
ClearDDTS Administrator’s

Guide
support@rational.com
http://www.rational.com

Version 4.7

IMPORTANT NOTICE
COPYRIGHT NOTICE
Copyright  1988 — 2000 Rational Software Corporation. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or
transmitted, in any form or by any means, photocopying, recording or
otherwise, without prior written consent of Rational . No patent liability is
assumed with respect to the use of the information contained herein. While
every precaution has been taken in the preparation of this book, Rational
assumes no responsibility for errors or omissions. This publication and
features described herein are subject to change without notice.

The program and information contained herein are licensed only pursuant to
a license agreement that contains use, reverse engineering, disclosure and
other restrictions; accordingly, it is “Unpublished — rights reserved under the
copyright laws of the United States” for purposes of the FARs.

DISCLAIMER OF WARRANTY
Rational makes no representations or warranties, either express or implied,
by or with respect to anything in this manual, and shall not be liable for any
implied warranties of merchantability or fitness for a particular purpose or for
any indirect, special or consequential damages.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to the restrictions
as set forth in subparagraph (c) (1) (a) of the Rights in Technical Data and
Computer Software clause of the DFARs 252.227-7013 and FAR 52.227-19(c)
and any successor rules or regulations.

TRADEMARKS
ClearDDTS, PureDDTS, ClearCase, Rational and the Rational logo are U. S.
trademarks of Rational Software Corporation.

All other products or services mentioned in this manual are covered by the
trademarks, service marks, or product names as designated by the companies
who market those products.

Printed in the U.S.A. on recycled paper.

Part Number: 800-025152-000

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Contents

Intended audience . xiii

Using this manual . xiii
iii

Where to go for more information . xvi

Questions or suggestions? Contact us . xvii

1 Understanding ClearDDTS Operation

What is ClearDDTS? . 1-1

How defects are classified . 1-1

Understanding the defect life cycle . 1-2

Distributed operation . 1-2

UNIX mail for flexible communication . 1-2

How ClearDDTS handles its mail . 1-3

Naming conventions . 1-3

The ClearDDTS network . 1-4

Communication between local and remote installations 1-4

Providing project subscriptions . 1-5

When the mail system goes down . 1-5

How information is stored . 1-6

2 Using Administration Utilities

Basic ClearDDTS utilities . 2-1

Using adminbug . 2-2

Entering commands . 2-3

Set up maintenance mode (smnt) . 2-5

Exit maintenance mode (emnt) . 2-5

Quit adminbug (quit) . 2-5

More administrative utilities . 2-6

ddtsclean . 2-6

ddtsversion . 2-6
iv

newduser . 2-6

patchbug . 2-6

batchbug . 2-7

projck . 2-7

projstat . 2-7

refreshbug . 2-7

rdtest . 2-8

rmbug . 2-8

tmpltest . 2-8

3 Maintaining the Network

Install machine on ClearDDTS network (inst) 3-2

Disable ClearDDTS machine (dsbl) . 3-4

Modify ClearDDTS installation parameters (mins) 3-5

Build ClearDDTS database (dbms) . 3-6

Change database (chdb) . 3-6

Establish connection between sites (conn) 3-8

Remove connection between sites (dcon) 3-9

List other sites connected to this system (lsit) 3-10

List ClearDDTS administrator names (ladm) 3-10

Add licenses (alic) . 3-11

4 Managing Remote Access Between Multiple Installations

How the import and export files are used 4-1

The export file . 4-2

Examining a sample file . 4-2

How the file is read . 4-3

Further examples . 4-4

Importance of project naming conventions 4-4

Applying changes to the export file . 4-5

The import file . 4-5

5 Maintaining Classes and Projects

Maintaining classes . 5-1
v

Add a new class (clas) . 5-1

Delete a class (dcls) . 5-2

Rename a class (rcls) . 5-3

Create a meta-class (meta) . 5-4

Modify a meta-class (mmta) . 5-5

Maintaining projects . 5-5

Add a new project (aprj) . 5-5

Close a project (cprj) . 5-13

Delete a project and project data (dprj) 5-14

Open a closed project (oprj) . 5-14

Modify project parameters (mprj) . 5-14

Broadcast project parameters (bprj) . 5-16

Save a project (sprj) . 5-16

Restore a project (rprj) . 5-17

Rename a project (renm) . 5-18

Ask to subscribe to a project (asub) . 5-18

Delete subscription to a project (dsub) 5-20

Modify subscription parameters (msub) 5-20

List all project parameters (lprj) . 5-21

List project names and descriptions (lbug) 5-21

List projects owned on this machine (lown) 5-22

List projects being subscribed to on this machine (lsub) 5-22

View project availability for oneof lists 5-23

6

7 Reconfiguring a ClearDDTS Network

Moving a project . 6-1

Physically moving the machine to a new location 6-3

If e-mail addresses are not valid after moving 6-3

If e-mail addresses are still valid . 6-4

Checking addresses after the move . 6-4

Moving the ClearDDTS database . 6-5
vi

8 Understanding the Master Template File

Example master.tmpl file . 7-1

Understanding the “Begin” field derivation section 7-3

Other field derivations . 7-4

Understanding OPERATION and STATE 7-4

How OPERATION and STATE are used 7-5

Most common derivation . 7-7

A closer look at derivation lines . 7-7

Setting default values . 7-12

How webddts pages are generated . 7-15

Web page generation—the big picture 7-15

Updating the database . 7-16

Restrictions—what is not interpreted . 7-16

9 Customizing ClearDDTS

Before making changes . 8-2

Locating files to customize . 8-2

Adding new fields . 8-5

Adding defect states . 8-6

Editing the state names file (statenames) 8-7

Editing the state transitions file (states) 8-9

Editing the master template file (master.tmpl) 8-11

Editing administrative template files . 8-13

Modifying the information in a query index 8-15

Editing the three-line summary template file 8-17

Changing the reporting system for new states 8-17

Further template customization . 8-17

Creating field dependencies . 8-17

Prompting for and requiring enclosures 8-19

Customizing enclosures, prompts, and e-mail 8-20

Creating custom filter commands . 8-21

Specific webddts customizations . 8-21
vii

Label and type modification via the “www” filter 8-21

Web layout using field grouping . 8-22

Web display options via the web_conf file 8-25

Maintaining the cache directory . 8-26

Specific xddts customizations . 8-27

Adding new pages . 8-27

Debugging a custom template file . 8-31

Setting up a dummy class . 8-31

Testing a template file . 8-31

10 Creating Custom ClearDDTS Reports

Understanding how reports work . 9-1

The report_conf file . 9-1

Report scripts . 9-3

xddts . 9-4

webddts . 9-5

Creating Reports . 9-6

Integrating a report into the xddts and webddts interfaces 9-10

11 Customizing Link Actions

What is defect linking? . 10-1

Configuring links . 10-2

Defining link actions . 10-2

12 Handling ClearDDTS Mail

Why use electronic mail? . 11-1

How ClearDDTS handles mail . 11-2

Types of ClearDDTS mail . 11-2

Looking at an example . 11-3

Determining who receives mail . 11-4

Notification list . 11-5

Customizing notification mail . 11-6

Mail Domain . 11-6
viii

Debugging Tool . 11-7

Notification Options . 11-7

Mail for changed sites . 11-14

Sending mail to ClearDDTS . 11-14

13 Managing ClearDDTS Security

HTTP (web) security . 12-1

Identifying the user . 12-1

What happens when HTTP security is not implemented 12-2

Controlling access to web pages . 12-3

Controlling access to data across the network 12-6

Monitoring access to webddts pages 12-7

Write access control . 12-7

Read access control . 12-9

Per-project read access control (adminbug) 12-9

Per-defect read access control . 12-10

xddts specific security . 12-13

Controlling field access by customizing the master.tmpl file . 12-13

Field read access control . 12-14

14 Managing and Customizing the ClearDDTS Database

How information is posted to the database 13-1

Backing up and restoring the database 13-2

Reviewing the database schema . 13-3

Modifying the database . 13-3

Editing the schema file . 13-4

Editing the database configuration file 13-5

Rebuilding the database . 13-6

15 Using the ClearDDTS SQL Interface

Learning SQL . 14-1

Starting the SQL command line interface 14-2

Writing Queries . 14-3
ix

Using dates with the Oracle database 14-4

Formatting query output . 14-4

Using SQL in a Script . 14-5

Retrieving Information from Multiple Tables 14-6

ClearDDTS and standard SQL . 14-7

Date conversion . 14-7

Aggregate comparisons . 14-7

Table and column aliases . 14-8

Supported SQL statements . 14-10

Unsupported SQL statements . 14-11

Recommended reading . 14-12

16 Creating a Change Management System

Understanding Release/Configuration Problems 15-1

Providing an Integrated Solution . 15-2

Version Control Integration . 15-3

Configuration Integration . 15-5

Process Integration . 15-6

Setting Up ClearDDTS for Change Management 15-9

Providing Access Control . 15-11

Installing CMCS . 15-12

A Closer Look at CM Scripts and Utilities 15-12

The cm.tty.sh Script . 15-12

CM Macro Files . 15-13

The cmsetuser Utility . 15-13

Convenience Shell Scripts . 15-13

CM Access Control Process . 15-14

How ClearDDTS Supports Roles . 15-15

17 Contents of a Defect Record

Sample file . A-1

Field descriptions . A-3

Fields required by ClearDDTS utilities A-7
x

Fields with special significance . A-8

18 Converting to ClearDDTS

Ensuring a successful conversion . B-1

Identifying your projects . B-2

Creating projects and classes . B-2

Creating ClearDDTS defect records . B-3

Format of a ClearDDTS record . B-3

Filling in some special fields . B-4

Assigning states to defects . B-5

Running the conversion utility . B-10

Incorporating defects into the database B-10

19 Sample Filter Command Script

Script example . C-1

20 E-mail Submission API

21 Creating Graphs with Graphbug

Using Graphbug . E-1

Command line options . E-1

Description . E-2

Defining graph contents . E-3

Header section . E-4

Graph titles . E-4

Vertical axis . E-4

Horizontal axis . E-6

Graph types . E-7

Margin definitions . E-16

Legend parameters . E-17

Data section . E-17

Notes section . E-18

Graphbug configuration file . E-19
xi

Color definitions . E-19

Textual notations . E-20

22 Database Reference

Defect information table (defects) . F-1

Enclosures table (enclosures) . F-4

History table (change_history) . F-5

23 Using an Oracle Database

Identifying the database vendor .G-1

Working with an ORACLE database .G-2

Creating tablespaces .G-3

Creating rollback segments .G-4

Creating database users .G-4

Creating tables .G-5

Searching enclosures .G-6

24 Information Resources on the Web

HTTP servers .H-1

Apache .H-1

Netscape .H-1

General .H-1

FastCGI .H-1

HTML .H-1

CGI scripts .H-2

xii

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Preface
Rational’s Distributed Defect Tracking system, ClearDDTS™,
tracks and manages defects (bugs) and enhancement requests
xiii

throughout the life cycle of a product or project. It is also an
integral part of Rational’s complete quality assurance (QA)
solution.

Intended audience

The ClearDDTS Administrator’s Guide is intended for system
administrators and managers responsible for maintaining and
customizing the ClearDDTS product. It describes how to set up
and manage a ClearDDTS network as well as how to configure the
system to suit your unique business requirements.

Although basic system administration is simple, it is necessary to
be familiar with the following:

n UNIX operating system and common UNIX commands (or the
POSIX shell if working in a POSIX-compliant environment)

n basic system administration commands for your platform
n requirements of your business environment
n web servers, client browsers, and your HTTP server

configuration for use with the webddts interface

Using this manual

The ClearDDTS Administrator’s Guide contains all of the information
you need to manage ClearDDTS as shipped and provides the
information you need to begin configuring the product to suit your
unique business environment.

The manual is organized as follows:

n Chapter 1, Understanding ClearDDTS Operation, provides an
xiv ClearDDTS Administrator’s Guide

introduction to ClearDDTS and an overview of the ClearDDTS
distributed operation and network configuration.

n Chapter 2, Using Administration Utilities, describes the key
utilities you use to manage the system.

n Chapter 3, Administering the Network, describes how to set up
and maintain your ClearDDTS distributed network.

n Chapter 4, Managing Remote Access Between Multiple
Installations, describes the use of import and export files for
accessing projects across multiple ClearDDTS machines.

n Chapter 5, Maintaining Classes and Projects, describes
commands for class and project creation, deletion, and
maintenance.

n Chapter 6, Reconfiguring a ClearDDTS Network, describes how
to reconfigure your ClearDDTS network when you need to move
projects or machines.

n Chapter 7, Understanding the Master Template File, describes
the structure of the master.tmpl file, field derivations, and how
it is used by the webddts interface.

n Chapter 8, Customizing ClearDDTS, provides the information
you need to customize various aspects of ClearDDTS.

n Chapter 9, Creating Custom ClearDDTS Reports, describes how
to add your own custom reports to ClearDDTS.

n Chapter 10, Customizing Link Actions, describes defect linking
and how to define the actions that you want applied based on
those links.

n Chapter 11, Handling ClearDDTS Mail, provides detailed
information about how ClearDDTS uses electronic mail and how
you can customize that mail.

n Chapter 12, Managing ClearDDTS Security, describes how to
control read and write access for defect records and how to set
up a secure dial-in account for running ClearDDTS.

n Chapter 13, Managing and Customizing the ClearDDTS
Database, describes the ClearDDTS database, how information
Preface xv

is posted to the database, how to perform database maintenance,
and how to modify the database schema.

n Chapter 14, Using the ClearDDTS SQL Interface, provides an
introduction to SQL and to the ClearDDTS SQL command line
interface, ddtssql.

n Chapter 15, Creating a Change Management System, describes
the integration between ClearDDTS and various configuration
management tools and how this integration allows you to
establish a change management system.

Several appendices are included to provide specific technical
information about selected topics, such as the content of defect
records, how to convert an existing defect tracking system to
ClearDDTS, and complete table and index definitions.

Where to go for more information
xvi ClearDDTS Administrator’s Guide

For special notes about this release of ClearDDTS, see the Release
Notes file, [ddts_home]/RELEASE_NOTES. In addition to this
guide, the ClearDDTS documentation set includes several other
sources of information. Use the following roadmap to guide you to
the documents that best suit your needs:

Installation and licensing

ClearDDTS administration
documentation in HTML
(see http://<host>/wt/doc)

ClearDDTS features

ClearDDTS Installation &

 • instructions for installing,

ClearDDTS User’s Guide

ClearDDTS
HTML Documentation

 • getting started

 • performing key change

upgrading, and licensing
the product

Licensing Guide

• Man(1) and Man(5) pages
• Implementation Roadmap

• All three reference guides

 (steps you through the
 implementation process)

 management tasks

 • learning to use the tools

Questions or suggestions? Contact us
Preface xvii

If you have suggestions for improving ClearDDTS or this manual,
or if you have questions that are not answered here, contact the
nearest Rational Technical Support Center.

Rational U.S.A. Rational Europe Rational K.K.

18880 Homestead Road
Cupertino, CA 95014
U.S.A

Tel: (800) 433-5444
 or (408) 863-4000
Fax: (408) 863-4590
e-mail: info@rational.com
 support@rational.com

URL: http://www.rational.com

Beechavenue 30
1119 PV Schiphol-Rijk
The Netherlands

Tel:+31 (0)20 4546 200
Fax: +31 (0)20 4546 201
e-mail: info@europe.rational.com
 support@europe.rational.com

Kyowa Shinkawa Bldg.
2020-8 Shinkawa
Chuo-ku, Tokyo 104 Japan

Tel:+81 3 3551 9370
Fax:+81 3 3551 9362
e-mail: info@japan.rational.com
 support@japan.rational.com

xviii ClearDDTS Administrator’s Guide

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Understanding ClearDDTS Operation
1

This chapter provides a brief overview of the Distributed Defect
Tracking system, ClearDDTS, and the ClearDDTS network. For
1-1

more information about the operation and key components of the
ClearDDTS system, you should read at least the first two chapters
in the ClearDDTS User’s Guide. These key concepts are only
summarized in this manual. Topics covered in this chapter
include:

n What is ClearDDTS?
n Distributed operation
n The ClearDDTS network
n How information is stored

What is ClearDDTS?

ClearDDTS, tracks and manages defects (“bugs”) and
enhancement requests throughout the life cycle of a project or
product. Before you begin administering the system, you should be
familiar with the basic principles of defect tracking and
management used in ClearDDTS.

How defects are classified

ClearDDTS organizes defects into classes and projects. Every
project is identified by a unique name and associated with a
particular class. You can define your own classes or use the sample
class, software, shipped with ClearDDTS. Once you have identified
the classes you want to use, you need to define the projects that
are members of each class.

Each project is associated with one home system. All project
defects reside on that project’s home system and users worldwide
1-2 ClearDDTS Administrator’s Guide

can log defects against it.

Understanding the defect life cycle

In most organizations, defects move through a number of common
steps or states. This life cycle begins with the submission of a defect
and generally ends with the resolution of the defect. In
ClearDDTS, defect management involves keeping track of where a
defect is in this life cycle. This movement from one state to
another is called a state transition.

Distributed operation

ClearDDTS manages defect reports and related communications
over the entire network of machines defined to ClearDDTS. This
network of installed ClearDDTS sites is called the ClearDDTS
network.

Because ClearDDTS is a distributed application, it deals very
effectively with distributed project development and defect
tracking. For example, a user could log a bug in Paris against a
project in New York and an interested subscriber in Tokyo could be
notified.

UNIX mail for flexible communication

ClearDDTS solves the communication problem by managing its
distributed network entirely through ordinary UNIX mail
messages. All that is required to network ClearDDTS systems
together is an electronic mail link between the systems. It does not
matter what gets the mail from one system to the other as long as
it gets there correctly.

Thus, ClearDDTS automatically takes advantage of whatever
technology is determined to be the best way to communicate
between each pair of systems.

How ClearDDTS handles its mail

Incoming mail for ClearDDTS usually contains copies of defect
Understanding ClearDDTS Operation 1-3

reports and automatic administration commands. A daemon reads
this mail, then determines what should be done with the mail
message. The daemon forwards any items it cannot process
automatically to the person who has been designated the
ClearDDTS administrator.

After reading and processing each mail message, ClearDDTS
records the transaction and deletes the message. ClearDDTS also
acknowledges defect arrival and retransmits any defects that may
have been lost due to external mail problems, thereby
guaranteeing that defects will not be lost in the mail system.

Note: ClearDDTS handles its own mail automatically. You should
not delete, modify, or redirect ClearDDTS mail. See Chapter 11,
Handling ClearDDTS Mail, for more information about how
ClearDDTS uses e-mail.

Naming conventions

In order to operate on a network-wide basis, ClearDDTS requires
a special naming convention to uniquely identify ClearDDTS
machines and defect records. This naming convention takes the
form XXXyy. These five characters uniquely identify a ClearDDTS
system and are also used to identify the origin of a submitted
defect.

The name identifying a defect record is generated by the machine
that originates the defect. The defect name is the machine ID,
followed by a five-digit sequence number. For example:

ALBqa00533

ClearDDTS

533rd bug submitted from this machine

machine ALBqa

The ClearDDTS network
1-4 ClearDDTS Administrator’s Guide

ClearDDTS makes extensive use of NFS (or RFS). A central server
is typically used to store the ClearDDTS database and all local
workstations access the system by NFS mounting the database.
Thus, every local engineer deals with ClearDDTS as if it were
installed on his local workstation.

Communication between local and remote installations

ClearDDTS also knows how to send and receive defects from
remote systems through e-mail. As shown in the following figure,
ClearDDTS will work over uucp or wide area networks.

In this configuration there are three systems which are separate
and distinct ClearDDTS installations:

n AAAaa
n BBBbb
n CCCcc

Internet

uucp

ClearDDTS Site BBBbb

ClearDDTS Site CCCcc

ClearDDTS Site AAAaa

Modems

Modem

Modem

These systems are all locally customized to suit the local
community’s needs but are also completely interoperable. If a user
Understanding ClearDDTS Operation 1-5

local to AAAaa wants to submit a defect against a project on
BBBbb, he just submits the defect normally. There is no difference
between a local and remote submission. ClearDDTS takes care of
all of the details of wrapping up the transaction in an e-mail
message and sending it to machine BBBbb.

When the defect reaches BBBbb, the database transaction is run
and an acknowledgment is sent from BBBbb back to AAAaa.
Every time the defect is modified on BBBbb, a copy of the record is
sent from BBBbb to AAAaa, AAAaa's database is updated, and
e-mail is sent to the local submitter informing him of the change.
This means that a local engineer can look at any defect owned on
any machine and know that the defect is up-to-date.

Providing project subscriptions

Another distribution feature that ClearDDTS supports is called
subscription. This feature works the same way as “replication” in
large relational databases. ClearDDTS allows users to subscribe
to projects on remote machines so that they are informed of all
defects logged against projects in which they are interested.

For example, if users at machine CCCcc want to be informed about
all defects for project foo located on machine BBBbb, they can
subscribe to the foo project. All defect transactions that involve the
foo project are sent to CCCcc, allowing an engineer at CCCcc to
look at his local database for current information on the foo
project.

When the mail system goes down

ClearDDTS also guarantees that no bugs will be lost in the mail
system. Any lost mail is retransmitted. If a mail link totally goes
down, the ClearDDTS administrator is notified, so that the link
can be restored and the mail messages retransmitted.

How information is stored
1-6 ClearDDTS Administrator’s Guide

In ClearDDTS, your defect records are stored in flat files in the
allbugs directory. These files represent the “real” data and are
used to post “copies” of the data to the SQL database. The SQL
database acts as a cache to provide more efficient querying and
performance.

The redundancy of storing data in both the flat files and the SQL
database provides better security against potential loss or
corruption of data and faster access to the information. It also
allows for greater flexibility in changing the schema. Once
changes have been made to a record, it is a simple procedure to
rebuild the database to reflect the change.

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Using Administration Utilities
2

There are several utility programs you will use to install,
configure, and maintain the ClearDDTS system. This chapter
2-1

includes an in-depth look at the most commonly used utility,
adminbug, and provides an overview of the other key utilities you
may use under special circumstances. Before reading this chapter,
you should be familiar with the information in Chapter 1,
Understanding ClearDDTS Operation. Topics covered in this
chapter include:

n Basic ClearDDTS utilities
n Using adminbug
n More administrative utilities

Basic ClearDDTS utilities

Once you have set up your ClearDDTS environment, very little
administration is usually required. Typically, you only need to add
new projects as they are started, delete projects that are
completed, or archive bugs that are old. These routine tasks
ordinarily take about an hour per month, and are easy to perform
even with little or no UNIX experience.

This chapter concentrates on the administration utilities
available. Specific administrative tasks are described in detail in
Chapter 3, Maintaining the Network, and Chapter 5, Maintaining
Classes and Projects.

If you decide to customize ClearDDTS — for example, by
modifying the contents of defect records, the format of output
reports, or the way bug transitions are handled — system
administration is somewhat more complex, and more specific

UNIX knowledge is required. Customization is described in
Chapter 8, Customizing ClearDDTS.
2-2 ClearDDTS Administrator’s Guide

The following utilities are used to perform the most common
ClearDDTS administrative functions:

Because adminbug is the most frequently used administration
command, it is explained in detail in this chapter. The other
utilities are only rarely used and only touched on briefly in this
chapter. Refer to the manual (man) pages for more complete
information.

Using adminbug

The adminbug utility is used to administer ClearDDTS projects and
the ClearDDTS network. It has commands for project creation,
project deletion, remote site connection, reconfiguration, and so
on. Most ClearDDTS administration is done through this
program.

Utility Description

adminbug Performs most ClearDDTS administrative tasks.

batchbug Makes a programmatic change to a defect.

ddtsclean Performs housekeeping tasks, such as cleaning up log files.

ddtsversion Prints the ClearDDTS version number.

newduser Replaces one user with another in the database.

patchbug Modifies the contents of one or more defect records.

projstat Shows status of ClearDDTS projects.

rdtest Detects syntax errors in template files.

rmbug Deletes bugs from the ClearDDTS system.

tmpltest Tests new or modified template files.

Entering commands

When invoked, adminbug displays the following:
Using Administration Utilities 2-3

**
**** ClearDDTS Administration Utility ****
**
DDTSHOME=/usr/testing
ClearDDTS is in maintenance mode.

Enter ’?’ for help at any time.

adminbug>

As indicated in this prompt, you can get help at any point by
entering a question mark (?). When you do this, an informative
message appears describing what is happening.

Once you have invoked adminbug, you can enter commands to
perform various administrative tasks. Most of these commands
prompt you for specific information and accept input interactively.

The following table lists the commands you can use in adminbug. In
this table, the second column indicates who can run each
command as follows:

n ddts — Only a user logged on as ddts can run this command.
n PM — Only the project manager or ddts user can run the

command.
n any — Any user can run the command.

Command Who Description
Database
rebuild
required?

Page
Reference

inst ddts Install this system. Yes 3-2

dsbl ddts Disable (de-install) ClearDDTS on this machine. No 3-4

mins ddts Modify installation parameters (such as
administrator names).

No 3-5

dbms ddts Build the ClearDDTS database. Yes 3-6

chdb ddts Change the database (RDBMS) used by
ClearDDTS.

Yes 3-6

conn ddts Establish a connection between this site and
another.

No 3-8

Command Who Description
Database
rebuild

Page
2-4 ClearDDTS Administrator’s Guide

dcon ddts Remove the connection between this site and
another.

No 3-9

clas ddts Add a new class of projects to the system. No 5-1

dcls ddts Delete a class of projects from the system. No 5-2

rcls ddts Rename a class. Yes 5-3

meta ddts Add a meta-class to the system. No 5-4

mmta ddts Modify a meta-class. No 5-5

aprj ddts Add a new project to ClearDDTS. No 5-5

cprj PM Close down a project temporarily, preserving
defect data.

No 5-13

dprj ddts Delete a project from this machine, reclaiming
disk space.

Yes 5-14

oprj PM Reopen a closed project. No 5-14

mprj PM Modify project parameters (such as mail
notification lists).

No 5-14

bprj PM Rebroadcast project information to the
ClearDDTS network.

No 5-16

sprj PM Save a project. (Allows moving project to a
different machine.)

No 5-16

rprj ddts Restore a project. (Installs saved project on a
new machine.)

Yes 5-17

renm ddts Rename a project. No 5-18

asub ddts Ask for subscription to a project. No 5-18

dsub ddts Delete subscription to a project. No 5-20

msub ddts Modify subscription parameters. No 5-20

smnt ddts Shut down ClearDDTS on this machine for
maintenance.

No 2-5

emnt ddts End maintenance and bring ClearDDTS back up. No 2-5

lprj any List all project parameters for specified project. No 5-21

lsit any List other systems connected to this system (with
conn command).

No 3-10

ladm any List ClearDDTS administrators on this machine. No 3-10

required?
Reference

Command Who Description
Database
rebuild

Page
Using Administration Utilities 2-5

Set up maintenance mode (smnt)

This command puts ClearDDTS on this machine into maintenance
mode. In maintenance mode, all ClearDDTS daemons terminate
and ClearDDTS software can be safely updated. During this
period, ClearDDTS mail requests might still be arriving, but
ClearDDTS takes no action on them until you enter the emnt
command to exit maintenance mode.

Exit maintenance mode (emnt)

This command brings ClearDDTS out of maintenance mode. The
ClearDDTS daemons are automatically restarted, and they begin
processing any new or pending requests.

Quit adminbug (quit)

At the adminbug> prompt, this command exits adminbug. To abort
individual adminbug functions at any interactive prompt, type your
interrupt character to return to the adminbug> prompt.

lbug any List projects to which defects may be submitted. No 5-21

lown any List projects owned on this machine. No 5-22

lsub any List projects subscribed to on this machine. No 5-22

quit
exit

any Exit adminbug. No 2-5

alic ddts Add evaluation licenses to ClearDDTS. No 3-11

?
help

any Display context-sensitive help. No NA

? cmnd any Explain the specified command (for example, use
? aprj to get help on the aprj command).

No NA

required?
Reference

More administrative utilities
2-6 ClearDDTS Administrator’s Guide

There are a few additional administrative utilities that deserve
mention and are summarized below. These are rarely used or only
need to be set up once. For more information about any of these
utilities, see the man pages.

ddtsclean

The ddtsclean utility cleans up log files and any problems that
occur due to a system crash. It should be invoked once a day from
the system’s crontab file, or if your system allows user-specific
crontab files, from the crontab file belonging to ddts. See the
ClearDDTS Installation and Licensing Guide for details on how to
do this. Once ddtsclean is set up in the crontab file, it requires no
maintenance.

ddtsversion

This utility prints out the ClearDDTS version number. If you
administer ClearDDTS on multiple systems, this is very helpful
when it comes time to update them, so you can determine
immediately which have been updated and which have not. (This
utility is the same as the whichddts utility provided in previous
releases.)

newduser

This utility allows you to transfer ownership of defects from one
employee to another (for example if an employee leaves the
organization and is replaced). You can use this script for both
defect submitters and those that repair them.

patchbug

If you modify ClearDDTS to collect new information in defect
reports, you can use patchbug to change all of the existing defect
records to include the new information without updating them all
by hand. This utility allows you to add, delete, or change fields in

existing defect records. The utility can only be run by the user ddts.
Depending on how patchbug is run, you may need to rebuild the
Using Administration Utilities 2-7

ClearDDTS database with adminbug dbms.

Note: The patchbug utility does not allow you to add or edit
enclosures. Use the batchbug utility to do this.

batchbug

The batchbug utility is used for programmatic changes to
individual defects and have those changes immediately posted to
the database. The utility is different from patchbug in that it is not
meant for large scale changes to the database. Rather, it is meant
for changes to one or two bugs at a time.

Other utilities that need to integrate to ClearDDTS should do so
through this utility.

projck

The projck utility checks the health of the project and class
database and reports errors to stdout. This utility is run every
night by ddtsclean.

projstat

The projstat utility displays information about the ClearDDTS
system. It lists all of the currently active projects, those projects
owned on this machine, those projects subscribed to by this
machine, and more.

refreshbug

The refreshbug utility can be used when you are subscribing to
off-machine projects and the mail system has failed. If mail has
failed or been lost, bugs from subscribed projects may have been
lost. The refreshbug program will refresh your subscribed database
from the machine where the project is owned. This utility is

automatically invoked once a day by ddtsclean to ensure the owned
database and the subscribed database conform.
2-8 ClearDDTS Administrator’s Guide

If your system has mail problems, you may want to run this utility
more often.

rdtest

The rdtest utility is used to test for syntax errors in customized
template files. If you have customized ClearDDTS files, you can
run rdtest on these files to find any syntax errors before
implementing your customizations.

rmbug

The rmbug utility is used to remove a bug from the database.
Generally, it is better to resolve a bug than remove it; however, if
you do want to purge a bug from the database, you can use rmbug.
This utility removes the bug from the local machine, but does not
remove the bug from the network. To remove a bug from the
network, remove it from each machine individually. As mentioned,
it is generally better to just resolve the bug. A resolved bug is
resolved over the entire ClearDDTS network.

tmpltest

One way you can customize ClearDDTS is by defining your own
state transitions. The rules for moving from state to state are
defined in template files. If you create custom template files, you
can use tmpltest to execute these files and display the results.

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Maintaining the Network
3

Once you have set up your ClearDDTS environment following the
steps in the ClearDDTS Installation and Licensing Guide, little
3-1

administration is required. You may, however, need to update your
ClearDDTS network as changes in your environment occur, such
as the addition of new machines or sites. This chapter describes
the adminbug commands you can use to maintain your
ClearDDTS network. For more information on running adminbug
see Chapter 2, Using Administration Utilities.

This chapter includes the following topics:

n Install machine on ClearDDTS network (inst)
n Disable ClearDDTS machine (dsbl)
n Modify ClearDDTS installation parameters (mins)
n Build ClearDDTS database (dbms)
n Change database (chdb)
n Establish connection between sites (conn)
n Remove connection between sites (dcon)
n List ClearDDTS administrator names (ladm)
n List other sites connected to this system (lsit)
n Add licenses (alic)

Messages and prompts are displayed in a regular Courier font and
responses are shown in Bold Courier. Some prompts have default
responses. You can simply press RETURN with no input to accept the
default.

Install machine on ClearDDTS network (inst)
3-2 ClearDDTS Administrator’s Guide

You use this command to add a machine to the ClearDDTS
network. This command is automatically invoked by the ddtsinstall
script when you first install ClearDDTS. The following is a
line-by-line explanation and example of the ensuing dialog:

Installing ClearDDTS on host <machine>.
This machine will be used as the ClearDDTS server.

Is this correct? (y/n): y

n By default, the inst command installs the ClearDDTS database
on the machine that adminbug is currently running on, so
normally the machine name displayed is correct and you can
simply enter y. However, in an NFS or RFS environment, the
name of the server must be provided. In this case, enter n and
run this command from the server.

What are the mail address(es) of the ClearDDTS administrator(s)?

Mail address(es): fred mike chris@piper

n Enter the mail address(es) of the person(s) responsible for
administering ClearDDTS on this machine. If an administrator
reads mail on another machine, give a mail address that will
reach that user from this machine. In the example, there are
three administrators: fred, mike, and chris (on machine
piper).

The users listed are informed by mail of any network errors or
ClearDDTS informational messages that are generated. Also, if
any personal mail is sent to ddts by accident, ClearDDTS
forwards this mail to the administrators.

Note: The names entered are mail addresses. They are not used
for granting permissions. They are used strictly for sending
informational e-mail messages. Note also that ddts is a special
user and not a legal response to this prompt.

What is the five character site identifier used to uniquely identify
this site within the ClearDDTS network?

Site identifier (XXXyy): GPDqa

n Enter a site identifier to uniquely identify the machine in the
ClearDDTS network. The first three characters must be upper
Maintaining the Network 3-3

case and the last two must be lower case. All must be letters of
the alphabet with no numbers or special characters. You may
want to include a business entity acronym (such as PSD for
Portable Systems Division), but you should be sure that the site
ID you choose is not being used by sites you want to connect to in
the future. In the example, the site is identified by the acronym
GPDqa (General Products Division, quality assurance).

If you do not know what names other sites have chosen, call
them and ask. If they do not know their own site ID, ask them to
run the ddtshostname command. This will display the
ClearDDTS site ID.

What is the name of your organization or division? This name is used
in the Submitter Information section of all records submitted from this
site.

Organization/division name: General Products Division Lab

n Enter the name of your business organization. In this example,
the business organization is identified as General Products Division
Lab. This string will appear on all bug reports submitted from
the new machine and should be descriptive enough to uniquely
identify the organization. Any kind of identifying string up to 30
characters can be used.

What is the mail command to use on this machine? If a ’%s’ is supplied
as part of the command, DDTS will substitute the subject of the mail
in its place. Be sure to quote the ’%s’ so spaces in the subject will
be handled correctly.

Mail command: /usr/ucb/mail -s ’%s’

n Because all ClearDDTS networking depends on the mail system,
you need to inform ClearDDTS how to send mail on your system.
The default mail command varies depending on your
architecture.

Enter the full path name of the mailer program you use. On a
Sun Microsystems or other BSD-oriented system, this is
generally /usr/ucb/mail. On a UNIX System V machine like
Hewlett-Packard this is /usr/bin/mailx. Other systems may
use different mailers. If necessary, ask your system

administrator for the appropriate mail program and invocation
parameters to use.
3-4 ClearDDTS Administrator’s Guide

The -s ‘%s’ parameters are used for mailers that support a
subject line. If your mailer does not support a subject line, do not
include the -s ‘%s’ parameters in your response.

Note: When installing ClearDDTS for the first time, the ddtsinstall
script automatically invokes the adminbug alic and dbms commands.
If you are running this command after taking a ClearDDTS
machine off the network (with dsbl), be sure to run the alic and
dbms command to finish the reinstallation.

Disable ClearDDTS machine (dsbl)

Use the dsbl command to de-install the system and take it cleanly
off the ClearDDTS network. After you run the dsbl command,
users will not be able to log defects against projects on that
machine. Typically, this command is used for moving ClearDDTS
to another machine, or changing the ClearDDTS site ID.

This command starts off with a warning:

WARNING WARNING WARNING WARNING WARNING WARNING

This command will take this machine off the DDTS network.

Is this really what you want to do? (Y/N): y

n Enter y to continue. If you answer anything other than y or Y, the
command is aborted.

Going into maintenance mode...
Killing the ClearDDTS daemons...
ClearDDTS is in maintenance mode.
Disabling the system...
ClearDDTS is now disabled.

This command does not destroy any data; it merely takes the
system cleanly off the ClearDDTS network.

Note: The dsbl command also removes any subscriptions to or
from projects on this machine. If the system is re-enabled later,
any desired subscriptions to projects should be restored with the

adminbug asub command. To finish a ClearDDTS de-installation,
delete the ClearDDTS crontab entries.
Maintaining the Network 3-5

Modify ClearDDTS installation parameters (mins)

From time to time, you may want to modify some of the
ClearDDTS installation parameters. This can be done with the
mins command. This command allows you to change the
ClearDDTS administrator names, the invocation string for mail,
or the organization name.

The dialog is similar to portions of the inst command except that
the current answers to the questions are also displayed along with
the prompt (for more information about these prompts, see
"Install machine on ClearDDTS network (inst)" on page 3-2). To
retain the current information, just press RETURN. If you need to
make a change, backspace over incorrect items and enter the new
response.

What are the mail address(es) of the ClearDDTS administrator(s)?

Mail address(es): fred chris@piper

n Change the mail addresses of the persons who will be
administering ClearDDTS on this machine.

What is the mail command to use on this machine? If a ’%s’ is supplied
as part of the command, DDTS will substitute the subject of the mail
in its place. Be sure to quote the ’%s’ so spaces in the subject will
be handled correctly.

Mail command: /usr/ucb/mail -s ’%s’

n Change the mailer command used for your system. For example,
on an HP-UX system this may be /usr/bin/mailx.

What is the name of your organization or division? This name is used
in the Submitter Information section of all records submitted from this
site.

Organization/division name: Software Business Division

n Change the name of the business organization (up to 30
characters).

Build ClearDDTS database (dbms)
3-6 ClearDDTS Administrator’s Guide

This command rebuilds the ClearDDTS database. In general, the
dbms command is used:

n during installation or reinstallation of ClearDDTS
n when moving a project to or from another machine
n after making changes to your database (for example, with

patchbug)

Running this command displays the following:

Do you want to build/rebuild the ClearDDTS database? (y/n): Y

If there are many bugs this may take a while.

Going into maintenance mode...
Killing the ClearDDTS daemons...
ClearDDTS is in maintenance mode.
Building the ClearDDTS database on the internal database...
Creating table defects...done.
Creating table enclosures...done.
Creating table change_history...done.
Loading defect records from /nfs/testing/allbugs/00
.
.
.
Loading defect records from /nfs/testing/allbugs/99...
Exiting maintenance mode...
Starting the ClearDDTS daemons...
Rebuild of the ClearDDTS pure database completed successfully.

Change database (chdb)

Use this command to change your database vendor. After
installation you can change from the internal ClearDDTS
database to an external Oracle database. Running this command
displays the following:

Current database information:

 Vendor : pure
 Instance : ddts
 ClearDDTS login : none/none
 Query only login : none/none

Which relational database system do you want to use with ClearDDTS?

Database vendor name: oracle

n Enter the name of your database vendor.

What is the name of the oracle instance where the ClearDDTS
tables will be stored?
Maintaining the Network 3-7

Instance: dbinst

n Enter the database instance associated with this database. The
instance acts as a network identifier for locating the appropriate
database to use. With an Oracle database, you need to identify
the instance associated with this database before the database
can be mounted.

What is the ORACLE_HOME value needed to connect to this instance?

ORACLE_HOME: /usr/oracle

n Enter the path to the Oracle home directory.

What is the database login name of the owner
of the ClearDDTS tables? This user should be the only
user that is able to modify the ClearDDTS tables.

ClearDDTS login: ddts
Password:

n Enter the database user name you want designated as the owner
of ClearDDTS tables. (Use your database vendor’s tools to create
this user.) For security reasons, only this database user can
modify the database. In most cases you should use the login ddts
to identify this user. For the internal ClearDDTS database, no
entry is needed.

What is the login name of a database user that is
used only for queries? This user should not be able
to modify any information in the database.

Query only login: readonly
Password:

n Enter the database user name to use to provide read-only access
to the database. The “readonly” database login allows you to give
your general user population permission to run queries without
allowing them to modify the database. Use your database
vendor’s tools to create this user. No entry is needed for the
internal ClearDDTS database.

Vendor: oracle
Instance: dbinst
ClearDDTS login: ddts/ddts
Query only login: readonly/readonly

Are these values correct (y/n)? y

n Verify your settings and enter y if they are correct.
3-8 ClearDDTS Administrator’s Guide

Updating the database configuration files...

Running the dbms command to rebuild the database.

Do you want to build/rebuild the ClearDDTS database? (y/n): y

n Enter y to build the ClearDDTS database using default table
parameters. You can modify these parameters if necessary using
tools from the database vendor.

For more information about the file created with this command,
see Appendix G, Using an Oracle Database. For information about
creating database users and instances, refer to your database
vendor’s documentation.

Establish connection between sites (conn)

The conn command connects one site to another site. This
command sets up a communication pathway so that two machines
can exchange information about projects. When this command is
successfully executed, users on either system can log defects
against projects located on the other machine.

Note: Only one site needs to execute this command, not both.

For security and administrative reasons, project data (actual bugs)
are not exported from or imported into remote systems unless
explicitly authorized by the content of special import and export
files. Project information, such as name, class, and description, is
always exported. Read Chapter 4, Managing Remote Access
Between Multiple Installations, and edit the import and export
files appropriately before you issue this command.

Note: The conn command does not exchange Class template files.
This must be done manually by the ClearDDTS administrators on
each system.

Running this command displays the following:

What is the site id of the remote site to establish a connection with?
Maintaining the Network 3-9

Site id (XXXyy): DSDaa

n Enter the ClearDDTS site ID of the system to which to connect.
If you do not know the remote site’s machine name, ask the
remote ClearDDTS administrator or have someone on the
remote site run the ddtshostname command.

What is the e-mail address of the DDTS user at the remote site?

Remote DDTS e-mail address: ddts@jupiter.com

n Enter the mail address to the other site.

Enter the e-mail addresses of the persons to inform by mail when
the connection with the remote site has been established.

