
Getting Ahead with
Rational DevelopmentDeskTop
support@rational.com
http://www.rational.com

IMPORTANT NOTICE

COPYRIGHT NOTICE
Copyright 1998 Rational Software Corporation. All rights reserved.

THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS
INFORMATION PROPRIETARY TO RATIONAL. ANY COPYING,
ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF
RATIONAL IS STRICTLY PROHIBITED. THE RECEIPT OR POSSESSION
OF THIS DOCUMENT DOES NOT CONVEY ANY RIGHTS TO
REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN
PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF RATIONAL.

U.S. GOVERMENT RIGHTS NOTICE
U.S. GOVERMENT RIGHTS. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in the applicable Rational
License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19,
or FAR 52.227-14, as applicable.

TRADEMARK NOTICE
Rational, the Rational logo, Purify, Visual PureCoverage, Visual Quantify,
ClearQuest, Rational Visual Test, and Rational DevelopmentDeskTop are
trademarks or registered trademarks of Rational Software Corporation in the
United States and in other countries.

Visual C++, Visual Basic, Windows NT, Developer Studio, and Microsoft are
trademarks or registered trademarks of the Microsoft Corporation. All other
names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies.

U.S. PATENT NOTICE
U.S. Registered Patent Nos. 5,193,180 and 5,335,344 and 5,535,329. Licensed
under Sun Microsystems Inc.’s U.S. Pat. No. 5,404,499. Other U.S. and foreign
patents pending.

Printed in the U.S.A.

G E T T I N G A H E A D W I T H R A T I O N A L D E V E L O P M E N T D E S K T O P

Contents
Rational DevelopmentDeskTop—working more productively . . 5

Tips for development engineers . 6

Tips for test engineers . 8

Purify—finding memory errors . 11

Using Purify . 12

Analyzing and correcting errors . 13

Visual PureCoverage—checking all your code 15

Using Visual PureCoverage . 16

Pinpointing untested code . 17

Visual Quantify—becoming a performance engineer 19

Using Visual Quantify . 20

Zeroing in on bottlenecks . 21

Rational Visual Test—automating your tests 23

Using Visual Test . 24

Maximizing the value of your tests . 25

ClearQuest—managing software changes 29

Using ClearQuest . 30

Submitting a change request . 31

Monitoring the status of your project . 33

Correcting defects the easy way . 34

Index . 37
3

4

G E T T I N G A H E A D W I T H R A T I O N A L D E V E L O P M E N T D E S K T O P
Rational DevelopmentDeskTop—working
more productively
Rational DevelopmentDeskTopTM brings together five essential
tools that work with each other and with Microsoft Visual Studio
to help you accomplish the critical tasks involved in software
development faster and more efficiently:

■ Purify® An automatic error detection tool for finding run-time
errors and memory leaks in every component of your program.

■ Visual PureCoverageTM A code coverage tool for making sure
your code is thoroughly tested before you release it.

■ Visual QuantifyTM A performance analysis tool for pinpointing
performance bottlenecks so your program can run faster.

■ Rational Visual Test® An automated testing tool for
developing reusable, extensible test components. Use it with
Purify, Visual PureCoverage, and Visual Quantify to maximize
the value of each test run.

■ ClearQuestTM A change request management tool for staying
on top of software changes throughout the life cycle of a project.

This guide provides a brief overview of each Rational
DevelopmentDeskTop tool, including tips on how the tools
integrate with Visual Studio to help you work more productively.

Note: Rational DevelopmentDeskTop tools integrate with your
Visual Studio editor, debugger, and source-code management
system. You can also use Rational DevelopmentDeskTop tools as
stand-alone applications when you don’t need the resources of
Visual Studio.
5

Tips for development engineers

Find memory errors early

Use Purify with Developer Studio to find
the internal errors your tests don’t reveal.
These errors don’t always show up right
away, but they’re the ones that will make
your program crash someday!

Improve code coverage

Use Visual PureCoverage to make sure
you’re exercising all your code during
testing.

To find all the memory errors in your code,
you need to exercise all your code when you
use Purify. Visual PureCoverage can tell
you if you’re exercising your code
sufficiently for Purify to find all the
memory errors.

Prevent performance bottlenecks

Whenever you write new code or modify
existing code, use Visual Quantify right
away to catch any incremental performance
losses before they turn into bottlenecks.

Visual Quantify gives you the insight you
need to write more efficient code. It can
turn everyone on your team into a
performance engineer.

Improve code performance

A common reason for writing new code is to
improve the performance of a program. But
how can you effectively improve the
performance of code that might have been
developed over several years by many
different people?

Use Visual Quantify not only to find
performance bottlenecks, but also to learn
more about how your code is structured. It
will help you to make effective performance
improvements.

Visual
PureCoverage

Purify

Visual Quantify

Here are a few tips for using Rational DevelopmentDeskTop to develop fast, clean code.
6 Getting Ahead with Rational DevelopmentDeskTop

Test code before checking it in

Before checking in code, use Visual Test to
quickly generate a test script that tests the
new code.

