
Area

Telephone Fax E-mail

North
America

800-433-5444 303-544-7333 support@rational.com

Europe +31-(0)20-4546-200 +31-(0)20-4546-201 support@europe.rational.com

Asia Pacific +61-2-9419-0111 +61-2-9419-0123 support@apac.rational.com
Installing Rational SoDA for Word 9

Required Information for Technical Support

When contacting Rational for support, please provide the
following information:

! Your SoDA for Word serial number and version number
! The version number of Microsoft Word and related service packs
! The version number of all related Rational domains: Rational

Rose, RequisitePro, etc.
! Your operating system and its version number, and related

service packs
! A description of your computer hardware:

- The processor (CPU) speed

- Amount of memory (RAM) installed

- Amount of free space available on your hard drive
! A description of the problem, the steps that led to the problem,

any error messages displayed, and the soda.log file from the
Logs directory

Problems with Templates in Dynamic Domains

If you need help with a customized SoDA template that references
specific objects within a Rose model or RequisitePro project, please
provide a copy of the template and the model or project (or at least
a sample subset of the model or project that includes the
referenced objects). These are very useful in debugging problems.

Licensing Support

Table 5 provides Rational License Support contact information. If
you have questions about acquiring license keys for your Rational
Software products, contact Rational License Support. See the
online help in the Rational License Key Administrator for
additional licensing support information.
10 Using Rational SoDA for Word

Table 5: Rational Licensing Support

 Region Telephone E-mail

North and South
America

1-800-728-1212
1-781-676-2510
FAX: 781-676-2510

lic_americas@rational.com

Europe
(includes Israel
and Africa)

Phone: +31 23 554 10 62
FAX: +31 23 554 10 69

 lic_europe@rational.com

Japan Phone: +81-3-5423-3611
FAX: +81-3-5423-3622

lic_japan@rational.com

North Asia Pacific
(China, Hong
Kong, Taiwan)

Phone: +852 2143 6382
FAX: +852 2143 6018

lic_apac@rational.com

Korea Phone: +82 2 556 9420
FAX: +82 2 556 9426

 lic_apac@rational.com

South Asia
Pacific
(includes Australia,
New Zealand,
Malaysia,
Singapore,
Indonesia,
Thailand, Vietnam,
the Philippines,
India, and Guam)

Phone: +612-9419-0100
FAX: +612-9419-0160

lic_apac@rational.com
Installing Rational SoDA for Word 11

12 Using Rational SoDA for Word

U S I N G R A T I O N A L S O D A F O R W O R D
2
 SoDA License Management
This chapter provides an overview of the Rational software
licensing, including descriptions of the types of licenses and
license keys used with Rational software products.

Table 1, Installation Quick Start Guide, on page 2 provides a
summary of the steps associated with installing and setting up
license keys with Rational software products.

The online help in the Rational License Key Administrator
describes how to use the Rational License Key Administrator to
review and modify your license configuration. The online help also
provides information about configuring the FLEXlm License
Server software.

The Rational License Key Administrator online help is available
by clicking Help in the License Key Administrator program or by
opening <Install Path>\Rational\Common\licadmin.hlp.

The Rational Software Licensing Model
Rational Software uses FLEXlm, a software-based license
management tool from GLOBEtrotter, Inc. FLEXlm provides
users with a powerful and flexible mechanism for managing
licensing resources.

For more information about FLEXlm licensing, see the FLEXlm
for Windows FAQ file on www.globetrotter.com/lmwinfaq.htm.

The Rational Software installation procedure automatically
installs the FLEXlm licensing software on client systems, allowing
client systems to use either node-locked or floating licenses.
(Table 7, License Types, on page 16 describes node-locked and
floating licenses.)

Most end users configure their own systems for licensing using
software provided by Rational. In cases where customers choose to
use floating licenses, a system administrator typically configures a
13

http://www.globetrotter.com/lmwinfaq.htm
http://www.globetrotter.com/lmwinfaq.htm

license server system for licensing, using software provided by
Rational and GLOBEtrotter.

For additional information about Rational software licensing, see
the Rational Suite Installation Guide on your Documentation CD
or the online help for the Rational License Key Administrator.

License Types and License Key Types
Table 6 describes the types of license keys used by Rational
licensing. Table 7, License Types, on page 16 describes the types of
licenses supported by Rational licensing.

Table 6: License Key Types

License Key
Type Description Notes

Startup A time-limited license. The expiration date for the
startup license keys is noted
on the startup license key
certificate included with your
software media kit.
You can use a startup license
key on any system.
14 Using Rational SoDA for Word

Permanent A license issued to a
customer for running
Rational products.
Permanent licenses are
keyed to a product and
machine. Permanent Keys
can be node-locked or
floating. Node-locked
Permanent Keys are
installed on a client
machine, and floating
Permanent Keys are
installed on a License
Server machine.

The Rational issues
Permanent Keys upon
request. Use the Rational
License Key Administrator to
prepare and send your license
requests to Rational.

TLA (Term
License
Agreement)

Variations of a Permanent
Key. TLAs are issued to a
site to allow their employees
to use Rational software for
a negotiated period of time.

TLAs are issued by the
Rational Sales Team. If you
are interested in obtaining
TLAs for your organization,
contact your local Rational
Sales Team

Table 6: License Key Types

License Key
Type Description Notes
SoDA License Management 15

Installing a Startup License on a Client System
After you install Rational software, you may install a startup
license, allowing you to use Rational software until you obtain
your permanent license key. The startup license key information
is included with your software kit. The license key expiration date
is noted on the startup license key certificate.

You can request permanent licenses keys, if available. The date
that your permanent license key is available is noted on your
startup license key certificate. You can request the permanent key
as soon as it is available, whether you have installed a startup key
or not.

In order to maintain uninterrupted use of your software, make
sure you obtain and install your permanent license key before
your startup license key expires.

Table 7: License Types

License Type Description Notes

Node-locked A license that permits a user
to use the licensed software
on a specified system.
A node-locked license is
configured for a specific
system. To move a
node-locked license to
another system, you must
uninstall the license key
from the old system and
request a new license key
for the new system.

Use the Rational License Key
Administrator to add or modify
a node-locked license.
Contact Rational Support for
help with node-locked
licenses.

Floating A floating license is installed
on a license server system
and permits a specified
number of users to use the
licensed software from client
systems.
Floating licenses are shared
among all users of the
licensed software.

A system administrator must
install the FLEXlm License
Server software on a server to
set up floating licenses.
Use Rational License Key
Administrator to set up floating
licenses for your system.
16 Using Rational SoDA for Word

To Install a Startup License Key on a Client System

1 Using your product�s Windows Start menu, find and run the
License Key Administrator. The Rational License Key
Administrator is located in the program group for the program
you have installed (for example, Rational SoDA for Word or
Rational Suite Enterprise).

2 On the License Key(s) tab, click on Enter a License Key.

3 On the first wizard page, select Startup License Key.

4 On the second wizard page, select Node-Locked License Key.

5 On the wizard screen, provide the information in the fields
based on the columns on the Startup License Key Certificate.

You must enter the information exactly as presented or the
key will not work. If you enter incorrect or incomplete
information, the License Key Administrator reports the
following message:

There is an error in the license key as it was entered.
Please check your entries for a possible typo.

Review and correct the information in each of the fields.

6 Click Finish.

After you complete this step, the License Key Administrator
displays the startup license key on the License Key(s) tab.

Configuring Your Client System to Use a Node-Locked License
If you are using a node-locked license, you do not need to set up or
connect to a license server system; you simply install your license
keys on your client system. The Rational License Key
Administrator online help describes the license installation
process.

Configuring Your Client System to Use a Floating License
Before configuring your system to use a floating license, you must
obtain the name of your license server system from your system
administrator. (If you are the system administrator, see the
SoDA License Management 17

Rational Suite Installation Guide on your Documentation CD or
the online help for the Rational License Key Administrator for
information about setting up server-based floating licenses.)

1 Ensure that the FLEXlm license server software is running on
the license server system. Contact your system administrator
or see Rational License Key Administrator online help.

2 Start the Rational License Key Administrator on the client
system.

3 Click the Settings tab.

4 Select the Search Server check box and specify the name of the
FLEXlm license server system.

5 Click Exit to exit from the Rational License Key Administrator.

Acquiring a Node-Locked Permanent Key for Your Client System
This section summarizes the steps you follow to submit your
request.

The Rational License Key Administrator online help provides
instructions for preparing, sending, and receiving license key
requests, and installing license key files.

You must have an Internet connection to request license keys
electronically with the Rational License Key Administrator.

1 Use the License Key Administrator to prepare the license
request.

2 Send the request to Rational. You may send the request to
Rational electronically using the Rational License Key
Administrator, by printing and faxing the request, or by
printing the request and making your request by telephone.
18 Using Rational SoDA for Word

U S I N G R A T I O N A L S O D A
3
 Generating Reports and Documents
Starting SoDA
Start SoDA by selecting Rational SoDA from the Windows Start
menu. This command opens Word, enables the SoDA menu, and
opens a blank document. Use one of the following procedures (New
User or Experienced User) for working with a SoDA template.

New user

1 Do one of the following:

! In Microsoft Word, click File > New.
! In Microsoft Office, select New Office Document.

2 In the dialog box, do one of the following:

! Select soda getting started.wiz and click OK.
The Getting Started Wizard guides you through selecting a
SoDA template, saving it for your own use, identifying the
source of information, and generating a report.

! Select soda create template.wiz and click OK.
The Template View enables you to build a SoDA template by
selecting an information source and specifying the artifacts to be
documented from that source.

Experienced user
The SoDA code is automatically loaded into Microsoft Word
whenever an existing SoDA document is opened. A new SoDA
template can be created as follows.

1 Do one of the following:

! In Microsoft Word, click File > New.
19

! In Microsoft Office, select New Office Document.

2 In the dialog box, do one of the following:

! Select soda create template.wiz and click OK.
The Template View enables you to build a SoDA template by
selecting an information source and specifying artifacts to be
documented from that source.

! Select soda.dot and click OK.

Understanding SoDA
SoDA is an acronym for Software Documentation Automation.
SoDA is a report generation tool that supports day-to-day
reporting as well as formal documentation requirements with an
easy-to-use interface for defining custom reports and documents.
SoDA is tightly integrated with Rational�s market leading
development tools, giving you a single interface for reporting on
requirements, design, test, and defect status.

SoDA automates the production of software documentation,
substantially reducing the effort required to produce software
documentation. The primary function of SoDA is to retrieve
information from various sources and use it to generate a
document or report based on a template. SoDA comes with several
predefined templates, which can be used as-is, or can be modified,
using its WYSIWYG template-building component to build
templates to meet your specific needs.

SoDA for Word:

! Adds document generation to the capabilities of Microsoft Word.
! Performs incremental document regeneration to reduce

turnaround time
! Preserves data entered directly into the document from

generation to generation.
! Enables extraction of data from multiple information sources,

such as Rational Rose and Rational RequisitePro, to create a
single document

! Maintains consistency between documents and information
sources
20 Using Rational SoDA for Word

The following sections briefly discuss each of the following aspects
of documentation automation using SoDA:

! SoDA Templates vs. Word Templates
! Information Retrieval
! Document Generation
! Report Generation
! Template Customization

SoDA Templates vs. Word Templates
The term template has a slightly different meaning in SoDA than
it does in Word.

A Word template is a .DOT file, which, when attached to a new
or existing document, provides (amongst other things) styles and
macros to a document. The Word template soda.dot enables the
SoDA environment in Word, including the SoDA menu and its
commands.

A SoDA template is a Word document It is a .DOC file that is
based on the Word template: soda.dot. As such, it contains SoDA
commands and text specific to the document.

 A SoDA template can be copied and used for document generation
with no changes. Or, a SoDA template can act as a starting point
for new or revised project-specific templates.

Information Retrieval
SoDA extracts information using special programs called
domains. Each domain understands a single source of
information, such as Rational Rose and the File System.
Embedded in each domain is the knowledge of how information is
modeled by that source, in terms of classes, attributes and
relationships. For instance, the Rose domain understands that a
class category has attributes of name and documentation, contains
relationships to classes, and has import relationships to other
categories. This domain-specific knowledge enables you to retrieve
exactly the information you want to document.
Generating Reports and Documents 21

One of the benefits of SoDA is that it can support multiple
domains, even within the same document. This means that project
team members need to use (and learn) just one documentation tool
throughout the software life cycle, rather than using a different
tool unique to design, coding, or testing.

Document Generation
There are several products that generate documents in an
automated fashion. What makes SoDA unique is how well it can
regenerate a document. SoDA maintains consistency between the
document and its source(s) through a process called Intelligent
Document MergingTM. If you delete an object in the source
domain, such as a class in Rose, SoDA will remove the section(s) of
the document generated from that object. If you add to the source,
SoDA will create a new section of the document in the proper
location.

Consistency is only half the story of Intelligent Document
Merging. The other half is how SoDA handles information that is
not extracted from an outside source. SoDA lets you add
descriptive text, including special formatting such as bulleted
lists, equations, and even drawings. When a document is
regenerated, SoDA updates the information taken from the
domain(s) without affecting the user-added portions.

Another key feature of SoDA is its ability to regenerate a portion
of a document. If you know you made a change to the source that
affects just one paragraph in the document, you can choose to
regenerate that one paragraph, which is much faster than
regenerating your entire document every time.

Report Generation
Intelligent Document Merging has a cost, and that cost is
performance. If you don�t need to maintain supplemental text, you
will be better off generating reports instead of documents. Reports
use the exact same templates that documents do, except they are
created from scratch every time. Since SoDA does not have to keep
track of what information came from the source and what
information was entered manually, it can generate the report
much faster than a document.
22 Using Rational SoDA for Word

SoDA enables you to generate reports as Word documents or as
HTML documents. In Microsoft Word 2000, the generated HTML
document can be saved as a Word document (with a .doc
extension).

Template Customization
SoDA templates are completely customizable; you can add,
change, or delete portions as needed. You can even start from
scratch and create your own template.

The customization process itself is completely interactive. You
don�t need to be a programmer or learn a macro language to
make template changes. You simply use the Microsoft Word�s
What-You-See-Is-What-You-Get (WYSIWYG) interface to
specify structure and style. Through the SoDA menu, dialog boxes
are displayed to aid in defining SoDA commands. For more on
customizing templates, see �Template Customization Concepts� on
page 27.

Generating Web Pages, Reports, and Documents

Choosing a Template
SoDA provides templates that support report or document
generation in conjunction with selected Rational products. SoDA
templates specify information types to be extracted from the
source product domains. Many of these templates are compliant
with industry specifications, such as MIL-498, IEEE, CMM, and
the Rational Unified Process (RUP).

These templates are located in the templates directory in your
SoDA installation. They are organized in subdirectories by
domain.

To Select a SoDA template, use any of the following:

! from RequisitePro, click Project > Generate SoDA Report
! from Rose, click Report > SoDA Report
! or refer to: �Starting SoDA� on page 19.
Generating Reports and Documents 23

 Maintaining Generated Documents
After your document is generated, you can change SoDA
commands within the document, and you can also change the
source objects in the information source domain. When you make
source changes, however, you must regenerate the corresponding
portions of your document to keep the document and source
information consistent.

Modifying the Link to a Source Object

If you change the names of source objects, and you have added
additional information to the generated section, you must change
the links that refer specifically to those objects. If you move
objects, you must change all links that refer to those objects.

To edit a single link:

1 Place the insertion point anywhere in the section containing the
link and click SoDA > Edit Link.

2 Examine the Edit Link dialog box listing the selected link and its
possible sources. The list of sources is the result of re-evaluating
the REPEAT command from which the selected link was created.

3 Choose the link you want to change and click OK.

The selected link is updated to reflect its new source.

Changing the Path of Many Source Objects

If you have a document that uses files as sources, and you move
those sources to another directory, SoDA could lose the connection
between the sources and their generated sections. Thus, the next
time you generate the document SoDA could delete all of those
sections and you would lose any supplemental information that
you added.

The Adjust Links dialog box lets you make global path name
changes to your links so you do not have to change each link
individually.

To change the path in many SoDA links:
24 Using Rational SoDA for Word

1 Position your cursor anywhere in your document, and click SoDA
> Adjust Links.
The Adjust Links dialog box will appear.

2 Enter the old path in the From field, enter the new path in the To
field, and click OK.

When SoDA completes the task, you will see a report indicating
which links were updated successfully, and which failed.
Generating Reports and Documents 25

26 Using Rational SoDA for Word

U S I N G R A T I O N A L S O D A
4
 Customizing a Template
Making Templates Available for Other Users
SoDA provides �tight integration� with Rose and RequisitePro,
which enables you to generate SoDA reports directly from those
products. Within Rose or RequisitePro, SoDA displays a list of
available templates, with a description of each template.

You can add your own templates to these lists by following these
steps:

1 Click File > Properties.

2 In the Title field of the Summary tab, enter a brief description of
the template. Click OK.

3 Open the template in Word.

4 Click SoDA > Modify Command. The OPEN Command dialog
box appears.

5 Ensure that the value in the Argument field is blank. (To clear
this field, select the argument value, press Delete, then press
Enter.) Click OK to close the dialog box.

6 Use the File > Save As command to save the template within the
TEMPLATE subdirectory where SoDA is installed, in the
subdirectory of the tool referenced in the OPEN command, such as
TEMPLATE\Rose or TEMPLATE\ReqPro.

Template Customization Concepts
Each information source used by SoDA is defined by a source
domain schema. The schema contains information about all of the
objects in the domain and the relationships of those objects to one
another.
27

Schemas are defined using object-oriented methods. Therefore,
the concepts and terminology used to describe schemas are also
object-oriented.

The following sections provide an introduction to basic SoDA
concepts and terminology:

! Object-Oriented Concepts
! Introducing SoDA Commands
! What Happens During Report and Document Generation

Object-Oriented Concepts

The following concepts and terms are used to define a source
domain schema. Understanding them will help you understand
how SoDA determines what to make available for commands.

Domains are the available sources from which SoDA can extract
information. The standard information source domains delivered
with SoDA include: Rational ClearCase, Rational ClearQuest,
Rational Rose, Rational Rose RealTime, Rational RequisitePro,
Rational TestStudio/TeamTest, Microsoft Project, Microsoft Word,
and the File System.

Classes are a collection of objects that share a common structure
and behavior. Classes are one item found within domains. Other
items are relationships and attributes. The File System domain,
for example, is made up of these classes: directories, files,
directory objects, and file records.

An object is an instance of a class. An object found in the directory
class of the File System domain might be C:\WINDOWS.

Relationships are associations between classes within a domain.
Relationships may be �N-ary� or �Unary.�
N-ary relationships are one-to-many relationships. For example, a
directory and the files contained in it have an N-ary relationship:
there are many files in one directory. Unary relationships are
one-to-one. For example, a file and its parent directory have a
Unary relationship: there is only one parent directory for every
file.

An attribute is a characteristic of a particular class. Attributes
result in either text or graphics. DISPLAY commands are created
28 Using SoDA for Word

using attributes. A common attribute, for example, is the name of
an object.

A subclass is a special case of a class, one that inherits attributes
and relationships from its parent class.

Introducing SoDA Commands

Each SoDA template contains one or more of these SoDA
commands: OPEN, REPEAT, DISPLAY, and LIMIT. Here is a
brief description of each command:

! The OPEN Command identifies a particular object in a source
domain. It normally provides the highest abstraction of a
domain object from which other SoDA commands can be defined.
For instance, you might OPEN a directory, or perhaps a Rose
model.

! The REPEAT Command identifies sections within a document
that are repeated for each object found based on some
relationship. This command is useful when there is a set of
objects in the source domain that needs to be uniformly
documented. The document template defines the format and
generic content of the section. SoDA builds a section for each
object found in the source. SoDA maintains the consistency
between the document and the objects in the source.

! The DISPLAY Command inserts attributes of a source object
into a generated document. You can display both text and
graphics. Any of the following might be displayed: the name of a
Rose class category, the cardinality of a �has� relationship, the
name of a directory, or the contents of a text file.

! The LIMIT Command determines whether an object exists with
certain characteristics. Normally a LIMIT command defines an
expression that evaluates to True or False. If the object fails the
test defined by the expression, the corresponding section is left
out of the document.

What Happens During Report and Document Generation

When you generate report or document, SoDA searches through
the information sources.
Customizing a Template 29

A report is a �snapshot in time,� which presents a single view of
the current state of the source information. A report is always
generated from a template. Additional text can only be added
outside of the SoDA commands (the hidden annotations) in the
template. See also: �Report Generation� on page 22.

A document is a �living� representation of the source
information. You can regenerate the whole document or sections of
the document. You do not need to use the template. Additional
text can be added in generated sections of the document.
Document generation is slower than report generation due to
validation and merging of information. See also: Document
Generation

When generating a report, SoDA references your template and
adds text and graphics to the report depending upon the type of
command being executed.

The first time you generate a document, SoDA references the
template to create the document. During subsequent generations,
SoDA references the previously generated document. SoDA adds,
deletes, or ignores objects based on changes within the source.

SoDA uses the following commands when generating:

! SoDA uses the arguments of each OPEN command to create a
pointer to a particular object within the referenced source
domain.

! For each object returned by a REPEAT command, a section is
created. (The term section can mean a set of paragraphs, a list
item, or even a set of names followed by commas.)
In report generation, the section that includes the original
REPEAT command is not copied to the report.
In document generation, the link refers only to the one object
that corresponds to the new section, and is used for Visit Source
and document regeneration. The section that includes the
original REPEAT command remains in the document, but is
hidden.

! When a DISPLAY command is encountered the value specified
in the command is returned and inserted into the report.
30 Using SoDA for Word

! A LIMIT command results in a new section or nothing. If the
object exists and its specified characteristics are satisfied, the
section will be created.
In report generation, the section is not copied to the report.
In document generation, the command remains in the
document, but it is hidden. Whenever the document is
regenerated, the LIMIT commands are checked again to see if
the characteristics of the object have changed.

Customizing a SoDA Template
When you need to customize a SoDA template, follow these steps:

1 Identify the domain that contains the information you need to
document.

2 Do one of the following:

! Choose a Template as a starting point, normally one of the
supplied templates for that domain.

! Create a new template based on soda.dot.

3 Use the Template View (SoDA>Template View) to add, modify,
and/or delete SoDA commands as needed:

! OPEN Commands
! REPEAT Commands
! DISPLAY Commands
! LIMIT Commands
! Special LIMIT Commands

Note Be careful when editing text within annotations in a template. Do
not modify or remove the hidden annotation text associated with
SoDA commands.

4 Save the template.

5 Test the template.

6 Repeat steps 4-6 until complete.
Customizing a Template 31

A good understanding of your information as it exists within each
domain and a detailed document plan will ensure that the
placement of SoDA commands within a template will yield the
desired results.

SoDA�s Use of Annotations
All SoDA information is stored in Word documents as annotations.
Annotations are Word comments, in hidden text, within a SoDA
document. Annotations do not affect the viewing or printing of the
document. They are most commonly used for readers to review
and comment on a Word document. SoDA uses annotations to

! store the strings that hold the values of theSoDA commands
! identify the beginning and ending points of SoDA commands
! traverse quickly through a document to locate SoDA commands

Although you could use annotations to review SoDA documents, it
is recommended that you make a copy of a SoDA document and
place your comments in the copy. This is to ensure that SoDA
annotations are not accidentally deleted or modified.

Annotation Names

Annotations are marked by a hidden name and number enclosed
in brackets, for example, [JSMITH1]. The name of the annotation
reflects the initials of the user, as found in the User Info folder in
Word�s Customize dialog box. The number is sequential in the
document, from 1 to the total number of annotations. SoDA uses
the annotation names to help identify commands. Here are the
names used by SoDA:

Annotation Name Description

OPEN An OPEN Command (a single command)

REPEAT The start of a REPEAT command

ENDREP The end of a REPEAT command

DISPLAY The start of a DISPLAY command

ENDDISP The end of a DISPLAY command

LIMIT The start of a LIMIT command
32 Using SoDA for Word

While most of these annotations are self explanatory, the last two
pairs warrant further explanation. A link section is the text and
graphics generated for one object retrieved by its parent REPEAT
command. If the object is deleted from the source the location of
the [LINK] and [ENDLINK] annotations defines the section that
will be deleted from the document. The [LINK] annotation also
contains the unique identifier for the corresponding object in the
source, which assists in updating and Visit Source.

A MASTER section is the text and graphics for a REPEAT
command and all its associated generated sections. The
[MASTER] and [ENDMAST] annotations are used internally by
SoDA to identify which link sections are associated with a
particular REPEAT command.

The Annotation Hierarchy

Although annotations are by nature sequential, SoDA uses the
annotation names not only to identify the scope and values of each
command, but to define a hierarchy as well.

You can view the hierarchy of SoDA commands using the
Template View, which is displayed when you choose Template
View from the SoDA menu.

Choosing a Domain
When you create a SoDA document you must determine what
information will act as sources to the document.

See �Rational SoDA for Word Domains� on page 95 for more
information about Portal Designer domains:

! Rose Domain
! Rose RealTime Domain

ENDLIM The end of a LIMIT command

LINK The start of a link section

ENDLINK The end of a link section

MASTER The start of a master section

ENDMAST The end of a master section
Customizing a Template 33

! RequisitePro Domain
! TeamTest Domain
! ClearQuest Domain
! ClearCase Domain
! Microsoft Project Domain
! Microsoft Word Domain
! File System Domain

There are two ways to customize domains:

! Domain Aliases
! Domain Extensions

Testing SoDA Templates
The following suggestions can be helpful as you design your
templates:

! Maintain backups of all templates.
! When creating or modifying templates, save them in a working

directory. Do not modify the original SoDA-supplied templates
in theSoDA templates domain subdirectories. These are used in
the tight integration within each Rational product. These also
provide a clean starting point for new templates.

! Establish a numbering scheme for the different revisions. Use
the File > Save As command in Word to name each revision.

! Create a minimal sample domain that includes all the elements
in your actual domain. This sample set allows you to generate
quick tests of a template on a representative subset of your
actual source information.

! Edit each template, as needed, directly in the template or in the
Template View.
34 Using SoDA for Word

SoDA Commands

Viewing the SoDA Commands
The Template View is a convenient way to examine all of the
SoDA commands in a template. The view is an indented list of the
commands and their arguments. When you select a line in the
template view, the corresponding SoDA command is selected in
your document.

To create a Template View from Microsoft Word, click
SoDA>Template View.

Note: The Template View is used to build or edit a SoDA
template. You cannot generate a document or report directly from
the Template View.

Viewing a list of the template commands

The Template View report function creates a Word document that
lists all SoDA commands and their arguments in hierarchical
order. This report does not include any of the template content �
only the SoDA commands in template.

To create a template command report, do one of the following:

! Click Generate Report button in the Template View.
! Click Tree > Report.

Note: This function is not the same as the Generate Report
command on the SoDA menu in Word.

Modifying Existing Commands
In most cases one of the standard templates can act as a
reasonable starting point for template customization. There are
two ways to modify commands: through the Template View or
directly in the SoDA document.

! In the Template View:

− double-click the command you want to modify
− highlight the command, right-click and select the

Modify from the shortcut menu
− highlight the command and select Edit > Modify
Customizing a Template 35

! In the SoDA document itself, place the cursor (insertion point)
inside the command you want to modify, but outside any child
commands:

− For OPEN Commands, place the cursor to the right of
the [OPEN] annotation, but before any other annota-
tions.

− For REPEAT Commands, place the cursor to the right of
the [REPEAT] annotation, but before any other annota-
tions in the section

− For DISPLAY Commands, place the cursor between the
[DISPLAY] and [ENDDISP] annotations. (DISPLAY
commands have no child commands.

− For LIMIT Commands, place the cursor to the right of
the [LIMIT] annotation, but before any other annota-
tions in the section.

When the cursor is in the proper location, choose the
SoDA>Modify Command command. The corresponding dialog
box appears:

! OPEN Command dialog box
! REPEAT Command dialog box
! DISPLAY Command dialog box
! LIMIT Command dialog box

Make the desired changes and click OK.

Adding SoDA Commands
The easiest way to add SoDA commands is to use the Template
View. The following steps describe how to add Portal Designer
commands without using Template View.

To add a single command without Template View:

1 Place the insertion point where you want to insert the command.
For REPEAT Commands and LIMIT Commands, you may want to
first select a section. Be sure your selection does not split the
annotations for another SoDA command.
36 Using SoDA for Word

2 Click SoDA>Add Command. The Select Command to Add dialog
box appears.

3 Select a command to insert.

After you select a command, the corresponding dialog box appears:

! OPEN Command dialog box
! REPEAT Command dialog box
! DISPLAY Command dialog box
! LIMIT Command dialog box

Deleting SoDA Commands
There are two ways to delete commands in a SoDA document:
through the Template View or in the document itself. Both
methods give the same results. Deleting commands in the SoDA
document varies slightly based on the type of command:

! To delete an OPEN Command, locate the [OPEN] annotation,
select it, and delete it.

! To delete a DISPLAY Command, place the insertion point
somewhere between the [DISPLAY] annotation to the
corresponding [ENDDISP] annotation, and click SoDA>Delete
Command.

! To delete a REPEAT Command or a LIMIT Command, you must
decide whether you want to delete the entire section including
the command, or just the command. Place the insertion point to
the right of the starting annotation, but before any other
annotations in the section. Then click SoDA>Delete
Command. In the dialog box that appears, choose one of the
following:

Note REPEAT commands can be defined as recursive. If you simply
wish to delete the recursive behavior and restore the REPEAT
command to standard behavior, then modify the command, as
discussed above, and be sure to click the Modify button on the
REPEAT dialog box followed by clicking the Delete button on the
Recursion dialog box.
Customizing a Template 37

� Delete Command � Removes the annotations for the
specific command only, leaving all other internal com-
mands and text in tact.

� Delete Command and Text � Removes all annotations
and all other commands and text within the deleted com-
mand.

You can also delete commands from the Template View, by
selecting the command you want to delete, and choosing the
Delete button.

Warning Always use the Delete Command menu option to ensure that
you delete all annotations corresponding to the command you are
deleting. Failure to do so will result in the template being in an
inconsistent state.

Creating Hyperlinks
SoDA gives you the ability to create documents that include
hyperlinks from one section of the document to another.

In order to use this feature, you must have a document where an
item is listed in at least two places: The first place will act as the
�anchor� or �address� of the link. The second place will be
underlined, so that when the reader clicks on the item the
document jumps to the address location.

Here are some common examples:

REPEAT Classes < - - acts as the address for the link

REPEAT Relationships

 DISPLAY Relationship.ToClass.Name < - - acts as the
hyperlink back to the address

REPEAT Requirements < - - the address

REPEAT TracesTo

DISPLAY TracesTo.Requirement.Prefix < - - the
hyperlink
38 Using SoDA for Word

As you can see, the REPEAT command acts as the the address,
and the DISPLAY command acts as the hyperlink. You cannot
arbitrarily select any old REPEAT command and any DISPLAY
command and have them link to each other�they must both refer
to the same class of object.

OPEN Command
OPEN commands are used to �open� an object within an
information source domain which results in one and only one
source object. For example, in the Rose domain, the OPEN
command connects to a specific Rose model and its associated
components.

The OPEN command is used in one of two ways:

! To specify an initial starting point in a source domain from
which further SoDA commands can be defined.

! To create a direct reference to a particular piece of data.

The OPEN command establishes the context or reference point for
other SoDA commands (such as REPEAT commands and LIMIT
commands) in your document. An OPEN command can be placed
anywhere in a SoDA template, but can influence only those
commands that are below it in the command hierarchy. Therefore,
most OPEN commands are placed at the beginning of the
document.

Creating a new OPEN Command

To add an OPEN command:

1 Position the cursor where you wish to insert the command,
normally at the top of the document.

2 Click SoDA>Add Command.

3 Select the OPEN Command.

4 In the OPEN Command dialog box, choose a source class, fill in
the required arguments (unless finalizing for distribution), and
click OK.

The name of your OPEN command will default to the name of the
class being opened. If you want to change this name, be sure to
Customizing a Template 39

choose something meaningful. Since SoDA commands are relative
to other commands, make their names relative, also. The names
will be visible to you in the Template View of your document.
When you have many OPEN commands stored in many places
within one document, meaningful names will make it easier to
define other elements.

You can add multiple OPEN commands to your document. The
additional commands can point to information either in the same
source domain or in a different domain. The Template Wizard
supports a single OPEN command only.

Example:

You are creating a document that will extract objects from the File
System domain. You would like SoDA to create a document section
for each directory in your projects directory.

First, you must �open� your home directory within your document,
so you name the OPEN command project_directory. Here is the
constructed command:

Name project_directory
Class File System -> Directory
Arguments Filename: C:\PROJECTS

In the example above, SoDA produced the �Filename:� prompt in
the Argument area when the directory class was chosen. In the
text-entry box provided, specify the object�s filename. You can use
an absolute or relative path name.

To modify the OPEN command, refer to: Modifying Existing
Commands

REPEAT Command
REPEAT commands are used to create sections in your document
for each object found in the source. For example, a REPEAT
command can be used to generate a section for each file in a
directory.

Each REPEAT command is based on the context of one of the
OPEN, REPEAT, or LIMIT commands defined above it in the
command hierarchy. (At least one OPEN command must be
40 Using SoDA for Word

specified in a document before a REPEAT command can be
created.)

REPEAT commands can be defined to be recursive. Recursive
REPEAT commands are used to drill down through heirarchial
structures to collect objects.

To add an REPEAT command:

1 Place the insertion point at where you wish to insert the
command. If a section placeholder already exists, you can select
the section.

2 Click SoDA>Add Command.

3 Select the REPEAT Command.

4 In the REPEAT Command dialog box, select the relationship to be
used, and modify any options.

If the REPEAT is not to be recursive, then click OK and skip the
next step.

If the REPEAT command is to be recursive, continue with the next
step.

5 To convert the REPEAT command just created into a recursive
REPEAT, click the Advanced checkbox, followed by clicking the
Add button at the bottom right of the expanded dialog box, select
the proper recursive relationship, click Accept, followed by clicking
OK.

To modify an existing REPEAT command, refer to: Modifying
Existing Commands

Using REPEAT Commands for Table Rows

You can use a REPEAT command to produce one table row for
each object you specify. Follow these steps:

1 Click Table > Insert Table.

2 Select the number of columns you need and the desired format. If
your table will have a heading row then create a 2-row table;
otherwise create a 1-row table.
Customizing a Template 41

3 Make any required format changes to the borders and shading. It
is important to determine this information before document
generation, as once the document is generated table styles cannot
be changed. This is because information concerning the table is
embedded into the SoDA commands of generated documents.
(This does not apply to reports.)

4 Enter the headings in the heading row, if desired.

5 Select the second row of the table (or the only row of a 1-row
table). Be sure to select only the row and not any additional text
beyond the table.

6 Click SoDA>Add Command, and follow the steps for inserting a
standard REPEAT command.

7 Add DISPLAY commands in the table cells as needed.

Using REPEAT Commands within Table Cells

You can also nest a REPEAT command within a single table cell.
To do so, follow the steps for inserting a standard REPEAT
command.

REPEAT Commands Refined with And Where

The And Where expression specifies criteria which must be met by
items in the set of objects returned by a REPEAT command. If the
criteria are not met by a particular object, that object will not
become part of the set.

Expressions consist of operands and operators. Operands are the
attributes or literals on either side of an operator. The operands
that are available at a given time in the REPEAT command dialog
box depend upon the information source domain specified in the
current context. Operators specify the test that will be applied to
the operands to determine their relationship, for example, the test
of equality or the test of inequality.

Here are the operators available for And Where expressions:

 = exactly equal to (case sensitive)
!= not equal to
> greater than
>= greater than or equal to
42 Using SoDA for Word

< less than
<= less than or equal to
LIKE matches the regular expression
NOT LIKE does not match the regular expression
IS the class of the object matches

Note that when a DISPLAY value returns a Boolean value, �True�
or �False�, you must enter these values exactly.

Example:

You are creating a document that will extract objects from the File
System domain. You would like to create a section for each
directory in your project directory that starts with �ROSE�.

After creating an OPEN command called project_directory, create
a REPEAT command that will result in a section for each
directory in project_directory, and specify an And Where
expression which limits the set of directories to those that start
with �ROSE�.

Select Relationship project_directory -> Contents
Where Is A Directory
And Where SimpleName LIKE ^ROSE

Metacharacters for LIKE

When you use the LIKE operator in an And Where expression, you
can use any of the following metacharacters:

. Match any single character

! Match zero or more of the preceding character in the
expression

^ Match the expression only at the beginning of the string
(place at start of expression)

$ Match the expression only at the end of the string (place at
end of expression)

[] Match any one of the enclosed characters

\ The next character should not be interpreted as a special
character
Customizing a Template 43

Ordering

Ordering specifies one or more attributes by which the objects
resulting from the REPEAT command will be sorted. Sorting can
take place alphanumerically or numerically, in forward or reverse
order, and case can be ignored.

DISPLAY Command
DISPLAY commands insert text or graphic values from the source
domain. You can display names of files and Rose objects, bitmaps,
class diagrams, and more.

Each DISPLAY command is based on the context of one of the
OPEN, REPEAT, or LIMIT commands defined above it in the
command hierarchy. At least one OPEN command must be
specified in a document before a DISPLAY command can be
created.

