
 Getting Started Guide i

OBJECTIME

ObjecTime Developer 5.2

Getting Started Guide

& Release Notice

Product Release: ObjecTime Developer 5.2
Document Version: 1.0
Release Date: August 1998
Part Number: OT-R520-DOC808

ObjecTime Limited
340 March Road
Kanata, Ontario
Canada K2K 2E4

Printed in Canada

Important Notice

Copyright 1991-1998 ObjecTime Limited. All rights reserved.
Unpublished -- rights reserved under all Copyright laws including Copyright laws of the United States.
ObjecTime (and logo) is a registered trademark of ObjecTime Limited. Developer is a trademark of ObjecTime Limited.
The license management portion of this product is based on:
Elan License Manager 1989-1998 Elan Computer Group, Inc. All rights reserved.
ObjecTime Limited (OTL) PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Information in
this publication is subject to change from time to time without notice. Some states, provinces, or jurisdictions do not allow disclaimer
of express or implied warranties in certain transactions; therefore, this statement may not apply to you.
ObjecTime Limited (OTL) and its licensors retain ownership to the ObjecTime computer program and other computer programs offered
by OTL (hereinafter collectively called “ObjecTime”) and their documentation. Use of ObjecTime is governed by the License Agree-
ment associated with your purchase.
Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the Com-
mercial Computer Software-Restricted Rights clause FAR 52.227-19 and its successors.
For units of the Department of Defense (DoD), the license for this software is subject to the “Restricted Rights” as that term is defined
in the DFAR 252.227-7013 (c)(1)(ii), Rights in Technical Data and Computer Software and its successors.

The contractor/manufacturer is:
ObjecTime Limited
340 March Road
Kanata, Ontario

Canada, K2K 2E4

When acquired by the Government, commercial computer software and related documentation so legended shall be subject to the
following:
(A) Title to and ownership of the software and documentation shall remain with the Contractor.
(B) User of the software and documentation shall be limited to the facility for which it is acquired.
(C) The Government shall not provide or otherwise make available the software or documentation, or any portion thereof, in any form,
to any third party without the prior written approval of the Contractor. Third parties do not include prime contractors, subcontractors
and agents of the Government who have the Government’s permission to use the licensed software and documentation at the facility,
and who have agreed to use the licensed software and documentation only in accordance with these restrictions. This provision does
not limit the right of the Government to use software, documentation, or information therein, which the Government has or may obtain
without restrictions.
(D) The Government shall have the right to use the computer software and documentation with the computer for which it is acquired
at any other facility to which that computer may be transferred; to use the computer software and documentation with a backup com-
puter when the primary computer is inoperative; to copy computer programs for safekeeping (archives) or backup purposes; and to
modify the software and documentation or combine it with other software. Provided, that the unmodified portions shall remain subject
to these restrictions.

COMMERCIAL COMPUTER SOFTWARE — RESTRICTED RIGHTS

(c) (1) The restricted computer software delivered under this contract may not be used, reproduced or disclosed by the Government
except as provided in subparagraph(c)(2).
(c)(2) The restricted computer software may be —
(i) Used or copied for use in or with the computer or computers for which it was acquired, including use at any Government installation
to which such computer or computers may be transferred;
(ii) Used or copied for use in or with backup computer if any computer for which it was acquired is inoperative;
(iii) Reproduced for safekeeping (archives) or backup purposes;
(iv) Modified, adapted, or combined with other computer software, provided that the modified, combined, or adapted portions of the
derivative software incorporating any of the delivered, restricted computer software shall be subject to same restrictions set forth in
this contract.
The following are trademarks or registered trademarks of their respective companies or organizations:
VxWorks, Tornado / Wind River Systems Inc. pSOS,pRISM,pRISM+ / Integrated Systems Inc. QNX / QNX Software Systems Ltd.
LynxOS / Lynx Real Time Systems Inc. VRTX, MRI C++,Spectra / Microtec Inc. Green Hills C++ / Green Hills Software, Inc. Cygnus
C++ / Cygnus Support. Watcom C++ / Sybase Inc. Elan License Manager / Elan Computer Group, Inc. OPEN LOOK, UNIX / UNIX
System Laboratories, Inc. FrameMaker, FrameViewer, PostScript, Acrobat / Adobe Systems, Inc. Hewlett-Packard / Hewlett-Packard
Company. SGI R3000, R4000, IRIX / Silicon Graphics Inc. AIX, IBM, PowerPC, RISC System/6000 / International Business Machines
Corporation. WindowsNT, VisualC++,Visual Source Safe / Microsoft Corporation. Sun Microsystems, Sun Workstation, OpenWin-
dows, Solaris, SunView, SPARC, SPARCstation / Sun Microsystems, Inc. X Window System, X11 / Massachusetts Institute of Tech-
nology. Smalltalk-80, ObjectWorks/Smalltalk / ParcPlace Systems, Inc. GNU / The Free Software Foundation. ClearCase, Purify /Pure
Atria Corporation. Rational. Netscape, Netscape Navigator, and the Netscape N logo are registered trademarks of Netscape Commu-
nications Corporation in the United States and other countries. Microsoft, Windows, and Windows NT are either trademarks or regis-
tered trademarks of Microsoft Corporation. All other brand names are trademarks of their respective holders.

 Getting Started Guide iii

ObjecTime Support

Your opinions and suggestions are both welcome and vital to the evolution of ObjecTime Developer.

ObjecTime Support Hotline: (613) 591-3400

ObjecTime Fax: (613) 591-3784

ObjecTime E-mail: support@objectime.com

Visit our Web Site: www.objectime.com

iv Getting Started Guide

Getting Started Guide Table of Contents v

Table of Contents

Welcome to ObjecTime Developer 5.2 . 1

Introduction . 1

What’s new in Developer 5.2 . 2

Year 2000 Compliance . 4

Packaging Changes . 5
Web Model Publisher Option . 5
Installation Keys . 5

ObjecTime Model Examples. 6

Model Upgrade/Conversion. 9

Model Conversion . 9
Adding Dependencies . 9
Environment and CUPs conversions 10
Detail level code changes . 11

Getting Started with Windows NT. 13
Network vs. Local Installation . 13
Supported Network Configurations 14
Installation Requirements . 14
File System Requirements . 14
Local Workstation Requirements . 15
Installing Netscape Navigator . 15
Configuring for use with Internet Explorer 4.0 16

Installing ObjecTime Developer 5.2 . 18
Uninstalling Developer 5.2 . 25
Setting Up a User Workstation . 26

Starting ObjecTime Developer 5.2 on Windows NT 28
Using the ObjecTime Developer Launcher 29

Getting Started with Unix. .33
Network vs. Local Installation . 33
Supported Network Configurations 34

vi Table of Contents Getting Started Guide

Installation Requirements . 34
Local Workstation Requirements . 34

Installing ObjecTime Developer 5.2 .37
Uninstalling ObjecTime Developer 5.2 39
Setting Up a User Workstation . 39
Environment Variables . 39
Fonts . 39
Additional Settings . 40
Optional settings . 40

Starting ObjecTime Developer 5.2 .42

Supported Platforms. .45
Platforms No Longer Supported in Objectime
Developer 5.2 . 46

License Manager Operations .47

Licensing Changes .47
 License Acquisition Suppression . 47

ObjecTime Developer Licensing .49
ObjecTime Licenses . 49

License Registration .50
License manager registration . 50
Obtaining the workstation machineId and IP address 50

Invoking License Manager Executables .52

Installation of Encrypted Keys .52

License Manager. .54
Starting up the License Manager . 54
Setting the Time Zone Variable on Windows NT 55
Automatically starting up the License Manager 56
Bringing Down the License Manager 57
License Manager Operation . 57
Querying the License Manager . 58

Documentation Roadmap. .63

ObjecTime Developer 5.2 Documentation Set 63
User Guide . 64
C++ Language Guide . 64
C++ Target Guide . 64
C Language Guide . 65
RPL Language Guide . 65
Tutorial Guide . 65
Getting Started Guide & Release Notice 65

Suggested Reading Path .65

Getting Started Guide Table of Contents vii

Online Reading . 67
Online Search Engine . 67

Changes in Developer 5.2 . 71

Packages . 72
CUPs Replacement . 72

Code Generation & Compilation Changes 73

Make Utilities Supported .74

Data class inclusions . 76

Deterministic Loadbuild. 77

Library Management .79
Library capabilities enhancements 79
ClearCase . 80
RCS . 81
Linear Form . 81

 Problems Addressed in this Release .87

General Information . 89

Toolset Memory Requirements. 89
Typical model memory usage . 90
Memory usage in operations . 91
Context vs. update memory usage 91
Model file sizes . 92
Summary . 92

Microsoft Visual SourceSafe (MSVSS). 93

Limits. 94

Special Notes and Reminders . 94

Perl Information. 95
Building a Model with VC50 Debugging Information 96

Troubleshooting . 97

Troubleshooting Unix . 97
CD read errors . 97
Incorrect key mappings . 97
SCCS/RCS files missing . 97
Cannot allocate color . 97
Font problems . 98
Socket connections: . 101
Online Help . 101
License Server Upgrades . 102

Troubleshooting Windows NT. 103
Screen flicker . 103

viii Table of Contents Getting Started Guide

Install/Uninstall Problems . 103
Online Help . 105
Compilation problems: . 105
MSVSS Library problems . 106
DLL loading problem . 107
Mailing exception files . 108
Starting ObjecTime Developer . 108
Troubleshooting License Manager 108
ICON Display . 109

Developer 5.2 Directory Contents . 111

Known Limitations / Restrictions . 115

Inconsistent compile state .115

Supported Platforms .117
External Layer . 117

X11 .117
Windows NT . 117
Working Directory . 118
Merging . 118
Class differences merging . 118

User interface .120
Batch Mode . 120
Library . 120
Emergency Passivation . 121
Memory Usage . 121
Platforms . 121
DOORS . 121
Default Parser/Scanner Generator 122
Help . 122
Simulation and Target Compatibility 122
Inclusion Paths . 122
Simulation Timing . 122
RoseLink . 122

Chapter 1

Getting Started Guide Welcome to ObjecTime Developer 5.2 1

1 Welcome to ObjecTime
Developer 5.2

Introduction
The focus of the ObjecTime Developer 5.2 release is on meeting large project scaleability needs by pro-
viding more complete integration with the customer’s software development environment, processes,
and workflow, and to enable multi-stream, distributed development by introducing close interworking
with Configuration Management (CM) systems.

ObjecTime Developer 5.2 also introduces a user preference to switch between the ObjecTime user inter-
face and the Windows user interface. New customers can now take advantage of their familiarity with
the Windows user interface to reduce their learning curve of ObjecTime. Existing users now have the
option of a familiar user interface available to them.

This chapter provides an introduction to ObjecTime Developer 5.2. The chapter’s four main areas
describe:

• What’s new in Developer 5.2

• Year 2000 Compliance

• Packaging changes introduced for 5.2

• Model examples

What’s new in Developer 5.2

2 Welcome to ObjecTime Developer 5.2 Getting Started Guide

What’s new in Developer 5.2
The following highlights some of the new features available in the ObjecTime Developer 5.2 release.

• Code Generation and Compilation enhancements: Release 5.2 incorporates significant changes
in the way in which code generation and compilation of models is performed. These changes have
been made in order to improve performance as well as to better integrate with the customer’s soft-
ware development environment and processes.

The significant changes are:

• The toolset has been partitioned into modeling and code generation components.

• Timestamp driven make: Industry standard timestamp driven code generation and compilation
(using make and makefiles)

• Loadbuild reuse: The reuse of loadbuild results is now supported for ObjecTime models using ei-
ther ClearCase and derived objects or with the VPATH facility supported by GNU make. See Ap-
pendix F in the User Guide which describes ‘Loadbuild Re-use’.

• Inter-class dependencies: Dependencies between classes are now explicitly captured. This allows
generation of code for classes which only has the includes it requires. This improves compilation
performance.

• Web Model Publisher: A Web Model publisher is available as a separately purchased component
for use with ObjecTime Developer 5.2. The Web Model publisher enables output of an ObjecTime
Developer model in HTML format, so you can view and interactively navigate through the model
using a web browser. Please see the ObjecTime User Guide, Web Model Publisher chapter for details
about capabilities.

• Multiple environment configurations: Maintain separate configurations for different environ-
ments. This is useful in situations where you need to frequently switch between targets of different
configurations.

• Multi-targeting and simulation support: Switch between simulation and multiple target configu-
rations without the need to do a full recompile upon switching.

• Cross platform support for ClearCase: You can now use ObjecTime Developer with ClearCase
transparently across NT and UNIX platforms. New configuration management enhancements, listed
below, make ObjecTime and ClearCase a powerful combination.

• Configuration Management related enhancements: Several CM related enhancements are intro-
duced in this release:

• A new user preference is provided for checkout policy enforcement. When enabled, classes
cannot be modified until after they are checked out from the CM system.

• A new user preference is provided for version sequencing enforcement. When enabled, the
toolset reports version skipping as an error, and provides the option to perform a merge of the
two different versions.

• Hierarchical Libraries. Users can navigate through nested libraries in the same way as
navigating through a directory structure.

• External scripts can be used to achieve custom version handling.

• Branch compatible Library Browser displays branch tags & version extended pathnames.

What’s new in Developer 5.2

Getting Started Guide Welcome to ObjecTime Developer 5.2 3

• User configurable global path to library scripts through the Library Configuration dialog. If an
objectime_scripts_dir is specified, then it overrides the scripts identified through the global path
specification.

• Multi-library ‘sync with library’ is supported. As well, a new content synchronization option is
also provided to enable synchronization to be based on the actual source content in the library
instead of just the version number. If you are a ClearCase user, the content diff scripts are
provided for you. If you are not using ClearCase, you must implement the scripts to do the
content diff.

• Features for multi-stream development:

• The Differences Tool has been enhanced to detect the graphical information of objects, for
example, size or position.

• A new Class Version Merge Tool, based on the Differences Tool, is now available. You can use
it to identify differences between two class versions and propagate modifications from one
version to another.

• Project files: Project files provide an alternate specification for an update. These files provide a ver-
sionable, textual specification of the complete model, and contain information such as names and
location of classes/packages in the model, environment configuration file names, etc.

• Data class inclusions: You can now specify external inclusions on data classes. This is done via the
Data Class Editor View menu, inclusions menu option. This improves compilation performance over
the pre-5.2 releases by eliminating superfluous inclusions.

• Windows User Interface: Users now have the option of switching between the standard ObjecTime
user interface, or the Windows look and feel. Please see the ObjecTime Developer User Guide to
find out full details on how to do this.

• Color preferences: Users can now customize their environment colors. Specifically, the workspace
color and graphics editor colors can be specified via a user preference.

• Storage of environment configurations: Environment configurations can now be stored separately
from a model. This allows better control of environment configurations (for example, through ver-
sioning), and provides an easy mechanism for sharing configurations throughout a development
group.

• Large model toolset tuning: New user preferences are provided to enable better user control when
dealing with large models. These preferences allow for performance and memory utilization optimi-
zations when working with large models which are more than 3 MB when passivated.

• Online documentation search engine: Online documentation now provides a search engine to
make it easier to find information.

• Customer Support website access: The Customer Support restricted access website is now a single
click away. A new menu item launches the user configured web browser, and prompts the user for
the username and password to the support website. If you do not have a password for the Customer
Support website, please check with your project's ObjecTime prime, or request it through customer
support.

Year 2000 Compliance

4 Welcome to ObjecTime Developer 5.2 Getting Started Guide

Year 2000 Compliance
Complete Year 2000 testing has been performed by ObjecTime Limited, including correct handling of
leap year calculations. ObjecTime Developer for C++ 5.2 is year 2000 compliant. The ObjecTime
Developer class libraries will function correctly across the year 2000, boundary with one clarification.
The RPL Date class allows year to be specified as either a two digit (interpreted as 2000 - 2049 if the
entered year is less than 50, or interpreted as 1950 - 1999, if the entered year is greater than or equal to
50) or a four digit (relative to the start of the Roman calendar) number. It is recommended that existing
models be converted to use the four digit year format.

The license keys used by the License Manager are year 2000 compliant, with the exception of the
License Manager log file, which lists only the two last digits of the year.

It is recommended that you review the Year 2000 compliance policies and statements from the vendors
of your operating system, development tools and configuration management software.

Packaging Changes

Getting Started Guide Welcome to ObjecTime Developer 5.2 5

Packaging Changes
The ObjecTime Developer product is available in 3 different product packages for the 5.2 product
release. The ObjecTime Developer (Base), ObjecTime Developer for C++ and ObjecTime Developer
for C make up the three product offerings.

ObjecTime Developer: Includes the toolset and Simulation Services Library components and replaces
the product known as Modeler which was available with the ObjecTime Developer 5.1.1 release. It can
be used for modeling and Simulation only.

ObjecTime Developer for C++: Includes the base ObjecTime Developer product package and also
includes the C++ Target Services Library. It can be used for modeling, Simulation, and total code gener-
ation for C++ targets.

ObjecTime Developer for C: Includes the base ObjecTime Developer product package and also
includes the C Target Services Library. It can be used for modeling, Simulation, and total code genera-
tion for C targets.

Optionally, a user may choose to upgrade any one of the packages with support for one, or more, of the
Target Services Libraries. This is supported through upgrades which can be applied to your base Objec-
Time Developer or either of the language specific packages.For instance, owners of ObjecTime Devel-
oper 5.2 - C Target Module can optionally add the C++ Target Module to enable C++ code generation.

Web Model Publisher Option

A new product option is available for use with ObjecTime Developer, which allows the user to publish
models in HTML format for viewing with either of the two standard internet browsers (Netscape 4.04
and Microsoft Internet Explorer 4). This product is available for purchase and can be applied to any one
of the ObjecTime Developer 5.2 product packages. Please contact ObjecTime at 1-800-567-TIME, or
call your local ObjecTime office, to get complete details.

Installation Keys

Included with your ObjecTime shipment will be an envelope which contains the installation keys neces-
sary to install the software from the CD media. These keys are unique to your order and the envelope
and contents should be kept in a safe place to facilitate future installations should a re-install become
necessary. If these keys are misplaced please send a request for replacement keys to the ObjecTime Sup-
port e-mail address (support@objectime.com) providing your company name, project, and the Objec-
Time product purchased.

ObjecTime Model Examples

6 Welcome to ObjecTime Developer 5.2 Getting Started Guide

ObjecTime Model Examples
Included with the ObjecTime Developer base product are a number of example models which the users
are encouraged to reference and build upon. Four different types of model examples are provided: RPL,
Batch Mode, C++ and C. To access the model examples from an ObjecTime session using the Objec-
Time Classic User Interface Mode, select the Open Model Examples Directory menu item which can be
found in the main ObjecTime menu (see Figure 1).

Figure 1 Main ObjecTime Menu

When the Model Examples Directory is opened, the following directory browser will be displayed, and
the user will have the option of browsing one or more of the model example directories to activate the
model example of choice (see Figure 2).

ObjecTime Model Examples

Getting Started Guide Welcome to ObjecTime Developer 5.2 7

Figure 2 .Model Examples Directory

From an ObjecTime session configured as the ObjecTime Windows NT User Interface Mode, the model
examples can be found through the Browsers pull down menu (see Figure 3).

Figure 3 Browser—Pull Down Menu.

ObjecTime Model Examples

8 Welcome to ObjecTime Developer 5.2 Getting Started Guide

As with the classic mode, when the Model Examples Directory is opened, a directory browser will be
displayed, and the user will have the option of browsing one or more of the model example directories
to activate the model example of choice (see Figure 4).

Figure 4 .Directory Browser

Chapter 2

Getting Started Guide Model Upgrade/Conversion 9

2 Model Upgrade/Conversion

Model Conversion
Moving models forward, from pre-5.2 to 5.2, requires these models to be converted. Most conversions
for an update will be automatic and will not require any user action beyond accepting that the conver-
sion will take place. Once converted, the update will not activate with pre-5.2 versions of the toolset.
Model conversion is required to address the following:

• Dependencies between model components need to be explicitly captured in the stored class (Linear
Form) files.

• Environment specifications on compilation unit packages (CUPs) must be preserved and converted
to the new configuration specification supported by packages in 5.2.

• Detail level code must be changed to accommodate changes to the runtime system interface.

Automatic model conversion will be supported to move from 5.0, 5.1 and 5.1.1 to 5.2. Moving from
pre-5.0 model versions require conversion to 5.0 before the 5.2 conversion is attempted. All available
universal patches should be installed on the pre-5.2 ObjecTime image and the model to be converted
should be passivated with this image before the conversion to 5.2 is performed.

Note: For 5.0 this includes universal patches 001 through to 088, for 5.1: universal patches 001
through to 033 and for 5.1.1: universal patches 001 through to 033.

Adding Dependencies

Before a pre-5.2 model can be compiled in 5.2, the inter-class dependencies must be added. Without the
dependencies, the inclusions in the generated code will be incomplete and model compilation will fail.

Note: Model dependencies calculation can take several minutes on a large model.

When a pre-5.2 model is brought into the 5.2 toolset, the user will be presented with a list of classes for
which dependency calculation should be performed. Accepting this will initiate dependency calculation
and updating.

