
support@pureatria.com
http://www.pureatria.com

Getting Ahead with Purify

IMPORTANT NOTICE

DISCLAIMER OF WARRANTY
Pure Atria makes no representations or warranties, either express or implied,
by or with respect to anything in this manual, and shall not be liable for any
implied warranties of merchantability or fitness for a particular purpose or for
any indirect, special or consequential damages.

COPYRIGHT NOTICE
Copyright 1996-1997 Pure Atria. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or
transmitted, in any form or by any means, photocopying, recording or
otherwise, without prior written consent of Pure Atria. No patent liability is
assumed with respect to the use of the information contained herein. While
every precaution has been taken in the preparation of this book, Pure Atria.
assumes no responsibility for errors or omissions. This publication and
features described herein are subject to change without notice.

The program and information contained herein are licensed only pursuant to
a license agreement that contains use, reverse engineering, disclosure and
other restrictions; accordingly, it is “Unpublished — rights reserved under the
copyright laws of the United States” for purposes of the FARs.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to the restrictions
as set forth in subparagraph (c) (1) (a) of the Rights in Technical Data and
Computer Software clause of the DFARs 252.227-7013 and FAR 52.227-19(c)
and any successor rules or regulations.

TRADEMARKS
Purify is a U. S. registered trademark of Pure Atria. Pure Atria, the Pure
Atria logo, and PowerCheck are trademarks of Pure Atria in the United
States and in other countries.

Covered by one or more of U.S. Patent Nos. 5,193,180, 5,335,344, and
5,535,329. Licensed under Sun Microsystems Inc.'s U.S. Pat. No. 5,404,499.
Other U.S. and foreign patents pending.

All other products or services mentioned in this manual are covered by the
trademarks, service marks, or product names as designated by the companies
who market those products.

Printed in the U.S.A.

G E T T I N G A H E A D W I T H P U R I F Y

3

Contents

Welcome to Purify

Check every component in your program .5

Find errors before they occur .6

Don’t wait—use Purify early and often .6

Getting started

Instrumenting and running a program .7

Seeing all your errors at a glance .9

Focusing on critical errors first .11

Analyzing messages .13

Correcting errors .14

Comparing program runs .15

Saving error view data .16

Using Purify’s power features

Integrating Purify into Microsoft Developer Studio 9717

Customizing error detection .18

Using just-in-time debugging .19

Extending error checking with Purify API functions20

Using Purify in an existing test environment20

Sharing Purify data across the team .21

Index .23

4 Getting Ahead with Purify

G E T T I N G A H E A D W I T H P U R I F Y

5

Welcome to Purify

Today’s competitive software development is component based.
To deliver quality applications on time, you not only need to make
sure your own code is error free, you also need a way to check the
components your software uses—even when you don’t have the
source code.

That’s where Purify can help you get ahead. Purify is the fastest
and most comprehensive run-time error detection tool available.
It automatically integrates into Microsoft Developer Studio 97,
it requires no special builds, and it lets you customize error
detection for each component in your program.

Check every component in your program

Purify thoroughly checks every component in your program, even
in complex multi-threaded, multi-process applications including:

■ COM-enabled applications using OLE and ActiveX controls
■ DLLs, including Windows DLLs and Microsoft Foundation

Classes (MFC)
■ C/C++ components embedded within Visual Basic applications,

Internet Explorer, Netscape Navigator, or any Microsoft Office
application

■ Excel and Word plug-ins

6 Getting Ahead with Purify

Find errors before they occur

Purify reports these and many other memory errors before they
actually occur, so you can correct them quickly:

■ Array bounds errors
■ Accesses through dangling pointers
■ Uninitialized memory reads
■ Memory allocation errors
■ Memory leaks

Purify also checks calls to Windows APIs, validating parameters
for every memory handle and pointer passed through the API.
These include GDI, Internet services, system registry, and COM
and OLE interface APIs.

More information? For a complete list of the errors Purify finds,
select Help > Purify Messages in the Purify main window.

Don’t wait—use Purify early and often

For maximum benefit, start using Purify as soon as your code is
ready to run and continue using it regularly throughout your
development cycle, especially for:

Acceptance tests: Validate third-party code or code from other
development groups before incorporating it into your application.

Code check-in: Reduce the risk that bugs in your code might
impact other code modules.

Nightly builds: Incorporate Purify into your test harness to
verify that modules work together, and to expose code
dependencies and collisions.

