
support@rational.com
http://www.rational.com

Rational the e-development company™

Using Rational Rose Ada for
Forward and Reverse Engineering

Rational Rose ® 2001

VERSION: 2001.03.00

PART NUMBER: 800-023923-000

COPYRIGHT NOTICE

Copyright 2000 Rational Software Corporation. All rights reserved.

THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS INFORMATION PROPRIETARY
TO RATIONAL. ANY COPYING, ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF RATIONAL IS STRICTLY
PROHIBITED. THE RECEIPT OR POSSESSION OF THIS DOCUMENT DOES NOT CONVEY ANY
RIGHTS TO REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, USE, OR SELL
ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART, WITHOUT THE SPECIFIC WRITTEN
CONSENT OF RATIONAL.

U.S. GOVERNMENT RIGHTS NOTICE

U.S. GOVERMENT RIGHTS. Use, duplication, or disclosure by the U.S. Government is subject to
restrictions set forth in the applicable Rational License Agreement and in DFARS 227.7202-1(a) and
227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR
52.227-14, as applicable.

TRADEMARK NOTICE

Rational, the Rational logo, Rational Rose, ClearCase, and Rational Unified Process are trademarks or
registered trademarks of Rational Software Corporation in the United States and in other countries.

Visual C++, Visual Basic, Windows NT, Developer Studio, and Microsoft are trademarks or registered
trademarks of the Microsoft Corporation. BasicScript is a trademark of Summit Software, Inc. All other
names are used for identification purposes only and are trademarks or registered trademarks of their
respective companies.

Portions of Rational Rose include source code from Compaq Computer Corporation; Copyright 2000
Compaq Computer Corporation.

U.S. Registered Patent Nos. 5,193,180 and 5,335,344 and 5,535,329. Licensed under Sun Microsystems Inc.’s
U.S. Pat. No. 5,404,499. Other U.S. and foreign patents pending.

Printed in the U.S.A.

Contents
Preface. xi
Audience . xi

Other Resources. xi

Contacting Rational Technical Publications . xi

Contacting Rational Technical Support .xii

1 Introducing Rational Rose Ada .1
Contents . 1

What is Code Generation? . 1
Using Code Generation . 1

What is Reverse Engineering? . 2
Using Reverse Engineering . 2

2 Mapping the UML Notation to Ada 95 — Code Generation.3
Contents . 3

Introduction . 3

Name Space . 4

Name Resolution . 5

Code Generation Properties and Consistency . 7

Classes . 8
Tagged Implementation . 9
Record Implementation . 9
Mixin Implementation . 13
Task Implementation. 14
Protected Implementation. 16

Parameterized Classes . 18
Generic Implementation . 18
Unconstrained Type Implementation . 20

Bound Classes . 21
Generic Implementation . 21
Unconstrained Type Implementation . 22

Utilities . 23

Metaclasses . 24

Attributes. 25

Has Relationships . 27
iii

Associations . 31
Simple Associations . 32
Association Classes . 39

Dependency Relationships . 44

Generalization Relationships (Inheritance) . 44
Mixin Inheritance . 45
Multiple Views Inheritance . 47

Operations. 52
Accessor Operations . 52
Standard Operations. 53
Subprogram Implementation . 54
Visibility. 55
Overriding . 55
Bodies. 56

User-Defined Initialization, Assignment and Finalization . 56

3 OOD and Ada 83 . 61
Contents . 61

Mapping Classes. 61
Standard Classes . 61
Utilities . 62
Parameterized Classes . 62
Bound Classes . 62

Mapping Relationships . 62
Dependency Relationships. 63
Has Relationships. 63
Generalization Relationships (Inheritance). 63
Association Relationships. 64

Achieving Polymorphism with Ada . 64

Unmapped Elements for Ada . 65

4 Ada Code Generation . 67
Contents . 67

What is the Ada Generator? . 67

Basic Steps for Iterative Code Development. 68
Overview. 68
The Generated Files. 69
The Basic Code Contents. 69
Entering Parameters for Parameterized Classes . 70
iv Contents

Entering Static Attributes and Metaclass Attributes . 71
Evaluating the Generated Code. 73
Completing the Implementation of the Generated Code 73
Regenerating Code . 74

Refining the Subsystem and View Structure . 75
Determining the Directory for an Ada File . 75
Mapping Classes and Modules to Ada Units . 76
Specifying Filenames . 76

Refining Class Definitions (Ada 83) . 76
Standard Operations . 77
User-Defined Operations . 77
Get and Set Operations . 77
Inherited Operations. 78
Record Fields and Object Declarations . 78

Specifying Additional Ada Unit Contents . 78
Adding Structured Comments . 79
Adding With Clauses . 79
Adding Global Declarations . 79

5 Reverse Engineering from Apex. 81
Contents . 81

Basic Operations . 81
Creating the Model File . 81
Displaying the Model . 82

Dialog Box Options. 82

How Ada Is Represented in a Class Diagram . 83
Mapping Package Specifications (Ada 95) . 84
Mapping Package Specifications (Ada 83) . 84
Mapping Type Declarations (Ada 95). 84
Mapping Type Declarations (Ada 83). 85
Details of a Has Relationship (Ada 83) . 85
Mapping Subprogram Declarations . 86
Mapping Object Declarations . 86
Mapping “With” Clauses. 86
Special Handling for Subsystems in the $APEX_BASE Directory 86

6 Code Generation Properties . 87
Model Properties . 87

Spec File Extension . 88
Contents v

Spec File Backup Extension. 88
Spec File Temporary Extension . 88
Body File Extension . 88
Body File Backup Extension. 88
Body File Temporary Extension . 88
Create Missing Directories . 89
Generate Bodies. 89
Generate Standard Operations. 89
Implicit Parameter. 90
Stop On Error . 90
Error Limit . 90
File Name Format . 90
Directory . 91

Class Properties . 91
Representation . 92
Generate Accessor Operations . 93
Access Class Wide (Ada 95) . 93
Code Name . 93
Type Name (Ada 95) / Class Name (Ada 83) . 93
Type Visibility (Ada 95) / Class Access (Ada 83) . 94
Type Implementation (Ada 95) . 94
Type Control (Ada 95) . 95
Type Control Name (Ada 95) . 95
Type Definition (Ada 95) / Implementation Type (Ada 83) 95
Record Implementation (Ada 95) . 96
Record Kind Package Name (Ada 95) . 96
Is Limited (Ada 95) . 96
Is Subtype. 96
Polymorphic Unit (Ada 83) . 96
Handle Name (Ada 83). 97
Handle Access (Ada 83). 97
Discriminant (Ada 83) . 97
Variant (Ada 83) . 97
Generate Access Type (Ada 95) . 98
Access Type Name (Ada 95) . 98
Access Type Visibility (Ada 95). 99
Access Type Definition (Ada 95) . 99
Maybe Aliased (Ada 95) . 99
vi Contents

Parameterized Implementation (Ada 95) . 99
Parent Class Name (Ada 95) . 100
Enumeration Literal Prefix . 100
Record Field Prefix. 100
Array Of Type Name (Ada 95) . 100
Access Array Of Type Name (Ada 95) . 100
Array Of Access Type Name (Ada 95) . 100
Access Array Of Access Type Name (Ada 95) . 100
Array Index Definition (Ada 95) . 101
Generate Standard Operations . 101
Implicit Parameter . 101
Implicit Parameter Name (Ada 95) / Class Parameter Name (Ada 83) 101
Generate Default Constructor (Ada 95)/Default Constructor Kind (Ada 83) . . 102
Default Constructor Name . 102
Inline Default Constructor. 103
Generate Copy Constructor (Ada 95) / Copy Constructor Kind (Ada 83) 103
Copy Constructor Name (Ada 95) . 103
Inline Copy Constructor . 104
Generate Destructor (Ada 95) . 104
Destructor Name . 104
Inline Destructor . 105
Generate Type Equality (Ada 95). 105
Type Equality Name (Ada 95) / Class Equality Operation (Ada 83). 105
Handle Equality Operation (Ada 83) . 105
Inline Equality. 106
Is Task (Ada 83) . 106

Operation Properties . 106
Implicit Parameter Class Wide (Ada 95) . 106
Representation. 107
Use Colon Notation . 107
Generate Accessor Operations . 107
Use File Name . 107
Code Name . 107
Subprogram Implementation . 108
Renames (Ada 95) . 108
Generate Overriding (Ada 95) . 108
Implicit Parameter Mode (Ada 95) / Class Parameter Mode (Ada 83). 108
Generate Access Operation (Ada 95) . 109
Contents vii

Inline . 109
Entry Code . 109
Exit Code . 109
Entry Barrier Condition (Ada 95) . 109

Has Properties . 109
Is Constant . 110
Is Aliased (Ada 95) . 110
Code Name . 110
Name If Unlabeled . 110
Record Field Implementation (Ada 95) . 111
Record Field Name (Ada 95) / Data Member Name (Ada 83) 111
Generate Get (Ada 95) . 111
Generate Access Get (Ada 95) . 112
Get Name . 112
Inline Get . 112
Generate Set (Ada 95) . 112
Generate Access Set (Ada 95). 113
Set Name . 113
Inline Set. 113
Is Constant (Ada 83). 113
Initial Value . 113
Variant (Ada 83) . 114
Container Implementation (Ada 95) . 115
Container Generic . 115
Container Type . 115
Container Declarations . 115

Attribute Properties . 116
Initial Value . 116
Representation . 116
Is Constant . 116
Is Aliased (Ada 95) . 117
Code Name . 117
Record Field Implementation (Ada 95) . 117
Record Field Name (Ada 95) / Data Member Name (Ada 83) 117
Generate Get (Ada 95) . 117
Generate Access Get (Ada 95) . 118
Get Name . 118
Inline Get . 118
viii Contents

Generate Set (Ada 95) .118
Generate Access Set (Ada 95) .119
Set Name .119
Inline Set .119

Association Role Properties .119
Record Field Implementation . 120
Is Constant . 120
Is Aliased (Ada 95). 120
Code Name . 120
Name If Unlabeled . 120
Record Field Name (Ada 95) / Data Member Name (Ada 83) 121
Generate Get (Ada 95). 121
Generate Access Get (Ada 95) . 121
Get Name. 122
Inline Get . 122
Generate Set (Ada 95) . 122
Set Name . 122
Inline Set . 122
Initial Value. 123
Container Implementation (Ada 95) . 123
Container Generic . 123
Container Type. 123
Container Declarations. 123

Association Properties . 123
Name If Unlabeled . 124
Generate Get (Ada 95). 124
Get Name. 124
Inline Get . 125
Generate Set (Ada 95) . 125
Set Name . 125
Inline Set . 125
Generate Associate . 125
Associate Name . 126
Inline Associate . 126
Generate Dissociate. 126
Dissociate Name . 126
Inline Dissociate . 126

UML Package Properties . 126
Contents ix

Directory . 126

Module Spec Properties . 127
Generate. 127
Copyright Notice . 127
Return Type . 127
Generic Formal Parameters . 128
Additional Withs . 128

Module Body Properties . 129
Is Subunit . 129
Is Private (Ada 95) . 129
Generate. 129
Copyright Notice . 129
Return Type . 130
Additional Withs . 130

Index . 131
x Contents

Preface
Rational Rose®, hereafter referred to as Rose, is a comprehensive, integrated
programming environment that supports the development of complex software
systems. This manual presents the concepts needed to use all of the Rose functionality
to its fullest extent:

■ Software system architecture

■ Rational subsystems (high-level software partitions and their interfaces)

■ Software development, integration, and release processes

Audience

This manual is intended for:

■ Database developers and administrators

■ Software system architects

■ Software engineers and programmers

■ Anyone who makes design, architecture, configuration management, and testing
decisions

This manual assumes you are familiar with a high-level language and the life-cycle of
a software development project.

Other Resources

■ For more information on training opportunities, see the Rational University Web
site at http://www.rational.com/university.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
techpubs@rational.com.
xi

Contacting Rational Technical Support

Contact Rational Customer Support if you have questions about installing, using, or
maintaining this Rational Software product. The following table describes how to
contact Rational Customer Support.

Rational Support
Resource

Contact Information Notes

U.S. and Canada 800-433-5444
781-676-2450
support@rational.com

When sending email:

Specify the product name in the subject
line, “Rational Rose”.

For existing issues, include your case ID
in the subject line

Europe +31 (0) 23 5694 310
support@europe.rational.com

Asia Pacific +61-2-9419-0111
support@apac.rational.com

World Wide Web http://www.rational.com/ Click the Technical Support link.
xii Preface

1Introducing Rational
Rose Ada
Contents

This chapter is organized as follows:

■ What is Code Generation? on page 1
■ What is Reverse Engineering? on page 2

What is Code Generation?

Rose Ada provides the Ada Generator to generate Ada units from information in a
Rose model. These units contain Ada code constructs that correspond to the notation
items (classes, relationships, and adornments) you have defined in the model using
diagrams and specifications. Rose Ada supports either Ada 95 or Ada 83 code
generation with the Ada 95 or the Ada 83, respectively, add-in to Rational Rose. The
commands for the Ada Generator are located in the Ada 95/Ada 83 submenu of the
Rose Tools menu.

The Ada Generator provides code-generation properties that control the kinds of Ada
code constructs that are generated for the various kinds of notation items in the
model. You can use the default values for these properties or you can specify different
values to generate the code you want.

Using Code Generation

To generate Ada 95 code:

1 Activate the Ada 95 add-in using the Add-In Manager, which is accessible from
the Add-Ins menu.

2 Set the default language for your model to be Ada 95. Do this by clicking Tools >
Options and click the Notation tab.

3 In the Default Language list, select Ada 95.
1

To generate Ada 83 code:

1 Activate the Ada 83 add-in using the Add-In Manager, which is accessible from
the Add-Ins menu.

2 Set the default language for your model to be Ada 83. Do this by clicking
Tools > Options and click the Notation tab.

3 In the Default Language list, select Ada 83.

You may generate a different language for some classes by associating them with a
component that has a different language.

What is Reverse Engineering?

Reverse Engineering generates a model from compiled code.

Rose can analyze Ada code compiled with Rational Apex and generate a Rose model
containing class and component diagrams that present a high-level view of the code.

This capability is only available for Ada units that have been compiled with the Apex
compiler and that are in the installed (analyzed) or coded states.

The reverse engineering tool can create both class diagrams and component diagrams.
Class diagrams show the high-level relationships between Ada units and types, and
the operations and data structures associated with each type. Component diagrams
come in two forms:

■ An Ada unit diagram, which displays the “with” structure of the Ada units in a
program, independent of subsystem structure.

■ A subsystem diagram, which displays the import structure of the views you
specify.

Each view displays the “with” structure of the Ada units in that view.

Using Reverse Engineering

Select the Ada unit or view you wish to diagram, and click Rose > Ada > Reverse
Engineer. The Reverse Engineer dialog box appears, allowing you to modify various
options. Click OK or Apply to create the model file.
2 Chapter 1 - Introducing Rational Rose Ada

Once you have created the model file, you can load it into Rose. Select the file in the
directory viewer (you may need to click File > Redisplay first). Then choose
Start Rose from the Rose > Ada submenu. This will invoke Rose and display the
model.

Note: For traversal to work, you must invoke Rose from the Apex menu. If Rose is
already running before you started Apex, exit Rose and restart from the Apex menu
command.
What is Reverse Engineering? 3

2Mapping the UML
Notation to Ada 95 —
Code Generation
Contents

This chapter is organized as follows:

■ Introduction on page 3
■ Name Space on page 4
■ Name Resolution on page 5
■ Code Generation Properties and Consistency on page 7
■ Classes on page 8
■ Parameterized Classes on page 18
■ Bound Classes on page 21
■ Utilities on page 23
■ Metaclasses on page 24
■ Attributes on page 25
■ Has Relationships on page 27
■ Associations on page 31
■ Dependency Relationships on page 44
■ Generalization Relationships (Inheritance) on page 44
■ Operations on page 52
■ User-Defined Initialization, Assignment and Finalization on page 56

Introduction

This chapter details the forward-engineering mapping between the UML notation
and the Ada 95 programming language.

Roughly speaking, classes are transformed into types declared in library packages,
utilities are transformed into library packages, attributes and relationships are
transformed into record components. The main source of information for the code
generation are the class diagrams. Code generation properties may be used to gain
finer control over the way that code is produced. If component diagrams are present,
some of the information they contain is also used by the code generator.
3

Because UML and Ada use the word “package” to designate two different concepts,
this document uses the phrase “UML package” for a package in the UML acceptation,
and the word “package” without qualification for an Ada package. When necessary,
the phrases “logical UML package” and “component UML package” are used to refer
to UML packages in the logical view or in the component view, respectively.

Name Space

This section defines how the naming of entities in the UML notation corresponds to
the naming of declarations in the generated Ada 95 code.

The following rules define the legal names for entities of a model that is used to
generate Ada 95 code:

■ The name of any entity in a model may have the form:

identifier

where identifier is a legal Ada 95 identifier. In other words, the name of any entity
name may be an Ada simple name.

■ The name of any class or module may also have the form (using the same BNF
notation as in the Ada 95 Reference Manual):

identifier{.identifier}

where identifier is a legal Ada 95 identifier. In other words, the name of any class
or module may be either an Ada simple name or an Ada expanded name.

■ The name of any normal or parameterized class (but not an utility or a bound
class) may also have the form:

identifier{.identifier}:identifier

In other words, a class name must either be an Ada simple name, an Ada expanded
name, or a pseudo-expanded name (an expanded name followed by a colon and an
identifier: this is called the colon notation hereafter).

The code generator checks the legality of names, in particular in terms of consistency
with the Ada Reference Manual.
4 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

From the name of a class the code generator derives the name of a library-level
package (the package where the type and operations associated with the class are
declared) and the name of a type (the type associated with the class) as follows:

■ If the class is associated with a module, the package name is the name of the
associated module. The type name is given by the code generation property
TypeName, unless the class name uses the colon notation, in which case the type
name is the segment following the colon in the class name.

■ If the class is not associated with a module, and its name uses the colon notation,
the package name is made of the name segments preceding the colon, and the type
name is the name segment following the colon.

■ If the class name does not use the colon notation, the package name is the name of
the class, and the type name is given by the code generation property TypeName.

The code generation property TypeName defaults to “Object”.

These rules support two different approaches to naming the classes in the Rose model:
either the class name reflects the hierarchy of units, or the class name is for design
purposes only, and the hierarchical unit structure is defined using the mapping to
modules. In the former case, the colon notation may be used to make the type names
explicit in the class diagram. Alternatively, the type names may be specified using the
property TypeName.

For utilities, similar rules are used, except that there is no type declaration, so the
TypeName property is irrelevant, and the colon notation is not allowed.

Note that it is possible for several classes to map to types declared in the same Ada
package, either by using the colon notation, or by using associations between classes
and modules. However, such a mapping is only legal if all classes that map to a given
module are part of the same UML package. In the case of associations between classes
and modules, the correspondence between logical and component UML packages
ensure that the mapping is always legal. In the case of the colon notation, the legality
of the mapping is checked by the code generator.

Name Resolution

While a large part of the information in a model is entered graphically by means of
relationships and adornments, there are a number of situations where the user enters
textually in the model a piece of information which designates a class. Examples of
such situations include the definition of the type of attributes or parameters.
Name Resolution 5

The code generator performs name resolution to determine the Ada type to be
generated in these circumstances. To explain how the name resolution works,
consider the case of class A having an operation Op with a parameter (or result) type
written as “B”. The code generator performs the following operations:

■ It finds all the relationships originating at class A. Note that this includes in
particular the dependency relationships, which are not otherwise used for code
generation (except that they result in with clauses, as explained below). As a
consequence, dependency relationships may be used to introduce visibility
between classes for the sake of name resolution.

■ It looks at the names of all classes which are the targets of these relationships.

■ If any of these classes is named “B” (the comparison is case-insensitive, but must
otherwise be exact), the type of the parameter in the generated code is the Ada
type generated for class B. This ensures that the generated code is legal. Assuming
that the default properties are used for class B, the generated code looks like:

procedure Op (X : B.Object);

■ If any of the target classes is named “B:T” (the comparison with the name
segments preceding the colon is case insensitive, but must otherwise be exact; the
name segment following the colon is ignored), the type of the parameter in the
generated code is the Ada type generated for class B:T, i.e. B.T. The generated code
looks like:

procedure Op (X : B.T);

■ If none of the target classes is named “B” or “B:T”, the type of the parameter in the
generated code is simply copied from the model. In this case, the generated code
looks like:

procedure Op (X : B);

Note that this resolution mechanism applies regardless of whether the parameter type
is a simple name (like “B”), an expanded name (like “B.C”) or a colon notation (like
“B:T” or “B.C:T”). If the parameter type uses the colon notation, it will only match a
class name that also uses the colon notation. In all cases, the generated code references
the type name, not the class name.

It may be that there are ambiguities, for instance if the parameter type is given as “B”
and the set of target classes includes classes named “B:T1” and “B:T2”. In this case, an
error message is emitted, and the parameter type has to be made more explicit.
6 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

This name resolution mechanism makes it possible to use class names everywhere in
the model, and defer the mapping of class names to Ada type names by setting the
TypeName code generation property and/or the mapping of classes to modules.
Changing the mapping of classes to types and modules doesn't require to change the
attributes, parameters, etc., scattered throughout the model.

Of course, the user may always enter an Ada type name for the type field of an
attribute or parameter, since such a name will not match any class name, and will thus
be copied verbatim in the generated code. This may be useful for predefined types
like Integer or Calendar.Time, for which it would be cumbersome to create a class in
the model. However, it is strongly recommended that class names, not type names, be
used wherever possible in order to ease maintenance of the model if the mapping of
classes to types ever has to change.

Code Generation Properties and Consistency

Various entities in a model have associated code generation properties which may be
used to control the way that the code is produced. Often, there exist consistency
requirements between the values of the code generation properties of one or several
entities.

These requirements come most of the time from language rules, and ensure that the
generated code is correct. To take an example, in Ada 95, it is not possible to specify,
when declaring a derived type, if it is limited: it just inherits its limited-ness from the
root of the derivation tree. In Rose/Ada, the code generation property IsLimited may
be used to control whether or not the type generated for a given class is limited.
Clearly, it does not make sense for a root class A to have IsLimited set to False, and for
a class B, subclass of A, to have IsLimited set to True.

In practice however, having to set code generation properties in a consistent manner
over large models may become burdensome. To avoid this, some code generation
properties are said to be dominant over others. A dominant property determines the
code generated, and the dominated property is ignored altogether, even if it specifies
a different code generation. For instance, if a root class has IsLimited set to True, the
code generation property IsLimited of its subclasses is not even considered: these
classes will all be limited.

In some circumstances, a property is dominant only when it has a specific value (or
set of values). For instance, the property TypeImplementation dominates IsLimited
only when it has the values Task or Protected (because task types and protected types
are always limited).
Code Generation Properties and Consistency 7

One may however wish to be able to track and correct inconsistencies where, for
instance, IsLimited is set to True on the root class but to False on some of its
subclasses, Such inconsistencies may turn out to be a problem in organizations having
strict quality assurance policies. To ease detection of inconsistencies, the code
generator emits a warning message whenever it detects that a dominated property
has a value which is inconsistent with the dominant property.

Classes

If a “normal” class is associated with a module, that module must be a non-generic
package.

Normally, the type generated to represent objects of the class is a non-limited, private
type. This can be controlled using the code generation properties IsLimited and
TypeVisibility attached to the class:

■ For a class which has no superclass, the boolean code generation property
IsLimited may be set to True, in which case a limited type is generated. The
property IsLimited of a root class dominates the same property for its subclasses.

■ TypeVisibility can take two values: Public and Private. Setting this property to
Public causes the full type declaration to be generated in the visible part of the
associated library package. Setting it to Private causes a private type to be
generated. TypeVisibility defaults to Private.

The scheme used to generate the code associated with a class is governed by the code
generation properties TypeImplementation and TypeDefinition.

If TypeDefinition is not empty, it dominates TypeImplementation, and the type
generated uses the contents of that property (technically, the contents of
TypeDefinition must be an Ada type definition). If for instance TypeDefinition is set to
“range -1 .. 3” then the generated type declaration is:

type Object is range -1 .. 3;

If TypeDefinition is empty (the default), TypeImplementation is used to control the
code generation scheme. TypeImplementation can take one of five values: Tagged,
Record, Mixin, Task or Protected. In the rest of this section, we consider each of these
schemes in turn. In this discussion, unless otherwise specified we assume the default
values for properties IsLimited and TypeVisibility.
8 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

Tagged Implementation

The class corresponds to a tagged type. If the class has no superclass, the declaration
of the corresponding type is:

type Object is tagged private;

If the class has a superclass, the declaration of the corresponding type is:

type Object is new Superclass.Object with private;

If the class has more than one superclass, we are in a situation of multiple inheritance,
which is covered later.

If the class is abstract, the associated type declaration includes the reserved word
abstract:

type Object is abstract tagged private;

type Object is abstract new Superclass.Object
with private;

Record Implementation

In this scheme, polymorphism (if any) is implemented using records with variants.
This means that if the class has any subclass, an enumeration type is created to
represent all possible variants, and the record type declaration associated with the
class is a variant record gathering the attributes and relationships of all the subclasses.

The properties TypeImplementation and IsLimited of the root class dominate those of
the subclasses. Also, none of the classes may be marked abstract.

There are two ways that the record mapping can be implemented, so the Record
scheme is further controlled by the code generation property RecordImplementation
associated with the root class. This property can take the two values SingleType and
MultipleTypes. The property RecordImplementation of the root class dominates the
same property for its subclasses.

