
support@rational.com
http://www.rational.com

Rational the e-development company™

Getting Started with Rational Suite

VERSION: 2001.03.00

PART NUMBER: 800-024085-00

WINDOWS

IMPORTANT NOTICE

COPYRIGHT
Copyright ©1998-2000, Rational Software Corporation. All rights reserved.

Part Number: 800-024085-000

Version Number: 2001.03.00

PERMITTED USAGE
THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF RATIONAL
SOFTWARE CORPORATION (“RATIONAL”) AND IS FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION
AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS PUBLICATION IS TO BE USED FOR
ANY OTHER PURPOSE, AND IS NOT TO BE REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO ANY HUMAN OR COMPUTER
LANGUAGE, IN ANY FORM, BY ANY MEANS, IN WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN
CONSENT OF RATIONAL.

TRADEMARKS
Rational, Rational Software Corporation, the Rational logo, Rational the e-development company, ClearCase, ClearCase
Attache, ClearCase MultiSite, ClearDDTS, ClearQuest, DDTS, Object Testing, Object-Oriented Recording, Objectory,
PerformanceStudio, PureCoverage, PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational Apex, Rational CRC,
Rational Rose, Rational Summit, Rational Visual Test, Requisite, RequisitePro, SiteCheck, SoDA, TestMate, and The
Rational Watch are trademarks or registered trademarks of Rational Software Corporation in the United States and in other
countries. All other names are used for identification purposes only, and are trademarks or registered trademarks of their
respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client, Active Desktop, Active Directory,
ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView, Computing Central, DataTips,
Developer Studio, Direct3D, DirectAnimation, DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound,
DirectX, DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the IntelliEye logo, IntelliMirror,
IntelliSense, J/Direct, JScript, LineShare, Liquid Motion, the Microsoft eMbedded Visual Tools logo, the Microsoft Internet
Explorer logo, the Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft QuickBasic,
MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One Thumb, OpenType, Outlook, PhotoDraw,
PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual Basic logo, Visual C++, Visual FoxPro,
Visual InterDev, Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32,
Win32s, Win64, Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start logo, and XENIX are
trademarks or registered trademarks of Microsoft Corporation in the United States and other countries.FLEXlm and
GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc. Licensee shall not incorporate any
GLOBEtrotter software (FLEXlm libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-2000, Summit Software Company. All rights reserved.

PATENT
U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable Rational Software
Corporation license agreement and as provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14, as applicable.

WARRANTY DISCLAIMER
This document and its associated software may be used as stated in the underlying license agreement. Rational Software
Corporation expressly disclaims all other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of merchantability or fitness for a particular purpose
or arising from a course of dealing, usage, or trade practice.

Contents
Preface. ix
Audience . ix

Other Resources. ix

Rational Suite Documentation Roadmap . x

Contacting Rational Technical Support . xi

1 Welcome to Rational Suite. .1
About this Book. 1

Principles of Software Development . 2

Rational Suite Can Help . 4

What’s in Rational Suite? . 4
Tools that Unify Your Team . 4

Rational Suite Team Unifying Platform. 4
Tools for Analysts . 5

Rational Suite AnalystStudio . 6
Tools for Developers . 6

Rational Suite DevelopmentStudio. 6
Rational Suite DevelopmentStudio – RealTime Edition 7

Tools for Test Engineers . 7
Rational Suite TestStudio . 8

Rational Suite Enterprise . 8

For More Information. 8

What’s Next . 9

2 Learning About the Rational Unified Process11
Audience . 11

What Is the Rational Unified Process? . 11
The Rational Unified Process and Rational Suite. 11

Learning the Mechanics . 12

The Process at a Glance . 12

Key Concepts . 13
Starting with Actors and Use Cases. 14

Tool Mentors: Implementing the Process Using Rational Tools 15

Extended Help . 15

Learning about Developing e-Business Solutions. 15
iii

Summary. 16
For More Information . 16
What You Learned in this Chapter . 16
What’s Next. 16

3 Managing Requirements . 17
Audience . 17

Why Worry About Requirements?. 17
Where Do Requirements Come From? . 17

Starting Requirements Work with Use Cases. 17
Why Work with Use Cases? . 18
Creating Use Case Diagrams with Rational Rose . 19
Learning More About Use Cases . 19

Managing Requirements . 19
Using RequisitePro to Manage Requirements . 20
How Does RequisitePro Work? . 20

Developing Requirements with Use Cases . 21

Other Requirement Types . 22

When Have You Finished Gathering Requirements? . 22
Planning and Scheduling . 22

Summary. 23
For More Information . 23
What You Learned in this Chapter . 23
What’s Next. 23

4 Test Planning . 25
Audience . 25

What Is Test Planning? . 25
Managing Risk . 26
Making a Plan and Measuring Progress. 26

Developing a Test Plan . 27
Organizing Your Test Plan . 27

Determining What to Test . 28

Working with Test Cases. 28
Test Inputs from Rational RequisitePro . 29
Test Inputs from Rational Rose . 29
Elaborating on Test Cases . 30
iv Contents

Continuing with Test Planning. 30
Risks and Resources . 30
Types of Tests . 31
Stages of Testing . 31
Scheduling . 31

Summary . 32
For More Information . 32
What You Learned in this Chapter . 32
What’s Next . 32

5 Managing Changing Artifacts . 33
Audience. 33

What is Unified Change Management? . 33
UCM Tools . 34

ClearCase LT and UCM - Using the Tool with the Process 35

Summary . 36
For More Information . 36
What You Learned in this Chapter . 36
What’s Next . 37

6 Modeling an Enhancement . 39
Audience. 39

What Is Visual Modeling? . 39

Working with a Sequence Diagram . 39
Updating a Sequence Diagram . 41

Continuing Work with a Sequence Diagram . 41
Publishing a Model to the Web. 41
Refining Objects. 42
Implementing Code . 42
Modeling Data . 42

Advantages . 43

Completing Your Work . 43

Summary . 43
For More Information . 43
What You Learned in this Chapter . 44
What’s Next . 44
Contents v

7 Creating a Use Case Report . 45
Audience . 45

What Is SoDA? . 45
Using SoDA Templates. 45

Why Generate a Use Case Report? . 46
Generating a Use Case Report . 47

Summary. 47
For More Information . 47
What You Learned in this Chapter . 47
What’s Next. 47

8 Reliability Testing . 49
Audience . 49

Reliability Testing Tools . 49

What Is Rational TestFactory? . 50
Overview of Process. 50
Instrumenting the Application . 50
Mapping the Application . 50
Running a Pilot . 51
Test Suites: Putting It All Together . 51
Using TestFactory with Rational Robot. 51

Additional Testing Tools in Rational Suite . 52
Rational Purify . 52
Rational PureCoverage . 52
Rational Quantify . 52

Summary. 53
For More Information . 53
What You Learned in this Chapter . 53
What’s Next. 53

9 Functional Testing . 55
Audience . 55

What Is Functional Testing? . 55
Working with Test Scripts . 55
Creating a Test Script . 56

Recording the Script . 56
Scripts and Modularity . 56
Creating a Verification Point . 57

Playing Back the Script On a New Build . 57
vi Contents

Analyzing the Results . 57
Handling Failures . 57

Summary . 58
For More Information . 58
What You Learned in this Chapter . 58
What’s Next . 58

10 Planning the Next Iteration . 59
Audience. 59

Assessing the State of your Project . 59
Showing the Workload . 59

Other Planning Activities . 60

What Will Happen in the Next Iteration?. 60

Summary . 61
For More Information . 61
What You Learned in this Chapter . 61
What You Learned in this Book . 61
What’s Next . 61

Rational Suite Summary. 62

Glossary . 65

Index . 69
Contents vii

viii Contents

Preface
Getting Started with Rational Suite shows how software teams use Rational Suite to plan,
design, implement, and test software applications. This book also points you to other
information about Rational Suite, so that you can learn more on your own.

Rational Suite delivers a comprehensive set of integrated tools that embody software
engineering best practices and span the entire software development life cycle.
Rational Suite's unparalleled level of integration improves communication both
within teams and across team boundaries, reducing development time and improving
software quality.

Audience

Read this book if you:

■ Are a member of a software development team – an analyst, developer, test
engineer, or manager

■ Have experience with some aspect of Windows application development

You do not need prior experience with any Rational tools before reading this book.

Other Resources

■ Online Help is available for Rational Suite.

From a Suite tool, select an option from the Help menu.

■ All manuals are available online, either in HTML or PDF format. The online
manuals are on the Rational Solutions for Windows Online Documentation CD.

■ To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.
ix

http://www.rational.com/documentation/
http://www.rational.com/university

Rational Suite Documentation Roadmap
x Chapter - Preface

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

■ Your name, telephone number, and company name

■ Your computer’s make and model

■ Your operating system and version number

■ Product release number and serial number

■ Your case ID number (if you are following up on a previously-reported problem)

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4545-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
Contacting Rational Technical Support xi

xii Chapter - Preface

1Welcome to
Rational Suite
Does your organization focus on developing and delivering software?

If so, think about your last project. Was it on time? Within its budget? Was
communication among team members clear and timely? Did your team maintain
consistency throughout the project as it defined requirements, developed designs,
wrote code, and tested the application? Was your build process repeatable? Did your
software meet requirements, satisfy users, and perform reliably?

Many project teams experience problems in these areas. In fact, many software
projects finish late (or not at all), and the result often doesn’t match the requirements.
Many projects uncover serious design flaws late in the process. Defects are often
found after the software ships, instead of during development.

How can you make your next project more successful?

About this Book

Getting Started with Rational Suite helps you learn how the process and tools built into
Rational Suite help software development team members accomplish their goals.
Using the Rational Unified Process, you learn about developing requirements,
creating visual models, code, and tests, and managing change. You learn how your
team can use Rational's tools to automate the software engineering process.

This book guides you through an iteration of software development, describing
typical ways to use and integrate Rational Suite so that your team can accomplish core
work successfully.

Rational Suite will help you increase your productivity and effectiveness by:

■ Managing change across the development lifecycle

■ Improving collaboration using proven tools and process

■ Building quality in software development from requirements to release
1

Principles of Software Development

Rational Software Corporation, the e-development company, helps organizations
develop and deploy systems and applications through a combination of software
engineering best practices, integrated tools that automate these best practices, and
professional services that accelerate the adoption and implementation of these best
practices and tools. Rational's e-development solution helps organizations overcome
many software development issues by accelerating time to market while improving
quality.

Rational helps you increase your productivity and effectiveness by focusing on these
software development best practices:

Develop software iteratively. Iterative development means analyzing, designing, and
implementing incremental subsets of the system over the course of a project. The
project team plans, develops, and tests one subset of system functionality per
iteration. The team develops the next increment, integrates it with the first iteration,
and so on. Each iteration results in either an internal or external release and moves
you closer to the goal of delivering a product that meets its requirements.

Developing iteratively helps make your project more predictable, lets you collect
feedback early, helps you identify and eliminate risks early in the project, and allows
you to test continuously throughout the project lifecycle.

Manage requirements. A requirement is one criterion for your project’s success. Your
project’s requirements answer questions such as “What do customers want?” and
“What new features must we absolutely ship in the next version?” Most project teams
work with requirements. On smaller, less formal projects, requirements might be kept
in text files or e-mail messages. Other projects may use more formal ways of recording
and maintaining requirements.

When you manage requirements, you can understand how changed requirements
affect your project. You can effectively communicate requirements to all team
members and to stakeholders. Effective requirements management helps your
organization ensure that its products meet their stated goals.

Use component-based architectures. Software architecture is the fundamental
framework on which you construct a software project. When you define an
architecture, you design a system’s structural elements and their behavior, and you
decide how these elements fit into progressively larger subsystems.

A component is a non-trivial, independent, and replaceable part of a system that
combines data and functions to fulfill a clear purpose. You can build components
from scratch, reuse components you previously built, or even purchase components
from other companies.
2 Chapter 1 - Welcome to Rational Suite

Designing a component-based architecture enables you to improve your project’s
predictability and helps enhance maintainability and extensibility.

Model software visually. Visual modeling helps you manage software complexity.
At its simplest level, visual modeling means creating a graphical blueprint of your
system’s architecture. From this visual representation of your architecture, you can
quickly detect problems such as inconsistencies and lack of modularity. With a visual
model, you have a powerful and unambiguous communication mechanism that your
whole team can use.