By using Purify early and often, you’ll release clean, reliable
products on time!

G E T T I N G A H E A D W I T H P U R I F Y

7

Getting started

With Purify, you can deliver cleaner code in a few easy steps:

■ Instrument and run an executable program
■ Analyze error messages
■ Correct your source code
■ Rerun the program to verify your corrections

You can use Purify with programs built in either release mode or
debug mode. However, in order for Purify to report the exact
location of errors, you should build your program in debug mode.

More information? Look up debug data in the online Help index.

Instrumenting and running a program

To start Purify, double-click

Click Run to begin.

Click to begin

8 Getting Ahead with Purify

Select the program you want to instrument.

Purify first copies the program and each library it calls, then
instruments these modules using Object Code Insertion (OCI)
technology. This inserts checking instructions that validate every
read, write, allocation, and freeing of memory.

You can see Purify’s progress as it instruments each module.

Purify caches the instrumented modules. When you rerun a
program, Purify uses the cached modules, re-instrumenting only
the modules that have changed since the previous run.

More information? Read “Customizing error detection” on page 18
of this manual.

Purify inserts a default
working directory

based on the path
of your program

Click to
instrument and
run the program

Click to
customize error
detection

You can customize error
detection for each

module in your program

Getting started 9

Seeing all your errors at a glance

After instrumenting the program, Purify automatically starts it.
As you run the program, Purify displays run-time errors and
memory leaks in an Error View window.

The error view’s condensed outline makes it easy to identify the
critical errors in your program. You can expand the outline and
see detailed diagnostic information.

When you exit the program, Purify reports memory leaks. You can
set Purify to also report memory in use and handles in use at exit.

More information? Look up memory in use, exit and handles in
use, exit in the online Help index.

Color-coded icons show
the message severity

= informational
= warning

= error

Acronyms identify
the type of message

Click here to
expand a message

Click here to expand or collapse
selected messages

10 Getting Ahead with Purify

When identical errors repeat

Often identical errors repeat many times in a program, such as
when the error is inside a loop. To make error views easy to scan,
Purify, by default, displays a message the first time the error
occurs, then updates a counter each time the error repeats.

More information? You can also display each occurrence of a
message individually. Look up repeat count in the online Help
index.

Purify reports the number of times
identical errors occur

Right-click a message
to display the

shortcut menu. Then
select the message

item to learn more
about this type of error.

Getting started 11

Focusing on critical errors first

A large program can generate hundreds of error messages. To
quickly focus on the most critical ones, you can create filters to
temporarily hide the other messages from the Error View window.

You can filter messages based on their type and source. For
example, you might want to hide all informational messages, or
hide all messages that originate in a specific file.

Once you’re ready to deal with the hidden messages, just disable
the filters to redisplay them.

Filters apply to the current run and to all future runs of the
program until you disable them.

An unfiltered error view
displays all the

messages from the
program

A filtered error view
displays only

the messages
you want to see

To hide messages quickly,
select one or more messages and

click the QuickFilter tool
Use the Filter Manager to enable,
disable, and edit filters

Use the Create Filter tool to filter
messages by type and source

12 Getting Ahead with Purify

Working with filters

Purify filters are very flexible. You can create individual filters or
groups of filters, then use Purify’s Filter Manager to apply them to
specific programs or modules. You can also create global filters
that apply to every program.

You can also share filters with other members of your development
team.

Another way to focus on errors in specific modules is to use
Purify’s PowerCheckTM options to customize the level of error
detection for each module.

More information? Look up filters, filters sharing, and
PowerCheck in the online Help index. Read “Customizing error
detection” on page 18 of this manual.

Click to enable or
disable filters

Purify automatically
creates a filter group for

each program you run

These filters and filter groups apply to the
selected program

 Click and drag a filter
or group to move it

to a different program
or module (use the
Ctrl key to copy it)

Getting started 13

Analyzing messages

Purify’s messages pinpoint where errors occur and provide the
diagnostic information you need to analyze why they occur.

Here’s an example of an expanded ABW (Array Bounds Write)
error message.

You can customize the format of Purify’s messages. For example,
you can increase the number of lines of source code that are
displayed, or include instruction pointers and offsets to make
locating errors easier.

More information? Look up preferences, source code, and
messages, customizing in the online Help index. For general tips
on how to Purify your code, look up Purify, using in the online
Help index.