Also, use Visual PureCoverage to make
sure you’ve tested everything.

Get the information you need

To get right to the source of the problem,
take advantage of the Purify, Visual
PureCoverage, and Visual Quantify data
files that your quality engineering team
attached to the ClearQuest change request.

Find out what needs to be fixed

Use ClearQuest to stay on top of your To Do
list: Identify the change requests that are
assigned to you, sort them by priority, and
assess how much time they require.

Keep others informed

After you correct a problem, change the
ClearQuest record to Resolved so that
everyone on the team can see that you’ve
fixed the defect.

Include detailed notes and code fragments
that explain how you fixed the
problem—you can even attach a Visual Test
file that tests the fix. Your quality
engineering team can use this information
to verify that the problem has been
resolved.

Visual Test ClearQuest

Correct errors the easy way

For an example of how you can use Purify,
Visual Test, and ClearQuest, along with
your Developer Studio debugger and editor
to save time correcting a software defect,
see “Correcting defects the easy way” on
page 34 of this guide.
Rational DevelopmentDeskTop—working more productively 7

Tips for test engineers

If performance suddenly drops . . .

If performance drops, this was probably
caused by the most recent code checked in.
Let Visual Quantify show you which parts
of your program became slower compared
to a previous run that had acceptable
performance.

If performance suddenly increases . . .

An unexpected increase in performance can
indicate that a large part of your code is no
longer being exercised. Compare the most
recent Visual PureCoverage results with a
previous run that had acceptable
performance to see if you’re still getting the
same amount of coverage.

Purify

Visual Quantify

Visual
PureCoverage

If code coverage goes down. . .

If code coverage drops, it might be an
indication that new code is not being
exercised by your existing tests. Or, the
new code might have introduced a defect
that’s causing a large section of code not to
be tested. Use Visual Test to write test
cases that exercise the new code.

Test all your code daily

Use Visual PureCoverage every day to
make sure you’re testing all your code. With
ongoing coverage feedback, you can be sure
your tests are keeping pace with your code
development.

Find the internal errors in your code

For best results, run all your tests on a
Purify’d version of your program. This will
find the internal errors that your external
functionality tests can’t uncover.

Here are a few tips for using Rational DevelopmentDeskTop to guarantee quality software.
8 Getting Ahead with Rational DevelopmentDeskTop

Maximize the value of your tests

Run Visual Test scripts with Purify to
perform external testing and look for
internal errors at the same time. Purify can
help you diagnose test failures.

Run your tests nightly with Visual
PureCoverage to make sure you’re testing
all your code.

Run your tests with Visual Quantify to
track performance improvement and
regression.

Visual Test

Power-user tip: Too many tests?

If you have too many tests in your
automatic test harness, you can use Visual
PureCoverage to determine which tests are
providing the highest level of code
coverage. You can consider running these
tests regularly and the others less often.

ClearQuest

Determine release readiness

As a project leader, you can quickly
evaluate the status of your project: How
many high-priority defects are there; who’s
available to fix them; and can you meet
your release date?

Report defects immediately

When you find a defect, submit a change
request to ClearQuest directly from Purify,
Visual PureCoverage, or Visual Quantify,
without interrupting your work.

You can make correcting problems easier
by attaching a Visual Test script that
re-creates the problem, along with Purify,
Visual PureCoverage, and Visual Quantify
data files.

Verify that defects are fixed

After a team member resolves a defect, a
quality engineer should double-check that
the problem is fixed. Then, change the
ClearQuest record to Verified so everyone
can see that the resolution is verified.

To make sure that the problem doesn’t
reappear, incorporate the Visual Test case
used to verify the fix into your nightly test
harness.

Automate your tests

Successful testing requires that tests be
repeatable: You need to be able to run the
same tests on the same programs every
night and get the same results. Use Visual
Test to automate your testing.
Rational DevelopmentDeskTop—working more productively 9

More information? For a complete overview of each Rational
DevelopmentDeskTop tool, see the following books:

■ Getting Ahead with Purify
■ Getting Ahead with Visual PureCoverage
■ Getting Ahead with Visual Quantify
■ Rational Visual Test Tour
■ Getting Ahead with ClearQuest

For detailed information and step-by-step instructions, see the
online Help for each of the Rational DevelopmentDeskTop tools.
10 Getting Ahead with Rational DevelopmentDeskTop

G E T T I N G A H E A D W I T H R A T I O N A L D E V E L O P M E N T D E S K T O P
Purify—finding memory errors
Run-time errors and memory leaks are some of the most difficult
errors to locate and the most important to correct. That’s because
they often remain undetected until triggered by some random
event, so that a program can appear to work correctly when it’s
actually working only by accident.