Model dependency calculation may not capture all needed dependencies and the user may have to man-
ually complete the task. This can happen, for example, when a class reference is “hidden” behind a
macro and only becomes evident when the macro is expanded. Since model conversion does not run a
pre-processor on the detail level code, such cases will not be detected and a required dependency will

Model Conversion

10 Model Upgrade/Conversion Getting Started Guide

not be added. When a dependency is not detected, the generated code will be missing include directives
which will cause the compilation to fail. The error message and error mapping should make it readily
apparent which class needs to be added to the dependency list of which other class. Dependencies are
added manually with the properties editor of the class for which the dependency is to be added. The
dependency can either be typed into the dependency pane or a reference can be dragged from the model
browser into the dependency pane.

When bringing model components, classes and packages, forward into 5.2, the dependency calculation
part of the conversion process is not automatically invoked but must be initiated manually. This is
because the toolset version which produced the component is not stored in the components source. After
all the classes and packages have been merged into the 5.2 toolset, “ Generate Class Dependencies” can
be invoked from the update menu of the toolset. This will present the user with a list of classes which
will be analyzed as part of the dependency calculation and updating.

Environment and CUPs conversions

Conversion of CUPs will be automatically initiated when a CUP or an update containing a CUP is
brought into the toolset. The result of bringing a CUP into the toolset is that a set of package-level con-
figurations (one for each language option) will be created and associated with the package.

In order for a package level config to take effect, within an update, it must be associated with an update
level config. This is done from the properties editor of the package config. The configuration field of
the package config property editor allows the entering of the update level config with which this config
is associated. When the particular update-level config is active, the corresponding package-level config
is also active.

If a package has only one or a few relevant configurations language options in pre-5.2, which are acti-
vated, then the user can create update level configurations for each language option and manually asso-
ciate the corresponding package-level configurations with the update-level configurations. If there are:

• a large number of active configurations at various times,

• or a large number of packages,

• then performing the association between package and update level configurations would be very
time consuming.

In this case, a special patch can be used to help automate the process.

To automatically associate a large number of packages or package configurations with update level con-
figurations:

1 Merge the CUPs into the toolset.

2 Create a set of update-level configurations with the same names as the package-level configurations,
which are to be associated with the update-level configurations.

3 Apply the patch CUPConfigurationAssociation.patch which will go over all the packages in the
update, associating each package-level config with the update-level config of the same name.

Model Conversion

Getting Started Guide Model Upgrade/Conversion 11

This patch, CUPConfigurationAssociation.patch, is located in $OBJECTIME_HOME/specials, can
be applied to the toolset by dragging it onto the workspace browser of the toolset.

After the model has been converted by activating the patch, the update should be passivated and the ses-
sion abandoned. This is to ensure that the development image does not contain the conversion patch.

Detail level code changes

Some changes in detail level code may be required in order to get the model being converted to compile
with the 5.2 runtime systems (Simulation, C++ or C). Changes will be required if the model has made
use of interfaces which have changed in 5.2. For a list of run-time system changes, see the Getting
Started and Release Notice for the appropriate language.

• In pre-5.2 versions of the toolset, actor detailed-level code had access to all the signals defined by
all the protocols used in a model. In 5.2, the signals names automatically available in the detailed-
level code are those which are defined by the protocols of the ports of an actor. This means that de-
tail-level code which made use of signals not defined in protocols on the actor, will no longer com-
pile. If the code references a signal which is not defined in any of the protocol classes referenced by
the actor’s ports and SAPs, then the code can be made to compile by adding the protocol to the de-
pendency list of the actor.

• Data classes do not have automatic access to any signals and must have explicit dependencies added
in order to reference signal names.

• In previous releases, if a user code segment did not terminate in a semi-colon, one was automatically
added. This feature has been removed in ObjecTime Developer 5.2.

After model conversion has been completed, it is advisable that all update level inclusions are reviewed
to determine if they can now be moved either to the package or class level. In the past, inclusions for
data classes had to be specified at the update level that resulted in all classes in the update having this
inclusion, regardless of whether it was required or not. With 5.2, data classes now support inclusions
and some update level inclusions can be moved to the data class level. Moving the inclusions is not nec-
essary for correct compilation, but can make a significant improvement to the compilation performance.

Model Conversion

12 Model Upgrade/Conversion Getting Started Guide

Chapter 3

Getting Started Guide Getting Started with Windows NT 13

3 Getting Started with Windows
NT

This chapter describes how to install, configure and begin to use ObjecTime Developer 5.2 with
Microsoft Windows NT. This document assumes that the user has a basic understanding of how to use
and administer Windows NT.

The main steps involved in getting started with Windows NT are described in the following sections:

• Installing a Browser (“Installing Netscape Navigator” on page 15 or “Configuring for use with In-
ternet Explorer 4.0” on page 16) covers how to set up a browser for viewing the on-line help and
documentation. If Navigator or Explorer 4.0 is already installed on your system, this step can be
skipped.

• InstallingObjecTime Developer 5.2 (“Installing ObjecTime Developer 5.2” on page 18) covers
how to install ObjecTime Developer 5.2 software on a Windows NT workstation or server.

• Setting up a User Workstation (“Setting Up a User Workstation” on page 26) describes how to set
up a Windows NT workstation from an existing ObjecTime Developer installation on a central net-
work file server. This step is not required if you are installing ObjecTime Developer 5.2 on a local
workstation.

• Starting ObjecTime Developer 5.2 (“Starting ObjecTime Developer 5.2 on Windows NT” on
page 28) describes how to start the Developer 5.2 toolset using the ObjecTime Developer Launcher.

Network vs. Local Installation

Two scenarios are available when installing ObjecTime Developer 5.2 on Windows NT. You can install
Developer on a local workstation disk, or you can install Developer on a central network file server.

Each scenario has advantages: Network installations can be shared between multiple users at a single
site, reducing the amount of local disk space required on each workstation, centralizing administration
and maintenance, and reducing the effort required to upgrade multiple users. On the other hand, local
installation can provide a significant performance advantage, especially with slower network configura-
tions.

During the setup process you will be asked to select a destination directory for the Developer files. To
create a local stand-alone workstation installation, select a destination directory on a local disk.

14 Getting Started with Windows NT Getting Started Guide

To create a shared network installation, select a destination directory on a shared network disk. After
installing the Developer files on the network disk, run Setup from each network workstation and per-
form a “User Setup,” as described in “Setting Up a User Workstation” on page 26.

Supported Network Configurations

ObjecTime Developer 5.2 can either run locally on a WindowsNT workstation, or through a Windows
NT file server under the following configuration conditions:

• The network must use Microsoft networking, with TCP/IP enabled.

Mixed Unix and Windows NT Installation

ObjecTime Developer 5.2 can run on a Windows NT workstation connected to a Unix file server under
the following configuration conditions:

• Network file system must be NFS.

• Supported NFS clients are Chameleon and Hummingbird. Make sure to install the clients properly:

• Support for mixed case file names must be enabled.

• Consult the NFS client documentation regarding soft links. Some implementations can’t handle
these very well.

• The path to the Setup program must conform to the 8.3 DOS file naming convention, and the path
cannot be longer than 63 characters including drive letter and the name of the Setup program.

Installation Requirements

• Windows NT – Windows NT 4.0 (Workstation or Server) is required to install ObjecTime Devel-
oper 5.2. Windows NT (Build 1381 - Service Pack 3), versions prior to version 4.0 are supported as
network file servers only.

• CD-ROM drive – A CD-ROM drive is required to install Developer 5.2 from CD. If a CD-ROM
drive is unavailable, copy the contents of the disk to a network file server, map the network disk to
a drive letter, and perform the installation from the mapped network location.

• Administrators Group Membership – Membership in the Administrators group is required to set
up Developer 5.2. Refer to the Windows NT documentation on how to assign those privileges.

• 50 MB to 64 MB free disk space – A minimum ObjecTime Install requires 50 MB of free disk
space, and a full installation requires 64 MB. 100 KB of disk space is required for fonts on the drive
where Windows NT system files are located, and an additional 300 KB is required if the License
Manager is installed.

File System Requirements

• File names – The code generation process in ObjecTime Developer makes use of long file names
with mixed-case characters. The file system where the Developer software is installed and where
Developer working directories are saved must support this type of file name convention for Devel-
oper to function properly. File names containing spaces are not supported.

• Native file systems on Windows NT 4.0: Developer 5.2 supports both FAT and NTFS file systems.

Getting Started Guide Getting Started with Windows NT 15

• NFS – Developer 5.2 supports the use of NFS file systems for network installations and Unix com-
patibility. If you choose to use NFS, be sure to configure the NFS software such that the case of file
names is preserved when saving files to NFS disks.

Note that while a Windows NT workstation can be set up to use a Developer installation on a NFS
disk, the Windows NT setup program cannot perform an installation to a NFS location. To create a
shared network installation of Developer on a NFS disk, first install Developer from a Unix work-
station using the Unix setup program, and then continue with “Setting Up a User Workstation” on
page 26.

• UNC path names – Developer 5.2 does not support UNC path names (that is, Network Neighbor-
hood path names) for network resources. To use a network resource, map the desired resource to a
drive letter.

Local Workstation Requirements

• Windows NT 4.0 – Windows NT 4.0 (Workstation or Server) or later is required to run ObjecTime
Developer 5.2. ObjecTime recommends that you use Windows 4.0 (Build 1381 - Service Pack 3).

• Pentium processor – A Pentium Pro or Pentium II processor is recommended for improved perfor-
mance.

• 64 MB main memory minimum – For large models or build operations, 128 MB or greater is rec-
ommended for improved performance.

• Toolset Memory Requirements – “Toolset Memory Requirements” on page 89 describes the mem-
ory requirements for models.

• 12 MB disk space per working directory minimum – Each user may have one or more Developer
5.2 working directories which contain the user’s session file. Developer session files are initially 12
MB and will increase in size with use. (Code generation, compilation, passivation, and so on will
add to the space required.)

• 256 color graphics adapter – A high resolution graphics adapter with support for more than 256
colors is recommended.

Installing Netscape Navigator
Online help and documentation for Developer 5.2 is provided in HTML format. In order for the help
system to function correctly, Netscape Navigator, or alternatively Microsoft’s Internet Explorer, must be
installed on the user’s system. If Navigator 4.04, or Explorer 4.0, is already installed on your system,
this step may be skipped.

Note: Netscape Navigator is provided with the release as part of the on-line help system. You are
licensed to install one copy of Navigator 4.04 per licensed copy of ObjecTime Developer 5.2. Please
refer to the Netscape license agreement for terms and conditions.

The following procedure describes how to install Netscape Navigator 4.04 for Windows NT.

1 If necessary, load the ObjecTime Developer 5.2 CD into the CD-ROM drive.

Note: If the system is configured with the autorun feature enabled, the ObjecTime Developer 5.2
Setup program will run automatically. Click “Cancel” to exit Setup.

16 Getting Started with Windows NT Getting Started Guide

2 Locate the Netscape Navigator Setup program

Netscape Navigator software is provided on the ObjecTime Developer 5.2 CD in the
Netscape\Windows\Setup\Win32 directory. Use the Windows Explorer to open a win-
dow displaying the contents of the Netscape folder. For example, double-click “My Computer”,
double-click the icon for the ObjecTime CD, and continue opening the “Netscape”, “Win” and
“32bit” folders by double-clicking the appropriate icons.

Note: If the system is configured with the autorun feature enabled, double-clicking the icon for the
ObjecTime CD will automatically run the ObjecTime Developer Setup. To display the contents of
the CD, right-click on the CD icon and select “Open.”

3 Read the Netscape Readme

Please refer to the Netscape Readme.txt file for installation notes and for any platform specific
installation instructions before proceeding with Setup. Double-click on the Readme.txt icon to
view the file. (Note that the .txt file name extension may not be visible.)

4 Run Netscape Navigator Setup

Double-click the Setup.exe icon to run Setup. (Note that the .exe file name extension may not be
visible.)

Configuring for use with Internet Explorer 4.0
The ObjecTime Help system is configured by default to use Netscape when opening the HTML help
pages. It is possible to configure ObjecTime to use any HTML browser which supports an appropriate
Application Programmer Integration (API). In particular, it is possible to configure ObjecTime to use
Internet Explorer for the help system. It should be noted, however, that ObjecTime's use of anything
except Netscape is not fully supported by ObjecTime Limited. Although ObjecTime has tried to offer a
system flexible enough to support various browsers, problems or errors stemming from the use of other
browsers are outside the scope of ObjecTime Support.

ObjecTime's method to support other browsers makes use of a batch file which is passed parameters
indicating the path of the file to open and the tag to search for in the file. In order to use this script,
Netscape must be uninstalled from the machine which is running ObjecTime (this is necessary, because
ObjecTime first looks for Netscape on the host machine, and if there, will start it up. If it does not find
Netscape, ObjecTime will then run the ObjecTimeStartHelp batch file).

There are two methods for changing the help browser behavior in ObjecTime. One is to set the
OBJECTIME_VIEWER environment variable to the executable name of the browser you wish to use,
and the other is to modify the batch file %OBJECTIME_HOME%/bin/winnt4/ObjecTimeStartHelp.bat
to use internet explorer.

Getting Started Guide Getting Started with Windows NT 17

Example 1:

Set the OBJECTIME_VIEWER environment variable to ‘iexplore’ in the ‘System Properties’ window
under the 'Environment' tab.

Example 2:

Modify the ObjecTimeStartHelp.bat batch file by changing ‘netscape’ to read ‘iexplore’.

Installing ObjecTime Developer 5.2

18 Getting Started with Windows NT Getting Started Guide

Installing ObjecTime Developer 5.2
A wizard-style setup program is provided to facilitate installing ObjecTime Developer 5.2 on Windows
NT. The setup program can perform two types of procedures:

• “User Setup” will configure a user’s workstation to run Developer from an existing central network
installation of ObjecTime Developer. See “Setting Up a User Workstation” on page 26 for details.

• “ObjecTime Install” will install the Developer files to either a local workstation disk or a shared net-
work disk, and will configure the local workstation so that it is ready to run ObjecTime Developer.
This procedure should be used to create either a stand-alone workstation installation, or a central net-
work installation on a shared NTFS disk. This procedure is described below.

1 Load the ObjecTime Developer 5.2 CD into the CD-ROM drive

Note: If the system is configured with the autorun feature enabled, the setup program will run auto-
matically and you may continue with step 3.

2 Run Setup

Use the Windows Explorer to open a window displaying the contents of the CD-ROM drive. For ex-
ample, double-click “My Computer” and then double-click the icon for the ObjecTime CD. Double-
click the Setup.exe icon to run Setup. Note that the .exe file name extension may not be visible.

If Nestcape Navigator is not installed on your system prior to installation, the following warning
message will be displayed during the installation, at which point you can either abort the installation
and install Netscape, or continue with the ObjecTime installation and install Navigator 4.04 or In-
ternet Explorer 4.0 after the ObjecTime installation has been completed.:

Installing ObjecTime Developer 5.2

Getting Started Guide Getting Started with Windows NT 19

3 Identification Information

You must accept the license agreement to proceed. If you do not agree with the terms of the license
agreement, the installation should be aborted and all software and documentation should be returned
to ObjecTime Limited. if you accept the terms and conditions of the license agreement, you must
identify yourself and the company you represent.

4 Select “ObjecTime Install”

After reviewing the license agreement and entering identification information, you will be prompted
with the “Setup Type” dialog. Select “ObjecTime Install.”

Installing ObjecTime Developer 5.2

20 Getting Started with Windows NT Getting Started Guide

5 Enter Installation Keys

Locate the Installation Key letter which you had received with your ObjecTime software media ship-
ment. You will be required to enter these keys to install the appropriate ObjecTime software pack-
ages.

6 Select the Set-Up Type

The default set-up type of Typical should always be used unless you are working with ObjecTime
Support on installation or packaging issues.

Installing ObjecTime Developer 5.2

Getting Started Guide Getting Started with Windows NT 21

7 Product Package Confirmation

The product packages which will be installed are displayed and you must acknowledge these by
clicking on the Next button. These packages will match the products which were ordered through
ObjecTime as identified by your installation keys.

8 Select a Destination Directory

The destination directory is the file system location where the main Developer files are copied. The
default location is C:\ObjecTime\Developer5.2, where C: is the drive where Windows
NT is installed. ObjecTime recommends that you select the default installation location. If you
choose to change the installation location, refer to the limitations described in “File System Require-
ments” on page 14.

Installing ObjecTime Developer 5.2

22 Getting Started with Windows NT Getting Started Guide

9 Select a Program Folder

A program folder must be identified to which the ObjecTime icons are added. The default is Objec-
Time Developer 5.2.

10 Setup Options

After entering the Program Folder name you will be asked to select the initial product setup options.
These options are user-specific, and may be modified later by selecting the “Preferences” button
from the ObjecTime Developer Launcher. The following options are available:

License Manager: The location of the license manager must be specified in order for ObjecTime
Developer to run. The license manager may be installed on the local workstation, or the system can
be configured to use a license manager that is available on a remote network workstation. Only one
license manager needs to be installed on the network.

If you select to “Install the License Manager on the local workstation”, you must follow the proce-
dure described in the “License Manager Operations” chapter after completing the installation in or-
der to configure and start the license manager.

Note: If you choose to run the license manager locally, set the TZ (Time Zone) variable. Install pre-
sents a warning if TZ is not set. See “Setting the Time Zone Variable on Windows NT” on page 55.

If you select to “Use a License Manager installed on a remote workstation”, you must specify the
network IP address or host name of the workstation on which the license manager is installed.

E-mail for Exceptions File: If the toolset encounters a problem and an exception is generated, an
exception file is created and mailed to the e-mail address specified. The default address is “excep-
tions@ObjecTime.com.” If the address is blank, the exception file will not be sent out. This e-mail
address is also used when mailing comments to ObjecTime support. It is recommended that excep-
tions be sent to the default address unless you have an internal support group that assists with such
problems.

Installing ObjecTime Developer 5.2

Getting Started Guide Getting Started with Windows NT 23

External Editor: ObjecTime Developer supports the use of a user-specified text editor for editing
detailed source code in the toolset. Use this option to specify the full path of the editor executable.

11 Confirm Set-Up

You will be asked to confirm the installation parameters at which point the installation process will
begin.

Review the setup options carefully and click “Back” to make any modifications. Click “Next” to be-
gin the installation.

Installing ObjecTime Developer 5.2

24 Getting Started with Windows NT Getting Started Guide

After installation is completed, you will be prompted to read the Readme file, which contains last
minute additions to the release notes. Review the Readme file by clicking on the “Yes” button.

12 Restart System

It is strongly recommended that you restart the system to complete the installation.

Installing ObjecTime Developer 5.2

Getting Started Guide Getting Started with Windows NT 25

Uninstalling Developer 5.2

ObjecTime Developer 5.2 may be uninstalled by selecting the “Uninstall ObjecTime Developer 5.2”
icon from the “ObjecTime Developer 5.2” folder created by the setup program.

If the Uninstall icon is not present, open the “Control Panel,” double-click on “Add/Remove Programs,”
select “ObjecTime Developer 5.2” from the list of applications, and click “Add/Remove” to uninstall
ObjecTime Developer.

The uninstall utility does not remove ObjecTime fonts that are installed by Setup. To manually remove
ObjecTime fonts, open the “Control Panel,” open the “Fonts” folder, and delete the ObjecTime fonts
(otl10b, otl10i, otl10r, otl10s, otl10t.)

If the license manager is running locally on the system, the uninstall procedure does not remove the
License Manager service from the system. The license manager can be disabled by the user through the
Elan L M applet of the system control panel.

To remove the license manager manually, remove the files objectime_elmd.exe and objectime_elmd.cpl
which are the license manager executables and control panel respectfully. These files are located in
C:\winnt\system32.

Note: On systems where ObjecTime Developer has been installed incrementally, the uninstall utility
may fail to completely remove all the files that were installed. To remove the remaining files, delete
the ObjecTime Developer 5.2 installation directory manually.

Installing ObjecTime Developer 5.2

26 Getting Started with Windows NT Getting Started Guide

Setting Up a User Workstation

The following procedure describes how to set up a user workstation so that it can run ObjecTime Devel-
oper 5.2 from an existing network installation. If you are installing a stand-alone workstation, this pro-
cedure is not required. For more information on network installations, see “Network vs. Local
Installation” on page 13.

To complete this procedure, ObjecTime Developer must already be installed on another workstation or
server at a location that is accessible over the network. The ObjecTime Developer installation may
either be on a NTFS disk on a remote Windows NT workstation, or it may be on a NFS disk on a remote
Unix workstation. If you intend on using ObjecTime Developer over an NFS disk, you must have the
appropriate NFS software installed and properly configured on the local workstation. See “File System
Requirements” on page 14 for more information.

Note: The network location where the central ObjecTime Developer installation resides must be
mapped to a drive letter before proceeding with a “User Setup.” For NFS installation, it is recom-
mended that the Developer5.2 directory containing the ObjecTime Developer files be mapped
directly to a drive letter. For example, map \\server\appl\Objec-
Time\Developer5.2 to the drive letter D:.

To map a network drive, right-click on “My Computer” and select “Map Network Drive.” Select an
unused drive letter to map, browse to the desired network path, and click “OK.” Refer to the Windows
NT documentation for more information on mapping network resources.

The following steps for setting up a user workstation as a client of a network server is similar to the
steps involved in an “ObjecTime Install.” However, the only files that are installed on the local worksta-
tion with this type of setup are the ObjecTime font files.

