Rational the e-development company™

WINDOWS

Getting Started with
Rationale PurifyPlus

PART NUMBER: 800-024651-000

support@rational.com
http://www.rational.com

Rationar

the e-development company™

COPYRIGHT NOTICE
Copyright 0 2001 Rational Software Corporation. All rights reserved.

THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS INFORMATION PROPRIETARY
TO RATIONAL. ANY COPYING, ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF RATIONAL IS STRICTLY
PROHIBITED. THE RECEIPT OR POSSESSION OF THIS DOCUMENT DOES NOT CONVEY ANY
RIGHTS TO REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, USE, OR SELL
ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART, WITHOUT THE SPECIFIC WRITTEN
CONSENT OF RATIONAL.

U.S. GOVERNMENT RIGHTS NOTICE

U.S. GOVERNMENT RIGHTS. Use, duplication, or disclosure by the U.S. Government is subject to
restrictions set forth in the applicable Rational License Agreement and in DFARS 227.7202-1(a) and
227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR
52.227-14, as applicable.

TRADEMARK NOTICE

Rational, the Rational logo, Purify, Purify’d, PureCoverage, Quantify, ClearQuest, and Rational Visual Test
are trademarks or registered trademarks of Rational Software Corporation in the United States and in other
countries.

Visual C++, Windows NT, Visual Studio, and Microsoft are trademarks or registered trademarks of the
Microsoft Corporation. All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies.

U.S. PATENT NOTICE

U.S. Registered Patent Nos. 5,193,180 and 5,335,344 and 5,535,329. Licensed under Sun Microsystems Inc.’s
U.S. Pat. No. 5,404,499. Other U.S. and foreign patents pending.

Printed in the U.S.A.

Contents

Welcome to Rational PurifyPlus 5
Rational PurifyPlus: Whatitdoes i 5
Tips for development engineers 6
Tips for test engineers e 7
Other PurifyPIuS reSOUICES e e 8
Contacting Rational technical support 9
Contacting Rational technical publications. 9
Introducing Rational Purify 11
For Visual C/C++ developersandtesters., 11
Find errors before they occur 11
Check every componentin your program. 12
Look for errors intherightplaces. i 12
Use Purify earlyand often 13

For Java developers and testers. 13
Java memory leaks?. 13
Object references that are no longerneeded. 14
System resources thatare notfreed 14
How Purify can help 14
Getting started with Purify: C/C++code. 17
The basiC StEPS. . . oo e 17
Running a C/C++ program with Purify 17
Seeing allyourerrorsataglance. i 20
When identical errorsrepeat 21
Focusing on critical errors first e 22
Working with error datafilters 23
Analyzing Purify errordata 24
(0] ¢ 1= i1 o =T (o £ 25
Checking code coveraget e 26
Comparing Program FUNS . . . ottt e e e e e e e e e e 27
Saving Purify data. 28
Advanced features for C/C++ USEISottt e 29
Customizing instrumentation e 29
Using just-in-time debugging e 30

Using Purify standalone e 31

Testing with Purify’s command-line interface 32
Extending error checking with Purify APl functions 33

Using Purify in an integrated environment 33
Getting started with Purify: Javacode 37
The basiC StePS. . . oo e 37
Running your Java program with Purify 38
Taking snapshots of memory use i e 39
Comparing snapshots to identify problem methods 40
Diagnosing leaks with the Function List Viewtab........................... 42
Focusing on a method with the Function Detail window. 43
Looking for unneeded objects. e 44
Getting from a suspicious method toitsobjects. 44
Examining objectdetails. 45
Looking at all allocated objects together 45

Saving Purify memory profilingdata. 47
Advanced features for Java USErS. oottt e 47
Highlighting methods that share key attributes. 47
Focusingyour data. 48

X . o 51

iv Contents

Welcome to
Rational PurifyPlus

Rational PurifyPlus: What it does

Rational®PurifyPlus brings together three essential tools that help you
develop high-quality applications more efficiently:

« Rational Purify® An automatic error detection tool for finding
runtime errors and memory leaks in every component of your
program.

Rational Quantify® A performance analysis tool for pinpointing
performance bottlenecks so your program can run faster.

» Rational PureCoverage® A code coverage tool for making sure your
code is thoroughly tested before you release it.

These tools are easy to use, yet provide invaluable information to help
your team develop faster and more reliable applications in Visual
C/C++, Visual Basic, Java, or any language that Microsoft

Visual Studio.NET supports.

If you’re developing code in Visual Studio, invoke the PurifyPlus tools
from the Visual Studio menus. You can use Purify, for example, along
with your Visual Studio debugger and editor to save time correcting

a software defect. You can also use the tools as standalone applications
when you don’t need all the resources of Visual Studio.

If you're testing software, incorporate the PurifyPlus tools into existing
test scripts and harnesses to automate error detection, code-coverage
monitoring, and performance testing. Use the tools from the beginning
with your nightly tests so that you can easily spot regressions as soon as
they occur.

Do yourself a favor. Don’t waste days looking for problems that
PurifyPlus can pinpoint in seconds. And don’t release a product with
hidden bugs that these tools can detect easily. Consistent use of the
PurifyPlus tools, from the start of development until you ship, will
provide solid benefits both to you and to your customers.

Tips for development engineers

Here are some tips for using PurifyPlus to develop fast, reliable code.

Find memory errors early Prevent performance

Use Purify with Visual Studio to bottlenecks

pinpoint hard-to-find bugs. Whenever you write new code or
Memory errors don’t always show modify existing code, use Quantify
up right away, but they’re the right away to catch any

ones that will make your program incremental performance losses
crash someday. before they turn into bottlenecks.

Quantify gives you the information
you need to write more efficient
code. It can turn everyone on your
team into a performance engineer.

PureCoverage

Analyze code structure

A common reason for writing new
code is to improve the performance
of a program. But how can you
You haven’t Purify’d® code you effectively improve the

haven’t run. Use PureCoverage performance of code that might
from within Purify to make sure have been developed over several

you're exercising all your code years by many different people?
during pre-checkin testing—just

click Coverage, error, and leak data
in Purify’s Run Program dialog.

Improve code coverage

Use Quantify not only to find
performance bottlenecks, but also
to learn more about how your code
PureCoverage can tell you if your s structured. It will help you to

tests are covering your code make effective performance
sufficiently for Purify to find all improvements.

the memory errors.

6 Welcome to Rational PurifyPlus

Tips for test engineers

Here are some tips for using PurifyPlus to guarantee quality software.

Find the internal errors in
your code

For best results, run all your tests
on a Purify’d version of your
program. This will find the
internal errors that your external
functionality tests can’t uncover.

If performance
improves . ..

An unexpected improvement in
performance can indicate that a
large part of your code is no
longer being exercised. Compare
the most recent PureCoverage
results with a previous run to see
if you're still getting the same
level of coverage.

Test all your code daily

Use PureCoverage every day to
make sure you're testing all your
code. With ongoing coverage
feedback, you can be sure your
tests are keeping pace with your
code development.

PureCoverage

If coverage goes down . ..

If code coverage drops, your
existing tests may not be exercising
all your code. Or the new code
might have introduced a defect
that’s causing a large section of
code not to be tested. Use an
automated testing tool like
Rational Robot or Rational Visual
Test® to write test cases that
exercise the new code.

If performance drops . ..

A sudden drop in performance is
probably caused by the most recent
code checked in. Let Quantify
show you which parts of your
program became slower compared
to a previous run that had
acceptable performance.

Rational PurifyPlus: What it does 7

Other PurifyPlus resources

Additional information is available for all the PurifyPlus tools:

To use Purify to automatically pinpoint hard-to-find bugs in
C/C++ and Java code, read the rest of this manual

KT

i e o Somes s

};Elémﬂﬂﬂ lﬁwkfxﬂ 20l

o]

|
e
i i) 3] o slesl] AL

2| |[Displayed Evers: 1721 of 1721

| isyearos 701 o700

To highlight performance bottlenecks, read
Getting Started with Rational Quantify

Onldle>

Rigitied 777

mHMe[ernarse\)/

Registerall>

_ —— For
LoatFrame>.CoRegisterC

. P @7sorrec)

S 5755 ot et

Onidie>— OnCreate>

To avoid shipping untested code, read
Getting Started with Rational PureCoverage

e

18 &in) o] ale] 5] ol -] [E5] gl s <

552 DAPWALK gy
Auto Merg:

[CeaeDebugevents

=] o x|

B Run@o4

o

Kl

char szEvent(NAX_PATH|:

LoadString (GetlioduleHandle (NULL), IDS_DEGEVNTACTIVE, szEve
if (1 (LpDhgBvents DEBUGACTIVE] =
TR,

ent,
CraateEvent ((LPSECURITY_ATTRIS

TRUE,
ssBvent)|]

I of

return FALSE;

Line: 12301 1466

Funct

|

T
Porcont | calle B

Ve 21745
ey

"Time

The online Help for Purify, Quantify, and PureCoverage contains
detailed information about using the products and interpreting the data

they collect.

For information about Rational Software and other Rational products,

go to http://www.rational.com.

8 Welcome to Rational PurifyPlus

Contacting Rational technical support

You can contact Rational technical support by email at
support@rational.com.

You can also reach Rational technical support over the Internet or by
telephone. For contact information, as well as for answers to common
questions about Purify, Quantify, and PureCoverage, go to
http://www.rational.com/support.

Contacting Rational technical publications

To order copies of Rational publications, go to the Rational Press at
http://www.rational.com/support/documentation/index.jsp#press.

Please send any feedback about Rational documentation to the Rational
technical publications department at techpubs@rational.com.

Other PurifyPlus resources 9

10 Welcome to Rational PurifyPlus

Introducing
Rational Purify

Whether you’re working in Visual C/C++ or Java, Rational® Purify® can
save you time and improve the quality of your code.