Regardless of the mapping chosen, for a class which has no superclass and no
subclasses, the generated code is simply (assuming the default values for the
properties TypeVisibility and IsLimited):

package A is
type Object is private;

private
type Object is

record
...

end record;
end A;
Classes 9

When discussing the two possible record implementations in more complex cases,
we’ll use the following generalization hierarchy as an example:

SingleType Record Implementation

In this scheme, a single record type is created for the complete generalization
hierarchy. An enumeration type is created that lists all the variants, and the structure
of the record corresponds to that of the generalization tree. For each subclass, a
package is created that declares a subtype or derived type with a discriminant
constraint (depending on the property IsSubtype). For leaf classes, the discriminant is
omitted. The code generated is as follows:

package A is -- The root package
type A_Kinds is (Some_A, Some_B, Some_C,

Some_D, Some_E, Some_F);
type Object (Kind : A_Kinds := Some_A) is private;

private
type Object (Kind : A_Kinds := Some_A) is

record
Ca : Integer;
case Kind is

when Some_B =>
Cb : Integer;

when Some_C | Some_D | Some_E | Some_F =>
Cc : Integer;
case Kind is

when Some_D =>
Cd : Integer;
10 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

when Some_E | Some_F =>
Ce : Integer;
case Kind is

when Some_F =>
Cf : Integer;

when others =>
null;

end case;
when others =>

null;
end case;

when others =>
null;

end case;
end record;

end A;
with A;
package B is -- A leaf

type Object is private;
private

type Object is new A.Object (A.Some_B);
end B;
with A;
package C is -- An intermediate node

subtype C_Kinds is A.A_Kinds
range A.Some_C .. A.Some_F;

type Object (Kind : C_Kinds := A.Some_C) is private;
private

type Object (Kind : C_Kinds := A.Some_C) is
new A.Object (Kind);

end C;

The prefix used to generate the names of the enumeration literals is specified using
the code generation property EnumerationLiteralPrefix of the class. This property
defaults to “A_”. In the above examples, we have assumed for readability that it was
set to “Some_”.

Note that the code generator orders the enumeration literals in a way that is suitable
for the constraints on subtype Kinds in the intermediate nodes.

The property TypeVisibility of the root class dominates the same property for
subclasses.

The SingleType mapping may result in name conflicts: if two components of two
classes in a generalization hierarchy have the same name, they will clash when they
are put together in the above record type declaration. It is the user’s responsibility to
avoid such conflicts.
Classes 11

MultipleTypes Record Implementation

In this scheme, one record type is created for each class in the hierarchy, and these
types are aggregated in a discriminated record at each level, according to the structure
of the generalization hierarchy. For subclasses, a subtype or derived type with a
discriminant constraint is created (depending on the property IsSubtype). For leaf
classes, the discriminant is omitted.

package A_Record_Kind is
type A_Kinds is (Some_A, Some_B, Some_C,

Some_D, Some_E, Some_F);
end A_Record_Kind;
with A_Record_Kind;
with B;
with C;
package A is

use A_Record_Kind;
subtype A_Kinds is A_Record_Kind.A_Kinds;
type Object (Kind : A_Kinds := Some_A) is private;

private
type Object (Kind : A_Kinds := Some_A) is

record
Ca : Integer;
case Kind is

when Some_B =>
The_B : B.Object;

when Some_C | Some_D | Some_E | Some_F =>
The_C : C.Object (Kind);

when others =>
null;

end case;
end record;

end A;
package B is

type Object is private;
private

type Object is
record

Cb : Integer;
end record;

end B;
with A_Record_Kind;
with D;
with E;
package C is

use A_Record_Kind;
subtype C_Kinds is A_Kinds range Some_C .. Some_F;
type Object (Kind : C_Kinds := Some_C) is private;

private
type Object (Kind : C_Kinds := Some_C) is

record
Cc : Integer;
case Kind is
12 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

when A_Record_Kind.Some_D =>
The_D : D.Object(Kind);

when A_Record_Kind.Some_E |
A_Record_Kind.Some_F =>

The_E : E.Object(Kind);
when others =>

null;
end case;

end record;
end C;

As before, the prefix used to generate the names of the enumeration literals is
specified using the code generation property EnumerationLiteralPrefix of the root
class, which was set to “Some_” in the above example. Also, the prefix used to
generate the names of the intermediate record components is given by the code
generation property RecordFieldPrefix of the root class (this property defaults to
“The_”).

Finally, the name of the auxiliary package used to declare the enumeration type Kinds
is given by the code generation property RecordKindPackageName of the root class.
This property defaults to “${class}_Record_Kinds”.

Mixin Implementation

A class whose TypeImplementation property is set to Mixin must be abstract. If that
class has no superclass (see figure), the following code is generated:

generic
type Superclass is abstract tagged private;

package A is
type Object is abstract new Superclass with private;
-- declaration of the operations
-- of the class here.

private
type Object is new Superclass with

record
-- declaration of the attributes
-- and relationships
-- of the class here.

end record;
end A;
Classes 13

If the class has (exactly one) superclass, B, then B must have its TypeImplementation
property set to Tagged (see figure), and the generic formal part above is changed as
follows:

with B;
generic

type Superclass is abstract new B.Object with private;
package A is ...

Classes implemented according to the Mixin scheme are used in multiple inheritance
situations as explained later on.

Task Implementation

A class whose TypeImplementation property is set to Task must not be abstract, and
its code generation property IsLimited is dominated. Also, its operations must all be
procedures (as opposed to functions). A task type is generated for such a class.

The operations are transformed into entries, and their SubprogramImplementation
property is dominated. Depending on the visibility of each operation, the entry is
declared either in the visible part or in the private part of the task type. No implicit
parameter is ever generated for an operation in the Task mapping, because the
implicit parameter is the task itself: TypeImplementation dominates
ImplicitParameter.

For each visible operation of the class, a procedure is also generated in the visible part
of the package that declares the task type. This procedure has the same profile as the
corresponding entry of the task, except for an additional parameter that designates
the object being operated upon. The name of this additional parameter is given by the
code generation property ImplicitParameterName of the class. The body of each of
these procedures simply calls the corresponding entry of the given task object.
14 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

The attributes and “has” relationships whose property RecordFieldImplementation is
either Discriminant or AccessDiscriminant are transformed into discriminants, as for
any composite type. The attributes and “has” relationships whose property
RecordFieldImplementation is Component, and the associations, are transformed into
variables declared in the task body.

Accessor operations (Get and Set) are never generated for attributes of a class whose
TypeImplementation property is Task (in other words, GenerateGet and GenerateSet
are dominated).

An example of code generated for the Task mapping is as follows:

package A is
type Object (D : Integer := 0) is limited private;
procedure Op1 (This : Object);

private
task type Object (D : Integer := 0) is

entry Op1;
private

entry Op2;
end Object;

end A;

with B;
package body A is

procedure Op1 (This : Object) is
begin

This.Op1;
end Op1;

task body Object is
Classes 15

Attr1 : Float;
Attr2 : Boolean := False;
Aggr1 : B.Object;
Aggr2 : B.Handle;
...

end Object;

end A;

Classes implemented according to the Task mapping cannot be used in generalization
relationships.

Protected Implementation

A class whose TypeImplementation property is set to Protected must not be abstract,
and its code generation property IsLimited is dominated. A protected type is
generated for such a class.

The operations are transformed into protected functions or protected procedures,
except that an operation whose concurrent behavior is specified as synchronous is
transformed into an entry. The code generation property EntryBarrierCondition of
such an operation contains the boolean expression used for the barrier of the entry
body. This property defaults to “True”.

Depending on the visibility of each operation, it is declared either in the visible part or
in the private part of the protected type. No implicit parameter is ever generated for
an operation in the Protected mapping, because the implicit parameter is the
protected object itself: TypeImplementation dominates ImplicitParameter.

For each visible operation of the class, a subprogram is also generated in the visible
part of the package that declares the task type. This subprogram has the same profile
as the corresponding protected subprogram, except for an additional parameter that
designates the object being operated upon. The name of this additional parameter is
given by the code generation property ImplicitParameterName of the class. The body
of each of these subprograms simply calls the corresponding protected subprogram of
the given protected object.

The attributes and “has” relationships whose property RecordFieldImplementation is
either Discriminant or AccessDiscriminant are transformed into discriminants, as for
any composite type. The attributes and “has” relationships whose property
RecordFieldImplementation is Component, and the associations, are transformed into
components of the protected object (and are thus declared in the private part).
16 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

An example of code generated for the Protected mapping is as follows:

package A is
type Object (D : Integer := 0) is limited private;
procedure Op1 (This : Object);
function Op2 (This : Object) return Integer;

private
protected type Object (D : Integer := 0) is

entry Op1;
function Op2 return Integer;

private
procedure Op3;
Attr : Float;
Aggr1 : B.Object;
Aggr2 : B.Handle;

end Object;
end A;

with B;
package body A is

procedure Op1 (This : Object) is
begin

This.Op1;
end Op1;

function Op2 (This : Object) return Integer is
begin

return This.Op2;
end Op2;

protected body Object is
entry Op1 when Attr > 0.0 is
begin
Classes 17

...
end Op1;
function Op2 return Integer is
begin

...
end Op2;
procedure Op3 is
begin

...
end Op3;

end Object;

end A;

Classes implemented according to the Protected mapping cannot be used in
generalization relationships.

Parameterized Classes

There exist two mappings for parameterized classes: either as types declared in
generic units, or as types with unconstrained discriminants. Correspondingly, there
exist two mappings for bound classes: generic instantiations and constrained types.
The mapping is selected by the code generation property
ParameterizedImplementation: if this property is set to Generic (the default), the
“generic” mapping is used, if it is set to Unconstrained the “unconstrained type”
mapping is used.

In all cases, if a parameterized class is associated with a module, the code generation
property ParameterizedImplementation must be consistent with the nature of the
associated module: if ParameterizedImplementation is Generic, the associated
module must be a generic package, if it is Unconstrained it must be a non-generic
package.

If a class is parameterized, all its subclasses must also be parameterized. The property
ParameterizedImplementation of a root class dominates the same property for its
subclasses.

Generic Implementation

The root class is transformed into a type declared in a generic library package. The
exact nature of the type is controlled by the property TypeImplementation, as for
normal classes. The formal part of the generic is extracted from the class specification.

Subclasses are transformed into a tagged type declared in a generic library package,
but we have two cases to consider:
18 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

■ If the generic library package is a child of the package that contains the superclass,
then its formal part only includes the parameters extracted from the class
specification of the subclass.

generic

... -- parameters of the superclass

package A is

type Object is tagged private;

...

end A;

generic

... -- parameters of the subclass

package A.B is

type Object is new A.Object with private;

...

end A.B;

■ If, on the other hand, the generic library package is not a child of the package that
contains the superclass, then it must import the superclass’ package as a generic
formal package, as shown on the following example:
Parameterized Classes 19

generic

... -- parameters of the superclass

package A is

type Object is tagged private;

...

end A;

with A;

generic

with package Superclass is new A (<>);

-- parameters of the subclass

package B is

type Object is new Superclass.Object with private;

...

end B;

The name of the formal package parameter is given by the property
ParentClassName of the subclass, and defaults to “Superclass”.

Unconstrained Type Implementation

The discriminant part of the type is derived from the class parameters. Each class is
transformed into a type having unconstrained discriminants (without default values).
For a subclass, type derivation is used to add discriminants without constraining the
discriminants inherited from the parent type.

If one any of the parameters has a type of the form “access T” then the property
IsLimited is dominated, and a limited type is generated for the class.

An example of code generated for the Unconstrained Type implementation is as
follows (assuming the default values for other code generation properties):

package A is
type Object (D1 : Integer; D2 : access String) is

tagged limited private;
20 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

...
end A;
with A;
package B is

type Object (D1 : Integer;
D2 : access String;
D3 : Boolean) is new A.Object (D1, D2)

with private;
...

end B;

Bound Classes

If a bound class is associated with a module, that module must be a non-generic
package.

The value of ParameterizedImplementation for a parameterized class (Generic or
Unconstrained) determines the mapping chosen for any bound class obtained by
binding the parameters of that parameterized class. In other words, the property
ParameterizedImplementation of a parameterized class dominates the same property
for the bound classes.

Generic Implementation

The class is transformed into a library-level generic instantiation. The actual
parameters are extracted from the class specification.

Consider a bound class B1 obtained by binding the parameters of a parameterized
class P1. Say that P1 is not a root class, but has instead a superclass P2. Because the
actual parameters of B1 only specify values for the parameters of P1, and not of P2,
there must exist a bound class B2, obtained by binding the parameters of a
parameterized class P2, from which B1 “inherits” the actual parameters for P1.
Bound Classes 21

The UML notation does not allow inheritance relationships between bound classes,
because bound classes are fully specified by their template. Therefore, the
pseudo-inheritance between B1 and B2 is represented by a dependency relationship
labelled “parent”, as shown on the diagram below:

Based on this information, the code is generated in two different ways depending on
whether P1 had visibility over its ancestor by a parent-child relationship or by a
formal package (see above):

package B1 is new B2.P1 (...);

package B1 is new P1 (Superclass => B2, ...);

Unconstrained Type Implementation

The class is transformed into a type declaration that provides discriminant
constraints. Alternatively, a subtype is generated if the boolean code generation
property IsSubtype for the class is True (this property defaults to False).

Each bound class must provide values for all parameters (i.e., constraints for all
discriminants), including those inherited from the generalization hierarchy.
22 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

An example of code generated for the Unconstrained Type implementation is as
follows (assuming the default values for other code generation properties):

package C is
subtype Constrained_Object is

B.Object
(D1 => 3,
D2 => Some_String'Access,
D3 => False);

type Object is Constrained_Object with private;
...

private
type Object is Constrained_Object with

record
...

end record;
end C;

Utilities

If an utility is associated with a module, that module must be a non-generic package
or subprogram. If an utility is not associated with a module, it is transformed into a
package. Similarly, parameterized utilities are transformed into generic units, and
bound utilities are transformed into library-level instantiations.
Utilities 23

If an utility is transformed into a package, no type declaration is produced. Instead,
each operation of the utility is transformed into a subprogram in that package.
Attributes of such an utility become package-level declarations, regardless of the
setting of the “static” button.

If an utility is transformed in a subprogram, then the utility must declare exactly one
operation. Note that a bound utility must map to the same kind of program unit as its
template.

Metaclasses

A metaclass must not have any associated module. The attributes and operations it
declares are instead used to generate code for classes that derive from that metaclass.

A metaclass attribute or relationship is transformed into a variable or constant.
Depending on the visibility of the attribute or relationship, the variable is declared in
the visible part (public), the private part (protected or private) or the body
(implementation) of the package associated with each class that derives from the
metaclass.

A metaclass operation is transformed into a subprogram, which is declared in the
same package as each class which derives from the metaclass. Each parameter (or
result) of such a subprogram which had a type name identical to that of the metaclass
is transformed into a class-wide parameter. Depending on the visibility of the
operation, the subprogram is declared in the visible part (public), the private part
(protected or private) or the body (implementation) of the package associated with
each class that derives from the metaclass.
24 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

An example of code generated for metaclasses is as follows. Note that no module is
generated for the metaclass A. Also note the difference between class attributes and
operations on one hand, and metaclass attributes and operations on the other hand:

package B is

type Object is tagged private;
procedure Q (This : Object);

X : Integer;
procedure P (This : Object'Class);

private
type Object is tagged

record
Y : Float;

end record;
end B;

Attributes

An attribute is generally transformed into a record component. There exists two
special cases for the generation of attributes: the attributes of a metaclass are
transformed into package-level declarations, as explained above. The attributes of a
normal class which are marked as “static” are also transformed into package level
declarations. In fact, in term of code generation, static attributes are handled exactly as
attributes of metaclasses.

The record component corresponding to an attribute has a name which is given by the
code generation property RecordFieldName.
Attributes 25

The code generated for an attribute is controlled by the code generation property
RecordFieldImplementation. This property can take the values Discriminant,
AccessDiscriminant, and Component (the default). For a parameterized class whose
ParameterizedImplementation is Unconstrained, the property
RecordFieldImplementation is dominated, and all attributes are implemented as
components. If a class has, in its generalization hierarchy, an attribute implemented as
an AccessDiscriminant, then the property IsLimited is dominated, and a limited type
is generated for that class.

The semantics of RecordFieldImplementation is as follows:

■ If RecordFieldImplementation is set to Discriminant, a normal discriminant is
generated, as in:

type Object (D : Integer := 3) is private;

■ If RecordFieldImplementation is set to AccessDiscriminant, an access discriminant
is generated, as in:

type Object (D : access Integer) is limited private;

■ If RecordFieldImplementation is set to Component, a normal component is
generated in the full type declaration, as in:

type Object is

record

C : Integer;

end record;

All attributes (and “has” relationships; see below) whose RecordFieldImplementation
property is either Discriminant or AccessDiscriminant must agree on the existence of
default values, and on the visibility: either all have defaults, or none have defaults,
and they all have the same visibility. In addition, if the code generation property
TypeImplementation of the class is Tagged, then it dominates the property
InitialValue, and no default value is generated.

The discriminants always appear in the full type declaration. For private types,
whether or not the discriminants appear in the private type declaration depends on
their visibility and on the existence of defaults:

■ If the discriminants have defaults, they appear in the private type declaration only
if their visibility is public. Otherwise, the private type declaration does not include
a discriminant part.
26 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

■ If the discriminants don’t have defaults, they appear in the private type
declaration only if their visibility is public. Otherwise, the private type declaration
includes an unknown discriminant part, as in:

package A is

type Object (<>) is private;

private

type Object (D : Integer) is

record ... end record;

end A;

The case of a class inheriting discriminants from its superclass (and possibly adding
new discriminants) is handled in a manner similar to the Unconstrained Type
mapping of parameterized classes.

Has Relationships

“Has” relationships are not part of the UML notation. However, they can be created in
Rose using the View > As Booch option. When viewed using the UML or OMT
notation, they are displayed as unidirectional aggregation relationships. However,
they have slightly different code generation properties than true aggregations,
because they gather together the properties borne by associations and the properties
borne by roles.

An “has” relationship is generally transformed into a record component. There exists
two special cases for the generation of “has” relationships: the relationships of a
metaclass are transformed into package-level declarations, as explained above. The
relationships of a normal class which are marked as “static” are also transformed into
package level declarations. In fact, in term of code generation, static “has”
relationships are handled exactly as “has” relationships of metaclasses.

In the rest of this discussion, we consider the case of class A having a “has”
relationship to class B.

The mapping of an “has” relationship depends on whether it is by-value or
by-reference:

■ A by-value relationship is represented using the type associated with B (either
directly or through some container, depending on the multiplicity of the
relationship; see below).

■ A by-reference relationship is represented using an access type that designates the
type associated with B (either directly or through some container, depending on
the multiplicity of the relationship; see below). This access type is only created for
Has Relationships 27

those classes that are the target of some by-reference “has” relationship. There is
only one such access type, even if class B is the target of several “has”
relationships.

The access type used to represent by-reference relationships targeting B is declared in
the package associated with class B. Its name is given by the code generation property
AccessTypeName of class B (this property defaults to “Handle”). It is generated either
in the public part or in the private part, based on the code generation property
AccessTypeVisibility, which can take the values Public (the default) and Private.

If the code generation property AccessTypeDefinition of B is not empty, it dominates,
and the declaration of the access type uses this property. Technically,
AccessTypeDefinition must contain an Ada type definition. For instance, if
AccessTypeDefinition is set to “access constant B.Object” the access type is declared as
follows:

type Handle is access constant B.Object;

If the code generation property AccessTypeDefinition of B is empty (the default), an
access type is generated as follows:

■ If B is associated with a tagged type, the access type is a class-wide type:

type Handle is access B.Object; -- B not tagged

type Handle is access B.Object’Class; -- B tagged

■ If the code generation property MaybeAliased for B is set to True (it defaults to
False), the access type is a general access-to-variable type:

type Handle is access B.Object’Class;

-- B tagged, not aliased

type Handle is access all B.Object’Class;

-- B tagged, may be aliased

There may be circumstances where it is useful to have an access type declaration
generated for class B, even though B is not (or not yet) the target of any by-reference
“has” relationship. The code generation property GenerateAccessType controls the
generation of an access type. It can take the values Auto and Always. The default is
Auto, and corresponds to the case where the generation of the access type depends on
the existence of a by-reference “has” relationship. The value Always force the
generation of an access type declaration, regardless of the existence of by-reference
“has” relationships.

If the maximum allowable cardinality of the relationship is 1, the type of the record
component representing the relationship is directly the object or access type
associated to B, as explained above.
28 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

If, on the other hand, the maximum allowable cardinality of the relationship is larger
than 1, an intermediate container type is required to support the one-to-many
relationship. The scheme used to generate the code associated with a one-to-many
relationship is governed by the code generation properties ContainerImplementation
and ContainerType.

If ContainerType is not empty, it dominates ContainerImplementation, and specifies
the container type used to represent the one-to-many relationship. The code
generation property ContainerDeclarations may be used to specify auxiliary
declarations that may be necessary to build the container type.

If ContainerType is empty (the default), ContainerImplementation is used to control
the code generation scheme. ContainerImplementation can take the two values
Generic and Array, and defaults to Array. The semantics of this property is as follows:

■ If ContainerImplementation is set to Generic, the generic unit given by the
property ContainerGeneric is instantiated, with a single parameter which is the
type corresponding to class B, or the access type associated to B, depending on
whether the relationship is by-reference or by-value.

■ If ContainerImplementation is set to Array, an unconstrained array type, and an
access to that array type, are declared to represent the one-to-many relationship.
The array element type is either the type associated to B (if the “has” relationship is
by-value) or the access type associated with B (if the relationship is by-reference).
The name of the array type and access type are given by the code generation
properties ArrayOfTypeName (or ArrayOfAccessTypeName) and
AccessArrayOfTypeName (or AccessArrayOfAccessTypeName) of class B. These
properties default to Array_Of_${type}, Array_Of_${access_type},
Access_Array_Of_${type} and Access_Array_Of_${access_type}, respectively. The
index specification for the array types is given by the code generation property
ArrayIndexDefinition, which defaults to “Positive range <>”.

The code generation property RecordFieldImplementation which was discussed
above in the context of attributes can also be applied to “has” relationships, with the
same semantics, except that AccessDiscriminant is not allowed for a by-value
relationship.

Note that the target of a “has” relationship must not be a class whose
TypeImplementation property is Mixin.
Has Relationships 29

As an illustration of the implementation of “has” relationship, consider the following
class diagram:

It results into the following code (note that only the “get” accessors are shown; the
“set” accessors have similar parameter types):

with B;
with List_Generic;
package A is

type Object (Has5 : access B.Object) is tagged limited private;

package B_List is new List_Generic (B.Object);

function Get_Has1 (This : in Object) return B.Object;
function Get_Has2 (This : in Object) return B.Handle;
function Get_Has3 (This : in Object) return B.Array_Of_Object;
function Get_Has4 (This : in Object) return B_List.List;

-- "set" accessors go here

private
type Object (Has5 : access B.Object) is tagged limited

record
Has1 : B.Object;
Has2 : B.Handle;
Has3 : B.Access_Array_Of_Object;
Has4 : B_List.List;
30 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

end record;
end A;

package B is
type Object is tagged private;
type Handle is access all Object’Class;
type Array_Of_Object is

array (Positive range <>) of Object;
type Access_Array_Of_Object is

access Array_Of_Object;
private

...
end B;

The following defines the generic container used by Has4:

generic
type Item is private;

package List_Generic is
type List is tagged private;

private
...

end List_Generic;

Associations

Associations fall into two categories:

■ Simple Associations
■ Association Classes

The generated code for both categories follows a number of common principles.

Code is only generated for the roles which are marked as navigable in the Rose model.
If an association has no navigable role, no code is generated for that association.

Code is only generated if the two classes that participate in the association have their
Type Implementation property set to Record or Tagged. An error is emitted if an
association involves classes with a non-record, non-tagged implementation.
Associations 31

There exist many similarities between the mapping of associations and that of “has”
relationships:

■ A role always becomes a component in a record or tagged type.

■ The name of a role determines the name of the various declarations generated for
that role (record component, accessor subprograms, etc.). If a role is unnamed, the
name of the class at the other end of the association is used to determine the name
of the declarations generated for that role.

■ If a class is the target of a navigable by-reference role, an access type is generated
for that class. The characteristics of that access type depend on the code generation
properties AccessTypeName, AccessTypeVisibility, AccessTypeDefinition and
MaybeAliased of the class.

■ The mapping of a role depends on its multiplicity. If the maximum allowable
cardinality is larger than 1, a container type is declared, as specified by the code
generation properties ContainerImplementation, ContainerType,
ContainerGeneric and ContainerDeclarations for the role.

■ The code generation properties NameIfUnlabeled, RecordFieldName,
GenerateGet, GetName and InlineGet may also be applied to a role, with a
semantic similar to the semantics they have for “has” relationships. The code
generation properties GenerateSet, SetName and InlineSet are only used when the
role belongs to a unidirectional association, i.e., an association with only one
navigable role. They are not used when the role belongs to a bidirectional
association, i.e., an association with two navigable roles.

Simple Associations

If a simple association has only one navigable role, the code generated for that
association is exactly identical to the code that would be generated for an “has”
relationship similar to that role. Such an association may be marked “static”, in which
case package-level declarations are generated instead of record components (again,
this is identical to the case of an “has” relationship).

A warning is emitted by the code generator when it encounters a unidirectional
association, because an association normally has two navigable roles (and thus the
presence of only one navigable role may indicate a mistake).

The rest of this section pertains only to the case of a simple association with two
navigable roles.

The two classes which participate in the association must map to the same package,
either because their names use the colon notation and have the same prefix, or
because they are associated with the same module (a package specification).
32 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

In both classes the TypeVisibility property must be set to Private.