Mail addresses: fred bill

n When the connection request arrives on the remote site, the
remote site ClearDDTS administrators are informed by mail
that a connection request has been made. When the connection
request is established, the users listed above, fred and bill,
and the local ClearDDTS administrators are notified that a
connection has been established.

An error message or no confirmation message after a long period
means that the installation request failed. If the mail
communication link to the remote system is a modem or other
slow connection, you may have to wait until mail is delivered to
ClearDDTS and a confirmation is returned. If communication
between systems is over a fast LAN such as Ethernet,
confirmation should only take a few minutes.

Remove connection between sites (dcon)

Use this command to sever the ClearDDTS network connection
between this site and a remote site. After this command is
executed, users at each site are no longer able to submit bugs
against projects on the other site. Bugs already in transit are not
affected.

Note: Before disconnecting from a remote site, use the dsub
command to delete any subscriptions to projects on that site. To
3-10 ClearDDTS Administrator’s Guide

find the projects to which your site subscribes, use the lsub
command. If you reconnect to a site, use the asub command to
reestablish subscriptions to projects on that site.

The dcon command starts by listing all remote machine IDs and
paths, then asks for the name of the system to disconnect. For
example:

The following are the remote sites that you are connected to:
SPDqa path
GSDbc path
DSDbc path

Which site do you want to disconnect from?

Site Id(XXXyy): GSDbc

Please wait, this will take a while...

List other sites connected to this system (lsit)

This command lists the ClearDDTS machine names of the other
ClearDDTS systems that are connected to the system using the
conn command. For example:

GSDqa ddts@larry
PSDqa ddts@moe
PPDxx ddts@curley

List ClearDDTS administrator names (ladm)

This command lists the ClearDDTS administrator names. For
example:

Administrator: mike bill bob

Add licenses (alic)
Maintaining the Network 3-11

Use this command to add evaluation licenses to ClearDDTS. Have
a copy of your license certificate available.

Are you entering an evaluation license? (y/n): Y

Enter the information EXACTLY as it appears on your license certificate.

 Hostname :<machine>
 Hostid :ANY
 Number of licenses :4
 Expiration Date :30-Apr-1998
 Password :JSJ8XCJD834MJ9JS78Y2

Adding the license...

For information about licensing options and entering permanent
licenses, see the ClearDDTS Installation and Licensing Guide.

3-12 ClearDDTS Administrator’s Guide

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Managing Remote Access Between
4
 Multiple Installations
This chapter describes how to use ClearDDTS import and export
files to manage remote access between multiple ClearDDTS
4-1

installations. You do not need to read this chapter if:

n your ClearDDTS software is only installed on one system
n you are using NFS or RFS and ClearDDTS is installed on only

one system

This chapter covers the following topics:

n How the import and export files are used
n The export file
n The import file

How the import and export files are used

In ClearDDTS, the adminbug utility is used for almost all of your
administration needs. Therefore, you generally do not need remote
administrators to agree on a whole set of files to edit and then
force the joint editing of those files. There are, however, two files
that need to be properly edited if you are using ClearDDTS in a
distributed fashion. These are the export and import files located in
~ddts/conf.

n The export file defines the projects other systems can know about
and the projects remote systems can log bugs against. It is used
to restrict what ClearDDTS information goes to remote sites.

For example, assume you have several projects that you want
remote systems to know about and log bugs against, but you also
have some projects that are strictly for local use. You can use the
export file to prevent remote sites from logging bugs against
these specific local projects.

n The import file defines the projects a system will accept from
external sites.
4-2 ClearDDTS Administrator’s Guide

Note: The import and export files determine what projects can be
sent or accepted at a site. To actually establish a connection
between sites you must use the adminbug project subscription
commands subscribe to a project (asub), modify a subscription
parameters (msub), list project subscriptions (lsub), or delete a
subscription (dsub). See Chapter 5, Maintaining Classes and
Projects, for more information.

The export file

The ~ddts/conf/export file is used to decide which projects remote
systems are able to log bugs against. The file contains a list of
remote machines and the projects that those remote machines are
allowed to see. The mechanism used for this is simple and is best
described through an example.

Examining a sample file

A sample export file is shown below:

CMMqa: compiler
KMM*: * !compiler
SVR*: *.4.3
*: *

n Characters to the left of the colon (:) are ClearDDTS site IDs,
that is, the name by which ClearDDTS knows remote machines.

n Characters to the right of the colon represent the projects on
your system that users on the selected remote machines can log
bugs against.

n Shell metacharacters (*, ?, [and]) can be used to describe
both the sites and the projects. In addition, the unary negation
operator ’!’ can be used with projects.

n Use a space (space bar) as the separator to list more than one
item on either side of the colon.

In this example, the first line says machine CMMqa can access the
compiler project and nothing else. The second line says for all

machines with the KMM prefix (KMM*), export all local projects
except the compiler project. The next line says site SVR can access
Managing Remote Access Between Multiple Installations 4-3

only projects with a suffix of ’.4.3’. The last line says for all
other systems export all projects.

How the file is read

It is important to note that only those projects specifically named
will be exported. An empty file or no file means that nothing is to
be exported. If the rest of a line after a colon is empty, nothing is
sent to the machine specified on the left of the colon. If a site ID is
matched, the rest of the file is ignored.

Important: The order of lines in this file matters, because in
deciding whether to export a particular project, ClearDDTS reads
the file in order until a line is found whose left side matches the
machine in question. Consider the following example:

CMM*: FRM*
CMMqa: *

The first line here indicates that you want to export only projects
prefixed with FRM to all CMM sites. Since any site ID that starts with
a CMM is matched in the first line, the second line is never executed.
If these lines were reversed, CMMqa would get all projects, and
other CMM machines (CMMdd for example) would only get projects
prefixed with FRM.

When ClearDDTS finds a line in the export file that applies to the
machine in question, that line is examined completely. For each
item in the list, if it does not begin with a !, each matched project
is added to the set of projects to be broadcast to that machine. If
the item begins with a !, each project matched by the remainder of
the item is deleted from the set of projects (if it is in the set). When
the whole item list has been processed, those project names
remaining in the set are the ones distributed to that machine.

Further examples

Because of the importance of this file, here are more examples and
4-4 ClearDDTS Administrator’s Guide

what would result from each:

Importance of project naming conventions

Because ClearDDTS searches for the first matching site ID in the
export file and sequentially looks at each pattern on that line to see
if a project should be exported, the export file works best if you
come up with a convention for project names.

It is strongly recommended that you use a project naming
convention with agreed-upon prefixes and suffixes. For example, a
prefix for organizational groups and a suffix for release levels
often works well. Thus, an operating system project might look
like OS.4.0, OS.4.1, OS.4.3, and so forth.

Another convention could be used where the first character
designates whether the project is released yet. Thus an ’R’ prefix
would designate released projects and a ’D’ prefix would designate
projects still in development. You could then edit the export file to
only export projects that were prefixed with an ’R’.

Lines in export file Result

*: * Allow all projects to be exported to all remote
machines (projects available to everyone). This is the
default export file.

CMM*: * !os* Export all local projects except projects with an os
prefix to all CMM remote sites.

CMMqa: [A-Z]* framus Export only projects that start with a capital letter and
the framus project to remote site CMMqa.

CMMqa: compiler !* Incorrect usage. This line indicates you want to export
the compiler project and to export nothing (!*).

: ! Do not export any projects from the local ClearDDTS
system to any remote system. This is the same as an
empty export file.

*: Do not export any projects from the local ClearDDTS
system to any remote system. This is the same as an
empty or missing export file.

Applying changes to the export file

If you make a change to the export file, you can force the change to
Managing Remote Access Between Multiple Installations 4-5

be applied against remote systems by again issuing the adminbug
conn command against that site. Alternately, if only one project
needs changing, the adminbug bprj command can be used.

The import file

The import file works like the export file and has exactly the same
syntax and semantics. The difference is that the export file controls
projects that are exported from the local system and the import file
controls what projects are allowed to be installed on the local
system. The import file keeps unnecessary projects off your
system.

Some examples:

Lines in import file Result

*: * Allow any project to be installed in your system.

DAL*: !*
*: *

Accept any projects except projects that come from
the DAL site.

DAL*: RTE*
*: *

Accept any project except projects from the DAL site.
From the DAL site, only accept projects that begin with
the project name RTE.

*: Do not accept any projects from any remote system.
This is the same as an empty or missing import file.

4-6 ClearDDTS Administrator’s Guide

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Maintaining Classes and Projects
5

This chapter describes the adminbug commands you can use to
maintain your classes and projects. For more information on
5-1

running adminbug see Chapter 2, Using Administration Utilities.
This chapter covers the following topics:

n Maintaining classes
n Maintaining projects

Messages and prompts are displayed in a regular Courier font
and responses are shown in Bold Courier. Some prompts have
default responses. You can simply press RETURN with no input to
accept the default.

Maintaining classes

This section describes the commands you can use to maintain
classes. This includes adding, deleting, and renaming classes, as
well as creating and modifying meta-classes.

Add a new class (clas)

Use this command to add a new class of projects to ClearDDTS. A
class is a collection of projects that share common attributes or are
treated in the same manner. For example, you may want to have a
common bug tracking methodology for all of your compiler projects
and a different methodology for networking projects. All of the
projects in a class share the same state transition definition files
and I/O template files. They also all share the same set of

Management Reports and Metrics that may be applied to the
projects.
5-2 ClearDDTS Administrator’s Guide

When adding a new class of projects, the following dialog occurs:

Enter new class name: networking

n Enter the new class. Do not include spaces in the class name. In
this example, the user is creating a class of projects for
networking.

Enter a one line description of this class:
These are networking projects.

n Enter a one-line description used for the xddts and bugs help
files.

Enter Class prototype directory name: software

n Enter the name of a current class that is most like the new class
desired. You should enter a class name that already exists and
that treats projects in a way similar to what you desire.

Copying proto dir to networking. One moment please ...

Creating shared query: By Identifier

Updating DBMS. This will take a while...

When you run this command, adminbug creates a new class
directory, ~ddts/class/<new_class_name>. The class directory is
where most ClearDDTS customization occurs. You should take a
look at that directory now to see the files used in customization. A
complete description of ClearDDTS customization is described in
Chapter 8, Customizing ClearDDTS.

Delete a class (dcls)

This command deletes a class or meta-class from the system and
removes the class directory associated with it. You should be

extremely careful with this command; it can destroy all of your
customizations.
Maintaining Classes and Projects 5-3

Note: When you delete a meta-class, the classes grouped under
the meta-class are not deleted. Only their association as a
meta-class and the meta-class directory are removed.

When invoked the dcls command presents a warning:

WARNING WARNING WARNING WARNING WARNING WARNING

This command removes the class from the system and reclaims the
disk space. All class customizations will be lost.

Is this really what you want to do? Y

Enter class name: networking

This will take a few seconds...

Updating DBMS. This will take a while...

If any open projects still exist in this class, the command issues an
error and aborts. You must remove all existing projects in the class
or assign them to a different class (with mprj) before executing this
command.

Rename a class (rcls)

This command will rename an existing class. The dialog is:

Enter current Class name: foo

Enter new Class name: bar

n Enter the new class name. Do not include spaces in the class
name.

The following message is displayed:

This will take a while . . .

You MUST run the adminbug(1) ‘dbms’ command to
incorporate the changes into the database.

To finish the task, run the adminbug dbms command to rebuild the
database.
5-4 ClearDDTS Administrator’s Guide

Create a meta-class (meta)

Use this command to create a meta-class. A meta-class allows you
to group classes together for the purpose of metrics and link
semantics. For example, you can use a meta-class to report
information about all of the records in several different classes at
once. Although ClearDDTS treats the meta-class the same as a
regular class, no projects are directly associated with the
meta-class.

When creating a new meta-class, the following dialog occurs:

Enter new metaclass name: Computer

n Enter the new meta-class name. Do not include spaces in the
name.

Enter a one line description of this class.
Hardware-Software-Tools Group

n Enter a one-line description used for xddts and bugs help files in
the user interface.

Which classes should be included in this metaclass?
software hardware

n Enter the classes you want grouped under this meta-class.

Creating metaclass Computer. One moment please ...

Updating DBMS. This will take a while ...

When you run this command, adminbug creates a new class
directory, ~ddts/class/<new_metaclass_name>. This is the directory
where you customize the metrics and link semantics. Meta-classes
do not have records or projects directly associated with them. The
master.tmpl file for meta-classes is used only to determine what
fields should be displayed for querying in the meta-class.

Note: When you add or change fields in a class that is included in
a meta-class, you must also add those fields to

~ddts/class/<new_metaclass_name>/master.tmpl. This will let
users query on the new or changed fields.
Maintaining Classes and Projects 5-5

Modify a meta-class (mmta)

Use this command to modify information for a meta-class. For
example, you can use this command to add classes to the
meta-class.

When modifying a meta-class, the following dialog occurs:

Enter existing metaclass name: Computer

One line description of this metaclass:
Hardware-Software-Tools Group

Which classes should be included in this metaclass?
software hardware network

Updating metaclass Computer. One moment please ...

Updating DBMS. This will take a while ...

Maintaining projects

This section describes the commands you can use to maintain
projects. You can perform a variety of activities including adding,
deleting, and renaming projects.

Add a new project (aprj)

Use the aprj command to install a new project on the system and
on the ClearDDTS network. This command broadcasts to the
entire ClearDDTS network your intention to accept and resolve
defect reports pertaining to the new project.

Note: You can regulate which systems receive information about
projects using the ClearDDTS import and export files. See Chapter
4, Managing Remote Access Between Multiple Installations, for
more information about these files.

Considering project naming conventions

Because every project in ClearDDTS has a unique name and this
5-6 ClearDDTS Administrator’s Guide

name is used to group defect reports, we strongly suggest that you
create a corporate naming convention for projects before
continuing. If you exchange defects with other organizations or
companies, or run metrics on your projects, you should define a
logical naming convention. You may want to use the organization
names (or abbreviations for them) as part of the names for projects
in those organizations.

Entering project information

When adding a new project the following dialog appears:

Enter the project name: compiler

n Enter any name that does not contain slashes, question marks,
asterisks, or other special characters (+, ^, etc.). The dot
character (.) can be used and, in fact, can be useful.

To be able to exchange defects with older AT&T UNIX Systems,
System V-based systems and SCO systems, you must restrict the
total length of the project name to 14 characters. For modern
systems, this restriction does not apply as long as the file system
on which ClearDDTS resides supports long file names.

Enter a one-line description of project:
Defects against the C compiler.

n Enter a short description of the project, up to 45 characters. Try
to be clear and concise. Remember that others will use this
description to decide if this is the project against which they
should log a defect report. With a poor description, defects may
be logged against the wrong project or not logged at all.

Enter project part number: 960-153A

n If the project has a part number or other such code, enter it here.
This can be left blank.

To which class should this project belong? software

n A class is a collection of projects that are treated the same way.
For example, you might have one class of projects called
Maintaining Classes and Projects 5-7

“software” and another class called “hardware”. All projects in a
class use the same state transitions and rules for moving a
defect from state to state.

List remote site identifiers for those allowed to
modify bugs for this project. A blank line indicates that
no remote site can modify bugs.

n If you want to allow remote sites to modify defects for this
project, enter the ClearDDTS identifiers (XXXyy) for those sites.
Users at the sites you specify will be able to modify this project’s
defect records.

Note that when the remote site subscribes to this project, that
site can have its own local write access security for the project.
Determining who should have write access depends on the
policies agreed to by each site administrator.

You should also note that it is not possible to lock records
remotely, however it is possible for ClearDDTS to detect when
users at different sites have made conflicting changes to the
same record. When this happens, ClearDDTS sends mail to the
appropriate users explaining that their changes were not made
and that a copy of their changes has been saved. The users can
then re-submit the changes.

Inherit parameters from another project? [Y/N] Y

Enter the project name: CC

n If you want a new project to inherit parameters from an existing
project, enter y and specify the name of the existing project.
Entering an existing project name initializes default answers for
all questions that follow. This can save considerable time in
repetitive typing. In this example, the compiler project will
inherit parameters from an existing project called “CC”.

Setting up project notification

One of the most helpful features of ClearDDTS is its closed-loop
notification service. Whenever a bug makes a transition into a
state mentioned below, the users on the notification list will be

notified. For example, at Rational, project managers are on
notification lists for New (N) bugs entering the system and
5-8 ClearDDTS Administrator’s Guide

Resolved (R) bugs that have been repaired. This notification
mechanism helps managers estimate the amount of work
remaining on the projects for which they are responsible.

Mail aliases can also be used in place of individual user addresses
to send mail to many users at once.

An informative message is printed next, followed by a prompt.

Note: The prompts in this section may be different from what you
see. This command should be customized to reflect the state model
selected for this project. See Chapter 8, Customizing ClearDDTS
for information on customizing your state model.

The following questions relate to who to notify when a
record changes state (for instance, moving a record from
open to resolved).

Enter mail addresses of those to notify upon the arrival
of a new bug:
fred bob bill larry!moe!curley!mike fred@thunder

n When a new bug arrives at this project fred, bob, bill, and mike
will be informed by mail of the new bug.

Enter mail addresses of those to notify when a new bug is
assigned to an engineer:

n When a bug is assigned to an engineer, the assigned engineer
automatically receives mail about the assignment. Generally, no
other users are notified.

Enter mail addresses of those to notify when a bug is
opened by the assigned engineer:
mike bill bob

n When a bug is opened, the assigned engineer acknowledges
responsibility for an assigned bug, gives an estimated date of
resolution, and will often include a workaround for the problem.
In this example, the users mike, bill, and bob will be informed
of who has opened the bug and when it will be repaired.

Enter mail addresses of those to notify when a bug has
been resolved:
fred

n Whenever a bug is resolved, both the submitter and fred will be
notified by mail.
Maintaining Classes and Projects 5-9

Enter mail addresses of those to notify when a bug fix
has been verified:

n Enter the mail addresses of those that should be informed when
a bug has moved into the verified state.

Enter mail addresses of those to notify when a bug fix has
been postponed:
fred

n When a bug fix is postponed, it means that the fix probably will
not go out in the next release. This is also likely to be a
controversial decision and might require management review. If
this decision does require management review, put the
manager’s mail address on this line.

Enter mail addresses of those to notify when a bug has
been declared to be a duplicate of another bug:

n When a bug is declared a duplicate, the users on this list will be
notified.

List LOGIN names of those that have project management
responsibility:
bill

n This is a very important question. It defines who is allowed to
make changes to the project just defined. Enter the project
manager’s login name. It is also useful to enter the senior
engineer’s login name. Only users listed as project managers
(and the user ddts) are allowed to use the cprj, oprj, mprj, or bprj
commands to modify project information.

Are others allowed to subscribe to this project? y

n Indicate whether remote machines are allowed to subscribe to
this project. If you answer y and a remote user subscribes to
your project, copies of all the project’s bugs are also maintained
on that remote system. This allows remote QA organizations to
run comparative metrics and predict schedules based on
company-wide historical information. These metrics can also be
used to estimate staffing needs in support organizations.

Customer support organizations also might need active bug
information on your project.
5-10 ClearDDTS Administrator’s Guide

Unless there is a security issue involved, you should answer y to
this question. We recommend that you do not restrict this
information.

Whenever a subscription request is honored by ClearDDTS, the
project managers and ClearDDTS administrators receive mail
about the subscription. If a subscription request is honored and
you change your mind, the subscription can be removed by the
project manager with the mprj command (see below). In
addition, selective subscription is also possible. To do this, run
the mprj command to temporarily allow a remote subscription
and then run it again to disallow general subscription. See the
asub and dsub commands below.

What Configuration Management System does this project use? clearcase

n Enter the configuration management system that you are using
if any.

Setting up project security

The next sequence of prompts sets permissions on the project
database and determines who in the organization is allowed to
move defects from state to state, who can modify defects in that
state, and who is allowed to manage the project currently being
defined. (For more information on write access control, see
Chapter 12, Managing ClearDDTS Security.)

The section starts with the following informative message:

The following relates to WRITE ACCESS CONTROL.

The following questions relate to who may and may not
modify a bug’s state [e.g. resolve bugs, assign bugs, etc].
If ANYONE is allowed to make the state change do NOT enter
a login or group name, just hit RETURN. If you enter a
login or group name in answer to the questions below, then
any other user or any other group NOT listed will be denied
the ability to make that state change.

In general, we recommend that you put as few restrictions as
possible on the bug process. However, you must decide for yourself
what security or access control requirements make sense for your

needs. We assume that no restrictions are placed on defect
submissions, so SUBMIT and NEW are not prompted for here.
Maintaining Classes and Projects 5-11

Below are the access control questions:

List LOGIN names of users allowed to ASSIGN (A state) a
bug. Just hit return if anyone is allowed to ASSIGN bugs.

mmanley

List GROUP names of groups allowed to ASSIGN (A state) a
bug. Just hit return if any group is allowed to ASSIGN bugs.

proj_managers
List LOGIN names of users allowed to OPEN (O state) a
bug. Just hit return if anyone is allowed to OPEN bugs.

$Engineer
List GROUP names of groups allowed to OPEN (O state) a
bug. Just hit return if any group is allowed to OPEN bugs.

design_team

List LOGIN names of users allowed to RESOLVE (R state) a
bug. Just hit return if anyone is allowed to RESOLVE bugs.

List GROUP names of groups allowed to RESOLVE (R state) a
bug. Just hit return if any group is allowed to RESOLVE bugs.

List LOGIN names of users allowed to VERIFY (V state) a
bug. Just hit return if anyone is allowed to VERIFY bugs.

List GROUP names of groups allowed to VERIFY (V state) a
bug. Just hit return if any group is allowed to Verify bugs.

List LOGIN names of users allowed to declare a bug to
be a DUPLICATE (D state).
Just hit return if anyone is allowed to declare a bug to
be a DUPLICATE.

List GROUP names of groups allowed to declare a bug to
be a DUPLICATE (D state).
Just hit return if any group is allowed to declare a bug to be a
DUPLICATE.

List LOGIN names of users allowed to POSTPONE (P state)
fixing a bug. Just hit return if anyone is allowed to
POSTPONE fixing bugs.

List GROUP names of groups allowed to POSTPONE (P state)
fixing a bug. Just hit return if any group is allowed
to POSTPONE fixing bugs.

In this example, the user mmanley and users in the group proj_managers
are allowed to assign defects for repair. They are the only users
allowed to move a bug into the Assigned (A) state and the only
users allowed to modify a defect once in that state. Only the
assigned engineer (value of $Engineer) and users in the group
design_team may move the bug to the Opened (O) state and only

they may modify defects in that state. For more information on
entering users, groups, and variables to control write access, see
5-12 ClearDDTS Administrator’s Guide

Chapter 12, Managing ClearDDTS Security.

The ClearDDTS administrator or the project manager can run the
adminbug mprj command to change any of these parameters.

The above mechanism is the primary way that ClearDDTS
implements Write Access Control. See Chapter 12, Managing
ClearDDTS Security, for other ways to implement write access
control. The next section deals with Read Access Control.

The following relates to READ ACCESS CONTROL.

List LOGIN names of users allowed to view a
bug. Just hit return if anyone is allowed to view bugs.

mmanley

List GROUP names of groups allowed to view a
bug. Just hit return if any group is allowed to view bugs.

design_team

In this example, only mmanley and members of the UNIX group
design_team are allowed to view defects. If these fields are left
blank, anyone may view defects.

The last message printed by adminbug is just informational.

Building project this will take a while ...
Updating DBMS. This will take a while...

Informing the ClearDDTS network of the new project

At this point, you have completely defined the project to
ClearDDTS. Depending on the contents of the export file (see
Chapter 4), other systems may be informed as well. The speed of
your communication link with the other systems will determine
how quickly they are notified of your project.

To find out if a remote machine has been informed about the new
project’s existence, have a user on the remote machine use the
projstat command. Executing projstat -bl lists all projects that the

remote machine is allowed to log bugs against and a short
description of the project.
Maintaining Classes and Projects 5-13

If the remote system does not have the project installed or the
remote installation failed due to a mail problem, you can
rebroadcast the project to the ClearDDTS network with the bprj
command (see Broadcast project parameters (bprj) on page 5-16).
This will broadcast the project information again and allow
remote machines to submit bugs against the project.

Close a project (cprj)

Use the cprj command to close down a project. If a project is
finished and no further bugs will be logged against it, it should be
closed. When a project is closed, it is taken off the ClearDDTS
network so that no one can log bugs against it. However, all of the
defect information associated with the project is preserved so that
users can later run comparative metrics, look at bugs, or query the
database.

The cprj command is also necessary if you want to move the project
to a different machine. A project must be closed before moving it to
another machine.

This command will close and remove the project from the
ClearDDTS network such that no one will be able to log bugs against
the project.

Is this what you want to do? (y/n): y

n Answer n to abort the command. Answer y to continue.

What is the name of the project to remove?
Project name: compiler

n Enter the project name. In this example, the compiler project is
being closed. ClearDDTS will inform the network that the
project is closed and users will no longer be able to log bugs
against it.

Please wait, this will take a while ...

Delete a project and project data (dprj)

Use the dprj command to close a project and destroy all data for
5-14 ClearDDTS Administrator’s Guide

that project. In general, you should not use this command because
it destroys historical data that may be useful for future projects
that need comparative data. For this reason, the command starts
with a warning:

What is the name of the project to remove?
Project name: compiler

n Enter the project name. In the example above, the compiler
project is being deleted from the system.

WARNING WARNING WARNING WARNING WARNING WARNING

This command remove the project from the system
and reclaims the disk space. All project data will be lost

Is this really what you want to do? (Y/N): y

n Answer n to abort the command. Answer y to continue.

If there are many bugs this may take a while...
You must now rebuild the ClearDDTS database with the ’dbms’ command.

After executing this command, rebuild the database with the
adminbug dbms command.

Open a closed project (oprj)

Use this command to open a project that was previously closed
with cprj.

Enter project name: DSD.compiler

Updating DBMS. This will take a while...

The project is reopened and made available to the ClearDDTS
network.

Modify project parameters (mprj)

The mprj command allows the project manager or ClearDDTS
administrator to modify project parameters. For example, you can
use this command to add or delete members from the various

notification lists, add or delete project managers, or change the
mail path to subscribing machines.
Maintaining Classes and Projects 5-15

Note: You cannot modify parameters for a closed project.

The mprj command asks the same questions as the aprj command
above and provides the current answer. If no change is desired,
just press RETURN to move to the next prompt. To modify any
information, backspace over the current answer and type in the
correct answer.

For example, to delete bob and add mike to a notify list, you would
press RETURN until you came to the following question:

Enter mail addresses of those to notify when a bug has been resolved: bob
bill ralph

n Use the BACKSPACE key to delete bob bill ralph and type in bill ralph
mike. Do this for each prompt you want to change.

The only prompt that is different from the aprj command is the
prompt for the list of subscribers. When you run mprj you see the
following prompts:

Caution, below is a list of subscribers to this project.
Changes to current entries MAY CAUSE LOSS OF
SUBSCRIPTION FOR REMOTE SYSTEMS. It is generally
a bad idea to modify this list.

The following (if any) is a list of subscribing machines
and paths to those subscribers. You might wish to delete a current
subscriber or to change a path to the subscribing machine but DO NOT ADD
ANYONE TO THIS LIST.

If nothing is listed directly below this line just hit
return.

GSDww larry!moe!ddts
DSDqa ddts@thunder

In this example, two machines are subscribing to the project. The
two machines are GSDww (whose path is larry!moe!ddts) and
DSDqa. If you want to delete subscription for one of these machines,
delete the machine name and the corresponding path. Do not add

machines to the list when using this command. Use the asub
command to add subscriptions.
5-16 ClearDDTS Administrator’s Guide

Important:If you change the class to which the project belongs,
ClearDDTS will run the patchbug command to update the class
field for defects in that project. You then must run the adminbug
dbms command to rebuild the database with the updated
information.

Broadcast project parameters (bprj)

This command should rarely (if ever) need to be used. It is
provided only for the rare condition that a project was added via
the aprj command or opened via the oprj command and the mail
message about this event was lost to some system(s) on the
ClearDDTS network. In this case, the bprj command can be used to
rebroadcast the project information to the ClearDDTS network.
This command is also useful if you have a project that was not
exported due to export restrictions (see Chapter 5) and you change
the export rules, and then broadcast the project.

Enter project name: DSD.compiler

In this example, the DSD.compiler project information will be
rebroadcast to the ClearDDTS network. You can safely broadcast
project information at any time.

Save a project (sprj)

Use this command to save a project in preparation for moving it to
another machine or for archival purposes. The command saves all
of the project bugs and project-related files into the directory
~ddts/projects/<projname> where <projname> is the name of the
project. When this command completes, you can use the UNIX
commands tar or cpio to copy the ~ddts/projects/projname directory
and move it to another machine.

When executed, the sprj command issues the following prompt:

Enter project name: DSD.compiler

n Enter the name of the project to be saved. After you identify the
project, ClearDDTS lists the bug IDs that have been logged
Maintaining Classes and Projects 5-17

against the project and are being saved.

Now it is possible to save the project to a tape. Exit from adminbug
and do the following while still logged in as ddts:

cd ~ddts/projects
tar cvf /dev/xxx projname

The xxx is a backup device such as a magnetic tape device, and
projname is the name of your project, such as GSD.compiler. As tar
runs, you should see the bug files being saved.

After archiving a project to tape, you can run the adminbug dprj
command to reclaim disk space, if desired.

Restore a project (rprj)

Use this command to restore a project from a tape archive. Before
running this command, you must first restore the project directory
that was saved (see sprj above) via tar or cpio.

To restore a project:

1 Enter the following:

cd ~ddts/projects
tar xvf /dev/xxx

The xxx is the tape device. This places all of the project data into
the appropriate directory.

2 Run the rprj command.

Enter current project name: DSD.compiler
Enter new project name: SFD.compiler

n Enter the name of the project to be restored. In this case, the
DSD.compiler project is being restored and renamed with the
site ID of the new machine, SFD. (The current project name and
the new project name can be the same, if desired.)

The command will notice the new project and install all of the
project bugs and project-related files into the local system’s
5-18 ClearDDTS Administrator’s Guide

ClearDDTS database.

3 Rebuild the ClearDDTS database with the adminbug dbms
command.

Rename a project (renm)

Use this command to rename a project. In general, a project
should be renamed only when absolutely necessary. Other people
on the ClearDDTS network are already aware of the project name
and renaming the project may cause confusion, especially in
remote sites. Here is the dialog:

Enter current project name: compiler

Enter new name for project: C_compiler

ClearDDTS sends a message to the entire ClearDDTS network to
update the machines that need to know the new name.

Ask to subscribe to a project (asub)

Use this command to subscribe to a project from a remote
machine. Assume that machine A owns a project that you want to
subscribe to from machine B. The asub command causes all of the
bug information for the project on machine A to be shared
(replicated) on machine B. You run this command from the
machine that wants the subscription (machine B), not the machine
that owns the project (machine A).

When the command is executed, a request goes to machine A and
is accepted or rejected depending on whether machine A has
allowed general subscription. You and the project managers are
informed by mail of the success or failure of this command.

If the command fails because machine A is not allowing general
subscription, you must verbally negotiate with that ClearDDTS
administrator for subscription rights. A limited subscription is
available by having the administrator of machine A execute a mprj

command and temporarily allow subscription long enough for your
asub request to be processed. The machine A administrator can
Maintaining Classes and Projects 5-19

then run the mprj command again to turn off subscription.

Enter the project name you wish to subscribe to: compiler

n Enter the project name. If you don’t know the project name,
abort this operation using your interrupt character (usually ^C
or DEL), and use the lbug command to display a list of all projects
that machine B knows about, along with a short description of
each project. If the project you want to subscribe to is not on the
list, one of the following is wrong:
n The project is not being imported by machine B from

machine A. Check ~ddts/conf/import file for machine B.
n The project is not being exported to your system by machine A.

Check the ~ddts/conf/export file for machine A.
n Machine B is not connected (with the conn command) to the

site with the project (machine A).

If you are connected to the site, you (or the ClearDDTS
administrator for machine A) need to change the import file,
the export file, or both for the asub command to succeed. See
Chapter 4, Managing Remote Access Between Multiple
Installations, for more information.

After entering the project name, you are prompted for the person
to be notified when certain state transitions have been completed.
These prompts are similar to those for the new project (aprj)
command.

If this project allows the remote site (machine B) to modify defects
(determined when the project was created), you are prompted to
set up project security on the subscribing site. This consists of
establishing who has write and read access to the project. The
questions are similar to those for the new project (aprj) command.
The result is that each site will have its own
~ddts/projects/<project_name>/proj.control file. The project
security can be the same for both sites or customized for each.
Project security can be modified using the adminbug msub

command for subscribed sites. This is only true when remote
modification is turned on.
5-20 ClearDDTS Administrator’s Guide

When you answer the last prompt, ClearDDTS sends a request to
machine A to configure machine B as a subscriber. A refreshbug
command is also executed and all project bugs on machine A are
copied to machine B. All future bugs submitted against machine A
will also be kept up to date on the subscribing machine B.

Delete subscription to a project (dsub)

Use this command to notify a remote machine that you no longer
want to subscribe to a particular project.

Enter project name that you wish to delete subscription to: compiler

n Enter the project name. After the command is executed, no more
project bugs will arrive from the remote project machine.
However, no data on the local machine is destroyed, in case it is
needed for metrics purposes. To remove the data from your
system, you can use the dprj command or the rmbug utility after
deleting your subscription.

Modify subscription parameters (msub)

Use this command to modify the notification lists for a project. You
can also modify security options for subscribed projects where
remote modification is turned on.

Enter the name of the project to which you are subscribing
compiler

n Enter the project name.

After entering the project name, you are prompted for the person
to be notified when certain state transitions have been completed.
These prompts are similar to those for the new project (aprj) or

subscription (asub) commands. Make your changes to the
notification and security lists as appropriate.
Maintaining Classes and Projects 5-21

List all project parameters (lprj)

This command lists all of the project parameters to the screen. A
sample dialog and response is shown below:

Enter project name: 386_port

Proj-name: 386_port
Proj-desc: Port of operating system to 386i.
Part-no: 98007-13400
Proj-scope: public
Path-to-owner: SFDww ddts
Templates: templates/default
Proj-status: active

N-notify: mmanley
A-notify:
O-notify:
R-notify:
E-notify: mmanley
V-notify:
D-notify:
P-notify: mmanley

Proj-mgrs: mmanley
Allow-subs: Y
Status:
A-allow: mmanley
A-allow-group:
O-allow:
O-allow-group:
R-allow:
R-allow-group:
E-allow:
E-allow-group:
V-allow:
V-allow-group:
D-allow:
D-allow-group:
P-allow:
P-allow-group:
Subscribers:

The data displayed is the information provided when the project
was first created.

List project names and descriptions (lbug)

This command lists the names of all of the projects in all classes
that users on this system can log bugs against, along with a brief

description of each project. Closed projects are not listed. For
example:
5-22 ClearDDTS Administrator’s Guide

compiler C compiler project.
4.3os_port Port of the 4.3 BSD operating system.
dbms_3.3 Revision 3.3 of the database system.

List projects owned on this machine (lown)

This command lists all of the projects in all classes that are owned
on this system. A one line description of the project is also listed.
These are the projects that were created on this machine with the
aprj command. For example:

compiler The C compiler project.
4.3os_port Port of the 4.3 BSD operating system.

List projects being subscribed to on this machine (lsub)

This command lists the projects owned on other machines that are
being subscribed to on this machine. A one line description of each
project is also listed. For example:

audit The C2 secure auditing project.
gsd.firmware All firmware for GSD hardware.

View project availability for oneof lists

You can include open and closed projects in oneof lists. ClearDDTS
Maintaining Classes and Projects 5-23

maintains the list of projects in each class and their availability in
oneofs files in ~ddts/etc/oneofs.

To modify the contents of these files, use the administrative
commands; do not edit by hand. For example, to change the
description of a class, use the adminbug mprj command. If the
class does not have any closed projects, the <classname>.CX and
<classname>.CLX files might not exist.

File Name Description

~ddts/etc/oneofs/<classname>.C Contains the list of open projects in the
class.

~ddts/etc/oneofs/<classname>.CL Contains the list of open projects in the
class and a one-line description of each
project.

~ddts/etc/oneofs/<classname>.CX Contains the list of closed projects in the
class.

~ddts/etc/oneofs/<classname>.CLX Contains the list of closed projects in the
class and a one-line description of each
project.

5-24 ClearDDTS Administrator’s Guide

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E
6

Reconfiguring
 a ClearDDTS Network

You need to reconfigure your ClearDDTS network if you do any of
6-1

the following:

n move a project to a different machine
n physically move a machine to a different location
n move the entire ClearDDTS database to a new machine

Reconfiguring your network does not require any new
administrative commands, but relies on a combination of
commands you already know. This chapter describes how to
perform these configuration changes.

Moving a project

To move a project from one machine to another, you must inform
ClearDDTS so that it can inform the network.

Note: You must inform ClearDDTS before the move (steps 1
through 8).

To move a project:

1 Log in as the user ddts.

2 Run adminbug.

3 Close the project with the cprj command. Leave the machine
running long enough for all outgoing mail to be sent. (Give
ClearDDTS time to send mail to other connected machines telling
them that the project has been closed. The amount of time
required depends on your environment.)

4 Use the sprj command to save the project. You should see a list of
the defect IDs that are being saved displayed on the terminal.
6-2 ClearDDTS Administrator’s Guide

5 Exit adminbug.

6 Save the project to tape by doing the following (logged in as ddts):

7 cd ~ddts/projects

8 tar cvf /dev/xxx <projname>

Here xxx is a backup device such as a magnetic tape drive, and
<projname> is the name of your project, such as GSD.compiler. As
tar runs, you should see the bug files being saved.

9 Ensure that the tape is good by restoring the tape to some
temporary directory.

10 Use adminbug oprj to reopen the project.

11 Use adminbug dprj to delete the project data from the old system
and reclaim the disk space. You must delete the project from
ClearDDTS before restoring it on another machine.

12 Use the adminbug dbms command on the machine where the project
was deleted to rebuild the database.

13 Take the tape to the machine that will be the new home of the
project, log in as root, and do the following:

Note: If you execute the following commands as another user,
such as ddts, the permissions will not be correct.

14 cd ~ddts/projects

15 tar xvf /dev/xxx

16 On the new home machine, run the adminbug rprj command to open
the project and install the bugs in the ClearDDTS database.

17 Use the adminbug dbms command to rebuild the database on the
new machine, adding the new project’s bugs.

18 Inform subscribers to the moved project that they need to reissue
their subscriptions.
Reconfiguring a ClearDDTS Network 6-3

Physically moving the machine to a new location

If you are moving a ClearDDTS machine to a new location, you
need to determine whether e-mail addresses (for remote machines
and local users) will still be valid after the move.

If e-mail addresses are not valid after moving

To see if e-mail addresses will be valid, issue the adminbug lsit
command. If this command lists any UUCP style mail addresses
or if the e-mail address listed will not be valid after the move,
follow the steps below:

1 Log in as ddts.

2 Run adminbug.

3 Issue dsub commands for all subscribed projects.

Note: Running the dsub command from your system removes
subscriptions you have to projects on other systems, however, it
does not remove subscriptions that other systems might have to
projects on your system. Be sure all subscriptions, to and from
your system, are removed.

4 Optionally, save a copy of the ~ddts/conf/submit.sites file. This
file lists all sites connected to your system, but it is removed when
you issue the dcon command (see the next step). Saving a copy of
the file allows you to refer to it later for the list of sites to which
you need to reconnect.

5 Issue dcon commands against all connected sites.

6 Issue a dsbl command to remove your system from the ClearDDTS
network.

7 Allow the mail system to transmit messages.

8 Move your machine to the new location.
6-4 ClearDDTS Administrator’s Guide

9 Set up mail at your new location (if necessary).

10 Run ddtsinstall to open all closed projects, put you back on the
ClearDDTS network, and rebuild the database.

11 Run adminbug conn to reconnect your sites (if necessary),
referring to the saved copy of the submit.sites file.

12 Reissue subscriptions to the projects from which you desubscribed
in Step 3.

13 Inform the administrators on all connected sites that they can
reissue subscriptions to projects on your site.

If e-mail addresses are still valid

If the adminbug lsit command did not list any remote machines or if
those e-mail addresses will still be valid after the move, then go
ahead and move the system by performing steps 4 - 9 above.

Checking addresses after the move

After the system is installed at the new location, you look at the
mail addresses of all the defects on the system. This can be done
by issuing the following commands:

grepbug Engineer-mail >> /tmp/foo
grepbug Submitter-mail >> /tmp/foo
grepbug Other-mail >> /tmp/foo

Note: These commands run very slowly. You should run them in a
shell script and come back later to look at the result.

After the commands have completed, look at the result with an
editor and see if there are any UUCP addresses or addresses that
are no longer valid in the new location. There should be few, if any,
illegal addresses. If you find an address that needs repair, use
patchbug to repair the defect. (See the patchbug man page for more
information.)

Moving the ClearDDTS database
Reconfiguring a ClearDDTS Network 6-5

You can move the ClearDDTS database to another machine. The
procedure for moving a ClearDDTS database is documented in
Tech Note 11709 at the following URL:

www.rational.com/sitewide/support/technotes/crm.jtmpl#ddts

6-6 ClearDDTS Administrator’s Guide

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Understanding the Master Template File
7

One of the most important template files in ClearDDTS is the
~ddts/class/<classname>/master.tmpl file. This file defines the rules for
7-1

moving from state to state by describing the interactive dialog and
data requested to make a state transition. This master.tmpl file
controls all of the prompting, screen formatting, and terminal
processing in ClearDDTS. If you are adding a new state or
changing the screen display in any way, you need to modify this
file. To learn how to make these customization see Chapter 8,
Customizing ClearDDTS.

This chapter covers the following topics:

n Example master.tmpl file
n Understanding the “Begin” field derivation section
n Other field derivations
n Understanding OPERATION and STATE
n How OPERATION and STATE are used
n Most common derivation
n Setting default values
n How webddts pages are generated

Example master.tmpl file

The overall structure of the file is a list of ClearDDTS field names,
with each field name followed by a group of derivation lines. The
derivation lines determine the contents of the named field. The
example below is an excerpt from the master.tmpl file. In this
example, When-found is a field name and the section of code from
if match $Operation v m to the second fi are the derivation lines for

that field. These derivation lines control the information that is
posted to the database.
7-2 ClearDDTS Administrator’s Guide

Begin: unset Begin
 set Filter-path /usr/bin:/bin:/usr/ucb
 set Oneof-path class/$Class/oneofs
 set Help-path class/$Class/helps
 .
 .
 .