For Visual C/C++ developers and testers

Run-time memory errors and leaks are among the most difficult errors
to locate and the most important to correct. The symptoms of incorrect
memory use are unpredictable and typically appear far from the cause
of the error. The errors often remain undetected until triggered by some
random event, so that a program can seem to work correctly when in
fact it’s only working by accident.

That’s where Purify can help you get ahead. Purify provides:

Fast, comprehensive run-time error detection for Visual C/C++
programs

» Error checking even when the source is not available
» Code-coverage data that pinpoints untested code

Purify automatically integrates into Microsoft Visual Studio and
requires no special builds. You can use Purify without changing the
way you work.

Find errors before they occur

Purify detects the following kinds of memory errors—and many
others—before they actually occur, so that you can resolve them before
they do any damage:

Array bounds errors
Accesses through dangling pointers
Uninitialized memory reads

» Memory allocation errors

* Memory leaks

11

More information? For a complete list of the errors that Purify detects,
select Purify Messages from the Purify Help menu.

Check every component in your program

Software development today is component based. To deliver quality
applications on time, you not only need to make sure your own code is
error free, you also need a way to check the components your software
uses—even when you don’t have the source code. Errors that occur
within a component may be the result of your code supplying the
component with unexpected data; only Purify can detect such errors so
that you can correct your use of the component and improve the
reliability of your application.

Purify can check every component in your program, even in complex
multi-threaded, multi-process applications, including:

= DLLs, including Windows DLLs and Microsoft Foundation Class
Library DLLs

Visual C/C++ components embedded within Visual Basic
applications, Internet Explorer, Netscape Navigator, or any
Microsoft Office application

= Microsoft Excel and Microsoft Word plug-ins
= COM-enabled applications using OLE and ActiveX controls

Purify checks calls to Windows API functions, including GDI, Internet
services, system registry, and COM and OLE interface API functions. It
also validates parameters such as memory handles and pointers.

Look for errors in the right places

12

In addition to finding the critical errors that occur when you exercise
your program, Purify can also tell you how thoroughly you’ve covered
your program’s code. With PurifyPlus, Purify can collect coverage data
automatically for every run, report exactly how much of your code
you’ve checked, and identify untested lines and functions. Using this
information you can be sure you’re finding the errors in all your code,
and that you won’t be caught off-guard by undiscovered problems in
lines or functions that you overlooked.

More information? Look up coverage data in the Purify online Help
index.

Introducing Rational Purify

Use Purify early and often

For maximum benefit, start using Purify as soon as your code is ready
to run and continue using it regularly throughout your development
cycle, especially for;

Code check-in. Reduce the risk that bugs in your code might impact
other code modules.

» Nightly tests. Incorporate Purify into your test harness to verify that
modules work together and to expose code dependencies and
collisions. Collect coverage data for every run to make sure that
your tests are exercising any code that has been added or modified.

» Acceptance tests. Validate third-party code or code from other
development groups before incorporating it into your application.

By using Purify early and often, you’ll release clean, reliable
products—on time.

More information? PurifyPlus tools help you improve not only your
application’s reliability, but also its performance. Using Quantify, you
can pinpoint and eliminate the bottlenecks that prevent your
application from operating at its greatest potential speed. Read Getting
Started with Rational Quantify for an introduction to Quantify’s features.

For Java developers and testers

Java memory leaks?
Yes, there are Java memory leaks, and they can be serious.

The Java garbage collector automatically removes from memory objects
that your program no longer needs, and so avoids most of the memory
leaks that occur in other programming contexts. But Java applications
can still consume more and more memory over time. The causes for this
can be extremely difficult to track down. Purify makes it much easier to
find and fix them.

There are two major categories of leaks in Java: object references that
are no longer needed, and system resources that are not freed.

For Java developers and testers 13

Object references that are no longer needed

Very often, Java code retains references to memory that it no longer
needs, and this prevents the memory from being garbage collected.
Java objects typically include references to other objects, so a single
object can hold an entire tree of objects in memory. Problems occur, for
example, when you:

= add objects to arrays and forget about them.

do not release references to an object until the next time you use the
object. A menu command, for example, can create an object and not
release references to the object until the next time the command is
called, which may never happen.

= change an object’s state while some references still reflect the old
state. For example, when you store properties for a text file in an
array and then store properties for a binary file, some fields, such as
“number of characters,” continue to hold memory that is no longer
needed.

= allow a reference to be pinned by a long-running thread. Setting the
object reference to NULL does not help; the memory won’t be
garbage collected until the thread terminates or goes idle.

System resources that are not freed

Java methods can also allocate heap memory that exists outside of Java
instances, such as resources for windows and bitmaps. Java often
allocates these resources by calling C or C++ routines using Java Native
Interface (JNI) calls.

How Purify can help

14

Purify helps you find these Java memory leaks by reporting the
methods, classes, and objects that are responsible for monopolizing
large chunks of memory that the garbage collector does not free.

Using the data Purify gathers, you can zero in on memory problems.
Once you've located them, you can eliminate references to unneeded
objects, or force garbage collections in key areas of your code. To free
system resources, check your Java toolkit for help. For example, the

di spose() method in Sun Microsystem’s Abstract Windowing Toolkit
(AWT) frees the system resources used by the Frame, Dialog, and
Graphics classes.

Introducing Rational Purify

More information? In addition to detecting excessive memory
consumption with Purify, you can also improve your application’s
performance and increase your confidence in your testing using the
other PurifyPlus tools, Quantify and PureCoverage. Quantify can help
you find the bottlenecks that slow down your code, and PureCoverage
can show you the areas in your code that your tests are not reaching.
Read Getting Started with Rational Quantify and Getting Started with
Rational PureCoverage to see how these tools can help you.

For Java developers and testers 15

16 Introducing Rational Purify

Getting started with
Purify: C/C++ code

The basic steps

With Rational® Purify®, you can deliver more reliable C/C++ code in a
few easy steps:

1 Runyour program with Purify to collect:
o Error data
o Code coverage data
2 Analyze the error data and correct your source code.

3 Ifyou’ve collected coverage data, analyze it to find any parts of your
code that you have not Purify’d®.

4 Rerun your program with Purify.

This chapter shows you how to use Purify in Microsoft Visual Studio.
But you can also use Purify independently of Visual Studio. Read
“Using Purify standalone” on page 31 of this guide, and “Testing with
Purify’s command-line interface” on page 32.

Running a C/C++ program with Purify

Open your project in Visual Studio, then engage Purify from the Purify
toolbar.

Set Purify to collect coverage data, as well as checking for errors and
memory leaks.

Click to engage Purify—p|p|@]|xﬁl | EI| @|[§I|§>|E§
Click to collectg

coverage data

17

The module that Purify is

currently instrumenting ——{= stackvcfiese 344160 Precise Line e N

The instrumentation
level for error checking
and coverage monitoring
for each module

Build and execute your program using commands from the

Visual Studio Build menu. To get the maximum level of detail in Purify
error and coverage data, build your program with debug and relocation
data.

More information? For information about building programs with
debug and relocation data, look up debug data in the Purify online Help
index.

Purify copies the program and each library the program calls, then
instruments the copies using Object Code Insertion (OCI) technology.
The instrumentation process inserts instructions that validate every
read, write, and memory allocation and deallocation. If you're
collecting coverage data, Purify also inserts instructions that increment
counters when you exercise specific lines and functions.

Purify reports its progress as it instruments each module.

|
Purify Instrumenting stockvch.exe .. 9= =

RPCLTCI.OLL 13584 Minimal Exclude
RFCLTS1.0LL 8976 Minimal _Exclude
KERMEL32.DLL 372436 Minimal | Exclude

GDI32DLL 165648 Minimal Exclude
COMDLG32DLL 185104 Minimal Excluds
WINSPOOLDRY 92344 Minimal Exclude
ADWAPIZZDLL 246544 Minimal Exclude

[
[
[
USER32DLL 330512 Minimal Exclude |
[
[
[
[

LCancel Instrumentation | Help |

Purify instruments each module at a default instrumentation level, but
you can customize the instrumentation level to provide more or less
detail for special cases.

More information? For an explanation of instrumentation levels and
how to use them, read “Customizing instrumentation” on page 29 of
this guide. For more detail, look up instrumenting in the Purify online
Help index.

Purify caches the instrumented copy of each module. When you rerun a
program, Purify saves time and resources by using the cached modules,
re-instrumenting only the ones that have changed since the previous
run.

18 Getting started with Purify: C/C++ code

Purify Error View tab,
Data Browser window

As you exercise your program, Purify detects run-time errors and
memory leaks and displays them in an Error View tab in the Purify
Data Browser window.

**., stockvch - Miciosoft Visual C++ - [Rational Purify Main Window]

pfile Edit Miew Inset Project Bulld Tools Purfy PuieCoversge Huantify Window Help == x|

G e = —— N
EEEEEEEE B RS R
N IB IR [£ 0ot proveerPurivd siovkvct e —— =3 |

T wirkspan =
L o @ suto M | [enorView | Module View] File Vien | Function List Vi |
E-E# Stac! © Fun @06
=434 5¢ @) Starting Purify'd stockvob.eaxe at 08/05/99 16:22:52 &

E

@ Starting main
) ABW: Array bounds write in CStockipp::CStockippivoi

M MR: Uninitialized memory read in SetWindowTexth {1:
- # UMR: Uninitialized memory read in stramp {17 occurre
- # UMR: Uninitialized memory read in lstrlend {14 occuws
M MR: Uninitialized memory read in MultiBytsToWideCh:
& MR: Uninitialized memory read in MultiBytsToWideCh
) ABW: Array bounds write in sprintf {47 occurrences}
@) ABR: Array bounds read in SstWindowTexth {646 occur:
#-@) ABR: Array bounds read in lstrlenk {830 occurrences
@) ABR: Array bounds read in SstWindowTexth {184 occur:
) ABW: Array bounds write in sprintf {13 ﬂccurrgncgsilll

[l gl | ¥

w2 Ld | 21| Displaped Encrs. 1721 of 1721 Displaped Wamings. 530l 53 Bytes leaked: 00 7
X[Purify . Instrunenting D.~Program Files-Hational-Purify.sanples~StockNImReleasevstockvet . ea)
Hdl|Purify: Instrumentation finished e
H Build / Debug & Find in Files 1 & Find in Files2 j Results % SOL Debugging / DR »
Fieady Al

More information? Look up error view in the Purify online Help index.