Adding a New DISPLAY Command

To add an DISPLAY command:

1 Position your cursor precisely where you want the value
displayed.

2 Click SoDA>Add Command.

3 Select the DISPLAY Command.

4 In the DISPLAY Command dialog box, choose an attribute and
your desired modifiers and click OK.

To modify an existing DISPLAY command, refer to: Modifying
Existing Commands

Example:

You are creating a document which will extract objects from the
File System domain. You would like SoDA to create a document
section for each directory in your project directory. You would also
like the name of each directory to appear in the corresponding
document-section heading.

After creating an OPEN command called project_directory, and
creating a REPEAT command which will result in a section for
44 Using SoDA for Word

each directory in project_directory, insert a DISPLAY command in
the section heading to return the name of each directory.

Select all_directories > Simple Name
Modifiers

Display Options Capitalize
Remove Punctuation? no (default)
Single Paragraph? yes (default)

LIMIT Command
A LIMIT command is used to conditionally include or exclude the
section to which it is attached. LIMIT commands resolve to �true�
or �false.� If an object is found that meets the specified conditions,
the command is �true,� and the section is included in the
document. If an object is not found, the command is �false,� and
the section is not included in the document. For example, suppose
you have a repeated section for each file in a directory. You may
want to include a special section if a file has a �.DAT� extension.

Each LIMIT command is based on the context of one of the OPEN,
REPEAT, or LIMIT commands defined above it in the command
hierarchy. At least one OPEN command must be specified in a
document before a LIMIT command can be created.

See also the section on Special LIMIT Commands.

Adding a New LIMIT Command

To add an LIMIT command:

1 Place the insertion point where you want to create the LIMIT
command. If you already have placeholder text, you can select the
text.

2 Click SoDA>Add Command.

3 Select the LIMIT Command. If the command is not available, click
Cancel and be sure text is selected in your document.

4 In the LIMIT Command dialog box, choose an object. Then limit
the object either by class or by And Where expression.

To modify an existing LIMIT command, refer to: Modifying
Existing Commands
Customizing a Template 45

Example:

You are creating a document which will extract objects from the
File System domain. You would like SoDA to create a section in
the document for each directory object (directory, file) in your
project directory. However, you would like one particular
subsection to be created only if the directory object is a file.

After creating an OPEN command called project_directory, and a
REPEAT command called all_dir_objects for each directory object
in project_directory, create a LIMIT command that will only
create a section if a file is found.

Select Objectall_dir_objects -> <Self>

Where Is AFile

LIMIT Commands Refined with And Where

The And Where expression specifies criteria which must be met by
the object examined by a LIMIT command. If the criteria are not
met by the object, that LIMIT command will be �false�.

Expressions consist of operands and operators. Operands are the
attributes or literals on either side of an operator. The operands
that are available at a given time in the LIMIT command dialog
box depend upon the information source domain specified in the
current context. Operators specify the test that will be applied to
the operands to determine their relationship, for example, the test
of equality or the test of inequality.

Example:

You are creating a document that will extract objects from the File
System domain. You would like SoDA to create a section for each
directory object (directory, file) in your project directory. You
would like one particular subsection to be created, however, only if
the directory object is a file that starts with �ROSE�.

After creating an OPEN command called project_directory, and a
REPEAT command called all_dir_objects for each directory object
in project_directory, create the following LIMIT command:

Select Objectall_dir_objects -> Self

Where Is AFile
46 Using SoDA for Word

And WhereSimpleName LIKE ROSE

Special LIMIT Commands
There are two kinds of special LIMIT commands -- OMIT and
OTHERWISE -- both of which are associated with REPEAT
commands. These commands, unlike regular LIMIT commands,
are not defined through the LIMIT Command dialog box and
cannot be edited. Also, descendent SoDA commands cannot use
special LIMIT commands for context.

OMIT Command

An OMIT command is used to omit a section from a document
when a REPEAT command returns no objects. For example, you
could use a REPEAT command to create a numbered list item for
each object, and in case there are no objects, you could use an
OMIT command to entirely omit the list and any introduction to it.

To insert an OMIT command:

1 Select the section that you want to omit, including the entire
REPEAT command which the OMIT command is evaluating. (If
the command�s descendants include multiple REPEAT commands,
the OMIT command is associated with the �first� or �closest� one.)

2 Click SoDA>Add Command.

3 Select the Special LIMIT Command: OMIT radio button. SoDA
automatically fills in all required values for the command; you do
not need to complete a dialog box.

Example:

The following example is from the Greenhse demo template in the
demos directory.

Consider this section:

2.1.1Class Diagrams

[MASTER16][REPEAT17][DISPLAY18]{INCLUDEPICTURE.....}[
ENDDISP19]

[DISPLAY20]<ClassDiagrams.Name>[ENDDISP21] Class
Diagram
Customizing a Template 47

[Describe the interactions between the classes.]

[ENDREP22][ENDMAST23][ENDREP24][ENDMAST25]

Suppose you want to suppress the 2.1.1 heading if there are no
class diagrams. Select the heading through and including
[ENDMAST23] and do SoDA>Add Command to add the Omit
command. ([MASTER16] starts the REPEAT command for the
class diagrams.)

The resulting structure looks like this:

2.1.1[LIMIT16]Class Diagrams

[MASTER17][REPEAT18][DISPLAY19]{INCLUDEPICTURE.....}[
ENDDISP20]

[DISPLAY21]<ClassDiagrams.Name>[ENDDISP22] Class
Diagram

[Describe the interactions between the classes.]

[ENDREP23][ENDMAST24][ENDLIM25][ENDREP26][ENDMAS
T27]

OTHERWISE Command

An OTHERWISE command is used to include a section of a
document only when a REPEAT command returns no objects. For
example, you could use an OTHERWISE command to include a
paragraph that said: �No objects were found.�

To insert an OTHERWISE command:

1 Create the section that may or may not be included. You may find
it helpful to type attribute names where you will eventually create
DISPLAY commands, if any. The limited section must
immediately follow its associated REPEAT command.

2 Select the text. In most cases you will select entire paragraphs,
from the beginning of one paragraph to the end of another.

3 Click SoDA>Add Command.
48 Using SoDA for Word

4 Select the Special LIMIT Command: OTHERWISE radio button.
SoDA automatically fills in all required values for the command;
you do not need to complete a dialog box.

Examples:

Using the same example as above, we start with this:

2.1.1 Class Diagrams

[MASTER16][REPEAT17][DISPLAY18]{INCLUDEPICTURE.....}[
ENDDISP19]

[DISPLAY20]<ClassDiagrams.Name>[ENDDISP21] Class
Diagram

[Describe the interactions between the classes.]

[ENDREP22][ENDMAST23][ENDREP24][ENDMAST25]

This time rather than omitting the heading, we want to include a
message if there are no diagrams. To do this we:

1 Put your cursor after the [ENDMAST23] annotation and insert a
carriage return.

2 Type whatever message you want included into the document if
there are no diagrams found. The message can be one or more
paragraphs.

3 Select the message.

4 Select SoDA>Add Command and choose Special Limit
Command: Otherwise

The resulting structure will look like this:

2.1.1 Class Diagrams

[MASTER16][REPEAT17][DISPLAY18]{INCLUDEPICTURE.....}[
ENDDISP19]

[DISPLAY20]<ClassDiagrams.Name>[ENDDISP21] Class
Diagram

[Describe the interactions between the classes.]
Customizing a Template 49

[ENDREP22][ENDMAST23]

[LIMIT24]There are no
diagrams.[ENDLIM25][ENDREP26][ENDMAST27]

Using Both OMIT and OTHERWISE

You can associate both an OMIT and OTHERWISE command
with a given REPEAT command. Here�s how:

1 Create the repeated section and the REPEAT command first.

2 Add the OMIT command enclosing the REPEAT command.

3 Add the OTHERWISE following, and outside of, the REPEAT and
OMIT commands.

Simply be aware that the OTHERWISE command must be
inserted outside the scope of the OMIT command so that the
OTHERWISE command is not hidden by the OMIT command
when the document is generated.
50 Using SoDA for Word

U S I N G R A T I O N A L S O D A F O R W O R D
5
 Wizards and Dialog Boxes
SoDA adds the following wizards and dialog boxes to Microsoft
Word. Each is described in this chapter.

! Getting Started Wizard
! Template View
! SoDA Generator Dialog Box
! Identify the <Class> Dialog Box
! Select Command to Add Dialog Box
! OPEN Command Dialog Box
! REPEAT Command Dialog Box
! DISPLAY Command Dialog Box
! LIMIT Command Dialog Box
! Edit Link Dialog Box
! Adjust Links Dialog Box
! SoDA Options
51

Getting Started Wizard
The Getting Started Wizard guides you through selecting a SoDA
template, saving it for future use, associating it wth a source, and
generating a report. The first panel looks like this:
52 Using Rational SoDA for Word

Once you have read the introduction, choose Next to display the
list of available templates:

The name of the template should give you an idea about what the
template documents. Select the one that most closely fits the type
of report you wish to produce.
Wizards and Dialog Boxes 53

After selecting a template, you will be given the opportunity to
save the template in another directory. If you have a source such
as a Rose model or RequisitePro project, you may find it
convenient to save the template in the same directory as the
source.

If you do not have a model, project, or repository, SoDA includes
some samples in the Demos subdirectory, which is the default save
location.
54 Using Rational SoDA for Word

The final step is outline in the fourth panel:

When you select Generate from this panel you will see the Identify
the <Class> Dialog Box where you will choose the source you wish
to document.

Once you have used the Getting Started Wizard, and have a
template you wish to use, you no longer need to use the wizard.
Rather, use File->Open to display the template then choose the
Generate Report command from the SoDA menu.
Wizards and Dialog Boxes 55

Template View
The Template View guides you through creating a new SoDA
template, or through adding, modifying, and deleting commands
in an existing SoDA template.

The Template View is the easiest way to create or enhance a SoDA
template.

Once you have used the Template View to add and modify the
commands, you can then return to the template and make
formatting changes, such as adding headings, lists, bullets, and so
on.

The template view includes the following buttons across the top of
the view:

Open Adds the OPEN command to access a domain.

Display Adds the DISPLAY command.

Repeat Adds the REPEAT command.

Limit Adds the LIMIT command.

Omit Adds the Limit-Omit command.

Otherwise Adds the Limit-Otherwise command.

Modify Enables you to Modify the Selected Command

Delete Enables you to Delete the Selected Command

Go Back Moves the template view up one level in the
domain hierarchy

Generate Report
Creates a printable Word document with the same
text that is in the template view

Expand Adds values to the Select value window on the
right of the view

Help Opens the online help
56 Using Rational SoDA for Word

Template View: Establishing the Source Kind
If you are starting with an empty template based on the soda.dot
Word template, the template view will look like this:

Here you select the starting point for the template. If you are
unsure where you want to begin, find the first line that contains
your source (Rose Model, ReqPro Project, ClearQuest database or
TeamTest Repository).

The Template View will guide you through the OPEN command
for the first source; for additional OPEN Commands, use the
OPEN command button.
Wizards and Dialog Boxes 57

Template View: Adding Values
Once you have selected a source (by double-clicking it), or if you
are adding a section to an existing template, you will see a panel
that looks like this:

The panel on the right contains a list of values that are available
based on the current class you are documenting. Some of these
values are single values, and some are repeated values.

Select the values you wish to document. As you select them you
will see them appear in the panel on the left, and in the document.
58 Using Rational SoDA for Word

As you continue to select options, the tree on the left side of the
panel will grow, reflecting the choices you have made. Here is a
completed template:

The Template View creates REPEAT commands with no sorting or
filtering. If you need to include one of these advanced options,
double-click the command to change the REPEAT Command.

The DISPLAY commands created by the Template View use
default options. If you need to change one of these options,
double-click on the command.
Wizards and Dialog Boxes 59

Template View: Other Template View Commands
The toolbar in the Template View provides additional features:

From left to right, the toolbar buttons provide the following
functions:

OPEN Create an OPEN command

DISPLAY Create a DISPLAY command

REPEAT Create a REPEAT command

LIMIT Create a LIMIT command

OMIT Create a special LIMIT: OMIT command (greyed
out unless a REPEAT is selected)

OTHERWISE Create a special LIMIT: OTHERWISE command
(greyed out unless a REPEAT is selected)

Modify Modify the current selected command

Delete Delete the current selected command

Up Back up one level in the tree

Report Create a command report, a printable version of
the Template View (not the same as Generate
Report from the SoDA menu)
60 Using Rational SoDA for Word

SoDA Generator Dialog Box
This section describes the options available in the SoDA
Generator Dialog box. For more on document generation, see
�Generating the Document� on page 37.

Check Consistency Only

When you mark this check box, SoDA will examine the document
to see what needs to be added, changed, or deleted, and will
generate a report, but will not change the existing document.

Add Change Bars

Mark the Add Change Bars check box to highlight changed text in
the generated document. Change bars are similar to the notation
used in the Microsoft Word �Track Changes/Changed lines�
option. The change bars appear in the left margin where changes
have been made as a result of the generation process. The change
bars can be turned off using Word�s Revisions command.

Note: If you turn change bars �on� during the first generation of a
document, the entire document will be generated with change
bars.

Report Changes

If you mark the Report Changes check box, SoDA will create a
Microsoft Word document showing the changes that were made to
the document during generation. The Report Changes document
opens in Microsoft Word. It has a default �Document #� name. To
retain the document, save it using an appropriate name and
location.
Wizards and Dialog Boxes 61

Permanently Delete Obsolete Sections

This check box specifies how obsolete text resulting from
regenerating your document is to be presented in the document.
Obsolete text generally results from a deleted object in the
information source.

SoDA may also find an object �deleted� if that object has been
moved. For example, if your document extracts all of the files in a
particular directory, and one of those files is moved to another
directory, SoDA will consider that object deleted.

Because an object may be moved by accident (and not deleted),
SoDA allows you to leave �deleted� text in your document. This
allows you to edit a link to point to a moved object�s new location
or modify a query to compensate for some other change in the
information source.

SoDA gives you two choices for handling obsolete sections. The
default method is to �hide� the section by applying the Hidden font
attribute to the text. If you check Permanently Delete Obsolete
Section, SoDA deletes any sections, text, and graphics associated
with a deleted, missing, or moved object in the information source.
This includes all children of a deleted section and their children.

Warning This is not reversible. Removed text is permanently deleted from
your document and must be recreated manually.
62 Using Rational SoDA for Word

Identify the <Class> Dialog Box
SoDA templates are stored without references to specific files,
directories, models, projects, and databases. This dialog box
appears when you initially generate a report or document, or when
you select a domain in the Template View. The title of the dialog
box specifies the class of source required by the template, such as
a Rose model.

The grid area contains the specific details that identify a
particular object of the specified class. In most cases, only one
argument is required; however, sometimes there are two or more,
depending on the class. If there is a Browse button, you can
browse for a specific model, project, or file. Otherwise, click in the
Value field and type the required information.
Wizards and Dialog Boxes 63

For ClearQuest, enter the database logical name, which appears
in the database list that is displayed when you log into
ClearQuest.

For TeamTest, enter the path for the repository. The repository
must exist in the Rational Adminstrator application on your
system. The ProjectName is defined in the repository. Type the
project name in the applicable Value field. Be sure that spaces
within the path and project name match the source exactly.
64 Using Rational SoDA for Word

Select Command to Add Dialog Box
This section describes the Select Command to Add dialog box. For
more information on adding commands to your SoDA document,
see Adding SoDA Commands.

The Select Command to Add dialog box will display a list of the
commands that can be added:

! OPEN Command
! DISPLAY Command
! REPEAT Command
! LIMIT Command
! Special LIMIT Command: OMIT
! Special LIMIT Command: OTHERWISE

Choose the command you wish to add, and click OK.
Wizards and Dialog Boxes 65

OPEN Command Dialog Box
This section describes the fields in the OPEN command dialog box.
For more information on using OPEN commands, see OPEN
Command.

Select Class to OPEN:

Depending on the domains available, SoDA provides a list of valid
Classes. Choose the one you want to access. The Class list is a
general list, based on the domain definition; it is not a list of
values from the actual source, such as your Rose model.

Name

Every OPEN command must have a unique name. The name can
consist of letters, numbers, and underscores. The OPEN
Command Dialog Box automatically sets the name of the
command to be the same as the name of the selected Class. If
there is a name collision, you must change the name after
selecting the class.

When generating a report in the ClearCase domain, the Name
field contains the full path and file name (view/VOB/file) for the
target file. When the VOB contains more than one branch, it may
be necessary to indicate the specific branch that contains the file.
66 Using Rational SoDA for Word

To do so, after browsing for a file, add the following branch
notation to the path and file name returned by the browse feature:
@@\. For example, c:\my_view \ my_VOB \ my_file.txt@@ \
main.

Arguments

The Arguments area identifies the actual source of the specified
class. One, two, or more entries may be required, depending on
the class. The Browse button allows you to navigate to a file. If
the argument is a filename, either absolute or relative pathnames
can be used. If more than one argument is required, it/they must
be typed with exact capitalization, spacing, etc.

Advanced

The Advanced check box allows for relative (or Calculated)
arguments. Relative arguments are used to open a source, based
on the value of another object. To create a relative OPEN:

- Check the Advanced key; a new column in the Arguments area is
listed (Kind).

- Click on "Literal" to toggle the Kind to "Calculated."

- Click in the Value column; a tree control lists available options.

- Choose the attribute you need.

Example:

External Word documents, containing the UseCase documenta-
tion, can be attached to a Rose UseCase (or other Rose objects).
SoDA can include these Word documents into the SoDA document.
Follow these steps to create the commands to do this:

1 In the Template (not the Template View), put the cursor within
the REPEAT for UseCases, at the point where you want the Word
document to appear (if desired, press Enter for better positioning):

- Use SoDA > Add Command to add a REPEAT command.

- Select the ExternalDocs relationship.

- Set the Name to ExternalDoc.
Wizards and Dialog Boxes 67

2 Without moving the cursor (i.e., just inside the REPEAT command
for ExternalDocs), use the SoDA > Add Command to add an
OPEN command. An OPEN Command dialog box is displayed.

3 In the Select Class area (left-hand box), click Word > Document.

4 Click the Advanced check box. A new field called Kind, is added
to the Arguments area.

5 Click on the word Literal to toggle the value to Calculated.

6 Move the cursor to the green area under the title Value, click once
to open a tree control.

- In the tree control, select ExternalDoc > Value.

- Click OK to create the OPEN command.

7 Without moving the cursor (i.e., just to the right of the OPEN
command), use SoDA > Add Command, to add a DISPLAY
command. A DISPLAY Command dialog box is displayed.

8 In the Select Attribute area, choose WordFile > FormattedText.

During generation, any external document attached to the
UseCase will be inserted into the SoDA document at this point.
68 Using Rational SoDA for Word

DISPLAY Command Dialog Box
This section describes the fields in the DISPLAY command dialog
box. For more information on using DISPLAY commands, see
DISPLAY Command.

Select Attribute to DISPLAY:

The Select tree control is used to specify the attribute that you
wish to select from the source command. To set or change the
attribute, simply click on the attribute you need.

Text Value Modifiers
If you choose a text attribute in the Select area, you will see the
following modifiers:

Case Style

The Case Style list box lets you specify the case of the text being
displayed. Options include: As Is, Capitalize, Upper Case, and
Lower Case. For example, �file� would appear in the document as
�File� if Capitalize was selected.

Remove Punctuaion

To remove punctuation from generated text, click the Remove
Punctuation check box. For example, �Test_Project� will be
presented as �Test Project� in the document.
Wizards and Dialog Boxes 69

Single Paragraph

To import generated text as a single paragraph, click the Single
Paragraph check box. This causes any embedded carriage returns
to be ignored. If this option is not selected, all carriage returns in
the source text are maintained.

Create Hyperlink

When you select this check box, SoDA will create a �gotolink�
hypertext command as part of each DISPLAY command. For
more information, see Creating Hyperlink Documents. Use this
option in conjunction with the Create Hyperlink Address option in
the REPEAT Command Dialog Box.

Graphic Value Modifiers
If you choose a graphic attribute in the Select field, you will see
the following modifiers:

Scaling

The Scaling list box lets you decide whether to display the graphic
As Is or Scale To Fit.

If you specify As Is, SoDA will display the graphic exactly as it
appears in the source. If the graphic is wider or taller than the
page margins allow, SoDA will shrink the graphic, maintaining
aspect ratio.

If you specify Scale To Fit, SoDA will stretch or shrink the graphic
so that it fits the dimensions you specify exactly. This option does
not maintain aspect ratio.

Width and Height

To specify the horizontal size at which you want your graphic
imported, click in the Width text-entry box and type a number in
inches.

To specify the vertical size at which you want your graphic
imported, click in the Height text-entry box and type a number in
inches.
70 Using Rational SoDA for Word

REPEAT Command Dialog Box
This section describes the fields in the REPEAT command dialog
box. For more information on using REPEAT commands, see
REPEAT Command.

The dialog box includes the following fields:

Select Objects to Repeat

The Select area is used to identify the n-ary relationship that you
wish to use to repeat the section. At the first level of the tree
control are the commands that are in the context of the REPEAT
command. When you expand one of these you will see N-ary
Wizards and Dialog Boxes 71

relationships for that class of objects. To select one of these,
simply click on the name.

The remaining options are unary relationships. When you expand
any of these lines, you will be given additional n-ary (and possibly
unary) relationships as choices.

Where Is A

The Where Is A list box lets you limit the results of the REPEAT
command to only those objects in a particular class. To choose a
class from the Where Is A list box, click the left mouse button in
the box, and choose the desired class.

Name

The Name text-entry box is used to specify a name for your
repeated section. Every REPEAT command must have a name,
and the name must be unique within the current scope. The name
can consist of letters, numbers, and underscores. By default, the
name of the REPEAT command will match the name of the class
listed in the Where Is A list box.

Create Hyperlink Address

When you select this check box, SoDA will create a unique Word
bookmark as part of every linked section. Use this option in
conjunction with the Create Hyperlink option in the DISPLAY
Command Dialog Box to create hypertext cross-references. When
you save the document as HTML these cross-references will
become hypertext references and anchors.

And Where (Advanced)

The And Where area (visible only when Advanced is checked) lets
you limit the results of the REPEAT command to only those
objects that satisfy a given expression. To create an expression,
choose �Click here to add� below the Left Operand. In the tree
control, select the attribute that will serve as the left half of the
expression. Use the Operator column to choose an operator.
Finally, choose �Click here to add� below the Right operand. The
right operand can be a literal or another attribute.

When adding a second And Where expression, be sure the Logical
Operator is set to the desired value (�And� or �Or�).
72 Using Rational SoDA for Word

To remove an And Where expression, right-click the row you wish
to remove and choose Delete.

Order By (Advanced)

The Order By area is used to specify how resulting document
sections are to be ordered. By default, no sorting is done, i.e.,
sections are created based on the order the objects are returned by
the domain. To insert a sort key, choose �Click here to add� in the
Key column. In the tree control, select the attribute that will
serve as the sort key.

Choose �Alphanumeric� for alphabetically ordered sections; choose
�Numeric� for numerically ordered sections.

Choose �Reverse Order� for reverse alphabetical or numeric order.

Choose �Ignore Case� and SoDA will not consider case when
ordering.

If you check the �Unique Only� box, only one of the objects for
which all the keys compare equally will be produced.
Wizards and Dialog Boxes 73

LIMIT Command Dialog Box
This section describes the fields in the LIMIT command dialog
box. For more information on using LIMIT commands, see LIMIT
Command.

Select Object to Limit

The Select area is used to select the class you wish to examine,
based on the current context. The tree control contains all the
possibilities for the classes to be limited by the LIMIT command.
The name �<Self>� refers to the context object itself. To select a
class, use the tree control to highlight the desired class.

Where Is A

The Where Is A list box lets you include a section only if the object
is in a particular subclass.
74 Using Rational SoDA for Word

Name

The Name text-entry box is used to specify a name for your LIMIT
command.

Every LIMIT command must have a name, and the name must be
unique within the current scope. The name can consist of letters,
numbers, and underscores.

And Where

The And Where area lets you filter the results of the LIMIT
command to only those objects that satisfy a given expression. To
create an expression, choose �Click here to add� below the Left
Operand. In the tree control, select the attribute that will serve as
the left half of the expression. Use the Operator column to choose
an operator. Finally, choose �Click here to add� below the Right
operand. The right operand can be a literal or another attribute.

When adding a second And Where expression, be sure the Logical
Operator is set to the desired value (�And� or �Or�).

To remove an And Where expression, right-click the row you wish
to remove and choose Delete.

Edit Link Dialog Box
The Edit Link dialog box allows you to change the path of one link
to the path of another link in your SoDA document. This is useful
when the name of an object in the information source domain has
changed. (If you need to change many objects� pathnames because
a large number of source objects have moved, see Adjust Links.)

The Edit Link dialog box contains a list of all the possible links in
that context. From this list of links, you can choose a path to
replace the path specified in the selected link.

Scope of Displayed Links

The scope of the list of links shown in the Edit Link dialog box is
determined by the parent REPEAT command. SoDA re-evaluates
the command to create a list of all links that could be generated
based on the source.
Wizards and Dialog Boxes 75

Result of Editing a Link

When you edit a link, you will not notice an immediate change in
your document. When you regenerate your document, however,
the change may become apparent. As the document regenerates,
the new path is followed instead of the old one. Every SoDA link
from that point in the hierarchy down will be updated to reflect
the new source path.

To edit a link created by SoDA during document generation:

1 Select the section containing the link you wish to edit.

2 Choose Edit Link from the SoDA menu.

3 In the Edit Link dialog box, choose the path from the scroll list
that you want the link selected in the document to have.

4 Click the OK button.

The path specified in the document�s selected link is changed to
the path chosen in the Edit Link dialog. When you regenerate
your document, information dependent upon that link will change
to reflect the new path.

Adjust Links Dialog Box
The Adjust Links dialog box allows you to change the path of a set
of links. This is useful if you move the sources for a document
without moving the document. (If you need to change only one
objects� pathname, or only a few unrelated pathnames, see Edit
Link.)

Pathnames are stored by SoDA in a document-relative format. If
the sources move and the document does not, the internal
pathnames within links in the document must be adjusted. If they
are not, the sections generated from the sources in their original
locations may be deleted from the document when SoDA cannot
find the moved sources during regeneration.

For example, a REPEAT command is defined to create a section
for every file in C:\PROJECTS\JIM. After the document is
generated and text has been added, the project is transferred from
Jim to Susan. Now, the files are located in
C:\PROJECTS\SUSAN. Adjust Links allows you to make this
change to your SoDA document simply.
76 Using Rational SoDA for Word

Without Adjust Links, you would have to either

! change each link manually, or
! edit all OPEN commands to point to the correct directory, and

regenerate, losing all added text in the process

Adjust Links first converts relative pathnames to absolute
pathnames. SoDA then checks the absolute pathname to
determine if the link should be updated. For this reason, full
pathnames must be specified in the Adjust Links dialog box.

When you adjust links, you will not notice an immediate change in
your document. When you regenerate your document, however,
the change may become apparent. As the document regenerates,
the new path in each link is followed instead of the old one. Every
SoDA link from the changed link in the hierarchy down will be
updated to reflect the new source path in each link. Of course, if
you have adjusted the links properly, and the sources haven�t
changed other then their location, your document should stay the
same.

To modify links:

1 Choose Adjust Links from the SoDA menu.

2 From the Adjust Links dialog box, enter the invalid path and the
path to which you want to change it:

! Enter the full path to modify in the From field.
! Enter the new full path in the To field.

3 Click the OK button.

SoDA compares the pathname you entered in the From field to
each OPEN command (only the absolute paths) and link. It then
changes all the paths matching the pathname in the From field to
the path you entered in the To field. When you regenerate your
document, the new paths will be used and information in the
generated document will be updated to reflect the change.

Get From File

The Adjust Links dialog box contains a Get From File check box.
When the option is off, SoDA treats the pathnames in the From
and To fields as pathnames found in links, OPEN commands, etc.
Wizards and Dialog Boxes 77

When the toggle is on, SoDA uses the pathname in the From field
to find a text file. This �From� text file contains a list of pathnames
to be changed. SoDA uses the pathname in the To field to find
another text file. This �To� text file contains a list of pathnames to
which you want to change.

For example, Jim has the following files:

c:\people\jim\projects
documentation
code
misc

A REPEAT command has created links to all the files in Jim�s
documentation, code, and misc directories.

Because Jim has left the company, all of his project files must be
transferred. His documentation files will go to Susan. His code
files will go to Cynthia. His miscellaneous files will go to Dave.
Now, the files have the following paths:

c:\people\susan\projects\documentation

c:\people\cynthia\projects\code

c:\people\dave\projects\misc

To update the links in the SoDA document, a �From� text file
called

c:\people\susan\from_list contains the following lines:

c:\people\jim\projects\documentation

c:\people\jim\projects\code

c:\people\jim\projects\misc

A �To� text file called \people\susan\to_list contains the following
lines:

c:\people\susan\projects\documentation

c:\people\cynthia\projects\code

c:\people\dave\projects\misc

When the Adjust Links command is issued, Susan enters
78 Using Rational SoDA for Word

" c:\people\susan\from_list� in the From field, and she enters

" c:\people\susan\to_list� in the To field. She then toggles the Get
From File option on.

When Susan clicks OK, SoDA compares the SoDA document with
the �From� file. SoDA then changes paths containing the first line
of the �From� file to pathnames containing the first line of the �To�
file.

Each path in the �From� file is replaced by the path on the
corresponding line of the �To� file, thus order within the files is
very important. If the third line of the �To� file in the example
above was

" c:\people\cynthia\projects\code� then all references to Jim�s
miscellaneous files would be changed to references to Cynthia�s
code.

SoDA Options Dialog Box
Thisection describes the fields on the SoDA Options dialog box.
SoDA>Options displays a dialog box with two tabs: File Locations
and Generation. Fields on the tabs are used to set file locations
and properties for generating documents/reports.
Wizards and Dialog Boxes 79

80 Using Rational SoDA for Word

File Locations tab

Generated report path: The purpose of this field is to define a
location where a SoDA generated report can be saved, if the report
is being generated through a tight integration mechanism (such as
from within Rose or RequisitePro) and the directory wherein the
SoDA template resides is not a read/write directory (e.g., the
template is on a CD due to a minimal install).

User template path: This field allows you to assign multiple
paths that SoDA can search when serving up a list of templates to
be used by the getting started wizard and through tight
integration mechanisms (such as from within Rose or
RequisitePro).

In the case of the getting started wizard, every Word document
based on the SoDA template soda.dot, located in the paths
assigned through the SoDA Options dialog box, will be displayed
Wizards and Dialog Boxes 81

by the wizard as well as the standard templates located in the
default SoDA templates directory.

In the case of tight integrations, every Word document based on
the SoDA template soda.dot, that contains a document title (a
standard Word property), and a domain name as a keyword will be
displayed.

For example, a template with the filename �AnotherTemplate.doc�
with the title property set to �My Best Project� and the keyword
property set to the three words �Rose,Simple,ReqPro� will display
on the list of templates available to the Rose integration, as �My
Best Project� because �Rose� is a part of the keyword property list.

The file will also display on the list of templates available to the
RequisitePro integration as �My Best Project� because �ReqPro� is
a part of the keyword property list.

However, given the same template with the keyword property set
to �ReqPro� and the file will only be listed by the RequisitePro
integration and not by the Rose integration. The reason is won�t be
listed for Rose is because the domain name �Rose� does not appear
in the keyword property for the template.

Generation tab:

Enable logging: Check to enable logging. Log files may be useful
if technical support issues arise.

Save graphics: Check to embed graphics into the generated
document/report. By default, the documents are linked to graphic
files. Checking this option breaks the link and embeds the graphic
into the document/report.

Generated document suffix: The suffix to the appended to the
name of all generated documents. The default value is Gen.

Generated report suffix: The suffix to be appended to the name
of all generated reports. The default value is Rpt.

Maximum recursion level: The maximum number of levels that
a recursive repeat will recurse. The default value is blank (empty).
Leaving the field blank denotes that all levels are to be recursed.
82 Using Rational SoDA for Word

U S I N G R A T I O N A L S O D A F O R W O R D
6
 SoDA Template Library
The following sections list templates that come with every SoDA installation. The
templates are divided into sections by domain.

Apex NT Templates
SoDA for Word includes the following Apex NT templates:

See also �Subsystem Structure for Apex NT Templates� on page 115.

ClearCase Templates
SoDA for Word includes the following ClearCase templates:

File Name Description

Apex\498idd.doc Interface Design Description compliant with MIL-STD-498

Apex\498irs.doc Interface Requirements Specification compliant with MIL-STD-498

Apex\498ocd.doc Operational Concept Description compliant with MIL-STD-498

Apex\498sdd.doc Software Design Description compliant with MIL-STD-498

Apex\498sdp.doc Software Development Plan compliant with MIL-STD-498

Apex\498srs.doc Software Requirements Specification compliant with MIL-STD-498

Apex\498sss.doc System/Subsystem Specification compliant with MIL-STD-498

Apex\InProcess.doc Software Design document for a single Apex subsystem/view

File Name Description

Activity.doc Activity description report.
83

Rose and Rose RealTime Templates
SoDA for Word includes the following Rose and Rose RealTime templates:

Version.doc Detailed report on a file or directory version.

VOB.doc VOB and meta-data detail report.

Region.doc List of VOB and views by region.

Element.doc Element and version history report.

File Name Template Name Description Conditions

498idd.doc 498 IDD Interface Design
Description: scope,
referenced documents,
interface design, and
requirements
traceability.

Assumes there is a Rose
model that represents the
498 System. Internal
interface diagrams are class
diagrams attached to the
Logical View with the word
�Internal� somewhere in the
name. The CSCIs are
packages in the Logical
View, and the key interfaces
for each CSCI are classes.
The details of each CSCI
(described in SDDs) are in
separate models

498irs.doc 498 IRS Interface Requirements
Specification: scope,
referenced documents,
requirements,
qualification provisions,
and requirements
traceability.

Assumes there is a Rose
model that represents the
498 System. In the Use
Case View is a package
called �Interfaces.� The use
cases in that package
become the interface
requirements.
84 Using Rational SoDA for Word

498ocd.doc 498 OCD Operational Concept
Description: scope,
referenced documents,
requirements,
qualification provisions,
and requirements
traceability.

Assumes there is a Rose
model that represents the
498 System. In the Use
Case View is a package
called �Interfaces.� The use
cases in that package
become the interface
requirements. There is
another package in the Use
Case View called
�Operational Scenarios.�
The use cases and their
interaction diagrams
become the operational
scenarios.

498sdd.doc 498 SDD Software Design
Description: scope,
referenced documents,
CSCI-wide decisions,
detailed design, and
requirements
traceability.

Assumes there is a Rose
model that represents each
CSCI in the system. The
Logical View should contain
two diagrams: �System�, for
the system architecture, and
�Main�, for the CSCI
architecture. Packages in
the Logical View,
representing CSCs, should
each have a �Main� diagram
as well. CSCs must be
stereotyped as
<<imported>> or
<<exported>> to be
documented as imported or
exported CSCs.

498sdp.doc 498 SDP Software Development
Plan: scope, referenced
documents, overview of
required work, plans for
general and detailed
software development
activities, schedules and
activity network, project
organization and
resources.

This template contains no
SoDA commands. It is
included in the template set
for consistency and
completeness.
SoDA Template Library 85

498srs.doc 498 SRS Software Requirements
Specification: scope,
referenced documents,
requirements,
qualification provisions,
and requirements
traceability.

Assumes there is a Rose
model that represents the
CSCI. In the Use Case View
is a use case called �CSCI.�
The state diagram for this
use case becomes the
required states for the CSCI.
The Use Case View should
also have two packages:
�Capabilities� and
�Interfaces.� Use cases
defined within these
packages will become the
capability and interface
requirements.

498sss.doc 498 SSS System/Subsystem
Specification: scope,
referenced documents,
requirements,
qualification provisions,
and requirements
traceability.

Assumes there is a Rose
model that represents the
System. In the Use Case
View is a use case called
�System.� The state diagram
for this use case becomes
the required states for the
System. The Use Case View
should also have two
packages: �Capabilities� and
�Interfaces.� Use cases
defined within these
packages will become the
capability and interface
requirements.

Classes.doc Data Dictionary of
Classes

Rose model report:
class names and
descriptions.

Classes must be defined in
the model.

ClassesAttrsOps.doc Data Dictionary of
Classes with
Attributes and
Operations

Rose model report:
class names,
descriptions, attributes,
and operations.

Classes must be defined in
the model.
86 Using Rational SoDA for Word

ClassesAttrsOpsTable.doc Data Dictionary of
Classes with
Attributes /
Operations in tables

Rose model report:
class names,
descriptions, attributes,
and operations
formatted in a table.

Classes must be defined in
the model.

Design.doc Software Design
Document

Design document for the
system: scope,
referenced documents,
architectural goals and
constraints, logical
architecture, and
interaction diagrams.

Must have packages in the
Logical View.

LogicalViewFull.doc Detail of all
Attributes and
Operations by Class
by Package

Rose model report:
logical view, including
package names, class
names, public and
private properties
(attributes) and methods
(operations), and
package structure.

Must have packages and
classes within those
packages in the Logical
View.