An association may have keys which are used to unambiguously identify an object.
Keys are handled by Rose/Ada exactly as attributes of classes: they are normally
generated as record components, possibly with “get” and “set” accessors. If several
associations originating from the same class declare keys with the same name, the
record component is only generated once. An error is detected in this case if the
various keys don't have the same type.

A bidirectional association may not be marked “static”.

Data Structures

If any role of a bidirectional association is by-value, an error is detected.

If both roles of a bidirectional association are by-reference, the data structures (record,
components, discriminants, etc.) generated for the association are exactly identical to
the data structure that would be generated for two by-reference “has” relationships.
These data structures depend on the multiplicity of the association. They are shown
below, assuming that both classes use the Tagged implementation, and that arrays are
used to represent relationships with maximum allowable cardinality larger than 1.

In the following examples, the AccessTypeName class property must be given a
unique name since both classes map to the same package.

■ For a one-to-one association, the generated data structures are as follows:

package A is

type T1 is tagged private;

type H1 is access T1'Class;

type T2 is tagged private;

type H2 is access T2'Class;

-- Operations go here

private

type T1 is tagged

+x +y
Associations 33

record

-- Keys and attributes go here

Y : H2;

end record;

type T2 is tagged

record

-- Keys and attributes go here

X : H1;

end record;

end A;

■ For a one-to-many association, the generated data structures are as follows:

package A is

type T1 is tagged private;

type H1 is access T1'Class;

type Array_Of_H1 is

array (Positive range <>) of H1;

type Access_Array_Of_H1 is access Array_Of_H1;

type T2 is tagged private;

type H2 is access T2'Class;

-- Operations go here

private

type T1 is tagged

record

-- Keys and attributes go here

Y : H2;

end record;

type T2 is tagged

record

-- Keys and attributes go here

+x +y
34 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

X : Access_Array_Of_H1;

end record;

end A;

■ For a many-to-many association, the generated data structures are as follows:

package A is

type T1 is tagged private;

type H1 is access T1'Class;

type Array_Of_H1 is

array (Positive range <>) of H1;

type Access_Array_Of_H1 is access Array_Of_H1;

type T2 is tagged private;

type H2 is access T2'Class;

type Array_Of_H2 is

array (Positive range <>) of H2;

type Access_Array_Of_H2 is access Array_Of_H2;

-- Operations go here

private

type T1 is tagged

record

-- Keys and attributes go here

Y : Access_Array_Of_H2;

end record;

type T2 is tagged

record

-- Keys and attributes go here

X : Access_Array_Of_H1;

+x +y
Associations 35

end record;

end A;

Subprograms

A “get” accessor may be generated for each role in the association, based on the code
generation properties GenerateGet, GetName and InlineGet of the role.

Bidirectional associations must be created and deleted using the subprograms
Associate and Dissociate as explained below. This is for integrity reasons: if two
objects are linked by a bidirectional association, it is important that each of them has a
pointer to the other. If “set” accessors were generated in that case, they could be used
to create a situation where object A has a pointer to object B, but object B doesn't have
a pointer to object A. Such a situation doesn't correspond to an association, but to two
aggregation relationships. By generating Associate and Dissociate subprograms
instead of “set” accessors for bidirectional associations, Rose/Ada prevents such
violations of the association model.

Two families of subprograms, named Associate and Dissociate by default, may be
generated for each role, under the control of the code generation properties
GenerateAssociate and GenerateDissociate of the association. These subprograms are
used to establish or break an association by establishing or breaking linkages between
objects. The profiles of these subprograms depend on the multiplicities of both roles,
and on the nature of the construct used to implement relationships with maximum
allowable cardinality larger than 1. The code shown below corresponds to the case
where the ContainerImplementation property of the roles is Array. If the
ContainerImplementation is Generic, or if a container type is provided, the name of
the container type is substituted to the name of the array type in the subprogram
declarations.

Alternate names may be provided for the Associate and Dissociate subprograms
using the code generation properties AssociateName and DissociateName. The code
generation properties InlineAssociate and InlineDissociate control whether or not a
pragma Inline is emitted for these subprograms.

■ For a one-to-one association, the generated subprograms are as follows:

+x +y
36 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

procedure Associate

(This_H2 : in H2; This_H1 : in H1);

procedure Dissociate (This_H2 : in H2);

procedure Dissociate (This_H1 : in H1);

The semantics of Associate is that it establishes a two-way linkage between the
given objects. If the given objects are already part of an association, this association
is not broken, but instead Associate raises the exception System.Assertion_Error.

The semantics of Dissociate is that it breaks the linkage between the given object
and its correspondent (if any). Dissociate may be used for either extremity of the
association: that's why there are two overloaded declarations, one taking an H1,
the other taking an H2.

■ For a one-to-many association, the following Associate and Dissociate procedures
are generated in addition to the ones described above for one-to-one associations:

procedure Associate (This_H2 : in H2;

This_Array_Of_H1 : in Array_Of_H1);

procedure Dissociate (This : in Array_Of_H1);

The semantics of Associate is that it establishes two-way linkages between the
object designated by This_H2 and each of the objects designated by the pointers in
This_Array_Of_H1. These linkages are added to those that might already exist
between the object designated by This_H2 and other objects of type T1. If some of
the objects designated by the pointers in This_Array_Of_H1 are already part of an
association, the exception System.Assertion_Error is raised.

The semantics of Dissociate is that it breaks the linkages between each object
designated by the pointers in This_Array_Of_H1 and the associated object of type
T2.

+x +y
Associations 37

■ For a many-to-many association, the following Associate and Dissociate
procedures are generated in addition to the ones described above for one-to-one
and one-to-many associations:

procedure Associate

(This_Array_Of_H2 : in Array_Of_H2;

This_H1 : in H1);

procedure Associate

(This_Array_Of_H2 : in Array_Of_H2;

This_Array_Of_H1 : in Array_Of_H1);

procedure Dissociate (This : in Array_Of_H2);

The semantics of Associate is that it establishes two-way linkages between the
object designated by This_H1 (or by the pointers in This_Array_Of_H1) and each
of the objects designated by the pointers in This_Array_Of_H2. These linkages are
added to those that might already exist between the designated objects designated
by This_H2 and other objects of type T1. Note that the exception
System.Assertion_Error is never raised by Associate for a many-to-many
association (notwithstanding what was said above for one-to-one and
one-to-many associations).

The semantics of Dissociate is that it breaks the linkages between each object
designated by the pointers in This_Array_Of_H2 and the associated objects of type
T1.

■ For an association having a finite multiplicity (e.g. 1..4), the subprograms profiles
and semantics are similar to those corresponding to the unlimited case (e.g.
one-to-many), except that the Associate subprogram check the multiplicity
constraint (e.g. it is not possible to associate more than 4 objects of type T1 to an
object of type T2). The exception System.Assertion_Error is raised if this check
fails.

Note that for associations having a role whose maximum allowable cardinality is 1,
Associate never replaces the current association, if it turns out that the object on that
role is already part of some association. Instead, the exception System.Assertion_Error
is raised. On the other hand, for a role whose maximum cardinality is unlimited, it is
always possible to augment the current association, so no exception is ever raised.

+x +y
38 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

If replacement is needed for an association, it may be implemented by successively
calling Dissociate and Associate.

If the Association and Dissociate subprograms are passed null pointers, they raise
System.Assertion_Error. However, for the versions of these subprograms which take
arrays of access values, it is acceptable for the arrays to contain null pointers: these
null pointers are simply skipped. Still, the entire array must contain at least one
non-null pointer.

For one-to-one associations, and for one-to-many or many-to-many associations with
ContainerImplementation properties set to Array, the bodies of the Associate and
Dissociate procedures are entirely generated by Rose/Ada, with the semantics
explained above. They perform storage management by reusing empty slots in the
arrays, allocating longer arrays if needed, and reclaiming storage when appropriate.
They also preserve the integrity of the association by detecting the case where two of
the access passed to Associate denote the same object. Because the generated code is
part of a protected region, it can be modified by the user to meet special needs. It is
however recommended that the above semantics be adhered to.

For one-to-many or many-to-many associations with a specific ContainerType, or
with a ContainerImplementation set to Generic, the bodies of the Associate and
Dissociate procedures are left empty.

Association Classes

For an association class, independent objects must be created to hold the attributes of
the association. Therefore, a type is generated which corresponds to the association
class. This type may be generated in any package: it doesn't have to be located in the
same package which contains the two principal classes involved in the association.

Data Structures

The generated data structures are similar to what would be generated if the
association class had a one-to-many association with each of the two principal classes.
However, these data structures are essentially hidden, and the clients are only given
operations to query, create or delete the association, and operations to read or modify
the attributes of the association. This ensures that the integrity of the association is
preserved.

The data structures are such that, from each end of the association, it is possible to
find a list of auxiliary records. Each of these auxiliary records contains a value of the
association class, and two pointers to both ends of the association. So it is possible to
traverse from one end of the association to the other through the auxiliary record. The
auxiliary record and the associated type declaration are not exported, to preserve the
integrity of the association.
Associations 39

The generated data structures for a many-to-many association class are as follows:

package B is
type T is tagged private;

-- Operations go here

private
type T is tagged

record
-- Attributes go here

end record;
end B;

with B;
package A is

type T1 is tagged private;
type H1 is access T1'Class;
type Array_Of_H1 is array (Positive range <>) of H1;
type Access_Array_Of_H1 is access Array_Of_H1;

type T2 is tagged private;
type H2 is access T2'Class;
type Array_Of_H2 is array (Positive range <>) of H2;
type Access_Array_Of_H2 is access Array_Of_H2;

-- Operations go here

private

type Attribute_B is
record

Attribute : B.T;
The_T1 : H1;
The_T2 : H2;

end record;
40 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

type Access_Attribute_B is access Attribute_B;

type Array_Of_Access_Attribute_B is
array (Positive range <>) of Access_Attribute_B;

type Access_Array_Of_Access_Attribute_B is
access Array_Of_Access_Attribute_B;

type T1 is tagged
record

-- Keys and attributes go here
The_B : Access_Array_Of_Access_Attribute_B;

end record;

type T2 is tagged
record

-- Keys and attributes go here
The_B : Access_Array_Of_Access_Attribute_B;

end record;

end A;

Similar code would be generated in the one-to-one and one-to-many cases.

Subprograms

Associate and Dissociate procedures are generated for the entire association. These
procedures are similar to those corresponding to a simple association, except for that
only one Associate procedure is generated, regardless of the multiplicity. That's
because it is mandatory to specify, when establishing an association, the value of the
association class. The variants of the Associate subprogram that would take array of
accesses for the principal classes would also have to take array of values for the
association class. This interface would be complex and difficult to use, so it is not
supported by Rose/Ada.

Two accessor subprograms are generated to read and modify the value of the
attributes of the association class. In order to determine the association to modify,
these subprograms take:

■ One access value designating an object on the cardinality 1 role of the association,
for one-to-one and one-to-many associations.

■ Two access values, designating objects of the two principal classes, for
many-to-many associations.

That information makes it possible to unambiguously locate the association whose
attributes must be read or modified. The generation of the “get” accessor is controlled
by the properties GenerateGet, GetName and InlineGet of the association. Similarly
the generation of the “set” accessor is controlled by the properties GenerateSet,
SetName and InlineSet of the association.
Associations 41

The generated subprograms for an association class are shown below (we omit the
Dissociate procedures which are exactly identical to those generated for simple
associations):

■ For one-to-one association classes, the generated subprograms are as follows:

procedure Associate (This_H1 : in H1;

This_H2 : in H;

This_T : in B.T);

function Get_T (This_H1 : in H1) return B.T;

function Get_T (This_H2 : in H2) return B.T;

procedure Set_T (This_H1 : in H1; This_T : in B.T);

procedure Set_T (This_H2 : in H2; This_T : in B.T);

■ For one-to-many association classes, the generated subprograms are as follows:
42 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

procedure Associate (This_H1 : in H1;

This_H2 : in H;

This_T : in B.T);

function Get_T (This_H1 : in H1) return B.T;

procedure Set_T (This_H1 : in H1; This_T : in B.T);

■ For many-to-many association classes, the generated subprograms are as follows:

procedure Associate (This_H1 : in H1;

This_H2 : in H;

This_T : in B.T);

function Get_T (This_H1 : in H1;

This_H2 : in H2)

return B.T;

function Get_T (This_H2 : in H2) return B.T;

procedure Set_T (This_H1 : in H1;

This_H2 : in H2;

This_T : in B.T);

As in the case of simple associations, Rose/Ada generates a full implementation for
these subprograms if the roles with maximum allowable cardinality larger than 1 are
represented by arrays. It generates a [statement] prompt otherwise. This
implementation checks the consistency of the operations, and raises
System.Assertions_Error if inconsistencies are detected. It also performs storage
management, allocating and reclaiming the arrays and auxiliary records as
appropriate.
Associations 43

Dependency Relationships

A dependency relationship between two classes is transformed in a with clause
between the corresponding library units, unless of course both classes happen to map
to types in the same library unit. Note that in addition to dependency relationships,
with clauses are also generated from the module dependencies appearing in the
component diagrams.

Generalization Relationships (Inheritance)

To some extend, the generalization relationship has already been discussed in the
section about classes above.

The visibility of a generalization relationship is used to determine how the type
derivation is declared. If the relationship is public, the derivation occurs in the visible
part, with a private extension:

package Subclass is
type Object is new Superclass.Object with private;

private
type Object is new Superclass.Object with

record ... end record;
end Subclass;

If the relationship is not public, the derivation occurs in the private part:

package Subclass is
type Object is tagged private;

private
type Object is new Superclass.Object with

record ... end record;
end Subclass;

If the class Subclass has its code generation property TypeVisibility set to Public, then
regardless of the visibility of the relationship, the code is simply:

package Subclass is
type Object is new Superclass.Object with

record ... end record;
end Subclass;

The case of multiple inheritance is more complex. If a class A has more than one
superclass, there are two ways that this relationship can be represented in Ada 95:
“mixin” inheritance or “multiple views” inheritance. The code generation properties
TypeImplementation of the superclasses of A determine what mapping is used.
44 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

Mixin Inheritance

In mixin inheritance, exactly one of the superclasses of A must have its code
generation property TypeImplementation set to Tagged. This superclass defines the
“main” line of inheritance (or generalization). All other superclasses must have their
code generation property TypeImplementation set to Mixin.

The type representing A is declared by deriving from its main superclass, and
instantiating the generic packages associated with the mixin superclasses to add more
primitive operations to the resulting type. Assume that the main superclass is called
A1 and the mixin superclass A2. The generated code is as follows, assuming that A1
and A2 each declare an operation (we use the defaults for those code generation
properties that have no direct bearing on multiple inheritance):

package A1 is
type Object is tagged private;
procedure Op1 (This : Object);

private
type Object is tagged

record ... end record;
end A1;

generic
type Superclass is abstract tagged private;

package A2 is
type Object is abstract new Superclass with private;
procedure Op2 (This : Object);

private
type Object is abstract new Superclass with

record ... end record;
end A2;

with A1;
with A2;
Generalization Relationships (Inheritance) 45

package A is
package A2_Instantiation is

new A2 (Superclass => A1.Object);
type Object is new A2_Instantiation.Object with

private;
procedure Op (This : Object);

private
type Object is new A2_Instantiation.Object with

record ... end record;
end A;

The case of triple inheritance and beyond is handled similarly, with more
instantiations adding more primitive operations. Assuming that we add a mixin
superclass, A3, to the above example, we obtain the following code (A1 and A2 are
unchanged):

generic
type Superclass is abstract tagged private;

package A3 is
type Object is abstract new Superclass with private;
procedure Op3 (This : Object);

private
type Object is abstract new Superclass with

record ... end record;
end A3;

with A1;
with A2;
with A3;
package A is

package A2_Instantiation is
new A2 (Superclass => A1.Object);

package A3_Instantiation is
new A3 (Superclass => A2_Instantiation.Object);
46 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

type Object is
new A3_Instantiation.Object with private;

procedure Op (This : Object);
private

type Object is new A3_Instantiation.Object
with record ... end record;

end A;

Note a constraint on mixin inheritance: if any of the mixins has a superclass, it is
necessary for the “main” superclass to be a specialization of the same class (otherwise
the instantiation would be illegal). This means that the following diagram is illegal
because B is not identical to A and is not a subclass of A:

In the case of triple inheritance and beyond, this rule becomes slightly more
complicated: all the mixins must either have no superclass, or have the same
superclass, and the main class must be identical to this common superclass, or inherit
from it.

Multiple Views Inheritance

In multiple views inheritance, all the superclasses of A must have their code
generation property TypeImplementation set to Tagged. In addition, one of the
inheritance (or generalization) relationships must be identified as the main line of
descent by giving it the name “main”.
Generalization Relationships (Inheritance) 47

There are a number of restrictions on multiple views inheritance. First, all
superclasses must be limited, by setting their code generation property IsLimited to
True (or because IsLimited is dominated by another property which forces
limited-ness). Second, the main inheritance relationship cannot be “less visible” than
the auxiliary relationships. For instance, it is not possible to have a private main
inheritance and a public auxiliary inheritance. On the other hand, it is possible to have
only private inheritance, or to have a public main inheritance, a public auxiliary
inheritance, and another, private, auxiliary inheritance.

All the operations of the superclasses are inherited, and default bodies are generated
if necessary. If two operations coming from different superclasses would result in
homograph declarations for the class A, the operation coming from the main line of
inheritance has precedence.

Assuming that the main superclass is called A1 and the auxiliary superclass is called
A2, the following code is generated (again, we use the defaults for those code
generation properties that have no direct bearing on multiple inheritance):

package A1 is
type Object is tagged limited private;
procedure Op1 (This : Object);

private
type Object is tagged limited

record ... end record;
end A1;

package A2 is
type Object is tagged limited private;
procedure Op2 (This : Object);

private
type Object is tagged limited

record ... end record;
end A2;
with A1;
with A2;
package A is

type Views;
48 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

type A2_With_Back_Pointer
(Back : access Views’Class) is
new A2.Object with null record;

type Views is abstract new A1.Object with
record

A2_View : A2_With_Back_Pointer (Views’Access);
end record;

type Object is new Views with private;
procedure Op (This : Object);
procedure Op2 (This : Object);

private
type Object is new Views with

record ... end record;
end A;

The body of subprogram Op2 is generated as follows, in order to call the
corresponding subprogram of the superclass:

procedure Op2 (This : Object) is
begin

A2.Op2 (A2.Object (This.A2_View));
end Op2;

The same scheme extends to triple inheritance and beyond. If we add superclass A3,
we obtain:

package A3 is
type Object is tagged limited private;
procedure Op3 (This : Object);

private
type Object is tagged limited

record ... end record;
end A3;

with A1;
with A2;
with A3;
package A is

type Views;
Generalization Relationships (Inheritance) 49

type A2_With_Back_Pointer
(Back : access Views’Class) is
new A2.Object with null record;

type A3_With_Back_Pointer
(Back : access Views’Class) is
new A3.Object with null record;

type Views is abstract new A1.Object with
record

A2_View : A2_With_Back_Pointer (Views’Access);
A3_View : A3_With_Back_Pointer (Views’Access);

end record;

type Object is new Views with private;
procedure Op (This : Object);
procedure Op2 (This : Object);
procedure Op3 (This : Object);

private
type Object is new Views

with record ... end record;
end A;

The interaction with the visibility of inheritance relationships is worth expressing in
detail. In the first case, if the inheritances from A1 and A2 are changed to be private
(or protected), we don’t need the intermediate type Views anymore, and the code
generated for A becomes:

with A1;
with A2;
package A is

type Object is tagged limited private;
procedure Op (This : Object);

private
type A2_With_Back_Pointer

(Back : access Object’Class) is
new A2.Object with null record;

type Object is new A1.Object with
50 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

record
A2_View : A2_With_Back_Pointer (Object’Access);
...

end record;
procedure Op2 (This : Object);

end A;

In the case of triple inheritance, if the visibility of the inheritance from A3 is changed
to private (or protected) the generated code for A becomes:

with A1; with A2; with A3;
package A is

type Views;

type A2_With_Back_Pointer
(Back : access Views’Class) is
new A2.Object with null record;

type Views is abstract new A1.Object with
record

A2_View : A2_With_Back_Pointer (Views’Access);
end record;

type Object is new Views with private;
procedure Op (This : Object);
procedure Op2 (This : Object);

private
type A3_With_Back_Pointer

(Back : access Object’Class) is
new A3.Object with null record;

type Object is new Views with
record

A3_View : A3_With_Back_Pointer (Object’Access);
...

end record;
procedure Op3 (This : Object);

end A;
Generalization Relationships (Inheritance) 51

Operations

The operations given in a class specification are simply copied in the generated code.

If the code generation properties ImplicitParameter of the project and of the class are
both True, a first parameter may be added to the profile of each operation. The type of
this parameter is the type associated with the given class, its mode is given by the
code generation property ImplicitParameterMode of the operation, and its name is
given by the code generation property ImplicitParameterName of the class. These
properties default to In and “This”, respectively.

The code generation property ImplicitParameter at the project level defaults to False.
The code generation property ImplicitParameter of the class defaults to True. By
having two code generation properties, one at the project level and one at the class
level, Rose/Ada supports the following usage patterns:

■ The default is to never add this first parameter.

■ By setting the code generation property ImplicitParameter to True at the project
level, a user may decide to add the first parameter for all classes in the project.

■ If some classes must be handled specially, and no first parameter is required for
them, the code generation property ImplicitParameter of these classes may be set
to False.

The code generation property ImplicitParameterMode can take the values In, InOut
and Out. There are also circumstances in which it is useful to generate a subprogram
taking an access parameter in addition (or instead of) the subprogram taking an object
parameter. The code generation property GenerateAccessOperation controls whether
a subprogram taking an access parameter is generated. This property is only used if
ImplicitParameter is True.

Accessor Operations

Each attribute, “has” relationship, and association role has two code generation
properties, GenerateGet and GenerateSet, which control generation of accessor
operations for this attribute or relationship. These properties default to False.

■ The “get” accessor is used to read the corresponding attribute or relationship. It is
a function taking an object of the class and returning the type of the attribute.

■ The “set” accessor is used to update the corresponding attribute or relationship. It
is a procedure taking as in out parameter an object of the class, and a value of the
type of the attribute.
52 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

For attributes and “has” relationships which are translated into discriminants, the
“set” accessor doesn't make sense, and is therefore not generated (in other words,
GenerateSet is dominated by RecordFieldImplementation). The “get” accessor is not
generated either, because a discriminant is directly visible to clients, even for a private
type: GenerateGet is also dominated by RecordFieldImplementation in this case.

In addition to (or instead of) the “get” and “set” accessors which take object
parameters, Rose/Ada can also generate accessors which take access parameters. This
is controlled by the code generation properties GenerateAccessGet and
GenerateAccessSet.

The boolean code generation properties InlineGet and InlineSet of the attribute,
relationship or role control whether a pragma Inline is generated for the accessor
operations. These properties default to True.

Standard Operations

Standard operations, not explicitly present in the model, may be generated if the code
generation property GenerateStandardOperations of the project is set to True (it
defaults to False):

■ A constructor is generated if the code generation property
GenerateDefaultConstructor is not DoNotCreate (this property may take the
values Function, Procedure and DoNotCreate; the default is Function). The name
of the constructor is given by DefaultConstructorName (this property defaults to
“Create”).

■ A copy constructor is generated if the code generation property
GenerateCopyConstructor is not DoNotCreate (this property may take the values
Function, Procedure and DoNotCreate; the default is Function). The name of the
constructor is given by CopyConstructorName (this property defaults to “Copy”).

■ A destructor is generated if the code generation property GenerateDestructor is
not DoNotCreate (this property may take the values Procedure and DoNotCreate;
the default is Procedure). The name of the destructor is given by DestructorName
(this property defaults to “Free”).

■ An equality operator is generated if the code generation property
GenerateTypeEquality is not DoNotCreate (this property may take the values
Function and DoNotCreate; the default is DoNotCreate). The name of the operator
is given by TypeEqualityName (this property defaults to “${quote}=${quote}”).

If an access type is generated for the class (in addition to the true object type), and the
class is not abstract, then the above properties also control generation of the
subprograms pertaining to this access type. For instance, if GenerateCopyConstructor
is set to Function, and CopyConstructorName is set to “Copy”, two Copy functions
Operations 53

are generated: one for the object type, and one for the associated access type. This rule
only applies to the subprograms described in this section: it doesn't apply to “get”
and “set” accessors, or to user-defined subprograms.

On an abstract class, the above subprograms, if generated, are made abstract.

Note that making the constructors functions (as opposed to procedures) on classes
which map to limited types may lead to difficulties, and is not recommended
(although it may make sense in some circumstances).

The boolean code generation properties InlineDefaultConstructor, InlineDestructor,
InlineCopyConstructor and InlineEquality of the class control whether a pragma
Inline is generated for the above operations. All these properties default to False.

Subprogram Implementation

The code generation property SubprogramImplementation is used to control the code
generated for a subprogram body. This property can take the values Body, Renaming,
Separate, Abstract and Spec. The default is Body. The semantics of these choices are as
follows:

■ If SubprogramImplementation is set to Body, a normal body is generated.

■ If SubprogramImplementation is set to Renaming, a renaming-as-body is
generated for the subprogram body. The name of the renamed subprogram is
obtained from the property Renames of the operation.

■ If SubprogramImplementation is set to Separate, a stub is generated instead of a
normal body.

■ If SubprogramImplementation is set to Abstract, no body is generated, instead the
specification of the subprogram includes the reserved words “is abstract” (making
it an abstract subprogram). It is an error to set SubprogramImplementation to
Abstract on an operation of a non-abstract class.