Note: If you're debugging client/server and multi-process applications,
you can debug several processes and see the error reports for each
running application simultaneously. To do this, run each process in a
separate instance of Visual Studio with Purify engaged. Alternatively,
you can use the standalone Purify user interface. See “Using Purify
standalone” on page 31 of this guide.

Running a C/C++ program with Purify 19

Seeing all your errors at a glance

Purify displays error and warning messages about run-time errors and
memory leaks, and informational messages about the progress of your
program’s execution.

Color-coded icons show message severity:
€ informational /¥, warning error

¥ Dzta Browser: Purify'd stockvcE. exe

Errar iew | Module View | File iew | Function List View |

I:I--o Starting Purify'd stockwveh.exe at 08705799 16:22:52 -
¥ Starting main

write in
]--& UME: Uninitialized memory rea
74 UMR: Uninitialized memory read in str Copy
]--& UME: Uninitialized memory read in lst

Acronyms like ABW
identify message type

H-# UMR: Uninitialized memory read in Mul Submit Clearfuest Defect ances
7.4 UMR: Uninitialized memory read in Mul o ances
]--0 AEW: Array bounds write in sprintf {4 E;pandﬁranch

[Callapse

) AER: Array bounds reoad in lstrlend {2
]--0 AER: Array bounds read in SetWindowTe HuickFilter
Jf) AEW: Array bounds writes in sprintf {1 Create Filter...
]--o EXH: Handled exception in AfxThrowllse = ancal
f- ¥, HAN: Handle 0x00000001 is invalid in | SEW SouceflE o
]--& HAN: Handle OxEEEEEfff is inwvalid in | SelectSoucefile

For a description of a
message, right-click

£
£
£
£
£
£
I:I--o AER: Array bounds read in SetWindowTe
£
£
£
£
£
£

the message, then o Summary of all memory leaks... {0 bytes, 0 bhlocks}
select Describe []--o Bummary of all memory in use... {29034 byte=., 64 blocks} -
1] | Bl
|Displayed Ermorg: 1721 of 1721 Displayed Warnings: 53 of 53 Bytes leaked: 0+0 | o

When you exit the program, Purify reports memory leaks. In addition
to memory leaks, you can set Purify to report memory in use at exit and
handles in use at exit.

More information? Look up error and leak settings in the Purify online
Help index.

20 Getting started with Purify: C/C++ code

When identical errors repeat

An error often repeats many times in a program, particularly if it occurs
inside a loop. To provide a concise overview of a program’s errors,
Purify by default displays each error message only once, the first time
an error occurs, and then updates a counter whenever the error repeats.

1

i Data Browser: Purify'd stockvcE. exe
Ermar Wiew | Module View | File Wiew | Function List Viewl

[}‘, Starting Purify'd stockwveh.exe at 08705799 [16:22:52
¥ Starting main
H-) REW:
2: Uninitialized meamory read in
: Uninitialized memory read in stromp {17 ocourrencas}
: Uninitialized meamory read in lstrlend {14 occurrences}
: Uninitialized memory read in MultiBytaToWideChar {3 ocourrences
: Uninitialized memory read in MultiBytaToWideChar {3 ocourrences
i) REW:
1) AER:
1) AER:
1) AER:
i@ BEW:
o EXH:
- ¥, HAN:
- ¥, HAN:
-m‘, Summary of all memory leaks... {0 bytes, 0 blocks}
[}‘, Summary of all memory in use... {29034 bytas, 64 blocks] | _J:J
3

This uninitialized memory
read (UMR) occurred 17 times

| v

Array bounds write in C2tocklpp::CStogkipp(void] {1 occurrencal

SetWindowTexth {14 occurrences}

Array bounds write in sprintf {47 occurrencas}

Array bounds read in SetWindowTextd {646 ocourrences}
Array bounds read in lstrlend {8230 occurrences}

Array bounds read in SetWindowTexth {124 occurrences}
Array bounds write in sprintf {13 occurrencas}
Handled exception in AfxThrowUserException({void)] {1 occurrenca}
Handle 0x00000001 is invalid in GetObjactW {1 occurrenca}l e
Handle OxEffffEff is invalid in CGetObjactW {1 occurrenca}l

|Displayed Ermorg: 1721 of 1721 Displayed Warnings: 53 of 53 Bytes leaked: 0+0 o

More information? If you want Purify to display each occurrence of a
message individually, instead of reporting counts, you can change the
default setting. Look up error and leak settings in the Purify online Help

index.

Seeing all your errors at a glance 21

Focusing on critical errors first

A large program can generate hundreds of messages. To focus on the
most critical error messages quickly, create filters to hide all other
messages from the display.

You can filter messages individually, or you can filter them based on
their type and source. Consider hiding all informational messages, for
example, or all messages originating from a specific file.

An unfiltered error view displays all the A filtered error view displays only
messages from the program the messages you want to see
’ Data Browser:Purify'd stockvch.exe
Emar View I Module ViEWI File ‘iew | Function List Viewl
¥ Starting Purify'd stockveé.oxe at 08/05/99 15:22:52 =
-} Starting main

[]-o X 3¢ kA dl {1 occurrencel
[& MR : e Ay fry EmEs Wil in BatWindowTexth {14 occurrences}
[]-& UMR : Lopy in stramp {17 occurrences}
-/, UMR: - in lstrlend {14 occurrences}

Right-click -/ TR | Submit Clearfuest Defect in MultiByteToWideChar {3 occurrences

lg -Click a n”.lessf':lge [+ & MR : Expand in MultiByteToWidseChar {3 occurrences
and select QuickFilter e T, ntf {47 coourrences)
. =€) 2ER . — ndowTexth {646 occurrences}
to hide the message - apr: | 2E ank {830 occurrancas}
immediate]y G ABR: — QuickFiler ndowTextd {184 ocourrences}

[]-0 AEW : Create Filter... ntf {13 occurrances}
-} EXH: i - rowlserException(wvoid) {1 occurrence}

Or select Create Filter o B S ource File id in GetObjectW {1 occurrenca} b

. B8, HAN: s
to define a set © Sum ¥ Data Browser:Purnify'd stockvch exe
Of fi|tering Criteria []-o Surimaz | EmorYiew |Modu\eView File Viewl Function List V\ewl

d : Array bounds write in CStockfpp::CStockappiwvoid) {1 occurrenca}

1 Array bounds write in sprintf {47 occourrences}
: Array bounds read in SetWindowTextld {646 occurrencas}
: Array bounds read in lstrleni {830 occurrences}
0 AER: Array bhounds read in SetWindowTextd {124 occurrencas}
0 ABW: Array bounds write in sprintf {13 occurrences}

Displayed Erors: 1,

[Displayed Enors: 1721 of 1721 Displayed Wamings 0of 53 Bytes leaked 0+0 [7

Once created, error filters apply to the current run and to all future runs
of the program until you disable them. Disabling a filter causes hidden
messages to be redisplayed in the error view.

22 Getting started with Purify: C/C++ code

Working with error data filters

(= Q Al Filkers Type | Enabled | Diate | Carirnment |
The Filter Manager —— E| B stockvoh exe . Fiker ez 08/06/9910:22:08 CluickFilker
creates a filter group for o W] (22 My Filters ﬂ H&M: Handle ... Fiter “es 08/06/39 10:28:08 QuickFilter
each program you run [Z My Filkers Group Wes 08/06/3910:37:19 Assigned to GE
ﬂ Starting Purify... Filker Yes 08/06,/9310:27:12
1%} UMR: Uninitia... Fiter Mo 08/06/99 10:55:02

Drag and drop filters to
move or copy them

Purify filters are very flexible. Click the Filter Manager tool to create
individual filters or groups of filters, and to apply them to specific
programs or modules. You can also create global filters that apply to all
programs and modules. And you can share filters, which Purify saves
as . pft files, with other members of your team.

Click to enable or The checked filters apply to the selected
disable filters ~ program until you disable or delete them

Purify Filter Manager: Emor Data - stockvch exe
Filter Edit “iew Help

QK. I Cancel I Apply I Help |

More information? Purify provides filters for coverage data as well as
for error data. Look up filtering data in the Purify online Help index.

In addition to filtering, you can also use Purify’s PowerCheck feature to
focus on specific modules and simultaneously minimize
instrumentation time. For information about the PowerCheck feature,
read “Customizing instrumentation” on page 29 of this guide.

Focusing on critical errors first 23

Analyzing Purify error data

You can expand Purify’s messages to pinpoint where errors occur and to
obtain diagnostic information for understanding why they occur.