Purify is the fastest and most comprehensive run-time error
detection tool available for Visual C/C++ programs. Purify can find
memory errors in every component of your program—even when
you don’t have the source code. With Purify, you can:

■ Detect hard-to-find errors such as array bounds errors, accesses
through dangling pointers, uninitialized memory reads, memory
allocation errors, and memory leaks.

■ Customize error detection for each component in your program.
■ Use your Developer Studio debugger for just-in-time debugging.
■ Refine error tracking with Purify API functions.
■ Integrate Purify into Visual Test scripts, Perl scripts, makefiles,

and batch files.
■ Submit change requests directly to ClearQuest for errors

reported by Purify, without interrupting your work in Purify.

More information? For a complete list of the errors Purify detects,
select Purify > Help > Purify Messages.
11

Using Purify

To get the most out of Purify, begin using it as soon as your code is
ready to run, and continue using it regularly throughout your
development cycle.

1 Open your project in Developer Studio, then click to engage
Purify.

2 Build and execute your program as usual, using commands from
the Developer Studio Build menu.

Note: To get the maximum detail in Purify messages, build your
program so that debug and relocation data are available.

As you run your program, Purify displays run-time errors and
memory leaks in the Purify window. The condensed outline format
of the Purify window makes it easy to identify the critical errors in
your program.

You can filter Purify messages in order to display only the
messages that are most important to you.

Acronyms like ABW
identify the type

of message

For a description
of the message type,

right-click the message,
then select Describe

Purify displays
messages as the

program runs

Click to engage Purify
12 Getting Ahead with Rational DevelopmentDeskTop

Analyzing and correcting errors

You can expand Purify messages to pinpoint where errors occur
and to get the diagnostic information you need to analyze why
they occur. Here’s an example of an expanded Array Bounds Write
(ABW) message.

Tip: When you find a critical error, you can submit a change
request to ClearQuest without interrupting your work. Right-click
the Purify message and select Submit ClearQuest Defect from the
shortcut menu. You can include the entire error message, along
with detailed notes to help the developer responsible for fixing the
error to resolve it more easily. For more information, see page 31
of this guide.

Purify makes it easy to correct your source code: Just double-click
the line where the error occurs to open your source code in the
Developer Studio editor, positioned at the exact location of the
error. After correcting your source code, rebuild your program,
then run it again with Purify engaged in order to verify your
corrections.

The location in memory
where the error occurs

Call stack showing
the function calls

leading to the error

Call stack showing the
function calls leading to

the allocation of the
memory block

associated with the error

The location of the error
Purify—finding memory errors 13

Tip: In order for Purify to find all the errors in your code, you have
to exercise all your code. To make sure you are exercising every
line of code, use Visual PureCoverage on your program.

More information? To learn more about Purify, including how to
filter messages, compare program runs, set breakpoints on errors,
use just-in-time debugging, and customize error detection, read
Getting Ahead with Purify. For detailed information, see the Purify
online Help.
14 Getting Ahead with Rational DevelopmentDeskTop

G E T T I N G A H E A D W I T H R A T I O N A L D E V E L O P M E N T D E S K T O P
Visual PureCoverage—checking all your
code
To effectively test an application, you need to know which parts of
the application were exercised during a test run and which ones
were missed. Without this information, you can waste valuable
time editing, compiling, and debugging your software without
actually testing the critical problem areas.

With Visual PureCoverage, you can quickly and easily identify the
gaps in your testing of Visual C/C++, Visual Basic, and Java
programs. With Visual PureCoverage, you can:

■ Identify functions, procedures, or methods that are being missed
or only partially exercised during a test run, and even locate the
individual lines of source code that are being missed.

■ Customize data collection for individual program modules.
■ Merge coverage statistics for multiple runs.
■ Integrate Visual PureCoverage into Visual Test suites, Perl

scripts, makefiles, and batch files for continuous coverage
monitoring.

■ Submit change requests directly to ClearQuest without
interrupting your work in Visual PureCoverage.

Visual PureCoverage is especially useful as a companion to Purify:
It can tell you whether you are exercising your code sufficiently for
Purify to find all of your memory errors—and it’s essential to an
automated testing environment. For more information, read
“Maximizing the value of your tests” on page 25 of this guide.

Note: Visual PureCoverage is integrated into Developer Studio
and Visual Basic. The examples in this chapter illustrate how to
use it in Developer Studio.
15

Using Visual PureCoverage

Use Visual PureCoverage whenever you add new code to a
program or modify existing code.

1 Open your project in Developer Studio, then click to engage
Visual PureCoverage.

2 Build and execute your program as usual, using commands from
the Developer Studio Build menu.

Note: In order to get detailed line-by-line data, build your
program so that debug and relocation data are available.

3 Run your program in such a way that it exercises your new or
changed code.

When you exit your program, Visual PureCoverage provides an
overview of the coverage for the entire run, indicating how many
functions, methods, procedures, and lines were exercised and how
many were missed.

