
C++ Getting Started Guide i

OBJECTIME

C++ Target Module

5.2

Getting Started Guide

& Release Notice

Product Release: ObjecTime Developer 5.2 for C++
Document Version: 1.0
Release Date: August 1998
Part Number: OT-R520-DOC809

ObjecTime Limited
340 March Road
Kanata, Ontario
Canada K2K 2E4

Printed in Canada

Important Notice

Copyright 1991-1998 ObjecTime Limited. All rights reserved.
Unpublished -- rights reserved under all Copyright laws including Copyright laws of the United States.
ObjecTime (and logo) is a registered trademark of ObjecTime Limited. Developer is a trademark of ObjecTime Limited.
The license management portion of this product is based on:
Elan License Manager 1989-1998 Elan Computer Group, Inc. All rights reserved.
ObjecTime Limited (OTL) PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Information in
this publication is subject to change from time to time without notice. Some states, provinces, or jurisdictions do not allow disclaimer
of express or implied warranties in certain transactions; therefore, this statement may not apply to you.
ObjecTime Limited (OTL) and its licensors retain ownership to the ObjecTime computer program and other computer programs offered
by OTL (hereinafter collectively called “ObjecTime”) and their documentation. Use of ObjecTime is governed by the License Agree-
ment associated with your purchase.
Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the Com-
mercial Computer Software-Restricted Rights clause FAR 52.227-19 and its successors.
For units of the Department of Defense (DoD), the license for this software is subject to the “Restricted Rights” as that term is defined
in the DFAR 252.227-7013 (c)(1)(ii), Rights in Technical Data and Computer Software and its successors.

The contractor/manufacturer is:
ObjecTime Limited
340 March Road
Kanata, Ontario

Canada, K2K 2E4

When acquired by the Government, commercial computer software and related documentation so legended shall be subject to the
following:
(A) Title to and ownership of the software and documentation shall remain with the Contractor.
(B) User of the software and documentation shall be limited to the facility for which it is acquired.
(C) The Government shall not provide or otherwise make available the software or documentation, or any portion thereof, in any form,
to any third party without the prior written approval of the Contractor. Third parties do not include prime contractors, subcontractors
and agents of the Government who have the Government’s permission to use the licensed software and documentation at the facility,
and who have agreed to use the licensed software and documentation only in accordance with these restrictions. This provision does
not limit the right of the Government to use software, documentation, or information therein, which the Government has or may obtain
without restrictions.
(D) The Government shall have the right to use the computer software and documentation with the computer for which it is acquired
at any other facility to which that computer may be transferred; to use the computer software and documentation with a backup com-
puter when the primary computer is inoperative; to copy computer programs for safekeeping (archives) or backup purposes; and to
modify the software and documentation or combine it with other software. Provided, that the unmodified portions shall remain subject
to these restrictions.

COMMERCIAL COMPUTER SOFTWARE — RESTRICTED RIGHTS

(c) (1) The restricted computer software delivered under this contract may not be used, reproduced or disclosed by the Government
except as provided in subparagraph(c)(2).
(c)(2) The restricted computer software may be —
(i) Used or copied for use in or with the computer or computers for which it was acquired, including use at any Government installation
to which such computer or computers may be transferred;
(ii) Used or copied for use in or with backup computer if any computer for which it was acquired is inoperative;
(iii) Reproduced for safekeeping (archives) or backup purposes;
(iv) Modified, adapted, or combined with other computer software, provided that the modified, combined, or adapted portions of the
derivative software incorporating any of the delivered, restricted computer software shall be subject to same restrictions set forth in
this contract.
The following are trademarks or registered trademarks of their respective companies or organizations:
VxWorks, Tornado / Wind River Systems Inc. pSOS,pRISM,pRISM+ / Integrated Systems Inc. QNX / QNX Software Systems Ltd.
LynxOS / Lynx Real Time Systems Inc. VRTX, MRI C++,Spectra / Microtec Inc. Green Hills C++ / Green Hills Software, Inc. Cygnus
C++ / Cygnus Support. Watcom C++ / Sybase Inc. Elan License Manager / Elan Computer Group, Inc. OPEN LOOK, UNIX / UNIX
System Laboratories, Inc. FrameMaker, FrameViewer, PostScript, Acrobat / Adobe Systems, Inc. Hewlett-Packard / Hewlett-Packard
Company. SGI R3000, R4000, IRIX / Silicon Graphics Inc. AIX, IBM, PowerPC, RISC System/6000 / International Business Machines
Corporation. WindowsNT, VisualC++,Visual Source Safe / Microsoft Corporation. Sun Microsystems, Sun Workstation, OpenWin-
dows, Solaris, SunView, SPARC, SPARCstation / Sun Microsystems, Inc. X Window System, X11 / Massachusetts Institute of Tech-
nology. Smalltalk-80, ObjectWorks/Smalltalk / ParcPlace Systems, Inc. GNU / The Free Software Foundation. ClearCase, Purify /Pure
Atria Corporation. Rational. Netscape, Netscape Navigator, and the Netscape N logo are registered trademarks of Netscape Commu-
nications Corporation in the United States and other countries. Microsoft, Windows, and Windows NT are either trademarks or regis-
tered trademarks of Micosoft Corporation. All other brand names are trademarks of their respective holders.

C++ Getting Started Guide iii

ObjecTime Support

Your opinions and suggestions are both welcome and vital to the evolution of ObjecTime.

ObjecTime Support Hotline: (613) 591-3400

ObjecTime Fax: (613) 591-3784

ObjecTime E-mail: support@objectime.com

Visit our Web Site: www.objectime.com

iv C++ Getting Started Guide

C++ Getting Started Guide Table of Contents v

Table of Contents

Welcome to ObjecTime Developer for C++ 5.2 1

Introduction . 1

What’s new in ObjecTime Developer for C++ 5.2. 2

Year 2000 Compliance . 4

Installation Information . 5

Naming Conventions. 6

Supported Reference Platforms . 7
Targets No Longer Supported in Objectime
Developer for C++ 5.2 . 10

Changes in Developer for C++ 5.2 . 11

New C++ Target Services Library Ports . 12

Overrides . 12

Target Observability . 12

External Layer Service (ELS) .12

Enhanced AIX Support . 13

Compilation Changes . 13

Differences in Generated C++ Code. 14
File restructuring . 14
Compilation Dependency Reduction 14
Global signals . 14
Actor Class Ids . 14
Terminating Semi-Colons for User Code 14
Port/SAP Numbering . 15
Names of Chain Methods . 15
ESV Ordering . 15
Class Meta Data Changes . 15
CALLSUPER for functions with complex arguments 15
Cosmetic changes . 15

C++ Target Services Library Changes . 16

vi Table of Contents C++ Getting Started Guide

Semantic Changes . 16
Application Programmer Interface (API) Changes 16
User Code changes necessary for new
Target Services Library . 18
Actor References - Fast Access . 18
Actor Importation - Performance Improvement 19
Frame Service - Mutual Exclusion 20
Summary of Concurrency issues . 20
RTActorClass - Type changed . 21
Overrides . 22
Mutexes in the Target Services Library 22

Problems Addressed in this Release .23

General Information .25

Limits .25

Target Services Library Invoke - Usage Hints.26

Special Notes and Reminders. .27
Hints on porting existing UNIX models to Windows NT
using MS Developer Studio and Visual C++ 4.2 and 5.0 . . 28
Overrides files for source level debugging 28
Exiting the Target Services Library - Context->Abort() 28
Return value from Send . 28
Target Services Library Binding Algorithm 29
Flattening Source . 29
Target Conformance Testing . 30

Troubleshooting .31
Installation Issues . 31
Compilation problems: . 31
WindowsNT Compilation Command Line Limits 32
Error when compiling the Target Services Library 32

Developer 5.2 Directory Contents . 35

Known Limitations/Restrictions . 37
Supported Platforms for C++ . 37

Tornado .37

External Layer .37

Windows NT .37
Compiling in Windows95 . 38

C++ .38
RTSController Messages . 39
Compilers/Compilation/Run-Time System - C++ 39
Native Compilation (NC) . 39

C++ Getting Started Guide Table of Contents vii

Inclusion Paths . 40
Known Problem Information . 40

viii Table of Contents C++ Getting Started Guide

Chapter 1

C++ Getting Started Guide Welcome to ObjecTime Developer for C++ 5.2 1

1 Welcome to ObjecTime
Developer for C++ 5.2

Introduction
Please see the ObjecTime Developer 5.2 Getting Started Guide and Release Notice for information
about new toolset-related features in ObjecTime Developer for C++ 5.2

ObjecTime Developer for C++ 5.2 provides major enhancements in the area of compilation and execu-
tion. The entire compilation paradigm has been reworked to allow timestamp driven compilation. As
well, generated code now persists between compilations, thereby facilitating rapid re-targeting as
needed.