LogicalViewPublic.doc Summary of
Packages, Classes,
and Public Attributes
/ Operations

Rose model report:
logical view, including
package names. class
names, public properties
and methods, and
package structure.

Must have packages and
classes within those
packages in the Logical
View.

LogicalViewSimple.doc Components in the
Model and their
associated Classes

Rose model report:
logical view, including
Package names, class
names, and package
structure.

Must have packages and
classes within those
packages in the Logical
View.

PackagesClasses.doc Summary of
Packages with
Diagrams and Class
Descriptions

Package report with
description, class
diagram, and classes.

Must have packages in the
Logical View and classes
within those packages.
SoDA Template Library 87

PhysicalViewFull.doc Physical View
summary

Rose model report:
component view (also
known as Physical
View), including
Package Name,
component name,
attached class names
with public and private
properties (attributes)
and methods
(operations) and
package structure.

Must have packages and
components in the
Component View, classes
must be attached to the
component.

PhysicalViewPublic.doc Physical View with
Public Operations
and Attributes

Rose model report:
component view.

Must have packages and
components in the
Component View, classes
must be attached to the
component.

PhysicalViewSimple.doc Components in the
Model and their
associated Classes

Rose model report:
physical view (with
packages, components,
and classes) and
package structure with
component views.

Must have packages and
components in the
Component View, classes
must be attached to the
component.

RUP Actor Report.doc Rational Unified
Process Actor
Report

Actor report: brief
description,
characteristics,
relationships, and state
diagram.

External generation:
Requires the Model (name
and path), Parent Package,
and Class (Actor) name.
Rose Tight Integration:
Open the Class Diagram,
select the Actor, run SoDA
Report.
88 Using Rational SoDA for Word

RUP Business Entity
Report.doc

Rational Unified
Process Business
Entity Report

Business entity report
for a class: brief
description,
responsibilities,
relationships,
operations, attributes,
state and class
diagrams.

External generation:
Requires the Model (name
and path), Parent Package,
and Class name.
Rose Tight Integration:
Open the Class Diagram,
select the Class, run SoDA
Report.
**Only Operations
stereotyped as
<<responsibility>> are
documented in the
Responsibility Section.

RUP Business Object
Model Survey.doc

Rational Unified
Process Business
Object Model
Survey

Business object model
survey.

Must have a package called
�Business Object Model� in
the Logical View.
**Only classes stereotyped
as <<business worker>> or
<<business entity>> are
documented in the Member
Business Worker or Entities
sections.

RUP Business Use Case
Model Survey.doc

Rational Unified
Process Business
Use Case Model
Survey

Business use-case
model survey of actors,
business use cases
(including use-case
diagrams), and views.

Must have a package in the
Use Case View called
Business Use-Case Model.
External generation:
Requires the Model (name
and path), package name,
and use case name.
Tight Integration: Open the
Class diagram, select the
Business Use-Case, run
SoDA Report.
**Only classes under this
package, stereotyped as
<<business actor>>, are
documented in the Business
Actor section.
**Only use-cases under this
package, stereotyped as
<<business use-case>>, are
documented in the Business
Use-Case section.
SoDA Template Library 89

RUP Business Use Case
Realization Report.doc

Rational Unified
Process Business
Use Case
Realization Report

Use case realization
report: brief description,
flow of events,
interaction diagrams,
participating business
objects, class diagrams,
and derived
requirements.

External generation:
Requires the Model (name
and path), Parent Package,
and Use Case name.
Tight Integration: Open the
Use Case Diagram, select
the Use Case, run SoDA
Report.

RUP Business Worker
Report.doc

Rational Unified
Process Business
Worker Report

Business worker report
for a class: brief
description of class,
responsibilities,
relationships,
operations, attributes,
competence
requirements, state and
class diagrams.

External generation:
Requires the Model (name
and path), Parent Package,
and Class name.
Tight Integration: Open the
Class Diagram, select the
Class, run SoDA Report.
Retrieves External Word
Docs into the
Responsibilities and
Competence Requirements
sections. You must begin
the file name with
�Responsibilities� or
�Competence�.
Note: External document file
names are case sensitive.

RUP Class Report.doc Rational Unified
Process Class
Report

Class report: brief
description,
responsibilities,
operations, attributes,
relationships, and state
diagram.

External generation:
Requires the Model (name
and path), Parent Package,
and Class name.
Tight Integration: Open the
Class Diagram, select the
Class, run SoDA Report.
Only Operations,
stereotyped as
<<responsibility>>, are
documented in the
Responsibility Section.

RUP Design Model
Survey.doc

Rational Unified
Process Design
Model Survey

Design model hierarchy
with classes, packages,
and class diagrams at
each level.

A package called �Design
Model� must exist in the
Logical View.
90 Using Rational SoDA for Word

RUP Software Architecture
Document.doc

Rational Unified
Process Software
Architecture
Document

Software architectural
representation, goals,
and constraints.
Includes architecturally
significant aspects of the
views: use case, logical,
process, deployment,
and implementation.
Logical view includes
model elements,
package and subsystem
layering. Sections on
size, performance, and
quality are manually
maintained.

This template works best
when the model is
structured as described in
the Rational Unified
Process, Rose Model
Template.
Section 5 requires a
package named �Use
Cases� under the Use Case
View and a diagram with
�Significant� in the name.
Section 6.2 requires a Class
Diagram with �Layering� in
the name.
Section 7 requires a
package under Logical View
named �Process View.�
Section 9 requires a
subsystem named
�Implementation Model.�

RUP Use Case Model
Survey.doc

Rational Unified
Process Use Case
Model Survey

Use-case model survey
of actors, use cases
(including use-case
diagrams), and views.

Requires a package under
Use Case View named
�Use-Case Model.�
Only classes, stereotyped
as <<actor>>, are
documented in section 2,
Actors.

RUP Use Case Realization
Report.doc

Rational Unified
Process Use Case
Realization Report

Use case realization
report: brief description,
flow of events,
interaction diagrams,
participating objects,
class diagrams, and
derived requirements.

External generation:
Requires the Model (name
and path), Parent Package,
and Use Case name.
Tight Integration: Open the
Use Case Diagram, select
the Use Case, run SoDA
Report.
SoDA Template Library 91

RequisitePro Templates
SoDA for Word includes the following RequisitePro templates:

RUP Use Case Report.doc Rational Unified
Process Use Case
Report

Use case report:
relationships, with
diagrams: use-case,
interaction, state, class.

External generation:
Requires the Model (name
and path), Parent Package,
and Use Case name.
Tight Integration: Open the
Use Case Diagram, select
the Use Case.
A Word document must
exist for the Use Case
Specification (this has the
Title page, TOC, etc.)
Only inherited relationships,
stereotyped as <<uses>> or
<<extends>>, are
documented in either Uses
or Extends Relationship
sections.

RUP Use Case Storyboard
Report.doc

Rational Unified
Process Use Case
Storyboard Report

Use case storyboard
report: brief description,
storyboard flow of
events, usability
requirements,
references to user
interface prototype,
interaction diagrams,
participating objects,
class diagrams.

Requires a Rose model and
a related use case.

File Name Template Name Description Conditions

DocsReqts.doc Requirements in a
Project, sorted by
Document

A list of those requirements
contained in documents and
displayed in document order.

Must have
document-based
requirements in the
RequisitePro project.

Reqts.doc Summary of
Requirements in a
Project

A list of all requirements in a
RequisitePro project.

Must have requirements
define in a RequisitePro
project.
92 Using Rational SoDA for Word

TeamTest Templates
SoDA for Word includes the following TeamTest templates:

ReqtsAttrs.doc All Requirements and
their Attributes in a
Project

A list of all requirements and
their related attributes and
current values in a
RequisitePro project.

Must have requirements
and related attributes
with values in a
RequisitePro project.

ReqtsTraces.doc Requirement Hierarchy
and Traceability
Summary

A list of all requirement tags of
the project in a hierarchical
display, and the text of all
requirements and the
traceability relationships for
each requirement.

Must have hierarchical
requirements and
traceability relationships
defined in the
RequisitePro project.

ReqtsUseCases.doc Use-Case
Requirements with
Rose Diagrams

A list of all RequisitePro
Use-Case requirements and
their associated Rose Use
Case diagrams.

Must have an associated
Rose Model for the
RequisitePro project.
The requirement text
must match the Use
Case name in Rose.

File Name Template Name Description Conditions

BuildDetail.doc Build Detail Report Report details build
information such as the
build name, state, owner,
description, creator name
and any related notes.

Must have at least one
build specified in the
project.

Build Summary.doc Build Summary
Report

Report summarizes build
information and includes
build name, state and
description.

Must have at least one
build specified in the
project.
SoDA Template Library 93

ComputerDetail.doc Computer Detail
Report

Report details computer
information such as
computer name, network
name or IP address,
operating system, and
description.

Must have at least one
computer set up through
Rational Administrator.

ComputerSummary.doc Computer Summary
Report

Report summarizes
computer information and
includes computer name,
operating system and
network name or IP
address.

Must have at least one
computer set up through
Rational Administrator.

ScriptDetail.doc Script Summary
Report

Report details script
information such as script
owner, type, description,
specification file path,
developed, purpose,
script creator and notes.

Must have at least one
test script planned or
developed through
Rational Robot or
Rational Test Manager.

ScriptSummary.doc Script Summary
Report

Report summarizes script
information and includes
script name, type and
description.

Must have at least one
test script planned or
developed through
Rational Robot or
Rational Test Manager.

TestDocDetail.doc Test Document Detail
Report

Report details indicated
test document
information such as
document name,
description, path of the
document and the
document creator.

Must have at least one
test document developed
and attached to the
project through Rational
Test Manager.

TestDocSummary.doc Test Document
Summary Report

Report summarizes
indicated test document
information including
document name and
description.

Must have at least one
test document developed
and attached to the
project through Rational
Test Manager.
94 Using Rational SoDA for Word

U S I N G R A T I O N A L S O D A F O R W O R D
7
 Rational SoDA for Word Domains
This chapter describes the SoDA domains and their classes. The overview includes a
description of:

! Domain aliases
! Domain extensions
! Domain Extension Syntax
! Parsed Attributes
! Script Attributes
! Unary Relationships
! N-ary Relationships

For information on specific domains, refer to the following sections:

! �Apex NT Domain� on page 100
! �ClearCase Domain� on page 120
! �ClearQuest Domain� on page 145
! �File System Domain� on page 151
! �RequisitePro Domain� on page 161
! �Rose Domain� on page 174
! �Rose RealTime Domain� on page 212
! �TeamTest Domain� on page 255
! �Word Domain� on page 273
95

Overview

Domain Aliases
Domain aliases let you customize the names of domain classes, attributes, and
relationships. SoDA will use the alias names in the Template View and dialog boxes,
but will use the reserved name internally.

To create an alias you must modify the domain (.dom) description file in the
SODA_HOME\domains directory. Place the name of the alias as the last word in lines
that begin with class or selector.

For example, if instead of StateTransition you want to use the term Activity. To do so,
change the line in Rose.dom from:

class CStateTransition StateTransition

to:

class CStateTransition Activity

You can also use aliases to translate domain terms to other languages. You cannot use
aliases for the File System or Word domains.

Domain Extensions
SoDA allows you to extend the schema of its source domains with a domain extension file. This
file is named DOMAIN.EXT and must be located in the SODA_HOME\domains directory. SoDA
domain extensions allow you to define new:

! Attributes for a source class that are:

− Parsed from an existing attribute
− Derived by a batch script that is passed existing attributes as arguments

! Unary relationships for a class to files and/or directories
! N-ary relationships for a class to files and/or directories

Domain Extension Syntax
The syntax for describing the various domain extensions is described in the following
sections. These syntax descriptions use pointy brackets (<>) to indicate the description
of an item and ellipsis (...) to indicate that an item may be repeated. All other characters
are literal.
96 Using Rational SoDA for Word

The domain extension file contains one or more extension specifications for existing
classes. The syntax for these extensions is:

EXISTING_CLASS <Domain>.<Class>
<Parsed Attribute>
...
<Script Attribute>
...
<Unary Relationship>
...
<N-ary Relationship>
...

END_CLASS
...

where <Domain> is the name of an information source domain�for example: FileSys,
Frame, or Rose�and <Class> is the name of any class defined in that domain�for
example: Directory or File in the File System domain.

Parsed attributes, script attributes, Unary relationships, and N-ary relationships are
described in the following pages.

Parsed Attributes
Parsed attributes provide a convenient way to define additional structure within an
existing attribute. Parsed attributes are evaluated by searching the source attribute for
the start delimiter, then searching for the end delimiter, and returning the text in
between but not including the two delimiters. The syntax for specifying a set of parsed
attributes to be generated from a source attribute is:

EXISTING_CLASS <Domain>.<Class>
SOURCE %<Attribute Name>%

ATTRIBUTE <Name> “<Start Delimiter>” “<End Delimiter>”
...

END_SOURCE
END_CLASS

Note that the ATTRIBUTE keyword, the name, and the start and end delimiters must
all appear on the same line in the domain extension file. If you omit the end delimiter, it
defaults to the newline character.

The most common use of parsed attributes is to define keywords to be specified in
program comments. For example, if you wanted to define ID, author, and purpose
keywords for Rose classes, you would add the following lines to your domain extension
file:

EXISTING_CLASS Rose.CClass
SOURCE %Documentation%

ATTRIBUTE @Ident “@ID:” “@”
ATTRIBUTE @Author “@AUTHOR:” “@”
Rational SoDA for Word Domains 97

ATTRIBUTE @Purpose “@PURPOSE:” “@”
END_SOURCE

END_CLASS

These lines will cause @Ident, @Author, and @Purpose attributes to appear in the SoDA
Field dialog for Rose classes. The use of the at-sign (@) character in the attribute name
is not required, but rather is a convention followed to distinguish schema extensions
from the base attributes of a class.

Script Attributes
Script attributes allow you to provide shell scripts that derive new attributes for a class
from existing attributes of the class. The syntax for adding script attributes to a class is:

EXISTING_CLASS <Domain>.<Class>
ATTRIBUTE <Name> <Script Name> <Argument List>
...

END_CLASS

Note that the ATTRIBUTE keyword, the script attribute�s name, the script name, and
the script�s arguments must all appear on the same line in the domain extension file.
The <Script Name> must be a simple command name, and the <Argument List> must
be a list of one or more attributes of the class enclosed in percent signs (%).

Beware of blanks or newlines in arguments. The script name and its arguments are
simply passed to the shell�which will behave as usual�for interpretation.

For example, if you wanted to add attributes for the number of lines and number of
words in a file, you could add the following lines to your domain extension file:

EXISTING_CLASS File.File
ATTRIBUTE @LineCount linecount %FullName%
ATTRIBUTE @WordCount wordcount %FullName%

END_CLASS

These lines will cause @LineCount and @WordCount attributes to appear in the SoDA
Field dialog for File System files. You will also need to write two executables, named
linecount and wordcount, which given the full pathname to a file, calculate and return
the number of lines and words in it, respectively.

Unary Relationships
It is possible to define additional Unary relationships for a class. These relationships
can only be to the following File System domain classes: DirectoryObject, File, or
Directory.

The syntax for defining Unary relationships from one class to another is:

EXISTING_CLASS <From Domain.Class>
UNARY_RELATIONSHIP <Name> <FileSys.Class> <Naming Exp>
98 Using Rational SoDA for Word

...
END_CLASS

where <Naming Exp> is any valid file naming expression. You can reference other
attributes of the (from) class within the naming expression by enclosing them in percent
signs (%).

Note that the UNARY_RELATIONSHIP keyword, the name, the domain, the class, and
the naming expression must all appear on the same line in the domain extension file.

For example, adding the following lines to your domain extension file defines a new
relationship named @Design from an Apex view to a subdirectory within that view
called design:

EXISTING_CLASS Apex.View
UNARY_RELATIONSHIP @Design File.Directory %FullName%”/design”

END_CLASS

N-ary Relationships
It is also possible to define N-ary relationships to File System domain classes in the
same manner as Unary relationships. The syntax for defining N-ary relationships from
one class to another is:

EXISTING_CLASS <From Domain.Class>
NARY_RELATIONSHIP <Name> <To Domain.Class> <Naming Exp>
...

END_CLASS

<Naming Exp> is the same as for Unary relationships with the exception that wildcard
characters can be used.

Note that the NARY_RELATIONSHIP keyword, the name, the domain, the class, and
the naming expression must all appear on the same line in the domain extension file.

For example, adding the following lines to your domain extension file defines a new
N-ary relationship named @Pics from a directory to all PostScript files within that
directory:

EXISTING_CLASS FileSys.Directory
NARY_RELATIONSHIP @Pics FileSys.File %FullName%”/*.ps”

END_CLASS
Rational SoDA for Word Domains 99

Apex NT Domain

The Apex domain allows you to incorporate information from Ada units, Configurations,
Views, and Subsystems into your SoDA documents.

Many Apex-domain classes are derived from the File System (FileSys) domain classes
File and Directory, and therefore inherit the attributes and relationships of those
classes.

Classes that represent structure within Ada units are based on the ASIS interface. By
default, SoDA opens and closes ASIS libraries as the units with those libraries are
accessed. Performance when building a document from a number of large libraries can
therefore suffer. Performance can be improved by defining the scope of the project.

Apex NT Domain Classes

Apex NT CompositeType Class
An array or record type declaration.

CompositeType is a subclass of Type.

Attributes specific to CompositeType
None

Relationships specific to CompositeType
None
100 Using Rational SoDA for Word

Apex NT CompUnit Class
An Ada compilation unit, i.e., a file ending in .ada.

CompUnit is a subclass of Apex.File.

Subclasses of CompUnit: UnitSpec, UnitBody, SubunitBody.

Attributes specific to CompUnit

Relationships specific to CompUnit

Name � Kind Description

AdaName � text The name assigned to the unit in the source code. If the unit is a subunit,
also includes the name of the parent(s). For example, the AdaName of
package Text_Io is Text_Io. The AdaName of the subunit
Integer_Io is Text_Io.Integer_Io.

AttachedComments � text Comments preceding or following the unit declaration and not separated
from it by a blank line. See also Declaration.AttachedComments .

PrecedingComments � text Comments that come before the unit declaration and are not separated
from it by a blank line

FollowingComments � text Comments that come after the unit declaration and are not separated
from it by a blank line.

IsPrivate � text True if the unit is a private library unit; otherwise False.

IsChild � text True if the unit is a child library unit; otherwise False.

HasChildren � text True if the unit has child library units; otherwise False.

Name � Kind Class Description

ChildUnits � n CompUnit The child library units for this compilation unit, if any.

DescendantUnits � n CompUnit The child library units for this compilation unit, if any.

ParentCompUnit � 1 CompUnit If the unit is a child library unit, this relationship will
return the parent.

UnitDeclaration � 1 Declaration The declaration of the compilation unit.

WithedUnits � n UnitSpec All unit specs upon which this compilation unit directly
depends, i.e., the contents of the with clauses of the
unit.
Rational SoDA for Word Domains 101

Apex NT Configuration Class
A configuration file contains a list of views, one per subsystem. Configurations are
typically used to specify a set of views that make up a particular version of a system.

Configuration is a subclass of FileSys.File.

Attributes specific to Configuration
None

Relationships specific to Configuration

Apex NT Declaration Class
Any Ada declaration.

Subclasses of Declaration:

PackageSpec, PackageBody, SubprogramSpec, SubprogramBody, Parameter, Object,
Type, Task, Entry, Exception.

Attributes specific to Declaration

Name � Kind Class Description

AllViews � n View All the views listed in the configuration file.

AllSubsystems � n Subsystem The enclosing subsystems of all the views listed in the
configuration file.

ImportedViews � n View All the views imported by any view in the configuration but
not themselves listed in the configuration.

Name � Kind Description

IsGeneric � text True if the declaration is an Ada generic, otherwise False.

IsVisible � text True if the declaration is visible to other compilation units, otherwise False.

IsAbstract � text True if the declaration (type or subprogram) is abstract, otherwise False.

IsAliased � text True if the declaration is aliased, otherwise False.

SimpleName � text The identifier of the declaration. For example, the SImpleName of the
declaration procedure Put (C : Character); is Put

MyKind � text The Apex domain class name of the declaration. For example, MyKind of a
package specification returns PackageSpec.
102 Using Rational SoDA for Word

Relationships specific to Declaration

Keyword � text The Ada keyword associated with the declaration. For example, the keyword
of a package specification (or body) is package. Other possible responses are
procedure, function, type, and task. Returns a null string for declarations
that do not have a keyword.

Text � text The full image of the declaration.

AttachedComments � text Comments preceding or following the declaration and not separated from it by
a blank line. The comment characters themselves (i.e., �--) are not included.
For example, given the declaration:
-- Character output
put (C : Character);
-- Provides output of a single character
AttachedComments returns:
Character output.
Provides output of a single character.

PrecedingComments � text Comments that come before the declaration and are not separated from it by a
blank line. See also Declaration.AttachedComments.

FollowingComments � text Comments that come after the declaration and are not separated from it by a
blank line. See also Declaration.AttachedComments.

Name � Kind Class Description

ParentCompUnit � 1 CompUnit The compilation unit in which the declaration is found.

Parent � 1 Declaration The declaration, if any, that encloses this declaration.
For example, given the code:
package One
procedure A (X : Integer);
end One;
One is the parent of A, and A is the parent of X.

VisibleDeclarations � n Declaration The declarations in a package spec that can be
referenced by clients of that spec (i.e., declarations not
in the private part). Returns a null list if the declaration
is not a package spec.

PrivateDeclarations � n Declaration The declarations in a package spec that cannot be
referenced by clients of that spec (i.e., declarations in
the private part). Returns a null list if the declaration is
not a package spec.

AllDeclarations � n Declaration All declarations in the public or private parts of a
package spec or within a package body.

GenericParameters � n Declaration The generic formal parameters of a generic
declaration. Returns a null list if the declaration is not
generic.
Rational SoDA for Word Domains 103

Apex NT Entry Class
An Ada task entry.

Entry is a subclass of Declaration.

Attributes specific to Entry
None

Relationships specific to Entry

Apex NT Exception Class
An Ada exception.

Exception is a subclass of Declaration.

Attributes specific to Exception
None

Relationships specific to Exception
None

Apex NT File Class
Any file contained within an Apex View or a subdirectory of that view. In addition to
normal File System domain attributes, Apex CMVC information is available for objects
of this class.

File is a subclass of FileSys.File.

Subclasses of File: CompUnit.

Name � Kind Class Description

Parameters -- n Parameter The formal parameters of this task entry declaration.
104 Using Rational SoDA for Word

Attributes specific to File

Relationships specific to File

Apex NT FunctionBody Class
An Ada function body.

FunctionBody is a subclass of SubprogramBody.

Attributes specific to FunctionBody
None

Relationships specific to FunctionBody

Apex NT FunctionSpec Class
An Ada function specification.

FunctionSpec is a subclass of SubprogramSpec.

Attributes specific to FunctionSpec
None

Relationships specific to FunctionSpec

Name � Kind Description

IsControlled � text True if the file is under Apex CMVC control, otherwise False.

VersionHistory � text The CMVC version history name. Returns a null string if the file is not
controlled.

VersionNumber � text The CMVC version number. Returns a null string if the file is not
controlled.

Name � Kind Class Description

EnclosingView � 1 View The View containing the file.

Name � Kind Class Description

ReturnType � 1 Type The declaration of the type returned by the
function.

Name � Kind Class Description

ReturnType � 1 Type The declaration of the type returned by the function.
Rational SoDA for Word Domains 105

Apex NT Object Class
An Ada variable or constant declaration.

Object is a subclass of Declaration.

Attributes specific to Object
None

Relationships specific to Object

Apex NT PackageBody Class
An Ada package body.

PackageBody is a subclass of Declaration.

Attributes specific to PackageBody
None

Relationships specific to PackageBody

Apex NT PackageSpec Class
An Ada package specification.

PackageSpec is a subclass of Declaration.

Attributes specific to PackageSpec
None

Relationships specific to PackageSpec

Name � Kind Class Description

MyType � 1 Type The declaration of the object�s type.

Name � Kind Class Description

MySpec � 1 PackageSpec The package specification corresponding to this
body.

Name � Kind Class Description

MyBody � 1 PackageBody The package body corresponding to this
specification.
106 Using Rational SoDA for Word

Apex NT Parameter Class
An Ada formal parameter declaration. Can be part of a procedure, function, or task
entry declaration.

Parameter is a subclass of Declaration.

Attributes specific to Parameter

Relationships specific to Parameter

Apex NT PrimitiveType Class
A discrete, real, or fixed type declaration.

PrimitiveType is a subclass of Type.

Attributes specific to PrimitiveType
None

Relationships specific to PrimitiveType
None

Apex NT ProtectedType Class
A protected array or record type declaration.

ProtectedType is a subclass of Type.

Attributes specific to ProtectedType
None

Relationships specific to ProtectedType
None

Name � Kind Description

Mode � text The mode of the parameter: in, out, or in out.

Name � Kind Class Description

MyType � 1 Type The declaration of the parameter�s type.
Rational SoDA for Word Domains 107

Apex NT Statement Class
An Ada statement.

Attributes specific to Statement

Relationships specific to Statement

Apex NT SubprogramBody Class
An Ada procedure or function body.

SubprogramBody is a subclass of Declaration.

Subclasses of SubprogramBody: FunctionBody.

Attributes specific to SubprogramBody
None

Name � Kind Description

MyKind � text The statement kind, as defined by ASIS. Examples:
AN_IF_STATEMENT, A_CASE_STATMENT, A_BLOCK_STATEMENT.

Text � text The full image of the statement.

CommentsWithin � text All comments that appear after the first line of the statement, but before
the last line.

PrecedingComments � text Comments that come before the statement and are not separated from
it by a blank line.

FollowingComments � text Comments that come after the statement and are not separated from it
by a blank line.

Name � Kind Class Description

ParentDeclaration -- 1 Declaration The subprogram body declaration that encloses
this statement.
108 Using Rational SoDA for Word

Relationships specific to SubprogramBody

Apex NT SubprogramSpec Class
An Ada procedure or function specification.

SubprogramSpec is a subclass of Declaration.

Subclasses of SubprogramSpec: FunctionSpec.

Attributes specific to SubprogramSpec
None

Relationships specific to SubprogramSpec

Apex NT Subsystem Class
Subsystem Class is an Apex subsystem, i.e., a directory ending in .ss and containing
zero or more views.

Subsystem is a subclass of FileSys.Directory .

Attributes specific to Subsystem
None

Relationships specific to Subsystem

Name � Kind Class Description

MySpec � 1 SubprogramSpec The specification corresponding to this subprogram
body.

Parameters � n Parameter The formal parameters of this subprogram body.

Statements � n Statement The first-level statements declared in the subprogram
body block.

Name � Kind Class Description

MyBody � 1 SubprogramBody The subprogram body corresponding to this
specification.

Name � Kind Class Description

AllViews � n View All the views contained within this subsystem,
i.e., directories ending in .wrk or .rel.
Rational SoDA for Word Domains 109

Apex NT SubunitBody Class
A CompUnit that is an Ada subunit.

SubunitBody is a subclass of CompUnit.

Attributes specific to SubunitBody
None

Relationships specific to SubunitBody

Apex NT Task Class
An Ada task object or type.

Task is a subclass of Declaration.

Subclasses of Task: TaskType.

Attributes specific to Task
None

Relationships specific to Task

Apex NT TaskType Class
An Ada task type

TaskType is a subclass of Type and a subclass of Task.

Name � Kind Class Description

EnclosingUnit � 1 UnitBody The unit body in which this subunit is declared.

AllDependencies � n CompUnit All units upon which this body depends for
compilation. Includes units in the with clauses of the
specification and enclosing unit bodies.

MySubunits � n SubunitBody All subunits declared within this subunit.

Name � Kind Class Description

EntryPoints � n Entry The entry points of the task.
110 Using Rational SoDA for Word

Attributes specific to TaskType
None

Relationships specific to TaskType
None

Apex NT Type Class
An Ada type declaration

Type is a subclass of Declaration.

Subclasses of Type: PrimitiveType, CompositeType, ProtectedType, TaskType.

Attributes specific to Type

Relationships specific to Type
None

Apex NT UnitBody Class
A CompUnit that is an Ada body.

UnitBody is a subclass of CompUnit .

Attributes specific to UnitBody
None

Relationships specific to UnitBody

Name � Kind Description

IsTagged � text True if this is a tagged type, otherwise False.

Name � Kind Class Description

MySpec - 1 UnitSpec The compilation unit specification that corresponds to
this body.

AllDependencies � n CompUnit All units upon which this body depends for compilation.
Includes units in the with clauses of the specification.

MySubunits � n SubunitBody All subunits declared within this body.
Rational SoDA for Word Domains 111

Apex NT UnitSpec Class
A CompUnit that is an Ada specification.

UnitSpec is a subclass of CompUnit.

Attributes specific to UnitSpec

Relationships specific to UnitSpec

Apex NT View Class
An Apex view, i.e., a directory ending in .wrk or .rel and contained within a Subsystem.

View is a subclass of FileSys.Directory.

Attributes specific to View
None

Relationships specific to View

Name � Kind Description

HasBody � text True if the unit has a corresponding body; otherwise False.

Name � Kind Class Description

MyBody � 1 UnitBody The compilation unit body that corresponds to this
specification.

ReferencingUnits � n CompUnit All compilation units that reference (i.e., with) this
specification. The scope of units considered in evaluating
this relationship is controlled by the
SODA_APEX_LIBRARY environment variable.

Name � Kind Class Description

EnclosingSubsystem � 1 Subsystem The Subsystem containing this view.

ImportedViews � n View The Views imported by this view.

Subdirectories � n ViewDirectory The directories immediately contained within this
view.

AllSubdirectories � n ViewDirectory All directories contained within this view or,
recursively, within those directories, their
subdirectories, etc.
112 Using Rational SoDA for Word

Apex NT ViewDirectory Class
A directory within an Apex view.

ViewDirectory is a subclass of FileSys.Directory.

Attributes specific to ViewDirectory
None

Relationships specific to ViewDirectory

Files � n File The files immediately contained in the view. Returns
objects of the Apex domain File class, which differ
from File System (FileSys) domain files in that Apex
CMVC information is available for them.

AllFiles � n CompUnit All files contained within this view or, recursively,
within the subdirectories of the view, their
subdirectories, etc. Returns objects of the Apex
domain File class, which differ from File System
(FileSys) domain files in that Apex CMVC
information is available for them.

AllCompUnits � n CompUnit All Ada units contained in this view or, recursively,
within the subdirectories of the view, their
subdirectories, etc.

UnitSpecs � n UnitSpec The Ada unit specifications immediately contained
in this view, i.e., files ending in .1.ada.

AllUnitSpecs � n UnitSpec All Ada unit specifications contained in this view or,
recursively, within the subdirectories of the view,
their subdirectories, etc.

ImportedUnits � n UnitSpec All units from other views visible from within this
view.

ExportedUnits � n UnitSpec All units in this view that are visible to other views.

Name � Kind Class Description

EnclosingView � 1 View The View containing this directory.

Subdirectories � n ViewDirectory The ViewDirectories immediately contained within this
directory.

AllSubdirectories � n ViewDirectory All ViewDirectories contained within this directory or,
recursively, contained in its directories, their
subdirectories, etc.
Rational SoDA for Word Domains 113

Files � n File The files immediately contained in the directory. Returns
objects of the Apex domain File class, which differ from
File System (FileSys) domain files in that Apex CMVC
information is available for them.

AllFiles � n File All files contained within this directory or, recursively,
within its subdirectories, their subdirectories, etc. Returns
objects of the Apex domain File class, which differ from
File System (FileSys) domain files in that Apex CMVC
information is available for them.

CompUnits � n CompUnit The Ada units immediately contained within this directory,
i.e., files ending in .ada.

AllCompUnits � n CompUnit All Ada units contained in this directory or, recursively,
within its subdirectories, their subdirectories, etc.

UnitSpecs � n UnitSpec The Ada unit specifications immediately contained in this
directory, i.e., files ending in .1.ada.

AllUnitSpecs � n UnitSpec All Ada unit specifications contained in this directory or,
recursively, within its subdirectories, their subdirectories,
etc.
114 Using Rational SoDA for Word

Subsystem Structure for Apex NT Templates
SoDA templates relating to Rational Apex NT are located in the following directory:

<install drive>\Program Files\Rational\SoDAWord\template\Apex

Note: SoDA�s Apex templates are designed specifically for use in a particular hierarchy
of Apex subsystems and view. For more details, see Apex NT Subsystem Structure.

Apex NT Subsystem Structure
SoDA�s Apex 498 templates assume a certain structure for the subsystems in which they reside and
from which documents will be generated. This default structure is described below. If you want, you
can alter the templates to use a structure of your choosing.

a_system\
. interface_views.cfg
. a_system.ss\view.wrk\
. . . irs\
. . . idd\
. . . . interface_diagram.*
. cscis\a_csci\
. . . a_csci.ss\view.wrk\
. srs\ #
. sdd\ #
. system_architecture.*
. csci_architecture.*
. states_and_modes.*
. . . all_views.cfg
. . . exported_views.cfg
. . . local_views.cfg
. . . source_subsystem.ss\view.wrk\
.sdd\ #
.preliminary\ #
.architecture.*
.scenarios\ #
.scenario_n.*
.detailed\ #
.architecture.*
.instance_diagrams\ #
.instance_n.*
.scenarios\ #
.scenario_n.*

Note: The directories marked with a (#) can be empty, but they must exist for the
documents that reference them to generate without errors.
Rational SoDA for Word Domains 115

Apex NT Subsystem Directories
SoDA System Directory

A 498 system is represented with a directory containing a subdirectory named cscis
and an Apex configuration named interface_views.cfg. The cscis directory contains
all the CSCI directories for the system. The interface_views.cfg configuration
contains the views that are external interfaces of the system.

SoDA CSCI Directories

A 498 CSCI is represented with a directory containing three Apex configuration files
all_views.cfg, exported_views.cfg, and local_views.cfg. Each of these files contains
a list of Apex views, one per subsystem.

SoDA Document Subsystems

The SoDA templates assume that documents will be located within Apex subsystem
views with a specific relationship to their information sources.

When you use the standard SoDA templates, you will create one additional subsystem
to contain the system level documents and an additional subsystem for each CSCI in the
system.

System-Level Documents

You create a subsystem in the root directory of the project to hold the project-wide
documents (the IRS and IDD). This subsystem can have any name, but a good
convention is to give it the same name as the project root directory but with the .ss
extension. For example:

a_system\a_system.ss\view.wrk

The IRS and IDDdocuments are located in subdirectories within this subsystem�s views.

CSCI-Level Documents

A directory is used to represent a CSCI. You create a subsystem within that directory to
hold the CSCI-level documents (the SRS and SDD). This subsystem can have any name
but a good convention is to give it the same name as the CSCI�s directory but with the
.ss extension. For example:

a_system\cscis\a_csci\a_csci.ss\view.wrk
116 Using Rational SoDA for Word

The SRS and SDD documents are located in subdirectories within this subsystem�s
views.

SoDA Document Directories
Each of SoDA�s 498 templates is, by convention, located in its own subdirec tory. In
some cases, the templates expect these directories to contain addi tional subdirectories
and files.

Requirements Documents

For requirements, SoDA supports a project-wide IRS and CSCI-level SRSs.

Interface Requirements Specification (IRS)

The IRS template is located in an irs subdirectory of the project-wide document
subsystem view. For example:

a_system\a_system.ss\view.wrk\irs

The IRS template is primarily used as a template in which to manually enter the
document content.

Software Requirements Specification (SRS)

The SRS template is located in an srs subdirectory of each CSCI�s document subsystem
view. For example:

a_system\cscis\a_csci\a_csci.ss\view.wrk\srs

The SRS template is primarily used as a template in which to manually enter the
document content.

Design Documents

For design, SoDA supports a project-wide IDD and CSCI-level SDDs.

Interface Design Document IDD)

The IDD template is located in an idd subdirectory of the project-wide document
subsystem view. For example:

a_system\a_system.ss\view.wrk\idd
Rational SoDA for Word Domains 117

The IDD template contains SoDA commands to automatically generate document
sections for interfaces that are to be implemented as Ada program calls. Sections for
interfaces implemented in other ways (such as pipes, sockets, etc.) are entered directly
into the document.

The information sources for the automatically generated document sections are the
exported program units of the project�s code-containing subsystems. If a file named
interface_diagram.* is present in the IDD document direc tory it will be included in
the document. This file can be in any graphic format imported by Word.

Software Design Document (SDD)

The SDD template is located in an sdd subdirectory of each CSCI�s document
subsystem view. For example:

a_system\cscis\a_csci\a_csci.ss\view.wrk\sdd

The SDD template contains SoDA commands to generate most of the docu ment. The
information sources for the SDD are the code-containing subsystems of the CSCI. In
addition, if files named system_architecture.*, csci_architecture.*, and/or
states_and_modes.* are found in the SDD document directory they will be included in
the document.