This same data can be displayed as a list of functions that you can
sort to find the least-tested code in your program. Right-click in
the Coverage Browser, then select Function List from the shortcut
menu to display the Function List window.

The Coverage Browser
window shows coverage

statistics for functions
and lines

Functions that were not exercised Lines that were not exercised

Click to engage
Visual PureCoverage
16 Getting Ahead with Rational DevelopmentDeskTop

Pinpointing untested code

The Visual PureCoverage Annotated Source window indicates
the individual lines of code that were missed or only partially
exercised during a run. Double-click a function in the Coverage
Browser or Function List window to display the Annotated Source
window.

Tip: To submit a change request to ClearQuest for a function that
is not being adequately tested, right-click the function and select
Submit ClearQuest Defect from the shortcut menu. For more
information, see page 31 of this guide.

Once you identify the sections of your code that aren’t being
adequately tested, you can adjust your tests to cover your program
more thoroughly. Then, rerun the program with Visual
PureCoverage and compare runs to verify that coverage has
improved. Visual PureCoverage automatically merges coverage
data for multiple runs into an Auto Merge run that provides a
valuable picture of the overall coverage for a program.

More information? To learn more about Visual PureCoverage,
including how to filter coverage data, merge runs, and fine-tune
data collection, read Getting Ahead with Visual PureCoverage. For
detailed information, see the Visual PureCoverage online Help.

The Annotated Source
window displays

a copy of your source
code with line-by-line
coverage annotations

This line was hit

This line was missed
Visual PureCoverage—checking all your code 17

18 Getting Ahead with Rational DevelopmentDeskTop

G E T T I N G A H E A D W I T H R A T I O N A L D E V E L O P M E N T D E S K T O P
Visual Quantify—becoming a performance
engineer
Visual Quantify quickly pinpoints performance bottlenecks in
Visual C/C++, Visual Basic, and Java programs. It takes the
difficulty and guesswork out of performance tuning by delivering
accurate, repeatable timing data for all the components of your
program, even when you don’t have the source code. With Visual
Quantify, you can:

■ Quickly see how much time functions, procedures, or methods
are costing.

■ Understand the function-call architecture of your program so
you can make effective performance improvements.

■ Get right to the source of bottlenecks with detailed tabular
views and line-by-line timing data.

■ Fine-tune the depth and speed of data collection.
■ Incorporate Visual Quantify into Visual Test suites, Perl scripts,

makefiles, and batch files.
■ Submit performance change requests directly to ClearQuest

without interrupting your work in Visual Quantify.

Visual Quantify gives you the insight you need to write more
efficient code and make any program run faster. It can turn
everyone on your team into a performance engineer.

Note: Visual Quantify is integrated into Developer Studio and
Visual Basic. The examples in this chapter illustrate how to use it
in Developer Studio.
19

Using Visual Quantify

As soon as you add a new feature, use Visual Quantify to make
sure that you haven’t slowed the performance of your program.

1 Open your project in Developer Studio, then click to engage
Visual Quantify.

2 Build and execute your program as usual, using commands from
the Developer Studio Build menu.

Visual Quantify’s initial display is a call graph showing the 20
most time-consuming functions, procedures, or methods in your
program. It shows you exactly where your code is least efficient.

You can use the shortcut menu in the call graph to explore the
calling structure of your program. For example, right-click a
function, then select Subtree > Focus on Subtree from the shortcut
menu to remove everything from the call graph except the subtree
for that function. Then select Expand from the shortcut menu to
show all the function’s descendants, that is, all the functions it
called.

 Visual Quantify’s
call graph provides

an overview of your
program’s calling

structure

Thicker lines indicate more expensive paths

Pause the cursor over
a function to see

additional information
about the function

Click to engage Visual Quantify
20 Getting Ahead with Rational DevelopmentDeskTop

Zeroing in on bottlenecks

After first orienting you in your program’s calling structure,
Visual Quantify helps you zero in on the bottlenecks in your code.
To get more information about a function that appears to be too
costly, double-click the function to display the Function Detail
window.

Visual Quantify provides two additional performance analysis
windows: Right-click in a Visual Quantify window, then select
Switch to > Function List from the shortcut menu to see the
numerical data for functions and their descendants, or select
Switch to > Annotated Source to display line-by-line performance data.

Tip: When you locate a function with poor performance, you can
immediately submit a change request to ClearQuest. Right-click
the function and select Submit ClearQuest Defect from the shortcut
menu. For more information, see page 31 of this guide.

Detailed data for
a function

Double-click a caller
or descendant function

to display data for
that function

Data about the calls
made to the function

Data about the calls
made by the function
Visual Quantify—becoming a performance engineer 21

Comparing runs to find performance changes

Adding new features to your code comes with the risk of slowing
down your program. Before you add a new feature, run the
program first with Visual Quantify to establish a base run, that is,
a run with an acceptable standard of performance. Save the
results of this run to a Visual Quantify data file (.qfy).

