
C Getting Started Guide  i

OBJECTIME 

C Target Module
5.2.1

Getting Started Guide
& Release Notice

Product Release: ObjecTime Developer 5.2.1 for C
Document Version: 1.0
Release Date: February 1999
Part Number: OT-R521-DOC810

ObjecTime Limited
340 March Road
Kanata, Ontario
Canada K2K 2E4

Printed in Canada



Important Notice

Copyright 1991-1999 ObjecTime Limited. All rights reserved.
Unpublished -- rights reserved under all Copyright laws including Copyright laws of the United States.
ObjecTime (and logo) is a registered trademark of ObjecTime Limited. Developer is a trademark of ObjecTime Limited.
The license management portion of this product is based on:
Elan License Manager  1989-1999 Elan Computer Group, Inc. All rights reserved.
ObjecTime Limited (OTL) PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Information in
this publication is subject to change from time to time without notice. Some states, provinces, or jurisdictions do not allow disclaimer
of express or implied warranties in certain transactions; therefore, this statement may not apply to you.
ObjecTime Limited (OTL) and its licensors retain ownership to the ObjecTime computer program and other computer programs offered
by OTL (hereinafter collectively called “ObjecTime”) and their documentation. Use of ObjecTime is governed by the License Agree-
ment associated with your purchase. 
Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the Com-
mercial Computer Software-Restricted Rights clause FAR 52.227-19 and its successors.
For units of the Department of Defense (DoD), the license for this software is subject to the “Restricted Rights” as that term is defined 
in the DFAR 252.227-7013 (c)(1)(ii), Rights in Technical Data and Computer Software and its successors. 

The contractor/manufacturer is:
ObjecTime Limited
340 March Road
Kanata, Ontario

Canada, K2K 2E4

When acquired by the Government, commercial computer software and related documentation so legended shall be subject to the
following:
(A) Title to and ownership of the software and documentation shall remain with the Contractor.
(B) User of the software and documentation shall be limited to the facility for which it is acquired.
(C) The Government shall not provide or otherwise make available the software or documentation, or any portion thereof, in any form,
to any third party without the prior written approval of the Contractor. Third parties do not include prime contractors, subcontractors
and agents of the Government who have the Government’s permission to use the licensed software and documentation at the facility,
and who have agreed to use the licensed software and documentation only in accordance with these restrictions. This provision does
not limit the right of the Government to use software, documentation, or information therein, which the Government has or may obtain
without restrictions.
(D) The Government shall have the right to use the computer software and documentation with the computer for which it is acquired
at any other facility to which that computer may be transferred; to use the computer software and documentation with a backup com-
puter when the primary computer is inoperative; to copy computer programs for safekeeping (archives) or backup purposes; and to
modify the software and documentation or combine it with other software. Provided, that the unmodified portions shall remain subject
to these restrictions.

COMMERCIAL COMPUTER SOFTWARE — RESTRICTED RIGHTS

(c) (1) The restricted computer software delivered under this contract may not be used, reproduced or disclosed by the Government
except as provided in subparagraph(c)(2).
(c)(2) The restricted computer software may be —
(i) Used or copied for use in or with the computer or computers for which it was acquired, including use at any Government installation
to which such computer or computers may be transferred;
(ii) Used or copied for use in or with backup computer if any computer for which it was acquired is inoperative;
(iii) Reproduced for safekeeping (archives) or backup purposes;
(iv) Modified, adapted, or combined with other computer software, provided that the modified, combined, or adapted portions of the
derivative software incorporating any of the delivered, restricted computer software shall be subject to same restrictions set forth in
this contract.
The following are trademarks or registered trademarks of their respective companies or organizations:
VxWorks, Tornado / Wind River Systems Inc. pSOS,pRISM,pRISM+ / Integrated Systems Inc. QNX / QNX Software Systems Ltd.
LynxOS / Lynx Real Time Systems Inc. VRTX, MRI C++,Spectra / Microtec Inc. Green Hills C++ / Green Hills Software, Inc. Cygnus
C++ / Cygnus Support. Watcom C++ / Sybase Inc. Elan License Manager / Elan Computer Group, Inc. OPEN LOOK, UNIX / UNIX
System Laboratories, Inc. FrameMaker, FrameViewer, PostScript, Acrobat / Adobe Systems, Inc. Hewlett-Packard / Hewlett-Packard
Company. SGI R3000, R4000, IRIX / Silicon Graphics Inc. AIX, IBM, PowerPC, RISC System/6000 / International Business Machines
Corporation. WindowsNT, VisualC++,Visual Source Safe / Microsoft Corporation. Sun Microsystems, Sun Workstation, OpenWin-
dows, Solaris, SunView, SPARC, SPARCstation / Sun Microsystems, Inc. X Window System, X11 / Massachusetts Institute of Tech-
nology. Smalltalk-80, ObjectWorks/Smalltalk / ParcPlace Systems, Inc. GNU / The Free Software Foundation. ClearCase, Purify /Pure
Atria Corporation. Rational. Netscape, Netscape Navigator, and the Netscape N logo are registered trademarks of Netscape Commu-
nications Corporation in the United States and other countries. Microsoft, Windows, and Windows NT are either trademarks or regis-
tered trademarks of Microsoft Corporation. All other brand names are trademarks of their respective holders.



C Getting Sta
ObjecTime Support
Your opinions and suggestions are both welcome and vital to the evolution of ObjecTime Developer.

ObjecTime Support

ObjecTime Support Hotline: (613) 591-3400

ObjecTime Support E-mail: support@objectime.com

ObjecTime Sales

Sales Hotline outside the Ottawa area: 1-800-567-TIME

Sales Hotline within the Ottawa area: (613) 591-3831

Sales Email: sales@objectime.com

ObjecTime Limited

ObjecTime Fax: (613) 591-3784

Visit our Web Site: www.objectime.com
rted Guide  iii



iv C Getting Started Guide



C Getting Sta
Table of Contents
Welcome to ObjecTime Developer for C 5.2.1  . . . . . . . . . . . . . . . . . . 1

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

What’s new in Developer for C 5.2.1/5.2 . . . . . . . . . . . . . . . . . . . . . . 2

Year 2000 Compliance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Installation Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Documentation Errata: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Supported Host & Reference Platforms  . . . . . . . . . . . . . . . . . . . . . . . 9

Changes in Developer 5.2.1/5.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Model upgrade pre-5.2.1 to 5.2.1   . . . . . . . . . . . . . . . . . . . . .  11
5.2.1 API changes:   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Serial line target observability  . . . . . . . . . . . . . . . . . . . . . . . .  13
Limited support for 8.3 compilers (OTD 5.2.1)   . . . . . . . . . . .  15
OSE:  An example port (OTD 5.2.1)   . . . . . . . . . . . . . . . . . . .  16
Issues with running earlier models   . . . . . . . . . . . . . . . . . . . .  17
Naming changes and impact to user models   . . . . . . . . . . . .  17
Application Programmer Interface (API)   . . . . . . . . . . . . . . . .  18
Semantics   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
User Code changes necessary for new 
C Target Services Library   . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
External debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
Problems addressed in this release   . . . . . . . . . . . . . . . . . . .  20

General Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
C TargetRTS Services Library Limits   . . . . . . . . . . . . . . . . . .  21
Special Notes and Reminders  . . . . . . . . . . . . . . . . . . . . . . . .  21

Compliance Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

User Guide — Differences When Using the 

C Target Services Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
rted Guide Table of Contents   v



Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Compilation problems — Windows NT   . . . . . . . . . . . . . . . . .  27

Developer for C Directory Contents  . . . . . . . . . . . . . . . . . . . . . . . . .  29

Known Limitations/Restrictions  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
Inclusion Paths   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Solaris Multi-threaded   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Relay Ports   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Target Observability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Tornado  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
Known Problem Information  . . . . . . . . . . . . . . . . . . . . . . . . . .  32

Tornado Integration on NT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
Using Tornado on Windows NT  . . . . . . . . . . . . . . . . . . . . . . .  33
Environment setup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
Overview of the ObjecTime/Tornado integration tools  . . . . . .  38
What Tornado Needs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
What ObjecTime Needs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

Tornado Integration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
Source Breakpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
Source Breakpoint Hit   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

Integrating Developer Studio on Windows NT . . . . . . . . . . . . . . . . .  49

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

Source Breakpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

Source Breakpoint Hit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
vi   Table of Contents C Getting Started Guide



Chapter 1

C Getting Sta
1 Welcome to ObjecTime 
Developer for C 5.2.1
Introduction
The ObjecTime Developer for C 5.2.1 release provides general enhancements aimed at minimizing the
memory requirements for the use of visual debugging on targets with constrained foot print require-
ments. This release also introduces visual debugging on target using serial port access as a complement
to the current TCP based visual debugging on target. ObjecTime Developer for C 5.2.1 also introduces
support for the Enea OSE 3.1 platform.

Please see the ObjecTime Developer 5.2.1 Getting Started Guide and Release Notice for information
about new toolset-related features in ObjecTime Developer 5.2.1, and the following sections for infor-
mation related to C language-specific features introduced in this release.

This chapter provides an introduction to using ObjecTime Developer for C 5.2.1. There are four main
areas:

• What’s new in ObjecTime Developer for C 5.2.1/5.2

• Year 2000 Compliance

• Installation Information

• Naming Conventions

• Documentation Errata
rted Guide Welcome to ObjecTime Developer for C 5.2.1   1



What’s new in Developer for C 5.2.1/5.2

et
el-

g a

c-
 in

s
an
or

el-
t

What’s new in Developer for C 5.2.1/5.2
The following list highlights some of the key new features in ObjecTime Developer 5.2.1.

• Serial Port Access: This release adds serial communication support to the target observability 

feature of ObjecTime Developer 5.2.1.  Currently, the serial support is only available for the C Targ
Services Library. See “Model upgrade pre-5.2.1 to 5.2.1” on page 11, Chapter 3, Changes in Dev
oper 5.2.1/5.2.

• C Target Services Library internal architectural improvements: There have been numerous en-
hancements to the C Target Services Library between the 5.2 version and the 5.2.1 version.   These
enhancements include:

• The porting process has been improved such that functions that need to be overridden durin
port have been put into separate files

• Improvements to system-wide timers and to per-thread timers

• Thread synchronization algorithms have been improved

• Code has been modularized to improve readability

• Code has been re-written to minimize global lookups

• Support for Serial Line Target Observability

• 8.3 filename compliance

• Problems reported in 5.2 have been fixed

• Example ports to new platforms have been added

• Use of large footprint function calls have been reduce.

• Footprint reduction and speed improvements

• OSE:  An example port:  OSE separately creates then runs it's threads, rather than having one fun
tion that does both. See “OSE: An example port (OTD 5.2.1)” on page 16, Chapter 3, Changes
Developer 5.2.1/5.2 for further information.

• Limited support for 8.3 compilers:  The code generation process appends extensions such a
_Actor, _Data, _Protocol and _Package to generated header and implementation files. This c
cause problems if you are using a compiler which insists on 8.3 filenames. Some limited support f
this kind of compilation does exist.  See “Limited support for 8.3 compilers (OTD 5.2.1)” on page
15  for more information.

• Developer WebPublisher: The Developer WebPublisher 5.2.1 optional product is available for use
with all three of the ObjecTime Developer 5.2.1 product packages. Please see the ObjecTime Dev
oper 5.2 User Guide, Web Model Publisher, Chapter 27, and the enclosed product information shee
for details about Developer WebPublisher’s capabilities. 

• Developer TestScope: The Developer TestScope 5.2.1 optional product is available for use with all
three of the ObjecTime Developer 5.2.1 product packages. Developer TestScope extends ObjecTime
Developer’s design-automation capabilities to model debug and test. Please see the product informa-
tion sheet enclosed with the ObjecTime Developer 5.2.1 documentation for details about Developer
TestScope’s capabilities. 
2   Welcome to ObjecTime Developer for C 5.2.1 C Getting Started Guide  



What’s new in Developer for C 5.2.1/5.2

l,

led.
et

s
de-
ths
.

b-

e-

.

The following list highlights some of the key new features in ObjecTime Developer 5.2.

• C actor toolset integration: C actors are now fully integrated into the toolset, with appropriate mod-
eling enforcement where needed.

• Target Observability for C: Target Observability of a running executable from within the toolset
has been added. This includes support for port injection and message tracing. 

• Timestamp driven compilation: ObjecTime Developer for C now uses industry standard times-
tamp driven compilation. Only modified or affected-by classes are recompiled.

• Generated code persistence: Code generation only takes place when classes are changed. As wel
generated files and compile outputs are never deleted, only overwritten. 

• External code generation and compilation: Code generation and compilation can be performed
outside the toolset via make. This is useful in situations where a large model needs to be recompi
Users can now trigger this activity outside the toolset so they may continue to work within the tools
unhindered.

• Use of source file pairs: The generated C code is now in the form of one .h and one .c file created
for each actor and protocol class. 

• Reuse of build products: Reuse is now at the class level versus package level. Designer session
can pick up loadbuild results during compile. For ClearCase users, this is accomplished by using 
rived objects made visible in user view. GNU make users can do so by setting the Load Build Pa
property in Update Properties Editor, and others can do so by manually copying loadbuild results

• Internal model dependencies: Automatically generated. You can also add dependencies for situa-
tions where you require access to the public interface of an ObjecTime component in another O
jecTime component. 

• External compile dependencies: Changes to user-specified dependencies, explicitly created
through external .h inclusions, are now appropriately considered during the compilation phase, r
sulting in incremental recompilation as necessary. 