When-found: if match $OPERATION v m
 or match $STATE$OPERATION Sp Sf
 "\(8,1)Detected in phase: %-21.21s"
 fi
 if match $OPERATION p m
 help when-found.H
 oneof -f phases
 required
 fi

OS-version: if match $OPERATION v m
 or match $STATE$OPERATION Sp Sf
 "\(11,1)Version of OS: %-21.21s"
 fi
 if match $OPERATION p m
 help os-version.H
 fi

Severity: if null
 echo 3
 fi
 if match $OPERATION v m
 or match $STATE$OPERATION Sp Sf
 "\(12,1)Problem severity: %1.1d"
 fi
 if match $OPERATION p m
 help severity.H
 oneof 1 2 3 4 5
 required
 fi

Submitter-org: if null
 cat $~/conf/myorg
 fi
 if match $OPERATION v m
 "\(17,1)Organization: %-22.22s"
 fi
 if match $OPERATION p m
 help org.H
 required
 fi

Each of these groups is called a field derivation, because it
describes how the value of the defect record field is derived.

Understanding the “Begin” field derivation section
Understanding the Master Template File 7-3

The first four lines in the fragment above define information that
is used by the rest of the template file for defect field derivation. In
the first line:

Begin: unset Begin

the field name is Begin and the unset command says not to include
this field in the defect record. This field is not an actual defect field
but is used to set up parameters that are used by other field
derivations.

The next line:

set Filter-path /usr/bin:/bin:/usr/ucb

says that user written programs or shell scripts that are not
built-in ClearDDTS commands can be found in the Filter-path
directories listed. This works exactly like the Bourne shell PATH
environment variable. Any command not listed as a built-in
command in the template(5) man page would be searched for and
executed if found in one of these directories. The user’s current
PATH is also searched for the filter commands.

The next line:

set Oneof-path class/$Class/oneofs

defines the directories where the oneof built-in command can find
a file with a list of acceptable answers to a field derivation. If a
question has a limited set of acceptable answers, then this line
defines where to find a file with those answers. Note that this file
is Class ($Class) specific.

The last line of the Begin field derivation:

set Help-path class/$Class/helps

defines the directories where the field-level help files reside. These
files are used when the help built-in command is executed (that is,
when a user enters a ? in response to a prompt in xddts and bugs,
or clicks the field-level help icon in webddts).

Other field derivations
7-4 ClearDDTS Administrator’s Guide

The first field derivation is a pseudo-field that does not become part
of the defect record. The next four fields in the example do become
part of the defect record. When executed, these field derivations
generate or replace the values of four defect data fields named
When-found, OS-version, Severity, and Submitter-org. See Appendix A,
Contents of a Defect Record, for the meaning of these and all other
defect record fields.

At this point it may help you to look at the
~ddts/class/software/master.tmpl yourself. As you review the contents
of the file, read the template(5) man page. Do this before going on to
the next section.

Understanding OPERATION and STATE

There are two special preinitialized fields in the master.tmpl file.
These fields are OPERATION and STATE. You need to understand
how these two fields are used to understand the system.

Every field derivation in the master.tmpl is surrounded by if
statements. These statements permit a single field derivation to
be used for multiple purposes. The programs executing the
master.tmpl do this by preinitializing the OPERATION and STATE
field names before the template file is executed.

There are several programs that use the value of the OPERATION
field to determine their behavior: webddts, xddts, bugs, bugmail, and
dumpbug.

The webddts, xddts and bugs interfaces are interactive and are used
to perform ClearDDTS state transitions. The OPERATION values
used are:

Value Meaning Mode

f Display empty form before prompting. (xddts and bugs
only)

Output

p Prompt for state change (move to a new state). Input

Value Meaning Mode
Understanding the Master Template File 7-5

The bugmail utility is the program that sends notification mail. The
only OPERATION letter used by bugmail is:

The dumpbug utility is the program that formats and prints a
defect report to the standard output. The OPERATION letters used
by dumpbug are:

The other preinitialized field is the STATE field. When you perform
state transitions, ClearDDTS sets the STATE field to the next target
state (New, Assigned, Open, etc.) of the defect (not the current
defect status). Therefore, the STATE field identifies the new state
to which the bug is being moved.

How OPERATION and STATE are used

To understand how ClearDDTS executes the master.tmpl file,
consider the following example. Suppose you want to move a defect
from the Open state to the Resolved state. When you perform a state
transition, ClearDDTS executes the master.tmpl file three
times—each time with a different preinitialized value of
OPERATION (f, p, and then v) and the same value of STATE:

1 First, ClearDDTS executes the template file with an OPERATION
of f and STATE of R. This operation displays the portion of the form

m Modify fields without changing state. Input

v View defect record (just print it, enclosures not printed). Output

Value Meaning for bugmail Mode

n Process the master.tmpl file for notification mail.
See chapter 11, Handling ClearDDTS Mail for more
information on notification mail.

Output

Value Meaning for dumpbug Mode

l Show defect record including enclosures. Output

v View defect record (enclosures not printed). Output

that must be filled in to move the defect to the R Status, and
displays all the fields that have previously been supplied data.
7-6 ClearDDTS Administrator’s Guide

The values of these Resolution fields are not prompted for yet, and
no input is required at this point.

2 Next, ClearDDTS executes the template file with an OPERATION
of p and a STATE of R. This operation positions the cursor in the
Resolution area and prompts for an input value for each
Resolution field.

3 After the data requested in step 2 has been supplied, ClearDDTS
executes the template one last time to display (view) the final
results by executing the template file with an OPERATION of v and
a STATE of R. This operation displays the defect report in the newly
entered Resolved state, with all of the old and new information
filled in.

The example above illustrates a state transition. Modifying a
defect record is similar except that only two executions are
performed with OPERATION set to m and v, and the STATE is set to
the current Status of the defect. The following tables summarize
the use of OPERATION and STATE:

Defect State Change Summary

Defect Modification Summary

Note: You do not need to initialize STATE or OPERATION. These
fields are initialized automatically by webddts, xddts, bugs, dumpbug,
and bugmail. Any customization in the template file should use the

Pass OPERATION STATE Mode Purpose

1 f future status Output Paint form to be filled in.

2 p future status Input Prompt for input.

3 v future status Output Display defect in new state.

Pass OPERATION STATE Mode Purpose

1 m current state Input Prompt for input.

2 v current state Output Display defect in new state.

values of these fields to determine which derivation lines should
be executed. Thus, the same template fields display different
Understanding the Master Template File 7-7

screens depending on the state and purpose described by STATE
and OPERATION.

Understanding this STATE and OPERATION preinitialization
mechanism is very important. You may want to read this section
again before customizing the master.tmpl file.

Most common derivation

To begin customizing the master.tmpl file, consider the most
common field derivation form:

You can use this simple derivation as a basis for any customized
fields that you add. In this derivation, line three is executed if:
n the OPERATION is view (v) or modify (m), or
n you are prompting for bug submission information (Sp), or
n you are painting the bug submission form (Sf)

This derivation allows the field to be changed when going to the
STATE specified (S) or when modifying all of the defect fields.

A closer look at derivation lines

The code in a field derivation is similar to a shell script and is
composed of conditional statements, commands to be executed,
and prompt strings. The commands can be ClearDDTS built-in
commands, UNIX utilities, or your own custom programs.

When-found: if match $OPERATION v m
 or match $STATE$OPERATION Sp Sf
 "\(8,1)Detected in phase: %-21.21s"
 fi
 if match $OPERATION p m
 help when-found.H
 oneof -f phases
 required
 fi

Derivation
 lines

The first line of the When-found derivation is repeated frequently.
The if command uses the match operation to test whether its first
7-8 ClearDDTS Administrator’s Guide

argument ($OPERATION) matches any of the remaining
arguments.

The next line uses or to add more conditions under which the if
condition is true. In this case, the enclosed lines will also be
executed if the STATE is S and the OPERATION is f or p; that is,
when the template is being used for painting an empty form or
prompting for a state transition into the S state (the initial Status
when a bug is first submitted).

If the if statement is true, the next line that begins with a double
quotation mark is executed. The quotation indicates that the line
is a prompt string which is to be displayed on the screen. The
special sequence \(8,1) moves the cursor to row 8, column 1. The
characters ’’Detected in phase:’’ are then displayed. The sequence
%-21.21s causes the program to do one of two things:

n If the derivation is being executed in output mode ($OPERATION
of f or v), the current value is printed and the next line is
executed.

n If the derivation is in input mode ($OPERATION of p or m), then
the current value is printed and execution pauses at that point
and waits for the user to enter a string up to 21 characters in
length. The user may backspace over the current value, enter a
new value or just press RETURN. The resulting string will be
stored as the current value of the When-found field.

The specifiers beginning with % and sequences such as \n are used
exactly as they are used in the printf(3S) or scanf(3S) functions of
the C programming language.

Note: Dates in ClearDDTS are stored in yymmdd format. Date
input fields should be specified as %6.6s not as %6.6d, especially
for dates past the year 2000. For example, the date January 1,
2000 is stored as 000101, but if it is input as a number instead of a
string, the leading zeroes are dropped.

Note that the format string is used for both input and output. For
output, the sequence %-21.21s specifies that the output value
Understanding the Master Template File 7-9

should be left-justified and no more or less than 21 characters
(truncated or padded with spaces, as necessary). For input, the
sequence %-21.21s means accept input of exactly 21 characters.
Using fixed width output helps keep the screen organized so that a
field is always displayed in the same area of the screen.

The remaining derivation lines of the When-found field definition
are executed only when the template is being used in input mode
(prompting or modifying).

Note that you can rearrange the cursor motions so that the output
is in whatever form you want. However, putting new output at the
same screen location as the previous output, silently covers up the
characters “underneath”, so planning the desired layout
beforehand can help save a lot of trial and error time.

Note: The webddts interface does not use the cursor addressing
directives. For more information see "Specific webddts
customizations" on page 8-21.

The next line of the template:

help when-found.H

is for context-sensitive help. It says that if the current field value
consists only of the single character ? (xddts and bugs) or the field-level
help icon is clicked (webddts), then the contents of the file
when-found.H should be displayed. Recall that the help file
directories were defined earlier by the line:

set Help-path class/$Class/helps

So, in this case, the contents of the file
~ddts/class/<classname>/helps/when-found.H will be displayed. After
the user has looked at the help message, this field is executed
again from the beginning of the derivation. In xddts and bugs, if
the field value is anything other than a ?, the help derivation line
has no effect.

The next line of the When-found field derivation:

oneof -f phases
7-10 ClearDDTS Administrator’s Guide

says that the data entered for the field must exactly match one of
the lines in the file phases (or have a unique partial match). The
location of the phases file was defined earlier by the line:

set Oneof-path class/$Class/oneofs

The file with the choices to be matched is
~ddts/class/<classname>/oneofs/phases. If a matching line is found in
the file, the value is changed to the full contents of that line. If
there is a successful match, this field is completely “derived,” and
ClearDDTS continues on to the next field in the template.

By default, the user is not required to enter any characters other
than a carriage return in response to the prompt. The last line,
required, checks to see that there actually is a value in the
When-found field. If there isn't, this line “fails,” and a message
saying that a response is required is printed. The program then
starts over at the beginning of the derivation field. If there is
something in the input, the program proceeds to the next line.

The derivation of the OS-version field is much the same, except that
this field can be left empty (because there is no required line), and
can contain any text (because there is no oneof line to require
anything special).

The Severity field derivation requires a numeric valued input of up
to one character in length (%-1.1d). Non-digit characters are
impossible to enter, so they need not be checked by later derivation
lines. Since there is a required line, a numeric digit must be entered
to satisfy this prompt. This field also has a pre-set default value. If
the field has an empty string (“”) as its current value, then its
value is set to 3. This is convenient if most submitted defects are of
severity 3.

The Submitter-org field is unlike the previous fields in that the
prompt string is not executed when painting a form or initially
prompting for a state transition, although it is executed when

modifying any defect. This permits the value to be added
automatically when submitting (since it seldom changes), but
Understanding the Master Template File 7-11

permits it to be changed if the user desires.

When a defect is originally being entered, the value of Submitter-org
is silently set to the output of the command cat $~/etc/myorg. The $~
is a ClearDDTS metacharacter that expands to the path of the
ClearDDTS home directory.

This line could have been coded as /bin/cat ‘ddtshome‘/etc/myorg. This
command would actually first run the ddtshome command to locate
the home directory of ddts, and then run the UNIX cat command to
retrieve the contents of the ~ddts/etc/myorg file. You can use this
capability to generate field values using UNIX commands, shell
scripts or other external programs.

There are also other template metacharacters that you may use.
They are:

Meta Character Value

$Foo Value of the Foo field (or enclosure title).

$Foo:n Value of the nth word of Foo.

$$ Current value of current field being executed.

$n Current value of nth word of current field being executed.

$:n Current value of nth word of current field being executed.

$! Length of the current field (or enclosure text) in bytes.

$% Name of a temporary file containing enclosure field text.

$& Value of an enclosure field’s timestamp.

$~ Home directory of ClearDDTS (~ddts)

$@ Current user’s login ID.

Setting default values
7-12 ClearDDTS Administrator’s Guide

Many customers want to set up default values for fields. The
following example illustrates how a default detection phase is
assigned when submitting a defect:

When-found: if null
 echo beta test
 fi
 if match $OPERATION v m
 or match $STATE$OPERATION Sp Sf
 "\(8,1)Detected in phase: %21.21s"
 fi
 if match $OPERATION p m
 help when-found.H
 oneof -f phases
 required
 fi

In this example, if null insures that the echo command is only run if
there is no current value for the field. The if null is very important.
This makes sure that you do not overlay any value that has been
previously entered and if the field has no current value, it sets one.

Do not be concerned by the OPERATION codes of v or m. This is to
make sure that in the viewing mode, the field is displayed and in
the modify mode that the value can be modified. Recall that what
you are doing here is setting up a default value for the defect
detection phase.

The webddts interface parses the master.tmpl file differently from
the other ClearDDTS interfaces. Rational has developed a
technical white paper discussing these differences and how they
effect making customizations to webddts. Included in the white
paper is a discussion on using complex default expression in field
derivations. See "Making the Move to ClearDDTS 4.x" at
www.rational.com/sitewide/support/whitepapers, for more
information.

Defaults in xddts

There are three ways to set up defaults in xddts:

n Each user may modify the .ddtsrc file in his or her home directory
n You can edit the ~ddts/etc/ddtsrc file for system-wide defaults.

n You can use environment variables on the fly or in your login
files (for example, .cshrc).
Understanding the Master Template File 7-13

The precedence is environment variables, the .ddtsrc file, and the
ddtsrc file. Each method is described below.

If you are using xddts, you can set up a default in the user’s .ddtsrc
file. Every user has a .ddtsrc file that is automatically created by
ClearDDTS. This file can be used to set up default selections (for
example, the default projects and states to use when you perform
a search in xddts) and default field values (for example, a default
project or phone number). For example, the .ddtsrc may look
something like this:

Class: software
Gui_Prn_PrintAll: 1
Gui_Srch_Class: software
Gui_Srch_States: NAO
Gui_Srch_Sort_Enabled: 1
How-found: random unplanned test
When-found: beta test
Test-name: xddts
Test-system: dart1
OS-version: SunOS 4.1.3
Submitter-phone: (209) 924-9000
Engineer: smith
Problem: design
Recommend-change: design
When-caused: design
Analyze-hours: 1
Est-fix-hours: 1
When-fixed: alpha test
Version: 4.1
Project: Graphix

In addition to setting up defaults for the fields listed, you can use
this file to define certain characteristics of your graphical
environment, such as the format of the index. Although most of
these variables are defined automatically when you make
selections, you can also edit this file manually or use the setdsrc
command to set field values as desired. See the man page for
setdsrc for more information.

While the user’s .ddtsrc file can set up defaults for individual users,
you can also set up system-wide defaults by editing the
~ddts/etc/ddtsrc file. This file has exactly the same format as above,
but sets defaults for all ClearDDTS users.

The last way to set up a default is with UNIX environment
variables. For example, suppose that you set up an environment
7-14 ClearDDTS Administrator’s Guide

variable called When-found and set the value to alpha test. In the
example above, the if null derivation would fail because
ClearDDTS implicitly found a value for When-found of alpha test.
In this case, the value alpha test would be presented as a default.

As an example of how variables work, run the following:

bugs -c

Look at the form presented. Now type CONTROL-C to close the form.
Then run:

setenv Severity 2
setenv When-found "alpha test"
bugs -c

Note how the new form presents the new default values.

Defaults in webddts

You can create field defaults in webddts from the User Profile
page. Setting field defaults allows you to predefine values for
specific fields when querying, submitting or modifying defects.
There are two ways you can set default values for a field:

n enter a default value: You can enter a default value for any field
in the database.

n make the field sticky: You can make a field retain the last value
you entered and use that as the default for future submissions
or queries. The value you enter in effect sticks to that field until
you change it.

If you enter a default value for a field that is normally system
generated, such as Last Modified, that value is only used as the
default for queries on that field. When submitting or modifying a
defect, ClearDDTS ignores any defaults set for a system defined
field.

How webddts pages are generated
Understanding the Master Template File 7-15

The webddts interface uses Hypertext Markup Language (HTML)
to display ClearDDTS pages in a web browser and to receive input
from the user. The fields to display are determined by scripts and
utilities that interpret the master.tmpl file. This section provides
an overview of how these utilities and scripts allow the webddts
interface to interpret the master.tmpl file.

Note: Any changes you want to see in the webddts interface
should be done in the master.tmpl file. There is generally no need
to edit the scripts used to generate the HTML or the programs
used to interpret the master.tmpl file.

Web page generation—the big picture

The utility used to interpret the master.tmpl file is the wtform
program. The wtform program receives input from webddts CGI
scripts (action, state, class information), and uses that information
to process the master.tmpl file. The field attributes for relevant
fields are generated and passed back to the webddts CGI scripts
which generate the HTML necessary to display the requested
page.

File
#xxxx
#xxxx
#xxxx
#xxxx

HTTP

File
#xxxx
#xxxx
#xxxx
#xxxx

File
#xxxx
#xxxx
#xxxx
#xxxx

File
#xxxx
#xxxx
#xxxx
#xxxx

File
#xxxx
#xxxx
#xxxx
#xxxx

File
#xxxx
#xxxx
#xxxx
#xxxx

ClearDDTS
Server

webddts Interface
CGI programs (source code)

webddts Interface
CGI Programs (source code)

Server

HTML pages are displayed
in the user’s browser

Interprets the
master.tmpl

Produces field
information

Provides operation, state,
and classs information

Generates HTML
pages based on
wtform output

ClearDDTS
command line
interface

wtform>_________
file

A CGI script is an executable program that conforms to the
Common Gateway Interface standard for interfacing external
7-16 ClearDDTS Administrator’s Guide

applications with information servers. In simple terms, CGI
programs create a gateway through which information can pass
from an external application, such as ClearDDTS, to a Web server
where it can be displayed to a client or Web browser. In reverse,
information can be sent from the Web server to the external
application.

Updating the database

The process for updating the database is similar to generating a
web page. When a user submits or modifies a defect, the
master.tmpl file is interpreted and template files are created for
the database updates.

The utility used to interpret the master.tmpl file for database
updates is the wttmpl program. The wttmpl program receives
input from webddts CGI scripts (action and state information) and
user input, uses that information to process the master.tmpl file,
creates a template file (containing the updated fields, values and
validation logic), and passes the template to the batchbug
program. The batchbug program uses the template information to
update the database in the allbugs directory.

Restrictions—what is not interpreted

The web page generation cannot accommodate unusual
customizations you might make to the field derivations in the
master.tmpl file. This section describes the type of derivation that
works well with the webddts interface, and describes some of the
non-standard derivations that will not work.

Note: Most of the non-standard derivations will work with the
xddts and bugs interface. If you have already customized your
master.tmpl file for use with the other interfaces, refer to "webddts
specific customizations" on page 7-18 to learn how to preserve
these customizations and create web specific customizations.

Standard field derivation

A field derivation is usually divided into three parts:
Understanding the Master Template File 7-17

n the expression to compute the default value
n the "prompt" string (where the actual user input is performed)
n the expression for the validation

Each of these three portions often have similar constructs. For
instance, the default value is often a static variable set using the
"echo" filter. The validation often contains a static oneof (choice
list) or "required" filter. The prompt string is usually very
structured with a location, label, and %s for the input/output.

Non-standard field derivations

The master.tmpl file becomes difficult to interpret for HTML when
a customization deviates from the standard derivation form. In
particular, the following cannot be interpreted:

n conditional prompts or goto statements

Conditional prompts based on data from a source other than the
master.tmpl file cannot be handled for HTML. For example,
assume you want the Severity prompt to appear if a certain
project is entered, otherwise you want the Priority prompt to
appear. Since the form must be generated before any input is
done (and no project is selected) no default value can be found.
webddts would simply display the first prompt found by wtform,
in this case Severity.

As with other conditionals, conditional goto statements used
with any options other than OPERATION or STATE cannot be
supported if the condition depends on data external to the
master.tmpl file.

n the interact command

In the xddts interface the interact command launches an
xterminal window running an application external to
ClearDDTS (usually a bourne shell script or C program
executable). However, on the web there is no way to start an

external application in a window on the local machine.
Therefore, the interact command is not supported in the webddts
7-18 ClearDDTS Administrator’s Guide

interface.
n multiple input prompts

In the xddts interface, the user can be prompted multiple times
for the same field to provide different pieces of data. The result
is a single field updated in the database. Web page generation
and validation make this impossible, therefore, the webddts
interface will only provide the first prompt for such a field.

webddts specific customizations

To provide values that cannot be provided through non-standard
field derivations, and to preserve some of those field derivations
for use by xddts, you can use webddts specific code in the
master.tmpl file. Code contained within specially formatted
sections of code are ignored by other ClearDDTS interfaces while
allowing you to provide different or extra data for webddts.

The webddts specific code is indicated by using an if www
statement. With this format you can indicate what field derivation
should be used if the interface is webddts, otherwise use the
existing field derivation. For example, to create an appropriate
field label for the Version field, we have used the following code:

Version:
if www

"Version: %-8.8s"
fi
if match $OPERATION v m
 "\(1,30)$Software, version %-8.8s"
elif match $STATE$OPERATION Sp Sf
 "\(1,40)Version: %-8.8s"
fi
if match $OPERATION p m # "if input" would work, too
 help version.H

oneof -f version
 required
fi

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Customizing ClearDDTS
8

There are many ways to customize ClearDDTS. For example, you
may want to add or delete defect states, modify a screen, add
8-1

additional pages of information to the display or change the state
transitions. This chapter discusses these types of customization
and others. If you are the ClearDDTS administrator, read this
chapter carefully and refer to it whenever you are making changes
to your system. The following topics are covered:

n Before making changes
n Locating files to customize
n Adding new fields
n Adding defect states
n Further template customization
n Specific webddts customizations
n Specific xddts customizations
n Debugging a custom template file

Note: This chapter focuses on changes to the user interface. For
information on the master.tmpl file see Chapter 7, Understanding
the Master Template File. For information about customizing
reports, see Chapter 9, Creating Custom ClearDDTS Reports. For
information about modifying the database, see Chapter 13,
Managing and Customizing the ClearDDTS Database.

Before making changes
8-2 ClearDDTS Administrator’s Guide

At the lowest level, ClearDDTS is a finite state machine where
you can define the defect states and the rules for moving defects
from state to state. Because you can define the states and the state
transition rules, you can tailor ClearDDTS to suit your own
unique needs and methodology.

Before you begin customizing ClearDDTS, however, you should
consider the existing system and how simple or difficult it will be
to accommodate your changes. You should also work with
development engineers, project managers, and quality assurance
groups to determine what bug report states should exist, and what
data should be collected during each state transition. Be sure to
involve your entire user community and show them what
ClearDDTS provides and then ask them for input.

Locating files to customize

When you customize ClearDDTS, your changes are reflected in the
web-based interface webddts, the character-based program bugs,
and the graphical user interface xddts.

Note: For information on how web pages are generated and
specific web customizations you can make see "How webddts
pages are generated" in Chapter 7, Understanding the Master
Template File.

To get started, look at the ~ddts/class/software directory. When you
use the ls command on this directory, you should see something
like this:

README helps/ states
add.encl link_semantics/ submit.encl
admin.help/ master.tmpl summary.print/
admin.tmpl/ notify.tmpl user.encl
batchbug/ oneofs/ user.hist
bugmail_ignore_fields proj.prompt user.index/
clone.prompt report_conf verify.encl
description resolve.encl web_conf
editencl.tmpl statenames www-helps/

This directory contains all of the files you may want to customize
for the software class. Similar directories are available for each
Customizing ClearDDTS 8-3

class containing the files you can customize for that class. (The
only other files we recommend you customize are the awk report
scripts located in the ~ddts/bin directory.)

The ~ddts/class/software directory contains the following files and
subdirectories:

Name Description

add.encl This template is used to ask the user for an enclosure name
(see user.encl and editencl.tmpl below).

admin.help/* This directory contains help files that are used by
adminbug when creating or modifying project parameters.
It contains adminbug help for class-specific states.

admin.tmpl/* This directory contains template files used by adminbug
when creating or modifying project parameters. These files
control the state-specific information (such as who gets mail
when a defect enters this state) that ClearDDTS requests
when you create a project. This information is then saved
with the rest of the project-specific parameters.

batchbug/* This directory contains template files that batchbug may
use to do programmatic state transitions. You may find them
useful as examples of batchbug processing.

bugmail_ignore_
fields

The file contains a list of fields to be suppressed when
sending e-mail notification. For more information on e-mail
notification, see Chapter 11, Handling ClearDDTS Mail.

clone.prompt This template file is used for cloning defects. View the file
for information on defining what fields to prompt for when
clonging a defect.

description One line description of this class.

editencl.tmpl This template file may be used to restrict a user from editing
an enclosure.

helps/* Context sensitive help files used by the master.tmpl file for
this class. This type of field level help is available for the
xddts and bugs interfaces only. The webddts interface has
separate HTML help.

link_semantics/* This directory contains example implementations of a link
semantic. The code in these directories allows you to
traverse defect links and perform database actions on the
linked records.

Name Description
8-4 ClearDDTS Administrator’s Guide

master.tmpl Master template file controls state transitions, interaction,
modification, and formatting. This file defines the rules for
how bugs move from state to state, how bugs are printed to
the screen, and how they are formatted for e-mail. Most of
your customizations are done here.

notify.tmpl The notification template is used to control the format and
content of notification mail through a variety of configuration
parameters. For more information on e-mail notification,
see Chapter 11, Handling ClearDDTS Mail.

oneofs/* The set of oneof files for this class. These files define the
list of valid responses for particular fields.

proj.prompt This template file defines the first screen displayed and is
used to prompt for the project and class a user wants to
submit a defect against. (xddts and bugs only)

report_conf This file is used for xddts and webddts management
reports. It defines the reports and menu that is displayed.

resolve.encl This file can be used to require users to enter the editor
when a defect is moved to the resolved state. It contains
one line which says “Please describe your resolution to this
problem:”.

statenames This file defines state letters, state names, and the
attributes of each state. It also defines the “normal”
progression of defect states for the class.

states This file defines the legal state transitions and how a defect
report may move from one state to the next.

submit.encl Example of a file that could be added to an enclosure via
editfile command. See the Related-file field in the
master.tmpl file. The file can be used if you want to force the
user into the editor when submitting a defect.

summary.print/* Template files, one file per state, used for printing three-line
summary reports in ddts.

user.encl Template file used for printing enclosures.

user.hist Template file used by bugs for printing history enclosures.

user.index/* Template files, one per state, that define the format of the
index lines.

Name Description
Customizing ClearDDTS 8-5

As you may have noticed, most of the files are ClearDDTS
template files. The format and meaning of these files are described
in later sections.

Adding new fields

Adding a new field to a particular state transition is as easy as
adding a new field derivation to the master.tmpl file. When you add
a new field derivation, only new bugs will have the new data
incorporated into the flat defect file located in ~ddts/allbugs/*.

Note: If you are using the web interface and have defined groups
of fields, be sure to add any new fields to the appropriate group.
See Specific webddts customizations on page 8-21 for information
on grouping fields.

While adding a new field derivation inserts the new data into the
flat file in the allbugs directory, making it available for display, it
does not insert it into the ClearDDTS SQL database. If you want
to use the new field in defect metrics, sorting, database searching,
querying, or index lines, you need to modify the database to
include it.

web_conf This file configures various aspects of the webddts interface
including:
- prompting for a project before submitting a defect
- running reports in serial or parallel mode
- available gif graph display sizes
- x-axis and y-axis labels and tick marks
- acceptable file types for attachments
- ability to turn auto wrapping on or off for enclosures
- width of the enclosure edit window
- viewing expanded enclosure contents
- number of enclosure icons displayed across a page
- ability to make toolbar icons active or inactive

www-helps This directory is used to store field-level help files for the
webddts interface. When defining a field in the master.tpml,
you can use the same help file for both the xddts and
webddts interfaces, or create specific webddts help files.
See the default software class master.tmpl for examples.

Modifying the database involves editing the database schema and
configuration files and running adminbug dbms. See Chapter 13,
8-6 ClearDDTS Administrator’s Guide

Managing and Customizing the ClearDDTS Database, for more
information.

Note: You can also delete fields from the master.tmpl file or the
database. However, care should be taken to avoid deleting special
fields that ClearDDTS uses internally. See Appendix A for a
complete listing of required fields.

Adding defect states

ClearDDTS comes with several default states and legal state
transitions (see Chapter 2 in the ClearDDTS User’s Guide for a
review of these states and state transitions). This set of states
should handle most users’ needs. Before adding a new state, you
may want to consider simply adding an attribute to an existing
state. However, if you feel that a new state is necessary, you can
add the new state to ClearDDTS by making some simple
modifications to a few text files.

These modifications are summarized below:

n Add the new state to the ~ddts/class/<classname>/statenames file.
This file defines the names and attributes of states. See “Editing
the state names file (statenames)” on page 8-7.

n Add new state transitions to the ~ddts/class/<classname>/states
file. See “Editing the state transitions file (states)” on page 8-9.

n Modify the ~ddts/class/<classname>/master.tmpl file for prompting,
modifying, displaying, and mailing notifications about defects in
the new state. Because this file defines the rules for moving from
state to state, the modifications you make here are more
complex than in the other files.See “Editing the master template
file (master.tmpl)” on page 8-11.

n Modify the template files used for prompting by adminbug. These
templates are in the directory ~ddts/class/<classname>/admin.tmpl.
See “Editing administrative template files” on page 8-13.

n Add an index template file for the new state to the directory
~ddts/class/<classname>/user.index. (xddts only) See “Modifying the
Customizing ClearDDTS 8-7

information in a query index” on page 8-15.
n Add a file to the ~ddts/class/<classname>/summary.print directory

that defines how to print a three line summary of a defect in the
new state. (xddts only) See “Editing the three-line summary
template file” on page 8-17.

n Modify the awk scripts in ~ddts/bin (for example, dawk01, dawk04,
dawk08 and dawk06.sh), so that Management Reports can report
on defects in the new state. See “Changing the reporting system
for new states” on page 8-17.

n Modify/create files in the ~ddts/www/cache directory so that
cached webddts pages are reset and display new customizations.
See “Maintaining the cache directory” on page 8-26.

Most of these modifications are very simple and can be completed
in just a few hours. The steps are described in greater detail in the
following sections.

Editing the state names file (statenames)

The ~ddts/class/<classname>/statenames file is used to put labels on
states. As shipped, this file looks like:

S s Submit Submitted
N u New New
A a Assign Assigned
O a Open Open
R r Resolve Resolved
V r Verify Verified
D x Duplicate Duplicate
P o Postpone Postponed
F s Forward Forwarded

This file defines the states that exist for this class, and each line
consists of four fields as follows:

n The first field is a single uppercase character field that defines
the state letter that is kept in the defect. This class has states S,
N, A, O, R, V, D, P, and F. You can define up to twenty-three
states per class. Each state must have a unique letter. The states
S, N, and F are reserved for Submitted, New, and Forwarded.

Our example shows the state letter matching the first letter of
the ASCII field name, but you can use any available letter.
8-8 ClearDDTS Administrator’s Guide

n The second field is an attribute character defined as:

n The third field is an ASCII name for the state in present tense.
n The fourth field is an ASCII name for the state in the past tense.

The ASCII names given in the third and fourth fields are used by
webddts, xddts, graphbug, and tallybug to allow state selections based
on more descriptive names (rather than on single letters).

Placing a New State in the File

ClearDDTS has the notion of a mainline set of states. For example,
in the following figure, the mainline states are S, N, A, O, R, and V:

Some ClearDDTS graphs and metrics present defects as they
move from state to state. For example, one graph shows a plot of

s Pseudo-state. The defect generally goes through this state but doesn’t
stay in this state (for example, a temporary state).

u This is an unresolved state and no engineer is assigned for repair.

a This is an unresolved state but an engineer is assigned to fix the defect.

r This is a resolved defect.

x This is a dead end state (not part of the main set of states) and should
not be counted in metrics (for example, a duplicate).

o This is not part of the main set of states, but should be included in
metrics.

D

P

VS N A O R

Mainline States

New defects, on top of that are the Assigned defects, on top of that
are the Open defects, and so forth. The order used in the graph is
Customizing ClearDDTS 8-9

determined by the order the states are defined in the statenames
file. The xddts interface uses this order to define the natural
progression (lifecycle) of a defect. Therefore the order of states in
the statenames file is significant.

If you are adding a new state, you need to determine if it is a
mainline state and where the state belongs in the overall lifecycle.
Then add the new state line at the appropriate place in the file.

Editing the state transitions file (states)

Legal ClearDDTS state transitions are determined by the contents
of the ~ddts/class/<classname>/states file. This file consists of ordered
triples of capital letters, one triple per line. Each letter represents
a different state. Each triple A B C represents one possible
transition: “you can get from state A to state B by first going to
state C.” Taken together, the list of triples represents the state
transition diagram for the given class of defects. The order of lines
in the states file is significant, because it provides the next logical
default value for the States field in the webddts interface. There
can also be comments on any line (portions of lines beginning
with #). Such comments are ignored.

Here are some of the lines from the class/software/states file as
shipped:

N A A
N O A
N R A
N V A
A A A
A O O
A R O
A V O
O A A
O O O
O R R
O V R
R R R

The first line above means that if a bug is in state N (New), it is
possible to get to state A (Assigned) simply by entering state A.

The second line means that to get from state N (New) to state O
(Open), the bug must first enter state A (Assigned). The fourth line
8-10 ClearDDTS Administrator’s Guide

means that you must first Assign bugs that are New as the first
step toward the Verified state. Note that you must go through
state R (Resolve) to enter state V.

ClearDDTS uses the states file to determine what to do whenever
you attempt a state transition. For instance, if a defect is in the N
(New) state, and you change to the R (Resolve) state, the defect
first moves into state A because of the third line shown in the
example above (N R A). ClearDDTS asks for all of the information
associated with state A, and then considers how to get to the
desired state (R) from the state it is in now (A).

The seventh line in the example above says that to get from state
A to state R, the defect must first go through the O state.
ClearDDTS then asks for the information associated with the O
state and again considers how to get to the desired state (R) from
the current state (O). In this case, the line O R R tells ClearDDTS
that the defect can be moved to the R state and no more processing
is necessary.

If there is no triple that lists the current state in the first position,
you can’t get out of that state. Similarly, if there is no triple that
lists a particular state in the second position, bugs can’t get to that
state from the current state.

The triples can be in any order. However, if there are contradictory
state transition rules in the file, such as:

N P O
N P P

Then only the rule that appears last is used.

As an example, let’s add a state called K (perhaps for Killed) to be
inserted between Resolved and Verified. Let’s assume that
entering this state means that a program source has been
modified, and the new source code has been checked into whatever

place the “official sources” are kept. We'd add the following lines to
the states file:
Customizing ClearDDTS 8-11

N K A
A K O
O K R
R K K
V K K
P K O
D K O
K O O
K R R
K V V
K P O
K K K
.
.
.
N F F
A F F
O F F
R F F
V F F

These lines define the following state transitions:

n Only defects in state R (Resolved) and V (Verified) can enter
state K directly.

n You can get directly back to state R from state K, or back to state
O from state K.

n To get from state O to state K, though, you must first enter state
R.

n The F state is a pseudo state that is used to forward bugs from
one project to another. You can't forward (F) defects in state K to
another project (none of the lines with K in the first column has
F in the second column).

Once ClearDDTS knows that a new state exists, you need to tell it
the transition rules (interactive dialog) for entering and leaving
that state. The next section explains how to do that.

Editing the master template file (master.tmpl)

The ~ddts/class/<classname>/master.tmpl file defines the rules for
moving from state to state by describing the interactive dialog and
data requested to make a state transition. This master.tmpl file

controls all of the prompting, screen formatting, and terminal
processing in ClearDDTS. If you are adding a new state or
8-12 ClearDDTS Administrator’s Guide

changing the terminal dialog in any way, you need to modify this
file. For a description and example of the master.tmpl file, field
derivations, and the OPERATION and STATE fields, see Chapter
7, Understanding the Master Template File.

Note: The format and interpretation of template files is described
in detail in the template(5) man page. Although the template files
are discussed in this chapter, you should read and understand the
man page after you read this section. Pay particular attention to
the syntax of the “built-in” commands.

Modifying the master.tmpl for New States

If you have read and understood Chapter 7, Understanding the
Master Template File, you are ready to customize this file. If you
decide to add a new state to the master.tmpl file, it is important to
ensure that the if match statements are correct for your new state.
The easiest way to do this is to find another state that treats each
field similarly, and duplicate all of the references to that state in if
conditions with the new state. For example, if you're adding state
K, and it's similar to state P, you should change lines throughout
the master.tmpl file that look like this:

if match $STATE$OPERATION Pm Pv Op Of

to read:

if match $STATE$OPERATION Pm Pv Km Kv Op Of

You must also add code at an appropriate place to change the
value of the Status field to the new state. The syntax is:

set Status K

If you do not add the code to change Status into the new state, you
have created a pseudo-state. Pseudo-states prompt for information
to be added or changed in the current defect record without
actually changing the state of the defect.

Another thing to consider when adding states to the master.tmpl file
is how to handle the OPERATION codes of p and f. These two codes
Customizing ClearDDTS 8-13

cause a goto to be executed in the template file. The code fragment
is:

 .
 .
 .
The if statement below does a "go-to X-fields" where X is
the future state of this defect. It does this ONLY for painting
the form ($OPERATION == f) of new questions to be filled out
and for prompting ($OPEATION == p) for the new information
required to enter this state.

Other $OPERATION codes (m, v, n, and l) execute each and every
field derivation below.

 if match $OPERATION p f# prompt or form
 and not equal "X$STATE" X
 goto $STATE"-fields"
 fi
 .
 .
 .

If your new state is K, you need to create a field called K-fields and
insert the appropriate template code at this point in the template
file.

Editing administrative template files

If you add a new state, there are four simple adminbug template
files that must be edited so that the dialog in adminbug will ask
appropriate questions regarding your new state. The files are in
~ddts/class/<classname>/admin.tmpl and are:

aprj2.tmpl
aprj3.tmpl
mprj2.tmpl
mprj3.tmpl

The aprj2.tmpl and mprj2.tmpl files contain fields called O-notify,
R-notify, and so forth. These fields list the users to whom mail is
sent when a defect enters that state. For example:

O-notify:
 "\nEnter mail address of those to notify when a bug is\n"
 "opened by the assigned engineer:\n"
 "%s\n"
 help aprj06.hlp

R-notify:
 "\nEnter mail address of those to notify when a bug has\n"
 "been resolved:\n"
8-14 ClearDDTS Administrator’s Guide

 "%s\n"
 help aprj07.hlp

If your new state is K, add a field called K-notify with the same
derivation lines as you see for the other *- notify fields. You may
also want to add a context-sensitive help file (similar to aprj07.hlp)
in the class/<classname>/admin.help directory.

In the aprj3.tmpl and mprj3.tmpl files, you see derivations for fields
called O-allow, O-allow-group, R-allow, R-allow-group. For example:

O-allow:
 "\nList LOGIN names of users allowed to OPEN (O state) a\n"
 "bug. Just hit return if anyone is allowed to OPEN bugs.\n"
 "%s"
 help aprj12.hlp
 if not null
 goodusers
 fi
O-allow-group:
 "\nList GROUP names of groups allowed to OPEN (O state) a\n"
 "bug. Just hit return if any group is allowed to OPEN bugs.\n"
 "%s"
 help aprj13.hlp
 if not null
 goodgroups
 fi

These fields list the login names of the users (O-allow) and the
group names of the groups (O-allow-group) that are allowed to
make the specified state transition. For example, if your new state
is K, add two new fields called K-allow and K-allow-group with the
same derivation lines as you see for the other *-allow and
*-allow-group fields. You can also add a context sensitive help file
(similar to aprj13.hlp) in the class/<classname>/admin.help directory.

As you can see, what you are doing here is adding field derivations
(similar to existing ones) regarding the mail notifications and
permissions for your new state. The derivations for state P fields
are good examples to copy and modify.

After you make these modifications, any new projects created with
the adminbug aprj command will ask the appropriate questions
concerning who can make state transitions to the new state and
who should be sent mail when a defect report enters that new

state. However, for projects previously created, anyone will be able
to modify them and no mail notifications will be sent, since the
Customizing ClearDDTS 8-15

new fields were not recorded for those projects. After you have
modified the administration template files, you can use adminbug
mprj to modify this project information and set it up, if desired.

Note: You should test each of your modified template files with
the tmpltest utility to ensure that a new field does what you want
before actually using it. For adminbug templates, use the -m option,
because those templates do not operate in screen mode. For more
information, see Specific xddts customizations on page 8-27.

Modifying the information in a query index

When you submit a request to ClearDDTS to query the database,
the results of that query are displayed in a query index. You can
determine what information is displayed in the index.

Index display in webddts

The webddts interface displays results in the Query Results index.
Selecting fields to display in the index is user controlled (no
administator work required). To select which defect fields are
displayed, use the webddts Query Builder and click the Show field.

The index contains the selected fields in the order you see them in
the Query Builder.
8-16 ClearDDTS Administrator’s Guide

Index display in xddts and bugs

The template files located in ~ddts/class/<classname>/user.index are
used to specify the format of the index lines in bugs and xddts.
There is one template file for each state defined in the system. If
you add a new state to the system you must add a new file to this
directory.