This chapter provides an introduction to using ObjecTime Developer for C++ 5.2. There are four main
areas:

• What’s new in ObjecTime Developer for C++ 5.2

• Year 2000 Compliance

• Installation Information

• Naming Conventions

What’s new in ObjecTime Developer for C++ 5.2

2 Welcome to ObjecTime Developer for C++ 5.2 C++ Getting Started Guide

What’s new in ObjecTime Developer for C++ 5.2
The following highlights some of the key new features.

• Timestamp driven compilation: ObjecTime Developer for C++ now uses industry standard times-
tamp driven compilation. Only modified or affected-by classes are recompiled.

• Generated code persistence: Code generation only takes place when classes are changed. As well,
generated files and compile outputs are never deleted, only overwritten.

• External code generation and compilation: Code generation and compilation can be performed
outside the toolset via make. This is useful in situations where a large model needs to be recompiled.
Users can now trigger this activity outside the toolset so they may continue to work within the toolset
unhindered.

• Use of source file pairs: The generated C++ code in now in the form of one .h and one .cpp file
created for each actor and protocol class. For data classes, this is done at the package level. That is,
all data classes in a package are contained in one .h and .cpp source file pair.

• Reuse of build products: Reuse is now at the class level versus package level. Designer sessions
can pick up loadbuild results during compile. For ClearCase users, this is accomplished by using de-
rived objects made visible in user view. GNU make users can do so by setting the Load Build Paths
property in Update Properties Editor, and others can do so by manually copying loadbuild results.

• Improved Compilation performance: Compilation performance for large models has been im-
proved. Depending on the model specifics, an average compilation performance improvement of
30% is typical on a full model compilation. These improvements vary widely and a performance im-
provement of 300% has been realized on an extremely large test model.

• Internal model dependencies: These are automatically generated. You can also add dependencies
for situations where you require access to the public interface of an ObjecTime component in another
ObjecTime component

• External Compile dependencies: Changes to user specified dependencies, explicitly created
through external .h inclusions, are now appropriately considered during the compilation phase, re-
sulting in incremental recompilation as necessary.

• On target message sequence charts (MSCs): Target Observability has been enhanced. Users can
now use on-target tracing and MSCs to carry out substantially the same activities on target as they
are able to do in simulation.

• Timer enhancement: The Target Services Library now supports true relative timers. An API is pro-
vided to inform ObjecTime of any time adjustments.

• All overrides supported: Actor reference, port, SPP, and binding replication factors can now be
overridden in subclasses. When coupled with 5.1.1 changes to support overriding of an actor refer-
ence class, this brings the functionality to the same level as simulation mode. This offers you new
opportunities for reuse of modeling artifacts.

• Actor references and actor importation enhancements: The frame service now uses linked lists
to manage the free list for both optional and imported references, as well as a separate linked list to
manage the import list. The net result is improved performance for all frame service primitives.

• Frame service enhancements: The frame service has been enhanced:

• supports ROOM semantics when using the frame service in a multi-threaded environment.

What’s new in ObjecTime Developer for C++ 5.2

C++ Getting Started Guide Welcome to ObjecTime Developer for C++ 5.2 3

• data structures of frame service have been enhanced so that finding a free element takes a fixed
amount of time. A number of options are provided to manage time and space trade-offs.

• C++ Tornado integration on NT: This has been enhanced. Please refer to the C++ Language
Guide Appendix D for details.

• New target Support: Developer for C++ 5.2 supports Chorus ClassiX and Enea OSE target plat-
forms.

• Annotated Diffs: An annotated interface diff listing is available for the C++ Target Services Library
(TargetRTS). The diff can be obtained from the ObjecTime customer support restricted access web-
site.

Year 2000 Compliance

4 Welcome to ObjecTime Developer for C++ 5.2 C++ Getting Started Guide

Year 2000 Compliance
Complete Year 2000 testing has been performed by ObjecTime Limited, including correct handling of
leap year calculations. ObjecTime Developer for C++ 5.2 is year 2000 compliant. The ObjecTime
Developer class libraries will function correctly across the year 2000 boundary with one clarification.
The RPL Date class allows year to be specified as either a two digit (interpreted as 2000 - 2049 if the
entered year is less than 50, or interpreted as 1950 - 1999, if the entered year is greater than or equal to
50) or a four digit (relative to the start of the Roman calendar) number. It is recommended that existing
models be converted to use the four digit year format.

The license keys used by the License Manager are year 2000 compliant, with the exception of the
License Manager log file, which lists only the two last digits of the year.

The Target Run-Time Services Library provides only limited functionality with respect to time of day
representations. The only internal representations are as follows:

1 RTTimespec — A specification of the number of seconds and nano-seconds from some arbitrary
point in the past. The “zero” value for RTTimespec varies from one Operating System to another.
The two most common “zero” values are:

a) The boot time of the board (Most Real-Time Operating Systems)

b) Midnight January 1, 1970 (Most flavors of UNIX)

c) Midnight January 1, 1980 (Most Microsoft products)

Note that the seconds field is a signed 32 bit number which can represent 68.1 years past the “zero”
date.

2 Clock Ticks — Some of the time manipulation for the Timing service is done in terms of clock ticks.
These ticks are generally represented as an unsigned number of ticks since system boot.

In cases 1a and 2 there are no association with calendar date, and as such no problems with year 2000.
In cases 1b) and 1c), the Operating System is responsible for providing the “start” or “zero” value for
time. As time passes there are no additional requirements on date calculation, also leaving no problems
with the year 2000.

There is however one supported target platform (PSOS) that uses a mixture of clock ticks (for RTSyn-
cObject::timedwait) and real calendar date/time for the underlying acquisition of the current
RTTimespec (in the method RTTimespec::getclock). This platform explicitly does date calculations and
has been tested to ensure proper operation over the Year 2000 boundary. For further information on the
implementation of this getclock() method see the Target Run-Time Services Library source code file
“$OBJECTIME_HOME/C++/TargetRTS/src/target/PSOS2/RTTimespec/getclock.cc”.

It is recommended that you review the Year 2000 compliance policies and statements from the vendors
of your operating system, development tools and configuration management software.

Installation Information

C++ Getting Started Guide Welcome to ObjecTime Developer for C++ 5.2 5

Installation Information
The C++ target module can be installed either as an upgrade to the ObjecTime Developer 5.2 base, or as
a complete product package which includes the base. In either scenario, the installation instructions are
similar and the ObjecTime Developer 5.2 Getting Started and Release Notice provides complete details
on the installation instructions.

The only difference between the base ObjecTime Developer installation and the ObjecTime Developer
for C++ installation will be the number of packages which are to be installed, along with your installa-
tion keys. The following figures represent the differences between the base install and an ObjecTime
Developer for C++ install for the two different platforms — UNIX and Windows NT.

Figure 1 On Windows NT

Figure 2 On UNIX

Reading the setup directory...
Press T<ENTER> for Typical Installation,
or C<ENTER> for Custom Installation: t<ENTER>
The products selected for Typical Installation are:
ObjecTime Developer
C++ Target Module.

Naming Conventions

6 Welcome to ObjecTime Developer for C++ 5.2 C++ Getting Started Guide

Naming Conventions
In 5.2 the TargetRTS is renamed to C++ Target Services Library to better reflect the implementation of
the TargetRTS and to clearly identify the different libraries.