■ If SubprogramImplementation is set to Spec, no body is generated, but the
subprogram is not made abstract. This option (which doesn't result in legal code)
is intended to be complemented by the insertion, in some protected region of the
generated code, of a pragma (like Import or Interface) which specifies the
implementation of the subprogram without providing an explicit body.

In addition, the code generation property Inline is used to control whether or not a
pragma Inline is generated for the operation. This property defaults to False.
54 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

Visibility

The visibility of each operation determines where it is declared. A public operation is
declared in the visible part of the associated package, a protected or private operation
is declared in the private part of the package, and an operation with only
implementation visibility is declared in the package body (note that such an operation
is not inherited).

Overriding

The code generator takes care to generate the proper overriding subprogram
declarations whenever the language requires it:

■ If an abstract operation is inherited by a concrete class. This includes the case
where the concrete class has several superclasses, either because of mixin
inheritance, or because of multiple views inheritance.

■ If a function returning a value of the superclass is inherited by a concrete class. The
language rules state that such a function becomes abstract by derivation.

■ If one of the “back pointer” types generated for multiple views inheritance inherits
an abstract operation. That's because the “back pointer” types are always concrete.

In addition to these cases where overriding is required by the language, the code
generator also generates an overriding declaration if the inherited operation has it
code generation property GenerateOverriding set to True. This property defaults to
True.

Each overriding subprogram declaration has the same parameter names, modes and
default values as that of the original subprogram. The proper type name is substituted
for each controlling operand. The types of other operands are left unchanged.

Rose/Ada generates a body for each overriding subprogram declaration. This body
does a view conversion of its controlling parameters, and calls the corresponding
operation of the parent type (or superclass). While this implementation in itself is not
extremely useful, it turns out that most overridden subprograms first call the
operation of their parent type, and then perform additional processing specific to the
added record components. By generating the call to the superclass’ operation,
Rose/Ada makes it easy to adhere to this model. (This is similar to sending a message
to super in languages like Smalltalk or Java.)

Note that there is not property GenerateOverriding for the “get” and “set” accessor.
That's because most of the time the inherited implementation is appropriate.
Therefore, no overriding declaration is ever generated for these accessors.
Operations 55

Bodies

Except for the accessor operations, the body generated for an operation contains only
a [statement] prompt. This ensures that the code can be compiled under Rational
Apex, but that any attempt to execute an operation whose body is incomplete raises
Program_Error. Note that, if using another compiler, the prompt is likely to result in
syntax errors: legal code must be written to replace these dummy bodies before the
code can be compiled.

The code generation properties EntryCode and ExitCode associated with an operation
contain Ada statements which are copied verbatim at the beginning and at the end,
respectively, of the statement part of the generated body. These properties are empty
by default.

User-Defined Initialization, Assignment and Finalization

Controlled types may be produced for any type whose TypeImplementation is
Tagged. In addition to producing the proper type structure, Rose/Ada is also capable
of generating overriding declarations for the procedures Initialize, Adjust and
Finalize, and for the operator “=”.

The code generation property TypeControl of a class may take the following values:

■ None: the type is not a controlled type

■ InitializationOnly: the type is a controlled type, with only user-defined
initialization.

■ AssignmentFinalizationOnly: the type is a controlled type, with only user-defined
assignment and finalization.

■ All: the type is a controlled type with both user-defined initialization and
user-defined assignment and finalization.

TypeControl defaults to None. For a class whose TypeImplementation is not Tagged,
TypeControl is dominated, and the generated type is not a controlled type. A class
whose TypeControl property is not None must not be involved in a multiple
inheritance relationship.
56 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

When discussing the effect of TypeControl, we'll use the following class hierarchies as
examples:

If TypeControl is not None, the declaration of the type associated with a class is
changed as follows:

■ If the class has no superclass, the type is derived from Ada.Finalization.Controlled
or Ada.Finalization.Limited_Controlled, depending on the value of the property
IsLimited. This derivation occurs on the full type declaration:

package A is

type Object is tagged private;

private

type Object is new Ada.Finalization.Controlled with

record

... -- Attributes go here

end record;

end A;

■ If the class has a superclass, an auxiliary type is introduced, which contains the
attributes of the class, and is used to build the actual type associated with the class.
Again, this type is derived from Ada.Finalization.Controlled or
Ada.Finalization.Limited_Controlled, depending on the value of the property
IsLimited:

with B;

package C is

type Object is new B.Object with private;

private

type Controlled_Object is new

Ada.Finalization.Controlled with

record

... -- Attributes go here
User-Defined Initialization, Assignment and Finalization 57

end record;

type Object is new B.Object with

record

Contents_Of_C : Controlled_Object;

end record;

end C;

The name of the auxiliary controlled type is given by the code generation property
TypeControlName, which defaults to Controlled_${type}. The name of the
intermediate record component is always Contents.

If the code generation property TypeControl is set to InitializationOnly or to All,
an overriding declaration for Initialize is inserted in the private part of the package
(even if the controlled type is declared in the visible part):

package A is

type Object is tagged private;

private

type Object is ...;

procedure Initialize (What : in out Object);

end A;

package C is

type Object is new B.Object with private;

private

type Controlled_Object is ...

procedure Initialize

(What: in out Controlled_Object);

type Object is new B.Object with ...

end C;

If the code generation property TypeControl is set to AssignmentFinalizationOnly or
to All, overriding declarations are inserted for Adjust and Finalize in the private part
of the package, and a declaration for the operator “=” is inserted in the visible part.
Adjust is only declared if IsLimited is False:

package A is
type Object is tagged private;
function "=" (Left, Right : in Object) return Boolean;

private
type Object is ...
procedure Adjust (What : in out Object);
procedure Finalize (What : in out Object);

end A;

with B;
package C is

type Object is new B.Object with private;
function "=" (Left, Right : in Object) return Boolean;

private
58 Chapter 2 - Mapping the UML Notation to Ada 95 — Code Generation

type Controlled_Object is ...
procedure Adjust (What : in out Controlled_Object);
procedure Finalize (What : in out Controlled_Object);
type Object is new B.Object with ...

end C;

In the declaration of procedures Initialize, Adjust and Finalize, the name of the only
parameter is given by the code generation property ImplicitParameterName for the
class. In the declaration of operator “=”, the parameters are named Left and Right.

The code generation property TypeControl, when it is not None, dominates the
properties GenerateDefaultConstructor, DefaultConstructorName,
GenerateCopyConstructor, CopyConstructorName, GenerateDestructor,
DestructorName, GenerateTypeEquality and TypeEqualityName: no standard
operation is generated, and the name of the equality operator, when it is generated, is
always “=”. This is because standard operations and controlled types are two different
mechanisms to achieve similar effects, and they are not intended to coexist in a single
class.

GenerateGet and GenerateSet may be used in conjunction with controlled types: the
accessor operations which are generated correctly take into account the internal
structure of the type (possibly with an auxiliary controlled type) to access the various
components.

A class whose code generation property TypeControl is not None may be abstract.
However, the auxiliary controlled type (if generated) is never made abstract, and the
Initialize, Adjust and Finalize procedures (if generated) are not made abstract either.
User-Defined Initialization, Assignment and Finalization 59

3OOD and Ada 83
Contents

This chapter is organized as follows:

■ Mapping Classes on page 61
■ Mapping Relationships on page 62
■ Achieving Polymorphism with Ada on page 64
■ Unmapped Elements for Ada on page 65

Note: Because UML and Ada use the word “package” to designate two different
concepts, this document uses the phrase “UML package” for a package in the UML
acceptation, and the word “package” without qualification for an Ada package.

Mapping Classes

The following kinds of classes in the UML notation have a mapping to Ada:

■ Standard Classes
■ Utilities
■ Parameterized Classes
■ Bound Classes

Standard Classes

A class, as defined by UML, is a set of objects that share a common structure and a
common behavior. This concept is best represented as an Ada package with a private
type and a set of visible subprograms.

The structure of a class is a private or limited private type, implemented as a record
type. The name of the type defaults to Object. Each “has” relationship, generalization
relationship, and attribute becomes a field in the record. Optionally, there may be an
additional access type, called Handle, that points to the class type.

Using this representation of a class in Ada, an object is simply an instance (i.e.,
variable declaration) of the class type and is accessed, manipulated, and controlled by
the subprograms in the class package.
61

Class Operations

The behavior of the class is captured by the subprograms in the visible part of the
package. Each operation defined in the class is mapped to either an Ada procedure or
function. The formal parameter list begins with the class type, whose name defaults to
this.

Usually, several standard operations are needed for every class. Constructors (default
name: Create), are responsible for creation and initialization of class objects. A copy
constructor adds additional logic required when copying the contents of one object to
another. The destructor (default name: Free) may deallocate memory or call other
destructors. Finally, an equality operation can be added when “=” does not make
sense.

Export control adornments can be attached to operations. If the export control is
public, the subprograms will be part of the visible part of the package. Otherwise, the
subprogram will be hidden in the body.

Utilities

Generally, a utility is used to collect a set of free subprograms that are cohesive by
some measure. For instance, consider a collection of subprograms (String_Compare,
Upper_Case, …) that manipulate a string, yet do not need any direct access to the
structure of a string. These can be gathered together into a utility.

In Ada, a utility is represented as a package containing a collection of subprograms.
These packages typically have names ending with suffixes like _Utilities, _Services,
etc. A utility package has no class type.

Parameterized Classes

A parameterized class in the UML notation corresponds to a generic package in Ada.
Class parameters become generic formal parameters.

Bound Classes

A bound class maps to a generic instantiation in Ada.

Mapping Relationships

The following relationships defined in the UML notation have a defined mapping to
Ada:

■ Dependency Relationships
■ Has Relationships
62 Chapter 3 - OOD and Ada 83

■ Generalization Relationships (Inheritance)
■ Association Relationships

Dependency Relationships

The dependency relationship means that a client class is dependent on the interfaces
of a supplier class. A dependency relationship maps to an Ada with clause. Note that
a “has” association or generalization relationship also implies a with clause.

Export control adornments on a dependency relationship define the location of the
with clause. If the relationship is public, the clause will be in the package
specification. Otherwise, it will be in the body.

Has Relationships

“Has” relationships are not part of the UML notation. However, they can be created in
Rose using the View > As Booch option. When viewed using the Booch or OMT
notation, they are displayed as unidirectional aggregation relationships.

The “has” (aggregation) relationship denotes a whole/part association. There are two
distinct types of “has” relationships: by-value and by-reference. A by-value “has”
relationship, also known as physical containment, generally indicates that the part
does not exist independently of the whole, and/or the whole is responsible for
construction and destruction of the part. A by-reference relationship, also referred to
as logical containment, indicates that the part is not physically contained within the
whole and is potentially shared with other objects.

A “has” relationship becomes a component in the client's class record type. The type
of the record component depends on the by-value or by-reference nature of the
relationship. If the relationship is by-value, the type of the component is the class type
of the part class (i.e., Object). If the relationship is by-reference, the component type
must use the access type of the part class (i.e., Handle).

When the static adornment is added to a “has” relationship, the relationship is
interpreted as being a class relationship rather than an object relationship. In Ada, this
means that the relationship will be represented as a variable declaration in the private
part of the client's package.

Generalization Relationships (Inheritance)

Ada 83 has no direct language support for inheritance. With the help of automation,
however, inheritance can be achieved. There are actually several ways to support
inheritance; the one chosen for the Ada 83 Generator is the best balance of
understandability, extensibility, and simplicity.
Mapping Relationships 63

Inheritance can best be achieved by using type extension, which builds on an existing
class by inheriting, modifying, and/or adding to both the structure and behavior of
the existing type. In Ada, type extension is accomplished by creating a new class
package that re-declares all of the subprograms of the superclass, and declares a new
class type that includes an instance of the superclass as a component. The
implementation of the re-declared subprograms simply call back to the subprograms
in the superclass' package. The subclass' package can then be extended by adding
additional attributes, relationships, and operations, and/or overriding the
implementation of the re-declared subprograms.

Association Relationships

Associations are similar to “has” relationships.

■ For unidirectional associations, the generated code is identical to that which would
be generated for a “has” relationship.

■ For bidirectional associations the data structures are identical to that which would
be generated for two symmetrical “has” relationships. An association provides a
set of operations that preserve the integrity of the linkage between the objects.

■ Association classes provide an additional mechanism to store and retrieve the
information held by the association class.

Achieving Polymorphism with Ada

Because Ada 83 has no built-in polymorphism, the Ada 83 Generator produces the
subprograms and data structures needed to emulate polymorphism.

This technique consists of creating a union package over the root class and its direct
subclasses. This package consists of a variant record type that uses an enumeration
type listing the possible variants. The enumerated type includes the root class and all
subclasses. This package also re-declares all of the subprograms exported by the
superclass. The body of each of these subprograms uses the discriminant of the
variant record to dispatch a call to the appropriate subprogram.
64 Chapter 3 - OOD and Ada 83

Unmapped Elements for Ada

The following elements are part of the UML notation, and can be described in
Rational Rose, but have no mapping to the Ada language. They are ignored or flagged
by the code generator:

■ Metaclasses
■ Abstract classes
■ Friendship
■ Multiple inheritance
Unmapped Elements for Ada 65

4Ada Code Generation
Contents

This chapter is organized as follows:

■ What is the Ada Generator? on page 67
■ Basic Steps for Iterative Code Development on page 68
■ Refining the Subsystem and View Structure on page 75
■ Specifying Additional Ada Unit Contents on page 78

What is the Ada Generator?

The Ada Generator is the code generation capability that is provided by the
Ada 95/Ada 83 add-in to Rational Rose. The commands for the Ada Generator are
located in the Ada 95/Ada 83 submenu of the Rose Tools menu.

You use the Ada Generator to generate Ada units from information in a Rose model.
These units contain Ada code constructs that correspond to the notation items
(classes, relationships, and adornments) you have defined in the model via diagrams
and specifications.

The Ada Generator provides code-generation properties that control the kinds of Ada
code constructs that are generated for the various kinds of notation items in the
model. You can use the default values for these properties or you can specify different
values to generate the code you want.

The Ada Generator inserts specially-marked code regions into the generated files
where you can add further code (for example, to fill in extra private declarations in a
package specification). By default, such regions are preserved, so you can regenerate
the file without losing the code you added.

The Ada Generator may generate code in a directory hierarchy or, if Rational Apex is
available, in subsystems and views. In order to generate code in subsystems and
views, the Apex add-in must be activated, and the property
CreateApexSubsystemAndView of the Apex add-in must be set to “yes”. The Ada
67

Generator, when generating code for Apex, makes use of some properties defined by
the Apex add-in. These properties have a name which starts with “Apex” and are
described in the documentation for the Apex add-in.

Basic Steps for Iterative Code Development

The basic strategy for generating code is to use the default values for code-generation
properties initially, and later introduce non-default values as needed. This section
describes these steps for generating Ada units from a Rose model:

■ Overview
■ The Generated Files
■ The Basic Code Contents
■ Entering Parameters for Parameterized Classes
■ Entering Static Attributes and Metaclass Attributes
■ Evaluating the Generated Code
■ Completing the Implementation of the Generated Code
■ Regenerating Code

Overview

In order to generate Ada 95 or Ada 83 code, you must first activate the
Ada 95/Ada 83 add-in using the Add-In Manager, which is accessible from the
Add-Ins menu.

Then, you must set the default language for your model to be Ada 95 or Ada 83:
choose the Tools > Options menu item, and in the Options dialog box click the Notation
tab; use the Default Language list to select Ada 95 or Ada 83.

You may generate a different language for some classes by associating them with a
component that has a different language.

By default, code is generated in the current directory or working view (determined
initially when you start Rose and changed each time you open a model in a different
view). If this is unacceptable, you can specify a default view before generating code.

1 Start Rose, if necessary.

2 Create or open the Rose model from which you want to generate code and display
an appropriate class diagram.

3 Select one or more class items (classes, utilities, parameterized classes and bound
classes) or UML packages.

4 Choose the Code Generation command from the Tools > Ada 95 submenu. If code
generation fails, inspect the log.
68 Chapter 4 - Ada Code Generation

5 Evaluate the generated code. Based on your evaluation, you can change the model
and/or code-generation properties, and then regenerate the code.

The Generated Files

The generated files are placed in a directory based on the properties of the model and
the component UML packages. By default, each logical or component UML package
in Rose is associated with an Apex view within a subsystem (if Apex is available) or
with a hierarchy of directories (if Apex is not available).

In general one specification file (.1.ada) is generated for each class you selected in the
diagram. The name of each file is derived from the name of the corresponding class. If
you selected a UML package, a file is generated for each class in the UML package.

Note that the generated file structure realizes the physical portion of your Rose
model. If you have developed only a logical model (class diagrams), the Ada
Generator assumes an implicit physical model in which each class is effectively
assigned to an implicit module specification, and therefore an Ada package
specification.

The Basic Code Contents

The content of the generated code is based on the notation items in the logical portion
of your model. In general:

■ Each selected class generates a private record declaration and visible operations in
a package specification. In addition, an optional access type, known as a handle,
can be generated.

■ Each of a class’s “has” relationships generates a component. The relationship’s
containment and multiplicity partly determine the type of the component, and
may create additional supporting type declarations.

■ Each of a class’s navigable association roles generates a component. The role's
containment and multiplicity partly determine the type of the component, and
may create additional supporting type declarations.

■ Each operation in a class specification generates a subprogram declaration in the
package specification.

■ (Ada 95) Generalization relationships generate type derivation.

■ (Ada 83) Generalization relationships generate components in the record
declaration. In addition, all non-standard operations in the superclass are
duplicated in the subclass package specification.

■ Each selected utility generates a package specification with subprogram and object
declarations only.
Basic Steps for Iterative Code Development 69

■ “Has”, generalization, association and dependency relationships result in
appropriate with clauses.

■ If desired, a body is generated for each specification, with stubbed code for the
user-defined operations.

The Ada Generator takes into account all model information that pertains to the
selected class items, even information that does not appear in the diagram. For
example, a component is generated for every “has” relationship that is defined for a
class, including “has” relationships defined on other diagrams or in the class
specification.

Entering Parameters for Parameterized Classes

The parameters for parameterized classes are entered in Rose using a dialog box
which has two fields: Name and Type. Because there is such a large variety of formal
parameters in Ada generics, and of discriminants in unconstrained types, users must
follow a convention that specifies the nature of the parameters. Roughly speaking, the
Name field contains the name of the parameter, and may start with an Ada keyword
that indicates its nature. The type field contains any additional information that may
be needed to complete the formal parameter or discriminant declaration. The Ada
Generator adds the syntactic glue required by the language, such as the reserved
words with, is, new, and the colons and semicolons.

Here is a detailed list of the possible formal parameters, and how they may be entered
in the Type and Name fields. Note that an anonymous access type is only allowed if
the Unconstrained Type implementation is used. Conversely, formal types,
procedures, functions, packages, and formal object with an explicit mode are only
legal if the Generic implementation is used.

■ Generic formal object: the Name field contains the name of the object; the Type
field contains its type, possibly followed by a default value, and possibly preceded
by a mode. For example:

Name: Foo
Type: in out Bar

or:

Name: Foo
Type: Bar := 3

In the case of the Unconstrained Type implementation, the above notation may be
used to represent an access discriminant:

Name: Foo
Type: access Bar
70 Chapter 4 - Ada Code Generation

■ Generic formal type: the Name field contains the reserved word type, followed by
the name of the type, and by discriminants, if any; the Type field contains the type
definition. For example:

Name: type Foo (D : Integer := 3)
Type: tagged private

■ Generic formal procedure: the Name field contains the reserved word procedure,
followed by the name and parameters of the procedure; the Type field contains the
default name for the formal procedure, if any. For example:

Name: procedure Foo (X : in out Integer)
Type: Bar.Func

■ Generic formal function: the Name field contains the reserved word function,
followed by the name, parameters and result type of the function; the Type field
contains the default name for the formal function, if any. For example:

Name: function Foo (X : Float) return Boolean
Type: <>

■ Generic formal package (Ada 95): the Name field contains the reserved word
package, followed by the name of the formal package. The Type field contains the
name of the corresponding generic package, followed by instantiation parameters.
For example:

Name: package Foo
Type: List_Generic (<>)

For actual parameters (appearing in bound classes) the convention is the following:
the Name field contains the value of the actual parameter, and the Type field contains
the name of the formal parameter. For example, if a parameterized class has the
following parameters:

Name: Foo

Type: Float

it may be instantiated using the following parameters:

Name: 3.14

Type: Foo

Entering Static Attributes and Metaclass Attributes

Static attributes and metaclass attributes can result in a wide variety of
(package-level) declarations. They are entered in Rose using a dialog box which has
two fields: Name and Type. In order to control the nature of the declaration that is
generated, users must follow the following conventions:
Basic Steps for Iterative Code Development 71

■ The Name field must contain the simple name of the entity being declared, i.e., the
part that appears before the colon in the Ada declaration. No colon or semicolon
may appear in the Name field.

■ The Type field must contain anything that appears after the colon in the Ada
declaration. However, no initial value must be specified. Instead, the code
generation property InitialValue must be used if an initial value is to be generated
for the declaration. No colon or semicolon may appear in the Type field.

The following examples demonstrate how to use these fields, and what is the
corresponding Ada declaration:

■ Variable:

Name: Foo

Type: Integer

Generated declaration:

Foo : Integer;

■ Constant:

Name: Foo

Type: constant Boolean

Code generation property InitialValue: “False”

Generated declaration:

Foo : constant Boolean := False

■ Named Number:

Name: Foo

Type: constant

Code generation property InitialValue: “3.14”

Generated declaration:

Foo : constant := 3.14;

■ Exception:

Name: Foo

Type: exception

Generated declaration:

Foo : exception;

■ Renaming:
72 Chapter 4 - Ada Code Generation

Name: Foo

Type: Integer renames Bar

Generated declaration:

Foo : Integer := Bar;

Evaluating the Generated Code

After you have located the generated files, you evaluate them to determine whether to
use them as generated. Based on your evaluation, you may decide to regenerate the
code after refining the model, adjusting the values of code-generation properties, or
both.

Use the information provided in the rest of this chapter to guide your evaluation.
Each section lists some of the things you can change about a particular aspect of code
generation.

Completing the Implementation of the Generated Code

When you are satisfied with the way code is generated from your model, you
complete the code by implementing the package bodies. If you did not use the Ada
Generator to create stubbed bodies, you can select the specifications in Apex, and
choose the Build Body command from the Compile menu. Rational recommends,
however, that you let Rose generate code for the bodies, since it will produce the
appropriate code regions.

To complete the implementation of your code, you may insert additional statements
and/or declarations in the preserved code regions. A preserved code region is a
special block of comments starting with --## and containing the clause preserve=yes.
Preserved code regions are preserved by the code generator the next time the code is
regenerated. This makes sure that you may continue evolving your model in Rose
after you have started refining the implementation of the code. Note that some of the
code regions that Rose generate have preserve=no, so if you want them preserved,
you must change this clause to preserve=yes.

You cannot add your own code regions: if you try to do this, they will be considered
orphaned by the code generator (see below). You must use the code regions produced
by the Ada Generator. Here is a list of the code regions that the Ada Generator
produces:

■ The module.cp region, which appear at the beginning of the unit, contains the text
found in the property CopyrightNotice of a Module Spec/Body. This region may
be preserved if the region is modified manually.
Basic Steps for Iterative Code Development 73

■ The module.withs region, which follows the with clauses and precedes the
compilation unit, may be used to insert additional with clauses, use clauses, or
pragmas.

■ The module.declarations region, which occurs at the beginning of the package
visible part and at the beginning of the package body, may be used to insert
additional declarations.

■ The module.additionalDeclarations region, which occurs at the end of the package
visible part and at the end of the package body, may be used to insert additional
declarations.

■ The module.privateDeclarations region, which occurs at the beginning of the
private part, may be used to insert additional declarations.

■ The module.additionalPrivateDeclarations region, which occurs at the end of the
private part, may be used to insert additional declarations.

■ The module.statements region, which covers the statement part of the package
body, may be used to insert statements which are executed at elaboration time. By
default, the statement part of any package body contains a single null statement.

■ The class_name.operation_name%context.id.declarations region, which covers the
declarative part of each generated subprogram, and may be used to insert
declarations in the subprogram body. The name of this section is generated by
Rose from the class name, the operation name, and various other pieces of
information that help disambiguate the identity of the subprogram.

■ The class_name.operation_name%context.id.statements region, which covers the
statement part of each generated subprogram, and may be used to insert
statements in the subprogram body. The name of this section is generated by Rose
from the class name, the operation name, and various other pieces of information
that help disambiguate the identity of the subprogram.

Regenerating Code

You can regenerate code for a given set of class items by following the same steps you
used to generate the original code. When you regenerate code into existing files, the
current contents of these files are saved in backup files before the new contents are
written. By default, each backup file has the extension .1.ad~ or .2.ad~, as appropriate.
The same backup files are overwritten each time you regenerate code to the same
source-code files. The regenerated files:

■ Reflect any changes you made to the model or to properties.

■ Contain any code regions you edited in the previously generated version of the
files, provided that the preserve keyword for each region was set to yes.
74 Chapter 4 - Ada Code Generation

Note that if you delete or rename a notation item for which a code region was
preserved, that region is “orphaned” when you regenerate code. This means that the
Ada Generator places the code region in a special section at the end of the regenerated
file so that you can decide whether to reuse any of the edits you made in that region.
The Ada Generator automatically changes the preserve keyword to no in orphaned
regions, so that they are discarded the next time you regenerate the file.

Refining the Subsystem and View Structure

Determining the Directory for an Ada File

There are several properties which the Ada Generator uses when determining the
directory for an Ada file, if Apex is available:

■ The project properties Directory and ApexView

■ The UML package properties ApexSubsystem and ApexView

The directory for a module is based on the concatenation of the project Directory
property, and the UML package’s ApexSubsystem and ApexView properties.
Modules must be contained within component UML packages.