• New toolset host support: IBM AIX, Silicon Graphics IRIX, NT and SunOS are officially support-
ed as host and target development environments.

• Tornado integration on NT: WindRiver Tornado has been added as a target development platform
Refer to Appendix C of this guide for information on integrating and using Tornado.

• C Target Services Libraries: These are re-compiled libraries which are linked during each update
compile, rather than re-compiling every time an update is compiled.

• Code-generation pattern: The new code-generation pattern is smaller and more efficient.

• Debugger: The new debugger for Developer for C is similar to the C++ debugger.
C Getting Started Guide Welcome to ObjecTime Developer for C 5.2.1   3



Year 2000 Compliance
Year 2000 Compliance
Complete Year 2000 testing has been performed by ObjecTime Limited, including correct handling of
leap year calculations. ObjecTime Developer 5.2.1 is year 2000 compliant. The ObjecTime Developer
class libraries will function correctly across the year 2000 boundary with one clarification. The RPL
Date class allows year to be specified as either a two digit (interpreted as 2000 - 2050 if the entered year
is less than 51, or interpreted as 1951 - 1999, if the entered year is greater than or equal to 51) or a four
digit (relative to the start of the Roman calendar) number. It is recommended that existing models be
converted to use the four digit year format. 

Note: For further details on ObjecTime Limited’s Year 2000 Compliance Policy please visit: 

http://www.objectime.com/otl/about/y2k.html

The license keys used by the License Manager are year 2000 compliant, with the exception of the
License Manager log file, which lists only the two last digits of the year.

It is recommended that you review the Year 2000 compliance policies and statements from the vendors
of your operating system, development tools and configuration management software.
4   Welcome to ObjecTime Developer for C 5.2.1 C Getting Started Guide  



Installation Information
Installation Information
The C target module can be installed either as an upgrade to the ObjecTime Developer 5.2.1 base, or as
a complete product package which includes the base. In either scenario, the installation instructions are
similar and the ObjecTime Developer 5.2.1 Getting Started and Release Notice provides complete
details on the installation instructions.

The only difference between the base ObjecTime Developer installation and the ObjecTime Developer
for C installation will be the number of packages that are to be installed, along with your installation
keys. The following figures represent the differences between the base install and an ObjecTime Devel-
oper for C install for the two different platforms — UNIX and Windows NT.

Note:  The default printer requirement is, at minimum, a UNIX or Windows NT compatible printer.
We recommend a PostScriptTM printer.

Figure 1 On Windows NT

If installing on a UNIX system, a typical install would appear as in the shell script that follows:

Figure 2 On Unix

Reading the setup directory...
Press T<ENTER> for Typical Installation,
or C<ENTER> for Custom Installation: t<ENTER>
The products selected for Typical Installation are:
ObjecTime Developer
C Target Module.
C Getting Started Guide Welcome to ObjecTime Developer for C 5.2.1   5



Naming Conventions
Naming Conventions
In ObjecTime Developer for C 5.2 the C TargetRTS was renamed to the C Target Services Library to
better reflect the implementation of the C TargetRTS and to clearly identify the different libraries.
Throughout the documentation set, the terms cRSL, cRTS, C Target or C TargetRTS  refer to the C Tar-
get Services Library.
6   Welcome to ObjecTime Developer for C 5.2.1 C Getting Started Guide  



Documentation Errata:
Documentation Errata:
Note the following updates to the information contained in the ObjecTime Developer C Language
Guide. Please read and note the following changes to your documentation set.

________ 
Add the following to Chapter 5, in the Reserved Names list, page 54:

 getId.

Note:  getId cannot be used as a signal name.

________ 
Add the following to Chapter 2, in the Macros that require ‘msg’ or ‘_actor’ section, page 28:

See “Run-Time Actor Instance Identification” on page 30 for more information.
C Getting Started Guide Welcome to ObjecTime Developer for C 5.2.1   7



Documentation Errata:
8   Welcome to ObjecTime Developer for C 5.2.1 C Getting Started Guide  



Chapter 2

C Getting Sta
2 Supported Host & Reference 
Platforms
The following table shows the supported host platforms for ObjecTime Developer for C 5.2.1. 

Reference ports are ports delivered as part of the standard ObjecTime Developer for C product. These
ports are fully tested by ObjecTime, and are covered by standard ObjecTime support. A reference port
can be used to facilitate a port to your environment of choice. 

A reference port is based on the following specifics:

• OS version

• Compiler version

• Processor type

5.2.1 Host Platforms

Toolset Host Simulation Services Library Name

Solaris 2.6 SUN5.sparc-gnu-2.8.1

Windows NT 4.0 NT40.x86-VisualC++-5.0, -VisualC++6.0

HPUX 10.20 HPUX10.hppa-gnu-2.8.1

AIX 4.2.1 AIX4.ppc-gnu-2.8.1

IRIX 6.2 IRIX6.r4400-gnu-2.8.1

Sun OS 4.1.3 SUN4.sparc-gnu-2.8.1
rted Guide Supported Host & Reference Platforms    9



e

d

If you are using a line-up other than the one tested by ObjecTime and listed in this guide, standard sup-
port will cover problems encountered by you only to the extent that the problem is reproducible on the
line-up listed in this guide. 

Note: The following applies to the Tables in this chapter:

• S = Single-threaded

• T = Multi-threaded

Simulation Services Libraries don’t have an ‘S’ or a ‘T’ thread indicator in their names.

• Supplied = Simulation Services Libraries and Target Services Libraries are supplied as part of th
ObjecTime Developer for C installation.

• Generate = not supplied as part of the ObjecTime Developer for C installation, but can be generate
from source code that is supplied.

5.2.1 Reference Platforms & Ports

Toolset Host Target Services Library Name
Target

Services
Library

AIX 4.2.1 (PowerPC) AIX4S.ppc-gnu-2.8.1 Supplied

HPUX 10.20 HPUX10S.hppa-gnu-2.8.1 Supplied

IRIX 6.2 IRIX6S.r4400-gnu-2.8.1 Supplied

Solaris 2.6 SUN5S.sparc-gnu-2.8.1
SUN5T.sparc-gnu-2.8.1

Supplied

SunOS 4.1.3 SUN4S.sparc-gnu-2.8.1 Supplied

Windows NT 4.0 NT40S.x86-VisualC++-5.0
NT40T.x86-VisualC++-5.0
NT40S.x86-VisualC++-6.0
NT40T.x86-VisualC++-6.0

Supplied

Solaris 2.6
Windows NT 4.0

TORNADO101S.ppc-cygnus-2.7.2-960126
TORNADO101T.ppc-cygnus-2.7.2-960126
(Tornado 1.0.1: cygnus tools for VxWorks 5.3.1 on Pow-
erPC)

Generate

Solaris 2.6
Windows NT 4.0

OSE31T.ppc603-Diab-4.1a
(Diab 4.1a,  SDS 7.1.1  tools for OSE 3.1 for PowerPC)

Generate
10   Supported Host & Reference Platforms C Getting Started Guide



Chapter 3

C Getting Sta
3 Changes in Developer 5.2.1/5.2
This section is of particular interest to customers who have used previous releases of ObjecTime Devel-
oper. It describes new features that are available for ObjecTime Developer for C (version 5.2.1/5.2) that
were not available with ObjecTime Developer for C (version 5.1).

Model upgrade pre-5.2.1 to 5.2.1

Due to enhancements introduced in 5.2.1, a minor conversion effort will be required to bring your pre-
5.2.1 models to 5.2.1. Specifically, changes have been introduced in the area of timers and some API
changes. In many cases, the only actions that you will have to do are:

1 open the C_Timers update and 

2 drag and drop the new timer actors into your model update.

If, however, you have coded your own timer actors, or used functions that were meant for timer design
in your model, you will have to update some function calls.

It is also recommended that integrated timers be redesigned into a single actor, and that actor be dragged
and dropped into every thread requiring timing services.

5.2.1 API changes:

RSLPortEnqueue

RSLMessage *

RSLPortEnqueue( RSLActorIndex RSLExecutingActor , RSLPortIndex
portOffset ,

        RSLSignalIndex signal , RSLMessagePriority priority , void
*data )

is now:

RSLMessage *
rted Guide Changes in Developer 5.2.1/5.2   11



RSLPortEnqueue( RSLActorIndex      RSLExecutingActor ,

                RSLPortIndex       portOffset ,

                RSLSignalIndex     signal ,

                RSLMessagePriority priority ,

                void *             data ,

                RSLActorIndex      FromActor ) 

The function was changed to include the sending actor as a parameter to calculate whether the message
is an intra-thread send or an inter-thread send. If both actors are on the same thread, then it is an intra-
thread send.

RSLRegisterTimerServices

void

RSLRegisterTimerServices( RSLActorIndex RSLExecutingActor ,

                          RSLPortIndex port , void *cv ,

                          void( *sigfunc )( void * ) ) 

is now:

void

RSLRegisterTimerServices( RSLActorIndex RSLExecutingActor ,

                          RSLPortIndex port ,

                          void( *sigfunc )( void * ) ) 

The cv parameter was eliminated, as it was unnecessary. The pointer to the instance data for the actor is
stored, and passed back to associated functions. The CV, if necessary can be a part of the Instance Data
( ESVs )

RSLRegisterMessageSignallingInterface

void

RSLRegisterMessageSignallingInterface( RSLActorIndex actor ,
void *cv ,
12   Changes in Developer 5.2.1/5.2 C Getting Started Guide



                                       void( *sigfunc )( void * ) ) 

is now:

void

RSLRegisterMessageSignallingInterface( RSLActorIndex actor ,

                                       void( *sigfunc )( void * ) ) 

The cv parameter was eliminated, as it was unnecessary. The pointer to the instance data for the actor is
stored, and passed back to associated functions. The CV, if necessary, can be a part of the Instance Data
( ESVs ).

RSLGetFirstTimeout / RSLTimerReference

RSLGetFirstTimeout( RSLActorIndex RSLExecutingActor ) 

is now:

void

RSLGetFirstTimeout( RSLActorIndex RSLExecutingActor ,

                    RSLTimerReference * ThisTimer     ) 

The RSLTimerReference return parameter has been moved to being a parameter. This has been done for
several reasons. Some compilers don’t accept a struct as a return parameter. Second, returning a struct
implies that the struct must exist in the stack in the calling function and the called function, so this elim-
inates one stack instance.

RSLGetMyThread - new function: RSLThreadIndex

RSLGetMyThread( RSLActorIndex actor ) 

This function has been added in case a timer design needed to know on which thread a certain actor was
running.

Serial line target observability

ObjecTime Developer for C 5.2.1 supports Serial IO in the C Target Services Library. When using
serial line target observability, note that additional arguments to configure the serial port are required
when starting the ObjecTime model. See “Command line options” on page 15.
C Getting Started Guide Changes in Developer 5.2.1/5.2  13



a
via
he
l-

,

Serial Agent application and source code are added to the ObjecTime Developer 5.2.1 suite of tools.
The Serial Agent acts as a proxy for the target, shuffling target observability communications between
the ObjecTime Controller and the serial port which is connected to the target.

Serial line target observability permits ObjecTime Developer’s target observability features, without 
target TCP/IP stack or network hardware. Instead target observability communications are sent 
RS232 serial line to the development host machine, running the Serial Agent proxy application. T
Serial Agent then relays the target observability communications to the ObjecTime Controller. The fo
lowing figure illustrates the components of the serial line target observability system.

Figure 3 Serial line target observability system

System requirements

Serial Line target observability has the following requirements or restrictions:

•    a target with a RS232 serial port.

•    a port of the Target Services Library with serial line target observability enabled.

•    a development host with a RS232 serial port and TCP/IP stack.

•    the Serial Agent proxy, which is provided for all ObjecTime Developer platforms. 

Note:  Currently, only the C Target Services Library supports Serial Line Target Observability. 

Platforms supported

The Serial Agent is supported for all of the ObjecTime Developer development platforms (AIX4
HPUX10, IRIX6, NT4, SUN4, SUN5). The following C Target Services Library target platforms are
supported:

    AIX4S.ppc-gnu-2.8.1

    HPUX10S.hppa-gnu-2.8.1

    IRIX6S.r4400-gnu-2.8.1

Target

Development Host

ObjecTime Model

RTS RS232

ObjecTime Controller

Socket(TCP/IP)\

RS232

Serial Agent
14   Changes in Developer 5.2.1/5.2 C Getting Started Guide



’

 to
e

e

ud

al
    NT40T.x86-VisualC++-6.0

    SUN4S.sparc-gnu-2.8.1

    SUN5T.sparc-gnu-2.8.1

 Command line options

With the addition of serial support in the C Target Services Library, some additional command line
options are required to start the ObjecTime model with target observability. The standard options, -
connect=’ and ’-name=’, are still required.

-connect=<port>@<host>

Where <port> is the TCP/IP port of the ObjecTime Controller, and <host> is the TCP/IP address or
host name of the computer on which the Controller is executing. The port number when connecting
the Controller with the C Target Services Library is Master Port + 1. The Master Port value can b
found from the External Access menu item in ObjecTime Developer 5.2.1.

 -name=<name>

Where <name> is the name the target will use when connecting to ObjecTime Developer 5.2.1. Th
correct <name> is shown in the title bar of the RTS Control Panel. 

 -serial=<dev> 

Where <dev> is the file name of the serial device. On UNIX systems <dev> is something like  ’/
dev/tty1’. On Windows NT <dev> should be something like ’COM1’. 

 -baud=<baud>

This optional argument sets the serial port baud rate to <baud>. If this option is not specified, the ba
rate will default to 9600.

