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Preface
Using the Rose Extensibility Interface describes the Rational Rose Extensibility Interface
(REI) and provides procedures for:

� Customizing and extending Rose menus

� Customizing and extending Rose using the REI

� Working with the Rose Script Editor, which is the scripting environment for
working with the REI

Audience

This manual is intended for scripters and add-in developers who want to customize
and extend Rose. It assumes that you are familiar with the Windows 95, Windows 98,
Windows NT 4.0, or Windows 2000 operating environment; object oriented design
concepts; and how to use Rose.

Other Resources

� Online Help is available for the Rose Extensibility Interface.

From Rose, click Help > Contents and Index > Contents > Rational Rose Extensibility
Interface.

� All manuals are available online, either in HTML or PDF format. The online
manuals are on the Rational Solutions for Windows Online Documentation CD.

� To purchase additional printed documentation for Rational products, see
http://www.rational.com/documentation.

� For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.
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Related Documentation

For additional resources, refer to theUsing Rose guide and online Help. If you are new
to Rose, visual modeling, or the Unified Modeling Language (UML), you may also
want to read the book, Visual Modeling with Rational Rose and UML.

File Names

Where file names appear in examples, Windows syntax is depicted. To obtain a legal
UNIX file name, eliminate any drive prefix and change the backslashes to slashes:

c:\project\username

becomes

/project/username

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.
xvi Preface



Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

� Your name, telephone number, and company name
� Your computer’s make and model
� Your operating system and version number
� Product release number and serial number
� Your case ID number (if you are following up on a previously-reported problem)

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4545-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
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1Basic Extensibility
Concepts
Contents

This chapter is organized as follows:

� Rational Rose Extensibility on page 1
� The REI Model and Rose Extensibility on page 1
� Rose Scripting on page 3
� Rose Automation on page 4
� Rose Add-In Manager on page 4
� Default Properties and Property Sets on page 5
� Rose Extensibility Type Libraries on page 5

Rational Rose Extensibility

Rational Rose provides several ways for you to extend and customize its capabilities
to meet your specific software development needs. You can:

� Customize Rose menus.

� Automate manual Rose functions with Rose Scripts (for example, diagram and
class creation, model updates, and document generation).

� Execute Rose functions from within another application by using the Rose
Automation object (RoseApp).

� Access Rose classes, properties, and methods right within your software
development environment by including the Rose Extensibility Type Library in
your environment.

� Activate Rose add-ins using the Add-In Manager.

The REI Model and Rose Extensibility

The purpose of Rose is to enable component-based software development. As you
would expect, the Rose application is itself component based, and is defined in the
Rose Extensibility Interface (REI) Model.
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The REI Model is essentially a metamodel of a Rose model, exposing the packages,
classes, properties, and methods that define and control the Rose application and all
of its functions.

Figure 1 on page 2 shows the logical packages that comprise the Rose Extensibility
Interface Model. Refer to the online Help for details on the classes contained in each
package, and the properties and methods defined for each class.

Figure 1 Rose Extensibility Model — Logical View

You communicate with the Rose Extensibility Interface through Rose Scripts or
through Rose Automation. In either case, you will use the REI calls defined in the
Rose Extensibility Model and described in the online Help.

Figure 2 on page 3 shows the components of Rose and the Rose Extensibility Interface,
and illustrates the relationships between them. These components are:

� Rose Application

The Rose Extensibility objects that interface to Rose’s application functionality.

� Rose Extensibility Interface

This is the common set of interfaces used by Rose Script and Rose Automation to
access Rose.
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� Rose Script

The set of Rose Script objects that allow Rose Scripts to automate Rose
functionality.

� Rose Automation

The set of Rose Automation objects that allow Rose to function as an OLE
automation controller or server.

� Diagrams

The Rose Extensibility objects that interface to Rose’s diagrams and views.

� Model Elements

The Rose Extensibility objects that interface to Rose’s model elements.

Figure 2 Rose Application and Extensibility Components

Rose Scripting

The Rose Scripting language is an extended version of the Summit BasicScript
language. The Rose extensions allow you to automate Rose-specific functions and, in
some cases, perform functions that are not available through the Rose user interface.

The Rose Script Editor runs in the Rose environment and provides access to the
scripting environment. Start the script editor by clicking either Tools > New Script or
Tools > Open Script.
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Rose provides a set of sample scripts that you can use as a base from which to create
your own scripts.

� Check the Scripts folder in your Rose installation directory for the complete list of
available scripts.

� Use the Rose Script Editor (click Tools > Open Script) to view a sample script. If you
want to edit the script, click File > Save Script As to create a copy for your own use,
leaving the sample intact.

Use the online BasicScript and Rose Script Language References for complete script
language information.

Rose Automation

Rose Automation allows you to integrate other applications with Rose in two ways:

� Using Rose as an automation controller, you can call an OLE automation object
from within a Rose script. For example, a Rose script can use OLE automation to
execute functions in applications such as Word and Visual Basic.

� Using Rose as an automation server, you can call its OLE automation object from
within other OLE-compliant applications.

Rose Automation is accessible to automation controller environments, such as Visual
Basic, EXCEL, Summit BasicScript, Softbridge Basic Language, C, C++, and others.

Note: You may need to adapt the syntax listed for each REI property and method to
your particular programming language. If the listed syntax does not meet your needs,
consult your programming environment’s Help, programming language books, and
outside documentation on the subject.

Rose Add-In Manager

The Rose Add-In Manager provides you with the facilities required to install
extensions you create as add-in components in the Rose environment.

In the extensibility environment, you can manipulate add-ins using calls to the
RoseAddInManager object.
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Default Properties and Property Sets

Each Rose model has its own default properties. These default properties are defined
in a property file and are grouped into sets based on:

� Type of model element

Class, component, relation, attributes, operations, and so on; the objects that make
up the model.

� Tool

Corresponds to a tab in the property specification. A tool can be a programming
language tool, such as Java or C++; a database tool, such as Oracle8; a user-defined
add-in to Rose; or some other tool.

� Properties

The actual properties and property values defined in the set; these must be
appropriate to the model element and tool for which they are being defined.

Note: You can define multiple sets of default properties for the same tool and model
element. For example, you might want one set of properties for a class with a
stereotype of Actor and a different set of properties for a class with a stereotype of
Interface. Both of these sets are still considered default properties in that they are
predefined for the model. Defining multiple sets saves you work by minimizing the
need to override properties later.

Rose Extensibility Type Libraries

Loading a type library for Rose automation allows you to use Rose class names to
access the Rose Extensibility Interface from your programming environment.

For example, if you are working in Visual Basic, instead of using the Basic object type
Object, you can use the name of the actual Rose class. You can also check the syntax of
the properties and methods at compile time (early binding) instead of when the code
is executed (late binding).

If you are working in Visual C, you can import RationalRose.tlb into an MFC project.
This generates ColeDispatchDriver subclasses for each REI class, and methods
allowing access to REI properties and methods.

Important: When you specify a Rose class name in an automation environment, you
must add the prefix Rose to the class name, unless the class name itself contains the
word Rose already. (For example, the Rose class, RoseItem, does not require a prefix.)
This prefix prevents class name conflicts across applications.
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For example, in Rose Script, the syntax for declaring a Category variable is:

Dim theCategory As Category

In Rose Automation, the syntax for declaring a Category variable is:

Dim theCategory As RoseCategory

For details on using type libraries in any automation environment, refer to the
documentation for your particular programming environment.
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2Customizing Rational
Rose Menus
Contents

This chapter is organized as follows:

� Extending Rational Rose Menus on page 7
� Customizing Rose Main Menus on page 7
� Customizing Rose Shortcut Menus on page 19

Extending Rational Rose Menus

Using the Rational Rose Extensibility Interface, you may add your own menu options
to one of Rose’s menus (for example, File and Edit). You can also add your own menu
options to the Rose shortcut menu (displayed when you right-click).

This chapter explains how to customize the:

� Rose main menus.
� Rose shortcut menu.

Customizing Rose Main Menus

You can extend or customize Rose menus by updating the Rose menu file, which Rose
reads during startup.

You can extend Rose menus by adding:

� Submenus.

� Menu items that execute any of the following:

❑ Rose primitives

❑ Rose scripts

❑ System commands

❑ External programs
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� Menu separators (lines between menu items, used to group similar menu items).

Note: You can add information to existing menus (for example, File and Edit);
however, you cannot add new menus to the Rose menu bar.

The content of Rose menus is defined in the Rose.mnu file. If you want to customize
Rose menus, you must edit this file.

While you cannot add new menus to the Rose menu bar, you can add commands to
the existing Rose menus.

Use the procedures, commands, and syntax described in this chapter to add Rose
menu commands that:

� Execute a program or shell script.
� Execute a Rose script.
� Load or save controllable units.
� Display a dialog box for user input.
� Change write protection for a controllable unit.
� Execute an interface in a COM server (for example, from your add-in).

Procedure

The following procedure outlines the general steps for customizing Rose menus.

The subsections following the procedure provide information on command syntax,
variables, and modifiers to use as you complete the procedure.

Check the sample menu file at the end of this chapter for a complete example that
illustrates how to put the various menu elements together into a working menu file.

1 Using any text editor, open the Rose.mnu file. (The file resides in the directory
where Rose is installed.)

2 Add entries to Rose.mnu for any or all of the following:

❑ Submenus

❑ Menu options

❑ Menu separators

Note: Pay close attention to the syntax rules that apply to your entries to the Rose
menu file. For example, the syntax of the menu specifications includes opening
and closing braces. You must include these braces in your specifications or they
will not work properly. For complete details, see Syntax Rules for Rose Menu File
Entries on page 14.

3 If the menu item executes a script, add or edit Rose’s virtual path for scripts, unless
one is already defined.
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4 Save the file.

❑ To create another menu file while leaving the Rose.mnu file intact, save the file
under a different name. (Recommended)

❑ To overwrite the file, save it as Rose.mnu.

Adding Entries to a Rose Menu File

Using any text editor and the following information, you can add menu entries to the
Rose menu file. The entries will appear on the Rose menu in the order in which you
specify them.

As you add menu entries, you will specify:

� Keywords that determine what to add to the menu (a submenu, a menu option, a
separator).

� Menu actions that specify what action to take when the menu item is selected.

� Arguments that further define a menu action, or that determine the conditions
under which a menu command is enabled or disabled in Rose.

Remember to follow all of the syntax rules as described in Syntax Rules for Rose Menu
File Entries on page 14. For example, the syntax of the menu specifications includes
opening and closing braces. You must include these braces in your specifications or
they will not work properly. Remember that each opening brace ({) requires a
corresponding closing brace (}).

Menu File Keywords

Table 1 on page 9 describes the valid keywords for your entries in the Rose menu file.

Table 1 Menu File Keywords

Keyword Description

Menu RoseMenu Enter theMenu keyword, followed by the Rose menu name to indicate
the name of the menu being extended.

For example, enterMenu Tools as the first line of an entry that extends
the Toolsmenu.

Menu “Menu Text” Enter theMenu keyword, followed by a text string to indicate the
name of a submenu being added to the menu. Note that quotation
marks are required if the text string contains spaces.

For example, enterMenu “My Scripts” to add a submenu calledMy
Scripts.
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Menu Actions

An action defines the result of activating a menu entry. The required arguments can be
supplied as keywords, constants, variables, or variables with modifiers. Table 2 on
page 10 describes the valid menu actions for your entries in the Rose menu file.

Separator Enter the Separator keyword to add a separator to a list of menu
options. Remember the placement of the Separator keyword controls
the placement of the separator line on the menu.

Option “Command
text”

Enter the Option keyword, followed by a text string to indicate the
name of the menu command being added to the menu. Note that
quotation marks are required if the text string contains spaces.

For example, enterOption “Run My Script” to add a menu command
called Run My Script.

Table 2 Menu Actions

Action Result

Block Displays a modal dialog box with ‘arg’ as its prompt.

Used following ‘exec’ and an action such as the Roseload command
to suspend the following action until the user chooses to continue.

RoseScript
Script-Path-and-Name

Executes a source or compiled image of a script. You can specify the
script name without its extension. The Rosescript command will
search for the source script first and execute it if found. If not found,
it will search for and execute the compiled script.

Exec program-name
[arg2 [arg3 ...[arg10]]]

Executes the program or shell script contained in the file designated
by program-name. (If the program is not located in the current
directory, it must be in a directory in the execute path.)

If the final argument is of the form '-F<filename>' then a file named
<filename> is created (if it does not already exist). All arguments,
except the last one are written to the file, and <filename> is passed as
the sole argument to ‘program’.

Note:

� F must be uppercase.
� It is up to ‘program’ to delete the file.
� To pass a string beginning with ‘-F’ as the final parameter of an
exec action, use ‘--F’ instead. (The character ‘^’ does NOT work in
this case.)

Table 1 Menu File Keywords (continued)

Keyword Description
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Menu File Variables and Modifiers

Rose provides a set of variables that correspond to various Rose model items. You can
use these variables in conjunction with a set of modifiers to determine the conditions
under which menu items are enabled or disabled, as well as to specify specific menu
actions.

The format for specifying variables with modifiers is:

variable[:mod1[:mod2[...[:mod10]]]

Roseload
ControlledUnit

Loads the designated controlled unit(s) from the associated file.

Rosesave
ControlledUnit

Saves the designated controlled unit(s) to the associated file.

Updateaccess
ControlledUnit

Sets the write protection for the controlled unit(s) to that of their
corresponding files.

InterfaceEvent
ToolDisplayName
interface

Executes the specified interface in the specified add-in's registered
COM object. You are not limited to Rose events. You may specify
custom interfaces from your OLE server. Note that quotation marks
are required if the ToolDisplayName contains spaces. Rose looks for
the add-in whose registry key, ToolDisplayName, matches the
ToolDisplayName argument. If the ToolDisplayName registry key is
blank, Rose then looks for a match to the ToolName registry key. For
more information on registry settings for Rose add-ins, seeUpdating
the Registry on page 123.
Examples:
� InterfaceEvent C++ OnBrowseHeader

When the user selects the menu option corresponding to this
menu action, Rose executes the OnBrowseHeader method in the
add-in's OLE server whose ToolDisplayName (or, if
ToolDisplayName is blank, ToolName) registry key is “C++”.

� InterfaceEvent All OnBrowseHeader

When the user selects the menu option corresponding to this
menu action, Rose executes the OnBrowseHeader method in all
active add-ins' OLE servers.

� InterfaceEvent “My AddIn” CheckFormat

When the user selects the menu option corresponding to this
menu action, Rose executes the add-in's custom CheckFormat
method in the add-in's OLE server whose ToolDisplayName (or, if
ToolDisplayName is blank, ToolName) registry key is “My
AddIn”.

Table 2 Menu Actions (continued)

Action Result
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Variables

Table 3 on page 12 lists the set of variables that are valid for extending Rose menus.

Modifiers

Table 4 on page 12 lists the set of modifiers that are valid for use with variables to
extend Rose menus.

Table 3 Menu File Variables

Variable Description

%all_units List of controlled units in all models.

%current_diagram Name of the current diagram.

%true Boolean value TRUE.

%false Boolean value FALSE.

%model Name of the current model.

%selected_items List of model elements selected in the current diagram.

%selected_units List of controlled units selected in the current diagram.

%uname Use in place of %selected_units:first:elide. SeeModifiers for
information on first and elide.

%ufile Use in place of %selected_units:first:file. SeeModifiers for
information on first and file.

Table 4 Menu File Modifiers

Modifier Description

allfiles Applied to a unit or item name or a list of unit or item names, evaluates
to a string that contains the list of the corresponding header and source
file names.

basename Applied to a path, evaluates to a string that contains the file name
portion of the path.

Applied to a list of paths, evaluates to a string that contains a list of file
names. Each file name is extracted from its corresponding path.
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codefile Applied to a unit or item name or a list of unit or item names, does one
of the following:
� Evaluates to a string that contains the complete path of the codefile
attribute associated with the unit.

� Evaluates to a string that contains the name of the controlled unit in
which the item is located.

Applied to a list, evaluates to a string that contains the list of
corresponding file names.

directory Applied to a path which resolves to a file, evaluates to a string that
contains the directory portion of the path.

Applied to a path which resolves to a directory, evaluates to a string
that contains that path—no modification is performed.

Applied to a list of paths, evaluates to a string that contains a list of
directories. Each directory is extracted from its corresponding path
using the preceding rules.

elide Applied to a unit or item name, evaluates to the first space-delimited
word in the name.

Applied to a list, equivalent to <list>:first:elide.

empty Applied to a list, evaluates to a boolean, which is TRUE if the list is
empty.

false Applied to a boolean, evaluates to a boolean, which is the logical
negation of its input.

file Applied to a controlled unit name, evaluates to a string that contains
the path of the file associated with (providing persistent storage for)
that controlled unit.

Applied to a list of controlled unit names, evaluates to a string that
contains a list of paths using the preceding rule for each controlled unit
name in the input list.

first Applied to an empty list, evaluates to NULL.

Applied to a non-empty list, evaluates to a string that contains the first
element of the list.

headerfile Applied to a unit or item name or a list of unit or item names, does one
of the following:
� Evaluates to a string that contains the name of the item’s associated
header file.

� Evaluates to a string that contains a list of corresponding header file
names.

Table 4 Menu File Modifiers (continued)

Modifier Description
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Syntax Rules for Rose Menu File Entries

Follow these rules when specifying menu text:

� When a text string contains embedded spaces, enclose the string in double
quotation marks.

For example, “Run Script”

� When a text string has no embedded spaces (a single word, for example), enter the
string without any quotation marks.

For example, Validate

� When a text string that is not enclosed in quotes includes a special character, the
special character could be misinterpreted as a variable. For this reason, you must
precede any special characters (such as ^, “, or %) with an escape character. The
escape character for all special characters is ^.

Examples:

❑ Option Calculate^%

Creates a menu option whose text reads Calculate %.

home_unit Applied to a model component name, evaluates to a string that
contains the name of the controlled unit in which the item is located.

multiple Applied to a list of unit, item, or file names, evaluates to a boolean,
which is TRUE if list has more than one element.

not A synonym (and preferred method) for false.

sourcefile Applied to a unit or item name or to a list of unit or item names, does
one of the following:
� Evaluates to a string, that contains the name of the item’s associated
sourcefile.

� Evaluates to a string that contains a list of corresponding sourcefile
names.

unary Applied to a list, evaluates to a boolean, which is TRUE if the input list
has exactly one element.

writeable Applied to a path resolving to a file, evaluates to a boolean, which is
TRUE if the file is writable.

Applied to a controlled unit name, evaluates to a boolean, which is
TRUE if the controlled unit is writable.