Here’s an example of an expanded ABW (array bounds write) error
message:

:’ Data Browser-Purify'd stockvcE.exe

Enor Yiew I Madule View | File View || Function List View |

: f E"o AEW: Array bounds write in CStocklpp::CS8tocklppivoid) {1 occurrencej«|
The location in memory Writing 1 byte to 0x001540f£8 (1 byte at 0x001540f8 illegal)
where the error occurs hddress 0x001540£2 is 1 byte past the end of a 20 hyte bhlock at 03
Address 0x001540f8 points to a Heapllloc'd block in the dsfault he
Thread ID: 0Oxch

Call stack ShOWing =] Error location
the function calls =] CBtockipp: :CStockapp(void) [Stock.cpp:l56]
. CEtockdpp: :CE8tockipn()
leading to the error g
L . . m_Ticker = (char *)Hsapilloc|@atProcessHeap(), 0, TICKER_
Flag indicating the line o m_Ticker [TICKER_SIZE] = 0;
where the error occurs .
. FEERERERERETETEREEE R EEEEE i i i i Eiiidididididifidfiiid
[$E188 (C++ ctor/dtor) [Btock.cpp:162]
= $E191 (C++ ctor/dtor) [stockwet . axa]l
_unlockexit [stockvot . axa])
. WinMainCRTEtartup [memopy.obj]
Call stack showing the B hllocation location
function calls leading to - Heaphlloc [KERNEL32.d11]
. - C2tockipp: :CEtockipp(void) [Etock.copp:155] -
the allocation of the « _.I—I
memory block = =
|D|splayed Emors: 1721 of 1721 Displayed Warnings: 0 of 53 Bytes leaked: 0+0 | o

associated with the error

The level of detail provided in call stacks depends on the availability of
debug and relocation data. Even if you build your program in release
mode, you can still get the highest possible level of detail. For more
information, look up debug data, release builds in the Purify online Help
index.

You can customize the format of Purify’s messages. For example, you
can increase the number of lines of source code that are displayed, or
include instruction pointers and offsets to make locating errors easier.

More information? Look up preferences, source code in the Purify online
Help index.

24 Getting started with Purify: C/C++ code

Correcting errors

Purify makes it easy to correct errors.

stockvch exe

Data Browser:P

Enrrar View | tadule Viawl File Viawl Function List Viewl

= 0 AEW: Array bounds write in CStocklpp::CStocklpp(woid) {1 occurrence} 4|
Writing 1 hyte to 0x001540£82 (1 byte at O0x001540£8 illegal)

Address 0x001540f8 is 1 byta past the end of a 30 byte block at 03

Address Ox001540£8 points to a Heapllloc'd hlock in the default he

Thread ID: Oxch

Error location

Double-click
the line where
the error occurs

File Edit Miew Insett Project Buld Took Purfy PureCoverage Buantify Window Help =|=] x|

Displayed Enc - 2 s v

e e = e
2eEa a@@wﬁd B mmnjj&rﬁm@gﬂ

alx /7 Standard print setup comman j

ON_COMMAND {ID_FILE_PRINT_! SETUP CWinkpp: :OnFilePrintSetup) =

CStocklpp: :CStockipp (woid)
g CEtockhpp: :CStocklpp()

i

™
¥

WinMainCRTStartup [mamcpy.obj]
Allocation location
[FEENEL32.d11]

Heapilloc

FEIRERERERETREREEEEF R EEFREFBERBERBIABIE AR EE I IIEIIE
$E188
$E191
_unlockexit

stockvch -

[Btock.cpp:156]

m_Ticker = [char *)Heapidlloc(CetProcessHeap(), 0, TICKER

m_Ticker [TICKEE_SIZE] = 0:

[C++ ctorjdtor) [Stock.opp:162]
[(C++ ctor/dtor) [stockveh . axa]
[stockvee . axal

soft Visual C++ - [stock cppl

T workspace

END_MESSAGE_MAP()

SlﬂnkVE
FAILLLLLSILLELS SIS LEES SIS LSESSIL LSS ILLSESSILLEES SIS S SILEISS SIS

7+ CStockipp construction

CStockdpp: :CStockipp()

i

TICKER_SIZE):

P m Ticker = (char *)Heapilloc(GetProcessHeap(). 0.
T R

Purify opens the
source code in the
editor, positioned at
the exact location
of the error

sh =
=l

BIEE //_/iLI
3

X[Purify . Instrunenting D ~Program Files-Ratiomal-Purify.sanples~StockHI~Releasenstocka]
Hdl|Purify: Instrumentation finished =
” Build / Debug & Find in Files 1 & Find in Files2 j Results % SOL Debugging / DR >

Feady

[L 786, Gol T [REC [COL [0VF [READ 7|

More information? Look up source code in the Purify online Help index.

Correcting errors

25

Checking code coverage

To make sure that you find errors in your code wherever they occur, use
Purify to monitor code coverage each time you run your program. With
Purify’s coverage feature, you can check that you’re exercising all your
code, especially those parts that have recently been added or modified.

Purify displays coverage data in views that you can sort to find the
largest gaps in your testing.

The Module View tab The File View tab The Function List View tab lists
groups functions groups functions all functions in the program
based on module based on source file across modules and files

#¥ Data Browser: Purify'd stockvcE. exe

Error Wi Module Yiew | File Viewl Function List Wiew
Click any column Functions | Functions | £ Functi Lines |Lines| % Lines ~|
header to sort the Coverage ltem Callz | Mizzed Hit Hit Mizzed | Hit Hit
coverage data - § CDialog:HandlelnitDigloglUl.| 1 hit 1 g 421
- @ CDiglog:HandleSetFortiUik. | 1 hit 0 3 100.00
- @ CDiglog:IritdodalindirectiDl.| 0 mizged 5 0 0o J
- @ CDiglog:Initdodalindirectjve.| 0 mizged 5 0 0o
- @ CDialog:0OnCancel(void] a miszed 2 1] 0.0
- @ CDialog:0OnCrdMsgUINT .| 12 hit 7 7 50.00
- @ CDialog:OnCommandHelp(L..| 0 miszed 9 1] 0.00
- @ CDialog:OnCHCalar[CDC = C.| 26 hit 0 2 100.00
=] 1] mizzed 4 1]
Double-click a L] 1 5 0 BE.67
function to display it : CDialog:: OnOK[veid) 1 :it g ;1 13033
: CDialog: OnSetFont{CFont #) it X
inan Annqtated - @ CDialog::Postt odalfvoid) 1 hit 1 9 90.00
Source window - § CDialog:PrelnitDialoglvoid) | 1 hit 0 1| 10000 =
Kl | LIJ
| Coverage Item: Azcending order | Furmction: Chialag::OninitDialoglveid) i

Purify can also display line-by-line coverage information marked
directly on a copy of your code in an Annotated Source window. The
color of each line of code indicates whether it is tested, untested, or
partially tested, so that you can tell at a glance where you need to
tighten up your testing.

26 Getting started with Purify: C/C++ code

The Annotated Source
window displays
coverage information in

Click to display information
about color coding

B D:\Program Files\Microsoft ¥isual 5tudio\YC98\MFC\SRCAdlgcore.cpp in stockvch.exe

a copy of your code —1— Funetions:

CDialog:: OnlnitDialog(void)

j Colars: LI

This line was 663
exercised once

This line was not
exercised

1

=

Source

g::OnInitDialogi)

ff exeacute dialog ET_DLEINIT resource
ECOL bDlgInit:
if (m_lpDialogInit != WNULL)
WDlgInit = ExecuteDlgInitim lpDialogInit):
alsa
WDlgInit = ExecuteDlgInitim_lps==zTamplatelama) ;

i1f (!bDlgInit)

i =
TRACED ("Warning: EwecuteDlglInit failed during dial
EndDialogi-1);
raturn FALSE;

i -
| »

|Line: BEO of 332

| Function: CDialog:: OnlnitDialog(aid) A

Based on the coverage data, refine your approach to exercising your

code to make sure you are testing all the critical lines and functions. If
you are testing manually, try different menu commands, or enter new
values for variables. If you are testing automatically, revise or add test

scripts.

More information? Look up coverage data in the Purify online Help

index.

Comparing program runs

When you are satisfied that you’ve made good progress in eliminating

errors, and that you can exercise the parts of your program that most

need testing, rebuild. Then rerun the program under Purify.

After rerunning your corrected program, you can easily compare runs
to verify your corrections. Purify’s Navigator window, which you can

display from the Purify View menu, helps you keep track of multiple

runs and multiple programs.

Comparing program runs

27

The Navigator window groups runs by program

¥ Rational Purity Main Window

Ml stock:vch.exe 4% Data Browser:Purify'd stockvcé.... [H=] E3
. @ Auto Merge Errar Yiew |M0du\e\u"iew File\f’\ewl Funcl\cuLI_’I Error View IMUdulE Viewl FiIeViEwl Functiog 4 | *
A color-coded icon — Q Fun @08/ = —
. . . 0 Run (& 080 : Array hounds write in o ABEW: Array bounds write in
indicates the maximum : Array bounds writa in @ 2E¥: Array hounds writs in
message severity : Array hounds read ::m i o ABR: Array bhounds read in i
. . ¢ Array hounds read in o ABR: Array bounds
dlsplayed in the : : Array bounds read in
error view for the run #-) ABW: Array bounds writa in
[/ E—) | | | E— I
LI_I _’I \Disp\ayad Enors: 1721 of 1721 Displayed ‘Wamings: 2 |Displayed Emors: 1701 of 1701 Digplayed ‘Warnings: 7/

More information? You can compare coverage data from different runs
using the Compare Runs tool [A]. Look up comparing runs in the Purify
online Help index.

Saving Purify data

You can save Purify error data from a run and analyze it later, share it
with other members of your team, or include it in reports. Purify can
save data in the following formats:

= Purify datafiles (. pfy, . pcy). The file extension Purify uses
depends on whether you are saving error data alone, or error and
coverage data. You can save merged coverage data to PureCoverage
data files (. cfy).

= ASCII text files (. t xt). You can process this data with scripts or use
it in spreadsheet and word-processing applications.

More information? Look up saving data in the Purify online Help
index.