1 Run Setup

Use the Windows Explorer to open a window displaying the contents of the NTSetup subdirectory
of the central ObjecTime Developer installation. For example, if the central ObjecTime Developer
installation is located at D:\, double-click “My Computer”, double-click the icon for disk D:, and
then double-click the NTSetup folder. Double-click the Setup.exe icon to run Setup. Note
that the .exe file name extension may not be visible.

Note: You can also perform a “User Setup” by running ObjecTime Developer Setup from the De-
veloper 5.2 CD, but you will need to manually specify the network location of the ObjecTime Home
directory in step 3 below.

Installing ObjecTime Developer 5.2

Getting Started Guide Getting Started with Windows NT 27

2 Select “User Setup”

After reviewing the license agreement and entering identification information (see items 1 through
3 in the Standard ObjecTime Install), you will be prompted with the “Setup Type” dialog. Select
“User Setup.”

3 Specify the ObjecTime Home Directory

The ObjecTime home directory is the location where the existing network installation of ObjecTime
Developer resides. For the above example, the ObjecTime home location is D:\.

4 Follow steps 9 through 12 as in the standard ObjecTime Install scenario.

Starting ObjecTime Developer 5.2 on Windows NT

28 Getting Started with Windows NT Getting Started Guide

Starting ObjecTime Developer 5.2 on Windows NT
Installing Developer 5.2 on a Windows NT workstation will create an “ObjecTime Developer 5.2”
folder containing several shortcut icons.

This folder is added to the “Programs” entry of the system’s “Start” menu and the following icons are
created:

• ObjecTime Developer starts the ObjecTime Launcher program. The Launcher is used to create
working directories, configure start-up options, and to start the ObjecTime Developer toolset with a
specific working directory. For details, see “Using the ObjecTime Developer Launcher” below.

• ObjecTime Developer Command Prompt starts a Windows NT command prompt window con-
figured with the required environment variables for running the ObjecTime Developer command
line utilities. All Developer utilities including license manager scripts and Target Services Library
build operations should be executed from this window. Refer to the chapter on “License Manager
Operations” for further details on the License Manager utilities.

• Readme displays release notes containing important up-to-date information not included in the
printed documentation.

• Online Documentation displays the on-line version of the printed documentation.

• Uninstall ObjecTime Developer 5.2 will uninstall Developer from the workstation. See “Uninstall-
ing Developer 5.2” on page 25.

Note: You can start an ObjecTime Developer toolset session for a specific working directory by dou-
ble-clicking on the ObjecTime5.2.otd session file located in the working directory.

Starting ObjecTime Developer 5.2 on Windows NT

Getting Started Guide Getting Started with Windows NT 29

Using the ObjecTime Developer Launcher

ObjecTime Developer sessions are saved in “working directories.” Working directories contain the
Developer 5.2 session file (ObjecTime5.2.otd) plus any other files that are generated while you
use the toolset. For example, when you use the toolset to generate source code and build executables for
your models, the session’s working directory is the default location where the generated files will be
saved.

Although it is possible for a user to have just one working directory, it is usually more convenient to use
more than one. For example, you may choose to have a separate working directory for each project that
you are working on.

The ObjecTime Developer Launcher provides an interface for creating new working directories and for
configuring and starting toolset sessions.

• Working Directories: This list box provides access to the most recently used working directories.
To start the Developer toolset, select a working directory from the list and click “Open.” If you ha-
ven’t used Developer before, this list will be empty.

• New: This button allows you to create new working directories. A dialog appears where you can
specify the location for the new directory. Enter the full path name for the new directory and click
“Create” to create it. When finished, the new directory name will be added to the Working Directo-
ries list.

Note: The file name limitations described on page 14 also apply to Developer 5.2 working directo-
ries.

• Browse: This button allows you to add an existing Developer 5.2 working directory to the Working
Directories list.

Starting ObjecTime Developer 5.2 on Windows NT

30 Getting Started with Windows NT Getting Started Guide

Note: You cannot specify an arbitrary existing directory as an ObjecTime Developer working direc-
tory. The directory specified must contain a valid Developer session file
(ObjecTime5.2.otd).

Startup Options

The launcher allows you to specify a number of startup options when starting a toolset session.

• Capture Output to Window: If selected, console output from the Developer toolset is displayed in
a window. This option is selected by default. Either “Capture Output to Window” or “Capture Output
to File” must be selected.

• Capture Output to File: If selected with a valid file name specified, console output from the De-
veloper toolset will be saved in the specified file.

• Enable Batch Mode: If selected, the launcher will start the toolset in batch mode. Specify the file
containing the batch mode commands. Refer to the User Guide for further information on Batch
Mode.

• Enable Target Observability: If selected, the launcher will start a RTS controller before loading
the toolset session. The toolset will automatically be connected to the running RTS controller to en-
able the target observability feature. When the toolset session ends, the RTS controller is automati-
cally stopped. Refer to the ObjecTime Developer User Guide for further information on target
observability.

Command Line Parameters

The ObjecTime Developer Launcher executable is called ObjecTime5.2.exe, and is located in
the bin\winnt4 subdirectory of the ObjecTime home directory. The default location is:

C:\ObjecTime\Developer5.2\bin\winnt4\ObjecTime5.2.exe

where C: is the drive where Windows NT is installed.

The launcher can be started from the ObjecTime Developer Command Prompt, or from a shortcut icon,
with the following command-line parameters. These parameters can be useful for automating batch
mode sessions or for setting up shortcut icons with frequently used startup options.

• <workingDir>\ObjecTime5.2.otd allows you to specify a working directory to auto-
matically load. If a valid working directory is provided, the launcher interface will not appear but
will immediately start the toolset with the session file in the specified working directory.

• -verbose is equivalent to selecting the “Capture Output to Window” option.

• -verbose=<filename> is equivalent to selecting the “Capture Output to File” option.

• -file=<filename> is equivalent to selecting the “Enable Batch Mode” option.

• -control is equivalent to selecting the “Enable Target Observability” option.

• -console is equivalent to starting an “ObjecTime Developer Command Prompt.”

Starting ObjecTime Developer 5.2 on Windows NT

Getting Started Guide Getting Started with Windows NT 31

Specifying Additional Environment Variables

The Windows NT Developer toolset recognizes the same environment variables as the Unix toolset.
You can use.bat files to specify the desired environment variables, and then automatically start the
toolset session by invoking the Launcher with the appropriate parameters. Example:

set USER_MAKE_FLAGS= -j4
ObjecTime5.2.exe C:\OT52\ObjecTime5.2.otd -control

Running a batch file containing the above commands from an ObjecTime Developer Command Prompt
will automatically start a toolset session with the C:\OT52\ObjecTime5.2.otd session file,
Target Observability enabled, and with the compile environment variable USER_MAKE_FLAGS set
to -j4.

Starting ObjecTime Developer 5.2 on Windows NT

32 Getting Started with Windows NT Getting Started Guide

Chapter 4

Getting Started Guide Getting Started with Unix 33

4 Getting Started with Unix

The procedure for installing ObjecTime Developer 5.2 in Unix is described in the following section.
Note that unless specified otherwise, your system administrator will generally carry out the following
steps.

For environments where there is more than one user of ObjecTime Developer 5.2, we strongly recom-
mend that the main ObjecTime Developer 5.2 files be installed on a centralized file server.

The main steps involved in getting started with UNIX are described in the following sections:

• Installing Netscape Navigator (“Installing Netscape Navigator” on page 35) covers how to set up
Netscape Navigator for viewing the on-line help and documentation. If Navigator is already installed
on your system, this step can be skipped.

• Installing ObjecTime Developer 5.2 (“Installing ObjecTime Developer 5.2” on page 37) covers
how to install ObjecTime Developer 5.2 software on a Unix workstation or server.

• Setting up a User Workstation (“Setting Up a User Workstation” on page 39) describes how to set
up a Unix workstation from an existing ObjecTime Developer installation on a central network file
server. This step is not required if you are installing ObjecTime Developer 5.2 on the local worksta-
tion.

• Starting ObjecTime Developer 5.2 (“Starting ObjecTime Developer 5.2” on page 42) describes
how to start the Developer 5.2 toolset.

Network vs. Local Installation
Two scenarios are available when installing ObjecTime Developer 5.2 on Unix. You can install Objec-
Time Developer on a local workstation disk, or you can install ObjecTime Developer on a central net-
work file server.

Each scenario has advantages: Network installations can be shared between multiple users at a single
site, reducing the amount of local disk space required on each workstation, centralizing administration
and maintenance, and reducing the effort required to upgrade multiple users. On the other hand, local
installation can provide a significant performance advantage, especially with slower network configura-
tions.

34 Getting Started with Unix Getting Started Guide

During the setup process you will be asked to select a destination directory for the Developer files. To
create a local stand-alone workstation installation, select a destination directory on a local disk.

To create a shared network installation, select a destination directory on a shared network disk. After
installing the Developer files on the network disk, run Setup from each network workstation and per-
form a “User Setup,” as described in “Setting Up a User Workstation” on page 39.

Supported Network Configurations

Pure Unix Installation

ObjecTime Developer 5.2 either running locally on a Unix workstation, or using a Unix file server
under the following configuration conditions:

• File system must be NFS.

• Network must use TCP/IP.

Mixed Unix and WindowsNT Installation

ObjecTime Developer 5.2 can run on a Windows NT workstation connected to a Unix file server under
the following configuration conditions:

• Network File system must be NFS.

• Local file system must be NTFS. FAT is not supported.

• Supported NFS clients are Chameleon and Hummingbird. Make sure to install the clients properly:

• Support for mixed case file names must be enabled.

• Consult the NFS client documentation regarding soft links. Some implementations can’t handle
these very well.

• The path to the Setup program must conform to the 8.3 DOS file naming convention, and the path
can not be longer than 63 characters including drive letter and the name of the Setup program.

Installation Requirements
• CD-ROM drive – A CD-ROM drive is required to install Developer 5.2 from CD. If a CD-ROM

drive is unavailable, copy the contents of the disk to a network file server, map the network disk to
a Unix file system, and perform the installation from the network location.

• Administrators Group Membership – system administrator (root or super-user) privileges are re-
quired.

• 50 MB to 170 MB free disk space – A minimum ObjecTime Install requires 50 MB of free disk
space, and a full installation requires 170 MB (which would include support for the complete set of
ObjecTime toolset platforms).

Local Workstation Requirements

• 64 MB main memory minimum – For large models or build operations, 128 MB or greater is rec-
ommended for improved performance.

Getting Started Guide Getting Started with Unix 35

• Toolset Memory Requirements – “Toolset Memory Requirements” on page 89 describes the mem-
ory requirements for models.

• 12 MB disk space per working directory minimum – Each user may have one or more Developer
5.2 working directories which contain the user’s session file. Developer session files are initially 12
MB and will increase in size with use.

• 256 color graphics adapter – A high resolution graphics adapter with support for at least 256 colors
is recommended.

Installing Netscape Navigator

Online help and documentation for Developer 5.2 is provided in HTML format. In order for the help
system to function correctly, Netscape Navigator 4.04 must be installed on the user’s system. The
required software is included on the Developer 5.2 CD in the Netscape subdirectory.

Note: Netscape Navigator is provided with the release as part of the online help system. You are li-
censed to install one copy of Navigator 4.04 per licensed copy of ObjecTime Developer 5.2. Please
refer to the Netscape license agreement for the terms and conditions.

Unix versions of Netscape Navigator 4.04 are located in the netscape/unix directory of the Devel-
oper 5.2 CD. Separate subdirectories contain versions specific to each toolset platform.

• hpux_10 contains binaries for HPUX 10.20

• irix_62 contains binaries for IRIX 6.2

• sunos413 contains binaries for SunOS 4.1.3

• sunos_551 contains binaries for Solaris 2.5 and higher

• aix_4 contains binaries for AIX 4.2.1

Consult the file netscape/unix/_readme.txt included on the Developer 5.2 CD prior to installing
Netscape Navigator.

1 Create a directory where Netscape Navigator will be installed.

mkdir /appl/netscape
2 Change directory to the created directory.

chdir /appl/netscape
3 Unpack the Netscape tar file for your toolset platform from the Developer 5.2 CD. Note: The file-

system location where CD-ROM devices are mounted and the case of filenames on the CD-ROM
are dependent upon the version of Unix being used. The following commands may require modifi-
cation to work on your system.

Solaris: In this example, the Developer 5.2 CD is mounted at /cdrom/objectime. Solaris usually
makes filenames lowercase on CD-ROM devices.

tar -xvf /cdrom/objectime/netscape/unix/sunos_551/sparc/netscape.tar

HP-UX: In this example, the Developer 5.2 CD is mounted at /cdrom. HP-UX usually makes file-
names uppercase, and appends each filename with ‘;1’. Note that the quotes around the filename
are required.

36 Getting Started with Unix Getting Started Guide

tar xvf ’/cdrom/NETSCAPE/UNIX/HPUX_10/NETSCAPE.TAR;1’
4 Review the Netscape README.install file for any platform specific installation instructions.

5 Add the installed Netscape executable to your path. This should be added to your shell initialization
file so that Netscape is available every time you log on.

C shell: setenv PATH /appl/netscape:$PATH

Installing ObjecTime Developer 5.2

Getting Started Guide Getting Started with Unix 37

Installing ObjecTime Developer 5.2
1 Place the Developer 5.2 CD in the CD-ROM drive.

2 Mount the CD-ROM device.

You are usually required to be a system administrator (root or super-user) to be able to do this. See
the instructions for your particular CD-ROM drive and operating system for details.

AIX: mount /CDROM

(or put entry for /CDROM in /etc/filesystems)

HP-UX: mount -rt cdfs /dev/dsk/c201d5l1 /cdrom

IRIX: mount /CDROM

(or put entry for /CDROM in /etc/fstab)

Solaris: mount -rF hsfs /dev/sr1 /cdrom

SunOS: mount -rt hsfs /dev/sr1 /cdrom

where /dev/sr1 is the CD-ROM device.

3 From a shell window, change directory to the mounted CD-ROM device.

For example:

cd /cdrom

4 Run the setup script.

./setup.sh

On HP-UX, it may be necessary to use the following command (including the quotes):

sh’ ./SETUP.SH;1’

5 Enter an Installation Key.

Locate the Installation Key letter which you had received with your ObjecTime software media ship-
ment. You will be required to enter these keys to install the appropriate ObjecTime software pack-
ages.

“Enter an installation key:” enter-urkey-frmth-shpng-envlp<ENTER>
“Welcome to the ObjecTime 5.2 Setup program.
You can abort the installation by responding Q<ENTER> to any question.
Please read the following License Agreement. It will be displayed using
the program ‘more’, since your environment variable PAGER is not set.
Press <ENTER> to Continue:” <ENTER>
6 Review and accept the term of the license agreement.

The license agreement will be displayed and you will be prompted to accept or reject the license
agreement. You must accept it to continue:

“ Enter Y<ENTER> to Accept, R<ENTER> to Read again, or Q<ENTER> to
Quit:” Y<ENTER>
7 Specify the installation type.

The default set-up type of Typical should always be used unless you are working with ObjecTime
Support on installation or packaging issues.

Installing ObjecTime Developer 5.2

38 Getting Started with Unix Getting Started Guide

“Press T<ENTER> for Typicall Installation ,

or C<ENTER> for Custom Installation:” T<ENTER>

8 Specify the platforms to be supported by the ObjecTime installation.

Select all platforms to be supported by this installation. The default is no and in the example, only
SUN5 was selected by typing “y<ENTER>” at the SUN5 prompt.

“Which platforms would you like to be supported?

HP10 Y/N [n]?

IRIX6 Y/N [n]?

SUN4 Y/N [n]?

SUN5 Y/N [n]? y<ENTER>

NT4 Y/N [n]?

AIX4 Y/N [n]?

Platforms to be supported:

SUN5”

9 Specify the installation directory.

The script will prompt you for a directory into which it will copy the Developer 5.2 files. The direc-
tory name must be specified as an absolute path name. A Developer5.2 sub-directory will be created
in the directory that you specify. You must have write permissions for the installation directory. If
the directory does not exist, you will be asked if you would like to create it.

“Enter absolute installation directory path:”

/testing<ENTER>

10 Confirm the ObjecTime Developer 5.2 Packages to Install.

You will be asked to confirm the packages and installation directory.

The following 6 packages are selected for installation in the

directory ‘/testing’:

(I: Package already installed if ‘Y’)

Package description Size in KB I

==

ObjecTime Platform Independent Code 14804 N

SimulationRTS Common Code 1179 N

Solaris SimulationRTS libraries 2927 N

Generic On-line Documentation and HELP 18968 N

C++ On-line Documentation and HELP 2514 N

Solaris Toolset Libraries 5612 N

==

Selected size: 46004 kB

Free disk space: 1218000 kB

Type M<ENTER> to Modify installation directory path, or

Installing ObjecTime Developer 5.2

Getting Started Guide Getting Started with Unix 39

Y<ENTER> to Begin installing the selected packages:” Y<ENTER>

Uninstalling ObjecTime Developer 5.2

To uninstall ObjecTime Developer use the following procedure:

1 Remove the installation directory and all of its contents.

2 Save any user data files in another location before removing the installation directory.

3 If you are upgrading to ObjecTime Developer 5.2, be sure to follow the procedure described in
“Starting ObjecTime Developer 5.2” on page 42 before removing the previous version of Objec-
Time Developer.

Setting Up a User Workstation

Environment Variables

ObjecTime Developer requires a number of environment variables to be set. Set the environment vari-
able $OBJECTIME_HOME to the new ObjecTime5.2 instal lation directory. Also, set the
$OBJECTIME_LICENSE_SERVER variable to the name of the workstation running the ObjecTime
license manager. Add $OBJECTIME_HOME/bin to your path.

These lines can be added to your shell initialization file, so that they are available every time you log on.

Bourne shell (sh or ksh):

OBJECTIME_HOME=/disk/apps/ObjecTime/Developer5.2
export OBJECTIME_HOME
OBJECTIME_LICENSE_SERVER=machine1
export OBJECTIME_LICENSE_SERVER
PATH=$PATH:$OBJECTIME_HOME/bin
export PATH

C shell (csh):

setenv OBJECTIME_HOME /disk/apps/ObjecTime/Developer5.2
setenv OBJECTIME_LICENSE_SERVER machine1
set path=($path $OBJECTIME_HOME/bin)

Either logout and then login again, or perform the rest of the upgrade from a new command shell.

Fonts

Note: You should contact your system administrator to determine how to configure the font set-up
on your system.

Set the X-windows Font path to point to the new $OBJECTIME_HOME. The following command
should be added to the X11 start-up script (usually .xinitrc, .x11start or .openwin-init):

xset +fp $OBJECTIME_HOME/fonts/<machine-type>

Installing ObjecTime Developer 5.2

40 Getting Started with Unix Getting Started Guide

where <machine-type> is the type of workstation you are executing on (or if executing ObjecTime
remotely through another workstation, the type of that workstation). Examples: sun4, sun5, hp, ncd (for
NCD X-terminals), ibm.

Note: The ObjecTime fonts will not be set properly, if the user is on an X-Terminal which obtains
its boot files from a file server which does not have access to the $OBJECTIME_HOME/fonts di-
rectory. In this case the fonts should be copied to the file server from which the X-Terminal obtains
its boot files.

You may need to add the OT fonts path with:

xset +fp /disk6/Release5.2/Developer5.2/fonts/sun

xset fp rehash

Fonts are universal resources and these commands can be typed in any shell on your machine.

Additional Settings

ObjecTime can also be run in batch mode. Please consult the chapter on Batch Mode ObjecTime in the
ObjecTime User Guide for further details on this.

Optional settings

The following optional configuration settings may also be made:

For users that wish to use an external editor to edit their RPL, C or C++ code segments, the environment
variable OBJECTIME_EDITOR must be set to an appropriate window system command to start up the
editor.

For example under OpenWindows you could set it as follows to start up an emacs editor:

setenv OBJECTIME_EDITOR "shelltool emacs"

Or to start up vi under the X Window System, use the following for SunOS:

setenv OBJECTIME_EDITOR "xterm -e /usr/ucb/vi"

Or for Solaris, HP or IBM use:

setenv OBJECTIME_EDITOR "xterm -e /usr/bin/vi"

The user may also wish to select a default printer at this time. The environment variables PRINTER (for
a Sun), and LPDEST (for an HP) will be used by ObjecTime when printing. For example, if the desired
printer is ps3 then the following line could be added to the ~/.cshrc file (assuming csh):

setenv PRINTER ps3 (for SUN)

Installing ObjecTime Developer 5.2

Getting Started Guide Getting Started with Unix 41

setenv LPDEST ps3 (for HP)

If you are using a color terminal, you may wish to have the FrameMaker documentation output produce
color graphics. To enable this, add the following two lines to your .xrdb file:

maker.colorDocs: True

maker.colorImages: True

You will then want to reinitialize your X Window System resources as follows:

xrdb -load .xrdb

If you are running ObjecTime from an NCD X-Terminal, then you may wish to add the following key
mapping changes in your X Window System start-up file in order to use the alt key.

xmodmap -e “keysym Alt_L = Meta_L Alt_L”

xmodmap -e “keysym Alt_R = Meta_L Alt_R”

When using HPView on X-Terminals, you must change the keyboard focus policy to provide automatic
window focus where the cursor is; otherwise you will not be able to type into textpanes within Objec-
Time.