The Serial Agent also requires the setting of command line options. The syntax for invoking Seri
Agent is as follows:

serialagent <dev> [<baud>]

Where <dev> is the name of the serial device, and <baud> specifies what baud rate will be used. As
with the target, the baud rate is optional and defaults to 9600 if not specified.

Limited support for 8.3 compilers (OTD 5.2.1)

The following applies to C, C++ Target and C++ Simulation equally.
C Getting Started Guide Changes in Developer 5.2.1/5.2  15



s

ack-
nflict-

es,

i-

e
>

ary

 nec-
s.

he
The code generation process appends extensions such as _Actor, _Data, _Protocol and _Package to gen-
erated header and implementation files. This can cause problems if you are using a compiler which
insists on 8.3 filenames. Some limited support for this kind of compilation does exist.

It should be noted that the file system cannot be restricted to 8.3 filenames. Similarly the Make execut-
able must be able to support non-8.3 Makefile fragments (such as Foo_Package.mk).

To activate 8.3 compiler support, set the environment variable OBJECTIME_8DOT3 to a non-zero
value, restart the session and regenerate all.

Restrictions:

• The file system must still support non-8.3 filenames

• The Make executable must be able to support non-8.3 Makefile fragments (such a
Foo_Package.mk)

• Obviously all classes and packages must be a maximum of 8 characters long.

• All packages and all classes now belong to a common name-space. The toolset checks that all p
age names are unique and all class names are unique, but does not check for package names co
ing with class names.

• The toolset does not check for case-insensitive uniqueness. If your compiler requires 8.3 filenam
it is likely not case-sensitive.

• The link objects list file (ALL_OBJS.olist) is not 8.3, but its contents are. If the linker does not like
the name ALL_OBJS.olist, you must write a link.pl script to rename it and use the renamed file.

• An 8.3 compiler likely insists that all include paths must also be 8.3. The path to the RTS Home d
rectory (typically "$(OBJECTIME_HOME)") must be composed of 8.3 sub-directories. The Servic-
es Library name must be 8.3, for example, "TargetRTS" -> "target.rts".

• The Library name must be no more than 3 characters, for example, "VisualC++-5.0" -> "vc5". Th
Target Platform name must be no more than 7 characters long, for example, "TORNADO101" -
"tornado". This is to accommodate the linker which refers to $(PLAT-
FORM)$(THREADED_FLAG).$(LIBRARY_NAME) as a subdirectory, which likely must be 8.3.

OSE: An example port (OTD 5.2.1)

The following is included here to illustrate changes required for a recent port. Please note that ports v
and your port may be different. 

OSE separately creates then runs it's threads, rather than having one function that does both. It was
essary to override the CRSL/RTCrUsTh.c and the CRSL/RTSrUsTh.c to call the appropriate function

OSE required the use of a signalling mechanism. 

• It was therefore necessary to re-write the thread sending functions in CRSL/RTPrtSnd.c and
create entirely new functions in CRSL/RTPrtSig.c. 

• A performance enhancement was added to the Target Services Library for the OSE 3.1 platform. T
interthread messaging now uses the native signal message passing mechanism of OSE.
16   Changes in Developer 5.2.1/5.2 C Getting Started Guide



e

ded

d

.

ary,
 C

 so
 the

2.1.

y-
for
• CRSL/RTPrtSnd.c was overridden to call the new functions instead of the standard semaphor
posting functions, should RSLSIGNALLING==RSLTRUE be activated

• CRSL/RTThrRun.c was overridden to not check for external events, since the signalling
mechanism can put the events into the internal queues in a thread safe manner. It was also reco
so that a function RSL_retrieveEvent was called instead, to check if there were any new sig-
nalling events.

• These functions were put in CRSL/RTThrSig.c

• The standard input for OSE was different, so DEBUG/debugio.c was overridden to read in new
input from the debugger command line.

• FUNCTION/RTfflush.c was recoded as an empty function stub, since OSE does not provide
the function call for the fflush function.

• INITSTOP/TGTinit.c was overridden since OSE has special functions that need to be calle
upon system startup, like the error handler, and the signal buffer creation functions.

• MAIN/main.c was overridden since you must code your own Task startup routine, along with
creating your initial thread.

• TCP/  The functions in the TCP directory were modified to call the OSE specific tcp function calls

• THREAD/RTThread.c was overridden to call the OSE specific thread function calls.

Issues with running earlier models 

ObjecTime  Dev elo per  fo r  C  5 .2  no longer  suppor ts  the  env i ronmenta l  var iab les
OBJECTIME_CRTS_HOME and OBJECTIME_CRTS_TARG. Before attempting to run earlier mod-
els, users must ensure that they have set-up their compilation environment properly (and, if necess
generated an appropriate C Target Services Library. Earlier releases of ObjecTime Developer for
required that the C Target Services Library code be compiled every time an update was compiled). The
standard release is delivered with a standard set of target libraries for various target platforms,
depending upon the desired target, it may be possible to work with one of the supplied libraries. See
C Language Guide for information on how to compile C Target Services Libraries and updates in
ObjecTime Developer for C 5.2.1.

Subsequent sections document several other enhancements to ObjecTime Developer for C 5.
Although it is possible that an earlier update will run without modification in ObjecTime Developer for
C 5.2.1, it is likely that some modifications to customer updates will be required, particularly if the
model is multi-threaded or uses built-in RSL types directly.

Naming changes and impact to user models 

In ObjecTime Developer for C 5.2, the names of all run-time library support interfaces and variables
have been prefixed with ‘RSL’, which is an initialism meaning “Run-time Services Library”. The prefix
“cRTS” is no longer used. Also, all RSL base types have been defined via typedef (that is, struct ke
word is no longer required). Since access to most RSL services is via ROOM interface macros, 
example, ROOM_PortSend, most of these changes are hidden from users.
C Getting Started Guide Changes in Developer 5.2.1/5.2  17



o

to

the

c-
at
-
e

ig-
 of
es
es

age

ger
e
ces
es

r
s

n

The RSL function “cRTSRegisterMainloop” has been renamed to “RSLRegisterExternalInterface”, t
more properly reflect its intended operation. See “Run-Time Services” on page 159 of the C Language
Guide for more information on the C Target Services Library service routines.

The name of the thread map specification function has been changed from ‘cRTSThreadMap’ 
‘RSLThreadMap’. See the next sections for a discussion on semantic changes.

For header file compatibility reasons, it is required that the keyword timeout not be specified in any
user-defined code; instead, the macro RSL_Timeout() should be used (thus, at compilation time, 
correct keyword ‘timeout’ or ‘RSLTIMEOUT’ will be generated. You must, however, continue to use
‘timeout’ within the toolset for associating events with transitions).

Application Programmer Interface (API) 

In ObjecTime Developer 5.2, a new Run-time Services Library function ‘RSLRegisterSignallingInter-
face’ was introduced, which allows local (per-thread) timer implementations to register a special fun
tion which the C Target Services Library will invoke when an inter-thread message is delivered to th
thread. Thus, it is now possible to efficiently implement local timers with ObjecTime inter-thread mes
saging (via actor port bindings). An example of this type of interface has been provided. Se
“C_TornadoQueuesWithTimers” on page 234 of the C Language Guide for further information.

The macro ROOM_Signal is still supported in ObjecTime Developer (for compatibility reasons with
earlier releases), but it is no longer required for the specification of signal names. In this release, all s
nal names are globally defined to be equivalent across all protocol classes (thus allowing switching
signals across compatible protocol classes). This does continue to imply, however, that all signal nam
must be unique symbols in the global compilation space (for example, avoid the use of signal nam
that are C/C++ keywords, or are likely to be defined in system header files).

Users no longer have a configuration option of disabling/enabling message priority levels, as mess
priority is now always enabled. Also, a new priority level (for internal C Target Services Library use to
support system/debugger messaging) has been added.

Semantics 

In ObjecTime Developer 5.2, the name of the thread map specification function has been changed from
‘cRTSThreadMap’ to ‘RSLThreadMap’. In addition, since compilation settings are now configured in
the toolset (where physical thread priorities/stack-sizes are specified), these keywords are no lon
specified in the RSLThreadMap. Also, support for static registration of the external interface routin
(previously called IPCMainLoop) has also been eliminated, as each actor that requires those servi
should now register their routines dynamically (via the RSLRegisterExternalInterface C Target Servic
Library function). See the C Language Guide 5.2 for additional details.

This release also supports a simple and efficient memory allocator, which is particularly effective fo
target environments which allocate large blocks of memory, even if a small block of memory wa
requested. See the C Language Guide 5.2 for details on how to enable this feature. Note that these rou-
tines are invoked by the core RSL technology during initialization, and only address memory allocatio
18   Changes in Developer 5.2.1/5.2 C Getting Started Guide



his

g
u-

led

-
PI

 use

ers

n
s

-

-

ied

in
r-

e-
performed by the C Target Services Library during initialization (although they may be used at an appli-
cation level, the user should be aware that there is no ability to “free” memory, once allocated using t
mechanism).

All C Target Services Library error messages are generated via a ‘RSLERROR’ call, thus providin
users with the ability to more easily identify possible RSL errors and generate alternate handling ro
tines (for example, system logs, and so forth).

The default entry point for the RSL is now called rtsMain, and is encapsulated in a separate file cal
‘main.c’. See the C Language Guide 5.2 and Porting Guide for details on how to change the entry point,
if required.

Users now have the option of supporting locally-supported thread timers in conjunction with Objec
Time controlled inter-thread message communication (inter-thread actor port bindings), via a new A
function ‘RSLRegisterSignallingInterface’. See the C Language Guide 5.2 for details and examples of
how to use this new multi-threaded capability.

User Code changes necessary for new C Target Services 
Library 

The following check list should be used to ensure that all necessary user code changes are made to
the ObjecTime Developer 5.2 C Target Services Library (see the C Language Guide 5.2 and/or Porting
Guide (available from ObjecTime Support), as required, for additional details):

• Check to ensure that the proper compilation settings are created in the toolset configuration brows
(since OBJECTIME_CRTS_HOME and OBJECTIME_CRTS_TARG are no longer supported);

• Check for the string “cRTS” in your updates; if found, theses are likely candidates for modificatio
to newly named “RSL” routines (these are likely to be either C Target Services Library API routine
or new RSL types);

• Verify that the default C Target Services Library configuration is suitable for your target. (See “RT
Config.h” on page 199 of the C Language Guide 5.2 and the Porting Guide for additional informa-
tion);

• Check to see if the routine “cRTSRegisterMainloop” was used. If so, change it to “RSLRegisterEx
ternalInterface”;

• Check to see if ‘timeout’ has been specified as the name of the timeout signal in any user-specif
code; if so, replace with RSL_Timeout();

• Consider the configuration of the C Target Services Library efficient memory allocation routines;

• Consider eliminating the use of the ROOM_Signal macro interface, as it is no longer required 
OTDC 5.2. Also, check to see if any message switching (from one actor port to another) is pe
formed, and if so, it is possible that this code may be simplified;

• Consider changing the definition of RSLError in the core C Target Services Library code to som
thing that may generate an appropriate log/error stream in your target environment;

• Verify that the executable entry point “rtsMain” is suitable for your executable; if not, see the Port-
ing Guide for information on how to change the default name.
C Getting Started Guide Changes in Developer 5.2.1/5.2  19



able

-
.

n

-
ey

ime
• Ensure that no signal names match any variable names. The namespace for signal and vari
names is the same.

In addition, if the application is multi-threaded, 

• Change ‘cRTSThreadMap’ to ‘RSLThreadMap’, and eliminate any un-supported thread specifica
tions, which are now either configured in the toolset, or dynamically registered by the application
See the C Language Guide for further information on how to create logical and physical threads and
mappings and details on the RSLThreadMap function;

• If supporting local (per-thread) timer implementations, consider using inter-thread port bindings, i
conjunction with the “RSLRegisterSignallingInterface” routine.

External debugging

To switch between the Simulation Services Library and the C Target Services Library it is recom
mended that you employ the LINE mode, which has the same syntax for both. This still entails that th
override the.objectime.debugger.commands file in your session directory, but at least it is
common to both.

The.objectime.debugger.commands file for xxgdb under C Target Services Library is as
follows:

attach "attach %d"
bline  "break %s:%d"
bfunc  "break %s%s"
cont   "cont"   
dir    "dir %s"
debug  "xxgdb -command=%s %s"
mode   "line"

This allows Target Observability to run with External Debugging.

Problems addressed in this release

For a complete list of problems which have been addressed in this release, please refer to the ObjecT
web site at:

http://www.objectime.com/support/restricted-dir/index.html.

You will be prompted to enter your assigned ObjecTime user name and password to gain access.
20   Changes in Developer 5.2.1/5.2 C Getting Started Guide



Chapter 4

C Getting Sta
4 General Information
r-

y
c-

f
ill
er-
Limits
C TargetRTS Services Library Limits

When compiling for the C Target Services Library there may be only:

• 65534 actor references

• 65534 ports and SAPs

• 65534 threads

• 65534 port references per actor

• 65534 actor classes

• 65534 states in each actor

• 65534 port classes

• 65534 bytes of extended state variable space per actor instance

Special Notes and Reminders

• For an example of how to compile a C model for the Simulation Services Library and for the C Ta
get Services Library, please see “The compilation process” on page 49 of the C Language Guide.

• Once an actor has been compiled, modifications to the replication factor of the actor itself or of an
ports may cause a recompile of the complete model. We recommend specifying the replication fa
tors as early as possible or editing them in a batched fashion.