A template file for the resolved state is shown below:

Status: "%-1.1s "
Severity: "Sv%1d "
Identifier: "%-10.10s "
Software: "%-8.8s "
Headline: "%-35.35s "
Resolver-id: " %-8.8s"
Enclosure-count: if equals $Enclosure-count 0
 then
 else
 " +%-2d"
 fi

Note that this template file just creates one line of 72 characters.
(There are no newlines (\n) in the format strings.) This line
displays various fields of the defect (Status, Severity, Headline, etc.)
and is included in the ClearDDTS index to provide a summary of
the defects under examination. As shipped, the line looks like this:

17 N Sv3 QTKqa00633 foo foo is broken +2

If you create a new K state, you must add a new file called K to this
user.index directory. The contents of the new file should be similar
(or identical) to the above.

Note that any field mentioned in this template file must also be
defined in the ClearDDTS database. If you modify the ClearDDTS
database, you must rebuild it with the adminbug dbms command.
See Chapter 13, Managing and Customizing the ClearDDTS
Database.

Editing the three-line summary template file

ClearDDTS prints defects in a variety of formats. One format is a
Customizing ClearDDTS 8-17

three-line summary. The ~ddts/class/<classname>/summary.print
directory has a set of template files, one per state, that define the
three line summary format. The template files look like:

Status: "10t=%s, "
Severity: "Sv=%s, "
Identifier: "Bug id = %s, "
Version: "Vers = %s, "
Software: "Defect in %s\n"
Headline: "Desc: %s\n"
Engineer: "Assig Engr = %s ,"
Submitted-on: "Found: %s, "

These files can be modified to suit your needs. If you add a new
state to the system, make sure that you add a file to this directory
with the new state letter as the name and containing the code
needed to print defects in that state.

Changing the reporting system for new states

If you add a new state, you need to edit four files to report on
defects that enter the new state. In ~ddts/bin, edit the awk scripts
dawk01, dawk04, dawk08, and the shell script dawk06.sh.

As an example, all of these scripts include code for adding a new E
state, and that code has been commented out. In most cases, you
only need to uncomment the code and change E to the new state
letter that you have defined. See the scripts and Chapter 9,
Creating Custom ClearDDTS Reports, for more information.

Further template customization

Besides adding new fields and states, ClearDDTS templates allow
you to do many other types of customization. This section provides
examples of some of the more common modifications.

Creating field dependencies

You can make the list of valid responses for one field dependent on
the value of another field. For example, maybe you would like to

link together the Project and the Software fields so that if a user
selects the compiler Project, only C, fortran, and pascal are
8-18 ClearDDTS Administrator’s Guide

acceptable answers for the Software field. For example:

Begin: unset Begin
 set Filter-path /usr/bin:/bin:/usr/ucb
 set Oneof-path class/$Class/oneofs
 set Help-path class/$Class/helps
 .
 .
 .
Software: if match $STATE$OPERATION Sp Sf
 "\(1,20)Software: %-20.20s"
 fi
 if match $OPERATION p m
 if equals $Project compiler
 oneof C fortran pascal
 elif equals $Project admin
 oneof -f admin
 help admin.H
 else
 oneof -f others
 help others.H
 fi
 required
 fi

If the value of the Project field is compiler, the template will only
accept Software field values of C, fortran, or pascal. In addition, since
no help file is specified, the default help built into the oneof filter
command (that is, listing the acceptable answers) is used. If the
Project entered was admin, the list of acceptable answers is found in
the file ~ddts/class/<classname>/oneofs/admin. The path to find files
for the oneof filter command is described by the special field value
Oneof-path, which was set in the Begin field derivation. So, the path
~ddts/class/<classname>/oneofs/admin is derived from the lines:

set Oneof-path class/$Class/oneofs
oneof -f admin

In the case of the admin projects, the context-sensitive help file for
the Software field is located in ~ddts/class/<classname>/helps/admin.H.
The location of this file was determined similarly by the lines:

set Help-path class/$Class/helps
help admin.H

If the value of Project is not compiler or admin, the acceptable
values for the Software field are defined in

~ddts/class/<classname>/oneofs/others and the context-sensitive help
is located in ~ddts/class/<classname>/helps/others.H.
Customizing ClearDDTS 8-19

This mechanism is simple to use and quite flexible. There are also
comments in the template file to help you understand how it
works and how it is used by various ClearDDTS programs.

For more complicated validation or expansion of input values, you
can use the UNIX utilities such as grep, cut, and sed. See template(5)
for more information on using filter commands.

Prompting for and requiring enclosures

You can prompt users to add and edit an enclosure when
submitting a new record. To do this add the following derivation
lines in the master.tmpl file:

Related-file: if equal $STATE$OPERATION Sp
 if uniquetitle -f "Related-file" "Problem"
 editfile -r -i $~/class/$Class/submit.encl "Problem"
 inc Enclosure-count
 log Enclosure "$$" added by $Submitter-id
 else
 editfile -r "Problem"
 log Enclosure "$$" modified by $Submitter-id
 fi
 fi

This derivation already exists in the default software class
master.tmpl. The title for the enclosure is Problem. The -i option
causes ClearDDTS to use the contents of
~ddts/class/<classname>/submit.encl as the initial text in a Problem
enclosure file every time the user submits a new record. The -r
option requires that the enclosure contain text (making it a
required field), and when used with -i, that text must be different
from the initial text. Without the -r option, the user is still
prompted for the enclosure, but adding text is optional (the
enclosure is not required). The rest of the derivation increments
the Enclosure-count field which contains the number of enclosures
in the defect, and includes the name of the submitter in the
History enclosure.

In additon, you can use the -R option to make an enclosure
required. This option is similar to -r (the enclosure cannot be
8-20 ClearDDTS Administrator’s Guide

empty), but has the additional requirement that the contents of
the enclosure before editing cannot match the contents after
editing. For example, this could be used to force additions to the
Resolution enclosure if a defect is re-opened and then resolved a
second time.

You can use a similar mechanism to prompt users to edit existing
enclosures or add enclosures at different state changes. See the
comments in the master.tmpl file for more examples.

Customizing enclosures, prompts, and e-mail

In addition to the modifications already discussed, ClearDDTS
provides some other template files that you may want to
customize. The following table summarizes these files and the
kinds of modifications you can make. For more information, see
the files themselves.

Template File Modifications

clone.prompt The clone prompt template file clone.prompt is used to control
the dialog used when cloning a defect.

notify.tmpl The notification template is used to control the format and
content of notification mail through a variety of configuration
parameters. For more information on e-mail notification, see
Chapter 11, Handling ClearDDTS Mail.

resolve.encl The file can be used to prompt for an enclosure upon resolving
a defect. This is an xddts only feature.

submit.encl The file can be used to prompt for an enclosure upon submitting
a defect. This is an xddts only feature.

editencl.tmpl The editencl.tmpl template file is executed before editing an
enclosure. It is provided so that you can restrict who may edit
enclosures. This is an xddts only feature.

Creating custom filter commands

You can create and use your own filter commands. These
Customizing ClearDDTS 8-21

commands could be shell scripts or C programs that read a value
from standard input, write the value to standard output, write any
explanations of why the value is bad to standard error, and exit
with a status of zero (good) or non-zero (bad).

These commands can be used for field validation or for initializing
system-generated default values. For example, a filter command is
used to initialize the Assigned on field with the current date.

By ensuring that the filter command is at a location in the
Filter-path (given in the Begin field in the master.tmpl file), you can
use your new filter command in your customized template. An
example of using a shell script for a user-defined filter command
appears in Appendix C, Sample Filter Command Script.

Specific webddts customizations

If you plan on using the webddts interface there are several
changes to the user-customizable portions of ClearDDTS,
specifically to the master.tmpl and web_conf files, that will
enhance the web page display.

After you make changes to the master.tmpl and web_conf files,
you must run webconfigure to refresh the values shown in
webddts.

Label and type modification via the “www” filter

Some fields do not usually have an appropriate field label in view
mode (for example, the Headline field) making the View Defect
page hard to understand.

To solve this issue, we use a filter called "www". Used with the "if"
command, you can effectively control the output of the HTML
pages. We have used this in several fields in our default
master.tmpl file, specifically in the Headline, Submitted-on,

Software, and Resolved-on fields. You can refer to the master.tmpl
file in ~ddts/class/software for exact syntax.
8-22 ClearDDTS Administrator’s Guide

A more complete description of the interaction of the HTML
generation tools (wtform and wttmpl) and your master.tmpl files is
available in a white paper available from Rational Technical
Support.

Web layout using field grouping

In the bugs and xddts interfaces the layout of the form is
controlled by cursor addressing in the prompt strings. In HTML
the layout is in the order of the master.tmpl file. This can be
modified by grouping fields into related sections.

The webddts defects are displayed in a grouped table format,
similar to the way the submission and modification forms are
displayed, except that the values are displayed as static text and
not input items. This grouping is configured through the use of the
command "set" with the first argument "group_fields".

Group fields are comma separated field specifiers. Each position
can have an optional modifier after the field name delimited by a
colon (:), as well as multiple modifiers separated by white space
(spaces or tabs). Each position must have at least a modifier or a
field name. The format looks like:

set group_field [<field>][:<modifiers>][, [<field>][:<modifiers>][,
[<field>][:<modifiers>] [...]]]

Modifiers can be broken down into two categories:

n table modifiers.
Customizing ClearDDTS 8-23

n field modifiers

Table modifier Result

numcols=## Specifies the number of fields wide (label-value
pairs) the table appears.

tablewidth=### Specifies the minimum width of the table in relation
to your browser. This number can be specified as
a percentage by putting quotation marks around
the percent string (tablewidth=”75%”).

To make a table always be as wide as the browser
window enter tablewidth=”100%”.

Field Modifier Result

nowrap Prevents text within both the label cell and the
value cell from wrapping.

nowrap_label Prevents text within the label from wrapping.

nowrap_value Prevents text within the value cell from wrapping.

colspan=## The number you specify is the number of other
logical “fields” you want the value cell to occupy.

null Causes an empty label cell and value cell to be
inserted in the corresponding position. The actual
field named, if any, is not displayed.

Note: Do not specify a field name when using the
null modifier. An incorrect field name will cause the
modifier to be ignored.

startcol=## Makes the specified field begin in the specified
column. For example, you can make enclosures
always start in the first column by specifying
startcol=1.

mailto Wraps the contents of the cell within a mailto html
tag:

Used with address fields, this allows a convenient
way to contact the people associated with the
current defect.

Table modifiers always need to appear before the first field in the
group_fields list. You cannot specify a field with table modifiers.
8-24 ClearDDTS Administrator’s Guide

The following are correct and incorrect examples of group fields:

Correct:

set group_fields :numcols=4, Field1, Field2

Incorrect: Field1 would not be displayed:

set group_fields Field1:tablewidth="60%" numcols=2, Field2

Correct:

set group_fields :tablewidth="60%" numcols=2, Field1, Field2

Incorrect: All table modifiers must be in the first position:

set group_fields :tablewidth="60%", :numcols=2, Field1, Field2

Incorrect: Spaces separate modifiers, so there is no valid modifier
on this line:

set group_fields Field1: colspan = 5, field2

Example

The following example is from the default master.tmpl file shipped
with the software class. It shows how the table is created to
display the Defect Information group when viewing a defect:

Def-group:
 if www
 "DEFECT INFORMATION"
 set group_fields :numcols=2 tablewidth="75%",
Project, Identifier, Software, Version, Headline : colspan=2 startcol=1,
Showstopper, Enhancement, Status, STATE, Last-mod, Enclosure-count,
Problem_encl : colspan=2 startcol=1
 fi
 unset Def-group

The table appears on the view defect page as:

Web display options via the web_conf file

Edit the ~ddts/class/<class>/web_conf file to control various
Customizing ClearDDTS 8-25

aspects of the webddts interface display including:

project-pre-prompt If you have fields dependent on the Project field, prompting
for Project before presenting the rest of the Submit page
reduces the JavaScript required (helping to avoid JavaScript
errors). To prompt for the project field before displaying the
Submit page, set the value of project-pre-prompt to "Y".

report_run_mode Determines if reports are run in "serial" or "parallel" mode.
Serial is the default. Depending on your machine, parallel
may not provide the best result since it consumes machine
resources.

report_gifsize Determines the sizes of gifs produced for graphs, and the
default value. It also determines the labels presented in the
Size field in the webddts Generate Reports page. See the
examples in the web_conf file for more information.

report_scale_labels Sets an autoscaling factor for x-axis and y-axis labels. The
higher the number, the fewer the labels.

report_scale_ticks Sets an autoscaling factor for x-axis and y-axis ticks. The
higher the number, the fewer the ticks.

attachment-ignore-ext Attachments normally require an extension so the browser
knows what to do with them. You can override this behavior
by specifying a regular expression to match for exclusions.
For example, to attach core file, do the following:
attachment-ignore-ext: core.*

auto-encl-wrap Determines whether enclosure text should automatically
wrap. If set to Y, enclosure wrapping is allowed, and is
saved in the database. If set to N, enclosure text will not
automatically wrap. Defaults to enclosure wrapping even if
this file or line are missing. The wrapping occurs at the
width of the enclosure window.

encl-width Sets the width of the enclosure edit window. Note that if the
width is set to anything less than 40 or greater than 132, the
window defaults to a width of 72 even if this file or line are
missing.

enclosure-icon-wrap Sets the number of enclosure icons you want to appear in a
single row across the View Defect page.

expand-enclosures Determines whether to display the expanded contents of
enclosures below the defect information on the View Defect
page. The default is "N". Users can also set this option on
the User Profile page in the web interface.

toolbar-mode The toolbar can be "active", meaning it contains JavaScript
to present moving images, or it can be "inactive", where no
8-26 ClearDDTS Administrator’s Guide

Maintaining the cache directory

ClearDDTS uses a caching system to store initial versions of the
webddts pages. The cached pages are stored in the
~ddts/www/cache directory. The ClearDDTS cache is completely
separate from the browser cache. It is only used for ClearDDTS
pages so that they do not need to be generated each time you
access them.

Cache files are cleared automatically when changes are made to
the master.tmpl file. However, manual clearing may be necessary
after certain changes and customizations are made. If you do not
see your changes appear, there are files you can create in the
cache directory that perform cleanup as necessary. These files
include:

Users can also clean their own cache through the webddts
interface by clicking the Clean Cache button on the User Profile
page.

JavaScript runs, and the images are static. The default is
active. Users can also set this option on the User Profile
page in the web interface.

NOCACHE Cache files are still created, but are
continually reset.

CLEAN Cache files older than the CLEAN file are
reset

CLEAN.<class> Cache files specific to the named class are
reset if they are older than the
CLEAN.<class> file.

Specific xddts customizations
Customizing ClearDDTS 8-27

This section contains features unique to the xddts interface.

Adding new pages

To support multiple pages in a defect report in xddts, ClearDDTS
uses four special commands and one variable.

Note: The webddts pages use scroll bars for viewing information
that requires more than one page to display. Multiple pages are
not necessary.

Using the PAGE variable and return statement

The PAGE variable is used to distinguish between the various
pages associated with a defect report. This variable is used in the
master.tmpl file in much the same way as STATE and OPERATION.
The template file runs with the value of PAGE set to some value,
and is used in conditional statements to display different pages.

The xddts, bugs, bugmail, and dumpbug utilities use the PAGE
variable to display multiple pages. This requires a “handshake”
between these programs and the execution of the template file so
that these applications know which page should be displayed next.
This handshake is accomplished through the use of the template
file return statement.

To force the display of a different page, the last statement
executed in the master.tmpl file must be a return and it must return
the name of the next page to be displayed. This name can be any
string up to thirty characters. For backwards compatibility, the
null string is the first (base) page, and returning null means there
are no more pages left to view. This return value is stored
internally as RETURNVAL, so you must not use this variable as a
field variable name.

Modifying the master template to display other pages

When executing the other pages, you should manually clear the
8-28 ClearDDTS Administrator’s Guide

screen, paint the form, prompt for or modify the additional fields,
then go back to the first page. To do this, you use:

n the call filter which recursively executes the master.tmpl file,
n pushscreen and popscreen which save and restore the screen

respectively, and
n \f which clears the screen.

The call filter is used with variable/value pairs that re-execute the
current template with the new variables. This allows you to
repaint the form for the next page, prompt for the new fields on
the next page, and then return to the previous page. The variables
are only set locally and return to their original value when the call
filter is finished. Note that all fields are global and can be changed
from any page.

You can use multiple pages in a variety of ways, but most likely
they will fall into three categories:

n Sequenced: Pages displayed/modified one after another.
n Sectioned: Every displayed/modified page has data in common.
n Forms-within-forms: Various pages displayed/prompted on

demand.

As an example, assume that you want to add an extra 10 fields to
the Verified state in the software class. Since the software class
screen is already quite full, you are going to prompt for and
display all of the Verified fields on a second page. To do this, you
need to modify the software class master.tmpl file as follows:

1 To make sure that the V-fields are displayed on the second page,
you must place a statement at the beginning of the master.tmpl
(before the code that does the goto $STATE"-fields").

Add these three lines

 if equals "$PAGE" VERIFY
 goto V-fields
 fi

BEFORE these four lines
Customizing ClearDDTS 8-29

 if match $OPERATION p f # prompt or form
 and not equal "X$STATE" X
 goto $STATE"-fields"
 fi

In this example, the second page is named VERIFY. You can name
a page anything you wish; however, you should make it
descriptive. Note the double quotes around $PAGE. This is
required because the first page is named with the null string. The
equals statement will not work correctly without these quotes.

2 Modify the code located at the V-fields field derivation. This
derivation is a preamble to the actual execution of the various
Verify state fields. Make sure that the code will only be executed
when the value of PAGE is VERIFY. There are two situations,
output mode and input mode, that you must address:

n If the template file is executing in output mode (OPERATION f
or v), you must check that the page is correct.

n If the template file is executing in input mode (OPERATION p or
m), you must explicitly cause the second page to be executed.

The code to implement is shown below:

V-fields: unset V-fields
 if not equals $STATE V
 goto F-fields
 fi
 if not equals "$PAGE" VERIFY
 and input
 pushscreen
 "\f"
 call -o OPERATION f PAGE VERIFY
 call -i PAGE VERIFY
 popscreen -r
 fi
 if not equals "$PAGE" VERIFY
 goto Last-mod
 elif equals $OPERATION v
 "\f"
 fi

The pushscreen command saves the current screen in memory. The
\f then clears the entire screen. The first call command re-executes
the master.tmpl file with PAGE set to VERIFY and OPERATION set
to f. This paints the verify form on the screen. The second call

command again causes the entire master.tmpl file to be re-executed
with PAGE set to VERIFY and OPERATION set to p.
8-30 ClearDDTS Administrator’s Guide

At this point the user is prompted for all the verify information.
When the last field value is entered, execution returns to the
popscreen command. The popscreen command restores the screen
saved by pushscreen.

3 Now you simply need to define the page order for printing. This is
for programs like dumpbug that need to print out all defect pages
and then print the enclosures.

To set up printing order, insert the following code after the Last-mod
field derivation and before the Do-enclosures derivation:

This is existing code

Last-mod: if match $OPERATION p m
 today
 fi

Here is the new code

Pages: unset Pages
 if null "$PAGE"
 return VERIFY
 fi

If we are executing the first page, then we return the next page,
VERIFY. If we are executing the last page, in this case also
VERIFY, then we fall through to the enclosure code so that
dumpbug works correctly.

Implementing other customizations

The example above illustrates only one possibility. Other
customizations can be done with the same code and additional
conditional statements. Placing these three blocks of code in
various places within the master.tmpl file will also produce varying
effects. For example, placing the first block farther down in the
master.tmpl file will produce a sectioned form where some common
data would be displayed on every screen (see company class for an
example). This will make all pages print some common fields.

You could also make the second page dependent on Verify-check. For
example:
Customizing ClearDDTS 8-31

if equals $Verify-check Y,
 pushscreen
 call -o OPERATION f PAGE VERIFY
 call -i PAGE VERIFY
 popscreen -r
fi

This would give you forms-within-forms. An almost unlimited
number of combinations can be implemented.

Debugging a custom template file

Once you make changes to the template file, you need to debug
these changes without affecting all of the projects on the system.
There are two ways to do this:

n Using a special (dummy) class
n Using the tmpltest utility

Setting up a dummy class

One way to debug a custom template file is by creating a dummy
class with the adminbug clas command. When you create the new
class, ClearDDTS makes a copy of the master.tmpl file in the new
class/<classname> directory. You then create a ClearDDTS project
that is a member of this class with the adminbug aprj command.
After you have created the new class and project, you can modify
the class master.tmpl file and submit test defects against the new
project to test your changes.

Testing a template file

Another way to debug template files is with tmpltest. This program
allows you to test a template with a set of specified STATE and
OPERATION values without creating a dummy project or using the
bugs program.

For example, recall the foo.template and foo.script files mentioned
earlier that demonstrated the interact filter command. The tmpltest

utility can be used to test run these scripts. To debug these scripts,
you could issue the following commands:
8-32 ClearDDTS Administrator’s Guide

chmod +x foo.script # make foo.script executable
tmpltest -Xfpv foo.template

The options cause tmpltest to execute the template file foo.template
exactly the same way bugs and xddts execute it. That is, once with
STATE equal to X and OPERATION equal to f (form), again with
STATE equal to X and OPERATION equal to p (prompt), and finally
with STATE as X and OPERATION equal to v (view).

As another example suppose you want to test a change to a locally
modified version of the master.tmpl file. The following invocation
would step through all of the executions of the template file just
like bugs would for a newly submitted defect that you immediately
decided to resolve. It would also go through all of the steps in
modifying a defect for a particular state.

tmpltest -ofpvm -SAORV template.file

This would test all executions for xddts and bugs. See the tmpltest
man page for a complete explanation of how tmpltest works.

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Creating Custom ClearDDTS Reports
9

This chapter explains how the ClearDDTS report system is
constructed and how it can be customized. Read this chapter if you
9-1

want to modify the reports supplied with ClearDDTS or create
new reports.

As shipped, ClearDDTS includes all of the source programs for the
management reports so that these source programs can be
modified to suit your needs. If you want to report additional
information or produce custom reports, working examples are
available to use as a starting point.

The following topics are covered:

n Understanding how reports work
n Creating Reports
n Integrating a report into the xddts and webddts interfaces

Understanding how reports work

Each ClearDDTS interface expects reports and graphs to be
produced in a particular format. For a report program to work, it
must accept ClearDDTS parameters and produce output in the
correct format. This section details those parameters and formats.

The report_conf file

One of the most important files in the ClearDDTS report
mechanism is the ~ddts/class/<classname>/report_conf file. This
file associates a report title with a report program and specific
attributes. The ClearDDTS interfaces look here to see what
reports are available in the formats appropriate for that interface.

To integrate a report into the xddts and webddts interfaces it must
appear in the report_conf file. A copy of this file is shown below:
9-2 ClearDDTS Administrator’s Guide

report_conf
#
This file drives the ClearDDTS reporting mechanism - note that the ’#’
character indicates a comment and all text from that character
to the end of the line will be ignored.
#
a line ending with a ’\’ character will be considered to continue
on the next line. Each Report configuration line consists of three
fields separated by the ’:’ character. Each line looks like
#
attributes : Report Label Text : report command string
#
R E P O R T A T T R I B U T E S
#
-ascii - the report’s output is in ASCII format
-ps - the report’s output is in PostScript format
-troff - the report’s output is in Troff format
-notty - the report should not be sent to a tty device.
-gif - the report’s output is in gif when run from the web
-html - the report’s output is in html when run from the web
#
R E P O R T L A B E L T E X T
#
The report label text is displayed in the list of available reports.
#
R E P O R T C O M M A N D S T R I N G
#
The report command string is essentially a command similar to a string
that would be passed to the system (3) call. There are several
variables that are understood and interpreted by the reporting
mechanism.
They are as follows.
#
$start - start of date range for the reporting period
$end - end of date range for the reporting period
$projects - list of projects to be passed to report script
$states - states argument to be passed to report script
$color - Tells report script whether or not to generate
color output.
#
#
-ascii : Table of Problems by Project by State.:\
 dawk01.sh $start $end $states $projects # an appended
comment
-ascii : Table of Problems by Project by Severity.:\
 dawk02.sh $start $end $states $projects
-ascii : Table of Problems by Assigned Engineer by Severity.:\
 dawk03.sh $start $end $states $projects
-ascii : Table of Problems by Assigned Engineer by State.:\
 dawk04.sh $start $end $states $projects
-ascii : Table of Problems by Submitter by Severity.:\
 dawk05.sh $start $end $states $projects
-ascii : Table of Problem Arrival and Repair Rates.:\
 dawk06a.sh -b $start $end $states $projects
-ascii : Three Line Summary of all Problems.:\
 dawk07.sh $start $end $states $projects

-ascii : General Problem Statistics.:\
 dawk08.sh $start $end $states $projects
-ascii : Report of Problems Submitted Over the Last Week.:\
Creating Custom ClearDDTS Reports 9-3

 wsubmit.sh $states $projects
-ascii : Report of Problems Resolved Over the Last Week.:\
 wresolve.sh $states $projects
-ascii : Full Text Listing of Queried Problems.:\
 wdump.sh
-ps -notty -gif : Graph of Phase Metrics.:\
 dgawk01.sh $color -b $start $end $states $projects
-troff : Phase Containment Effectiveness Report.:\
 dgawk02.sh -b $start $end $states $projects
-ps -notty -gif : Phase Containment Effectiveness Bar Graph. :\
 dgawk11.sh $color -b 1 $start $end $states $projects
-ps -notty -gif : Total Faults Sourced Per Phase. :\
 dgawk11.sh $color -b 2 $start $end $states $projects
-ps -notty -gif : Graph of Problems by Resolution Type.:\
 dgawk03.sh $color -b $start $end $states $projects
-ps -notty -gif : Graph of Submitters, Assigned Engineers, and
Resolvers.:\
 dgawk05.sh $color -b $start $end $states $projects
-ps -notty -gif : Graphs - Problems by Severity, Problems by State,
Problem Arrival Rate.:\
 dawk06.sh $color -b $start $end $states $projects
-ps -notty -gif : Graph of Problems by Severity.:\
 dgawk07.sh $color -b $start $end $states $projects
-ps -notty -gif : Graph - Repair Time & Diff Between Est & Actual Fix
Time.:\
 dgawk08.sh $color -b $start $end $states $projects
-ps -notty -gif : Graph of Overdue Problems. :\
 dgawk09.sh $color -b $start $end $states $projects
-troff -notty : One Line Meeting Summary of Selected Problems.:\
 dgawk10.sh -b $start $end $states $projects

The active lines in the file are tuples separated by colons. The first
parameter is an attribute that describes whether the output is
ascii, postscript, gif, html, or troff output. The second parameter is
used by webddts and xddts to produce the list of reports to select
from. The last parameter is a string that is used to invoke the
report.

There is a separate report_conf file for every class.

Report scripts

The default ClearDDTS reports consist of Bourne shell scripts
that use awk to process the data. These files are located in
~ddts/bin. This directory contains many pairs of files named
dawknn and dawknn.sh; for example, dawk09 and dawk09.sh.
There are also pairs of dgawknn and dgawknn.sh scripts.

Each dawknn.sh or dgawknn.sh file is a shell script that runs the
corresponding dawk/dgawk report script. Most of these shell scripts
9-4 ClearDDTS Administrator’s Guide

are similar except for the name of the awk script that they invoke.

How each interface uses these scripts to produce reports is
detailed below.

xddts

To run a report, xddts executes the following process:

1 xddts accesses the report_conf file to obtain the list of reports to
display on the Management Reports screen. It supports reports
that are defined with the following attributes: -ps, -ascii, and
-troff.

2 When a user selects a report or graph, xddts runs the shell script
associated with that title using the values of the associated
variables. For example, the Graph of Problems by Severity calls
the dgawk07.sh script as defined in the report_conf file:

dgawk07.sh $color -b $start $end $states $projects

3 The dgawk07.sh script expands the variables and runs an
associated report script, dgawk07, to produce the output.

4 In the case of a graph, an additional step is necessary to pass the
information to the tallybug program, which in turn uses graphbug
to produce a PostScript graph.

awk

dawk07.sh dawk07

report output
File

#xxxx
#xxxx
#xxxx
#xxxx

File

#xxxx
#xxxx
#xxxx
#xxxx

Report
#xxxx
#xxxx
#xxxx
#xxxx

invokes

processing
 File
#xxxx
#xxxx
#xxxx
#xxxx

 File
#xxxx
#xxxx
#xxxx
#xxxx

Graph

graph outputtallybug graphbug

webddts

To run a report, webddts executes the following process:
Creating Custom ClearDDTS Reports 9-5

1 webddts accesses the report_conf file to obtain the list of reports to
display on the Generate Reports page. It supports reports that are
defined with the following attributes: -ascii, -html, -gif, and -ps.

2 When a user selects a report or graph, the web reporting engine
builds and runs a temporary shell script which:

n expands a set of web-specific environment variables including:
PATH # PATH set for architecture
DDTSHOME # ddts home directory
DDTSCLASS # class in which the query is run
DDTS_WEBPROG # webddts program, "/ddts/ddts_main"
DDTS_REMOTE_USER # userid
DDTS_REPORT_TYPE # -gif|-ascii|-ps...
DDTS_THCOLOR # table header color, for html reports
DDTS_BGCOLOR # page background color, for html reports
DDTS_TEXTCOLOR # text color, for html reports
DDTS_REPORT_FIELDS # the "show" fields from the query
DDTS_REPORT_STARTDATE # earliest date from the query (for tallybug)
DDTS_REPORT_ENDDATE # latest date from the query (for tallybug)
DDTS_REPORT_STATES # list of states from the query (for tallybug)
DDTS_REPORT_SEVERITY # list of severities from the query (for
 tallybug)
DDTS_GRAPH_FORMAT # "gif" or empty
DDTS_GRAPH_BASE # directory name
DDTS_GRAPH_WIDTH # pixels, used by gifbug
DDTS_GRAPH_HEIGHT # pixels, used by gifbug
DDTS_GRAPH_GRID # true or false, used by gifbug
DDTS_GRAPH_TRANSPARENT # true or false, used by gifbug

n calls the associated shell script (for example, dgawk07.sh)

3 The shell script does the following:

n ignores the variables ($start, $end, $states, $projects)
normally associated with the script in the report_conf file and
processes the findbug query string produced by the webddts
Query

n runs awk (for reports) or tallybug (for graphs)

4 In the case of a graph, an additional step is necessary to pass the
information from the tallybug program to either gifbug (to produce

the graph in .gif format) or graphbug (to produce the graph in .ps
format).
9-6 ClearDDTS Administrator’s Guide

Creating Reports

You can write report scripts in any format that will accept
ClearDDTS input variables and produce the expected output. As a
start, you can edit the existing shell and awk scripts. For example,
assume you want to write a ClearDDTS report to produce ASCII
(.txt output) and call it report #22. To do this:

1 Go to the ~ddts/bin directory and copy the file dawk02.sh to
dawk22.sh:

cd ~ddts/bin
cp dawk02.sh dawk22.sh

2 Change the dawk22.sh shell script to invoke your awk script called
dawk22.

3 Create/modify the dawk22 script to produce the desired report. To
do this, you need to know how to use awk and what defect records
look like. Defect records are normal UNIX text files with lines of
the form (see Appendix A for a complete description of the fields):

Keyword: value

awk

ASCII or HTML

Report

#xxxx
#xxxx
#xxxx
#xxxx

 File
#xxxx
#xxxx
#xxxx
#xxxx

 File
#xxxx
#xxxx
#xxxx
#xxxx

tallybug

gifbug

dawk07.sh

File

#xxxx
#xxxx
#xxxx
#xxxx

invokes

tmp.sh

File

#xxxx
#xxxx
#xxxx
#xxxx

processing
 output

 File

#xxxx
#xxxx
#xxxx
#xxxx

graphbug

Graph

gif output

Graph

PostScript
output

 A portion of a defect record file is shown below. Note that these
files always begin with the “Start: bug-ID” field and end with the
Creating Custom ClearDDTS Reports 9-7

“End: bug-ID” field.

Start: CMMaa000135
Project: DDT.bugs
Engineer: mike
Submitted-on: 880606
Headline: The clinit(3) routine dumps core in diagnostic mode
Severity: 2
Status: N
 .
 .
 .
End: CMMaa000135

The defect records were designed to make writing awk scripts easy.
For example, look at dawk07, a portion of which is shown below:

/^Severity:/ {
 severity = $2
 next
 }

/^Status:/ {
 status = $2
 next
 }

/^Headline/ {
 for(i = 2; i <= NF; ++i)
 headline = headline $i " "
 next
 }
 .
 .
 .
 {
 printf "\nBug Number = %s\n",xstart. . .
 printf "St=%s, Sv=%s, %-65.65s\nModule: %s, . . .
 }

This script produces three-line bug summaries. If you already
know how to write awk scripts, writing scripts for the ClearDDTS
defect record format is very easy. If you are not familiar with awk
scripts, there are numerous sample scripts to start with.

GIF reports

For webddts to produce graphs in gif format the report must pay
9-8 ClearDDTS Administrator’s Guide

attention to the DDTS_GRAPH_FORMAT environment variable. If it is
set to "gif", the report must call the program gifbug. The gifbug
program operates much the same as graphbug (it parses tallybug
output), but it produces gif instead of PostScript output.

Since multiple gifs can be generated, the gifs need to be created in
a certain way so that webddts knows how and where to view them:

if ["$DDTS_GRAPH_FORMAT" = "gif"]; then
 gifbug < tmp/dg5tmp1.$$ >$home/www/$DDTS_GRAPH_BASE.01.gif
2>$home/www/$DDTS_GRAPH_BASE.01.err.txt
 gifbug < tmp/dg5tmp2.$$ >$home/www/$DDTS_GRAPH_BASE.02.gif
2>$home/www/$DDTS_GRAPH_BASE.02.err.txt
 gifbug < tmp/dg5tmp3.$$ >$home/www/$DDTS_GRAPH_BASE.03.gif
2>$home/www/$DDTS_GRAPH_BASE.03.err.txt
 gifbug < tmp/dg5tmp4.$$ >$home/www/$DDTS_GRAPH_BASE.04.gif
2>$home/www/$DDTS_GRAPH_BASE.04.err.txt
 echo "$Title1" > $home/www/$DDTS_GRAPH_BASE.00.desc
 echo "$Title2" >> $home/www/$DDTS_GRAPH_BASE.00.desc
 echo "$Title3" >> $home/www/$DDTS_GRAPH_BASE.00.desc
 echo "$Title4" >> $home/www/$DDTS_GRAPH_BASE.00.desc
 rm -f tmp/dg5tmp1.$$ tmp/dg5tmp2.$$ tmp/dg5tmp3.$$ tmp/dg5tmp4.$$
 exit 0
else
 graphbug $colorflg < tmp/dg5tmp1.$$ > $home/tmp/ps.dg5awk1.$$
 graphbug $colorflg < tmp/dg5tmp2.$$ > $home/tmp/ps.dg5awk2.$$
 graphbug $colorflg < tmp/dg5tmp3.$$ > $home/tmp/ps.dg5awk3.$$
 graphbug $colorflg < tmp/dg5tmp4.$$ > $home/tmp/ps.dg5awk4.$$
fi

This code snippet shows that gifbug is called in much the same
way as graphbug, but the output filename has changed.

In the case of multiple gifs, each gif should be directed into its own
sequentially numbered file. Furthermore, the description file
contains one title per line. Webddts associates the first line of this
file with "01.gif", the second line with "02.gif" and so on. When the
report is complete, webddts lists them something like:

Page 01 Problems by state
Page 02 Problems by severity
Page 03 Problems by engineer
Page 04 Problems by phase

This clarifies what each gif will display when you click on the link.
Be sure that the description file is numbered "00" so that it sorts
Creating Custom ClearDDTS Reports 9-9

before the other gif files, otherwise it will not get picked up.

You can customize the gif display sizes available in the webddts
interface and set the default value (640x480 as shipped). To do
this edit the ~ddts/class/<class>/web_conf file. You can also
customize the number of x-axis and y-axis labels and ticks through
the web_conf file.

HTML reports

For html reports, the report itself must generate the appropriate
html tags so that the web browser can interpret it properly. Three
color environment variables are set that can be used in HTML
reports:

DDTS_THCOLOR # table header color, for html reports
DDTS_BGCOLOR # page background color, for html reports
DDTS_TEXTCOLOR # text color, for html reports

Including these environment variables keeps the report visually
continuous with the rest of the web interface.

You can also provide links to defects in the report by building
URLs such as:

<a href=$DDTS_WEBPROG?REMOTE_USER=$DDTS_REMOTE_USER&NextForm=DumpBug
&bug_id=$bug_id>

where $bug_id is a defect identifier that you have calculated. This
URL displays only the defect record, not the full frames mode of
webddts. To get the full frames mode, specify id=$bug_id instead
of bug_id=$bug_id.

If there is a whole list of defects, you can display them in a new
window by specifying a target in the URL.

Integrating a report into the xddts and webddts interfaces
9-10 ClearDDTS Administrator’s Guide

To integrate a new report into the xddts and webddts interfaces, you
need to look at the ~ddts/class/<class>/report_conf file. This is where
the interfaces look for the list of reports to display.

Note that the reports being invoked in the default report_conf file
are the dawknn.sh shell scripts. Reports you add can also be awk
scripts or any other type you have created that will produce the
expected output.

To add your dawk22.sh report from the previous example to the
report_conf file, you would add something like the following:

-ascii: This is the foo report: dawk22.sh $states $projects

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Customizing Link Actions
10

This chapter describes how to define the actions that you want
applied to linked records. The following topics are covered:
10-1

n What is defect linking?
n Configuring links
n Defining link actions

For information on creating links between records see the
ClearDDTS User’s Guide.

What is defect linking?

ClearDDTS allows you to link defect records. This is useful if your
installation needs to collect defects into specified groups. For
example, some installations have the notion of a Change Proposal
(CP) and a Problem Report (PR). Defects and enhancements are
logged as PRs and a collection of PRs is put together and defined
as a Change Proposal (CP). This can be pictured as follows:

CP

PR

Change Proposals

Problem Reports (Individual Defect and Enhancement Records)

PR PR PR

CP

In this example, the Change Proposals (CPs) can be seen as the
parent records and the individual Problem Reports (PRs) are the
10-2 ClearDDTS Administrator’s Guide

children linked to one or more CP.

Once you have established how records are linked, you can define
rules for what actions or operations are performed based on those
links. For example, one of these CPs might be discussed at a
Change Control Board meeting and approved. When the CP is
moved to the Approved state, you may then want all associated PR
also moved to the Approved state. Therefore, defect linking
involves configuring links and defining link actions.

Configuring links

Every defect has two fields for entering parents and children. Using
the CP and PR model, the CP can be identified as a parent and the
PR as children. The defect IDs of the children are put into the
children field of a parent defect and the defect IDs of the parents
are put into the parents field of the children defects. Children of the
same parents are considered siblings.

Defect linking is also very flexible, and children can have more
than one parent or more than one generation (for example,
grandchildren). The number of parent and children links is also
configurable via the number of bytes set aside in the parents and
children fields in the ~ddts/dbms/ddts/schema_file file (11 bytes per
link). By default, the system supports six parent and six child
links (or 66 bytes for each).

Defining link actions

When you create links, there is usually an operation or action that
you want associated with the link. We call this action a link
semantic. For example, an Approved CP might cause all the
associated PRs to be put into the Approved state, or you might
define a link semantic to change the status of the CP every time
all PRs have been moved to the next logical state (for example, if
all PRs are Resolved, the CP is automatically Resolved).

The ClearDDTS administrator can configure the semantic
involved with linking for every database transaction. Every time a
Customizing Link Actions 10-3

database transaction occurs, a trigger is called to see if a link
semantic action should be executed. This trigger is a Bourne shell
script called ddtsbackend. This script has the ability to look at (and
modify) any fields in the record (CP/PR) just modified or look at
(and modify) any fields in the parents or children of the just
modified CP/PR. This design allows the link semantic to be
customized by class or by any other field in the CP/PR. Thus the
number and type of link semantic processing is not restricted.

Below is a sample ddtsbackend script that does link processing. The
semantic action implemented is to look at the Class and if the
Class is equal to “Change.CP” and the Status field is equal to “G”
(Approved), then all the child defects are moved to the “G”
(Approved) state.

#!/bin/sh

#
C L E A R D D T S D B M S U P D A T E T R I G G E R
#
This script is used as a backend trigGer for ClearDDTS database updates
Whenever bugs.in(1) does a DBMS update it marks the bugid that was
just processed in the ~ddts/spool/dbackend directory. The ddtsd(1)
daemon will notice this and dbackend(1) will invoke this shell script.
This script is invoked with the concurrency control that the ddtsd(1)
daemon provides. With this mechanism in place only 1 ddtsbackend(1)
script will run at a time.

This script is invoked within the DDTs home directory as the real
user ’ddts’. The script needs to do backend processing for all files
located in the ~ddts/spool/dbackend directory. This script MUST remove
the file when it is finished processing it otherwise dbackend(1) will
assume a core dump and try twice more to execute this script before
manually removing the file and complaining (via E-mail) to the DDTs
administrator.

This does not need to be a script, it could be a C program.