Where the context is clear, C++ Target or C++ TargetRTS may be used to refer to the C++ Target Ser-
vices Library. While the default library name is still TargetRTS in the RTS Versions Browser, this can be
set to any legal directory name when customizing the C++ Target Service Library.

Chapter 2

C++ Getting Started Guide Supported Reference Platforms 7

2 Supported Reference Platforms

 The following table shows the supported platforms for ObjecTime Developer for C++ 5.2.

5.2 Supported Platforms

Toolset Host Target Library Name
Target

Services
Library

AIX 4.2.1 (PowerPC) AIX4S.ppc-CSet-3.1.4
AIX4T.ppc-CSet-3.1.4

Supplied

AIX4S.ppc-gnu-2.8.1
AIX4T.ppc-gnu-2.8.1

Supplied

HPUX 10.20 HPUX10S.hppa-gnu-2.8.1 Supplied

HPUX10S.hppa-HPC++-10.11 Supplied

IRIX 6.2 IRIX6S.r4400-gnu-2.8.1 Supplied

IRIX6S.r4400-ProDev-7.2 Supplied

Solaris 2.5.1
Solaris 2.6

SUN5S.sparc-gnu-2.8.1
SUN5T.sparc-gnu-2.8.1

Supplied

SUN5S.sparc-SunC++-4.0.1
SUN5T.sparc-SunC++-4.0.1

Supplied

SUN5S.sparc-SunC++-4.1
SUN5T.sparc-SunC++-4.1

Supplied

SUN5S.sparc-SunC++-4.2
SUN5T.sparc-SunC++-4.2

Supplied

SUN5S.sparc-Green-1.8.8
SUN5T.sparc-Green-1.8.8

Supplied

8 Supported Reference Platforms C++ Getting Started Guide

SunOS 4.1.3 SUN4S.sparc-gnu-2.8.1 Supplied

SUN4S.sparc-SunC++-4.0.1 Supplied

SUN4S.sparc-Green-1.8.8 Supplied

WinNT 4.0 NT40T.x86-VisualC++-4.2a Supplied

NT40T.x86-VisualC++-5.0a Supplied

Solaris 2.5.1
Solaris 2.6

LYNX25S.ppc-cygnus-2.7-96ql
LYNX25T.ppc-cygnus-2.7-96q1
(cygnus tools for LynxOS 2.5 on PowerPC)

Generate

PSOS2T.m68040-Green-1.8.7B
(pRISM: Green Hills tools for pSOS 2.1.4 on 68K)

Generate

PSOS2T.ppc603-Green-1.8.7C
(pRISM: Green Hills tools for pSOS 2.1.3 on PowerPC)

Generate

PSOS22T.m68040-Microtec-4.5G
(Microtec tools for pSOS 2.2.0 on 68K)

Generate

PSOS2T.ppc603-Diab-4.0b
(pRISM+: Diab/SDS tools for pSOS 2.2.1 for PowerPC)

Generate

NC QNX4S.x86-WC++-10.6
(Watcom tools for QNX4.24 on x86)

Generate

Solaris 2.5.1
Solaris 2.6
WinNT 4.0

TORNADO101T.m68040-cygnus-2.7.2-960126
(Tornado 1.0.1: cygnus tools for VxWorks 5.3.1 on 68K)

Generate

TORNADO101T.x86-cygnus-2.7.2-960126
(Tornado 1.0.1: cygnus tools for VxWorks 5.3.1 on x86)

Generate

HPUX 10.2
Solaris 2.5.1
Solaris 2.6
WinNT 4.0

TORNADO101T.ppc-cygnus-2.7.2-960126
(Tornado 1.0.1: cygnus tools for VxWorks 5.3.1 on Pow-
erPC)

Generate

NC UNIXWARE212S.x86-SDK-2.1
UNIXWARE212T.x86-SDK-2.1
(SCO UnixWare 2.1.2 using SCO UnixWare SDK Ver-
sion 2.1)

Generate

5.2 Supported Platforms

Toolset Host Target Library Name
Target

Services
Library

C++ Getting Started Guide Supported Reference Platforms 9

Note: The following applies to the Tables in this chapter:

• S = Single-threaded

• T = Multi-threaded

Simulation Services Libraries don’t have an ‘S’ or a ‘T’ thread indicator in their names.

• Supplied = Simulation Services Libraries and Target Services Libraries are supplied as part of the
ObjecTime Developer installation. See the C++ Target Guide for further details.

• Generate = not supplied as part of the ObjecTime Developer installation, but can be generated from
source code that is supplied.

• NC = Native Compilation is used. The code is generated on any host and then compiled on the Tar-
get.

Solaris 2.5.1
Solaris 2.6

VRTX4T.m68040-Microtec-4.5T
(SPECTRA: Microtec tools for VRTX 4.AAA on 68K)

Generate

Solaris 2.5.1
Solaris 2.6
HPUX 10.20

VRTX4T.ppc603-Microtec-1.3C
(SPECTRA: Microtec tools for VRTX 4.AB on
PowerPC)

Generate

WinNT 4.0 VRTX4T.ppc603-Microtec-1.4
(SPECTRA: Microtec tools for VRTX 4.Baa on
PowerPC)

Generate

Solaris 2.5.1
Solaris 2.6

XEC68V3T.m68360-Microtec-4.5G
(Microtec tools for XEC 3.0 on 68K)

Generate

Solaris 2.6 CLASSIX312T.ppc603-gnu-2.7.2
(Chorus tools on PowerPC)

Generate

WinNT 4.0 OSE3T.ppc603-Diab-4.1a
(Diab 4.1a, SDS 7.1.1 tools for OSE 3.0 for PowerPC)

Generate

a. Through ObjecTime’s use of a subset of the Windows 32 API calls which are common to both
the Windows NT and Windows 95 operating systems, binary compatibility between the two Win-
dows platforms can be expected.

5.2 Supported Platforms

Toolset Host Target Library Name
Target

Services
Library

10 Supported Reference Platforms C++ Getting Started Guide

Targets No Longer Supported in Objectime Developer for C++
5.2

The following are host platforms or compilers that were supported in ObjecTime Developer for C++ 5.1.1,
but are no longer supported with ObjecTime Developer 5.2:

Note: Please refer to “Native Compilation (NC)” on page 39 in Appendix B ‘Known Limitations/
Restrictions of this Guide for the definition and restrictions of NC.

Toolset Host Target

HPUX 9.0.7 HPUX09S.hppa-gnu-2.7.1

HPUX09S.hppa-HPC++-3.76

HPUX 10.2 HPUX10S.hppa-gnu-2.7.1

IRIX 5.3 IRIX5S.r4400-gnu-2.7.1

IRIX5S.r4400-SGC++-3.2

Solaris 2.5 SUN5S.sparc.gnu-2.7.1

SUN5S.sparc.gnu-2.7.2.3

SunOS 4.1.3 SUN4S.sparc.gnu-2.7.1

Solaris 2.5.1
Solaris 2.6

PSOS2T.ppc603-Diab-3.7a
(pRISM+: Diab/SDS tools for pSOS 2.1.3 - Power PC)

NC QNX4S.x86-WC++-9.52
(Watcom tools for QNX4.22 on x86)

Chapter 3

C++ Getting Started Guide Changes in Developer for C++ 5.2 11

3 Changes in Developer for C++
5.2

This chapter explores some of the changes affecting users of ObjecTime Developer for C++ and the
C++ Target Services Library.

General Enhancements:

• New C++ Target Service Library Ports

• Overrides

• Target Observability

• External Layer Service

• AIX Support

Pre-5.2 models being converted may be impacted by the following changes and enhancements:

• Compilation Changes

• Differences in Generated C++ Code

• C++ Target Services Library Changes

New C++ Target Services Library Ports

12 Changes in Developer for C++ 5.2 C++ Getting Started Guide

New C++ Target Services Library Ports
Support for two new ports have been added in the ObjecTime Developer for C++ 5.2 product release,
Chorus Classix version 3.1.2 with GNU 2.7.2 and support for OSE release 3 with Diab and SDS tools.
For complete reference information, please refer to "5.2 Supported Platforms" on page 7.