Visual models help you improve communications across your entire team. They help
you detect inconsistencies among requirements, designs, and implementations. They
also help you evaluate your system’s architecture, ensuring sound design.

Verify your software’s quality. Verifying software means testing what’s been built
against defined requirements. This includes testing that the system delivers required
functionality and verifying reliability and performance.

An important benefit of iterative development is that you can begin testing early in
the development process. Testing every iteration allows you to discover problems
early in the development cycle and to expose inconsistencies among requirements,
designs, and implementations.

Manage change. It is important to manage change in a trackable, repeatable, and
predictable way. Change management includes facilitating parallel development;
tracking and handling change requests; defining development processes so that they
are repeatable; and reliably reproducing software builds.

When development teams are successful at managing change throughout a project’s
lifecycle, team members can consistently focus on completing their activities rather
than, as examples, searching for the latest version of a requirements document or
trying to figure out why a build failed during testing.

Managing changes to your project facilitates clear communication. It helps you
control change propagation, define and repeat development processes, and control
risk.
Principles of Software Development 3

Rational Suite Can Help

To put these principles to work, Rational Software offers Rational Suite, a family of
market-leading software development tools supported by the Rational Unified
Process. These tools facilitate work throughout a project’s lifecycle. Rational packages
the tools and the process into several Suite editions, each of which is tailored for
specific roles in your development team – analysts, developers, testers, and project
managers. Alone, these tools have helped organizations around the world
successfully create software. Integrated, Rational tools and process:

■ Unify your team by enhancing communication.

■ Optimize individual productivity by providing market-leading development
tools packaged in Suite editions that have been specifically designed for the major
roles on your team.

■ Simplify adoption by providing a comprehensive set of integrated tools that have
simplified installation, licensing, and user support plans.

What’s in Rational Suite?

Rational Suite provides sets of tools tailored for every member of your team. Each
Suite edition combines tools designed for a specific practitioner with the Rational
Suite Team Unifying Platform. The following sections describe these tools and the
Suite editions.

Tools that Unify Your Team

Rational Suite Team Unifying Platform

Rational Suite Team Unifying Platform unifies all members of a software
development team to maximize productivity and quality. This Suite edition provides
best practices and integrated tools for managing change, building quality, and
communicating results from requirements to release.

Rational Suite Team Unifying Platform is useful to project members who need access
to common project artifacts, but do not need any of the optimized, role-specific tools
found in the other Suite editions. For example, project and program managers, project
administrators, and development managers use the tools in this Suite. Every Rational
Suite edition includes the Team Unifying Platform.
4 Chapter 1 - Welcome to Rational Suite

The Team Unifying Platform Suite edition contains the following tools:

Rational Unified Process. An online collection of software best practices that guide
your team through software development. Provides guidelines, templates, and Tool
Mentors (instructions for applying the guidelines to specific Rational tools) for each
phase of the development lifecycle.

Rational RequisitePro. Helps you organize, prioritize, track, and control changing
project requirements.

Rational ClearQuest. Manages change activity associated with software
development, including enhancement requests, defect reports, and documentation
modifications.

Rational ClearCase LT. Provides software configuration management and a built-in
process to track changes to all software project artifacts, including requirements,
visual models, tests, and code.

Note: Rational ClearCase LT is not included inside any UNIX Suite.

Rational SoDA. Automatically generates project documents by extracting
information from files you produce during project development, including source
code and files produced by Rational tools. Formats the information according to
predefined templates. SoDA is integrated with Microsoft Word for ease of use and
easy customizing.

Rational TestManager. Helps you create real-world functionality and multi-user
performance tests to test the performance and reliability of e-business, multi-tier, and
database applications. TestManager tracks how many tests have been planned,
scripted, and run; which requirements have been covered; and the number of tests
that have passed and failed. TestManager allows your team to obtain an objective
assessment of project status and create reports to communicate these findings to
project stakeholders.

Tools for Analysts

An analyst’s role is to:

■ Represent the user’s needs to the development organization
■ Determine what the system does
■ Specify and manage requirements
What’s in Rational Suite? 5

Rational Suite AnalystStudio

Rational Suite AnalystStudio is designed to support the analyst on your team. It
contains the Rational Suite Team Unifying Platform (Rational Unified Process,
RequisitePro, ClearQuest, ClearCase LT, SoDA, and TestManager) and:

Rational Rose (Professional Data Modeler Edition). Enables visual modeling of
architectures, components, and data using the industry-standard Unified Modeling
Language (UML). The UML is a language for specifying, visualizing, constructing,
and documenting software systems.

Tools for Developers

A developer’s role is to:

■ Determine how the system works
■ Define architecture
■ Create, modify, manage, and test code

Rational Suite provides two editions to support the Software Development function
on your team: Rational Suite DevelopmentStudio and Rational Suite.

Rational Suite DevelopmentStudio

Rational Suite DevelopmentStudio is the Rational Suite edition designed for system
developers, designers, and architects. Rational Suite DevelopmentStudio contains the
Team Unifying Platform (Rational Unified Process, RequisitePro, ClearQuest,
ClearCase LT, SoDA, and TestManager) and:

Rational Rose (Enterprise Edition). Enables visual modeling of architectures,
components, and data using the industry-standard Unified Modeling Language
(UML). Automatically implements the framework of your code in Java, C++,
Microsoft Visual Basic, and other popular languages. Because it is tightly integrated
with Microsoft Visual Studio and IBM VisualAge for Java, Rose’s round-trip
engineering feature helps you automate the process of maintaining consistency
between a model and its implementation.

Rational Rose also automates the mechanical aspects of test code creation by
generating test code from visual models. This allows developers to automatically
generate component tests and build stubs and drivers before an application is
complete. This feature helps to reduce project risk because your team can test early
and often, determining how a potential system architecture meets functional and
performance requirements before developing the design further. Enterprise
JavaBeans, COM, COM+, and DCOM models are supported in this feature.
6 Chapter 1 - Welcome to Rational Suite

Rational Purify. Pinpoints run-time errors and memory leaks in Visual C++
application code and memory usage in Java application code.

Rational PureCoverage. Identifies which parts of your Java, Visual C++, or Visual
Basic program have and have not been exercised. Exposes testing gaps so you can
prevent untested application code from reaching your users.

Rational Quantify. Profiles your Java, Visual C++, or Visual Basic application to help
you identify performance bottlenecks in your code.

Rational Suite DevelopmentStudio – RealTime Edition

Rational Suite DevelopmentStudio – RealTime Edition is the Rational Suite edition
designed for practitioners who focus on real-time and embedded development. This
Suite edition contains all the tools in Rational Suite DevelopmentStudio but replaces
Rational Rose with Rational Rose RealTime.

Rational Rose RealTime. Delivers a powerful combination of notation, processes, and
tools to meet the challenges of real-time development. Using Rose RealTime, you can:

■ Create executable models, allowing you to compile and observe simulations of
your UML designs on the host or target platform. The result is that you can refine
your design early and continually verify quality.

■ Generate complete, deployable executables in C or C++ directly from UML design
models targeted to real-time operating systems. Generating these applications
eliminates the need for manual translation and avoids costly design interpretation
errors.

To learn more about Rose RealTime, see the online tutorials available from the Rose
RealTime Help menu.

Tools for Test Engineers

A test engineer’s role is to:

■ Ensure that software meets all requirements
■ Create, manage, and execute tests
■ Report results and verify fixes
What’s in Rational Suite? 7

Rational Suite TestStudio

Rational Suite TestStudio, the Rational Suite edition designed for test engineers,
contains the Team Unifying Platform (Rational Unified Process, RequisitePro,
ClearQuest, ClearCase LT, SoDA, and TestManager) and:

Rational Robot. Facilitates functional and performance testing by automating record
and playback of test scripts. Allows you to write, organize, and run tests, and to
capture and analyze the results.

Rational TestFactory. Automates testing by combining automatic test generation
with source-code coverage analysis. Tests an entire application, including all GUI
features and all lines of source code.

Rational Purify. Pinpoints run-time errors and memory leaks in Visual C++
application code and memory usage in Java application code.

Rational PureCoverage. Identifies which parts of your Java, Visual C++, or Visual
Basic program have and have not been exercised. Exposes testing gaps so you can
prevent untested application code from reaching your users.

Rational Quantify. Profiles your Java, Visual C++, or Visual Basic application to help
you identify performance bottlenecks in your code.

Rational Suite Enterprise

On some projects, team members may perform many types of tasks. For example, on
smaller projects, team members might perform more than one role. On larger projects,
team members might move from task to task. It may therefore make sense to equip
each team member of an organization with a full complement of tools.

Rational Suite Enterprise contains all the tools in AnalystStudio, DevelopmentStudio,
and TestStudio, so it can accommodate the needs of all members of your team.

For More Information

For more information about Rational Suite and the principles of software
development, see Introducing Rational Suite.

For more information about the Unified Modeling Language, visit the UML Resource
Center at: http://www.rational.com/uml

This Web site contains UML information, tips about getting started with UML, and a
bibliography for further reading.
8 Chapter 1 - Welcome to Rational Suite

http://www.rational.com/uml

What’s Next

The next chapter introduces you to the Rational Unified Process, a software
engineering process. By providing a disciplined approach to software development
activities and responsibilities, based upon industry best practices, the Rational
Unified Process helps you develop high-quality software that meets the needs of its
end users within a predictable schedule and budget.
What’s Next 9

10 Chapter 1 - Welcome to Rational Suite

2Learning About the
Rational Unified Process
This chapter introduces you to the Rational Unified Process. You familiarize yourself
with the Rational Unified Process and read guidelines for the work you will perform
in your projects.

Audience

This chapter applies to all members of a software development team.

What Is the Rational Unified Process?

The Rational Unified Process is a software engineering process that helps you:

■ Produce high-quality software
■ Meet the needs of your end users
■ Work within a predictable schedule and budget

The Rational Unified Process serves as a personal and team-centered guide through
best practices for controlled, iterative software development. Many organizations
worldwide have successfully used it for both small- and large-scale development
efforts.

The Rational Unified Process is implemented as an online guide and knowledge base,
which you view with a Web browser. It is a customizable process framework that can
be adapted to the way you work. The Rational Unified Process provides prescriptive
guidelines, templates, and examples, which are tightly integrated with other Rational
tools.

The Rational Unified Process and Rational Suite

The Rational Unified Process can help you and your team work more effectively. We
recommend that you adopt all or part of it to support your development efforts. You
can, of course, successfully use Rational Suite without adopting any of the process.
(You can also use Rational Unified Process with projects that do not use Rational Suite
or its component tools.)
11

Even if you do not follow the Rational Unified Process, you can use it as a source of
information about software engineering. For example, it contains topics to help you
better understand Unified Modeling Language (UML) concepts, the
industry-standard language for specifying, visualizing, constructing, and
documenting software systems.

This book follows Rational Unified Process guidelines.

Learning the Mechanics

The Rational Unified Process guides you through the full software development
lifecycle: project management, business modeling, requirements management,
analysis and design, implementation, testing, deployment, configuration
management, and environment management.

The Process at a Glance

Below is an overview of the Rational Unified Process. This diagram represents
empirical data collected by Rational Software, showing that software development is
best organized into phases, each of which is performed in a series of iterations.
Throughout each phase, project team members from each of the software
development disciplines (analysts, developers, testers) perform activities in one or
more workflows. The diagram shows how emphasis on different workflows varies
with each iteration.

Figure 1 Rational Unified Process Overview
12 Chapter 2 - Learning About the Rational Unified Process

Key Concepts

The Rational Unified Process defines the following important concepts:

■ A role is defined as the behavior and responsibilities of an individual or a group of
individuals on a project team. One person may act in the capacity of several roles
over the course of a project. Conversely, many people may act in the capacity of a
single role in a project. Roles are responsible for creation of artifacts.

■ An artifact is something a role produces as the result of performing an activity. In
the Rational Unified Process, the artifacts produced in one activity are often used
as input into other activities. An artifact can be small or large, simple or complex,
formal or informal. Examples of artifacts are: a test plan, a vision document, a
model of a system’s architecture, a script that automates builds, or application
code.

■ An activity is a unit of work that is performed by a particular role. It is a set of
ordered steps, like a recipe, for creating an artifact. See Figure 2 for examples.

Figure 2 Relationship between a Role, an Activity, and Artifacts

Key Concepts 13

■ A workflow is the sequence of activities performed by the roles to attain an
observable value. The activity diagram in Figure 3 shows a portion of a
Requirements workflow.