Note: You will have to add the two xmodmap functions relating to Alt_L and Alt_R to your XWin-
dow start-up file in addition to those specifically referring to HPView.

For the HP7XX series workstation, in order for the short-cut keys to work, the following xmodmap
changes must be made:

xmodmap -e “remove mod1 = Mode_switch”

In order to use the shift-Tab to allow the user to go to a previous node in the RPL editor, execute the fol-
lowing xmodmap command:

xmodmap -e “keycode 63 = Tab”

The user environment variable OBJECTIME_LICENSE_HOLDTIME can be set to the number of sec-
onds for a toolset license, that has just been relinquished by a user, to be reserved by the License Man-
ager for that user. The default hold time is 300 seconds. For more details see “License Manager
Operations” on page 47.

Starting ObjecTime Developer 5.2

42 Getting Started with Unix Getting Started Guide

Starting ObjecTime Developer 5.2
These operations are normally carried out requiring that you use your userid.

Create a new working directory for ObjecTime5.2:

create_objectime_dir <new-dir-name>

where <new-dir-name> is the name of the new local ObjecTime directory to be created. The new
release level of ObjecTime is now ready to run.

Change the current directory to the new ObjecTime directory. Start up ObjecTime by typing the follow-
ing:

1 cd <new_dir_name>

2 objectime&.

Activate the previous designs, if any, by dragging your updates from the appropriate Directory Browser
to the Workspace Browser.

After activating all pre-5.2 designs, each user should passivate them again, so that they are saved in 5.2
format. This should be to another directory, so that the original updates are not lost.

If no problems occur, you may delete the older ObjecTime user directory after a suitable period of time
(and, if applicable, the directory containing the old (5.0 & 5.1/5.1.1) updates).

Delete the main directory for the previous release once all users are up and running successfully with
the new release.

Startup Options

The ObjecTime script may take a number of different options.

Either of the following two options can be used to change the display variable

• DISPLAY=<displayName>

• -display <displayName>

The following three invokations are equivalent:

1) objectime -display xterm1:0

2) objectime DISPLAY=xterm1:0

3) setenv DISPLAY xterm1:0 ; objectime

The following options control how "verbose" the objectime script is:

Starting ObjecTime Developer 5.2

Getting Started Guide Getting Started with Unix 43

• -q

• -quiet

• -v

• -verbose

The final command line option is:

• -control

This option controls whether or not the Target Observability controller is started automatically.

objectime -control (start controller automatically)

objectime (do not start controller)

Starting ObjecTime Developer 5.2

44 Getting Started with Unix Getting Started Guide

Chapter 5

Getting Started Guide Supported Platforms 45

5 Supported Platforms

The following table shows the supported platforms for ObjecTime Developer 5.2.

5.2 Host Platforms

Toolset Host Simulation Services Library Name

AIX 4.2.1 (PowerPC) AIX4.ppc-CSet-3.1.4

AIX4.ppc-gnu-2.8.1a

a. Do not use the 02 (or higher) optimization setting.

HPUX 10.20 HPUX10.hppa-gnu-2.8.1

HPUX10.hppa-HPC++-10.11

IRIX 6.2 IRIX6.r4400-gnu-2.8.1

IRIX6.r4400-ProDev-7.2

Solaris 2.5.1
Solaris 2.6 SUN5.sparc-gnu-2.8.1

SUN5.sparc-SunC++-4.0.1

SUN5.sparc-SunC++-4.1

SUN5.sparc-SunC++-4.2

SUN5.sparc-Green-1.8.8

Sun OS 4.1.3 SUN4.sparc-gnu-2.8.1

SUN4.sparc-SunC++-4.0.1

SUN4.sparc-Green-1.8.8

WindowsNT 4.0 NT40.x86-VisualC++-4.2

NT40.x86-VisualC++-5.0

46 Supported Platforms Getting Started Guide

Platforms No Longer Supported in Objectime Developer 5.2

The following are host platforms or compilers that were supported in ObjecTime Developer 5.1.1, but are no
longer supported with ObjecTime Developer 5.2.

Toolset Host Simulation Services Library Name

HPUX 9.0.7 HPUX09.hppa-gnu-2.7.1

HPUX09.hppa-HPC++-3.76

HPUX 10.2 HPUX10.hppa-gnu-2.7.1

IRIX 5.3 IRIX5.r4400-gnu-2.7.1

IRIX5.r4400-SGC++-3.2

Solaris 2.5 SUN5S.sparc.gnu-2.7.1

SUN5S.sparc.gnu-2.7.2.3

SunOS 4.1.3 SUN4S.sparc.gnu-2.7.1

Chapter 6

Getting Started Guide License Manager Operations 47

6 License Manager Operations

Licensing Changes
On startup the toolset will acquire licenses for the toolset and for all available code generators, unless
they are suppressed by setting the appropriate environment variables. The code generator licenses will
be shared with the code generator when it is invoked from the toolset.

The new licenses used by 5.2 are:

• 9004 Total number of 5.2 toolset sessions. One license is allocated for each active toolset.

• 9030 Total code generation licenses

• 9031 C++ code generation licenses.

• 9032 C code generation licenses

• 9033 Simulation code generation licenses. This enables code generation for the SimRTS for both the
C++ and C versions of the product.

 License Acquisition Suppression

Whenever started, all variants of ObjecTime Developer (Basic, C, or C++) acquire a license token for
each available variant for which the license manager has licenses. It is important to know this in instal-
lations where many variants of the tool is installed, using the same license manager.

For example, if you have three licenses for ObjecTime Developer 5.2 (OTD Base) and seven for Objec-
Time Developer 5.2 for C++ (OTD C++), for a total of 10 simultaneous users. The first seven users to
log on will get tokens for the C++ code generation, whether they are using OTD C++ or OTD Base. If
the three OTD Base users get their tokens first, only four of the OTD C++ users will be allowed to gen-
erate code. Also note that even though the OTD Base users have a C++ code generation token, they will
also not be able to generate code as the necessary libraries were not installed on their system.

There are two solutions to this situation: Using the license manager functionality to restrict the users
able to get tokens, or setting environment variable for the users/workstation to limit the tokens acquired.

Licensing Changes

48 License Manager Operations Getting Started Guide

Using the License Manager

The first method is to use the capabilities of the License Manager to restrict the users/workstation
allowed to acquire certain license tokens. This is done by creating or modifying the License Manager’s
resource file to include lines such as:

Reserve C++ licenses (9031) for the group

9031:cppusers:user1,user2,user3,user4,user5,user6,user7:7:30

or:

Exclude group from using C (9032) licenses

9032:basicusers:usera,userb,userc:EXCLUDE:0

Refer to the “License Manager Operation” appendix of the User Guide for more information regarding
this capability.

Environment Variables

Code generation license acquisition can be suppressed by setting user environment variables to indicate
that licenses of a certain type not be acquired.

To suppress the license acquisition, set the following environment variables to 0 before starting Objec-
Time:

• 9031 C++ code generation: OBJECTIME_CPP_GENERATION

• 9032 C code generation: OBJECTIME_C_GENERATION

ObjecTime Developer Licensing

Getting Started Guide License Manager Operations 49

ObjecTime Developer Licensing
The license manager is used to control access to ObjecTime Developer. In release5.2, the ObjecTime
License Manager controls access to the toolset for Unix and Windows NT hosts. The License Manager
can be run on either Unix or Windows NT machines.

Note: If you install ObjecTime in a stand-alone configuration, you can install the License Manager
to execute on the same workstation as ObjecTime.

Licensing is managed by a License Manager program which is generally run on some centrally accessi-
ble file server. If you install ObjecTime in a stand-alone configuration, you can install the License Man-
ager to execute on the same workstation as ObjecTime. In addition to having the license manager
service clients on a network, the license manager can also be used to provide licenses to clients remotely
connected using dialup networking. All that is required, in terms of obtaining a license for ObjecTime
Developer, is that the machine hosting the license manager is accessible, and identified as the license
server, to the machine running the toolset. TCP/IP networking is required to communicate with the
license server.

ObjecTime Licenses

The License Manager is responsible for issuing tokens for the various products and their associated fea-
tures that a customer may have purchased. In order to use a particular product and its feature(s), the exe-
cuting product must obtain the appropriate feature token (see the table below for a list of valid feature
tokens). Hence the License Manager must be running for you to initiate any product feature. The Objec-
Time 5.2 License Manager can support ObjecTime 4.4, 5.0, 5.1, and 5.1.1, and 5.2 licenses simulta-
neously. The 4.4, 5.0, 5.1, 5.1.1, and 5.2 licenses are managed as a common pool with the maximum
number of tokens available at any one time equal to the total number of licenses purchased.

Table 1 Toolset Feature Requirements

Feature (license) Toolset version

4.4 5.0 5.1 and 5.1.1 5.2

9000 (4.4 and total) X X X X

9001 or 9002 (Unix or NT) X (one of
9001 or 9002
but not both)

X (one of
9001 or 9002
but not both)

9003 (5.1) X

9004 (5.2 Toolset) X

9010 (C/C++ Modeling) X

9020 (5.0) X

License Registration

50 License Manager Operations Getting Started Guide

The above table shows the licensing requirements for various versions of the toolset. Different versions
of the toolset require different sets of licenses to run. On startup, the toolset attempts to obtain the
licenses necessary. The table indicates which licenses are required for each toolset version, with an X in
the cell selected by version and feature.

In the remainder of this section, the term product refers to the product/feature combination.

Only Floating Licenses are supported. A Floating License enables the product to be executed on any
workstation, within a networked workgroup, up to a maximum of N simultaneous usages, where N is the
number of Floating Licenses purchased. A single License Manager running on a centralized server can
manage Floating Licenses for the workgroup. If desired, the set of Floating licenses can be split among
multiple License Managers.

License Registration
To enable the execution of a product, ObjecTime Support will provide you with special encrypted keys.
To produce these keys, we require certain workstation information such as its machineid and IP
address.

License manager registration

To enable the License Manager program, Objectime Support requires the machineId and the IP address
of the file server or workstation upon which the License Manager program will be executing. Please
provide ObjecTime Support with this information by filling out the License Manager Registration Form
and sending it to us.

Obtaining the workstation machineId and IP address

A script utility has been provided which, in most cases, can provide the required machine ID and IP
address information.

9030 (Total Code Generation) X

9031 (5.2 C++ Code Generation) X

9032 (5.2 C Code Generation) X

9033 (5.2 SimRTS Code Generation) X

Notes
1 Compatibility with earlier versions of ObjecTime will be maintained. It will be possible

to start to use the 5.2 license manager and supporting scripts with toolset versions back
to 4.4.1.

2 Demo key support will carry over to the new license keys.

Feature (license) Toolset version

License Registration

Getting Started Guide License Manager Operations 51

To obtain this information, execute the following script in a command or shell-tool window:

$OBJECTIME_HOME/bin/ObjecTimeKeyInfo

This command returns information about the server machine on which you will run your license server.
The command is run from the server machine, taking no parameters, and returns the machine’s IP
address and machineId.

Command:

Unix: ObjecTimeKeyInfo

Windows NT: ObjecTimeKeyInfo

Note: On Windows NT, commands must be invoked from the ObjecTime Developer Command
Prompt. This is a console window started from the ObjecTime command group which has the en-
vironment variables set appropriately. Attempting to run the commands on a PC from a normal con-
sole window will cause the commands to fail.

Example:

ObjecTimeKeyInfo
host: machine
IP addr: 192.139.251.207
MACHINEID: c08bfbcf762a
Server target : NT
ObecTimeKey information written to file otinfo

The ObjecTimeKeyInfo command provides a file, otinfo, that you should email as an attach-
ment to ObjecTime support (support@ObjecTime.com) when requesting keys.

Note: Please include the following user information: your company name, project, and ObjecTime
prime. This will assist ObjecTime support in identifying and handling your key request quickly.

Note: On Windows NT, the MACHINEID is the Volume Serial Number of the first logical hard
disk on the PC. This will normally be C: and the ObjecTimeKeyInfo command will look for this
drive. If for some reason the first drive is not C:, then the Volume Serial Number for the first logical
disk must be obtained by using the DIR command and noting the Volume Serial Number of this
drive.

Note: When running the license server on Windows NT, the IP address that the license manager
locks to will be that of the installed network card. If dialup networking is subsequently invoked on
the server machine and a dynamic IP address generated, then the license manager may use this ad-
dress for host locking. If this IP address is different than the network card address used for key gen-
eration, then the license manager will report that the license keys are not valid for the current
machine and licensing will fail.

Note: Please note that the Unix script makes use of the /etc/hosts file which must be readable by the
user. If not, you may have to run the script as root. If the utility is unable to determine this informa-
tion, please consult your Unix administrator.

Invoking License Manager Executables

52 License Manager Operations Getting Started Guide

Invoking License Manager Executables
All the licensing commands are available on both Unix and Windows NT. The commands are identical
on both platforms with the exception that on Windows NT the starting and stopping of the license man-
ager is done from the ElanLM control panel. Also, on Windows NT the commands are case insensitive.
That is, capitalization is not significant when invoking them on Windows NT, but on Unix, incorrect
capitalization will result in the command not being found.

Note: Before you can invoke any ObjecTime License Manager executables you must set the follow-
ing environment variables:

• OBJECTIME_LICENSE_SERVER - Set to the host name of the machine where the License
Manager is to run.

• OBJECTIME_HOME - Set to the main installation directory of the ObjecTime release.

You must then ensure that $OBJECTIME_HOME/bin is also set in your PATH.

Note: On Windows NT, commands must be invoked from the ObjecTime Developer Command
Prompt. This is a console window started from the ObjecTime Developer command group which
has the environment variables set appropriately. Attempting to run the commands from a normal
console window will cause the commands to fail.

Installation of Encrypted Keys
Unix: activatekey [-f keyfile] [-k keydir] [-demo]

Windows NT: activatekey [-f keyfile] [-k keydir] [-demo]

Arguments:

• keyfile - the filename containing license keys. If the keyfile argument is absent then you
will be prompted for the key. If the keyfile is not in the current directory then the full absolute
path must be specified.

• keydir - the full path to the directory into which to write the license files. If the keydir
argument is absent then these will be written to $OBJECTIME_HOME/license.

• demo - this option is used when installing demo keys which are license keys that are not locked
to any particular machine. Demo keys are used for evaluation purposes and have an expiry date
associated with them. Specifying -demo tells the key activation routines that these are demo
keys and not to prompt for the license server IP address and machineid. If this option is specified
with non-demo keys, the keys will install but the license manager will not recognize them as
valid keys. Only specify -demo if you know that you are installing time-limited demo keys.

Note: If the command is to be run without specifying a keyfile, then it will have to be run twice, once
for each of the keys supplied by ObjecTime customer service.

Example: prompt> activatekey -f keyfile -k /directory/user/test
ObjecTime Key activation program.
Key input file:keyfile

Installation of Encrypted Keys

Getting Started Guide License Manager Operations 53

Enter IP address of the server (default 192.139.251.207):
Enter server target type UNIX or NT (UNIX default)
Licenses installed in /directory/user/test.

If the IP address of the workstation where the License Manager is running does not match the IP address
that was encoded into the Primary Key for any product, then that key will be discarded and an error
report will be output to the License Manager log.

Note: Prior to installing or adding keys, please terminate or stop the License Manager if it is already
currently running. Users who already have a token will be unaffected by the shutdown though no
new tokens can be issued until the License Manager is back up again.

License Manager

54 License Manager Operations Getting Started Guide

License Manager
Starting up the License Manager

Note: It is recommended that the same userId be used to both install the license keys and start the
license manager. This is because the license manager will periodically re-write the license files, and
if the ownership of the files prevents this, the license manager will report an error in the log file and
no licenses will be available.

Unix:

startLicenseManager [-v msglevel][-l logfile][-k keydir][-r resfile]
Arguments:

msglevel - A number from 1 to 9 indicating the amount of information to write to the
log file. If absent, then msglevel defaults to 3.

1. Error messages only
2. License failures
3. License activity
4. Client connects/disconnects
5. Message per packet received
6. Message per packet sent
7. Further client and Zombie process info
8. Key information
9. All available information

logfile - The path and filename for the logfile. If absent then the default is
$OBJECTIME_HOME/license/ObjecTimeLicenseManager.log

keydir - The path where the license key files can be found. If absent it defaults to
$OBJECTIME_HOME/license.

resfile - This is the absolute path and name of a customer maintained resource file
used to control the reservation of licenses located in the license key directory.

WindowsNT:

On Windows NT, the license manager is started and stopped from the ElanLM control panel. Prior to
starting the license manager, the TimeZone variable needs to be set. Before activating the license man-
ager, several settings must first be made:

1 Startup should be set to automatic. This will cause the License Manager to be started whenever the
server machine is re-booted.

2 Click the settings button and set the license directory and logfile name then close the window. The
logfile must specify the full path or no log file will be written.

3 Click the launch button.

Note: On Windows NT, this command requires an administrator class user to execute.

License Manager

Getting Started Guide License Manager Operations 55

By default the log file $OBJECTIME_HOME/license/ObjecTimeLicenseManager.log is cre-
ated with message output level 3. It is recommended that you always keep a log, since if something goes
wrong the error will usually be detailed therein. Things like invalid keys, mismatching key counts, and other
interesting information will be recorded, but, depending upon your message output level, so too will token
grants and releases. Further, if you want to be able to keep track of these things for reporting purposes, you
must have a log file.

Please note that the process name of the License Manager is elmd.

Setting the Time Zone Variable on Windows NT

For proper operation of the license manager over time changes the Time Zone variable must be set. This
should be handled by the installation process. The Time Zone variable does not need to be set on Unix
systems.

To set the Time Zone variable, proceed as follows:

1 Open the Control Panel.

2 Select System.

3 Click on the Environment tab.

4 Click on any system variable. (not user variable)

5 Replace it with TZ /correct value.Eastern Standard Time is used in the figure below.

License Manager

56 License Manager Operations Getting Started Guide

Use the following syntax to set the Time Zone environment variable:

• set TZ=tzn[+ | -]hh[:mm[:ss]][dzn]

• tzn - Three-letter time-zone name, such as PST.

• hh - Difference in hours between UTC and local time. Optionally signed. You must specify the cor-
rect offset from the Coordinated Universal Time (UTC).

• mm - Minutes. Separated from hh by a colon (:).

• ss - Seconds. Separated from mm by a colon (:).

• dzn - Three-letter daylight-saving-time zone such as PDT. If daylight saving time is never in effect
in the locality, set TZ without a value for dzn. ObjecTime Developer assumes the United States's
rules for implementing the calculation of Daylight Saving Time (DST).

For example, to set the TZ environment variable to correspond to the current time zone in Germany, you
can use one of the following statements:

set TZ=GST1GDT

set TZ=GST+1GDT

These strings use GST to indicate German standard time, assume that Germany is one hour ahead of
UTC, and assume that daylight savings time is in effect.

6 Click Set.

Make sure that the variable is added to the System section and not the user section. You need Adminis-
trator privileges to do this.

Automatically starting up the License Manager

It may be convenient to automatically start up the License Manager at file server boot time. This can be
done by including the following lines in the appropriate file (for sh) replacing YourReleaseDirectory
and server as appropriate:

OBJECTIME_HOME=/YourReleaseDirectory; export OBJECTIME_HOME
PATH="$PATH:$OBJECTIME_HOME/bin"; export PATH
if [-f $OBJECTIME_HOME/bin/startLicenseManager]; then

OBJECTIME_LICENSE_SERVER=server
export OBJECTIME_LICENSE_SERVER
$OBJECTIME_HOME/bin/startLicenseManager

fi

Note: In the above lines, OBJECTIME_HOME must be set to the full path name of the ObjecTime
installation directory (that is, $INSTALL/Developer5.2). As well, OBJECTIME_LI-
CENSE_SERVER must be set to the node name of the file server running the License Manager.

The following shows the particular file to insert the above lines into based on the file server platform type:

• SunOS: /etc/rc.local

• Solaris: /etc/rc2.d/S94ObjecTime

• HP-UX: /etc/rc within function localrc()

License Manager

Getting Started Guide License Manager Operations 57

• IBM AIX: /etc/rc

Note: The License Manager in this case is owned by root, and hence can only be terminated by root.

• Windows NT: On WindowsNT, the License Manager is controlled through the control panel and
cannot be started from the command line. This command must be run by an administrator-class user.

Before activating the license manager, several settings must be made first:

1 Startup should be set to automatic. This will cause the License Manager to be started whenever the
server machine is re-booted.

2 Click the settings button and set the license directory and logfile name then close the window. The
logfile must specify the full path or no log file will be written. The ObjecTime install will fill in de-
fault locations for the logfile and license files directory. These defaults are the same as assumed by
the other licensing scripts.

3 Click the launch button.

Bringing Down the License Manager

On Unix, the command

killLicenseManager

will terminate the License Manager specified in the environment variable OBJECTIME_LICENSE_SER-
VER.

On Windows NT, the license manager is stopped from the ElanLM control panel.

Note: On Windows NT this command requires an administrator class user to execute.