Table 4 Menu File Modifiers (continued)

Modifier Description
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❑ exec Notepad ^””c:\my files\file.txt”^”

Creates a menu action that executes the following command line:
notepad “c:\my files\file.txt”.

Note the escape character followed by an additional set of quotation marks.
One set of quotation marks is necessary because there is a space in my files.
The second set, each of which is preceded by the ^ escape character, causes the
actual command line to include the quotation marks as part of the command.

� To create a mnemonic for the menu, add an ampersand (&) before the menu text.

For example, “&Run Script”

Allows users to execute the menu item by pressing CTRL+R.

� Menu text can include variables and modifiers.

For example, Option “Validate ”%model

Creates a menu option with the text Validate MyCurrentModel (assuming the
current model is called MyCurrentModel).

SeeMenu File Variables and Modifiers on page 11 for more information.

Adding Scripts to a Rose Menu

If you create a Rose script that you will use over and over again, you may want to add
it to a Rose menu. For example, if you write a script to create a particular report based
on the contents of a model, you will probably run that script periodically.

To add such scripts to a Rose menu:

1 Open the Rose Menu file, or create a new one to use in its place.

2 Edit the Path Map so that it includes a virtual script path. (See Adding or Editing the
Virtual Path for Scripts on page 16.)

3 Modify the Rose menu file to add the script under the appropriate menu, being
careful to follow all of the menu file syntax rules. To do this:

❑ In the menu file, locate the menu specification that corresponds to the Rose
menu to which you want to add the script. Each menu specification is
comprised of the Menu keyword followed by the name of a Rose menu. For
example, the Toolsmenu specification begins with Menu Tools.

❑ Within the appropriate menu specification, add a menu option that specifies
the text of the menu command that will run the script (for example, Run
Conversion Wizard).
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❑ Enter a RoseScript menu action to cause the script to execute when a user
selects the menu command.

4 Save the updated menu file.

Adding or Editing the Virtual Path for Scripts

When you edit the Rose menu file to include script commands, you must include one
of the following:

� The fully qualified name of the script file to execute
� The virtual path that maps to the actual path

Defining a virtual path for scripts simplifies the process of editing the menu file by
allowing you to specify the symbolic virtual path name instead of the complete file
path.

To add or edit a virtual path for scripts:

1 Start Rose.

2 Click File > Edit Path Map to display the Virtual Path Map dialog box.

Figure 3 Adding Virtual Path for Scripts
.

3 Check for the $SCRIPT_PATH virtual symbol and do one of the following:

❑ If the symbol exists, select it in the dialog box to display its current mapping
information in the lower portion of the dialog box.
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❑ If the symbol does not exist, enter it in the Symbol field in the lower portion of
the dialog box.

❑ Enter the actual path to your Rose scripts, or use the Browse button to locate
and select the path. (Normally these scripts reside in a Scripts subdirectory of
the Rose installation directory.)

❑ When you make changes in the dialog box, the Close button becomes an OK
button. Click OK to save your changes and exit the Virtual Path Map dialog box.

Sample Rose Menu File

The following figure shows a portion of a Rose menu file.

Figure 4 Sample Rose Menu File

Note the following entries as you examine the menu specifications that comprise this
file:
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� Separator Entry

A separator entry causes a separator line to appear between the menu item above
the keyword and the menu item below the keyword. In this case, a separator line
will appear above the Rational on the Web submenu.

� Menu Entry

A Rose menu entry consists of the Menu keyword, followed by the name of the
Rose menu being extended.

This menu file extends the Helpmenu, the Reports menu, and the Toolsmenu
(only partially in view).

� Submenu Entry

A submenu is a second level menu that appears under a menu. A submenu entry
looks just like a menu entry, with two exceptions:

❑ It appears within a Rose menu specification. (In this case, it is part of the Rose
Helpmenu specification.)

❑ The Menu keyword is followed by the submenu title. (Notice that when the
submenu title has embedded spaces, it is enclosed in quotation marks.)

� Option Entry

Menu option entries define menu commands that you add to a menu. They begin
with the Option keyword and are followed by the option title.

This file adds the following commands to the specified menus:

❑ Online Support (Rational on the Web submenu of the Help menu)

❑ Rational Home Page (Rational on the Web submenu of the Helpmenu)

❑ Show Participants in UC (Reportmenu)

❑ Documentation Report (Reportmenu)

� Menu Action

Menu actions tell Rose what to do when the menu item is selected. Each of the
options in this file executes a Rose Script. The Menu Actions topic describes all of
the available actions.

� Menu Argument

Menu arguments can be included to enable or disable a menu item under various
circumstances. The arguments begin with either an Enable or Disable keyword,
followed by variables and modifiers which define the circumstances.
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In this case, the Show Participants in UCmenu item will be enabled only if at least
one item is selected in the current diagram (that is, the statement, “The list of
selected items is empty” is false).

� Braces

Every menu specification entry must begin with a left brace ({) and end with a
right brace (}). The nested braces allow you to define the hierarchy of a menu
specification from the Rose menu at the high end to a submenu option at the low
end.

Customizing Rose Shortcut Menus

When you or the user of your add-in to Rose right-clicks in Rose, a shortcut menu
appears. The commands displayed on the shortcut menu are determined by where
you or your add-in user clicks the mouse and what items are selected in the diagram
or browser. You can take advantage of this feature in your add-in’s functionality so
that your add-in user sees your shortcut menu items when they right-click. If your
add-in has features that you want to include on a shortcut menu, the shortcut menu
Help topics explain how to add items to the Rose shortcut menu by using the Rose
Extensibility Interface (REI).

Benefits

The REI exposure of Rose’s shortcut menu interface provides the following benefits:

� Quicker access to your add-in’s features for your customers

� Control of when the menu item appears on the shortcut menu

❑ Default (any time the user selects multiple different items, such as classes and
packages, or has nothing selected)

❑ Diagram

❑ Package

❑ UseCase

❑ Class

❑ Attribute

❑ Operation

❑ Component

❑ Role

❑ Properties
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❑ Model

❑ DeploymentUnit

❑ ExternalDoc

� Control of the state in which your menu item appears on the shortcut menu
(enabled, disabled, checked, unchecked)

� Control of the order (but not position) of multiple menu items on the shortcut
menu

� Ability to add submenus to shortcut menu items

� Ability to add separator lines to the shortcut menu and submenus

� Ability to create one shortcut menu item that works for items selected in the
browser as well as in a diagram (you do not have to create one menu item for items
selected in the browser and another menu item for items selected in the diagram)

Limitations

The position on the shortcut menu where your menu item appears is controlled by
Rose. If you have more than one item on the shortcut menu, however, you can control
the order in which those items appear by adding the items (using the
AddContextMenuItem method) in the order in which you want the menu items to
appear.

Key Terms and Concepts

Language-Dependent

Rose model elements are language-dependent if they can be associated with a specific
language add-in, especially for code generation. These language-dependent model
elements are:

� Associations
� Attributes
� Classes
� Components
� Operations
� Roles
20 Chapter 2 - Customizing Rational Rose Menus



Language-Neutral

Rose model elements are language-neutral if they are not associated with a specific
language. They are not generated into code (although model elements within them
can be generated into code). These language-neutral model elements are:

� Activities
� Decisions
� DeploymentUnits
� Diagrams
� ExternalDocs
� Models
� Packages
� Properties
� States
� Subsystems
� Swimlanes
� Synchronizations
� Transitions
� UseCases

Even though these model elements are language-neutral, a language add-in can work
with them (except for DeploymentUnits, ExternalDocs, Models, and Properties) in the
following ways. The language add-in can:

� Add shortcut menu items.

� Get the OnContextMenuItem event for them, as long as the language add-in is set
as the default language.

In other words, if your language add-in is the default language, when a user
right-clicks on any of the above language-neutral model elements (except for
DeploymentUnits, ExternalDocs, Models, and Properties), the user sees your
language add-in’s shortcut menu items for these model elements. If your language
add-in is not the default language and the user right-clicks on one of the
language-neutral model elements (except for DeploymentUnits, ExternalDocs,
Models, and Properties), the user does not see your shortcut menu items for these
model elements.

Language Add-In

A language add-in is an add-in whose Rose Registry setting for “LanguageAddIn” is
set to Yes.
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Non-Language Add-In

A non-language add-in is an add-in whose Rose Registry setting for
“LanguageAddIn” is set to No.

Behind the Scenes of Shortcut Menus

When Rose is started, it issues the OnActivate event and gets shortcut menu items
(ContextMenuItem) from each add-in.

When you or the user of your add-in right-clicks, Rose sends the
OnEnableContextMenuItems event to the appropriate add-ins to get the applicable
menu states for the add-in’s ContextMenuItems. Rose then formats and displays the
shortcut menu with appropriate add-in menu items depending on:

� Where the user right-clicked.

� What items are selected (such as class and package).

� For what context the add-in’s shortcut menu items are defined
(ContextMenuItemType).

See How Rose Formats and Displays Shortcut Menu Items on page 22.

When the user selects a menu item from the shortcut menu, Rose sends the
OnSelectedContextMenuItem to the appropriate add-ins. It is then up to the add-in to
map the event and arguments to one of its methods.

The add-in then runs the method that corresponds to the selected shortcut menu item.

How Rose Formats and Displays Shortcut Menu Items

The methodology for determining which shortcut menu items appear and when they
appear makes the add-in a smart, seamless part of Rose. Rose only displays your
shortcut menu when it is appropriate to do so. For example, Rose displays your class
shortcut items for a particular class if the following conditions are all true:

� Your add-in is a language add-in (defined by the registry setting)
� Your user creates a class with your language
� You have created the appropriate shortcut menu items (ContextMenuItems)

However, if your user creates a class with a different language add-in, Rose does not
display your class shortcut menu items. (A menu item for C++ classes might not make
sense for a Visual Basic class.) Because of the flexibility that Rose gives you through
the REI to create shortcut menu items, it is also a complex concept. A shortcut menu
item might not appear when expected. It is, therefore, important to understand the
scenarios (explained later in this chapter) for the complete explanation of what is
displayed and when it is displayed.
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Shortcut menu items created by a non-language add-in are always displayed on the
appropriate menu. Those items created by a language add-in are displayed when the
selected items have that language assignment. Shortcut menu items created by a
language add-in are also displayed when language-neutral items are selected and that
language is the Default Language. Whether Rose displays a particular shortcut menu
item is dependent on the following considerations:

� The Default Language setting (click Tools > Options > Notation)
� Whether the selected items are the same type
� Whether the selected items are language-dependent or language-neutral
� Whether the selected items are associated with a particular language add-in

See Shortcut Menu Scenarios on page 23 for examples of how these issues affect
shortcut menu items.

Shortcut Menu Scenarios

The following table describes all the possible scenarios for displaying shortcut menu
items.

Table 5 Displaying Shortcut Menu Items

Description Example Selected Items Displayed Shortcut Menu Items

Same language-
dependent types
selected

Class 1 (Language A)

(Any Default Language)

Language add-in A’s rsClass shortcut menu
items.

All non-language add-in’s rsClass shortcut
menu items.

Class 1 (Language A)

Class 2 (Language A)

(Any Default Language)

Language add-in A’s rsClass shortcut menu
items.

All non-language Add-in’s rsClass shortcut
menu items.

Class 1 (Language A)

Class 2 (Language B)

(Any Default Language)

Language add-in A’s rsClass shortcut menu
items.

Language add-in B’s rsClass shortcut menu
items.

All non-language Add-in’s rsClass shortcut
menu items.

Attribute 1 (Language A)

Attribute 2 (Language B)

(Any Default Language)

Language add-in A’s rsAttribute shortcut menu
items.

Language add-in B’s rsAttribute shortcut menu
items.

All non-language add-in’s rsAttribute shortcut
menu items.
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Different
language-
dependent types
selected

Class 1 (Language A)

Class 2 (Language B)

Attribute 3 (Language A)

Attribute 4 (Language C)

(Any Default Language)

Language add-in A’s rsDefault shortcut menu
items.

Language add-in B’s rsDefault shortcut menu
items.

Language add-in C’s rsDefault shortcut menu
items.

All non-language add-in’s rsDefault shortcut
menu items.

Operation 1 (Language A)

Operation 2 (Language B)

Role 3 (Language A)

(Any Default Language)

Language add-in A’s rsDefault shortcut menu
items.

Language add-in B’s rsDefault shortcut menu
items.

All non-language add-in’s rsDefault shortcut
menu items.

Nothing selected (Default Language set to
Language A)

Language add-in A’s rsDefault shortcut menu
items.

All non-language add-in’s rsDefault shortcut
menu items.

(Default Language set to
Language B)

Language add-in B’s rsDefault shortcut menu
items.

All non-language add-in’s rsDefault shortcut
menu items.

Same language-
neutral type
selected

Diagram 1 (Created with any
language)

(Default Language set to
Language A)

Language add-in A’s rsDiagram shortcut menu
items.

All non-language add-in’s rsDiagram shortcut
menu items.

Diagram 1 (Created with any
language)

(Default Language set to
Language B)

Language add-in B’s rsDiagram shortcut menu
items.

All non-language add-in’s rsDiagram shortcut
menu items.

Diagram 1 (Created with any
language)

Diagram 2 (Created with any
language)

(Default Language set to
Language A)

Language add-in A’s rsDiagram shortcut menu
items.

All non-language add-in’s rsDiagram shortcut
menu items.

Table 5 Displaying Shortcut Menu Items (continued)

Description Example Selected Items Displayed Shortcut Menu Items
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Diagram 1 (Created with any
language)

Diagram 2 (Created with any
language)

(Default Language set to
Language B)

Language add-in B’s rsDiagram shortcut menu
items.

All non-language add-in’s rsDiagram shortcut
menu items.

Different
language-
neutral types
selected

Diagram 1 (Created with any
language)

Package 2 (Created with any
language)

Package 3 (Created with any
language)

(Default Language set to
Language A)

Language add-in A’s rsDefault shortcut menu
items.

All non-language add-in’s rsDefault shortcut
menu items.

Subsystem 1 (Created with any
language)

UseCase 2 (Created with any
language)

(Default Language set to
Language B)

Language add-in B’s rsDefault shortcut menu
items.

All non-language add-in’s rsDefault shortcut
menu items.

Combination of
language-
dependent and
language-
neutral types
selected

Class 1 (Language A)

Package 2 (Created with any
language)

(Default Language set to
Language B)

Language add-in A’s rsDefault shortcut menu
items.

All non-language add-in’s rsDefault shortcut
menu items.

Class 1 (Language A)

Class 2 (Language B)

Package 3 (Created with any
language)

Package 4 (Created with any
language)

(Default Language set to
Language C)

Language add-in A’s rsDefault shortcut menu
items.

Language add-in B’s rsDefault shortcut menu
items.

All non-language add-in’s rsDefault shortcut
menu items.

Table 5 Displaying Shortcut Menu Items (continued)

Description Example Selected Items Displayed Shortcut Menu Items
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Note: If you want a shortcut menu item to appear on more than one menu (for
example, for classes and the default), you must create a separate ContextMenuItem
for each item type (for example, one for rsClass and one for rsDefault). For examples,
see Sample Shortcut Menu Implementation Code on page 28 and Sample Rose Script
Shortcut Menu Code on page 30.

For more information on rsClass, rsAttribute, rsDefault, or rsDiagram see
ContextMenuItemType Enumeration in the online Help.

Shortcut Menu Design Considerations

To keep the shortcut menu from becoming too cluttered with many different add-in
menu options, try to keep menu items on the main shortcut menu to a minimum. Use
submenus as much as possible. However, put all the important menu options on the
main shortcut menu. Put less important menu options on a submenu under a generic
main shortcut menu option.

Generate Code and Browse Code are not standard Rose shortcut menu options. Each
language add-in is responsible for creating and manipulating these options according
to their needs. This gives you greater control and flexibility with these features. When
creating menu items, make the caption specific to your language (for example,
Generate C++ Code, Generate Visual Basic Code). This reduces confusion since the
user of your add-in could be using more than one language add-in in Rose. Place
Generate Code and Browse Code at the top level of the shortcut menu instead of in a
submenu.

You could also place shortcut menu items that open a custom specification sheet at the
top level of the shortcut menu. However, if your add-in supports the
OnPropertySpecOpen event, do not add a custom specification menu item because it
would be redundant. This is due to the fact that when Rose detects that the
OnPropertySpecOpen event is supported for an item, Rose adds the Open Standard
Specification shortcut menu item (which displays the standard Rose specification)
immediately after the Open Specification shortcut menu item (which, in this context,
displays the add-in’s custom specification sheet).

Procedure

To customize the Rose shortcut menu:

1 In order to use this feature of the REI, you must register your product in the Rose
Add-In Manager.

2 Determine the following:

❑ What are your menu items?

❑ Through what states will each menu item go?
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❑ Where should each menu item appear (main shortcut menu or a submenu)?

❑ In what order should your menu items appear on the shortcut menu or
submenu?

❑ In which contexts should your menu items appear (for example, rsDefault,
rsClass, and rsPackage).

❑ What circumstances will change menu states for each menu item?

❑ Which access keys, if any, should you assign to each menu option?

❑ Are there any other considerations that are specific to your implementation?

3 Create the prototyped event methods, OnActivate, OnEnableContextMenuItems,
and OnSelectedContextMenuItem customizing for your specific needs.

4 Create ContextMenuItem objects for each menu item by using the
AddContextMenuItem method for each menu item. Use AddContextMenuItem in
the order in which you want the menu items displayed on the shortcut menu.

5 Create your specific methods to support each ContextMenuItem (shortcut menu
item) that maps to a specific function of your add-in. If the method already exists,
update it as needed to take advantage of the Rose shortcut menu.

6 Create and incorporate menu state changes as needed for your add-in. Use the
MenuState property of the ContextMenuItem to change menu states.

7 Determine if there are any additional steps necessary for your specific
implementation and perform those steps.

Adding Menu Items to the Shortcut Menu

To create and add menu items to the shortcut menu, use the AddContextMenuItem
Method.

Note: An add-in should add context menu items when it gets the OnActivate event.

Working with Shortcut Menu Items

When the user activates the shortcut menu with items selected in the browser or a
diagram, Rose sends the OnEnableContextMenuItems event to the specified language
add-in. The language add-in can then call GetSelectedItems at the model level to get
all selected items, regardless of whether the user selected the items in the browser or
in a diagram.

Working with the Shortcut Menu Item Collection

To work with a subset or the set of all shortcut menu items, use the
GetContextMenuItems Method.
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To enable, disable, check, or uncheck shortcut menu items:

1 Iterate through the collection of ContextMenuItem objects by using the GetAt
method.

2 Set the MenuState property accordingly.

Editing Shortcut Menu Items

To change the properties of the shortcut menu item, see the ContextMenuItem class
properties and methods.