Overrides
The C++ TargetRTS and SimulationRTS now support equivalent overrides in an actor’s subclass.

Target Observability
MSCs are now supported when using the C++ Target Services Library. More information can be found
in the C++ Language Guide in the section ‘Debugging C++ Models’.

ObjecTime Developer 5.2 enhances the integration with Microsoft Developer Studio (VC50) and Tor-
nado on Windows NT. As well, extensive documentation is provided in the appendices of the C++ Lan-
guage Guide.

External Layer Service (ELS)
With the advent of the Custom Peer Controller (CPC) in 5.2, it was not necessary to provide support
libraries for a standalone ELS program that provides equivalent functionality to a SAP. Either a simple
model can be used to integrate legacy code (using the CPC) with the ELS1 or a program can be written
that follows the ELS protocol specifications.

Table 1 Equivalent Overrides

Model Element Override New in

Port class 4.4.1

replication factor 5.2

SPP class 4.4.1

replication factor 5.2

Binding replication factor 5.2

Actor class (even if fixed reference) 5.1.1

replication factor 5.2

Enhanced AIX Support

C++ Getting Started Guide Changes in Developer for C++ 5.2 13

A standalone program from 5.1.1 will continue to be compatible with the 5.2 ELS thereby ensuring that
existing software can be used. Please refer to the C++ Language Guide for more information on the
ELS and to the C++ Target Guide for more information on the CPC.

Enhanced AIX Support
Included with the 5.2 release are enhancements to the integration with AIX by fully supporting “Basic”
debug mode. This provides the ability to automatically load an executable under AIX as well as some
basic debug commands. For complete details on the debug commands available, please see the User
Guide included with the base documentation set.

Compilation Changes
Please refer to the ObjecTime Developer 5.2 Getting Started and Release Notice for additional informa-
tion about changes affecting the compilation of models. In the context of C++, the following changes
are of particular interest:

• One source file is created for each actor, protocol class and package.

• The .cpp extension is used for all generated source files.

• Data classes are compiled at the package level. (All data classes in a given package are compiled
together.)

• The meaning of compile and load buttons in the compile dialog has changed slightly since executa-
bles are not automatically deleted. If, for example, external libraries change, then the executable
must be manually deleted. See the User Guide for more details.

• With the addition of support for multiple configurations, object files and executables in 5.2 are not
removed automatically. Please refer to the C++ Language Guide for more details on the structure of
the generated directories. One key change to note is that the executable is placed in a new location:

<update>/build/<configuration names/<executable>

• Inclusions are now possible on data classes and can be more specific:

• interface: inclusion appears in the .h file
• implementation: inclusion appears in the .cpp file
Please refer to the C++ Language Guide (Using C++ Data Classes) for more details.

• CUPs are removed in 5.2 and are replaced by inclusions and compilation options at the package lev-
el.

• In 5.2, it is now possible to reuse the products (object files) from a common loadbuild. Please refer
to the User Guide for more detail.

• If the detailed code in one part of the model refers to another ROOM class, this relationship can now
be captured using dependencies for compilation purposes.

1. The Communications Application Note which provides more detail can be obtained from ObjecTime
Support.

Differences in Generated C++ Code

14 Changes in Developer for C++ 5.2 C++ Getting Started Guide

Differences in Generated C++ Code
A number of changes have been introduced in the 5.2 release to facilitate improved code generation and
compilation. ObjecTime Developer 5.2 minimizes the impact of upgrading models from previous
releases. However, to meet performance objectives, some changes are required. The information that
follows captures these changes and describes conversion activities required.

File restructuring

In ObjecTime Developer 5.2, only two files are generated per class, a header and an implementation.
This includes actor and protocol classes. In previous releases, a file was generated for each user code
segment. Also in previous releases, protocol classes were not explicitly generated.

Compilation Dependency Reduction

With the change to two files per class, data classes are no longer globally accessible. If user code seg-
ments of an actor class or other data class requires the definition of a data class that is not otherwise
accessed by ROOM constructs, for example, ESV type, the class dependencies2 must be added manu-
ally.

Global signals

In previous releases, all user code had access to the definitions of all signals defined for all protocol
classes. In 5.2, an actor class has automatic access only to signals defined for ports on that actor class.
Data classes do not have automatic access to any signals. Access can be granted by adding the appropri-
ate protocol classes to the dependency list of the appropriate actor and/or data classes.

Actor Class Ids

Actor classes are identified in user code segments by objects of class RTActorClass. In previous
releases, these objects were integers that indexed into a global table. In 5.2, RTActorClass is a structure
that contains a variety of information concerning the class. Since RTActorClass is now a structure, there
is no longer an assignment operator for these objects. Any algorithms that collect actor classes must
now use pointers to these objects.

Terminating Semi-Colons for User Code

In previous releases, if a user code segment did not terminate in a semi-colon, one was automatically
added. This feature has been removed.

2. When a model is brought forward into 5.2, dependencies are automatically generated. Refer to the Model Upgrade/Conversion
chapter in the ObjecTime Developer 5.2 Getting Started Guide and Release Notice.

Differences in Generated C++ Code

C++ Getting Started Guide Changes in Developer for C++ 5.2 15

Port/SAP Numbering

The ordering of port and SAP numbers for actor classes have changed to match the order these elements
appear in the Linear Form. In particular, interface ports are first, followed by end ports, then finally
SAPs. This change does not affect user code segments.

Names of Chain Methods

The name of the state has been dropped from the method names for the chain methods. The full name of
the transition starting the chain now appears in the comments for the chain method.

ESV Ordering

The ESVs of an actor class may appear in the definition of the actor class in a different order than in pre-
vious releases. This will affect the order they physically appear in memory as well as the order in which
their constructors may be called.

Class Meta Data Changes

There have been significant changes to the class meta data for actor and data classes, especially with
actor classes. These structures are considered private and do not affect user code segments.

CALLSUPER for functions with complex arguments

CALLSUPER will no longer compile for functions that have function pointers as arguments. It is rec-
ommended that the SUPER::func() pattern be used to call actor functions.

Cosmetic changes

There have been a number of cosmetic changes to the generated code in order to make it more readable.
These changes do not affect structure or behavior of the model but should help when debugging models.

C++ Target Services Library Changes

16 Changes in Developer for C++ 5.2 C++ Getting Started Guide

C++ Target Services Library Changes
This section covers library changes in more detail as follows:

• semantic changes

• API changes

• user code changes necessary for new Target Run-Time Services Library

• actor references - fast access

• actor importation - enhancement

• frame service - mutual exclusion

• concurrency issues

• RTActorClass -type changed

• overrides - memory impact

• new mutexes in the Target RTS

Semantic Changes

RTSignal and RTActorClass cannot be sent as data.

RTSignal is now transferred on the external layer as a string rather than an RTInteger. This means that
RTSignal may not be sent as the data portion of a message. RTActorClass is no longer a subclass of
RTInteger and can no longer be sent over the layer service. RTActorClass constructor which takes an int
parameter has also been removed.

Application Programmer Interface (API) Changes

isRefCompatible

The function isRefCompatible was removed from the generated code in 5.2 and is now calcu-
lated when an actor is incarnated or imported. This results in a substantial space savings. Due to overall
performance enhancements in the frame service, the overall performance is the same as 5.1.1 or faster.

Adjusting the System Clock

ObjecTime Developer 5.2 fully supports the ability to adjust the clock that is used by ObjecTime to
derive both absolute and relative timers. In order to support applications that must operate in an envi-
ronment where the real-time clock needs to be adjusted, two new methods have been added to the
RTTimerSAP class.

If ever the real-time clock needs to be adjusted the following functions must be used to bracket the change so that
the run-time system can be aware of that event and make any necessary adjustments to its internal data structures so
that relative timeouts (requested via one of the informIn methods or one of the informEvery methods) are not
affected.

 void adjustTimeBegin(void);
 void adjustTimeEnd(const RTTimespec & delta);

C++ Target Services Library Changes

C++ Getting Started Guide Changes in Developer for C++ 5.2 17

The application must coordinate time changes through an actor with a timing SAP. The example below
encapsulates the behavior in a function. We assume that the timing SAP is called timer and that there are
O/S functions available for reading and writing the system clock which we term as sys_getclock and
sys_setclock, respectively.