Also note that for unspecified replication factors (replication factor = *), if you change the root class o
a system, an actor’s previous replication factor will be statically copied over to the new system, and w
not take on an intended new value unless explicitly compiled. In this situation, we recommend regen
ating the entire model to ensure that the intended replication factor is applied.
rted Guide General Information 21



Compliance Models

h
is-
lso

.

Compliance Models
ObjecTime has included a number of models on the distribution media which allow you to test your tar-
get port against an ObjecTime developed compliance test suite. This compliance test suite has been used
extensively at ObjecTime to verify the reference ports which are shipped with the ObjecTime Developer
for C product package and you should take advantage of these models to validate your target port.

The following models can be found in the C Model Examples directory:

• C_HelloWorld: This is a simple model helping to confirm the proper configuration, compilation
and execution of a model.

• C_Multithreads: This model verifies the proper operation of threads for multi-threaded targets.

• C_General: This model tests the proper operation of the general modeling features available wit
ObjecTime Developer which are States, Choice-points, Messages, Functions, Variables, State H
tory, Multiple Port Bindings, SAPs and SPPs and Inheritance Mechanisms. A Raw Speed test is a
included in this model to permit the measurement of performance.

• C_Timers: This model verifies the correct operation of timers executing on a development platform

• C_TornadoQueuesWithTimers: This model is an example of integrated timers and message
queues implementation for the Tornado target.

• C_FiveStatesA and C_FiveStatesATornado: These models confirm the operation of the target ob-
servability feature.

Additional information can be found in Appendix C - Compliance Suite & Examples in the C Language
Guide.
22 General Information C Getting Started Guide



User Guide — Differences When Using the C Target Services Library

ng
r

nd

tal

Li-
User Guide — Differences When Using the C Target 
Services Library

Not all facilities described in the User Guide are supported in the C Target Services Library. Below are
the section title and page number for sections or chapters in the User Guide where there’s a known dif-
ference with the C Target Services Library. This is not necessarily a comprehensive list. The followi
list also includes a brief description of what the difference is, or what other document to refer to fo
additional information.

For detailed information on some key differences, please see “Differences between SimulationRTS a
C TargetRTS” on page 189 of the C Language Guide.

• Package List   p. 98 

“External Data packages” are not supported with the C Target Services Library.

• Data class list   p. 105 

“Data classes” are not supported with the C Target Services Library.

• Creating a new data class p. 121 

“Data classes” are not supported with the C Target Services Library.

• Listing the system-defined data classes p. 122 

“Data classes” are not supported with the C Target Services Library. Only the standard Fundamen
Types for the C Language are supported with the C Target Services Library.

• Differences Tests p. 145 

The various items having to do with “data classes” are not supported with the C Target Services 
brary.

• Multiple containment   p. 158 

“Multiple Containment” is not supported with the C Target Services Library.

• Rules for creating an equivalence p. 160

“Equivalences” are not supported with the C Target Services Library.

• Dynamic Structure   p. 161 

“Dynamic Structure” is not supported with the C Target Services Library.

• Optional actors p. 161 

“Optional actors” are not supported with the C Target Services Library.

• Imported actors p. 161 

“Imported actors” are not supported with the C Target Services Library.

• Combining Replication, Dynamic Structure and Multiple Containment p. 163 

“Dynamic Structure” and “Multiple Containment” are not supported with the C Target Services Li-
brary.

• Optional replicated actors p. 164 

“Optional replicated actors” are not supported with the C Target Services Library.
C Getting Started Guide General Information 23



User Guide — Differences When Using the C Target Services Library

s

e

• Imported replicated actors p. 165 

“Imported replicated actors” are not supported with the C Target Services Library.

• Including optional and imported actors in equivalences p. 167 

“optional and imported actors” are not supported with the C Target Services Library.

• Layered networking communication p. 169 

“Layered networking communication” is not supported with the C Target Services Library.

• Actor reference symbols p. 179

“Imported actors” and “Optional actors” are not supported with the C Target Services Library.

• Actor Reference Properties Editor p. 186 

The “Fixed, Optional, Imported” item is not supported with the C Target Services Library.All actors
are Fixed.

• Actor reference list item menu p. 192 

The various items having to do with “Equivalences” are not supported with the C Target Service
Library.

• Creating an equivalence (multiple containment) p. 198 

“Equivalences” and “Multiple Containment” are not supported with the C Target Services Library.

• Making an imported actor p. 198 

“Imported actors” are not supported with the C Target Services Library.

• Data Class p. 202 

“Data Classes” are not supported with the C Target Services Library.

• Signal list p. 203 

Signal “Data Classes” are not supported with the C Target Services Library.

• Log Service p. 223 

The “Log Service” is not supported with the C Target Services Library.

• Frame Service p. 223 

The “Frame Service” is not supported with the C Target Services Library.

• Basic Communication Service p. 225 

“Synchronous communication” is not supported with the C Target Services Library.

• Replying to messages p. 226 

This is not supported with the C Target Services Library.

• Name registration and binding p. 227 

“Name registration” is manual rather than automatic in the C Target Services Library.

• Simulation Communication Service p. 230 

The “Simulation Communication Service” is not supported with the C Target Services Library.

• Timing Service p. 231 

The “Timing Service” is implemented quite differently in the C Target Services Library. Please se
the C Language Guide for details.
24 General Information C Getting Started Guide



User Guide — Differences When Using the C Target Services Library

s
et

-

• Exception Service p. 233 

The “Exception Service” is not supported with the C Target Services Library.

• Variables Window p. 252 

The information about “Data Classes” is not supported with the C Target Services Library.

• Data Modeling p. 273 

The information in this chapter is not supported with the C Target Services Library.

• Data Class Browser & Editor p. 283 

The information in this chapter is not supported with the C Target Services Library.

• MSC Editor p. 337 

Design-time “MSCs” are a useful way of specifying requirements for any system. Run-time MSC
can be captured from within the Simulation Services Library but are not supported with the C Targ
Services Library.

• MSC Tool Palette p. 340 

The “Creation Tool” and “Stop Tool” are not supported with models that will run in the C Target
Services Library.

• Creations/Destructions p. 342 

“Creations/Destructions” are not supported with models that will run in the C Target Services Li
brary.

• Message Sequence Charts p. 349 

“Message Sequence Charts” are only available when running C models in the Simulation RTS.
C Getting Started Guide General Information 25



User Guide — Differences When Using the C Target Services Library
26 General Information C Getting Started Guide



Chapter 5

C Getting Sta
5 Troubleshooting 
r
-
i-
ot
on
This section lists common problems and errors encountered when installing and running ObjecTime
Developer. With the description of the problem is the suggested course of action required to overcome
the problem. Refer to the ObjecTime Developer 5.2.1 Getting Started Guide & Release Notice for addi-
tional troubleshooting information.

• Recompiling (after deleting a Load-Build Path)

When you compile an update with a load-build path and then delete the load-build path and recompile,
a make error occurs, since the .dep files do not have paths hard-coded in them.

In order to remove previous compilation results you should manually remove all previous compilation
results after all load-build changes. From your Update Root Directory, the Unix shell command is:

  rm -R LF build C++ Makefile

Compilation problems — Windows NT

•  Compile fails on valid C model for Simulation Services Library with Microsoft 
Visual C++

If Microsoft Visual C++ is installed at the default location in \Program Files\DevStudio, which contains
spaces in the path name, then ObjecTime will not find it. ObjecTime Developer 5.2.1 does not support
embedded spaces in the directory names. Reinstall Microsoft Visual C++ in the directory without spaces
(for example, \DevStudio)

The INCLUDE and LIB environment variables may not be properly set. Start “ObjecTime Develope
Command Prompt” from “ObjecTime Developer 5.2.1” group in the Start Menu and run the “set” com
mand. Ensure, that your compiler binaries are on the path and INCLUDE and LIB environment var
ables are set. (for example, they could be set for the user, who installed Microsoft Visual C++, but n
set for another user). Set the environment variables. Refer to the Microsoft Visual C++ documentati
for further details.

•  Error loading Actor (“could not spawn process”)

If the executable (Actor.exe) is stored on an NFS server then the NFS client must be configured to have
execute permission set.
rted Guide Troubleshooting 27



28 Troubleshooting C Getting Started Guide 28



Appendix A

C Getting Sta
ADeveloper for C Directory Contents
 

After installation of the main ObjecTime files has been completed, the directory structure should be as
follows. Please ensure that the <INSTALL> directory and all its files are readable, and not writable, by
all users of ObjecTime. The Developer5.2.1 directory and its sub-directories contain all the indi-
vidual files that comprise the particular release. Some of the files and directories included by the C Tar-
get Module are as follows:

• <INSTALL>/Developer5.2.1 

This is the top level directory.

• C 

This directory contains all of the source code, makefiles and other files required by the C Target Ser-
vices Library (cRSL).

• Help/C

This directory contains C documentation files used for the Online Help System.

• ModelExamples/C

This directory contains ObjecTime C models referenced at various locations in the documentation.

• Training/BasicTutorials/BasicTutorialC

This directory contains ObjecTime C model examples for Basic Tutorial.
rted Guide Developer for C Directory Contents 29



30 Developer for C Directory Contents C Getting Started Guide



Appendix B

C Getting Sta
BKnown Limitations/Restrictions
ts
ned

s
g-

m

s

for
n

l-
e

-
re

-

fo
rt/
• You cannot delete files when they are currently open or being observed in the Explorer. This impac
how ObjecTime code generation and possibly other subsystems work. An error message is retur
if the update/C directory is opened.

• In the Simulation Services Library, the ROOM_SAPRegister() and ROOM_SPPRegister() macro
always return non-zero. In the C Target Services Library, the return code indicates only that the re
istration was performed, and not that a SAP/SPP pair was actually bound.

• The environment variable OBJECTIME_MAX_VFORKS no longer has any effect.

• Layer SPPs in C actors must be specified with a maximum replication factor, equal to the maximu
number of SAPs bound to it. An unspecified replication factor in this case equates to “0”.

• Changing permissions, deleting files, or using symbolic links to ObjecTime C generated directorie
or files can cause ambiguous errors.

• System header files such as stdio.h are not automatically included. Due to this, expressions 
Choice Point and Transition Guard conditions should return an int (for example, 0 or 1). To retur
TRUE or FALSE, user must explicitly include the header files containing the definition of TRUE
and FALSE.

• There is a difference in behavior between the Simulation and Target services library for isTimerVa
id. The target system reported correctly false when the timer was invalid. Simulation reported tru
in this case. (PR 7468)

• Models using timer actors may report the following warning at the end of the compilation - “warn
ing: passing arg 2 of 'RSLRegisterExternalInterface' from incompatible pointer type”. Please igno
this warning message. (PR 7936)

• To trace on a replicated port within the C TargetRTS Debugger you must follow the outlined proce
dure. 

• List the different ports/saps/spp with "info <actor>"

• The port identifier number required for the trace command is the base number given by the in
command plus the index of the replicated port or SPP you wish to trace (port = Base_Port + po
SPP Index)

• For example if you want to trace ids[5] of an actor which lists the following ports after the info
command:

End ports:
rted Guide Known Limitations/Restrictions 31



la-

-
ies
uld
red

or

l is
in-
t

all 
 reset 
et 

tensive 
    0: ThePort 
    1: MyPort
    2: ids[13]

• To trace the fifth occurrence of ids, you would have to enter the following command:

trace 1 end 7 (Base_Port is 2 and port/SPP Index is 5)

Inclusion Paths

• Use absolute inclusion paths (as opposed to relative inclusion paths) as the results from using re
tive inclusion paths can be inconsistent and in some cases will simply not work.

Solaris Multi-threaded

• Solaris threads support priorities but the priority specified in the cRSLThreadMap for solaris multi
threaded is ignored, that is, it is not applied to the created thread. Although the meanings of priorit
with respect to other processes, and bound/unbound LWP is somewhat confusing, the priority sho
be applied. Solaris does not support thread priorities. Thread priorities set in the toolset are igno
in Solaris threads (Solaris only supports thread priorities with POSIX threads). (PR 5371)

Relay Ports

• The C Target Services Library Debugger Info command does not list the Relay Port information. F
relay ports, N/A will be displayed, as opposed to the actual value. (PR 7866)

Target Observability

• The limit on the number of actor instances that can be displayed in the Run-Time System pane
approximately 1,000 actors. If the model to be run on target has more than this number of actor 
stances within the first two levels of actor hierarchy, then the model will not be loadable with Targe
Observability.

Tornado

• When you reset a Tornado board, the target operating system is also reloaded. This means that 
applications will be reloaded whether or not they are directly related to your ObjecTime session. A
can occur by pressing the Reset button in the Target Services Library, or by exiting from the Targ
Services Library. ObjecTime recommends using manual mode to prevent the automatic reset if ex
board setup is required. (PR1649) 

Known Problem Information

For a complete list of known problems in this release, please refer to the ObjecTime web site at:

http://www.objectime.com/support/restricted-dir/index.html.

You will be prompted to enter your assigned ObjecTime user name and password to gain access.
32 Known Limitations/Restrictions C Getting Started Guide



Appendix C

C Getting Sta
CTornado Integration on NT
ing

a-

n,
re
d
ld

n

r
or
,

This appendix is added for reference and outlines detailed information on the integration of Tornado
with ObjecTime Developer. Since the syntax is the same with regards to Tornado integration when
designing an ObjecTime Developer model using either the C or C++ language, the references to the
C++ language can be disregarded, and in their place, substitute the C language settings. 