SoDA Source Subsystems
The code-containing subsystems of the project are the information source for the
automatically generated sections of the IDD and SDD. To generate either of these
documents, you need to create specifications for all units that are to appear in the
document. You do not need to do anything special to the Ada units for SoDA to generate
these documents. However, if you follow the convention of attaching comments to
declarations, those comments will appear in the documents. A comment is considered
attached to a declara tion if there are no blank spaces between the element and the
comment. For example:

-- this comment is attached to A_Package
package A_Package is
-- this comment is attached to A_Package as well

-- this comment is attached to A_procedure
procedure A_Procedure;
--
-- this comment is attached to A_Procedure as well

-- this comment is attached to A_Function
118 Using Rational SoDA for Word

function A_Function return Integer;
procedure Another_Procedure (

A_Parameter : Integer
-- this comment is attached to A_Parameter but
-- not Another_Procedure

);

In addition to extracting information from subsystems and Ada units, SoDA looks for
graphics in the following subdirectories of each source subsystem view:

! A CSC interface architecture diagram in SDD section 4.1.X from:

<view>\sdd\preliminary\architecture.*

! Object scenario diagrams in SDD section 4.1.X from:

<view>\sdd\preliminary\scenarios*

! A CSC implementation architecture diagram in SDD section 5.X from:

<view>\sdd\detailed\architecture.*

! Object scenario diagrams in SDD section 5.1.X from:

<view>\sdd\detailed\scenarios*

! Object instance diagrams in SDD section 5.1.X from:

<view>\sdd\detailed\instance_diagrams*

Note: The subdirectory names for the location of graphics in the source subsystem
views are defined in domain extensions. For more details, see SoDA�s Domain Extension
File.
Rational SoDA for Word Domains 119

ClearCase Domain

SoDA's new source domain for ClearCase enables extraction of version control, activity
management, workspace management, and VOB meta-data information from
ClearCase 4.0 for inclusion in your SoDA documents. For details on using the
ClearCase domain, please refer to the SoDA online help.

The structure of the SoDA ClearCase domain reflects the public external interface of
ClearCase, also known as CAL (ClearCase Automation Library). There is a direct
correspondence between SoDA Classes and ClearCase interfaces. Therefore, the
ClearCase documentation for CAL may be helpful in understanding and using the SoDA
ClearCase domain.

Accessing Objects with Pathnames
An object with a pathname (e.g., Element, Version, Branch) cannot be accessed by SoDA
without a ClearCase view. When a VOB is identified using only a VOB tag, SoDA
doesn�t know the view it needs to use to access objects for that VOB. To provide a view,
use the pathname of the VOB as seen through a specific view in the VOBIdentifier
parameter of the Open command in place of just using the VOB tag. This view will then
be used to resolve the names of objects accessed via the VOB.

 The Open commands for the following ClearCase objects request a VOBIdentifier
instead of a VOB tag. (VOBIdentifier signifies that either a VOB tag or a pathname \
VOB tag can be entered.)

! VOB
! Activity
! AttributeType
! BranchType
! HyperlinkType
! LabelType
! TriggerType
120 Using Rational SoDA for Word

ClearCase Domain Classes

ClearCase Activity Class
In the UCM model, an activity is a ClearCase object that you use to track the work
required to complete a development task. An activity includes a text headline, which
describes the task, and a change set, which identifies the versions that you create or
modify while working on the activity.

Class Hierarchy: VOBObject>Activity

Attributes specific to Activity

Relationships specific to Activity

Name - Kind Description

Headline - text The title of this activity.

LockedBy � text The name of the user who locked the activity.

LockedDescription - text The description of the lock on this activity.

LockedOn � text The date the activity was locked.

Master - text The master replica for this activity.

State - text The state of the lock on this activity.

Name - Kind Class Description

ChangeSet � n Version The versions in this activity�s change set.

ExcludedUsers - n Name The list of users exempted from the lock.

Lock � 1 Lock The lock on this activity.

NameResolverView � 1 View A �best guess� view for resolving the names of versions in
a change set.

VOB - 1 VOB The VOB containing the activity.
Rational SoDA for Word Domains 121

ClearCase Attribute Class
An attribute is a meta-data annotation attached to a VOB object, in the form of a
name/value pair. The names of attributes are specified by user-defined attribute types;
values of these attributes can be set by users. For example, a project administrator may
create an attribute type whose name is QAed. A user may then attach the attribute
QAed with the value �Yes� to a version. An attribute is a VOB object.

Class Hierarchy: VOBObject>Attribute

Attributes specific to Attribute

Relationships specific to Attribute

ClearCase AttributeType Class
An attribute type is a VOB object that defines an attribute name for use within a VOB.
It constrains the attribute values that can to paired with the attribute name (for
example, an integer in the range 1-10).

Class Hierarchy: VOBOjbect>AttributeType.

Attributes specific to AttributeType

Name - Kind Description

Value - text The attribute value.

Name - Kind Class Description

Type - 1 AttributeType The attribute type of this attribute.

VOB - 1 VOB The VOB containing the object having this attribute.

Name - Kind Description

Constraint � text The constraint for this attribute type.

DefaultValue � text The default value for this attribute type.

Group � text The group to which this attribute type belongs.

HasSharedMastership - text Whether this attribute type is shared or can be mastered.

LockedBy � text The name of the user who locked this attribute type.

LockedDescription � text The user comment for the lock

LockedOn - text The date this attribute type was locked.
122 Using Rational SoDA for Word

Relationships specific to AttributeType

ClearCase Baseline Class
Class Hierarchy: UCMObject>Baseline

Attributes available for Baseline

LowerIsInRange � text Whether or not the lower value is in the range of legal values for this
attribute type.

LowerValue � text The lower value for this attribute type.

Master - text The master replica for this attribute type.

NumberOfEnumValues � text The number of enumerated values for this attribute type.

Owner � text The owner of this attribute type.

Scope � text The scope of this attribute type (for example, local to this VOB).

State - text The state of the lock on this attribute type.

UpperIsInRange � text Whether or not the upper value is in the range of legal values for this
attribute type.

UpperValue - text The upper value for this attribute type.

ValueType � text The value type for this attribute.

Name - Kind Class Description

EnumValues - n Value The enumerated values for this attribute type.

ExcludedUsers - n Name The list of users who are exempt from the lock.

Lock - 1 Lock The lock on this attribute type.

VOB - 1 VOB The VOB containing this attribute type.

Name - Kind Description

Component The component containing the baseline UCM object.

LabelStatus The label status for the baseline UCM object.

PromotionLevel The promotion level for the baseline UCM object.

Stream The stream in which the baseline UCM object was created.
Rational SoDA for Word Domains 123

Relationships available for Baseline

ClearCase BaselineComparison Class
Class Hierarchy: BaselineComparison

Attributes available for UCMObject>BaselineComparison

Relationships available for BaselineComparison

ClearCase Branch Class
A branch is an object that specifies a linear sequence of versions of an element. The
entire set of versions of an element is called a version tree; it always has a single main

Name - Kind Class Description

Activities - n The activities included in the baseline UCM object.

UsedbyStreams -
n

All of the streams for which the baseline UCM object serves as a
foundation.

Name - Kind Description

BaselineOne The first baseline to compare.

BaselineTwo The second baseline to compare.

StreamOne The first stream to compare.

StreamTwo The second stream to compare.

Name - Kind Class Description

ActivitiesInOneBu
tNotTwo - n

The activities in baseline (or stream) one, but not in baseline (or stream)
two.

ActivitiesInTwoBu
tNotOne - n

The activities in baseline (or stream) two, but not in baseline (or stream)
one.

ChangedActivitie
s - n

The activities that appear in both baselines (or streams), but are
different in each.

VersionsInOneBu
tNotTwo - n

The versions in baseline (or stream) one, but not in baseline (or stream)
two.

VersionsInTwoBu
tNotOne - n

The versions in baseline (or stream) two, but not in baseline (or stream)
one.
124 Using Rational SoDA for Word

branch, and may also have subbranches. Each branch is an instance of a branch type
object. A branch is a VOBObject, and thus may have a lock preventing modification.

Branches have both names and paths. The SoDA Browse feature facilitates accessing
the path of the Branch. When generating a report in the ClearCase domain, the Name
field contains the full path and file name (view/VOB/file) for the target file. When the
VOB contains more than one branch, it may be necessary to indicate the specific branch
that contains the file. To do so, after browsing for a file, add the following branch
notation to the path and file name returned by the browse feature: @@\. For example,
c:\my_view \ my_VOB \ my_file.txt@@ \ main.

Class Hierarchy: VOBObject>Branch

Attributes available for Branch

Relationships available for Branch

Name - Kind Description

BranchPath - text The pathname of this branch.

ExtendedPath - text Extended pathname of the branch.

LockedBy � text The name of the user who locked the branch.

LockedDescription � text The description of the current lock on the branch.

LockedOn - text The date the branch was locked.

Master - text The master replica for this branch.

State - text The state of the lock on this branch.

Name - Kind Class Description

BranchPointVersion - 1 Version The version from which this branch sprouts.

ExcludedUsers - n Name A list of users exempt from the lock.

Element � 1 Element The element to which this branch belongs.

LatestVersion � 1 Version The latest version of this branch.

Lock � 1 Lock The lock on this branch.

Type � 1 BranchType The branch type of this branch.

Versions � n Version An enumeration of all versions along this branch.

VOB - 1 VOB The VOB containing this branch.
Rational SoDA for Word Domains 125

ClearCase BranchType Class
A branch type defines a branch name for use within a VOB.

Class Hierarchy: VOBObject Class>BranchType

Attributes available for BranchType

Relationships available for BranchType

ClearCase CheckedOutFile Class
A checked out file is a placeholder in the VOB database created by the checkout
command. This object corresponds to the view-private object (file or directory) that you
work with after checking out an element. A checkout will be marked reserved if
reserved checkout has been performed (meaning the file is exclusively locked for one
user).

Class Hierarchy: VOBObject>File>Version>CheckedOutFile

Name - Kind Description

Constraint - text The constraint for this branch type.

Group - text The group to which this branch type belongs.

LockedBy � text The name of the user who locked this branch type.

LockedDescription � text The user comment for the lock on this branch type.

LockedOn - text The date on which this branch type was locked.

Master - text The master replica for this branch type.

Owner - text The owner of this branch type.

Scope - text The scope of this branch type (for example, local to this VOB)

State - text The state of the lock on this branch type.

Name - Kind Class Description

ExcludedUsers - n Name The list of users who are exempt from the lock on this
branch type.

Lock - 1 Lock The lock on this branch type.

VOB - 1 VOB The VOB containing this branch type.
126 Using Rational SoDA for Word

Attributes specific to CheckedOutFile

Relationships specific to CheckedOutFile

ClearCase Component Class

Class Hierarchy: UCMObject>Component

Attributes available for Component

Relationships available for Component

None

ClearCase Element Class
An element is an object that encompasses a set of versions, organized into a version
tree. An element may have a lock if a version of the element is checked out in a view.

Class Hierarchy: VOBObject>File>Element

Attributes available for Element

Name - Kind Description

IsReserved - text Whether or not this checkout is reserved.

Name - Kind Class Description

ByView � 1 View The view to which this file is checked out.

Name - Kind Description

RootDirectoryElement The root directory for the component.

Name - Kind Description

ElementType - text The element type of this element.

LockedBy � text The use who locked this element.

LockDescription - text A comment associated with the history record for the lock.

LockedOn - text The date the element was locked.

Group - text The group to which this element belongs.
Rational SoDA for Word Domains 127

Relationships available for Element

ClearCase File Class
The File class represents all VOB objects, which are physical files such as elements and
versions. A File object does not include view-private objects.

Subclasses of File Class: Element, Version.

Class Hierarchy: VOBObject>File

Master - text The master replica for this element.

Owner - text The owner of the element.

State - text The current state of the lock on this element.

Name - Kind Class Description

AllBranches - n branch All branches in the version tree for this element.

AllCheckedOutFiles - n CheckedOutFile The versions of the element checked out to any view.

AllVersions - n Version Versions in the version tree for this element.

ExcludedUsers - n Name Array of string values containing the names of users
exempted from the lock being created.

CheckedOutFile � 1 CheckedOutFile The version of the element checked out to the
associated view.

GroupPermissions � n Name The group permissions of the element (users within
the same group have these permissions).

Lock � 1 Lock The lock on this element.

OtherPermissions � n Name The other permissions of the element (all users).

OwnerPermissions � n Name The owner permissions of the element (the owner has
these permissions).

ParentDirectory - 1 Element This element�s parent directory element.

RootVersion - 1 Version The particular version of this element specified by the
version selector.

Triggers � n Trigger The collection of triggers attached to this file of
directory element.
128 Using Rational SoDA for Word

Attributes specific to File

Relationships specific to File

ClearCase Folder Class.
Class Hierarchy: UCMObject>Folder

Attributes available for Folder

Relationships available for Folder

Name - Kind Description

ExtendedPath - text The VOB-extended pathname of this file system object.

Extension - text The file extension (the portion after the final dot).

IsDirectory - text Whether or not the file is a directory.

NameMinusExtension - text The simple name of the file without the extension and final.dot.

Path - text The pathname to this file system object.

SimpleName - text The simple name of the file, i.e., the name of the file without the path.

Name - Kind Class

View � 1 View

VOB � 1 VOB

Name - Kind Description

IsRootFolder TRUE if the folder is the root of the project hierarchy in its project VOB.

ParentFolder The name of the parent folder.

Name - Kind Class Description

Projects - n The projects contained in the folder.

Subfolders - n The folders contained within the folder.
Rational SoDA for Word Domains 129

ClearCase HistoryRecord Class
A history record is meta-data in a VOB, representing an event record involving a VOB
object. The history of a file element includes history records for creation of the element,
creation of each version of the file, creation of each branch, assignment of attribute to
the element and/or its versions, attaching of hyperlinks to the element and/or its
versions, and so on.

Class Hierarchy: VOBObject>VOB>HistoryRecord

Attributes available for HistoryRecord

Relationships available for HistoryRecord

ClearCase Hyperlink Class
A hyperlink is a logical pointer between two objects. A hyperlink is a VOB object, it
derives its name by referencing another VOB object, a hyperlink type. A hyperlink can
have from text and to text, which are technically string-valued attributes on the
hyperlink object. A hyperlink has a from-object and to-object, which are VOB objects. A
hyperlink may be bi-directional, indicating that it can be traversed both from to-object
to from-object and from-object to to-object. The IsUnidirectional selector will be False if
a hyperlink is bi-directional.

Class Hierarchy: VOBObject>Hyperlink

Name - Kind Description

Comment - text The comment associated with the operation indicated by this history record.

Date - string The date and time the operation was executed.

EventKind - text Indicates the type of operation that was executed.

Group - text The name of the login group that performed the operation indicated by this
history record.

Host - text The name of the host machine from which the operation indicated by this
history record was executed.

UserFullName - text The full name of the user who performed the operation indicated by this history
record.

UserLoginName - text The login name of the user who performed the operation indicated by this
history record.

Name - Kind Class Description

VOB - 1 VOB The VOB containing the object to which the operation was applied.
130 Using Rational SoDA for Word

Attributes available for Hyperlink

Relationships available for Hyperlink

ClearCase HyperlinkType Class
A HyperlinkType is an object that defines a hyperlink name for use within a VOB. A
HyperlinkType may be shared or local.

Class Hierarchy: VOBObject>HyperlinkType

Attributes available for HyperlinkType

Name - Kind Description

FromText - text The from-text on the from-object of the hyperlink.

Group - text The group to which this hyperlink belongs.

IDString - text The string identifying the hyperlink (type-name@id@vob-selector).

IsUnidirectional - text Whether of not the hyperlink object can be navigated only in one direction
(from-object -> to-object).

Master - text The master replica for this hyperlink.

Owner - text The owner of this hyperlink.

ToText - text The to-text on the to-object of the hyperlink.

Name - Kind Class Description

FromObject - 1 VOBObject The from-object of the hyperlink.

ToObject - 1 VOBObject The to-object of the hyperlink.

Type - 1 HyperlinkType The hyperlink type of this hyperlink.

VOB � 1 VOB The VOB containing this hyperlink.

Name - Kind Description

Group � text The group to which this hyperlink type belongs.

HasSharedMastership - text Whether this hyperlink type is shared or can be mastered.

LockedBy � text The name of the user who locked this hyperlink type.

LockedDescription � text The comment of the user who locked this hyperlink type.

LockedOn - text The date on which this hyperlink type was locked.

Master � text The master replica for this hyperlink type.
Rational SoDA for Word Domains 131

Relationships available for HyperlinkType

ClearCase Label Class
A label is an instance of a LabelType object, supplying a user-defined name for a
version. One or more labels may be assigned to a given version.

Class Hierarchy: VOBObject>LabelType>Label

Attributes available for Label
None

Relationships available for Attribute

ClearCase LabelType Class
A label type is a type object that defines a version label for use within a VOB.

Class Hierarchy: VOBObject>LabelType

Attributes specific to LabelType

Owner � text The owner of this hyperlink type.

Scope � text The scope of this hyperlink type (for example, local to this VOB).

State - text The state of the lock on this hyperlink type.

Name - Kind Class Description

ExcludedUsers - n Name The list of users who are exempt from the lock.

Lock - 1 Lock The lock on this hyperlink type.

VOB - 1 VOB The VOB containing this hyperlink type.

Name - Kind Class Description

Type � 1 LabelType The label type of this label.

VOB - 1 VOB The VOB containing the labeled version.

Name - Kind Description

Constraint � text The constraint for this label type.

Group � text The group to which this label type belongs.

HasSharedMastership - text Whether this label type is shared or can be mastered.
132 Using Rational SoDA for Word

Relationships specific to LabelType

ClearCase Lock Class
A lock is a mechanism that prevents a VOB object from being modified (for file system
objects) or from being instanced (for type objects).

Class Hierarchy: VOBObject>Lock

Attributes available for Lock

Relationships available for Lock

LockedBy � text The name of the user who locked this label type.

LockedDescription � text The comment of the user who locked this label type.

LockedOn - text The date on which this label type was locked.

Master � text The master replica for this label type.

Owner � text The owner of this label type.

Scope � text Whether this label type is global for VOBs using this as an admin VOB or local
to this VOB.

State - text The state of the lock on this label type.

Name - Kind Class Description

ExcludedUsers - n Name The list of users who are exempt from the lock on this
label type.

Lock - 1 Lock The lock on this label type.

VOB - 1 VOB The VOB containing this label type.

Name - Kind Description

CreatedBy � text The name of the user who created the lock.

CreatedOn � text The date the lock was created.

Description - text The user�s comment for the lock.

IsObsolete - text Whether the locked object is marked as obsolete.

NumberOfExemptUsers - text The number of users who are exempt from this lock.

Name - Kind Class Description

CreationRecord - 1 HistoryRecord The creation record for this lock.
Rational SoDA for Word Domains 133

ClearCase Name Class
The Name class represents a string corresponding to the name or pathname of a
ClearCase object.

Class Hierarchy: Name

Attributes specific to Name

Relationships specific to Name
None

ClearCase Project Class
Class Hierarchy: UCMObject>Project

Attributes available for Project

ExemptUsers - n Name The users who are exempt from this lock.

LockedObject - 1 VOBObject The object held by this lock.

VOB - 1 VOB The VOB in which this lock resides.

Name - Kind Description

Name - text Simple name string.

Name - Kind Description

ClearQuestDatabaseName The name of the ClearQuest database linked to the CRM-enabled project.

HasStreams TRUE if there are any streams associated with the project.

IntegrationStream The integration stream for the project.

IsCRMEnabled TRUE if the project is CRM enabled (i.e., it it linked to a ClearQuest database.

ParentFolder The folder containing the project.

Policy The policy settings associated with the project.

RequiredPromotionLevel The minimum promotion level a baseline must have in order to be a
recommended baseline in a rebase operation.
134 Using Rational SoDA for Word

Relationships available for Project

ClearCase ProjectPolicy Class
Class Hierarchy: UCMObject>ProjectPolicy

Attributes available for ProjectPolicy

Relationships available for ProjectPolicy

ClearCase ProjectVOB Class
Class Hierarchy: UCMObject>ProjectVOB

Name - Kind Class Description

DevelopmentStre
ams - n

Stream The development streams of the project.

ModifiableCompo
nents - n

The set of components that can be modified by the project.

RecommendedB
aselines - n

Baseline The project�s list of recommended baselines.

Streams - n Stream The streams for the project.

Name - Kind Description

DeliverRequireCheckin TRUE if delivery is denied from a development stream that has checkouts.

DeliverRequireRebase TRUE if development stream must be based on the current recommended
baselines before it can be used to deliver changes to the integration stream.

Name - Kind Class Description

UNIXDevelopme
ntSnapshot - n

Recommended snapshot views for development work on UNIX
platforms.

UNIXIntegrationS
napshot - n

Recommended snapshot views for integration work on UNIX platforms.

WinDevelopment
Snapshot - n

Recommended snapshot views for development work on Window
platforms.

WinIntegrationSn
apshot - n

Recommended snapshot views for integration work on Window
platforms.
Rational SoDA for Word Domains 135

Attributes available for ProjectVOB

Relationships available for ProjectVOB

ClearCase Region Class
Region is a ClearCase file. A network region is a logical subset of a local area network,
within which all hosts refer to VOB storage directories and view storage directories with
the same network pathnames. The ClearCase domain supports retrieval of VOB�s and
Views within a region.

Class Hierarchy: Region

Attributes specific to Region

Relationships specific to Region

Name - Kind Description

Baseline The particular baseline for the project VOB.

DefaultPromotionLevel The default promotion level in the project VOB.

Folder The particular folder in the project VOB.

NumberOfPromotionLevels The number of promotion levels in the project VOB.

PromotionLevelsStringArray The promotion levels defined in the project VOB.

RootFolder The root folder in the project VOB.

Name - Kind Class Description

Components - n The components in the project VOB.

Projects - n The projects in the project VOB.

Stream - n The streams in the project VOB.

Name - Kind Description

Region - text The name of the region.

Name - Kind Class Description

Views - n View Views contained within the region.

VOBs - n VOB VOBs contained within the region.
136 Using Rational SoDA for Word

ClearCase Stream Class
Class Hierarchy: UCMObject>Stream

Attributes available for Stream

Relationships available for Stream

ClearCase Trigger Class
A trigger is a monitor that specifies one or more standard programs or built-in actions to
be executed automatically whenever a certain ClearCase operation is performed. A
trigger is associated with a TriggerType object, which groups triggers of similar
properties.

Class Hierarchy: VOBObject>TriggerType>Trigger

Attributes available for Trigger

Name - Kind Description

Activities The activites in the stream.

FoundationBaseline The foundation baseline in the stream for the specified component.

HasActivities TRUE if there are any activities associated with the stream.

IsIntegrationStream TRUE if the stream is an integration stream in the project.

LatestBaseline The latest baseline in the stream for the specified component.

Project The project for the stream.

Name - Kind Class Description

Views - n View The set of views associated with the stream.

Baselines The baselines created in this stream for a particular component.

FoundationBaseli
nes

The foundation baselines for the stream for all components.

LatestBaselines The latestBaseline in the stream for all components.

Name - Kind Description

IsOnAttachedList - text Whether this trigger is on the attached list of the element.

IsOnInheritanceList - text Whether this trigger is on the inheritance list of an element, if the element is
a directory element.
Rational SoDA for Word Domains 137

Relationships available for Trigger

ClearCase TriggerType Class
A trigger type is an object through which triggers are defined. The trigger kind for a
trigger type includes element, all-element, and type. Instances of an element trigger type
can be attached to one or more individual elements. An all-element trigger type is
implicitly attached to all elements in a VOB. A type trigger type is attached to a
specified collection of type object.

Class Hierarchy: VOBObject>TriggerType

Attributes specific to TriggerType

Name - Kind Class Description

Type - 1 TriggerType The trigger type of this element trigger.

VOB - 1 VOB The VOB containing this element trigger.

Name - Kind Description

DebugPrinting - text Whether or not debug printing happens when the trigger fires.

FiringOrder - text The trigger type firing order, before or after the operation (pre-op or
post-op)

Group � text The group to which this trigger type belongs.

KindOfTrigger - text The kind of trigger for this trigger type.

LockedBy � text The user who locked this trigger type.

LockedDescription � text The comment of the user who locked this trigger type.

LockedOn - text The date on which this trigger type was locked.

NumberOfActions � text The number of actions for this trigger type.

NumberOfExemptUsers � text The number of users for whom this trigger type does not fire.

NumberOfInclusions � text The number of inclusions for this element trigger type.

NumberOfOperationKinds � text The number of operation kinds which fire this trigger type.

NumberOfRestrictions - text The number of restrictions for this trigger type.

Owner - text The owner of this trigger type.

State - text The state of the lock on this trigger type.
138 Using Rational SoDA for Word

Relationships specific to TriggerType

ClearCase UCMObject Class
The UCMObject class is the class from which all UCM objects are based. For historical
reasons, the Activity class is based on VOBObject instead.

Class Hierarchy: UCMObject

Attributes available for UCMObject

Relationships available for UCMObject

Name - Kind Class Description

Actions - n Name An array of action/value pairs for this trigger type (that is,
a type followed by one or two values).

ExcludedUsers - n Name A list of users who are exempt from this trigger type.

ExemptUsers - n Name The users exempted from the firing of triggers for this
trigger type.

Inclusions - n Name The inclusion list for this trigger type.

Lock - 1 Lock The lock on this trigger type.

OperationKinds - n Name An array of kinds of operations which fire this trigger type.

Restrictions - n Name The restriction list for this element trigger type.

VOB - 1 VOB The VOB containing this trigger type.

Name - Kind Description

Group The group to which the UCM object belongs.

Master The master replica for the UCM object.

Name The name of the UCM object.

Owner The owner of the UCM object.

ProjectVOB The project VOB for the UCM object.

Title The title of the UCM object.

Name - Kind Class Description

Lock - 1 Lock The lock for the UCM object.
Rational SoDA for Word Domains 139

ClearCase Value Class
The value class represents a string value occurring within a collection of values.

Class Hierarchy: VOBObject>Value

Attributes specific to Value

Relationships specific to Value
None

ClearCase Version Class
A version is an object that implements a particular revision of an element. The versions
of an element are organized into a version tree structure. Also, a checked-out version
can refer to the view-private file that corresponds to the object created in a VOB
database by the checkout command. If a version is a directory, it may contain
subversions corresponding to those versions within the directory.

Class Hierarchy: VOBObject>File>Version

Subclasses of Version Class: CheckedOutFile.

Attributes available for Version

Relationships available for Version

Name - Kind Description

Value - text Simple value string.

Name - Kind Description

Identifier - text The version�s identifier string.

IsCheckedOut - text Whether or not this object represents a checked-out file.

IsDifferent - text Whether or not this version is different from its predecessor.

IsHijacked - text Whether or not this version is hijacked.

IsLatest - text Whether or not this version is the latest on its branch.

VersionNumber - text This version�s version number.

Name - Kind Class Description

Branch - 1 Branch The branch for this version.

Element - 1 Element This version�s element.
140 Using Rational SoDA for Word

ClearCase View Class
A View is a ClearCase object that provides a work area for one or more users. Users in
different views can work with the same files without interfering with each other. For
each element in a VOB, a view�s configspec selects one version from the element�s
version tree, which is visible within the view. Each view can also store view-private
files and view-private directories, which do not appear in other views. View-private
objects and directories are not represented by any class within the ClearCase domain,
however they may be documented through the File System domain. The ClearCase
domain enables you to identify snapshot and dynamic views, as well as views that build
non-shareable derived objects

Class Hierarchy: VOBObject>View

Attributes specific to View

Relationships specific to View
None

ClearCase VOB Class
A VOB, or versioned object base, is a repository that stores versions for file elements,
directory elements, derived objects, and meta-data associated with these objects. SoDA

Labels � n Label The collection of labels associated with this version.

ParentDirectory - 1 Version The current view�s version of this version�s parent
directory.

Predecessor � 1 Version This version�s predecessor version.

SubBranches � n Branch Any branches sprouting from this version.

VersionsInDirectory - n Version Represents the file and directory versions contained in
this (directory) version.

Name - Kind Description

ConfigSpec - text A displayable form of the config spec for this view.

CreatesShareableDerivedObjects - text Whether or not this view builds non-shareable derived objects.

Host - text The host on which the storage area for this view resides.

IsSnapShot - text Whether or not this view is a snapshot view.

IsStarted - text Whether or not the view is started on the local machine.

TagName - text The view-tag name.
Rational SoDA for Word Domains 141

supports MultiSite by enabling retrieval of a list of replicas (by name) for a given VOB.
A SoDA template can include an OPEN command for a VOB, which must identify the
VOB by full pathname, VOB-tag, or VOB family UUID.

Class Hierarchy: VOBObject>VOB

Attributes available for VOB

Relationships available for VOB

Name - Kind Description

Group - text The group to which this VOB belongs.

HasMSDOSTextMode - text Whether or not this VOB has MSDOS text mode enabled.

Host - text The host on which the storage area for this VOB resides.

IsMounted - text Whether or not the VOB is mounted.

IsReplicated - text Whether or not this VOB is replicated.

LockedBy � text The name of the user who locked the VOB.

LockedDescription � text The description of the lock for the VOB.

LockedOn - text The date the VOB was locked.

Owner - text The owner of the VOB.

NumberOfAdditionalGroups - text The number of additional groups to which this VOB belongs.

NumberOfReplicas - text The number of replica names for the VOB family of this VOB, if this
VOB is replicated.

State - text The state of the lock on the VOB.

TagName - text The VOB-tag name.

ThisReplica � text The replica name for this VOB, if the VOB is replicated.

Name - Kind Class Description

AdditionalGroups - n Name Additional groups to which this VOB belongs.

AllAttributeTypes - n AttributeType All existing attribute types in the VOB, including
obsolete types.

AllBranchTypes � n BranchType All existing branch types in the VOB, including obsolete
types.

AllHyperlinkTypes - n HyperlinkType All existing hyperlink types in the VOB, including
obsolete types.

AllLabelTypes � n LabelType All existing label types in the VOB, including obsolete
types.
142 Using Rational SoDA for Word

ClearCase VOBObject Class
A VOB Object represents an object stored in a VOB, including elements, versions, types,
hyperlinks, branches, activities, etc. VOBObject is the base class from which all other
VOB object classes derive.

Class Hierarchy: VOBObject

Subclasses of VOBObject Class:

Activity, AttributeType, Branch, BranchType, File, Hyperlink, HyperlinkType,
LabelType, TriggerType, VOB.

Attributes specific to VOBObject

AllLocks � n Lock An enumeration of all the locks in this VOB, including
obsolete locks.

AllTriggerTypes � n TriggerType All existing trigger types in the VOB, including obsolete
types.

AttributeTypes � n AttributeType All existing attribute types in the VOB.

BranchTypes � n BranchType All existing branch types in the VOB.

ExcludedUsers - n Name The list of users exempted from the lock on the VOB.

HyperlinkTypes - n HyperlinkType All existing hyperlink types in the VOB.

LabelTypes � n LabelType All existing label types in the VOB.

Lock � 1 Lock The lock on this VOB, if there is one.

Locks � n Lock An enumeration of all the locks in this VOB.

Replicas � n Name The array of replica names for the VOB family of this
VOB, if this VOB is replicated.

TriggerTypes - n TriggerType All existing trigger types in the VOB.

Name - Kind Description

CreatedBy � text The user who created the object.

Created On - text The date the object was created.

Description - text The comment associated with the VOB object.

Name - text The name of the versioned object.

OID - text The object identifier for the VOB object.

VOBFamilyUUID - text The VOB family UUID for the VOB of this VOB object.
Rational SoDA for Word Domains 143

Relationships specific to VOBObject

Name - Kind Class Description

Attributes - n Attribute The collection of attributes associated with this VOB
object

CreationRecord � 1 HistoryRecord The creation record for the VOB object

HistoryRecords - n HistoryRecord The collection of history records for this object

Hyperlinks - n Hyperlink The collection of hyperlinks associated with this VOB
object
144 Using Rational SoDA for Word

ClearQuest Domain

The ClearQuest domain lets you incorporate information from your ClearQuest
database into your SoDA documents. This information can come from defects, histories,
attachments, and so on.

The ClearQuest integration is very database-specific. It is critical that you supply the
database name in your OPEN commands immediately. This will trigger SoDA to
retrieve the database-specific classes, attributes, and relationships from ClearQuest.

Regarding Queries
The ClearQuest domain has the ability to use all public queries created in ClearQuest,
as well as any personal queries to which the current user has access. The queries appear
as Repeat selectors in Template View or Add Command. They are created with the
dynamic domain.

ClearQuest allows you to create a query that launches a dialog box to prompt the user
for input. It then performs the query using the input as a filter. For example, in a query
for a weekly report of new defects, the user could be prompted for a Submit_Date in
order to specify all defects submitted since the previous Saturday. When this type of
query is used from SoDA, the input dialog is not launched and SoDA ignores that filter.
Any other non-input filters defined by the query are still used.

Filtering Query Results
SoDA enables you to specify filter criteria for the results of a REPEAT command by
clicking on the "Advanced" check box in the REPEAT Command dialog box. For a
ClearQuest template, this criteria is passed to the ClearQuest domain during
generation where an SQL query is built corresponding to the specified criteria.

Using the ClearQuest query engine greatly improves performance during document or
report generation. There are situations where ClearQuest cannot build a query
corresponding to a filter from SoDA. In these cases, filtering of the results of the
REPEAT command takes place inside SoDA. Since this has a negative effect on
performance, it is important to note when these scenarios might occur:

! If you are REPEATing over the results of a ClearQuest query. If a query returns too
many rows (for example, more than a few hundred), performance degrades.

! If your Where expression contains the "IS" operator (which is not supported by
ClearQuest).
Rational SoDA for Word Domains 145

! If you have an expression where both the left- and right-hand sides reference a unary
relationship; for example, owner.login_name = submitter.login_name. ClearQuest
only supports literals in the right-hand side of an expression.

For maximum performance, you should design your ClearQuest template to avoid these
situations.

ClearQuest Domain Classes
The ClearQuest domain provides information regarding the following classes of objects:

! ClearQuest Attachments Class
! ClearQuest CQDatabase Class
! ClearQuest Groups Class
! ClearQuest History Class
! ClearQuest Users Class

Remember: There will likely be additional classes (or differenct classes) once you
OPEN a specific database.

ClearQuest Attachments Class
Class Hierarchy: Attachments

An attachment is a file associated with a particular record in the database.

Attributes available for Attachments

Name - Kind Description

Dbid - text The internal database ID

Description - text The description of the attachment

Entity_dbid - text

Entity_fileddef_id - text

Filesize - text The size of the attachment

Is_active - text True if the record is active

Lock_version -text The version of the locking mechanism

Locked_by - text The user who has locked this record

Version - text
146 Using Rational SoDA for Word

Relationships available for Attachments

ClearQuest CQDatabase Class
A database contains all user data and a copy of the associated schema.

Class Hierarchy: CQDatabase

Attributes available for CQDatabase

Relationships available for CQDatabase

When you create an OPEN command for a specific ClearQuest database, SoDA
automatically creates a set of N-ary relationships under the database class, one for each
accessible query. One relationship is included for each public query as well as one for
each private query owned by you. The class of each relationship is the same as the class
of object returned by the query.

For example, if you create a personal query called �MyDefects� in ClearQuest, which
retrieves all defects assigned to you, SoDA creates a relationship called
�PersonalQueriesMyDefects� under the Database class. The class of object returned by
that relationship is �defect�. This relationship enables you to use a REPEAT to iterate
over the results of the query within a SoDA template.

Although it is possible to retrieve the same information as provided by this query by
adding a REPEAT over all defects, it is highly recommended that you make use of
ClearQuest queries whenever possible. Performance of the ClearQuest domain is
significantly improved when a query is used.

Name - Kind Class Description

History - n History The history records for this attachment

Name � Kind Description

Description � text The description of the database

Name � text The logical name of the database

Name � Kind Class Description

Attachments - n Attachments All attachments stored in the database

Groups � n Groups All groups stored in the database

History � n History The history records for this database

Users � n Users All users stored in the database
Rational SoDA for Word Domains 147

ClearQuest Groups Class
A group is a list of users with similar privileges.

Class Hierarchy: Groups

Attributes available for Groups

Relationships available for Groups

ClearQuest History Class
History records all changes made to the records in the database.

Class Hierarchy: History

Attributes available for History

Name - Kind Description

Dbid - text The internal database ID

Is_active - text True if the group is active

Lock_version - text Version of the locking mechanism

Locked_by - text The name of the user who is locking the database

Master_dbid - text

Name - text The name of the group

Version - text

Name - Kind Class Description

History - n History The history records of this group

Name - Kind Description

Action_name - text The action that was entered

Action_timestamp - text The time the action was entered

Comments - text Any comments associated with the event

Dbid - text The internal database ID

Entity_dbid - text

Entitydef_id - text

Entitydef_name � text
148 Using Rational SoDA for Word

Relationships available for History
None

ClearQuest Users Class
A user is someone who can log in to the ClearQuest database.