Changing the State of a Shortcut Menu Item

To enable, disable, check, or uncheck a particular shortcut menu item, change the
ContextMenuItem’s MenuState property.

Sample Shortcut Menu Implementation Code

The following are sample pieces of code that you might use to add your menu items
to Rose’s shortcut menu.

‘Customize OnActivate from the prototype

Sub OnActivate (LPDISPATCH pRoseApp)

. . .

‘Create all shortcut menu items

Set myNewMenuItem1 =

myAddIn.AddContextMenuItem (rsDefault, "Separator", “”)

Set myNewMenuItem2 = myAddIn.AddContextMenuItem (rsDefault,

"Submenu &Main Add-In Menu Caption", “”)

Set myNewMenuItem3 = myAddIn.AddContextMenuItem (rsDefault,

"&Caption 1", “internalName1”)

Set myNewMenuItem4 = myAddIn.AddContextMenuItem (rsDefault,

"C&aption 2", “internalName2”)

Set myNewMenuItem5 = myAddIn.AddContextMenuItem (rsDefault,

"endsubmenu", “”)

Set myNewMenuItem6 = myAddIn.AddContextMenuItem (rsDefault,

"Separator", “”)

. . .

End Sub ‘OnActivate event
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. . .

‘Set initial state of each selectable shortcut menu item

myNewMenuItem2.MenuState = ENABLED

myNewMenuItem3.MenuState = ENABLED

myNewMenuItem4.MenuState = DISABLED

. . .

‘Customize OnEnableContextMenuItems from the prototype

Function OnEnableContextMenuItems (LPDISPATCH pRoseApp, VT_I2
itemType) As Boolean

. . .

End Function ‘OnEnableContextMenuItems event

. . .

‘Create each routine that corresponds to a selectable shortcut

‘menu item

Sub DoMenuOption1 (argument1, argument 2, …)

. . .

End Sub ‘DoMenuOption1 subroutine

Function DoMenuOption2 (argument1, argument2, º) As returnValue2

. . .

End Function ‘DoMenuOption2 function

. . .

‘Customize OnSelectedContextMenuItem from the prototype to map

‘selectable shortcut menu items to functionality in this

‘ add-in.

Function OnSelectedContextMenuItem (LPDISPATCH pRoseApp, BSTR
internalName) As Boolean

Select Case internalName

Case internalName1

DoMenuOption1 (argument1, argument2, …)

Case internalName2
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x = DoMenuOption2 (argument1, argument2, …)

End Select ‘internalName

. . .

End Function ‘OnSelectedContextMenuItem event

‘Main program functionality

Sub Main

. . .

End Sub ‘Main Program

Sample Rose Script Shortcut Menu Code

The sample RoseScript code below produced the shortcut menu in Figure 5 on
page 30.

Figure 5 Sample Code for Shortcut Menus

‘Subroutines to which the selectable shortcut menu items map

Sub internalName1

End Sub

Sub internalName2
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End Sub

Sub internalName3

End Sub

Sub internalNameSub1

End Sub

Sub internalNameSub2

End Sub

Sub internalNameClass1

End Sub

Sub internalNameClass2

End Sub

Sub internalNameClass3

End Sub

Sub internalNameClassSub1

End Sub

Sub internalNameClassSub2

End Sub

Sub Main
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‘Create a sample shortcut menu

Dim myAddIn As RoseAddIn

Dim myMenuItem As ContextMenuItem

Dim myMenuItem2 As ContextMenuItem

Dim myMenus As ContextMenuItemCollection

Dim menuCount As Integer

Dim i As Integer

Dim classFound As Boolean

Dim myItems As ItemCollection

Dim itemCount As Integer

Dim anItem As RoseItem

Dim myModel As Model

‘ContextMenuItemType enumeration

Const rsDefault As Integer = 0

Const rsClass As Integer = 4

‘MenuState enumeration

Const rsDisabled As Integer = 0

Const rsEnabled As Integer = 1

Set myAddIn = ... ‘Get the add-in to which you want to add

‘shortcut menu items.

‘Create shortcut menu items for rsDefault

Set myMenuItem = myAddIn.AddContextMenuItem(rsDefault, "Add-In

Caption &1", "internalName1")

Set myMenuItem = myAddIn.AddContextMenuItem (rsDefault, "Add-In

Caption &2", "internalName2")

Set myMenuItem = myAddIn.AddContextMenuItem (rsDefault, "Add-In

Caption &3", "internalName3")

Set myMenuItem = myAddIn.AddContextMenuItem (rsDefault,

"Separator", "")
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Set myMenuItem = myAddIn.AddContextMenuItem (rsDefault, "Submenu

&Main Add-In Menu Caption", "")

Set myMenuItem = myAddIn.AddContextMenuItem (rsDefault, "&Caption

1", "internalNameSub1")

Set myMenuItem2 = myAddIn.AddContextMenuItem (rsDefault, "C&aption

2", "internalNameSub2")

Set myMenuItem2.MenuState = rsDisabled

Set myMenuItem = myAddIn.AddContextMenuItem (rsDefault,

"endsubmenu", "")

Set myMenuItem = myAddIn.AddContextMenuItem (rsDefault,

"Separator", "")

‘Create exact same shortcut menu items for rsClass

Set myMenuItem = myAddIn.AddContextMenuItem (rsClass, "Add-In

Caption &1", "internalNameClass1")

Set myMenuItem = myAddIn.AddContextMenuItem (rsClass, "Add-In

Caption &2", "internalNameClass2")

Set myMenuItem = myAddIn.AddContextMenuItem (rsClass, "Add-In

Caption &3", "internalNameClass3")

Set myMenuItem = myAddIn.AddContextMenuItem (rsClass, "Separator",

"")

Set myMenuItem = myAddIn.AddContextMenuItem (rsClass, "Submenu &Main

Add-In Menu Caption", "")

Set myMenuItem = myAddIn.AddContextMenuItem (rsClass, "&Caption 1",

"internalNameClassSub1")

Set myMenuItem2 = myAddIn.AddContextMenuItem (rsClass, "C&aption 2",

"internalNameClassSub2")

Set myMenuItem2.MenuState = rsDisabled

Set myMenuItem = myAddIn.AddContextMenuItem (rsClass, "endsubmenu",

"")

Set myMenuItem = myAddIn.AddContextMenuItem (rsClass, "Separator",

"")

‘Check to see if the user has selected only Class items. If

‘so, enable the disabled shortcut menu option (Caption 2
Customizing Rose Shortcut Menus 33



‘on the submenu).

classFound = True

Set myItems = RoseApp.CurrentModel.GetSelectedItems ()

itemCount = myItems.Count

For i = 1 To itemCount

Set anItem = myItems.GetAt (i)

If anItem.Stereotype <> "Class" Then

classFound = False

End If

Next i

If classFound = True Then

myMenuItem2.MenuState = rsEnabled

End If

End Sub
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3Using the REI to Work
with Rational Rose
Contents

This chapter is organized as follows:

� Introduction on page 35
� Getting the Rose Application Object on page 36
� Associating Files and URLs with Classes on page 37
� Managing Default Properties on page 37
� Adding a Property to a Set on page 39
� Creating a New Property on page 40
� Deleting Model Properties on page 41
� Getting Model Properties on page 41
� Setting Model Properties on page 41
� Creating a New Property Set on page 43
� Cloning a Property Set on page 44
� Deleting a Property Set on page 45
� Getting and Setting the Current Property Set on page 46
� Creating a User-Defined Property Type on page 47
� Creating a New Tool on page 48
� Placing Classes in Categories on page 48
� Using Type Libraries for Rose Automation on page 49
� Working with Controllable Units on page 49
� Working with Rose Diagrams on page 50
� Getting an Element from a Collection on page 51

Introduction

This chapter explains how to use the Rational Rose Extensibility Interface (REI) to
accomplish many tasks that you would otherwise perform manually in the Rose user
interface.

This information is meant to orient you and to provide examples that you can use as
starting points in your work with the REI.
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The information in this chapter is not exhaustive. You should refer to the Extensibility
online Help for complete descriptions of all of the REI classes, properties, and
methods. As you familiarize yourself with these, you will be able to realize the full
capabilities that the REI makes available to you.

Getting the Rose Application Object

Whether you are using Rose Script or Rose Automation, you must get the Rose
Application object in order to control the Rose application.

Using Rose Script

All Rose Script programs have a global object called RoseApp, which has a property
called CurrentModel. You must use RoseApp.CurrentModel to initialize the global
Rose object and subsequently open, control, save, or close a Rose model from within a
script.

The following sample code shows how to get the Rose Application object in a Rose
Scripting context:

Sub GenerateCode (theModel As Model)

‘ This generates code

End Sub

Sub Main

GenerateCode RoseApp.CurrentModel

End Sub

Using Rose Automation

To use Rose as an automation server, you must initialize an instance of a Rose
application object. You do this by calling either CreateObject or GetObject (or their
equivalents) from within the application you are using as the OLE controller. These
calls return the OLE Object which implements Rose API’s application object.

Refer to the documentation for the application you are using as OLE controller for
details on calling OLE automation objects.

The following sample code shows how to get the Rose application object in a Rose
Automation context:

Sub GenerateCode (theModel As Object)

‘ This generates code

End Sub
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Sub Main

Dim RoseApp As Object

Set RoseApp = CreateObject (“Rose.Application”)

GenerateCode RoseApp.CurrentModel

End Sub

Associating Files and URLs with Classes

Because Class objects inherit properties from RoseItem, you can define a set of
external documents for any class. Each external document has either a Path property
or a URL property.

� The Path property specifies a path to the file that contains the external document.

� The URL property specifies a Universal Resource Locator (URL) of a
corresponding internet document.

Note: See the Extensibility online Help for syntax and other information.

Managing Default Properties

In the Rose user interface environment, you manage a model’s properties by using the
specification editor.

To access the specification editor, click Tools > Model Properties > Edit.

You then select the appropriate tool tab, element type, and property set to edit. For
example, in Figure 6 on page 38, the tool is Java, the model element type is Class, and
the property set is Set1.
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Figure 6 Property Specification Editor

From this point on, you can use the specification editor to edit individual properties,
as well as clone (copy) and edit property sets. However, you cannot create new tools
(tabs), new default property sets, or property types. For these capabilities, you must
use the Rose Extensibility Interface.

For more information on editing default properties and sets in the Rose user interface,
see the online Help for information on specifications, or refer to the Using Rose
manual.

The next sections of this chapter explain how to work with properties and property
sets in the extensibility environment.

In the Extensibility Interface, the DefaultModelProperties object manages the default
model properties for the current model, and is itself a property of the model
(expressed as RoseApp.CurrentModel.DefaultProperties). For this reason, default
properties are applied to the current model only. When you create default properties
they are applied to and saved for the current model, but are not available to any new
models you create.

To apply new properties to another model, re-run the script that creates the
properties, specifying the new model as the current model.
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Adding a Property to a Set

How To

To add a property to a property set, define a subroutine that uses the
DefaultModelProperties.AddDefaultProperty method. You will notice that this
method requires you to pass 6 parameters:

� Class Name
� Tool Name
� Set Name
� Name of the New Property
� Property Type
� Value of the New Property

Example
Sub AddDefaultProperties (theModel As Model)

Dim DefaultProps As DefaultModelProperties

Set DefaultProps = theModel.DefaultProperties

myClass$ = theModel.RootCategory.GetPropertyClassName ()

b = DefaultProps.AddDefaultProperty (myClass$,

“ThisTool”, "Set1", "StringProperty", "String", "")

b = DefaultProps.AddDefaultProperty (myClass$,

myTool$, "Set1", "IntegerProperty", "Integer", "0")

b = DefaultProps.AddDefaultProperty (myClass$,

myTool$, "Set1", "FloatProperty", "Float", "0")

b = DefaultProps.AddDefaultProperty (myClass$,

myTool$, "Set1", "CharProperty", "Char", " ")

b = DefaultProps.AddDefaultProperty (myClass$,

myTool$, "Set1", "BooleanProperty", "Boolean", "True")

End Sub
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Notes on the Example

1 When you specify the Class Name parameter, you must specify the internal name
of the model element. There are two ways to obtain this information:

❑ If properties are already defined for this element, the internal name appears in
the specification dialog box in the Rose user interface. Simply check the
specification editor and use the Type drop-down list to find the appropriate
class name.

❑ Use the Element.GetPropertyClassName method. This is the method used in
the sample script. This example retrieves the internal name and returns it in
myClass$, which is then passed as the class name parameter.

2 If the tool you specify does not exist, a new tool will be created. This is actually the
only way to add a new tool to a model.

3 This example adds a property of each of the predefined property types (string,
integer, float, char, boolean), with the exception of the enumeration type. You use
the enumerated type to create your own property types and add enumerated
properties to a set. See Creating a User-Defined Property Type on page 47 for
instructions and an example.

Creating a New Property

How To

To create a new property that is not based on an existing property, use the
Element.CreateProperty method. However, if you simply want to set an existing
property to a different current value, you should use Element.InheritProperty or
Element.OverrideProperty instead.

Example
' Property creation:

b = theModel.RootCategory.CreateProperty (myTool,

"Saved", "True", "Boolean")

b = theModel.RootCategory.InheritProperty (myTool, "Saved")
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Notes on the Example

1 The CreateProperty call in the example creates a new property called Saved. It
applies to the tool MyTool, its value is TRUE, and its type is Boolean.

2 The InheritProperty call in the example deletes the property just created. Because
there is no default value to which such a property can return, InheritProperty
effectively deletes it from the model.

3 For more information, see Setting Model Properties Using InheritProperty on page 43,
Setting Model Properties Using OverrideProperty on page 42, and Deleting Model
Properties on page 41.

Deleting Model Properties

If you are deleting a property that belongs to a property set, you can use the
DefaultModelProperties.DeleteDefaultProperty method to delete the property from a
model.

However, if you created a property using the Element.CreateProperty method, that
property is not part of a property set. To delete such a property, use the
Element.InheritProperty method.

Getting Model Properties

The Element class provides two methods for retrieving information about model
properties:

� To get the current value for a model property, whether inherited or overridden, use
the Element.GetPropertyValue method. This method returns the value as a string.

� To retrieve the property object itself, use the Element.FindProperty method.

Setting Model Properties

There are several ways to set model properties using the Extensibility Interface:

� Use the Element.OverrideProperty method to change only the value of a property,
and keep all other aspects of the property definition intact.

� Use the Element.InheritProperty method to return a previously overridden
property to its original value.
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� Use the Element.CreateProperty or the
DefaultModelProperties.AddDefaultProperty method to define a new property
that is not based on an existing property.

For more information, see Creating a New Property on page 40. For more information
on creating new properties that are based on an existing property set, see Cloning a
Property Set on page 44.

Setting Model Properties Using OverrideProperty

How To

The Element.OverrideProperty method allows you to use the default property
definition and simply change its current value. Alternately, you could create a brand
new property by calling the Element.CreateProperty method, but that would require
you to specify the complete property definition, not just the new value.

If the property you specify does not exist in the model’s default set, a new property is
created for the specified object only. This new property is created as a string property.

Example
Sub OverrideRadioProps (theCategory As Category)

b = theCategory.OverrideProperty (myTool$, "StringProperty", "This

string is overridden")

b = theCategory.OverrideProperty (myTool$, "IntegerProperty", "1")

b = theCategory.OverrideProperty (myTool$, "FloatProperty",

"111.1")

b = theCategory.OverrideProperty (myTool$, "EnumeratedProperty",

"Value2")

End Sub

Notes on the Example

1 Each of the 4 lines of the sample subroutine changes the current value of a specific
property as follows:

❑ The property called StringProperty now has a value of “This string is
overridden”.

❑ The property called IntegerProperty now has a value of 1.

❑ The property called FloatProperty now has a value of 111.1.

❑ The property called EnumeratedProperty now has a value of “Value2”.
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2 Everything except for current value (tool name, class name, set, property name,
and property type) remains the same for the properties.

Setting Model Properties Using InheritProperty

How To

Use the Element.InheritProperty method to reset an overridden property to its
original value.

You can also use this method to delete a property that you created using the
Element.CreateProperty method. Because there is no default value to which such a
property can return, InheritProperty effectively deletes it from the model.

Example
Sub InheritRadioProps (theCategory As Category)

b = theCategory.InheritProperty (myTool$, "StringProperty")

b = theCategory.InheritProperty (myTool$, "IntegerProperty")

b = theCategory.InheritProperty (myTool$, "FloatProperty")

b = theCategory.InheritProperty (myTool$,

"EnumeratedProperty")

End Sub

Notes on the Example

Each of the 4 lines of the sample subroutine returns the current value of the specified
property to its original value.

Creating a New Property Set

To create a new property set that is not based on an existing property set, use the
DefaultModelProperties.CreateDefaultPropertySet method.
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Cloning a Property Set

How To

Cloning allows you to create a copy of an existing property set for the purpose of
creating another property set. This is the easiest way to create a new property set, and
is particularly useful for creating multiple sets of the same properties, but with
different values specified for some or all of the properties.

To clone a property set in a model, use the
DefaultModelProperties.CloneDefaultPropertySet method.

Example
Sub CloneDefaultProperties (theModel As Model)

Dim DefaultProps As DefaultModelProperties

Set DefaultProps = theModel.DefaultProperties

AddDefaultProperties theModel

myClass$ = theModel.RootCategory.GetPropertyClassName ()

b = DefaultProps.CloneDefaultPropertySet (myClass$, myTool$,

"default", "SecondSet")

b = DefaultProps.CloneDefaultPropertySet (myClass$, myTool$,

"default", "ThirdSet")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,

"SecondSet", "StringProperty", "String", "Unique to SecondSet")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,

"SecondSet", "IntegerProperty", "Integer", "11")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,

"SecondSet", "FloatProperty", "Float", "89.9000")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$,

"SecondSet", "EnumeratedProperty", "EnumerationDefinition",

"Value2")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$, "ThirdSet",

"StringProperty", "String", "Unique to ThirdSet")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$, "ThirdSet",

"IntegerProperty", "Integer", "20")

b = DefaultProps.AddDefaultProperty (myClass$, myTool$, "ThirdSet",

"FloatProperty", "Float", "90.9000")
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b = DefaultProps.AddDefaultProperty (myClass$, myTool$, "ThirdSet",

"EnumeratedProperty", "EnumerationDefinition", "Value3")

End Sub

Notes on the Example

1 This example clones an existing property set twice in order to define a total of three
sets for the class and tool to which the sets apply.