Using Tornado on Windows NT

This section provides an introduction to using Tornado on Windows NT, including

• a discussion of the environment setup, along with some tests to prove that all the pieces are work

• a description of the configuration used at ObjecTime Limited

• an overview of the tools used with Tornado

Environment setup

Assumptions

The instructions in this report assume that Tornado and ObjecTime are installed in their default loc
tions, which are C:\Tornado and C:\ObjecTime\Developer5.2.1 respectively. It also
assumes that ObjecTime is working properly. If you have installed either package in a different locatio
you will have to adapt the instructions in this report accordingly. As well, this report assumes you a
developing for a Motorola 68040 platform. Of course, Tornado VxWorks also has tools for the x86, an
PowerPC architectures. Since all of the instructions here work equally well for those targets, it shou
be a simple matter to adapt them as appropriate.

Setting Your Environment Variables

WindRiver's Installation Guide suggests that there is no need to set any environment variables whe
you install Tornado on NT1. However, ObjecTime Developer needs to know enough about your Tor-
nado installation to properly invoke the make utility and the Tornado cross-compiler to compile you
model. ObjecTime Developer also needs to know the location of the target server registry in order f
Target Observability to work. For ObjecTime to work correctly with the WindRiver development tools
the following NT environment variables must be properly set:

1. WindRiver Products Installation Guide, Tornado 1.0.1, 1997. p. 42.
rted Guide Tornado Integration on NT 33



r,
e

-
ou

ke

and
TH
WIND_BASE=C:\Tornado
WIND_HOST_TYPE=x86-win32
GCC_EXEC_PREFIX=%WIND_BASE%\host\%WIND_HOST_TYPE%\lib\gcc-lib\
PATH=.;C:\WINNT\system32;C:\WINNT;%WIND_BASE%\host\%WIND_HOST_TYPE%\bin
WIND_REGISTRY=<host_name>

The first three variables can be found in the torVars.bat batch file located in the C:\Tor-
nado\host\x86-win32\bin directory. The meaning of these variables is as follows:

WIND_BASE —installation directory for Tornado

WIND_HOST_TYPE —name of host type

GCC_EXEC_PREFIX —location of GNU compiler subprograms

WIND_REGISTRY —name of the registry host

Note that the trailing backslash is important in the value of GCC_EXEC_PREFIX. The compiler drive
cc68k, does not treat the variable as a directory. Instead it uses the text literally as a prefix. If th
backslash is missing, or if the value is incorrect, compilation will fail, usually with the preprocessor2.

Of course, your PATH variable will contain additional information depending on other software pack
ages installed on your machine. For the most part, the path should not be a concern. However, if y
have installed other development utilities, such as another version of 'make', there may be a conflict.
The safest thing to do is open the ObjecTime Developer Command Prompt and verify that the ma
utility is the version shipped by WindRiver. From a Command Prompt type 'make -v' and insure that
the version is reported as '3.74+wrs-2'. Your version number might vary slightly. Figure 4 shows
the technique. Note that it is recommended that you make use of the ObjecTime Developer Comm
Prompt because the correct path to the Developer 5.2.1 binaries is automatically appended to the PA
variable.

2. User’s Guide: Tornado 1.0 (Unix Version), 1995. p. 56. 
34 Tornado Integration on NT C Getting Started Guide



Figure 4 Verifying ‘make’ utility

Finally, if you are running the Tornado registry on a machine other than your workstation, you will have
to set the value of the WIND_REGISTRY environment variable to be the host name of the machine
where the registry is running. This variable is required even if you have changed the value of the regis-
try using Tornado’s Registry&License utility. Please refer to section 3.2 of the WindRiver User’s Guide
for more details on setting up a target server registry.

Testing the Cross Compiler

This section presents a method for establishing that the components of your tool-web are functioning
properly. The point to bear in mind throughout this section is that compiling your ObjecTime model is
no different than compiling any other source code. If you have not successfully compiled any source
code at all using the Tornado cross-compiler for your intended target, then you will have to resolve
these problems before attempting to compile your ObjecTime model. As discussed, ObjecTime expects
the make utility to be able to invoke the proper cross-compiler for your target platform. If the compiler
and related tools are not available from the command prompt, or if they are not functioning properly,
then there is nothing that the toolset can do except tell you the compile failed. Please refer to your 
WindRiver documentation, or contact the WindRiver support group to resolve any compiler problems
you encounter.

For the purposes of the following test, it is assumed that you have set your environment variables prop-
erly and that you are using the ObjecTime Developer Command Prompt. First, save the code below into
some directory on your working drive. For this example, let us assume that the file is called
C:\mydir\hello.c

#include <stdio.h>
void rtsMain()
{

C Getting Started Guide Tornado Integration on NT 35



m-

on-

-

printf(‘Hello World\n’);
}

Next, save the makefile below in your working directory. For this example, the file is called
C:\mydir\makefile

From the ObjecTime Developer Command Prompt change directories to your working directory and
type ’make’. The figure below shows the expected results of building this “Hello World” program.

If these steps are successful, then you can be reasonably certain that your ObjecTime model will co
pile. ObjecTime Developer should be able to run the make utility, which in turn will invoke the neces-
sary executables to compile your model for VxWorks using the ObjecTime generated makefile. If
any of these steps failed, then you should contact your system administrator or WindRiver support c
tact to determine what is wrong. For an explanation of these steps, please see the next section.

Cross Platform Development

The sample makefile in the previous section was not explained in detail. However, it contained the
exact dependency rules that ObjecTime will use to build your model into a VxWorks application mod
ule. This section will explain some of the compiler flags used in the makefile. If you have already

hello : hello.o ctordtor.o
ld68k -r -ohello hello.o ctordtor.o

hello.o : hello.c
cc68k -c -ohello.o -DPRAGMA -ansi -nostdinc \
-DCPU=MC68040 –O4 -finline -finline-functions -Wall \
-m68040 -IC:\Tornado\Target/h hello.c
36 Tornado Integration on NT C Getting Started Guide



 

the -I 

u-
done cross-platform development in Tornado, then feel free to skip this section entirely. If, after this
section, you still have some questions, please consult the appropriate WindRiver manuals for details.
The GNU Toolkit User’s Guide and User’s Guide are good places to start your exploration of this sub-
ject. 

Compiling an Application Module

The first step in building your model into an application module for VxWorks is to compile the Objec-
Time generated source code into object code. To do so, the make utility invokes the proper cross com-
piler driver for your target. In this case, it is the cc68k compiler. The compiler flags used will differ
from platform to platform. To compile your model for the 68040 target, the compiler invocation is as
follows:

cc68k -c -ohello.o -DPRAGMA -ansi -nostdinc -DCPU=MC68040 \
    -O4 -finline -finline-functions -Wall -m68040 \
    -IC:\Tornado\Target/h hello.c

The explanation of the flags is found in Table 1.

Table 1 Compiler Flags

Flag Description

-c Compile only; do not link for execution under the host. The output is an unlinked object 
module with the suffix “.o”.

-o file Place the output in file, in this case hello.o (not strictly necessary in our example).

-DPRAGMA Define the symbol PRAGMA for the build.

-ansi Support all ANSI standard C programs. This option turns off certain features of the
GNU compiler that are incompatible with ANSI C.

-nostdinc Do not search host-system header files; search only the directories specified with 
flag and the current directory header files.

-I path Include VxWorks header files.

-O4 Perform all optimizations.

-finline Pay attention to the inline keyword.

-finline-functions Integrate all simple functions into their callers.

-Wall Turn on all compiler warnings.

-DCPU=arch Define the CPU-type.

-m68040 Generate output for 68040. Inhibits use of 68881/82 instructions that have to be em
lated on 68040. 
C Getting Started Guide Tornado Integration on NT 37



Overview of the ObjecTime/Tornado integration tools

ObjecTime Developer and WindRiver’s Tornado are closely integrated. In fact, the toolset can automat-
ically download your model to a VxWorks target and spawn it. Further, one can watch the execution of
a model through our Target Observability feature as it is running on the target. In order to implement
this integration though, a number of helper applications are required. These applications will vary
depending on the workstation OS and development environment you are working in. Figure 5 shows the
helper applications that are required for the client’s workstation and development environment. Please
note that all of the Tornado components need to be running and functioning properly for ObjecTime
Developer to automatically download and run models on a VxWorks target.
38 Tornado Integration on NT C Getting Started Guide



Figure 5 ObjecTime/Tornado tools

What Tornado Needs

To run Tornado on Windows NT, you must have a portmapper and target registry3 running. Addition-
ally, in most development environments, a serial connection between the developer’s workstation and
the target is also required. This is used to bootstrap the target board and to receive standard out and stan-
dard error. When working on Windows NT, the ’HyperTerminal’ application is most often used to estab-
lish the serial connection. Finally, WindRiver hosts all development tools on the workstation to reduce

3. The registry does not have to be located on the developer’s workstation. It can be running anywhere on the network, but only
one registry can be used per session. Note too, that the WIND_REGISTRY variable must be properly configured if you are
running the registry on another host.
C Getting Started Guide Tornado Integration on NT 39



the load on the VxWorks target. In order to accomplish this, a target server is required. The target server
allows tools like the WindShell and CrossWinds debugger to run on the host workstation and communi-
cate with the target.

What ObjecTime Needs

Like Tornado, ObjecTime employs a communication agent to enable the toolset to communicate with a
model that is running as a stand-alone executable. This agent is called the ’rtsController’. You start the
rtsController when you launch ObjecTime Developer with Target Observability enabled. Figure 6
shows how to start the rtsController when ObjecTime Developer is launched. When the ObjecTime
model is loaded onto the VxWorks target and spawned, it will attempt to communicate with the rtsCon-
troller running on the host workstation. As well, ObjecTime Developer needs to be able to communicate
with the target board in order to download the model to the target. Thus, there has to be a target server
running and the toolset needs to know the name of the target server.

Figure 6 Starting the RTSController
40 Tornado Integration on NT C Getting Started Guide



Tornado Integration
Tornado Integration
ObjecTime Developer 5.1.1 provided basic support for WindRiver Tornado integration on Windows
NT. It provided users with Target Observability features such as loading, executing, monitoring and
resetting models on a given Tornado target. In ObjecTime Developer 5.2.1, users are able to set and
clear source line breakpoints. Users are notified when a breakpoint hit has been detected and given the
appropriate steps to configure the Tornado debugger.

Configuration

The environment must be configured properly in order to use the Tornado source code breakpoint capa-
bility. To configure the environment, follow these steps:

1 Activate the desired configuration from the Configuration menu of the Update Browser. 

2 Open the Configuration Browser for the selected configuration.
C Getting Started Guide Tornado Integration on NT 41



Tornado Integration
3 Activate the Target RTS entry in RTS Versions menu.

4 Activate the Tornado Language Option menu item.

5 Open the Tornado Language Option Browser.
42 Tornado Integration on NT C Getting Started Guide



Tornado Integration
6 Activate the desired Tornado compilation settings for the target.

7 Open the Properties for the selected item in the Compiler menu and verify that the debug flag is set
for compilation in the Compiler Flags.

8 Go back to the selected Configuration Browser and select Tornado from the Debugging Tools menu.
C Getting Started Guide Tornado Integration on NT 43



Tornado Integration
9 Open the property editor for the Tornado entry; specify the desired Tornado target server and the tar-
get processor in the Server and Arguments fields, respectively.

10 Activate the Tornado entry in the Debugging Tools menu of the Configuration Browser.

Source Breakpoints

ObjecTime Developer provides access to source line breakpoints through Transition and State Dae-
mons. To set a source breakpoint, Target Observability must be running. Invoke the Load item from the
Compile menu of the Update Browser.
44 Tornado Integration on NT C Getting Started Guide



Tornado Integration

cti-

k-
k-
Daemons can now be created and activated. To set a source line breakpoint, open the Properties Editor
for the daemon of interest. Check the “Source Breakpoint” check box and make sure the daemon is a
vated. 

Note: Only Transition Daemons that are located at the start of a transition have the “Source Brea
point” check box enabled. Similarly, only State Daemons with entry-code have the “Source Brea
point” check box enabled.

Source Breakpoint Hit

When ObjecTime Developer detects that a breakpoint hit, the following dialog is displayed. 
C Getting Started Guide Tornado Integration on NT 45



Tornado Integration

ne
ing

a-
The first time a breakpoint is hit, the user should follow the these steps:

1 Bring up Tornado if not currently running. 

2 Select the target server specified in the Breakpoint Hit dialog and invoke the debugger within Tor-
nado. 

3 Enter CONTROL-V (Windows paste operation). 

The appropriate “add-symbol-file” and “attach” commands are copied into the Windows clipboard
by ObjecTime Developer.

At this point, the debugger displays the file in which the breakpoint has occurred. Regular source li
debugging can take place. The Breakpoint Hit dialog can remain opened or can be closed by click
the Done button. The next time a breakpoint occurs, the dialog reappears if it was closed or the inform
46 Tornado Integration on NT C Getting Started Guide



Tornado Integration

e.

e

tion is updated if it was opened. The user can disable the breakpoint dialog from appearing during the
current debug session by checking the “Disable the dialog” check box in the dialog and clicking Don
The dialog is re-enabled when the target is reset.

Note: Only breakpoints that are set via ObjecTime Developer are displayed in this dialog. 

Once a breakpoint is hit, the user must use the Tornado debugger to continue model execution.