28 Getting started with Purify: C/C++ code

Advanced features for C/C++ users

Customizing instrumentation

Purify uses one of the following error-checking instrumentation levels
as the default for each module, depending on the module’s size and the
availability of debug and relocation data:

= Precise instrumentation, which provides full run-time error
detection to pinpoint problems in any part of your program

= Minimal instrumentation, which improves Purify’s performance
while providing a basic level of error detection

For coverage monitoring, Purify uses one of the following levels as the
default:

= Line-level instrumentation, which reports line-by-line coverage data

» Function-level instrumentation, which improves performance but
reports only function-by-function coverage data

Purify Settings for D:\Program Files\Rational\Purify\samples\Stock. .. B [E3

Use the PowerCheck Errors and Leaks PowerCheck | File I Advanced
tab in the settings — Default emor level
dialogs to modify Usze minimal instrumentation when
default levels for ¥ The module doesn't contain debugging information
error detection . . .—7— I™ The module is larger than [1200° | KB

— Defaul coverage level

and for coverage
monitoring

' Function

M Exclude all modules in %windows directories

Madules... II Click to override
the defaults for

ok | cancel || Hep || individual

modules

Advanced features for C/C++ users 29

Select one or
more modules
in the list

Then specify the
instrumentation
level for the
selected modules

You can override the default and specify the level for each module to

meet your own requirements.

Purify Module Instrumentation

cwinnt3Bhapstem32intshui.dl
cwwinnt3Bhaystem32hole 32 dI
chwinnt 3B apsten32hnetrap. di
chwwinnt3Bhaystem32inetapi32 i
cwwinnt38haystemn 32hzamlib. dil
cwinnt3Bhaystem32mevert. dl

chvinnt35hapstem32hversion. di

c:hyinnt 35 austem32hz32.dil

—Emor level———— Coverage level

o Default & Default

" Precise ' Line

' Minimal " Eunction
' Exclude

Llear Cache |

| Purify |

Sizel Coverage | Debug |A

[Precize]
[Minirnal]
[Minirnal]
[Minirnal]
[Minirnal]
[Minirnal]
[Minirnal]
[Minirnal]
[Minirnal]
[Minirnall

348246
13584
37648

7o4272
17168

224528
41744

254005
36112
12560

[Line]

[Exclude]
[Exclude]
[Exclude]
[Exclude]
[Exclude]
[Exclude]
[Exclude]
[Exclude]
[Exclhudel

¥ Show full path names

o]

Cancel |

es
Mo
Mo
Mo
Mo
Mo
Mo
es
Mo
Mo

Help

Try using the Precise error level for the most critical modules in your
program and the Minimal level for the others. Later, you can change the
Minimal level to Precise for a thorough check of the other modules.

More information? Look up instrumentation levels and powercheck in the

Purify online Help index.

Using just-in-time debugging

Purify’s just-in-time debugging support provides instant access to your
debugger when you need to solve tough problems. Click to enable
Break on Error. Purify now stops your program just before an error

executes so that you can debug it. You can also run a Purify’d program

directly under the debugger.

30 Getting started with Purify: C/C++ code

Wlth JUSt'm't'me i i stockvcb3PC_D_Program Files_Rational_Purify_samples_StockNT_Release.exe - Application E... B3

debugging, Purify raises
a breakpoint exception
when it detects an

error or warning

Click Cancel to explore
the error in your
debugger

% Data Browser-Purily'd stockvch exe

Error Wiew |

o ABW: Array bounds write in CStocklpp::CBtockapp(wvoid) {1 ocourrence}

The exception Breakpoint
A breakpoint hagz been reached.
[0+280000003) occured in the application at location DxEfcaBz2ed.

Click on DK ta terminate the application
Click on CAMCEL to debug the application

|Displayed Emors: 1 0f 1 Displayed Warmnings: 0 of 0 Bytes leaked: §+0 i

To quickly debug only the most critical errors in your program, use
Break on Error together with Purify error filters. First, filter out all the
less critical messages, then enable Break on Error. Purify breaks only for
the unfiltered messages. When you're ready to debug the remaining
errors, just disable the filters.

More information? Look up break on error tool in the Purify online Help
index.

Using Purify standalone

When you don’t need all of Microsoft Visual Studio’s resources, you
can use Purify standalone. Purify’s independent user interface provides
the same error-detection and coverage capabilities as when you use
Purify integrated with Visual Studio.

Note: You can also use Purify’s independent user interface while
continuing to work integrated with Visual Studio by deselecting
Embed Data Browsers in the Purify Settings menu.

To use Purify as a standalone application, launch Purify from the Start
menu, Then click Run in the Purify Welcome Screen to display the Run
Program dialog.

Advanced features for C/C++ users 31

First, specify the
program you
want to check

Second, specify
whether to collect
error and leak data, or
coverage, error, and
leak data

Run Program HE

Pragram name:

_Il j _I B | Third, click Run
LCommand-line arguments:
Cancel |
| d
whorking directon: &n&l
Help |

| =]
~Collect.———————————————————
" Eror and leak data

1= B urder e debuager

" Coverage, eror, and leak data

¢ Java memory usage data

Purify instruments your code and displays the results in a Data
Browser window.

More information? For information about a tool, menu command, or
dialog, click and then click the item.

Testing with Purify’s command-line interface

Using Purify’s command-line interface, you can use Purify with
existing makefiles, batch files, and Perl scripts. For example, if you have
a test script that runs a program, you can easily modify the script to
instrument and run the program. To do this, change the line that runs
Exenane. exe to:

purify Exenane. exe

Alternatively, to run the instrumented version of Exenane. exe
consistently throughout your tests, add this line to the beginning of
your test script:

purify /Repl ace=yes / Run=no Exenane. exe

This line instructs Purify to save the original Exenane. exe to a . bak
file, and to instrument Exenane. exe but notto run it at this time. Now,
whenever your test script runs Exename. exe, it runs the instrumented
version of the program, providing Purify’s detailed diagnostics.

To collect coverage data as well as error data when you run a program
from the command line, use the / Cover age option:

purify /Coverage=yes Exenane.exe

32 Getting started with Purify: C/C++ code

You can run Purify without the graphical interface by using

the / SaveText Dat a option. This option saves Purify’s diagnostic
messages to a text output file. You can use the error and warning
messages in this file as additional criteria for your test results.

More information? Look up command line in the Purify online Help
index.

Extending error checking with Purify API functions

Purify includes a set of API functions that extend its error checking
capabilities and give you greater control over tracking errors.

Using Purify’s API functions, you can set and test memory state, and
search for memory and handle leaks. For example, by default Purify
reports memory leaks only when you exit your program. But you can
use the API function Puri f yNewLeaks to check for leaks more
frequently. Click the NewlLeaks tool to call Puri f yNewLeaks while
your program is running, or add calls to Pur i f yNewLeaks at key points
in your code. Purify reports any new memory leaks it has detected
since the last time you called the function. This periodic checking
enables you to track memory leaks more closely.

You can call Purify API functions from the Purify View menu as your
program executes. You can also call them from the QuickWatch dialog
in the Visual Studio debugger, as well as by including them in your
code.

More information? For the complete listing of Purify API functions,
including functions related to coverage monitoring, look up api function
list. For instructions on using the functions, look up api functions, using
in the Purify online Help index.

Using Purify in an integrated environment

Rational Software tools integrate into your working environment to
help you do your job more effectively and efficiently. For example, you
can use Purify with Rational ClearQuest™, Rational’s change request
management tool, and with Rational Robot and Rational Visual Test®,
Rational’s functional testing tools.

Advanced features for C/C++ users 33

Using Purify with ClearQuest

If you have ClearQuest installed, you can submit a defect as soon as
Purify detects an error or warning, or when you find a coverage
problem.

¥ Data Browser:Puiify'd stockvc.exe

Enor View | odule View | File View | Function List Viawl

== SELEEE = 2 eralu =Ny il) 1) d
Describe ABW: Amay Bounds 'wiite f47 occurrenes} -
AowTeoxth {646 occurrences)
nh {230 occurrences)
hdow"{‘extzﬁ. {184 oecourrencas}
tf {13 occurrancas}

Right-click on an error
message and select
Submit ClearQuest Defect —

Expand
Expand Branch
[Eillapse

GuickFilter
Create Filter

Wiew Sourze File
Select Saurce FHle

<] | b

| Displayed Erors: 1721 of 1721 Displayed Warrings: 0 of 53 Bytes leaked: 0+0 [i

Purify automatically supplies entries for a number of fields in the
submit form and specifies the category of error. You can easily attach
Purify data files to further document the error.

Using Purify with Rational testing tools

If you have Robot installed, you can set a playback option in Robot to collect
Purify error and leak data when you run a Robot test script. Purify
detects memory errors as the code is executed. Robot also includes a
playback option that allows you to collect code coverage information as
well as error and leak data.

If you have Visual Test installed, you can run Purify on the program
that Visual Test is exercising within Visual Studio. If you are using a test
harness to run Visual Test scripts, you can easily modify it to run Purify
automatically as it exercises the program.

34 Getting started with Purify: C/C++ code

More information? Look up clearquest, robot, and visual test in the
Purify online Help index, and refer to the ClearQuest, Robot, and
Visual Test documentation.

Now you’re ready to put Purify to work on your
C/C++ code. Remember that Purify’s online Help
contains detailed information to assist you.

Advanced features for C/C++ users 35

36 Getting started with Purify: C/C++ code

Getting started with
Purify: Java code

The basic steps

Java applications can consume a lot of memory over time if a forgotten
reference to an object unintentionally prevents it from being garbage
collected. With Rational® Purify®, you can determine how much
memory your Java program is using, and detect exactly which objects
are responsible for these “memory leaks.” You can also identify places
where forcing a garbage collection would improve your code’s
performance.