After adding the new feature, run the program again with Visual
Quantify and compare the new run with the base run—you’ll
quickly see any performance changes. For information on how to
compare runs, look up diff in the Visual Quantify online Help
index.

More information? To learn more about Visual Quantify,
including how to project performance improvements, interpret
source-code annotations, compare program runs, and fine-tune
data collection, read Getting Ahead with Visual Quantify. For
detailed information, see the Visual Quantify online Help.
22 Getting Ahead with Rational DevelopmentDeskTop

G E T T I N G A H E A D W I T H R A T I O N A L D E V E L O P M E N T D E S K T O P
Rational Visual Test—automating your
tests
To guarantee the quality of a complex application that consists of
many components, you not only need to continually test new code,
you also need to make sure that the new code doesn’t break
something that worked before. A thorough testing program
involves functional tests (performed manually or by automated
test scripts) and regression tests: comparing today’s results with
acceptable past standards to see what’s changed.

If your tests aren’t automated, you must manually test and retest
every possible usage scenario for your program. When the
program fails a test, you must remember the exact sequence of
events leading up to the failure.

Using Rational Visual Test, you can rapidly create, manage, run,
and debug tests for applications of any size, created with any
development tool. With Visual Test, you can:

■ Write test cases in the powerful Test language, which includes
hundreds of built-in procedures that you can use to test your
applications.

■ Automatically generate Test language code by using the
Scenario Recorder.

■ Run multiple test cases and organize test cases into suites with
the Suite Manager.

■ Use Visual Test with Purify, Visual PureCoverage, and Visual
Quantify to maximize the value of each test run.

■ Attach Visual Test scripts to ClearQuest change requests.

As soon as an application has passed the early-development
stage—when the screen components and keystroke and mouse
sequences are stable—you’re ready to automate your tests with
Visual Test.
23

Using Visual Test

A good place to begin using Visual Test is with the Scenario
Recorder—it allows you to automatically generate Test language
code simply by exercising your program. For example, let’s say you
just added a dialog to a Hello World program that displays the
time of day. To quickly test this new feature:

1 In Visual Test, select Test > Scenario Recorder, and type a name for
the scenario. For example, hellotest.

2 Exercise the new feature. For example:

The Visual Test Scenario Recorder records the sequence of mouse
clicks and keystrokes as you exercise the feature, and
automatically generates Test code that will repeat those actions.

3 Click Scenario Recorder in the Taskbar, then click Stop and create
scenario.

4 To run the test script, select Test > TestDebug > Go.

Click

Click
24 Getting Ahead with Rational DevelopmentDeskTop

Maximizing the value of your tests

On its own, a test script can verify the external functionality of
your program. By running a Visual Test script in conjunction with
Purify, Visual PureCoverage, or Visual Quantify, you can also
monitor the internal behavior of your program at the same time.
You can watch for memory errors, untested code, or performance
changes that might otherwise go unnoticed during an external
functionality check.

You can run a Visual Test script with Purify, Visual PureCoverage,
or Visual Quantify from within Developer Studio or from a test
harness—and you can do it without altering the format of the
Visual Test script.

Working in Developer Studio

To use the Visual Test script hellotest.mst created in the
previous example to exercise hello.exe and to also report Purify
data during the test run:

1 Include the tools.inc file in the Visual Test script:

’ $include ’tools.inc’

2 Add the following run statement to the Visual Test script:

run hello.exe, nowait

With this run statement, you can use this same script to run
Purify, Visual PureCoverage, or Visual Quantify—and at other
times to run the script without these tools.

3 Select Purify > Run Visual Test Scripts with Purify.

This causes Visual Test to set the environment variable
VT_RUN_TOOL_OVERRIDE=PURIFY which overrides the nowait option
in the run statement with the option Purify. Similar menu items
are available for running Visual Test scripts with Visual
PureCoverage and Visual Quantify.
Rational Visual Test—automating your tests 25

4 Run the test by selecting Test > TestDebug > Go.

Purify automatically instruments and runs hello.exe, then the
test script exercises the instrumented program. Below is the
output from this test run showing that Purify found a Memory
Leak (MLK).

Purify, Visual PureCoverage, and Visual Quantify windows are
not displayed when you run these tools from a Visual Test script;
however, the results of the runs are automatically saved to data
files (Purify .pfy file, Visual PureCoverage .cfy file, Visual
Quantify .qfy file). You can open a data file at any time and
analyze it as you normally would. For example, select the
hello.pfy file and drag it to Developer Studio to open it and
analyze the complete error messages in Purify.

Tip: When a test uncovers a problem, you can attach the Visual
Test .mst file along with Purify, Visual PureCoverage, and Visual

Scenarios indicate the
actions to be tested

Purify reports a memory
leak in Scenario 2

The tools.inc file

The Visual Test script

The run statement
26 Getting Ahead with Rational DevelopmentDeskTop

Quantify data files to a ClearQuest Submit Defect form in order to
help the developer responsible for fixing the defect reproduce the
problem. For more information, see “Attaching files to a change
request” on page 32 of this guide.