The directory for a class which has been assigned to a module is determined by
applying these rules to its assigned module. The directory for a class which has not
been assigned to a module is based on the UML package to which it is assigned: if it is
enclosed in a logical UML package which is assigned to a component UML package,
its directory is created from the ApexSubsystem and ApexView properties for the
component UML package. If ApexSubsystem is blank, the subsystem name is set to
the name of the component UML package.

If it is enclosed in a logical UML package which is not assigned to a component UML
package, its directory is created from the default values of ApexSubsystem and
ApexView properties, plus the project Directory property. If the default
ApexSubsystem property is blank, the subsystem name is set to the name of the
logical UML package.

If Apex is not available, a hierarchy of directories is created using the name of the
component UML packages (if they exist) or of the logical UML packages (in the
absence of component UML packages).
Refining the Subsystem and View Structure 75

Mapping Classes and Modules to Ada Units

By default, each class is assigned to an implicit module specification. From these
implicit modules, the Ada Generator produces a package specification containing the
class definition. The units are generated according to the values in the default
module-spec property set.

To change the default mapping from classes to units, you may either change the class
name, or assign two or more classes to the same module, as follows:

1 Introduce component diagrams into your model.

2 Create a module specification for each Ada specification you want to generate.

3 Assign each class to the appropriate module via the class's specification: to
generate a package specification, you assign the class to a module specification. To
generate the code for multiple classes in a single package, you assign each class to
the same module.

Specifying Filenames

The name of a generated file has two parts: a name and an extension, separated by a
period (for example, foo.1.ada). The name is generated automatically, and the
extension is controlled by different code-generation properties. If you are using
Rational Apex, you should not change these values.

When a file is generated from a module, the filename is determined by the name of
the module: it is the same as the module name, except in lowercase.

In the default case where classes are mapped to implicit modules, each implicit
module assumes the name of the corresponding class. Consequently, each generated
filename is based on the implicit module name (and, indirectly, on the class name).

To specify a non-default file name for a generated class, introduce a component
diagram, if necessary, and assign the class to a module specification with the desired
name.

Refining Class Definitions (Ada 83)

The Ada Generator creates a type declaration for each selected class. The format of the
type depends on the following property values:

■ Class Name
■ Discriminant
■ Implementation Type
■ Is Subtype
76 Chapter 4 - Ada Code Generation

■ Is Task
■ Variant

See Code Generation Properties on page 87 for more information on each property.

Standard Operations

Standard operations are subprogram declarations that are commonly found in Ada
classes. They include:

■ Default constructor
■ Copy constructor
■ Destructor
■ Equality operation

By default, each class is generated with a default constructor, copy constructor, and
destructor. Class properties permit you to specify the kind (procedure or function)
and name for some of these standard operations.

Note that you can overload a standard operation by setting the relevant class property
to cause it to be generated, and then specifying one or more additional operations
with the same name, but different parameters in the class specification.

User-Defined Operations

User-defined operations are subprogram declarations that are generated from the
operations you define in a class specification. Note that you do not need to define
standard operations in a class specification, unless you want to overload them (see
above).

If you want additional subprogram declarations for a class, or if you want different
arguments or return types, you must edit the class specification.

One operation property, ClassParameterMode, permits you to specify the parameter
mode of the class parameter, which is included automatically.

Get and Set Operations

Get and set operations are subprogram declarations that provide access to
components. By default, a pair of get and set operations are generated from each
“has” relationship, providing the relationship is public.

You can suppress the generation of a get and set operations by blanking-out the
GetName and SetName properties in the property set that is attached to the has
relationship. To define your own get and set functions, you define them as you would
any other user-defined operation in the class specification.
Refining Class Definitions (Ada 83) 77

Inherited Operations

When one class (called a subclass) inherits another class, all of the visible
user-defined, get, and set operations defined in the superclass get replicated in the
package specification of the subclass. This is how Ada 83 can achieve inheritance: the
data is inherited by adding a field to the record, and the operations are inherited by
replicating them in the subclass definition.

When you implement the body of an inherited operation, you typically do nothing
except call the operation of the inherited class with record field that matches that
class. If you do anything else, you are overriding that operation.

Record Fields and Object Declarations

Record fields are generated from “has”, association and generalization relationships
and attributes defined in diagrams or in specifications. (If you have set the static
adornment on the “has” relationship, an object declaration in the private part of the
package specification is generated.

The component type is determined by a number of factors. By default, the type is
determined by a combination of the supplier class and the multiplicity and
containment of the “has” relationship.

In the simplest cases, the component type is:

■ The class name of the supplier class for a one-to-one by-value relationship.
■ The handle name of the supplier class for a one-to-one by-reference relationship.

In more complex cases (maximum allowable cardinalities larger than 1), the Ada
Generator inserts a container class for the component type, which you can either use
as generated or replace with the name of a container class of your own.

For bounded containers, the Ada Generator creates an array declaration in the private
part of the class package specification.

For unbounded containers, the Ada Generator instantiates a container generic
package in the private part of the package specification.

You replace these default container classes by setting the various Container class
properties.

Specifying Additional Ada Unit Contents

You can tailor aspects of the structured comments and context clauses that appear at
the beginning of the generated Ada units. You can also cause the Ada Generator to
generate visible declarations at the beginning of one or more units.
78 Chapter 4 - Ada Code Generation

Adding Structured Comments

The Ada Generator inserts a block of structured comments at the beginning of each
generated file. You can set properties to generate a copyright notice string in these
comments.

In the default case where classes are mapped to implicit modules, you edit properties
in the default module-spec property set, which is attached to the implicit modules. If
you have explicitly assigned classes to modules, you must edit each property set that
is attached to a module.

Adding With Clauses

By default, the Ada Generator produces with clauses in units based on class
relationships and module dependencies in your model. If you want additional with
clauses to appear in one or more generated files, use one of the following methods, as
appropriate.

If you want more generated units to reference each other in with clauses, you can
inspect the relationships among existing items in the model to determine whether you
have represented them adequately.

For example, you may find that you need to add a uses relationship from one class to
another, which will cause a with clause to be generated in the first class's Ada unit. (A
with clause is generated only if the classes are generated in different units.)

Similarly, you can introduce dependencies among modules in a module diagram,
which result in generated with clauses.

If you want any of the generated units to reference units that are not among the
generated units, you can use the AdditionalWiths property to insert additional with
clauses to reference those units.

If you want to put a special with clause in just one or two generated units, you can do
so by editing these units directly. To do this, you insert the desired with clauses
between these source markers at the beginning of the unit:

--##begin module.withs preserve=yes
--##end module.withs

Adding Global Declarations

You can cause the Ada Generator to generate global declarations before the first class
definition in a unit. To do this, you:
Specifying Additional Ada Unit Contents 79

1 Introduce a module diagram, if necessary, and assign one or more classes to a
module specification (or body, as appropriate).

2 Double-click on the module specification to bring up its specification.

3 Enter the desired declaration(s) in the Declarations box. The text you enter here
will be inserted at the beginning of the generated unit.
80 Chapter 4 - Ada Code Generation

5Reverse Engineering
from Apex
Contents

This chapter is organized as follows:

■ Basic Operations on page 81
■ Dialog Box Options on page 82
■ How Ada Is Represented in a Class Diagram on page 83

Rose can analyze Ada 83/Ada 95 code compiled with Rational Apex and generate a
Rose model containing class and component diagrams that present a high-level view
of the code.

Note that this capability is only available for Ada units that have been compiled with
the Apex compiler, and that all units must be in the installed (analyzed) or coded
states.

Basic Operations

The reverse engineering tool can create both class diagrams and component diagrams.
Class diagrams show the high-level relationships between Ada units and types, and
the operations and data structures associated with each type. Component diagrams
come in two forms:

■ An Ada unit diagram, which displays the “with” structure of the Ada units in a
program, independent of subsystem structure.

■ A subsystem diagram, which displays the import structure of the views you
specify.

Within each view is a display of the “with” structure of the Ada units in that view.

Creating the Model File

No matter which type of diagram you want, the reverse engineering tool always
generates a model file, called rose_ada.mdl by default. This file can be opened within
Rose for layout and display.
81

Select the Ada unit or view you wish to diagram, and choose Reverse Engineer... from
the Rose > Ada Apex submenu. You will see the Reverse Engineer dialog box, where
you can modify various options. Choose OK or Apply to create the model file. See
Dialog Box Options on page 82.

Displaying the Model

Once you have created the model file, you can load it into Rose. Select the file in the
directory viewer (you may need to do File > Redisplay first). Then choose Start Rose
from the Rose > Ada submenu. This will invoke Rose and display the model.

Note: For traversal to work, you must invoke Rose from the Apex menu. If Rose is
already running before you started Apex, exit Rose and restart from the Apex menu
command.

Once Rose is invoked, your next action depends on whether you created a class
diagram or a component diagram. If you created a class diagram, choose
Format > Layout Diagram to format the diagram. If you created a component diagram,
choose Browse > Component Diagram. Select the <Top Level>/Main component
diagram and choose OK. When the module is displayed, you will see the UML
packages or units displayed in a straight diagonal line. Layout the diagram by
choosing Format > Layout Diagram.

If you created a component diagram, you can double-click on a UML package box to
see the units within that view. You will need to run Format > Layout Diagram on each
UML package individually.

If you created a class diagram based on Apex views, you will see UML packages in
the top-level class diagram. Double-click on the UML package to see the classes and
utilities in that view. You will need to run Format > Layout Diagram on each UML
package individually.

Use File > Save to save the model with the diagrams laid out.

To traverse from an unit in a Rose diagram to the actual Ada source code, select the
unit and choose Browse > Browse Spec. This will invoke the Apex editor for that unit.

Dialog Box Options

Here is a brief description of each option in the Reverse Engineer dialog box:

Include Closure of Views/Units

With this button selected, reverse engineering processes all selected views or units,
plus the import closure or Ada closure. This option is the default.
82 Chapter 5 - Reverse Engineering from Apex

Exclude Views/Units with Prefix

Use this option to exclude views or units starting with a given prefix. For instance,
you might want to exclude the rational_dir/base/ada area.

Include Views/Units with Prefix

Use this option to include only views or units starting with the given prefix. This
option would let you limit your diagram to a particular project, for example.

Include only Views/Units Selected

When this option is selected, only the views or units on the right side of the Objects or
Views area are included in the petal file.

Petal File Name

By default, reverse engineering creates a file called rose_ada.mdl. Use this box to have
it create a different file.

Include Classes

If you select this button, reverse engineer creates a class diagram of the units or views
selected.

Include Modules

If you select this button, reverse engineering creates a component diagram of the units
or views selected.

If neither Include Classes nor Include Modules is selected, a component diagram
showing just the import structure of the subsystems is created.

How Ada Is Represented in a Class Diagram

The reverse engineering tool uses various algorithms to map Ada constructs to the
UML notation, based primarily on the mapping described in Chapter 1.
How Ada Is Represented in a Class Diagram 83

Mapping Package Specifications (Ada 95)

An Ada package becomes a utility if contains subprograms which are not operations
of some class-like type declared in the same package (see below). Each of these
subprograms becomes an operation of the utility.

Packages that contain only subprograms associated with some class-like type do not
correspond directly to an entity of the class diagram (although the class-like types that
they contain do). Their name can still be used to generate the prefix of entity names
that use the colon notation.

All package specifications result in the creation of a package specification module in
the proper component diagram. The “with” relationships between packages result in
the creation of dependency relationships between the corresponding modules.

Mapping Package Specifications (Ada 83)

An Ada package will become either a utility or a class. To become a class, the package
must meet the following criteria:

■ It must define at least one private record type

■ All visible subprograms must include a parameter with a private record type

Mapping Type Declarations (Ada 95)

Only those types which are class-like result in the creation of a class in the model. The
distinction between class-like types and other types is important, because it avoids
cluttering the model with classes that would correspond to minor type declarations,
introduced for low-level implementation reasons.

The definition of class-like types is as follows:

■ A private or limited type is class-like (regardless of the nature of its full type
declaration.

■ A record or tagged type is class-like (even if it is not private).

■ A task or protected type is class-like (note that the existence of a task or protected
object doesn’t cause the creation of a class).

All other types are not class-like. Such types do not cause the creation of a class,
although they may be used to fill some other information of the model (e.g., code
generation properties). Note in particular that (non-private) access and array types,
which are produced by the code generator to implement by-reference relationships
and multiplicities larger than 1, are not class-like
84 Chapter 5 - Reverse Engineering from Apex

For record and tagged types, the components become either attributes or “has”
relationships. A “has” relationship is created if the type of the component is a
class-like type, or an access type designating a class-like type, or an array type whose
component is class-like, or access to class-like. The containment and multiplicity of
the relationship is set accordingly, as well as the code generation properties that
describe the container and access types. In all other cases an attribute is created.

The subprograms that include a class-like type as a parameter become operations of
the class.

Mapping Type Declarations (Ada 83)

All types declared in the specification of a package become classes in the class
diagram.

Most types become “implementation types,” where the ImplementationType property
is set to the definition of the type, and where no operations or attributes are assigned
to the class. These classes are not visible in the initial class diagram displayed by Rose,
but can be made visible using Query > Add Classes.

If a type is a record type, defined in the private part of a package specification, it
becomes a class. The components of the record become attributes, or “has”
relationships, of the class. The subprograms that include the record type as a
parameter become operations of the class.

If a type is an access type to a private record type, no class is created, but the Handle
Name property of the referenced class is set based on the name of type.

Normally every class has an associated utility, which is the parent package where the
type is declared. If, however, all subprogram declarations map to a class, then the first
class that is not an implementation type becomes the representation of the entire
package.

To associate each type with its enclosing package, Reverse Engineer creates a
dependency relationship with the type as the supplier and the enclosing utility, or
class if the utility is not needed, as the client. The relationship is named decl, a
keyword that the code generator uses to determine whether a class is declared within
the context of a utility or other class.

Details of a Has Relationship (Ada 83)

The multiplicity and access of a “has” relationship are determined by the type of each
component of the record. If the type is a simple type, the multiplicity is set to 1. If it’s
an array, the multiplicity is set to the size of the array, or to * if the array is unbounded.
If the type is defined by a generic, and the generic is declared in the same package, the
multiplicity is set to *.
How Ada Is Represented in a Class Diagram 85

If the component of the record is an access type, the access is set to “by-reference,” and
otherwise is set to “by-value.”

Mapping Subprogram Declarations

All subprograms declared in an package specification, visible or private, become
operations. If there is a class-like type declaration, and the subprogram includes a
parameter of that type, or is a function that returns that type, then the operation is
assigned to that class. Otherwise, the operation is assigned to the utility that
corresponds to the package.

Mapping Object Declarations

An object declaration is a variable, constant, or named number declared in a package
specification. Each object declaration becomes a static attribute or “has” relationship.
If the object is a constant, the IsConstant property is set to True.

If the package where the object is declared contains at least one class-like type, and all
subprograms are associated to classes, then the objects become static attributes of the
first class found in the package. Otherwise, the objects become static attributes of the
utility.

An exception declaration, while not technically an object, maps to an attribute using
the same algorithms described above for variables and constants.

Mapping “With” Clauses

Reverse engineering tracks the With clauses that would be generated by the “has”
relationships between the various classes in the package specifications. The remaining
“with” clauses, those that are used for parameter types and return types, become
dependency relationships in the model.

Special Handling for Subsystems in the $APEX_BASE Directory

Since the subsystems in the $APEX_BASE directory are defined by Apex, doing a
complete analysis only wastes space in the model. However, some analysis of the
types defined in these subsystems is required to guarantee that “has” relationships in
other subsystems have classes as their suppliers. Thus, reverse engineering examines
only the type declarations in these subsystems, and does not evaluate attributes or
operations.
86 Chapter 5 - Reverse Engineering from Apex

6Code Generation
Properties
This chapter is organized as follows:

■ Model Properties on page 87
■ Class Properties on page 91
■ Operation Properties on page 106
■ Has Properties on page 109
■ Attribute Properties on page 116
■ Association Role Properties on page 119
■ Association Properties on page 123
■ UML Package Properties on page 126
■ Module Spec Properties on page 127
■ Module Body Properties on page 129

Model Properties

The model properties are described on the following pages:

■ Spec File Extension on page 88
■ Spec File Backup Extension on page 88
■ Spec File Temporary Extension on page 88
■ Body File Extension on page 88
■ Body File Backup Extension on page 88
■ Body File Temporary Extension on page 88
■ Create Missing Directories on page 89
■ Generate Bodies on page 89
■ Generate Standard Operations on page 89
■ Implicit Parameter on page 90
■ Stop On Error on page 90
■ Error Limit on page 90
■ File Name Format on page 90
■ Directory on page 91
87

Spec File Extension

The Spec File Extension property specifies the file name extension that the Ada
Generator uses when creating Ada specification files. For Rational Apex the extension
should be .1.ada.

Spec File Backup Extension

If the Ada Generator produces an Ada specification file that already exists, the
previous version of the file is renamed to a backup file. The Spec File Backup
Extension property specifies the file name extension that the Ada Generator uses
when creating backup files for Ada specifications.

Spec File Temporary Extension

When the Ada Generator writes a specification file, it actually writes the code to a
temporary file. Once the code is completely written, the following steps are taken:

1 The backup file (see the Spec File Backup Extension property) is deleted, if there is
one.

2 The existing specification file is renamed to the backup file, assuming an existing
specification file is present.

3 The temporary file is renamed to be the new specification file.

4 The Spec File Temporary Extension property specifies the filename extension that
the Ada Generator uses when creating temporary specification files.

Body File Extension

The Body File Extension property specifies the file name extension that the Ada
Generator uses when creating Ada body files. For Rational Apex, the extension
should be 2.ada.

Body File Backup Extension

If the Ada Generator produces an Ada body file that already exists, the previous
version of the file is copied to a backup file. The Body File Backup Extension property
specifies the file name extension that the Ada Generator uses when creating backup
files for Ada bodies.

Body File Temporary Extension

When the Ada Generator writes a body file, it actually writes the code to a temporary
file. Once the code is completely written, the following steps are taken:
88 Chapter 6 - Code Generation Properties

1 The backup file (see the Body File Backup Extension property) is deleted, if there is
one.

2 The existing body file is renamed to the backup file, assuming an existing body file
is present.

3 The temporary file is renamed to be the new body file.

4 The Body File Temporary Extension property specifies the filename extension that
the Ada Generator uses when creating temporary body files.

Create Missing Directories

The Create Missing Directories property indicates whether or not the Ada Generator
should create directories needed to mirror the model's UML package hierarchy, or
stop and report an error if such directories are missing.

The default setting is True.

Generate Bodies

The Generate Bodies property indicates whether or not the Ada Generator should
create Ada body files for the classes or modules that are selected for code generation.

When True, the Ada Generator will automatically create Ada bodies for selected
classes and for module specs which have corresponding module bodies defined for
them. Ada bodies will not be created for module specs which have no corresponding
module body.

When False, the Ada Generator will not automatically create Ada bodies for selected
classes or module specs. Ada bodies will still be created for module bodies that are
explicitly selected.

The default setting is True.

Generate Standard Operations

The Generate Standard Operations property indicates whether or not the Ada
Generator should create the standard operations for the classes selected for code
generation. The property is used in conjunction with the class property of similar
name. When set to True, the class property is then taken into consideration. When set
to False, no standard operations are generated.

The default setting is True.
Model Properties 89

Implicit Parameter

The Implicit Parameter property indicates whether or not the Ada Generator should
provide an implicit class parameter object for all the user-defined operations of a
class. The property is used in conjunction with the class property of similar name.
When set to True, the class property is then taken into consideration. When set to
False, no implicit parameter is generated.

The default setting is True.

Stop On Error

The Stop On Error property indicates whether or not the Ada Generator stops
generating code when the error count threshold is exceeded (see Error Limit
property). This threshold does not apply to warnings (for which there is no limit) or
fatal errors (which cause the Ada Generator to terminate immediately).

The default setting is True.

Error Limit

The Error Limit property specifies the error count threshold used in conjunction with
the Stop On Error property.

The default setting is 30.

File Name Format

The File Name Format property controls the automatic generation of directory and
file names when the value of the model Directory property, or a UML package
Directory property is AUTO GENERATE.

The value is expected to be an integer followed by zero or more flag characters. The
integer is the maximum number of characters in a file or directory name. The flags are:

_ retain underscores

v retain vowels

u convert all letters to upper case

l convert all letters to lower case

x retain case
90 Chapter 6 - Code Generation Properties

The default, if the property is blank, is to compress the filename to 8 characters on
Windows, or 32 on UNIX, eliminate vowels first, eliminate white-space, and eliminate
underscores. When a blank or underscore is eliminated, the next character is
capitalized.

Directory

The Directory property specifies the project directory, which is the directory in which
all subsystems for a project are generated. This property defaults to AUTO GENERATE,
which tells the Ada Generator to use the current working directory.

Class Properties

The class properties are described on the following pages:

■ Representation on page 92
■ Generate Accessor Operations on page 93
■ Access Class Wide (Ada 95) on page 93
■ Code Name on page 93
■ Type Name (Ada 95) / Class Name (Ada 83) on page 93
■ Type Visibility (Ada 95) / Class Access (Ada 83) on page 94
■ Type Implementation (Ada 95) on page 94
■ Type Control (Ada 95) on page 95
■ Type Control Name (Ada 95) on page 95
■ Type Definition (Ada 95) / Implementation Type (Ada 83) on page 95
■ Record Implementation (Ada 95) on page 96
■ Record Kind Package Name (Ada 95) on page 96
■ Is Limited (Ada 95) on page 96
■ Is Subtype on page 96
■ Polymorphic Unit (Ada 83) on page 96
■ Handle Name (Ada 83) on page 97
■ Handle Access (Ada 83) on page 97
■ Discriminant (Ada 83) on page 97
■ Variant (Ada 83) on page 97
■ Generate Access Type (Ada 95) on page 98
■ Access Type Name (Ada 95) on page 98
■ Access Type Visibility (Ada 95) on page 99
■ Access Type Definition (Ada 95) on page 99
■ Maybe Aliased (Ada 95) on page 99
■ Parameterized Implementation (Ada 95) on page 99
■ Parent Class Name (Ada 95) on page 100
■ Enumeration Literal Prefix on page 100
Class Properties 91

■ Record Field Prefix on page 100
■ Array Of Type Name (Ada 95) on page 100
■ Access Array Of Type Name (Ada 95) on page 100
■ Array Of Access Type Name (Ada 95) on page 100
■ Access Array Of Access Type Name (Ada 95) on page 100
■ Array Index Definition (Ada 95) on page 101
■ Generate Standard Operations on page 101
■ Implicit Parameter on page 101
■ Implicit Parameter Name (Ada 95) / Class Parameter Name (Ada 83) on page 101
■ Generate Default Constructor (Ada 95)/Default Constructor Kind (Ada 83) on page 102
■ Default Constructor Name on page 102
■ Inline Default Constructor on page 103
■ Generate Copy Constructor (Ada 95) / Copy Constructor Kind (Ada 83) on page 103
■ Copy Constructor Name (Ada 95) on page 103
■ Inline Copy Constructor on page 104
■ Generate Destructor (Ada 95) on page 104
■ Destructor Name on page 104
■ Inline Destructor on page 105
■ Generate Type Equality (Ada 95) on page 105
■ Type Equality Name (Ada 95) / Class Equality Operation (Ada 83) on page 105
■ Handle Equality Operation (Ada 83) on page 105
■ Inline Equality on page 106
■ Is Task (Ada 83) on page 106

Representation

The Representation property is used to specify one or more representation items,
including pragmas. The constructs must be fully defined, including a terminating
semicolon. The following predefined names yield the name of the entity which can be
used within the property definition:

■ type
■ access_type
■ component_clauses -- yields a list of component_clause
■ array_type -- Ada95 only
■ access_array_type -- Ada95 only
■ array_access_type -- Ada95 only
■ access_array_access_type -- Ada95 only

The predefined "component_clauses" is used to construct the record representation
clause in the class. For example,

for $type use

record
92 Chapter 6 - Code Generation Properties

$component_clauses

end record;

The placement of the representations, in a class, comes after the full definition of the
type plus any other auxiliary type definitions. For a task or protected type, the
representation comes after the "is" in the specification.

Generate Accessor Operations

The Generate Accessor Operations property indicates whether or not the Ada
Generator should create the accessor operations for this class. Both the model and
class property must be set to True for this to take effect.

The default setting is True.

Access Class Wide (Ada 95)

The Access Class Wide property specifies that the access type is class-wide. For
example:

type AccessTypeName is access TypeName’Class;

The default setting is True.

Code Name

The Code Name property specifies the name for the class in the generated code. You
need to set this property only if you want the class to be named differently than it is in
the Rose model. This is especially useful when the Rose model and code are expressed
in different natural languages. The value of this property should be a valid Ada
identifier.

Type Name (Ada 95) / Class Name (Ada 83)

The Type Name property determines the Ada type name used by the Ada Generator
to represent a Rose class. For example, if Type Name (Ada 95) / Class Name (Ada 83)
is set to File_Type, the Ada Generator will output:

type File_Type is ...;

If Type Name (Ada 95) / Class Name (Ada 83) is set to Object, the Ada Generator
will output:

type Object is ...;

You have the option of setting the Type Name (Ada 95) / Class Name (Ada 83)
property to ${class}, where the Ada Generator will use the name of the Rose class
for the name of the type.
Class Properties 93

Note, that this property is ignored if the class name uses the colon notation,
ClassName:TypeName.

The default setting is Object.

Type Visibility (Ada 95) / Class Access (Ada 83)

The Type Visibility (Ada 95)/Class Access (Ada 83) property controls the definition of
the Ada type used by the Ada Generator to represent a Rose class.