To use Purify to profile Java memory usage:

1 Run your Java program with Purify.

2 Take a snapshot when memory usage stabilizes.

3 Execute code that may be leaking and take another snapshot.

4 Compare the two snapshots to identify methods that may be
causing memory problems.

5 Pinpoint the leaked objects allocated by these methods, and identify
the references that are preventing the objects from being garbage
collected.

37

Running your Java program with Purify

First, use the Browse
button to select the Java
program, applet, class,
or JAR file that you
want to profile

To Purify your Java program, start Purify and click Run in the Welcome
Screen to display the Run Program dialog.

Run Program

Program name:

| (B [_Ew] Third, click Run
Command-ine arguments:

~ Cancel

I Seflings...
‘wiorking directany: &I

| L e |

™| Fitin uniden the debugger ~ Collzct:
" Enor and leak data

L

Kl

Kl

" Coverage, eror, and leak data

Second, select the button
for collecting Java
memory usage data

 Java memory usage dats

Note: When you select a Java program (or applet, class, or JAR file)
using the Browse button, Purify enters the name of the Purify Java
helper program, pst art . exe, in the Program name field. The name of
the Java program itself, along with the name of your specified Java
virtual machine’s Java viewer and any necessary options, is
automatically entered in the Command-line arguments field. You must
do the same if you enter information into these fields manually.

More information? Look up specifying a JVM and running Java programs
in the Purify online Help index.

As your program runs, Purify intercepts and tabulates messages related
to memory usage from the Java virtual machine. Based on these
messages, Purify keeps track of how much memory your program has
allocated to each method and object at any given time.

38 Getting started with Purify: Java code

Taking snapshots of memory use

To zero in on memory leaks in your Java program, wait until your
application’s memory usage has stabilized (typically after it completes
its initialization procedures), then click to take a snapshot of the
current memory usage status. This snapshot is your baseline for
investigating how your program uses memory as it runs.

Now exercise the program in a way that you suspect may be leaking
memory. As your program runs, the Purify Data Browser’s Memory tab
displays a graph that indicates the amount of memory your program is
using.

E5 Data Browser:Purify'd jview.exe

Memoy | Call Graph | Function List iew

 thiead_b0 HE NN AN NN N AN AN NEN AN ENENENEEEEEEEEEEE =

m thizad 10 NN NN NN NN NN NSNS EEEEEEEEEEEEEEEEEEE

m Thread-0 []

m AT-Eventueus

m AT Windows

m TaskManager noti

. m Global Task Mana

Take your first snapshot | [z Geba1ask hana
when your program’s | [a e e hers

baseline memory Usage Running ™ Waiting /0 ® Blocked Puiify ® Exited

has stabilized —eninue e e
2400KB 4 B B

(K]

1800 KB
Watch for increasing

memory usage, then 1200K8
take a second snapshot

BOOKB

10:07.25 &M 10:08:54 A

1

———————— | || Cunent memusage: 301530 Mem diff since snapshot : 182,834
Show less time Show entire run

Paak mem usage: 2,372 560 Garbage Collect #: 25

[Status: Exited [Elapsed Time: 00:01:23 [

Watch the graph for fluctuations in memory usage. A large increase in
memory usage may indicate a problem, especially when you can’t
reduce it by clicking to force a garbage collection.

Now take another snapshot so that you have a “before” and “after”
record of what’s going on, and exit your program.

More information? Look up taking snapshots (Java) and garbage
collection in the Purify online Help index.

Taking snapshots of memory use 39

Comparing snapshots to identify problem methods

Select your second snapshot in the Navigator and click | A] to compare
the second snapshot with the first.

Purify now displays a call graph showing the methods that are
responsible for allocating the largest amounts of memory during the
interval between the first and second snapshots.

[Data Bmws:iview.eue (Diff)]

<% File Edt View Settings Window Help N

SRR EEE RN A B =R =]
The thickest lines — & enee Call | Fntn s Viw |
indicate the paths 88 Snapshi |

&8 Snapshot @ 09/27/2 [Threan] = [LeakSampletProces=r.. |
Whe_re the most @ Dif @03/27/2000 1 ‘% ! Ek
memory is allocated

[Glolsal Task Manager .. B\
T

=
[Taskianager.run|

The call graph overview
helps you orient yourself
within the call graph

] @ | Zoom ~—— |} Highigh [Alocation Changes < |
4 »
Kl I Vistle: 25/1498 [Highighted: 26/111 [javanlang Thread un) [java lang Thread]
eedy R

The call graph also shows you the calling relationship between
methods. This can give you clues about which methods are holding

references to unneeded objects and preventing the garbage collector
from doing its job.

40 Getting started with Purify: Java code

Memory usage data is
available directly from
the call graph

Move your cursor over the method or path you want to investigate. A
tool tip pops up to give you memory-related statistics for that method.

#¥ Rational Purify - [Data Browser:jview.exe [Diff)]
<% File Edi View Sefngs Window Help

=181 x|

SE| s el x| 2R =l Bl =ol szl 28] 20 w0l =

= LT view.exe
B Run @ 03/27/2000 1
&8 Snapshot @ 09/27/2

Cal Graph | Function List View |

_<

38 Snapshot @ 03/27/2 A .
 Diff @ 09727420001 —
[TetCnmponent setTex. | =+
Method, LeakG ample$Fracess.un
[Global Task Md 5 ource File: [Ware
Class File: LeakS ampletProcess
Calls [Diff}
Cuntent method bytes allocated [Dif], 4367344 ./
M+Dbytes (Diff] 5143220
Total method bytes allacated: 4867344 jger run
| i

] @ | Zoom ~— =" Highigh [Alocation Changes < |
4 »
KN i Mistle: 2541498 [Highlighted: 26111 [javanlang Thread un) [java lang Thread]

| | |

Flsady

This allows you to zero in on the method that is consuming memory, as
well as its descendants.

To view your code from within Purify, right-click a method for which
source is available, then select Source File.

More information? Look up diff’ing snapshots (Java), call graph (Java),
and source code in the Purify online Help index.

Comparing snapshots to identify problem methods 41

Diagnosing leaks with the Function List View tab

Click a column header
to sort the memory
profiling data

The Function List View tab in the Data Browser provides a textual,
non-hierarchical view of the same data. You can do full-program sorts
in the Function List View to find the biggest memory-consuming
methods in your entire program.

4 Rational Purify - [Data Browser-jview exe (Diff]]
& Fle Edt View Selfings indow Help _le] x|
=R Sz (e x| =] B =] =] Az R 2lEE] 2] e] 2EE] =l
= |7_| i ones Call Eraphé Function List Wiew |
2 fun @ 09,27/ 200 Calls | Calls | Current method Class il
8 Snapshot @ 09/2772 Method | (New) | (Base) | bytes allocated (Diff) File
E Snapshot @ 09/27/2
0 i ia7z000 ¢ || LeaksanpletFioc. 7 7 4567344 Lok Sampletrocess
J¥M Heap 27 7 274620 |JVM internals
‘WiomponentPeer. | 528 174 1243 com.ms. 2wt WCampanentFeer
Region. createBufter 588 204 288 | com.ma fx Region
Graphics.interses, .| 1770 544 144 com.ms. 2wt Graphicsst
Object.clone 240 9% 144 |java lang Objsct
URocttimeTrigger..| 84| 15 120 com.ms.vi.lIRaat
StingBuffsr.<init> 152 45 116 |java lang StringBuffer
Color brighter ETEI- 95 jawa. 2wt Color
FrFarmattedT ext.< 230 47 96 | com.ms. k. FrFarmattedT ext
FainCache.getvis..| 285 104 95| com.ms.ui windowmanager PaintCache
Timer. scheduls 285 85 80 | com.ms.util Timer
TaskManagersch. | 234 92 72 com.ms.util TaskManager
Graphic:. buildCh 41 142 B0 | com.ms. avt. Graphics:
FainCacheaddSu.| 528 174 56 | com.ms.ui windowmanager PaintCache
UIStateContainer. 177 45 48 | com.ms.ui.UIStateContainer
StingBufferieSting | 152 45 40w bang, StingBifer
UIR oot <intamalk 104 35 32| com.ms.ui. UIR oot
UStateComponen.. | 142 35 32 com.ms.ui L StateCampanent
Graphics, setClip 186) 24| com.ms. awt Graphics =
poect artaan | mam | eas 54 e i 11D
i I _l"
< o= - -
Visble: 143871438 | fiava ang Thread unl) fiava ang Thiead]
Ready [7

More information? Look up function list view (Java) in the Purify online
Help index.

42 Getting started with Purify: Java code

Focusing on a method with the Function Detail window

Double-click a method
in the Caller or
Descendant column to
see the memory data
for that method

By double-clicking any method in the call graph or function list view,
you can open a Function Detail window. This window shows how the
method, its callers, and its descendants allocated memory.

#¥ Rational Purify - [Function Detail: jview.exe [Diff]]

“2 File Edt View Sefings Window Help TS
28| 2l el | e 22 2] e 25 = EE = Bilo] o]
=T owens Method: LeakS ampledProcess.run
B Run @ 09/27/2000 1 E“’::‘r [z'"lr 10
&8 Snapshat @ 09/27/2 EBII* {;"‘l]' b
Snapshot @ 09/27/2 || <% [Basel
g e g satnn1(| Cument method bytes allocate... 4867344
Total method bytes allocated: 4367344
M bytes (New): 6221664 &
M bytes (Base): 1354320
M+Dbytes (Diff): 5143220
M+D bytes (New): 6712454 =l
= Current method =
ater bytes allocated (Diff] =
Thieadl 5143220
5 dant | _Cunient methad =
escencant | putes allocated [Diff) -
M Heap 274620
TestComponent 1100
Stiing. valueDf 156
Thisad sleep 0 b
Fiuntime. otal... 0
Fluntime. feehe: 0 =
J B | Lol _ =l
Callers: 1 [Deseendants: 8 |LeakSampletProcess. un()
Feady 7

More information? Look up function detail (Java) in the Purify online
Help index.