Working with a test harness

You can run a Visual Test script with Purify, Visual PureCoverage,
or Visual Quantify in a nightly test harness. For example, to run
the hellotest.mst script with Purify:

1 Include the tools.inc file in the Visual Test script and use the
following format for the Visual Test run statement:

run hello.exe, nowait

2 Set the following environment variable at the command line:

set VT_RUN_TOOL_OVERRIDE=PURIFY

To set the environment variable to Visual PureCoverage or Visual
Quantify, specify COVERAGE or QUANTIFY.

3 Run the Visual Test script:

mt hellotest.mst

Purify automatically instruments and runs hello.exe, then the
hellotest.mst script exercises the instrumented program.

As an alternative, if you want to always run a Visual Test script
with Purify, Visual PureCoverage, or Visual Quantify, you can
explicitly specify the option Purify, Coverage, or Quantify in the
run statement. For example: run hello.exe, Purify. If you do
this, you do not need to set an environment variable. Just type
mt hellotest.mst to run the test script.

Note: Purify automatically saves the results of each Visual Test
run to a Purify data file (.pfy). The toolsamp.inc file contains
sample Test code that you can use to delete these data files when
no serious errors are reported by Purify.
Rational Visual Test—automating your tests 27

Targeting specific types of Purify errors

You can edit the MyPurifyHandler error handler in the
toolsamp.inc file in order to focus on specific Purify messages.
For example, you can have Purify report only error messages, not
informational or warning messages. See your Visual Test
documentation for information on targeting specific text strings.

Tip: Purify imposes some overhead that can slow down your tests.
If this is a problem, try running Purify on only part of your tests
each night. For example, use Purify on a fourth of your tests on
Monday, on another fourth on Tuesday, and so on. This way, you
can be sure you’re running Purify on all your code each week.

Making sure you’re testing everything

You’ll want to run your nightly tests with Visual PureCoverage in
order to gauge how well your test suite is keeping pace with the
evolution of your code. With ongoing feedback from Visual
PureCoverage, you can guarantee that every code modification is
thoroughly tested before your program is released.

Visual PureCoverage automatically saves the results of each
Visual Test run to a data file (.cfy). To analyze this file in Visual
PureCoverage, just drag it to Developer Studio to open it.

Anticipating performance changes

It’s not uncommon for a program that’s been performing well to
become sluggish over time. You can anticipate this problem by
incorporating Visual Quantify into your nightly tests. When you
notice a change in performance, open the Visual Quantify data file
(.qfy) that was automatically saved that night and use Visual
Quantify’s Diff feature to compare it to a data file from a previous
run that had acceptable performance.

More information? To learn more about Visual Test, including
how to use the Test language, build test projects, and run test
suites, read Rational Visual Test Tour. For detailed information,
see the Visual Test online Help.
28 Getting Ahead with Rational DevelopmentDeskTop

G E T T I N G A H E A D W I T H R A T I O N A L D E V E L O P M E N T D E S K T O P
ClearQuest—managing software changes
A large software development project can generate hundreds, or
even thousands, of defects and change requests spread over a
continually changing code base. So many change requests, each
with the potential to impact multiple products, versions, and
platforms, can strain even the most capable development team.

With ClearQuest, you can manage every type of change activity
associated with software development, including enhancement
requests, defect reports, and documentation modifications.
Everyone on your development team can benefit from using
ClearQuest:

■ Development engineers can identify high-priority action items
and get the information they need to fix problems fast.

■ Test engineers can easily track the origin, status, and
resolution of every change request.

■ Project managers can get the metrics they need to accurately
determine the overall quality and stability of a project.

■ Database administrators can integrate ClearQuest with
existing tools and customize it to fit your business practices.

■ Off-site team members can be part of the team with
ClearQuest Web.

ClearQuest includes the defaultapp schema and SAMPL database
that provide a ready-to-use change-request management (CRM)
system. You can easily customize this CRM system by using the
ClearQuest Designer. For more information, read Getting Ahead
with ClearQuest.
29

Using ClearQuest

Note: Before using ClearQuest, you must install the ClearQuest
server. For instructions, see Getting Ahead with ClearQuest.

The ClearQuest main window consists of a Workspace, a Query
Builder, and a Record Form.

A ClearQuest change request is a record consisting of all the data
related to it. ClearQuest includes many built-in queries that you
can use to quickly locate records based on project or component,
assigned engineer, defect severity, and so on.

You can easily create new queries or modify existing ones. For
example, you might create a query called mydefects that you can
run daily to find all the change-request records that are assigned
to you.

The Workspace lists the
built-in queries, charts,
and reports, along with

any additional ones
that you create

The Query Builder is where you create queries and view query
results. Click a record to display its data in the record form below.