Class Hierarchy: Users

Attributes available for Users

Expired_timestamp - text The time the history expires

Is_active - text True if the record is active

Lock_version - text The version of the locking mechanism

Locked_by - text The user who locked the record

New_state - text The state of the record following the action

Old_state - text The state of the record prior to the action

User_name - text The user who triggered the action

Version - text

Name - Kind Description

Dbid - text The internal database ID

Email - text The email address of the user

Encrypted_password - text The password of the user

Fullname - text

Is_active - text True if the user is active

Is_appbuilder - text True if the user has AppBuilder privileges

Is_superuser - text True if the user is a superuser

Is_user_maint - text True if the user has maintenance privileges

Lock_version - text The version of the locking mechanism

Locked_by - text The user that has locked the user database

Login_name - text

Master_dbid - text
Rational SoDA for Word Domains 149

Relationships available for Users

Misc_info - text Miscellaneous information

Phone - text The phone number of the user

Version - text

Name - Kind Class Description

Groups - n Groups The groups which this user is a member

History - n History The history records for this user record
150 Using Rational SoDA for Word

File System Domain

The File System (FileSys) domain allows you to incorporate information from your file
system into your SoDA documents. This information can come from directories, files, or
records within files.

The File System domain provides information regarding the following classes of objects:

! File System DirectoryObject Class
! File System Directory Class
! File System File Class
! File System FileRecord Class

File System Domain Classes

File System DirectoryObject Class
Anything that can be found in a Directory, including files and (sub)directories.

Class Hierarchy: DirectoryObject

Subclasses of DirectoryObject:

! Directory
! File

Attributes available for DirectoryObject

Name (Kind) Description

Extension - text The segment of a SimpleName following the last period. For example, the
Extension of c:\bill\file.txt is txt. If the SimpleName contains no period,
then Extension returns a null string.

FullName - text The complete pathname of an object. For example, c:\bill\file.txt

NameMinusExtension - text The segment of a SimpleName preceding the last period. For example,
the NameMinusExtension of c:\bill\file.txt is file. If the SimpleName
contains no period, then NameMinusExtension returns the SimpleName.

SimpleName - text The context-independent portion of an object�s name. For example, the
SimpleName of c:\bill\file.txt is file.txt.
Rational SoDA for Word Domains 151

Relationships available for DirectoryObject

File System Directory Class
A directory, sometimes called a folder; it contains other files or directories.

Class Hierarchy: DirectoryObject>Directory

Attributes specific to Directory
None

Relationships specific to Directory

File System File Class
A subclass of DirectoryObject that does not contain other files or directories. Files can
be ASCII or binary. They can contain text, bitmaps, program source, object code,
executable code, or any other form of information that can be stored in a file. Note that
the Graphic and Text attributes may not be defined for certain types of files.

Class Hierarchy: DirectoryObject>File

Attributes specific to File

Name (Kind) Class Description

ParentDirectory - 1 Directory The directory containing the object. If you try to object
ParentDirectory from the root directory, SoDA will generate an
error.

Name (Kind) Class Description

Contents (n) DirectoryObject The DirectoryObjects that reside within the directory
(subdirectories are included but not their contents).

Name (Kind) Description

Graphic (graphic) The diagram contained in the file. The file can be text (such as
encapsulated PostScript) or binary (such as bitmap files). Your
Microsoft Word documentation describes the file formats
available.

Text - text The complete contents of an ASCII text file. Undefined for other
file types.
152 Using Rational SoDA for Word

Relationships specific to File

File System FileRecord Class
ASCII text files can be further decomposed into file records. File records are especially
useful for parsing flat database files.

By default, SoDA uses newlines to delimit records within a file, spaces to delimit fields
within a record, and double quotes (�) to surround a single field that includes spaces.
Records must also contain key fields that uniquely identify each record. By default the
first field is the key.

Directives
You can add directives at the beginning of the file to change the defaults. The directives
are:

#RECORD_DELIMITER, which specifies a character other than a newline to delimit records
within the file;
#FIELD_DELIMITER, which specifies a character other than a space to delimit fields within
records;
#QUOTE_DELIMITER, which specifies a character other than a double quote to delimit a single
field that may include the field delimiter character; and
#KEY_FIELDS, which specifies a list of field numbers, separated by spaces, used to uniquely
identify each record.

You can use the following special characters in these directives:

\n, for newline
\t, for horizontal tab
\b, for backspace
\r, for carriage return
\f, for formfeed
\\, for backslash

For example:

#FIELD_DELIMITER /
#KEY_FIELDS 2
William(Bill)/Clinton/Democrat/1993/1996

Name (Kind) Class Description

Records (n) FileRecord The records contained in a text file. By default, SoDA uses
newlines to distinguish separate records within a file. It is
possible to override this default by including a
RECORD_DELIMITER directive in the file.
Rational SoDA for Word Domains 153

George/Bush/Republican/1989/1992
Ronald/Reagan/Republican/1981/1988
James(Jimmy)/Carter/Democrat/1977/1980

Now, with the directives added, fields are separated by a slash instead of a space, and
the second field (containing the last name) is used as the key instead of the first field
(containing the first name).

Class Hierarchy: DirectoryObject>File>FileRecord

Attributes available for FileRecord

Relationships available for FileRecord
None

Name (Kind) Description

Field01 .. Field30 - text Text of the specified field, numbered from left to right. The extent of
each field is determined by the field delimiter character, which
defaults to a space. You can change the default by including a
FIELD_DELIMITER directive in your file. Double quotes (�) can be
used to designate a single field that includes field delimiters. You can
change the quote character by including a QUOTE_DELIMITER
directive in your file.

Filename - text The full pathname of the file that contains this record.

Text - text Full text of the entire record.

UniqueKey - text The field or combination of fields used to uniquely identify the record.
The default is to use the first field as the unique key. You can change
the default by including a KEY_FIELDS directive in your file. If you
have used the KEY_FIELDS directive to specify a multiple-field key,
you enter a key by supplying each field, in order, separated by the
field delimiter.
154 Using Rational SoDA for Word

MSProject Domain

MSProject Project Class
Class Hierarchy: Project

Attributes available for Project

Relationships available for Project

Name (Kind) Description

Name

UniqueID

StartDate

FinishDate

Duration

PercentComplete

Priority

ConstraintType

ConstraintDate

IsCritical

IsMilestone

WBSCode

TaskType

IsEffortDriven

Notes

OutlineLevel

OutlineNumber

Name (Kind) Class Description

OutlineParent - 1

Predecessors - n

Successors - n
Rational SoDA for Word Domains 155

MSProject Task Class
Class Hierarchy: Task

Attributes available for Task

Relationships available for Task

MSProject Resource Class
Class Hierarchy: Resource

Attributes available for Resource

Assignments - n Assignment

Resources - n Resource

OutlineChildren - n

Name (Kind) Description

Path

Name

Directory

StartDate

FinishDate

Name (Kind) Class Description

Tasks - n

Resources - n Resource

Name (Kind) Description

Name

UniqueID

Group

CostPerUse

BaselineCost
156 Using Rational SoDA for Word

Relationships available for Resource

MSProject Assignment Class
Class Hierarchy: Assignment

Attributes available for Assignment

Relationships available for Assignment

RemainingCost

BaselineWork

RemainingWork

Name (Kind) Class Description

Assignments - n Assignment

Name (Kind) Description

UniqueID

TaskName

ResourceName

TaskUniqueID

ResourceUniqueID

Units

Work

ActualWork

RemainingWork

Cost

ActualCost

RemainingCost

BaselineStart

BaselineFinish

Name (Kind) Class Description

Task - 1 Task

Resource - 1 Resource
Rational SoDA for Word Domains 157

158 Using Rational SoDA for Word

RAdmin Domain

RAdmin RAProject Class
Class Hierarchy: RAProject

Attributes available for RAProject

Relationships available for RAProject

RAdmin RoseModel Class
Class Hierarchy: RoseModel

Attributes available for RoseModel

Relationships available for RAdmin

Name (Kind) Description

Path

Name

Location

UCMEnabled

RequisiteDatabasePath

TestDatastorePath

ClearQuestDatabaseName

SynchronizerRulesPath

TestAssetsCMManaged

ClearQuestDBSetName

RoseModels

Name (Kind) Class Description

RoseModels List all Rose models used in the project.

Name (Kind) Description

Path The model�s path

Name The model�s name
Rational SoDA for Word Domains 159

None

RAdmin RAServerClass
Class Hierarchy: RAServer

Attributes available for RAServer

None

Relationships available for RAServer

Name (Kind) Class Description

Projects
160 Using Rational SoDA for Word

RequisitePro Domain

The RequisitePro domain allows you to incorporate information from your RequisitePro
database into your SoDA documents. This information can come from projects,
requirements, attributes, and so on.

If you need to access specific attribute names and values, be sure to see Accessing
Project-specific Attributes.

Generating a SoDA Report directly from RequisitePro
If you are using Microsoft Office 97 or Office 2000, you can generate SoDA reports
directly from RequisitePro. Follow these steps:

1 Start RequisitePro and open your project using the Project > Open command.

2 From the Project menu, choose Generate SoDA Report. (This menu item only
appears if the proper versions of each product are installed, and a project has been
opened.)

3 Select a template from the list that appears, and click OK. SoDA generates a report
using the current project.

When generating SoDA reports from within RequisitePro using the Project > Generate
SoDA Report command, only templates with the project object are generated with no
interruptions. All templates that are provided by default in your SoDA installation offer
this uninterrupted generation.

If you create a custom template that documents an individual requirement or document,
you are prompted to provide both the project name and the requirement tag or
document name. To avoid this, we recommend that you create a template that OPENs a
project and uses the selector Project.SelectedRequirements or
Project.CurrentDocument.

Accessing Project-specific Attributes
While SoDA lets you display attribute information using the default templates, it does
not have knowledge of the attribute names specific to each project. If you want to be
able to filter or sort values based on specific attribute values, you must provide the path
of the project file in the OPEN command. SoDA will then add new classes; one for each
requirement type, with the names of the attributes defined for each type. Here�s an
example:
Rational SoDA for Word Domains 161

1 Start the Template View.

2 Select ReqPro Project as your starting point.

3 In the pop-up dialog use the Browse button to locate the .rqs file you want to
document. Click OK.

4 Select Requirements within the Project. Another pop-up dialog box appears,
showing you the possible requirement types. Choose the one you want to document.

5 Select the attribute values to display.

Improving Generation Performance of RequisitePro Templates
In your RequisitePro template, the REPEAT commands contain information for
determining what type of RequisitePro object should be returned by the REPEAT
during generation. Additionally, if you have clicked on the �Advanced� check box in the
REPEAT command dialog box, the REPEAT command may contain criteria for further
filtering the results.

During generation of a RequisitePro template, this criteria is passed to the RequisitePro
domain where the domain attempts to build an SQL query corresponding to the
specified criteria. By using the RequisitePro query engine, performance during
document or report generation is greatly improved. This type of querying is only
supported for some of the RequisitePro attributes; for the remainder, filtering of the
results of a REPEAT command is done by SoDA.

For optimal performance, it is important to note which types of queries are supported by
the RequisitePro query engine. Using these whenever possible results in the best
performance:

� Fast filtering is currently only supported for requirements retrieved for a project.
� The best way to improve performance is to narrow your REPEAT to a particular

requirement type. This is done by selecting one of the requirement type specific
classes in the �Where is A� box in the REPEAT command dialog box. This restricts
the results to only requirements of that type.

� If you are specifying additional filter criteria by adding to the �And Where� section
in the REPEAT command dialog box, adhere to the following rules for faster que-
ries:
- Use only the "AND" logical operator in your queries (no "OR" queries).
- Use user-defined attributes. Since these are specific to each requirement type, you

must select a requirement type specific class in the �Where is A� box to make
these available.
162 Using Rational SoDA for Word

- Reference any of the following attributes within your query. These are all
attributes for the requirement class:

Multiple attributes can be combined in your REPEAT to form a more complex query
expression using the AND operator. You can combine the attributes above with others
that are not supported for fast filtering. SoDA optimizes the resulting query for best
performance.

Attribute Operators supported for
�fast� filtering Description

TagPrefix
ReqType->ReqPrefix

= Search by requirement type

FullTag =, != Search by full tag of a requirement

Text =, !=, <, <=, >, >=, LIKEa

a. The following pattern matching characters are supported for fast filtering: �.�, �$�, �^�. See the
documentation for the �Metacharacters for LIKE� on page 43 for more information.

Search by requirement text

Document.Name =, != Search by the name of the containing
document.

LatestRevision->Number =, !=, <, <=, >, >=, LIKE a Search by revision number

HierarchicalLevel =, !=, <, <=, >, >= Search by requirement level

LatestRevision->DateTime =, !=, <, <=, >, >= Search by the date of the last revision

Bookmark =, !=, <, <=, >, >=, LIKE a Search by bookmark
Rational SoDA for Word Domains 163

RequisitePro Domain Classes
The RequisitePro domain provides information regarding the following classes of
objects:

! RequisitePro Project Class
! RequisitePro Document Class
! RequisitePro Requirement Class
! RequisitePro <Project-Specific Type>Requirement Class
! RequisitePro Relationship Class
! RequisitePro AttributeValue Class
! RequisitePro DocumentType Class
! RequisitePro RequirementType Class
! RequisitePro Discussion Class
! RequisitePro Response Class
! RequisitePro User Class
! RequisitePro Group Class
! RequisitePro Revision Class

RequisitePro AttributeValue Class
Attributes are descriptive information attached to a requirement that provide
important details about that requirement, such as priority, cost, or difficulty. Be sure to
see the section titled Accessing Project-specific Attributes.

Class Hierarchy: AttributeValue

Attributes available for AttributeValue

Relationships available for AttributeValue

Name (Kind) Description

DataType - text

Label - text The name of the attribute

Value - text The value of the attribute
164 Using Rational SoDA for Word

None

RequisitePro Discussion Class
Discussions let RequisitePro users address comments, issues, and questions to a group
of discussion participants. Discussions can be associated with one or more specific
requirements, or refer to the project in general.

Class Hierarchy: Discussion

Attributes available for Discussion

Relationships available for Discussion

RequisitePro Document Class
Although a requirements document looks like a normal Word document, RequisitePro
has added the capability to create requirements. The descriptions, attribute values, and
traceability relationships for the requirements become part of the project database.

Class Hierarchy: Document

Name (Kind) Description

DateTime - text When the discussion was created

HasResponses - text True if someone has responded to this discussion

Message - text The text of the discussion

Priority - text The priority of the discussion: High, Medium, or Low

Restricted - text True if the discussion is restricted to the listed participants

Status - text The status of the discussion: Open or Closed

Subject - text The subject of the discussion

Name (Kind) Class Description

Author - 1 User The user who created this reponse

Participants (n) User

ParticipantGroups
(n)

Group

Responses (n) Response The responses to this response
Rational SoDA for Word Domains 165

Attributes available for Document

Relationships available for Document

RequisitePro DocumentType Class
A document type is a template that is applied to your documents. The template can
include the default font for your document, the available heading and paragraph styles,
and the default type of requirements for the document. Or it could encompass both
formatting conventions and an outline that helps you organize your requirements
information.

Class Hierarchy: DocumentType

Attributes available for DocumentType

Name (Kind) Description

Description - text A description of the document

Extension - text

Filename - text The simple filename for the document

FullPath - text The full pathname of the document

Name - text A descriptive name for the document

Path - text

Name (Kind) Class Description

DocType - 1 DocumentType

LatestRevision - 1 Revision Accesses the latest revision of the document.

Requirements (n) Requirement The requirements contained within this document

Revisions (n) Revision The revisions (history) of the document

Name (Kind) Description

Description - text The purpose and content of the document type

Extension - text The file extension applied to all documents associated with this document
type

Name - text The name of the document type

TemplateDescription - text A description of the template, or outline, for this document type

TemplateFilename - text

TemplateName - text The template, or outline, used when documents of this type are created
166 Using Rational SoDA for Word

Relationships available for DocumentType

RequisitePro Project Class
The concept of a project is used to provide the groundwork for organizing and effectively
managing requirements. Each project resides in a separate directory. This storage
method simplifies the process of organizing, archiving, and managing project files.

When creating an OPEN command to a ReqPro project, you must supply the name of
the project file (the file with the extension .RQS).

Class Hierarchy: Project

Attributes available for Project

Relationships available for Project

Name (Kind) Class Description

DefaultRequirementType - 1 RequirementType The default type of requirement stored in this type of
document

Name (Kind) Description

Description - text Optional information describing the purpose and content of the project

FileName - text

Name - text The name of the project

Path - text

Prefix - text The prefix that is prepended to requirement tags when using external projects

Name (Kind) Class Description

<View Name
Requirement Type> (n)

Requirement If a template contains an OPEN command to a specific
project, SoDA will create a relationship for each attribute
matrix view. It will return the requirements based on the
query stored in the view. The column information is not
used.

Author - 1 User The creator of the project

CurrentDocument - 1 Document The document that is currently open (if any) in RequisitePro.
No document is returned if the open document is not in the
open project.

DocTypes (n) DocumentType The document types defined in this project

Documents (n) Document The set of documents associated with this project
Rational SoDA for Word Domains 167

RequisitePro Relationship Class
Traceability relationships are established between two or more requirements that exist
in the same document, in different documents, or in the database.

Class Hierarchy: Relationship

Attributes available for Relationship

Relationships available for Relationship

RequisitePro Requirement Class
A requirement is the specification for the externally observable behavior of the system
(for example, inputs to the system, outputs from the system, functions of the system,
attributes of the system, or attributes of the system environment). In RequisitePro, a
requirement defines an entity represented by: a piece of text, a set of attributes, and a
set of traceability relationships.

ExternalProjects (n) Project The external projects that have been attached to this project

Groups (n) Group The security groups defined in this project

ReqTypes (n) RequirementType The requirement types defined in this project.

Requirements (n) Requirement All requirements stored in the project database

Revisions (n) Revision The historical data of the project

SecurityGroups (n) Group The security groups defined in this project

SelectedRequirements
(n)

Requirement The requirements that are currently selected in the current
View in RequisitePro. Only requirements in the open project
are included.

Users (n) User All users who are registered in this project

Name (Kind) Description

Direction - text The direction of the relationship: TraceTo, TraceFrom, Parent, or Child

Suspect - text True if the relationship is suspect; otherwise, False

Type - text The type of the relationship, either Hierarchical or Traceability

Name (Kind) Class Description

RelatedReq - 1 Requirement The associated requirement
168 Using Rational SoDA for Word

If a template includes the name of a specific project, there will also be subclasses for
each <Project-Specific Type>Requirement.

Class Hierarchy: Requirement

Attributes available for Requirement

Relationships available for Requirement

Name (Kind) Description

Bookmark - text The name of the Word bookmark associated with this requirement

DocPosition - text The relative position of the requirement in the document. For instance, the second
requirement in the document would be position 2. Database-only requirements have
position 0.

FullTag - text The full tag of the requirement, such as PR1

GUID - text

HasChildren (true) True if this requirement has child requirements; otherwise False.

HasParent (true) True if this requirement has a parent requirement. This would be the same as Level >
0.

Level - text The hierarchical level of the requirement. For instance, if the full tag is PR1.1, the
level would be 1; PR1 would be level 0.

TagNumber - text The number of the tag, such as 1

TagPrefix - text The prefix of the tag, such PR

Text - text The text of the requirement.

Name (Kind) Class Description

Attributes (n) Attribute The attributes of the requirement

Children (n) Relationship The children of this requirement. If a template contains an
OPEN command to a specific project, you will also see the
ChildRequirements option, which lets you go directly to the
requirements.

Discussions (n) Discussion The discussions attached to this requirement

Document - 1 Document The document where the requirement is stored

LatestRevision - 1 Revision The current status of this requirement

Parent - 1 Relationship The parent of this requirement. If a template contains an
OPEN command to a specific project, you will also see the
ParentRequirement option, which lets you go directly to the
requirement.
Rational SoDA for Word Domains 169

<Project-Specific Type>Requirement Class
When you create an OPEN command to a specific project, SoDA automatically creates a series of
new classes that are subclasses of the Requirement Class . The name of the class will be the
concatenation of the requirement type and the word Requirement. For instance, if a project
contains requirement types PR, SR, and TST, the new classes will be PRRequirement,
SRRequirement, and TSTRequirement.

Attributes specific to <Project-Specific Type>Requirement

Relationships specific to <Project-Specific Type>Requirement

RequisitePro RequirementType Class
A requirement type defines a set of similar requirements. Requirement types are used
to classify similar requirements so they can be efficiently managed. When you define a
requirement type, you define a common set of attributes, display style, and tag
numbering. Be sure to see the section titled Accessing Project-specific Attributes.

Class Hierarchy: RequirementType

ParentProject - 1 Project The project that this requirement is contained in. This
relationship is especially useful when doing cross-project
traceability.

ReqType - 1 RequirementType The type of this requirement

Revisions (n) Revision The revisions (history) of this requirement

TracesFrom (n) Relationship The relationships traced out of this requirement

TracesTo (n) Relationship The relationships traced in to this requirement

Name (Kind) Description

<Attribute Name> - text There will be one attribute for each attribute name defined by the requirement
type, such as Status, Priority, Build_Number, etc.

Name (Kind) Class Description

ChildRequirements (n) (the same project-specific
requirement class)

The child requirements for this requirement.

ParentRequirement - 1 (the same project-specific
requirement class)

The parent requirement of this requirement
170 Using Rational SoDA for Word

Attributes available for RequirementType

Relationships available for RequirementType
None

RequisitePro Reply Class
Replies are responses to a discussion.

Class Hierarchy: Discussion>Reply

Attributes available for Reply

Relationships available for Reply

RequisitePro Revision Class
The Revision class lets you document revision information about a requirement,
document or project.

Class Hierarchy: Revision

Name (Kind) Description

Description - text A general description of the requirement type

Name - text The name of the requirement type

ReqColor - text

ReqPrefix - text The prefix of the type, such as SR

ReqStyle - text The Word style applied to requirements of this type; one of
Normal, SmallCapitals, or DoubleUnderline

Name (Kind) Description

DateTime - text When the reply was created

HasReplies - text True if someone has replied to this reply

Message - text The text of the reply

Subject - text The subject of the reply

Name (Kind) Class Description

Author - 1 User The user who created this reply

Replies (n) Reply The responses to this reply
Rational SoDA for Word Domains 171

Attributes available for Revision

Relationships available for Revision

RequisitePro User Class
Users are people who have access to project information. RequisitePro tracks which
users make changes to project and requirement information.

Class Hierarchy: User

Attributes available for User

Relationships available for User

RequisitePro Group Class
A user group is a set of users. Groups are used for project security.

Class Hierarchy: Group

Name (Kind) Description

DateTime - text The date and time the requirement was created or modified; the correct format for
date and time is: yyyy-mm-dd hh:mm:ss. The value "hh" is the two-digit hour in
military time. Hyphens and colons must be included as shown. For example,
1999-04-24 20:23:12 means April 24, 1999 at 8:23pm plus 12 seconds.
You can drop any trailing part of a date-time, for example >= 1999-04 may be
specified in a filter to obtain all Replies marked April 1999 or later.

Description - text The change description field

Label - text Text associated with a revision number

Number - text The revision number, incremented automatically for each revision

Name (Kind) Class Description

Author - 1 User The user that made the change

Name (Kind) Description

Name - text The name for this user

Name (Kind) Class Description

Group - 1 UserGroup The group this user belongs to
172 Using Rational SoDA for Word

Attributes available for Group

Relationships available for Group
None

Name (Kind) Description

DefAttrRights - text The privileges this group has to create or modify attributes

DefDocTypeRights - text The privileges this group has to create or modify document types

DefListItemRights - text The privileges this group has to create or modify list items

Name - text The name of the user group

DefProjRights - text The privileges this group has to create or modify privileges

DefReqTypeRights - text The privileges this group has to create or modify requirements
Rational SoDA for Word Domains 173

Rose Domain

The Rose source domain allows you to incorporate textual and graphical information
from Rational Rose models. To extract information from a Rose model, you would
typically create an OPEN command to the model specifying its filename. Once this
command provides context for the model, you can traverse through the various
components.

Before generating a document from a Rose model, you need to save the model. When you
generate the document, the Rose domain will create a directory named <document
name prefix>.dia and will fill it with .WMF files for each diagram requested from the
model.

The Rose domain uses aliases to support multiple notations. SoDA is delivered with
UML aliases. To change to use aliases for another notation or another language, simply
modify the Rose.dom file.

Generating a SoDA Report directly from Rose
If you have installed Rose 98 or 98i and SoDA, and you are using Microsoft Office 97 or
Office 2000, you can generate SoDA reports directly from Rose. (You cannot generate
reports from Rose using Microsoft Word 95.) Follow these steps:

1 Start Rose and open your model. (You cannot use a newly created model that has
never been saved.)

2 If you want a report for a specific package, class, or use case, select that item in a
diagram.

3 From the Report menu, choose SoDA Report. (You will only see this menu item if
the proper versions of each product are installed.)

4 Select a template from the list that appears, and click OK. A report will be
generated using the current model.
174 Using Rational SoDA for Word

How to Display the Contents of Files Referenced by ExternalDocs
The Files tab in most Rose specifications is for External Documents. In this tab you can
identify one or more documents that further describe the model element. Follow these
steps to include the contents of these documents in your SoDA document or report:

1 Within the context of a model element, create a REPEAT command and select the
ExternalDocs relationship; set the Name to ExternalDoc.

2 Just inside the REPEAT command, create an OPEN command.

3 In the Select Class area, choose Word -> WordFile.

4 Click the Advanced button.

5 In the Argument area, click Filename twice to show a tree control next to the
argument.

6 In the tree control, select ExternalDoc -> Value; click OK to create the OPEN
command.

7 Just to the right of the OPEN command, create a DISPLAY command.

8 In the Select Attribute area, choose WordFile -> FormattedText.

Rose Domain Classes

Rose Action Class
Class Hierarchy: Action

Attributes available for Action

Relationships available for Action

Name - Kind Description

Documentation - text The text from the Documentation field of this transition.

Arguments - text The arguments that accompany the trigger event.

Name - text The name of the event.

Target - text The name of the event object.

Stereotype - text The stereotype of the transition.

UniqueID - text
Rational SoDA for Word Domains 175

None

Rose Association Class
An association represents a semantic connection between two classes. Associations are
bi-directional; they are the most general of all relationships and the most semantically
weak.

Class Hierarchy: Association

Attributes available for Association

Relationships available for Association

Rose Activity Class
Class Hierarchy: Activity

Attributes available for Activity

Name - Kind Description

Constraints - text The text from the Constraints field in the association specification.

Documentation - text Text from the Documentation field in the association specification.

HasLinkElement - text True if the association has an attached association class,
otherwise False.

IsDerived - text True if the association is derived; otherwise False.

Name - text The name of the association.

Stereotype - text The stereotype of the association.

UniqueID -text The internal unique identifier of the association.

Name - Kind Class Description

LinkElement - 1 Class The linked class attached to the association.

Properties - n Property The code-generation properties associated with the association.

RoleA - 1 Role The first role defined in the association.

RoleB - 1 Role The second role defined in the association.

Name - Kind Description

Documentation - text The text from the documentation field of the activity.
176 Using Rational SoDA for Word

Relationships available for Activity

Rose Attribute Class
Attributes are data members of a class whose type is not another class.

Class Hierarchy: Attribute

Attributes available for Attribute

Name - text The name of the activity.

Stereotype - text The stereotype of the activity.

UniqueID - text The internal unique identifier of the activity.

Name - Kind Class Description

AllSubActivities - n Activity

AllSubStates - n State

DoActions - n Action The Do actions for this activity.

EntryActions - n Action The Entry actions for this activity.

ExitActions - n Action The Exit actions for this activity.

ExternalDocs - n String The external documents attached to this activity.

ParentStateActivityModel - 1 StateActivityModel The parent state machine associated with this
activity.

Properties - n Property The properties attached to this activity.

StateActivityDiagrams - n StateActivityDiagram The state or activity diagrams internal to this
activity.

StateActivityModels - n StateActivityModel The state or activity models internal to this
activity.

SubActivities - n Activity The activities that are part of this activity.

SubStates - n State The states that are part of this activity.

Transitions - n StateTransition The transitions that exit from this activity.

Name - Kind Description

Containment - text Specifies the physical containment of the attribute. Returns Value,
Reference, or Unspecified, depending on the state of the Containment radio
control on the attribute specification.

Documentation - text Text from the Documentation field in the attribute specification.
Rational SoDA for Word Domains 177

Relationships available for Attribute

Rose Class Class
A class captures the common structure and common behavior of a set of objects. A class
is an abstraction of real-world items. When these items exist in the real world, they are
instances of the class, and referred to as objects. Rational Rose stores class information
in a class specification.

Class Hierarchy: Class

Subclasses of Class:

ParameterizedClass, InstantiatedClass, ClassUtility, ParameterizedClassUtility,
InstantiatedClassUtility, MetaClass.

Attributes available for Class

ExportControl - text The export control of the attribute. Returns Public, Protected, Private, or
implementation.

InitialValue - text The initial value of the attribute.

IsDerived - text True if the Derived check box is selected in the attribute specification,
otherwise False.

IsStatic - text True if the Static check box is selected in the attribute specification,
otherwise False.

Name - text The name of the attribute.

Stereotype - text The stereotype of the attribute.

Type - text The type of the attribute.

UniqueID - text The internal unique identifier of the attribute.

Name - Kind Class Description

ParentClass - 1 Class The class in which this attribute is defined.

Properties - n Property The code-generation properties of the attribute.

Name - Kind Description

Cardinality - text The string in the Cardinality field of the class specification.

Concurrency - text Returns Sequential, Guarded, Active, or Synchronous, depending on
the value of the Concurrency radio control in the More dialog of the
class specification.

Documentation - text Text from the Documentation field in the class specification.
178 Using Rational SoDA for Word

Relationships available for Class

ExportControl - text Returns Public or Implementation, depending on the value of the
Export Control radio control in the class specification.

FundamentalType - text

HasStateActivityDiagram - text True if the class has an associated state diagram, otherwise False.

IsAbstract - text True if the Abstract check box is selected in the class specification,
otherwise False.

IsNested - text True if the class is nested.

Kind - text The Rose source domain class name of the declaration. For
example, Kind of a class utility returns ClassUtility.

Name - text The name of the class.

Persistence - text Returns Persistent or Transient, depending on the value of the
Persistence radio control in the More dialog of the class
specification.

QualifiedName - text The name of the class along with its parent categories, such as
AncestorCat:ParentCat:ClassName

Space - text The string in the Space field of the More dialog of the class
specification.

Stereotype - text The stereotype of the class.

UniqueID - text The internal ID of the class.

Name - Kind Class Description

AllAssociations - n Association All associations where this class plays a role, including
those inherited from other classes.

AllAttributes - n Attribute All attributes of this class, including those inherited
from other classes.

AllOperations - n Operation All operations of this class, including those inherited
from other classes.

AllRelationships - n Relationship All relationships of this class, including those inherited
from other classes.

AllSubClasses - n Class All classes in the lineage of this class. For example, if
A inherits from B and B inherits from C, then
AllSubClasses of C would include B and A.

AllSuperClasses - n Class All classes in the ancestry of this class. For example, if
A inherits from B and B inherits from C, then
AllSuperClasses of A would include B and C.
Rational SoDA for Word Domains 179

AppearsIn - n ClassDiagram The class diagrams where this class appears.

Associations - n Association The associations where this class plays a role.

Components - n Component The components associated with this class, as
specified in the class specification.

ExternalDocs - n String The external documents attached to this class.

FirstStateActivityDiagram -
1

StateActivityDiagram The (first) state/activity diagram associated with this
class.

FirstStateActivityModel - 1 StateActivityModel The (first) state/activity model associated with this
class.

Instances - n Object The object instances of this class.

Instances
AppearIn - n

Interaction Diagram The interaction diagrams that include instances of this
class.

Module - 1 Module

MyAttributes - n Attribute The attributes that are defined by this class. Does not
include inherited attributes.

MyOperations - n Operation The operations that are defined by this class. Does not
include inherited operations.

MyRelationships - n Relationship The relationships that are defined by this class. Does
not include inherited relationships.

MySubClasses - n Class The classes that directly inherit from this class. Only
includes immediate subclasses. For example, if A
inherits from B and B inherits from C, then
MySubClasses of C would include B but not A.

MySuperClasses - n Class The classes that this class directly inherits from. Only
includes immediate superclasses. For example, if A
inherits from B and B inherits from C, then
MySuperClasses of A would include B but not C.

NestedClasses - n Class The classes that are nested within this class.

ParentClass - 1 Class The parent class of this class, if it is nested.

ParentModel - 1 Model

ParentPackage - 1 Package The enclosing package.

Properties - n Property The code-generation properties of this class.

StateActivityDiagrams - n StateActivityDiagram All state/activity diagrams associated with this class.

StateActivityModels - n StateActivityModel The state/activity models associated with this class.
180 Using Rational SoDA for Word

Rose ClassDiagram Class
A class diagram shows the relationships between packages and classes; the essential
relationships include association, inherits, has, and uses. Each class diagram provides a
logical view of the current model.

Class diagrams contain icons representing packages and classes. Class diagrams can be
considered as filtered views into the model. They do not necessarily depict all the classes
or relationships in the model. For example, iterating over all the classes in the main
diagram of a package will not necessarily return all the classes defined in that category.

Class Hierarchy: ClassDiagram

Attributes available for ClassDiagram

Relationships available for ClassDiagram

Rose ClassUtility Class
A class utility is a set of operations that provide additional functions for classes. Class
utilities are used to:

! Denote one or more free subprograms

Name - Kind Description

Documentation - text

Image - graphic The graphical representation of the diagram.

Name - text The name of the diagram.

UniqueID - text

Name - Kind Class Description

Classes - n Class All of the classes that appear on the diagram.

ExternalDocs - n String The external documents attached to this diagram.

Notes - n Note

Packages - n Package

ParentModel - 1 Model

ParentPackage - 1 Package

Relationships - n Relationship All of the relationships that appear on the diagram.

UseCases - n UseCase All of the use cases that appear on the diagram.
Rational SoDA for Word Domains 181

! Name a class that only provides static members and/or static member functions.

Class Hierarchy: Class>ClassUtility

Attributes specific to ClassUtility
None

Relationships specific to ClassUtility
None

Rose Component Class
A building block for the physical structure of a system. A component can be one of the
following: Main Program, Package Body, Subprogram, Package, Task Body, Generic
Package, Task, Subprogram Body.

Class Hierarchy: Component

Attributes available for Component

Relationships available for Component

Name - Kind Description

AssignedLanguage - text

Declarations - text

Documentation - text Text from the Documentation field of the component
specification.

Name - text The name of the component.

Part - text

Path - text

Stereotype - text

Type - text

UniqueID - text

Name - Kind Class Description

AssignedClasses - n Class

ParentModel - 1 Model The model that contains this component.

ParentSubsystem - 1 Subsystem Enclosing subsystem of this component.

VisibilityRelationships - n ModuleVisibility
Relationship
182 Using Rational SoDA for Word

Rose ComponentDiagram Class
A component diagram shows relationships between subsystems and components. Each
component diagram provides a physical view of the current model. Each component
diagram is contained by the subsystem enclosing the components it depicts.

Class Hierarchy: ComponentDiagram

Attributes available for ComponentDiagram

Relationships available for ComponentDiagram

Rose Decision Class
Class Hierarchy: Decision

Attributes available for Decision

Name - Kind Description

Image - graphic The graphical representation of the diagram.

Name - text The name of the diagram.

Documentation - text

UniqueID - text

Name - Kind Class Description

Modules - n Component
(Module)

The components contained in the diagram.

ExternalDocs - n String The external documents attached to this diagram.

Notes - n Note

ParentModel - 1 Model

Name - Kind Description

Documentation - text The text from the documentation field for this decision.

Name - text The name of the decision.

Stereotype - text The stereotype of the decision.

UniqueID - text The internal unique identifier of the decision.
Rational SoDA for Word Domains 183

Relationships available for Decision

Rose DeploymentDiagram Class
A deployment diagram shows the allocation of processes to processors in the physical
design of a system. A deployment diagram may represent all or part of the process
architecture of a system.

Class Hierarchy: DeploymentDiagram

Attributes available for DeploymentDiagram

Relationships available for DeploymentDiagram

Rose Device Class
A device is a hardware component with no computing power.

Class Hierarchy: Node>Device

Attributes specific to Device
None

Relationships specific to Device
None

Name - Kind Class

Transitions - n StateTransition

Name - Kind Description

Image - graphic The image of the deployment diagram.

Name - text

Documentation - text

UniqueID - text

Name - Kind Class Description

Nodes - n Node The processors and devices contained in the diagram.

Notes - n Note

ParentModel - 1 Model
184 Using Rational SoDA for Word

Rose HasRelationship Class
The has relationship, available only with the Booch notation, denotes a whole and part
relationship between two classes. This relationship is used to show how instances of the
supplier, or aggregate, class are physically constructed from instances of the client
class. The FromClass relationship returns the aggregate class. The ToClass relationship
returns the client class, whose instances are part of aggregate class instances.

Class Hierarchy: Relationship>HasRelationship

Attributes specific to HasRelationship

Relationships specific to HasRelationship
None

Rose InheritsRelationship Class
Class Hierarchy: Relationship>InheritsRelationship

Attributes specific to InheritsRelationship

Name � Kind Description

Containment � text Specifies the physical containment of the relationship. Returns
Value, Reference, or Unspecified, depending on the state of the
Containment radio control on the relationship specification.
Containment is also shown by adornments on relationships in
diagrams.

Static � text Specifies whether the instance of the part class is owned by the
class itself and not by its individual instances. Returns True, if the
Static check box is checked on the relationship specification.
Otherwise, returns False. Static relationships are also designated
by special adornments on relationships in diagrams.