The default setting is Private.

Type Implementation (Ada 95)

The Type Implementation property controls the implementation of the Ada type used
by the Ada Generator to represent a Rose class.

The default setting is Tagged.

Public The type will be a public type.

Private The type will be a private type. The corresponding complete type
declaration will appear in the private part of the Ada specification.

Limited Private
(Ada 83)

The type will be a limited private type. The corresponding complete type
declaration will appear in the private part of the Ada specification.

Do Not Create
(Ada 83)

No type declaration will be output by the Ada Generator.

Tagged The class corresponds to a tagged type.

Record The class is implemented using records and variants.

Mixin The class is represented as a generic used in multiple inheritance.

Protected The class corresponds to a protected type.

Task The class corresponds to a task type.
94 Chapter 6 - Code Generation Properties

Type Control (Ada 95)

The Type Control property specifies whether a controlled type implementation
should be generated for the Ada type. The Type Implementation property must be set
to Tagged.

The default setting is None.

Type Control Name (Ada 95)

The Type Control Name property controls the name of the auxiliary controlled type.

The default setting is Controlled_${type}.

Type Definition (Ada 95) / Implementation Type (Ada 83)

The Type Definition (Ada 95)/Implementation Type (Ada 83) property allows a Rose
class to be defined as something other than one of the types available in Type
Implementation.For example, if Type Definition is set to range 1 .. 500, the Ada
Generator will output:

type TypeName is range 1 .. 500;

If Type Definition is set to new String (1 .. 4), the Ada Generator will output:

type TypeName is new String (1 .. 4);

For Ada 95, when the Type Definition property is set, it dominates the Type
Implementation property.

None The type is not a controlled type.

Initialization
Only

The type is a controlled type, with only user-defined initialization.

Assignment
Finalization
Only

The type is a controlled type, with only user-defined assignment and
finalization.

All The type is a controlled type with both user-defined initialization and
user-defined assignment and finalization.
Class Properties 95

Record Implementation (Ada 95)

The Record Implementation property controls the implementation of the Ada record
type. It is used in conjunction with the property Type Implementation when set to
Record.

The default setting is Single Type.

Record Kind Package Name (Ada 95)

The Record Kind Package Name property controls the name of the auxiliary package
used to declare the enumeration type Kinds of the root class.

The default setting is ${class}_Record_Kinds.

Is Limited (Ada 95)

The Is Limited property controls whether the type is limited. This applies to tagged
types and record types with private visibility.

The default setting is False.

Is Subtype

For Ada 95: The Is Subtype property is used in conjunction with the Type Definition
property and a Single Type Record Implementation to define a subtype declaration.

The default setting is False.

For Ada 83: The Is Subtype property is used in conjunction with the Implementation
Type property to define an subtype declaration. It is ignored when the
Implementation Type property is blank.

Polymorphic Unit (Ada 83)

The Polymorphic Unit property tells the Ada Generator to treat the class as a
polymorphic class instead of as a normal class. A polymorphic class must have a
single dependency relationship, the supplier of which is the root of the generalization
hierarchy for which a polymorphic package is to be created.

Single Type A single type is created for the complete
generalization hierarchy.

Multiple Types One record type is created for each class in the
generalization hierarchy.
96 Chapter 6 - Code Generation Properties

Handle Name (Ada 83)

The Handle Name property determines the name of the type created by the Ada
Generator for “By Reference” instances of the class. For example, if Handle Name is
set to Handle (and all other properties have their default values), the Ada Generator
will output:

type Object is private;

type Handle is access Object;

If Handle Name is set to Object_Name, the Ada Generator will output:

type Object is private;

type Object_Name is access Object;

Handle Access (Ada 83)

The Handle Access property controls the definition of the Ada type used by the Ada
Generator for “By Reference” instances of the class.

Discriminant (Ada 83)

The Discriminant property specifies the discriminant of the Ada type used by the Ada
Generator to represent a Rose class. For example, if Discriminant is set to Size :

Positive := 100 (and all other properties have their default values), the Ada
Generator will output:

type Object (Size : Positive := 100) is private;

The class property Variant and the “has” properties Container Type and Variant are
also used when defining discriminated records.

Variant (Ada 83)

The Variant property is used in conjunction with the Discriminant property to define a
single variant part for a discriminated record. The Variant property should be set to
the simple name of a discriminant defined in the Discriminant property. For example,
if Discriminant contains Unit : Device := Disk (and all other properties have
their default values), the Ada Generator will output:

Public (Default) The type will be defined as “access <Class Name>”

Private The type will be defined as private

Limited Private The type will be defined as limited private

Do Not Create No type will be declared.
Class Properties 97

type Object (Unit : Device := Disk) is record

...

end record;

If Variant is set to Unit, the Ada Generator will output:

type Object (Unit : Device := Disk) is record

...

case Unit is

...

end case;

end record;

The Variant property is only used in the complete type declaration in the private part
of the Ada specification. It has no effect on the visible type declaration. The Variant
property is ignored when the Discriminant property is blank.

Generate Access Type (Ada 95)

The Generate Access Type property controls the generation of the Ada type used by
the Ada Generator for By-Reference instances of the class.

The default setting is Auto.

Access Type Name (Ada 95)

The Access Type Name property determines the name of the type created by the Ada
Generator for By-Reference instances of the class. For example, if Access Type Name is
set to Handle, the Ada Generator will output:

type TypeName is private;
type Handle is access TypeName;

If Access Type Name is set to Object_Name, the Ada Generator will output:

type TypeName is private;
type Object_Name is access TypeName;

The default setting is Handle.

Always The type will always be generated.

Auto The type will be defined as needed.
98 Chapter 6 - Code Generation Properties

Access Type Visibility (Ada 95)

The Access Type Visibility property controls the definition of the Ada type used by
the Ada Generator for By-Reference instances of the class.

The default setting is Public.

Access Type Definition (Ada 95)

The Access Type Definition property allows the access to a Rose class to be defined as
something other than:

type AccessTypeName is access TypeName;

If Access Type Definition is set to array (Positive range 1 .. 10) of
Object, the Ada Generator will output:

type AccessTypeName is
array (Positive range 1..10) of Object;

Maybe Aliased (Ada 95)

The Maybe Aliased property specifies that the access type is a general
access-to-variable type. For example,

type AccessTypeName is access all TypeName’Class;

The default setting is False.

Parameterized Implementation (Ada 95)

The Parameterized Implementation property controls the mapping of parameterized
and bound classes.

The default setting is Generic.

Public The type will be defined as “access TypeName”.

Private The type will be defined as private.

Generic The type will be declared in generic units.

Unconstrained The discriminant part of the type is derived from
the class parameters.
Class Properties 99

Parent Class Name (Ada 95)

The Parent Class Name property specifies the name used to reference the superclass,
for a parameterized class whose Parameterized Implementation property has been set
to Generic.

The default setting is Superclass.

Enumeration Literal Prefix

The Enumeration Literal Prefix property specifies the prefix that is prefixed to
enumeration literal values, that the Ada Generator automatically generates.

The default setting is A_.

Record Field Prefix

The Record Field Prefix property specifies the prefix that is prefixed to component
and discriminant identifiers, that the Ada Generator automatically generates.

The default setting is The_.

Array Of Type Name (Ada 95)

The property Array Of Type Name specifies the name of the array type of a
one-to-many by-value “has” relationship. The string can include the variable
${type}, which expands to the type name of the class.

The default setting is Array_Of_${type}.

Access Array Of Type Name (Ada 95)

The property Access Array Of Type Name specifies the name of the access type whose
designated type is given by the property Array Of Type Name.

The default setting is Access_Array_Of_${type}.

Array Of Access Type Name (Ada 95)

The property Array Of Access Type Name specifies the name of the array type of a
one-to-many by-reference “has” relationship. The string can include the variable
${access_type}, which expands to the access type name of the class.

The default setting is Array_Of_${access_type}.

Access Array Of Access Type Name (Ada 95)

The property Access Array Of Access Type Name specifies the name of the access
type whose designated type is given by the property Array Of Access Type Name.
100 Chapter 6 - Code Generation Properties

The default setting is Access_Array_Of_${access_type}.

Array Index Definition (Ada 95)

The property Array Index Definition supplies the index subtype definition for the
array type definitions given by the properties Array Of Type Name and Array Of
Access Type Name.

The default setting is Positive range <>.

Generate Standard Operations

The Generate Standard Operations property indicates whether or not the Ada
Generator should create the standard operations for this class. Both the model and
class property must be set to True for this to take effect.

The default setting is True.

Note: To auto-generate set operation (Project/Class property Generate Standard
Operations set to True) you must have the attributes set to public.

Implicit Parameter

The Implicit Parameter property indicates whether or not the Ada Generator should
provide an implicit class parameter object for all the user-defined operations of this
class. Both the model and class property must be set to True for this to take effect.

The default setting is True.

Implicit Parameter Name (Ada 95) / Class Parameter Name (Ada 83)

All operations of a class can have as an implicit parameter a class object. The Implicit
Parameter Name (Ada 95) / Class Parameter Name (Ada 83) property specifies the
formal parameter name used by the Ada Generator for this class object. For example,
if the Implicit Parameter Name (Ada 95) / Class Parameter Name (Ada 83) is set to
This, (the property Generate Standard Operations must be active for Ada 95; all
other properties have their default values for Ada 83), the class destructor will be
declared as:

procedure Free (This : in out TypeName);

If Implicit Parameter Name (Ada 95) / Class Parameter Name (Ada 83) is changed to
The_Object, the class destructor would be:

procedure Free (The_Object : in out TypeName);
Class Properties 101

The Implicit Parameter Name (Ada 95) / Class Parameter Name (Ada 83) property
also controls the declaration of the class parameter to the constructor subprogram,
get/set subprograms, inherited subprograms and subprograms for user-defined
operations. It does not affect the names of the class parameters to the copy and
equality subprograms.

The default setting is This.

Generate Default Constructor (Ada 95)/Default Constructor Kind (Ada 83)

The Generate Default Constructor (Ada 95)/Default Constructor Kind (Ada 83)
property determines the kind of subprogram declared as the class constructor by the
Ada Generator. The declaration of a class constructor can also be suppressed. If
Generate Default Constructor (Ada 95)/Default Constructor Kind (Ada 83) is set to
Function, the declaration output by the Ada Generator will be of the form:

function Create return TypeName;

If Generate Default Constructor (Ada 95)/Default Constructor Kind (Ada 83) is set to
Procedure, the declaration output by the Ada Generator will be of the form:

procedure Create
(ImplicitParameterName : in outTypeName);

The properties Generate Standard Operations, Type Name (Ada 95) / Class Name
(Ada 83), Implicit Parameter Name (Ada 95)/Class Parameter Name (Ada 83), and
Default Constructor Name also affect the declaration of the class constructor.

The default setting is Function.

Default Constructor Name

The Default Constructor Name property controls the simple name of the class
constructor subprogram. For example, if the Default Constructor Name property is set
to Create, the Ada Generator will output:

function Create return TypeName;

If the Default Constructor Name property is set to New_Item, the Ada Generator will
output:

function New_Item return TypeName;

Function The class constructor will be declared as a function.

Procedure The class constructor will be declared as a procedure.

Do Not Create No class constructor will be declared.
102 Chapter 6 - Code Generation Properties

The default setting is Create.

Inline Default Constructor

The Inline Default Constructor property specifies whether an inline pragma should be
generated for the Default Constructor.

The default setting is False.

Generate Copy Constructor (Ada 95) / Copy Constructor Kind (Ada 83)

The Generate Copy Constructor (Ada 95)/Copy Constructor Kind (Ada 83) property
determines the kind of subprogram declared as the class constructor by the Ada
Generator. The declaration of a class constructor can also be suppressed. If Generate
Copy Constructor (Ada 95)/Copy Constructor Kind (Ada 83) is set to Function, the
declaration output by the Ada Generator will be of the form:

function Copy (From : in TypeName) return TypeName;

If Generate Copy Constructor (Ada 95)/Copy Constructor Kind (Ada 83) is set to
Procedure, the declaration output by the Ada Generator will be of the form:

procedure Copy (From : in TypeName;
To: in out TypeName);

The default setting is Function.

Copy Constructor Name (Ada 95)

The Copy Constructor Name property controls the simple name of the class
constructor subprogram. For example, if the Copy Constructor Name property is set
to Copy, the Ada Generator will output:

function Copy return TypeName;

If the Copy Constructor Name property is set to Clone_Item, the Ada Generator will
output:

function Clone_Item return TypeName;

The default setting is Copy.

Function The copy constructor will be declared as a function.

Procedure The copy constructor will be declared as a procedure.

Do Not Create No copy constructor will be declared.
Class Properties 103

Inline Copy Constructor

The Inline Copy Constructor property specifies whether an inline pragma should be
generated for the Copy Constructor.

The default setting is False.

Generate Destructor (Ada 95)

The Generate Destructor property specifies whether a destructor is declared by the
Ada Generator.

If Generate Destructor is set to Procedure, the declaration output by the Ada
Generator will be of the form:

procedure Free (ImplicitParameterName : in outTypeName);

The properties Generate Standard Operations, Type Name, Implicit Parameter Name,
and Destructor Name also affect the declaration of the destructor.

The default setting is Procedure.

Destructor Name

The Destructor Name property controls the simple name of the class destructor
subprogram by the Ada Generator. For example, if the Destructor Name property is
set to Free, the Ada Generator will output:

procedure Free (
ImplicitParameterName :

in outTypeName);

If the Destructor Name property is set to Deallocate_Item, the Ada Generator will
output:

procedure Deallocate_Item (
ImplicitParameterName :

in outTypeName);

The default setting is Free.

If the Destructor Name is blank, no destructor will be generated.

Procedure The class destructor will be declared as a procedure.

Do Not Create No class destructor will be declared.
104 Chapter 6 - Code Generation Properties

Inline Destructor

The Inline Destructor property specifies whether an inline pragma should be
generated for the Destructor.

The default setting is False.

Generate Type Equality (Ada 95)

The Generate Type Equality property determines whether the function is declared or
suppressed.

The default setting is Do Not Create.

Type Equality Name (Ada 95) / Class Equality Operation (Ada 83)

The Type Equality Name (Ada 95)/Class Equality Operation (Ada 83) property
controls the designator of the equality function declared by the Ada Generator to
compare class objects. For example, if the Type Equality Name (Ada 95)/Class
Equality Operation (Ada 83) property is set to ${quote}=${quote}:

function "=" (L, R : in TypeName)
return Boolean;

If the Type Equality Name (Ada 95)/Class Equality Operation (Ada 83) property is set
to Is_Equal, the Ada Generator will output:

function Is_Equal (L, R : in TypeName)
return Boolean;

The default setting is ${quote}=${quote}.

Handle Equality Operation (Ada 83)

The Handle Equality Operation property controls the designator of the equality
function declared by the Ada Generator to compare class handles. For example, if the
Handle Equality Operation property is set to ${quote}=${quote} (and all other
properties have their default values), the Ada Generator will output:

function "=" (L, R : in Handle) return Boolean;

If the Handle Equality Operation property is set to Is_Equal, the Ada Generator will
output:

function Is_Equal (L, R : in Handle) return Boolean;

Function The type equality function will be declared.

Do Not Create No type equality function will be declared.
Class Properties 105

If the property is blank, no handle equality function is output by the Ada Generator.

Inline Equality

The Inline Equality property specifies whether an inline pragma should be generated
for the Equality operations.

The default setting is False.

Is Task (Ada 83)

The Is Task property is used to define a class as a task type. Operations become
entries, and attributes are ignored.

Operation Properties

The operation properties are described on the following pages:

■ Implicit Parameter Class Wide (Ada 95) on page 106
■ Representation on page 107
■ Use Colon Notation on page 107
■ Generate Accessor Operations on page 107
■ Use File Name on page 107
■ Code Name on page 107
■ Subprogram Implementation on page 108
■ Renames (Ada 95) on page 108
■ Generate Overriding (Ada 95) on page 108
■ Implicit Parameter Mode (Ada 95) / Class Parameter Mode (Ada 83) on page 108
■ Generate Access Operation (Ada 95) on page 109
■ Inline on page 109
■ Entry Code on page 109
■ Exit Code on page 109
■ Entry Barrier Condition (Ada 95) on page 109

Implicit Parameter Class Wide (Ada 95)

The Implicit Parameter Class Wide property specifies whether the class parameter is
specified with the ‘Class attribute.

The default setting is False.
106 Chapter 6 - Code Generation Properties

Representation

The Representation property is used to specify one or more representation items,
including pragmas. The constructs must be fully defined, including a terminating
semicolon. The predefined name “operation” yields the name of the entity which can
be used within the property definition.

The placement of the representations for an operation comes after the subprogram
specification.

Use Colon Notation

The Use Colon Notation property is used to control whether colon notation is
permitted to be used. Turning this off will cause errors to be generated for classes
using colon notation.

The default setting is True.

Generate Accessor Operations

The Generate Accessor Operations property indicates whether or not the Ada
Generator should create the accessor operations for the classes selected for code
generation. The property is used in conjunction with the class property of similar
name. When set to True, the class property is then taken into consideration. When set
to False, no accessor operations are generated.

The default setting is False.

Use File Name

The Use File Name property is used to control the Module Spec/Body Property File
Name.

The default setting is False.

Code Name

The Code Name property specifies the name for the operation in the generated code.
You need to set this property only if you want the operation to be named differently
than it is in the Rose model. This is especially useful when the Rose model and code
are expressed in different natural languages. The value of this property should be a
valid Ada identifier.
Operation Properties 107

Subprogram Implementation

The Subprogram Implementation property is used to control the code generated for a
subprogram body. This property can take on the following values.

In addition, the code generation property Inline is used to control whether or not a
pragma Inline is generated for the operation.

The default setting is Body.

Renames (Ada 95)

The Renames property is used in conjunction with the Subprogram Implementation
property when set to Renaming. It specifies the name of the renamed subprogram.

Generate Overriding (Ada 95)

The Generate Overriding property specifies whether an overriding declaration should
be generated.

The default setting is True.

Implicit Parameter Mode (Ada 95) / Class Parameter Mode (Ada 83)

The Implicit Parameter Mode (Ada 95)/Class Parameter Mode (Ada 83) property
determines the mode of the class parameter for standard and user-defined operations.

Abstract (Ada 95) An abstract specification is generated.

Body A specification and body is generated.

Renaming (Ada 95) A specification and renaming-as-body is generated.

Separate A specification and stub is generated.

Spec A specification is generated.

Access (Ada 95) The mode of the class parameter is “access”

In The mode of the class parameter is “in”

In Out The mode of the class parameter is “in out”

Out The mode of the class parameter is “out”

Function Return

(Ada 83)

The operation will be declared as a function with
the Ada type of Class (See property Class Name) as
its return value.
108 Chapter 6 - Code Generation Properties

The default setting is In Out.

Generate Access Operation (Ada 95)

The Generate Access Operation property specifies whether an access operation
should be generated.

The default setting is False.

Inline

The Inline property specifies whether an inline pragma should be generated for the
operation.

The default setting is False.

Entry Code

The Entry Code property provides the capability to insert code or comments at the
beginning of the subprogram. This property is useful for inserting instrumentation, or
adhering to documentation standards.

Exit Code

The Exit Code property provides the capability to insert code or comments at the end
of the subprogram. This property is useful for inserting instrumentation, or adhering
to documentation standards.

Entry Barrier Condition (Ada 95)

The Entry Barrier Condition property specifies the boolean expression used for the
barrier of the entry body.

The default setting is True.

Has Properties

The has properties are described on the following pages:

■ Is Constant on page 110
■ Is Aliased (Ada 95) on page 110
■ Code Name on page 110
■ Name If Unlabeled on page 110

Do Not Create No implicit parameter will be declared
Has Properties 109

■ Record Field Implementation (Ada 95) on page 111
■ Record Field Name (Ada 95) / Data Member Name (Ada 83) on page 111
■ Generate Get (Ada 95) on page 111
■ Generate Access Get (Ada 95) on page 112
■ Get Name on page 112
■ Inline Get on page 112
■ Generate Set (Ada 95) on page 112
■ Generate Access Set (Ada 95) on page 113
■ Set Name on page 113
■ Inline Set on page 113
■ Is Constant (Ada 83) on page 113
■ Initial Value on page 113
■ Variant (Ada 83) on page 114
■ Container Implementation (Ada 95) on page 115
■ Container Generic on page 115
■ Container Type on page 115
■ Container Declarations on page 115

Is Constant

If the “has” relationship is static and the Is Constant property is set to True, the Ada
Generator will create a constant declaration rather than a variable declaration.

The default setting is False.

Is Aliased (Ada 95)

The Is Aliased property specified that the object or component is to be defined as
aliased.

The default setting is False.

Code Name

The Code Name property specifies the name for the “has” relationship in the
generated code. You need to set this property only if you want the “has” relationship
to be named differently than it is in the Rose model. This is especially useful when the
Rose model and code are expressed in different natural languages. The value of this
property should be a valid Ada identifier.

Name If Unlabeled

The Name If Unlabeled property specifies the name which the Ada Generator will use
for an unlabeled “has” relationship. The string can include the variable
${supplier}, which expands to the name of the supplier class of the “has”
110 Chapter 6 - Code Generation Properties

relationship. For example, if class Message and class Priority are the client and the
supplier, respectively, of an unlabeled “has” relationship, the string
The_${supplier} resolves to The_Priority.

The default setting is The_${supplier}.

Record Field Implementation (Ada 95)

The Record Field Implementation property controls the definition of the field within
the record type definition for the “has” relationship.

The default setting is Component.

Record Field Name (Ada 95) / Data Member Name (Ada 83)

The Record Field Name (Ada 95) / Data Member Name (Ada 83) property specifies
the name the Ada Generator outputs for the record field of a “has” relationship. The
string can include the variable ${supplier}, which expands to the name of the
supplier class of the “has” relationship, and the variable ${relationship}, which
expands to the name of the “has” relationship itself.

If the variable ${relationship} is used, and the “has” relationship is unlabeled,
then the value of ${relationship} will be the value of the property Name If
Unlabeled.

The default setting is ${relationship}.

Generate Get (Ada 95)

The Generate Get property determines whether the function is declared or suppressed
by the Ada Generator.

The default setting is Function.

Component The relationship will be defined as a component.

Discriminant The relationship will be defined as a discriminant.

Access Discriminant The relationship will be defined as an access discriminant.

Function The Get operation will be declared as a function.

Do Not Create No Get operation will be declared.
Has Properties 111

Generate Access Get (Ada 95)

The Generate Access Get property determines whether the function is declared or
suppressed by the Ada Generator.

The default setting is Do Not Create.

Get Name

The Get Name property specifies the name the Ada Generator outputs for the get
accessor of a “has” relationship. The string can include the variable ${supplier},
which expands to the name of the supplier class of the “has” relationship, and the
variable ${relationship}, which expands to the name of the “has” relationship
itself.

If the variable ${relationship} is used, and the “has” relationship is unlabeled,
then the value of ${relationship} will be the value of the property Name If
Unlabeled.

The default setting is Get_${relationship}.

Inline Get

The Inline Get property specifies whether an inline pragma should be generated for
the Get operation.

The default setting is True.

Generate Set (Ada 95)

The Generate Set property determines whether the procedure is declared or
suppressed by the Ada Generator.

The default setting is Procedure.

Function The Access Get operation will be declared.

Do Not Create No Access Get operation will be declared.

Procedure The Set operation will be declared.

Do Not Create No Set operation will be declared.
112 Chapter 6 - Code Generation Properties

Generate Access Set (Ada 95)

The Generate Set property determines whether the procedure is declared or
suppressed by the Ada Generator.

The default setting is Do Not Create.

Set Name

The Set Name property specifies the name the Ada Generator outputs for the set
accessor of a “has” relationship. The string can include the variable ${supplier},
which expands to the name of the supplier class of the “has” relationship, and the
variable ${relationship}, which expands to the name of the “has” relationship
itself.

If the variable ${relationship} is used, and the “has” relationship is unlabeled,
then the value of ${relationship} will be the value of the property Name If
Unlabeled.

The default setting is Set_${relationship}.

Inline Set

The Inline Set property specifies whether an inline pragma should be generated for
the Set operation.

The default setting is True.

Is Constant (Ada 83)

If a “has” relationship is static, and the Is Constant property is set to True, the Ada
Generator will create a constant declaration rather than a variable declaration.

To create a named number declaration, do not set Is Constant to True; rather, set the
type of the attribute to constant.

To define the value of the constant or named number, use the Initial Value property.

Initial Value

The Initial Value property attaches an initial value to a field declaration, variable
declaration, or constant declaration.

Procedure The Set operation will be declared.

Do Not Create No Set operation will be declared.
Has Properties 113

Variant (Ada 83)

The Variant property is used in conjunction with the Class properties Discriminant
and Variant to define a class as an Ada variant record. This Variant property assigns
the component for the “has” relationship to a particular variant of the variant part of
the record. For example, assume that class Peripheral has the following Ada
declaration:

type Object is record

Unit : Device;

Status : State;

Line_Count : Integer;

Cylinder : Cylinder_Index;

Track : Track_Number;

end record;

Assume that type Device has the enumerated values (Printer, Disk, Drum). This
declaration can be changed to a discriminated record through the following steps:

Remove the Unit “has” relationship and set the Class property Discriminant to Unit
: Device:

type Object (Unit : Device) is record

Status : State;

Line_Count : Integer;

Cylinder : Cylinder_Index;

Track : Track_Number;

end record;

Set the Class property Variant to Unit:

type Object (Unit : Device) is record

Status : State;

Line_Count : Integer;

Cylinder : Cylinder_Index;

Track : Track_Number;

case Unit is

end case;

end record;

Set the Variant property for the Line_Count “has” relationship to Printer, and set the
Variant property for the Track and Cylinder “has” relationships to others:

type Object (Unit : Device) is record

Status : State;

case Unit is

when Printer =>

Line_Count : Integer;
114 Chapter 6 - Code Generation Properties

when others =>

Cylinder : Cylinder_Index;

Track : Track_Number;

end case;

end record;

The Ada Generator will always put the others variant last in the variant part.