The location in memory
where the error occurs

This call stack shows
the function calls

leading to the error

This call stack shows the
function calls leading to

the allocation of the
memory block involved

in the error

Purify flags the line
where the error occurs

14 Getting Ahead with Purify

Correcting errors

Purify makes it easy to correct errors. Just double-click the line
where the error occurs, and Purify opens the source code in your
editor, positioned at the exact location of the error.

If you integrate Purify into Microsoft Developer Studio 97 during
installation, Purify starts Developer Studio. You can, however,
specify an editor of your choice.

After correcting errors, rebuild your program. Then click Purify’s
Run Again tool to rerun the program. Purify saves
instrumentation time by re-instrumenting only the modules that
have changed since the previous run.

More information? Look up editor, selecting in the online Help
index.

Or, double-click
the line where

the error occurs
to open your editor

Click to open your editor and correct the error

Getting started 15

Comparing program runs

After correcting errors and rerunning your program, you can
easily compare runs to verify your corrections. Purify’s Navigator
window helps you keep track of multiple programs and runs.

More information? You can customize the information displayed
in the Navigator. Look up Navigator window in the online Help
index.

Checking multi-process applications

Because Purify supports multiple Error View windows, it’s easy to
debug client/server and multi-process applications. You can debug
several processes during a session and see the error reports for
each running application simultaneously.

The Navigator groups program runs

Double-click a run to
bring its Error View

window to the top

Color-coded icons
indicate the maximum

message severity
displayed in the

error view

16 Getting Ahead with Purify

Saving error view data

You can click the Save Copy As tool to save data from an error
view in any of several formats. For example, you can save it as a
Purify data file (.pfy), with or without any messages you filtered
out. Later, you can open the saved data file in Purify to analyze it
or to compare it to future program runs. You can also save Purify
data to an ASCII text (.txt) file.

More information? Read “Sharing Purify data across the team” on
page 21 of this manual. Also, look up data, saving in the online
Help index.

G E T T I N G A H E A D W I T H P U R I F Y

17

Using Purify’s power features

Integrating Purify into Microsoft Developer Studio 97

During installation, Purify is automatically integrated into
Microsoft Developer Studio 97, providing one-stop error detection
and correction. Purify adds a menu and a toolbar to Developer
Studio to provide instant access to Purify’s functionality.

You can build your program and run Purify on it from within
Developer Studio. When Purify finds an error, just double-click the
error line to open the source file in your editor at the exact location
of the error.

You can also add Purify toolbar icons to other Developer Studio
toolbars or menus.

More information? Look up Developer Studio, integrating in the
online Help index.

Instrument a program
automatically
after it builds

Set preferences

Open Filter Manager

Start Purify Change default settings

Enable Break on Error

Change executable settings

18 Getting Ahead with Purify

Customizing error detection

Purify’s default error detection is based on the size of each module
in your program and the availability of debugging information.
However, you can customize error detection for each module.

You can select precise instrumentation to get full run-time error
detection, including Windows API checking, and to pinpoint
problems in any component in your program. You can select
minimal instrumentation for very quick instrumentation times.

You might begin by using the precise setting for the most critical
modules in your program and the minimal setting for the others.
Later, you can change the minimal settings to precise to
thoroughly check the rest of the modules.

More information? Look up PowerCheck in the online Help index.

Click to select
the level of
instrumentation
for each module

Use the PowerCheck
tab in the settings

dialogs to customize
error detection

Using Purify’s power features 19

Using just-in-time debugging

Purify’s just-in-time debugging support provides instant access to
your debugger when you need to solve tough problems. You can
enable Break on Error to have Purify stop your program just
before an error executes and let you start your debugger.

You can also attach your debugger to a running program at any
time, or run a Purify’d program directly under your debugger.

To quickly debug only the most critical errors in your program, use
Break on Error with Purify filters. First, filter out all the other
messages, then enable Break on Error. Purify does not break for
the filtered errors, only for the critical ones. When you’re ready to
debug the remaining errors, just disable the filters.

More information? Look up debugger, using Break on Error and
filters in the online Help index.

it raises a breakpoint
exception

Click the Break on Error tool to enable
and disable just-in-time debugging

With Break on Error
enabled, when Purify

detects an error
or warning . . .

Click to attach a debugger
to a running program

Click to explore the
error in your debugger

20 Getting Ahead with Purify

Extending error checking with Purify API functions

Purify includes a set of Application Programming Interface (API)
functions that extend Purify’s error checking capabilities and give
you greater control over tracking errors.