Name � Kind Description

FriendshipRequired - text Indicates whether the supplier class grants rights to the client
class to access its non-public parts. Returns True, if the Friendship
required check box is checked on the relationship specification.
Otherwise, returns False.

IsVirtual - text
Rational SoDA for Word Domains 185

Relationships specific to InheritsRelationship

Rose InstantiatedClass Class
A class which instantiates a parameterized class. Instantiated classes are created by
supplying the actual values for the formal parameters of the parameterized class. An
instantiated class is concrete, meaning that its implementation is complete, and it may
have object instances.

Class Hierarchy: Class>InstantiatedClass

Attributes specific to InstantiatedClass
None

Relationships specific to InstantiatedClass

Rose InstantiatedClassUtility Class
A class utility which instantiates a parameterized class utility. Instantiated class
utilities are created by supplying the actual values for the formal parameters of the
parameterized class utility.

Class Hierarchy: Class>InstantiatedClassUtility

Attributes specific to InstantiatedClassUtility
None

Relationships specific to InstantiatedClassUtility

Name � Kind Class Description

FromUseCase � 1 UseCase The supplier use case of the inherits relationship, if it is a
use-case.

ToUseCase � 1 UseCase The client use case of the inherits relationship, if it is a use case.

Name - Kind Class Description

Instantiates - 1 ParameterizedClass The parameterized class that this instantiated class
instantiates.

Name - Kind Class Description

Instantiates - 1 ParameterizedClassUtility The parameterized class utility that this instantiated
class utility instantiates.
186 Using Rational SoDA for Word

Rose InteractionDiagram Class
An interaction diagram is an important sequence of interactions between Objects. Rose
enables you to capture, view, and manipulate both collaboration diagrams and sequence
diagrams. Collaboration and sequence diagrams express the same information, but with
different notations.

Class Hierarchy: InteractionDiagram

Attributes available for InteractionDiagram

Relationships available for InteractionDiagram

Name - Kind Description

DiagramType - text The type of the diagram, either CollaborationDiagram or SequenceDiagram

Documentation - text The documentation text associated with the interaction diagram.

Image - graphic The graphical representation of the interaction diagram.

Name - text The name of the interaction diagram.

ParentKind - text Type of the parent, either UseCase or ClassCategory

UniqueID - text

Name - Kind Class Description

ExternalDocs - n String The external documents attached to this diagram.

Messages - n Message The messages that appear in the diagram.

Notes � n Note The notes that appear in the diagram.

Objects - n Object The objects that appear in the diagram.

ParentModel - 1 Model The model that this diagram is contained in.

ParentPackage - 1 Package The package that this diagram is contained in, if applicable.

ParentUseCase - 1 UseCase The use case that this diagram is contained in, if applicable.
Rational SoDA for Word Domains 187

Rose Link Class
Class Hierarchy: Association>Link

Attributes available for Link

Relationships available for Link

Rose Message Class
Class Hierarchy: Message

Attributes available for Message

Name - Kind Description

ClientIsShared - text True if the Shared box is checked on the client side; otherwise
False.

ClientVisibility - text One of Unspecified, Field, Parameters, Local, or Global.

IsLinkToSelf - text True if the link goes from an object to itself.

Name - text The name of the link.

SupplierIsShared - text True if the Shared box is checked on the supplier side; otherwise
False.

SupplierVisibility - text One of Unspecified, Field, Parameters, Local, or Global.

UniqueID - text

Name - Kind Class Description

Client - 1 Object The client object instance (role) of the link.

Messages - n Message The messages associated with the link.

Supplier - 1 Object The supplier object instance (role) of the link.

Name - Kind Description

Documentation - text Text from the Documentation field in the message specification.

Frequency - text The frequency of the message.

HierarchicalSeqNumber - text The hierarchical sequence number of the message.

Name - text The name of the message.

NameWithoutParentheses - text The name of a message without the parenthesized parameters
from Rose that are added when a message is associated with a
class operation.
188 Using Rational SoDA for Word

Relationships available for Message

Rose MetaClass Class
A metaclass is a class whose instances are classes rather than objects. Metaclasses
provide operations for initializing class variables and serve as repositories to hold class
variables where a single value will be required by all objects of a class. Smalltalk and
CLOS support the use of metaclasses. C++ does not directly support metaclasses.

Class Hierarchy: Class>MetaClass

Attributes specific to MetaClass
None

Relationships specific to MetaClass
None

Rose Model Class
A Rose model file. A model file contains a Rose model, which describes your problem
domain and system software. Model files use the default extension .mdl. Models are the
highest hierarchical elements of the Rose source domain. Most templates will start with
connections to a Model.

Class Hierarchy: (FileSystem domain) DirectoryObject>File>(Rose domain) Model

Attributes specific to Model
None

SeqNumber - text The sequence number of the message.

SimpleName - text The name of the message, excluding any parameters

Stereotype - text The stereotype of the message.

Synchronization - text The concurrency semantics for the operation named in the
Operations Field; one of Simple, Synchronous, Balking, Timeout
or Asynchronous.

UniqueID - text

Name - Kind Class Description

Properties - n Property Displays the properties of the message.

Receiver - 1 Object The object that receives the message.

Sender - 1 Object The object that sends the message.
Rational SoDA for Word Domains 189

Relationships specific to Model

Rose ModuleVisibilityRelationship Class
Class Hierarchy: ModuleVisibilityRelationship

Attributes available for ModuleVisibilityRelationship

Name - Kind Class Description

AllAssociations - n Association All associations in the model.

AllClasses - n Class All classes in the model, including actors.

AllComponents - n Module All components in the model (including
subsystems).

AllInteractionDiagrams - n InteractionDiagram All interaction diagrams in the model.

AllPackages - n Package All packages in the model, including
use-case packages (but not including
subsystems in the Component View).

AllRelationships - n Relationship All relationships in the model.

AllSubsystems - n Subsystem All subsystem components in the model.

AllUseCases - n UseCase All use cases in the model.

ComponentView - 1 Subsystem The highest-level subsystem in the model;
its name is Component View. All other
subsystems are nested beneath it.

DeploymentDiagram - 1 DeploymentDiagram The deployment diagram (process diagram)
for the model.

LogicalView - 1 Package The highest-level package in the model; its
name is Logical View. All other packages are
nested beneath it.

Properties - n Property The code-generation properties associated
with the model.

UseCaseView - 1 Package The root use-case package in the model; its
name is UseCase View. All other use-case
packages are nested beneath it.

Name - Kind

Documentation - text

Name - text

UniqueID - text
190 Using Rational SoDA for Word

Relationships available for ModuleVisibilityRelationship

Rose Node Class
Node is an abstract class for processors and devices.

Class Hierarchy: Node

Subclasses of Node:

Processor, Device

Attributes available for Node

Relationships available for Node
None

Rose Object Class
Any object. Its structure and behavior will be defined by its class.

Class Hierarchy: Object

Attributes available for Object

Name - Kind Class

ContextModule - 1 Module

SupplierModule - 1 Module

Name - Kind Description

Characteristics - text The characteristics of the processor or device.

Documentation - text The text in the Documentation field of the processor or device
specification

Stereotype - text

Name - text The name of the component.

UniqueID - text

Name - Kind Description

ClassName - text

Documentation - text Text from the Documentation field in the object specification.

IsClass - text
Rational SoDA for Word Domains 191

Relationships available for Object

Rose Operation Class
Operations denote services provided by the class. Operations can be methods for
accessing and modifying class fields or methods that implement characteristic behaviors
of a class.

The operations of a class are listed in the Operations list box in the class specification.
Rational Rose stores operation information in an operation specification. You can access
operation specifications only through the class specification.

Class Hierarchy: Operation

Attributes available for Operation

MultipleInstances - text True if the Multiple Instances box is checked; otherwise False

Name - text The name of the object.

Persistence - text Persistent, Static, or Transient depending on the value of the
Persistence radio control in the object specification.

Stereotype - text The stereotype of the object.

UniqueID - text

Name - Kind Class Description

Class - 1 Class The class of the object.

Links - n Link The links associated with the object.

Name - Kind Description

AdaImage - text An Ada code segment that represents the declaration of the
operation. This image is derived from the operation name and the
operation parameters. Although the AdaImage is semantically
consistent with your actual code, it may differ in terms of format,
depending on the rules and styles you use for code generation
and/or reverse engineering.

C++Image - text A C++ code segment that represents the prototype of the operation.
This image is derived from the operation name and the operation
parameters. Although the C++Image is semantically consistent with
your actual code, it may differ in terms of format, depending on the
rules and styles you use for code generation and/or reverse
engineering.
192 Using Rational SoDA for Word

Concurrency - text Denotes the semantics of the operation in the presence of multiple
threads of control. Returns Sequential, Guarded, or Synchronous,
depending on the state of the Concurrency radio control in the More
dialog of the operation specification.

Documentation - text Text from the Documentation field in the operation specification.

Exceptions - text Textual list of the exceptions that can be raised by the operation. The
Exceptions text field appears in the More dialog of the operation
specification.

ExportControl - text Specifies the type of access allowed by the class for this operation.
Will return Public, Protected, Private, or Implementation, depending
on the state of the Export Control radio control in the operation
specification.

JavaImage - text A Java code segment that represents the declaration of the
operation.

Name - text The name of the operation. (Does not include the function
parentheses.)

Postconditions - text Text describing the post-conditions of the operation. The PostText is
that text which appears in the Dynamic Semantics field of the
operation specification when the Post radio button is selected.

Preconditions - text Text describing the preconditions of the operation. The PreText is
that text which appears in the Dynamic Semantics field of the
operation specification when the Pre radio button is selected.

Protocol - text The Protocol field lists a set of operations that a client may perform
on an object and the legal orderings in which they may be invoked.
The protocol of an operation has no semantic impact. The Protocol
text field appears in the More dialog of the operation specification.

Qualification - text Identifies language-specific features that allow you to qualify the
method. The Qualification text field appears in the More dialog of the
operation specification.

ReturnClass - text For operations that are functions, refers to the class that is returned
by the function. The ReturnClass text field appears in the Return
Class field on the operation specification.

Semantics - text Text describing the action of the main operation. The SemanticsText
is that text which appears in the Dynamic Semantics field of the
operation specification when the Semantics radio button is selected.

Size - text Text describing the size of the class.

Stereotype - text The stereotype of the operation.
Rational SoDA for Word Domains 193

Relationships available for Operation

Rose Package Class
Packages serve to partition the logical model of a system. They are clusters of highly
related classes that are themselves cohesive, but are loosely coupled relative to other
such clusters. You can use packages to group classes and other packages. Rational Rose
stores data describing the package in a package specification.

Note: When you create an OPEN command directly to a package, be sure to specify the
name of the .mdl file and the name of the package, even if the package is contained in a
separate .cat file.

Class Hierarchy: Package

Attributes available for Package

Time - text A statement about the relative or absolute time required to complete
an operation. The Time text field appears in the More dialog of the
operation specification.

UMLImage - text The image of the operation and parameters using UML standard
notation.

UniqueID - text The internal ID for this operation.

Name - Kind Class Description

Arguments - n Parameter The formal parameters of the operation. These appear in the
Arguments list box in the operation specification.

ExternalDocs - n String The external documents attached to this operation.

Properties - n Property The code-generation properties of the operation.

ParentClass - 1 Class The class to which this operation belongs.

Name - Kind Description

Documentation - text Text from the Documentation field in the package specification.

Global - text True if the package is global, otherwise False.

HasAssignedSubsystem - text True if the package has a subsystem associated with it, otherwise False.

HasStateActivityDiagram - text True if the package has a state/activity diagram.

IsUseCasePackage - text True if the package is a descendent of the UseCase View package,
otherwise False.
194 Using Rational SoDA for Word

Relationships available for Package

Name - text The name of the package.

Stereotype - text The stereotype of the package.

UniqueID - text The internal unique identifier for the package.

Name - Kind Class Description

AllAssociations - n Association All associations that are defined in this package,
or in any nested packages.

AllClassDiagrams - n ClassDiagram

AllClasses - n Class All classes that are defined in this package, or in
any nested packages.

AllReferencers - n Package All packages that import this package. Does not
include indirect referencers.

AllUseCaseDiagrams - n UseCaseDiagram

AllUseCases - n UseCase All use cases that are defined in this package, or
in any nested packages.

AssignedSubsystem - 1 Subsystem The subsystem associated with this package, as
specified in the package specification.

ClassDiagrams - n ClassDiagram All class diagrams that are immediate members
of this package.

Classes - n Class All classes that are immediate members of this
package. All member classes are returned,
regardless of whether they appear on any
diagrams.

DependedOnBy - n PackageDependency

DependsOn - n PackageDependency

ExternalDocs - n String The external documents associated with this
package.

FirstStateActivityDiagram - 1 StateActivityDiagram

FirstStateActivityModel - 1 StateActivityModel

Imports - n Package All packages that are imported by this package.
Does not include indirect dependencies. For
example if A imports B and B imports C, A does
not directly import C.

InteractionDiagrams - n InteractionDiagram All interaction scenario diagrams that are
immediate members of this package.
Rational SoDA for Word Domains 195

Rose PackageDependency Class
Class Hierarchy: PackageDependency

Attributes specific to PackageDependency

MainDiagram - 1 ClassDiagram The diagram specifically called �Main�.

MyAssociations - n Association All associations that are immediate members of
this package.

MyUseCases - n UseCase All use cases that are immediate members of this
package.

NestedSubPackages - n Package All packages that are descendents of this
package.

ParentModel - 1 Model The model that contains this package. This
relationship is used primarily when a template
OPENs a package directly.

ParentPackage - 1 Package The enclosing package. This relationship will
result in an error if applied to the
TopLevelCategory.

Properties - n Property The code-generation properties associated with
this package.

Relationships - n Relationship The relationships defined within this package.

StateActivityDiagrams - n StateActivityDiagram The state/activity diagram associated with this
package.

StateActivityModels - n StateActivityModel The state/activity model for this package.

SubPackages - n Package All packages that are immediate children of this
package.

UseCaseDiagrams - n UseCaseDiagram The use-case diagrams contained within this
package.

Name - Kind

SupplierName - text

Documentation - text

Name -text

Stereotype - text

UniqueID - text
196 Using Rational SoDA for Word

Relationships specific to PackageDependency

Rose Parameter Class
Formal parameter of an operation, instantiated class, or instantiated class utility.

Class Hierarchy: Parameter

Attributes available for Parameter

Relationships available for Parameter
None

Rose ParameterizedClass Class
A parameterized class is a template for creating any number of instantiated classes that
follow its format. A parameterized class declares formal parameters, which can be
classes, objects, or operations.

Class Hierarchy: Class>ParameterizedClass

Attributes specific to ParameterizedClass
None

Name - Kind Class

ToPackage - 1 Package

FromPackage - 1 Package

Name - Kind Description

Documentation - text Text from the Documentation area when a parameter specification is visible.

InitValue - text The initial value of the parameter

Const - text True if the parameter is constant; otherwise False

Name - text The name of the parameter.

Stereotype - text The stereotype of the parameter.

Type - text The type of the parameter.

UniqueID - text
Rational SoDA for Word Domains 197

Relationships specific to ParameterizedClass

Rose ParameterizedClassUtility Class
A parameterized class utility is a set of operations or functions that are not associated
with a higher level class (free subprograms) and are defined in terms of formal
parameters. Parameterized class utilities are used as templates for creating
instantiated class utilities.

Class Hierarchy: Class>ParameterizedClassUtility

Attributes specific to ParameterizedClassUtility
None

Relationships specific to ParameterizedClassUtility

Rose Process Class
A process transforms data values. Lowest-level processes are pure functions without
side effects.

Class Hierarchy: Process

Attributes available for Process

Name - Kind Class Description

InstantiatedClasses - n InstantiatedClass All instantiated classes of this parameterized class.

Parameters - n Parameter Formal, generic parameters declared by the
parameterized class. The parameters appear in the
Parameters list box in the More dialog of the class
specification.

Name - Kind Class Description

InstantiatedClasses - n InstantiatedClassUtility All instantiated class utilities of this parameterized
class utility.

Parameters - n Parameter Formal, generic parameters declared by the
parameterized class utility. The parameters appear
in the Parameters list box in the More dialog of the
class specification.

Name - Kind Description

Documentation - text The text in the Documentation field of the process specification.

Name - text The name of the process.
198 Using Rational SoDA for Word

Relationships available for Process
None

Rose Processor Class
A processor is a hardware component capable of executing programs.

Class Hierarchy: Node>Processor

Attributes specific to Processor

Relationships specific to Processor

Rose Property Class
A code-generation property associated with the model, a package, a subsystem, a class,
an association, a has relationship, an attribute, a module, or an operation.

Class Hierarchy: Property

Attributes available for Property

Relationships available for Property
None

Priority - text The priority of the process.

Stereotype - text

UniqueID - text

Name - Kind Description

Scheduling - text The text in the Scheduling field of the processor specification.

Name - Kind Class Description

Processes - n Process The processes defined by this processor.

Name - Kind Description

Name - text The name of the property.

ToolName - text The name of the tool, or tab, for the property, such as �cg� or �DDL�.

Value - text The string equivalent of the value associated with the property.
Rational SoDA for Word Domains 199

Rose RealizeRelationship Class
A realize relationship between a logical class and a component class shows that the
component class realizes the operations defined by the logical class.

Class Hierarchy: Relationship>RealizeRelationship

Attributes available for RealizeRelationship
None

Relationships available for RealizeRelationship
None

Rose Relationship Class
A semantic connection between two classes. Rational Rose stores relationship
information in a relationship specification.

Class Hierarchy: Relationship

Subclasses of Relationship:

HasRelationship, InheritsRelationship, Role, UsesRelationship, Rose
RealizeRelationship Class.

Attributes available for Relationship

Name - Kind Description

ClientCardinality - text Indicates the number of possible links from an instance of the
client class to an instance of the supplier class. Can be the same
values as those listed in CardinalityFrom above.

Documentation - text Text from the Documentation field of the relationship specification.

ExportControl - text Specifies the type of access allowed between classes. Returns
Public, Protected, Private, or Implementation, depending on the
state of the Access radio control on the relationship specification.
Access is also shown by adornments on relationships in diagrams.

Kind - text Kind of the relationship, which will be one of: AggregateRole,
AssociationRole, HasRelationship, InheritsRelationship or
UsesRelationship.

Name - text The name of the relationship.

Stereotype � text The stereotype of the relationship.
200 Using Rational SoDA for Word

Relationships available for Relationship

Rose Role Class
The purpose or capacity where one class associates with another.

Class Hierarchy: Relationship>Role

Attributes specific to Role

SupplierCardinality - text Indicates the number of possible links from an instance of the
supplier class to an instance of the client class. Can be one the
following values: n, 1, 0..n, 1..n, 0..1, <literal>, <literal>..n, or
<literal>..<literal>.

SupplierName - text The name of the supplier class or use case.

UniqueID �text The internal unique identifier of the relationship.

Name � Kind Class Description

FromClass � 1 Class The client class. For example, if A Has a B, A is the client, or From
class.

ToClass � 1 Class The supplier class. For example, if A Has a B, B is the supplier, or
To class.

Properties � n Property The properties associated with the relationship.

Name � Kind Description

Cardinality - text

Constraints � text The text of the Contraints field in the role specification.

Containment � text Specifies the physical containment of the role. Returns Value,
Reference, or Unspecified, depending on the state of the
Containment radio control on the role specification.

ExportControl - text

Friend � text True if the Friend check box is selected in the role specification,
otherwise False.

IsAggregate � text True if the role is an aggregate relationship.

IsNavigable � text True if the Navigable check box is selected, otherwise False.

IsStatic � text True if the Static check box is selected in the role specification,
otherwise False.

UniqueID - text
Rational SoDA for Word Domains 201

Relationships available for Role

Rose State Class
The state of an object represents the cumulative history of its behavior. State
encompasses all of the object�s static properties and the current values of each property.

Class Hierarchy: State

Attributes available for State

Relationships available for State

Name � Kind Class Description

Keys � n Attribute Each key is an attribute that uniquely defines a single target
object.

FromUseCase � 1 UseCase The supplier use case of the role, if it is a use case.

Association � 1 Association The association that this role is a part of.

Class - 1 Class

OtherRole � 1 Role The role at the other end of the association.

ToUseCase � 1 UseCase The client use case of the inherits relationship, if it is a use case.

UseCase -- 1 UseCase

Name - Kind Description

Documentation - text The text in the Documentation field of the state specification.

History - text The text in the History field of the state specification.

Name - text The name of the state.

StateKind - text One of Start, Normal or Stop.

Stereotype - text

UniqueID - text

Name - Kind Class Description

AllSubActivities - n Activity

AllSubStates - n State

DoActions - n Action

EntryActions - n Action

ExitActions - n Action
202 Using Rational SoDA for Word

Rose StateActivityDiagram Class
Class Hierarchy: StateActivityDiagram

Attributes available for StateActivityDiagram

Relationships available for StateActivityDiagram

ExternalDocs - n String

ParentStateActivityModel - 1 StateActivityModel The parent state machine associated with this
state.

Properties - n Property The properties attached to this state.

StateActivityDiagrams - n StateActivityDiagram The state or activity diagrams internal to this Rose
state

StateActivityModels - n StateActivityModel

SubActivities - n Activity

SubStates - n State

Transitions - n StateTransition The transitions that exit from this state.

Name - Kind Description

Documentation - text The documentation attached to the diagram.

HasStateActivityModel - text True if the diagram includes a state activity model.

IsActivityDiagram - text

Image - graphic The graphical representation of the diagram.

Name - text The name of the diagram.

UniqueID - text

Name - Kind Class Description

AllStateActivityDiagrams - n StateActivityDiagram The diagrams defined in both this state activity
diagram and all nested state activity diagrams.

ExternalDocs - n String The external documents attached to this diagram.

Notes - n Note The notes visible on this diagram.
Rational SoDA for Word Domains 203

Rose StateDiagram Class
Depicts significant event-ordered behavior of a particular class. Each class may have
one state diagram to describe its behavior.

Class Hierarchy: StateDiagram

Attributes available for StateDiagram

Relationships available for StateDiagram

Rose StateActivityModel Class
Class Hierarchy: StateActivityModel

ParentModel - 1 Model

StateActivityDiagrams - n StateActivityDiagram The state/activity diagram associated with this
StateActivityDiagram.

StateActivityModel - 1 StateActivityModel The top-level state activity model associated with
this diagram.

Name - Kind Description

Documentation - text The documentation attached to the diagram.

HasStateMachine - text True if the diagram includes a state machine.

Image - graphic The graphical representation of the diagram.

Name - text The name of the diagram.

Name - Kind Class Description

ExternalDocs - n String The external documents attached to this diagram.

Notes - n Note The notes visible on this diagram.

StateMachine - 1 StateMachine The top-level state machine associated with this diagram.
204 Using Rational SoDA for Word

Attributes available for StateActivityModel

Relationships available for StateActivityModel

Name - Kind Description

HasStateActivityDiagram - text True if the state activity model has at least one state or activity diagram.

Name - text The name of the state activity model.

UniqueID - text The internal unique identifier of the state activity model.

Name - Kind Class Description

Activities - n Activity The activities defined in this state activity
model.

AllActivities - n Activity The activities defined in both this state activity
model and all nested state activity models.

AllDecisions - n Decision The decisions defined in both this state
activity model and all nested state activity
models.

AllStateActivityDiagrams - n StateActivityDiagram The diagrams defined in both this state
activity model and all nested state activity
models.

AllStates - n State

AllSynchronizations - n Synchronization The synchronizations defined in both this
state activity model and all nested state
activity models.

Decisions - n Decision The decisions defined in this state activity
model.

FirstStateActivityDiagram - 1 StateActivityDiagram The (first) state or activity diagram associated
with this state activity model.

StateActivityDiagrams - n StateActivityDiagram The state or activity diagrams associated with
this state activity model.

States - n State The states that are part of this state activity
model.

Synchronizations - n Synchronization The synchronizations defined in this state
activity model.

Transitions - n StateTransition The transitions that are part of this state
activity model.
Rational SoDA for Word Domains 205

Rose StateTransition Class
A state transition is a change of state caused by an event. Use state transitions to
connect two states in a state diagram or show state transitions from a state to itself.

Class Hierarchy: StateTransition

Attributes available for StateTransition

Relationships available for StateTransition

Rose String Class
The Rose String class is used to store the names of external documents.

Class Hierarchy: String

Name - Kind Description

CausingArguments - text The arguments that accompany the causing event.

CausingEventName - text The name of the event that causes this transition.

Documentation - text The text from the Documentation field of this transition.

GuardCondition - text

SendArguments - text The arguments that accompany the trigger event.

SendEventName - text The name of the event triggered by the transition.

SendTarget - text The name of the object that will receive the transition event.

Stereotype - text The stereotype of the transition.

SupplierName - text

UniqueID - text

Name - Kind Class Description

FromActivity - 1 Activity

FromState - 1 State The state that this transition emanates from.

Properties - n Property The properties attached to this transition.

SendAction - 1 Action The send action of this transition.

ToActivity - 1 Activity

ToState - 1 State The state that this transition leads to.

TriggerAction - 1 Action The action that triggers this transition.
206 Using Rational SoDA for Word

It has one attribute, Value - text.

For more information on including external document contents in your SoDA document
or report, see �How to Display the Contents of Files Referenced by ExternalDocs� on
page 175.

Rose Subsystem Class
Subsystems represent clusters of logically related components. They parallel the role
played by packages for class diagrams, allowing you to partition the physical model of
the system.

Each subsystem can contain components and other subsystems. Each module in your
system must reside in a single subsystem or at the Component View of the model.

Class Hierarchy: Subsystem

Attributes available for Subsystem

Relationships available for Subsystem

Name - Kind Description

Documentation - text Text from the Documentation field of the subsystem specification.

Name - text The name of the subsystem.

Stereotype - text The stereotype, if any, of the subsystem.

UniqueID - text

Name - Kind Class Description

AllComponents - n Component All components nested in this Subsystem, including
recursively nested components. For example, if
compnent C is nested in Subsystem B is nested in
Subsystem A, then AllComponents of A would return B
and C.

AllSubsystems - n Subsystem

AssignedClasses - n Class The classes assigned to this subsystem.

AssignedLogicalPackages
- n

Package

Components - n Module

Imports - n Subsystem All other subsystems that this subsystem directly
depends on. Does not include indirect dependences.
For example if A imports B and B imports C, A does not
directly import C.
Rational SoDA for Word Domains 207

Rose Synchronization Class
Class Hierarchy: Synchronization

Attributes available for Synchronization

Relationships available for Synchronization

Rose UseCase Class
A use case is a sequence of transactions performed by a system in response to a
triggering event initiated by an actor to the system. A full use case should provide a
measurable value to an actor when the actor is performing a certain task. A use case
contains all the events that can occur between an actor-use case pair, not necessarily
the ones that will occur in any particular scenario. A use case contains a set of scenarios
that explain various sequences of interaction within the transaction.

Class Hierarchy: UseCase

ComponentDiagrams - n ComponentDiagram All component diagrams contained in this Subsystem.

MainDiagram - 1 ModuleDiagram

ParentModel - 1 Model

Properties - n Property

ParentSubsystem - 1 Subsystem

Referencers - n Subsystem All other subsystems that directly depend on this
subsystem. Does not include indirect referencers. For
example if A imports B and B imports C, A is not a
direct referencer of C.

Subsystems - n Subsystem

Name - Kind Description

Documentation - text The text from the documentation field for this synchronization.

Name - text The name of the synchronization.

Stereotype - text The stereotype of the synchronization.

UniqueID - text The internal unique identifier of the synchronization.

Name - Kind Class

Transitions - n StateTransition
208 Using Rational SoDA for Word

Attributes available for UseCase

Relationships available for UseCase

Name - Kind Description

Documentation - text Text from the Documentation field of the use-case specification

HasStateActivityDiagram - text True if the use case has an associated state diagram.

IsAbstract - text True if the abstract check-box is checked.

Name - text The name of the use case.

Rank - text The rank of the use case.

RequisiteProDocName - text

RequisiteProProjectPath - text

RequisiteProReqtGUID - text

Stereotype - text The stereotype of the use case.

UniqueID - text

Name - Kind Class Description

Associations - n Association The associations where this use case plays a role.

Properties - n Property The properties associated with this use case.

ClassDiagrams - n ClassDiagram The class diagrams included in this use case.

ExternalDocs - n String The names of the external document associated
with this use case.

FirstStateActivityDiagram - 1 StateActivityDiagram

FirstStateActivityModel - 1 StateActivityModel

InteractionDiagrams - n InteractionDagram The interaction diagrams defined by this use case.

MyRelationships - n Relationship The inherits and role relationships defined by this
use case.

ParentModel - 1 Model

ParentPackage - 1 Package The enclosing package.

ParticipatingObjects - n Object The objects included in scenarios defined by this
use case.

Properties - n Property The properties attached to this use case.

StateActivityDiagrams - n StateActivityDiagram The state diagram associated with this use case.

StateActivityModels - n StateActivityModel
Rational SoDA for Word Domains 209

Rose UsesRelationship Class
Indicates that the client class depends on the supplier class to provide certain services,
such as:

! The client class accesses a value (constant or variable) defined in the supplier class
! Operations of the client class invoke operations of the supplier class
! Operations of the client class have signatures whose return class or arguments are

instances of the supplier class

Class Hierarchy: Relationship>UsesRelationship

Attributes specific to UsesRelationship

Relationships specific to UsesRelationship
None

Rose UseCaseDiagram Class
A use-case diagram shows the relationships between use cases and actors. Use-case
diagrams can be considered as filtered views into the model. They do not necessarily
depict all the use cases or relationships in the model. For example, iterating over all the
use cases in the main diagram of a package will not necessarily return all the use cases
defined in that package.

Class Hierarchy: UseCaseDiagram

SubUseCases - n UseCase

SuperUseCases - n UseCase The use cases that this use case inherits from
directly.

UseCaseDiagrams - n UseCaseDiagram The use-case diagrams associated with this use
case.

Name � Kind

ExportControl - text

InvolvesFriendship - text
210 Using Rational SoDA for Word

Attributes available for UseCaseDiagram

Relationships available for UseCaseDiagram

Name - Kind Description

Documentation - text

Image - graphic The graphical representation of the diagram.

Name - text The name of the diagram.

UniqueID - text

Name - Kind Class Description

Classes - n Class All of the classes that appear on the diagram.

ExternalDocs - n String The external documents attached to this diagram.

ParentModel - 1 Model The model that contains the diagram.

Notes - n Note

ParentPackage - 1 Package The package that contains the diagram, if applicable.

Packages - n Package

Relationships - n Relationship All of the relationships that appear on the diagram.

UseCases - n UseCase All of the use cases that appear on the diagram.
Rational SoDA for Word Domains 211

Rose RealTime Domain

The Rose RealTime source domain allows you to incorporate textual and graphical
information from Rational Rose RealTime models. To extract information from a Rose
RealTime model, you would typically create an OPEN command to the model specifying
its filename. Once this command provides context for the model, you can traverse
through the various components.

Before generating a document from a Rose RealTime model, you need to save the model.
When you generate the document, the Rose RealTime domain will create a directory
named <document name prefix>.dia and will fill it with .WMF files for each diagram
requested from the model.

The Rose RealTime domain uses aliases to support multiple notations. SoDA is
delivered with UML aliases. To change to use aliases for another notation or another
language, simply modify the RoseRT.dom file.

How to Display the Contents of Files Referenced by ExternalDocs
The Files tab in most Rose RealTime specifications is for External Documents. In this
tab you can identify one or more documents that further describe the model element.
Follow these steps to include the contents of these documents in your SoDA document or
report:

1 Within the context of a model element, create a REPEAT command and select the
ExternalDocs relationship; set the Name to ExternalDoc.

2 Just inside the REPEAT command, create an OPEN command.

3 In the Select Class area, choose Word -> WordFile.

4 Click the Advanced button.

5 In the Argument area, click Filename twice to show a tree control next to the
argument.

6 In the tree control, select ExternalDoc -> Value; click OK to create the OPEN
command.

7 Just to the right of the OPEN command, create a DISPLAY command.

8 In the Select Attribute area, choose WordFile -> FormattedText.
212 Using Rational SoDA for Word

Rose RealTime Domain Classes

Rose RealTime Action Class
Class Hierarchy: Element>ModelElement>Action

Subclasses of Diagram Class:

LocalState Class, RequestAction Class, ResponseAction Class, Coregion Class,
CreateAction Class, DestroyAction Class, TerminateAction Class, UninterpretedAction
Class.

Attributes specific to Action

Relationships specific to Action

Rose RealTime Association Class
A RealTime association represents a semantic connection between two classes.
Associations are bi-directional; they are the most general of all relationships and the
most semantically weak.

Class Hierarchy: Element>ModelElement>Association Class.

Subclasses of Association Class: AssociationRole.

Attributes specific to Association

Name - Kind

Kind - text

Time - text

Name - Kind Class

Arguments - n SString

ParentMessage - 1 Message

ParentState - 1 State

ParentTransition - 1 Transition

Name � Kind Description

IsDerived � text True if the association is derived; otherwise False.
Rational SoDA for Word Domains 213

Relationships specific to Association

Rose RealTime AssociationEnd Class
Class Hierarchy: Element>ModelElement>Relationship>AssociationEnd

Attributes specific to AssociationEnd

Relationships specific to AssociationEnd

Name - Kind Class Description

AssociationClass - 1 Class

EndA - 1 AssociationEnd The first role defined in the association.

EndB - 1 AssociationEnd The second role defined in the association.

Name � Kind

Constraints � text

Containment � text

IsAggregrate � text

IsFriend � text

IsNavigable � text

IsStatic � text

Multiplicity � text

Visibility � text

Name � Kind Class

Association � 1 Association

FromElement � 1 ModelElement
FromElement

Classifier � 1 Classifier

From � 1 Classifier

Keys � n Attribute

OtherAsociationEnd � 1 AsociationEnd

To - 1 Classifier

UseCase - 1 UseCase
214 Using Rational SoDA for Word

Rose RealTime AssociationRole Class
Class Hierarchy: Element>ModelElement>Association>AssociationRole

Attributes specific to AssociationRole

Relationships specific to AssociationRole

Rose RealTime AssociationEndRole Class
Class Hierarchy:
Element>ModelElement>Association>AssociationRose>AssociationEndRole

Attributes specific to AssociationEndRole

Relationships specific to AssociationEndRole

Rose RealTime Attribute Class
Attributes are data members of a class whose type is not another class.

Class Hierarchy: Element>ModelElement>Attribute

Name � Kind

BaseName � text

Multiplicity � text

Name - Kind Class Description

Base - 1 Association

EndA - 1 AssociationEndRole The first role defined in the association.

EndB - 1 AssociationEndRole The second role defined in the association.

ParentCollaboration - 1 Collaboration

Name � Kind

Multiplicity � text

Name - Kind Class

AssociationRole - 1 AssociationRole

Base - 1 AssociationRole
Rational SoDA for Word Domains 215

Attributes specific to Attribute

Relationships specific to Attribute

Rose RealTime Class Class
A class captures the common structure and common behavior of a set of objects. A class
is an abstraction of real-world items. When these items exist in the real world, they are
instances of the class, and referred to as objects. Rational Rose RealTime stores class
information in a class specification.

Class Hierarchy: Element>ModelElement>Classifier>Class

Subclasses of Class:

ParameterizedClass, InstantiatedClass, ClassUtility, ParameterizedClassUtility,
InstantiatedClassUtility, MetaClass.

Attributes specific to Class

Name � Kind Description

Containment � text Specifies the physical containment of the attribute. Returns Value,
Reference, or Unspecified, depending on the state of the
Containment radio control on the attribute specification.

InitialValue � text The initial value of the attribute.

Derived � text True if the Derived check box is selected in the attribute
specification, otherwise False.

Scope � text

Type � text The type of the attribute.

Visibility � text

Name - Kind Class Description

ParentClassifier - 1 Classifier The class in which this attribute is defined.

Name � Kind Description

Concurrency � text Returns Sequential, Guarded, Active, or Synchronous, depending on
the value of the Concurrency radio control in the More dialog of the
class specification.

IsFundamentalType � text

IsNestedClass � text True if the class is nested.

Multiplicity � text
216 Using Rational SoDA for Word

Relationships specific to Class

Rose RealTime ClassDiagram Class
A RealTime class diagram shows the relationships between packages and classes; the
essential relationships include association, inherits, has, and uses. Each class diagram
provides a logical view of the current model.

Class diagrams contain icons representing packages and classes. Class diagrams can be
considered as filtered views into the model. They do not necessarily depict all the classes
or relationships in the model. For example, iterating over all the classes in the main
diagram of a package will not necessarily return all the classes defined in that category.

Class Hierarchy: Element>Diagram>ClassDiagram

Attributes specific to ClassDiagram
None

Relationships specific to ClassDiagram

Persistence � text Returns Persistent or Transient, depending on the value of the
Persistence radio control in the More dialog of the class
specification.

Space � text The string in the Space field of the More dialog of the class
specification.

Type � text

Name � Kind Class Description

AppearsIn � n ClassDiagram The class diagrams where this class
appears.

Instances
AppearIn � n

Interaction Diagram The interaction diagrams that include
instances of this class.

InstantiateRelationships � n InstantiateRelationship

NestedClasses � n Class The classes that are nested within
this class.