Container Implementation (Ada 95)

The Container Implementation property controls the implementation scheme for a
container type by the Ada Generator.

The default setting is Array.

Container Generic

The Container Generic property provides some control over the generic package
instantiated to handle one-to-many “has” relationships. For example, if Container
Generic is set to List, then the package List_Generic will be instantiated (if the
maximum allowable cardinality of the “has” relationship is larger than 1). If
Container Generic is changed to Queue, the package Queue_Generic will be
instantiated.

The default setting is List.

Container Type

The Container Type property specifies a data type for the record field generated for a
“has” relationship. The Container Type property can be set to refer to an existing
container class, and the Ada Generator will use that container class instead of
generating its own container class.

Container Declarations

The Container Declarations property lets you create any declarations, such as array
type declarations or generic instantiations, to support the Container Type property.

Array Create an unconstrained array type and access to that array type.

Generic Use the generic unit given by the property Container Generic Name.
Has Properties 115

Attribute Properties

The attribute properties are described on the following pages:

■ Initial Value on page 116
■ Representation on page 116
■ Is Constant on page 116
■ Is Aliased (Ada 95) on page 117
■ Code Name on page 117
■ Record Field Implementation (Ada 95) on page 117
■ Record Field Name (Ada 95) / Data Member Name (Ada 83) on page 117
■ Generate Get (Ada 95) on page 117
■ Generate Access Get (Ada 95) on page 118
■ Get Name on page 118
■ Inline Get on page 118
■ Generate Set (Ada 95) on page 118
■ Generate Access Set (Ada 95) on page 119
■ Set Name on page 119
■ Inline Set on page 119

Initial Value

The Initial Value property attaches an initial value to an object or component.

Representation

The Representation property is used to specify one or more representation items,
including pragmas. The constructs must be fully defined, including a terminating
semicolon. The predefined name “attribute” yields the name of the entity, which can
be used within the property definition.

For an attribute, the representation depends on whether it is static, i.e. treated as an
object declaration, or non-static, treated as a component declaration. For the latter, use
the syntax for a component_clause.

The placement of the representations for an attribute comes after the object
declaration.

Is Constant

If the attribute is static and the Is Constant property is set to True, the Ada Generator
will create a constant declaration rather than a variable declaration.

The default setting is False.
116 Chapter 6 - Code Generation Properties

Is Aliased (Ada 95)

The Is Aliased property specified that the object or component is to be defined as
aliased.

The default setting is False.

Code Name

The Code Name property specifies the name for the attribute in the generated code.
You need to set this property only if you want the attribute to be named differently
than it is in the Rose model. This is especially useful when the Rose model and code
are expressed in different natural languages. The value of this property should be a
valid Ada identifier.

Record Field Implementation (Ada 95)

The Record Field Implementation property controls the definition of the field within
the record type definition for attributes of the class.

The default setting is Component.

Record Field Name (Ada 95) / Data Member Name (Ada 83)

The Record Field Name (Ada 95) / Data Member Name (Ada 83) property specifies
the name the Ada Generator outputs for the record field of an attribute. The string can
include the variable ${attribute}, which expands to the name of the label of the
class attribute in the model or the name specified in the attribute's Code Name
property.

The default setting is ${attribute}.

Generate Get (Ada 95)

The Generate Get property determines whether the function is declared or suppressed
by the Ada Generator.

Component The attribute will be defined as a component.

Discriminant The attribute will be defined as a discriminant.

Access Discriminant The attribute will be defined as an access discriminant.

Function The Get operation will be declared.

Do Not Create No Get operation will be declared.
Attribute Properties 117

The default setting is Function.

Generate Access Get (Ada 95)

The Generate Access Get property determines whether the function is declared or
suppressed by the Ada Generator.

The default setting is Do Not Create.

Get Name

The Get Name property specifies the name the Ada Generator outputs for the get
accessor of an attribute. The string can include the variable ${attribute}, which
expands to the name of the label of the class attribute in the model or the name
specified in the attribute's Code Name property

The default setting is Get_${attribute}.

Inline Get

The Inline Get property specifies whether an inline pragma should be generated for
the Get operation.

The default setting is True.

Generate Set (Ada 95)

The Generate Set property determines whether the procedure is declared or
suppressed by the Ada Generator.

The default setting is Do Not Create.

Function The Access Get operation will be declared.

Do Not Create No Access Get operation will be declared.

Procedure The Set operation will be declared.

Do Not Create No Set operation will be declared.
118 Chapter 6 - Code Generation Properties

Generate Access Set (Ada 95)

The Generate Access Set property determines whether the procedure is declared or
suppressed by the Ada Generator.

The default setting is Do Not Create.

Set Name

The Set Name property specifies the name the Ada Generator outputs for the set
accessor of an attribute. The string can include the variable ${attribute}, which
expands to the name of the label of the class attribute in the model or the name
specified in the attribute's Code Name property.

The default setting is Set_${attribute}.

Inline Set

The Inline Set property specifies whether an inline pragma should be generated for
the Set operation.

The default setting is True.

Association Role Properties

The association role properties are described on the following pages:

■ Record Field Implementation on page 120
■ Is Constant on page 120
■ Is Aliased (Ada 95) on page 120
■ Code Name on page 120
■ Name If Unlabeled on page 120
■ Record Field Name (Ada 95) / Data Member Name (Ada 83) on page 121
■ Generate Get (Ada 95) on page 121
■ Generate Access Get (Ada 95) on page 121
■ Get Name on page 122
■ Inline Get on page 122
■ Generate Set (Ada 95) on page 122
■ Set Name on page 122
■ Inline Set on page 122

Procedure The Access Set operation will be declared.

Do Not Create No Access Set operation will be declared.
Association Role Properties 119

■ Initial Value on page 123
■ Container Implementation (Ada 95) on page 123
■ Container Generic on page 123
■ Container Type on page 123
■ Container Declarations on page 123

Record Field Implementation

The Record Field Implementation property controls the definition of the field within
the record type definition for roles of the class.

Is Constant

If the role is static and the Is Constant property is set to True, the Ada Generator will
create a constant declaration rather than a variable declaration.

The default setting is False.

Is Aliased (Ada 95)

The Is Aliased property specified that the object or component is to be defined as
aliased.

The default setting is False.

Code Name

The Code Name property specifies the name for the association role in the generated
code. You need to set this property only if you want the association role to be named
differently than it is in the Rose model. This is especially useful when the Rose model
and code are expressed in different natural languages. The value of this property
should be a valid Ada identifier.

Name If Unlabeled

The Name If Unlabeled property specifies the name to be used for an unlabeled role.
The Ada Generator uses the name of the role to construct names for the corresponding
component and get and set operations. If the role is not named, the Ada Generator
uses this property to determine the name of the role.

If you select: The action is:

Component (Default) The role will be defined as a component.

Discriminant The role will be defined as a discriminant.

Access Discriminant The role will be defined as an access discriminant.
120 Chapter 6 - Code Generation Properties

When the Ada Generator needs the name of the role to generate a name for a
component or a get or set operations, ${targetClass} expands to the name of the
association class or the association if there is one. Otherwise it expands to the name of
the supplier class. If ${association} is used in the Name If Unlabeled property, it
expands to the name of the association.

The default setting is The_${targetClass}.

Record Field Name (Ada 95) / Data Member Name (Ada 83)

The Record Field Name (Ada 95) / Data Member Name (Ada 83) property specifies
the name the Ada Generator outputs for the record field for an association role. The
string can include the variable ${target}, which expands to the name of the target
of the component. If there is an association (class), this is the name of the association
(class). If there is not an association (class), this is the name of the supplier role.

The default setting is ${target}.

Generate Get (Ada 95)

The Generate Get property determines whether the function is declared or suppressed
by the Ada Generator.

The default setting is Function.

Generate Access Get (Ada 95)

The Generate Access Get property determines whether the function is declared or
suppressed by the Ada Generator.

The default setting is Do Not Create.

Function The Get operation will be declared.

Do Not Create No Get operation will be declared.

Function The Access Get operation will be declared.

Do Not Create No Access Get operation will be declared.
Association Role Properties 121

Get Name

The Get Name property specifies the name the Ada Generator outputs for the get
accessor of an association role. The string can include the variable ${target}, which
expands to the name of the target of the component. If there is an association class,
this is the name of the association class. If there is not an association class, this is the
name of the supplier role.

The default setting is Get_${target}.

Inline Get

The Inline Get property specifies whether an inline pragma should be generated for
the Get operation.

The default setting is True.

Generate Set (Ada 95)

The Generate Set property determines whether the procedure is declared or
suppressed by the Ada Generator.

The default setting is Procedure.

Set Name

The Set Name property specifies the name the Ada Generator outputs for the set
accessor of an association role. The string can include the variable ${target},
which expands to the name of the target of the component. If there is an association
class, this is the name of the association class. If there is not an association class, this is
the name of the supplier role.

The default setting is Set_${target}.

Inline Set

The Inline Set property specifies whether an inline pragma should be generated for
the Set operation.

The default setting is True.

Procedure The Set operation will be declared.

Do Not Create No Set operation will be declared.
122 Chapter 6 - Code Generation Properties

Initial Value

The Initial Value property attaches an initial value to a field declaration.

Container Implementation (Ada 95)

The Container Implementation property controls the implementation scheme for a
container type by the Ada Generator.

The default setting is Array.

Container Generic

The Container Generic property provides some control over the generic package
instantiated to handle one-to-many association roles. For example, if Container
Generic is set to List, then the package List_Generic will be instantiated (if the
maximum allowed cardinality of the “has” relationship is larger than 1). If Container
Generic is changed to Queue, the package Queue_Generic will be instantiated.

The default setting is List.

Container Type

The Container Type property specifies a data type for the record field generated for an
association role. The Container Type property can be set to refer to an existing
container class, and the Ada Generator will use that container class instead of
generating its own container class.

Container Declarations

The Container Declarations property lets you create any declarations, such as array
type declarations or generic instantiations, to support the Container Type property.

Association Properties

The association properties are described on the following pages:

■ Name If Unlabeled on page 124
■ Generate Get (Ada 95) on page 124
■ Get Name on page 124

Array Create an unconstrained array type and access to that array type.

Generic Use the generic unit given by the property Container Generic Name.
Association Properties 123

■ Inline Get on page 125
■ Generate Set (Ada 95) on page 125
■ Set Name on page 125
■ Inline Set on page 125
■ Generate Associate on page 125
■ Associate Name on page 126
■ Inline Associate on page 126
■ Generate Dissociate on page 126
■ Dissociate Name on page 126
■ Inline Dissociate on page 126

Name If Unlabeled

The Name If Unlabeled property specifies the name to be used for an unlabeled
association. The Ada Generator uses the name of the association to construct names
for the corresponding component and get and set operations. If the association is not
named, the Ada Generator uses this property to determine the name of the
association.

When the Ada Generator needs the name of the association to generate a name for a
component or a get or set operations, ${targetClass} expands to the name of the
association class or the association if there is one. Otherwise it expands to the name of
the supplier class.

The default setting is The_${targetClass}.

Generate Get (Ada 95)

The Generate Get property determines whether the function is declared or suppressed
by the Ada Generator.

The default setting is Function.

Get Name

The Get Name property specifies the name the Ada Generator outputs for the get
accessor of an association class. The string can include the variable
${association}, which expands to the name of the association. If the association is
unnamed, then the name of the association class is used.

The default setting is Get_${association}.

Function The Get operation will be declared as a function.

Do Not Create No Get operation will be declared.
124 Chapter 6 - Code Generation Properties

Inline Get

The Inline Get property specifies whether an inline pragma should be generated for
the Get operation.

The default setting is False.

Generate Set (Ada 95)

The Generate Set property determines whether the procedure is declared or
suppressed by the Ada Generator.

The default setting is Procedure.

Set Name

The Set Name property specifies the name the Ada Generator outputs for the Set
accessor of an association class. The string can include the variable
${association}, which expands to the name of the association. If the association is
unnamed, then the name of the association class is used.

The default setting is Set_${association}.

Inline Set

The Inline Set property specifies whether an inline pragma should be generated for
the Set operation.

The default setting is False.

Generate Associate

The Generate Association property determines whether the procedure is declared or
suppressed by the Ada Generator.

The default setting is Procedure.

Procedure The Set operation will be declared.

Do Not Create No Set operation will be declared.

Procedure The Associate operation will be declared.

Do Not Create No Associate operation will be declared.
Association Properties 125

Associate Name

The Associate Name property specifies the name the Ada Generator outputs for the
Associate operation of an association.

The default setting is Associate.

Inline Associate

The Inline Associate property specifies whether an inline pragma should be generated
for the Associate operation.

The default setting is False.

Generate Dissociate

The Generate Dissociate property determines whether the procedure is declared or
suppressed by the Ada Generator.

The default setting is Procedure.

Dissociate Name

The Dissociate Name property specifies the name the Ada Generator outputs for the
Dissociate operation of an association.

The default setting is Dissociate.

Inline Dissociate

The Inline Dissociate property specifies whether an inline pragma should be
generated for the Dissociate operation.

The default setting is False.

UML Package Properties

Directory

The Directory property specifies the UML package. This property defaults to AUTO
GENERATE.

Procedure The Dissociate operation will be declared.

Do Not Create No Dissociate operation will be declared.
126 Chapter 6 - Code Generation Properties

Module Spec Properties

The model spec properties are described on the following pages:

■ Generate on page 127
■ Copyright Notice on page 127
■ Return Type on page 127
■ Generic Formal Parameters on page 128
■ Additional Withs on page 128

Generate

The Generate property specifies whether or not the Ada Generator will generate a
code file for the module spec.

This property allows you to prevent code from ever being generated for a module,
such as modules in third party libraries, even if it is selected when the Ada Generator
is invoked.

The default value is True.

Copyright Notice

The Copyright Notice property contains text that is placed in a comment block at the
beginning of the Ada specification file created by the Ada Generator for the module
spec. This property can be used to include copyright notices or project identification
information at the beginning of a module. The text in the Copyright Notice property is
preceded by comment delimiters (“--”), so they do not need to be included in the text
of the property itself.

Return Type

The Return Type property specifies the subtype indication for the return value of a
subprogram module. For example, if the Return Type property is set to Calendar.Time
for a subprogram specification module named Current_Time, the Ada Generator will
output:

function Current_Time return Calendar.Time;

If Return Type is set to blank, the Ada Generator will output:

procedure Current_Time;

The Return Type property is ignored when the module spec is not a subprogram
specification.
Module Spec Properties 127

Generic Formal Parameters

The Generic Formal Parameters property is used to specify the generic formal part of
a generic module spec. For example, if the Generic Formal Parameters property is set
to type Item is private for a generic package specification module named
Stack, the Ada Generator will output:

generic

type Item is private;

package Stack is

...

end Stack;

If Size : in Positive is added to Generic Formal Parameters, the Ada
Generator will output:

generic

type Item is private;

Size : in Positive;

package Stack is

...

end Stack;

The Generic Formal Parameters property is ignored when the module spec is not a
generic. Additional generic formal parameters may be added to the generic formal
part if a generic class is assigned to the module, because the generic formal
parameters of the generic class will be merged with those of the module.

Additional Withs

The Additional Withs property specifies additional with clauses to be included in the
context clause of the module spec. For example, if the Additional Withs property is set
to Text_Io for a subprogram specification module named Quadratic_Equation,
the Ada Generator will output:

-- Additional Withs:
with Text_Io;
procedure Quadratic_Equation;

If Real_Operations is added to Additional Withs, the Ada Generator will output:

-- Additional Withs:
with Text_Io;
with Real_Operations;
procedure Quadratic_Equation;

Only the simple names of the library units should be listed in the Additional Withs
property, with one library unit per line.
128 Chapter 6 - Code Generation Properties

Module Body Properties

The module body properties are described on the following pages:

■ Is Subunit on page 129
■ Is Private (Ada 95) on page 129
■ Generate on page 129
■ Copyright Notice on page 129
■ Return Type on page 130
■ Additional Withs on page 130

Is Subunit

The Is Subunit property specifies whether the component is a subunit. For a
component to be considered a subunit, the component name must be an expanded
name, composed of the parent unit name and the name of the subunit. A dependency
must be established between the subprogram body component and the package body
component. The subunit name must correspond to a subprogram within an associated
class of the parent component, where the property Subprogram Implementation is set
to "Separate".

The default setting is False.

Is Private (Ada 95)

The Is Private property controls whether the package is private or not.

The default setting is False.

Generate

The Generate property specifies whether or not the Ada Generator will generate a
code file for the module body.

This property allows you to prevent code from ever being generated for a module,
such as modules in third party libraries, even if it is selected when the Ada Generator
is invoked.

The default value is True.

Copyright Notice

The Copyright Notice property contains text that is placed in a comment block at the
beginning of the Ada body file created by the Ada Generator for the module body.
This property can be used to include copyright notices or project identification
Module Body Properties 129

information at the beginning of a module. The text in the Copyright Notice property is
preceded by comment delimiters (“--”), so they do not need to be included in the text
of the property itself.

Return Type

The Return Type property specifies the subtype indication for the return value of a
subprogram module. For example, if the Return Type property is set to
Calendar.Time for a subprogram body module named Current_Time, the Ada
Generator will output:

function Current_Time
return Calendar.Time is ...

If Return Type is set to blank, the Ada Generator will output:

procedure Current_Time is ...

The Return Type property is ignored when the module body is not a subprogram
body.

Additional Withs

The Additional Withs property specifies additional with clauses to be included in the
context clause of the module body. For example, if the Additional Withs property is
set to Text_Io for a subprogram body module named Quadratic_Equation, the Ada
Generator will output:

-- Additional Withs:
with Text_Io;
procedure Quadratic_Equation is …

If Real_Operations is added to Additional Withs, the Ada Generator will output:

-- Additional Withs:
with Text_Io;
with Real_Operations;
procedure Quadratic_Equation is …

Only the simple names of the library units should be listed in the Additional Withs
property, with one library unit per line.
130 Chapter 6 - Code Generation Properties

Index
A
abstract classes 65
access

has relationship (Ada 83) 85
provide to components (Ada 83) 77

Access Array Of Access Type Name (Ada 95)
code generation class properties 100

Access Array Of Type Name (Ada 95)
code generation class properties 100

Access Class Wide
code generation class properties 93

Access Type Definition (Ada 95)
code generation class properties 99

Access Type Name (Ada 95)
code generation class properties 98

Access Type Visibility (Ada 95)
code generation class properties 99

accessors 52
example for has relationship 30
never overridden 55
not generated for the task implementation 15
Set not generated for an association 36
See also association classes, associations,

attributes, has relationships, opera-
tions

Ada constructs
abstract subprogram 54, 59
abstract type 9, 59
access discriminant 15, 16, 20, 26
access parameter 52, 53
access type 27
access-to-class-wide type 28
actual parameters of an instantiation 21
barrier 16
child of a generic unit 19, 22
class-wide subprogram 24
constant 24
constrained type 18
context clause 44

controlled type 56
discriminant 15, 16, 20, 26
discriminant constraint 22
entry 14, 16
enumeration type 9
general access type 28
generic formal package 19, 22
generic formal part 18
generic instantiation 18, 21
generic package instantiation 45
generic unit 18, 23
limited type 8, 26
non-private type 8
overriding subprogram declaration 55
package 23
package body 24
package private part 16, 24, 44, 55
package visible part 14, 16, 24, 44, 55
pragma Import 54
pragma Inline 36, 54
pragma Interface 54
private extension 44
private type 8
private type with discriminants 26
protected function 16
protected procedure 16
protected type 16
record component 25
renaming-as-body 54
subprogram body 54, 56
subprogram body stub 54
subtype 22
tagged type 9
task type 14
type derivation 44
unconstrained type 18
unknown discriminant part 27
variable 24
variant record 9
131

with clause 44
Ada type used for By Reference class instances

(Ada 83) 97
Ada.Finalization.Controlled

See Ada constructs (controlled type)
Ada.Finalization.Limited_Controlled

See Ada constructs (controlled type)
Add Classes command (Ada 83) 85
Additional Withs

code generation module body properties 130
code generation module spec properties 128

Apex Model
code generation module spec properties 127

Array Index Definition (Ada 95)
code generation class properties 101

Array Of Access Type (Ada 95)
code generation class properties 100

Array Of Type Name (Ada 95)
code generation class properties 100

As Booch command 63
assignment

user-defined 56
See also equality operator, finalization, initial-

ization
Associate

See association classes, associations
Associate Name

code generation association properties 126
association classes 39, 64

data structures 40
integrity of 39
subprograms

accessors 41
Associate 41
Dissociate 41
for many-to-many associations 43
for one-to-many associations 42
for one-to-one associations 42

See also associations, roles
association properties

see code generation association properties
Association Relationships 64
association role properties

see code generation association role properties
associations 31, 32

data structures
for many-to-many associations 35
for one-to-many associations 34
for one-to-one associations 33

integrity of 36
subprograms

Associate 36
Dissociate 36
for many-to-many associations 38
for one-to-many associations 37
for one-to-one associations 36

with finite multiplicity 38
See also association classes, roles

attribute properties
see code generation attribute properties

attributes 25
created by reverse engineering (Ada 95) 85
entering metaclass attributes 71
entering static attributes 71
of a metaclass 24, 25
static 25

B
basic operations

reverse engineering 81
bidirectional associations 64

data structures 33
subprograms generated for 36
See also associations, association classes

Body File Backup Extension
code generation model properties 88

Body File Extension
code generation model properties 88

Body File Temporary Extension
code generation model properties 88

Bound Classes 62
bound classes 21

and parameterized classes 18
entering parameters for 71
generic implementation 21
unconstrained type implementation 22
See also parameterized classes

bound utilities 23
entering parameters for 71
132 Index

See also parameterized utilities, utilities
bounded containers (Ada 83) 78
By Reference

determine name of type 97
by-reference

has relationships 27
roles 32

by-reference has relationship 63
by-value

has relationships 27
by-value has relationship 63

C
cardinality

of has relationships 28
of roles 32, 33
See also multiplicity

class
define as task type (Ada 83) 106
define as variant record (Ada 83) 114
definition 61

Class Access (Ada 83)
code generation class properties 94

Class Equality Name (Ada 83)
code generation class properties 105

class handles
equality function (Ada 83) 105

class handles (Ada 83) 105
Class Name (Ada 83)

code generation class properties 93
Class Operations 62
Class Parameter Mode (Ada 83)

code generation operation properties 108
Class Parameter Name (Ada 83)

code generation class properties 101
class properties

see code generation class properties
classes 8

abstract 9, 54
created by reverse engineering (Ada 83) 84
mixin implementation 13
protected implementation 16
record implementation 9

multiple types 12
single type 10

tagged implementation 9
task implementation 14
See also bound classes, bound utilities, meta-

classes, parameterized classes, param-
eterized utilities, utilities

class-like type
reverse engineering (Ada 83) 84

code generation association properties
Associate Name 126
Dissociate Name 126
Generate Associate 125
Generate Dissociate 126
Generate Get (Ada 95) 124
Generate Set (Ada 95) 125
Get Name 124
Inline Associate 126
Inline Dissociate 126
Inline Get 125
Inline Set 125
Name If Unlabeled 124
Set Name 125

code generation association role properties
Code Name 120
Container Declarations 123
Container Generic 123
Container Implementation (Ada 95) 123
Container Type 123
Data Member Name (Ada 95) 121
Generate Access Get (Ada 95) 121
Generate Get (Ada 95) 121
Generate Set (Ada 95) 122
Get Name 122
Initial Value 123
Inline Get 122
Inline Set 122
Is Aliased 120
Is Constant 120
Name If Unlabeled 120
Record Field Implementation 120
Record Field Name (Ada 95) 121
Set Name 122

code generation attribute properties
Code Name 117
Index 133

Data Member Name (Ada 83) 117
Generate Access Get (Ada 95) 118
Generate Access Set (Ada 95) 119
Generate Get (Ada 95) 117
Generate Set (Ada 95) 118
Get Name 118
Initial Value 116
Inline Set 119
InlineGet 118
Is Aliased 117
Is Constant 116
Record Field Implementation (Ada 95) 117
Record Field Name (Ada 95) 117
Representation 116
Set Name 119

code generation class properties 96
Access Array Of Access Type Name (Ada

95) 100
Access Array Of Type Name (Ada 95) 100
Access Class Wide 93
Access Type Definition (Ada 95) 99
Access Type Name (Ada 95) 98
Access Type Visibility (Ada 95) 99
Array Index Definition (Ada 95) 101
Array Of Access Type Name (Ada 95) 100
Array Of Type Name (Ada 95) 100
Class Access (Ada 83) 94
Class Equality Name (Ada 83) 105
Class Name (Ada83) 93
Class Parameter Name (Ada 83) 101
Code Name 93
Copy Constructor Kind (Ada 83) 103
Copy Constructor Name (Ada 95) 103
Default Constructor Kind (Ada 83) 102
Destructor Name 104
Enumeration Literal Prefix 100
Generate Access Type (Ada 95) 98
Generate Accessor Operations 93
Generate Copy Constructor (Ada 95) 103
Generate Default Constructor (Ada 95) 102
Generate Destructor (Ada 95) 104
Generate Standard Operations 101
Generate Type Equality (Ada 95) 105
Implementation Type (Ada 83) 95
Implicit Parameter 101