Using Purify’s API functions, you can set and test memory state,
and search for memory and handle leaks. For example, by default
Purify reports memory leaks only when you exit your program.
However, if you call the API function PurifyNewLeaks at key
points throughout your program, Purify reports any new memory
leaks it has detected since the last time the function was called.
This periodic checking enables you to track memory leaks more
closely.

You can call Purify API functions from your program or from your
debugger. For example, you can call them interactively from the
QuickWatch window in Microsoft Developer Studio 97.

More information? Look up API functions, list and API functions,
using in the online Help index.

Using Purify in an existing test environment

Using Purify’s command-line interface, you can use Purify with
existing makefiles, batch files, or Perl scripts. For example, if you
have a test script that runs a program, you can easily modify the
script to run an instrumented version of the program. To do so, you
might add this line to the beginning of your test script:

purify /Run=no /Replace Exename.exe

This line instructs Purify to save the original Exename.exe to
a .bak file, then instrument Exename.exe without actually
running it. Your test script then runs the instrumented program,
providing Purify’s detailed diagnostics.

You can run Purify without the graphical interface by using the
/SaveTextData option. This option saves Purify’s diagnostic

Using Purify’s power features 21

messages to a text-output file. You can use the error and warning
messages in this file as additional criteria for your test results.

More information? Look up command line in the online Help
index.

Sharing Purify data across the team

Purify saves you time during testing by making it easy to share
information with other team members. For example, you can
communicate program status more effectively by copying sections
of error views and pasting them into email messages or bug
reports, or by saving the information in error views as Purify data
files (.pfy) or ASCII text files (.txt).

If your email program supports the MAPI interface standard, you
can automatically send email messages containing Purify data
files from within Purify.

You can also share filters, such as those for hiding messages about
errors in common modules or third-party code for which you don’t
have the source files.

Now you’re ready to put Purify to work.
Remember that Purify’s online Help contains
detailed information to assist you.

22 Getting Ahead with Purify

G E T T I N G A H E A D W I T H P U R I F Y

23

Index

A
ABW (Array Bounds Write) error 13
API

Purify functions 20
Windows API checking 6

B
batch files 20
Break on Error 19
building programs in debug mode 7

C
cache files 8
call stack 13
client/server applications 15
code

See source code
COM support 5
command-line interface 20
components

See modules
count, repeat error 10
Create Filter tool 11
customizing

error detection 8, 18
message format 13

D
data

files 21
saving 16

debugging
data 7
just-in-time 19

Developer Studio integration 17
displaying hidden messages 11

E
editor, opening from Purify 14
email, and Purify data 21
error detection, customizing 8, 18
Error View window, overview 9
errors

breaking on 19
correcting 14
display of repeated 10
See also messages

exit messages 9

F
files

caching instrumented 8
.pfy 16, 21
.txt 16, 21

filters
Filter Manager 12
overview 11
sharing 12, 21

functions, Purify API 20

G
groups, filter 12

H
handles

in use at exit 9
leaks 20

hiding messages
See filters

I
instrumentation

customizing 18
overview 8

24 Getting Ahead with Purify

J
just-in-time debugging 19

L
leaks

See memory

M
mail

See email
makefiles 20
memory

leaks reported at exit 9
PurifyNewLeaks API function 20

menu, shortcut 10
messages

analyzing 13
customizing format 13
expanding 13
filtering 11
redisplaying hidden 11
See also errors
showing first only 10

Microsoft Developer Studio
integration 17

minimal instrumentation 18
modules

custom error detection for 8, 18
support for 5

multi-process applications 15

N
Navigator window, overview 15

P
Perl scripts 20
.pfy file 16, 21
PowerCheck

tab 18
using with filters 12

precise instrumentation 8, 18
programs

instrumenting 7
rerunning 14
running from command line 20
running under debugger 19

Q
QuickFilter tool 11

R
release mode 7
repeat error count 10
rerunning a program 14
running programs 7
runs, comparing multiple 15

S
saving data

from an error view 16
/SaveTextData option 20

sharing
data files 21
filters 12, 21

shortcut menu 10
source code

displayed in messages 13
editing 14

stack, call 13

T
tests, using Purify in 20
threaded application support 5
toolbar, Purify 17
.txt file 16, 21

W
windows

Error View 9
multiple error views 15
Navigator 15

Windows API checking 6