License Manager Operation

When an ObjecTime product is initiated, the user is informed how many tokens were granted and their type.
For example, when starting up the ObjecTime Toolset, the following messages may be displayed:

 objectime: [3] Connected with server "machine1"
objectime: [3] Granted 1 license for "Total"
objectime: [3] Granted 1 license for "TotalUnix"
objectime: [3] Granted 1 license for "Toolset 5.2"

[3] indicates the client ID used by the License Manager. machine1 is the node name of the file server
which is running the License Manager. Upon exiting the ObjecTime Toolset, the following message would
then be issued, indicating that the token has been returned to the pool:

objectime: [3] disconnecting

License Queuing

If a license token is not available upon the start-up of ObjecTime, ObjecTime will be automatically queued
and a list of users who currently have active tokens will be output. The queuing can then be cancelled using

License Manager

58 License Manager Operations Getting Started Guide

^c (that is, control-c). On Windows NT, queuing results in a dialog box being displayed. You may press the
Cancel button to stop the queuing operation.

If communication with the License Manager had been lost, and then re-established, a new license token will
have to be allocated. If none are available, the user will be given the option of queuing for a license or
invoking the emergency passivation feature (that is invoked for example, when the ObjecTime application is
signalled via kill -USR1).

License hold time

When a user relinquishes a toolset license, the License Manager will reserve that license for 300 seconds for
re -accessing by that user. To overr ide this defaul t t ime, the user environment var iable
OBJECTIME_LICENSE_HOLDTIME can be set to the number of seconds for a toolset license to be
reserved for re-access. Setting this environment variable to zero will result in the license being immediately
returned to the pool upon exiting the ObjecTime session. On Windows NT, this setting is accessible via the
ElanLM control panel.

License auditing

During normal execution of a product, each corresponding Unix process with a token periodically notifies
the License Manager (every 200 seconds) that it is alive and is still using its token. If a process fails to report
(for example, dies), without releasing the token, the token will be returned to the pool after ten minutes.

The utility killUserLicense <userid> also allows the administrator to force the de-allocation of an
ObjecTime session’s license token. This can be used in those situations where a session still has a token (but
the user is unable, for whatever reason, to terminate the session properly and thereby release the token), or
when a token is still being held by the License Manager (see License hold time above). If more than one
license token has been issued to a particular user (distinguished by their userId), then a list of these will be
given from which the one to de-allocate can be chosen. Note that only the owner of the License Manager
process can use this utility.

If the License Manager goes down or is otherwise unable to communicate to the process, those who already
have a token will be able to continue work and will be reissued tokens when the License Manager resumes
operation.

Querying the License Manager

Currently allocated licenses

The command

licenseInfo

will give you information regarding who is currently using the system, and the number of used and available
licenses. This information will be given for all active license managers. For example:

ObjecTime License Manager Information System
Please wait...

License Manager

Getting Started Guide License Manager Operations 59

Server user1:
 CID LID User Feature Group Started
 --- --- ------------------------------ ---------- -------- -------
 1 1 user1@user1 Total - Aug 03 11:36
 2 2 user1@user1 Total - Aug 03 11:40
Total [9000]: 25 licenses, 2 in use; installed Aug-03-98
 Expires Oct-30-98.

TotalUnix [9001]: 25 licenses, 0 in use; installed Aug-03-98
 Expires Oct-30-98.

 CID LID User Feature Group Started
 --- --- ------------------------- ---------- -------- -------
 1 1 user1@user1 TotalNT - Aug 03 11:36
 2 2 user1@user1 TotalNT - Aug 03 11:40
TotalNT [9002]: 25 licenses, 2 in use; installed Aug-03-98
 Expires Oct-30-98.

Total5.1 [9003]: 25 licenses, 0 in use; installed Aug-03-98
 Expires Oct-30-98.

 CID LID User Feature Group Started
 --- --- ----------------------- ---------- -------- -------
 1 1 user1@user1 Total5.2 - Aug 03 11:36
 2 2 user1@user1 Total5.2 - Aug 03 11:40
Total5.2 [9004]: 25 licenses, 2 in use; installed Aug-03-98
 Expires Oct-30-98.

C++ [9010]: 25 licenses, 0 in use; installed Aug-03-98
 Expires Oct-30-98.

Total5.0 [9020]: 25 licenses, 0 in use; installed Aug-03-98
 Expires Oct-30-98.

 CID LID User Feature Group Started
 --- --- ----------------------- ---------- -------- ------------
 1 1 user1@user1 TotalCodeG - Aug 03 11:36
 2 2 user1@user1 TotalCodeG - Aug 03 11:40
TotalCodeGen [9030]: 25 licenses, 2 in use; installed Aug-03-98
 Expires Oct-30-98.

 CID LID User Feature Group Started
 --- --- ----------------------------- ---------- -------- -------
 S 1 1 user1@user1 CodegenCPP - Aug 03 11:36

License Manager

60 License Manager Operations Getting Started Guide

 2 2 user1@user1 CodegenCPP - Aug 03 11:40
CodegenCPP5.2 [9031]: 25 licenses, 2 in use; installed Aug-03-98
 Expires Oct-30-98.

 CID LID User Feature Group Started
 --- --- --------------------------- ---------- -------- ------------
 S 1 1 user1@user1 CodegenC5. - Aug 03 11:36
 2 2 user1@user1 CodegenC5. - Aug 03 11:40
CodegenC5.2 [9032]: 25 licenses, 2 in use; installed Aug-03-98
 Expires Oct-30-98.

 CID LID User Feature Group Started

 --- --- --------------------------- ---------- -------- ------------
 S 1 1 user1@user1 CodegenSim - Aug 03 11:36
 2 2 user1@user1 CodegenSim - Aug 03 11:40
CodegenSimRTS5.2 [9033]: 25 licenses, 2 in use; installed Aug-03-98
 Expires Oct-30-98.

ObjecTime license server information.

C:\>pause
Press any key to continue . . .

License Manager

Getting Started Guide License Manager Operations 61

Usage statistics

To receive a breakdown of license manager usage use the command

serverUsageReport [log_path] [daily]

where

• log_path - is the absolute path-name for the file where status information has been logged.
Default: /tmp/ObjecTimeLicenseManager.log

• daily - allows you to optionally have the activity report broken down by daily usage, rather than amal-
gamated. This parameter is case insensitive.

The following shows an example using the reporting facility:

 serverUsageReport

ObjecTime License Manager Information System

 Total Total Over Number Number Percent Total
Feature Requests InUse SoftLim Issued Denied Denied Time Used
--
CodegenC5.2 54 4 54 0 0% 6:45:48
CodegenCPP5.2 54 4 54 0 0% 6:45:52
CodegenSimRTS5.2 54 4 54 0 0% 6:45:46
Total 58 3 55 3 5% 12:10:53
Total5.1 1 1 1 0 0% 0:07:37
Total5.2 54 3 54 0 0% 12:03:06
TotalCodeGen 54 3 54 0 0% 12:02:44
TotalNT 51 2 51 0 0% 9:04:40
TotalUnix 4 3 4 0 0% 3:06:09

License Manager

62 License Manager Operations Getting Started Guide

Chapter 7

Getting Started Guide Documentation Roadmap 63

7 Documentation Roadmap

ObjecTime Developer 5.2 Documentation Set
The ObjecTime Developer 5.2 Documentation Suite is structured for Release 5.2 into the following:
User Guide, C++Language Guide, C Language Guide, RPL Language Guide, Tutorial Guide, C++
Target Guide, ObjecTime Developer 5.2 Getting Started Guide & Release Notice, C++ Target Module
5.2 Getting Started Guide & Release Notice and C Target Module 5.2 Getting Started Guide & Release
Notice. The Documentation Sets are structured as follows:

Where differences exist, the documentation highlights Windows NT and Unix specific information.

Table 2 ObjecTime Developer (OTD) 5.2 Documentation Sets

ObjecTime Developer
ObjecTime Developer for

C++
ObjecTime Developer for

C

User Guide User Guide User Guide

Tutorial Guide Tutorial Guide Tutorial Guide

C++ Language Guide C++ Language Guide C Language Guide

RPL Language Guide RPL Language Guide

OTD 5.2 Getting Started &
Release Notice

OTD 5.2 Getting Started &
Release Notice

OTD 5.2 Getting Started &
Release Notice

C++ Target Module 5.2 Getting
Started & Release Notice

C Target Module 5.2 Getting
Started & Release Notice

C++ Target Guide

ObjecTime Developer 5.2 Documentation Set

64 Documentation Roadmap Getting Started Guide

User Guide

This document contains detailed reference material for all the tools and windows in the ObjecTime
Developer 5.2 Toolset. It also contains instructional task-related information for users who are less
familiar with the Toolset interface and need instruction on how to perform certain tasks. The User
Guide contains descriptions of all the basic concepts underlying the ObjecTime toolset including topics
common to the C++ and C Language usage.

Note: It is strongly recommended that you review the User Guide in detail.

The ObjecTime Developer 5.2 Toolset contains tools for all aspects of the real-time development lifecy-
cle. The document is organized into five major parts describing these tools: Model Management, Model
Editing, Requirements Capture, Model Compilation & Execution, and an Introduction which provides a
general overview of ObjecTime for new users.

Figure 5 ObjecTime User Guide Organization

C++ Language Guide

The C++ Language Guide contains information on how to use the Toolset to develop and compile mod-
els in a C++ environment for a variety of targets. It also contains information on the generated code
structure of a C++ model, and information on customizing certain aspects of the generated code. The
C++ programming interface to the Run-Time System Services and all built-in data types are also pro-
vided. This is required reading and reference material for building any C++ model in ObjecTime. In
addition, the document describes how to interface ObjecTime with other applications through the Exter-
nal Layer interface. Essentially, any information about the use of C++ in an ObjecTime application can
be found in this document.

C++ Target Guide

The C++ Target Guide describes the architecture of the Target Run-Time System (Target Services
Library) for ObjecTime Developer 5.2. This document describes the structure of each Target Services
Library part and its collaborations in enough detail to allow users to understand and debug their Target-
based models. It will also allow users to understand how and where they can customize Target-based
programs.

Model
Editing

Model
Compile/Execute

Requirements
Capture

Model
Management

Suggested Reading Path

Getting Started Guide Documentation Roadmap 65

C Language Guide

The C Language Guide describes all aspects of C usage in ObjecTime, including the toolset interface
for using C within ObjecTime (and the use of C and C++ actors in one design), the semantics of the
ROOM run-time system service calls and rules for integrating external libraries, data structures, and
applications with your ObjecTime C models.

RPL Language Guide

The RPL Language Guide contains information on building RPL-based models in ObjecTime. This
document describes the RPL language, and all built-in data types, along with the RPL programming
interface to the Run-Time System Services. Information about the RPL syntax-directed editor is also
contained in this document.

Tutorial Guide

There is one Tutorial Guide with three different sections : (1) the RPL version of the Tutorial, (2) the
C++ version of the Tutorial and (3) the C version of the Tutorial.

Getting Started Guide & Release Notice

It is recommended that the user reads this guide to get the most up-to-date information on this release.
For ObjecTime Developer 5.2, the ObjecTime Developer Getting Started and Release Notice describes
the base product. The ObjecTime Developer for C++ Getting Started and Release Notice and the Objec-
Time Developer for C Getting Started and Release Notice describe the areas specific to the C++ and C
Language Modules.

Suggested Reading Path
We strongly recommend that users who are new to the ObjecTime Developer concepts and toolset read
the User Guide and follow the examples in the Tutorial Guide (RPL, C or C++ sections as appropriate).
All users will need to reference the User Guide, the C++ Language Guide, the C Language Guide or
the RPL Language Guide as they build models in ObjecTime Developer. Figure 6 below shows the rec-
ommended reading paths for different user needs.

Note: For more information on Real-Time Object-Oriented Modeling (ROOM), see the ObjecTime
User Guide, and see Selic, Gullekson, and Ward. Real-Time Object-Oriented Modeling. John Wiley
& Sons, Inc., 1994.

Suggested Reading Path

66 Documentation Roadmap Getting Started Guide

Figure 6 Recommended Reading Paths in the ObjecTime Developer Document Set

Note: The C Language Guide is only included in the ObjecTime Developer C Target Module doc-
umentation set. The C++ Target Guide is only included in the ObjecTime Developer C++ Target
Module documentation set. The information in the C++ Language Guide is applicable to both the
C++ Simulation Services Library and the C++ Target Services Library.

User
Guide

RPL

Tutorial

C++

New Users

Experienced Users

 RPL, C++,

Notice

Administrators

C++

Installation
Instructions

in
CD Insert &

Release
Notice

Release

Getting
Started
Guide

&

Guide

Target
Guide

Guide
Language

Guide
Language

 or C

C

Guide
Language

Online Reading

Getting Started Guide Documentation Roadmap 67

Online Reading
The complete set of HTML-based ObjecTime Developer 5.2 documentation is linked to the ObjecTime
Developer 5.2 Help. When a user clicks on the menu item Help Contents of the toolset menu, the con-
figured browser comes up with the top level documentation page. Also, the user can obtain online con-
text sensitive help by clicking on the menu item Help of any ObjecTime Developer menu. All online
documentation may be accessed through the online Help System with every cross-reference in the doc-
umentation set as a hypertext link to the referenced material. Clicking on any cross-reference will take
you to the referenced location.

Online Search Engine

The ability to search the online documentation has been added into the 5.2 product release. From the
ObjecTime Online documentation, the search engine can be brought up from any one of a number of
places.

Figure 7 Help Contents

Online Reading

68 Documentation Roadmap Getting Started Guide

Figure 8 A Table of Contents

Figure 9 An Index

Online Reading

Getting Started Guide Documentation Roadmap 69

The online search engine can be used to identify documents within the online documentation which
contains the identified keywords.

Figure 10 Search Engine

Within the identified documents, the find function of the browser should be used to jump to the specific
references.

Online Reading

70 Documentation Roadmap Getting Started Guide

Chapter 8

Getting Started Guide Changes in Developer 5.2 71

8 Changes in Developer 5.2

This chapter provides additional information on the changes covered in “What's new in Developer 5.2”
on page 2 in Chapter 1 of this Guide. For details of the changes applicable to the C and C++ Language
Modules, please refer to the Changes in ObjecTime Developer 5.2 chapters in the ObjecTime Developer
for C Getting Started and Release Notice and the ObjecTime Developer for C++ Getting Started and
Release Notice respectively.

The main areas covered in this chapter are as follows:

• Packages

• Multi-Language Framework (MLF)

• Make Utilities Supported

• Data Class Inclusion

• Deterministic Loadbuild

• Library Management

• Problems fixed in 5.2

Packages

72 Changes in Developer 5.2 Getting Started Guide

Packages
CUPs Replacement

CUPs have been replaced with enhanced environment specification for packages. The ability to gener-
ate and compile the code for a package has been used to allow designers to reuse the results of a build
and not have to perform the code generation and compilation themselves. This requirement is now satis-
fied by a facility to reuse the results of a loadbuild for all model components and it is no longer possible
or required to compile a package independently of an update. Packages must now always be compiled
in the context of an update. See “Environment and CUPs conversions” on page 10 in this guide for fur-
ther details.

It is still possible to associate some environment settings with a package. But because packages must be
compiled in the context of an update, not all environment settings make sense at the package-level. The
package-level configuration now supports compiler flags, include files and paths, and library files and
paths. The flags and inclusions are applied to all the classes in the package and child packages. The
library path and files are propagated to the update-level from each package, and so apply to the entire
executable.

Code Generation & Compilation Changes

Getting Started Guide Changes in Developer 5.2 73

Code Generation & Compilation Changes
Release 5.2 incorporates significant changes in the way in which code generation and compilation of
models is performed. These changes have been made in order to improve performance, as well as to bet-
ter integrate with the customer’s software development environment and processes.

The significant changes introduced in release 5.2 are as follows:

• Using timestamp (make) driven code generation and compilation

• Allow re-use of build results. The generated C++/C and object files resulting from a build of the
models can be reused by designers, thus saving them the time required to compile the model them-
selves before commencing development work. This is supported with either the VPATH mechanism
of GNU make or the sharing of derived objects when using ClearCase.

• Explicit inter-class dependencies are now tracked improving the generated code’s compilation per-
formance. The inclusion relationships between classes are now calculated based on the inter-class
dependencies. This results in faster compilation performance because the number of include files
which are read, when compiling a class, is now restricted to only those files that are required.

The meaning of some of the Compile Dialog Options is changed in ObjecTime Developer 5.2. Please
refer to Chapter 22 ‘Model Compilation and Execution’ in the ObjecTime Developer User Guide.

Make Utilities Supported

74 Changes in Developer 5.2 Getting Started Guide

Make Utilities Supported
Compilation and code generation is now controlled with make files. You have the ability to choose
which make utility will be used for the code generation and compilation phases of model generation.
The make types available are MS_nmake, Unix_make, and Gnu_make. MS_nmake should be set
when the make utility is nmake on Windows NT. Unix_make should be set for all other makes with the
exception of Gnu_make when using VPATH for build results re-use. In this case the make type should
be set to Gnu_make.

The only restrictions on what make utility is used are imposed by whether the build re-use (using
VPATH) is being utilized. If VPATH is being used for build re-use, then the make utility used must be
Gnu_make and the make type set to Gnu_make. The make type and make name are set from the target’s
Properties Editor of the Language Options in the Update Configuration.

If VPATH is not being used, then most make utilities will work. The only known exception to this is
with ClearMake. Using ClearMake as the make utility is not supported because the generated makefiles,
when run with ClearMake, result in the code generation being performed twice for the changed classes.
Although the results will be correct when using ClearMake, there will be a significant time penalty due
to the extra code generation taking place.

Using any other make utility, when using ClearCase as the CM systems, will avoid the problem of
unnecessary work being performed.

Recommended make utilities

The following table lists the recommended make utilities for all toolset platforms. With the exception of
“Microsoft nmake” and “Gnu make” (when using Load-build paths), all listed make types are compati-
ble with “Unix_make”. This table is neither exhaustive nor exclusive; other compatible make utilities
may be provided with your compilation host operating system or your compiler.

Table 3

Make type Platform Notes

AIX make AIX 4

Gnu make all Unix platforms Version 3.71 and above is recommended.

Windows NT Use version "3.74+wrs-2", available with Wind
River Systems’ Tornado.

HP make HPUX 10

Irix make Irix 6

Microsoft nmake Windows NT Version "1.62.7022"is recommended (available
with Microsoft Visual C++ 5.0).

Make Utilities Supported

Getting Started Guide Changes in Developer 5.2 75

Pmake (Parallel make) various Unix platforms Various compatible third-party distributions are
available.

Sun make Sun 4, Sun 5 includes SUNW_SPRO and SVR4 make

Table 3

Make type Platform Notes

Data class inclusions

76 Changes in Developer 5.2 Getting Started Guide

Data class inclusions
Inclusions can now be added to data classes. If the definition of a data class requires external inclusions,
then these can be added at the data class level and need not be specified at the update level as in pre-5.2
releases of ObjecTime. This will improve compilation performance since it eliminates superfluous
inclusions.

Deterministic Loadbuild

Getting Started Guide Changes in Developer 5.2 77

Deterministic Loadbuild
Due to the way signal numbering is handled for incremental code generation, it is possible that the gen-
erated code for the two instances of the same model be different. These differences will be confined to
the signal numbering values and are the result of the way the code generator adds new signals to a
model. In order to avoid a complete recompile when a new signal is added, the code generator adds new
signals to the end of a list. This means that the value a signal receives depends on what other signals
have been added before.

To obtain a completely deterministic build, all that is required is that a total recompile be performed
from a clean directory. This will ensure that the generated code will be identical and any differences
between two models that are completely regenerated, will be the result of actual model differences and
not caused by the order of operations as performed in the toolset (as has been the case in the past).

The order of merging affects the order in which the classes are listed in the project file. This in turn
affects the order of code generation for:

• RTSyatem.h

• RTSignal.h

• Data classes aggregated at the package level

The next two sections provide details on how to merge classes in a consistent manner.

Fully Specified Merge Script

Merge maintains the internal order of the added classes in the same order in which they are listed in the
merge script. For example, if you use the following merge script:

! select AnUpdate
merge from /whatever/mylib.otlib

Actor1.actor *
Actor2.actor *
Actor3.actor *
Protocol1.port *
Protocol2.port *
Protocol3.port *
Data1.data *
Data2.data *
Data3.data *

endMerge !

then the following is true:

• the internal order of the actor classes is Actor1, Actor2, Actor3;

• the internal order of the protocol classes is Protocol1, Protocol2, Protocol3;

• and the internal order of the data classes is Data1, Data2, Data3.

Note: The order only matters relative to other entries of the same type.

Deterministic Loadbuild

78 Changes in Developer 5.2 Getting Started Guide

So, the following merge script results in the same internal order as above:

! select AnUpdate
merge from /whatever/mylib.otlib

Actor1.actor *
Protocol1.port *
Data1.data *
Actor2.actor *
Protocol2.port *
Data2.data *
Actor3.actor *
Protocol3.port *
Data3.data *

endMerge !

Note that the internal order can be observed in a couple of ways:

1 Open a Properties Editor on the update. The class/package list displays the entries in their internal
order.

2 Listing the contents of a project file.

Partially Specified Merge Script

If the required classes are not all listed in the merge script, then the merge will determine that some
classes are missing, and then look in the library/directory. This process is driven by the combination of
the order specified in the merge script, and the order of the references in the classes that are being
merged. After retrieving the first set of missing classes, then more classes may be required, so this pro-
cess is repeated until all the classes have been retrieved.