If the amount of memory attributed to any method seems unexpectedly
high, it may be the case that another method, possibly a descendant,
has created a reference to an object that is preventing the memory from
being garbage collected. For example, a descendant method may have
created a static variable as part of a string array. This would keep the
memory for the entire array from going out of scope, which may slow
your program down, and even Kill it.

When you’ve located a method that appears to be causing memory
problems, go on to look at the method’s objects. Purify provides
extensive information not only about methods, but also about all
objects in your program and their use of memory.

Focusing on a method with the Function Detail window 43

Looking for unneeded objects

Obijects that a program no longer needs often prevent memory from
being garbage collected and so, over time, slow down your program.
Purify displays comprehensive memory data for objects in several
formats, so that you can easily track down this sort of problem.

Note: To examine object data, use a snapshot or an aggregate data set.
Comparison data sets, which are generated by clicking |£| do not
contain object data.

Getting from a suspicious method to its objects

The objects that the
method currently has
llocated. Double-click
n object to display the
Object Detail window

with comprehensive

memory data for
the object

Note that Function
Detail windows for
snapshots include pie
charts showing
memory allocation

The Function Detail window, in addition to its information about a
method, also lists objects that have been allocated by the method. You
can sort the objects in the list by clicking on any column heading.

‘n!'FlationaI Purify - [Function Detail: java.exe [Snapshot]]
“g File Edit “iew Settings ‘Window Help

METET
JEa =TI e e i = N
vl] ElEE] 2] ol BlEs] =

Method: LeakSample.. |«
Calls: 3

Current method bytes allocated: [3,836 (3.74%: .
Total method bytes allocated: 10,524

Number of Objects: B4

kdaly bhardnn- | Ree e Tolde B LV J

X of Focus

Object Class . Ob
Name Name Sz H
jereeylanafrefFinali.. |javellanairefF.. 20
sunfawtfwindows) .. | sun/awthvindo.. 204 v
- T .\ - o
Callers Current meth«
Caller Calls bytes allucatl
LeakSamplegAction.action... | 2
AWT-EventQueus-0 i 1
1
Descendants Current meth
| Descendant Calls bytes ﬂ"DCﬁn
LeakSampIe!*Adion action... | 2
Garhane Collector 1
[Jvhd Garbage Colledor 5051 4‘I - 5

Lt | o

|Descendants: 3

'Eallers: 2
Fleady | | 4

|LeakSample%ction.actlonF‘erformed[mva.auA

44 Getting started with Purify: Java code

Examining object details

When you double-click an object in the Function Detail window, the
Object Detail window opens. This window contains complete
memory-related information for the object so that you can identify
objects that are holding on to large chunks of memory, and determine
how long these objects have been in existence.

The object reference
graph shows the objects
that reference, and are
referenced by, the
current object

Pause the mouse over an
object for detailed memory
information

Choose a criterion for
highlighting objects in the
reference graph

B Object Detail: java.exe [Snapshot]

Highlight: | Ohject: Maximum Path to Raoot j

javaldilProperties 2111F A0S

— javaioBuf
javaliofrntstream 2113BB1 02—
by

11 DEF 0N javaioBuf
Object 1D: javadio/PrintStream 21138810 Lo

Clazzs Mame: javalio/PrintSheam

Method Mame: LeakS ample. <init> fjzva.lang. String)

i o]/ bvte [2052_|
0+R Size: 33004 =

References: 2 hd
Referses: 2 r

Details about the
object currently
selected in the

1]

reference graph, Ohject Mame: j:ava,.flanngIass Z11DEFD =] Mame Value
including size and ClassMName: javafang/Class javafio/inputStres... |211220F8
creation time —ethod Mame: JvM Garhage Callectar javafio/PrintSirea... | 21122440
Size: 140 javafio/PrintSrea.. | 21136610
0+R 8'293_ 51712 javadlang/Security.. |0
GCs Survived: 0 java/uti/Properties..| 2111FADS
The “object dump” CroationTime— 1140ET A
shows the contents Line Mumber: 0
(data, references to Feferences: 4 |
other objects) of the Referees: o
object currently Foat Type: Swstern Class =
selected in the graph |H9f9'en0931 4 |F|eferees:] |iavax’langx’EIass 21110BFO i

Looking at all allocated objects together

To review the top-level objects in a program, open the Data Browser
window for the snapshot that reveals potential memory problems, and
click the Obiject List View tab.

Looking for unneeded objects 45

Click any column head to
sort the list

Qﬂalional Purify - [Data Browser-java_exe [Snapshot]] 1
Q File Edit “iew Settings ‘Window Help -8

SENE R ETE =T NG
v+ = el 2R 2 el = =

Memoryl CaIIGraphI Function List iew Object LiSWiBWI

Memory data for all Neme | Name | 'Name Size O+RSe|gu | 2

the currently allocated char [8134] 2113D.. JvM Garbage Caolle... 16,388 0

top-level objects in h 121137 har nple.<init> (... B i

the program ———krte [8196] 211806... [byte] LeakSample$Proce... 8196 8,196 4

bte [B196] 2117E.. |bwte] LeakSample$Froce.. 81496 51496 4

byte [B196] 2113B.. |bwte] LeakSample.<init>(j... 8,196 8,196 0

byte [B196] 21135, |byte] LeakSample.<init>(j... 8,196 8,196 0

short [4034] 21131... |short[] LeakSample.<init>(j... 8,068 8,068 0

char [4034] 2112F0... |char LeakSample <initx(j... 8.068 5,068]

<Unknown Classy ... |<Unknown...|LeakSample.<init>(]... 3692 33.564 0

char[1434] 21120... |char[] LeakSample.<init(j... 2,868 2,868]

char [1338] 2112E... |char[] LeakSample <initx(j... 2676 2676 a

int[633] 21133068 |int] LeakSample.<init>(j... 2,532 2,532 0

The status bar shows char [1266] 21130F... | char [LeakSample.<init>(j... 2,532 2,532 0
the selected line char[1178] 21134... |char] LeakSample.<init(j... 2,356 2,356 0 -
number and the total « | I

number of ObjeCtS_beiect: 2/8354 |char [3134] 21137400 |LeakS ample. <init> fjava.lang String)

Ready [r

The object list shows all top-level objects that were allocated at the time
the snapshot was taken. In addition to the size of the objects, the object
list provides information such as the time the object was created and
the number of garbage collections it has survived. You can sort the list
to find the objects that are holding on to the most memory, and the
oldest objects in the list.

You can open the Object Detail window for any object by
double-clicking the entry for the object.

When you locate an object that may no longer be needed, look at your
code. If you determine that the object is in fact no longer needed,
modify your code to release all references to the object so that the object
can be garbage collected.

More information? Look up function detail (Java), object detail (Java) and
object list view (Java) in the Purify online Help index.

46 Getting started with Purify: Java code

Saving Purify memory profiling data

You can save Purify data and analyze it later, share it with other
members of your team, or include it in reports. Purify can save Java
data in the following formats:

= Purify memory profiling files (. pny). You can open these files and
view them in Purify, just as you would any run, snapshot, or other
dataset.

= ASCII text files (. t xt). You can process this data with scripts or use
it in spreadsheet and word-processing applications.

More information? Look up saving data (Java) in the Purify online Help
index.

Advanced features for Java users

Highlighting methods that share key attributes

You can highlight methods in the call graph to display specific
memory-related characteristics or to show calling relationships.

Click to display the Highlight list

SEIEY

| [= e s

B penene Cal Graph | Function Lit iew |

Select Maximum Path to ~ B Fun @ 08727720001

S8 Snapshot @ 09/27/2
Global Task Manager B\
Threadrun

vt Heap

.< TestComponent setTex. . =

Root, for examp|e’ cgpshol @ 09/27/2
. . O [oif 72000 1

to highlight all
methods between
the selected method
and .Root on the path

where the most ‘

Node; 10!

memory is allocated || Zoom ———If— Hihishe [ode bimmPatotaFout 15 =] |
: .
KT dhle: 2671438 Fﬂlghled 373 |LeakSample$Process.iun() [LeakS ample$Process]
=

Ready

=

| 7

26 of the 1498 functions in
the current dataset are
displayed in the call graph

All 3 of the 3 functions on the
maximum path to .Root are
displayed in the call graph

More information? Look up highlighting (Java) in the Purify online
Help index.

Saving Purify memory profiling data 47

Focusing your data

Use Purify’s filter commands to remove a selected method, or all
methods in a class file, from the set of data that Purify has collected.
Alternatively, use subtree commands to focus on or remove a specific
method and all its descendants from the dataset. Right-click a method
in the call graph, function list view, or function detail to perform these
operations.

_m Hide Method Leaks ample$Process.iun()
Subtree ¥ Hide Class File LeakS ample$Process

£ 4/Cal , Delete Method LeakS ample$Process.iun()
You can hide or [.xpag | oFap?e " Delete Clazs File LeakSamplefProcess
P B SEEIB e Wrde Cast Eilten NEeratit
delete individual Colors >
methods, all tethod Mame. .. Filter Manager...
methods in a Sowrce File L
ClaSS, or entire — v Data Browser... Chil+B The Filter Manager offers additional
subtrees. filtering options
Hide methods or :
subtrees to sum up Gl ol
their memory and Focus on Subtiee —— Select Focus on Subtree
. . . Hide Subt
attribute it to their Expand/Colepse > DEEEE to de"v:ttia“ m_ettr;]ods o
. 8 - = excep ose In the subtree
callers; delete them Line Scale Factors Undo Hide 5ubtiee
to discard their Colors D
memory completely Method Mame. .. Beset ta Roat.
Sounce File
v Data Browser... Ctrl+B

Purify has undo capabilities for all filter and subtree commands so that
you can easily return to any previous dataset configuration.