Figure 3 Sample Requirements Workflow

A workflow diagram serves as a high-level map for a set of related activities. The
arrows between activities represent the typical flow of work between activities. You
do not have to adhere to the prescribed path. You can jump to activities that are not
connected by arrows. You can also repeat an activity whenever you need to (for
example, if more information becomes available).

When using the Rational Unified Process, you can learn more about a workflow
simply by clicking on it. The workflow detail appears and shows the roles involved,
the artifacts used as inputs, the resulting artifacts, and the activities that make up this
part of the workflow. For more information about any of these elements, just click in
that area of the diagram.

Starting with Actors and Use Cases

When you design or enhance a system, the Rational Unified Process recommends that
members of your team start by agreeing on the system’s high-level behavior. To do so,
you identify actors and use cases.

■ Actors are the entities that interact with your system. An actor is often a person (for
example, a sales clerk or administrator). An actor can also be an external hardware
or software system (for example, a cash register or credit card verification system
provided by a financial institution).
14 Chapter 2 - Learning About the Rational Unified Process

■ Use cases describe how an actor uses and interacts with the system. More formally,
a use case describes what services a system provides to a certain actor. You define
a use case by describing a complete sequence of actions that yields observable
results of value to an actor.

Use cases are a key concept in the Rational Unified Process. They enhance
communication across development teams so that you can solve the right problem
and define the right system for your users.

For more information on use cases, see Managing Requirements on page 17.

Tool Mentors: Implementing the Process Using Rational Tools

The Rational Unified Process provides guidelines for all phases of software
development. It uses Tool Mentors to provide guidance on using Rational tools. Tool
Mentors give detailed descriptions of how to perform specific process activities or
steps, or produce a particular artifact or report, using one or more tools.

Extended Help

Extended Help is a powerful feature of Rational Suite that provides links to the
Rational Unified Process and to other information. You use Extended Help directly
from the tools you use to accomplish your work.

Extended Help provides information about the higher-level tasks you may want to
accomplish. In addition, you can add your own organizational guidelines or
standards to Extended Help.

You can learn more about Extended Help from any Rational tool. From the tool’s
menu, select Help > Extended Help. The Extended Help window appears showing a list
of Rational Unified Process topics related to the tool you are using. From the Extended
Help menu, select Help > Help. Then choose your topic of interest.

Learning about Developing e-Business Solutions

The Rational Unified Process provides guidance for developing e-business solutions.
E-business is about building systems that automate business processes. Organizations
building e-business solutions use best practices (like visual modeling) to develop
rapidly and in a controlled manner. The Rational Unified Process allows you to
explore e-business in greater detail. Some concepts include Distribution Patterns,
e-Business Development, User-Centered Designs, and Web Architecture Patterns.
Tool Mentors: Implementing the Process Using Rational Tools 15

Summary

For More Information

To learn more about the Rational Unified Process, start the Rational Unified Process
by clicking the Start button. Then choose Programs > Rational Suite > Rational Unified
Process. Read the topics on the Getting Started page. (To return to the Getting Started
page, click Getting Started at the top of any Rational Unified Process page.)

What You Learned in this Chapter

In this chapter, you learned:

■ The Rational Unified Process helps you implement best practices for software
development. In Rational Suite, use of the Rational Unified Process is
recommended, but optional.

■ A workflow describes a set of related activities focused on meeting a goal. For each
activity, an actor uses artifacts created in previous activities and produces other
artifacts.

■ Early in a development project, you define actors (users and external systems that
interact with your system) and use cases (services that the system provides to
actors).

■ Tool Mentors provide detailed instructions for performing a Unified Process
activity using the appropriate Rational tool.

What’s Next

In the next chapter, you learn about working on and managing project requirements.
16 Chapter 2 - Learning About the Rational Unified Process

3Managing Requirements
In this chapter, you learn about how to create and manage use case requirements
using Rational Rose and Rational RequisitePro.

Audience

This chapter applies to analysts, project managers, system architects, and other team
members responsible for system definition.

Why Worry About Requirements?

One definition of project success is that the product you deliver meets its
requirements. The formal definition of a requirement is “a condition or capability to
which the system must conform.” More informally, a requirement describes a feature
or behavior that a system must have.

Where Do Requirements Come From?

As an analyst, your job starts with gathering the needs of everyone who has an
interest in your project – your stakeholders. To gather needs, you interview users and
other stakeholders, analyze enhancement requests, and work with project team
members. You then determine which needs should become project requirements.

Starting Requirements Work with Use Cases

Once you capture the needs of your project stakeholders and determine which needs
to include in the project, you develop use cases to communicate the proposed
behaviors of the system.
17

Why Work with Use Cases?

Use cases describe system behavior from a user’s perspective, using a common
language that everyone on the team can understand. Working with use cases is a key
unifying mechanism in the Rational Unified Process.

Use cases are important to everyone on the project:

■ Analysts use them to express how the system should behave.

■ System users use them to validate system behavior starting as early as the design
phase.

■ Developers and designers can start with human-language and graphical use cases.
They elaborate them first into architectural specifications and then into classes.

■ Testers develop test designs based on use cases.

Once you create a use case, you want to add it to a use case diagram (see Figure 4 for an
example). A use case diagram shows:

■ The behaviors of a system. The use cases describe what the system does.

■ The boundaries of a system. The actors represent external entities that interact
with the system.

■ The relationships among use cases and actors.

Figure 4 Sample Use Case Diagram
18 Chapter 3 - Managing Requirements

Creating Use Case Diagrams with Rational Rose

Rational Rose helps analysts visualize the behavior of a system through use case and
other diagrams. These diagrams help you manage complexity because they allow you
to see the “big picture.” Rational Rose helps you create use case diagrams so all
stakeholders share a common understanding of the project’s goals and expected
deliverables.

Using Rose is also an effective way to continuously communicate the impact of
change throughout the development lifecycle. All team members can easily share and
revise use case diagrams because they are written in the Unified Modeling Language
(UML) - an easily understood, industry-standard language for designing software.
For example, analysts use Rose to create use case diagrams to describe a system at a
high level, and architects continue this work by using Rose to design the system in
more detail. Therefore, your system diagram, architecture, and data are managed by
one tool, Rational Rose, and with one language, UML.

Learning More About Use Cases

Developing use cases is a typical way of starting requirements work. The Rational
Unified Process describes how to write a use case. It includes details about the
artifacts that you will need to get started and the artifacts that result from the activity.
It then provides a step-by-step description of the activity, and offers a template for
creating use cases.

This template provides guidelines about how to structure a use case. It is the
framework for you to define your use case requirements, software requirements that
describe the system’s behavior. We recommend that you use this template, or another
template designed by your group, to ensure consistency and completeness in use case
development. This makes it easy for all stakeholders to locate and understand
important project information.

Managing Requirements

Managing requirements is a systematic approach to:

■ Finding, documenting, organizing, and tracking requirements.

■ Establishing and maintaining agreement between the customer and the project
team on the system’s changing requirements.
Managing Requirements 19

Requirements management is challenging, in part because requirements change
throughout a project. For example, users may change their minds about essential
features, or they may not have articulated their wishes clearly in the first place.
Competitors may release new versions of their software and you must respond by
changing project plans midstream. Even changing laws may affect your software.

Using RequisitePro to Manage Requirements

RequisitePro makes it easy to develop and manage requirements. Each RequisitePro
project includes a requirements database and its related documents. RequisitePro is
integrated with Microsoft Word and is packaged with Word templates so that you can
get started quickly.

RequisitePro is designed to work for your entire team:

■ Analysts use RequisitePro to document and maintain requirements.

■ Developers use requirements to design an architecture and write more detailed
specifications.

■ Test engineers use requirements to design tests and check test coverage.

■ Project leaders and managers use RequisitePro to define project work based on
available resources (for example, time, budget, and personnel).

How Does RequisitePro Work?

RequisitePro is both document-centric and database-centric and integrates the
strengths of both:

■ The document features provide a familiar environment (Microsoft Word) for
creating descriptions and communicating your work to project stakeholders. You
can start a requirements document either by importing existing Word files into
RequisitePro or by using the RequisitePro Word Workplace.

■ The database features help you organize your requirements, prioritize your work,
track requirements changes, and share information with other Rational tools. To
work with database features, you use the RequisitePro Views Workplace.

RequisitePro helps you to identify and elaborate on your project’s requirements.
RequisitePro allows you to document your use cases as requirements, dynamically
registering them in a database for powerful sort and query capabilities. These features
help you track the requirement as it changes (and requirements always change).

RequisitePro also allows you to link requirements to each other, establishing
relationships between requirements. Through these links, RequisitePro helps you
track how changes to the system affect your requirements and how changes to
requirements affect your system.
20 Chapter 3 - Managing Requirements

Developing Requirements with Use Cases

You are ready to begin defining requirements and developing use cases for your
system once you gather the needs of everyone who has an interest in your project. We
recommend that you develop use cases in Rose and then detail and manage them
using RequisitePro.

Here’s a typical way to use Rational Rose and RequisitePro to develop requirements
by capitalizing on the power of uses cases:

1 [one time] An administrator defines and sets up the RequisitePro and Rose
environments. The administrator creates RequisitePro projects, determines their
structure, and establishes security permissions. Each project has its own database,
where requirements can be added, modified, or deleted. Information extracted
from requirements documents is stored in the database.

2 Gather stakeholders needs and determine which proposed features will be
implemented in your system. Some of these features will help you identify your
use cases.

3 Create the new use cases using Rational Rose. If you are developing an original
system, you will need to create a use case diagram, then add use cases to it. If you
are enhancing an existing system, you simply add the new use cases to the existing
use case diagram.

4 Use the integration between Rose and RequisitePro to associate the Rose model
with a RequisitePro project. The use case is now represented both in words and by
a visual model.

5 In RequisitePro, create a new use case requirement. Use RequisitePro’s Word
Workplace to define project requirements, and the Views Workplace to analyze
them.

6 Verify that the use case requirement was added. Using a RequisitePro Views
Workplace, view requirements related to the use case you are working on.

7 [optional] Revise attributes of your requirements. Using RequisitePro, you can
review each requirement’s attributes and their properties. This allows you to
modify information related to your requirement, including attribute values,
traceability relationships to other requirements, and descriptions.

8 [optional] Link the use case requirement to another type of requirement (for
example, a feature requirement; a system’s feature requirements are written at a
very high level and form a foundation for the entire system). Links describe
dependencies and relationships between requirements.
Developing Requirements with Use Cases 21

9 [optional] Display a traceability matrix in the RequisitePro Views Workplace to
show which links which have changed. If a change occurs in one requirement,
existing links with that requirement become suspect. An analyst needs to examine
the changes, and decide whether to edit the dependent requirements before
clearing the suspect link.

Other Requirement Types

So far, we’ve discussed use case requirements and high-level feature requirements.
Some requirements do not lend themselves to use cases, RequisitePro supports other
types of requirements also. Different requirements types help separate the various
levels of abstraction and purposes of your project’s requirements. You can also define
new requirement types. For example, you can define requirements for performance
targets and platform support. RequisitePro can manage any type of requirement that
you need on your project.

When Have You Finished Gathering Requirements?

Requirements emerge from a series of communications between analysts and project
stakeholders (application users, members of the marketing team, funders, and so on).
As you capture requirements, you check your work with the appropriate
stakeholders. When the stakeholders and your team come to agreement, your initial
job of gathering requirements is done.

Of course, as the project progresses, you will continue to manage the requirements,
adding some, possibly removing others, and responding to changes.

Planning and Scheduling

RequisitePro is integrated with Microsoft Project so that you can link requirements
with tasks on your project schedule. For more information:

1 On the RequisitePro Tool Palette, choose Help > Contents and Index.

2 In the RequisitePro Help Browser, on the Contents tab, navigate (by
double-clicking) to Wizards, Integrations and Components > RequisitePro Wizards > MS
Project Integration Wizard.

A Help topic appears, describing how to work with RequisitePro and Microsoft
Project.
22 Chapter 3 - Managing Requirements

Summary

For More Information

For more information on getting started with RequisitePro, start Rational
RequisitePro and explore Let’s Go RequisitePro: from the RequisitePro Tool Palette
menu, choose Help > Let’s Go RequisitePro.

For more information about Rose, see Modeling an Enhancement on page 39.