DEBUG ##### DEBUG ##### DEBUG ##### DEBUG ##### DEBUG ##### DEBUG
set -x
cd ‘ddtshome‘
DEBUG ##### DEBUG ##### DEBUG ##### DEBUG ##### DEBUG ##### DEBUG
xx=‘today -l‘
echo "ddtsbackend $xx Daemon Started - $$" >> $home/spool/LOG

x=‘ls spool/dbackend‘
for bugid in $x
do

 if test X"$bugid" = "X"
 then
 continue # empty record?
10-4 ClearDDTS Administrator’s Guide

 fi
 bdir=‘echo $bugid | cut -c9,10‘ # find RELATIVE path to bug
 bugfile="allbugs/$bdir/$bugid" # bugfile has path

Do Link processing here

 set -- ‘bugval -i $bugid Class Status Identifier Children‘
 if test "$1" = "Change.CP"
 then
 Class=$1
 shift
 Status=$1
 if test "$Status" = "G"
 then
 shift
 Identifier="$1"
 shift

Paranoid Check.

 if test "x$bugid" != "x$Identifier"
 then
 xx=‘today -l‘
 echo "ddtsbackend $xx Daemon started - $$" >>
$home/spool/LOG
 echo "ddtsbackend $xx INTERNAl ERROR can’t sync on
$Identifier on behalf of $bugid" >> $home/spool/LOG
 continue
 fi

Get the version (may be more than one word so do it separately)

 CP_release=‘bugval -i $bugid Version‘
 CP_approver=‘bugval -i $bugid Approver-id‘
 xx=‘today -l‘
 echo "ddtsbackend $xx Daemon started - $$" >> $home/spool/LOG
 for i in $*
 do
 batchbug -l 100 -i $i -t
$home/class/$Class/link_semantics/G.tmpl CP_ID "$bugid" CP_approver
"$CP_approver" CP_release "$CP_release" &
 xx=‘today -l‘
 echo "ddtsbackend $xx Ran bugval(1) on $i on behalf of
$bugid" >> $home/spool/LOG
 done
 fi
 else
 continue
 fi
 rm -f spool/dbackend/$bugid
done
xx=‘today -l‘
echo "ddtsbackend $xx Daemon Terminated normally - $$" >> $home/spool/LOG

As you can see this is a simple shell script. The bugval utility
extracts fields from the just processed defect (Parent CP) and
Customizing Link Actions 10-5

batchbug updates the linked defects (child PRs.)

Note that batchbug calls a simple template to do part of the
processing. Here is that template file:

Go-on: today

Approver-id: log $Status -> G by $CP_approver
 log Approved via approval of $CP_ID by $CP_approver
 log Approved for Release $CP_release
 set Status G
 echo $CP_approver

The template file is used to write audit trail information into the
History enclosure of all of the Children PRs. The template is also
used to set the Children PR Status field to “G” (Approved).

The software class contains a directory called link_semantics that has
example code for creating link semantic actions.

10-6 ClearDDTS Administrator’s Guide

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Handling ClearDDTS Mail
11

Throughout the defect life cycle, ClearDDTS uses UNIX electronic
mail to notify users about bug submissions and state transitions.
11-1

In addition, mail can be sent between separate ClearDDTS
installations for remote submission and subscription. This chapter
discusses how ClearDDTS uses mail and how that mail can be
customized for your environment. The following topics are
covered:

n Why use electronic mail?
n How ClearDDTS handles mail
n Determining who receives mail
n Customizing notification mail
n Sending mail to ClearDDTS

Why use electronic mail?

There are a number of benefits to using electronic mail for data
transfer. For example, mail is usually the first network utility that
is set up on a UNIX system, and one can safely assume that
system administrators will keep it working. By piggy-backing on
top of mail, ClearDDTS allows system administrators to easily
manage the environment without having to administer yet
another communications facility.

In addition, because electronic mail is so pervasive in the UNIX
community, ClearDDTS can be connected between any two
systems on the Internet or any two systems where a telephone
exists. Thus connectivity can be sophisticated or simple and
ClearDDTS will use whatever system is in place.

How ClearDDTS handles mail
11-2 ClearDDTS Administrator’s Guide

Incoming mail for ClearDDTS usually contains copies of raw
defect reports and automatic administration commands. A
daemon reads this mail, and determines what should be done with
the mail message.

The daemon forwards any items it cannot understand to the
person who has been designated the ClearDDTS administrator.
For example, mail about the company picnic sent to ClearDDTS
would be forwarded to the ClearDDTS administrator. Usually
such mail is from human users; these typically are questions
about ClearDDTS, but occasionally they are “bounced” notification
messages resulting from incorrect user mail addresses.

After reading and processing each mail message, ClearDDTS
records the transaction, and deletes the message.

Note: The ClearDDTS administrator should not modify or delete
ClearDDTS mail. ClearDDTS manages its own mail box with no
help from human users.

Types of ClearDDTS mail

ClearDDTS defines several types of mail messages:

n Formatted bug mail sent to users. For example, this is the mail
sent to an engineer when he or she is assigned a defect.

n Raw (ASCII) bug mail sent from one ClearDDTS site to another.
This occurs when an engineer on one machine submits a defect
against a project that resides on a remote machine.

n ClearDDTS administration commands. This type of mail has to
do with connecting ClearDDTS systems together and with
automatically making project information available over the
ClearDDTS network. For example, when two systems are
connected to share project information, the adminbug conn
command generates mail from one site to another to “bind” the
systems together. After that, any time a project is created on one

system it is automatically available for defect submission on the
remote system.
Handling ClearDDTS Mail 11-3

n Formatted mail from users sent to ClearDDTS to submit a
defect or append to an existing defect. For more information on
this type of mail see, Sending mail to ClearDDTS on page 11-14.

Looking at an example

To see how ClearDDTS handles mail, assume that we have two
ClearDDTS machines called SFOqa and LDNcc. These machines
can be any place (say California and London). On each machine is
one project. On SFOqa we have project XX and on machine LDNcc
we have project ZZ.

ClearDDTS uses the ~ddts/conf/aliases file to determine the mail
addresses and aliases for the local host. Since formatted bug mail
is only generated locally, the ClearDDTS administrator never has
to worry about remote aliases.

Note: Global aliases are recognized as long as the mailer program
specified in adminbug inst uses them. However, ClearDDTS does not
explicitly use those aliases.

If a state transition occurs on SFOqa and a user on LDNcc must be
notified, then ClearDDTS on SFOqa will send a raw bug
transaction to LDNcc, and ClearDDTS on LDNcc will then send
local formatted mail to the user on LDNcc.

Similarly, if an engineer on machine SFOqa submits a defect
against a project ZZ that resides on the remote machine LDNcc,
the raw bug (ASCII) data that comprises the transaction is sent
from SFOqa to LDNcc where it is incorporated in LDNcc’s database.

An acknowledgment is then sent back from LDNcc to SFOqa and
SFOqa’s database is updated to reflect the fact that the bug was
received. This round trip handshake guarantees that no defect
will ever be lost in the mail system.

Determining who receives mail
11-4 ClearDDTS Administrator’s Guide

Formatted mail is generated for every state transition in four
ways. The first three ways rely on fields defined within the defect.
If the defect report has any of the following fields defined, then
mail is sent to the address specified in that field:

n Submitter-mail: Mail address of the defect submitter. This
mail is sent from the submitting ClearDDTS system if:

the first 5 characters of the defect Identifier matches this site
ID (i.e., submitted on this site)

AND $Submitter-id is not null,

AND $Submitter-mail is not null,

AND $Submitter-id is not equal to $Updated-by.
n Engineer-mail: Mail address of the assigned engineer. This

mail is sent from the machine that owns the project the defect
was submitted against if:

the $Engineer field is not null,

AND $Engineer-mail is not null,

AND $Engineer is not equal to $Updated-by.

If the value of $Engineer has changed, mail is sent to both the
old and new values of $Engineer.

n Other-mail: This field is left for user-defined mail needs. For
example, you can configure ClearDDTS to send mail to a
division manager if a defect is Severity 1 or affects a particular
project. This mail is sent only from the machine owning the
defect.

Note: By default, notification mail is not sent to the person
performing the update transaction (the value of $Updated-by). To
force e-mail to be sent to the updater, add the following line to the
~ddts/etc/ddtsrc file:

Allow-updater-mail: Y

Below is an example of how the Submitter-mail and Engineer-mail
fields are set up in the master.tmpl field. If these fields are empty, no
Handling ClearDDTS Mail 11-5

e-mail is generated.

##
Submitter-id: if equals $STATE$OPERATION Sp
 or null
 whoami
 fi

 if equals $OPERATION v
 "!%-.8s"
 fi

Submitter-mail: if match $STATE$OPERATION Sp Sm Nm
 if equals $Notify-submitter Y
 get_email_address "$Submitter-id"
 else
 echo " "
 fi
 fi
 .
 .
 .

Engineer: if match $OPERATION v m
 or match $STATE$OPERATION Ap Af
 "\n\(6,41)LABORATORY INFORMATION"
 "\(7,42)Assigned engineer: %-8.8s"
 fi

 if match $OPERATION p m
 required
 help user.H
 goodusers
 fi

Engineer-mail: if match $OPERATION p m
 get_email_address "$Engineer"
 fi
##

Notification list

The fourth way formatted mail can be generated is from a
notification list. A notification list is specified when a project is
created. Whenever a bug enters a particular state, or is modified
while in that state, users on that notification list receive a

formatted copy of the updated defect. The mail notification list is
defined in the ~ddts/projects/<project>/proj.notify file. For example:
11-6 ClearDDTS Administrator’s Guide

N-notify: chris dave
O-notify: chris
A-notify: chris
R-notify: chris dave
D-notify: chris
F-notify: chris
P-notify: chris
V-notify: chris

In this example, the user chris is notified of every new state
transition. The user dave is only notified of bugs entering or
modified in the New and Resolved states. The ClearDDTS
administrator and the project manager can modify this list with
the adminbug mprj command.

Customizing notification mail

You can control the format and content of notification mail by
customizing a notification template (notify.tmpl). You can create a
class-specific notify.tmpl or create user-specific templates. To
determine mail configuration parameters, ClearDDTS uses the
first template file it finds. It searches in the following order:

~ddts/www/user_prefs/<userid>.notify.tmpl
~ddts/class/$class/notify.tmpl
~ddts/class/$class/mail.subject (format prior to release 4.5)

Note: Using a notification template is optional. If you do not use a
notification template, ClearDDTS uses the default mail.subject
file only. The mail.subject file allows you to customize the subject
string of e-mail, but not the content. There are extensive
comments in the mail.subject file that describe how to do this.

Mail Domain

ClearDDTS uses the e-mail address to search for a user-specific
notification template. Since some users enter their domain name
(chris@bigcorp.com instead of just chris) in the notification lists
and mail fields, ClearDDTS must be able to strip off the domain
name prior to looking for the user-specific notification template. To

ensure that ClearDDTS can find the appropriate user-specific
template, enter the following field in the ~ddts/etc/ddtsrc file:
Handling ClearDDTS Mail 11-7

Notify-domain: @<your_domain>.com

With this field set, ClearDDTS can find the preferences file for the
user chris (chris.notify.tmpl) even if the e-mail address found is
chris@bigcorp.com. If the domain found does not match the
domain in the ddtsrc file, ClearDDTS uses the entire e-mail
address when looking for the notification template.

Debugging Tool

The options you can set for notification mail provide a great deal of
flexibility. While configuring and testing your settings, you can
have more verbose output for notification mail generated in the
~ddts/spool/LOG file. To do this add the following field to the
~ddts/etc/ddtsrc file:

Bugmail-verbose-log: Y

The additional output can include information on the notification
template used, user e-mail address, message-template used, and
other options.

Notification Options

The notification template file (either class-specific or user-specific)
uses the following fields to control the e-mail parameters:

n Message-template: Defines the path to the template file to use
for message content.

n Subject: Determines the subject line of the e-mail.
n Suppress-mail: Suppresses mail if no unsuppressed changes

occurred.
n Bugmail-ignore-fields-file: Defines the path to the file

containing fields to be suppressed.
n Display-added enclosures: Determines whether newly added

enclosures appear in the change log section of the e-mail.

n Show-enclosures-on-submit: Determines whether enclosures are
included in the change log section of the e-mail for new defects.
11-8 ClearDDTS Administrator’s Guide

n Bugmail-diff-command: Defines the path to the script used to
evaluate the differences between enclosures.

Each of these is described in more detail in the following sections.
For an example, look at the ~ddts/class/software/notify.tmpl. (If
you are upgrading from a previous release this file can be found in
~ddts/NEWCLEARDDTS/class/software/notify.tmpl.) It is
helpful to follow the example while reading the details about each
option.

Special variables

Notification mail sets certain variables that can be used to derive
the fields appearing in the mail (see Message-template below).
Defects are looked at in both their old version (before editing) and
new version. The following variables are defined before running
the notify.tmpl file in the context of the new version of the defect:

In addition, all the old fields are also available to the notification
template and have been renamed to have "--" added to the
beginning of the name. For example, the old headline can be
accessed using the name "$--Headline" while the new headline is
accessed with "$Headline".

Variable Description

$OLDSTATUS The previous state letter of the defect record.

$TRANSITION State transition (new state letter) for which the mail is being
generated.

$TRANSITION-TYPE Analysis of changes to the defect:
"new" - no old bug
"transition" - State/Class/Project changed
"assign" - engineer changed
"modify" - something changed

$RECIPIENT The e-mail address to which we are sending mail.

Message-template

The Message-template field defines the template file used to
Handling ClearDDTS Mail 11-9

determine which defect fields to include in the notification e-mail.
By default, this field contains the path to the master.tmpl. You can
create your own message template (or multiple templates) to
include only the fields you are interested in. If the
Message-template field points to a non-existent file, no e-mail is
sent. For example:

Message-template:
if equals $TRANSITION-TYPE modify

echo $~/class/$Class/modify.tmpl
elif equals $TRANSITION-TYPE assign

echo $~/class/$Class/engr.tmpl
elif not equals "$Project" "$--Project"
and not equals $TRANSITION-TYPE new

echo $~/etc/forward.tmpl
elif equals $TRANSITION O

echo ""
elif equals "$Showstopper" Y

echo $~/class/$Class/showst.tmpl
else

echo $~/class/$Class/master.tmpl
fi

In this example, the $TRANSITION-TYPE and $TRANSITION
variables are used to determine which message template to use for
formatting the mail. It is defined as follows:

n If the transition type is modify (some field has changed) then the
modify.tmpl is used.

n If the transition type is assign then the engr.tmpl is used.
n If the Project has changed (comparing the old and new values of

the Project field), then we assume the defect has been forwarded
and the forward.tmpl is used. Notice that the forward.tmpl is
not located in the class directory. Templates can be located
outside the class directory (for example, when they are used by
more than one class).

n If the state transition is to the open state no mail is sent (no
message template is defined).

n If the Showstopper field is set to yes, the showst.tml is used.

n If none of the other conditions are met the master.tmpl is used
as the message-template.
11-10 ClearDDTS Administrator’s Guide

Change_history filter

The change_history filter determines what changes have been
made to a defect. In order to have a list of changes (the field
change log section) appear in notification mail you must include
the change_history filter in a field of the message template. How
you do this depends on the message template you are using.

In the default master.tmpl (which is also the default message
template), OPERATION n is used by ClearDDTS to process
notification mail. In the default master.tmpl file, the Begin
derivation tests for OPERATION n and sets Putmail as follows:

Begin: unset Begin
 .
 .
 .
 if equals $OPERATION n # mail notification?
 set OPERATION v # yes, pretend viewing,
 set Do-enclosures Y # but also show enclosures,
 set Putmail Y # and process mail.
 elif equals $OPERATION l # dumpbug w/enclosures?
 set OPERATION v # yes, pretend viewing,
 set Do-enclosures Y # but also show enclosures,
 set Putmail N # ...with no mail processing
 else
 set Do-enclosures N # don’t show enclosures
 fi

When OPERATION is n, ClearDDTS changes OPERATION to v
with the addition of showing enclosures (Do-enclosures) and
processing mail (Putmail).

Because Putmail is set in the Begin derivation you must add the
change_history filter to the Putmail field derivation in the default
master.tmpl (it is the last derivation in the default master.tmpl):

Putmail: unset Putmail
 if equals "Y"
 change_history "Changes to this defect include:"
 fi

To set up a change log when using a different message template,
you must include a field derivation containing change_history in
Handling ClearDDTS Mail 11-11

that template. For example:

Changes:
 unset Change_history
 "\n"
 change_history "Changes to this defect include:"
 "\n"

If you choose to include the change log you can also choose where
in the e-mail message it should appear. To do this, move the entire
derivation containing the change_history filter to a new location in
the message template. For example, in the master.tmpl file you can
put it between the Begin and Identifier field derivations to make
the change log appear at the beginning of the notification e-mail.

The change_history filter can accept up to two optional arguments:

Defect access with webddts

Notification mail can contain a URL to access the referenced
defect using the webddts interface. If you have web integration
with your e-mail tool, this provides a way to quickly launch
webddts and view the defect. A sample derivation containing a
URL might be:

Putmail: unset Putmail
 change_history "Changes to this defect include:"
 "\nThe URL for the defect is:\n"
 "http://web.server/ddts/ddts_main?id=$Identifier\n\n"

-f Only include the change log for fields and not enclosures.

-e Only include the change log for enclosures and not fields.

"title" Uses this text as a title for the change log section of the
e-mail. The title must be enclosed in quotes. If a title is not
supplied, ClearDDTS uses the following default:
+++++ Field change log (added to mail by bugmail) +++++

Subject

This field defines the subject line of the notification e-mail.
11-12 ClearDDTS Administrator’s Guide

Typically the subject line includes the defect Identifier and a
message appropriate to the transaction. For example:

Subject: echo "$Project defect $Identifier"

 if equals $TRANSITION S
 echo "$$ was submitted"
 elif equals $OLDSTATUS$TRANSITION SN
 echo "$$ arrived"
 break
 elif equals $OLDSTATUS $TRANSITION
 echo "$$ was updated"
 else
 echo "$$ was moved to state $TRANSITION"
 fi

Suppress-mail and Bugmail-ignore-fields file

You can choose to suppress notification of certain changes to a
defect. For example, suppose you do not want to be notified if the
only change to a defect is an update to the Timestamp. To
suppress notification changes about the Timestamp field you
would:

1 Make sure the change_history filter is being run in the message
template (see above).

2 If you are using a class-specific notification template, create the
file ~ddts/class/$class/bugmail_ignore_fields.

If you are using a user-specific notification template, create the
file ~ddts/www/user_prefs/<userid>_ignore_fields.

This is a dfile that contains a list of the fields to be suppressed.

3 Add the field name followed by a colon to the file. For example:

Timestamp:

4 In your notification template, define the path to the appropriate
bugmail_ignore_fields file. For example:

Bugmail-ignore-fields-file:
 echo ~ddts/www/user_prefs/<userid>_ignore_fields

5 In your notification template, set the Suppress-mail field to Y.

Suppress-mail:
Handling ClearDDTS Mail 11-13

 echo Y

When the Suppress-mail field is set to Y, changed fields are
compared to those listed in the bugmail_ignore_fields file.
Notification mail is not sent if the only changes to a defect are to
suppressed fields.

Note: You can also suppress enclosure changes by adding certain
enclosure fields to the bugmail_ignore_fields file as in the
following examples:

Related-file::::Problem
History::::

Display-added-enclosures

Use the Display-added-enclosures field to determine if the
change_history filter should display newly added enclosures (to
existing defects) in the change log section of notification mail. If
this field is set to Y, the entire enclosure appears in the e-mail. If
this field is set to N, only the line "Enclosure <title> has been
added" appears in the e-mail. Note that this option does not
control enclosures for a newly submitted defect (see below).

Show-enclosures-on-submit

Use the Show-enclosures-on-submit field to determine if the
change_history filter should display enclosures for newly
submitted defects in the change log section of the notification mail.
If this field is set to Y, enclosures in the new defect appear in the
e-mail. If this field is set to N, only the line "New record, no
historical data" appears in the e-mail. This option does not control
e-mail for existing defects, and is not affected by the
Display-added-enclosures field.

Bugmail-diff-command

If you are running the change_history filter in your message
template, changes to enclosures can also be compared. The script
used to do the comparison is defined in the Bugmail-diff-command

field. By default, this field is set to ~ddts/bin/bugmail_diff. You
can edit this file or create your own file. If you create your own,
11-14 ClearDDTS Administrator’s Guide

remember to set the bugmail-diff-command field to the path for
your new script.

If the bugmail_diff script finds differences to report, the changed
text is printed in the changes section of the notification mail under
the heading "Enclosure Changed: <title> ".

Mail for changed sites

If your site reaches 100,000 defects and you change the site
identifier (see the Rational Software web site for an FAQ on how
to do this), ClearDDTS needs to know about the old site identifier.
To ensure that notification mail can reach users for defects with
an old site identifier, add the old site identifier to the
~ddts/etc/ddtsrc file as follows:

Old-Machids: BUGno XXXxx

The notification mail process compares the site identifier of a
defect to the current site and to values set in this field. If it finds a
match, it acts like it owns the defect and is able to send
notification mail.

Sending mail to ClearDDTS

You can easily mail a defect to ClearDDTS. To do this, use the
e-mail format described in Appendix D. You may also want to refer
to the ddtsmailbug shell script for an example. This script, located
in the ~ddts/bin directory, includes a customization description.

You can also send mail to ClearDDTS that is appended to a defect
as an enclosure. If you send mail (or reply to notification mail) that
contains a defect ID for the current site in the subject of the
message, that message is appended to the defect in an enclosure.
If a defect ID is not found in the subject, a "Confusing mail"
message is sent to the ClearDDTS administrator.

ClearDDTS also searches the subject for "enclosure=", and uses
the word following as the enclosure title. If ClearDDTS cannot
Handling ClearDDTS Mail 11-15

determine the name of the enclosure, it defaults to "mail_log".

When the message is appended to the defect, you will see text
similar to the following in the enclosure:

batchbug 981116 164457 Appended via email by "chris@bigcorp.com"

<body of e-mail message>

batchbug 981116 164457 End of message

ClearDDTS checks the sender and prevents "root",
"mailer-daemon", "daemon", "postmaster", and names starting
with "ddts" from being appended. For more information on
appended mail to defects and how to customize this feature see the
man page for ddtsappend(1).

11-16 ClearDDTS Administrator’s Guide

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Managing ClearDDTS Security
12

ClearDDTS supports several types of security. This chapter
discusses these security mechanisms and how they are
12-1

administered. Topics covered include:

n HTTP (web) security which controls access to ClearDDTS via
the web

n Write Access Control which determines who is allowed to make
changes to defect records.

n Read Access Control which determines who may view defects.
n Field-level security (xddts specific)

HTTP (web) security

HTTP security is used to specify which users can access
ClearDDTS via the webddts interface, and also provides a
mechanism for identifying users who access ClearDDTS. Project
and defect-level access control depend on the $REMOTE_USER
variable to determine the identity of a user. The only way to
ensure that the $REMOTE_USER variable contains valid
information regarding the user’s identity is to set up HTTP
username/password access control.

Identifying the user

Identifying a user accessing ClearDDTS data is important in
enforcing security. When ClearDDTS is accessed in a UNIX
environment, users are identified by their UNIX login name.
Identifying users through the web is a more complicated process.

On the web, the webddts programs and scripts are run by the user
who owns the HTTP server installation (usually the user ID http).

For ClearDDTS security to be effective, the true identity of the
user must be established. To establish a user’s identity, HTTP
12-2 ClearDDTS Administrator’s Guide

security does the following:

n When a user connects to webddts, the web server sees the
security controls (detailed later in this chapter) and prompts for
a valid user ID and password.

n If the user ID and password are valid, the server allows access
and sets a special variable called $REMOTE_USER to the value
of the user ID entered.

What happens when HTTP security is not implemented

If you do not set up HTTP access control for the webddts pages,
any defect and project-level control you define can be overridden.

When HTTP username/password access control is set up, any user
attempting to access ClearDDTS must enter a username and
password. If the user enters a valid username and password, the
$REMOTE_USER variable is set to the value specified in the
username field.

When HTTP security is not set up, webddts sets the value of the
$REMOTE_USER variable by asking the user to enter a Login name.
The user is not required to enter a password and can enter any
character string in the Login field. Whatever string the user
enters is used to set the $REMOTE_USER variable. Because any
character string is valid:

n Virtually any user with a Web browser and an Internet
connection can access ClearDDTS.

n An unauthorized user can enter the username of an authorized
user and override any project or defect-level security defined.

Controlling access to web pages

Using your HTTP server security mechanisms, you can require a
Managing ClearDDTS Security 12-3

user to enter a valid name and password to access a particular
directory and the documents stored in that directory. By
implementing this form of security, you can control which users
have access to the directory containing the webddts pages.

To restrict directory access by username and password,
UNIX-based HTTP servers use password and group files similar to
UNIX password and group files. To give you an example, the
Apache HTTP server procedures for setting up
username/password-based directory security are described here.
To determine the exact procedures for your HTTP server, see your
server documentation.

Note: For pointers to World Wide Web resources that provide
information on setting up HTTP server security, see Appendix H,
Information Resources on the Web.

Using the Apache HTTP server, there are two ways to add
username and password protection to the directory containing the
webddts pages:

n Editing the access.conf central access configuration file
n Adding the file .htaccess to the directory

Although both procedures are described here, editing the
access.conf central access configuration file is considered a
better method for three reasons:

n If you want to set up security for multiple directories, it is easier
to manage one central configuration file than it is to manage
multiple .htaccess files spread throughout your directory
system.

n An .htaccess file, unlike the access.conf file, can be fetched
as a Uniform Resource Locator (URL) by a user accessing your
site through a Web browser.

n There is a greater possibility that an .htaccess file, as opposed
to an access.conf file, will be modified or overwritten.

Editing the access.conf central access configuration file

To set up access control for the webddts directory by editing
12-4 ClearDDTS Administrator’s Guide

access.conf:

1 Create the password file .htpasswd and add an authorized user
to the file.

Use the Apache htpasswd program, located in the support
directory, to create the .htpasswd file. You may need to compile
the program first (see the Apache documentation).

Run the following command the first time you invoke the
htpasswd program:

 htpasswd -c [path_to_passwordfile]/.htpasswd [username]

The -c flag in this command indicates that you are creating a new
password file. Replace [path_to_passwordfile] with the path
to where the .htpasswd file is to be stored. Replace [username]
with the name of an authorized ClearDDTS web user to be added
to the file.

When you execute the above command, the htpasswd program
prompts you to enter a password for the user specified in the
[username] variable. Once you enter the password, the
htpasswd program stores the username and password in the
.htpasswd file.

2 Add additional users to the .htpasswd file.

Run the htpasswd command for each web user who needs access
to ClearDDTS. Since you already created the .htpasswd file in
the previous step, leave the -c flag out of the command:

 htpasswd [path_to_passwordfile]/.htpasswd [username]

3 Edit the access.conf file to secure the webddts directory.

To ensure that only users listed in the .htpasswd file can access
Managing ClearDDTS Security 12-5

the webddts directory, add the following language to the
access.conf file:

<Directory full_path_to_protected_directory>
 AuthName [any_name]

AuthType Basic
AuthUserFile [path_to_passwordfile]/.htpasswd
require valid-user

</Directory>

Replace [full_path_to_protected_directory] with the
path to the directory where the webddts interface is installed.

Replace [any_name] with descriptive text about the application
whose security you are setting up in this section of code. This text
appears as part of the username/password prompt displayed by
the HTTP server when a user accesses webddts. For example,
since you are defining which users have access to the webddts
directory, you can replace [any_name] with the text DDTSusers.

Replace [path_to_passwordfile] with the path to the
directory where the .htpasswd file is stored (see steps 1 and 2).

4 Reinitialize the HTTP server.

Before your HTTP server can detect and use the changes made in
steps 1–3, it must reread the HTTP configuration files. To signal
the HTTP server to reread the configuration files, issue the
command kill -1 [PID], substituting [PID] with the server
daemon process ID owned by root. This command does not stop
and restart the server, but it does signal the server to reread the
configuration files and to stop and restart any subordinate
processes initiated by the HTTP server daemon.

Adding the file .htaccess to the directory

The alternative method for adding username and password
protection is adding the .htacess file to the directory. To set up

access control for the webddts directory by adding the file
.htaccess:
12-6 ClearDDTS Administrator’s Guide

1 Create the password file .htpasswd and add an authorized user
to the file.

See step 1 in the above section “Editing the access.conf central
access configuration file.”

2 Add additional users to the .htpasswd file.

See step 2 in the above section “Editing the access.conf central
access configuration file.”

3 Create a file called .htaccess in the directory where the webddts
interface is installed.

Include the following information in the .htaccess file:

AuthName [any_name]
AuthType Basic
AuthUserFile [path_to_passwordfile]/.htpasswd

<Limit>
require valid-user
</Limit>

Replace [any_name] with descriptive text about the application
whose security you are setting up in this section of code. This text
appears as part of the username/password prompt displayed by
the HTTP server when a user accesses webddts. For example,
when defining which users have access to the webddts directory,
you can replace [any_name] with the text DDTSusers.

Replace [path_to_passwordfile] with the path to the
directory where the .htpasswd file is stored.

Controlling access to data across the network

ClearDDTS does not use any encryption algorithm to control
communications between Web browsers and the HTTP server
where the webddts interface is installed. To secure data across
your network, you must use an HTTP server that supports data
encryption.

Monitoring access to webddts pages

To monitor user access to specific webddts pages, view the access
Managing ClearDDTS Security 12-7

information in the HTTP access log files. Because the names and
locations of the HTTP access log files are different for different
servers, check your HTTP server documentation for information
about these files. Also, see your server documentation for
instructions on how to modify the contents of these files.

Write access control

Write Access Control by project can be accomplished using the
adminbug utility. The most important way to control who can change
records in ClearDDTS is on a per-project basis. When projects are
created with the adminbug aprj command, you are asked to identify
who is allowed to change each state that a project may go through.
You do this by specifying user IDs (UNIX or ClearDDTS aliases),
variables from a defect, variables from the proj.control file, or
groups (UNIX and/or ClearDDTS defined). The following example
shows some of the questions asked:

List LOGIN names of users allowed to ASSIGN (A state) a
bug. Just hit return if anyone is allowed to ASSIGN bugs.

mmanley

List GROUP names of groups allowed to ASSIGN (A state) a bug. Just hit
return if any group is allowed to ASSIGN bugs.

proj_managers

List LOGIN names of users allowed to RESOLVE (R state) a
bug. Just hit return if anyone is allowed to RESOLVE bugs.

$Engineer $A-allow

List GROUP names of groups allowed to RESOLVE (R state) a
bug. Just hit return if any group is allowed to RESOLVE bugs.

$A-allow-group

In this example, the user mmanley and users in the group proj_managers
are allowed to assign defects for repair. They are the only users
allowed to move a bug into the Assigned (A) state and the only
users allowed to modify a defect once in that state. The group can
either be defined in ~ddts/conf/groups or be UNIX system
defined.

Similarly, only the engineer assigned to fix a defect (the value of
the variable $Engineer), users who are allowed to assign defects
12-8 ClearDDTS Administrator’s Guide

(the value of $A-allow), and groups allowed to assign defects (the
value of $A-allow-group) may move a defect to the Resolved (R)
state or modify defects in that state.

When choosing variables to use for defining access control, follow
these rules:

n Any field from a defect can be specified as long as it expands into
a list of users (for example, $Engineer and $Submitter-id). The
definition of the field cannot include a nested definition. For
example, the value of $My-field cannot expand to “Sub-field1
Sub-field2” even if those fields would further expand to a list of
users.

n Any field from the proj.control file (A-allow, O-allow, and so on)
can be specified. The proj.control variable definitions can be
nested. In the earlier example, R-allow is defined as $ENGINEER
$A-allow. This expands to the name of the assigned engineer
and the user mmanley.

n The proj.control variable definitions for <State>-allow-group
work the same way as those for <State>-allow fields, except the
variables need to expand into group lists.

n The two types of proj.control file fields, <State>-allow and
<State>-allow-group, cannot be used to define each other. For
example, the proj.control fields for <State>-allow cannot be
defined using <State>-allow-group fields because these expand
to a list of groups not a list of users. In our earlier example, you
would not define the list of users allowed to resolve a defect as:

$Engineer $A-allow $A-allow-group

This would expand to the assigned engineer, mmanley, and
proj-managers. Since proj-managers is a group not a user, this
value would not be valid.

n When defining groups in ~ddts/conf/groups, the definition of
the group must be a list of users. A group cannot be defined in
Managing ClearDDTS Security 12-9

terms of another group. For example:

proj-managers: mmanly chris

To make changes to any of these parameters, the ClearDDTS
administrator or project manager can run the adminbug mprj
command.

Read access control

ClearDDTS supports Read Access Control on a per-project, or
per-defect basis.

Per-project read access control (adminbug)

To enable read access control on a per-project basis, you need to
add the following line to the ~ddts/etc/ddtsrc file:

Proj-read: Y

Once you enable this feature, the ClearDDTS adminbug aprj and
mprj commands allow you to establish read access control with the
following prompts:

List LOGIN names of users allowed to view a bug. Just hit return if anyone
is allowed to view bugs.

mmanley

List GROUP names of groups allowed to view a bug. Just hit return if any
group is allowed to view bugs.

design_team

In this example, the only users allowed to view defects are mmanley
and members of the UNIX group design_team. If these fields are left
blank anyone may view defects. The ClearDDTS administrator or
the project manager can run the adminbug mprj command to change
these parameters at any time.

Note: Per-project read access control is not supported for
subscribed projects unless the remote modification option is used.
This is because the remote modification option allows you to have
a local proj.control file for the subscribed project.

Per-defect read access control

To enable read access control on a per-defect basis, you need to add
12-10 ClearDDTS Administrator’s Guide

the following line to the ~ddts/etc/ddtsrc file:

Bug-read: Y

Once you enable this feature, ClearDDTS assigns a security token to
each user and marks each submitted defect with a security token
in the Security-token field. The content of the Security-token field
is set by looking up the user login name in the file ~ddts/etc/security.
A sample security file is shown below:

xerox: xe
kodak: ko
rico: ibm
tracy: ko xe
OTHER: xxx

In this example, if the user tracy submits a defect, the value of the
Security-token field is set to “ko xe.”

Read access to the defect is granted if any security token in the
defect Security-token field matches one of a requesting user’s
security tokens. In the example above, the defect submitted by
user tracy would be viewable by users xerox and kodak but not by
rico.

Note: Enabling per-project read access control disables per-defect
read access control for subscribed projects unless the remote
modification option is used.

One way to use this mechanism is with competing vendors.
Suppose that you want to allow individuals from the Kodak and
Xerox corporations to submit defects against the same project but
you do not want Kodak to see Xerox defects and likewise Xerox
should not be allowed to view Kodak defects. This can be
accomplished by setting a different security token for all Kodak
logins (or perhaps just one kodak login) and for all Xerox logins. In
this example only the user tracy would be able to see both Kodak
and Xerox defects.

Using the OTHER security token

The OTHER login name in the security file is special. If a user
Managing ClearDDTS Security 12-11

submitting or viewing a defect is not in the security file list, then
the security token from the OTHER field is used. If OTHER is not in
the ~ddts/etc/security file, then no security token is added to the
defect and anyone may view the defect.

The example above shows an actual situation where all members
of the design and QA teams needed access to all defects but Kodak
and Xerox employees were limited to viewing only those defects
that members of their company had submitted.

Access was granted to the design team through Per-Project Read
Access Control and denied to Xerox and Kodak employees through
Per-defect Read Access Control. If the OTHER field was set to “ko
xe” or was missing altogether, then Kodak and Xerox would also
be granted read access to defects submitted by the project team
and the QA group. If the OTHER field was set (for example to xxx),
Kodak and Xerox could only view the defects that they submitted
(or defects marked viewable by the View field described below).

If read access is denied, a message appears saying that some
defects are not available because of access control.

Making defects viewable

There are times when a defect should be viewable by everyone
regardless of who submitted the defect. Marking a defect as
viewable regardless of the security token may be done in the
master.tmpl file. If the value of the View field is set to Y, then the
defect is marked as viewable by everyone. (For example, this
would allow Xerox to view a defect submitted by Kodak.)

See Figure 12-1 for an overview of ClearDDTS read access control.

Figure 12-1: Summary of Read Access Control Logic
12-12 ClearDDTS Administrator’s Guide

Project or Bug
Read Access Control

Implemented

User logged in as ddts?

Am I the Defect Submitter?

What’s in the View FIeld?

Project Read Access
Control Setup?

Bug Read Access
Control Setup?

Does User Security Token
Match Bug Security?

Permission Denied

Is Group OK?

Is Login ID OK?

Can View Bug Report
N

Y

Y

N

Y

N

Y

N or Blank

Y

N

Y

N N

Y

N

N

Y

Y

adminbug aprj/mprj

adminbug aprj/mprj

xddts specific security
Managing ClearDDTS Security 12-13

Controlling field access by customizing the master.tmpl
file

You can control the access to each field in a defect record by
customizing the master.tmpl file. For example, the standard
Problem field in the master.tmpl file is derived as follows:

Problem: if match $OPERATION v m
 or match $STATE$OPERATION Op Of
 “\(8,42)\kProblem type: %-14.14s”
 fi
 if match $OPERATION p m
 oneof -f problems
 required
 fi

To implement write access control on this field, you might change
this field derivation to:

Foo: if match $OPERATION p m
 unset Foo
 whoami
 if not oneof -f oklist
 goto Bar
 fi
 fi

Problem: if match $OPERATION v m
 or match $STATE$OPERATION Op Of
 “\(8,42)\kProblem Type: %-14.14s”
 fi
 if match $OPERATION p m
 oneof -f problems
 required
 fi

Bar: .
 .
 .

In this case, only the users listed in the oklist file are allowed to
modify the value of the field. Anyone is allowed to read the value
of the field.

Field read access control

You can also provide read access control on each field in a defect
12-14 ClearDDTS Administrator’s Guide

record by customizing the master.tmpl file. For example, the
standard Problem field in the master.tmpl file is derived as follows:

Problem: if match $OPERATION v m
 or match $STATE$OPERATION Op Of
 “\(8,42)\kProblem type: %-14.14s”
 fi
 if match $OPERATION p m
 oneof -f problems
 required
 fi

To implement Read Access Control on this field, you might change
this field derivation to:

Foo: if match $OPERATION v
 and not oktoview
 goto Bar
 fi
 .
 .
 .
Problem: if match $OPERATION v m
 or match $STATE$OPERATION Op Of
 “\(8,42)\kProblem type: %-14.14s”
 fi

 if match $OPERATION p m
 oneof -f problems
 required
 fi

Bar: . . .

In this case, a user-defined program oktoview is run to see if this
user has permission to view certain fields. If so, the Problem field
is displayed on the screen. If not, the Problem field is not
displayed.

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Managing and Customizing the ClearDDTS
13
 Database
This chapter describes the ClearDDTS database, how to perform
database maintenance, and how to modify the database schema.
13-1

Topics covered include:

n How information is posted to the database
n Backing up and restoring the database
n Reviewing the database schema
n Modifying the database

How information is posted to the database

In ClearDDTS, your defect records are stored in flat files in the
allbugs directory. These files represent the “real” data and are
used to post “copies” of the data to the SQL database. The SQL
database acts as a cache to provide more efficient querying and
performance.

When a user updates or generates a new defect record, the
ClearDDTS daemon process, ddtsd, checks the ~ddts/spool
directory and launches the bugs.in program to post the information
to the database. The bugs.in program posts all defect information
into a flat file in the allbugs directory, and only posts fields defined
in the schema_file and mapped by the database.cfg file into the

ClearDDTS SQL database. The following figure provides a
simplified view of the key components.
13-2 ClearDDTS Administrator’s Guide

Backing up and restoring the database

As with any database, it is extremely important that you develop a
backup strategy and perform regular database backups. To back
up the database, simply back up the allbugs directory using a
command such as tar. For example to back up the database to
device xxx, run the following commands as user root or ddts:

cd ~ddts
tar cvf /dev/xxx ~ddts/allbugs

You can then restore the database using the same method. For
example:

cd ~ddts
tar xvf /dev/xxx

After restoring the allbugs directory, you need to rebuild the SQL
database with the adminbug dbms command.

Note: You should also occasionally back up the entire ClearDDTS
home directory much as you back up normal user directories (for
example, using tar). Complete backups help to protect your
customized files as well as the actual data in the database.

~ddts/spool/bugs.in

ddtsd (daemon)

ClearDDTSDefect

File
xxxxxx
xxxxxx
xxxxxx

Checks for new or

Interface

Records

updated records/

allbugs

SQL

directory

launches bugs.in

All fields

Determined by schema_file
and database.cfg

Database

Reviewing the database schema
Managing and Customizing the ClearDDTS Database 13-3

As shipped, the ClearDDTS database consists of the following
tables:

defects
enclosures
change_history

You can modify the ClearDDTS database by adding or deleting
fields in these tables. For the most up-to-date information, you can
view the contents of the schema file directly in
~ddts/dbms/ddts/schema_file.

Note: If you are using an external database, see Appendix G,
Using an Oracle Database, for information on tables.

Modifying the database

The ClearDDTS administrator (ddts) can make changes to
existing database tables. For example, you may want to add a new
field or change the definition of an existing field.

Note: The three default ClearDDTS tables are required and
should not be deleted. You can create new tables for your own use
(and access them directly through ddtssql), but they will not be
recognized by ClearDDTS functions.

In general, any change to the database involves the following
steps:

1 Log on as ddts on the machine where the ClearDDTS server is
running.

2 Edit the ~ddts/dbms/ddts/schema_file to reflect the change you want
to make. This file contains the table and index definitions,
including field types and lengths. See Appendix F, Database
Reference, for information about ClearDDTS tables and indexes.

3 Edit the ~ddts/dbms/ddts/database.cfg file to reflect the change you
want to make. This file maps the field and table names from their
format in the allbugs files to SQL database columns and tables.

4 Run adminbug dbms to rebuild the SQL database.
13-4 ClearDDTS Administrator’s Guide

5 Edit the master.tmpl file to use the changes you have made. See
“Editing the master template file (master.tmpl)” on page 8-11.

Editing the schema file

Edit the ~ddts/dbms/ddts/schema_file to reflect the change you want
to make. This file contains the table and index definitions. Entries
in this file use the format:

begin table <tablename>
fieldname size
fieldname size

end table

For example:

begin table change_history
identifier 10
change_date datetime
engineer 16
text 0

end table

Data types

ClearDDTS has three types of database fields (three data types),
two for general use, and one for system use only:

Customer use

n character: For character fields, you can set the field size by
specifying an integer greater than 0 after the field name.

n datetime: For fields that hold date information, specify datetime
as the field size after the field name. Note that time is ignored in
the SQL database.

System use only

n variable: Variable fields are character fields with no limit on
their size. ClearDDTS uses variable fields for enclosures in the
enclosures and change_history tables only. For variable fields,
the field size is set to zero (0) after the field name. Each table
can have only one variable length field. For performance

reasons, variable fields must always be listed at the end of the
table definition. Variable fields are for internal ClearDDTS use
Managing and Customizing the ClearDDTS Database 13-5

only.