2 All three sets have the same properties as those defined in the original set. In
addition, several new properties are added to the second set and several other new
properties are added to the third set.

Deleting a Property Set

How To

To delete an entire property set from a model, use the
DefaultModelProperties.DeleteDefaultPropertySet method.

Example
Sub DeleteDefaultProperties (theModel As Model)

Dim DefaultProps As DefaultModelProperties

Set DefaultProps = theModel.DefaultProperties

myClass$ = theModel.RootCategory.GetPropertyClassName ()

b = DefaultProps.DeleteDefaultPropertySet (myClass$,

myTool$, "SecondSet")

b = DefaultProps.DeleteDefaultPropertySet (myClass$,

myTool$, "ThirdSet")

b = theModel.RootCategory.SetCurrentPropertySetName

(myTool$, "default")

End Sub
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Notes on the Example

1 The Element.GetPropertyClassName retrieves the valid internal class name to pass
as a parameter on the delete calls.

2 Each DefaultModelProperties.DeleteDefaultPropertySet call deletes a property set
from the model.

3 The Element.SetCurrentPropertySetName call sets the tool’s current property set
to its original set, which happens to be called default.

Getting and Setting the Current Property Set

How To

To find out which property set is the current set for a tool, use the
Element.GetCurrentPropertySetName method.

To set the current property set to a particular set name, use the
Element.SetCurrentPropertySetName and specify the set of your choice.

Note: When setting the current property set, you must supply a set name that is valid
for the specified tool. To retrieve a list of valid set names for a tool, use
Element.GetDefaultSetNames.

Example
Sub RetrieveElementProperties (theElement As Element)

Dim AllTools As StringCollection

Dim theProperties As PropertyCollection

Dim theProperty As Property

Set AllTools = theElement.GetToolNames ()

For ToolID = 1 To AllTools.Count

ThisTool$ = AllTools.GetAt (ToolID)

theSet$ = theElement.GetCurrentPropertySetName (ThisTool$)

Set theProperties = theElement.GetToolProperties (ThisTool$)

For PropID = 1 To theProperties.Count

Set theProperty = theProperties.GetAt (PropID)

Next PropID

Next ToolID

End Sub
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Notes on the Example

1 GetToolNames retrieves the tool names that apply to the model element type
called Element and returns them as a string collection called AllTools.

2 The current property set is retrieved for each tool name.

3 GetToolProperties retrieves the property collection that belongs to the current tool.

4 Each property that belongs to the tool’s property collection is retrieved.

Creating a User-Defined Property Type

How To

Rose Extensibility predefines the following set of property types:

� String
� Integer
� Float
� Char
� Boolean
� Enumeration

When you add properties to a set, you specify one of these types.

In addition, you can define your own property types and add properties of that type
to a property set.

To create a user-defined property type, add a property whose type is enumeration and
whose value is a string that defines the possible values for the enumeration.

Once you have defined the new type, adding a property of this new type is like
adding any other type of property.

Example
Sub AddDefaultProperties (theModel As Model)

Dim DefaultProps As DefaultModelProperties

Set DefaultProps = theModel.DefaultProperties

myClass$ = theModel.RootCategory.GetPropertyClassName ()

b = DefaultProps.AddDefaultProperty (myClass$, "myTool",

"Set1", "MyNewEnumeration", "Enumeration",

"Value1,Value2,Value3")

b = DefaultProps.AddDefaultProperty (myClass$, "myTool",
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"Set1", "MyEnumeratedProperty", "MyNewEnumeration",

"Value1")

b = DefaultProps.AddDefaultProperty (myClass$, "myTool",

"Set1", "isAppropriate", "Boolean", "True")

b = DefaultProps.AddDefaultProperty (myClass$, "myTool",

"Set1", "mySpace", "Integer", "5")

End Sub

Sub Main

AddDefaultProperties (RoseApp.CurrentModel)

End Sub

Notes on the Example

1 This example uses Element.GetPropertyClassName to retrieve the internal name
of the class to which the property type will apply.

2 The first AddDefaultProperty call adds the enumeration and defines its possible
values in the string “Value1, Value2, Value3”.

3 The second AddDefaultProperty call adds a new property of the new enumerated
type; the property value is set to “Value1”.

4 If you want a new type to appear in the specification dialog box in the Rose user
interface, you must actually add a property of that type to the set. Using the above
example, if you simply created the type MyNewEnumeration, but did not add the
property MyEnumeratedProperty, MyNewEnumeration would not appear in the
Type drop-down list. Once you add the actual property, MyNewEnumeration
would appear in the list of types.

Creating a New Tool

There is no explicit way to add a new tool (tab) to a model. However, when you create
a new property set or add a new property to a model, you must specify the tool to
which the property or set applies. If the tool you specify does not already exist, it will
be added during the create or add process.

Placing Classes in Categories

� To create a new class and place it in a category, use the Category.AddClass method.
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� To relocate an existing class from one category to another, use the
Category.RelocateClass method.

Using Type Libraries for Rose Automation

How To

When you specify an REI class in an automation environment, you must add the
prefix Rose to the class name, unless the word Rose is already part of the REI class
name.

For more information on using Type Libraries with Rose, see Rose Extensibility Type
Libraries on page 5.

Example
� In Rose Script, the syntax for retrieving the Root Category of a model (that is, its
logical view) is:

Model.RootCategory

� In Rose Automation, the syntax for retrieving the Root Category of a model is:

RoseModel.RootCategory

� In both Rose Script and Rose Automation, the syntax for retrieving the
documentation belonging to a RoseItem is:

RoseItem.Documentation

Working with Controllable Units

Working with controllable units allows you to divide a model into smaller units. This
is particularly useful for multi-user development, as well as for placing a model
under configuration management.

The methods that apply to working with controllable units are:

� ControllableUnit.Control method, which associates a controllable unit with a file
name, so that it can be passed to a configuration management application.

� ControllableUnit.Uncontrol method, which removes the file association from the
unit.

� ControllableUnit.Load and Unload methods, which load or unload parts of a
model (for example, the units for which a person is responsible).
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� ControllableUnit.Save or ControllableUnit.SaveAs methods, which actually write
the specified controllable unit to a file.

Note: When you save a model, that will also save its controllable units.

Working with Rose Diagrams

Each kind of Rose diagram (class, component, scenario, and so on) inherits from the
Diagram class.

A diagram is made up of RoseItem and RoseItemView objects. A RoseItemview object
is the visual representation of the actual RoseItem object. As such, it is an object with
properties and methods that define its appearance in the diagram window (position,
color, size, and so on). You can define multiple RoseItemView objects for any given
RoseItem object.

� Use the Diagram.ItemViews method to iterate through the collection of
RoseItemView objects belonging to a diagram.

� Use the Diagram.Items method to iterate through the RoseItem objects that exist in
the diagram.

� Use the Diagram.GetViewFrom method to find the first RoseItemView object of a
given RoseItem object.

Note: You can only use the GetViewFrom method to retrieve the first
RoseItemView object defined for the RoseItem object. Even if you have more than
one RoseItemView object, you always only get the first.

� To find out which RoseItemView objects are currently selected in a diagram, iterate
through the diagram’s RoseItemView collection. As you retrieve each
RoseItemView object, use the ItemView.IsSelected method to find out whether the
RoseItemView object is currently selected in the diagram. You can then retrieve the
selected RoseItemView object, or do any other processing you wish to do based on
whether the RoseItemView object is selected.

� A short way to retrieve all selected RoseItemView objects from a diagram is to use
the Diagram.GetSelectedItems method. Instead of iterating through the diagram
and checking each RoseItemView object, this method simply returns everything
that is selected.
50 Chapter 3 - Using the REI to Work with Rational Rose



Getting an Element from a Collection

There are three ways to get an individual model element from a collection:

� Use the GetwithUniqueID method to directly access the element.

� Iterate through the collection using the element’s name using FindFirst, FindNext,
and GetAt.

� Iterate through the collection using Count followed by GetAt.

For more information, check the online Help for Collection Properties and Methods.

Accessing Collection Elements by Count

How To

To access collection elements by count:

1 Iterate through the collection using the Count property.

2 Retrieve the specific element using the GetAt method when the specific element is
found.

Example
Dim AllClasses As ClassCollection

Dim theClass As Class

For ClsID = 1 To AllClasses.Count

Set theClass = AllClasses.GetAt (ClsID)

' ToDo: Add your code here...

Next ClsID

Accessing Collection Elements by Unique ID

How To

The most direct and easiest way to get an element from within a collection is by
unique ID. To access collection elements by unique ID:

1 Use the GetUniqueID method to obtain the element’s unique ID.

2 Use the GetwithUniqueID method, specifying the ID you obtained in step 1.
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Example
Dim theClasses As ElementCollection

Dim theClass As Element

theID =theClasses.theClass.GetUniqueID ()

theClass = theClass.GetwithUniqueID (theID)

Accessing Collection Elements by Name

How To

To access an operation belonging to a class:

1 Use FindFirst to find the first occurrence of the specified operation in the
collection.

2 Use FindNext to iterate through subsequent occurrences of the operation.

3 Retrieve the specific operation using the GetAt method when the specific
operation is found.

Example
Sub PrintOperations (theClass As Class, OperationName As

String)

Dim theOperation As Operation

OperID = theClass.Operations.FindFirst (OperationName$)

Do

Set theOperation = theClass.Operations.GetAt (OperID)

' ToDo: Add your code here...

OperID = theClass.Operations.FindNext (OperID,

OperationName$)

Loop Until OperID = 0

End Sub
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4Using the Rational Rose
Script Editor
Contents

This chapter is organized as follows:

� The Rose Script Editor on page 53
� The Script Editor Window on page 54
� Opening a Script on page 54
� Creating New Rose Scripts on page 55
� Selecting a Font for the Script Editor on page 55
� Moving the Insertion Point in a Script on page 56
� Selecting Text on page 57
� Deleting, Cutting, Copying, and Pasting Text on page 59
� Adding Comments to a Script on page 59
� Finding and Replacing Text on page 60
� Running, Pausing, and Stopping Your Script on page 62
� Tracing Script Execution on page 63
� Setting and Removing Breakpoints on page 64
� Working with Watch Variables on page 66
� Compiling Your Script on page 69
� Using Interscript Calls on page 70
� Working with the Dialog Editor on page 70

The Rose Script Editor

The Rational Rose Script Editor provides an integrated environment for creating,
debugging, and compiling scripts that work with the Rose Extensibility Interface.
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The Script Editor Window

Figure 7 on page 54 shows the Script Editor application window.

Figure 7 Rose Script Editor

The Script Editor's application window contains the following elements:

� Toolbar: a collection of tools that you can use to provide instructions to the Script
Editor

� Edit pane: a window containing the source code for the script you are currently
editing

� Watch pane: a window that opens to display the watch variable list after you have
added one or more variables to that list

� Pane separator: a divider that appears between the edit pane and the watch pane
when the watch pane is open

� Status bar: displays the current location of the insertion point within your script

Opening a Script

To open a script in the Script Editor:

1 Click Tools > Open Script.

2 Select the script to open and select OK.
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The script is displayed in a new Script Editor window.

Creating New Rose Scripts

Creating a New Script from Scratch

To create a new script in the Script Editor:

1 Click Tools > New Script.

2 Enter your script in the new Script Editor window.

3 Enter your script text.

4 Click File > Save As and save the new script.

Creating a New Script from an Existing Script

To create a new script from an existing script:

1 Click Tools > Open Script.

2 Select a file from the list of available scripts.

3 Click OK to enter the Script Editor and display the script.

4 Select the script text and click Copy to save the script text to the Clipboard.

5 Click Tools > New Script.

6 Click Paste to paste the existing script text into the new script window.

7 Click File > Save As and save the new script.

Selecting a Font for the Script Editor

When you create a new script or edit an existing script, you can select the text font in
the Watch and Edit panes of the Script Editor window.

To select a font for the Script Editor:

1 To make sure the Script Editor window has the focus, do one of the following:

❑ Create a new script (Tools > New Script).

❑ Edit an existing script (Tools > Open Script).

❑ Click on an already open Script Editor window.

2 Click Edit > Font to display the Font dialog box.
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3 Select the font, font style, size, and script. (For information about each option, click
the question mark, and then click the option.)

A sample of the selected font appears in the Sample box.

4 Click OK.

The text in the Watch and Edit panes of the Script Editor appears in the selected
font.

Moving the Insertion Point in a Script

There are two ways to move the insertion point in a script:

� With the mouse
� By specifying a line number

Moving the Insertion Point with the Mouse

This approach is useful when the area of the screen to which you want to move the
insertion point is currently visible.

To move the insertion point with the mouse:

1 Use the scroll bars at the right and bottom of the display to scroll the target area of
the script into view if it is not already visible.

2 Place the mouse pointer where you want to position the insertion point.

3 Click the left mouse button.

The insertion point is repositioned.

Note: When you scroll the display with the mouse, the insertion point remains in its
original position until you reposition it with a mouse click. If you attempt to perform
an editing operation when the insertion point is not in view, the Script Editor
automatically scrolls the insertion point into view before performing the operation.

Moving the Insertion Point to a Specified Line in Your Script

This approach is useful when the area of the screen to which you want to move the
insertion point is not currently visible but you know the number of the target line.

To move the insertion point to a specified line:

1 Click Edit > Goto Line.
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The Script Editor displays the Goto Line dialog box.

Figure 8 Goto Line Dialog Box

2 Enter the number of the line in your script to which you want to move the
insertion point.

3 Click OK or press ENTER.

4 The insertion point is positioned at the start of the line you specified. If that line
was not already displayed, the Script Editor scrolls it into view.

Note: The insertion point cannot be moved so far below the end of a script as to
scroll the script entirely off the display. When the last line of your script becomes
the first line on your screen, the script will stop scrolling, and you will be unable to
move the insertion point below the bottom of that screen.

Selecting Text

There are three ways to select text in an open script:

� With the mouse
� With the keyboard
� By selecting an entire line

Selecting Text with the Mouse

To use the mouse to select text in your script:

1 Place the mouse pointer where you want your selection to begin.

2 Do one of the following:

❑ While pressing the left mouse button, drag the mouse until you reach the end
of your selection, and release the mouse button.

❑ While pressing SHIFT, place the mouse pointer where you want your selection
to end and click the left mouse button.
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The selected text is highlighted on your display.

Figure 9 Selected Script Text

Selecting Text with the Keyboard

To use keyboard shortcuts to select text in your script:

1 Place the insertion point where you want your selection to begin.

2 While pressing SHIFT, use one of the navigating keyboard shortcuts to extend the
selection to the desired ending point.

The selected text is highlighted on your display.

Selecting an Entire Line

To use the keyboard to select one or more whole lines in your script:

1 Place the insertion point at the beginning of the line you want to select.

2 Press SHIFT + DOWN ARROW.

The entire line, including the end-of-line character, is selected.

3 To extend your selection to include additional whole lines of text, repeat step 2.
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Deleting, Cutting, Copying, and Pasting Text

Deleting Text

Do one of the following to remove characters, selected text, or entire lines from your
script:

� To remove a single character to the left of the insertion point, press BACKSPACE
once.

� To remove a single character to the right of the insertion point, press DELETE once.

� To remove multiple characters, hold down BACKSPACE or DELETE.

� To remove text that you have selected, press BACKSPACE or DELETE.

� To remove an entire line, place the insertion point in that line and press CTRL+Y.

Cutting a Selection

To cut text from your script and place it on the Clipboard, press CTRL+X.

Copying a Selection

To copy text from your script and place it on the Clipboard, press CTRL+C.

Pasting the Contents of the Clipboard into Your Script

To paste the contents of the Clipboard into your script:

1 Position the insertion point where you want to place the contents of the Clipboard.

2 Press CTRL+V.

Adding Comments to a Script

There are two types of comments you can add to a script:

� Full-Line Comment
� Comment at the End of a Line of Code

Adding a Full-Line Comment

To designate an entire line as a comment:

1 Type an apostrophe ( ' ) at the start of the line.

2 Type your comment following the apostrophe.
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When your script is run, the presence of the apostrophe at the start of the line will
cause the entire line to be ignored.

Adding a Comment at the End of a Line of Code

To designate the last part of a line as a comment:

1 Position the insertion point in the empty space beyond the end of the line of code.

2 Type an apostrophe ( ' ).

3 Type your comment following the apostrophe.

When your script is run, the code on the first portion of the line will be executed, but
the presence of the apostrophe at the start of the comment will cause the remainder of
the line to be ignored.

Finding and Replacing Text

Finding Specified Text

To locate instances of specified text quickly anywhere within your script:

1 Move the insertion point to where you want to start your search. To start at the
beginning of your script, press CTRL+HOME.

2 Press CTRL+F.

The Script Editor displays the Find dialog box.

Figure 10 Find Dialog Box

3 In the Find what box, specify the text you want to find or select it from the list of
previous searches.

4 Click Find Next or press ENTER.

The Find dialog box remains displayed, and the Script Editor either highlights the
first instance of the specified text or indicates that it cannot be found.
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5 If the specified text has been found, repeat step 4 to search for the next instance of
it.

Note: If the Find dialog box blocks your view of an instance of the specified text,
you can move the dialog box out of your way and continue with your search.

6 To remove the Find dialog box while maintaining the established search criteria,
click Cancel.

7 Press F3 to find successive occurrences of the specified text.

Note: If you press F3 when you have not previously specified text for which you
want to search, the Script Editor displays the Find dialog box so you can specify
the desired text.

Replacing Specified Text

To automatically replace either all instances or selected instances of specified text:

1 Move the insertion point to where you want to start the replacement operation. To
start at the beginning of your script, press CTRL+HOME.

2 Click Edit > Replace.

The Script Editor displays the Replace dialog box.

Figure 11 Replace Dialog Box

3 In the Find what box, specify the text you want to replace or select it from the list of
previous searches.

4 In the Replace with box, specify the replacement text or select it from the list of
previous replacements.

5 To replace selected instances of the specified text, click Find Next.

The Script Editor either highlights the first instance of the specified text or
indicates that it cannot be found.
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6 If the specified text has been found, either click Replace to replace that instance of
it or click Find Next to highlight the next instance (if any).

Each time you click Replace, the Script Editor replaces that instance of the
specified text and automatically highlights the next instance.

Running, Pausing, and Stopping Your Script

Running Your Script

To compile and run your script from within the Script Editor, click Go on the toolbar
or press F5.

The script is compiled (if it has not already been compiled), the focus is switched to
the parent window, and the script is executed.

Note: During script execution, the Script Editor's application window is available
only in a limited manner. Some of the menu commands may be unavailable, and the
toolbar tools may be inoperative.

You can also use the Application Class ExecuteScript method to run scripts. See the
online Help for details.