What You Learned in this Chapter

In this chapter, you learned:

■ A requirement is a condition or capability to which the system must conform.
RequisitePro manages your requirements and supports multiple requirement
types.

■ Managing requirements is a systematic approach to finding, documenting,
organizing, and tracking system features and attributes.

■ RequisitePro is both document-centric and database-centric, allowing your team to
benefit from the strengths of both.

■ To create a use case, you work in Rose to incorporate the use case in your visual
model, then work in RequisitePro to add textual descriptions, attributes, and links.

■ You have finished writing the first set of requirements when project stakeholders
and your team agree that you’re done.

What’s Next

In the next chapter, you learn how to start with use cases to do test planning, so that
you can begin testing early in the development cycle.
Summary 23

24 Chapter 3 - Managing Requirements

4Test Planning
So far, you have learned how to define requirements for a new feature and develop a
use case diagram. Now you are ready to learn about test planning.

Audience

This chapter applies to test engineers, quality assurance managers, and other team
members responsible for system testing.

What Is Test Planning?

Test planning allows you and your group to effectively measure and manage test
efforts over the course of the project. During test planning, you identify the types of
tests you will perform, the strategies for implementing and running those tests, and
the resources you will need during testing.

Test planning starts early in the development cycle, as soon as you understand the
initial set of requirements. Artifacts such as use case requirements, project schedules,
and visual models can be used as test inputs to help you determine what needs to be
tested. You create test cases with information contained within these inputs, and use
these throughout the test planning process as a “checklist” against which you
determine the acceptance criteria of your tests. You also use test inputs to define test
configurations, the sequence of attributes for potential organizational structures of the
system that you will apply to your test cases.

As with development, test planning is an iterative process. You continue to plan
testing throughout a project’s lifecycle, as analysts change or elaborate on
requirements, and as developers design and implement code.
25

Managing Risk

The recommended strategy for test planning is to focus on the riskiest areas of the
project first. For example, you can identify risks by considering:

■ The consequences of not testing a specific part of an application

■ The consequences if a particular part of the application does not work properly

■ The likelihood that an error will be discovered after the product ships

■ The ramifications if a user, rather than a project member, discovers an error in the
application

Making a Plan and Measuring Progress

Rational TestManager allows you to use all types of project artifacts to plan, design,
and run tests. You can use requirements, visual models, and source code to create a
test plan so that all aspects of your system can be tested, including product features,
system architecture, and code. With TestManager, artifacts used in your test plan are
used to create a specific test asset. This ensures that any change made to the original
artifact automatically prompts you to re-evaluate the related test asset. If appropriate,
you can then update the test asset. The integration between Rational tools that enables
this verifiable relationship between project assets helps you start testing for quality
early in the development lifecycle.

Rational TestManager also:

■ Provides access to all test-related information and artifacts so your team can easily
assess project status

■ Enables team members to share testing progress

■ Helps you track how many tests have been planned, scripted, and run

■ Shows which requirements have been covered by tests, and the number of tests
that have passed and failed

Because TestManager is part of each Suite edition, team members can use it to
evaluate how well they are meeting project requirements, to monitor the project’s
overall status, and to more effectively share and discuss information about testing
activities with other project stakeholders.
26 Chapter 4 - Test Planning

Developing a Test Plan

In TestManager, a test plan contains information about the purpose and goals of
testing within a Rational project, and the strategies to implement and execute testing.
You can have one or more test plans in a project. TestManager provides you with an
empty test plan that you can use to start your planning. This test plan includes
properties such as the name of the test plan, the configurations associated with the
test plan, and the iterations associated with the test plan (when a test plan must pass).

You can run reports based on a test plan’s properties. For example, you can run
reports to determine which iterations are associated with a test plan. These reports
can give you valuable information about the state of your testing project.

Organizing Your Test Plan

As we mentioned earlier, you can have one or more test plans in a project. Each test
plan, contains test cases. The test cases are organized hierarchically in test case folders.
Both the test plan and test case folders can be placed in any order that makes sense for
your organization. For example, you can create a test plan for each testing type (see
Figure 5). And you can have a test case folder for each tester in your department, or
for each phase of testing.

Figure 5 Sample Test Plan Hierarchy

Test case folders have properties such as the name of the test case folder, and the
configurations and iterations associated with the test case folder. Any iterations and
configurations associated with a test case folder are automatically associated with any
test cases that are placed within it. TestManager allows you to change the test case’s
associations after you first establish them.
Developing a Test Plan 27

Determining What to Test

You continue test planning by identifying test cases for your application. Each test
case describes a specific area of the application to test. Each area can encompass a
broad class of situations that you need to test. For example, in testing a cash sales
transaction, you would probably test:

■ Valid input (the customer pays the exact price; the customer pays more and needs
change)

■ Invalid input (the customer pays less than the sales price; the sales clerk enters an
invalid part number)

So how do you determine what to test? This part of test planning – test analysis and
design – often requires you to rely on your own human intelligence and experience,
using existing project assets as a reference.

When you design tests, the first step is to understand how the system is supposed to
behave. During analysis, you identify the conditions you need to test to verify that:

■ The application does what is intended.

■ The application does not do what is not intended.

Working with Test Cases

A test case describes the extent to which you will test an area of the application. It lists
the preconditions for performing a test, the input to provide during testing, the
variables you will examine, and the expected results of each test. Existing project
artifacts, such as requirements, provide information about the application and can be
used as your test inputs. TestManager provides built-in test input types, but almost
any artifact can be used as a test input.

For example, here’s what the following artifacts offer as test inputs:

■ Requirements describe a condition or capability to which a system must conform

■ Visual models provide a graphic representation of a system’s structure and
interrelationships

You can also define custom test input types, such as source code, software builds, and
functional specifications.

Once you identify your test inputs, you can create test cases and associate them with
test inputs. These associations allow you to react when changes to test inputs occur.
These changes might require you to change the test cases or their implementations.
28 Chapter 4 - Test Planning

Test Inputs from Rational RequisitePro

You can use RequisitePro requirements as test inputs. You or an administrator can
use the Rational Administrator to associate a RequisitePro project with a Rational
project. This association causes requirements to appear in the Test Input window after
you log on to that project. You can then create a link between a requirement and a test
case. The requirements, themselves, are created and managed in RequisitePro, but
you can modify the properties of the requirements in TestManager (see Figure 6 for an
example).

Figure 6 Sample Test Inputs from RequisitePro and Related Properties

Test Inputs from Rational Rose

If you use Rational Rose, then you can use Rose model elements as test inputs. You
use the Rational Administrator to associate a Rose model with a project. You can then
look at each individual model element in the Test Input window, and create an
association between a model element and a test case.
Working with Test Cases 29

Elaborating on Test Cases

As part of developing your test plan, you need to design your tests. Test designs are
elaborations of test cases. They provide the detail needed for understanding how the
test case will be implemented. Design work is typically done when you plan your test
cases.

Using TestManager, you design tests using the Design Editor. During this step, you
capture specific steps or flows in a test case and add validation criteria or verification
points. Later on, you learn how these designs help you implement your tests.

Continuing with Test Planning

Writing a test plan is an iterative process that starts early in the project. It continues as
analysts change requirements and elaborate on use cases, as developers design and
write code, and as testers revisit requirements and use cases, discovering more areas
or conditions to test. Test planning occurs in parallel with other development efforts,
including testing.

As you work on your own test plan, we suggest you consider at least the following
topics, described in the remainder of this section:

■ Risks and resources
■ Types of tests to perform
■ Stages of Testing
■ Scheduling

Risks and Resources

Identifying risk is an important part of test planning. Once you identify the available
testing resources, you need to balance inevitable resource constraints with the project
and testing risks. As a result, you can refine the testing strategy.

We recommend that you prioritize tests as follows:

■ Must test (high) – You must run this test to avoid severe risk or to identify weak
project areas early in the development cycle. You cannot complete project testing
without completing this test.

■ Should test (medium) – You should schedule this test, but in a resource crunch,
could consider not running it.

■ Could test (low) – This test might be useful to run, but is not essential to the
project. Run this test if you cannot make further progress on other, more
important, tests.
30 Chapter 4 - Test Planning

■ Won’t test (low) – This test is not part of the testing project. A test with this
priority defines the boundaries of the test plan and helps focus attention on what
will be tested.

Types of Tests

There are many types of tests to consider as you create a test plan, including, but not
limited to:

■ Functional tests – Does the application meet its functional requirements? Use
Rational Robot and Rational Rose for functional testing.

■ Reliability tests – Can the application run without errors? Use Rational
TestFactory, Purify, Quantify, and PureCoverage for reliability testing.

■ Performance tests – Is the application’s performance acceptable under varying
loads? Use Rational Suite TestStudio with Rational Rose for performance testing.

Stages of Testing

There are several stages of testing to consider as you create a test plan. These stages
progress from testing small components to testing completed systems and usually
apply to different stages of the system’s development cycle:

■ Unit testing – Verifies individual components, the smallest testable elements of
the software.

■ Integration testing – Ensures that the components in the implementation model
operate properly when combined to execute a use case.

■ System testing – Ensures that the software is functioning as a whole.

■ Acceptance testing – Verifies that the software is ready and that it meets its
requirements.

Unit testing is typically performed by software developers. As a test engineer, your
focus is primarily on integration, system, and acceptance testing.

Scheduling

Part of creating a test plan involves writing a schedule. You work with team leaders
from other areas of the project to understand when their contributions will be ready
for testing. You then need to balance your original schedule against the risks and
resources you identified in order to arrive at the most effective schedule for testing.
Each testing iteration presents an opportunity to validate one or more of your test
cases. Developing a testing schedule based on iterations helps you filter your test
cases so that you can more effectively design, implement, and run your tests for each
stage of software development.
Continuing with Test Planning 31

If you prioritized your tests as described in Risks and Resources on page 30, make sure
you schedule at least the “must” (high priority) and “should” (medium priority) tests.
If resources become more constrained over the course of the project, you can sacrifice
tests of lower priority without compromising the absolute quality objectives
expressed by the “must” tests.

Summary

For More Information

For more information about test planning:

■ Read about test plans in the Rational Unified Process.

■ Read about test plans in Getting Started with Rational Robot.

■ For a more in-depth treatment of test planning, read Testing Computer Software (Vnr
Computer Library) by Cem Kaner and others (ISBN: 1850328471).

What You Learned in this Chapter

In this chapter, you learned:

■ You can start test planning early in the project, after initial requirements are
identified.

■ Test planning is an iterative process, encompassing project and testing risks,
evolving product requirements, available resources, and project schedule.

■ Part of test planning involves creating test cases and relating them to test inputs.

■ Analysis and design are important components of writing effective tests.

■ Prioritizing tests helps you focus your testing effort on the riskiest and most
important areas of the application to test.

What’s Next

In the next chapter, you learn how Rational ClearCase LT helps you effectively
manage change throughout the software development lifecycle.
32 Chapter 4 - Test Planning

5Managing Changing
Artifacts
In this chapter, you learn about Rational’s approach to managing change in software
development using ClearCase LT and Unified Change Management (UCM).
Together, UCM and ClearCase LT help you successfully manage changing project
artifacts from requirements to releases, iteration through iteration.

Audience

This chapter applies to all team members.

What is Unified Change Management?

Unified Change Management (UCM) is Rational Software’s best practices process for
managing change in software system development from requirements to release.
UCM focuses on these guiding concepts:

■ An activity represents a unit of work you want to complete. Activities can be
derived from a variety of sources, including a defect or an enhancement request.

■ An artifact is an item that is produced, modified, or used in the software
development lifecycle. Conceptually, artifacts can be requirements, tests, visual
models, source code, or project plans. Artifacts are items that are critical to the
success of your project and should be placed under configuration management, or
version control. Usually, an artifact is represented by a file or a set of files.

UCM’s key strength is that it unifies the activities used to plan and track software
development progress with the artifacts used to create, design, and build software
applications.
33

UCM Tools

Rational ClearQuest. Manages change activity associated with software
development, including enhancement requests, defect reports, and documentation
modifications. ClearQuest also offers charting and reporting features to track and
communicate project progress to all stakeholders.

Rational ClearCase LT. Uses UCM’s built-in development process to track and
manage changes to all software project files, including requirements, visual models,
tests, and source code, among others.

Rational ClearQuest and Rational ClearCase LT provide tool support for Unified
Change Management. Used together, these Rational tools help your software team
better manage changing requirements and development complexity throughout the
software development lifecycle. Figure 7 shows a typical way to manage change using
Unified Change Management.