Indexes

Indexes for a table immediately follow the table definition. For
indexes, the format is:

begin index <indexname> dup|nodup
key A|D

end index

After the index name, you specify whether the index requires a
unique key (nodup) or allows duplicates (dup). On the next line(s)
you specify the table columns that comprise this index and
whether this is an ascending (A) or descending (D) index. For
example:

begin index bugid nodup
identifier D

end index

You may create additional indexes, or add additional keys to an
existing index; however, you should never have more than 8
columns in an index or more than 16 indexes for any table.

For every update to the database, indexes are also updated.
Adding indexes can make database queries for the indexed fields
faster, however, having many indexes will make writing changes
to the database slower.

Note: As shipped, the ClearDDTS database consists of the
following tables: defects, enclosures, and change_history. For the field
names, data types, and sizes associated with these tables, see
Appendix F, Database Reference.

Editing the database configuration file

The ~ddts/dbms/ddts/database.cfg file acts as a mapping mechanism.
It identifies where the information entered in fields should be
placed in the database (table and column name).

The format of entries in this file is as follows:

FieldName: table.column_name [table.column_name . . .]
13-6 ClearDDTS Administrator’s Guide

For example, if you are adding a field called Sub-Project-Manager
to the defect record and you have added a new column for
sub_proj_mgr to the defects table in your schema file, you would
locate the appropriate field position in the database configuration
file and enter:

Sub-Project-Manager: defects.sub_proj_mgr

The field name and the name you enter in the database
configuration file need to be the same. As the example shows, the
only exceptions are for capitalization and the use of underscores or
hyphens.

Rebuilding the database

After you have finished making your changes, run the adminbug
dbms command to rebuild the database.

Remember that when you make changes to the database you may
also need to make changes to the master.tmpl file (for example to
incorporate a new field). See Chapter 8, Customizing ClearDDTS.

Warning: Binary data cannot be sent to the SQL database. For
this reason, the adminbug dbms command checks for binary data.
If any is found in a normal field an error is issued and the defect is
not loaded into the SQL database. Any binary found in an
enclosure is converted to spaces before being placed in the SQL
database.

Note that the allbugs file is never changed in this manner. Only
the copy in the SQL database is modified, and only for enclosures.
The History file is not a user editable enclosure and is treated as a
normal field in this regard.

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Using the ClearDDTS SQL Interface
14

This chapter provides an introduction to the ClearDDTS command
line query program, ddtssql, and provides examples of how your can use
14-1

SQL with ClearDDTS. It also describes the limits and unique
features of the ClearDDTS database server. Topics covered
include:

n Learning SQL (how to create queries)
n ClearDDTS and standard SQL
n Recommended reading

Learning SQL

The ClearDDTS database is a fairly small database with only a
few standard tables. Each table consists of a number of different
columns and each column holds specific information about your
defect records. The following example provides a simplified
illustration of a table (not all columns are included):

To retrieve information from the database, you construct a query
that requests the information you want to see or work with. Each
query helps you perform an action, such as select records to view,
insert new records, update existing records with new information,
or delete records.

defects

identifier headline engineer

QTKqa01001 Defect record 1 roberts
QTLqa01002 Defect record 2 smith
QTKqa01003 Defect record 3 jones
QTKqa01004 Defect record 4 roberts

Table Name

Columns

Rows of data

In ClearDDTS, queries are written using a subset of the standard
Structured Query Language (SQL). SQL is very simple to learn
14-2 ClearDDTS Administrator’s Guide

but is also very powerful. This section introduces some of the most
common SQL statements; however, with SQL you can create far
more complex queries than those described here.

Note: Although they may be shown in uppercase in this manual,
SQL commands are not case-sensitive; only actual data is
case-sensitive.

Starting the SQL command line interface

To start the SQL command line interface to the ClearDDTS
database, ddtssql, enter:

ddtssql

You should now see the line prompt:

1>

You can now enter your query, pressing RETURN to move to a new
line. To execute the query, enter go (on a new line) or a semi-colon
(;) at the end of the query or on a new line. For example:

1> SELECT engineer
2> FROM defects
3> go

1> SELECT engineer from defects;

The result of your query displays and the first line prompt (1>)
returns so you can enter a new query. To repeat a query, enter two
exclamation points (!!).

To see what tables are available, use the help command and press
RETURN. For example:

1> help

table name

defects
enclosures
change_history

To see the details about a specific table, enter help and the name of
the table, then press RETURN. For example, to see the details about
Using the ClearDDTS SQL Interface 14-3

the enclosures table, do the following:

1> help enclosures
fieldname size type

identifier 10 char
name 32 char
operation 16 char
op_date 11 datetime
engineer 16 char
text 0 long

Writing Queries

The most common activity you will perform is retrieving
information from the database. For example, to see complete
information about all of the defects in the system, you could use
the following command:

SELECT * FROM defects

This command will display (select) everything (all columns,
indicated by the *) from the table, defects. However, in many cases
this is far more information than you are interested in seeing. To
restrict the output to certain records, you can indicate a condition.
For example, if you only want to see a summary of the defects
associated with the project QTMS, you could enter:

SELECT identifier, headline FROM defects
WHERE project = ’QTMS’ ;

This command displays the identifier and headline columns from the
defects table for the defects linked to the project QTMS (the column
project has the value QTMS). Note that the strings you search for
are always enclosed in single quotation marks. The order you list
the columns in is the order in which they are displayed. You can
continue combining conditions or restricting the output until you
get exactly the result you want. For example:

SELECT identifier, headline, severity
FROM defects
WHERE status = ’A’
AND severity < 3

Note: Be sure to always use a comma to separate column names
in the SELECT statement. If you forget the comma, your query
14-4 ClearDDTS Administrator’s Guide

may produce unexpected results.

In addition, it is possible to control the order in which the results
of a query are displayed. For example, to organize the results of a
query so that it is displayed alphabetically by engineer’s name:

SELECT identifier, severity, engineer FROM defects
WHERE status = ’A’
ORDER BY engineer

Using dates with the Oracle database

When using an Oracle database, if the query from ddtssql is for
dates, the date format used depends on the date range being
searched. For a date range contained within the current century,
use the YYMMDD format. For dates outside the current century,
use the RRMMDD format where RR stands for years in any other
century. For example, to see defects with an estimated fix date
greater than January 1, 2000 (and today is in 1999 or earlier):

SELECT to_char (est_fix_date, ‘rrmmdd’)
FROM defects
WHERE est_fix_date > to_date (‘000101’,‘rrmmdd’)
;

Note: For more information on Oracle format models see your
Oracle documentation.

Formatting query output

The format for a simple query for list of the engineers assigned to
each defect in the defects table would look as follows:

1> SELECT identifier, engineer
2> FROM defects
3> go

identifier engineer
------------ ---------
QTKqa00001 fred
QTKqa00002 fred
QTKqa00032 jones
QTKqa00034 jones
QTKqa00062 fred
(5 rows selected)

Notice the extra space between the ID and the engineer fields. By
default, ddtssql pads each field with spaces so that it is the width
Using the ClearDDTS SQL Interface 14-5

defined in the database schema (schema_file). The format command
can be used to override this behavior. The format command allows
you to specify a printf-style format to control how the output is
formatted. See the printf(3) man page for a complete description.

For example, to execute the previous query with the first column
left justified with a maximum width of 10 characters and with the
second column allowed to extend as wide as needed:

1> format %-10.10s %s
2> go
identifier engineer
---------- ---------
QTKqa00001 fred
QTKqa00002 fred
QTKqa00032 jones
QTKqa00034 jones
QTKqa00062 fred

(5 rows selected)

Note that the formatting instructions are applied to all
subsequent queries and that only the columns that have a format
will be displayed in the output. For example, if you add the severity
column to the above query, the query would still produce the same
results.

Note: You can use either vi or emacs to edit queries in ddtssql.

Using SQL in a Script

Another way you can use ddtssql is within a shell script to retrieve
information from your database. The following is a simple
example of how you could use ddtssql in a shell script to return the
assigned owner of a defect record.

#!/bin/sh
Lookup the owner of <defect id>.
#

14-6 ClearDDTS Administrator’s Guide

Usage: owner <defect id>
#
defectid=$1
engineer=‘ddtssql -f - -noheader <<_E_O_F

format %s
select
 engineer
from
 defects
where
 identifier = ’$defectid’
;

_E_O_F‘
echo "$engineer"

To quit ddtssql, enter quit or exit at the line prompt. Now that you
are somewhat familiar with the ddtssql interface and some of its
features, you are ready to practice writing queries.

Retrieving Information from Multiple Tables

So far we have looked at queries that only collect information from
one table. Getting information from multiple tables is very similar,
except you have to identify which table each column belongs to (for
example, in the WHERE clause). To do this, you add the table
name before the column name like this:

defects.engineer

For example:

SELECT defects.identifier,defects.project,
 enclosures.name
FROM defects, enclosures
WHERE defects.identifier = enclosures.identifier
WHERE defects.severity = 1

This query displays the defect id, associated project, and related
file for all defects with a severity level of 1.

Now that you have a general understanding of how to use the
SELECT statement to retrieve information from your database,
you are ready to begin writing more advanced queries.

Table name Column

ClearDDTS and standard SQL
Using the ClearDDTS SQL Interface 14-7

Every implementation of SQL offers slightly different capabilities.
This section describes the unique features of the ClearDDTS
database and summarizes the supported and unsupported SQL
commands available.

Date conversion

By default, dates are displayed in the YYMMDD format in
ClearDDTS. However, the database allows you to control the
format of a date field using the date_convert function. This function
takes the field name and formatting instructions in ANSI C
strftime() format as follows:

date_convert(field, format)

For example, to have the submitted-on date in month/day/year
(such as 11/21/97) format, you would use:

date_convert(submitted_on, ’%m/%d/%y’)

For a complete list of formatting descriptors, see the UNIX man
page for strftime.

Aggregate comparisons

One of the unique features of the ClearDDTS database is the
ability to perform aggregate comparisons. This capability allows
you to easily extrapolate information based on the data in your
database in a variety of ways. As a simple example, assume you
want to see the number of assigned and resolved defects for
engineer jones. In standard SQL, this would require two separate
queries, but by using an aggregate comparison, you could have a
query like this:

SELECT assigned=COUNT(status = ’A’),
resolved=COUNT(status = ’R’)

FROM defects
WHERE engineer = ’jones’

This query would return something like this:

assigned resolved
14-8 ClearDDTS Administrator’s Guide

-------- --------
30 18

By combining aggregate comparisons, you can perform multiple
tasks and calculations using a single SELECT statement. For
example, the following query illustrates how you can calculate the
percentage of resolved defects per engineer:

FORMAT %-10.10s %-10.10s %-8.8s %-4.4s %-8.8s %-5.5s %-4.4s
SELECT project, engineer,
 Assigned = COUNT(status=’A’),
 Open = COUNT(status=’O’),
 Resolved = COUNT(status=’R’),
 Total = COUNT(status),
 Pct = Resolved * 100/Total
FROM defects
WHERE project = ’X-Graph’
GROUP BY project, engineer
ORDER BY Total desc ;

project engineer Assigned Open Resolved Total Pct
---------- --------- -------- ---- -------- ----- ----
X-Graph saxon 70 3 183 274 66.7
X-Graph mcannon 5 0 174 205 84.8
X-Graph joeb 2 0 151 162 93.2
X-Graph connell 30 2 67 143 46.8
X-Graph NULL 0 0 0 91 0
X-Graph rico 0 0 44 81 54.3
X-Graph stuart 17 2 37 59 62.7
X-Graph rex 8 0 2 10 20
X-Graph patd 0 0 0 8 0
X-Graph nwong 6 0 0 6 0
X-Graph mjm 0 0 5 5 100
X-Graph mgr 0 0 2 4 50
X-Graph chris 0 0 1 2 50
X-Graph djg 0 0 1 1 100

(14 rows selected)

Table and column aliases

ClearDDTS allows you to use aliases for table and column names
in your queries. If you are selecting numerous fields or writing
complex queries, this feature can simplify the task of entering the
query.

To create an alias (or correlation name) for a table, enter the alias
after the table name in the FROM clause. You can then use the
Using the ClearDDTS SQL Interface 14-9

alias when selecting columns. For example:

SELECT status,
 last_mod,
 name
FROM defects D, enclosures E
WHERE D.identifier = E.identifier
AND D.last_mod > 950101

In this query, D is used as an alias for the defects table and E is
used as an alias for the enclosures table. You can also use a table
alias when specifying a column before actually defining the table
alias. For example:

SELECT D.identifier,
 D.last_mod,
 E.name
FROM defects D, enclosures E
WHERE D.identifier = E.identifier
AND D.last_mod > 950101

By default, ClearDDTS supplies column headings for your query
results using the column names entered in the query. However,
you can change these column headings to make your results more
readable by using column aliases. For example

SELECT DefectID = identifier, /* column alias */
 os_version Platform, /* column alias */
 when_found Phase_detected, /* column alias */
 status, severity
FROM defects
WHERE project = ’Demo’
AND submitted_on > 970101 ;

This query would provide a result similar to the following:

DefectID Platform Phase_detected st se
------------ ----------- ---------------- -- --
QTKqa04315 SunOS4.1.3 beta test A 1
QTKqa05033 HP UX 9.05 post-release A 2
QTKqa04318 Sun 4.1.3 post-release A 3
QTKqa04263 Sun 4.1.3 post-release A 3
QTKqa04299 Sun 4.1.2 post-release A 3
QTKqa04342 AIX 1.4 beta test A 2
QTKqa04343 AIX 3.2.5 alpha test A 3
QTKqa04246 Sol 2.x beta test A 3
QTKqa04248 HP-UX 9.0 beta test A 3
QTKqa04268 integration A 3
QTKqa04331 ALL post-release N 2
QTKqa04330 AIX 3.2.5 functional test N 3
QTKqa04344 AIX beta test N 3

QTKqa04313 4.1.2 functional test R 1
QTKqa04307 4.1.3 post-release R 1
QTKqa04308 4.1.3 post-release R 1
14-10 ClearDDTS Administrator’s Guide

QTKqa04317 alpha test R 1
QTKqa04327 Solaris post-release R 2

(18 rows selected)

As shown in this example, ClearDDTS supports both the
<alias> = <column> syntax and the <column> <alias> syntax.

Supported SQL statements

The following table lists the standard SQL statements supported
by the ClearDDTS database.

Warning: The INSERT, UPDATE, and DELETE statements are
supported, but they should never be used directly. ClearDDTS
user interfaces use these statements in conjunction with code to
update the data in the allbugs directory and the SQL database in
such a way as to keep the information synchronized. If you use
these statements to modify the data in the SQL database directly,
your changes will be overwritten by the data in the allbugs file the
next time anyone updates the defect using a standard ClearDDTS
interface (such as webddts or xddts).

Statement Notes

Select Provides all of the standard functionality associated with the
SELECT statement plus the ability to perform aggregate
comparisons.

Insert Can only be used with one table at a time (joins are not
allowed). See the warning above.

Update Can only be used with one table at a time (joins are not
allowed). See the warning above.

Delete Can only be used with one table at a time (joins are not
allowed). See the warning above.

Help Displays schema information. Entering help displays table
names, types, and number of fields in each table. To see field
information for any table, enter help <tablename>.

Order By Can only be used with fields included in the SELECT clause.

Group By Can only be used with fields included in the SELECT clause.

Having Can only be used in conjunction with GROUP BY.

Statement Notes
Using the ClearDDTS SQL Interface 14-11

Unsupported SQL statements

The following list summarizes the types of SQL statements that
are not supported by the ClearDDTS database.

n ALTER statements (such as ALTER TABLE)
n CREATE statements (such as CREATE TABLE)
n DROP statements (such as DROP TABLE)
n Transaction processing statements (such as BEGIN

TRANSACTION, COMMIT, ROLLBACK, etc.)
n Security statements (such as GRANT, REVOKE, ROLE); however,

security is provided by only allowing the ClearDDTS
administrator to manipulate (INSERT, UPDATE, DELETE) data.

n Cross-database queries and database owners.
n Subqueries (nested queries).
n Virtual tables (called Views).
n The logical operator NOT can only be used with Like (NOT LIKE)

and Null (NOT NULL). The operators ANY, ALL, and EXISTS are
not supported.

n Triggers and stored procedures cannot be used within queries.

Between Allows you to specify a range of values.

Like, Not Like Allows you to qualify your search using the wildcard characters
% (for a string of character) and _ (for a single character). The
value you are searching for needs to be enclosed in single
quotation marks.

Null, Not Null Null is used to indicate an empty field (the absence of any
value).

And Allows you to combine conditions in the WHERE clause and
return the records that satisfy both (all) conditions.

Or Allows you to combine conditions in the WHERE clause and
return the records that satisfy either (at least one) condition.

Recommended reading
14-12 ClearDDTS Administrator’s Guide

To learn more about SQL and how to write complex queries, you
may want to consider the following resources:

n Bowman, Judith S., Sandra L. Emerson, and Marcy Darnovsky.
The Practical SQL Handbook. Reading: Addison-Wesley, 1993.

n Trimble, J. Harvey Jr., and David Chappell. A Visual Introduction
to SQL. New York: John Wiley & Sons, 1989.

n Date, C. J., Database: A Primer. Reading: Addison-Wesley, 1990.

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Creating a Change Management System
15

In many organizations, there is a need for an integrated approach
to Configuration Management (CM) and Defect Tracking (DT).
15-1

This integrated approach is necessary for effective change control
and is often called Change Management.

This chapter describes the general problems, requirements, and
levels of integration necessary to control and track changes, and
the specific ways that ClearDDTS can help you implement a
robust Change Management system.

Understanding Release/Configuration Problems

Before considering the solution, it is best to understand why you
may want to integrate configuration management and defect
tracking. For the most part, every Release Engineering Manager
would like to be able to answer the following questions:

n When an engineer checks in a file, on behalf of which defect
(Engineering Change Order, ECO) was this change made?

n What other files were changed on behalf of the defect or ECO?
n For this release/configuration, what actual defects were

repaired?
n For this release/configuration, what enhancements were made?
n What defects remain in this configuration/release?
n For any release/configuration, how can I produce an automatic

set of release notes, including a table of contents, that
summarizes what defects were repaired and enhancements
made?

n Was the defect approved for repair when the file was checked
out?

n Was the defect approved for repair when the file was checked in?
n Was the defect approved when the changed file was made part of
15-2 ClearDDTS Administrator’s Guide

the new release?
n How do I merge management-defined processes for CM and DT

that include approval steps?
n How do I merge management-defined access control policies for

CM and DT?
n Both CM and DT have access control and process policies. How

do I add my own unique needs to this process?

None of the questions above can be answered by a standalone CM
or DT tracking system. To address this problem, ClearDDTS is
designed to work with your current CM system to provide an
integrated change management solution.

Providing an Integrated Solution

Answering the questions posed above requires a robust CM/DT
integration. The resulting software, called the Change
Management Control System (CMCS), is similar to what
hardware engineers and manufacturing departments have used
for years to control changes that go into manufacturing (the
Engineering Change Order, or ECO, system).

In manufacturing industries, Engineering Change Orders are
used to control and track hardware changes that need to move
from engineering into production. The ECO process includes
approvals, schematic drawing or blue print check out/in, process
controls, defined release dates, and predictability in the hardware
release process.

In the software industry, a similar process can be used where the
DT system records change orders and the CM system provides a
repository and defined configurations where the software
(hardware drawings and blue prints) can be checked in and out.

This software ECO system requires a CM and DT system to be
integrated at three distinct levels:
Creating a Change Management System 15-3

n Version Control Level
n Configuration Level
n Process Control Level

Version Control Integration

Effective version control integration can help answer the following
questions:

n When an engineer checks in a file, on behalf of which defect
(Engineering Change Order, ECO) was this change made?

n What other files were changed on behalf of the defect or ECO?

Version control allows you to make changes to a file (or versioned
object) and still be able to recreate any prior version of the file.
There are several freely available version control systems in the
UNIX environment. The most common version control system is
the Source Code Control System, SCCS. Other freely available,
often used systems include the Revision Control System, RCS, and
the Concurrent Version System, CVS.

ClearDDTS provides version control integration with RCS and
SCCS by keeping pointers to objects that these systems manage.
The version control system is configured to remember a defect
identifier at check-in time and ClearDDTS remembers all the files
that were checked in and out on behalf of a particular defect. This
is illustrated in Figure 15-1.

Figure 15-1: Version Integration
15-4 ClearDDTS Administrator’s Guide

In this figure, file foo.c was checked out on behalf of defect
identifier ECO12345; files main.c, bar.c, and fram.c were checked in
on behalf of defect identifier ECO12345. The version control
system saves the defect id in the version database and the defect
tracking system saves all the file names checked in/out in the
defect record called ECO12345.

If a user wants to back out a change to foo.c, he can follow the CM
link through the defect tracking system and discover that the
change must also be backed out of main.c, bar.c, and fram.c. That is,
a user may look at a versioned file and then go look at the
associated defect record. That record will tell the user who
changed the file, who approved the change, why it was changed,
when it was changed and the other three files that were changed
to repair the defect (to implement the ECO).

This integration between version control and ClearDDTS can also
make reading check-in summaries considerably more meaningful.
For example, instead of cryptic comments like “fixed bug” or “fixed

ECO12345

Version Level Integration

foo.c

bar.c

abc.c

main.c

Defect Tracking SystemCM System

prq.c

fram.c

the pointer problem,” ClearDDTS can provide the one line bug
description at file check-in time.
Creating a Change Management System 15-5

Note: Although version control systems can be very useful, they
have little or no understanding of the collection of files that
constitutes a configuration or product release. This is the primary
difference between a version control system and a configuration
management system.

Configuration Integration

Effective configuration integration attempts to answer the
following questions:

n For this release/configuration, what actual defects were
repaired?

n For this release/configuration, what enhancements were made?
n What defects remain in this configuration/release?
n For any release/configuration, how can I produce an automatic

set of release notes, including a table of contents, that
summarizes what defects were repaired, what enhancements
were made, and what defects remain?

Unlike a version control system which knows about individual
files, but not about the collections of files that constitute a
configuration or a release, integrating at the configuration level
requires that the CM database be able to produce the list of defect
IDs associated with a CM query about a “configuration” or a
“release.” The CM system already knows all the files within a
release and can print out a report of these files. This facility
simply needs to be extended to report the defects IDs associated
with those files. In general, this is a trivial extension to the CM
query facilities, and some CM systems such as ClearCase already
have this capability.

Once your CM query facility can report defect IDs (as opposed to
file names), those defects can be passed to the defect tracking
system and you can easily answer questions posed above. This is
shown graphically in Figure 15-2.

Figure 15-2: Configuration Integration
15-6 ClearDDTS Administrator’s Guide

ClearDDTS provides this level of integration and for many CM
systems can automatically produce release notes. Given any query
that produces a list of defect IDs, ClearDDTS can easily sort the
list into enhancement requests, actual defects, remaining
unresolved defects, and a summary table of contents. This is done
with the cm.relnotes.sh(1) utility.

Process Integration

Process integration requires merging the access control and
process control policies of:

n Configuration management system
n Defect tracking system
n Release engineering manager (the user)

This type of integration is often the most difficult because access
and process control policies are often a point of contention between
CM, DT, and Release Engineering (User). The CM and DT vendor
both want to control this process and thereby add value. The user
also has unique requirements that need to be met. However,
effective process integration will answer the remaining questions
posed in the first part of this chapter.

Release Notes

Configuration Management Integration

Query Defect IDs

CM sys ClearDDTS

Table of contents
Repaired defects
Enhancements

Defects left over
at release time

The solution to this problem is an architected exit from the CM
system at check in/out time. This exit must be allowed to return a
Creating a Change Management System 15-7

flag that prevents the actual check in/out and issues an error
message.

Generally this is not technically difficult. Many CM vendors
already supply an architected “trigger” that can be executed before
or after a check in/out. Providing such an exit at check in/out time
allows the DT system to query the defect tracking database and
find out if the defect is in the correct state.

This process is illustrated in Figure 15-3. In this example, the top
portion shows a typical CM maintenance process. The user is
assigned a defect for repair and wishes to check out a file, go
through the normal edit-compile-debug process, and check in the
repaired file. A merged CM/ClearDDTS system is shown in the
lower portion of the figure.

Figure 15-3: Process Integration

Check out
Edit

Compile
Debug

Build Release

Typical Process

cm.checkout.sh

Check in

Integrated Process

Check out
Edit

Compile
Debug

Build ReleaseCheck in

DT&UserDT&User DT&User

cm.checkin.sh cm.release.sh

A merged CM/ClearDDTS system provides several exits from the
CM system:
15-8 ClearDDTS Administrator’s Guide

n At check out time (using cm.checkout.sh(1)), the exit calls
ClearDDTS to make sure that the defect is approved for repair
and that the engineer checking out the file is the engineer
assigned to repair the defect. This exit also allows the user to
add his/her process.

n At check in time (using cm.checkin.sh(1)), another exit is called to
make sure the defect has been moved to the “Resolved” state and
that the defect is approved for inclusion in the next release.

n An exit may also be configured at release time (using
cm.release.sh(1)), for example, to make sure that all defects
associated with the release are in the “Resolved,” “Verified,” or
“Integrated” state.

Other examples abound. There may be a requirement that a
software change be approved by a Change Control Board.
Typically such approvals are recorded in a DT (ECO) system or
user database. Again, an architected CM exit allows the Change
Control Board, DT system, or user to automate and merge their
own unique process requirements. The real issue here is that by
passing control to all three parties (CM, DT, and the user), the
access and process control policies are merged into a cohesive
Change Control process.

ClearDDTS provides special exit utilities for the checkin,
checkout, and release build processes. These scripts need to be
tailored for your particular needs and are discussed briefly in this
chapter. See the cm.checkout.sh(1), cm.checkin.sh(1), and
cm.release.sh(1), man pages for more information.

Setting Up ClearDDTS for Change Management
Creating a Change Management System 15-9

The proposed integrated Change Management system (using
ClearDDTS with CM systems) described in the previous section
can provide the Release Engineering team with the same benefits
of control and predictability that the hardware ECO process has
provided manufacturing and hardware engineering for many
years.

To implement this system, you need to understand how to set up
ClearDDTS to work with your Configuration Management (CM)
system and how to customize the system for your particular needs.

One advantage of the ClearDDTS change management control
system is that it is implemented using template files and Bourne
shell scripts that can be easily customized to meet your unique
needs. Before looking at these templates and shell scripts, let’s
walk through an example that illustrates the overall integration
(see Figure 15-4).

Figure 15-4: Overview of the Integrated Change Management Control System
15-10 ClearDDTS Administrator’s Guide

In ClearDDTS, there are four ways to call your CM system:
through xddts(1), bugs(1), cm.browser(1), or cm.sh(1). For example,
xddts(1) has a drop down menu called CM. From this menu, the user
can specify a CM operation such as checkin or checkout. When an
operation is selected, a file selection browser pops up and allows
the user to select a file or files to perform the action upon. When
both the operation and the files have been specified, xddts calls
cm.sh to perform the CM action on those files.

Access Control

cm.checkin.sh(1)
cm.checkout.sh(1)

Marco Files

cm.sccs.sh

cm.rcs.sh

cm.clearcase.sh

bugs(1) xddts(1) cm.browser(1) cm.sh(1)

cm.tty.sh(1)

ClearDDTS CM database

CM System

cm2ddts(1)

cm.sh(1)

The cm.sh utility determines the CM system to use by looking at a
bugid that is passed into the utility. Based on the bugid, cm.sh
Creating a Change Management System 15-11

finds the associated ClearDDTS project and the CM system to use
for this project (CMsys field of proj.control file).

Once the CM system is determined, cm.sh uses a macro file to load
in the commands appropriate for that CM system to perform the
desired action. Current macro files appear in the form cm.xxx.sh(1);
for example, cm.rcs.sh(1). You should look at these macro files now.
They contain lines similar to the following:

CKIN=’cd $path; cmsetuser $dirname sccs delget -y"$bugid by
$user, \ $Headline" $basefile’

This line creates a macro called CKIN that describes how to
checkin a file. Once the macro is loaded, the appropriate command
line is executed to check in or check out the specified files. If the
CM action is successful, the CM system must then update its own
internal database to reflect the CM operation and call the
cm2ddts(1) using a post check in/check out trigger. The cm2ddts
utility then passes control to some lower level programs to update
the ClearDDTS database.

Providing Access Control

The integration between ClearDDTS and your CM system allows
you to merge the access control policies of the CM system, the
defect tracker, and the user using an access control trigger from
the CM system. This is shown in the right side of Figure 15-4.
Before every checkin, a utility called cm.checkin.sh(1) is called and
before every checkout a utility called cm.checkout.sh(1) is called. If
these utilities return a ’0’ exit code, the checkin or checkout is
allowed to occur. A non ’0’ exit code causes the checkin or checkout
to abort.

This ability to impose an external user-defined (or Change
Management defined) access control policy is extremely powerful.
For example, at checkout time, cm.checkout.sh(1) can make sure
that the defect has been approved for repair and that the engineer

checking out the file is the engineer assigned to repair the defect.
At checkin time, cm.checkin.sh(1) can make sure the defect has been
15-12 ClearDDTS Administrator’s Guide

moved to the Resolved state and that the defect is approved for
inclusion in the next release.

You can completely customize the access control and authorization
policies to suit your environment by editing these scripts.

Installing CMCS

To install the ClearDDTS Change Management Control system,
all you need to do is define the CM system to use for every project.
If you have already defined projects, use the adminbug mprj
command to add the CM system. For example:

What Configuration Management System does this project use? sccs

To see a list of valid responses, type a question mark (?).

If you are using Hewlett-Packard’s SoftBench, you also need to
run the installsb.sh utility (see the man page for more information).
This is all that is required.

A Closer Look at CM Scripts and Utilities

There are several Bourne shell scripts that support the
integration between ClearDDTS and your CM system. ClearDDTS
also provides some special utilities to check in and check out files
and control the release process. The next sections describe these
scripts and utilities.

The cm.tty.sh Script

The cm.tty.sh(1) script is called by bugs(1) as:

cm.tty.sh bugid

The cm.tty.sh(1) script is interactive and is used by the tty user
interface to enable file selection and CM processing. The cm.tty.sh
script checks out/in files requested from a user menu and then

calls the cm.sh utility to perform the CM action. See the cm.tty.sh
and cm.sh man pages for more information.
Creating a Change Management System 15-13

CM Macro Files

Each CM macro file defines command line macros for checkin,
checkout, and other configuration management tasks for a
particular CM system. By editing this one file, you can quickly
integrate an entire new CM system. (Typically, it takes 30 minutes
to write the macros and 30 minutes to test and debug the system.)

For example, the SCCS macro file is located in ~ddts/bin/cm.sccs.sh.
Similarly, there is a cm.rcs.sh file for RCS and a cm.clearcase.sh file
for ClearCase. Each of these files completely defines how
ClearDDTS will invoke the appropriate CM system.

The cmsetuser Utility

The cm.sccs.sh file calls a utility, cmsetuser(1). This utility must be
run suid root. If the utility is run suid root, it allows you to invoke
the CM utilities as any user that you specify (subject to many
security checks). The utility is delivered in source form in the
~ddts/etc/cmsetuser.c file for your reference.

Most CM systems do not need this functionality; however, if your
versioned files are owned by a specific user id, you may find this
utility extremely useful for integrating your unique CM needs into
ClearDDTS. See the man page cmsetuser(1) for more information.

Convenience Shell Scripts

Most CM systems provide command line functions to check in and
check out files. For example, RCS supplies co(1) to check out a file
and ci(1) to check in a file. ClearDDTS provides a set of
convenience functions to all supported CM systems. These utilities
are:

n cm.ci Check in
n cm.co Check out

n cm.uci Uncheck in
n cm.uco Uncheck out
15-14 ClearDDTS Administrator’s Guide

n cm.ui Version initialization

These are all links to the cm.sh utility. The advantage of this utility
is that it works for all supported CM systems. Another advantage
is that they all require a bugid to be specified. Lastly, the script
provides a centralized location for your own customizations.

CM Access Control Process

One extremely useful feature of ClearDDTS’ CM integration is
that it has the ability to merge the access control policies of the
CM system, the bug tracker, and the user. This is done via the
checkin and checkout access control scripts. The following scripts
are provided:

n cm.checkin.sh Check in
n cm.checkout.sh Check out
n cm.release.sh Check to see that files belong in the release

Check out access control is provided by cm.checkout.sh(1). This
script is called before a file is checked out. In this script, you may
enforce your own CM check out policy. As shipped, the script has
examples that show you how to require that the defect be in a
particular state or that it be assigned to a particular engineer. See
the cm.checkpout.sh(1) man page and the script itself for more
information.

Check in access control is provided by the cm.checkin.sh(1) script.
This script is called before a file is checked in. Like cm.checkout.sh,
it provides the ability to impose a check in policy on the CM
system. See the cm.checkin.sh(1) man page and the script itself for
more information.

How ClearDDTS Supports Roles
Creating a Change Management System 15-15

Most defect tracking and CM systems do not have specific roles
defined in their day-to-day usage. However, some large companies
or government procurements define special roles and need role
support for formal CM. DDTs can support this requirement with
the ~ddts/class/<classname>/mprj3.tmpl and
~ddts/class/<classname>/aprj3.tmpl files. These files allow the
ClearDDTS administrator to define formal roles and designate the
users assigned to those roles.

Some examples of roles might be:

n member of the configuration board
n release manager
n customer liaison
n tech support coordinator
n quality assurance coordinator
n problem assessor
n integration coordinator

Each of these roles may be formal and have certain permissions in
the release process. For example, if a user is a member of a
Configuration Control Board, that user may be allowed to make
certain state transitions or approve changes to the product.

ClearDDTS supports these roles as part of the project creation and
modification process (thus on a per project basis). To activate Role
support, you need to modify the ~ddts/class/<classname>/mprj3.tmpl
and ~ddts/class/<classname>/aprj3.tmpl files associated with the
Class where role support is to be used.

The mprj3.tmpl and aprj3.tmpl files have example code for role
support as follows:
15-16 ClearDDTS Administrator’s Guide

##

R O L E S U P P O R T

Add the Roles and the names of the users in those Roles as shown
in the two examples below. You may then use the master.tmpl file
to see if the person is assigned to the role
defined.

For example a:

Foo: .
.
whoami
if not oneof -d $~/projects/$Project/proj.control CM-board
bin/echo "You are not on the CM Control Board! >&2
abort
fi
.
.
placed in the master.tmpl file will cause an error if a user
attempts an action and is not a member of the CM board.
#.
###
#
#
#CM-board: "\n\nThe following relates to CM ROLES.\n\n"
"\nList LOGIN names of users that are members of the\n"
"Configuration Control Board for this project.\n"
"%s"
help aprj12.hlp
if not null
goodusers
fi
#
#CM-authority: "\nList LOGIN names of users that may approve changes.\n"
"%s"
help aprj12.hlp
if not null
goodusers
fi
#
###

The CM-board and CM-authority are the names of the “roles” and
the “users” defined for those fields and are entered at project
creation or project modification time. These roles and the users
assigned to them may be queried in the master.tmpl file using the
oneof command shown in the previous example. (See template(5)
man page.)

There is no restriction on the number of roles or on the content of
the role field. For example, the content of the role field might be a
Creating a Change Management System 15-17

UNIX group instead of a UNIX login id. The oneof command will
return true/false as to whether a user is a member of the role. (See
also oneof -d in the template(5) man page.)

15-18 ClearDDTS Administrator’s Guide

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Contents of a Defect Record
A

Defect records are maintained in the ClearDDTS database and in
regular ASCII files. The ASCII files are located in ~ddts/allbugs/*/*.
A-1

This appendix describes the format and content of these files.

Sample file

Each defect report file consists of a list of fields in the form:

Fieldname: string-of-text

Defect records can also include enclosures in the form:

Related-file::<comment>:: <title>
 line 1 enclosure text
 line 2 enclosure text

Enclosure data always begins in column 2. Column 1 must always
contain a blank space (created by pressing the SPACEBAR). A
sample defect record file, QTKqa00475, is shown below:

Start: QTKqa00475
Class: software
Project: Gui
Software: xddts
Version: 3.1
Showstopper: N
Enclosure-count: 1
Headline: temporary files are not using an appropriate umask
How-found: in-house normal use
When-found: alpha test
Test-name:
Test-system:
OS-version:
Severity: 2
Impacts-project:
Need-fix-by:
Submitter-name: Dave Rico
Submitter-org: Rational
Submitter-phone: 241-5813
Notify-submitter: Y
Submitter-id: rico
Submitter-host: verite
Submitter-mail: rico
Enhancement: N

Submitted-on: 921201
New-on: 921201
Identifier: QTKqa00475
A-2 ClearDDTS Administrator’s Guide

Submitter-path:
Status: R
Last-mod: 921202
History::::
 xddts 921201 180918 Submitted to Gui by rico@verite
 xddts 921201 181039 N -> A (jb) by rico
 xddts 921202 092549 Enclosure "Problem & Fix" added by jb
 xddts 921202 092740 A -> O by jb
 xddts 921202 092749 O -> R (source code) by jb
Transition-stamp: 723317269
Type: BUG COPY
Timestamp: 4
Updated-by: jb
Engineer: jb
Engineer-mail: jb
Assigned-on: 921201
Related-file::Added 921202 by jb:: Problem & Fix
 There are several problems addressed by this bug

 1. I was not calling addfile() properly when handing off my
 edit* file in ~ddts/tmp. I am now using the ADD FILE_TMP
 flag with addfile so that the file stays around with the
 original user’s permissions until a Commit.

 2. I added code to temporarily chmod of any file being edited
 to have the original mode permissions ’or’ed with 066.

 The above corrections should correct the deficiencies found
 on 12/1/92.-jb
Problem: design
Recommend-change: source code
When-caused: alpha test
Analyze-hours: 1
Est-fix-hours: 1
Est-fix-date: 921202
Postponed-on:
Opened-on: 921202
Resolution: source code
Changed:
Fix-hours: 1
When-fixed: alpha test
Analyzed-by: jb
Resolver-name: John Backman
Resolver-id: jb
Resolver-host: verite
Resolved-on: 921202
End: QTKqa00475

To locate defect records with particular field values, you can use
query tools such as ddtssql and findbug. For example, to search the

database for open defects with a severity level of 1 that are
assigned to the engineer bill, your SQL query might look like this:
Contents of a Defect Record A-3

SELECT identifier FROM defects
WHERE state = ’O’
AND severity = ’1’
AND engineer = ’bill’

With findbug, you would use the following command:

findbug -O Engineer == bill && Severity == 1

Note: For performance reasons, you should use ddtssql to search
the database. When you use findbug, it composes a query and then
calls ddtssql to perform the search. Using ddtssql directly can be
up to ten times faster than findbug for the same search.

Field descriptions

The following table lists each field in the software class and
describes how it is used. These fields represent the fields in a
typical defect record in the software class. If you have modified the
software class master.tmpl file or you are using a different class,
the fields in your defects will be different. For information on how
these fields are derived view the master.tmpl file.

Field Meaning

Start Same as the Identifier field; appears as the first field in
every record.

Analyzed-by Engineer who analyzed the problem.

Analyze-hours Hours it took to analyze the problem.

Assigned-on Date defect was assigned to an Engineer.

Changed Name of what was changed to resolve the problem (for
example, this may be the name of a source file or a
piece of documentation).

Children The bugIDs of children linked to this defect.

Class Class that this defect belongs to.

DDTs-mail-from ClearDDTS machine name and return mail path to
submitter.

DDTs-mail-to ClearDDTS machine name and mail path to which the
defect is being sent.

Field Meaning
A-4 ClearDDTS Administrator’s Guide

Duplicate-of Identifier of the record this one is a duplicate of.

Duplicate-on Date defect was declared a duplicate.

Enclosure-count Number of file enclosures for this defect.

Engineer Login ID of person assigned to analyze/fix the
problem.

Engineer-mail E-mail address to receive engineer notification mail.

Enhancement Is this an enhancement request (Y/N)?

Est-fix-date Analyzer’s idea of when this problem will be resolved.

Fix-hours Number of engineering hours expended to resolve
problem.

Forwarded-from Name of project from which record was forwarded.

Forwarded-on Date this record was last forwarded.

Forwarded-to Name of project to which record was forwarded.

Forwarder-host Hostname of machine from which record was last
forwarded.

Forwarder-id Login ID of person who last forwarded this record.

Forwarder-name Real name of person who last forwarded this record.

Forwarder-org Organization of person who last forwarded this record.

Forwarder-phone Phone number of person who last forwarded this
record.

Headline One-line description of the problem.

History Audit trail of all changes to this defect.

How-found Strategy or method used to detect the problem.

Identifier Unique identifier for this record (bug ID).

Impacts-project Name of a project whose schedule is blocked by
problem.

Last-mod Date this defect record was last modified.

Need-fix-by Date when fix is required so schedule is not impacted.

New-on Date defect record was made new.

Notify-submitter Y/N—Used to indicate whether the submitter is notified
when the defect is modified.

OS-version Name/version of operating system on which problem
found.

Other-mail Additional list of users to whom notification mail is sent
for all record modifications.

Field Meaning
Contents of a Defect Record A-5

Opened-on Date this record was last opened.

Parents The bugIDs of parents linked to this defect.

Postponed-on Date on which record was last postponed.

Problem Analyzer’s idea of what/where the problem is.

Project Project to which this record belongs.

Recommend-change Change recommended to repair the defect.

Related-file Beginning of an enclosure of free-form data.

Resolution Description of what was changed to correct the
problem.

Resolver-id Login ID of person who resolved the problem.

Resolver-host Hostname of machine where the problem was
resolved.

Resolver-name Full name of resolver.

Resolved-on Date on which the problem was resolved.

Severity Severity of problem (by default, 1 - 5, 1 highest).

Showstopper Is this bug severe and stopping others’ progress (Y/N)?

Software Name of the software module or program with the
problem.

Status State of this record (N, O, A, R, etc.).

Submitted-on Date bug was submitted.

Submitter-host Hostname of machine on which this record was
submitted.

Submitter-id Login ID of person who submitted this record.

Submitter-mail E-mail address to receive submitter notification mail.

Submitter-name Full name of submitter.

Submitter-org Organization of person who submitted this record.

Submitter-path Name and path from this ClearDDTS machine to
submitter’s machine.

Submitter-phone Phone of submitter.

Test-name Name of test program which detected the problem.

Test-system Name of machine on which problem was detected.

Timestamp Integer number of transactions that have occurred on
this defect (1, 2, 3...).

Transition-stamp Date of last state transition.

Type Used internally for bug routing.

Field Meaning
A-6 ClearDDTS Administrator’s Guide

Verifier-host Hostname on which the problem fix was verified.