Additions to the Frame Service

The following frame service methods have now been implemented:

1 isKindOf

2 className

3 incarnationAt

Changes to RTLogSAP and External Types

In 5.1.1 the log service could “log” objects which were of an external type. In 5.2 the log service must
be invoked with the SEND_EXT.

Code from 5.1.1 that matches the following pattern:

External_type ext;
Log.show(ext);

Would be replaced in 5.2 with

External_type ext;
Log.show(SEND_EXT(ext));

void AdjustTimeActor::setclock(const RTTimespec & new_time)
{

 RTTimespec old_time;
 RTTimespec delta;

 timer.adjustTimeBegin(); // stop ObjecTime timer service

 sys_getclock(old_time); // an OS-specific function
 sys_setclock(new_time); // an OS-specific function

 delta = new_time;
 delta -= old_time;

 timer.adjustTimeEnd(delta); // resume ObjecTime timer service

}

C++ Target Services Library Changes

18 Changes in Developer for C++ 5.2 C++ Getting Started Guide

Incarnations() method is no longer supported

The incarnations() method of RTActorRef and RTPortRef are no longer supported. Typically these
methods were either not used, or used in the following fashion:

inc = reference.incarnations();
for(int i = 0; i < reference.size(); i++)
 Do_somethingTo(inc[i]);

This can easily be replaced with:

for(int i = 0; i < reference.size(); i++)
 Do_somethingTo(reference[i]);

The constructor for RTController has changed

The first parameter for the constructor for RTController in 5.1.1 was a pointer to the RTResourceMgr.
This pointer is no longer needed.

User Code changes necessary for new Target Services
Library

The detail level code of models may have to change for the following reasons:

1 If it references ActorClassIds: In the case where users are managing a pool of actor classes by their
integer class Ids, they should modify it so that a pool of pointers to RTActorClass is maintained instead.

2 If the detail level code does not end with a semi-colon: Pre-5.2 toolsets added a semi-colon in this
case but 5.2 does not and a compile error will result.

3 If a signal is sent out a port in which the protocol does not contain the sent signal: This may
cause a compile error in 5.2, depending on what other ports are referenced by the actor. In pre-5.2,
any signal could be sent out of any port, regardless of whether it was part of the port protocol.

Actor References - Fast Access

Description of change

The frame service in ObjecTime Developer 5.2 uses a linked list to manage the free list for both
optional and imported references. This change removes the need to search for a free item and therefore
provides improved performance without the need for the user to maintain their own free list. This results
in an increased memory allocation size of 2n pointers (where n is the replication factor of the Actor ref-
erence). An optional Actor reference will therefore increase from 1n (5.1.1) to 3n (5.2) pointers.
Imported Actor references are described later.

C++ Target Services Library Changes

C++ Getting Started Guide Changes in Developer for C++ 5.2 19

Rationale for change

This change addressed a feature request for the frame service to remove the need to search for a free
item. This is especially critical in an imported Actor reference.

Workaround

If the increased memory usage or the increased size of the memory allocation cannot be accommodated
then it is possible to remove this linked list through RTConfig.h. The negative side effect of this change
is that certain scenarios (in which multiple threads manipulate actors, via the frame service, in the same
RTActorRef) may cause memory corruption.

RTConfig.h contents

// Maintain a free list in RTActorRefs for optional components?
// The free list costs two pointers per replication but avoids
// a linear search in incarnate and import operations.
// Pre-5.2 compatible behavior is available by making
// RTFRAME_USE_FREELIST zero.
#ifndef RTFRAME_USE_FREELIST
#define RTFRAME_USE_FREELIST 1
#endif

Actor Importation - Performance Improvement

Description of change

The frame service in Release 5.2 pre-allocates the linked list used to manage the import list (since an
Actor can be imported in many different references). This results in an increased, up-front, memory
allocation size of 2n pointers (where n is the replication factor of the imported Actor reference). An
imported Actor reference will therefore increase, taking into account the free list, from 1n (5.1.1) to 5n
(5.2) pointers. Release 5.1.1 allocated this linked list ‘on-the-fly’ which means that the new/delete were
called on every import/deport. When taking into account the fixed overhead for each block of memory,
the break-even point (the point at which less total memory for the import list is being used) is when
approximately 25% of the reference contains imported actors. Note that in all cases an import or deport
will no longer need to access the heap.

Rationale for change

This change was done to increase the performance of import/deport especially in the area of memory
management.

Workaround

If the potentially increased memory usage or the increased up-front size of the memory allocation can-
not be accommodated, then the design will have to be modified to reduce the replication factor.

C++ Target Services Library Changes

20 Changes in Developer for C++ 5.2 C++ Getting Started Guide

Frame Service - Mutual Exclusion

Description of change

The frame service includes a number of additional checks in Release 5.2 to guard against potential race
conditions. It should be noted that these changes were based on an analysis of the current algorithms
since the guarded conditions have not been detected to date in the field or through product verification.
These race conditions were possible when two or more threads are importing, deporting, or destroying
actors in the same actor reference.

Rationale for change

To enforce ROOM semantics under all scenarios.

Workaround

Three options in RTConfig.h provide a range of increased checking. By default, they are all enabled but
in the case where a pre-5.2 model is being converted, it may be necessary to back-off on some of these
options.

RTConfig.h Contents

// Possible values for RTFRAME_CHECKING:
// The frame service is intended to provide operations on components
// of the actor which has the frame SAP. The checking can be relaxed
// or removed.
#define RTFRAME_CHECK_NONE 0
// no checking (pre-5.2 compatible)
define RTFRAME_CHECK_LOOSE 2
// references must be in the same thread
#define RTFRAME_CHECK_STRICT 4
// reference must be in the same actor

#ifndef RTFRAME_CHECKING
#define RTFRAME_CHECKING RTFRAME_CHECK_STRICT
#endif

// Setting this macro to 1 guarantees that the frame service is thread
// safe. This is an option because some applications may use the frame
// service in ways that don’t require this level of safety.
#ifdef RTFRAME_THREAD_SAFE
#define RTFRAME_THREAD_SAFE 1
#endif

Summary of Concurrency issues

ObjecTime Developer for C++ 5.2 has been enhanced to address some very rare circumstances in which
potential race conditions may occur in multi-threaded environments. Potential issues are as follows:

• Actor reference management

C++ Target Services Library Changes

C++ Getting Started Guide Changes in Developer for C++ 5.2 21

• import list corruption

• relay port reservation errors (inconsistent bindings)

If an existing design is working correctly, it will continue to work correctly in Release 5.2. However if
the design uses the frame service concurrently (from multiple threads) then the changes in Release 5.2
will guarantee that no race conditions will occur.

It should be realized that there is no additional performance penalty in terms of the execution time it
takes to perform a given frame service call. However priority inversion may occur if a low priority
thread is doing an extended frame service call and a high priority thread makes a frame service call.

RTActorClass - Type changed

Description of change

The frame has a new set of APIs for dealing with Actor classes - RTActorClass. The APIs which used
an int have been removed.

Rationale for change

This change was done to allow more efficient code generation.

Workaround

Code relying on RTActor class being an int will NOT compile in 5.2. All operations are still supported:

Table 2 Frame Service Options

Option Default Impact Notes

RTFRAME_USE_FREELIST 1 (enabled) 2n extra pointers for
both optional and
imported Actor refer-
ences. Access time to a
free slot is constant.

Also provides mutual
exclusion when dealing
with Actor references. If
disabled then
RTFRAME_CHECKING
should be enabled

RTFRAME_THREAD_SAFE 1 (enabled) ROOM semantics
enforced. Potential for
increased latency time
before a higher priority
frame service call can
start.

If disabled then bindings
may be inconsistent if there
are concurrent frame ser-
vice calls.