The call graph also provides a series of expand and collapse commands
that work with subtrees. Unlike the filter and subtree commands,
however, these commands affect only what is displayed in the call
graph; they do not change the dataset.

48 Getting started with Purify: Java code

In addition to the menu commands, you can use the Filter Manager to
select the data you need.

You can filter data —
based on class file
or on method

Click to enable or

~— Class Files | Methods I

Filter

com.mz.applet. BrowserdppletFrame
O com. mz. awt AW T Permission

O com.mz. awt. FocusE vent

O com.mz. awt. Fonthd etrics

1 com.mz. awt Fonk

disable filters

O com.mz. awt Graphicss
= . .

= S

es
Mo
Mo
Mo
Mo
Mo

| Enabled | Memor !
Yes T
es

es
es
es

es v

I Show full path names

Memory
" Retain
" Delete

Cancel |

Help |

More information? Look up filtering data (Java) and subtrees (Java) in the

Purify online Help index.

Now you’re ready to put Purify to work on your
Java code. Remember that Purify’s online Help
contains detailed information to assist you.

Advanced features for Java users 49

50 Getting started with Purify: Java code

Index

A

ABW (array bounds write) error 24
Annotated Source window 26
API, Purify 33

B

basic steps
Purify’ing C/C++ code 17
Purify’ing Java code 37
batch files 32
Break on Error tool 30

C

cache files 18
call graph (Java)
filter commands 48
highlighting related methods 47
overview 40
subtree commands 48
call stack 24
C/C++ code, Purify’ing 17
.cfy files 28
ClearQuest, integrated with Purify 33
code
editing (C/C++) 25
editing (Java) 41
viewing coverage annotations 26
collapsing subtrees (Java) 48
colors, in annotated source 26
COM support 12
command-line arguments (Java) 38
command-line interface (C/C++) 32
commands
Expand/Collapse 48
filter commands 48
subtree commands 48
undoing 48

comparing snapshots (Java) 40
coverage monitoring
/Coverage option 32
description 12
saving coverage data 28
turningon 17
using coverage data 26— 27
Create Filter command 22

D

Data Browser window
coverage data 26
error data 19— 22, 24— 25
Java memory profiling data 39— 42
object list (Java) 45
data, saving
C/C++ error and coverage data 28
Java memory profiling data 47
debug data, and instrumentation 18, 29
debugging, just-in-time 30
default instrumentation levels 29
deleting subtrees (Java) 48
diff'ing Java snapshots 40
displaying filtered messages 23
dispose() method 14

E

editing source code

C/C++ 25

Java 41
Embed Data Browsers command 31
Error View tab, Data Browser window 19
errors

analyzing 24

breaking on 30

correcting 25

saving error data 28

See also messages

51

exit messages 20
expanding subtrees (Java) 48

F

File View tab, Data Browser window 26
files

caching after instrumentation 18

cfy 28

.mst 34

.pcy 28

pft 23

pfy 28

.pmy 47

ixt 28, 47
filters

filter groups 23

Filter Manager, error data 23

Filter Manager, memory profiling data 49

overview 22, 47

saved in .pft files 23

sharing 23

undoing filter commands (Java) 48
focusing on subtrees 48
Function Detail window (Java) 43
function list view (C/C++) 26
function list view (Java) 42
function-level instrumentation 29
functions, Purify APl 33

G

garbage collector, Java 13, 39
graphs

call graph (Java) 40

Java memory usage graph 39

object reference (Java) 45
groups, filter 23

52 Index

H

handles

in use at exit 20

leaks 33
helper program pstart.exe 38
hiding messages

See filters
hiding subtrees (Java) 48
highlighting related methods 47

instrumentation
default levels 29
defined 18
overriding default levels 30
integration
Microsoft Visual Studio 17—28
Rational ClearQuest 33
Rational Robot 33— 34
Rational Visual Test 33— 34

J

Java
examining objects 44— 46
filtering memory profiling data 48
helper program pstart.exe 38
memory leaks 13, 37
memory usage graph 39
Purify’ing Java code 37
saving memory profiling data 47
just-in-time debugging 30

L

leaks
Java 13
See also memory
line-level instrumentation 29

M Perl scripts 32

pftfiles 23
makefiles 32 .pfy files 28
memory pie charts, Function Detail window (Java) 44
Java memory leaks 13, 37 .pmy files 47
leaks reported at exit 20 PowerCheck tab 29
PurifyNewlLeaks API function 33 precise instrumentation 29
mem_ory_profiling data problems, in Java code 14
fllte_rlng 48 programs
saving 47 rerunning 27
memory usage graph, Java 39 running from command line 32
menu, shortcut 20 running from Microsoft Visual Studio 17
messages running Java programs 37
analyzing 24 running under debugger 30
expanding 24 pstart.exe 38
filtering 22, 47 PureCoverage
redisplaying filtered 23 for coverage monitoring in Purify 15
See also errors in PurifyPlus 5
Microsoft Visual Studio, integration with tips for developers 6
Purify 17 tips for testers 7
minimal instrumentation 29 Purify data files
Module View tab, Data Browser window 26 C/C++ 28
modules Java 47
basis for filtering 48 Purify’ing
setting instrumentation for 30 C+C++code 17
multi-process applications 19 Javacode 37

PurifyPlus, described 5

N
Navigator Q
C/C++ 27 Quantify
Java 40 in PurifyPlus 5

tips for developers 6
tips for testers 7
O QuickFilter command 22

Object Detail window 45
Object List View tab (Java) 45

object reference graph 45 R
Obl:e‘:t referen_ce_s, and Java memory leaks 14 Rational ClearQuest, integrated with Purify 33
objects, examining (Java) 44— 46 Rational PureCoverage
for coverage monitoring in Purify 15
in PurifyPlus 5
P tips for developers 6
pey files 28 tips for testers 7

Index 53

Rational PurifyPlus, described 5
Rational Quantify
in PurifyPlus 5
tips for developers 6
tips for testers 7
Rational Robot, integrated with Purify 33—34
Rational Software technical publications,
contacting 9
Rational Software technical support,
contacting 9
Rational Visual Test, integrated with
Purify 33—-34
relocation data, and instrumentation 18, 29
Robot, integrated with Purify 33— 34
running a C/C++ program
from Microsoft Visual Studio 17
from the command line 32
in the Purify standalone interface 31
rerunning 27
running a Java program 38
runs, comparing multiple 27, 40

S

saving data
C/C++ error and coverage data 28
Java memory profiling data 47
/SaveTextData option 33
sharing filters 23
shortcut menu 20, 48
snapshots, of Java memory use 39
source code
editing (C/C++) 25
editing (Java) 41
viewing coverage annotations 26
stack, call 24
standalone Purify interface (C/C++) 31
subtrees (Java)
deleting 48
expanding and collapsing 48
focusing on 48
undoing subtree commands 48

54 Index

system resources, and Java memory leaks 14

T

technical publications, contacting 9
technical support, contacting 9
tests, using PureCoverage in 7
tests, using Purify in 7, 32, 34
tests, using Quantify in 7

threaded application support 12
tool tips, call graph (Java) 41

xt files 28, 47

U

undoing Java filter and subtree commands 48
unembedding Purify 31

\Y

Visual Studio, integration with Purify 17
Visual Test, integrated with Purify 33—34

w

windows and tabs
Annotated Source (C/C++) 26
Call Graph (Java) 40, 47
Data Browser (C/C++) 19—22, 24—26
Data Browser (Java) 39—42, 45
File View (C/C++) 26
Function Detail (Java) 43, 44
Function List View (C/C++) 26
Function List View (Java) 42
Module View (C/C++) 26
Navigator (C/C++) 27
Navigator (Java) 40
Object Detail (Java) 45
Object List View (Java) 45

	Title page
	Notices
	Welcome to Rational�PurifyPlus
	Rational PurifyPlus: What it does
	Tips for development engineers
	Tips for test engineers

	Other PurifyPlus resources
	Contacting Rational technical support
	Contacting Rational technical publications

	Introducing Rational�Purify
	For Visual C/C++ developers and testers
	Find errors before they occur
	Check every component in your program
	Look for errors in the right places
	Use Purify early and often

	For Java developers and testers
	Java memory leaks?
	Object references that are no longer needed
	System resources that are not freed
	How Purify can help

	Getting started with Purify:�C/C++ code
	The basic steps
	Running a C/C++ program with Purify
	Seeing all your errors at a glance
	When identical errors repeat

	Focusing on critical errors first
	Working with error data filters

	Analyzing Purify error data
	Correcting errors
	Checking code coverage
	Comparing program runs
	Saving Purify data
	Advanced features for C/C++ users
	Customizing instrumentation
	Using just-in-time debugging
	Using Purify standalone
	Testing with Purify’s command-line interface
	Extending error checking with Purify API functions
	Using Purify in an integrated environment

	Getting started with Purify:�Java code
	The basic steps
	Running your Java program with Purify
	Taking snapshots of memory use
	Comparing snapshots to identify problem methods
	Diagnosing leaks with the Function List View tab
	Focusing on a method with the Function Detail window
	Looking for unneeded objects
	Getting from a suspicious method to its objects
	Examining object details
	Looking at all allocated objects together

	Saving Purify memory profiling data
	Advanced features for Java users
	Highlighting methods that share key attributes
	Focusing your data

	Index
	A - E
	F - L
	M - R
	S - W