ParentClass � 1 Class The parent class of this class, if it is
nested.

Name � Kind Class Description

Classes - n Class All of the classes that appear on the diagram.
Rational SoDA for Word Domains 217

Rose RealTime Classifier Class
Classifier Class serves to partition the logical model of a system. They are clusters of
highly related classes that are themselves cohesive, but are loosely coupled relative to
other such clusters. You can use packages to group classes and other packages. Rational
Rose RealTime stores data describing the package in a package specification.

Note: When you create an OPEN command directly to a package, be sure to specify the
name of the .mdl file and the name of the package, even if the package is contained in a
separate .cat file.

Class Hierarchy: Element>ModelElement>Classifier

Subclasses of Classifier Class:

Capsule, Class, Protocol, UseCase.

Attributes specific to Classifier

Relationships specific to Classifier

Packages - n LogicalPackage

ParentPackage � 1 LogicalPackage

UseCases - n UseCase All of the use cases that appear on the diagram.

Name � Kind

IsAbstract � text

HasStateDiagram � text

IsSystemClass � text

Language � text

QualifiedName � text

Visibility � text

Name - Kind Class Description

AllAssociations - n Association All associations where this class plays a role, including
those inherited from other classes.

AllAttributes - n Attribute All attributes of this class, including those inherited from
other classes.

AllCollaborations - n Collaboration
218 Using Rational SoDA for Word

Rose RealTime ClassifierRole Class
Class Hierarchy: Element>ModelElement>ClassifierRole

Subclasses of ClassifierRole Class: CapsuleRole Class.

Attributes specific to ModelElement

AllOperations - n Operation All operations of this class, including those inherited from
other classes.

AllRelationships - n Relationship All relationships of this class, including those inherited from
other classes.

AllSubClasses - n Classifier All classes in the lineage of this class. For example, if A
inherits from B and B inherits from C, then AllSubClasses of
C would include B and A.

AllSuperClasses - n Classifier All classes in the ancestry of this class. For example, if A
inherits from B and B inherits from C, then AllSuperClasses
of A would include B and C.

Associations - n Association The associations where this class plays a role.

Attributes - n Attribute

Collaborations - n Collaboration

Instances - n Object The object instances of this class.

Operations - n Operation

ParentPackage - 1 Package The enclosing package.

Relationships - n Relationship

StateDiagram - 1 StateDiagram

StateMachine - 1 StateActivityMod
el

SubClasses - n Classifier

SuperClasses - n Classifier

Name � Kind

ClassifierName � text

Multiplicity � text
Rational SoDA for Word Domains 219

Relationships specific to ModelElement

Rose RealTime CallAction Class
Class Hierarchy: Element>ModelElement>Action>RequestAction>CallAction

Attributes specific to CallAction

Relationships specific to CallAction
None

Rose RealTime Capsule Class
Class Hierarchy: Element>ModelElement>Classifier>Capsule

Attributes specific to Capsule
None

Relationships specific to Capsule

Rose RealTime CapsuleRole Class
Class Hierarchy: Element>ModelElement>ClassifierRose>CapsuleRole

Attributes specific to CapsuleRole

Name � Kind Class

Classifier � 1 Classifier

ParentCollaboration � 1 Collaboration

Name - Kind

Operation - text

Name - Kind Class

Structure - 1 CapsuleStructure

Name � Kind

Cardinality � text

Genericity � text

IsSubstitiutable � text
220 Using Rational SoDA for Word

Relationships specific to CapsuleRole

Rose RealTime CapsuleStructure Class
Class Hierarchy: Collaboration Class>CapsuleStructure

Attributes specific to CapsuleStructure
None

Relationships specific to CapsuleStructure

Rose RealTime ChoicePoint Class
Class Hierarchy: Element>ModelElement>StateVertex>ChoicePoint

Attributes specific to ChoicePoint

Relationships specific to ChoicePoint

Name � Kind Class

Capsule � 1 Capsule

PortRoles � n PortRole

Name - Kind Class

CapsuleRoles - n CapsuleRole

Ports - n Port

Name � Kind

Condition � text

Name - Kind Class

FALSETransition - 1 Transition

InTransition - 1 Transition

TRUETransition - 1 Transition
Rational SoDA for Word Domains 221

Rose RealTime ClassUtility Class
A class utility is a set of operations that provide additional functions for classes. Class
utilities are used to:

! Denote one or more free subprograms
! Name a class that only provides static members and/or static member functions.

Class Hierarchy: Element>ModelElement>Classifier>Class>ClassUtility

Attributes specific to ClassUtility
None

Relationships specific to ClassUtility
None

Rose RealTime Collaboration Class
Class Hierarchy: Element>ModelElement>Collaboration

Attributes specific to Collaboration
None

Relationships specific to Collaboration

Rose RealTime CollaborationDiagram Class
Class Hierarchy: Element>Diagram>CollaborationDiagram

Attributes specific to CollaborationDiagram
None

Name - Kind Class

AssociationRoles - n AssociationRole

ClassifierRoles - n ClassifierRole

Connectors - n Connectors

Diagram - 1 CollaborationDiagram

Interactions - n Interaction

ParentClassifier - 1 Classifier

ParentLogicalPackage - 1 LogicalPackage
222 Using Rational SoDA for Word

Relationships specific to CollaborationDiagram
None

Rose RealTime Component Class
A building block for the physical structure of a system. A component can be one of the
following: Main Program, Package Body, Subprogram, Package, Task Body, Generic
Package, Task, Subprogram Body.

Class Hierarchy: Element>ModelElement>Component

Attributes specific to Component

Name � Kind Description

CodeGenMakeDocumentation - text

CodeGenMakeFlags � text

CodeGenMakeName � text

CodeGenMakeOverrides - text

CodeGenMakeType � text

CompilationMakeDocumentation - text

CompilationMakeFlags � text

CompilationMakeName � text

CompilationMakeOverrides - text

CompilationMakeType � text

CompilerDocumentation � text

CompilerFlags � text

CompilerLibrary � text

CompilerOverride � text

DefaultArgs � text

ExecutableFileName � text

IsMultiThreaded � text

LinkerDocumentation � text

LinkerFlags � text

LinkerOverride � text
Rational SoDA for Word Domains 223

Relationships specific to Component

Rose RealTime ComponentAggregation Class
Class Hierarchy: Element>ModelElement>Relationship>ComponentAggregation

Attributes specific to ComponentAggregation
None

Relationships specific to ComponenetAggregation

OutputPath � text

Platform � text

RTSDocumentation � text Text from the Documentation field of the component
specification.

RTSType � text

TargetDescription � text

TargetServicesLibrary � text

Name � Kind Class

ClassifierReferences � n Classifier

Inclusions � n Sstring

InclusionPaths � n Sstring

PackageReferences � n LogicalPackages

ParentComponentPackage � 1 ComponentPackage

Relationships � n Relationship

TopCapsule � 1 Capsule

UserLibraries � n Sstring

UserLibraryPaths � n Sstring

UserSourceFiles � n Sstring

UserObjectFiles � n Sstring

Name - Kind Class

From - 1 Component

To - 1 Component
224 Using Rational SoDA for Word

Rose RealTime ComponentDependency Class
Class Hierarchy: Element>ModelElement>Relationship>ComponentDependency

Attributes specific to ComponentDependency
None

Relationships specific to ComponentDependency

Rose RealTime ComponentDiagram Class
A component diagram shows relationships between subsystems and components. Each
component diagram provides a physical view of the current model. Each component
diagram is contained by the subsystem enclosing the components it depicts.

Class Hierarchy: Element>Diagram>ComponentDiagram

Attributes specific to ComponentDiagram
None

Relationships specific to ComponentDiagram

Name - Kind Class

From - 1 Component

FromClass - 1 Class

FromComponentPackage - 1 ComponentPackage

To - 1 Component

ToClass - 1 Class

ToComponentPackage - 1 ComponentPackage

Name - Kind Class Description

Components - n Component The components contained in the diagram.
Rational SoDA for Word Domains 225

Rose RealTime ComponentInstance Class
Class Hierarchy: Element>ModelElement>ComponentInstance

Attributes specific to ComponentInstance

Relationships specific to ComponentInstance

Rose RealTime ComponentPackage Class
Class Hierarchy: Element>ModelElement>ComponentPackage

Attributes specific to ComponentPackage

Relationships specific to ComponentPackage

Name � Kind

AttachTargetObservability � text

ConsolePort � text

LoadDelay � text

LoadOrder � text

LogsPort � text

OperationMode � text

TargetObservabilityPort � text

UserParameters � text

Name - Kind Class

Component - 1 Component

Name � Kind

IsRootPackage � text

Name - Kind Class

AllComponents - n Component

AllComponentPackages - n ComponentPackage

Components - n Component
226 Using Rational SoDA for Word

Rose RealTime Connector Class
Class Hierarchy: Element>ModelElement>Connector

Attributes specific to Connector

Relationships specific to Connector

Rose RealTime Coregion Class
Class Hierarchy: Element>ModelElement>Action>Coregion

Attributes specific to Coregion
None

Relationships specific to Coregion

ComponentDiagrams - n ComponentDiagram

ComponentPackages - n ComponentPackage

ParentComponentPackage - 1 ComponentPackage

Name � Kind

Cardinality � text

Delay � text

Name - Kind Class

Port1 - 1 Port

Port2 - 1 Port

PortRole1 - 1 PortRole

Port Role2 - 1 PortRole

Name - Kind Class

Messages - n Message
Rational SoDA for Word Domains 227

Rose RealTime CreateAction Class
Class Hierarchy: Element>ModelElement>Action>CreateAction

Attributes specific to CreateAction

Relationships specific to CreateAction
None

Rose RealTime DeploymentDiagram Class
A deployment diagram shows the allocation of processes to processors in the physical
design of a system. A deployment diagram may represent all or part of the process
architecture of a system.

Class Hierarchy: Element>Diagram>DeploymentDiagram

Attributes specific to DeploymentDiagram
None

Relationships specific to DeploymentDiagram

Rose RealTime DeploymentPackage Class
Class Hierarchy: Element>ModelElement>DeploymentPackage

Attributes specific to DeploymentPackage
None

Relationships specific to DeploymentPackage

Name - Kind

Operation - text

Name Class Description

Processors - n Processor The processors contained in the diagram.

Devices - n Device The devices contained in the diagram.

Name - Kind Class

AllDevices - n Device

AllProcessors - n Processor

DeploymentDiagram - n DeploymentDiagram
228 Using Rational SoDA for Word

Rose RealTime DestroyAction Class
Class Hierarchy: Element>ModelElement>Action>DestroyAction

Attributes specific to DestroyAction
None

Relationships specific to DestroyAction
None

Rose RealTime Device Class
A device is a hardware component with no computing power.

Class Hierarchy: Element>ModelElement>Device

Attributes specific to Device

Relationships specific to Device

Rose RealTime Diagram Class
Class Hierarchy: Element>Diagram is a subclass of Element Class.

Subclasses of Diagram Class:

ClassDiagram, SequenceDiagram, DeploymentDiagram, CollaborationDiagram,
StateDiagram, ComponentDiagram.

Attributes specific to Diagram

Name � Kind

Characteristics � text

Name - Kind Class

ConnectedDevices - n Device

ConnectedProcessors - n Processor

Name - Kind

Diagram graphic - image
Rational SoDA for Word Domains 229

Relationships specific to Diagram

Rose RealTime Element Class
A Rose RealTime element file. A model file contains a Rose RealTime model, which
describes your problem domain and system software. Model files use the default
extension .mdl. Models are the highest hierarchical elements of the Rose RealTime
source domain. Most templates will start with connections to a Model.

Class Hierarchy: Element

Subclasses of Element Class:

ModelElement, Diagram, StateMachine, Trigger.

Attributes specific to Element

Relationships specific to Element

Rose RealTime Environment Class
Class Hierarchy: Element>ModelElement>InteractionInstance>Environment

Attributes specific to Environment
None

Relationships specific to Environment
None

Name � Kind Class

ModelElements - n ModelElement

NoteViews - n NoteView Notes

Name � Kind

Name � text

UniqueID � text

Name � Kind Class Description

AllProperties - n Property

Model � 1 Model

Properties - n Property The code-generation properties associated with
the model.
230 Using Rational SoDA for Word

Rose RealTime File Class
Class Hierarchy: File

Attributes specific to File

Relationships specific to File

Rose RealTime FinalState Class
Class Hierarchy: Element>ModelElement>StateVertex>FinalState

Attributes specific to FinalState
None

Relationships specific to FinalState
None

Rose RealTime Generalization Class
Class Hierarchy: Element>ModelElement>Relationship>Generalization

Attributes specific to Generalization

Relationships specific to Generalization

Name � Kind

IsURL � text

Value � text

Name - Kind Class

ParentLogicalPackage - 1 Package

Name � Kind

FriendshipRequired � text

Visibility � text

Name - Kind Class

From - 1 Classifier

To - 1 Classifier
Rational SoDA for Word Domains 231

Rose RealTime InitialPoint Class
Class Hierarchy: Element>ModelElement>StateVertex>InitialPoint

Attributes specific to InitialPoint
None

Relationships specific to InitialPoint
None

Rose RealTime InstantiatedClass Class
A class which instantiates a parameterized class. Instantiated classes are created by
supplying the actual values for the formal parameters of the parameterized class. An
instantiated class is concrete, meaning that its implementation is complete, and it may
have object instances.

Class Hierarchy: Element>ModelElement>Classifier>Class>InstantiatedClass

Attributes specific to InstantiatedClass
None

Relationships specific to InstantiatedClass
None

Rose RealTime InstantiatedClassUtility Class
A class utility which instantiates a parameterized class utility. Instantiated class
utilities are created by supplying the actual values for the formal parameters of the
parameterized class utility.

Class Hierarchy: Element>ModelElement>Classifier>Class>InstantiatedClassUtility

Attributes specific to InstantiatedClassUtility
None

Relationships specific to InstantiatedClassUtility
None

Rose Realtime InstantiateRelationship Class
Class Hierarchy: Element>ModelElement>Relationship>InstantiateRelationship

Attributes specific to InstantiateRelationship
None
232 Using Rational SoDA for Word

Relationships specific to InstantiateRelationship

Rose RealTime Interaction Class
Class Hierarchy: Element>ModelElement>Interaction

Attributes specific to Interaction
None

Relationships specific to Interaction

Rose RealTime InteractionInstance Class
Class Hierarchy: Element>ModelElement>InteractionInstance

Subclasses of InteractionInstance Class: Environment Class.

Attributes specific to InteractionInstance
None

Relationships specific to InteractionInstance

Name - Kind Class

From - 1 Class

To - 1 Class

Name - Kind Class

Instances - n InteractionInstance

Messages - n Message

ParentCollaboration - 1 Collaboration

ParentProtocol - 1 Protocol

SequenceDiagram - 1 SequenceDiagram

Name - Kind Class

Messages - n Message

Path - n ClassifierRole

ParentInteraction - 1 Interaction
Rational SoDA for Word Domains 233

Rose RealTime JunctionPoint Class
Class Hierarchy: Element>ModelElement>StateVertex>JunctionPoint

Attributes specific to JunctionPoint

Relationships specific to JunctionPoint
None

Rose RealTime LocalState Class
Class Hierarchy: Element>ModelElement>Action>LocalState

Attributes specific to LocalState
None

Relationships specific to LocalState
None

Rose RealTime Message Class
Any message associated with an object.

Class Hierarchy: Element>ModelElement>Message

Attributes specific to Message
None

Relationships specific to Message

Name � Kind

Continuation � text

IsEntry � text

IsExit � text

IsExternallyVisible � text

Name - Kind Class Description

Action - 1 Action

Activator - 1 Message
234 Using Rational SoDA for Word

Rose RealTime MetaClass Class
A metaclass is a class whose instances are classes rather than objects. Metaclasses
provide operations for initializing class variables and serve as repositories to hold class
variables where a single value will be required by all objects of a class. Smalltalk and
CLOS support the use of metaclasses. C++ does not directly support metaclasses.

Class Hierarchy: Element>ModelElement>Classifier>Class>MetaClass

Attributes specific to MetaClass
None

Relationships specific to MetaClass
None

Rose RealTime Model Class
A Rose RealTime model file. A model file contains a Rose RealTime model, which
describes your problem domain and system software. Model files use the default
extension .mdl. Models are the highest hierarchical elements of the Rose RealTime
source domain. Most templates will start with connections to a Model.

Class Hierarchy: (FileSystem domain) DirectoryObject>File>(Rose domain) Model

Attributes specific to Model

ParentInteraction - 1 Interaction

Receiver - 1 InteractionInstance The object that receives the message.

Sender - 1 Object The object that sends the message.

Name - Kind

FileName - text

Name � text

UniqueID - text

Documentation - text

Stereotype - text
Rational SoDA for Word Domains 235

Relationships specific to Model

Name � Kind Class Description

AllAssociations - n Association All associations in the model.

AllCapsules - n Capsule

AllClasses - n Class All classes in the model, including actors.

AllComponentPackages - n ComponentPackage

AllComponents - n Component All components in the model (including
subsystems).

AllPackages - n LogicalPackage All packages in the model, including use-case
packages (but not including subsystems in the
Component View).

AllProperties - n Property

AllProtocols � n Protocol

AllRelationships - n Relationship All relationships in the model.

AllUseCases - n UseCase All use cases in the model.

ComponentView - 1 ComponentPackage The highest-level subsystem in the model; its
name is Component View. All other
subsystems are nested beneath it.

DeploymentDiagram - 1 DeploymentPackage The deployment diagram (process diagram)
for the model.

Deployment View - 1 DeploymentPackage

ExternalDocuments - n ExternalDocument

LogicalView - 1 LogicalPackage The highest-level package in the model; its
name is Logical View. All other packages are
nested beneath it.

Model - 1 Model

Properties - n Property The code-generation properties associated
with the model.

UseCaseView - 1 Package The root use-case package in the model; its
name is Use Case View. All other use-case
packages are nested beneath it.
236 Using Rational SoDA for Word

Rose RealTime ModelElement Class
A Rose RealTime model element file. A model file contains a Rose RealTime model,
which describes your problem domain and system software. Model files use the default
extension .mdl. Models are the highest hierarchical elements of the Rose RealTime
source domain. Most templates will start with connections to a Model.

Class Hierarchy: Element>ModelElement

Subclasses of ModelElement Class:

Action Class, Association Class, Attribute Class, Classifier Class, ClassifierRole Class,
Component Class, ComponentPackage Class, ComponentInstance Class, Connector
Class, DeploymentPackage Class, Device Class, Interaction Class, InteractionInstance
Class, Message Class, Operation Class, Package Class, Parameter Class, PortRole
Class, Processor Class, Relationship Class, Signal Class, StateVertex Class, Transition
Class.

Attributes specific to ModelElement

Relationships specific to ModelElement

Rose RealTime NoteView Class
Class Hierarchy: NoteView

Attributes specific to NoteView

Name � Kind

Documentation � text

Stereotype � text

Name � Kind Class

ExternalDocuments - n ExternalDocument

Name � Kind

Text � text

Type � text
Rational SoDA for Word Domains 237

Relationships specific to NoteView

Rose RealTime Operation Class
Operations denote services provided by the class. Operations can be methods for
accessing and modifying class fields or methods that implement characteristic behaviors
of a class.

The operations of a class are listed in the Operations list box in the class specification.
Rational Rose RealTime stores operation information in an operation specification. You
can access operation specifications only through the class specification.

Class Hierarchy: Element>ModelElement>Operation

Attributes specific to Operation

Name - Kind Class

ModelElement - 1 ModelElement

ParentDiagram - 1 Diagram

Name � Kind Description

AdaImage � text An Ada code segment that represents the declaration of the operation.
This image is derived from the operation name and the operation
parameters. Although the AdaImage is semantically consistent with your
actual code, it may differ in terms of format, depending on the rules and
styles you use for code generation and/or reverse engineering.

C++Image � text A C++ code segment that represents the prototype of the operation. This
image is derived from the operation name and the operation parameters.
Although the C++Image is semantically consistent with your actual code,
it may differ in terms of format, depending on the rules and styles you
use for code generation and/or reverse engineering.

Concurrency � text Denotes the semantics of the operation in the presence of multiple
threads of control. Returns Sequential, Guarded, or Synchronous,
depending on the state of the Concurrency radio control in the More
dialog of the operation specification.

Exceptions � text Textual list of the exceptions that can be raised by the operation. The
Exceptions text field appears in the More dialog of the operation
specification.

IsAbstract � text

IsQuery � text

IsVirtual � text
238 Using Rational SoDA for Word

Relationships specific to Operation

PostConditions � text Text describing the post-conditions of the operation. The PostText is that
text which appears in the Dynamic Semantics field of the operation
specification when the Post radio button is selected.

PreConditions � text Text describing the preconditions of the operation. The PreText is that
text which appears in the Dynamic Semantics field of the operation
specification when the Pre radio button is selected.

Protocol � text The Protocol field lists a set of operations that a client may perform on an
object and the legal orderings in which they may be invoked. The
protocol of an operation has no semantic impact. The Protocol text field
appears in the More dialog of the operation specification.

Qualification � text Identifies language-specific features that allow you to qualify the method.
The Qualification text field appears in the More dialog of the operation
specification.

ReturnClass � text For operations that are functions, refers to the class that is returned by
the function. The ReturnClass text field appears in the Return Class field
on the operation specification.

Semantics � text Text describing the action of the main operation. The SemanticsText is
that text which appears in the Dynamic Semantics field of the operation
specification when the Semantics radio button is selected.

Size � text Text describing the size of the class.

Time � text A statement about the relative or absolute time required to complete an
operation. The Time text field appears in the More dialog of the operation
specification.

UMLImage � text The image of the operation and parameters using UML standard
notation.

Visibility � text

Name - Kind Class

Parameters - n Parameters

ParentClassifier - 1 Classifier
Rational SoDA for Word Domains 239

Rose RealTime Package Class
Packages serve to partition the logical model of a system. They are clusters of highly
related classes that are themselves cohesive, but are loosely coupled relative to other
such clusters. You can use packages to group classes and other packages. Rational Rose
RealTime stores data describing the package in a package specification.

Note: When you create an OPEN command directly to a package, be sure to specify the
name of the .mdl file and the name of the package, even if the package is contained in a
separate .cat file.

Class Hierarchy: Element>ModelElement>Package

Attributes specific to Package

Relationships specific to Package

Name � Kind Description

HasAssignedComponentPackage � text True if the package has a subsystem associated with it, otherwise
False.

IsGlobal � text

IsRootPackage � text

IsUseCasePackage � text True if the package is a descendent of the Use Case View package,
otherwise False.

Name � Kind Class Description

AllAssociations � n Association All associations that are defined in
this package, or in any nested
packages.

AllClasses � n Class All classes that are defined in this
package, or in any nested packages.

AllUseCases � n UseCase All use cases that are defined in this
package, or in any nested packages.

AssignedComponentPackage � 1 ComponentPackage

Associations � n Association

Capsules � n Capsule

ClassDiagrams � n ClassDiagram All class diagrams that are immediate
members of this package.
240 Using Rational SoDA for Word

Rose RealTime PackageDependency Class
Class Hierarchy: Element>ModelElement>Relationship>PackageDependency

Attributes specific to PackageDependency
None

Classes - n Class All classes that are immediate
members of this package. All
member classes are returned,
regardless of whether they appear on
any diagrams.

Collaborations � n Collaboration

Imports � n Package All packages that are imported by this
package. Does not include indirect
dependencies. For example if A
imports B and B imports C, A does
not directly import C.

PackageDependencies LogicalPackageDependencies

MainDiagram - 1 ClassDiagram The diagram specifically called
�Main�.

NestedSubPackages � n Package All packages that are descendents of
this package.

ParentPackage - 1 Package The enclosing package. This
relationship will result in an error if
applied to the TopLevelCategory.

Protocols � n Protocol

Referencers � n Package All packages that import this
package. Does not include indirect
referencers.

SubPackages � n Package All packages that are immediate
children of this package.

UseCases - n UseCase
Rational SoDA for Word Domains 241

Relationships specific to PackageDependency

Rose RealTime Parameter Class
Formal parameter of an operation, instantiated class, or instantiated class utility.

Class Hierarchy: Element>ModelElement>Parameter

Attributes specific to Parameter

Relationships specific to Parameter
None

Rose RealTime ParameterizedClass Class
A parameterized class is a template for creating any number of instantiated classes that
follow its format. A parameterized class declares formal parameters, which can be
classes, objects, or operations.

Class Hierarchy: Element>ModelElement>Classifier>Class>ParameterizedClass

Attributes specific to ParameterizedClass
None

Relationships specific to ParameterizedClass

Name - Kind Class

From - 1 Package

To - 1 Package

Name � Kind Description

InitValue � text The initial value of the parameter

IsConst � text True if the parameter is constant; otherwise False

Type � text The type of the parameter.

Name - Kind Class Description

FormalArguments - n Parameter Formal, generic parameters declared by the parameterized
class. The parameters appear in the Parameters list box in the
More dialog of the class specification.
242 Using Rational SoDA for Word

Rose RealTime ParameterizedClassUtility Class
A parameterized class utility is a set of operations or functions that are not associated
with a higher level class (free subprograms) and are defined in terms of formal
parameters. Parameterized class utilities are used as templates for creating
instantiated class utilities.

Class Hierarchy:
Element>ModelElement>Classifier>Class>ParameterizedClassUtility

Attributes specific to ParameterizedClassUtility
None

Relationships specific to ParameterizedClassUtility

Rose RealTime Port Class
Class Hierarchy: Element>ModelElement>ClassifierRole>Port

Attributes specific to Port

Relationships specific to Port

Name - Kind Class Description

FormalArguments - n Parameter Formal, generic parameters declared by the parameterized
class utility. The parameters appear in the Parameters list box
in the More dialog of the class specification.

Name - Kind

Cardinality - text

Genericity - text

IsConjugated - text

IsEndPort - text

IsNotified - text

IsWired - text

RegistrationMode - text

RegistrationString - text

Visibility - text

Name - Kind Class

Protocol - 1 Protocol
Rational SoDA for Word Domains 243

Rose RealTime PortRole Class
Class Hierarchy: Element>ModelElement>PortRole

Attributes specific to PortRole
None

Relationships specific to PortRole

Rose RealTime Processor Class
A processor is a hardware component capable of executing programs.

Class Hierarchy: Element>ModelElement>Processor

Attributes specific to Processor

Relationships specific to Processor

Rose RealTime Property Class
A code-generation property associated with the model, a package, a subsystem, a class,
an association, a relationship, an attribute, a module, or an operation.

Class Hierarchy: Property

Name - Kind Class

ParentCapsuleRole - 1 CapsuleRole

Port - 1 Port

Name � Kind

Address � text

CPU � text

OS � text

ServerAddress � text

UserScriptDirectory � text

Name - Kind Class

ComponentInstances - n ComponenetInstances

ConnectedDevices - n Device

ConnectedProcessors - n Processor
244 Using Rational SoDA for Word

Attributes specific to Property

Relationships specific to Property
None

Rose RealTime Protocol Class
Class Hierarchy: Element>ModelElement>Classifier>Protocol

Attributes specific to Protocol

Relationships specific to Protocol

Rose RealTime RealizeRelationship
A realize relationship between a logical class and a component class shows that the
component class realizes the operations defined by the logical class.

Class Hierarchy: Element>ModelElement>Relationship>RealizeRelationship

Attributes specific to RealizeRelationship
None

Name � Kind Description

Name � text The name of the property.

PropertyType � text

ToolName � text The name of the tool, or tab, for the property, such as �cg� or �DDL�.

Type � text

Value � text The string equivalent of the value associated with the property.

None

Name - Kind Class

InSignals - n Signal

Interactions - n Interaction

OutSignals - n Signal
Rational SoDA for Word Domains 245

Relationships specific to RealizeRelationship

Rose RealTime Relationship Class
A semantic connection between two classes. Rational Rose RealTime stores relationship
information in a relationship specification.

Class Hierarchy: Element>ModelElement>Relationship

Subclasses of Relationship Class:

UsesRelationship, RealizeRelationship, InstantiateRelationship, Generalization,
PackageDependency, ComponentDependency, ComponentAggregation, AssociationEnd.

Attributes specific to Relationship

Relationships specific to Relationship

Rose RealTime ReplyAction Class
Class Hierarchy: Element>ModelElement>Action>ResponseAction>ReplyAction

Name - Kind Class

FromCapsule - 1 Class

FromClass - 1 Class

FromProtocol - 1 Class

ToClass - 1 Class

ToUseCase - 1 Class

Name � Kind Description

Kind � text Kind of the relationship, which will be one of: AggregateRole, AssociationRole,
HasRelationship, InheritsRelationship or UsesRelationship.

ToName � text

Name � Kind Class Description

From - 1 ModelElement The client class. For example, if A Has a B, A is the client, or
From class.

To - 1 ModelElement The supplier class. For example, if A Has a B, B is the supplier,
or To class.
246 Using Rational SoDA for Word

Attributes specific to ReplyAction

Relationships specific to ReplyAction
None

Rose RealTime RequestAction Class
Class Hierarchy: Element>ModelElement>Action>RequestAction

Subclasses of RequestAction Class:

CallAction Class, SendAction Class.

Attributes specific to RequestAction

Relationships specific to RequestAction

Rose RealTime ResponseAction Class
Class Hierarchy: Element>ModelElement>Action>ResponseAction

Subclasses of ResponseAction Class:

ReturnAction Class, ReplyAction Class.

Attributes specific to ResponseAction
None

Relationships specific to ResponseAction

Name - Kind

Data - text

Signal - text

Name - Kind

Mode - text

Name - Kind Class

Return - 1 ResponseAction

Name - Kind Class

Request - 1 RequestAction
Rational SoDA for Word Domains 247

Rose RealTime ReturnAction Class
Class Hierarchy: Element>ModelElement>Action>RepsonseAction>ReturnAction

Attributes specific to ReturnAction
None

Relationships specific to ReturnAction
None

Rose RealTime SendAction Class
Class Hierarchy: Element>ModelElement>Action>RequestAction>CallAction

Attributes specific to SendAction

Relationships specific to SendAction
None

Rose RealTime SequenceDiagram Class
Class Hierarchy: Element>Diagram>SequenceDiagram

Attributes specific to SequenceDiagram
None

Relationships specific to SequenceDiagram
None

Rose RealTime Signal Class
Class Hierarchy: Element>ModelElement>Signal

Name - Kind

DeliveryTime - text

Priority - text

ReceiverPort - text

SenderPort - text

Signal - text
248 Using Rational SoDA for Word

Attributes specific to Signal

Relationships specific to Signal

Rose RealTime State Class
The state of an object represents the cumulative history of its behavior. State
encompasses all of the object�s static properties and the current values of each property.

Class Hierarchy: Element>ModelElement>StateVertex>State

Attributes specific to State
None

Relationships specific to State

Rose RealTime StateDiagram Class
Depicts significant event-ordered behavior of a particular class. Each class may have
one state diagram to describe its behavior.

Class Hierarchy: Element>Diagram>StateDiagram

Attributes specific to StateDiagram

Name � Kind

DataClassName � text

Name - Kind Class

DataClass - 1 Class

ParentProtocol - 1 Protocol

Name � Kind Class Description

EntryAction � 1 UniterpretedAction

ExitAction - 1 UninterpretedAction

States - n StateVertex

SubDiagram - 1 StateDiagram The subdiagram associated with a CompositeState
(alias State)

Transitions - n Transition The transitions that exit from this state.

Name - Kind Description

HasStateMachine - text True if the diagram includes a state machine.
Rational SoDA for Word Domains 249

Relationships specific to StateDiagram

Rose RealTime StateMachine Class
Defines event-ordered behavior of a class.

Class Hierarchy: Element>StateMachine

Attributes specific to StateMachine Class
None

Relationships specific to StateMachine Class

Rose RealTime StateVertex Class
Class Hierarchy: Element>ModelElement>StateVertex

Subclasses of StateVertex Class:

State, InitialPoint, JunctionPoint, ChoicePoint, FinalState.

Attributes specific to StateVertex

Relationships specific to StateVertex

Name - Kind Class Description

StateMachine - 1 StateMachine The top-level state machine associated with this
diagram.

Name - Kind Class Description

AllStates - n StateVertex All states that are part of this state machine

ParentClassifier � 1 Classifier

StateDiagram - 1 StateDiagram The (first) state diagram associated with this state
machine.

Top - 1 CompositeSite

Name � Kind

StateKind � text

Name - Kind Class

IncomingTransitions - n Transition
250 Using Rational SoDA for Word

Rose RealTime String Class
The Rose RealTime String class is used to store the names of external documents.

Class Hierarchy: String

It has one attribute, Value - text.

For more information on including external document contents in your SoDA document
or report, see �How to Display the Contents of Files Referenced by ExternalDocs� on
page 212.

Rose RealTime TerminateAction Class
Class Hierarchy: Element>ModelElement>Action>TerminateAction

Attributes specific to TerminateAction
None

Relationships specific to TerminateAction
None

Rose RealTime Transition Class
Class Hierarchy: Element>ModelElement>Transition

Attributes specific to Transition

Relationships specific to Transition

OutgoingTransitions - n Transition

ParentState - 1 CompositeState

ParentStateMachine - 1 StateMachine

Name � Kind

IsInternal � text

SourceRegion � text

Name - Kind Class

Action - 1 UninterpretedAction

ParentState - 1 CompositeState

ParentStateMachine - 1 StateMachine
Rational SoDA for Word Domains 251

Rose RealTime Trigger Class
Class Hierarchy: Element>ModelElement>Trigger

Attributes specific to Trigger

Relationships specific to Trigger

Rose RealTime UninterpretedAction Class
Class Hierarchy: Element>ModelElement>Action>UninterpretedAction

Attributes specific to UninterpretedAction

Relationships specific to UninterpretedAction
None

Rose RealTime UseCase Class
A use case is a sequence of transactions performed by a system in response to a
triggering event initiated by an actor to the system. A full use case should provide a
measurable value to an actor when the actor is performing a certain task. A use case
contains all the events that can occur between an actor-use case pair, not necessarily

Source - 1 StateVertex

Target - 1 StateVertex

Triggers - n EventGuard

Name - Kind

Guard - text

Name - Kind Class

ParentTransition - 1 Transition

Ports - n Port

Signals - n Signal

Name � Kind

Code � text

Effect � text
252 Using Rational SoDA for Word

the ones that will occur in any particular scenario. A use case contains a set of scenarios
that explain various sequences of interaction within the transaction.

Class Hierarchy: Element>ModelElement>Classifier>Class>UseCase

Attributes specific to UseCase

Relationships specific to UseCase

Rose RealTime UsesRelationship Class
Indicates that the client class depends on the supplier class to provide certain services,
such as:

! The client class accesses a value (constant or variable) defined in the supplier class
! Operations of the client class invoke operations of the supplier class
! Operations of the client class have signatures whose return class or arguments are

instances of the supplier class

Class Hierarchy: Element>ModelElement>Relationship>UsesRelationship

Attributes specific to UsesRelationship

Name � Kind Description

Rank � text The rank of the use case.

Name � Kind Class Description

ClassDiagrams � n ClassDiagram The class diagrams included in this use case.

SuperUseCases � n UseCase The use cases that this use case inherits from
directly.

UseCaseDiagrams � n ClassDiagram The use-case diagrams associated with this use
case.

Name � Kind Description

FromCardinality � text

InvolvesFriendship � text Indicates whether the supplier class grants rights to the client
class to access its non-public parts. Returns True, if the
Friendship required check box is checked on the relationship
specification. Otherwise, returns False.

ToCardinality � text
Rational SoDA for Word Domains 253

Relationships specific to UsesRelationship

Name - Kind Class

From � 1 Classifier

To - 1 Classifier
254 Using Rational SoDA for Word

TeamTest Domain

TeamTest Domain Classes

TeamTest Project Class
A project is a collection of data, including test assets, defects and requirements, that can
facilitate the testing of one or more software components. Projects are managed
primarily by the Rational Administrator.

Class Hierarchy: Project

Attributes available for Project

Relationships available for Project

Name - Kind Description

ClearQuestDatabaseName The name of the associated ClearQuest database

Directory - text The directory that contains the project

Name - text The name of the project

Path - text The full path of the project

RequisiteDBPath - text The full path of the associated RequisitePro project

Name - Kind Class Description

Builds - n Build The builds defined in the project.

Computers - n Computer The computers defined in the project

Iterations - n Iteration

Requirements - n Requirement

Schedules - n Schedule The schedules created in the project

Scripts - n Script All scripts included in the project

Sessions - n Session

TestDocuments - n TestDocument The test documents associated with the project

TestPlans - n TestPlan

Users - n User
Rational SoDA for Word Domains 255

TeamTest Build Class
A build is a version of the application-under-test. Typically, engineers add new features
or enhancements to each incremental build. You use Rational TestManager to manage
builds.

Class Hierarchy: Build

Attributes available for Build

Relationships available for Build

TeamTest Computer Class
The computer where the test cases will be run.

Class Hierarchy: Computer

Name - Kind Description

CreatedBy - text

CreationDate - text

Description - text The description of the build (from the General tab)

LastModifiedBy - text

ModificationDate - text

Name - text The name of the build (from the General tab)

Notes - text Related notes for the build (from the Specifications tab)

Owner - text The owner of the build (from the General tab)

State - text The state of the build (from the General tab)

Status - text

UID - text

Name - Kind Class Description

Creator - 1 User The user that created the build.