RTFRAME_CHECKING STRICT ROOM semantics
enforced.

Needs to be at least
LOOSE if free list is dis-
abled.

C++ Target Services Library Changes

22 Changes in Developer for C++ 5.2 C++ Getting Started Guide

- frame.my_class() => RTActorClass
- frame.classesof(RTActorId) => RTActorClass

Summary

• RTActorClass is not a subclass of RTInteger

• RTActorClass constructor which takes an int parameter has been removed.

• An RTActorClass can no longer be sent in a message

• send a pointer to the class

• The _classId method has been removed

• manage pointers to ActorClasses instead of ActorClasses themselves (works in 5.1.1 and 5.2)

Static const RTActorClass * tests[] =

 {&ClassRTSignal,

 &ClassFoobar,

 ...}

Overrides

Description of change

Additional overrides are supported in 5.2. Code generation patterns and the TargetRTS have been mod-
ified to handle the overrides described in “Equivalent Overrides” on page 12.

Rationale for change

There were a number of long standing requests to remove these restrictions from the C++ TargetRTS.

Workaround

There is no visible impact due to these changes except for an increased usage of statically allocated
data. On most RTOSs this memory is statically configured (as part of the h/w configuration) and may
need to be re-engineered. Overall dynamic memory is decreased by approximately the same amount.

Mutexes in the Target Services Library

Frame mutex (new in 5.2)

• shared by all frame service calls

• protects frame service data structures

• for calculating bindings (followIn(), followOut())

Binding Mutex (same as in 5.1.1)

• to protect binding in frame service

• checked by inter-thread messaging

Problems Addressed in this Release

C++ Getting Started Guide Changes in Developer for C++ 5.2 23

Problems Addressed in this Release
For a complete list of problems that have been addressed in this release, please refer to the ObjecTime
web site at:

http://www.objectime.com/support/restricted-dir/index.html.

You will be prompted to enter your assigned ObjecTime user name and password to gain access.

Problems Addressed in this Release

24 Changes in Developer for C++ 5.2 C++ Getting Started Guide

Chapter 4

C++ Getting Started Guide General Information 25

4 General Information

Limits
SimulationRTS Limits

• 16,384 actors can be incarnated at run-time in a model.

• When using the SimulationRTS you must have selected the “Basic” debugging tool in order allow
the “Load” option to be used.

Target Services Library Limits

• Actor References: There can be up to 231-1 replications of each actor reference.

• SAPs are identified by a 16-bit number. There can be up to 65535 SAPs in a single actor class, and up to
231-1 replications of each.

• States are identified by a 16-bit number. There can be up to 65535 states per actor. This can be con-
figured in RTConfig.h.

Target Observability Limits

• The maximum number of controller probes for a single executing TargetRTS is 30. One controller probe
is generated for each navigator, each behavior or structure monitor, and each port, state or transition
daemon created in the RTS.

• The maximum threshold for a trace window configuration is 10,000.

• If the target doesn’t reply to periodic polls within a 10 second ‘target alive’ interval, the toolset dis-
plays a warning dialog indicating that the connection to the target has been lost. If the target returns,
the toolset displays another information dialog indicating the target has been successfully reconnect-
ed.

External Layer Limits

• When binding SAPs to SPPs using the External Layer Service, the replication of the proxy SPP which is
used to bind SAPs to a remote SPP is defined by a static int defined in RTProxySPP. The default value
is 100 in ObjecTime 5.2.

By linking in a new definition:

 int RTProxySPP::replicationFactor = 200;

this can be increased without modifying the Target Services Library.

Target Services Library Invoke - Usage Hints

26 General Information C++ Getting Started Guide

Target Services Library Invoke - Usage Hints
• The invoke communication service primitives of the TargetRTS do not copy the data supplied in the

versions which accept an argument of type ‘const RTDataObject &’. They are:

 RTEndPortRef::invoke(RTMessage *, int, const RTDataObject &) const
 RTEndPort::invoke(RTMessage *, int, const RTDataObject &) const.

This should have no impact on properly written applications other than to improve performance.

Proper applications are those in which the code of each transition is written as if it were the body of
a function with the following signature (this is one triggered by a signal accompanied by data of type
RTInteger). RTDATA is actually a macro, but it should be treated as a read-only pointer which refers
to read-only data.

void transition(const RTInteger * const RTDATA)
{

// transition code goes here
}
Similar comments apply to guard, choice-point, entry and exit code fragments. Failure to respect ac-
cess restrictions on the data provided in the message can lead to unintended interactions between ac-
tors. These are interactions that were previously hidden because each receiver of an invoke had a
separate copy of the data to with which to work. Take the example of an actor handling the dou-
bleIt signal.

A correct implementation is:

void transition1_doubleIt()
{

RTInteger value(*RTDATA);
value *= 2;
msg->reply(doubled, value);

}
Consider the implications if it were written as:

void transition1_doubleIt()
{

RTInteger * value = (RTInteger *)msg->data;
*value *= 2;
msg->reply(doubled, *value);

}
If this behavior is invoked:

{
static const RTInteger one(1);
RTMessage response;
doubler.invoke(&response, doubleIt, one);
const RTInteger & result = *(const RTInteger *)response.data;

}
The result is that the value of ‘one’ changes each time this code is executed until it overflows and
becomes zero. This happens because, each call to transition1_doubleIt sees

 msg->data == (void *)&one

Special Notes and Reminders

C++ Getting Started Guide General Information 27

This happens sooner if the port ‘doubler’ is replicated because each receiver doubles the value of
one. Of course, this is an oversimplified example. In a more complex application the interactions
may be more subtle. In some cases, application code may need to create a copy of the incoming data
which can then be modified, but this is better, from a performance perspective, than having the run-
time system copy the data always.

Special Notes and Reminders
• In ObjecTime Developer Release 5.2 the OTRTSDEBUG debug symbol is used to control the level of

target debugging that is possible:

 OTRTSDEBUG==DEBUG_VERBOSE

is required to run target observability. However only in the case of OTRTSDEBUG==DEBUG_NONE
is the instrumentation of the TargetRTS totally removed. Therefore performance measurements should
be done with this configuration.

• WindowsNT supports 4 priority classes:

 Name in Task Mgr Name in MFC .h and on MicroRTS cmd line
 realtime realtime
 high high
 normal normal
 low idle

 A model started with:

 Test_Actor -priorityClass=idle

 would execute in the idle (aka low priority) class.

• Optimizimg C++ Memory Utilization

In ObjecTime 4.4 a special memory management feature, “memcache” was provided.

In 5.2 “memcache” is NOT provided as part of the release. Its function was to provide more efficient
memory management for small objects by using a chunk of memory partitioned into pools of fixed size
blocks. It was implemented by overriding NEW on a global basis.

Experience has shown that while optimizing C++ memory utilization (for example, faster allocation,
reduced fragmentation) is often important in real-time systems optimal solutions end up being
application specific.

Application designers need to consider when to override NEW either for a particular class or globally
but also need to ensure that the issues of thread safety, engineering and utilization metrics are also
covered in a manner that best fits the application and operating system.

• Once an Actor has been compiled, modifications to the replication factor of the actor itself or of any
ports may cause a recompile of the complete model. We recommend specifying the replication factors as
early as possible or editing them in a batched fashion.

Also note that for unspecified replication factors (replication factor = *), if you change the root class of
a system, an actor’s previous replication factor will be statically copied over to the new system, and will
not take on an intended new value unless explicitly compiled. In this situation, we recommend
regenerating the entire model to ensure that the intended replication factor is applied.

Special Notes and Reminders

28 General Information C++ Getting Started Guide

• RTAsciiDecoding doesn’t use all the data it receives. RTIBuffer reserves the last byte of the buffer
supplied for a null, even though it is being used in a read-only manner. The application must specify
that the buffer is one byte larger than it really is.

Hints on porting existing UNIX models to Windows NT using
MS Developer Studio and Visual C++ 4.2 and 5.0

Porting existing models developed on ObjecTime Developer for UNIX, to ObjecTime Developer 5.2 for
Windows NT requires some special attention. The first thing you should do is port your model to Objec-
Time Developer 5.2 for Unix. Once this conversion has been completed, the move to ObjecTime Devel-
oper 5.2 for Windows NT should be performed.