The Record Form
displays data for the

selected record
30 Getting Ahead with Rational DevelopmentDeskTop

Submitting a change request

You can submit a change request by clicking

You can also submit a change request directly from Purify, Visual
PureCoverage, and Visual Quantify. For example, to submit a
change request from the Purify window in Developer Studio:

The ClearQuest Submit Defect form appears, with fields
automatically filled in with data from the selected Purify message.

Select all or part
of a Purify message

Select Submit
ClearQuest Defect
to submit a change

request for the error

Then right-click to display
the shortcut menu

The Purify message line

The text you highlighted

Click to attach additional files

The program name

Your user ID
ClearQuest—managing software changes 31

Attaching files to a change request

Select Attachments to attach Purify, Visual PureCoverage, Visual
Quantify, and Visual Test files to the change request. These
attachments help the developer assigned to fix the error reproduce
the conditions that caused it.

Tip: In the Detection tab, ClearQuest automatically fills in
Detection Method with the words Purify, Visual PureCoverage, or
Visual Quantify. This makes it easy to locate similar types of
records. For example, you can quickly locate all the
memory-related errors simply by querying ClearQuest for a list
of errors reported by Purify.

Working with change requests

Once a change request is submitted, everyone on your team can
track it throughout the development cycle. As your software
develops, you will move change requests through various “states.”
For example, when it’s first submitted, the change request is in the
Submitted state. In each state, you can perform actions such as
Modify, Open, or Close that move the change request to other
states, concluding with Resolved or Verified.

States, actions, and the fields that appear on record forms are all
defined by ClearQuest’s built-in CRM system, which your
ClearQuest administrator can easily customize to fit your way of
working.
32 Getting Ahead with Rational DevelopmentDeskTop

Monitoring the status of your project

ClearQuest provides predefined charts and reports so you can see
the status of your project at a glance. It’s easy to modify charts and
reports and to create your own in order to get the metrics you need
to accurately schedule your release dates.

For example, you can see how the workload is currently
distributed among the engineers on your team by running a chart
that displays the defects by assigned engineer. Or, you can see the
defect records graphed by their state and severity.

More information? To learn how to use ClearQuest’s built-in CRM
system, customize the interface, and generate charts and reports
from ClearQuest data, read Getting Ahead with ClearQuest. For
detailed information, see the ClearQuest online Help.

Double-click a
predefined chart

Right-click in the chart
to display the

shortcut menu,
then select Drill Down

to show more detail

Chart data is also displayed in tabular form
ClearQuest—managing software changes 33

Correcting defects the easy way

Correcting a serious defect is never easy, but using Rational
DevelopmentDeskTop can make it easier. Here’s an example.

Getting the information you need

Suppose you query ClearQuest for the high-priority change
requests that are assigned to you and find a serious defect that
must be fixed immediately. The last thing you want to do now is to
waste time trying to reproduce an error that someone else has
reported.

Begin by reading the ClearQuest record carefully. It contains the
complete history of the reported problem. And, if the person who
submitted the change request also attached a Purify data file
(.pfy) and a Visual Test script file (.mst), it makes understanding
and correcting the problem much easier. Now you can get to work:

1 In Developer Studio, open the workspace for your project.

2 Select the attached Purify data file (.pfy) and drag it to Developer
Studio to open it.

3 Expand the reported Purify error message to see the exact location
of the error.

4 Double-click the error call chain to open the source code in your
Developer Studio editor.

5 Use your Developer Studio debugger to set a breakpoint on the
error location or to enable Purify’s Break On Error feature, then
exercise the program to reproduce the error. When the program
stops at the breakpoint, you can debug the error.

6 After you correct the error, recompile the program and rerun it
with Purify to verify that the error is indeed corrected.

7 Just to make sure, rerun the original Visual Test script with
Purify to verify that the corrected program no longer commits the
error.
34 Getting Ahead with Rational DevelopmentDeskTop

Keeping others informed

After correcting the problem, change the ClearQuest record to
Resolved so that the rest of the team knows that you’ve fixed the
defect. Another team member can now independently verify that
you’ve fixed the defect, then close the ClearQuest record.

Making sure that defects don’t reappear

To make sure that a defect doesn’t reappear, write a Visual Test
test case that checks the resolution of the original defect, then
incorporate the test case into your nightly test harness. In this
way, you can build up a library of reusable tests that will assure
the ongoing quality of your software.