Verifier-id Login ID of person who verified that the problem was
fixed.

Verifier-name Name of person who verified that the problem was
fixed.

Verified-on Date this problem fix was verified.

Verify-check Fix has been verified (Y/N).

Version Version of the software module or program with the
problem.

View Determines whether customer may view this defect
(read access control).

When-caused Software lifecycle phase in which the problem was
introduced.

When-fixed Software lifecycle phase in which the problem was
corrected.

When-found Software lifecycle phase in which the problem was
detected.

End Same as the Identifier field; appears as the last field in
every record.

Fields required by ClearDDTS utilities

The following fields are used by bugs, bugs.in, bugmail, net.out, and
Contents of a Defect Record A-7

various administrative utilities. These fields must be present in
any ClearDDTS defect record:

Defect State Fields

All defects require: Start
Class
Enclosure-count
Headline
Identifier
New-on
Project
Severity
Status
Submitter-id
Submitted-on
Submitter-path
Timestamp
Transition-stamp
Type
End

Assigned (A) defects: Engineer
Assigned-on

Open (O) defects: Engineer
Opened-on

Resolved (R) defects: Resolved-on
Resolver-id

Verified (V) defects: verified-on
Verifier-id

Fields with special significance

The following fields have special significance if they are present:
A-8 ClearDDTS Administrator’s Guide

Field Description

Forwarded-from Name of project from which record was forwarded.
Automatically updated when F transitions arrive.

Forwarded-to Name of project to which record was forwarded.
Automatically updated when F transitions arrive.

Related-file Identifies enclosures to various ClearDDTS utilities.

Submitter-mail Mail address of the person submitting the defect. If not
empty, e-mail will be sent to this address whenever the
defect is modified.

Engineer-mail Mail address of the engineer who worked on the
problem.

Other-mail Other people who should be sent notification mail
when the defect is modified.

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Converting to ClearDDTS
B

This appendix describes how to convert an existing bug database
to a ClearDDTS database. In general, this involves the following
B-1

steps:

1 Identifying your projects and network configuration.

2 Creating projects and classes appropriate for your environment.

3 Creating ClearDDTS defect records (files) from your existing bug
records.

4 Running the conversion utility ddtsconvert to move the defect
records into ClearDDTS.

5 Running the adminbug dbms command to merge the defects into the
ClearDDTS database.

These steps are described in greater detail in the following
sections.

Ensuring a successful conversion

After helping many customers convert their existing system to
ClearDDTS, we strongly recommend that you create an ASCII
printout in your current bug report format and make this a defect
enclosure. This procedure guarantees that no data is lost in the
conversion and makes acceptance of the new system much easier
for your users who will see how the old system maps to the new
system for existing defects.

We also recommend that you first convert a few test defect reports
for a test project. After moving these test defects into ClearDDTS,
make sure you can manipulate them from within the ClearDDTS

user interface. When you are satisfied that everything is working
properly, go ahead and convert all of your defect reports.
B-2 ClearDDTS Administrator’s Guide

Note: You should convert all of the defects in your system, even
those that have been resolved. By including all defects, you are
able to access historical information about your projects and
immediately generate useful management reports.

If you run into problems in your conversion, check the enclosure
field. The most common formatting error is not placing a space in
column 1 for enclosure data. Even blank lines in an enclosure
must have a space in column 1.

Identifying your projects

In ClearDDTS, users always log defects against defined projects
that exist on specific machines in the ClearDDTS network.
Therefore, the first step in conversion is planning the projects and
machines that you will be using. To do this, answer the following
questions:

n What projects will be defined?
n Which machines will run ClearDDTS?
n Which projects will reside on which machine(s)?

Experience has shown that if these questions are not correctly
answered up front, the conversion process becomes very difficult
and will probably have to be done more than once. In addition, it is
usually best to bring together future users of the system, explain
how projects are used in the system, and ask these users how they
would like to see projects organized.

Creating projects and classes

When you have answered the questions posed above, install
ClearDDTS on the selected machines and use the adminbug aprj
command to create the projects desired on those machines. You
may also want to configure your classes to suit your environment.

See Chapter 8, Customizing ClearDDTS, for more information
about configuring the system.
Converting to ClearDDTS B-3

Creating ClearDDTS defect records

When you have finished creating projects, you are ready to do the
data conversion. This conversion is relatively easy. For every
defect in the existing database, you need to create a defect record
file in the ClearDDTS format. It is easiest if you create a separate
directory for each project and place the converted defects into
individual files in that directory.

Format of a ClearDDTS record

As described in Appendix A, Contents of a Defect Record,
ClearDDTS records contain a number of fields in the format:

Fieldname: string of text

Defect records can also include enclosures in the form:

Related-file::<comment>:: <enclosure name>
 line 1 of enclosure text
 line 2 of enclosure text

Enclosure data always begins in column 2. Column 1 must always
be a blank space. Therefore, all enclosure contents are offset by
one space.

The comment is used internally by ClearDDTS to enter historical
data about transactions. Leave the comment blank during
conversion. ClearDDTS will fill in the comment with the following
information:

verb date by username

where date is in DDTS format (yymmdd). For example:

Added 980312 by ddts

You need to write a program that converts a bug from its existing
format into a file in the ClearDDTS format. (If you are using some
sort of relational database management system, its report writer
should make this task easy.) Your conversion program is

responsible for producing all of the defect record fields except the
following, which are supplied automatically by the conversion
B-4 ClearDDTS Administrator’s Guide

utility, ddtsconvert:

Start:
Type:
Identifier:
Timestamp:
Transition-stamp:
End:

Although your conversion program should create as many of the
ClearDDTS fields as possible, these fields can be in any order and
many of the fields do not need to be filled in. The required fields
are described at the end of Appendix A (see “Fields required by
ClearDDTS utilities”). Remember, you do not need to include the
fields listed above. Also, include the Submitter-path field, but do not
supply a value.

Note: The required fields in Appendix A must be present in any
defect record. In the examples that follow, additional required
fields are listed that reflect customizations made to the default
software class.

Filling in some special fields

While many fields are optional it is highly desirable to have the
following fields filled in:

Field Value

When-caused
When-fixed

For each of these fields, select one of the
following:
investigation
specification
design
implementation
functional test
integration
installation
alpha test
beta test
post-release

Field Value
Converting to ClearDDTS B-5

Assigning states to defects

The most difficult thing your conversion program needs to handle
is deciding the appropriate ClearDDTS state to assign each defect
(in the Status field). We suggest that you select one of the following:

Below is an example of a bug that started in the N (New) state and
was progressively moved to the A (Assigned), O (Open), and
R (Resolved) states. In addition, a list of changes resembling diff
output is included to show what fields were added and modified in
moving from the old state to the new state. The old state fields are
indicated by a <, and the new or changed fields are indicated by
a >.

Here is the bug in the N (New) state:

Start: SFDaa00271
Status: N
Software: drawit(1)
Version: 2.0
Headline: drawit(1) causes wrap around if string has embedded newline.
Enhancement: N
How-found: interactive test
When-found: implementation
Test-name: draw

Resolution Select one of the following:
not a bug
unreproducible
design
source code
language tools
configuration
data file
documentation
process

Status Field Description

Status: N New bug not yet assigned to an engineer.

Status: A Assigned to an engineer, but not yet opened.

Status: O Opened by engineer who is now working on it.

Status: R Resolved. The bug has been repaired or otherwise handled.

Test-system: moe
OS-version: 5.3
Showstopper: no
B-6 ClearDDTS Administrator’s Guide

Impacts-project: graphics 2.1
Severity: 3
Need-fix-by: 881010
Project: DDT.test
Attention: mike
From: ddts
Submitter-name: ClearDDTS Administrator
Submitter-id: ddts
Submitter-host: mikey
Submitter-phone:
Submitter-org: SFD Software Lab
Submitted-on: 880918
Enclosure-count: 1
New-on: 880918
Identifier: SFDaa00271
Related-file::Added 890918 by ddts:: More info
 I tried to draw a line with drawit.c. It failed every time I gave it a
 string with a new line. Try it. It fails every time.
Submitter-path: SFDaa mikey!ddts
Transition-stamp: 590628456
Type: BUG COPY
Timestamp: 1
Updated-by: ddts
End: SFDaa00271

Note: Enclosure data starts in column 2 not in column 1.

Here is the list of changes required to move a bug from the N
(New) state to get to the A (Assigned) state.

< Status: N
< Timestamp: 1

> Status: A
> Timestamp: 2

> Engineer: rico
> Engineer-mail: rico
> Assigned-on: 880918

Here is the resulting defect report in the A (Assigned) state:

Start: SFDaa00271
Status: A
Software: drawit(1)
Version: 2.0
Headline: drawit(1) causes wrap around if string has enbedded newline.
Enhancement: N
How-found: interactive test
When-found: implementation
Test-name: draw
Test-system: moe
OS-version: 5.3
Showstopper: no
Impacts-project: graphics 2.1

Severity: 3
Need-fix-by: 881010
Project: DDT.test
Converting to ClearDDTS B-7

Attention: mike
From: ddts
Submitter-name: ClearDDTS Administrator
Submitter-id: ddts
Submitter-host: mikey
Submitter-phone:
Submitter-org: SFD Software Lab
Submitted-on: 880918
Enclosure-count: 1
New-on: 880918
Identifier: SFDaa00271
Related-file::Added 890918 by ddts:: More info
 I tried to draw a line with drawit.c. It failed every time I gave it a
 string with a new line. Try it. It fails every time.
Submitter-path: SFDaa mikey!ddts
Transition-stamp: 590628654
Type: BUG COPY
Timestamp: 2
Updated-by: ddts
Engineer: rico
Assigned-on: 880918
Engineer-mail: rico
End: SFDaa00271

Here is the list of changes required to move a bug from the A
(Assigned) state to the O (Open) state.

< Status: A
< Timestamp: 2

> Status: O
> Timestamp: 3

> Problem: source code
> Resolution: source code
> When-caused: beta test
> Analyze-hours: 1
> Fix-hours: 1
> Est-fix-date: 881101
> Est-fix-hours: 1
> Opened-on: 880918

Here is the resulting defect report now in the O (Open) state:

Start: SFDaa00271
Status: O
Software: drawit(1)
Version: 2.0
Headline: drawit(1) causes wrap around if string has enbedded newline.
Enhancement: N
How-found: interactive test
When-found: implementation
Test-name: draw
Test-system: moe
OS-version: 5.3
Showstopper: no

Impacts-project: graphics 2.1
Severity: 3
Need-fix-by: 881010
B-8 ClearDDTS Administrator’s Guide

Project: DDT.test
Attention: mike
From: ddts
Submitter-name: ClearDDTS Administrator
Submitter-id: ddts
Submitter-host: mikey
Submitter-phone:
Submitter-org: SFD Software Lab
Submitted-on: 880918
Enclosure-count: 1
New-on: 880918
Identifier: SFDaa00271
Related-file::Added 890918 by ddts:: More info
 I tried to draw a line with drawit.c. It failed every time I gave it a
 string with a new line. Try it. It fails every time.
Submitter-path: SFDaa mikey!ddts
Transition-stamp: 590628654
Type: BUG COPY
Timestamp: 3
Updated-by: ddts
Engineer: rico
Assigned-on: 881101
Est-fix-hours: 1
Problem: source code
Resolution: source code
When-caused: beta test
Analyze-hours: 1
Fix-hours: 1
Est-fix-date: 881101
Opened-on: 880918
End: SFDaa00271

Here is the list of changes required to move a bug from the O
(Open) state to the R (Resolved) state:

< Status: O
< Timestamp: 3

> Status: R
> Timestamp: 4

> Changed: drawit.c
> When-fixed: beta test
> Resolver-id: mmanley
> Resolved-on: 880918
> Resolution: source code
> Fix-hours: 1
> Analyzed-by: mmanley
> Resolver-name: Mike Manley
> Resolver-host: verite

The Engineer field is used to determine which bugs are the
current responsibility of a particular engineer. This is used by -u
option of bugs and the -e option of findbug.

Here is the resulting resolved defect report:
Start: SFDaa00271
Converting to ClearDDTS B-9

Status: R
Software: drawit(1)
Version: 2.0
Headline: drawit(1) causes wrap around if string has enbedded newline.
Enhancement: Y
How-found: interactive test
When-found: implementation
Test-name: draw
Test-system: moe
OS-version: 5.3
Showstopper: no
Impacts-project: graphics 2.1
Severity: 3
Need-fix-by: 881010
Project: DDT.test
Attention: mike
From: ddts
Submitter-name: ClearDDTS Administrator
Submitter-id: ddts
Submitter-host: mikey
Submitter-phone:
Submitter-org: SFD Software Lab
Submitted-on: 880918
Enclosure-count: 1
New-on: 880918
Identifier: SFDaa00271
Related-file::Added 890918 by ddts:: More info
 I tried to draw a line with drawit.c. It failed every time I gave it a
 string with a new line. Try it. It fails every time.
Submitter-path: SFDaa mikey!ddts
Transition-stamp: 590628895
Type: BUG COPY
Timestamp: 590628895
Updated-by: ddts
Problem: source code
Resolution: source code
When-caused: beta test
Analyze-hours: 1
Fix-hours: 1
Est-fix-date: 881101
Opened-on: 880918
Changed: drawit.c
When-fixed: beta test
Resolver-id: mmanley
Resolved-on: 880918
Resolution: source code
Analyzed-by: mmanley
Resolver-name: Mike Manley
Resolver-host: verite
End: SFDaa00271

As you can see, beyond the base information gathered when the
bug was first submitted, little is added or changed when moving
from state to state. Your conversion program should decide the
current state of each bug and generate the appropriate fields and

values. Many fields are optional and the format is simple enough
that your conversion program should be easy to write.
B-10 ClearDDTS Administrator’s Guide

Note: Remember that you do not need to create the following
fields, because ddtsconvert will create them for you:

Start:
Type:
Identifier:
Timestamp:
Transition-stamp:
End:

Running the conversion utility

When you have created all of the defect record files in the
ClearDDTS format and placed them in the appropriate project
directories, you need to make these files available to ClearDDTS.
To do this:
n Move the defect record files to the machine where the

ClearDDTS project has been created with the aprj command.
n Run the ddtsconvert utility. It takes care of allocating a bug ID

and installing the defect into the ClearDDTS database.

From the shell, enter:
cd project_dir
ls | ddtsconvert -v

The -v option (verbose) causes ddtsconvert to describe the
conversion as it progresses.

Warning:Do not use “ddtsconvert -v *” because the shell may not
have enough memory to do the expansion if the directory contains
a large number of defect files.

Incorporating defects into the database

ClearDDTS will format the defects, assign IDs, and import the
defects into the ClearDDTS system. After running ddtsconvert, you
need to run the adminbug dbms command to merge the defects into
the ClearDDTS database. See Chapter 2, Using Administration
Utilities, for more information on using adminbug.

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Sample Filter Command Script
C

This appendix provides a sample script to illustrate how you can
use ClearDDTS template files and shell scripts to handle various
C-1

tasks including default values and validation. This script tests
whether a project is valid and is an example of a filter program as
described in the template man page.

Script example

#!/bin/sh

This is an example of how you can use a shell script with the
template files. We used to use this shell script to ask for the
project name when a user submitted a bug. The script is no
longer used by the system but is preserved here as an example
of how to use template files and shell scripts.

The bugs(1) program places the current field value on the
standard input, so we can get what the user just typed in by
reading stdin. Alternatively, the field value could be an
invocation parameter. The expanded value is written to standard
out if there is a single one.

See if project name is in the invocation string if not, read
stdin to get the current field value.

This file is located in the ~ddts/bin directory.

if ["$1" = ""]
then

line=‘ngline‘ # Read stdin
else

line=$1 # Pick up invocation parameter
fi

If they just hit return, tell them a response is required.
#

if ["$line" = ""]
then

echo "Response is required." >&2
exit 1 # Force template field to be executed again

fi
#
See if they asked for help

#

if ["$line" = "\?"]
C-2 ClearDDTS Administrator’s Guide

then
echo "The projects available are:" >&2
projstat -bl >&2 # List projects they can log bugs against
echo ""
exit 1 # Force template field to be executed again

fi

#
See if the project name is unique
#

list=‘glob.projs $line’*’‘
count=$?
if ["$count" = 1]
then

echo $list
exit 0 # SUCCESS! Go back to template file.

elif ["$count" -gt 1]
then
 echo "Ambiguous:
$list" >&2 # List projects that match

echo ""
 exit 1 # Ambiguous, try it again
else

echo "No such project, type ’?’ for a project list." >&2
echo ""
exit 1

fi

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

E-mail Submission API
D

ClearDDTS provides users with the ability to mail defects to
ClearDDTS for inclusion in the database. This mechanism is
D-1

provided with the e-mail submission API. Look at the ddtsmailbug
shell script for an implementation of the e-mail API.

To e-mail a defect to your ClearDDTS system, the following fields
must be in the message:

Field Description

Project: Project to which you want all initial e-mail defects assigned.

Software: Short description of the problem module or feature.

Version: Version of the software.

Showstopper: Y/N if this is a showstopper bug.

Enclosure-count: Number of enclosures (related files).

Headline: One line description of the problem.

How-found: How the defect was detected.

When-found: When in the release cycle was the defect detected.

Severity: Severity (1 - 5) of the problem.

Submitter-name: Customer’s real name. If you don’t know, put in something
like Customer.

Submitter-org: Submitter’s company name. If you don't know, put in
something like Customer.

Submitter-phone: Customer's phone number. If unknown, put in “unknown.”

Submitter-id: Submitter's login ID.

Submitter-mail: If this field is empty, no mail will ever be sent back to the
submitter. If anything is in this field, mail will be sent to the
submitter for each state transition of the defect.

Enhancement: “Y” if this is an enhancement request; otherwise “N”.

Status: The value must be “S” to indicate this is a defect
submission.

Field Description
D-2 ClearDDTS Administrator’s Guide

The e-mail processing makes the defect report look like it was
submitted locally by setting up the following fields:

Submitter-host
Submitter-id
Submitted-on
Last-mod
Identifier

Here is an example defect submission:

Project: ClearDDTS
Software: foo.c
Version: 4.0
Showstopper: N
Enclosure-count: 0
Headline: The foo.c routine causes a core dump.
How-found: in-house normal use
When-found: alpha test
Severity: 3
Impacts-project:
Submitter-name: ClearDDTS
Submitter-org: Rational Software
Submitter-phone: 999-9999
Notify-submitter: Y
Submitter-id: ddts
Submitter-host: vertigo
Submitter-mail: ddts

History:::: Optional, will initialize bug history. See example for format.
Do not forget the space in column 1 of the next line.

Type: The value of this field must be “ALLOCATE” for a normal
bug submission.

Timestamp: The value of this field must be “1”.

Updated-by: Login ID of submitter (same as submitter-id).

DDTs-mail-to: This field must look like:
XXXxx ddts@foo.com
where XXXxx is your ClearDDTS site identifier (you can
run ddtshostname to get the name, if necessary) and
ddts@foo.com is the Internet mail address to your
ClearDDTS system.

DDTs-mail-from: This field must look like:
YYYyy yyy@xyx.com
where YYYyy is the submitter’s ClearDDTS site identifier
and yyy@xyz.com is the Internet mail address for that
machine.
Note: Do not use the same value for YYYyy that you used
for XXXxx above.

Enhancement: N
Submitted-on: 971203
New-on: 971203
E-mail Submission API D-3

Identifier: QTKqa00479
Submitter-path: QTKqa ddts@vertigo
Status: N
Last-mod: 971203
History::::
 bugs 971203 082801 Submitted to ClearDDTs by ddts@vertigo
Transition-stamp: 723400081
Type: BUG ORIGINAL
Timestamp: 1
Updated-by: ddts
DDTs-mail-to: QTKqa ddts@rational.com
DDTs-mail-from: YYYyy yyy@yyy.com

If you want to mail ClearDDTS new defects and also mail
ClearDDTS updates to those defects, see Appendix B for the new
fields that must appear at each state. If you mail ClearDDTS an
updated defect, the “Type” field must be “BUG ORIGINAL” and
the “Timestamp” field must be incremented by 1. For example, if
the current value of Timestamp is 5, the updated defect mailed to
ClearDDTS must have a Timestamp of 6. You can also mail
ClearDDTS information to be included in an enclosure to a defect.
For details see Sending mail to ClearDDTS on page 11-14.

D-4 ClearDDTS Administrator’s Guide

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Creating Graphs with Graphbug
E

The graphbug program creates PostScript graphs from data
formatted by the tallybug program or other report generation
E-1

scripts. This appendix describes how to use the graphbug program
and the format of the data used to generate the graphs.

Using Graphbug

Graphbug is a command line program which produces PostScript
documents. Documents created with graphbug conform to version
2.0 of the Adobe Encapsulated PostScript Specification. Programs
which can manipulate encapsulated PostScript will be able to use
graphs produced by the graphbug program.

Command line options

The command line arguments to graphbug determine the overall
location of graphs on the printed page. The following syntax is
used:

graphbug [-slxw] [-ox,y] [-C] [-a] [-cconfig_file] [-flayout] [n of N]

The following table describes the command line options:

Option Description

-slxw Determines the size of the graphs on the page in inches. The
values l and w are floating point numbers. The letter ‘x’ is used to
separate the two parameters. For example, if you enter:
-s8.5x5.0
graphbug draws in an area that is 8.5 inches by 5 inches. The
default is 10.5 inches by 8 inches in landscape mode.

-ox,y Identifies the position of the lower-left corner of the graph area on
the page when using the default graph orientation. The default is
0.25 inches from the left side of the page and 0.25 inches from
the bottom.

Option Description
E-2 ClearDDTS Administrator’s Guide

Description

The options -s and -o describe the area of the page covered by the
graphs produced by the graphbug program. The -f option allows
graphbug to combine several graphs on a single page.

To produce a page with more than one graph, graphbug can be
executed once for each graph and the output concatenated into a
single file. The parameters n of N identify the current graph when
printing multiple graphs on a page.

The graphbug program acts as a filter, accepting input from its
standard input and writing to its standard output. In most cases,
graphbug will be used in a pipe where it will transform the data
from its standard input into a PostScript definition.

-C Produces color PostScript output which can be printed on a color
PostScript printer such as the Tektronix Phaser 200i color printer.

-a Produces black and white PostScript graphs using different fill
patterns (rather than shades of grey) to represent the data.

-cconfig_file Defines an alternate configuration file for graphbug.

-flayout Defines the layout of graphs on a page. The layout contains three
elements:
- orientation
- vertical dimension
- horizontal dimension

Orientation is represented by either L (landscape) or P (portrait).
Numbers are used to indicate the number of graphs to be drawn
vertically and horizontally on the page. For example:
-fP3x2
formats a page in portrait mode for 6 graphs. There will be up to 3
graphs vertically and 2 graphs horizontally.

n of N Determines which graph on the page should be drawn with the
current data. The value n is the number of the current graph, and
N is the number of graphs to be drawn on the page.
The value N cannot be more than the number of graphs defined
by the -f option. The graphs are numbered left to right across
each row from top to bottom. Graphs should be generated in
order to ensure that graphbug will produce a complete page
definition. The default is 1 of 1.

Graphbug is able to print a variety of graphs including line, bar and
filled area graphs. The contents of the graph are defined by the
Creating Graphs with Graphbug E-3

input description. Essentially, the command line arguments
describe the placement of the graph while the input defines its
contents.

Defining graph contents

Each graph description is composed of a header, a data section and
an optional notes section.

n The lines of the header describe the type, title and dimensions of
the graph.

n The data section follows the header section and defines a series
of data sets which are interpreted according to parameters
defined in the graph header.

n The notes section is optional and may follow the data section.

Upper-case keywords identify header elements and mark the
beginning and end of the data and notes sections. For example:

TITLE “PROJECT XXX”
SUBTITLE “Problems xxx”
ADJACENT BAR “Origin” “Found” “Fixed”
.
.
.
DATA
“Concept/Definition”: 27 5 15
“Requirements”: 5 10 3
“Design”: 10 15 10
“Coding”: 40 7 26
“Unit Test”: 1 40 27
END DATA
NOTES
note lines
END NOTES

Header Lines

Data Lines

Notes Section (optional)

Graphbug incorporates a very simple lexical analyzer which
recognizes four different data types.
E-4 ClearDDTS Administrator’s Guide

Header section

Graph titles

The keywords “TITLE” and “SUBTITLE” identify the titles of the
graph. The keywords must appear at the beginning of a line and
are followed by a string. Titles always appear at the top of the
graph. Both titles are required although either may be defined as
an empty string:

TITLE “PROJECT XXX”
SUBTITLE “Problems - per product life cycle phases”

Vertical axis

The vertical scale provides the units of measure and the range of
each data value in a graph. Values on the vertical axis may be
measured as either linear values, logarithmic values or as elapsed
time expressed in hours. The vertical axis may appear on either
the left or the right side of the graph. Each major division of the
vertical axis is labeled with a value. Graphbug can also draw grid
lines behind the data corresponding to the major and minor

strings Strings are enclosed between double quote characters and
cannot span lines. Strings cannot contain special characters
such as double quotes, line feeds or carriage returns.

numbers Graphbug recognizes and uses regular floating point numbers.
The program does not support scientific notation.

dates Dates are provided using the mm-dd-yy format where mm, dd
and yy are integers which represent the corresponding month,
day and the last two digits of the year.

time Time is provided in the hh:mm format where hh and mm
represent elapsed time in hours and minutes. Both hours and
minutes must always be specified even if they are zero. Internally,
graphbug represents time as the number of elapsed minutes.

markings on the vertical scale. The vertical axis definition uses
one of the following two formats:
Creating Graphs with Graphbug E-5

VERTICAL side measure label format AUTOSCALE
VERTICAL side measure label format MINIMUM n MAXIMUM n MAJOR n MINOR n

For logarithmic scales, the minimum, maximum, major and minor
values are expressed as exponents. The minimum and maximum
values will define a vertical scale from 10min to 10max. The
number of major divisions on the vertical scale is approximately
the difference between the minimum and maximum exponent
values divided by the major interval value. The number of minor
divisions on the vertical scale is approximately the major value
divided by the minor value.

When using the autoscale option, graphbug notes the minimum and
maximum values in the input data and then determines
appropriate values for the MINIMUM, MAXIMUM, MAJOR and
MINOR parameters. Autoscaling is available for all vertical scale
measures.

side One of the keyword phrases “LEFT”, “RIGHT”, “GRID LEFT” or
“GRID RIGHT”. The addition of the keyword “GRID” causes
graphbug to draw background grid lines.

measure One of the keywords “LINEAR”, “LOG” or “HOURS”.

label A string for the vertical axis label is printed vertically beside the
axis.

format A printf() format string which is used to print the scale values at
each major scale mark. The scale values are always floating
point numbers.

MINIMUM n The lowest number on the vertical scale.

MAXIMUM n The highest number on the vertical scale.

MAJOR n The interval between each of the major scale marks for which the
scale values will be printed.

MINOR n The interval between minor scale marks which are marked with a
short line. Generally, the minor scale interval should be an evenly
divisible number of the major scale interval.

AUTOSCALE The vertical axis is autoscaled.

Horizontal axis

Graphbug supports a variety of horizontal axis types which
E-6 ClearDDTS Administrator’s Guide

correspond to the tags of the input data sets. The horizontal axis
type determines the interpretation and representation of the data
tags on the graph. The program does not check if data tags
actually match the horizontal axis type, so mixed data tag types
may produce unintended results. Data sets tagged with values
outside the range defined by the horizontal axis definition are
simply ignored.

Linear horizontal axis type

The Linear axis type maps floating point numbers within a
predefined range. Data tags must be numbers and should be
sorted from the lowest to the highest values. The declaration for
this axis type is nearly identical to the declaration of the vertical
axis type. The horizontal axis, however, does not support an
autoscale option:

HORIZONTAL LINEAR label format MINIMUM n MAXIMUM n MAJOR n MINOR n

Date-based horizontal axis types

Graphbug supports data sets tagged with dates and provides four
degrees of granularity ranging from days to years. It marks days
individually on the horizontal axis and periods from weeks to
years. Weeks always start on Sunday. Months and years always
start on the first. Graphbug only labels full weeks, months, or years
on the horizontal axis:

HORIZONTAL period label begin end

Enumerated horizontal axis types

Enumerated axis types map data sets tagged with either strings
or dates. With the exception of the pareto graph, graphbug graphs

period One of the keywords “DAY”, “WEEK”, “MONTH” or “YEAR”.

label A string which may be printed underneath the graph.

begin The date of the earliest sample to include in the graph.

end The date of the latest sample to include in the graph.

the data in the order in which it appears in the data section.
Enumerated axis types do not provide a range of values so any
Creating Graphs with Graphbug E-7

number of data sets can be provided in the data section. There are
two different enumerated axis types which differ only in the
orientation of the graph labels. The basic enumerated axis prints
the labels horizontally:

HORIZONTAL ENUMERATED label

The sideways enumerated type prints the labels vertically and
automatically enlarges the default bottom margin of the graph to
provide more room for the labels:

HORIZONTAL SIDEWAYS ENUMERATED label

The sideways enumerated type also supports labels consisting of
multiple lines of text. Graphbug will break sideways enumerated
labels into lines where it encounters the sequence “\n” in the label
string. The program does not perform word wrapping.

Graph types

Several keywords introduce the graph type declaration in the
header. For all graphs except pie charts, the graph type definition
defines the contents of the graph legend and the interpretation of
the data values. The general form of the graph type declaration is:

graph_type legend_label ...

label A string which may be printed underneath the graph.

graph_type One or more Keywords that define the type of graph.

legend_label One or more labels which will appear in the legend to identify the
data values.

Adjacent bar graphs

The adjacent bar graph presents data sets as groups of bars. Each
E-8 ClearDDTS Administrator’s Guide

bar represents a single data value and is shaded or colored to
distinguish it from its neighbors. Each group of bars represents a
data set and is separated from other groups by a gap. The
keywords “ADJACENT BAR” declare an adjacent bar graph.
Figure E.1 shows an adjacent bar graph which was created from
the following graph description:

TITLE “PROJECT XXX”
SUBTITLE “Problems - per product life cycle phases”
ADJACENT BAR “Origin” “Found” “Fixed”
HORIZONTAL ENUMERATED ““
VERTICAL LEFT LINEAR “Bugs” “%0.0f” MINIMUM 0 MAXIMUM 50 MAJOR 10 MINOR 5
DATA
“Concept/Definition”: 27 5 15
“Requirements”: 5 10 3
“Design”: 10 15 10
“Coding”: 40 7 26
“Unit Test”: 1 40 27
END DATA

Figure E-1: Adjacent Bar Graph Example

The vertical axis could also have been defined with the
AUTOSCALE keyword to automatically scale the vertical axis.

The following graph description defines the same graph with the
autoscale option:
Creating Graphs with Graphbug E-9

TITLE “PROJECT XXX”
SUBTITLE “Problems - per product life cycle phases”
ADJACENT BAR “Origin” “Found” “Fixed”
HORIZONTAL ENUMERATED ““
VERTICAL LEFT LINEAR “Bugs” “%0.0f” AUTOSCALE
DATA
“Concept/Definition”: 27 5 15
“Requirements”: 5 10 3
“Design”: 10 15 10
“Coding”: 40 7 26
“Unit Test”: 1 40 27
END DATA

Stacked bar graphs

The stacked bar graph presents data sets as groups of bar graphs
which are stacked upon each other to form a single segmented bar.
The bottom segments correspond to the first data value in each set
and the total height of the bar stack is the sum of the data values.
Each stack of bars is separated from other stacks by a gap which
can be altered in the graph header. The keywords “STACKED
BAR” declare a stacked bar graph. An example graph appears in
Figure E.2.

Figure E-2: Stacked Bar Graph Example

Dashed line graphs

Dashed line graphs present data as a number of line graphs. Each
E-10 ClearDDTS Administrator’s Guide

line is drawn using different dash patterns or with different colors
when using the -C command line option. Graphbug uses the
keywords “DASHED LINE” to declare a dashed line graph like the
one shown in Figure E.3.

Figure E-3: Dashed Line Graph Example

Marked line graphs

A marked line graph is nearly identical to the dashed line graph
except that the lines are also marked with symbols at intervals
along the lines. The keywords “MARKED LINE” declare a marked
line graph.

Stacked line graphs

The stacked line or filled area graph presents data as a set of lines
Creating Graphs with Graphbug E-11

stacked on top of each other. The line for the first data value
appears at the bottom of the stack and the top line represents the
sum of all of the data values. The keywords “STACKED LINE”
declare a stacked line graph like the example graph in Figure E.4.

Figure E-4: Stacked Line Graph Example

Pareto graphs

Pareto graphs are the combination of a stacked bar graph and a
line graph. The stacked bar graph represents data values that are
added within each set and then sorted left-to-right from highest to
lowest sums. Graphbug calculates the total for all the sums which it
then uses to create a line graph over the bars showing the
percentage of the total sum that the current and preceding bars
contribute to the overall total. The keyword “PARETO” introduces
a pareto graph.

The pareto graph has two scales. The first scale is defined in the
graph header and defines the heights of the bars. Graphbug adds a
E-12 ClearDDTS Administrator’s Guide

second scale for the line graph on the opposite side of the graph.
The second scale is marked in percentages from 0% to 100%.
Figure E.5 contains an example of a pareto graph.

Figure E-5: Pareto Graph Example

Scatter graphs

The scatter graph draws sets of markers in an x-y plane defined by
horizontal and vertical axes. The set of markers are declared in
the legend and the coordinates are declared in the data section.
For scatter graphs, graphbug expects either a linear or date-based

horizontal axis type. The keyword “SCATTER” defines a scatter
graph like the example graph in Figure E.6.
Creating Graphs with Graphbug E-13

Figure E-6: Scatter Graph Example

The scatter graph uses a different format in the data section. The
legend of the scatter graph provides a list of names which serve as
marker types within the graph. A scatter graph can define up to
seven different marker types. Each data set is tagged by a marker
name and contains the coordinates of a single point on the graph.
Data sets for a scatter graph must use the following format:

marker_tag x_value : y_value

marker_tag A string which exactly matches one of the strings defined in the
graph legend. This parameter relates a point to a marker type.

x_value The horizontal value of the point. This may be a date or a
number.

y_value The vertical value of the point. This may be a number or an
elapsed time.

The following is part of the graph description used to create the
graph in Figure E.6:
E-14 ClearDDTS Administrator’s Guide

TITLE “Widget Device X3J16”
SUBTITLE “Parts Cost vs. Mean Time to Failure”
SCATTER “Stable Product” “Prototype”
HORIZONTAL LINEAR “Bucks” “%0.0f” MINIMUM 0 MAXIMUM 20 MAJOR 5 MINOR 1
VERTICAL LEFT HOURS “Hours” “%0.0f” MINIMUM 0 MAXIMUM 10 MAJOR 1 MINOR 0.5
DATA
“Stable Product” 5.95 : 2:10
“Prototype” 5.95 : 3:10
“Stable Product” 12.00: 7:15
“Prototype” 12.00: 6:25
“Stable Product” 13.50: 7:12
“Prototype” 13.50: 7:54
END DATA

Pie charts

Unlike other graphs, the legend of a pie chart is defined by the
data tags present in the data section of the graph definition rather
than as part of the graph type definition. Instead, the string in the
graph type declaration defines an additional title displayed under
the pie chart. The chart title string may be empty but must be
present. Slices are drawn clockwise around the chart starting at
the 12 o’clock position on the circle. The keyword “PIE” declares a
pie chart.

PIE chart_title

If present, horizontal or vertical axis definitions are simply
ignored for a pie chart and may be conveniently left out. The
legend of a pie chart only displays string values so the input data
format is restricted to data tagged by a string. The data tag may
also contain the keyword “EXPLODE” which marks pie slices
which should be exploded or offset from the center of the pie chart.

chart_title A title which will be printed under the pie chart.

Any number of slices may be exploded. The general forms for pie
chart data are the following:
Creating Graphs with Graphbug E-15

label: value
label EXPLODE: value

Graphbug can display the numeric value of each slice as a
percentage of the total, as a raw number, or as hours of elapsed
time. The keywords “PIE VALUE” introduce the pie value label
definition. The pie value definition is optional and slices will only
be labeled if it is present in the graph header:

PIE VALUE type format SIZE n

Figure E.7 shows an example of a pie chart which includes value
labels for each slice and an exploded pie slice.

label The label for a single pie slice. The label appears in the legend of
the graph.

value A floating point number. Missing or negative values in the input
are treated as a value of zero.

type One of the keywords “PERCENT”, “NUMBER” or “HOURS”.
n For the PERCENT type, graphbug calculates the

percentage based on the total of all data values.
n The NUMBER type displays the value as a raw number.

n The HOURS type divides the data value by 60.

format Optional. A format string can override the default format string for
any of the value types. The default strings are %.1f%%, %.0f,
and %.1f, for the percent, number and hours types.

SIZE n Optional. The point size of the label text. The size parameter
must be preceded by the keyword “SIZE” when present. The
default label size is 12 points.

Figure E-7: Pie Chart Example
E-16 ClearDDTS Administrator’s Guide

Margin definitions

The header may contain one or more lines to redefine the graph
margin, the gap between bars in bar graphs, or the offset of an
exploded pie slice in a pie chart. Margin declarations use the
keyword “MARGINS” followed by one or more keyword-value
pairs. Graph margins are defined as a number from 0.0 to 1.0
which represents a fraction of the vertical or horizontal length
devoted to the margin. The bar gap is calculated as the fraction of
the total width of a single stack or group of bars. The pie offset is
calculated as a fraction of the radius of the pie chart.

MARGINS keyword value keyword value ...

keyword One of the keywords “TOP”, “BOTTOM”, “LEFT”, “RIGHT”, “BAR”
or “PIE”.

value A number from 0.0 to 1.0.

Legend parameters

Legend parameters affect the size and placement of the graph
Creating Graphs with Graphbug E-17

legend. The Keyword “LEGEND” introduces a legend parameters
line. The legend of a graph can be placed on either the left or right
side of the graph. The size of the legend is based on the size of the
legend text. The size parameter defines the point size of the text
as it appears on a full-size graph. As a special case, setting the size
to zero eliminates the legend from the graph.

LEGEND place SIZE n

Data section

The data section follows the header section and begins with a line
that contains only the keyword DATA and ends with a line that
contains the keywords END DATA. Each line of the data section
contains a data set which consists of a tag value and one or more
data values:

tag : value ...

Most graphs require data sets with a single tag value and one or
more data values. The only exceptions are the scatter graph which
uses a slightly different data format and pie charts which allow an
optional keyword in the data tag. Graphbug does not check if the
data values actually match parameters provided by the vertical
axis definition in the graph header. Graphbug may interpret

place Optional. Use “LEFT” or “RIGHT” to place the legend on the left
or right side of the graph. Legends are on the left side by default.

SIZE n Optional. Determines the point size of the legend text and the
size of the legend. The size parameter must be preceded by the
keyword “SIZE” if it is present. The default legend font size is 16
points.

tag Data set tag which may be of any type but is interpreted
according to the definition of the horizontal axis. Generally, the
tag type is implied by the horizontal axis definition.

value Either a number or a time value which is interpreted according to
the vertical axis definition. The number of expected data values is
defined in the definition of the graph type.

missing or non-numeric data values as either zero or undefined
depending on the graph type.
E-18 ClearDDTS Administrator’s Guide

Data sets must be provided in the order that they appear along the
horizontal axis of the graph. With the exception of the pareto
graph, graphbug does change the order of the data sets. For some
graphs, unsorted data sets may produce unintended results.

Notes section

An optional notes section may follow the data section. If defined,
the notes section begins with the keyword NOTES and ends with
the keywords END NOTES. The notes section defines textual
notations that can be placed anywhere on or around the graph.
Each line in the notes section defines the location, size, color, and
text of a single notation:

color alignment size x_location y_location text

Graph notations may contain references to the beginning and
ending dates of a graph if defined by the horizontal axis definition.
Otherwise, the beginning and ending dates will be defined as the
current date. Dates or elements of dates may be incorporated into
a text notation using the standard‘%’-format conversions. The

color Optional. A color may be defined by the keyword “COLOR”
followed by a color number. Colors may be defined in the
configuration file. The default text color is numbered 0.

alignment Optional. One of the keywords “LEFT”, “RIGHT” or “CENTER”.
Text alignment defines where the text will be printed relative to
the reference point defined by the parameters x_location and
y_location. Notations are left aligned by default.

size The size of the notation text in points when printed on a full-size
graph.

x_location The horizontal location of text. This is a number from 0.0 on the
left side of the graph to 1.0 on the right side.

y_location The vertical location of the baseline under the text. This is a
number from 0.0 at the bottom of the graph to 1.0 at the top.

text A string containing the text of the notation. This string must be
quoted. The string may contain date and time references using
the popular %-notation.

format conversions supported by graphbug are listed in the
following table.
Creating Graphs with Graphbug E-19

Graphbug configuration file

The graphbug program references a configuration file which may be
used to override the default color tables or to add textual notation
to a graph. A configuration file may be specified using the -c
command line option. If a configuration file is not provided on the
command line, graphbug will look for a file named .graphbug in the
user’s home directory first or for the file ~ddts/etc/graphbug.cfg, if a
user configuration file is not found.

Color definitions

Graphbug uses three separate color tables for lines, filled areas and
text. Additionally, the background grid color, available with the
vertical axis, can be defined separately. Colors, in graphbug, may be
defined as RGB triplets representing the red, green and blue

Begin date End date Substituted string

%% the character ‘%’

%A %a an abbreviation for the name of the month

%C %c the year including century

%D %d the day of the month

%M %m the number of the month (Jan = 1)

%S %s the string “%m/%d/%y”

%W %w an abbreviation for day of the week

%X %x the string %d %a %c

%Y %y the last two digits of the year

%t current date and time in standard format

components or by a color name if an X-Window rgb.txt file is
available. Colors are defined as follows:
E-20 ClearDDTS Administrator’s Guide

table color: red green blue
table color: “string”

If defined, graphbug will use the environment variable RGB_TXT
as the name of an rgb.txt file. Otherwise graphbug looks for an rgb.txt
file in the directory /usr/lib/X11. On Sun workstations, graphbug also
looks in the directory /usr/openwin/lib and uses the environment
variable OPENWINHOME, if it is defined.

The configuration file may override any or all of the standard color
tables but not individual colors. The first color defined for a table
replaces the default color table. Additional colors are added to the
color table. The first color in the text and line color tables should be
black. The grid color is not defined as a color table; defining the
grid color simply changes it.