For example, assume you have a library containing the following actor classes:

• A1 which contains references to A2 and A3 (in that order)

• A2 which contains references to A4 and A5 (in that order)

• A3, A4, and A5 which are 'empty' (i.e. don't reference anyone else)

Now, if you just specify A1 in the merge script, the resulting internal order will be A1, A2, A3, A4, A5.

If you specify A1 and A4 in the merge script, the resulting internal order will be A1, A4, A2, A3, A5.

Note: If you are just merging packages and then relying on the merge operation to extract all the
referenced classes, then you are doing a partially specified list.

If an entry in the partially specified list is modified (for example, a reference to a new class is added to
it), then the resulting order of all the classes after it could be different than they would have been when
merged with the previous version of the class.

If a fully specified list was used, then there is much better control over this (for example, new classes
can be added at the end of the full list). For a model that needs exactly repeatable code generation, then
you should use fully specified lists.

Library Management

Getting Started Guide Changes in Developer 5.2 79

Library Management
Library capabilities enhancements

In Release 5.2, several enhancements have been added to ObjecTime Developer’s library capabilities.
While some of these enhancements are intended to improve ObjecTime’s ability to inter-work with
ClearCase, all of the enhancements can be used with any Change Management system. Even though
some of the enhancements require modifications to the library scripts, the release is fully compatible
with existing scripts from previous releases.

The ClearCase library scripts have been rewritten in Perl and are common for both Unix and NT. The
new scripts take advantage of the improved Version String Handling and Sync With Library enhance-
ments described below.

Default Location for Library Scripts

It is no longer necessary to place an .objectime_scripts_dir directory for Unix, or an
objectime_scripts_dir_nt directory for NT, in every library directory. Instead a default
directory location can be entered in the Library Configuration pane under the toolset menu. If a
scripts_dir does exist in the library, the scripts in that directory will be used; otherwise, the
scripts that are in the default directory will be used.

Note: If the library system is down, the objectime_library_info script causes ObjecTime Developer
(OTD) to hang (that is, the OTD toolset waits for an .otlib library script to terminate).

Check out and read only modifications

Classes which are not checked out from the CM system would be read only, as in a context. Before you
can make editing changes, check out the class. This read only enforcement would apply to all objects
which can be checked out of a library including project files and configurations. Enforcing the read only
aspects of classes only applies to direct edits of the classes. If editing a class has an impact on other
classes which are not currently checked out, then the toolset will in no way prevent these changes from
occurring, although a delta will appear beside the affected class. This class of changes primarily applies
to editing a class and having its subclasses change as a result.

This feature would be controlled by and could be disabled through a user preference.

Currently, when you check out a class, a check is performed which compares the version in the CM sys-
tem to that in the update. If there is a mismatch, a warning appears which can be ignored. This will be
changed so that you will be presented with a dialog which gives the option of merging in the class from
the CM system or cancelling the CheckOut request. If you cancel the checkout, the result must be that
the class is not checked out.

This feature will also be controlled with a user preference.

Library Management

80 Changes in Developer 5.2 Getting Started Guide

Read-only for unchecked out classes

A user preference has been added that disallows the ability to edit unchecked-out elements; see the pref-
erence “Editing Modes”. Preferences are set from the Preferences Editor under the toolset menu.

Hierarchical library browsing

A Libraries pane has been added to the Library Browser which allows libraries that are contained within
libraries to be easily browsed.

Sync With Library

An alternative library synchronization method has been added that relies on external library scripts
objectime_sync and objectime_diff. Use of these scripts allows the update to be synchronized with the
Linear Form (LF) files contained in the library directory or directories where the files have been copied.
Versions of the objectime_sync and objectime_diff scripts are provided for ClearCase. In addition to the
new scripts, the Library Cofiguration must be set to now use objectime_library_info for
sync, in order to use external LF comparisons for synchronizing.

In addition, it is also possible to synchronize the delta symbols in the Update Browser based on the con-
tents of the LF files. This capability also relies on the objectime_sync and objectime_diff scripts.

Since LF files contain the version string of elements that they reference, if a reference element is up-
versioned, the LF file that is stored in the library that represents the element that contains the up ver-
sioned element is technically out-of-date even though its design has not changed. The Sync With
Library capability allows differences of this type to be ignored.

Improved Version String Handling

To support complex version strings (for example, Release1/BugFixes/1) and version branching, the
objectime_library_capabilities script can be extended to turn on the NoVersionNumbers and NoVersion-
Sort capability.

The VersonNumbers capability turns off the default assumptions made on check-out and assumes that
the objectime_check_out script returns both the current and the next (upon submit) version string.

The newest version of objectime_check_out for ClearCase (as part of ClearCase integration) returns
two version strings as opposed to just one. The first string is the version that is the most recent in the
library and the second string is the version number on submitting it back to the library. This is done to
remove the most recent comparison data from the toolset.

The NoVersionSort capability disables the default sorting performed by the Version Browser and
assumes that the list should be displayed in the order output by the objectime_version_info script.

ClearCase

The ClearCase Unix scripts have been replaced with Perl scripts that are common across Windows NT
and Unix. The new scripts return the ClearCase version ID (without the /main/ prefix). This allows
ClearCase branching to be used without having to modify the scripts.

Library Management

Getting Started Guide Changes in Developer 5.2 81

The versions of ClearCase supported are:

• 3.1.1 : for HPUX 10.20 and Solaris 2.6 (with a 3.1.1 patch).

• 3.2 : for Solaris 2.6, HPUX 10.20, SunOS 4.1.3 and Windows NT 4.0.

Two new library scripts objectime_sync and objectime_diff have been provided for ClearCase.

RCS

The RCS system must support the “x” option in order to interwork with ObjecTime Developer. The “x”
option allows for the specification of suffixes for RCS files. Please refer to your RCS documentation to
confirm this.

Linear Form

The following summarizes the changes made to the linear form grammar for release 5.2. Customer tools
which process linear form will have to be modified to accommodate the changes in the grammar.

Added tokens

BLACKBOX
DEPENDENCIES
LOADBUILD
OUTPUT
PROJECT
RECTILINEAR
STEREOTYPE

Added productions

optStereotype/* NEW in 5.2 */
: /*empty*/

 | STEREOTYPE TEXTSTRING
 ;

optDependencies /* NEW in 5.2 */
 : /*empty*/
 | DEPENDENCIES ‘{‘ dependencyList ‘}’
 ;

 dependencyList
 : /*empty*/
 | dependencyList dependencyItem ‘;’
 ;

Library Management

82 Changes in Developer 5.2 Getting Started Guide

 dependencyItem
 : DEFINE classType className optInPackage optLibraryVersion optSte-
reotype optDescription

;

optStereotype /* NEW in 5.2 */
 : /*empty*/
 | STEREOTYPE TEXTSTRING
 ;
graphicLine /* NEW in 5.2: optRectilinear */
 : graphicSpec optWidth optSmooth optRectilinear FROM pointsList
 ;

optRectilinear /* NEW in 5.2 */
 : /*empty*/
 | RECTILINEAR
 ;

optCompilationPath /* NEW in 5.2 */
 : /*empty*/
 | PATH TEXTSTRING
 ;

projectSpec /* NEW in 5.2 */
 : PROJECT projectName
 optLibraryVersion
 optDescription
 optDependencies
 projectPublicComponents
 threadsSpec
 libraryPaths
 outputPath
 loadBuildPaths
 ‘;’
 ;

 projectName
 : IDENT
 ;

 projectPublicComponents
 : /*empty*/
 | PUBLIC ‘{‘
 projectComponentList
 activeEnvironment

Library Management

Getting Started Guide Changes in Developer 5.2 83

 optTopActor
 ‘}’
 ;

 projectComponentList
 : /*empty*/
 | projectComponentType componentName optLibraryVersion optDerived-
FromSuperClass optInPackage ‘;’ projectComponentList
 ;

 projectComponentType
 ;

 activeEnvironment
 : ACTIVE ENVIRONMENT IDENT ‘;’
 ;

 optTopActor
 : /*empty*/
 | TOP ACTOR actorClassName optLibraryVersion ‘;’
 ;

 libraryPaths
 : LIBRARY PATHS ‘{‘ pathList ‘}’
 ;

 loadBuildPaths
 : LOADBUILD PATHS ‘{‘ pathList ‘}’
 ;

 pathList
 : /*empty*/
 | PATH libraryPath ‘;’ pathList
 ;

 outputPath
 : OUTPUT PATH libraryPath ‘;’
 ;
optEnvironmentSpec
 : /*empty*/
 | environmentSpec
 ;

environmentName
 : TEXTSTRING

Library Management

84 Changes in Developer 5.2 Getting Started Guide

 ;

Changed productions

modelEntitySpec
 : actorClassSpec
 | protocolClassSpec
 | dataClassSpec
 | constantSpec
 | packageSpec
 | requirementSpec
 | mscSpec
 | environmentSpec /* NEW in 5.2 */
 | projectSpec /* NEW in 5.2 */
 ;

realValue
 : NUMBER /* NEW in 5.2 */
 | REAL_NUMBER
 | constantName optLibraryVersion
 ;

dataClassSpec
 : DATA CLASS dataClassName
 optLibraryVersion
 optDerivedFromSuperClass
 ISA dataTypeSpec
 optDependencies /* NEW in 5.2 */
 ‘;’
 ;

choiceSpec /* NEW in 5.2: inclusionsSpec */
 : CHOICE properties choiceTypes inclusionsSpec methodsSpec
 ;

enumeratedSpec /* NEW in 5.2: inclusionsSpec */
 : ENUMERATED properties enumeratedValues inclusionsSpec meth-
odsSpec
 ;
sequenceSpec /* NEW in 5.2: inclusionsSpec */
 : SEQUENCE properties fields inclusionsSpec methodsSpec
 ;

Library Management

Getting Started Guide Changes in Developer 5.2 85

protocolClassSpec
 : PROTOCOL CLASS protocolClassName
 optLibraryVersion
 derivedFromOrService
 properties
 inMessagesSpec
 outMessagesSpec
 mscsSpec
 optDependencies /* NEW in 5.2 */
 ‘;’
 ;
actorClassSpec
 : ACTOR CLASS actorClassName
 optLibraryVersion
 optDerivedFromSuperClass
 optExclude
 properties
 actorInterfaceSpec
 actorImplementationSpec
 actorConfigurationSpec
 optDependencies /* NEW in 5.2 */
 ‘;’
 ;

localIncludeItem /* NEW in 5.2: optStereotype */
 : DEFINE inclusionName optActor optStereotype properties
 ;

defaultPackageDefinition
 : optCompilationPath /* NEW in 5.2 */
 properties
 packagePublicComponents/* changed */
 packagePrivateComponents/* changed */
 packageSignals
 packageActors
 optEnvironmentSpec
 optThreadsSpec
 ;

packagePublicComponents
 : /*empty*/
 | PUBLIC ‘{‘ packageComponentsList ‘}’
 ;

packageComponentsList

Library Management

86 Changes in Developer 5.2 Getting Started Guide

 : /*empty*/
 | packageComponentsList packageComponent ‘;’
 ;

packageComponent
 : packageComponentType componentName optInPackage optLibrary-
Version optPermissions
 ;

packageComponentType
 : classType | PACKAGE
 ;

componentName
 : IDENT
 ;

environmentSpec
 : ENVIRONMENT environmentName optLibraryVersion bracketedEx-
pression ‘;’
 ;

compilationPackageDefinition
 : ISA COMPILATION defaultPackageDefinition
 ;

anyValue
 : IDENT
 | NUMBER
 | REAL_NUMBER
 | TEXTSTRING
 | boolean

 | enclosedExpression
 | bracketedExpression
 | ‘&’ | ‘*’ | ‘@’ | ‘\\’ | ‘:’ | ‘.’ | ‘,’ | ‘!’ | ‘?’
 | ‘=’ | ‘<‘ | ‘>’ | ‘+’ | ‘-’ | ‘#’ | ‘;’ | ‘/’ | ‘~’
 | ACTIVE | CONFIGURATION | FIELDS | PROPERTY | PROPER-
TIES | SEQUENCE | SYSTEM
 | THREADS | UNDEFINED | VALUE | VALUES | VERSION | VER-
SIONS
 | ‘[‘ ‘]’
 ;

Problems Addressed in this Release

Getting Started Guide Changes in Developer 5.2 87

 Problems Addressed in this Release
For a complete list of problems which have been addressed in this release, please refer to the ObjecTime
web site at:

http://www.objectime.com/support/restricted-dir/index.html.

You will be prompted to enter your assigned ObjecTime user name and password to gain access.

Problems Addressed in this Release

88 Changes in Developer 5.2 Getting Started Guide

Chapter 9

Getting Started Guide General Information 89

9 General Information

Toolset Memory Requirements
This section discusses the memory requirements for the ObjecTime Toolset and the disk space require-
ments for saved models. This information will help you better understand how memory is utilized in the
ObjecTime Toolset and to help plan system requirements for the development environment before a
large project is started.

This section does not discuss the size of the generated executable for an ObjecTime model (for an esti-
mate of the size of the generated executable for a C++ model see the ’ObjecTime Model Size Estima-
tion’ section of the C++ Target Guide).

The platform-specific sections of this guide deal with the minimum requirements to run the Toolset on
each platform (see System Requirements in this chapter, and System Requirements in the ’Getting
Started with Unix’ chapter). In addition to the basic memory requirement to run the Toolset, additional
memory will usually be required to build and run models. The amount of memory required will depend
on the size of the model. This section will deal with trying to estimate the memory requirements for
models.

Memory consumption for ObjecTime models varies with many factors. The memory consumption var-
ies with the number of the various design objects used, such as:

• actor classes

• protocol classes

• data classes

• configurations and their attributes

• packages

• actor references

• bindings

• ports

• states

• transitions

• choice points

• events

Toolset Memory Requirements

90 General Information Getting Started Guide

• functions

• inclusions

• ESVs

• MSCs and their contents

• probes and their attributes

• etc.

Memory consumption also varies with the amount of code (RPL, C and C++) entered in transitions,
guard conditions, functions and inject messages, as well as strings entered in places such as configura-
tion parameters and the description field in property editors.

Perhaps not so obvious, memory consumption also varies with things like:

• the number of equivalences defined in a model

• the number of requirements links

• the number of inflection points on bindings/transitions

• the depth of inheritance class hierarchies

• the number of excluded objects in a subclass

• the types of edits performed on a model in the current session

• the number and types of windows open on various components in the model

• and so on.

Memory consumption will also increase once a model has been compiled. Given all of these variables,
it is very difficult to give an exact formula for the memory requirement of any given model. Instead, we
have studied several typical models to offer an estimation of the memory required at a macroscopic
level.

Typical model memory usage

We have studied several typical ObjecTime models. While the data given here is typical for the models
we have studied, care should be taken in how these numbers are used. In particular, it is possible in
cases of some specific models to obtain sizes which are off by an order of magnitude from the numbers
presented here, especially if the model in question does not meet our definition of a “typical” model.

The models which we have studied are typically characterized as follows:

• X Actor classes

• between 0.4*X and 0.7*X Protocol classes

• between 0.7*X and 3*X Data classes

• on average each actor class has between 70 and 200 uncommented lines of code

Given this characterization, the in-memory size of these models is typically between 40 KB and 130 KB
times X (for example, if X is 100 for a particular model, then the toolset will require between 4 MB and
13 MB to store the model in memory). Note that this sizing is done before compilation.

Toolset Memory Requirements

Getting Started Guide General Information 91

Memory usage in operations

Operations such as activation, passivation and merging will make copies of various internal data struc-
tures before and after the operation. At times, these operations will make complete copies of the Objec-
Time model being operated on. Because of this, these operations will increase memory requirements
during the execution of the operation (often this increase is equal to and sometimes double the memory
required to hold the model in memory). Keep in mind that this memory is only required for the duration
of the operation and will be released back to the ObjecTime memory pool, for use by other operations/
models, once the operation is complete. Note that, at this time, memory allocated by ObjecTime Devel-
oper from the underlying OS will remain allocated until the Toolset quits. The Toolset will not dynami-
cally release unused memory back to the OS.

Context vs. update memory usage

Another issue related to memory usage is that relating to contexts and updates. When contexts are being
used, the typical work scenario has the designer activate the context and then create an update from the
context, after which all edits are performed on this update. It should be noted that contexts and updates
are the same size while in memory, and creating an update from a context essentially creates a duplicate
copy of the context. One method to avoid this duplication, and therefore decrease memory consump-
tion, is to remove the context from memory and work only on the update.

Two procedures for doing this are as follows:

• start with an activated context in memory with an update created from it

• passivate the update

• delete the update

• delete the context

• activate the update

• save and exit the session

• restart the session

or alternately:

• start with an activated context in memory with an update created from it

• passivate the update

• abandon the session

• restart a clean/empty session

• activate the update

Through the use of this technique, only one copy of the classes are stored in memory. Note that this will
have the side effect of causing the update to be associated with 'TheContext' rather than the originating
context. One consequence of this new association is that if the original context had a library associated
with it; this information is lost. Putting this library path into TheContext's library entry will serve as a
workaround for this situation. One other consequence of the association with TheContext is that the
'Show Changes' menu item on the Update menu will now return different results than it would have
when the update was associated with the original context.

Toolset Memory Requirements

92 General Information Getting Started Guide

Model file sizes

Passivated (file) versions of models (updates and contexts) are smaller than the in-memory size of the
model. The in-memory size of a model is anywhere between 2 and 5 times the size of the passivated
file. As is usual for memory sizing issues, this is an approximation of the size ratios. It is possible to
have different ratios.

Note: This ratio only applies to passivated updates and contexts. Since project files contain refer-
ences rather than the objects themselves (as do updates and contents), they will be much smaller in
size.

Summary

The results discussed above will now be presented in a more compact form. Keep in mind that this dis-
cussion applies to models characterized by our "typical" model definition, and that actual memory
usage may vary from the numbers presented here.

1) Given a typical model with X actor classes, the in-memory size of this model will be:

Y = between 40KB * X and 130KB * X

2) If both a context and update of this model are to be stored in memory, this would require 2*Y of
memory. By removing the original context, only Y of memory would be required.

3) Operations involving this model may require an additional Y to 2Y of memory needed only for the
duration of the operation. This memory is not released back to the OS but will be available for use by
other toolset operations and model storage.

4) The passivated file (update or context) size of this model should be between Y/2 and Y/5.

Microsoft Visual SourceSafe (MSVSS)

Getting Started Guide General Information 93

Microsoft Visual SourceSafe (MSVSS)
The following notes apply to using Microsoft Visual SourceSafe (MSVSS) as a library system:

1) The ObjecTime library scripts for Microsoft Visual SourceSafe (MSVSS) do not allow the use of
the ’multiple checkouts’ feature of MSVSS.

2) ObjecTime scripts currently set the file type to binary format regardless of the setting within the
toolset. Explicitly changing the file type to text, will cause problems with some of the library scripts.

3) If a file is manually deleted from an ObjecTime project in MSVSS without setting the ’Destroy
Permanently’ option, and later a user tries to create a file with the same name, then the destroyed file
will be restored which will leave ObjecTime in an out of sync state.

4) The same user (on the same or different systems) should not perform more than one MSVSS li-
brary interface operation (even in different MSVSS projects at the same time). Two or more library
interface operation might collide with each other and cause incorrect results and error messages.
(PR4292)

Limits

94 General Information Getting Started Guide

Limits
Model Limits (RPL, C and C++)

The total number of ports + SAPs + ESVs + actorRefs per actor class <= 256. This includes inherited
components.

RPL Code Editor

• 2000 lines per code segment

RPL Limits

• 256 method variables (arguments and temp vars)

• 256 literals (strings, numbers, symbols, characters, message selectors, referenced class names, IF-THEN/
ELSE/WHILE/FOR bodies)

• 256 levels of nested IF/WHILE/FOR statements

• There is a limit on the size of the compiled code generated for the inside of IF/WHILE/FOR statements.
In practice this is not a problem, but is still a possible limit.

Simulation Services Library Limits

• A maximum of 16,384 actors can be incarnated at run-time in a model.

• When using the SimulationRTS you must have selected the “Basic” debugging tool in order allow
the “Load” option to be used.

Special Notes and Reminders
• ObjecTime Developer conventions for environment variables are as follows:

General: Toolset uses host conventions - $<name> in UNIX and %<name>% in NT

Exceptions:

Environment Browser supports $ for both UNIX and NT. It does not support %

Package path supports $ for both UNIX and NT. It does not support %

• To improve performance when you do a merge, especially with large systems, do NOT select “Can-
celable” which is the default on the Merging dialog. If you do select “Cancelable” ObjecTime will
make a copy of the entire update and merge into this copy. If the merge is successful, the copy will
replace the original. This will cause the entire system to be recompiled the next time you compile,
as if you had selected “Recompile”. Thus merging in as little as one class can cause your entire sys-
tem to be recompiled. Therefore, we generally recommend that you deselect the “Cancelable” op-
tion.

• The external editor started up by ObjecTime must be a window based editor. On Unix, for example,
one must use “xterm -e vi” instead of “vi”. On Windows NT, one must use “Wordpad” instead of
“edit.com” for example.