Pausing an Executing Script

To suspend the execution of a script that you are running, press CTRL+BREAK.

Execution of the script is suspended, and the instruction pointer (a gray highlight)
appears on the line of code where the script stopped executing.

Note: The instruction pointer designates the line of code that will be executed next if
you resume running your script.

Stopping an Executing Script

To stop the execution of a script that you are running:

1 If it is not paused, pause the script.

2 Click StopDebugging on the toolbar or press SHIFT+F5.

Note: Many of the functions of the Script Editor's application window may be
unavailable while you are running a script. If you want to stop your script, but find
that the toolbar is currently inoperative, press CTRL+BREAK to pause your script, then
click StopDebugging.
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Tracing Script Execution

Stepping Through Your Script

To trace the execution of your script with either the StepInto or StepOver method:

1 Do one of the following:

❑ Click StepInto or StepOver on the toolbar.

❑ Press F11(StepInto) or F10 (StepOver).

The Script Editor places the instruction pointer on the sub main line of your script.

Note: When you initiate execution of your script using either of these methods, the
script will first be compiled, if necessary. Therefore, there may be a slight pause
before execution actually begins. If your script contains any compile errors, it will
not be executed. To debug your script, first correct any compile errors, and then
execute it again.

2 To continue tracing the execution of your script, repeat step 1.

Each time you repeat step 1, the Script Editor executes the line or the procedure
that contains the instruction pointer and then moves the instruction pointer to the
next line or procedure to be executed.

3 When you finish tracing the execution of your script, either click Go on the toolbar
(or press F5) to run the script at full speed or click Stop Debugging to halt execution
of the script.

Displaying the Calls Dialog Box

When you are stepping through a subroutine, you may need to determine the
procedure calls by which you arrived at that point in your script.

To use the Calls dialog box to obtain this information:

1 Click Calls on the toolbar.
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The Script Editor displays the Calls dialog box, which lists the procedure calls
made by your script in the course of arriving at the present subroutine.

Figure 12 Script Calls Dialog Box

2 Select the name of the procedure you wish to view.

3 Click Show.

The Script Editor highlights the currently executing line in the procedure you
selected, scrolling that line into view if necessary. (During this process, the
instruction pointer remains in its original location in the subroutine.)

Setting and Removing Breakpoints

You set and remove breakpoints in your script as part of the debugging process.

Starting Debugging Partway Through a Script

To begin the debugging process at a selected point in your script:

1 Place the insertion point in the line where you want to start debugging.

2 To set a breakpoint on that line, click Toggle Breakpoint on the toolbar or press F9.

The line on which you set the breakpoint now appears in contrasting type.

3 Click Go on the toolbar or press F5.

The Script Editor runs your script at full speed from the beginning and then
pauses prior to executing the line containing the breakpoint. It places the
instruction pointer on that line to designate it as the line that will be executed next
when you either proceed with debugging or resume running the script.
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Continuing Debugging at a Line Outside the Current Subroutine

You can continue debugging at a line that is not within the same subroutine.

To move the instruction pointer to that line:

1 Place the insertion point in the line where you want to continue debugging.

2 To set a breakpoint on that line, click Toggle Breakpoint on the toolbar or press F9.

The line on which you set the breakpoint now appears in contrasting type.

3 Click Go on the toolbar or press F5.

The Script Editor runs your script at full speed from the beginning and then
pauses prior to executing the line containing the breakpoint. It places the
instruction pointer on that line to designate it as the line that will be executed next.
You can now resume stepping through your script from that point.

Debugging Selected Portions of Your Script

You can use breakpoints if you only need to debug parts of your script.

To debug selected portions of your script by using breakpoints:

1 Place a breakpoint at the start of each portion of your script that you want to
debug.

Note: Up to 255 lines in your script can contain breakpoints.

2 Click Go on the toolbar or press F5.

The script executes at full speed until it reaches the line containing the first
breakpoint and then pauses with the instruction pointer on that line.

3 Step through as much of the code as you need to.

4 To resume running your script, click Go on the toolbar or press F5.

The script executes at full speed until it reaches the line containing the second
breakpoint and then pauses with the instruction pointer on that line.

5 Repeat steps 3 and 4 until you have finished debugging the selected portions of
your script.
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Removing a Single Breakpoint Manually

To delete breakpoints manually one at a time:

1 Place the insertion point on the line containing the breakpoint that you want to
remove.

2 Click Toggle Breakpoint on the toolbar or press F9.

The breakpoint is removed, and the line no longer appears in contrasting type.

Removing All Breakpoints Manually

To delete all breakpoints manually in a single operation, click Debugger > Clear All
Breakpoints.

Working with Watch Variables

Watch variables allow you to track the changing values of variables in a script.

Adding Watch Variables

To add a variable to the Script Editor's watch variable list:

1 Click Add Watch on the toolbar or press SHIFT+F9.

The Script Editor displays the Add Watch dialog box.

Figure 13 Add Watch Dialog Box

2 In the Variable list, enter the name of the variable you want to add to the watch
variable list.

You can only watch variables of fundamental data types, such as Integer, Long,
Variant, and so on; you cannot watch complex variables such as structures or
arrays. You can, however, watch individual elements of arrays or structure
members.
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Use the following syntax to watch individual elements of arrays or structure
members in a script:

[variable [(index,...)] [.member [(index,...)]]...]

Where variable is the name of the structure or array variable, index is a literal
number, and member is the name of a structure member.

For example, Table 6 on page 67 shows valid watch expressions.

Note: If you are executing the script, you can display the names of all the variables
that are “in scope,” or defined within the current function or subroutine, in the
Variable drop-down list and select the variable you want from that list.

3 In the Procedure box, enter the name of the RoseScript subroutine or function
whose variable you want to add to the watch variable list. For example,Main for
the Main subroutine, Area for the Area function,

4 In the Script box, enter the name of the RoseScript without the .ebs extension
whose variable you want to add to the watch variable list. For example,
CountClasses for the CountClasses.ebs RoseScript.

5 Click OK or press ENTER.

If this is the first variable you are placing on the watch variable list, the watch pane
opens far enough to display that variable. If the watch pane was already open, it
expands far enough to display the variable you just added.

Note: Although you can add as many watch variables to the list as you want, the
watch pane only expands until it fills half of the Script Editor's application
window. If your list of watch variables becomes longer than that, you can use the
watch pane's scroll bars to bring hidden portions of the list into view.

Table 6 Sample Watch Expressions

Watch Variable Description

a(1) Element 1 of array a

person.age Member age of structure person

company(10,23).person.age Member age of structure person that
is at element 10,23 within the array
of structures called company
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Selecting Variables on the Watch List

To delete a variable from the Script Editor's watch variable list or modify the value of
a variable on the list, do one of the following:

� Place the mouse pointer on the variable you want to select and click the left mouse
button.

� If one of the variables on the watch list is already selected, use the arrow keys to
move the selection highlight to the desired variable.

� If the insertion point is in the edit pane, press F6 to highlight the most recently
selected variable on the watch list and then use the arrow keys to move the
selection highlight to the desired variable.

Note: Pressing F6 again returns the insertion point to its previous position in the
edit pane.

Deleting Watch Variables

To delete a selected variable from the Script Editor's watch variable list:

1 Select the variable on the watch list.

2 Click Debugger > Delete Watch, or press DELETE.

Modifying the Value of Variables on the Watch Variable List

When the debugger has control, you can modify the value of any of the variables on
the Script Editor's watch variable list.

To change the value of a selected watch variable.

1 Do one of the following:

❑ Place the mouse pointer on the name of the variable whose value you want to
modify and double-click the left mouse button.

❑ Select the name of the variable whose value you want to modify and press
ENTER or F2.
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The Script Editor displays the Modify Variable dialog box.

Figure 14 Modify Variable Dialog Box

Note: The name of the variable you selected on the watch variable list appears in
the Name box.

When you use the Modify Variable dialog box to change the value of a variable, you
do not have to specify the context. The Script Editor first searches locally for the
definition of that variable, then privately, then publicly.

2 In the Value box, enter the new value for your variable.

3 Click OK.

The new value of your variable appears on the watch variable list.

Compiling Your Script

To create compiled script files from your script source:

1 Click Tools > Open Script and select the file that contains the script you want to
compile.

2 Click Debugger > Compile or press F7.

3 Enter the name of the file in which to save the compiled script and select OK.

The script is compiled and saved in a file with a .ebx extension.

Note: You can also use the Application.CompileScriptFile method to compile
scripts. See the online Help for more details.
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Using Interscript Calls

Guidelines for Using a Script to Call Another Script

You can write a script that includes code that calls and executes another script. The
following guidelines apply to this process:

� You can only call and execute a compiled script from within another script.

� Use the LoadScript method to load the script into memory.

� Use the FreeScript method to unload the script from memory.

� Even if you call LoadScript multiple times, the script is only loaded into memory
one time. However, for each LoadScript call you make, you must include a
corresponding FreeScript call. If you do not do this, the script will not be unloaded
from memory.

Debugging Interscript Calls

To debug a script that uses interscript calls:

1 Enter the call to the compiled script you are including and set a breakpoint on the
call.

2 Click Debugger > StepInto.

The Script Editor displays the source code for the compiled script you are calling,
and steps through it line by line.

When the trace of the called script is complete, the Script Editor redisplays the
calling script.

Note: The script you are calling must be compiled with debugging turned on. See
Compiling Your Script on page 69 for details.

Working with the Dialog Editor

Inserting a Dialog Box into Your Script

To insert a dialog box into your script:

1 Place the insertion point where you want the BasicScript code for the dialog box to
appear in your script.

2 Click Edit > Insert Dialog.
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The Script Editor's application window is temporarily unavailable, and Dialog
Editor appears, displaying a new dialog box in its application window.

3 Use the Dialog Editor to create your dialog box.

4 Click File > Exit and Return from the Dialog Editor menu to return to the Script
Editor.

The Script Editor automatically places the code for the dialog box in your script at
the location of the insertion point.

Editing an Existing Dialog Box

To edit an existing dialog box template in your script:

1 Select the BasicScript code for the entire dialog box template.

2 Click Edit > Edit Dialog.

The Script Editor's application window is temporarily unavailable, and the Dialog
Editor appears, displaying in its application window a dialog box created from the
code you selected.

a Use the Dialog Editor to modify your dialog box.

b Click File > Exit and Return from the Dialog Editor menu to return to the Script
Editor.

The Script Editor automatically replaces the BasicScript code you originally
selected with the revised code generated by the Dialog Editor.

Displaying and Adjusting the Grid

The X and Y settings help you position controls more precisely within your dialog
box. The values of X and Y in the Grid dialog box determine the grid's spacing.
Assigning smaller X and Y values produces a more closely spaced grid, which enables
you to move the mouse pointer in smaller horizontal and vertical increments as you
position controls. Assigning larger X and Y values produces the opposite effect on
both the grid's spacing and the movement of the mouse pointer. The X and Y settings
entered in the Grid dialog box remain in effect regardless of whether you choose to
display the grid.

To display and adjust the grid:

1 Press CTRL+G.
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The Dialog Editor displays the Grid dialog box.

Figure 15 Grid Dialog Box

2 To display the grid in your dialog box, select the Show grid check box.

3 Enter new values in the Horizontal (X) and Vertical (Y) boxes.

4 Click OK or press ENTER.

The Dialog Editor displays the grid with the settings you specified.

Figure 16 Dialog Editor with Grid Displayed

5 With the grid displayed, line up the crosshairs on the mouse pointer with the dots
on the grid to position controls precisely and align them with other controls.
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Changing Titles and Labels

To change the title of a dialog box, as well as the labels of group boxes, option buttons,
push buttons, text controls, and check boxes:

1 Display the Information dialog box for the dialog box whose title you want to
change or for the control whose label you want to change.

2 Enter the new title or label in the Text$ box.

Note: Dialog box titles and control labels are optional. Therefore, you can leave the
Text$ box blank.

3 If the information in the Text$ box should be interpreted as a variable name rather
than a literal string, select the Variable Name check box.

4 Click OK or press ENTER.

The new title or label is now displayed on the title bar or on the control.

Assigning Accelerator Keys

To designate a letter from a control's label to serve as the accelerator key for that
control.

1 Display the Information dialog box for the control to which you want to assign an
accelerator key.

2 In the Text$ box, type an ampersand (&) before the letter you want to designate as
the accelerator key.

3 Click OK or press ENTER.

The letter you designated is now underlined on the control's label, and users will
be able to access the control by pressing ALT + the underlined letter.

Capturing Standard Windows Dialog Boxes

To capture the standard Windows controls from any standard Windows dialog box in
another application, and insert those controls into the Dialog Editor for editing:

1 Display the dialog box you want to capture.

2 Open the Dialog Editor.

3 Click File > Capture Dialog.
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The Dialog Editor displays the Select the Dialog Box to Capture dialog box.

Figure 17 Capturing a Dialog Box

4 Select the dialog box that you want to capture, then click OK.

Note: The Dialog Editor only supports standard Windows controls and standard
Windows dialog boxes. Therefore, if the target dialog box contains both standard
Windows controls and custom controls, only the standard Windows controls will
appear in the Dialog Editor's application window. If the target dialog box is not a
standard Windows dialog box, you will be unable to capture the dialog box or any
of its controls.

Testing Your Dialog Boxes

The Dialog Editor lets you run your edited dialog box for testing purposes. When you
click Test Dialog, your dialog box becomes functional, which gives you an opportunity
to make sure it functions properly and fix any problems before you incorporate the
dialog box template into your script.

Before you run your dialog box, take a moment to look it over for basic problems such
as the following:

� Does the dialog box contain a command button—that is, a default OK or Cancel
button, a push button, or a picture button?

� Does the dialog box contain all the necessary push buttons?

� Does the dialog box contain a Help button if one is needed?

� Are the controls aligned and sized properly?

� If there is a text control, is its font set properly?

� Are the close box and title bar displayed (or hidden) as you intended?

� Are the control labels and dialog box title spelled and capitalized correctly?

� Do all the controls fit within the borders of the dialog box?
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� Could you improve the design of the dialog box by adding one or more group
boxes to set off groups of related controls?

� Could you clarify the purpose of any unlabeled control (such as a text box, list box,
combo box, drop-down list, picture, or picture button) by adding a text control to
serve as a label for it?

� Have you made all the necessary accelerator key assignments?

� After you have fixed any elementary problems, you are ready to run your dialog
box so you can check for problems that do not become apparent until a dialog box
is activated.

Testing your dialog box is an iterative process that involves running the dialog box to
see how well it works, identifying problems, stopping the test, and fixing those
problems. You can then run the dialog box again to make sure the problems are fixed
and to identify any additional problems, and do so until the dialog box functions the
way you intend.

To test your dialog box and fine-tune its performance:

1 Click Test Dialog on the toolbar, or press F5, to make the dialog box operational.

2 Check the dialog box’s functions.

3 To stop the test, click Test Dialog, press F5, or click the dialog box's close box (if it
has one).

4 Make any necessary adjustments to the dialog box.

5 Repeat steps 1-4 as many times as you need in order to get the dialog box working
properly.

Incorporating Dialog Boxes or Controls into Your Script

You create dialog boxes and dialog box controls in the Dialog Editor. To incorporate
them into a script, you copy them to the Clipboard. When you copy the dialog box to
the Clipboard, it is stored in the form of Basic Script statements. You then paste the
contents of the Clipboard into the script.

To incorporate a dialog box or control into your script:

1 Select the dialog box or control that you want to incorporate into your script.

2 Press CTRL+C.

3 Open your script and paste the contents of the Clipboard at the desired point.
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The dialog box template or control appears in BasicScript statements in your
script, as shown in Figure 18 on page 76.

Figure 18 Sample Dialog Box in Basic Script
.

Selecting Controls

To select a control in a dialog box, do one of the following:

� With the Pick tool active, place the mouse pointer on the desired control and click
the mouse button.

� With the Pick tool active, press the TAB key repeatedly until the focus moves to the
desired control.

The control is now surrounded by a thick frame to indicate that it is selected and
you can edit it.

Selecting Dialog Boxes

To select an entire dialog box, do one of the following:

� With the Pick tool active, place the mouse pointer on the title bar of the dialog box
or on an empty area within the borders of the dialog box (that is, on an area where
there are no controls) and click the mouse button.

� With the Pick tool active, press the TAB key repeatedly until the focus moves to the
dialog box.

The dialog box is now surrounded by a thick frame to indicate that it is selected
and can be edited.
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Repositioning Items

Repositioning Items with the Mouse

The increments by which you can move a control with the mouse are governed by the
grid setting. For example, if the grid's X setting is 4 and its Y setting is 6, you will be
able to move the control horizontally only in increments of 4 X units and vertically
only in increments of 6 Y units. This feature is useful if you are trying to align controls
in your dialog box. See Displaying and Adjusting the Grid on page 71.

To reposition an item in a dialog box or control by dragging it with the mouse:

1 With the Pick tool active, place the mouse pointer on an empty area of the dialog
box or on a control.

2 Press the mouse button and drag the dialog box or control to the desired location.

Repositioning Items with the Arrow Keys

To reposition an item in a dialog box or control by dragging it with the arrow keys:

1 Select the dialog box or control that you want to move.

2 Do one of the following:

❑ Press an arrow key once to move the item by one X or Y unit in the desired
direction.

❑ Repeatedly press an arrow key to “nudge” the item gradually along in the
desired direction.

Note: When you reposition an item with the arrow keys, a faint, partial afterimage
of the item may remain visible in the item's original position. These afterimages
disappear once you test your dialog box.

Repositioning Dialog Boxes with the Dialog Information Dialog
Box

To reposition items in a dialog box or control by using the Dialog Information dialog
box:

1 Display the Dialog Box Information dialog box.

Note: For information on displaying the Dialog Information dialog box, see
Displaying the Information Dialog Boxes for Dialog Boxes on page 82.

2 Do one of the following:

❑ Change the X and Y coordinates in the Position group box.
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❑ Leave the X and/or Y coordinates blank.

3 Click OK or press ENTER.

If you specified X and Y coordinates, the dialog box moves to that position. If you
left the X coordinate blank, the dialog box will be centered horizontally relative to
the parent window of the dialog box when the dialog box is run. If you left the Y
coordinate blank, the dialog box will be centered vertically relative to the parent
window of the dialog box when the dialog box is run.

Repositioning Controls with the Dialog Information Dialog Box

To move a selected control by changing its coordinates in the Dialog Information dialog
box for that control:

Note: For information on displaying the Dialog Information dialog box, see
Displaying the Information Dialog Boxes for Controls on page 83.

1 Display the Information dialog box for the control that you want to move.

2 Change the X and Y coordinates in the Position group box.

3 Click OK or press ENTER.

The control moves to the specified position.