Help

Help information is available when the user clicks the Help button on the Breakpoint Hit Dialog. Th
help information is displayed in a simple dialog.
C Getting Started Guide Tornado Integration on NT 47



Tornado Integration
48 Tornado Integration on NT C Getting Started Guide



Appendix D

C Getting Sta
DIntegrating Developer Studio on 
Windows NT
Overview
ObjecTime Developer 5.1.1 introduced support for Microsoft MSDEV integration. This document
describes how a user is to configure ObjecTime Developer 5.2.1 to use the MSDEV source code break-
point capability. Since the syntax is the same with regards to Developer Studio integration when design-
ing an ObjecTime Developer model using either the C or C++ language, the references to the C++
language can be disregarded and in their place, substitute the C language settings.
rted Guide Integrating Developer Studio on Windows NT 49



Configuration
Configuration
The ObjecTime Developer environment must be configured properly in order to use the MSDEV source
code breakpoint capability. To configure the environment, follow these steps:

1 Activate the desired configuration from the Configuration menu of the Update Browser. 

2 Open the Configuration Browser for the selected configuration.
50 Integrating Developer Studio on Windows NT C Getting Started Guide



Configuration
3 Activate the Target RTS entry in RTS Versions menu.

4 Activate the Windows NT C++ Language Option menu item.
C Getting Started Guide Integrating Developer Studio on Windows NT 51



Configuration
5 Open the Windows NT C++ Language Option Browser.

6 Activate the desired Visual C++ compilation settings for the target. Verify that the /DEBUG link op-
tion is set.
52 Integrating Developer Studio on Windows NT C Getting Started Guide



Configuration
7 Open the Properties for the selected item in the Compiler menu. Verify that the debug flag is set for
compilation in the Compiler Flags.

8 Go back to the selected Configuration Browser and select VC50 from the Debugging Tools menu.

9 Activate the VC50 entry in the Debugging Tools menu of the Configuration browser.

Select VC50
C Getting Started Guide Integrating Developer Studio on Windows NT 53



Source Breakpoints

cti-

e

Source Breakpoints
ObjecTime Developer provides access to source line breakpoints through Transition and State Dae-
mons. To set a source breakpoint, Target Observability must be running. Invoke the Load item from the
Compile menu of the Update Browser.

Note: MSDEV is brought up on the first load for a given update and remains up until the VC50 de-
bugger option is deactivated or the session has terminated.

Daemons can now be created and activated. To set a source line breakpoint, open the Properties Editor
for the daemon of interest. Check the “Source Breakpoint” check box and make sure the daemon is a
vated.

Note: Only Transition Daemons that are located at the start of a transition will have the “Sourc
Breakpoint” check box enabled. Similarly, only State Daemons with entry-code will have the
“Source Breakpoint” check box enabled.
54 Integrating Developer Studio on Windows NT C Getting Started Guide



Source Breakpoint Hit
Source Breakpoint Hit
When a source line breakpoint is hit, MSDEV will pop to the front and display the source code corre-
sponding to the breakpoint. The user can now use MSDEV and ObjecTime Developer to debug their
model. Note that once a breakpoint is hit, the user must use MSDEV to continue model execution.
C Getting Started Guide Integrating Developer Studio on Windows NT 55



Source Breakpoint Hit
56 Integrating Developer Studio on Windows NT C Getting Started Guide



ObjecTime Limited
340 March Road
Kanata, Ontario
Canada K2K 2E4


	C Target Module
	5.2.1
	Getting Started Guide
	& Release Notice
	Product Release: ObjecTime Developer 5.2.1 for C
	Document Version: 1.0
	Release Date: February 1999
	Part Number: OT-R521-DOC810
	ObjecTime Limited
	340 March Road
	Kanata, Ontario
	Canada K2K 2E4
	Printed in Canada
	Important Notice
	Copyright 1991-1999 ObjecTime Limited. All rights reserved.
	Unpublished -- rights reserved under all Copyright laws including Copyright laws of the United St...
	ObjecTime (and logo) is a registered trademark of ObjecTime Limited. Developer is a trademark of ...
	The license management portion of this product is based on:
	Elan License Manager ” 1989-1999 Elan Computer Group, Inc. All rights reserved.
	ObjecTime Limited (OTL) PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX...
	ObjecTime Limited (OTL) and its licensors retain ownership to the ObjecTime computer program and ...
	Restricted Rights Legend
	Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subp...
	For units of the Department of Defense (DoD), the license for this software is subject to the “Re...
	The contractor/manufacturer is: ObjecTime Limited
	340 March Road
	Kanata, Ontario
	Canada, K2K 2E4
	When acquired by the Government, commercial computer software and related documentation so legend...
	(A) Title to and ownership of the software and documentation shall remain with the Contractor.
	(B) User of the software and documentation shall be limited to the facility for which it is acqui...
	(C) The Government shall not provide or otherwise make available the software or documentation, o...
	(D) The Government shall have the right to use the computer software and documentation with the c...
	COMMERCIAL COMPUTER SOFTWARE — RESTRICTED RIGHTS
	(c) (1) The restricted computer software delivered under this contract may not be used, reproduce...
	(c)(2) The restricted computer software may be —
	(i) Used or copied for use in or with the computer or computers for which it was acquired, includ...
	(ii) Used or copied for use in or with backup computer if any computer for which it was acquired ...
	(iii) Reproduced for safekeeping (archives) or backup purposes;
	(iv) Modified, adapted, or combined with other computer software, provided that the modified, com...
	The following are trademarks or registered trademarks of their respective companies or organizati...
	VxWorks, Tornado / Wind River Systems Inc. pSOS,pRISM,pRISM+ / Integrated Systems Inc. QNX / QNX ...
	ObjecTime Support
	Your opinions and suggestions are both welcome and vital to the evolution of ObjecTime Developer.
	ObjecTime Support
	ObjecTime Support Hotline: (613) 591-3400
	ObjecTime Support E-mail: support@objectime.com

	ObjecTime Sales
	Sales Hotline outside the Ottawa area: 1-800-567-TIME
	Sales Hotline within the Ottawa area: (613) 591-3831
	Sales Email: sales@objectime.com

	ObjecTime Limited
	ObjecTime Fax: (613) 591-3784



	Visit our Web Site: www.objectime.com
	Table of Contents
	Welcome to ObjecTime Developer for C 5.2.1 1


	Introduction 1
	What's new in Developer for C 5.2.1/5.2 2
	Year 2000 Compliance 4
	Installation Information 5
	Naming Conventions 6
	Documentation Errata: 7
	Supported Host & Reference Platforms 9
	Changes in Developer 5.2.1/5.2 11

	Model upgrade pre-5.2.1 to 5.2.1 11
	5.2.1 API changes: 11
	Serial line target observability 13
	Limited support for 8.3 compilers (OTD 5.2.1) 15
	OSE: An example port (OTD 5.2.1) 16
	Issues with running earlier models 17
	Naming changes and impact to user models 17
	Application Programmer Interface (API) 18
	Semantics 18
	User Code changes necessary for new
	C Target Services Library 19
	External debugging 20
	Problems addressed in this release 20
	General Information 21

	Limits 21
	C TargetRTS Services Library Limits 21
	Special Notes and Reminders 21
	Compliance Models 22
	User Guide — Differences When Using the
	C Target Services Library 23
	Troubleshooting 27

	Compilation problems — Windows NT 27
	Developer for C Directory Contents 29
	Known Limitations/Restrictions 31

	Inclusion Paths 32
	Solaris Multi-threaded 32
	Relay Ports 32
	Target Observability 32
	Tornado 32
	Known Problem Information 32
	Tornado Integration on NT 33

	Using Tornado on Windows NT 33
	Environment setup 33
	Overview of the ObjecTime/Tornado integration tools 38
	What Tornado Needs 39
	What ObjecTime Needs 40
	Tornado Integration 41
	Configuration 41
	Source Breakpoints 44
	Source Breakpoint Hit 45
	Help 47
	Integrating Developer Studio on Windows NT 49

	Overview 49
	Configuration 50
	Source Breakpoints 54
	Source Breakpoint Hit 55
	Welcome to ObjecTime Developer for C 5.2.1

	Introduction
	The ObjecTime Developer for C 5.2.1 release provides general enhancements aimed at minimizing the...
	Please see the ObjecTime Developer 5.2.1 Getting Started Guide and Release Notice for information...
	This chapter provides an introduction to using ObjecTime Developer for C 5.2.1. There are four ma...

	• What’s new in ObjecTime Developer for C 5.2.1/5.2
	• Year 2000 Compliance
	• Installation Information
	• Naming Conventions
	• Documentation Errata
	What's new in Developer for C 5.2.1/5.2
	The following list highlights some of the key new features in ObjecTime Developer 5.2.1.

	• Serial Port Access: This release adds serial communication support to the target observability
	feature of ObjecTime Developer 5.2.1. Currently, the serial support is only available for the C T...
	• C Target Services Library internal architectural improvements: There have been numerous enhance...
	• The porting process has been improved such that functions that need to be overridden during a p...
	• Improvements to system-wide timers and to per-thread timers
	• Thread synchronization algorithms have been improved
	• Code has been modularized to improve readability
	• Code has been re-written to minimize global lookups
	• Support for Serial Line Target Observability
	• 8.3 filename compliance
	• Problems reported in 5.2 have been fixed
	• Example ports to new platforms have been added
	• Use of large footprint function calls have been reduce.
	• Footprint reduction and speed improvements
	• OSE: An example port: OSE separately creates then runs it's threads, rather than having one fun...
	• Limited support for 8.3 compilers: The code generation process appends extensions such as _Acto...
	• Developer WebPublisher: The Developer WebPublisher 5.2.1 optional product is available for use ...
	• Developer TestScope: The Developer TestScope 5.2.1 optional product is available for use with a...
	The following list highlights some of the key new features in ObjecTime Developer 5.2.

	• C actor toolset integration: C actors are now fully integrated into the toolset, with appropria...
	• Target Observability for C: Target Observability of a running executable from within the toolse...
	• Timestamp driven compilation: ObjecTime Developer for C now uses industry standard timestamp dr...
	• Generated code persistence: Code generation only takes place when classes are changed. As well,...
	• External code generation and compilation: Code generation and compilation can be performed outs...
	• Use of source file pairs: The generated C code is now in the form of one .h and one .c file cre...
	• Reuse of build products: Reuse is now at the class level versus package level. Designer session...
	• Internal model dependencies: Automatically generated. You can also add dependencies for situati...
	• External compile dependencies: Changes to user-specified dependencies, explicitly created throu...
	• New toolset host support: IBM AIX, Silicon Graphics IRIX, NT and SunOS are officially supported...
	• Tornado integration on NT: WindRiver Tornado has been added as a target development platform. R...
	• C Target Services Libraries: These are re-compiled libraries which are linked during each updat...
	• Code-generation pattern: The new code-generation pattern is smaller and more efficient.
	• Debugger: The new debugger for Developer for C is similar to the C++ debugger.
	Year 2000 Compliance
	Complete Year 2000 testing has been performed by ObjecTime Limited, including correct handling of...
	Note: For further details on ObjecTime Limited’s Year 2000 Compliance Policy please visit:
	http://www.objectime.com/otl/about/y2k.html
	The license keys used by the License Manager are year 2000 compliant, with the exception of the L...
	It is recommended that you review the Year 2000 compliance policies and statements from the vendo...
	Installation Information
	The C target module can be installed either as an upgrade to the ObjecTime Developer 5.2.1 base, ...
	The only difference between the base ObjecTime Developer installation and the ObjecTime Developer...
	Note: The default printer requirement is, at minimum, a UNIX or Windows NT compatible printer. We...
	Figure 1 On Windows NT
	If installing on a UNIX system, a typical install would appear as in the shell script that follows:
	Figure 2 On Unix


	Naming Conventions
	In ObjecTime Developer for C 5.2 the C TargetRTS was renamed to the C Target Services Library to ...
	Documentation Errata:
	Note the following updates to the information contained in the ObjecTime Developer C Language Gui...
	________
	Add the following to Chapter 5, in the Reserved Names list, page 54:
	getId.
	Note: getId cannot be used as a signal name.
	________
	Add the following to Chapter 2, in the Macros that require ‘msg’ or ‘_actor’ section, page 28:
	See “Run-Time Actor Instance Identification” on page 30 for more information.
	Supported Host & Reference Platforms

	The following table shows the supported host platforms for ObjecTime Developer for C 5.2.1.
	5.2.1 Host Platforms
	Toolset Host
	Simulation Services Library Name
	Solaris 2.6
	SUN5.sparc-gnu-2.8.1
	Windows NT 4.0
	NT40.x86-VisualC++-5.0, -VisualC++6.0
	HPUX 10.20
	HPUX10.hppa-gnu-2.8.1
	AIX 4.2.1
	AIX4.ppc-gnu-2.8.1
	IRIX 6.2
	IRIX6.r4400-gnu-2.8.1
	Sun OS 4.1.3
	SUN4.sparc-gnu-2.8.1
	Reference ports are ports delivered as part of the standard ObjecTime Developer for C product. Th...
	A reference port is based on the following specifics:

	• OS version
	• Compiler version
	• Processor type
	If you are using a line-up other than the one tested by ObjecTime and listed in this guide, stand...
	5.2.1 Reference Platforms & Ports
	Toolset Host
	Target Services Library Name
	Target
	Services
	Library
	AIX 4.2.1 (PowerPC)
	AIX4S.ppc-gnu-2.8.1
	Supplied
	HPUX 10.20
	HPUX10S.hppa-gnu-2.8.1
	Supplied
	IRIX 6.2
	IRIX6S.r4400-gnu-2.8.1
	Supplied
	Solaris 2.6
	SUN5S.sparc-gnu-2.8.1
	SUN5T.sparc-gnu-2.8.1
	Supplied
	SunOS 4.1.3
	SUN4S.sparc-gnu-2.8.1
	Supplied
	Windows NT 4.0
	NT40S.x86-VisualC++-5.0
	NT40T.x86-VisualC++-5.0
	NT40S.x86-VisualC++-6.0
	NT40T.x86-VisualC++-6.0
	Supplied
	Solaris 2.6
	Windows NT 4.0
	TORNADO101S.ppc-cygnus-2.7.2-960126
	TORNADO101T.ppc-cygnus-2.7.2-960126
	(Tornado 1.0.1: cygnus tools for VxWorks 5.3.1 on PowerPC)
	Generate
	Solaris 2.6
	Windows NT 4.0
	OSE31T.ppc603-Diab-4.1a
	(Diab 4.1a, SDS 7.1.1 tools for OSE 3.1 for PowerPC)
	Generate
	Note: The following applies to the Tables in this chapter:

	• S = Single-threaded
	• T = Multi-threaded
	Simulation Services Libraries don’t have an ‘S’ or a ‘T’ thread indicator in their names.
	• Supplied = Simulation Services Libraries and Target Services Libraries are supplied as part of ...
	• Generate = not supplied as part of the ObjecTime Developer for C installation, but can be gener...
	Changes in Developer 5.2.1/5.2

	This section is of particular interest to customers who have used previous releases of ObjecTime ...
	Model upgrade pre-5.2.1 to 5.2.1

	Due to enhancements introduced in 5.2.1, a minor conversion effort will be required to bring your...
	1 open the C_Timers update and
	2 drag and drop the new timer actors into your model update.