Implicit Parameter Name (Ada 95) 101
Inline Copy Constructor 104
Inline Default Constructor 103
Inline Destructor 105
InlineEquality 106
Is Limited (Ada 95) 96
Is Subtype 96
Maybe Aliased (Ada 95) 99
Parameterized Implementation (Ada 95) 99
Parent Class Name (Ada 95) 100
Record Field Prefix 100
Record Implementation (Ada 95) 96
Record Kind Package Name (Ada 95) 96
Representation 92
Type Control (Ada 95) 95
Type Control Name (Ada 95) 95
Type Definition (Ada 95) 95
Type Equality Name (Ada 95) 105
Type Implementation (Ada 95) 94
Type Name (Ada 95) 93
Type Visibility (Ada 95) 94

code generation has properties
CodeName 110
Container Declarations 115
Container Generic 115
Container Implementation (Ada 95) 115
Container Type 115
Data Member Name (Ada 83) 111
Generate Access Get (Ada 95) 112
Generate Access Set (Ada 95) 113
Generate Get (Ada 95) 111
Generate Set (Ada 95) 112
Get Name 112
Initial Value 113
Inline Get 112
InlineSet 113
Is Aliased 110
Is Constant 110
Name If Unlabeled 110
Record Field Implementation (Ada 95) 111
Record Field Name (Ada 95) 111
Set Name 113

code generation model properties
Body File Backup Extension 88
Body File Extension 88
134 Index

Body File Temporary Extension 88
Create Missing Directories 89
Directory 91
Error Limit 90
File Name Format 90
Generate Bodies 89
Generate Standard Operations 89
Implicit Parameter 90
Spec File Backup Extension 88
Spec File Extension 88
Spec File Temporary Extension 88
Stop On Error 90

code generation module body properties
Additional Withs 130
Copyright Notice 129
Generate 129
Is Private 129
Is Subunit 129
Return Type 130

code generation module spec properties
Additional Withs 128
Apex Model 127
Copyright Notice 127
Generate 127
Generic Formal Parameters 128
Return Type 127

code generation operation properties
Class Parameter Mode (Ada 83) 108
Code Name 107
Entry Barrier Condition 109
Entry Barrier Condition (Ada 95) 109
Entry Code 109
Exit Code 109
Generate Access Operation (Ada 95) 109
Generate Accessor Operations 107
Generate Overriding (Ada 95) 108
Implicit Parameter Class Wide 106
Implicit Parameter Mode (Ada 95) 108
Renames (Ada 95) 108
Representation 107
Subprogram Implementation 108
Use Colon Notation 107
Use File Name 107

code generation properties
AccessArrayOfAccessTypeName 29

AccessArrayOfTypeName 29
AccessTypeDefinition 28, 32
AccessTypeName 28, 32
AccessTypeVisibility 28, 32
AdditionalWiths 79
ApexSubsystem 75
ArrayIndexDefinition 29
ArrayOfAccessTypeName 29
ArrayOfTypeName 29
AssociateName 36
ContainerDeclarations 32
ContainerGeneric 29, 32
ContainerImplementation 29, 32
ContainerType 29, 32
CopyConstructorName 53
DefaultConstructorName 53
DestructorName 53
DissociateName 36
EntryBarrierCondition 16
EntryCode 56
EnumerationLiteralPrefix 11, 13
ExitCode 56
GenerateAccessGet 53
GenerateAccessOperation 52
GenerateAccessSet 53
GenerateAccessType 28
GenerateAssociate 36
GenerateCopyConstructor 53
GenerateDefaultConstructor 53
GenerateDestructor 53
GenerateDissociate 36
GenerateGet 32, 36, 41, 52, 59
GenerateOverriding 55
GenerateSet 32, 41, 52, 59
GenerateTypeEquality 53
GetName 32, 36, 41
ImplicitParameter 52
ImplicitParameterMode 52
ImplicitParameterName 14, 16, 52
Inline 54
InlineAssociate 36
InlineCopyConstructor 54
InlineDefaultConstructor 54
InlineDestructor 54
InlineDissociate 36
Index 135

InlineEquality 54
InlineGet 32, 36, 41
InlineSet 32, 41
IsLimited 8, 48
IsSubtype 10, 22
MaybeAliased 28, 32
NameIfUnlabeled 32
ParameterizedImplementation 18, 21
ParentClassName 20
RecordFieldImplementation 15, 16, 26
RecordFieldName 25, 32
RecordFieldPrefix 13
RecordImplementation 9
RecordKindPackageName 13
Renames 54
SetName 32, 41
SubprogramImplementation 54
TypeControl 56
TypeDefinition 8
TypeEqualityName 53
TypeImplementation 8, 18, 45, 47, 56
TypeName 5
TypeVisibility 8, 44

code generation UML package properties
Directory 126

Code Name
code generation association role

properties 120
code generation attribute properties 117
code generation class properties 93
code generation has properties 110
code generation operation properties 107

code regions
See protected regions

colon notation 4
used in associations 32
See also naming

component type
complex (Ada 83) 78
simple (Ada 83) 78

component type (Ada 83) 78
consistency

of code generation properties 7
See also dominance

constructor 53

See also copy constructor, destructor, equality
operator

Container Declarations
code generation has properties 115
codegeneration association role

properties 123
Container Generic

code generation association role
properties 123

code generation has properties 115
Container Implementation (Ada 95)

code generation association role
properties 123

code generation has properties 115
Container Type

code generation association role
properties 123

code generation has properties 115
container type

for has relationships 29
for roles 32

copy constructor 53
See also constructor, destructor, equality oper-

ator
copy constructor (Ada 83) 77
Copy Constructor Kind (Ada 83)

code generation class properties 103
Copy Constructor Name (Ada 95)

code generation class properties 103
Copyright Notice

code generation module body properties 129
code generation module spec properties 127

Create Missing Directories
code generation model properties 89

D
Data Member Name (Ada 83)

code generation attribute properties 117
code generation has properties 111

Data Member Name (Ada 95)
code generation association role

properties 121
decl
136 Index

associate type with enclosing package (Ada
83) 85

declaration
type mapping (Ada 83) 85
type mapping (Ada 95) 84

default constructor (Ada 83) 77
Default Constructor Kind(Ada 83)

code generation class properties 102
define

class as task type (ADa 83) 106
class as variant record (Ada 83) 114

definitions
refine class (Ada 83) 76

Dependency Relationships 63
dependency relationships 44

created by reverse engineering 86
representing “pseudo-inheritance” for bound

classes 22
destructor 53

See also constructor, copy constructor, equality
operator

destructor (Ada 83) 77
Destructor Name

code generation class properties 104
dialog box

reverse engineering 82
Directory

code generation model properties 91
code generation UML package

properties 126
display

implementation types (Ada 83) 85
Dissociate

See association classes, associations
Dissociate Name

code generation association properties 126
dominance

definition of 7
AccessTypeDefinition dominates 28
CopyConstructorName dominated 59
DefaultConstructorName dominated 59
DestructorName dominated 59
GenerateCopyConstructor dominated 59
GenerateDefaultConstructor dominated 59
GenerateDestructor dominated 59

GenerateGet dominated 15
GenerateSet dominated 15, 53
GenerateTypeEquality dominated 59
ImplicitParameter dominated 14, 16
IsLimited dominated 9, 20, 26
ParameterizedImplementation

dominated 18
RecordFieldImplementation dominated 26
SubprogramImplementation dominated 14
TypeEqualityName dominated 59
TypeVisibility dominated 11

E
Entry Barrier Condition

code generation operation properties 109
Entry Barrier Condition (Ada 95)

code generation operation properties 109
Entry Code

code generation operation properties 109
Enumeration Literal Prefix

code generation class properties 100
equality function 105

class handles (Ada 83) 105
equality operation (Ada 83) 77
equality operator 53

user-defined 56
See also assignment, constructor, copy con-

structor, destructor, finalization, ini-
tialization

Error Limit
code generation model properties 90

errors
due to abstract subprogram in a non-abstract

class 54
due to access discriminant for by-value

relationship 29
due to ambiguities in name resolution 6
due to association involving non-tagged,

non-record classes 31
due to by-value role in a bidirectional

association 33
due to controlled type involved in multiple

inheritance relationship 56
Index 137

due to has relationship targeting a mixin 29
due to inconsistency in visibility or defaults of

attributes 26
due to inconsistent module for a parameter-

ized class 18
due to inheritance inconsistency for

mixins 47
due to keys with the same name but different

types 33
due to protected implementation and general-

ization relationships 18
due to task implementation and generaliza-

tion relationships 16
due to violating restrictions on multiple views

inheritance 48
See also warnings

Exit Code
code generation operation properties 109

F
File Name Format

code generation model properties 90
finalization

user-defined 56
See also assignment, equality operator, initial-

ization
free text 5

See also naming
friendship 65

G
generalization hierarchy

access discriminants and 26
parameters inherited from 22
represented by a single record type 10
represented by multiple record types 12
See also generalization relationships

generalization relationships 44
not supported for the protected

implementation 18
not supported for the task

implementation 16

visibility 50
See also generalization hierarchy

Generalization Relationships (Inheritance) 63
Generate

code generation module body properties 129
code generation module spec properties 127

Generate Access Get (Ada 95)
code generation association role

properties 121
code generation attribute properties 118
code generation has properties 112

Generate Access Operation (Ada 95)
code generation operation properties 109

Generate Access Set (Ada 95)
code generation attribute properties 119
code generation has properties 113

Generate Access Type (Ada 95)
code generation class properties 98

Generate Accessor Operations
code generation class properties 93
code generation operation properties 107

Generate Associate
code generation association properties 125

Generate Bodies
code generation model properties 89

Generate Copy Constructor (Ada 95)
code generation class properties 103

Generate Default Constructor (Ada 95)
code generation class properties 102

Generate Destructor (Ada 95)
code generation class properties 104

Generate Dissociate
code generation association properties 126

Generate Get (Ada 95)
code generation association properties 124
code generation association role

properties 121
code generation attribute 117
code generation has properties 111

Generate Overriding (Ada 95)
code generation operation properties 108

Generate Set (Ada 95)
code generation association properties 125
code generation association role

properties 122
138 Index

code generation attribute properties 118
code generation has properties 112

Generate Standard Operations
code generation class properties 101
codegeneration model properties 89

Generate Type Equality (Ada 95)
code generation class properties 105

Generic Formal Parameters
code generation module spec properties 128

generic instantiation
bound class 62

generic package
parameterized class 62

Get
See accessors

Get Name
code generation association properties 124
code generation association role

properties 122
code generation attribute properties 118
code generation has properties 112

get operations (Ada 83) 77

H
Handle Access (Ada 83) property 97
Handle Equality Operation (Ada 83)

property 105
Handle Name (Ada 83) property 97
Handle Name property (Ada 83) 85
has properties

seecode generation has properties
has relationship

constant declaration (Ada 83) 113
details (Ada 83) 85
multiplicity and access (Ada 83) 85

has Relationships 63
has relationships 27

by-reference 27
by-value 27
created by reverse engineering (Ada 95) 85
of a metaclass 24, 27
static 27

I
Implementation Type (Ada 83)

code generation class properties 95
Implementation Type property (Ada 83) 85
implementation types (Ada 83) 85
Implicit Parameter

code generation class properties 101
code generation model properties 90

Implicit Parameter Class Wide
code generation operation properties 106

Implicit Parameter Mode (Ada 95)
code generation operation properties 108

Implicit Parameter Name (Ada 95)
code generation class properties 101

inheritance 63
inherited operations (Ada 83) 78
Initial Value

code generation association role
properties 123

code generation attribute properties 116
code generation has properties 113

initialization
user-defined 56
See also assignment, equality operator, final-

ization
Inline Associate

code generation association properties 126
Inline Copy Constructor

code generation class 104
Inline Default Constructor

code generation class properties 103
Inline Destructor

code generation class properties 105
Inline Dissociate

code generation association properties 126
Inline Equality

code generation class properties 106
Inline Get

code generation association properties 125
code generation association role

properties 122
code generation attribute properties 118
code generation has properties 112

inline pragma 109
Index 139

Inline property 109
Inline Set

code generation association properties 125
code generation association role

properties 122
code generation attribute properties 119
code generation has properties 113

Is Aliased
code generation association role

properties 120
code generation attribute properties 117
code generation has properties 110

Is Constant
code generation association role

properties 120
code generation attribute properties 116
code generation has properties 110

Is Constant (Ada 83) property 113
Is Limited (Ada 95)

code generation class properties 96
Is Private

code generation module body properties 129
Is Subtype

code generation class properties 96
Is Subunit

code generation module body properties 129
Is Task (Ada 83) property 106

K
keys 33

M
map

package specifications (Ada 83) 84
package specifications (Ada 95) 84
type declarations (Ada 83) 85
type declarations (Ada 95) 84

Mapping Classes 61
Mapping Relationships 62
Maybe Aliased (Ada 95)

code generation class properties 99
metaclasses 24, 65

entering attributes 71
model properties

see code generation model properties
module

associated with a bound class 21
associated with a parameterized class 18
associated with a utility 23
created by reverse engineering (Ada 95) 84
mapping to modules in an association 32
must not be associated with a metaclass 24

module body properties
see code generation module body properties

module spec properties
see code generation module spec properties

multiple inheritance 44, 65
mixin inheritance 14, 45
multiple views inheritance 47

multiplicity
has relationship (Ada 83) 85
of has relationships 27
of roles 32, 33
See also cardinality

N
Name If Unlabeled

code generation association properties 124
code generation association role

properties 120
code generation has properties 110

naming
Ada declarations 4
legality of names 4
package name 5
resolution of names in free text 5
type name 5
UML entities 4

navigable roles 31
non-navigable roles 31

O
object

declarations (Ada 83) 78
140 Index

definition 61
object oriented development 61
OOD 61
operation properties

see code generation operation properties
operations 52

created by reverse engineering (Ada 95) 85
implicit parameter 14, 16
overriding 55
standard 53
See also accessors

P
package

Ada acceptation 4
differences in UML and Ada 61
UML acceptation 4

package specifications
mapping (Ada 83) 84
mapping (Ada 95) 84

Parameterized Classes 62
parameterized classes 18

entering parameters for 70
generic implementation 18
unconstrained type implementation 20
See also bound classes

Parameterized Implementation (Ada 95)
code generation class properties 99

parameterized utilities 23
entering parameters for 70
See also bound utilities, utilities

Parent Class Name (Ada 95)
code generation class properties 100

polymorphic class 96
Polymorphic Unit (Ada 83) property 96
Polymorphism with Ada 64
protected regions 67, 73

Q
Query

Add Classes (Ada 83) 85

R
Record Field Implementation

code generation association role
properties 120

Record Field Implementation (Ada 95)
code generation attribute properties 117
code generation has properties 111

Record Field Name (Ada 95)
code generation association role

properties 121
code generation attribute properties 117
code generation has properties 111

Record Field Prefix
code generation class properties 100

record fields (Ada 83) 78
Record Implementation (Ada 95)

code generation class properties 96
Record Kind Package Name (Ada 95) 96
refine

class definitions class (Ada 83)
refine definitions (Ada 83) 76

Renames (Ada 95)
code generation operation properties 108

Representation
code generation attribute properties 116
code generation class properties 92
code generation operation properties 107

Return Type
code generation module body properties 130
code generation module spec properties 127

reverse engineering
attributes (Ada 95) 85
classes (Ada 83) 84
dependency rrelationships 86
dialog box 82
has relationships (Ada 95) 85
mapping object declarations 86
mapping with clauses 86
module (Ada 95) 84
operations (Ada 95) 85
special handling for the $APEX_BASE

directory 86
static attribute 86
using 81
Index 141

utilities (Ada 95) 84
roles 31

accessors 36
by-reference 32
of a metaclass 24

S
Set

See accessors
Set Name

code generation association properties 125
code generation association role

properties 122
code generation attribute properties 119
code generation has properties 113

set operations (Ada 83) 77
single variant for discriminated record 97
Spec File Backup Extension

code generation model properties 88
Spec File Extension

code generation model properties 88
Spec File Temporary Extension

code generation model properties 88
specifications

package mapping (Ada 83) 84
package mapping (Ada 95) 84

specify
discriminant of Ada type (Ada 83) 97

Standard Classes 61
standard operations 53

class 62
standard operations (Ada 83) 77
static

attributes 25
entering 71

has relationships 27
Stop On Error

code generation model properties 90
Subprogram Implementation 108
System.Assertion_Error

raised by Associate 38, 43

T
Type Control (Ada 95)

code generation class properties 95
Type Control Name (Ada 95)

code generation class properties 95
type declaration

mapping (Ada 83) 85
mapping (Ada 95) 84

type declarations
mapping (Ada 83) 84

Type Definition (Ada 95)
clde generation class properties 95

Type Equality Name (Ada 95)
code generation class properties 105

Type Implementation (Ada 95)
code generation class properties 94

Type Name (Ada 95)
code generation class properties 93

Type Visibility (Ada 95)
code generation class properties 94

U
UML notation

mapping to Ada 61
UML package properties

see code generation UML package properties
unbounded containers (Ada 83) 78
unidirectional associations 64

code generated for 32
definition 32
See also associations, association classes

unmapped elements 65
Use Colon Notation

code generation operation properties 107
Use File Name

code generation operation properties 107
user-defined operations (Ada 83) 77
Utilities 62
utilities 23

created by reverse engineering (ada 95) 84
See also bound utilities, parameterized utilities
142 Index

V
Variant (Ada 83) property 97, 114
variant record (Ada 83) 114
view

As Booch 63

W
warnings

due to a unidirectional association 32
due to dominated code generation

properties 8
See also errors

with clauses
reverse engineering 86
Index 143

	Using Rational Rose Ada for Forward and Reverse Engineering
	Preface
	Audience
	Other Resources
	Contacting Rational Technical Publications
	Contacting Rational Technical Support
	Introducing Rational Rose Ada
	Contents
	What is Code Generation?
	Using Code Generation

	What is Reverse Engineering?
	Using Reverse Engineering

	Mapping the UML Notation to Ada 95 — Code Generation
	Contents
	Introduction
	Name Space
	Name Resolution
	Code Generation Properties and Consistency
	Classes
	Tagged Implementation
	Record Implementation
	SingleType Record Implementation
	MultipleTypes Record Implementation

	Mixin Implementation
	Task Implementation
	Protected Implementation

	Parameterized Classes
	Generic Implementation
	Unconstrained Type Implementation

	Bound Classes
	Generic Implementation
	Unconstrained Type Implementation

	Utilities
	Metaclasses
	Attributes
	Has Relationships
	Associations
	Simple Associations
	Data Structures
	Subprograms

	Association Classes
	Data Structures
	Subprograms

	Dependency Relationships
	Generalization Relationships (Inheritance)
	Mixin Inheritance
	Multiple Views Inheritance

	Operations
	Accessor Operations
	Standard Operations
	Subprogram Implementation
	Visibility
	Overriding
	Bodies

	User-Defined Initialization, Assignment and Finalization
	OOD and Ada 83
	Contents
	Mapping Classes
	Standard Classes
	Class Operations

	Utilities
	Parameterized Classes
	Bound Classes

	Mapping Relationships
	Dependency Relationships
	Has Relationships
	Generalization Relationships (Inheritance)
	Association Relationships

	Achieving Polymorphism with Ada
	Unmapped Elements for Ada
	Ada Code Generation
	Contents
	What is the Ada Generator?
	Basic Steps for Iterative Code Development
	Overview
	The Generated Files
	The Basic Code Contents
	Entering Parameters for Parameterized Classes
	Entering Static Attributes and Metaclass Attributes
	Evaluating the Generated Code
	Completing the Implementation of the Generated Code
	Regenerating Code

	Refining the Subsystem and View Structure
	Determining the Directory for an Ada File
	Mapping Classes and Modules to Ada Units
	Specifying Filenames

	Refining Class Definitions (Ada 83)
	Standard Operations
	User-Defined Operations
	Get and Set Operations
	Inherited Operations
	Record Fields and Object Declarations

	Specifying Additional Ada Unit Contents
	Adding Structured Comments
	Adding With Clauses
	Adding Global Declarations

	Reverse Engineering from Apex
	Contents
	Basic Operations
	Creating the Model File
	Displaying the Model

	Dialog Box Options
	Include Closure of Views/Units
	Exclude Views/Units with Prefix
	Include Views/Units with Prefix
	Include only Views/Units Selected
	Petal File Name
	Include Classes
	Include Modules

	How Ada Is Represented in a Class Diagram
	Mapping Package Specifications (Ada 95)
	Mapping Package Specifications (Ada 83)
	Mapping Type Declarations (Ada 95)
	Mapping Type Declarations (Ada 83)
	Details of a Has Relationship (Ada 83)
	Mapping Subprogram Declarations
	Mapping Object Declarations
	Mapping “With” Clauses
	Special Handling for Subsystems in the $APEX_BASE Directory

	Code Generation Properties
	Model Properties
	Spec File Extension
	Spec File Backup Extension
	Spec File Temporary Extension
	Body File Extension
	Body File Backup Extension
	Body File Temporary Extension
	Create Missing Directories
	Generate Bodies
	Generate Standard Operations
	Implicit Parameter
	Stop On Error
	Error Limit
	File Name Format
	Directory

	Class Properties
	Representation
	Generate Accessor Operations
	Access Class Wide (Ada 95)
	Code Name
	Type Name (Ada 95) / Class Name (Ada 83)
	Type Visibility (Ada 95) / Class Access (Ada 83)
	Type Implementation (Ada 95)
	Type Control (Ada 95)
	Type Control Name (Ada 95)
	Type Definition (Ada 95) / Implementation Type (Ada 83)
	Record Implementation (Ada 95)
	Record Kind Package Name (Ada 95)
	Is Limited (Ada 95)
	Is Subtype
	Polymorphic Unit (Ada 83)
	Handle Name (Ada 83)
	Handle Access (Ada 83)
	Discriminant (Ada 83)
	Variant (Ada 83)
	Generate Access Type (Ada 95)
	Access Type Name (Ada 95)
	Access Type Visibility (Ada 95)
	Access Type Definition (Ada 95)
	Maybe Aliased (Ada 95)
	Parameterized Implementation (Ada 95)
	Parent Class Name (Ada 95)
	Enumeration Literal Prefix
	Record Field Prefix
	Array Of Type Name (Ada 95)
	Access Array Of Type Name (Ada 95)
	Array Of Access Type Name (Ada 95)
	Access Array Of Access Type Name (Ada 95)
	Array Index Definition (Ada 95)
	Generate Standard Operations
	Implicit Parameter
	Implicit Parameter Name (Ada 95) / Class Parameter Name (Ada 83)
	Generate Default Constructor (Ada 95)/Default Constructor Kind (Ada 83)
	Default Constructor Name
	Inline Default Constructor
	Generate Copy Constructor (Ada 95) / Copy Constructor Kind (Ada 83)
	Copy Constructor Name (Ada 95)
	Inline Copy Constructor
	Generate Destructor (Ada 95)
	Destructor Name
	Inline Destructor
	Generate Type Equality (Ada 95)
	Type Equality Name (Ada 95) / Class Equality Operation (Ada 83)
	Handle Equality Operation (Ada 83)
	Inline Equality
	Is Task (Ada 83)

	Operation Properties
	Implicit Parameter Class Wide (Ada 95)
	Representation
	Use Colon Notation
	Generate Accessor Operations
	Use File Name
	Code Name
	Subprogram Implementation
	Renames (Ada 95)
	Generate Overriding (Ada 95)
	Implicit Parameter Mode (Ada 95) / Class Parameter Mode (Ada 83)
	Generate Access Operation (Ada 95)
	Inline
	Entry Code
	Exit Code
	Entry Barrier Condition (Ada 95)

	Has Properties
	Is Constant
	Is Aliased (Ada 95)
	Code Name
	Name If Unlabeled
	Record Field Implementation (Ada 95)
	Record Field Name (Ada 95) / Data Member Name (Ada 83)
	Generate Get (Ada 95)
	Generate Access Get (Ada 95)
	Get Name
	Inline Get
	Generate Set (Ada 95)
	Generate Access Set (Ada 95)
	Set Name
	Inline Set
	Is Constant (Ada 83)
	Initial Value
	Variant (Ada 83)
	Container Implementation (Ada 95)
	Container Generic
	Container Type
	Container Declarations

	Attribute Properties
	Initial Value
	Representation
	Is Constant
	Is Aliased (Ada 95)
	Code Name
	Record Field Implementation (Ada 95)
	Record Field Name (Ada 95) / Data Member Name (Ada 83)
	Generate Get (Ada 95)
	Generate Access Get (Ada 95)
	Get Name
	Inline Get
	Generate Set (Ada 95)
	Generate Access Set (Ada 95)
	Set Name
	Inline Set

	Association Role Properties
	Record Field Implementation
	Is Constant
	Is Aliased (Ada 95)
	Code Name
	Name If Unlabeled
	Record Field Name (Ada 95) / Data Member Name (Ada 83)
	Generate Get (Ada 95)
	Generate Access Get (Ada 95)
	Get Name
	Inline Get
	Generate Set (Ada 95)
	Set Name
	Inline Set
	Initial Value
	Container Implementation (Ada 95)
	Container Generic
	Container Type
	Container Declarations

	Association Properties
	Name If Unlabeled
	Generate Get (Ada 95)
	Get Name
	Inline Get
	Generate Set (Ada 95)
	Set Name
	Inline Set
	Generate Associate
	Associate Name
	Inline Associate
	Generate Dissociate
	Dissociate Name
	Inline Dissociate

	UML Package Properties
	Directory

	Module Spec Properties
	Generate
	Copyright Notice
	Return Type
	Generic Formal Parameters
	Additional Withs

	Module Body Properties
	Is Subunit
	Is Private (Ada 95)
	Generate
	Copyright Notice
	Return Type
	Additional Withs

	Index