Resizing Items

Resizing Items with the Mouse

To change the size of a selected dialog box or control by dragging its borders or
corners with the mouse:

1 With the Pick tool active, select the dialog box or control that you want to resize.

2 Place the mouse pointer over a border or corner of the item.

3 Depress the mouse button and drag the border or corner until the item reaches the
desired size.

Resizing Items with the Information Dialog Box

To change the size of a selected dialog box or control by changing its Width or Height
settings in the Information dialog box:

1 Display the Information dialog box for the dialog box or control that you want to
resize.

2 Change theWidth and Height settings in the Size group box.
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3 Click OK or press ENTER.

The dialog box or control is resized to the dimensions you specified.

Resizing Selected Items Automatically

To adjust the borders of certain controls automatically to fit the text displayed on
them:

1 With the Pick tool active, select the option button, text control, push button, check
box, or text box that you want to resize.

2 Press F2.

The borders of the control will expand or contract to fit the text displayed on it.

Adding Controls

To add one or more controls to your dialog box using simple mouse and keyboard
methods.

1 From the toolbar, choose the tool corresponding to the type of control you want to
add.

Note: When you pass the mouse pointer over an area of the display where a
control can be placed, the pointer becomes an image of the selected control with
crosshairs (for positioning purposes) to its upper left. The name and position of the
selected control appear on the status bar. When you pass the pointer over an area
of the display where a control cannot be placed, the pointer changes into a circle
with a slash through it (the “prohibited” symbol).

Note: You can only insert a control within the borders of the dialog box you are
creating. You cannot insert a control on the dialog box's title bar or outside its
borders.

2 Place the pointer where you want the control to be positioned and click the mouse
button.

The control you just created appears at the specified location. The upper left corner
of the control corresponds to the position of the pointer's crosshairs at the moment
you clicked the mouse button. The control is surrounded by a thick frame, which
means that it is selected, and it may also have a default label.

After the new control appears, the mouse pointer becomes an arrow, to indicate
that the Pick tool is active and you can once again select any of the controls in your
dialog box.

3 To add another control of the same type as the one you just added, press CTRL+D.
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A duplicate copy of the control appears.

4 To add a different type of control, repeat steps 1 and 2.

5 To reactivate the Pick tool, do one of the following:

❑ Click the arrow-shaped tool on the toolbar.

❑ Click the title bar of the dialog box or outside the borders of the dialog box (that
is, on any area where the mouse pointer turns into the “prohibited” symbol).

Duplicating Controls

You can use the Dialog Editor's duplicating feature to create one or more copies of a
particular control.

To duplicate controls:

1 Select the control that you want to duplicate.

2 Press CTRL+D.

A duplicate copy of the selected control appears in your dialog box.

3 Repeat step 2 as many times as necessary to create the desired number of duplicate
controls.

Adding Pictures to a Dialog Box

You can add pictures to a dialog box from a file or from a picture library.

Adding Pictures from Files

You can display a Windows bitmap or metafile from a file on a picture control or
picture button control by using the control's Information dialog box to indicate the file
in which the picture is contained.

To add pictures from files:

1 Display the Information dialog box for the picture control or picture button control
whose picture you want to specify.

2 In the Picture source option button group, click File.

3 In the Name$ box, enter the name of the file containing the picture you want to
display in the picture control or picture button control.

Note: By clicking the Browse button, you can display the Select a Picture File
dialog box and use it to find the file.

4 Click OK or press ENTER.
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The picture control or picture button control displays the picture you specified.

Adding Pictures from Picture Libraries

You can display a Windows bitmap or metafile from a file on a picture control or
picture button control by using the control's Information dialog box to indicate the file
in which the picture is contained.

To add pictures from picture libraries:

1 Display the Information dialog box for the picture control or picture button control
whose picture you want to specify.

2 In the Picture source option button group, click File.

3 In the Name$ box, enter the name of the file containing the picture you want to
display in the picture control or picture button control.

Note: By clicking the Browse button, you can display the Select a Picture File
dialog box and use it to find the file.

4 Click OK or press ENTER.

The picture control or picture button control displays the picture you specified.

Pasting Items into Dialog Editor

Pasting Existing Dialog Boxes into the Dialog Editor

You can modify a BasicScript dialog box template contained in your script by
selecting the template and pasting it into the Dialog Editor for editing.

To paste dialog boxes into the Dialog Editor:

1 Copy the entire BasicScript dialog box template (from the Begin Dialog instruction
to the End Dialog instruction) from your script to the Clipboard.

2 Open the Dialog Editor.

3 Press CTRL+V.

4 When the Dialog Editor asks whether you want to replace the existing dialog box,
click Yes.

The Dialog Editor creates a new dialog box corresponding to the template
contained on the Clipboard.
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Pasting Controls from Existing Dialog Boxes into the Dialog Editor

You can modify the BasicScript statements in your script that correspond to one or
more dialog box controls by selecting the statements and pasting them into Dialog
Editor for editing.

To paste controls into the Dialog Editor:

1 Copy the BasicScript description of the control(s) from your script to the
Clipboard.

2 Open the Dialog Editor.

3 Press CTRL+V.

The Dialog Editor adds to your current dialog box one or more controls
corresponding to the description contained on the Clipboard.

Displaying the Information Dialog Boxes

There are two types of Information dialog boxes:

� Information Dialog Box for Dialogs
� Information Dialog Box for Controls

Displaying the Information Dialog Boxes for Dialog Boxes

To display the Dialog Box Information dialog box to check and adjust attributes that
pertain to the dialog box as a whole, do one of the following:

� With the Pick tool active, place the mouse pointer on an area of the dialog box
where there are no controls and double-click the mouse button.

� With the Pick tool active, select the dialog box and either click the Information tool
on the toolbar, press ENTER, or press CTRL+I.
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The Dialog Box Information dialog box appears.

Figure 19 Dialog Box Information Dialog Box

Attributes You Can Adjust with the Dialog Box Information Dialog
Box

The Dialog Box Information dialog box can be used to check and adjust the following
attributes, which pertain to the dialog box as a whole:

� Position (optional): X and Y coordinates on the display, in dialog box units

� Size (mandatory): width and height of the dialog box, in dialog box units

� Style (optional): options that allow you to determine whether the close box and
title bar are displayed

� Text$ (optional): text displayed on the title bar of the dialog box

� Name (mandatory): name by which you refer to this dialog box template in your
BasicScript code

� Function (optional): name of a BasicScript function in your dialog box

� Picture Library (optional): picture library from which one or more pictures in the
dialog box are obtained

Displaying the Information Dialog Boxes for Controls

To display the Information dialog box for a control to check and adjust attributes that
pertain to that particular control, do one of the following:

� With the Pick tool active, place the mouse pointer on the desired control and
double-click the mouse button.
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� With the Pick tool active, select the control and either click the Information tool on
the toolbar, press ENTER, or press CTRL+I.

The Dialog Editor displays an Information dialog box corresponding to the control
you selected. For an example, see Figure 20 on page 84.

Figure 20 Control Information Dialog Box

Attributes You Can Adjust with the Information Dialog Boxes for
Controls

Control Information dialog boxes can be used to check and adjust the attributes of the
following controls:

� Default OK Button Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box, in dialog box
units

❑ Size (mandatory): width and height of the control, in dialog box units

❑ .Identifier (optional): name by which you refer to a control in your BasicScript
code

� Default Cancel Button Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box, in dialog box
units

❑ Size (mandatory): width and height of the control, in dialog box units

❑ .Identifier (optional): name by which you refer to a control in your BasicScript
code

� Help Button Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box, in dialog box
units
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❑ Size (mandatory): width and height of the control, in dialog box units

❑ FileName$ (optional): Name of the Help file that you want to invoke

❑ Context& (mandatory): The context ID specifying which Help topic to jump to

❑ .Identifier (optional): name by which you refer to a control in your BasicScript
code

� Push Button Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box, in dialog box
units

❑ Size (mandatory): width and height of the control, in dialog box units

❑ Text$ (optional): text displayed on a control

❑ .Identifier (optional): name by which you refer to a control in your BasicScript
code

� Option Button Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box, in dialog box
units

❑ Size (mandatory): width and height of the control, in dialog box units

❑ Text$ (optional): text displayed on a control

❑ .Identifier (optional): name by which you refer to a control in your BasicScript
code

❑ .Option Group (mandatory): name by which you refer to a group of option
buttons in your BasicScript code

� Check Box Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box, in dialog box
units

❑ Size (mandatory): width and height of the control, in dialog box units

❑ Text$ (optional): text displayed on a control

❑ .Identifier (mandatory): name by which you refer to a control in your BasicScript
code; also contains the result of the control after the dialog box has been
processed

� Group Box Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box, in dialog box
units

❑ Size (mandatory): width and height of the control, in dialog box units
Working with the Dialog Editor 85



❑ Text$ (optional): text displayed on a control

❑ .Identifier (optional): name by which you refer to a control in your BasicScript
code

� Text Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box, in dialog box
units

❑ Size (mandatory): width and height of the control, in dialog box units

❑ Text$ (optional): text displayed on a control

❑ Font (optional): font in which text is displayed

❑ .Identifier (optional): name by which you refer to a control in your BasicScript
code

� Text Box Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box, in dialog box
units

❑ Size (mandatory): width and height of the control, in dialog box units

❑ Multiline (optional): option that allows you to determine whether users can
enter a single line of text or multiple lines

❑ .Identifier (mandatory): name by which you refer to a control in your BasicScript
code; also contains the result of the control after the dialog box has been
processed

� List Box Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box, in dialog box
units

❑ Size (mandatory): width and height of the control, in dialog box units

❑ .Identifier (mandatory): name by which you refer to a control in your BasicScript
code; also contains the result of the control after the dialog box has been
processed

❑ Array$ (mandatory): name of an array variable in your BasicScript code

� Combo Box Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box, in dialog box
units

❑ Size (mandatory): width and height of the control, in dialog box units
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❑ .Identifier (mandatory): name by which you refer to a control in your BasicScript
code; also contains the result of the control after the dialog box has been
processed

❑ Array$ (mandatory): name of an array variable in your BasicScript code

� Drop List Box Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box, in dialog box
units

❑ Size (mandatory): width and height of the control, in dialog box units

❑ .Identifier (mandatory): name by which you refer to a control in your BasicScript
code; also contains the result of the control after the dialog box has been
processed

❑ Array$ (mandatory): name of an array variable in your BasicScript code

� Picture Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box, in dialog box
units

❑ Size (mandatory): width and height of the control, in dialog box units

❑ .Identifier (optional): name by which you refer to a control in your BasicScript
code

❑ .Identifier (optional): name of the file containing a picture that you want to
display or the name of a picture that you want to display from a specified
picture library

❑ Frame (optional): option that allows you to display a 3-D frame

� Picture Button Information dialog box

❑ Position (mandatory): X and Y coordinates within the dialog box, in dialog box
units

❑ Size (mandatory): width and height of the control, in dialog box units

❑ .Identifier (optional): name by which you refer to a control in your BasicScript
code

❑ .Identifier (optional): name of the file containing a picture that you want to
display or the name of a picture that you want to display from a specified
picture library
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ARational Rose Script
Editor Shortcuts
Contents

This chapter is organized as follows:

� General Shortcuts on page 89
� Navigating Shortcuts on page 90
� Editing Shortcuts on page 90
� Debugging Shortcuts on page 91
� File Menu Shortcuts on page 92
� Edit Menu Shortcuts on page 92
� Debugger Menu Shortcuts on page 93

This appendix identifies the shortcuts that can be used with the Rational Script Editor.

General Shortcuts

Table 7 General Shortcuts

Key Name(s) Description

F1 Provides context-sensitive Help for selected menu commands and variables
in the watch pane, for BasicScript terms in the edit pane that have been
selected or that contain the insertion point, and for displayed dialog boxes.

CTRL+F Displays the Find dialog box, which allows you to specify text for which
you want to search.

F3 Searches for the next occurrence of previously specified text. If you have not
previously specified text for which you want to search, displays the Find
dialog box.

ESC Deactivates the Help pointer if it is active. Otherwise, compiles your script
and returns you to the host application.
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Navigating Shortcuts

Editing Shortcuts

Table 8 Navigating Shortcuts

Key Name(s) Description

UP ARROW Moves the insertion point up one line.

DOWN ARROW Moves the insertion point down one line.

LEFT ARROW Moves the insertion point left by one character position.

RIGHT ARROW Moves the insertion point right by one character position.

PAGE UP Moves the insertion point up by one window.

PAGE DOWN Moves the insertion point down by one window.

CTRL+PAGE UP Scrolls the insertion point left by one window.

CTRL+PAGE DOWN Scrolls the insertion point right by one window.

CTRL+LEFT ARROW Moves the insertion point to the start of the next word to the left.

CTRL + RIGHT
ARROW

Moves the insertion point to the start of the next word to the right.

HOME Places the insertion point before the first character in the line.

END Places the insertion point after the last character in the line.

CTRL+HOME Places the insertion point before the first character in the script.

CTRL+END Places the insertion point after the last character in the script.

Table 9 Editing Shortcuts

Key Name(s) Description

DELETE Removes the selected text or removes the character following the
insertion point without placing it on the Clipboard.

BACKSPACE Removes the selected text or removes the character preceding the
insertion point without placing it on the Clipboard.

CTRL+Y Deletes the entire line containing the insertion point without placing
it on the Clipboard.
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Debugging Shortcuts

TAB Inserts a tab character.

ENTER Inserts a new line, breaking the current line.

CTRL+C Copies the selected text, without removing it from the script, and
places it on the Clipboard.

CTRL+X Removes the selected text from the script and places it on the
Clipboard.

CTRL+V Inserts the contents of the Clipboard at the location of the insertion
point.

SHIFT + any
navigating shortcut

Selects the text between the initial location of the insertion point and
the point to which the keyboard shortcut would normally move the
insertion point. (For example, pressing SHIFT + CTRL + LEFT
ARROW selects the word to the left of the insertion point; pressing
SHIFT+CTRL+HOME selects all the text from the location of the
insertion point to the start of your script.)

CTRL+Z Reverses the effect of the preceding editing change(s).

Table 9 Editing Shortcuts (continued)

Key Name(s) Description

Table 10 Debugging Shortcuts

Key Name(s) Description

SHIFT+F9 Displays the Add Watch dialog box, in which you can specify the name
of a BasicScript variable. The Script Editor then displays the value of that
variable, if any, in the watch pane of its application window.

ENTER or F2 Displays theModify Variable dialog box for the selected watch variable,
which enables you to modify the value of that variable.

F6 If the watch pane is open, switches the insertion point between the watch
pane and the edit pane.

CTRL+BREAK Suspends execution of an executing script and places the instruction
pointer on the next line to be executed.

F9 Sets or removes a breakpoint on the line containing the insertion point.

F10 Activates the StepOver command, which executes the next line of a
BasicScript script and then suspends execution of the script. If the script
calls another BasicScript procedure, BasicScript will run the called
procedure in its entirety.
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File Menu Shortcuts

Edit Menu Shortcuts

F11 Activates the StepInto command, which executes the next line of a
BasicScript script and then suspends execution of the script. If the script
calls another BasicScript procedure, executionwill continue into each line
of the called procedure.

Table 10 Debugging Shortcuts (continued)

Key Name(s) Description

Table 11 File Menu Shortcuts

Key Name(s) Description

CTRL+W Compiles your script and returns you to the host application.

CTRL+S Saves the currently open script.

Table 12 Edit Menu Shortcuts

Key Name(s) Description

CTRL+Z Reverses the effect of the preceding editing change(s).

CTRL+X Removes the selected text from the script and places it on the Clipboard.

CTRL+C Copies the selected text, without removing it from the script, and places it
on the Clipboard.

CTRL+V Inserts the contents of the Clipboard at the current position of the
insertion point.

CTRL+A Selects all the text in the edit window.

CTRL+F Displays the Find dialog box, which allows you to specify text for which
you want to search. Remembers and allows you to choose from a list of
previous search strings.

CTRL+H Displays the Replace dialog box, which allows you to substitute
replacement text for instances of specified text. Remembers and allows
you to choose from a list of previous search and replace strings.

CTRL+G Presents the Goto Line dialog box, which allows you to move the
insertion point to the start of a specified line number in your script.
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Debugger Menu Shortcuts

Table 13 Debugger Menu Shortcuts

Key Name(s) Description

F5 Runs the current script.

CTRL+SHIFT+F5 Restarts the current script beginning with the line at which it was
stopped using the Break command.

SHIFT+F5 Stops script execution.

F11 Steps through the script code line by line, tracing into called
procedures.

F10 Steps through the script code line by line without tracing into called
procedures.

F7 Compiles the current script without executing it.

SHIFT+F9 Displays theAdd Watch dialog box, in which you can specify the name
of a BasicScript variable. That variable, together with its value (if any),
is then displayed in the watch pane of the Script Editor's application
window.

DELETE Deletes a selected variable from the watch variable list.

ENTER Displays the Modify Variable dialog box for a selected variable, which
enables you to modify the value of that variable.

F9 Toggles a breakpoint on the line containing the insertion point.
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BDeveloping Add-Ins for
Rational Rose
Contents

This chapter is organized as follows:

� Introduction on page 95
� Why Create Add-Ins? on page 96
� Types of Add-Ins on page 97
� What Is in an Add-In? on page 97
� UNIX vs. Windows on page 99
� Creating Portable Add-Ins on page 100
� How to Develop Add-Ins on page 101

Introduction

This appendix provides additional information for customers wanting to explore the
use of add-ins. However, creation of add-ins is not directly supported by Rational
Technical Support. Additional support for add-ins is available through the Rational
Unified Solutions Partner Program and Rational University.

For more information on the Rational Unified Solutions Partner Program see
http://www.rational.com/corpinfo/partners/.

For training on Rational Rose’s REI and add-ins see the Extending Rose course from
Rational University at http://www.rational.com/university/description/.

Add-ins allow you to package customizations and automation of several Rose
features through the Rose Extensibility Interface (REI) into one package. An add-in is
a collection of some combination of the following:

� Main menu items
� Shortcut menu items
� Custom specifications
� Properties
� Data types
� Stereotypes
� Online Help
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� Context-sensitive Help
� Event handling
� Functionality through Rose Scripts or controls (OLE-server)

Rose Script or any language such as VB or C++ that can expose itself as an OLE server
may be used to build an add-in.

Figure 21 Rose Add-Ins Architecture

Note: Servers that wish to use Rose must use the supplied typelib included with Rose.

Why Create Add-Ins?