	If, however, you have coded your own timer actors, or used functions that were meant for timer de...
	It is also recommended that integrated timers be redesigned into a single actor, and that actor b...
	5.2.1 API changes:
	RSLPortEnqueue


	RSLMessage *
	RSLPortEnqueue( RSLActorIndex RSLExecutingActor , RSLPortIndex portOffset ,
	RSLSignalIndex signal , RSLMessagePriority priority , void *data )
	is now:
	RSLMessage *
	RSLPortEnqueue( RSLActorIndex RSLExecutingActor ,
	RSLPortIndex portOffset ,
	RSLSignalIndex signal ,
	RSLMessagePriority priority ,
	void * data ,
	RSLActorIndex FromActor )
	The function was changed to include the sending actor as a parameter to calculate whether the mes...
	RSLRegisterTimerServices

	void
	RSLRegisterTimerServices( RSLActorIndex RSLExecutingActor ,
	RSLPortIndex port , void *cv ,
	void( *sigfunc )( void * ) )
	is now:
	void
	RSLRegisterTimerServices( RSLActorIndex RSLExecutingActor ,
	RSLPortIndex port ,
	void( *sigfunc )( void * ) )
	The cv parameter was eliminated, as it was unnecessary. The pointer to the instance data for the ...
	RSLRegisterMessageSignallingInterface

	void
	RSLRegisterMessageSignallingInterface( RSLActorIndex actor , void *cv ,
	void( *sigfunc )( void * ) )
	is now:
	void
	RSLRegisterMessageSignallingInterface( RSLActorIndex actor ,
	void( *sigfunc )( void * ) )
	The cv parameter was eliminated, as it was unnecessary. The pointer to the instance data for the ...
	RSLGetFirstTimeout / RSLTimerReference

	RSLGetFirstTimeout( RSLActorIndex RSLExecutingActor )
	is now:
	void
	RSLGetFirstTimeout( RSLActorIndex RSLExecutingActor ,
	RSLTimerReference * ThisTimer )
	The RSLTimerReference return parameter has been moved to being a parameter. This has been done fo...
	RSLGetMyThread - new function: RSLThreadIndex

	RSLGetMyThread( RSLActorIndex actor )
	This function has been added in case a timer design needed to know on which thread a certain acto...
	Serial line target observability

	ObjecTime Developer for C 5.2.1 supports Serial IO in the C Target Services Library. When using s...
	Serial Agent application and source code are added to the ObjecTime Developer 5.2.1 suite of tool...
	Serial line target observability permits ObjecTime Developer’s target observability features, wit...
	Figure 3 Serial line target observability system
	System requirements

	Serial Line target observability has the following requirements or restrictions:
	• a target with a RS232 serial port.
	• a port of the Target Services Library with serial line target observability enabled.
	• a development host with a RS232 serial port and TCP/IP stack.
	• the Serial Agent proxy, which is provided for all ObjecTime Developer platforms.
	Note: Currently, only the C Target Services Library supports Serial Line Target Observability.
	Platforms supported

	The Serial Agent is supported for all of the ObjecTime Developer development platforms (AIX4, HPU...
	AIX4S.ppc-gnu-2.8.1
	HPUX10S.hppa-gnu-2.8.1
	IRIX6S.r4400-gnu-2.8.1
	NT40T.x86-VisualC++-6.0
	SUN4S.sparc-gnu-2.8.1
	SUN5T.sparc-gnu-2.8.1
	Command line options

	With the addition of serial support in the C Target Services Library, some additional command lin...
	-connect=<port>@<host>
	Where <port> is the TCP/IP port of the ObjecTime Controller, and <host> is the TCP/IP address or ...
	-name=<name>
	Where <name> is the name the target will use when connecting to ObjecTime Developer 5.2.1. The co...
	-serial=<dev>
	Where <dev> is the file name of the serial device. On UNIX systems <dev> is something like ’/ dev...
	-baud=<baud>
	This optional argument sets the serial port baud rate to <baud>. If this option is not specified,...
	The Serial Agent also requires the setting of command line options. The syntax for invoking Seria...
	serialagent <dev> [<baud>]
	Where <dev> is the name of the serial device, and <baud> specifies what baud rate will be used. A...
	Limited support for 8.3 compilers (OTD 5.2.1)

	The following applies to C, C++ Target and C++ Simulation equally.
	The code generation process appends extensions such as _Actor, _Data, _Protocol and _Package to g...
	It should be noted that the file system cannot be restricted to 8.3 filenames. Similarly the Make...
	To activate 8.3 compiler support, set the environment variable OBJECTIME_8DOT3 to a non-zero valu...
	Restrictions:

	• The file system must still support non-8.3 filenames
	• The Make executable must be able to support non-8.3 Makefile fragments (such as Foo_Package.mk)
	• Obviously all classes and packages must be a maximum of 8 characters long.
	• All packages and all classes now belong to a common name-space. The toolset checks that all pac...
	• The toolset does not check for case-insensitive uniqueness. If your compiler requires 8.3 filen...
	• The link objects list file (ALL_OBJS.olist) is not 8.3, but its contents are. If the linker doe...
	• An 8.3 compiler likely insists that all include paths must also be 8.3. The path to the RTS Hom...
	• The Library name must be no more than 3 characters, for example, "VisualC++-5.0" -> "vc5". The ...
	OSE: An example port (OTD 5.2.1)

	The following is included here to illustrate changes required for a recent port. Please note that...
	OSE separately creates then runs it's threads, rather than having one function that does both. It...
	OSE required the use of a signalling mechanism.
	• It was therefore necessary to re-write the thread sending functions in CRSL/RTPrtSnd.c and crea...
	• A performance enhancement was added to the Target Services Library for the OSE 3.1 platform. Th...
	• CRSL/RTPrtSnd.c was overridden to call the new functions instead of the standard semaphore post...
	• CRSL/RTThrRun.c was overridden to not check for external events, since the signalling mechanism...
	• These functions were put in CRSL/RTThrSig.c
	• The standard input for OSE was different, so DEBUG/debugio.c was overridden to read in new inpu...
	• FUNCTION/RTfflush.c was recoded as an empty function stub, since OSE does not provide the funct...
	• INITSTOP/TGTinit.c was overridden since OSE has special functions that need to be called upon s...
	• MAIN/main.c was overridden since you must code your own Task startup routine, along with creati...
	• TCP/ The functions in the TCP directory were modified to call the OSE specific tcp function calls.
	• THREAD/RTThread.c was overridden to call the OSE specific thread function calls.
	Issues with running earlier models

	ObjecTime Developer for C 5.2 no longer supports the environmental variables OBJECTIME_CRTS_HOME ...
	Subsequent sections document several other enhancements to ObjecTime Developer for C 5.2.1. Altho...
	Naming changes and impact to user models

	In ObjecTime Developer for C 5.2, the names of all run-time library support interfaces and variab...
	The RSL function “cRTSRegisterMainloop” has been renamed to “RSLRegisterExternalInterface”, to mo...
	The name of the thread map specification function has been changed from ‘cRTSThreadMap’ to ‘RSLTh...
	For header file compatibility reasons, it is required that the keyword timeout not be specified i...
	Application Programmer Interface (API)

	In ObjecTime Developer 5.2, a new Run-time Services Library function ‘RSLRegisterSignallingInterf...
	The macro ROOM_Signal is still supported in ObjecTime Developer (for compatibility reasons with e...
	Users no longer have a configuration option of disabling/enabling message priority levels, as mes...
	Semantics

	In ObjecTime Developer 5.2, the name of the thread map specification function has been changed fr...
	This release also supports a simple and efficient memory allocator, which is particularly effecti...
	All C Target Services Library error messages are generated via a ‘RSLERROR’ call, thus providing ...
	The default entry point for the RSL is now called rtsMain, and is encapsulated in a separate file...
	Users now have the option of supporting locally-supported thread timers in conjunction with Objec...
	User Code changes necessary for new C Target Services Library
	The following check list should be used to ensure that all necessary user code changes are made t...


	• Check to ensure that the proper compilation settings are created in the toolset configuration b...
	• Check for the string “cRTS” in your updates; if found, theses are likely candidates for modific...
	• Verify that the default C Target Services Library configuration is suitable for your target. (S...
	• Check to see if the routine “cRTSRegisterMainloop” was used. If so, change it to “RSLRegisterEx...
	• Check to see if ‘timeout’ has been specified as the name of the timeout signal in any user-spec...
	• Consider the configuration of the C Target Services Library efficient memory allocation routines;
	• Consider eliminating the use of the ROOM_Signal macro interface, as it is no longer required in...
	• Consider changing the definition of RSLError in the core C Target Services Library code to some...
	• Verify that the executable entry point “rtsMain” is suitable for your executable; if not, see t...
	• Ensure that no signal names match any variable names. The namespace for signal and variable nam...
	In addition, if the application is multi-threaded,

	• Change ‘cRTSThreadMap’ to ‘RSLThreadMap’, and eliminate any un-supported thread specifications,...
	• If supporting local (per-thread) timer implementations, consider using inter-thread port bindin...
	External debugging

	To switch between the Simulation Services Library and the C Target Services Library it is recomme...
	The.objectime.debugger.commands file for xxgdb under C Target Services Library is as follows:
	attach "attach %d"
	bline "break %s:%d"
	bfunc "break %s%s"
	cont "cont"
	dir "dir %s"
	debug "xxgdb -command=%s %s"
	mode "line"
	This allows Target Observability to run with External Debugging.
	Problems addressed in this release

	For a complete list of problems which have been addressed in this release, please refer to the Ob...
	http://www.objectime.com/support/restricted-dir/index.html.
	You will be prompted to enter your assigned ObjecTime user name and password to gain access.
	General Information

	Limits
	C TargetRTS Services Library Limits
	When compiling for the C Target Services Library there may be only:


	• 65534 actor references
	• 65534 ports and SAPs
	• 65534 threads
	• 65534 port references per actor
	• 65534 actor classes
	• 65534 states in each actor
	• 65534 port classes
	• 65534 bytes of extended state variable space per actor instance
	Special Notes and Reminders

	• For an example of how to compile a C model for the Simulation Services Library and for the C Ta...
	• Once an actor has been compiled, modifications to the replication factor of the actor itself or...
	Also note that for unspecified replication factors (replication factor = *), if you change the ro...
	Compliance Models
	ObjecTime has included a number of models on the distribution media which allow you to test your ...
	The following models can be found in the C Model Examples directory:

	• C_HelloWorld: This is a simple model helping to confirm the proper configuration, compilation a...
	• C_Multithreads: This model verifies the proper operation of threads for multi-threaded targets.
	• C_General: This model tests the proper operation of the general modeling features available wit...
	• C_Timers: This model verifies the correct operation of timers executing on a development platform.
	• C_TornadoQueuesWithTimers: This model is an example of integrated timers and message queues imp...
	• C_FiveStatesA and C_FiveStatesATornado: These models confirm the operation of the target observ...
	Additional information can be found in Appendix C - Compliance Suite & Examples in the C Language...
	User Guide — Differences When Using the C Target Services Library
	Not all facilities described in the User Guide are supported in the C Target Services Library. Be...
	For detailed information on some key differences, please see “Differences between SimulationRTS a...