Where to go from here

Now that you see how Rational DevelopmentDeskTop tools can
help you get ahead, give them a try. To get off to a good start, take
a look at the introductory product guides listed on page 10 of this
guide. They cover the basics of using each tool and provide useful
pointers to information in the online Help.
ClearQuest—managing software changes 35

36 Getting Ahead with Rational DevelopmentDeskTop

G E T T I N G A H E A D W I T H R A T I O N A L D E V E L O P M E N T D E S K T O P
Index
A
ABW message 13
actions, ClearQuest 32
Annotated Source window

Visual PureCoverage 17
Visual Quantify 21

API functions, Purify 11
Array Bounds Write (ABW) 13
attachments 32
Auto Merge 17

B
base run 22
batch files 11
breakpoint, setting 34

C
Call Graph window 20
call stack 13
.cfy file 26

opening 28
change request

attaching Visual Test files 26
ClearQuest 30
management 29
submitting automatically 31

ClearQuest
charts and reports 33
features 29
states 32
using 30

correcting errors
Purify 13
tips 34

coverage annotations 17
Coverage Browser window 16
CRM system 29
D
dangling pointers 11
data files 26, 27
debug and relocation data 12, 16
debugger, Microsoft Developer

Studio 34
debugging, just-in-time 11
defects, submitting 31
deleting data files 27
descendant, functions 20
detail

in ClearQuest charts 33
in Purify error messages 12
in Visual PureCoverage data 16

detection method 32

E
editor, Microsoft Developer

Studio 13
environment variable 27
error(s)

correcting with Purify 13
error handler 28
messages 11

F
fields, ClearQuest 32
files

attaching to ClearQuest
defect 26, 32

data 26
deleting Purify data 27
toolsamp.inc 27
tools.inc 25, 27

filtering
ClearQuest records 30
Purify messages 12

finding ClearQuest records 30
Function Detail window 21
37

38
Function List window
Visual PureCoverage 16
Visual Quantify 21

functional tests 23
functions

descendant 20
not exercised 16
subtree 20
time consuming 20

I
include file, tools.inc 25

J
Java 19
just-in-time debugging 11

L
line-by-line coverage data 17
line-by-line performance data 21
lines of code missed 16

M
makefiles 11
memory errors 11
menu, shortcut

ClearQuest 33
Purify 13
Visual PureCoverage 16
Visual Quantify 20, 21

merge, auto 17
methods

not exercised 16
time consuming 20

.mst file 26, 34
multiple runs 15, 17
MyPurifyHandler 28

N
nowait 25

P
performance data, line-by-line 21
Perl scripts 11
.pfy file 26, 34
procedures, time consuming 20
Purify
API functions 11
Break On Error 34
correcting errors 13
features 11
list of errors 11
.pfy file 26
removing data files 27
starting to use 12
targeting specific errors 28
using with Visual Test 25, 26

Q
.qfy file 28
query builder, ClearQuest 30

R
recording keystrokes 24
records

ClearQuest 30
states 32

regression tests 23
relocation data 12, 16
removing data files 27
reports, ClearQuest 33
run statement 25
runs

comparing 22
multiple 15, 17

S
Scenario Recorder 23, 24
script(s)

Perl 11
Visual Test 25

severity, ClearQuest record 33
shortcut menu

ClearQuest 33
Purify 13
Visual PureCoverage 16
Visual Quantify 20, 21

source code
annotations 17
correcting with Purify 13

stack, call 13
states, ClearQuest 32
subtree 20
Suite Manager 23

T
Test language 23
test(s)

automatic script 24
functional and regression 23
harness 27

toolsamp.inc file 27
tools.inc file 25, 27

U
Unitialized Memory Read (UMR) 11

V
Visual Basic

and Visual PureCoverage 15
and Visual Quantify 19

Visual PureCoverage
.cfy file 26
features 15
starting to use 16
using with Purify 15
using with Visual Test 25

Visual Quantify
features 19
.qfy file 28
starting to use 20
using with Visual Test 25

Visual Test
features 23
Scenario Recorder 24
using with other tools 25

VT_RUN_TOOL_OVERRIDE 27

W
window

ClearQuest 30
Coverage Browser 16
Purify 12
Visual PureCoverage Annotated

Source 17
Visual PureCoverage Function

List 16
Visual Quantify Annotated

Source 21
Visual Quantify Call Graph 20
Visual Quantify Function

Detail 21
workspace, ClearQuest 30
39

	Title Page
	Notice
	Contents
	Rational DevelopmentDeskTop—working more productiv...
	Tips for development engineers
	Tips for test engineers

	Purify—finding memory errors
	Using Purify
	Analyzing and correcting errors

	Visual PureCoverage—checking all your code
	Using Visual PureCoverage
	Pinpointing untested code

	Visual Quantify—becoming a performance engineer
	Using Visual Quantify
	Zeroing in on bottlenecks
	Comparing runs to find performance changes

	Rational Visual Test—automating your tests
	Using Visual Test
	Maximizing the value of your tests
	Working in Developer Studio
	Working with a test harness
	Targeting specific types of Purify errors
	Making sure you’re testing everything
	Anticipating performance changes

	ClearQuest—managing software changes
	Using ClearQuest
	Submitting a change request
	Attaching files to a change request
	Working with change requests

	Monitoring the status of your project
	Correcting defects the easy way
	Getting the information you need
	Keeping others informed
	Making sure that defects don’t reappear
	Where to go from here

	Index