Figure 7 Typical UCM Workflow
34 Chapter 5 - Managing Changing Artifacts

ClearCase LT and UCM - Using the Tool with the Process

The Rational Unified Process describes the process of working with UCM. You
typically use UCM with ClearCase LT as follows:

1 [one time] A project manager or administrator installs Rational software. This
individual sets up the ClearCase LT environment and creates a Rational project. (A
Rational project associates the data created and maintained by Rational tools and
enables integrations among them.)

2 [one time] You identify yourself to the project by joining the project. As a result, a
private workspace (consisting of a development stream and a development view) is
created for you. You also gain access to a workspace available to your entire team.
This public workspace consists of an integration stream; you can create a
companion integration view for your own use.

3 Your project manager uses ClearQuest to assign activities to you.

4 You run a ClearQuest query to find the activities assigned to you. This is your
to-do list. From this list, you decide which activity to work on.

5 You work with artifacts as usual. Using ClearCase LT, you work in your private
development workspace to:

❑ Check out artifacts. When you check out an artifact, ClearCase LT asks which
activity you want to work on. In the background, ClearCase LT keeps track of
the change set (the list of changed artifacts) associated with the activity.

❑ Edit and verify the changes.

❑ Check the artifacts back in. When you check in an artifact, it is still part of your
private workspace. Your change does not become publicly available until you
deliver it, as described in Step 6.

6 When you have finished work on the activity, you deliver changes for an entire
activity. Because ClearCase LT keeps track of the change set, you don’t have to
specify the list of artifacts to deliver. Delivering the changes makes the changes
publicly available through the integration stream. It may also close the activity,
depending on the policies you set up.

7 After developers have delivered a set of activities, the project manager creates a
baseline, a new common starting place for all developers that includes the new
activities or modified artifacts. On your project, a new baseline may be created on
a regular basis, perhaps even daily.
ClearCase LT and UCM - Using the Tool with the Process 35

8 If the changes in the baseline are approved (through testing or through another
review process), your project manager promotes it, making it the recommended
baseline.

9 You rebase your development stream so that when you work on your next activity,
you’re starting from the most recent recommended baseline. Restart with Step 4 to
select the next activity to work on.

Depending on the structure of your organization, you may identify these roles using
different names, assign the responsibility of different roles to be performed by one
individual rather than several, or share the responsibility of a single role among
several team members, as defined by the Unified Process for UCM. No matter how
your team is structured, you can use UCM successfully because the model follows a
basic process for configuration and change management, and ClearCase LT helps to
automate much of the artifact and activity auditing.

Summary

For More Information

For more information about Rational ClearCase LT, read Introducing Rational ClearCase LT.

For more information about UCM, read Using Unified Change Management with
Rational Suite.

What You Learned in this Chapter

In this chapter, you learned:

■ Unified Change Management (UCM) helps software teams manage change in
software development, from requirements to release.

■ ClearCase LT and ClearQuest are the foundations for UCM. ClearCase LT
manages the artifacts associated with a software development project. ClearQuest
manages the project’s activities and offers charting and reporting features to track
and communicate project progress to all stakeholders.

■ Team members use ClearCase LT to access artifacts under source control, they
work on activities in their personal development workspaces, and deliver
modified artifacts to the integration stream once they complete an activity.
36 Chapter 5 - Managing Changing Artifacts

What’s Next

Now you understand how ClearCase LT and UCM help you manage changing
artifacts throughout the development lifecycle. In the next chapter, we discuss how to
use these tools and Rational Rose to update an architectural model for a new feature.
Summary 37

38 Chapter 5 - Managing Changing Artifacts

6Modeling an
Enhancement
So far, you have learned about managing requirements, test planning, and change
management for software artifacts. In this chapter, you learn how to incorporate
designs for new features into existing visual models using Rational Rose. You also
learn about delivering modified artifacts to a project’s integration stream.

Audience

This chapter applies to software designers, developers, and other team members
responsible for carrying out a software development function.

What Is Visual Modeling?

Visual modeling is the creation of graphical representations of your system’s
structure and interrelationships. The result is a blueprint of your system’s
architecture. A visual model:

■ Is graphical, rather than text-based, making it easy to understand complex systems
at a glance.

■ Allows you to see relationships among design components, so that you can create
cleaner designs and therefore write more maintainable code.

■ Helps you meet customer needs because you base the visual model on project
requirements.

■ Improves communication across your team because you use a standard graphical
language for conveying the system’s architecture.

Working with a Sequence Diagram

A sequence diagram is a visual representation of the steps through one path in a use
case (see Figure 8 on page 40). Project members and other stakeholders can use a
sequence diagram (graphical representation), use case requirements (text description),
or both to evaluate the project direction and as a basis for their work.
39

A use case often contains more than one path. It always contains a basic flow which
describes the most common path through the use case. It may contain alternative
flows which describe other paths, including error conditions.

A sequence diagram shows how actors interact with the system, and in what order.
When you first work on a sequence diagram, you tend to use human-language labels.
As you refine the system design, you change the diagram so that it identifies:

■ Classes – Sets of objects that share a common structure and common behaviors

■ Messages – Interactions between classes

Figure 8 Sample Rose Sequence Diagram

The sample Rose sequence diagram in Figure 8 shows how the actors and other objects
in the application communicate with each other. A message icon, a horizontal, solid
arrow between two vertical, dashed lifelines, represents each communication. Items in
a sequence diagram are arranged in chronological order.
40 Chapter 6 - Modeling an Enhancement

Updating a Sequence Diagram

Here’s a typical way to update a sequence diagram for an existing system.

1 Use ClearCase LT to check-out the appropriate model and sub-model files.

2 Open the selected sequence diagram using Rational Rose.

3 Add messages to the sequence diagram for the new feature or enhancement you
are working on.

4 Save the model and subunits (if prompted to do so).

Continuing Work with a Sequence Diagram

There are a few additional tasks to perform once you make changes to a visual model.
An overview of these steps is below.

Publishing a Model to the Web

When you finish working on a visual model, we recommend that you create a Web
version of the modifications so that people on your team who have not installed Rose
can review the model and give you feedback.

Rose Web Publisher allows you to create a web-based version of a Rose model that
others can view using a standard internet browser. A Rose Web Publisher recreates
Rose model elements, including diagrams, classes, relationships, attributes, and
operations. Once published, hypertext links enable you to traverse the model much as
you would in Rose.

You can control what Rose Web Publisher includes by setting a variety of options. For
example, you can select which views of a model are published, the amount of detail to
include, the notation to use, and the graphics format for Rose diagrams. The Preview
feature lets you launch your default browser and view the published model directly
from Rose Web Publisher.

There are two ways to publish a model:

■ By using Rose’s dialog-based add-in available from Tools > Web Publisher.
■ By using a command line batch interface that enables you to publish models using

a batch processor.
Continuing Work with a Sequence Diagram 41

Refining Objects

Using a sequence diagram, you identify the objects involved with a use case. You next
identify the classes to which the objects belong. Use Rose class diagrams to group
related classes and to elaborate on them.

Once you identify classes, you revise the sequence diagram to use class and operation
names instead of the human-language names you originally assigned.

Implementing Code

You are now ready to implement code. From the diagrams you’ve created, Rose
Enterprise Edition can create a code skeleton that is consistent with the models you’ve
developed. This is called forward engineering. Starting from the generated code, you as
a developer fill in the details of the algorithm.

To generate new code or to update existing code, choose an item from the Rose Tools
menu. For example, to implement Java code for the enhancement you’ve been
working on, you would choose Tools > Java > Generate Java.

When you start changing code, your model may become out of date. It is tedious to
manually update the model whenever the code changes. It is also undesirable to
create a model that immediately becomes obsolete. Rose helps you keep the code and
the model consistent. For example, from the Rose menu, you would choose Tools >
Java > Reverse Engineer Java. This is called reverse engineering.

As you can see from the Tools menu, Rose supports several languages in addition to
Java. These languages include ANSI C++, Visual C++ and Visual Basic.

Note: Rose Enterprise Edition can generate code, update code, and update models.
Rose Professional Data Modeler Edition, included in Rational Suite AnalystStudio,
does not have these features. It can round-trip engineer database schemas only.

Modeling Data

You can use Rose to model relational databases. Rational Rose Professional Data
Modeler Edition is a database modeling and design tool that uses UML (Unified
Modeling Language). It allows you to:

■ Support most specific database functions, such as creating tables, columns,
indexes, relationships, keys (primary and foreign), and stored procedures.

■ Create column constraints, and both DRI (Declarative Referential Integrity) and RI
triggers.

■ Create custom triggers and their generated trigger code.
42 Chapter 6 - Modeling an Enhancement

Advantages

Advantages of using Rose Professional Data Modeler are:

■ All your business, application, and data models are written in the same
industry-standard language, UML, and tool, promoting consistency, traceability,
and ease of communication.

■ Both forward and reverse engineering of relational databases are supported,
facilitating the process of keeping database implementations and models
consistent.

Completing Your Work

Once you have finished your work with a sequence diagram and published your
changes to the Web, you are ready to complete your assigned activity for the feature
requested and deliver the changes to the project integration stream. To do this, you
will use ClearCase LT. To learn more about this process, read Introducing Rational
ClearCase LT.

Summary

For More Information

For more information about Rational Rose, see the UML Tutorial, available on the
Rational Solutions for Windows – Online Documentation CD.

For information about Rational Rose RealTime, see the online tutorials available from
Rose RealTime online Help. These tutorials address the needs of Rose RealTime users
at all levels.

For more information about object-oriented analysis and design, use Extended Help.
From the Rose menu, choose Help > Extended Help. In the left pane of the Extended Help
browser, navigate to a topic under Guidelines, for example, Guidelines > Design Class.

For more information about using Rational ClearCase LT and UCM with Rational
Suite, read Using Unified Change Management with Rational Suite.

For general information about Rational ClearCase LT with or without UCM, read
Introducing Rational ClearCase LT.
Completing Your Work 43

What You Learned in this Chapter

In this chapter, you learned:

■ Visual modeling means creating graphical representations of your system’s
structure and interrelationships.

■ In Rose, you use sequence diagrams to elaborate on paths through use cases.

■ Rational Rose helps you: create visual models for code and data; generate code;
and keep the model synchronized with changed code. ClearCase LT allows you to
manage versions of these artifacts as they are modified.

■ You can publish read-only copies of your models and diagrams to the Web using
Rose. This feature unifies the team by helping you create high-quality architecture
models that can be shared, ensuring that all team members have the same
understanding of the project.

■ Rose supports many languages, including ANSI C++, Visual Basic, Visual C++,
and Java.

What’s Next

You just learned about completing a visual model for a feature, and that ClearCase LT
is used to complete and deliver activities to the integration stream. Next, you learn
about creating reports to communicate the status of software development projects.
44 Chapter 6 - Modeling an Enhancement

7Creating a
Use Case Report
Once you have extended a use case to a visual model, you might want to generate a
report consolidating all the information about the use case. Such a report could
contain the use case diagram from the visual model in Rose and the corresponding
basic flow from the use case in RequisitePro. In this chapter, you learn how to use
Rational SoDA to produce that report.

Audience

This chapter applies to all members of a software development team.

What Is SoDA?

SoDA facilitates the creation of software documentation. It is tightly integrated with
many of Rational's tools so that you can easily extract information to report on
requirements, designs, tests, and defect status. You use SoDA:

■ with ClearCase LT to document versioning information
■ with ClearQuest to document reported defects
■ with RequisitePro to document your requirements
■ with Rose to document your designs
■ with TestManager to document your test scripts

Using SoDA Templates

To generate reports and other documents, SoDA relies on a predefined template for
Word (on Windows) or FrameMaker (on UNIX). The template gathers information
and formats it into a report, mapping between the document structure and the
information source of the data to preserve the consistency of extracting data from
multiple sources (see Figure 9 on page 46).
45

Figure 9 Sample SoDA Template in Word

Figure 9 shows a sample SoDA template that extracts information about requirements
from Rational RequisitePro. To add information manually to SoDA reports and
documents, you simply use the Microsoft Word or FrameMaker interface and add
your text before you generate the report or document. Inserting text into a SoDA
template before generating a report or document preserves the information through
subsequent cycles of generating the report or document.