• Version 1.1 of an object in a library is often used as a dummy placeholder to reserve the object name
within the library. You will get inconsistent error messages if you try to merge a placeholder version 1.1
class, package or requirement from a library, for example, “Error occurred when extracting a version”,
“Error extracting a requirement”, “Error reading from <requirement>”, “Error checking requirement
definition header”, or “Error bad header for requirements file”. (PR1560)

Perl Information

Getting Started Guide General Information 95

• Library check in and check out of a class will cause a refresh of any library browsers open on that
library — once for each class accessed. To speed operations where many classes are either checked
in or checked out, close the library browsers before beginning the operation.

• ObjecTime does not guarantee proper operation when an image (.otd) file is created in one directory or
on one host platform and is then opened in a different directory or host platform. If you need to move
updates between directories or platforms, you should passivate your updates and activate them into a
different workspace at the destination location.

• Once an actor has been compiled, modifications to the replication factor of the actor itself or of any ports
may cause a recompile of the complete model. We recommend specifying the replication factors as early
as possible or editing them in a batched fashion.

Also note that for unspecified replication factors (replication factor = *), if you change the root class of
an actor, the actor’s previous replication factor will be statically copied over to the new system, and will
not take on an intended new value unless explicitly compiled. In this situation, we recommend
regenerating the entire model to ensure that the intended replication factor is applied.

• ObjecTime currently assumes that library scripts on Windows NT are written in Perl. On Windows
NT, each library script is invoked using the command 'perl -w
<script_name_and_arguments>'.

• Users should not rename the ObjecTime image files. For example, renaming the image file
"ObjecTime5.2.otd" to "MyImage.otd" will prevent the image from being loaded.

• In order to support building the linear form parser on multiple platforms, GNU Bison (version 1.25
and later) becomes the default parser generator and flex (version 2.5.4 and later) the default scanner-
generator. Both of these tools are publicly available on a number of sites on the Internet.

• ObjecTime uses a very simple algorithm for comparing version numbers. It assumes that a version
number is a series of segments separated by periods (for example, '1.main.3'). Each segment can be
either a (positive) integer or a string. The comparison of two version numbers is a pairwise compar-
ison of the segments. If the two segments being compared are all digits, then the expected numeric
comparison is done (for example, '1.30' is higher than '1.4'). If either of the segments contains char-
acters other than digits, then a string comparison is done (for example, '1.30' is earlier than '1.4a').
The comparison also assumes that both version numbers have the same number of segments. If this
is not true, then it will only compare the smaller number of segments and return an answer based on
that.

Perl Information
• Perl plays a number of roles in ObjecTime Developer 5.2.

1. To produce a dependency list for Target Services Library source files to permit recompilation of the
libraries by customers following any customization/configuration change of the Target Services Library.
Perl must be in the search path for dependency list (a.k.a. "depends" file) generation to work. A new
"depends" file can be generated on the host where ObjecTime is run or on any other host where Perl is
already installed.

2. To pre-process our generated make files on UNIX hosts in preparation for their use in building models
for Windows NT targets using the Visual C++ compiler.

3. To permit execution of our make files on Windows NT targets when compiling and linking on that
platform using Visual C++.

Perl Information

96 General Information Getting Started Guide

Perl is included with the ObjecTime release. The version of Perl in use at the time of release was 5.002
beta3 on SunOS, Solaris, HPUX 10, IRIX and AIX. On Windows NT, the version in use at the time of
release is 5.003_07. On QNX, the version supplied for QNX is “5.002 with DEBUGGING”

To run the Perl scripts provided with ObjecTime, make sure the path is properly set up on your Unix or
Windows NT platform.

Building a Model with VC50 Debugging Information

 NEW in 5.2: For Windows NT users that are developing with the Visual C++ 5.0 tools, ObjecTime
Developer now offers integration with the Visual C++ source debugger. This permits setting and clear-
ing of transition code source breakpoints at run-time within ObjecTime Developer.

Before you compile your ObjecTime model:

• Ensure DevStudio’s bin and sharedIde\bin are in your path.

• Read ‘Pure Windows NT Installation’ under ‘Supported Network Configurations’ in the Introduc-
tion of this Guide.

• Read Appendix E, Integrating Developer Studio on Windows NT, in the C++ Language Guide.

Chapter 10

Getting Started Guide Troubleshooting 97

10 Troubleshooting

Troubleshooting Unix
This section lists common problems and errors encountered when installing and running ObjecTime
Developer. With the description of the problem is the suggested course of action required to overcome
the problem.

CD read errors

If you are installing from a CD-ROM drive across the network and you are using a fast CD-ROM
device, you may see some tar read errors during the installation process. To avoid the problem, either
copy the CD contents to a local disk drive and run the installation from there, or run setup.sh from
the machine to which the CD-ROM drive is connected.

Incorrect key mappings

If you are running ObjecTime from an HP workstation or from an NCD X-terminal, and some keys on
your keyboard are not working. “Optional settings” on page 40 for more information.

SCCS/RCS files missing

Upon starting up ObjecTime, you may receive several messages indicating that several SCCS and/or
RCS commands cannot be found. If you are not using the ObjecTime library system, then this is of no
concern. Otherwise, you may wish to speak with your UNIX administrator to see about obtaining the
missing files.

Cannot allocate color

This problem can occur if there are insufficient color resources for all of the X Window System applica-
tions that you are currently running. Typically a message will be issued by the X Window System on
start-up of an application that cannot obtain the required colors. In this case, we recommend that you
start up the X Window System with a static color palette.

Troubleshooting Unix

98 Troubleshooting Getting Started Guide

For Sun OpenWindows 3.2, this can be done by using the following command when starting up:

openwin -dev /dev/fb staticvis

 Configuring OpenWindows for use with a Gray-Scale Screen

The following indicates the options that should be used when starting up OpenWindows:

OpenWindows 3.2:

-dev /dev/fb grayvis staticvis

OpenWindows 3.3:

-dev /dev/fb defclass StaticGray grayvis

Font problems

If a dialog is presented which indicates that fonts cannot be found, then the font path was likely not set
correctly. Please see “Starting ObjecTime Developer 5.2” on page 42. Refer to the step where fonts are
set using the xset command.

 Setup of Fonts for X-Terminals

The ObjecTime fonts will not be set properly if the user is on an X-Terminal which obtains its boot files
from a file server that does not have access to the $OBJECTIME_HOME/fonts directory. In this case,
the fonts should be copied to the file server from which the X-Terminal obtains its boot files. Alter-
nately, the X-Terminal can be changed to obtain its boot files from the same file server upon which the
Developer release files have been installed.

 Setup of Fonts for PC and Mac Based X-Terminal Software Packages

To use the ObjecTime fonts with your X-Terminal package, you will first need to convert the delivered
fonts into a format acceptable to your software. Then, you will need to install the fonts and associate the
font aliases with the font files. The steps are as follows:

1 Converting fonts - Most X-Terminal software packages have a utility to convert fonts in ‘bdf’ for-
mat to an acceptable format. Each software package is different in the exact procedure to do this.
Consult your manual on how to do this. You will find a ‘bdf’ version of the ObjecTime fonts in the
‘fonts’ directory, which is inside the ObjecTime installation directory ($OBJECTIME_HOME/
fonts/bdf). This directory contains the five font files in bdf format. Use your X-Terminal’s conver-
sion utility to convert the bdf files into the form used by your software.

2 Installing fonts - Refer to your X-Terminal’s manual for the procedure to install the newly created
fonts. For some packages, you copy the files to a specific directory, for others, you select menu items
to install the font files.

3 Associating font aliases with font files - The ObjecTime code refers to the fonts by the ISO stan-
dard font name. These are long cryptic strings that describe the font. This information is not part of

Troubleshooting Unix

Getting Started Guide Troubleshooting 99

the font file, therefore your X-Terminal will have to be told about this information in a separate step.
This information is usually found in the ‘fonts.alias’ files for standard X fonts (e.g., see
$OBJECTIME_HOME/fonts/sun/fonts.alias). This information is entered by associating the short
font name (e.g., ‘otl10r’) with the long ISO string. The method for doing this varies with the different
software packages. Some packages have menu items and dialog boxes to manually enter the infor-
mation. Other packages allow you to place the information in a file. Refer to your manual for the
exact procedure for doing this. The aliases you need to specify are as follows:

font alias

otl10b -objectime-otl-bold-r-normal--12-100-75-75-p-60-iso8859-1

otl10s -objectime-otl-ultrabold-r-normal--12-100-75-75-p-60-iso8859-1

otl10r -objectime-otl-normal-r-normal--12-100-75-75-p-60-iso8859-1

otl10t -objectime-otl-ultralight-r-normal--12-100-75-75-p-60-iso8859-1

otl10i -objectime-otl-normal-i-normal--12-100-75-75-p-60-iso8859-1

You need to type these aliases exactly with no spaces. The best way to enter these strings is probably to
open up one of the ‘fonts.alias’ files with a text editor, and copy the strings directly from the file into the
file or dialog boxes associated with your X package.

Note that when using Mac/PC based X terminal packages, you probably don’t want to use the Unix
‘xset +fp ...’ command to set the font path, as this may cause problems when starting up ObjecTime.

 Font Installation Diagnostics

Once the fonts have been installed, you can perform these diagnostics to verify that they are installed
correctly.

Try the Unix command ‘xlsfonts | grep otl’ and verify that the output is:

-objectime-otl-bold-r-normal--12-100-75-75-p-60-iso8859-1

-objectime-otl-normal-i-normal--12-100-75-75-p-60-iso8859-1

-objectime-otl-normal-r-normal--12-100-75-75-p-60-iso8859-1

-objectime-otl-ultrabold-r-normal--12-100-75-75-p-60-iso8859-1

-objectime-otl-ultralight-r-normal--12-100-75-75-p-60-iso8859-1

otl10b

Troubleshooting Unix

100 Troubleshooting Getting Started Guide

otl10i

otl10r

otl10s

otl10t

If not, then the ObjecTime fonts cannot be found. Retry the font installation procedure. Once the fonts
are found, then the Unix commands:

xfd -fn otl10b

xfd -fn otl10i

xfd -fn otl10r

xfd -fN OTL10s

xfd -fn otl10t

can be used to open up windows on the five fonts to verify that they look correct. Here is a quick
description of the characters in the fonts to verify that you have the correct font:

otl10b - bold characters: upper/lower case, four arrows and ‘ent’

otl10i - italic font

otl10r - upper/lower case characters, special icons (document, check mark, stop sign, yield sign,

etc.)

otl10s - icon only font: document, check mark, stop sign, yield sign, etc.

otl10t - template font: each cell (character) is really a multi-character bitmap (e.g. ‘<keyword>’,

‘<type-name>’, ‘<literal>’)

If the fonts look correct, there should be no problem running ObjecTime.

• After starting my first ObjecTime Developer session, the fonts look like they don’t have
spaces between the words.

Possible cause: New fonts conflict with your previous installation of ObjecTime Developer 5.X, used
through NFS software.

Troubleshooting Unix

Getting Started Guide Troubleshooting 101

Solution: Point your NFS client software to use newly installed fonts and removed previously compiled
ones. Restart the system and restart ObjecTime Developer session.

Socket connections:

• Cannot open socket connection to external Layer Service master.

Upon initialization of a model that contains SAPs, the toolset times out for each socket connection
attempt (one for each SAP) and displays an error dialog of "Cannot open socket connection to external
Layer Service master." If there is a large number of SAPs, the user interface has the appearance of hang-
ing. It does not respond to mouse input or nor are windows refreshed until all attempts are completed.
This is caused when either the toolset or the rtsController runs out of socket descriptors. To fix this sim-
ply increase the number of available socket descriptors using the “limit” command before starting
ObjecTime.

Online Help

If the UNIX platform in which the toolset is running, does not have a browser installed, the following
error message will be displayed when the toolset is launched.

You must install a compatible browser for online help to function. Please refer to “Installing Netscape
Navigator” on page 35 in this guide for installation instructions. If you had previously been running an
earlier version of Netscape, it may be necessary to uninstall the older version of Netscape prior to
installing version 4.04 from the ObejcTime Developer CD. When a help request is issued from the

Troubleshooting Unix

102 Troubleshooting Getting Started Guide

toolset without a validly configured browser, the following message will be displayed. Once again,

please check to ensure either Netscape Navigator has been configured properly as per the instructions in
the “Installing Netscape Navigator” on page 35 in this guide.

License Server Upgrades

If you need to replace the ObjecTime license server, or perform a disk replacement on the server, it will
be necessary to have new license keys generated by ObjecTime support. After the upgrade and Objec-
Time installation have been completed, please refer to “License Registration” on page 50 in this guide
for further information.

Troubleshooting Windows NT

Getting Started Guide Troubleshooting 103

Troubleshooting Windows NT
Screen flicker

If the colors in ObjecTime Developer ’flicker’, when switching between applications then your system is
set for 256 colors. Increase the number of colors in your Display settings.

Install/Uninstall Problems

• Install will not proceed for non-Administrators.

The user doing the install must be in the Administrator group to run ObjecTime Developer 5.2 Install.
There is a concept of Administrator privileges on the System in NT, rather than network administrator.
To add the user administrator privileges, you have to login as an administrator for the system (not a net-
work administrator) and run "User Manager" utility in Start Menu\Programs\Administrative
Tools(Common). Select Administrators group and add the user to the group. Refer to Windows NT doc-
umentation for further details.

• Uninstall leaves incrementally installed ObjecTime files on the disk.

Always run the uninstall program before re-installing ObjecTime Developer. If components have been
incrementally installed they will not be removed by the uninstall but must be removed manually.

• Install fails trying to create rtsController.exe

If you try to install into a directory that previously held an ObjecTime installation and one (or more) of
the executables is STILL RUNNING then this error will occur. Simply do the following:

1 Reboot the workstation.

2 Delete the partial install (ensure that all the files are deleted).

3 Start the install again.

• Font installation error.

If the ObjecTime installation procedure returns an error (see below) on Font install, it is due to Win-
dows NT not allowing the installer to remove previously installed fonts.

Troubleshooting Windows NT

104 Troubleshooting Getting Started Guide

You may do one of the following:

• reboot or reinstall ObjecTime

• follow the instructions in the dialog (after the next reboot)

• Uninstall of “old” ObjecTime Release causes run failure of 5.2 in the following ways:.
• Loss of license manager from system

• Loss of environment settings for OBJECTIME_HOME and PATH inclusing of
%OBJECTIME_HOME%\BIN\WINNT4

This is due to problems with multiple ObjecTime Releases sharing the same registry entries. This only
happens if you need to uninstall a previous release of ObjecTime Developer after installing a new one.
To avoid this problem, use the following procedure to uninstall a previous release

• For the scenario where you have:

• installed OT5.1

• then installed OT 5.2

if you want to uninstall OT 5.1, you should:

1 Do a user setup in OT 5.1.

2 Uninstall OT 5.1.

3 Do a user setup on OT 5.2.

• Listbox is empty

During setup the user can go to the Directory Browser to select the destination directory for ’ObjecTime
Install’. When the user enters the browser a second time (for example: click Cancel and click Browse
again) sometimes the user will not see mapped network drives, the listbox will be empty. This is a
known limitation related to the InstallShield software, the installation utility used by ObjecTime.

To work around the problem, press then network button on the browser and press cancel in the network
dialog to go back to the Browser.

Troubleshooting Windows NT

Getting Started Guide Troubleshooting 105

Online Help

If the Windows NT platform in which the toolset is running, does not have a browser installed, the fol-
lowing error message will be displayed when the toolset is launched.

You must install a compatible browser for online help to function. Please refer to “Installing Netscape
Navigator” on page 15 or “Configuring for use with Internet Explorer 4.0” on page 16 in this guide for
installation instructions. If you had previously been running an earlier version of Netscape, it may be
necessary to uninstall the older version of Netscape prior to installing version 4.04 from the ObejcTime
Developer CD. When a help request is issued from the toolset without a validly configured browser, the
following message will be displayed. Once again, please check to ensure either Netscape Navigator or

Internet Explorer has been configured properly as per the instructions in the “Installing Netscape Navi-
gator” on page 15 or “Configuring for use with Internet Explorer 4.0” on page 16 in this guide.

Compilation problems:

Compile fails on valid C++ model for TargetRTS or SimulationRTS with VC++ 5.0

The INCLUDE and LIB environment variables may not be properly set. Start "ObjecTime Developer
Command Prompt" from "ObjecTime Developer 5.2" group in the Start Menu and run the "set" com-
mand. Ensure that your compiler binaries are on the path and that the INCLUDE and LIB environment
variables are set (for example, they could be set for the user who installed VC++, but not set for another
user). Set the environment variables. Refer to the VC++ documentation for further details.

Troubleshooting Windows NT

106 Troubleshooting Getting Started Guide

Error loading Actor (“could not spawn process”)

If the executable (Actor.exe) is stored on an NFS server then the NFS client must be configured to have
execute permission set.

Error linking Actor (“error from nmake”)

If the executable (Actor.exe) is stored on an NFS server then the NFS client must be configured to have
execute permission set.

Windows NT Compilation Command Line Limits

In 5.2: If you encounter a compilation error message that complains about the command line being too
long, the cause may be that the length of your compile or linker has exceeded a limit.

Windows NT compilation has command line limits in two areas: source compilation and linking. Both
limits have been explored for the Visual C++ 4.2, Visual C++ 5.0, VRTX PPC Microtec 1.4 and Tor-
nado 1.0.1 PPC Cygnus 2.7.2 compilers.

Source File Compilation

The variables in source compilation are the update name, the %OBJECTIME_HOME% path, compila-
tion options, the local working directory and include directories. The only compiler that has a measur-
able limit is VRTX. The command line limit is 768 characters.

A workaround for the problem is to reduce the number of include directories by combining include
files. Other solutions are to shorten paths and names for the variables listed in the previous paragraph.

Linking

T h e v a r i a b l e s in l i n k i n g a r e th e u p d a t e n a m e , t h e % OB J E C T IM E _ HO ME % p a th
(%OBJECTIME_HOME% in NT), the link options, the number and name length of libraries, the library
search paths and the local working directory. The link limits are shown below:

• Visual C++ 4.2: 2049 characters

• Visual C++ 5.0: more than 20875 characters

• VRTX PPC Microtec 1.4: 4147 characters

• Tornado 1.0.1 PPC Cygnus 2.7.2: 4150 characters

• HPUX 10.20: 16384 characters (make: couldn’t load shell.stop)

A workaround for the problem is to shorten paths and names for the variables listed in the previous
paragraph.

MSVSS Library problems

MSVSS Library Interface fails to find scripts or project

Possible cause: ObjecTime library directory incorrect for Windows NT.

Solution: In order for ObjecTime to recognize a directory as a valid library to be accessed with the script
interface, the directory name must end with ‘.otlib’. This directory will sometimes be referred to as a
‘script library’. A script library must contain an entry that is a directory containing the scripts required

Troubleshooting Windows NT

Getting Started Guide Troubleshooting 107

to interact with that library. This subdirectory must be named ‘.objectime_scripts_dir’ for UNIX
and ‘objectime_scripts_dir_nt’ for Windows NT.

Visual SourceSafe is a project-oriented library system as opposed to the directory-oriented library sys-
tem assumed by ObjecTime. In order to use Visual SourceSafe, an extra step is necessary to map the
directory name to a project name. This is done by creating a file named ObjecTimeMSVSSProject
and placing it in the .otlib directory (not the scripts subdirectory). This file should specify the
name of the project used within the Visual SourceSafe library for any classes/packages that are
p laced i n th is l i b ra ry . A n e x a m p l e o f t h i s f i l e i s p r o v id e d i n t h e d i r e c t o r y
%OBJECTIME_HOME%\bin\LibraryInterface\forMSVSS.

MSVSS Library Interface commands fail to execute with the message ’Cannot execute
MSVSS command ’

Possible cause: MSVSS binaries are not on the path.

Solution: Add MSVSS binaries directory to the path and restart ObjecTime Developer session.

MSVSS Library Interface commands fail to execute with a message ‘Cannot create project <Project
Name> ’

Possible cause: You are not configured as a SourceSafe user.

Solution: Each user has to be configured, before using SourceSafe, through SourceSafe Administrator.
Request from your MSVSS administrator to add you as a user and restart ObjecTime Developer session.

 MSVSS Library Interface commands fail to execute with the message ’Could not open
ObjecTimeMSVSSProject’

Possible cause: ObjecTimeMSVSSProject file is missing from the library directory.

Solution: Each MSVSS library directory should contain this file to point ObjecTime Developer to
which MSVSS project to use. Sample of the file is available in <OBJECTIME_HOME \bin\Library-
Interface\forMSVSS>. Copy the file into the library directory and, if desired, modify the default project
name stored in it.

DLL loading problem

On starting ObjecTime Developer on Windows NT, user sees the error message “ObjecTime encoun-
tered an error while attempting to load a dynamic link library called: EMERG.DLL.”

Possible cause: The user has overridden the environment variable OBJECTIME_HOME by defining a
user variable in the system environment.

Solution: Installation automatically sets the OBJECTIME_HOME variable for the NT user. The user is
therefore advised not manually set the variable.

Troubleshooting Windows NT

108 Troubleshooting Getting Started Guide

Mailing exception files

Windows Messaging must be installed before either exception files or comment files are automatically
mailed. The format supported is SMTP (internet format addresses).