LogFolders - n LogFolder The log folders that are included with this build.

Owner - 1 User

ScriptsUsed - n Script
256 Using Rational SoDA for Word

Attributes available for Computer

Relationships available for Computer

TeamTest ConfiguredTestCase Class
Class Hierarchy: ConfiguredTestCase

Attributes available for ConfiguredTestCase

Name - Kind Description

Description - text A description of the computer

IsClient � text

IsGUIAgent � text

IsServer - text

IsVUAgent - text

Name - text The name of the computer

NetworkName - text The network name of the computer

OperatingSystem - text The operating system of the computer

Name - Kind Class Description

Ports - n Port The user that created the build.

Name - Kind Description

AcceptanceCriteria - text The expected results or performance characteristics that define
whether or not the configured test case passed or failed. For
example: The response time range should be between 0.5 and 2.0
seconds for pass.

Configured - text

CreatedBy - text

CreationDate - text

Custom1 - text Used to add a custom user-definable value

Custom2 - text Used to add a custom user-definable value

Custom3 - text Used to add a custom user-definable value

Description - text

ExternalDocuments - text A list of external documents associated with the configured test
case
Rational SoDA for Word Domains 257

Relationships available for ConfiguredTestCase

TeamTest Event Class
An event is an object in a schedule upon which another object is dependent.

Class Hierarchy: Event

Attributes available for Event

LastModifiedBy - text

ModificationDate - text

Name - text

Owner - text

Postconditions - text Any cleanup steps that must be performed after the configured test
case is run to bring the system back to a known state. For example,
after you login and successfully verify the test case, you need to
logout (or bring the system back into a known state for the tests that
follow).

Preconditions - text Any setup dependency that is required for the configured test case
to run. For example: You must have the proper user ID login
available in the system and the system must be in a logged out
state.

Purpose - text The stated purpose for the test

Suspect - text

UID - text

Name - Kind Class Description

Iterations - n Iteration

TestInputs - n TestInput

Name - Kind Description

ActualResultsFile - text The location of the actual results

AdditionalInformation - text Any additional information about the result (from the Result tab)

AgentLogFile - text The location of the log on the agent machine

BaselineResultsFile - text The location of the baseline results

ComputerName - text The name of the computer the script was run on (from the
Configuration tab)
258 Using Rational SoDA for Word

Relationships available for Event

TeamTest Group Class
A group is a collection of users that execute similar tasks.

ConfigurationSettingCount - text The number of configuration settings

DisplayLevel - text

EndDateTime - text The time the event ended

EventType - text

FailureDescription - text The failure description (from the Result tab)

FailureReason - text The failure reason of the even (from the Result tab)

Index - text

Output - text

ParentLogFilename - text The name of the parent log

Result - text The result of the event (from the Result tab)

ScriptLineNumber - text The script line number (from the General tab)

StartDateTime - text The start date and time (from the General tab)

TimerName - text

UAWResponse - text

UserErrorFile - text

UserLogFile - text

UserOutputFile - text

UserType - text

VPName - text The name of the verificaiton point

VPType - text The type of the verification point

VPTypeName - text

Name - Kind Class Description

ConfigurationLogEvent - 1 Event The associated configuration event

Schedule - 1 Schedule The associated schedule, if any

Script - 1 Script The associated script, if any

User - 1 User The creator of the event
Rational SoDA for Word Domains 259

Class Hierarchy: Group

Attributes available for Group

Relationships available for Group
None

TeamTest Iteration Class
Class Hierarchy: Iteration

Attributes available for Iteration

Relationships available for Iteration
None

TeamTest Log Class
A log is a file that contains the record of events that occur while playing back a script or
running a schedule. A log contains the results of all verification points executed as well
as performance data.

Class Hierarchy: Log

Name - Kind Description

Description - text The description of the group

Name - text The name of the group

Name - Kind Description

CompletionDate - text Scheduled completion date

CreatedBy - text

CreationDate - text

Description - text The description of the iteration

ExpectedCompletionDate - text

LastModifiedBy - text

ModificationDate - text

Name - text The name of the iteration

Owner - text

UID - text
260 Using Rational SoDA for Word

Attributes available for Log

Relationships available for Log

TeamTest LogEvent Class
Class Hierarchy: LogEvent

Name - Kind Description

AgentLogFilesPath - text The location of log files on the agent computer

CreatedBy - text

CreationDate - text The date the log was created

Description - text A descripton of the log

LastModifiedBy - text The ID of the person who last modified the log

LogFileListPath - text The location of the log file list

MasterLogFilePath - text The location of the log files on the master computer

ModificationDate - text The date the log was last modified

Name - text The name of the log

Owner - text

PerformanceDataPath - text The location of the performance data

UAWPath - text The location of unexpected active window data

UID - text

UserLogFilePath - text The location of user data

VPPath - text The location of verification point data

Name - Kind Class Description

Creator - 1 User The user that created this log

DefectIDs - n Variant

Events - n Event The events contained in this log

FirstEvent - 1 LogEvent

FirstRootEvent - 1 LogEvent

LogEvents - n Event

TestCaseResults - n TestCaseResult
Rational SoDA for Word Domains 261

Attributes available for LogEvent

Relationships available for LogEvent

TeamTest LogFolder Class
A log folder is a directory that contains test logs.

Class Hierarchy: LogFolder

Attributes available for LogFolder

Name - Kind Description

Category - text

EndDate - text

FailureDesc - text

FailureReason - text

HasChildren - text

StartDate - text

Type - text

Name - Kind Class Description

FirstChild - 1 LogEvent

LastChild - 1 LogEvent

Next - 1 LogEvent

Parent - 1 LogEvent

PreviousSibling - 1 LogEvent

Name - Kind Description

CreationDate - text The date the folder was created

Description - text A description of the folder

LastModifiedBy - text The ID of the person who last modified the folder

Name - text The name of the log folder
262 Using Rational SoDA for Word

Relationships available for LogFolder

TeamTest Name Class
Class Hierarchy: Name

Attributes available for Name

Relationships available for Name
None

TeamTest Port Class
Class Hierarchy: Port

Attributes available for Port

Relationships available for Port
None

TeamTest Requirement Class
Class Hierarchy: Requirement

Attributes available for Requirement

Name - Kind Class Description

Creator - 1 User The user that created the log folder

Logs - n Log The logs contained in this folder

SubFolders - n LogFolder

Name - Kind
Value - text

Name - Kind Description
Number - text The number of the port

Name - text The name of the port

Name - Kind
Rational SoDA for Word Domains 263

Relationships available for Requirement

TeamTest ReqtAttribute Class
Class Hierarchy: ReqtAttribute

Attributes available for ReqtAttribute

Relationships available for ReqtAttribute
None

TeamTest Schedule Class
A schedule specifies how LoadTest should perform tests.

Class Hierarchy: Schedule

FullTag - text

Text - text

Type - text

VersionDateTime - text

VersionLabel - text

VersionNumber - text

VersionReason - text

VersionUser - text

Name - Kind Class
Attributes - n Attribute

Children - n Requirement

Scripts - n Script

Schedules - n Schedule

Name - Kind

Name - text

Value - text
264 Using Rational SoDA for Word

Attributes available for Schedule

Relationships available for Schedule

TeamTest Script Class
A script is a file of SQABasic or VU commands.

Class Hierarchy: Script

Attributes available for Script

Name - Kind Description

Custom1 - text The first custom field for the schedule

Custom2 - text The second custom field for the schedule

Custom3 - text The third custom field for the schedule

Description - text The description of the schedule

Developed - text True if the schedule was developed

Name - text The name of the schedule

Notes - text Any notes associated with the schedule

RequirementDBKey - text The ID of the associated RequisitePro requirement

SpecificationFilePath - text The location of the specification file

Type - text The type of the schedule

Name - Kind Class Description

Creator - 1 User The user who created this schedule

Owner - 1 User The user who owns this schedule

Name - Kind Description

BinaryFilePath - text The location of the binary file

CreatedBy - text

CreationDate - text

Custom1 - text The value of the Custom 1 field (from the Custom tab)

Custom2 - text The value of the Custom 2 field (from the Custom tab)

Custom3 - text The value of the Custom 3 field (from the Custom tab)

Description - text The description of the script (from the General tab)
Rational SoDA for Word Domains 265

Relationships available for Script

TeamTest Session Class
Class Hierarchy: Session

Attributes available for Session

DLLPath - text The location of the DLL

Environment - text The operating environment for the script (from the General tab)

FilePath - text The location of the script

IncludePath - text The location of included files

IsDeveloped - text Yes if developed; otherwise No (from the General tab)

LastModifiedPath - text

LLSPath - text

ModificationDate - text

Name - text The name of the script (from the General tab)

Notes - text Related notes for the script (from the Specifications tab)

Purpose - text The purpose of the script (from the General tab)

ScriptType - text

SpecificationFilePath - text The path to the specification file (from the Specifications tab)

SpecFilePath - text

Type - text The type of the script, GUI or VirtualUser (from the General tab)

VPPath - text The location of the verification points

Name - Kind Class Description

Creator - 1 User The user that created the script

Defines - n Name

Libraries - n Name

Owner - 1 User The owner of the script

Session - 1 Session

VerificationPoints -
n

VerificationPoint The verification points included in the script

Name - Kind Description
266 Using Rational SoDA for Word

Relationships available for Session

TeamTest TestCase Class
Class Hierarchy: TestCase

Attributes available for TestCase

CreatedBy - text

CreationDate - text

Custom1 - text

Custom2 - text

Custom3 - text

Description - text

LastModifiedBy - text

ModificationDate - text

Name - text

Owner - text

UID - text

Name - Kind Class Description

Scripts - n Script

Name - Kind Description
AcceptanceCriteria - text

CreatedBy - text

CreationDate - text

Custom1 - text

Custom2 - text

Custom3 - text

Description - text

ExternalDocuments - text

LastModifiedBy - text

ModificationDate - text

Name - text

Owner - text
Rational SoDA for Word Domains 267

Relationships available for TestCase

TeamTest TestCaseFolder Class
Class Hierarchy: TestCaseFolder

Attributes available for TestCaseFolder

Relationships available for TestCaseFolder

Postconditions - text

Preconditions - text

Purpose - text

Suspect - text

UID - text

Name - Kind Class Description

ConfiguredTest
Cases - n

ConfiguredTest
Case

Iterations - n Iteration

TestInputs - n TestInputs

Name - Kind Description
CreatedBy - text

CreationDate - text

Description - text

LastModifiedBy - text

ModificationDate - text

Name - text

Owner - text

UID - text

Name - Kind Class Description

Iterations - n Iteration

TestCaseFolders - n TestCaseFolder

TestCases - n TestCase
268 Using Rational SoDA for Word

TeamTest TestCaseResult Class
Class Hierarchy: TestCaseResult

Attributes available for TestCaseResult

Relationships available for TestCaseResult

TeamTest TestDocument Class
A test document is a test plan, project schedule, resource allocation, or any other
documents that are important to your project.

Class Hierarchy: TestDocument

Attributes available for TestDocument

Relationships available for TestDocument

TeamTest TestInput Class
Class Hierarchy: TestInput

Name - Kind Description
IsPromoted - text

Name - text

Notes - text

Name - Kind Class Description

TestCase - 1 TestCase

LogEvent - 1 LogEvent

Name - Kind Description

Description - text The description of the test document

DocumentPath - text The location of the test document

Name - text The name of the test document

Name - Kind Class Description

Creator - 1 User The user that created the document
Rational SoDA for Word Domains 269

Attributes available for TestInput

Relationships available for TestInput
None

TeamTest TestPlan Class
Class Hierarchy: TestPlan

Attributes available for TestPlan

Relationships available for TestPlan

Name - Kind Description
IsContainer - text

IsFolder - text

Name - text

NeedsValidation - text

SubType - text

Name - Kind Description
CreatedBy - text

CreationDate - text

Description - text

LastModifiedBy - text

ModificationDate - text

Name - text

Owner - text

UID - text

Name - Kind Class Description

Iterations - n Iteration

TestCaseFolders - n TestCaseFolder
270 Using Rational SoDA for Word

TeamTest User Class
A user is a person who can log in to the TeamTest environment.

Class Hierarchy: User

Attributes available for User

Relationships available for User
None

TeamTest Variant Class
Class Hierarchy: Variant

Attributes available for Variant

Relationships available for Variant
None

TeamTest VerificationPoint Class
A verification point is a point in an SQABasic that confirms the state of one or more
objects.

Class Hierarchy: VerificationPoint

Name - Kind Description

Company - text The company this user works for

Department - text The department this user works in

EmailAddress - text The e-mail address of this user

FirstName - text The first name of the user

ID - text

LastName - text The last name of the user

PhoneNumber - text The phone number of the user

Title - text The job title of the user

Name - Kind Description
Value - text
Rational SoDA for Word Domains 271

Attributes available for VerificationPoint

Relationships available for VerificationPoint
None

Name - Kind Description

BaselineFilePath - text The associated baseline verification point

DataType - text

MetadataFilePath - text

Name - text The name of the verification point

Type - text The type of the verification point
272 Using Rational SoDA for Word

Word Domain

The Word domain lets you insert the contents of other Word documents into your SoDA
document.

The Word domain includes the following classes:

Word Document Class

Word Paragraph Class

Word Heading Class

Word Bookmark Class

Word Domain Classes

Word Document Class
This class, a subclass of FileSys File class, represents a Word document.

Attributes specific to Document

Relationships specific to Document

Name (Kind) Description

FormattedText - text The complete contents of the Word document, pasted as
formatted text.

FormattedTextAfterLastBookmark - text The formatted text beginning at the end of the last bookmark and
ending at the end of the document. If no bookmarks are found, the
entire document is returned.

Text - text The complete contents of the Word document, pasted as a string.

Name (Kind) Class Description

Bookmarks (n) Bookmark The bookmarks defined in this document

Headings (n) Heading All headings found in this document

Paragraphs (n) Paragraph All paragraphs, including headings, found in this document.
Rational SoDA for Word Domains 273

Word Paragraph Class
Paragraphs are available only in the Word 97 or Word 2000 version of the Word domain.

Attributes available for Paragraph

Relationships available for Paragraph

Word Heading Class
Headings are paragraphs with a style �Heading1�, �Heading2�, and so on. Headings are
available only in the Word 97 or Word 2000 version of the Word domain.

Attributes available for Heading

Name (Kind) Description

FormattedText - text The complete contents of the Word document, pasted as formatted
text.

Position - text The character position of the first character of the paragraph

Style - text The style of the paragraph, such as �Normal�

Text - text The complete contents of the Word document, pasted as a string.

Name (Kind) Class Description

NextParagraph - 1 Paragraph The next paragraph in the document

ParentHeading - 1 Heading The nearest heading above the current paragraph

PreviousParagraph -
1

Paragraph The previous paragraph in the document

Name (Kind) Description

FormattedText - text The text of the heading, pasted as formatted text.

Label - text The label of the heading, such as �1.1.2�

Position - text The character position of the first character of the paragraph

Style - text The style of the heading, such as �Normal Arial 10"

Text - text The text of the heading, pasted as a string.
274 Using Rational SoDA for Word

Relationships available for Heading

Word Bookmark Class
Bookmarks are available only in the Word 97 or Word 2000 version of the Word domain.

Attributes available for Bookmark

Relationships available for Bookmark

Name (Kind) Class Description

ChildHeadings (n) Heading The headings contained within this heading, one level in

ChildParagraphs (n) Paragraph The paragraphs contained within this heading, including headings

NextHeading - 1 Heading The next heading at the same level

ParentHeading - 1 Heading The parent heading for this heading (one level up)

PreviousHeading - 1 Heading The previous heading at the same level

Name (Kind) Description

EndPosition - text Allows sorting of bookmarks by end position in the document.

FormattedText - text The text of the area defined by the bookmark, pasted as formatted
text.

FormattedTextBefore - text The formatted text that precedes the beginning of the bookmark
and follows the end of the previous bookmark or the beginning of
the document if there is no such bookmark.

Name - text The name of the bookmark.

StartPosition - text Allows sorting of bookmarks by start position in the document.

Text - text The text of the area defined by the bookmark, pasted as a string.

Name (Kind) Class Description

ParentParagraph - 1 Paragraph The paragraph that contains the first character of the bookmark.
Rational SoDA for Word Domains 275

276 Using Rational SoDA for Word

U S I N G R A T I O N A L S O D A F O R W O R D

Index
Index
A
Accessing Project-specific Attributes 161
Adding SoDA Commands 36
Adjust Links Dialog Box 76, 77
Adobe Acrobat Reader

installation 1
Annotations 27, 32, 33
Apex - SoDA Document Directories 117
Apex - SoDA Source Subsystems 118
Apex NT CompositeType Class 100
Apex NT CompUnit Class 101
Apex NT Configuration Class 102
Apex NT Declaration Class 102
Apex NT Domain 100
Apex NT Entry Class 104
Apex NT Exception Class 104
Apex NT File Class 104
Apex NT FunctionBody Class 105
Apex NT FunctionSpec Class 105
Apex NT Object Class 106
Apex NT PackageBody Class 106
Apex NT PackageSpec Class 106
Apex NT Parameter Class 107
Apex NT PrimitiveType Class 107
Apex NT ProtectedType Clas 107
Apex NT SoDA Document Directories 117
Apex NT SoDA Source Subsystems 118
Apex NT Statement Class 108
Apex NT SubprogramBody Class 108
Apex NT SubprogramSpec Class 109
Apex NT Subsystem Class 109
Apex NT Subsystem Directories 116
Apex NT Subsystem Structure 115
Apex NT SubunitBody Class 110
Apex NT Task Class 110
Apex NT TaskType Class 110
Apex NT Templates

Subsystem Structure 115
Apex NT Type Class 111
Apex NT UnitBody Class 111
Apex NT UnitSpec Class 112
Apex NT View Class 112
Apex NT ViewDirectory Class 113
Attribute 27
Attributes

creating new 96

C
Choosing a Domain 33
Choosing a Template 23
ClearCase Activity Class 121
ClearCase Attribute Class 122
ClearCase AttributeType Class 122
ClearCase Branch Class 124
ClearCase BranchType Class 126
ClearCase CheckedOutFile Class 126
ClearCase Domain 120
ClearCase Element Class 127
ClearCase File Class 128
ClearCase HistoryRecord Class 123, 124, 127, 129,

130, 135, 139
ClearCase Hyperlink Class 124, 129, 130, 135, 136,

137, 139
ClearCase HyperlinkType Class 131
ClearCase Label Class 132
ClearCase LabelType Class 132
ClearCase Lock Class 133
ClearCase Name Class 134
ClearCase Pathnames

Accessing Objects 120
ClearCase Region Class 136
ClearCase Trigger Class 137
ClearCase TriggerType Class 138
ClearCase Value Class 140
ClearCase Version Class 140
ClearCase View Class 141
ClearCase VOB Class 141
ClearCase VOBObject Class 143
ClearQuest Attachments Class 146
ClearQuest Database Class 147
ClearQuest Domain 145, 146
ClearQuest Groups Class 148
ClearQuest History Class 148
277

ClearQuest Users Class 149
Commands

Modifying 35
CompositeType Class 100
Creating new attributes 96
Custom installation 1
Customizing a SoDA Template 31

D
Database creation scripts 7
Deleting SoDA Commands 37
DISPLAY Command 44, 45
DISPLAY Command Dialog Box 69
Document 30, 31

definition 29
Domain 27
Domain Aliases 96
Domain Extensions 96

E
Edit Link Dialog Box 75
Errors

license key requests 17
Extending a domain 96

F
File System Directory Class 152
File System DirectoryObject Class 151
File System Domain 151
File System File Class 152
File System FileRecord Class 153
Floating licenses 16

G
Generate Dialog Box 61
Generated Documents 24
Generating reports and documents 29
Getting Started Wizard 52

I
Identify the Dialog Box 63
Information Retrieval 21
Installation

custom 1
Log File 7
shared components 5

startup license key
client 17

Typical 1
Introducing SoDA Commands 29

L
License Key Administrator 2, 4, 17

online help 13
License keys

obtaining 2
permanent 15, 16, 18
startup 3
Term License Agreement 15

License types
floating 16

LIMIT Command 45, 46
LIMIT Command Dialog Box 74, 79

M
Messages

license key requests 17
Modify Commands 35

N
N-ary 27

O
Object 27
Object-Oriented Concepts 28
OMIT 47, 48, 50
Online documentation 1
Online help 13
OPEN Command 39, 40
OTHERWISE 47, 48, 49, 50

P
Permanent license keys 15, 16, 18

obtaining 2
Project-Specific Requirement Classes 170

Q
Quick Start Guide 2
278 Rational Software Installation Guide

R
Rational

License Key Administrator 2, 17
Rational License Key Administrator 13
Rational Licensing Support 11
Rational Software Setup program 1
Relationship 27
REPEAT Command 40, 41, 42, 43, 44
REPEAT Command Dialog Box 71
Report 29, 30, 31

definition 29
Report Generation 22
Requirements

RequisitePro 3
RequisitePro

installation requirements 3
installing 6

RequisitePro Attribute Class 164
RequisitePro Discussion Class 165
RequisitePro Document Class 165
RequisitePro DocumentType Class 166
RequisitePro Domain 161, 164
RequisitePro Project Class 167
RequisitePro Relationship Class 168
RequisitePro Requirement Class 168
RequisitePro RequirementType Class 170
RequisitePro Revision Class 171
RequisitePro Templates 92
RequisitePro User Class 172
RequisitePro UserGroup Class 172
Rose Action Class 175
Rose Activity Class 176
Rose Assocation Class 176
Rose Attribute Class 177
Rose Class Class 178
Rose ClassDiagram Class 181
Rose ClassUtility Class 181
Rose Component (Module) Class 182
Rose ComponentDiagram Class 183
Rose Decision Class 183
Rose DeploymentDiagram Class 184
Rose Device Class 184
Rose Domain 174
Rose HasRelationship Class 185
Rose InheritsRelationship Class 185
Rose InstantiatedClass Class 186
Rose InstantiatedClassUtility Class 186
Rose Interaction Diagram (Scenario) Class 187
Rose MetaClass Class 189
Rose Model Class 189

Rose Node Class 191
Rose Object Class 191
Rose Operation Class 192
Rose Package (ClassCategory) Class 194
Rose Parameter Class 197
Rose ParameterizedClass Class 197
Rose ParameterizedClassUtility Class 198
Rose Process Class 198
Rose Processor Class 199
Rose Property Class 199
Rose RealizeRelationship Class 200
Rose RealTime Assocation Class 213
Rose RealTime Attribute Class 215
Rose RealTime Class Class 216
Rose RealTime ClassDiagram Class 217
Rose RealTime ClassUtility Class 222
Rose RealTime Component (Module) Class 223
Rose RealTime ComponentDiagram Class 225
Rose RealTime DeploymentDiagram Class 228
Rose RealTime Device Class 229
Rose RealTime Domain 212
Rose RealTime Element Class 230
Rose RealTime InstantiatedClassUtility Class 232
Rose RealTime Message Class 234
Rose RealTime MetaClass Class 235
Rose RealTime Model Class 235
Rose RealTime Operation Class 238
Rose Realtime Package (Classifier) Class 218
Rose RealTime Parameter Class 242
Rose RealTime ParameterizedClass Class 242
Rose RealTime ParameterizedClassUtility Class 243
Rose RealTime Processor Class 244
Rose RealTime Property Class 244
Rose RealTime Relationship Class 246
Rose RealTime State Class 249
Rose RealTime StateDiagram Class 248, 249
Rose RealTime StateMachine Class 250
Rose RealTime UsesRelationship Class 253
Rose Relationship Class 200
Rose Role Class 201
Rose State Class 202
Rose StateDiagram Class 204
Rose StateTransition Class 206
Rose String Class 206, 251
Rose Subsystem Class 207
Rose Synchronization Class 208
Rose UseCase Class 208, 252
Rose UseCaseDiagram Class 210
Rose UsesRelationship Class 210
RoseRealTime InstantiatedClass Class 232
RoseRealtime ModelElement Class 237
Index 279

RoseRealtime Package (ClassCategory) Class 240

S
Select Command to Add Dialog Box 65
Shared components

installing 5
SoDA Generator Dialog Box 61
Special LIMIT Commands 47
Starting

Rational programs 2
Starting SoDA 19
Startup license key

client installation 17
Startup License Key Certificate 3
Support

Licensing 11

T
TeamTest Build Class 256
TeamTest Computer Class 256
TeamTest Event Class 258
TeamTest Group Class 259
TeamTest Log Class 260
TeamTest LogFolder Class 262
TeamTest Project Class 255
TeamTest Schedule Class 264
TeamTest Script Class 265
TeamTest Templates 93
TeamTest TestDocument Class 269
TeamTest User Class 271
TeamTest VerificationPoint Class 271
Template selection 23
Template View 56

Adding Values 58
Establishing the Source Kind 57
Other Template View Commands 60

Templates
RequisitePro 92
TeamTest 93

Term License Agreement 15
Testing SoDA Templates 34
Third-party components 5
Typical installation 1, 4

U
Unary 27
UNIX

Using License Server from Windows Client

17

V
Viewing the SoDA Commands 35

W
What Happens During Report and Document

Generation 29
Wizards and Dialog Boxes 51
Word Bookmark Class 275
Word Document Class 273
Word Domain 273
Word Heading Class 274
Word Paragraph Class 274
280 Rational Software Installation Guide

	Using Rational SoDA for Word Version 2001.03.00
	Installing Rational SoDA for Word
	Installation Overview
	Installing Rational Software Products and License Keys
	Installation Quick Start

	Before You Start the SoDA Installation
	Installation Requirements
	Installation Types
	Installing Shared Components

	Installing SoDA for Word with Rational Software Setup
	Typical Installation
	Possible Reboot Required

	Setting the Template Path
	Removing Rational SoDA for Word
	Preparing to Remove SoDA
	To Remove SoDA

	Installation Messages
	Technical Support Information
	Required Information for Technical Support
	Problems with Templates in Dynamic Domains
	Licensing Support

	SoDA License Management
	The Rational Software Licensing Model
	License Types and License Key Types
	Installing a Startup License on a Client System
	To Install a Startup License Key on a Client System

	Configuring Your Client System to Use a Node-Locked License
	Configuring Your Client System to Use a Floating License
	Acquiring a Node-Locked Permanent Key for Your Client System

	Generating Reports and Documents
	Starting SoDA
	New user
	Experienced user

	Understanding SoDA
	SoDA Templates vs. Word Templates
	A SoDA template is a Word document It is a .DOC file that is based on the Word template: soda.dot...
	Information Retrieval
	Document Generation
	Report Generation
	Template Customization

	Generating Web Pages, Reports, and Documents
	Choosing a Template
	Maintaining Generated Documents

	Customizing a Template
	Making Templates Available for Other Users
	Template Customization Concepts
	Customizing a SoDA Template
	SoDA’s Use of Annotations
	Choosing a Domain
	Testing SoDA Templates
	SoDA Commands
	Viewing the SoDA Commands
	Modifying Existing Commands
	Adding SoDA Commands
	Deleting SoDA Commands
	Creating Hyperlinks
	OPEN Command
	REPEAT Command
	DISPLAY Command
	LIMIT Command
	Special LIMIT Commands

	Wizards and Dialog Boxes
	Getting Started Wizard
	Template View
	Template View: Establishing the Source Kind
	Template View: Adding Values
	Template View: Other Template View Commands

	SoDA Generator Dialog Box
	Identify the <Class> Dialog Box
	Select Command to Add Dialog Box
	OPEN Command Dialog Box
	DISPLAY Command Dialog Box
	Text Value Modifiers
	Graphic Value Modifiers

	REPEAT Command Dialog Box
	LIMIT Command Dialog Box
	Edit Link Dialog Box
	Adjust Links Dialog Box
	SoDA Options Dialog Box

	SoDA Template Library
	Apex NT Templates
	ClearCase Templates
	Rose and Rose RealTime Templates
	RequisitePro Templates
	TeamTest Templates

	Rational SoDA for Word Domains
	Overview
	Domain Aliases
	Domain Extensions

	Apex NT Domain
	Apex NT Domain Classes
	Apex NT CompositeType Class
	Apex NT CompUnit Class
	Apex NT Configuration Class
	Apex NT Declaration Class
	Apex NT Entry Class
	Apex NT Exception Class
	Apex NT File Class
	Apex NT FunctionBody Class
	Apex NT FunctionSpec Class
	Apex NT Object Class
	Apex NT PackageBody Class
	Apex NT PackageSpec Class
	Apex NT Parameter Class
	Apex NT PrimitiveType Class
	Apex NT ProtectedType Class
	Apex NT Statement Class
	Apex NT SubprogramBody Class
	Apex NT SubprogramSpec Class
	Apex NT Subsystem Class
	Apex NT SubunitBody Class
	Apex NT Task Class
	Apex NT TaskType Class
	Apex NT Type Class
	Apex NT UnitBody Class
	Apex NT UnitSpec Class
	Apex NT View Class
	Apex NT ViewDirectory Class
	Subsystem Structure for Apex NT Templates

	ClearCase Domain
	Accessing Objects with Pathnames

	ClearCase Domain Classes
	ClearCase Activity Class
	ClearCase Attribute Class
	ClearCase AttributeType Class
	ClearCase Baseline Class
	ClearCase BaselineComparison Class
	ClearCase Branch Class
	ClearCase BranchType Class
	ClearCase CheckedOutFile Class
	ClearCase Component Class
	ClearCase Element Class
	ClearCase File Class
	ClearCase Folder Class.�
	ClearCase HistoryRecord Class
	ClearCase Hyperlink Class
	ClearCase HyperlinkType Class
	ClearCase Label Class
	ClearCase LabelType Class
	ClearCase Lock Class
	ClearCase Name Class
	ClearCase Project Class
	ClearCase ProjectPolicy Class
	ClearCase ProjectVOB Class
	ClearCase Region Class
	ClearCase Stream Class
	ClearCase Trigger Class
	ClearCase TriggerType Class
	ClearCase UCMObject Class
	ClearCase Value Class
	ClearCase Version Class
	ClearCase View Class
	ClearCase VOB Class
	ClearCase VOBObject Class

	ClearQuest Domain
	Regarding Queries
	Filtering Query Results

	ClearQuest Domain Classes
	ClearQuest Attachments Class
	ClearQuest CQDatabase Class
	ClearQuest Groups Class
	ClearQuest History Class
	ClearQuest Users Class

	File System Domain
	File System Domain Classes
	File System DirectoryObject Class
	File System Directory Class
	File System File Class
	File System FileRecord Class

	MSProject Domain
	MSProject Project Class
	MSProject Task Class
	MSProject Resource Class
	MSProject Assignment Class

	RAdmin Domain
	RAdmin RAProject Class
	RAdmin RoseModel Class
	RAdmin RAServerClass

	RequisitePro Domain
	Generating a SoDA Report directly from RequisitePro
	Accessing Project-specific Attributes
	Improving Generation Performance of RequisitePro Templates

	RequisitePro Domain Classes
	RequisitePro AttributeValue Class
	RequisitePro Discussion Class
	RequisitePro Document Class
	RequisitePro DocumentType Class
	RequisitePro Project Class
	RequisitePro Relationship Class
	RequisitePro Requirement Class
	<Project-Specific Type>Requirement Class
	RequisitePro RequirementType Class
	RequisitePro Reply Class
	RequisitePro Revision Class
	RequisitePro User Class
	RequisitePro Group Class

	Rose Domain
	Generating a SoDA Report directly from Rose
	How to Display the Contents of Files Referenced by ExternalDocs

	Rose Domain Classes
	Rose Action Class
	Rose Association Class
	Rose Activity Class
	Rose Attribute Class
	Rose Class Class
	Rose ClassDiagram Class
	Rose ClassUtility Class
	Rose Component Class
	Rose ComponentDiagram Class
	Rose Decision Class
	Rose DeploymentDiagram Class
	Rose Device Class
	Rose HasRelationship Class
	Rose InheritsRelationship Class
	Rose InstantiatedClass Class
	Rose InstantiatedClassUtility Class
	Rose InteractionDiagram Class
	Rose Link Class
	Rose Message Class
	Rose MetaClass Class
	Rose Model Class
	Rose ModuleVisibilityRelationship Class
	Rose Node Class
	Rose Object Class
	Rose Operation Class
	Rose Package Class
	Rose PackageDependency Class
	Rose Parameter Class
	Rose ParameterizedClass Class
	Rose ParameterizedClassUtility Class
	Rose Process Class
	Rose Processor Class
	Rose Property Class
	Rose RealizeRelationship Class
	Rose Relationship Class
	Rose Role Class
	Rose State Class
	Rose StateActivityDiagram Class
	Rose StateDiagram Class
	Rose StateActivityModel Class
	Rose StateTransition Class
	Rose String Class
	Rose Subsystem Class
	Rose Synchronization Class
	Rose UseCase Class
	Rose UsesRelationship Class
	Rose UseCaseDiagram Class

	Rose RealTime Domain
	How to Display the Contents of Files Referenced by ExternalDocs

	Rose RealTime Domain Classes
	Rose RealTime Action Class
	Rose RealTime Association Class
	Rose RealTime AssociationEnd Class
	Rose RealTime AssociationRole Class
	Rose RealTime AssociationEndRole Class
	Rose RealTime Attribute Class
	Rose RealTime Class Class
	Rose RealTime ClassDiagram Class
	Rose RealTime Classifier Class
	Rose RealTime ClassifierRole Class
	Rose RealTime CallAction Class
	Rose RealTime Capsule Class
	Rose RealTime CapsuleRole Class
	Rose RealTime CapsuleStructure Class
	Rose RealTime ChoicePoint Class
	Rose RealTime ClassUtility Class
	Rose RealTime Collaboration Class
	Rose RealTime CollaborationDiagram Class
	Rose RealTime Component Class
	Rose RealTime ComponentAggregation Class
	Rose RealTime ComponentDependency Class
	Rose RealTime ComponentDiagram Class
	Rose RealTime ComponentInstance Class
	Rose RealTime ComponentPackage Class
	Rose RealTime Connector Class
	Rose RealTime Coregion Class
	Rose RealTime CreateAction Class
	Rose RealTime DeploymentDiagram Class
	Rose RealTime DeploymentPackage Class
	Rose RealTime DestroyAction Class
	Rose RealTime Device Class
	Rose RealTime Diagram Class
	Rose RealTime Element Class
	Rose RealTime Environment Class
	Rose RealTime File Class
	Rose RealTime FinalState Class
	Rose RealTime Generalization Class
	Rose RealTime InitialPoint Class
	Rose RealTime InstantiatedClass Class
	Rose RealTime InstantiatedClassUtility Class
	Rose Realtime InstantiateRelationship Class
	Rose RealTime Interaction Class
	Rose RealTime InteractionInstance Class
	Rose RealTime JunctionPoint Class
	Rose RealTime LocalState Class
	Rose RealTime Message Class
	Rose RealTime MetaClass Class
	Rose RealTime Model Class
	Rose RealTime ModelElement Class
	Rose RealTime NoteView Class
	Rose RealTime Operation Class
	Rose RealTime Package Class
	Rose RealTime PackageDependency Class
	Rose RealTime Parameter Class
	Rose RealTime ParameterizedClass Class
	Rose RealTime ParameterizedClassUtility Class
	Rose RealTime Port Class
	Rose RealTime PortRole Class
	Rose RealTime Processor Class
	Rose RealTime Property Class
	Rose RealTime Protocol Class
	Rose RealTime RealizeRelationship
	Rose RealTime Relationship Class
	Rose RealTime ReplyAction Class
	Rose RealTime RequestAction Class
	Rose RealTime ResponseAction Class
	Rose RealTime ReturnAction Class
	Rose RealTime SendAction Class
	Rose RealTime SequenceDiagram Class
	Rose RealTime Signal Class
	Rose RealTime State Class
	Rose RealTime StateDiagram Class
	Rose RealTime StateMachine Class
	Rose RealTime StateVertex Class
	Rose RealTime String Class
	Rose RealTime TerminateAction Class
	Rose RealTime Transition Class
	Rose RealTime Trigger Class
	Rose RealTime UninterpretedAction Class
	Rose RealTime UseCase Class
	Rose RealTime UsesRelationship Class

	TeamTest Domain
	TeamTest Domain Classes
	TeamTest Project Class
	TeamTest Build Class
	TeamTest Computer Class
	TeamTest ConfiguredTestCase Class
	TeamTest Event Class
	TeamTest Group Class
	TeamTest Iteration Class
	TeamTest Log Class
	TeamTest LogEvent Class
	TeamTest LogFolder Class
	Relationships available for LogFolder
	TeamTest Name Class
	TeamTest Port Class
	TeamTest Requirement Class
	TeamTest ReqtAttribute Class
	TeamTest Schedule Class
	TeamTest Script Class
	TeamTest Session Class
	TeamTest TestCase Class
	TeamTest TestCaseFolder Class
	TeamTest TestCaseResult Class
	TeamTest TestDocument Class
	TeamTest TestInput Class
	TeamTest TestPlan Class
	TeamTest User Class
	TeamTest Variant Class
	TeamTest VerificationPoint Class

	Word Domain
	Word Domain Classes
	Word Document Class
	Word Paragraph Class
	Word Heading Class
	Word Bookmark Class

	Index