You can choose from the many templates provided with SoDA, or you can create your
own templates with SoDA’s easy-to-use template creation tool.

Why Generate a Use Case Report?

A use case report gathers into one document both text descriptions of expected
system behavior (as described in use case requirements) and a diagram that shows
how the system interacts with actors. This report is helpful to nearly every team
member:

■ An analyst can show the report to customers and other stakeholders. Together,
they can verify that the project is on the right track. These discussions can be held
early in the project, so that the analyst can address problems or gaps before, rather
than after, the project ships.
46 Chapter 7 - Creating a Use Case Report

■ A software engineer can use the report’s description of expected system behavior to
start writing engineering specifications and designing the system architecture.

■ A test engineer can use the report to design tests for the use case. From the report, a
test engineer can identify the steps to test and determine which conditions to test.

■ A technical writer can start planning documentation, based on the report’s
descriptions of how users interact with the system.

■ A usability engineer can use the report to design usability tests, possibly starting
with paper prototypes.

Generating a Use Case Report

A typical way to generate a use case report using SoDA involves:

1 Selecting a template

2 Identifying a data source

3 Actually generating the report

4 [optional] Publishing your report to the Web, making it easily accessible to all
team members

Summary

For More Information

To learn more about SoDA, start SoDA and run the SoDA tutorial from SoDA Help.

What You Learned in this Chapter

In this chapter, you learned:

■ SoDA automates the creation of software documentation by creating reports based
on templates.

■ SoDA contains an easy-to-use tool that assists you with template creation.

■ A use case report is useful to all members of your project.

What’s Next

In the next chapter, you learn about using Rational TestFactory to perform reliability
tests.
Summary 47

48 Chapter 7 - Creating a Use Case Report

8Reliability Testing
Once a new feature or enhancement is implemented and test planning has occurred,
you are ready to test. In this chapter, we discuss testing for reliability. In the next
chapter, you learn more about functional testing.

Audience

This unit applies to testers, developers, and other team members responsible for
reliability testing.

Reliability Testing Tools

This chapter describes the following automated testing tools:

■ Rational TestFactory. Automates testing by combining automatic test generation
with source-code coverage analysis. Tests an entire application, including all GUI
features and all lines of source code.

■ Rational Purify. Pinpoints run-time errors and memory leaks in Visual C++
application code and memory usage in Java application code.

■ Rational PureCoverage. Identifies which parts of your Java, Visual C++, or Visual
Basic program have and have not been exercised. Exposes testing gaps so you can
prevent untested application code from reaching your users.

■ Rational Quantify. Profiles your Java, Visual C++, or Visual Basic application to
help you identify performance bottlenecks in your code.
49

What Is Rational TestFactory?

TestFactory optimizes the productivity of developers and testers by reducing the
manual effort required to test software. TestFactory is an Automated Testing tool that
generates scripts to thoroughly test Visual Basic, C++, and Java applications. These
scripts discover defects and provide extensive code coverage.

You can start using TestFactory early in the development cycle, as soon as a user
interface is available to test. You use TestFactory throughout development to verify
the reliability of each new build.

Overview of Process

You use TestFactory as follows:

1 Instrument the application to gather information about code coverage.

2 Map the application to create a hierarchical list of UI controls.

3 Run a Pilot to automatically generate scripts that test the application.

The rest of this section discusses each of these steps and provides pointers for using
TestFactory as a complement to Rational Robot.

Instrumenting the Application

You instrument an application so that TestFactory can optimize the best scripts it
generates – scripts that provide code coverage of your application. During
instrumentation, TestFactory creates a new version of the application’s executable file
but does not permanently alter source code.

Anyone can instrument an application, but in many groups, the release engineer
creates an instrumented executable file for others to test.

Mapping the Application

The next step is to create an application map. To create a map, TestFactory thoroughly
explores the application’s user interface and gathers detailed information about the
user interface and its navigational pathways. TestFactory builds a comprehensive
hierarchical application map that it uses as the foundation for automatic test
generation.

You can build an application map of the entire application, or you can incrementally
include application changes into an existing map.

Once the application map is complete, TestFactory displays a Mapping Summary.
Using this report, you can identify changes to the application’s UI.
50 Chapter 8 - Reliability Testing

Running a Pilot

A Pilot uses the instrumented application and the application map to generate a test
script (the best script) that exercises as much of the application as possible. As it
builds the best script, the Pilot automatically uncovers severe program defects and
generates defect scripts. Playing back a defect script allows you to reproduce an error
in the application.

To create these scripts, TestFactory thoroughly explores the application’s user
interface and source code. After creating these scripts, TestFactory shows exactly
which source code and which user interface objects its scripts test.

When it has finished, TestFactory displays a summary of the Pilot run:

■ You can examine the best script both to read a human-language outline of the
script and also to see code coverage results.

■ From a defect result, you can quickly determine the line of code on which the
defect occurred and you can easily submit a defect report into ClearQuest.

Test Suites: Putting It All Together

Use a test suite to organize scripts and to run them automatically as a group. In a test
suite, you can include:

■ Scripts generated by TestFactory – best scripts and defect scripts

■ Scripts you record or write in Robot

You can run a test suite locally on your own computer or you can use
TestAccelerators to distribute scripts in a test suite to computers on a network, for
example, in a test lab.

Using TestFactory with Rational Robot

TestFactory complements and builds on Rational Robot features. By using both tools,
you can develop and run regression tests that validate specific, mission-critical paths
through an application. TestFactory automatically generates tests that cover an entire
application. It takes advantage of the advanced object recognition and playback
features of Robot. TestFactory also provides detailed coverage data on scripts created
in Robot.

As described in the next chapter, you use Robot to discover defects based on product
requirements. You can use Robot to add verification points to enhance an optimized
TestFactory script.
What Is Rational TestFactory? 51

Additional Testing Tools in Rational Suite

Rational Purify

Run-time memory-reference errors and memory leaks are some of the most difficult
errors to locate and the most important to correct. They often remain undetected until
triggered by a random event, so that a program can appear to work correctly when
actually it’s working only by accident.

Rational Purify is a comprehensive run-time error detection tool that works with
Visual C++ and Java programs. Purify can find memory errors in every component of
your program, even when you don’t have the source code. If Purify detects an error in
an area of the application for which the source code is available, it identifies and
displays the command that caused the invalid memory reference. For Java programs,
Purify analyzes and reports memory usage.

Purify can also collect coverage data as you check your code for errors, pinpointing
the part of your program that you have not tested. Using Purify's coverage data, you
can make sure that all your code is free of errors.

Rational PureCoverage

To effectively test an application, you need to know which parts of the application
were exercised during a test run and which ones were missed. Without this
information, you can waste valuable time editing, compiling, and debugging your
software without actually testing the critical problem areas.

With Rational PureCoverage, you can quickly and easily identify the gaps in your
testing of Visual C++, Visual Basic, and Java programs.

PureCoverage is especially useful as a companion to Rational Purify and Rational
Robot: it can tell you whether you are exercising your code sufficiently for Purify to
find all of your memory errors and for Robot to test all of your application’s
functionality. It is essential to an automated testing environment.

Rational Quantify

Rational Quantify quickly pinpoints performance bottlenecks in Visual C++, Visual
Basic, and Java programs. It takes the difficulty and guesswork out of performance
tuning by delivering accurate, repeatable timing data for all the components of your
program, even when you don’t have the source code.

Quantify gives you the insight you need to write more efficient code and make any
program run faster. It can turn everyone on your team into a performance engineer.
52 Chapter 8 - Reliability Testing

Summary

For More Information

For more information about:

■ TestFactory. Read the tutorial, Getting Started with Rational TestFactory, and the
TestFactory online Help.

■ Purify. Read Getting Ahead with Purify and the Purify online Help.

■ PureCoverage. Read Getting Ahead with PureCoverage and the PureCoverage online
Help.

■ Quantify. Read Getting Ahead with Quantify and the Quantify online Help.

These books are all available on the Rational Solutions for Windows Online Documentation CD.

What You Learned in this Chapter

In this chapter, you learned:

■ TestFactory automatically maps an application and generates best scripts (which
cover the most code in the least number of steps) and defect scripts (which
reproduce any errors that TestFactory finds).

■ Use TestFactory starting early in the development cycle to test for reliability and to
discover severe defects in your application.

■ Use test suites to organize test scripts and to run them automatically as a group.

■ Additional testing tools include Purify (finds run-time memory errors),
PureCoverage (determines testing coverage), and Quantify (identifies
performance bottlenecks).

What’s Next

In the next chapter, you learn more about testing an enhancement. You will learn how
to use Robot to create a script, include the script in an existing test suite, run the test
suite, and handle errors discovered by the tests.
Summary 53

54 Chapter 8 - Reliability Testing

9Functional Testing
At this point in the development process, developers have implemented the
enhancement. Test engineers have run initial reliability tests. In this chapter, you learn
how to perform functional tests on the enhancement.

Audience

This chapter applies to test engineers and other team members responsible for
functional testing.

What Is Functional Testing?

Functional testing helps you determine whether a system behaves as intended. The
most natural way to test a system’s behavior is to automate your testing and use the
application’s GUI to validate that the system responds appropriately to user input.
Testing can focus on both the operation and the appearance of GUI objects.

Working with Test Scripts

During test planning, you write test cases, as described in Chapter 4, Test Planning. A
test case describes the extent to which you will test an area of the application. It lists
the preconditions for performing a test, the input to provide during testing, the
variables you will examine, and the expected results of each test.

To implement a test, you start with a test case and create test scripts. You then
associate the test case with its test scripts. A test script has the following components:

■ A set of properties, such as the type and purpose of the script. Typically, you
define the script’s properties during planning.

■ A file containing scripting language commands. You generate a script file when
you record activities with Rational Robot.
55

Creating a Test Script

TestManager helps you to implement your test cases by generating test scripts. Test
cases can be implemented as manual or automated scripts, and therefore need to be
associated with a test case. For the purpose of this chapter, we will focus on
automated testing.

To create an automated test script using Test Manager select File > New Test Script.
When the New Test Script menu appears, pick the test script type of your choice (GUI or
VU). Rational Robot will start and you will then record your test script.

Recording the Script

You record a script by exercising parts of your application’s GUI. When you record a
script, Robot translates the activities you perform into scripting language commands.
(Robot uses SQABasic for its scripting language. SQABasic resembles Microsoft
Visual Basic and contains additional commands tailored for automated testing.) After
you record a script, you can reuse it, for example, in regression tests or in test suites.

Scripts and Modularity

Although you can record a script that starts an application and proceeds through
several steps to achieve a certain end result, you may not be able to reuse that script
without modifying it.

Instead, you can create a set of scripts that all start with the same steps and conclude
by testing different parts of the application. Robot lets you create short modular
scripts. You then combine a series of scripts into a test suite. With this technique, you
can reuse the same script in different tests. Or, you can reuse a script that has already
been recorded to get an application to an appropriate starting place for recording a
subsequent script.

For example, you might create the following test scripts:

■ A script that logs onto the system

■ A scripts that selects an item to purchase

■ A script that completes a purchase

■ A script that logs you off the system

You then run each test script individually, or run them all at once, in succession, by
combining them into a test suite.
56 Chapter 9 - Functional Testing

Creating a Verification Point

For each test, you need to create at least one verification point, which establishes a
baseline value for object properties or data in a specific part of the application. When
you play back a script, Robot compares the value it finds to the baseline value you
establish. You can include any number of verification points in a script.

Playing Back the Script On a New Build

While you build test scripts and test suites, developers are typically delivering a new
build of the application. You can run your test suites on the new build.

Robot starts the application, interacts with it, captures properties and data at
verification points, and quits the application. When it has finished running the script,
it displays the results of the test in TestManager.

Analyzing the Results

TestManager shows which verification points passed and which failed. If a
verification point fails, then its script also fails. When scripts fail, you inspect the log
display in TestManager and decide how to handle the failure.

Handling Failures

The outcome of a particular test may change during subsequent iterations as old
defects are fixed and new defects and other changes are introduced. There are two
types of script failures:

■ An intentional change is one in which the script fails due to planned changes in the
application. In this case, you want to change the baseline for the verification point.
Note that you only want to change the baseline when a test fails because of an
intentional change in the application.

■ A real error is one in which the script fails with a correct baseline. To report these
kinds of errors, submit a defect record using ClearQuest, which is integrated with
Rational TestManager.
Playing Back the Script On a New Build 57

Summary

For More Information

For more information about testing strategy, click Help > Extended Help from a Rational
Test tool menu. In the Extended Help browser, read the articles under Concepts.