Textual notations

Textual notations can be placed anywhere on the graph. Notes
defined in the configuration file support all of the options available
in the graph definition and the syntax of a note declaration is
nearly identical:

note: color alignment size x_location y_location text

table Either “line”, “fill”, “text” or “grid”.

red A value from 0.0 to 1.0 to represent the red content of a color.

green A value from 0.0 to 1.0 to represent the green content of a color.

blue A value from 0.0 to 1.0 to represent the blue content of a color.

string A color name from an X11 rgb.txt file. The color name must be
enclosed in quotes.

color Optional. A color may be defined by the keyword “COLOR”
followed by a color number.

alignment Optional. One of the keywords “LEFT”, “RIGHT” or “CENTER”.

size The size of the notation text in points when printed full size.

x_location The horizontal location of text. This is a number from 0.0 on the
left side of the graph to 1.0 on the right side.

y_location The vertical location of the baseline of the text. This is a number
from 0.0 at the bottom of the graph area to 1.0 at the top.
Creating Graphs with Graphbug E-21

The following example configuration file replaces the text color
table with a table containing the colors black and red. It also adds
the string “Company Confidential” in red text in the lower left
corner of the graph and prints the ending date of the graph in the
lower right corner:

text color: 0 0 0
text color: 1.0 0 0
note: COLOR 1 14 0.10 0.02 “Company Confidential”
note: RIGHT 18 0.9 0.02 “%x”

text A string containing the text of the notation. This string must be
quoted. The string may contain date and time references using
the popular %-notation defined in the table on page E-19.

E-22 ClearDDTS Administrator’s Guide

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Database Reference
F

This appendix describes the standard table definitions in their as
shipped state. You can modify the ClearDDTS database any
F-1

number of ways as you add or delete fields in existing tables, add
your own tables, or expand the functionality in other ways.

For the most up-to-date information, you can view the contents of
the schema file directly in $DDTSHOME/dbms/ddts/schema_file.

As shipped, the ClearDDTS database consists of the following
tables:

defects
enclosures
change_history

This appendix describes the fields associated with each of these
tables.

Defect information table (defects)

The defects table stores all of the basic defect tracking information.
It holds all of the actual defect records.

Field Data type Size Description

assigned_on datetime * Date defect was assigned to an
engineer.

children character 66 Children linked to this defect.

class character 14 Class this defect belongs to.

ddts_view character 1 Determines whether customer may view
this defect. (See Chapter 9 for details.)
Note: This field is derived from the View
field in defect records. The “ddts_” is
prepended to the field name because
view is an SQL keyword.

duplicate_of character 10 Record (ID) this is a duplicate of.

Field Data type Size Description
F-2 ClearDDTS Administrator’s Guide

duplicate_on datetime * Date defect was declared a duplicate.

enclosure_count character 2 Number of file enclosures for this defect.

engineer character 8 Login ID of person assigned to
analyze/fix the problem.

enhancement character 1 Indicates whether this is an
enhancement request (Y/N).

est_fix_date datetime * Estimated date this problem will be fixed.

est_fix_hours character 5 Estimated number of engineering hours
needed to solve the problem.

fix_hours character 5 Number of engineering hours expended
to resolve problem.

forwarded_on datetime * Date this record was last forwarded.

forwarded_to character 14 Name of project to which record was
forwarded.

headline character 72 One-line description of the problem.

how_found character 21 Strategy or method used to detect the
problem.

identifier character 10 Defect identifier.

last_mod datetime * Date this defect was last modified.

new_on datetime * Date defect was made new.

os_version character 10 Name/version of operating system on
which problem was found.

opened_on datetime * Date this record was last opened.

origin character 8 Flag that marks where a defect record
originates from (for example, Call, Gripe,
Null).

parents character 66 Parents linked to this defect.

postponed_on datetime * Date on which record was last
postponed.

project character 14 Project to which this record belongs.

resolution character 14 Description of what was changed to
correct the problem.

resolved_on datetime * Date the defect was resolved.

resolver_id character 8 Login ID of person who resolved the
problem.

security_token character 30 Mechanism for controlling who can view
the defect. (See Chapter 9 for details.)

Field Data type Size Description
Database Reference F-3

Note: The datetime fields marked with the asterisk (*) generally
use the format YYMMDD, but can be controlled using a
date_convert function. For more information about acceptable
formats and date conversion, see Chapter 14, Managing and
Customizing the ClearDDTS Database.

The following indexes are available for this table:

severity character 1 Severity of problem (by default, 1 - 5,
with 1 highest).

showstopper character 1 Indicates whether this defect is severe
and stopping others’ progress (Y/N).

software character 20 Name of software module or program
with the problem.

status character 1 State of the record (N, O, A, R, etc.).

submitted_on datetime * Date the record was submitted.

submitter_id character 8 Login ID of person who submitted this
record.

updated_by character 8 Login ID of person who the last updated
the record.

verified_on datetime * Date this problem’s fix was verified.

verifier_id character 8 Login ID of person who verified the
problem was fixed.

version character 10 Version of software module or program
with problem.

when_caused character 15 Software lifecycle phase in which the
problem was introduced.

when_fixed character 15 Software lifecycle phase in which the
problem was corrected.

when_found character 15 Software lifecycle phase in which the
problem was detected.

Index Key(s) Characteristics

bugid identifier Descending, no duplicates

bug.eg.st.sv engineer, status, severity Duplicates allowed

bug.pj.st.eg.sv project, status, engineer,
severity

Duplicates allowed

Index Key(s) Characteristics
F-4 ClearDDTS Administrator’s Guide

Enclosures table (enclosures)

The enclosures table stores defect enclosures (related files).

Note: Datetime field (*) generally use the format YYMMDD, but
can be controlled using a date_convert function. For more
information about acceptable formats and date conversion, see
Chapter 13, Managing and Customizing the ClearDDTS
Database.

The following indexes are available for this table:

bug.pj.st.sb.sv project, status, submitter_id,
severity

Duplicates allowed

bug.pj.st.sv project, status, severity Duplicates allowed

bug.sb.st.sv submitter_id, status, severity Duplicates allowed

bug.st.sv status, severity Duplicates allowed

Field Data type Size Description

identifier character 10 Defect identifier.

name character 32 Name of the related file.

operation character 16 Operation performed (for example,
the enclosure was added or
modified).

op_date datetime * Date this enclosure was added,
modified, or deleted.

engineer character 16 Login ID of the user who made the
change.

text variable No limit Text of the enclosure associated with
the defect.

Index name Key Characteristics

encl_id identifier Ascending, duplicates allowed

encl_name name Ascending, duplicates allowed

History table (change_history)
Database Reference F-5

The change_history table stores the complete history for each defect
as it changes states (for example, as it is submitted, assigned,
resolved, etc.).

Note: Datetime fields (*) generally use the format YYMMDD, but
can be controlled using a date_convert function. For more
information about acceptable formats and date conversion, see
Chapter 13, Managing and Customizing the ClearDDTS
Database.

The following index is available for this table:

Field Data type Size Description

identifier character 10 Defect record that was changed.

change_date datetime * Date the record was last changed.

engineer character 16 User who made the change.

text variable No limit History of changes made to the
defect.

Index name Key Characteristics

chg_hist_def_id identifier Ascending, duplicates allowed

F-6 ClearDDTS Administrator’s Guide

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Using an Oracle Database
G

Although ClearDDTS includes its own internal SQL database, you
can also use an Oracle database. This appendix provides some
G-1

general information about using ClearDDTS with an Oracle
database and provides guidelines for setting up your database to
handle defect tracking. You should be sure to consult the
documentation from Oracle for more complete information about
installing and managing your system.

This appendix does not provide complete definitions for
vendor-specific terms; if you are unfamiliar with the terminology
used in this appendix, consult your Oracle database
documentation for more information.

Identifying the database vendor

When you install ClearDDTS, the internal SQL database is
installed by default. To configure ClearDDTS to work with an
Oracle RDBMS, you use the adminbug chdb command to identify the
database. This information is stored in the file
~ddts/dbms/conf/dbvendor using the following format:

Vendor: <database>

When you change databases using the adminbug chdb command,
this file is updated with the appropriate information.

The adminbug chdb command also creates two other important
database-related files in the ~ddts/dbms/conf directory. These files
are named according to the database vendor for which they
contain information. For an Oracle database, these files are oracle
and oracle.priv.

Before running the adminbug chdb command, read the following
section and complete the Oracle database setup.

Working with an ORACLE database
G-2 ClearDDTS Administrator’s Guide

After installing ClearDDTS, you can run the adminbug chdb
command to indicate that you want to use an Oracle database.
Running this command sets up your oracle and oracle.priv files.
These files identify the specific database instance to use for
ClearDDTS and provide database security so that all users can
run queries (read-only access) but only the database administrator
(the special “user” ddts) can make changes to the database.

The oracle file makes the database public (readable) for most
users, using the following format:

Instance: <database_instance>
ReadOnlyUser: <username>
ReadOnlyPassword: <password>

The “private” file (oracle.priv) restricts access to the database so
that only ClearDDTS and the DBA can perform updates:

ReadWriteUser: ddts
ReadWritePassword: <ddts_password>

These two files refer to special database users — the read-only
user and ddts — who have specific privileges. You can use Oracle’s
SQL*DBA or SQL commands to create these users.

This section describes the steps you must take to set up Oracle
tablespaces, rollback segments, and finally the special users.
When these steps are completed you can run the adminbug chdb
command to switch to the Oracle database.

Creating tablespaces

Before you begin creating tables for ClearDDTS, you need to
Using an Oracle Database G-3

create some additional tablespaces and rollback segments to hold
your ClearDDTS installation. For a typical installation, you can
use the following guidelines as a starting point; however larger
sites may want to increase these values:

To create tablespaces for ClearDDTS, use Oracle’s SQL*DBA or
the SQL command create tablespace. Remember to set aside enough
tablespace to handle growth, and enough to rollback table space to
commit the data. For example:

CREATE TABLESPACE ddts_tables
datafile’/disk1/clearddts_oracle/ddtstbl01.dbf’
SIZE 30 M;

CREATE TABLESPACE ddts_tmp
datafile’/disk1/clearddts_oracle/ddtstmp01.dbf’
SIZE 5 M;

CREATE TABLESPACE ddts_rbs
datafile’/disk1/clearddts_oracle/ddtsrbs01.dbf’
SIZE 5 M;

Note: The ddtsdbbuild program commits after inserting 250
records. To change the commit rate run ddtsdbbuild directly,
instead of through adminbug dbms, as follows:

ddtsdbbuild -commit_every <N>

where N is the number of records you want to process before a
commit.

You can also have ddtsdbbuild print more verbose SQL
information in the ~ddts/spool/ADMINLOG by running:

ddtsdbbuild -verbose

Tablespace Recommended Size

ddts_tables for ClearDDTS data tables 60MB

ddts_tmp for temporary tables 5MB

Creating rollback segments

After you have created the tablespaces for ClearDDTS, you are
G-4 ClearDDTS Administrator’s Guide

ready to create rollback segments. To get started, use SQL*DBA or
the create rollback segment command to create a temporary rollback
segment in the SYSTEM tablespace. For example:

CREATE ROLLBACK SEGMENT tmp_rbs
TABLESPACE system
STORAGE (INITIAL 250K MINEXTENTS 5);

Bring this rollback segment online and add it to the
init<ORACLE_SID>.ora file. You are now ready to create the ddts_rbs
rollback segment. For example:

CREATE ROLLBACK SEGMENT ddts_rbs1
TABLESPACE ddts_rbs
STORAGE (INITIAL 250K MINEXTENTS 5);

CREATE ROLLBACK SEGMENT ddts_rbs2
TABLESPACE ddts_rbs
STORAGE (INITIAL 250K MINEXTENTS 5);

CREATE ROLLBACK SEGMENT ddts_rbs3
TABLESPACE ddts_rbs
STORAGE (INITIAL 250K MINEXTENTS 5);

CREATE ROLLBACK SEGMENT ddts_rbs4
TABLESPACE ddts_rbs
STORAGE (INITIAL 250K MINEXTENTS 5);

Creating database users

Although any database user can be the owner of the ClearDDTS
tables, for security reasons, you may want to create a ddts database
user and make this user the owner of the ClearDDTS database
tables. For example:

CREATE USER ddts
IDENTIFIED BY ddts
DEFAULT TABLESPACE “DDTS_TABLES”
TEMPORARY TABLESPACE “DDTS_TMP”
PROFILE “DEFAULT”;
ALTER USER ddts
DEFAULT ROLE ALL
PROFILE “DEFAULT”;
GRANT “CONNECT” TO “DDTS”;

In addition to the user ddts, you should create a read-only user (if
one does not already exist) to provide normal users with read
Using an Oracle Database G-5

access to all ClearDDTS tables. For example:

CREATE USER readonly
IDENTIFIED BY readonly
DEFAULT TABLESPACE “USERS”
TEMPORARY TABLESPACE “TEMP”
PROFILE “DEFAULT”;
ALTER USER readonly
DEFAULT ROLE ALL
PROFILE “DEFAULT”;
GRANT “CONNECT” TO “READONLY”;

Depending on the requirements of your installation, the users,
privileges, and roles you need to establish may vary. Refer to your
Oracle documentation for more complete information.

Creating tables

Once the Oracle setup is complete, log in as the user ddts and run
the adminbug chdb command. After running adminbug chdb,
ClearDDTS automatically runs the adminbug dbms command to
build the database. This command creates the ClearDDTS tables
using Oracle’s default storage parameters. If you want to make
changes to tables, follow the procedures in your Oracle
documentation. You can use the information in Appendix A, to
help you identify the fields you will need. Here is a simplified
example of table creation:

CREATE TABLE defects (
 identifier CHAR(10),
 class CHAR(14),
 .
 .
 .)

Since ClearDDTS creates the tables with the default storage
parameters, you should use your Oracle tools to monitor and tune
your system as appropriate for your environment. Refer to your
Oracle documentation for complete information about estimating
table size, adjusting table parameters, and managing the
database.

Searching enclosures

The ClearDDTS SQL database server allows users to search
G-6 ClearDDTS Administrator’s Guide

unlimited length enclosures in queries. However, this feature is
not available if you are using Oracle as the SQL server.

As a workaround, you can use fixed length text of 1 or 2Kb to store
the enclosure fields. This allows you to search the first 1 or 2Kb of
enclosure text in your searches.

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Information Resources on the Web
H

This appendix lists some locations of resources on the World Wide
Web that describe HTTP servers, HTML, and CGI scripts.
H-1

HTTP servers

Apache

http://www.apache.org

Netscape

http://home.netscape.com/comprod/server_central/index.html

General

http://webcompare.iworld.com/compare/chart.html

http://www-genome.wi.mit.edu/WWW/faqs/www-security-faq.html

FastCGI

http://www.fastcgi.com

HTML

http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html

http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/fill-out-form
s/overview.html

http://lcweb.loc.gov/global/internet/html.html

http://www.nlc-bnc.ca/ifla/I/training/colour/colour.htm

CGI scripts
H-2 ClearDDTS Administrator’s Guide

http://hoohoo.ncsa.uiuc.edu/cgi

http://www.cgibook.com/

C L E A R D D T S A D M I N I S T R A T O R ’ S G U I D E

Index
renm 5-18
A
access control 5-10 rprj 5-17, 6-2

smnt 2-5
changing states 5-10
for network data 12-6
for pages 12-3–12-6

access.conf file 12-3, 12-4
adjacent bar graphs E-8
adminbug

administration tasks 2-1
commands

alic 3-11
aprj 5-5, B-2
asub 5-18
bprj 4-5, 5-16
chdb 3-6, G-1
clas 5-1
conn 3-8, 4-5
cprj 5-13, 6-1
dbms 3-4, 3-6, 3-8, 5-4, 5-14,

5-18, 6-2, 13-6, B-10, G-5
dcls 5-2
dcon 3-9, 6-3

submit.sites file 6-3
dprj 5-14, 6-2
dsbl 3-4, 6-3
dsub 5-20, 6-3
emnt 2-5
entering 2-3
inst 3-2
ladm 3-10
lbug 5-21
lown 5-22
lprj 5-21
lsit 3-10
lsub 5-22
meta 5-4
mins 3-5
mmta 5-5
mprj 5-14, 15-12
msub 5-20
oprj 5-14
rcls 5-3
Index 1

sprj 5-16, 6-2
summary 2-3

editing template files 8-13
getting help 2-3
introduction 2-2
network administration 3-1
quitting 2-5
starting 2-3

administration utilities 2-1
administrator

address 3-2
listing names 3-10

aliases 14-8, 14-10
mail 11-3

allbugs directory 1-6, 8-5, 13-1
backing up 13-2
location A-1

aprj 5-5, B-2
ASCII files

converting to ClearDDTS B-3
field descriptions

defects A-3–A-6
format A-1
location A-1

asub 5-18
awk 9-4
awk scripts

customizing 8-17

B
batchbug 2-2, 2-7, 10-5
begin field derivation 7-3
binary data 13-6
bprj 4-5, 5-16
bugmail

OPERATION values 7-5
bugmail-diff-command 11-13
bugmail-ignore-fields file

2 Index

Suppress-mail field 11-12
bugs

OPERATION values 7-4

conn 3-8, 4-5
conversion

common mistakes B-2

bugs.in 13-1
bugval 10-5

C
cache directory, for web pages 8-26
CGI scripts

definition 7-16
change management 15-2, 15-12
change proposals (CPs) 10-2
change_history filter 11-10

options 11-11
chdb 3-6, G-1
children, in defect linking 10-2
clas 5-1
classes

adding 5-1
customization 5-2
deleting 5-2
grouping into meta-class 5-4
introduction 1-1
maintaining 5-1
naming conventions 5-2
renaming 5-3

ClearDDTS
administrator

changing 3-5
listing names 3-10

maintenance mode 2-5
moving 3-4
network 1-2
SQL database G-1
version number 2-6

clone.prompt 8-20
cm.tty.sh 15-12
columns

aliases 14-8
changing headings 14-9
introduction 14-1
using aliases 14-10

command line query, ddtssql 14-1
output format 14-4
starting 14-2

configuration management (CM)
access control policies 15-11
reasons for integration 15-1
roles 15-16
version control 15-3–15-5
support@rational.com

defect record format B-3
defining projects B-2
quick reference B-1
states/status field B-5
suggestions B-1
to ClearDDTS B-1
utility B-10

correlation names 14-9
cprj 5-13, 6-1
crontab 2-6
customization

adding new classes 5-2
adding new fields to

master.tmpl 8-5
adding states 8-6–8-17
adding states to master.tmpl 8-11
adminbug templates 8-13
class directories 5-2
creating new reports 9-6
debugging 8-31
default values 7-12
deleting fields from

master.tmpl 8-6
editing the statenames file 8-7
enclosures 8-19
field dependencies 8-17
location of files to customize 8-3
multiple pages in xddts 8-27
preparation 8-2
query index 8-15–8-16

webddts 8-15
xddts and bugs 8-16

state reports 8-17
template files

common
modifications 8-17–8-20

three-line summary files 8-17
xddts 8-27

customizations
web interface specific 7-18

D
daemon process, ddtsd 13-1
daemons 2-5
dashed line graphs E-10
data storage 1-6
data types 13-4

support@rational.com

database
aggregate comparisons 14-7
backups 13-2

submit.sites file 6-3
ddtsappend 11-15
ddtsbackend 10-3
binary data 13-6
bugs.in file 13-1
changing 3-6, G-1
converting to ClearDDTS B-1
data types 13-4
database.cfg file 13-1
date conversions 14-7
editing database.cfg file 13-5
external G-1
flat files 13-1, A-1
how information is posted 13-1
index definition 13-5
instance 3-7
internal vs. external G-1
modifying 13-3
moving 6-1, 6-5
performance 13-4
placement on the network 1-4
rebuilding 3-4, 3-6, 3-8, 5-4, 5-14,

5-18, 13-6
retrieving information 14-1
schema 13-1, 13-3

editing 13-4
schema file F-1
searching enclosures

Oracle database
searching

enclosures G-6
size 14-1
SQL 1-6, 13-1
supported SQL statements 14-10
table definitions F-1

change_history F-5
defects F-1–F-3
enclosures F-4

table/column aliases 14-8
tables 13-5
unsupported SQL

statements 14-11
database.cfg 13-5
database.cfg file 13-1
date conversion 14-7, F-3
dawk/dgawk scripts 9-4
dbms 3-4, 3-6, 3-8, 5-4, 5-14, 5-18,

6-2, 13-6, B-10, G-5
dbvendor G-1
dcls 5-2
dcon 3-9, 6-3
Index 3

ddtsclean 2-2, 2-6
ddtsconvert B-10
ddtsd 13-1
ddtsdbbuild

commit rate G-3
ddtshostname 3-3
ddtsinstall 6-4
ddtsmailbug 11-14, D-1
ddtsrc

example 7-13
ddtssql 14-1

output format 14-4
starting 14-2

ddtsversion 2-2, 2-6
default values 7-12

web interface (webddts) 7-14
xddts 7-12

defect
e-mail submission D-1

defect identifier (bugid) A-3
defect tracking

integrating with CM 15-1
defects

classifying 1-1
contents of a record A-1
converting to

ClearDDTS B-3–B-9
database table F-1–??
field descriptions A-3
file format A-1, B-3
identifier (ID) 1-3
life cycle 1-2
linking 10-1

configurations/relationships 10
-2

ddtsbackend 10-3
defining actions 10-3
limit, configuring 10-2
link actions 10-2
parents A-5

local and remote submission 1-5
mail submission D-2
making viewable 12-11
record format A-1
remote submission 1-4
removing 2-8
required fields A-7
sample file A-1–A-2

4 Index

setting permissions 12-10
display

modifying webddts 8-21

required A-7
file locking 5-7
filter commands 7-3, 8-21
display-added-enclosures field 11-13
domain

mail 11-6
dprj 5-14, 6-2
dsbl 3-4, 6-3
dsub 5-20, 6-3
dumpbug

OPERATION values 7-5

E
editencl.tmpl, customizing 8-20
enclosures

count A-4
database table F-4
forcing usage 8-19
formatting A-1, B-2
making required 8-19
searching G-6

engineer A-4
Engineer-mail field 11-4
enhancements A-4
export files 4-1, 5-5

editing 4-2
examples 4-4
location 4-1
project naming conventions 4-4
purpose 4-1
syntax 4-2
using with asub command 5-19

external database, using G-1

F
field derivation

most common 7-7
syntax 7-7–7-11

field derivation lines 7-1, ??–7-13
field derivations

input and output 7-9
field descriptions

defects A-3–A-6
field grouping

field modifiers 8-23
in webddts pages 8-22
table modifiers 8-23

field-level help 7-3
fields
support@rational.com

sample C-1
flat files 1-6
formatting

dates F-3
defect records D-3
input and output 7-9

forwarding A-4, A-8

G
gifbug 9-5
graphbug 9-4, 9-6

color tables E-19
command line options E-1–E-2
components of graph

description E-3
configuration file E-19
data section E-17
data types E-4
graph types

adjacent bar E-8
dashed line E-10
introduction E-7
marked line E-10
pareto E-11
pie charts E-14
scatter E-12
stacked bar E-9
stacked line/filled area E-11

header section
horizontal axis types E-6
legend parameters E-17
margin definitions E-16
titles E-4
vertical scale E-4

introduction E-1
notes section E-18–E-19
textual notations E-20
usage E-2

H
headline A-4
help

field-level 7-9
path 7-9
Web resources H-1

help path 7-3

support@rational.com

history
database table F-5

htaccess file 12-3, 12-5

lown 5-22
lprj 5-21
lsit 3-10
htpasswd file 12-4, 12-6
HTTP

access log files 12-7
access.conf file 12-3
htaccess file 12-5
htpasswd file 12-4
network data 12-6
owner 12-1
security 12-1

Hypertext Markup Language
(HTML) 7-15

I
identifier A-4
import files 4-1, 5-5

location 4-2
purpose 4-2
syntax 4-5
using with asub command 5-19

indexes 13-5
information, how stored 1-6
inst 3-2
installation

adding machines to the
network 3-2

installation parameters,
modifying 3-5

installations
connecting 3-8

installsb.sh 15-12

L
ladm 3-10
lbug 5-21
licensing

adding 3-11
life cycle, defects 1-2
link semantic 10-2
linking

configurations/relationships 10-2
ddtsbackend 10-3
defect records 10-1
defining actions 10-3
limit, configuring 10-2
link actions 10-2

login name, security 12-2
Index 5

lsub 5-22

M
machine

adding to the network 3-2
disabling 3-4

machine naming conventions 1-3
machines

connecting 3-8
moving 6-3

mail 1-2
aliases 5-8
aliases file 11-3
appending to defects 11-14
bugmail-diff-command 11-13
bugmail-ignore-fields file 11-12
change_history filter 11-10

options 11-11
changing 3-5
checking addresses 6-4
ClearDDTS administrators 3-2
customizing 11-6
daemon process 1-3
ddtsappend 11-15
ddtsmailbug 11-14
debugging 11-7
display-added-enclosures

field 11-13
domain 11-6
e-mail submission D-1

example D-2
Engineer-mail 11-4
example 11-3
fields in master.tmpl 11-5
for changed site IDs 11-14
format for submitting

defects 11-14, D-3
handling

introduction 1-3
mail.subject file 11-6
message-template 11-9
notification lists 11-5
notification of state changes 5-7
notification options 11-7
notification template

(notify.tmpl) 11-6
OPERATION n 11-10

6 Index

Other-mail 11-4
path A-3
process 11-2

site identifier 1-3
network

administrator mail address 3-2

program to use 3-3
reasons for using 11-1
retransmitting 1-5, 5-13, 5-16
sending to updater 11-4
show-enclosures-on-submit

field 11-13
subject 11-12
Submitter-mail 11-4
suppressing 11-12
types 11-2
user-specific 11-6
who receives 11-4

mail.subject file 11-6
maintenance mode

entering 2-5
exiting 2-5

marked line graphs E-10
master.tmpl

adding new fields 8-5
adding states 8-11
begin field derivation 7-3
default field values 7-12
displaying multiple pages 8-28
field derivation lines 7-2–7-13
filter commands 7-3
help path 7-3
if www statement 7-18
mail fields 11-5
mail processing 11-10
oneof path 7-3
OPERATION field 7-4

values 7-4
purpose 7-1
syntax 7-7–??

message-template 11-9
meta 5-4
meta characters 7-11
meta-classes

defining 5-4
modifying 5-5

mins 3-5
mmta 5-5
mprj 5-14
msub 5-20

N
naming conventions
support@rational.com

communication by mail 1-2
configuration

changing 6-1
disconnecting sites 3-9
establishing 3-2
example 1-4
moving machines 6-3
using import/export files 4-1

disabling a machine 3-4
distributed operation 1-2
reconfiguring 6-1

Network File System (NFS) 1-4
newduser 2-2, 2-6
notification lists 5-8, 5-19, 8-14, 11-5
notification mail 8-20

see mail
notification options 11-7
notify.tmpl 8-20, 11-6

O
oneof 7-3, 7-10
oneofs

projects available for 5-23
OPERATION field 7-4

how used 7-5
programs using 7-4
values 7-4

OPERATION n 11-10
oprj 5-14
Oracle database

creating users G-4
instance 3-7
modifying tables G-5
owner 3-7
read-only user 3-7
rebuild commit rate G-3
rollback segments G-4
security 3-7, G-2
switching to 3-6
table parameters G-5
tablespaces G-3
using G-1
vendor-specific files G-1

Other-mail field 11-4

support@rational.com

P
page access, monitoring 12-7–??

allowing 5-9
deleting 5-20
modifying 5-20
page access,monitoring ??–12-7

parameters
modifying 3-5

parents, in defect linking 10-2
pareto graphs E-11
patchbug 2-2, 2-6, 6-4
permissions 5-10
pie charts E-14
problem reports (PRs) 10-2
proj.control file

with project subscription 5-19
projck 2-7
projects

adding 5-5–5-12
archiving 5-17
availability for oneofs 5-23
broadcasting 5-16
closing 5-13
converting from another

system B-2
defining the CM system 15-12
deleting 5-14
home system 1-2
importing/exporting 3-8, 4-2
inheriting characteristics 5-7
introduction 1-1
listing

names/descriptions 5-21
owned on this machine 5-22
parameters 5-21
subscribed 5-22

listing sites 3-10
maintaining 5-5
management 5-9
modifying parameters 5-14
moving 6-1
naming 4-4, 5-6
notification list 5-7–5-9
opening previously closed 5-14
remote sites 5-7
renaming 5-18
restoring from tape 5-17
saving and moving 5-16
security 5-7
setting permissions 5-10, 12-7,

12-9
subscriptions 3-4

adding 5-18
Index 7

receiving mail about 5-10
security 5-19

subscriptions,defined 1-5
projstat 2-2, 2-7, 5-12
pseudo states 8-8
pseudo-states 8-12

Q
queries

aggregates
performing comparisons 14-7

column aliases 14-8
definition 14-1
table aliases 14-8
writing in SQL 14-3–14-6

query
ddtssql 14-1

output format 14-4
starting 14-2

query index
modifying 8-15–8-16

R
rcls 5-3
rdtest 2-2, 2-8
read access control 5-19, 12-9, 12-10
records

contents A-1
file format A-1

refreshbug 2-7, 5-20
release management 15-1
remote access 4-1
remote file locking 5-7
remote modification 5-7
remote sites 3-9
renm 5-18
report_conf file 9-1

example 9-2
reports

creating 9-6
creating and customizing 9-1
gif format 9-8
gifbug 9-5

gifbug 9-8
graphbug 9-4, 9-6
HTML format 9-9

8 Index

in xddts 9-4
integrating 9-10
output format options 9-3

write access control 12-7
xddts specific 12-13

read access per field 12-14

PostScript graphs E-1
report_conf file 9-1

example 9-2
standard scripts 9-3
tallybug 9-4, 9-5
webddts 9-5

required enclosures 8-19
resolve.encl, customizing 8-20
rmbug 2-2, 2-8
rollback segments G-4
rprj 5-17, 6-2

S
scatter graphs E-12
schema 13-1
schema file 13-3, F-1

editing 13-4
location 13-3

security ??–12-7
.htaccess file

HTTP
.htaccess file 12-3

access.conf file 12-3
editing 12-4

adding htaccess file 12-5
for network data 12-6
for pages 12-3–12-6
htpasswd 12-6
htpasswd file 12-4
HTTP access log files 12-7
HTTP concerns 12-2
HTTP for webddts 12-1
HTTP owner 12-1
identifying web users 12-1
import/export files 4-1
logging in 12-2
making defects viewable 12-11
monitoring page access 12-7
projects 5-10
read access

per defect 12-10
per project 12-9

remote modification 5-7
types 12-1
view field A-6
write access

per project 12-7
support@rational.com

write access per field 12-13
setdsrc 7-13
show-enclosures-on-submit

field 11-13
showstopper A-5
site identifier

changing 3-4
defining 3-3
description 1-3

sites
connecting 3-8
disconnecting 3-9
listing connections 3-10

Softbench 15-12
sprj 5-16, 6-2
SQL

aggregate comparisons 14-7
database 1-6, G-1
date conversion 14-7
ddtssql query program 14-1

output format 14-4
starting 14-2

recommended reading 14-12
supported syntax 14-10
unsupported statements 14-11

SQL database 14-1
stacked bar graphs E-9
stacked line graphs E-11
STATE field 7-5

how used 7-5
master.tmpl

STATE field 7-4
state transitions

adding fields 8-5
defined 1-2
defining user notification 5-7
write access control 5-10

statenames file 8-7
states

adding 8-6–8-17
attributes 8-8
conversion considerations B-5
customizing reports 8-17
difference reports B-5–B-9
editing adminbug templates 8-13
editing the statenames file 8-7
editing three-line summary

files 8-17

support@rational.com

file, editing 8-9
mainline set 8-8
modifying query index 8-15–8-16

W
web interface
notification lists 8-14
order 8-8
transition order diagram 8-9

Structured Query Language (SQL)
introduction 14-2
learning 14-2

subject field
mail 11-12

submit.encl, customizing 8-20
submit.sites file 6-3
Submitter-mail field 11-4

T
tables

aliases 14-8
creating G-5
introduction 14-1

tablespaces G-3
tallybug 9-4, 9-5, E-1
technical support xvii
template files

adminbug 8-13
common modifications 8-17–8-20
example of master.tmpl 7-1
meta characters 7-11
syntax errors 2-2, 2-8
testing 2-8, 8-31

three-line summary files
editing 8-17

tmpltest 2-2, 2-8, 8-15, 8-31

U
UNIX

environment variables 7-14
mail systems 1-2

user.index file 8-16
UUCP 1-4

V
verification A-6
version control 15-3–15-5
view A-6
Index 9

customizations 7-18
interpreting master.tmpl 7-15
refreshing after changes 8-21

web interface (webddts)
attachment-ignore-ext 8-25
auto-encl-wrap 8-25
cache directory 8-26
customizing using if www 7-18
customizing with web_conf 8-25
default values 7-14
enclosure-icon-wrap 8-25
encl-width 8-25
expand-enclosures 8-25
field grouping 8-22
field modifiers 8-23
generating web pages from

master.tmpl 7-15
generation 7-15
gifbug 9-8
HTML reports 9-9
HTTP security 12-1
project-pre-prompt 8-25
report_gifsize 8-25
report_run_mode 8-25
report_scale_labels 8-25
report_scale_ticks 8-25
reports 9-5
restrictions 7-16
table modifiers 8-23
toolbar-mode 8-26
updating the database from 7-16

web_conf file
attachment-ignore-ext 8-25
auto-encl-wrap 8-25
customizing 8-25
enclosure-icon-wrap 8-25
encl-width 8-25
expand-enclosures 8-25
project-pre-prompt 8-25
report_gifsize 8-25
report_run_mode 8-25
report_scale_labels 8-25
report_scale_ticks 8-25
toolbar-mode 8-26

webddts
modifying displays 8-21
OPERATION values 7-4

write access control 5-19, 12-7

10 Index

wtform 7-15
wttmpl 7-16
X
xddts

default values with .ddtsrc 7-12
index formatting 7-13
OPERATION values 7-4
reports 9-4
UNIX environment variables 7-14
support@rational.com

	Preface
	Intended audience
	Using this manual
	Where to go for more information
	Questions or suggestions? Contact us

	Understanding ClearDDTS Operation
	What is ClearDDTS?
	How defects are classified
	Understanding the defect life cycle

	Distributed operation
	UNIX mail for flexible communication
	How ClearDDTS handles its mail
	Naming conventions

	The ClearDDTS network
	Communication between local and remote installations
	Providing project subscriptions
	When the mail system goes down

	How information is stored

	Using Administration Utilities
	Basic ClearDDTS utilities
	Using adminbug
	Entering commands
	Set up maintenance mode (smnt)
	Exit maintenance mode (emnt)
	Quit adminbug (quit)

	More administrative utilities
	ddtsclean
	ddtsversion
	newduser
	patchbug
	batchbug
	projck
	projstat
	refreshbug
	rdtest
	rmbug
	tmpltest

	Maintaining the Network
	Install machine on ClearDDTS network (inst)
	Disable ClearDDTS machine (dsbl)
	Modify ClearDDTS installation parameters (mins)
	Build ClearDDTS database (dbms)
	Change database (chdb)
	Establish connection between sites (conn)
	Remove connection between sites (dcon)
	List other sites connected to this system (lsit)
	List ClearDDTS administrator names (ladm)
	Add licenses (alic)

	Managing Remote Access Between Multiple Installations
	How the import and export files are used
	The export file
	Examining a sample file
	How the file is read
	Further examples
	Importance of project naming conventions
	Applying changes to the export file

	The import file

	Maintaining Classes and Projects
	Maintaining classes
	Add a new class (clas)
	Delete a class (dcls)
	Rename a class (rcls)
	Create a meta-class (meta)
	Modify a meta-class (mmta)

	Maintaining projects
	Add a new project (aprj)
	Considering project naming conventions
	Entering project information
	Setting up project notification
	Setting up project security
	Informing the ClearDDTS network of the new project

	Close a project (cprj)
	Delete a project and project data (dprj)
	Open a closed project (oprj)
	Modify project parameters (mprj)
	Broadcast project parameters (bprj)
	Save a project (sprj)
	Restore a project (rprj)
	Rename a project (renm)
	Ask to subscribe to a project (asub)
	Delete subscription to a project (dsub)
	Modify subscription parameters (msub)
	List all project parameters (lprj)
	List project names and descriptions (lbug)
	List projects owned on this machine (lown)
	List projects being subscribed to on this machine (lsub)
	View project availability for oneof lists

	Reconfiguring a ClearDDTS Network
	Moving a project
	Physically moving the machine to a new location
	If e-mail addresses are not valid after moving
	If e-mail addresses are still valid
	Checking addresses after the move

	Moving the ClearDDTS database

	Understanding the Master Template File
	Example master.tmpl file
	Understanding the “Begin” field derivation section
	Other field derivations
	Understanding OPERATION and STATE
	How OPERATION and STATE are used
	Most common derivation
	A closer look at derivation lines

	Setting default values
	Defaults in xddts
	Defaults in webddts

	How webddts pages are generated
	Web page generation—the big picture
	Updating the database
	Restrictions—what is not interpreted
	Standard field derivation
	Non-standard field derivations
	webddts specific customizations

	Customizing ClearDDTS
	Before making changes
	Locating files to customize
	Adding new fields
	Adding defect states
	Editing the state names file (statenames)
	Placing a New State in the File

	Editing the state transitions file (states)
	Editing the master template file (master.tmpl)
	Modifying the master.tmpl for New States

	Editing administrative template files
	Modifying the information in a query index
	Index display in webddts
	Index display in xddts and bugs

	Editing the three-line summary template file
	Changing the reporting system for new states

	Further template customization
	Creating field dependencies
	Prompting for and requiring enclosures
	Customizing enclosures, prompts, and e-mail
	Creating custom filter commands

	Specific webddts customizations
	Label and type modification via the “www” filter
	Web layout using field grouping
	Example

	Web display options via the web_conf file
	Maintaining the cache directory

	Specific xddts customizations
	Adding new pages
	Using the PAGE variable and return statement
	Modifying the master template to display other pages
	Implementing other customizations

	Debugging a custom template file
	Setting up a dummy class
	Testing a template file

	Creating Custom ClearDDTS Reports
	Understanding how reports work
	The report_conf file
	Report scripts
	xddts
	webddts

	Creating Reports
	GIF reports
	This clarifies what each gif will display when you click on the link. Be sure that the descriptio...
	HTML reports

	Integrating a report into the xddts and webddts interfaces

	Customizing Link Actions
	What is defect linking?
	Configuring links
	Defining link actions

	Handling ClearDDTS Mail
	Why use electronic mail?
	How ClearDDTS handles mail
	Types of ClearDDTS mail
	Looking at an example

	Determining who receives mail
	Notification list

	Customizing notification mail
	Mail Domain
	Debugging Tool
	Notification Options
	Special variables
	Message-template
	Change_history filter
	Defect access with webddts
	Subject
	Suppress-mail and Bugmail-ignore-fields file
	Display-added-enclosures
	Show-enclosures-on-submit
	Bugmail-diff-command

	Mail for changed sites

	Sending mail to ClearDDTS

	Managing ClearDDTS Security
	HTTP (web) security
	Identifying the user
	What happens when HTTP security is not implemented
	Controlling access to web pages
	Editing the access.conf central access configuration file
	Adding the file .htaccess to the directory

	Controlling access to data across the network
	Monitoring access to webddts pages

	Write access control
	Read access control
	Per-project read access control (adminbug)
	Per-defect read access control
	Using the OTHER security token
	Making defects viewable

	xddts specific security
	Controlling field access by customizing the master.tmpl file
	Field read access control

	Managing and Customizing the ClearDDTS Database
	How information is posted to the database
	Backing up and restoring the database
	Reviewing the database schema
	Modifying the database
	Editing the schema file
	Data types
	Indexes

	Editing the database configuration file
	Rebuilding the database

	Using the ClearDDTS SQL Interface
	Learning SQL
	Starting the SQL command line interface
	Writing Queries
	Using dates with the Oracle database
	Formatting query output
	Using SQL in a Script
	Retrieving Information from Multiple Tables

	ClearDDTS and standard SQL
	Date conversion
	Aggregate comparisons
	Table and column aliases
	Supported SQL statements
	Unsupported SQL statements

	Recommended reading

	Creating a Change Management System
	Understanding Release/Configuration Problems
	Providing an Integrated Solution
	Version Control Integration
	Configuration Integration
	Process Integration

	Setting Up ClearDDTS for Change Management
	Providing Access Control
	Installing CMCS

	A Closer Look at CM Scripts and Utilities
	The cm.tty.sh Script
	CM Macro Files
	The cmsetuser Utility
	Convenience Shell Scripts
	CM Access Control Process

	How ClearDDTS Supports Roles

	Contents of a Defect Record
	Sample file
	Field descriptions
	Fields required by ClearDDTS utilities
	Fields with special significance

	Converting to ClearDDTS
	Ensuring a successful conversion
	Identifying your projects
	Creating projects and classes
	Creating ClearDDTS defect records
	Format of a ClearDDTS record
	Filling in some special fields
	Assigning states to defects

	Running the conversion utility
	Incorporating defects into the database

	Sample Filter Command Script
	Script example

	E-mail Submission API
	Creating Graphs with Graphbug
	Using Graphbug
	Command line options
	Description

	Defining graph contents
	Header section
	Graph titles
	Vertical axis
	Horizontal axis
	Linear horizontal axis type
	Date-based horizontal axis types
	Enumerated horizontal axis types

	Graph types
	Adjacent bar graphs
	Stacked bar graphs
	Dashed line graphs
	Marked line graphs
	Stacked line graphs
	Pareto graphs
	Scatter graphs
	Pie charts

	Margin definitions
	Legend parameters

	Data section
	Notes section
	Graphbug configuration file
	Color definitions
	Textual notations

	Database Reference
	Defect information table (defects)
	Enclosures table (enclosures)
	History table (change_history)

	Using an Oracle Database
	Identifying the database vendor
	Working with an ORACLE database
	Creating tablespaces
	Creating rollback segments
	Creating database users
	Creating tables
	Searching enclosures

	Information Resources on the Web
	HTTP servers
	Apache
	Netscape
	General

	FastCGI
	HTML
	CGI scripts

	Index