You might want to create an add-in as opposed to a script or program if you answer
“yes” to any of the following questions:

� Do you want to take advantage of Rose events like OnNewModel and OnAppInit?
� Do you want to interact with other Rose add-ins?
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Types of Add-Ins

There are two types of add-ins:

� Basic: A basic add-in is a non-language add-in that supplies its own responses for
events to execute third-party scripts or executables, such as a Visual Basic
program. It does not use the component view for code generation. A basic add-in
cannot register for certain code generation-related events.

� Language: A language add-in takes advantage of the mapping to components by
defining a target language. It also supplies its own responses for events that
pertain to code generation and round-trip engineering integration. Code
generation and round-trip engineering events include OnGenerateCode,
OnBrowseBody, and OnBrowseHeader. Language add-ins support custom data
types and overriding the default specification.

What Is in an Add-In?

Add-ins customize or contain one or more of the following:

� Main menus
� Shortcut menu
� Custom specifications
� Properties
� Data types
� Stereotypes
� Online Help
� Context-sensitive Help
� Registering for events
� Functionality

Each of these are explained in the next sections.

Main Menus

The Rose main menus are the menus at the top of the Rose window, such as File and
Edit. These menus connect the user interface to functionality in Rose. You can
customize these menus to link functionality in your add-in to the Rose user interface.
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Shortcut Menu

The Rose shortcut menu appears whenever you or your user right-clicks on part of
the user interface. The shortcut menu is another link between the user interface and
functionality in Rose. You can customize this menu to link functionality in your
add-in to the Rose user interface.

Custom Specifications

Rose displays a standard specification dialog box for each model element to allow
definition and description of that model element. If you are writing a language
add-in, you can override the standard Rose specification dialog box and display your
own custom dialog box. This is useful to:

� Remove irrelevant or inappropriate information.

� Target the dialog box to your end-user’s needs.

� Drive the dialog box by stereotype or other characteristics, for example, naming
conventions.

Properties

Rose model properties allow you to extend Rose model elements through additional
properties and their values. You can add custom tools (such as a tab on the
specification dialog box), sets, and properties to store the information relevant to your
add-in with each Rose model element. You can also use this information to determine
when functionality in your add-in should occur.

Data Types

Rose data types allow you to customize which selections your user sees in the type
drop-down list for model elements associated with your add-in.

Stereotypes

Rose stereotypes allow you to customize the look of different model elements as
makes sense to your add-in. This custom look can be as simple as an additional text
string (for example, <<Special Class>>), or as fancy as new icons for the diagram
editor, toolbar buttons, and browser icons.

Online Help

Rose provides extensive online Help to explain the product. You can also add your
online Help.
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Context-sensitive Help

Rose provides context-sensitive Help to provide quick, brief information on the
context. You can add context-sensitive Help to your add-in’s user interface, your
custom Rose main menu items, shortcut menu items, and properties.

Registering for Events

Rose provides several COM events for which your add-in can register and respond.

Functionality

You can write code to provide the dialog boxes and other functionality desired in your
add-in.

UNIX vs. Windows

If you are developing add-ins for UNIX, see Table 14 on page 99 for the differences
between UNIX and Windows.

Table 14 UNIX vs. Windows

The basic difference is that to create an add-in for UNIX, you must “fake” setting up
the “registry”.

Windows UNIX

GUI painter and capture GUI painter and capture

Custom dialog boxes Custom dialog boxes

API through COM MainWin—MainSoft Technology

Rose as COM client MainWin—MainSoft Technology

ODBC functions none

GUI drivers (for example, Send Keys) n/a
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To create a UNIX version:

1 Copy the contents of rose.version/addins/cm directory to a new directory in the
rose.version/addins directory where version is the installed version of Rose. For
example:

cd rose.4.5.8153/addins
mkdir my_addin
cp cm/* my_addin

2 Change to the new directory. For example:

cd my_addin

3 Rename cm.mnu and cm.reg to the name of your add-in. For example:

mv cm.mnu my_addin.mnu
mv cm.reg my_addin.reg

4 Edit your menu file (.mnu) to add the menus you want. The format is the same on
Windows and UNIX.

5 Edit the registry file (.reg) and replace “cm” with the name of your add-in. You
should change:

❑ HKEY_LOCAL_MACHINE

❑ InstallDir

❑ MenuFile

A global search and replace on the document should help.

6 Copy your add-in’s custom Help file to the rose.version/help directory where version
is the installed version of Rose. For example:

cd rose.4.5.8153/help
cp /somepath/MyHelpFile.hlp .
cp /somepath/MyHelpFile.cnt .

Creating Portable Add-Ins

To create add-ins that will be portable to other platforms, keep the following
recommendations in mind:

� Keep the logic of the integration in Rose Script.
� Keep dialog boxes and graphical user interfaces (GUIs) in Rose Script.
� Import and export through ASCII files.
� Do not use COM calls—write shell-accessible commands.
� Test the operating system with the BasicScript object (for example, Basic.OS).
� Use path map variables.
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How to Develop Add-Ins

The following procedure gives you a high-level look at what you need to do to
develop your add-in:

1 Decide which language to use to create your add-in (Rose Script or a
COM-enabled language such as Visual Basic, C++).

2 Decide whether you will create a basic or language add-in.

3 Decide which parts of Rose you want to customize or use:

❑ Main menus

❑ Shortcut menus

❑ Custom specifications

❑ Properties

❑ Data types

❑ Stereotypes

❑ Online Help

❑ Context-sensitive Help

❑ Registering for events

4 Design your add-in’s functionality.

5 Create all the pieces for your add-in that you need:

❑ Menu file (.mnu)

❑ Property file (.pty) to add new tools, sets, and properties

❑ Data types

❑ Stereotypes (.ini, .bmp, .wmf, .emf)

❑ Online and context-sensitive Help (.hlp)

❑ Method for updating the registry file (.reg)

❑ Code to:

� perform all the functions of your add-in (.ebs, .ebx, .exe, .dll, etc.)

� register for and handle events

� create shortcut menu items

� define your custom specification dialog boxes
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❑ Installation routine

❑ Uninstallation routine

❑ Hardcopy documentation

❑ Anything else specific to your needs

6 Test your add-in and its pieces:

❑ Installation

❑ Activation

❑ New functionality

� Menu items

� Shortcut menu items

� Custom specifications

� Properties

� Data types

� Stereotypes

� Online Help

� Context-sensitive Help

� Events

� All other add-in functionality

❑ Deactivation

❑ Uninstallation

7 Package your add-in and distribute to your customers (whether internal or
external).

Working with and customizing each of the items listed above (for example, menus
and properties) are explained in more detail in the next sections.

Customizing Main Menus

Each add-in may introduce additions to the menus specific for that add-in, using the
menu file technology (*.mnu). This is the only way an add-in can provide main menu
items.
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For more information on the syntax for the Rose menu file (*.mnu), see Customizing
Rose Main Menus on page 7.

Note: If you choose to customize the main menus, you must update the registry
(discussed in Updating the Registry on page 123).

Customizing the Shortcut Menu

For information on customizing the shortcut menu, see Customizing Rose Shortcut
Menus on page 19.

Creating Custom Specifications

To create and activate custom specifications:

1 Create a language add-in.

2 Register for the OnPropertySpecOpen event.

3 Implement an OnPropertySpecOpen interface in your add-in’s OLE server.

4 Code your custom specification dialog boxes.

Customizing Properties

Properties are added to Rose items by add-ins using the existing property file (.pty)
technology. Each add-in can optionally supply its own property file that defines a
name space for its properties and a tab in the specification editor to hold the custom
tool, sets, and properties. You can only define one property file per add-in, but you
can define multiple tools, sets, and properties within that one file. The property file is
automatically enabled and disabled as your add-in is enabled and disabled. Even
when the property file is disabled, however, your custom properties are persisted
with the model file. To hide a tab, the user can deactivate the corresponding add-in in
Rose.

Design Considerations

The ordering of the tabs (tools) must be independent of when, where, and what
add-ins are installed or activated. The tab name (tool name) must be unique for each
add-in. Rose cannot detect conflicts. You must always have a “default” set for each of
your custom tools.

Note: If you choose to add a property file, you must update the registry (seeUpdating
the Registry on page 123).

You can also add, delete, and clone properties through the extensibility interface. For
more information on how to do this, seeManaging Default Properties on page 37 and
subsequent sections.
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Information in Property Files

Property Files contain the following information:

version

tool 1

default set__model element 1

property 1

property 2

...

property n

default set__model element 2

property 1

property 2

...

property n

default set__last model element

...

next set__model element 1

property 1

property 2

...

property n

next set__model element 2

...

next set__last model element

...

last set__model element 1

...

last set__last model element
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...

tool 2

default set__model element 1

...

last set__last model element

...

last tool

...

Format for Property Files

This section discusses the format of property files. Keywords are shown in bold,
while variable information that you need to set is shown in italics. Each element is
explained at the end of the property file format.

# Comments about the property file
# Begin version information
(object Petal

version number
_written "add-in name"
charSet 0)

# End version information

# Begin tool definition
(list Attribute_Set

# Tool setup
(object Attribute

tool "tool"
name "propertyID"
value "809135966")

# Begin set and model element definition
(object Attribute

tool "tool"
name "set__model element"
value (list Attribute_Set

# Define first property
(object Attribute

tool "tool"
name "property"
value datatype)

# Define second property
(object Attribute

tool "tool"
name "property"
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value datatype)
...

# Define nth property
(object Attribute

tool "tool"
name "property"
value datatype)

)
# End property list

)
# End set and model element list

# Begin next set and model element list
(

...
)
# End next set and model element list

)
# End tool definition

# Begin next tool definition. Repeat format.
(

...
)
# End next tool definition
# End property file

The property file is composed of the following elements:

� Comments: Place a number sign (#) at the beginning of the line to indicate that it is
a comment line.

� Number: Enter the petal version number that corresponds to the version of Rose
for which you are writing your add-in. To find out what this number is, first locate
a model file (.mdl) saved in the same version of Rose. Next, open the model file in
a text editor, such as Notepad.

� Add-in name: Enter the name you want to call your add-in. For example,
Rose/MyAddin v1.0

� Tool: Enter the name of your tool. For example, My Tool. You may define multiple
tools for your add-in in one property file.

� Value: Use the same value (809135966) for each of your tools. If you run into
problems, add 1 to the number.

� Set__model element: Enter the name of your set and model element. For example,
default__Project, CompilerV1.0__Project, CompilerV2.0__Project, default__Class.
You may have multiple sets and multiple model elements per tool. Valid model
elements are:
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❑ Association

❑ Attribute

❑ Category

❑ Class

❑ Has

❑ Inherit

❑ Module-Spec

❑ Module-Body

❑ Operation

❑ Param

❑ Project

❑ Role

❑ Subsystem

❑ Uses

� Property: Enter the name of your property. For example, minCount.

� Data type: Enter the default value for the data type of your property. For example,
if your property is:

❑ an integer, your default value may be 0.

❑ a string, your default value may be “” or “Unknown”.

❑ a boolean, your default value may be TRUE.

Table 15 on page 107 lists examples for each of the different data types and how to
format them in your property file. Note the cases where quotes are used versus
where they are not used.

Table 15 Property File Data Types

Data type
Example and
Default Format

String Name

blank

(object Attribute
tool "MyTool"
name "Name"
value "")
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Integer minCount

0

(object Attribute
tool "myTool"
name "minCount"
value 0)

Boolean isRelated

FALSE

(object Attribute
tool "myTool"
name "isRelated"
value FALSE)

Multi-line string Description

Blank

(object Attribute
tool "myTool"
name "Description"
value (value Text ""))

Enumeration
(setup)

Color

n/a

(object Attribute
tool "myTool"
name "Color"
value (list Attribute_Set

(object Attribute
tool "myTool"
name "Red"
value 100)

(object Attribute
tool "myTool"
name "Blue"
value 110)

(object Attribute
tool "myTool"
name "Green"
value 120))

Enumeration
(usage)

Shade

“Red”

(object Attribute
tool "myTool"
name "Shade"
value ("Color" 100))

Table 15 Property File Data Types (continued)

Data type
Example and
Default Format
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Sample Property File

The results of adding a sample property file to Rose appear in Figure 22 on page 109.

Figure 22 Sample Custom Properties

To add the tool, set, and properties (with default values) displayed in the property
dialog box in Figure 22 on page 109, we created the following property file:

(object Petal
version 43)

(list Attribute_Set
(object Attribute

tool "myTool"
name "default__Category"
value (list Attribute_Set

(object Attribute
tool "myTool"
name "MyNewEnumeration"
value (list Attribute_Set

(object Attribute
tool "myTool"
name "Value1"
value 1)
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(object Attribute
tool "myTool"
name "Value2"
value 2)

(object Attribute
tool "myTool"
name "Value3"
value 3)))

(object Attribute
tool "myTool"
name "MyEnumeratedProperty"
value ("MyNewEnumeration" 1))

(object Attribute
tool "myTool"
name "isAppropriate"
value TRUE)

(object Attribute
tool "myTool"
name "mySpace"
value 5))))

Note: This tool tab only appears on package specifications, since we only defined
them for packages (default__Category). To display this tab for classes, duplicate the
default__Category section and rename it to default__Class.

For more examples of property files, see the .pty files that come with Rose.

Creating Property Files

To create a property file, for inclusion with your add-in:

1 Create a new text file with extension .pty in a text editor or use a copy of an
existing .pty file.

2 Edit the property file (.pty) as desired. For guidance, see the explanations given
previously and existing property files.

Testing Property Files

To test a property file:

1 Create and save a test model with all the model elements for which you added
properties.

2 Add the new property file in Rose by clicking Tools > Model Properties > Add and
selecting your property file (.pty).

3 Check the error log to make sure your model properties were all loaded
successfully. For example:

16:35:51| [Add Model Properties]
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16:35:51| Adding model properties from file C:\Program

Files\Rational\Rose\my model properties.pty.

16:35:51| A total of 4 model properties have been added to the

original model.

4 Test your new properties by opening the specification for each affected model
element. Look for:

❑ A new tab or tabs with your tool name or names.

❑ Correct sets (default, plus any others) on each tool tab.

❑ Correct properties for each set.

❑ Correct default values for each property.

❑ Correct data types for each property. For example, click on an enumerated type
to make sure that Rose displays a drop-down list that includes all the valid
values for your enumeration.

Customizing Data Types

An add-in may also choose to supply a set of default data types to be presented to the
user for typing attributes, parameters, and so on, in Rose specifications. These data
types are defined in the registry setting called FundamentalTypes. For information on
updating the FundamentalTypes registry setting, see Updating the Registry on page
123.

Customizing Stereotypes

An add-in may supply a set of stereotypes and an additional set of metafile icons to
represent them. These stereotypes will be loaded and made available to Rose when
the add-in is activated. Your custom stereotypes are added to Rose’s default set of
stereotypes for the UML. Custom stereotypes do not replace standard ones. The
location of your custom stereotypes is defined in the registry setting called
StereotypeCfgFile. For information on updating the StereotypeCfgFile registry
setting, see Updating the Registry on page 123.

You may provide icons for your stereotypes or text. Stereotypes are applicable to the
following model elements:

� Association
� Attribute
� Class
� Component
� Component package
� Connection
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� Dependency
� Device
� Generalization
� Logical package
� Operation
� Processor
� Use case
� Use-case package

You may create custom icons for one or more of the following:

� Diagram editor icons (.wmf, .emf) to display on diagrams
� Diagram toolbar icons (.bmp) to display on the toolbar buttons
� Browser list icons (.bmp) to display in the browser

Note: You only need one bitmap file for your diagram toolbar icons and a separate
bitmap file for all your custom browser icons. You do not need separate bitmap files
for each of these icons. An index into the bitmap is used to indicate which bitmap
goes with which stereotype.

Steps for Creating Add-In Stereotypes

To create an add-in stereotype:

1 Decide on the model element(s) and text stereotype name(s).

2 Decide which, if any, graphical representations you want to customize:

❑ Editor

❑ ToolBar

❑ Browser

3 Define the stereotype in the stereotype .ini file for the add-in.

4 Create the custom icon graphics (.wmf, .emf, .bmp).

General .ini File Format

This section describes the .ini file format. You can also find information on custom
stereotypes and the stereotype configuration file in the Using Rose book and online
Help.

The stereotype .ini file contains the following information:

[General]

This section contains add-in specific settings such as the name of the add-in
and whether it is a language add-in.
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[Stereotyped Items]

This section is like a table of contents for the stereotypes. It contains a list of
stereotyped REI objects. For example, Class:Control, Component:DLL,
Operation:Set.

[REI Item:Stereotype name]

This section contains the settings for each stereotype, including any optional
icon files and settings.

Example:

[General]
ConfigurationName=Name
IsLanguageConfiguration=Yes or No

[Stereotyped Items]
REI item:Stereotype name
REI item:Stereotype name
...
[REI item:Stereotype name]
Item=REI item
Stereotype=Stereotype name
optional icon settings:
Metafile=&/model-element.wmf
SmallPaletteImages=&/palette_icons.bmp
SmallPaletteIndex=Index
MediumPaletteImages=&/palette_icons.bmp
MediumPaletteIndex=Index
ListImages=&/stereotypes.bmp
ListIndex=Index
...
[REI item:Stereotype name]
Item=REI item
Stereotype=Stereotype name
optional icon settings:
Metafile=&/model-element.wmf
SmallPaletteImages=&/palette_icons.bmp
SmallPaletteIndex=Index
MediumPaletteImages=&/palette_icons.bmp
MediumPaletteIndex=Index
ListImages=&/stereotype.bmp
ListIndex=Index

The stereotype .ini file is composed of the following elements:

� ConfigurationName: This is the name of the add-in or name used for maintenance.

� IsLanguageConfiguration: Type Yes if your add-in is a language add-in.
Otherwise, type No. This information conditionalizes stereotypes so that they only
appear if the language of the model element in Rose is the same as the
ConfigurationName listed above.
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� Item: The model element for which you are defining a stereotype.

� Stereotype: The text string stereotype. This is the text to be displayed between
guillemets (<< >>).

� Metafile: The windows metafile (.wmf) or enhanced metafile (.emf) containing
your diagram editor icon stereotype.

❑ Windows Meta Files (.wmf) may require additional extent settings.

❑ Enhanced Meta Files (.emf) are preferred.

� SmallPaletteImages: The bitmap file (.bmp) containing all your small icons for
your toolbar buttons. This defines non-large icons (15 pixels high x 16n wide).

� SmallPaletteIndex: The integer number indicating the location in the bitmap file of
the small toolbar button icon for this stereotype. The index starts with 1.

� MediumPaletteImages: The bitmap file (.bmp) containing all your medium icons
for your toolbar buttons. This defines large icons (24 pixels high x 24n wide).