Starting ObjecTime Developer

The image file found in the working directory cannot be renamed from ObjecTime5.2.otd. If it is
renamed, it cannot be started by double-clicking or by other means and it must be renamed to the origi-
nal name.

Troubleshooting License Manager

On Windows NT, the License Manager utilities fail to execute from the command prompt

License manager utilities must be invoked from the ObjecTime command prompt available from the
ObjecTime command group in the Start Menu. This is because the commands rely on certain environ-
ment variables, which will not be set in a normal command console but will be set by the “ObjecTime
Developer Command Prompt”.

License manager fails when running on a stand-alone Windows NT machine

If the license keys do not work for a stand-alone system, and the logfile indicates that they are not valid,
then the IP address used to generate the keys may be different than the address for the network card
installed on the machine. If this happens, make sure the IP address supplied to ObjecTime for key gen-
eration is the one for the installed network card.

Note: a stand-alone system must have an ethernet card installed in order to be able to run the license
manager.

License file corruption

If licensing suddenly fails, and the logfile indicates that the license files are not valid, then the license
files may have become corrupted. The solution is to reinstall the license key files with the activateKey
command. It is recommended that the original keys from ObjecTime always be retained in case this
happens.

It is also recommended that the account used to install the license keys be the same one used to run the
license manager.

Dialup networking conflicts

If licensing on a stand-alone machine suddenly stops working, then this may be an interaction with dia-
lup networking. If dialup networking is activated, the dynamically assigned IP address may conflict
with the IP address of the network card. This can cause the license manager to think it is running on a
machine for which the license keys are not valid.

If this happens, dialup networking can be deactivated and the problem should be corrected. If it is
required that dialup networking be used on the same system as the one running the license manager,

Troubleshooting Windows NT

Getting Started Guide Troubleshooting 109

then the system administrator should configure dialup networking to use a static IP address that is the
same as the one on the installed network card.

This problem can be avoided if the network card is installed before the dialup networking. If installation
is done in this order, the activation of dialup networking should not conflict with the IP address obtained
by the license manager from the network card.

Logfile creation failure

Failure to create a license manager logfile can be caused by the failure to specify a full path name and
file name. Relative paths will not work when specifying the logfile location and name.

Key activation failure

If the license manager key files are not created when the activateKey command is run, then make sure
that a full path name is specified for the license key directory. Also, make sure that the account from
which activateKey is being run has write permission for the license directory.

Inactive License Manager

Immediately following the installation of the license manager on Windows NT, the license manager will
not be running. The license manager will be started automatically the next time the machine supporting
the license manager is restarted. An alternative to restarting the machine is to start the license manager
manually. This can be done using the ElanLM control panel accessible from the control panel window.

The TZ environment variable should be set to a valid value. Otherwise when the time changes between
daylight savings time and standard time, the license files will become invalid and will have to be rein-
stalled using activateKey.

License Server Upgrades

If you need to replace the ObjecTime license server, or perform a disk replacement on the server, it will
be necessary to have new license keys generated by ObjecTime support. After the upgrade and Objec-
Time installation have been completed, please refer to “License Registration” on page 50 in this guide
for further information.

ICON Display

If the ObjecTime icon which is displayed under Windows NT does match the documentation, you may
need to increase the number of colors which Windows NT uses to display the program icons. In order to

Troubleshooting Windows NT

110 Troubleshooting Getting Started Guide

correct, you will need to bring up Display Properties from the Desktop of your NT workstation and
check the box as displayed in the following figure.

Appendix A

Getting Started Guide Developer 5.2 Directory Contents 111

ADeveloper 5.2 Directory Contents

After installation of the main ObjecTime files has been completed, the directory structure should be as
follows. Please ensure that the <INSTALL> directory and all its files are readable, and not writable, by
all users of ObjecTime. The Developer5.2 directory and its sub-directories contain all the individual
files that comprise the particular release. Some of the files and directories included here are:

<INSTALL>/Developer5.2 (this is the top level)

Help

This directory and its sub-directories contains the on-line Help, as well as an on-line version of the
HTML conversions of all ObjecTime manuals (complete with hypertext links).

Training

This directory and its sub-directories contain model updates for the Tutorial (RPL, Batch, C and C++
examples) together with those for additional user exercises.

specials

This directory will contain any special patch patches that may be issued for your installation.

image/ObjecTime5.2.otd

This is called the image or session file, and is a combination of all the code and data corresponding to
the executing ObjecTime program. This file will be copied by every user (through the use of the
create_objectime_dir shell script on UNIX, or through the Launcher under Windows NT) into the user’s
own private directory. All ObjecTime models will be stored automatically in this file whenever the ses-
sion is saved. Note that you should also save each model Update, using the ObjecTime passivation
mechanism, for backup purposes.

bin

The bin directory holds the ObjecTime executables and various scripts. The three main executables/
sc r ip ts for runn ing ObjecTime are descr ibed below (Ob jecTimeVM.* , ob jec t ime,
create_objectime_dir). Additional scripts include copy_objectime_dir, otdebug, otprint,
objectime_viewer. Executables/scripts for licensing are: ObjecTimeKeyInfo, startLicenseManager, kill-
L icenseManage r, k i l lUserL i cense , l i cense In fo , ac t i va teKey, serverUsageRepor t .

112 Developer 5.2 Directory Contents Getting Started Guide

$OBJECTIME_HOME/bin also contains subdirectories for each of the supported workstation plat-
forms.

bin/*/ObjecTimeVM.*

These are the modified ObjectWorks/Smalltalk virtual machines for various platforms. These files are
executed in conjunction with the ObjecTime5.2.otd file.

bin/*/objectime

This is a UNIX shell script which you use to invoke the ObjecTime toolset. It automatically selects the
appropriate virtual machine for execution depending on the type of workstation it is invoked from.

bin/create_objectime_dir

This is a UNIX shell script which is used to create a directory which contains an ObjecTime session file.
ObjecTime is always executed from this created directory.

Note: In WindowsNT, the function of ‘bin/objectime’ and ‘bin/create_objectime_dir’ are combined
into a single file ‘bin/winnt4/ObjecTime5.2.exe’.

license

This directory contains various files containing encrypted information and is used by the License Man-
ager in order to ensure that ObjecTime is being executed according to the End-User License Agreement.

ModelExamples

Various examples illustrating the use of ObjecTime features are included here. Each update has instruc-
tions on its use within the Properties Editor of its Update Browser.

C++/SimulationRTS

This directory contains all of the source code, makefiles and other files required by the C++ Simulation
Services Library.

RPL

This directory contains files used by the RPL browsers in ObjecTime.

fonts/*

This directory contains directories containing required text fonts.

linearForm

This directory contains yacc specifications for the ObjecTime linear form output used to store classes in
a library or directory.

tools

This directory contains shared libraries which allow ObjecTime to integrate with source code debuggers
on different target platforms.

Getting Started Guide Developer 5.2 Directory Contents 113

ntsetup

This directory contains the setup programs for installing ObjecTime on Windows NT.

Note: In Windows NT, the directory ‘ntsetup’ is used to perform a remote setup. By accessing this
directory, which contains the file ‘setup.exe’, you can setup from a remote machine using an existing
installation.

Versions

This directory contains packaging and version information..

WebModelPublisher

This directory contains executables and scripts for the Web Model Publisher option if applied to your
ObejcTime installation

Codegen

This directory contains executables and scripts relating to code generation utilities.

114 Developer 5.2 Directory Contents Getting Started Guide

Appendix B

Getting Started Guide Known Limitations / Restrictions 115

BKnown Limitations / Restrictions

Inconsistent compile state
It is possible, after some model and environment changes, to get into a state where the model compila-
tion is failing even though the model should compile. In such circumstances, the only solution is to
remove the generated files (C++/C, makefiles and dependency files) and start again. This problem
occurs because dependency (.dep) files contain the last-known set of depended files, and will only be
rewritten if one of these files (or the Inclusion Paths) changes. Consequently, the Makefile requires that
all of the last-known set of depended files already exist.

Known examples of where model/environment changes will cause compile problems which require
cleaning up generated files are the following:

• An external header file, or path to a header file, is renamed both externally and in the toolset, after
a compile has been performed. This will cause the compile to fail during the dependency calculation
phase of compilation. This is because dependency files referring to the old file/path will be used to
calculate the new dependencies. Since the file no longer exists or has moved, the dependency cre-
ation script, makedepend will not find the file and will fail.

• The loadbuild paths set in the update properties editor are changed to point at a different directory
after a compile has been performed. The generated dependency files will still point at the original
loadbuild directory resulting in the wrong files being considered during model compilation.

To recover from the above situations, some of the generated files must be removed. To remove the gen-
erated files, the makefile in the update directory can be run by usingwith the command “make
CLEAN_ALL.NOW” from the update directory. This will remove the LF, C++, C and build directo-
ries, their contents and subdirectories. A subsequent re-compile from the toolset will re-generate these
directories and their contents.

If ClearCase is being used as the development environment, then instead of running the makefile with
the clean target, the user should re-establish the view and remove all the view private files created by
their toolset session.

Note: In ObjecTime Developer 5.2, scripts for sync with library and improved version handling are
provided only for Clear Case. You may optionally develop scripts for other library systems.

If VPATH or ClearCase is being used for build reuse, then the “Generate Changes Only” should be
selected on the re-compile. This will bring the toolset/environment into a state consistent with the build

Inconsistent compile state

116 Known Limitations / Restrictions Getting Started Guide

context and the changes made in the toolset since the update was created from the context (or the project
file was merged into the toolset).

Supported Platforms

Getting Started Guide Known Limitations / Restrictions 117

Supported Platforms
• The following platforms are supported for version 5.2 of the ObjecTime Toolset: AIX 4.2.1 (PowerPC),

HPUX 10.20, IRIX 6.2, Solaris 2.5.1, Solaris 2.6, SunOS 4.1.3 and Windows NT 4.0.

• ObjecTime does not guarantee correct operation if you use the -O2 or higher optimization setting with
the gnu compiler on the AIX4 single and multi threaded platforms. (PR 1943)

• During compilation on pSOS platforms, a Warning: ‘pointer to function cast to pointer to non func-
tion’ appears in the Error Browser. This is a valid warning. The (void*) array _types[] is used in Tar-
get Observability to allow us to print non-ASN.1 types that are fields of Sequences. It is void* rather
than a function pointer because flags can be part of the array as well. This warned message should
be disregarded by the user.

External Layer

• In situations using External Layer short circuit connections with the TargetRTS, you should use a
SPP replication factor greater than the number of connections required. This is because of a race con-
dition in which a new connection may be requested before the old one is removed. (PR1874)

X11
X server bugs on HP-UX 10.20 in ObjecTime Developer for C++ and C

• We have discovered a few graphic related bugs when using ObjecTime on HP-UX 10.20 X servers.
Some of the ObjecTime code has been rewritten to work around these X server bugs, but there exists
at least one minor graphic anomaly around which we cannot work. This problem happens when the
ObjecTime window is partially covered by another X server window. In this state, when windows
and dialogs are closed on the main ObjecTime window, the background may not be redrawn prop-
erly. A user workaround is to either collapse and then expand the main ObjecTime window to cause
it to redraw when this graphic corruption occurs, or just to not use windows overlapping with the
main ObjecTime window.

Note that this problem has been found to occur on various versions of the X server for the HP-UX
10.20, and certainly occurs on the most recent version of the X server at the time of the ObjecTime
5.2 release.The bug is known to occur on the following patch level of the X server:

PHSS_11628 s700_800 10.20 X/Motif Runtime July97 Periodic patch

Windows NT

• You cannot delete files when they are currently open or being observed in the Explorer. This impacts
how ObjecTime code generation and possibly other subsystems work. An error message is returned
if the update/C++ or update/C directory is open during code generation.

• When you start ObjecTime Developer with Target Observability enabled, there might be a slight de-
lay before the socket connection between the Toolset and the Controller is established. During this
time, the '() Load' radio button in the Compile dialog box is disabled. If this happens, click [Cancel],
wait a couple of seconds, and try again. (PR4181)

• The Toolset display sometimes doesn't get completely updated when dragging another window in
front of an open Toolset window. Thin background colored vertical lines might be left on the Toolset
window. To refresh the window, maximize it and then restore its size. (PR3226)

X11

118 Known Limitations / Restrictions Getting Started Guide

• If the license manager is running locally on the system, the uninstall procedure does not remove the
License Manager service from the system. The license manager can be disabled by the user through
the system control panel.

• When using online help each selection of a menu item will open up a new copy of the default brows-
er. This is due to a limitation in the browser interface on the Windows NT platform.

• If you start a compilation of a larger C++ model and abandon the ObjecTime session, the Task Man-
ager reveals that the compiler continues to execute. (PR 3834)

 NEW as of 5.2: The following issues are new since ObjecTime Developer 5.2:

• Pathnames: ObjecTime Developer 5.2 can’t be installed in a directory whose pathname contains a
space. It can handle include or library directory names that contain spaces if they are enclosed in
double quotes. (PR3833)

• Cross Platform Access: In ObjecTime Developer 5.2, when using PVCS libraries for Windows NT/
Unix cross-platform development, you can access Unix PVCS libraries from the Windows NT en-
vironment but you cannot access Windows NT PVCS libraries from the Unix environment.

• Windows NT Compilation Limits: For information on source compilation and linking limits, see
“Windows NT Compilation Command Line Limits” on page 106 of this guide.

Working Directory

Note: Do not store files or updates in the ObjecTime Working Directory. Set up another directory
where you can passivate your updates.

Merging

• Daemons placed on an unconnected transition point from the inside of a state, will be lost during a merge.

SimulationRTS

• The 'size' method on subclass ports in the SimulationRTS always returns the replication factor for
the base class, even if the replication factor is different for the subclass. (PR3410)

• When using Windows NT to recompile the SimulationRTS you must use the makent.bat script sup-
plied.

Class differences merging

To perform merging of changes from different versions of a class, it is recommended that the differ-
ences tool and CVM (class versions merge), accessible from the toolset menu, be used.

Some development environments support multi-way merging of classes. This facility is used to sup-
port simultaneous check out of a class. The results are then merged together. Multi-way merging
takes into account what has been added and deleted, relative to a common ancestor version of the
class, and constructs a class which contains all the appropriate changes. In some cases when two
changes have been made in the same area, the tool signals a conflict which must be manually re-
solved. ClearCase’s ClearMerge is one such utility which performs multi-way merging.

Some customers have asked about the possibility of using these external merge facilities on the stor-
age linear form of ObjecTime models. ObjecTime cannot recommend this practice because of the

X11

Getting Started Guide Known Limitations / Restrictions 119

possible corruptions which may result. Due to the structure of the model files, they are not amenable
to textual merging, and such an attempt may result in a corrupted file. Corrupted files may not be
readable by the toolset or they may be readable but result in incorrect code being generated.

To perform merging of changes from different versions of a class, it is recommended that the differ-
ences tool and CVM (class versions merge), accessible from the toolset menu, be used.

User interface

120 Known Limitations / Restrictions Getting Started Guide

User interface
Shortcut Keys

• We have discovered minor problems when using ObjecTime's shortcut keys when running ObjecTime
under various window managers. Some window managers use the same shortcut keys as ObjecTime. If
a window manager has the same shortcut key as is used in ObjecTime, typing the shortcut key will cause
the window manager to perform the action as defined by the window manager and the shortcut key will
not be delivered to ObjecTime.

In short, if you discover ObjecTime shortcut keys that either do not work or do something unexpected,
then your window manager may be intercepting these shortcut keys. This problem can usually be fixed
by modifying your window manager's shortcut key map. A few known problems with shortcut keys and
possible fixes are listed below.

• The default configuration for OpenWindows 3.3 has the shortcut key “Meta-W” defined to close
OpenWindows windows. When using ObjecTime, this default behavior will close (collapse) the
ObjecTime window. To disable this behavior and use Meta-W to close windows inside ObjecTime, you
can:

• open the OpenWindows properties windows (from the background menu)

• select category 'Keyboard'

• set 'Keyboard Menu Equivalents' to 'Application Only' instead of the default 'Application + Window'

• The OpenWindows Virtual Window Manager (the window manager which simulates many virtual
screens on one monitor) uses the Meta-<arrow key> shortcut keys to allow switching between screens.
ObjecTime also uses these shortcut keys in the RPL editor for navigating between nodes. Therefore, if
using the OpenWindows virtual window manager, you will not be able to use the Meta-<arrow key>
shortcut keys in the RPL editor.

Batch Mode

• When merging in batch mode in ObjecTime Developer 5.2, incorrect syntax in the batch script file
may cause system exceptions. For example, merge from /home/user1/tests/OpMan-
ager.actor endmerge would cause system exceptions to occur. The correct syntax for this
operation is:

merge from /home/user1/tests OpManager.actor endMerge

• When using the batch mode "selectOption" action, only language option names that do not contain
spaces can be specified.

Library

• SourceSafe Library Management reports that all ObjecTime class types are binary, even if they re-
ally are in text mode. (PR4174)

• Library System: When submitting classes to a library, do not cancel the submission by clicking [Can-
cel]. Doing so might result in a bad state, where the Toolset indicates that the class is still checked
out, but the library system thinks it's not checked out. (PR3117)

• The library system does not currently prevent several users from submitting two classes of different types
(for example, actor class and data class), but with the same name, to the same library. This may cause a

User interface

Getting Started Guide Known Limitations / Restrictions 121

system error upon subsequent merging of one of these classes from the library. Hence users should
ensure the uniqueness of all class names submitted to the library.

• The RCS library mechanism allows a user to check out classes more than once through multiple up-
dates open in the same session. (PR 1124)1

If a class is checked out more than once, unchecking it out will result in only the local update browser
being updated.

Note that SCCS libraries do not have this problem.

• Auto-mounted file systems can sometimes result a problem if there is no activity for a long time. This is
specifically applicable when using auto-mounted libraries. Some systems remove the auto-mounted
library after a certain period of inactivity. The workaround is to leave one shell with its current working
directory in the library directory, that is, open a shell and cd to the library directory. The auto-mounter
considers it in use and will not remove the file system.

Note: There is an incompatibility with the generic use of PVCS and SCCS libraries at the same time.
To use PVCS and SCCS together, use the library script interface to both and make sure that your
Path provides access to all PVCS tools and to the SCCS command. Place PVCS before SCCS in the
Path.

Emergency Passivation

• The kill -USR1 facility may not be able to invoke the emergency save operation in the event of the
X-Server crashing.

Memory Usage

• To ensure the most optimum use of memory, we recommend that users should periodically1 passivate
their updates and then re-activate them into a fresh ObjecTime session created via the script
create_objectime_dir. This is especially needed if you have cancelled several activations of updates.

Platforms

SGI Machines

• The license server does not seem to recognize user IDs correctly, therefore running ‘licenseInfo’ shows
user IDs for all license holders as ‘unknown’.

• You must use the pcf fonts with SGI machines.

AIX Machines

• A session saved on an AIX machine can not be used on any other platform. Updates or contexts should
be used to transfer models from AIX machines to any other platform.

DOORS

• The elements in the ObjecTime design update should not contain any double quotation marks. This
causes an error when the exported linear form for the update is imported into a DOORS Design For-
mal Module.

1. Weekly, or more often if memory consumption appears excessive.

User interface

122 Known Limitations / Restrictions Getting Started Guide

• NEW as of 5.2: DOORS Integration Pack 2.1 is required for compatibility with ObjecTime Devel-
oper 5.2. Starting with DOORS Integration Pack 2.1, a file in:

Unix: $DOORSHOME/bin/OT_Version

or on Windows NT: %DOORSHOME%\bin\OT_Version

OT_Version can be viewed to identify the version of the integration pack which is installed. If this
file is missing, the installed integration pack is of a previous version.

Default Parser/Scanner Generator

• In order to support building the linear form parser on multiple platforms, GNU Bison (version 1.25
and later) is now the default parser generator and flex (version 2.5.4 and later) is now the default
scanner generator. Both of these tools are publicly available on a number of sites on the Internet.

Help

• If you bring up help from within the Toolset, and your configured browser isn't running, the Toolset
will start the browser for you. But when you exit the Toolset, the browser is left running. (PR4185).

• ObjecTime Developer passes several parameters to Netscape when starting the online help system.
Therefore, if a system administrator wishes to use a script to invoke the Netscape executable, then
these parameters must be passed to the executable.

• The link from the help index page always goes to the Table of Contents and skips the front matter.
To review this material go to the document and select [Top].

Simulation and Target Compatibility

• When using recall/recallAll in OTD 5.2 do not use default arguments. Supply both arguments to be
fully compatible with the Simulation RTS and the Target RTS.

Inclusion Paths

• Use absolute inclusion paths (as opposed to relative inclusion paths) as the results from using rela-
tive inclusion paths can be inconsistent and in some cases will simply not work.

Simulation Timing

There are known problems using invokes with C++ actors under simulation timing, which even an all
C++ model won't fix. This has to do with the single thread that C++ simulation actors run under, sharing
the same stack. Using invokes under simulation timing can often result in cases where the C++ execut-
able stack is not unwound in the proper order. To be safe, only RPL actors should be used with invokes
under simulation timing.

RoseLink

• NEW as of 5.2: ObjecTime RoseLink 1.1 is required for compatibility with ObjecTime Developer
5.2.

ObjecTime Limited
340 March Road
Kanata, Ontario
Canada K2K 2E4