• First ensure that the VC++ environment is functioning outside of ObjecTime. To facilitate proper
inclusion of header files, MSDEV (or Dev. Studio) should be installed in a path that contains no
spaces. Normally the INCLUDE variable is used to find VC++ header files which has no problem with
spaces in the pathname. By surrounding include directory paths in double quotes (") in the toolset
the problem with finding other header files is eliminated.

• VC++ 4.2 and 5.0 are quite rigorous, so depending on the compiler you were previously using, ex-
pect to make changes in your C++ code.

• If two class names differ only in case, you will be warned that one of the classes will be renamed.
The reason for this is because C++ is case sensitive but WindowsNT is case insensitive. References
to the original name must be adjusted likewise.

• The naming conventions for libraries is different from Unix - ‘lib’ is not prefixed. This is only an
issue for third-party libraries which do not follow the WindowsNT naming conventions

• You must reparse external data packages.

Overrides files for source level debugging

It is now possible to configure ObjecTime Developer to use an alternative debugger for source level
debugging. Example configuration files can be found in $OBJECTIME_HOME/tools/overrides. See
“Observing TargetRTS Models using the Simulation Tools” in the chapter Running and Debugging C++
Models of the C++ Language Guide.

Exiting the Target Services Library - Context->Abort()

The Target Services Library will not cleanly shut down on an exit() (or signal). If the user shuts
down with a context()->abort() from an actor on the main thread, then all of the actors will
be destroyed (and associated destructors run). Any other forced shutdown will simply exit with no
cleanup.

Return value from Send

SimulationRTS returns the replication factor of the port on which the send is called regardless of how
many of the instances are actually connected at the other end.

Special Notes and Reminders

C++ Getting Started Guide General Information 29

TargetRTS can return 0 if the send failed (Failure reasons are well-described in the C++ Language
Guide) If the send was successful, it will return the value of the actual number of successful sends
regardless of the replication factor of the port (except, of course, that the returned value would never
exceed the port replication factor).

Target Services Library Binding Algorithm

The Target Services Library will not create actors that cannot satisfy the bindings of the container where
they are being created. The binding resolution algorithm will take the minimum of the two ends of the
binding and the explicit replication factor on the binding and use that value for the binding replication.

Note: Be careful when using split bindings and check all warnings since the SimulationRTS and the
TargetRTS are different. The SimulationRTS creates actors that cannot be bound. The TargetRTS
does not create actors that cannot be bound. Therefore, some of the binding conflict warnings are in
fact errors.

Flattening Source

The Target Services Library source is organized into a large number of small files (many with the same
name, but which exist in different directories). This type of source layout may be problematic for some
debuggers and code analysis tools. If you run into problems due to this, then you can rebuild the Target
Services Library in a “flat” format. This “flat” format converts the source into a “one-file-per-class” for-
mat, named <class>.cpp.

This can be done in two different ways:

1 Add to config/<config>/setup.pl

$flat = 1;

2 Set the environment variable

SET BUILDOPTS=-flat

After either of the above, make sure build-<config>/depend.mk does not exist and then
specify [n]make CONFIG=<config>

Special Notes and Reminders

30 General Information C++ Getting Started Guide

Target Conformance Testing

A test model can be made available to you for the purposes of conformance and performance testing of
your target port. The model can be used to measure the performance and functionality of your C++ Tar-
get Services Library for a given target environment.

This model will be provided to you by ObjecTime for informal testing purposes only and there is no
implied guarantee of performance through the use of these test models in your development or testing
phases. Please contact ObjecTime Customer support for more information on this model, or if you wish
to obtain this model for test purposes.

Chapter 5

C++ Getting Started Guide Troubleshooting 31

5 Troubleshooting

Installation Issues

Please refer to the base ObjecTime Developer 5.2 Getting Started Guide & Release Notice for installa-
tion details and troubleshooting.

Compilation problems:

• Compile fails on valid C++ model for TargetRTS or SimulationRTS with VC++ 5.0

The INCLUDE and LIB environment variables may not be properly set. Start “ObjecTime Developer
Command Prompt” from “ObjecTime Developer 5.1.1” group in the Start Menu and run the “set” com-
mand. Ensure, that your compiler binaries are on the path and INCLUDE and LIB environment vari-
ables are set. (E.g. they could be set for the user, who installed VC++, but not set for another user). Set
the environment variables. Refer to VC++ documentation for further details.

• Error loading Actor (“could not spawn process”)

If the executable (Actor.exe) is stored on an NFS server then the NFS client must be configured to have
execute permission set.

• Error linking Actor (“error from nmake”)

If the executable (Actor.exe) is stored on an NFS server then the NFS client must be configured to have
execute permission set.

• Recompiling (after deleting a Load-Build Path)

When you compile an update with a load-build path and then delete the load-build path and recompile,
a make error occurs, since the .dep files do not have paths hard-coded in them.

In order to remove previous compilation results you should manually remove all previous compilation
results after all load-build changes. From your Update Root Directory, the Unix shell command is:

 rm -R LF build C++ Makefile

Windows NT: On Windows NT, use Windows Explorer to get to the Update Root Directory

32 Troubleshooting C++ Getting Started Guide

and delete the LF, build and C++ directories, plus the Makefile. Then initiate a Recompile From
Changes Only (or just a Recompile, if you have removed all of your load-build paths).

WindowsNT Compilation Command Line Limits

If you encounter a compilation error message that complains about the command line being too long,
the cause may be that the length of your compile or linker has exceeded a limit.

WindowsNT compilation has command line limits in two areas: source compilation and linking. Both
limits have been explored for the Visual C++ 4.2, Visual C++ 5.0, VRTX PPC Microtec 1.4 and Tor-
nado 1.0.1 PPC Cygnus 2.7.2 compilers.

Source File Compilation

The variables in source compilation are the update name, the $OBJECTIME_HOME path
(%OBJECTIME_HOME% in NT), compilation options, the local working directory and include direc-
tories. The only compiler that has a measurable limit is VRTX. The command line limit is 768 charac-
ters.

A workaround for the problem is to reduce the number of include directories by combining include
files. Other solutions are to shorten paths and names for the variables listed in the previous paragraph.

Linking

T h e v a r i a b le s i n l i n k in g a r e t h e u p d a te n a m e , t h e $ OB J E C T IM E _ HO ME p a th
(%OBJECTIME_HOME% in NT), the link options, the number and name length of libraries, the library
search paths and the local working directory. The link limits are shown below:

• Visual C++ 4.2: 2049 characters

• Visual C++ 5.0: more than 20875 characters

• VRTX PPC Microtec 1.4: 4147 characters

• Tornado 1.0.1 PPC Cygnus 2.7.2: 4150 characters

• HPUX 10.20: 16384 characters (make: “couldn’t load shell#stop”)

A workaround for the problem is to shorten paths and names for the variables listed in the previous
paragraph.

Error when compiling the Target Services Library

If you get an error when compiling the Target Services Library, it is often useful to see the commands
that make is issuing. However, the Target Services Library suppresses this output. In order to see the
output, just enter

make -n CONFIG=<config> MAKEOPTS=aaaa.o

This allows you to see the commands that will be executed to build the first object file from main.cc.
The commands have the same structure for all object files. If the compiler uses a different suffix for
object files, substitute it for ‘.o’.

C++ Getting Started Guide Troubleshooting 33

Alternatively. you could edit BUILD.pl to avoid prefixing the commands with ‘@’. Look for the line
that includes a reference to ‘CC_CMD’.

34 Troubleshooting C++ Getting Started Guide

Appendix A

C++ Getting Started Guide Developer 5.2 Directory Contents 35

ADeveloper 5.2 Directory Contents

Files and directories included in the C++ Target Module are as follows:

• <INSTALL>/Developer5.2 — This is the top level directory.

• C++ — This directory contains all of the source code, makefiles and other files required by the C++
Target Services Library.