To get started with Rational Test tools, read Getting Started with Robot, available on the
Rational Solutions for Windows Online Documentation CD.

What You Learned in this Chapter

In this chapter, you learned:

■ Functional testing helps you determine whether a system behaves as intended.

■ Rational TestManager helps you plan, develop, run, and analyze functional tests.

■ You develop test scripts by interacting with the application using Robot and
including verification points in your scripts.

■ You can develop modular scripts, then use test suites to call those scripts. You
reuse scripts each time developers deliver a new software build.

■ Robot makes it easy to address problems and updates that are discovered during
testing.

■ ClearQuest’s integration with TestManager makes it easy to report errors, finish
testing an iteration of development, and initiate the next iteration.

What’s Next

You have learned how to test an application for an iteration of development. In the
next chapter, you work on planning the next iteration.
58 Chapter 9 - Functional Testing

10Planning the Next
Iteration
Now that you have learned how to implement an enhancement into an existing
system, it is time to learn more about planning for the next iteration in your project’s
development.

Audience

This chapter applies to all members of a software development team.

Assessing the State of your Project

In Functional Testing, we described how you use ClearQuest to report a defect in the
software. In this chapter, you learn how using ClearQuest helps you to assess the state
of your project by creating charts and queries.

ClearQuest is a change request management tool that helps you track and manage all
the activities (such as defects and enhancement requests) associated with a project.

ClearQuest stores its information in a database, and comes with a ready-to-use
database schema. A database schema describes the fields in the database). ClearQuest is
easy to change; an administrator can customize and define queries, records, fields,
activities, and states specific to your development process.

Showing the Workload

At the end of an iteration, you want to review each project member’s workload so that
you can most effectively allocate work for the next iteration. Using ClearQuest, you
can display a workload chart. Within a workload chart, you use ClearQuest to learn
more about a specific team member’s workload. This feature may be helpful if you are
interested in learning about the defects and related details assigned to an individual.
59

Other Planning Activities

During an iteration, you usually work both to correct defects and to implement
enhancements. As part of planning, you might also use ClearQuest or RequisitePro to
identify the work to do in the next iteration.

During iteration planning, you can produce a Rational SoDA report showing the
defects and enhancements planned for the next iteration.

What Will Happen in the Next Iteration?

The next iteration will proceed much as this one has. Once it’s planned, the following
activities will transpire:

■ An analyst discusses planned enhancements with stakeholders. Using
RequisitePro and Rose, the analyst creates one or more use cases and supplies
step-by-step details, including basic flow and alternative flows.

■ A test engineer uses Rational TestManager to plan the tests for this iteration. The
engineer creates a test plan, develops test requirements, and designs tests.

■ A developer uses visual modeling techniques available in Rose to describe how
planned enhancements fit within the architecture of the system.

■ Anyone on the team can use SoDA to create a use case report. This report is useful
during discussions with stakeholders and design sessions.

■ Developers use Rose to initiate implementation of the enhancement.

■ Test engineers use TestFactory, Purify, Quantify, and PureCoverage to verify the
iteration’s reliability.

■ Test engineers use Rational TestManager and Robot to verify that the
enhancements meet requirements, that defects are fixed correctly, and that no
regression failures have occurred.

■ Throughout the project, team members use Unified Change Management (UCM)
to manage change in their system’s development from requirements to release.

■ All members of the team use ClearCase LT to make changes to project artifacts.
Project members each work in private development workspaces. When they finish
their work, they deliver artifacts to the team’s public integration workspace.

■ Meanwhile, project and group managers use ClearQuest, SoDA, and RequisitePro
to assess that state of the project. Later, they use these tools to plan subsequent
iterations.
60 Chapter 10 - Planning the Next Iteration

Summary

For More Information

To learn more about topics described in this book, consider taking a Rational
University course. In these courses, you can get hands-on experience with a specific
Rational tool, or you can learn more about software engineering principles (Object
Oriented Analysis and Design, Automating Software Test, and so on).

To learn more about these courses, please see http://www.rational.com/university.

What You Learned in this Chapter

In this chapter, you learned:

■ ClearQuest is a powerful tool that helps you manage and monitor change requests
on your project.

What You Learned in this Book
■ Rational Suite unifies your team by enhancing team communication.

■ Rational Suite optimizes individual team member productivity by providing
market-leading development tools for each member of a software development
team.

■ Rational Suite simplifies adoption by providing a comprehensive set of integrated
tools that have simple installation, licensing, and user support.

■ Rational Suite supports the entire development life cycle and the primary roles on
a development team – analysts, developers, testers, and managers.

What’s Next

Congratulations! You have learned how Rational Suite helps you plan, design,
implement, and test software applications. Your next job is to learn more about the
tools you will use on your next project and to get to work! We hope that by using
Rational Suite to plan, design, implement, and test applications, your team will
successfully meet the challenges of rapidly developing high-quality software.
Summary 61

Rational Suite Summary

This table shows which tools are included with each edition of Rational Suite.

Rational Tool
Analyst
Studio

Development
Studio
(Windows or
UNIX)

Development
Studio -
RealTime
Edition

Test
Studio

Team
Unifying
Platform

Enterprise

Rational Unified
Process

X X X X X X

Rational
RequisitePro

X X X X X X

Rational
ClearQuest

X X X X X X

Rational SoDA
for Word
(Windows) or for
FrameMaker
(UNIX)

X X X X X X

Rational
ClearCase LT

X X
(Windows)

X X X X

Rational
TestManager

X X X X X X

Rational Rose Data Modeler
Edition

Enterprise
Edition

RealTime
Edition

Enterprise
Edition

Rational Robot X X

Rational
TestFactory

X X

Rational
PureCoverage

X X X X

Rational Purify X X X X

Rational Quantify X X X X

Rational
QualityArchitect

X
(Windows)

X

62 Chapter 10 - Planning the Next Iteration

Rational Suite Summary 63

64 Chapter 10 - Planning the Next Iteration

Glossary

activity. A unit of work that a team member performs.

actor. Someone or something, outside the system or business, that interacts with the system or business.

analyst. A person who determines what the system does, specifies and manages requirements, and
represents the user’s needs to the development organization.

artifact. A piece of information that is produced, modified, or used by a process; defines an area of
responsibility; and is subject to version control. There are many types of artifacts, including
requirements, models, model elements, documents, and source code.

automated testing. A testing technique wherein you use software tools to replace repetitive and
error-prone manual work. Automated testing saves time and enables a reliable, predictable, repeatable,
and accurate process.

class. In object-oriented programming, a set of objects that share the same responsibilities, relationships,
operations, attributes, and semantics.

component. A non-trivial, nearly independent, and replaceable part of a system that fulfills a clear
function in the context of a well-defined architecture.

component-based architecture. A design technique in which a software system is decomposed into
individual components.

configuration management. Helps teams control their day-to-day management of software
development activities as software is created, modified, built, and delivered. Comprehensive software
configuration management includes version control, workspace management, build management, and
process control to provide better project control and predictability.

developer. A person who determines how the system works; defines the architecture; and creates,
modifies, tests, and manages the code.

Extended Help. A powerful feature of Rational Suite that provides links from Rational Suite products to
the Rational Unified Process and any customized information you want to add.

forward engineering. The process of generating code from a Rational Rose visual model. See visual
model.

iterative development. The process of delivering a distinct sequence of executable files according to a
plan and evaluation criteria over the course of a project. Each executable file is more robust or contains
more features than the previous executable file; each new iteration moves you closer to the goal of
delivering a successful project.

method. In object-oriented programming, the implementation of an operation or procedure.

metrics. The measurements of project activity.

object. In object-oriented programming, a software component that contains a collection of data and
methods (procedures) for operating on that data.

phase. The time between two major project milestones, during which a well-defined set of objectives is
met, artifacts are completed, and decisions are made to move or not move into the next phase.
Glossary 65

Rational Administrator. Tool that manages Rational projects and associates repositories to define a
Rational project. For more information, see Using the Rational Administrator.

Rational ClearCase LT. Provides comprehensive configuration management, including version control,
workspace management, and process control.

Rational ClearQuest. A highly customizable Windows and Web-based change request management
tool that lets users track any type of change activity − defects and fixes, enhancement requests,
documentation changes, and so on − throughout the software development lifecycle.

Rational PureCoverage. Automatically pinpoints areas of code that have not been tested.

Rational Purify. Automatically pinpoints hard-to-find runtime memory errors in Windows NT
applications.

Rational Quantify. Automatically pinpoints performance bottlenecks in Visual Basic, Visual C++, and
Java applications.

Rational RequisitePro. Helps teams easily and comprehensively organize, prioritize, track, and control
changing requirements of a system or application. Rational RequisitePro does this through a deep
integration with Microsoft Word and a secure, multi-user database.

Rational Robot. Helps with functional testing by automating record and playback of test scripts. Lets
you organize, write, and run test suites, and capture and analyze the results.

Rational Rose. The world’s leading visual component modeling and development tool; lets you model
software applications that meet current business needs.

Rational SoDA for Word. Software Documentation Automation – Overcomes the obstacles of
consolidating data from different development tools. Lets you automate the creation of comprehensive
software, systems, and project documents from multiple sources.

Rational Suite. An easy-to-adopt-and-support solution that unifies software teams and optimizes the
productivity of analysts, developers, testers, and project managers.

Rational Suite AnalystStudio. Edition of Rational Suite optimized for system definition. Contains the
Team Unifying Platform − Rational Unified Process, RequisitePro, ClearCase LT, ClearQuest, SoDA, and
TestManager – and Rational Rose (Professional Data Modeler Edition).

Rational Suite DevelopmentStudio. Edition of Rational Suite optimized for software development.
Contains the Team Unifying Platform − Rational Unified Process, RequisitePro, ClearCase LT,
ClearQuest, SoDA, and TestManager – plus Rational Rose (Enterprise Edition), Rational Purify, Rational
Quantify, and Rational PureCoverage.

Rational Suite DevelopmentStudio - RealTime Edition. Edition of Rational Suite optimized for system
developers and designers of real-time or embedded systems. Contains the Team Unifying Platform –
Rational Unified Process, RequisitePro, ClearCase LT, ClearQuest, SoDA, and TestManager – plus
Rational Rose RealTime, Rational Purify, Rational Quantify, and Rational PureCoverage.

Rational Suite Enterprise. Edition of Rational Suite containing all Rational Suite tools.

Rational Suite Team Unifying Platform. Edition of Rational Suite optimized for all members of
software development teams to maximize productivity and quality. This Suite editions includes
these Team Unifying Platform − Rational Unified Process, RequisitePro, ClearCase LT, ClearQuest,
SoDA, and TestManager. All other Suite editions include the Team Unifying Platform.
66 Glossary

Rational Suite TestStudio. Edition of Rational Suite optimized for test engineers. Contains the Team
Unifying Platform − Rational Unified Process, RequisitePro, ClearCase LT, ClearQuest, SoDA, and
TestManager – and Rational PureCoverage, Rational Purify, Rational Quantify, Rational Robot and
Rational TestFactory.

Rational Synchronizer. Uses rules, either predefined or user-supplied, to give you a quick start on new
work. Creates or updates project items based on the existence of other items in your project, ensuring
that details do not fall through the cracks.

Rational TestFactory. Automates reliability testing by combining automatic test generation with source
code coverage analysis.

Rational Unified Process. A Web-enabled, searchable knowledge base that enhances team productivity
and delivers software best practices via guidelines, templates, and Tool Mentors for all critical software
development activities.

real-time application. An application or system with stringent requirements for latency, throughput,
reliability, and availability.

requirement. A condition or capability of a system, either derived directly from user needs or stated in a
contract, standard, specification, or other formally imposed document.

requirements management. A systematic approach to eliciting, organizing, and documenting a system’s
changing requirements, and establishing and maintaining agreement between the customer and the
project team.

reverse engineering. The process of updating a Rose visual model from code, so that the visual model
and code match. See visual model.

risk. The probability of adverse project impact (for example, schedule, budget, or technical).

risk management. Consciously identifying, anticipating, and addressing project risks and devising
plans for risk mitigation, as a way of ensuring the project’s success.

role. The behavior and responsibilities of an individual, or a set of individuals working together as a
team, within the context of a software engineering organization.

round-trip engineering. The ability to do both forward and reverse engineering as often as needed.

test case. A set of test inputs, execution conditions, and expected results developed for a particular
objective.

test configuration. The sequence of attributes for potential organizational structures of the system that
you will apply to your test cases.

test engineer. A person who creates, manages, and executes tests; ensures that the software meets all its
requirements; and reports the results and verifies fixes.

test input. Any artifact used to develop a system, and can be used to influence testing.

test plan. Contains information about the purpose and goals of testing within a project, and the
strategies to be used to implement and execute testing.