� MediumPaletteIndex: The integer number indicating the location in the bitmap file
of the medium toolbar button icon for this stereotype. The index starts with 1.

� ListImages: The bitmap file (.bmp) containing all your custom browser icons:

❑ Device independent bitmaps

❑ 16 high x 16n pixels wide

❑ White background

❑ Use paint or bitmap editor

❑ & is the installation directory

� ListIndex: The integer number indicating the location in the bitmap file of the
custom browser icon for this stereotype. The index starts with 1.

The following sections focus on the different types of text and icon stereotypes you
can create. You do not need separate files for each of these items; all text and icon
information can go in one .ini file.

Text-Only Stereotypes .ini File

No custom icons are included—only the text stereotypes.

Example:

[Stereotyped Items]
Class:Interface
Component:DLL
Component:ActiveX
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Component:Application

[Class:Interface]
Item=Class
Stereotype=Interface

[Component:DLL]
Item=Component
Stereotype=DLL

[Component:ActiveX]
Item=Component
Stereotype=ActiveX

[Component:Application]
Item=Component
Stereotype=Application

Custom Diagram Editor Icons .ini File

Metafilemust be used in the optional icon settings section to define diagram icons.

Example:

[Class:Actor]
Item=Class
Stereotype=Actor
Metafile=&/Objectory/color/actor.wmf
SmallPaletteImages=&/Objectory/palette_icons.bmp
SmallPaletteIndex=1
MediumPaletteImages=&/Objectory/palette_icons.bmp
MediumPaletteIndex=2
ListImages=&/Objectory/list_icons.bmp
ListIndex=1

Custom Toolbar Button Icons .ini File

SmallPaletteImages, SmallPaletteIndex, MediumPaletteImages, and
MediumPaletteIndexmust be used in the optional icons settings section to define
diagram palette icons.

Example:

[Class:Actor]
Item=Class
Stereotype=Actor
Metafile=&/Objectory/color/actor.wmf
SmallPaletteImages=&/Objectory/palette_icons.bmp
SmallPaletteIndex=1
MediumPaletteImages=&/Objectory/palette_icons.bmp
MediumPaletteIndex=2
ListImages=&/Objectory/list_icons.bmp
ListIndex=1
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Custom Browser List Icons .ini File

The [General] section is needed. ListImages and ListIndexmust be used in the
optional icon settings section.

Example:

[General]
ConfigurationName=Oracle8
IsLanguageConfiguration=Yes

[Stereotyped Items]
Class:ObjectType
Class:ObjectTable
...

[Class:ObjectType]
Item=Class
Stereotype=ObjectType
ListImages=&/o8stereo.bmp
ListIndex=3

[Class:ObjectTable]
Item=Class
Stereotype=ObjectTable
ListImages=&/o8stereo.bmp
ListIndex=4

Additional Online Help

Each add-in may introduce additions to the online Help when installed or activated.
These additions are activated when your add-in is activated.

Online Help should cover the capabilities of the installed add-in. Each add-in should
have only one first-level Help book in the master table of contents. Your add-in
should add a single book, for example “My AddIn”. There may be many books under
that book, but only one book should appear in the main Rose Help table of contents.

Adding Online Help for Your Add-In

To be included in the Rose Help, the add-in .hlp and .cnt files must reside in the same
directory as the rest of the Rose Help.

� In Windows, the Help directory is specified by the HelpFileDir general Rose
registry setting. The registry key for this setting is
[HKEY_LOCAL_MACHINE\SOFTWARE\Rational Software\Rose\HelpFileDir].

� In UNIX, the Help directory is fixed: /rose.version/help where version is the version
of the currently installed Rose (for example, /rose.4.5.8153/help).

In addition, you must include the add-in.cnt file in the roseu.cnt file.
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To include the add-in.cnt file:

1 Locate the Rose Help files.

2 Identify the roseX.cnt file you wish to use:

❑ Roseu.cnt supports the UML Help variant.

❑ Rosec.cnt supports the COM Help variant.

You may choose to maintain both if you refer to both the UML and COM notations
when running Rose.

3 Make a backup copy of the RoseX.cnt file.

4 Open the roseX.cnt file.

5 Add the following lines to the top of the roseX.cnt file along with the other Index
and Link definitions:

:INDEX = title =filename.hlp

:LINK filename.hlp

where title is the text that appears in the title bar of the Contents window of the
add-in Help file, filename.hlp is the name of the add-in Help file.

6 Add the following line at the bottom of the roseX.cnt file:

:INCLUDE filename.cnt

where filename.cnt is the name of the add-in’s contents file.

Additional Context-sensitive Help

To be consistent with Rose, you can include context-sensitive Help in your add-in for
your custom menu items, properties, and user interface (your add-in’s dialog boxes,
for example). Each context-sensitive Help topic must have an A-keyword defined for
it. Since menu items and properties are Rose features, we explain the format needed to
connect your custom menu items and properties to your context-sensitive Help.
Create your A-links for your context-sensitive Help in your chosen Help authoring
tool.

Main Menu Items

For main menu items, added via the menu file (.mnu), use the following format for
the A-keyword.

For items on submenus:

Menu, Submenu, menu item
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For items not on submenus (items located directly on Rose main menus):

Menu, menu item

For example, Tools, MyAddIn, MyScript would be the alias for a context-sensitive
Help topic that explains the “MyScript” menu option on the “MyAddIn” submenu of
the “Tools” menu (Tools > MyAddIn > MyScript).

Menu, submenu, and menu item names in the A-keyword must include all
punctuation. For example, if your menu path includes ellipsis:

Tools > My Language > Project Specification...

Your A-keyword must also include ellipsis:

Tools, My Language, Project Specification...

Note: There is no F1 Help for intermediary submenus, only for menu items. So for the
examples listed previously, there is no F1 Help for “MyAddIn” or “My Language”. If
you have defined Help topics and A-keywords, however, there is F1 Help for
“MyScript” and “Project Specification...”.

Model Properties

The format for the A-keyword is:

property (model element, tool)

where property is the name of your custom property, model element is the name of the
model element to which your property is applied, and tool is the name of your tab
(tool) in the specification.

For example, isAppropriate (Category, myTool) would be the alias for a
context-sensitive Help topic that defines the “isAppropriate” property that applies to
the myTool Packages.

User Manuals

You may supply your own soft or hardcopy documentation for your add-in that
covers its installation, use, and limitations.

Registering for Events

You may register your add-in for Rose’s events, thus triggering functionality in your
add-in when that event occurs in Rose. Since any number of add-ins may trigger on
the same event, the order in which your add-in entry points are called must be
independent of when, where, and what add-ins are installed or activated.
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Responses to events are usually coded as COM server interfaces, but some events can
be mapped to Rose Scripts. Events map to either an interface on your COM server or a
Rose Script, if the particular event allows Rose Script.

Some events only apply to language add-ins (for example, OnGenerateCode and
OnPropertySpecOpen).

Events fall into one of the following categories:

� Registry entry required

❑ Interface events

❑ Script events

� No registry entry needed, but an OLE server is required

Interface and script events are explained further in the next section.

Interface vs. Script Events

Rose’s registry-required events can be implemented in one of two ways, interface or
script. An interface event requires a registered COM server (.dll) that includes an
interface, named the same as the event, to handle the event. A script event requires a
script that can be executed (.ebx) to handle the event.

What Events Are Available?

General Events:

� Model-related: OnNewModel, OnCancelModel, OnCloseModel, OnOpenModel,
OnSaveModel

� Model element-related: OnNewModelElement, OnModifiedModelElement,
OnModifiedModelElementEx, OnDeletedModelElement,
OnDeletedModelElementEx

� When the Rose application is initialized: OnAppInit

� Add-In activation/deactivation: OnActivate, OnDeactivate

Code Generation-Related:

� Generating source code: OnGenerateCode

� Browsing source code: OnBrowseHeader, OnBrowseBody

GUI-related:

� Override the specification dialog box: OnPropertySpecOpen
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� Extend the context menu: OnSelectedContextMenuItem,
OnEnableContextMenuItems

Each of these events are described in detail in the online Help along with warnings
and precautions. The detailed descriptions also include a Registry and Server
Requirements section explaining whether the event requires a registry entry or OLE
server.

How to Add Events to Your Add-In

This is the process for adding an event:

1 Add your COM server to your add-in registry.

2 Add events to your add-in registry.

3 Define an interface for each event.

4 Register your COM server with the operating system.

Each of these steps is detailed in the next sections.

Step 1—Adding your COM server to the add-in registry

This step is optional for Rose Script responses.

Set the OLEServer registry value to the name of your COM object (for example,
MyAddIn.EventHandler).

Figure 23 OLEServer Windows Registry Entry
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Step 2—Adding events to the add-in registry

1 Create an Events registry subkey under your add-in’s subkey.

2 In the Name column, list each event for which your add-in is registering.

3 Set the Data column to one of these values:

❑ “Interface” indicates a COM server call

❑ “eventName.ebx” indicates Rose Script execution where eventName.ebx is
the name of your compiled RoseScript.

Figure 24 Windows Registry Entries for Rose Events

Note: The script file must reside in the add-in’s installation directory, as specified by
the add-in’s InstallDir registry setting, or a subdirectory of the add-in’s installation
directory. If you choose to put the script in a subdirectory of your add-in’s installation
directory (for example, \scripts), specify the subdirectory as part of the script file name
(for example, \scripts\OnNewModel.ebx).
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Step 3—Defining an interface for each event

For each event for which your add-in is registering, name your interface or Rose
Script the same. For example, if your add-in is registering for the OnNewModel event,
you would have one of the following:

� OnNewModel() interface in your OLE server (see the example in Figure 25 on
page 122)

Figure 25 Sample Add-In Event Handler

Note: Your COM server should only contain those events that you are responding
to in your add-in.

� OnNewModel.ebx compiled Rose Script

While the signature of the interface varies by event, most interface signatures are:

void event_name (LPDispatch pRoseApp)

Step 4—Register your COM server with the operating system

Add your COM server to the windows registry so that a client can get to it by COM
object name (for example, CreateObject/GetObject). This is usually taken care of by
the Integrated Development Environment (IDE). For example, Visual Basic registers
your .dll file for you. Otherwise, to register your COM server, execute the command
line:

regsvr32 file.dll

To verify that your COM server is registered, add a reference to it in the object
browser of your IDE.

EventHandler

OnNewModel()
OnAppInit()
OnActivate()
OnDeactivate()

<<Interface>>
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Updating the Registry

Once the add-in is created, the following registry settings are necessary to enable an
add-in. They are placed as subkeys to a subkey that represents the add-in name. The
following would be an example of an add-in named MyAddIn:

[HKEY_LOCAL_MACHINE\SOFTWARE\Rational Software\Rose\AddIns\MyAddIn]

The add-in registry information should be placed in the Rose\AddIns folder of the
registry.

Registry Entries

The following registry entries are available when introducing add-ins.

Figure 26 Windows Registry Entries for an Add-In

This list shows the registry subkey names, descriptions, and defaults:

Active: Whether the add-in is active or not. Can be set by the user through the Rose
Add-in Manager. Default set to “Yes”.

Company: Name of the independent software vendor (ISV) that produced the add-in.
For example, “Custom Software, Inc.”

Copyright: Specifies the copyright date of the add-in. For example, “©2000-2001”.
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FundamentalTypes: A string list of data types that appear in the drop-down list for
attributes when the add-in is active. This setting is required for all language add-ins.
This field is case sensitive. For example, “LOGICAL;CHAR;REAL”.

HelpFileName: Name of the Help file for the add-in, without any path or extension.
For example, “myOnlineHelp”

Note: All add-in Help files, including .cnt files, need to be located in the Help
directory specified by the HelpFileDir general Rose registry setting
([HKEY_LOCAL_MACHINE\SOFTWARE\Rational Software\Rose]).

InstallDir: Directory where the add-in is installed. For example, “d:\My AddIn”

LanguageAddIn: Whether the add-in is a round-trip engineering (RTE) language
add-in that wishes to use the component mapping feature. For example, “Yes”

MenuFile: Name of the menu file (*.mnu) that tailors Rose. It needs to be installed in
InstallDir. For example, “anaddin.mnu”

OLEServer: The name of the object that represents the OLE server that Rose
communicates with, if the add-in uses an OLE server. For example,
“MyAddIn.EventHandler”

Note: The OLEServer value is case sensitive and only required if the add-in is using
an OLE server to handle events.

PropertyFile: Name of the property file (.pty) for the add-in (for example,“user.pty”).
This needs to be installed in InstallDir. This registry setting is required if the add-in is
introducing properties.

StereotypeCfgFile: Specifies the custom stereotype configuration file for the add-in
(for example, “stereotypes.ini”). This setting is required if the add-in is introducing
stereotypes. This needs to be installed in InstallDir.

ToolDisplayName: Specifies the add-in’s tool name that gets displayed on the
properties tab and in the drop-down list of languages in Rose. This name can be
different from the name that is used in the .pty file. Note that this is not a required
setting. If this setting is not specified, the ToolName is displayed on the properties tab
and in the drop-down list of languages in Rose. If this setting is specified, this is the
name that gets assigned to a component. For example, “myLang” is the ToolName for
the add-in, but “My Proprietary Language” is the ToolDisplayName.

ToolList: Displays the list of additional tools or property pages introduced by the
add-in. Each tool is separated by a semicolon. For example, “myLang;Tool2”. This
setting is only required if the add-in introduces more than one property page.
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ToolName: Specifies the add-in’s tool name, which must match the tool name in the
add-in’s .pty file (the name that gets assigned to a component). For example,
“myLang”, unless it is overridden by a ToolDisplayName. In that case, the
ToolDisplayName is assigned to the component.

Version: Version number of the add-in, (not Rose). For example, “1.2.3“

Registering Custom Stereotypes

Add your stereotype .ini file to the StereotypeCfgFiles subkey under the Rose Subkey.
Name your entry FileX where X is the next available integer.

Figure 27 Windows Registry Entry for an Add-In’s Custom Stereotype
Configuration File

The stereotype configuration file (.ini) must be located in the directory listed in the
InstallDir registry setting.

Updating the Registry During Installation

Since manual updates during installation are error-prone, we recommend that you
avoid manual updates, like regedit. Instead, we suggest that you use an installation
utility or execute a custom registry file.

Installation utilities

Most installation utilities (for example, InstallShield) provide programmatic interfaces
to the registry. Follow your installation utility’s directions for updating the registry.
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Executing registry files

You can also update the registry by creating a registry file (.reg), then executing it
during the installation of your add-in.

To create a custom registry file, do one of the following:

� Create a registry file (.reg) from scratch in a text editor such as Notepad following
the traditional .ini file format.

� Copy and edit an existing registry file (.reg).

� Manually create your registry entries (in regedit, for example) then reverse
engineer the format into a registry file (.reg):

❑ Select existing add-in registry settings in a registry editor.

❑ Select the menu option to export the registry.

Registry File Anatomy

A registry file (.reg) looks like the following:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Rational Software\Rose\AddIns\MyAddIn]

"Active"="Yes"

"Company"="Add-Ins R US Software"

"Copyright"="Copyright © 1999 Add-Ins R US Software Corp."

"LanguageAddIn"="Yes"

"Version"="1.0"

"PropertyFile"="qa.pty"

"MenuFile"="myMenu.mnu"

"StereotypeCfgFile"="student.ini"

"OLEServer"="MyAddIn.EventHandler"

"InstallDir"="d:\\ProgramFiles\\Rational\\Rose\\My AddIn"

"ToolName"="QA"

"ToolDisplayName"="MyAddIn"

...

Installing, Setting Up, and Uninstalling Your Add-In

After you finish designing and coding your add-in, it will consist of a combination of
the following:
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� Main menu items (.mnu)
� Shortcut menu items
� Custom specifications
� Properties (.pty)
� Data types
� Stereotypes (.ini, .bmp, .wmf, .emf)
� Online Help (.hlp, .cnt)
� Context-sensitive Help (.hlp)
� Event handling (.dll)
� Functionality through Rose Scripts (.ebx) or controls (OLE-server) (.dll, .exe)
� Installation script
� Uninstall script

The purpose of the last two items, installation and uninstall scripts, is to introduce the
files into the Rose file structure and to register their locations, as well as other data
needed by the framework, and to undo all this at a later time when the add-in is not
wanted.

Installation Reminders

When creating your installation script, remember to do the following:

� Install the pieces of your add-in (menu file, property file, and so on) in the
subdirectory indicated in your add-ins InstallDir registry subkey.

� Update the roseX.cnt file as needed and install your Help (.hlp) and contents (.cnt)
file in the same directory as the Rose Help files.

� Update the windows registry, using your chosen method. When you update the
registry, do the following:

❑ Create a registry subkey for your add-in (for example,
[HKEY_LOCAL_MACHINE\SOFTWARE\Rational Software\Rose\AddIns\MyAddIn])

❑ Populate this subkey with the appropriate names and values (for example,
InstallDir, MenuFile)

❑ If using events, create an Events subkey under your add-in subkey. Populate
the Events subkey with event names and “Interface” or “EventName.ebx”
values.

❑ If using custom stereotypes, add your stereotype configuration file name (.ini)
to the StereotypeCfgFile subkey.

❑ Create any other subkeys and registry entries needed for your implementation.
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Installing Add-Ins

It is possible for an add-in supplier to provide a programmatic and complete install of
the add-in, for example, by using InstallShield. The same applies to reinstalls and
updates. Installation changes will not take effect while Rose is running, but will take
effect upon start-up of Rose.

To install an add-in on your Windows 95, Windows 98, or Windows NT system:

1 Exit Rose.

2 Insert the application’s CD-ROM or other media and run the setup.exe program.

3 Respond to the installation program’s dialog boxes to complete your installation.

4 Restart Rose. Confirm that your add-in is installed and activated (checked) using
the Rose Add-In Managermenu.

Uninstalling Add-Ins

We recommend that you provide a programmatic and complete uninstall of your
add-in. Uninstall must remove not only the scripts, menu files, properties files, and
Help files, but must also clean the registry entries for the add-in.

Activating and Deactivating Add-Ins

Once an add-in is installed, it can be in an activated or deactivated state. Immediately
after installation, new add-ins start out as activated.

When deactivated, an add-in is all but uninstalled:

� All menu items added by the add-in are removed.
� All property tabs added by the add-in disappear.
� All event bindings added by the add-in are disengaged.

Note: A user may want to deactivate an add-in for a short time to keep it from
functioning without actually uninstalling it.

Add-ins are activated and deactivated in the Rose user interface with the Add-In
Manager. Add-ins are activated and deactivated programmatically with the REI
AddInManager class.
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