	• Package List p. 98
	“External Data packages” are not supported with the C Target Services Library.
	• Data class list p. 105
	“Data classes” are not supported with the C Target Services Library.
	• Creating a new data class p. 121
	“Data classes” are not supported with the C Target Services Library.
	• Listing the system-defined data classes p. 122
	“Data classes” are not supported with the C Target Services Library. Only the standard Fundamenta...
	• Differences Tests p. 145
	The various items having to do with “data classes” are not supported with the C Target Services L...
	• Multiple containment p. 158
	“Multiple Containment” is not supported with the C Target Services Library.
	• Rules for creating an equivalence p. 160
	“Equivalences” are not supported with the C Target Services Library.
	• Dynamic Structure p. 161
	“Dynamic Structure” is not supported with the C Target Services Library.
	• Optional actors p. 161
	“Optional actors” are not supported with the C Target Services Library.
	• Imported actors p. 161
	“Imported actors” are not supported with the C Target Services Library.
	• Combining Replication, Dynamic Structure and Multiple Containment p. 163
	“Dynamic Structure” and “Multiple Containment” are not supported with the C Target Services Library.
	• Optional replicated actors p. 164
	“Optional replicated actors” are not supported with the C Target Services Library.
	• Imported replicated actors p. 165
	“Imported replicated actors” are not supported with the C Target Services Library.
	• Including optional and imported actors in equivalences p. 167
	“optional and imported actors” are not supported with the C Target Services Library.
	• Layered networking communication p. 169
	“Layered networking communication” is not supported with the C Target Services Library.
	• Actor reference symbols p. 179
	“Imported actors” and “Optional actors” are not supported with the C Target Services Library.
	• Actor Reference Properties Editor p. 186
	The “Fixed, Optional, Imported” item is not supported with the C Target Services Library.All acto...
	• Actor reference list item menu p. 192
	The various items having to do with “Equivalences” are not supported with the C Target Services L...
	• Creating an equivalence (multiple containment) p. 198
	“Equivalences” and “Multiple Containment” are not supported with the C Target Services Library.
	• Making an imported actor p. 198
	“Imported actors” are not supported with the C Target Services Library.
	• Data Class p. 202
	“Data Classes” are not supported with the C Target Services Library.
	• Signal list p. 203
	Signal “Data Classes” are not supported with the C Target Services Library.
	• Log Service p. 223
	The “Log Service” is not supported with the C Target Services Library.
	• Frame Service p. 223
	The “Frame Service” is not supported with the C Target Services Library.
	• Basic Communication Service p. 225
	“Synchronous communication” is not supported with the C Target Services Library.
	• Replying to messages p. 226
	This is not supported with the C Target Services Library.
	• Name registration and binding p. 227
	“Name registration” is manual rather than automatic in the C Target Services Library.
	• Simulation Communication Service p. 230
	The “Simulation Communication Service” is not supported with the C Target Services Library.
	• Timing Service p. 231
	The “Timing Service” is implemented quite differently in the C Target Services Library. Please se...
	• Exception Service p. 233
	The “Exception Service” is not supported with the C Target Services Library.
	• Variables Window p. 252
	The information about “Data Classes” is not supported with the C Target Services Library.
	• Data Modeling p. 273
	The information in this chapter is not supported with the C Target Services Library.
	• Data Class Browser & Editor p. 283
	The information in this chapter is not supported with the C Target Services Library.
	• MSC Editor p. 337
	Design-time “MSCs” are a useful way of specifying requirements for any system. Run-time MSCs can ...
	• MSC Tool Palette p. 340
	The “Creation Tool” and “Stop Tool” are not supported with models that will run in the C Target S...
	• Creations/Destructions p. 342
	“Creations/Destructions” are not supported with models that will run in the C Target Services Lib...
	• Message Sequence Charts p. 349
	“Message Sequence Charts” are only available when running C models in the Simulation RTS.
	Troubleshooting

	This section lists common problems and errors encountered when installing and running ObjecTime D...
	• Recompiling (after deleting a Load-Build Path)
	When you compile an update with a load-build path and then delete the load-build path and recompi...
	In order to remove previous compilation results you should manually remove all previous compilati...
	rm -R LF build C++ Makefile
	Compilation problems — Windows NT

	• Compile fails on valid C model for Simulation Services Library with Microsoft Visual C++
	If Microsoft Visual C++ is installed at the default location in \Program Files\DevStudio, which c...
	The INCLUDE and LIB environment variables may not be properly set. Start “ObjecTime Developer Com...
	• Error loading Actor (“could not spawn process”)
	If the executable (Actor.exe) is stored on an NFS server then the NFS client must be configured t...
	Developer for C Directory Contents

	After installation of the main ObjecTime files has been completed, the directory structure should...
	• <INSTALL>/Developer5.2.1
	This is the top level directory.
	• C
	This directory contains all of the source code, makefiles and other files required by the C Targe...
	• Help/C
	This directory contains C documentation files used for the Online Help System.
	• ModelExamples/C
	This directory contains ObjecTime C models referenced at various locations in the documentation.
	• Training/BasicTutorials/BasicTutorialC
	This directory contains ObjecTime C model examples for Basic Tutorial.
	Known Limitations/Restrictions

	• You cannot delete files when they are currently open or being observed in the Explorer. This im...
	• In the Simulation Services Library, the ROOM_SAPRegister() and ROOM_SPPRegister() macros always...
	• The environment variable OBJECTIME_MAX_VFORKS no longer has any effect.
	• Layer SPPs in C actors must be specified with a maximum replication factor, equal to the maximu...
	• Changing permissions, deleting files, or using symbolic links to ObjecTime C generated director...
	• System header files such as stdio.h are not automatically included. Due to this, expressions fo...
	• There is a difference in behavior between the Simulation and Target services library for isTime...
	• Models using timer actors may report the following warning at the end of the compilation - “war...
	• To trace on a replicated port within the C TargetRTS Debugger you must follow the outlined proc...
	• List the different ports/saps/spp with "info <actor>"
	• The port identifier number required for the trace command is the base number given by the info ...
	• For example if you want to trace ids[5] of an actor which lists the following ports after the i...
	End ports:
	0: ThePort
	1: MyPort
	2: ids[13]
	• To trace the fifth occurrence of ids, you would have to enter the following command:
	trace 1 end 7 (Base_Port is 2 and port/SPP Index is 5)
	Inclusion Paths

	• Use absolute inclusion paths (as opposed to relative inclusion paths) as the results from using...
	Solaris Multi-threaded

	• Solaris threads support priorities but the priority specified in the cRSLThreadMap for solaris ...
	Relay Ports

	• The C Target Services Library Debugger Info command does not list the Relay Port information. F...
	Target Observability

	• The limit on the number of actor instances that can be displayed in the Run-Time System panel i...
	Tornado

	• When you reset a Tornado board, the target operating system is also reloaded. This means that a...
	Known Problem Information

	For a complete list of known problems in this release, please refer to the ObjecTime web site at:
	http://www.objectime.com/support/restricted-dir/index.html.
	You will be prompted to enter your assigned ObjecTime user name and password to gain access.
	Tornado Integration on NT

	This appendix is added for reference and outlines detailed information on the integration of Torn...
	Using Tornado on Windows NT
	This section provides an introduction to using Tornado on Windows NT, including


	• a discussion of the environment setup, along with some tests to prove that all the pieces are w...
	• a description of the configuration used at ObjecTime Limited
	• an overview of the tools used with Tornado
	Environment setup
	Assumptions


	The instructions in this report assume that Tornado and ObjecTime are installed in their default ...
	Setting Your Environment Variables

	WindRiver's Installation Guide suggests that there is no need to set any environment variables wh...
	WIND_BASE=C:\Tornado
	WIND_HOST_TYPE=x86-win32
	GCC_EXEC_PREFIX=%WIND_BASE%\host\%WIND_HOST_TYPE%\lib\gcc-lib\
	PATH=.;C:\WINNT\system32;C:\WINNT;%WIND_BASE%\host\%WIND_HOST_TYPE%\bin
	WIND_REGISTRY=<host_name>
	The first three variables can be found in the torVars.bat batch file located in the C:\Tornado\ho...
	WIND_BASE —installation directory for Tornado
	WIND_HOST_TYPE —name of host type
	GCC_EXEC_PREFIX —location of GNU compiler subprograms
	WIND_REGISTRY —name of the registry host
	Note that the trailing backslash is important in the value of GCC_EXEC_PREFIX. The compiler drive...
	Of course, your PATH variable will contain additional information depending on other software pac...
	Figure 4 Verifying ‘make’ utility

	Finally, if you are running the Tornado registry on a machine other than your workstation, you wi...
	Testing the Cross Compiler

	This section presents a method for establishing that the components of your tool-web are function...
	For the purposes of the following test, it is assumed that you have set your environment variable...
	#include <stdio.h>
	void rtsMain()
	{
	printf(‘Hello World\n’);
	}
	Next, save the makefile below in your working directory. For this example, the file is called C:\...
	From the ObjecTime Developer Command Prompt change directories to your working directory and type...
	If these steps are successful, then you can be reasonably certain that your ObjecTime model will ...
	Cross Platform Development

	The sample makefile in the previous section was not explained in detail. However, it contained th...
	Compiling an Application Module

	The first step in building your model into an application module for VxWorks is to compile the Ob...
	cc68k -c -ohello.o -DPRAGMA -ansi -nostdinc -DCPU=MC68040 \
	-O4 -finline -finline-functions -Wall -m68040 \
	-IC:\Tornado\Target/h hello.c
	The explanation of the flags is found in Table 1.
	Table 1 Compiler Flags

	Flag
	Description
	-c
	Compile only; do not link for execution under the host. The output is an unlinked object module w...
	-o file
	Place the output in file, in this case hello.o (not strictly necessary in our example).
	-DPRAGMA
	Define the symbol PRAGMA for the build.
	-ansi
	Support all ANSI standard C programs. This option turns off certain features of the GNU compiler ...
	-nostdinc
	Do not search host-system header files; search only the directories specified with the -I flag an...
	-I path
	Include VxWorks header files.
	-O4
	Perform all optimizations.
	-finline
	Pay attention to the inline keyword.
	-finline-functions
	Integrate all simple functions into their callers.
	-Wall
	Turn on all compiler warnings.
	-DCPU=arch
	Define the CPU-type.
	-m68040
	Generate output for 68040. Inhibits use of 68881/82 instructions that have to be emulated on 68040.
	Overview of the ObjecTime/Tornado integration tools

	ObjecTime Developer and WindRiver's Tornado are closely integrated. In fact, the toolset can auto...
	Figure 5 ObjecTime/Tornado tools
	What Tornado Needs

	To run Tornado on Windows NT, you must have a portmapper and target registry running. Additionall...
	What ObjecTime Needs

	Like Tornado, ObjecTime employs a communication agent to enable the toolset to communicate with a...
	Figure 6 Starting the RTSController

	Tornado Integration
	ObjecTime Developer 5.1.1 provided basic support for WindRiver Tornado integration on Windows NT....
	Configuration

	The environment must be configured properly in order to use the Tornado source code breakpoint ca...
	1 Activate the desired configuration from the Configuration menu of the Update Browser.
	2 Open the Configuration Browser for the selected configuration.
	3 Activate the Target RTS entry in RTS Versions menu.
	4 Activate the Tornado Language Option menu item.
	5 Open the Tornado Language Option Browser.
	6 Activate the desired Tornado compilation settings for the target.
	7 Open the Properties for the selected item in the Compiler menu and verify that the debug flag i...
	8 Go back to the selected Configuration Browser and select Tornado from the Debugging Tools menu.
	9 Open the property editor for the Tornado entry; specify the desired Tornado target server and t...
	10 Activate the Tornado entry in the Debugging Tools menu of the Configuration Browser.
	Source Breakpoints

	ObjecTime Developer provides access to source line breakpoints through Transition and State Daemo...
	Daemons can now be created and activated. To set a source line breakpoint, open the Properties Ed...
	Note: Only Transition Daemons that are located at the start of a transition have the “Source Brea...
	Source Breakpoint Hit

	When ObjecTime Developer detects that a breakpoint hit, the following dialog is displayed.
	The first time a breakpoint is hit, the user should follow the these steps:
	1 Bring up Tornado if not currently running.
	2 Select the target server specified in the Breakpoint Hit dialog and invoke the debugger within ...
	3 Enter CONTROL-V (Windows paste operation).

	The appropriate “add-symbol-file” and “attach” commands are copied into the Windows clipboard by ...
	At this point, the debugger displays the file in which the breakpoint has occurred. Regular sourc...
	Note: Only breakpoints that are set via ObjecTime Developer are displayed in this dialog.
	Once a breakpoint is hit, the user must use the Tornado debugger to continue model execution.
	Help

	Help information is available when the user clicks the Help button on the Breakpoint Hit Dialog. ...
	Integrating Developer Studio on Windows NT

	Overview
	ObjecTime Developer 5.1.1 introduced support for Microsoft MSDEV integration. This document descr...
	Configuration
	The ObjecTime Developer environment must be configured properly in order to use the MSDEV source ...
	1 Activate the desired configuration from the Configuration menu of the Update Browser.
	2 Open the Configuration Browser for the selected configuration.
	3 Activate the Target RTS entry in RTS Versions menu.
	4 Activate the Windows NT C++ Language Option menu item.
	5 Open the Windows NT C++ Language Option Browser.
	6 Activate the desired Visual C++ compilation settings for the target. Verify that the /DEBUG lin...
	7 Open the Properties for the selected item in the Compiler menu. Verify that the debug flag is s...
	8 Go back to the selected Configuration Browser and select VC50 from the Debugging Tools menu.
	9 Activate the VC50 entry in the Debugging Tools menu of the Configuration browser.


	Source Breakpoints
	ObjecTime Developer provides access to source line breakpoints through Transition and State Daemo...
	Note: MSDEV is brought up on the first load for a given update and remains up until the VC50 debu...
	Daemons can now be created and activated. To set a source line breakpoint, open the Properties Ed...
	Note: Only Transition Daemons that are located at the start of a transition will have the “Source...
	Source Breakpoint Hit
	When a source line breakpoint is hit, MSDEV will pop to the front and display the source code cor...