Tool Mentor. Step-by-step instructions on how to use a specific Rational tool to perform an activity
described in the Rational Unified Process.

traceability. The ability to trace one project element to other, related project elements.
Glossary 67

Unified Modeling Language (UML). The industry-standard language for specifying, visualizing,
constructing, and documenting software systems. It simplifies software design, and communication
about the design.

use case. A sequence of actions a system performs that yields observable results of value to a particular
actor. A use case specification contains all the main, alternate, and exception flows of events related to
producing the “observable result of value.”

version control. The process of tracking the revision history of files and directories.

vision document. A document that contains a high-level view of the user’s or customer’s understanding
of the system to be developed.

visual model. A graphic representation of a system’s structure and interrelationships.

workflow. The sequence of activities performed by roles to attain an observable value.
68 Glossary

Index
A
activity 13, 65

delivering 35
actor 14, 65
analyst 5, 65

tools 19
AnalystStudio 5, 6, 42, 66
architecture

component-based 2
visual modeling 39

artifact 13, 14, 19, 25, 65
and ClearCase LT 35
managing change 33

automated testing 49, 56, 65

B
baseline 35

promoting 36
best script 50

TestFactory 51
budget and predictability 11

C
change

in requirements 20
managing 3

change control 3
change set 35
class 65

class diagram 42
identifying in Rose 42

ClearCase LT 5, 33, 34, 45, 66
and ClearQuest 35
and UCM 35

ClearQuest 5, 34, 45, 66
and ClearCase LT 35
and Robot 57
assessing project status 59

code, implementing 42
component 2, 65
component-based architecture 65
configuration management 5, 33, 65
controlling software changes 3

D
database, RequisitePro 20
defect reporting 57
defect script, TestFactory 51
designing

component-based architecture 2
tests 30

developer 6, 65
tools 19

developing software
See software development

development stream 35
development view 35
DevelopmentStudio 6, 66

RealTime Edition 66
document, in RequisitePro 20

E
e-business 15
Enterprise Edition

Rational Suite 66
Rose 6

error reporting 57
Extended Help 15, 65
Index 69

F
forward engineering 65
functional testing 55

H
Help, Extended 15

I
implementing code 42
instrumenting in TestFactory 50
integration

stream 35
view 35

iterative development 2, 65
and Rational Unified Process 12

J
Java

and PureCoverage 52
and Quantify 52
and Rose 42

joining a project 35

M
managing change 3, 33
managing requirements

See requirement, managing
managing risk 26
managing software changes 3
mapping an application in TestFactory 50
memory leaks 52
method 65
metrics 65
Microsoft Project, and RequisitePro 22

Microsoft Visual Basic
and PureCoverage 52
and Quantify 52
and Rose 42

Microsoft Visual C++
and PureCoverage 52
and Purify 52
and Quantify 52
and Rose 42

modeling visually
See visual modeling

O
object 65

identifying in Rose 42

P
performance testing 52
phase 65
Pilot, running in TestFactory 51
planning a script, TestManager 56
playing back a script 57
process

See Rational Unified Process
Professional Data Modeler Edition

Rose 6
project state, assessing 59
PureCoverage 7, 31, 49, 52, 66

and Java 52
and Microsoft Visual Basic 52
and Microsoft Visual C++ 52

Purify 7, 31, 49, 52, 66
and Microsoft Visual C++ 52

Q
quality engineer, role of 7
quality, verifying

See testing
70 Index

Quantify 7, 31, 49, 52, 66
and Java 52
and Microsoft Visual Basic 52
and Microsoft Visual C++ 52

R
Rational Administrator 29, 66
Rational ClearCase LT

See ClearCase LT
Rational ClearQuest

See ClearQuest
Rational project 35
Rational PureCoverage

See PureCoverage
Rational Purify

See Purify
Rational Quantify

See Quantify 7
Rational RequisitePro

See RequisitePro
Rational Robot

See Robot
Rational Rose 19

See Rose
Web Publisher 41

Rational SoDA
See SoDA

Rational Software, mission 2
Rational Suite 1, 66

AnalystStudio 5, 42, 66
benefits 4
DevelopmentStudio 6, 66
DevelopmentStudio - RealTime Edition 66
Enterprise Edition 66
Team Unifying Platform 4, 66
TestStudio 7, 31, 67
tools 4

Rational Synchronizer 67
Rational Technical Support xi
Rational TestFactory

See TestFactory

Rational TestManager
See TestManager

Rational Unified Process 1, 5, 11, 67
Extended Help 15
overview 11
phases and iterations 12
Tool Mentor 15

real-time application 67
rebasing a stream (UCM) 36
recording a script, Robot 56
reliability testing 49
reports, creating with SoDA 45
requirement 17, 67

and change 20
managing 2, 19, 67
types 22

RequisitePro 5, 29, 45, 66
database features 20
document features 20
integration with Microsoft Project 22
Views Workplace 20
Word Workplace 20

reverse engineering 67
risk management 26, 67
Robot 8, 31, 52, 55, 66

and ClearQuest 57
and TestFactory 51
playing back a script, Robot 57
recording a script 56
reviewing test results 57

role 13, 67
Rose 19, 29, 31, 39, 42, 45, 66

class diagram 42
Enterprise Edition 6
Java 42
Microsoft Visual Basic 42
Microsoft Visual C++ 42
Professional Data Modeler Edition 6
RealTime 7
Web publishing 41

round-trip engineering 67
run-time errors 52
RUP, See Rational Unified Process
Index 71

S
schedule

predictability 11
test efforts 31

script
best script, TestFactory 51
defect script, TestFactory 51
planning, TestManager 56
playing back 57
recording, Robot 56

sequence diagram 39
and use case 39

SoDA 5, 45, 66
software development

common problems 1
component-based architecture 2
controlling change 3
iterative development 2
managing requirements 2
verifying quality 3
visual modeling 3

software engineer, role of 6
SQABasic 56

T
Team Unifying Platform 4, 66
test case 25, 28, 55, 67

designing 30
folder 27

test configuration 25, 67
test engineer 7, 67
test input 25, 67
test plan 27, 67
test planning 25, 30

creating scripts 56
identifying risks and resources 30
scheduling 31

test types 31
test script 55
test suite 51

and Robot 56
tester, role of 7
TestFactory 8, 31, 49, 50, 67

and Robot 51
instrumenting 50
mapping an application 50
running a Pilot 51

testing
coverage 52
functional 55
memory leaks 52
performance 52
planning activities 25
run-time errors 52
verification point 57
verifying quality 3

TestManager 5, 26, 28, 45, 55
and Robot 57

TestStudio 7, 31, 67
Tool Mentor 15, 67
tools in Rational Suite 4
traceability 67

U
UML, See Unified Modeling Language 6
Unified Change Management (UCM) 33
Unified Modeling Language 6, 8, 12, 19, 68
Unified Process, See Rational Unified Process
use case 15, 68

and sequence diagram 39
and visual modeling 18
benefits to team 18
report 45, 46

use case diagram 18
use case requirement 19
72 Index

V
verification point 57
verifying software quality, See testing
version control 68
Views Workplace in RequisitePro 20
vision document 68
visual model 68

visual modeling 3, 39
implementing code 42
maintaining consistency with code 42

W
Web versions of Rose models 41
Word Workplace in RequisitePro 20
workflow 12, 14, 68
Index 73

74 Index

	Getting Started with Rational Suite
	Preface ix
	1

	Welcome to Rational�Suite 1
	2

	Learning About the Rational Unified Process 11
	3

	Managing Requirements 17
	4

	Test Planning 25
	5

	Managing Changing Artifacts 33
	6

	Modeling an Enhancement 39
	7

	Creating a Use�Case�Report 45
	8

	Reliability Testing 49
	9

	Functional Testing 55
	10

	Planning the Next Iteration 59
	Glossary 65
	Index 69

	Preface
	Audience
	Other Resources
	Rational Suite Documentation Roadmap
	Contacting Rational Technical Support

	Welcome to Rational�Suite
	About this Book
	Principles of Software Development
	Rational Suite Can Help
	What’s in Rational Suite?
	Tools that Unify Your Team
	Rational Suite Team Unifying Platform

	Tools for Analysts
	Rational Suite AnalystStudio

	Tools for Developers
	Rational Suite DevelopmentStudio
	Rational Suite DevelopmentStudio – RealTime Edition

	Tools for Test Engineers
	Rational Suite TestStudio

	Rational Suite Enterprise

	For More Information
	What’s Next

	Learning About the Rational Unified Process
	Audience
	What Is the Rational Unified Process?
	The Rational Unified Process and Rational Suite

	Learning the Mechanics
	The Process at a Glance
	Key Concepts
	Starting with Actors and Use Cases

	Tool Mentors: Implementing the Process Using Rational Tools
	Extended Help
	Learning about Developing e-Business Solutions
	Summary
	For More Information
	What You Learned in this Chapter
	What’s Next

	Managing Requirements
	Audience
	Why Worry About Requirements?
	Where Do Requirements Come From?

	Starting Requirements Work with Use Cases
	Why Work with Use Cases?
	Creating Use Case Diagrams with Rational Rose
	Learning More About Use Cases

	Managing Requirements
	Using RequisitePro to Manage Requirements
	How Does RequisitePro Work?

	Developing Requirements with Use Cases
	Other Requirement Types
	When Have You Finished Gathering Requirements?
	Planning and Scheduling

	Summary
	For More Information
	What You Learned in this Chapter
	What’s Next

	Test Planning
	Audience
	What Is Test Planning?
	Managing Risk
	Making a Plan and Measuring Progress

	Developing a Test Plan
	Organizing Your Test Plan

	Determining What to Test
	Working with Test Cases
	Test Inputs from Rational RequisitePro
	Test Inputs from Rational Rose
	Elaborating on Test Cases

	Continuing with Test Planning
	Risks and Resources
	Types of Tests
	Stages of Testing
	Scheduling

	Summary
	For More Information
	What You Learned in this Chapter
	What’s Next

	Managing Changing Artifacts
	Audience
	What is Unified Change Management?
	UCM Tools

	ClearCase LT and UCM - Using the Tool with the Process
	Summary
	For More Information
	What You Learned in this Chapter
	What’s Next

	Modeling an Enhancement
	Audience
	What Is Visual Modeling?
	Working with a Sequence Diagram
	Updating a Sequence Diagram

	Continuing Work with a Sequence Diagram
	Publishing a Model to the Web
	Refining Objects
	Implementing Code
	Modeling Data
	Advantages

	Completing Your Work
	Summary
	For More Information
	What You Learned in this Chapter
	What’s Next

	Creating a Use�Case�Report
	Audience
	What Is SoDA?
	Using SoDA Templates

	Why Generate a Use Case Report?
	Generating a Use Case Report

	Summary
	For More Information
	What You Learned in this Chapter
	What’s Next

	Reliability Testing
	Audience
	Reliability Testing Tools
	What Is Rational TestFactory?
	Overview of Process
	Instrumenting the Application
	Mapping the Application
	Running a Pilot
	Test Suites: Putting It All Together
	Using TestFactory with Rational Robot

	Additional Testing Tools in Rational Suite
	Rational Purify
	Rational PureCoverage
	Rational Quantify

	Summary
	For More Information
	What You Learned in this Chapter
	What’s Next

	Functional Testing
	Audience
	What Is Functional Testing?
	Working with Test Scripts
	Creating a Test Script

	Recording the Script
	Scripts and Modularity
	Creating a Verification Point

	Playing Back the Script On a New Build
	Analyzing the Results
	Handling Failures

	Summary
	For More Information
	What You Learned in this Chapter
	What’s Next

	Planning the Next Iteration
	Audience
	Assessing the State of your Project
	Showing the Workload

	Other Planning Activities
	What Will Happen in the Next Iteration?
	Summary
	For More Information
	What You Learned in this Chapter
	What You Learned in this Book
	What’s Next

	Rational Suite Summary

	Glossary
	Index