• Help/C++ — This directory contains C++ documentation files used for the Online Help System.

• ModelExamples/C++ — This directory contains the ObjecTime C++ models referenced at various
locations in the documentation.

• Training/BasicTutorials/BasicTutorialC++ — This directory contains ObjecTime C++ model exam-
ples for the basic tutorials.

36 Developer 5.2 Directory Contents C++ Getting Started Guide

Appendix B

C++ Getting Started Guide Known Limitations/Restrictions 37

BKnown Limitations/Restrictions

Supported Platforms for C++

• The following platforms are supported for version 5.2 of the ObjecTime Toolset: AIX 4.2.1 (PowerPC),
HPUX 10.20, IRIX 6.2, Solaris 2.5.1, Solaris 2.6, SunOS 4.1.3 and WindowsNT 4.0.

• ObjecTime does not guarantee correct operation if you use the -O2 or higher optimization setting with
the gnu compiler on the AIX4 single and multi threaded platforms. (PR1943)

• During compilation on pSOS platforms, a Warning: ‘pointer to function cast to pointer to non func-
tion’ appears in the Error Browser. This is a valid warning. The (void*) array _types[] is used in Tar-
get Observability to allow us to print non-ASN.1 types that are fields of Sequences. It is void* rather
than a function pointer because flags can be part of the array as well.

Tornado
• When you reset a Tornado board, the target operating system is also reloaded. This means that all

applications will be reloaded whether or not they are directly related to your ObjecTime session. A reset
can occur by pressing the Reset button in the TargetRTS, or by exiting from the TargetRTS. ObjecTime
recommends using manual mode to prevent the automatic reset if extensive board setup is required.
(PR1649)

External Layer
• In situations using External Layer short circuit connections with the C++ TargetRTS, you should use

a SPP replication factor greater than the number of connections required. This is because of a race
condition in which a new connection may be requested before the old one is removed. (PR1874)

Windows NT
• You cannot delete files when they are currently open or being observed in the Explorer. This impacts

how ObjecTime code generation and possibly other subsystems work. An error message is returned
if the update/C++ or update/C directory is opened.

• When you start ObjecTime Developer with Target Observability enabled, there might be a slight de-
lay before the socket connection between the Toolset and the Controller is established. During this
time, the '() Load' radio button in the Compile dialog box is disabled. If this happens, click [Cancel],
wait a couple of seconds, and try again. (PR4181)

• If you start a compilation of a larger C++ model, and abandon the ObjecTime session, the Task Man-
ager reveals that the compiler continues to execute. (PR3834)

C++

38 Known Limitations/Restrictions C++ Getting Started Guide

Compiling in Windows95

When compiling an ObjecTime executable for Windows95, you must set the following variable:

OBJECTIME_OS=Windows_95

C++
• The Simulation Services and Target Services Libraries have different time bases when the RTTime class

is used. The Toolset and SimulationRTS are based on local time. The C++ TargetRTS is based on
Coordinated Universal Time (UTC). The RTTimespec class does NOT have this problem. (PR1854)

• Layer SPPs in C++ actors must be specified with a maximum replication factor, equal to the maximum
number of SAP’s bound to it. An unspecified replication factor in this case equates to “0”.

• There is a difference between the incarnate() function in the SimulationRTS and the TargetRTS. When
incarnating at a particular index, the SimulationRTS expects the indexing to start from 1, while the
TargetRTS expects the indexing to start from 0. You may find it useful to define a macro which hides this
difference so that you don’t have to change your code when moving from the SimulationRTS to the
TargetRTS.

• Two or more different updates with the same name in different Workspace Browser folders are not
distinguished during compilation.

• System header files such as stdio.h are not automatically included. Due to this, expressions for Choice
Point and Transition Guard conditions should return an int (for example,0 or 1). To return TRUE or
FALSE, users must explicitly include the header files containing the definition of TRUE and FALSE.

• If functions on actors or data classes are declared inline they may cause link errors if the body of the
inline function requires other ObjecTime data classes which are not yet available to the compiler.

• Currently only PSOS configures the stack size of the main task. The designer-provided value for RT-
Main::mainStackSize is not considered for any other target ports.

Debugging

• XXGDB will exit with a segment violation under certain specific circumstances if you run a model in the
TargetRTS with target observability. This happens if you select both Halt and Source Breakpoint in the
RTS control panel, and run your model. If you then try to open a source file from within XXGDB after
the ObjecTime Halt takes effect but before the XXGDB breakpoint is reached, then XXGDB will exit.
There is no problem if you open a source file after the XXGDB breakpoint is reached. (PR480)

• When downloading a very large model to the target board using the SDS Single Step ver 7.0.3 and
7.1.1 debugger, you might receive this message:

debug:"ram.ou1": error: corrupt symbol table detected

The reason for this is a bug in these debuggers. SDS is currently looking into this problem. (PR4872)

TargetRTS

• setup.pl files in the TargetRTS may contain references to ObjecTime paths. They must be cus-
tomized as necessary. (PR3396)

• When using the external layer service with the single-threaded TargetRTS, the listening end must be
permitted to initialize before the other processes can connect. The “step” debugger command is
sufficient.

C++

C++ Getting Started Guide Known Limitations/Restrictions 39

• When using nmake to recompile the TargetRTS you must use the make variable CONFIG to set the
default target:

nmake CONFIG=NT4.0T.x86-VisualC++-5.0 or use makent.bat

TargetRTS Debugger

• The 'info' command displays all the 'Components' in a 0-based list, but they must

 be entered as 1-based values.(for use in the info and trace commands)

 Fix: Add 1 to the Component value if you want to use it in another 'info' command. (PR4910)

RTSController Messages

Occasionally, under certain circumstances, the RTSController produces the following messages:

• RTSControlMaster: send on toolset spp failed

• RTSControlMaster: recall - no message

These messages are generated when the following conditions are true:

• Target Observability is turned on and active

• the rtsController was started manually, that is, not with ‘objectime -control’.

• the application was loading and unloading on a Tornado board, either in manual mode or with the
Tornado Debugging Tool activated.

These messages require no user action. (PR 5319)

Compilers/Compilation/Run-Time System - C++

• On rare occasions the compiled version of a design may get out of sync with the design itself. This is
manifested by recent design changes not appearing to take effect at run-time resulting in various run-time
errors. Selecting ‘Recompile’ in the compile dialog will clear the problem.

• Simulation communication is not synchronized over multiple run-time systems (RTSs) interworking via
the Layer Service. Angiotraces cannot be captured over interworking RTSs. See the description of
Layered Networking in the Toolset Guide.

• There is a link incompatibility between different GNU versions. If you see a link error involving the
symbol _addChainSegment, then it is likely that you are using an incompatible version of GNU, and you
should upgrade to the 2.8.1 version.

• Using an INVOKE in the initial transition of an actor (or entry code of the initial state) may cause am-
biguous user run-time errors if the destination actor has not yet been initialized. If the destination actor
is contained within the invoking actor, the problem does not occur, as actors are initialized in depth-first
order.

Native Compilation (NC)

Several targets do not support cross compilation. This implies that the code generated and makefiles are
first generated on a supported host then the make/compile are executed on the target.

C++

40 Known Limitations/Restrictions C++ Getting Started Guide

There are a number of restrictions with this setup:

• a shared filesystem must be created on the files or the files must be ftp’d to the target

• incremental compile will not be possible unless a shared filesystem is used.

• the compile and load operations are manual

• the error stream is captured in an external file (compile.output) and can be read back into the toolset
to perform the compile error to toolset mapping. This is accomplished through the Import Compila-
tion Results option from the Update menu item.

Inclusion Paths

Use absolute inclusion paths (as opposed to relative inclusion paths) as the results from using relative
inclusion paths can be inconsistent and in some cases will simply not work.

Known Problem Information

For a complete list of known problems in this release, please refer to the ObjecTime web site at http://
www.objectime.com/support/restricted-dir/index.html. You will be prompted to enter your assigned
ObjecTime user name and password to gain access.

ObjecTime Limited
340 March Road
Kanata, Ontario
Canada K2K 2E4

