Rational Software Corporation

Rational Process
Workbench™

Process Developer’s Guide

VERSION: 2002.05.00

PART NUMBER: 800-025093-000

WINDOWS 98 SE, ME, NT, 2000, XP

R a t 1 O na]® support@rational.com

the software development company http://www.rational.com

IMPORTANT NOTICE

COPYRIGHT
Copyright ©1999-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-025093-000
Version Number: 2002.05.00

PERMITTED USAGE
THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE

PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS
Rational, Rational Software Corporation, Rational the software company, ClearCase,

Rational Rose, Rational Suite, Rational Suite Enterprise, Rational Unified Process or
RUP, and Rational Process Workbench among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and /or
in other countries. All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, the Office logo, Windows, the Windows CE logo, the
Windows logo, Windows 98 SE, ME, NT, 2000, XP, XP Home, and XP, and the
Windows Start logo are trademarks or registered trademarks of Microsoft
Corporation in the United States and other countries.

FLEXIm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXIm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-2001, Summit Software Company. All rights reserved.

PATENT
U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional

patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set

forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER
This document and its associated software may be used as stated in the underlying

license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and
its documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents

Preface i it Xi
Audience. Xi
Other RESOUICESo e e e e e e Xi
Rational Process Workbench Documentation Xii
Contacting Rational Technical Publications Xii
Contacting Rational Technical Support. Xiii
1 An Overview of the Rational Process Workbench.............. 1
Configuration Management 2
2 Modeling Elements and Principlescoiuns. 3
The Use of Stereotypes 5
Process Elements. 5
Artifacts. . . 7
ROlES . oo 7
ACHVItIES . . o o e 8
DiSCIpliNES . ..o e 8
Workflow Details. 8
TO0IS . . oo 9
TOOI MeNtOrS e 9
PrOCESSES. . . 9
Dynamic Specifications 9
Discipline Workflows. 10
ACtivity OVEIVIEW e 11
Process Deployment Specification. 12
Process ComponentModels i 14
Assess the closure of a process configuration. 15
Model Management 16
Using «process model» packagest 17
Using «tree node» packagesottt e 17
Deriving process models from existing process models. 17
Modeling Techniques e 18
Achieving variability 18

Contents v

Using interfaces in process modeling. 18

Usinginheritance i e 20
Using operatoroverloading i 21
3 Process ContentLibraries................ciiiiiiiaa... 23
Presentation Names e 24
Common Files e e 24
Description files 25
BrowSseriCONS 25
Folders . ..o e 25
Diagram files. 25
Anonymous fileso e 25
Additional Files. e 25
Artifactfile typeso e 26
Disciplinefile types.o 26
Activity file types. e 26
Templates. e 27
Web Site FOrm e 27
4 Working with Process Models and Publishing Web Sites 29
The Structure and Content of Process Models 29
Maintaining parallel process models. 29
Branching and merging processmodels 30
PublishingWeb Sites. 32
Hyperlinks and presentationnames i i, 32
What determines the organization of the files in a published Web site? 32
What determines the content and organization of the tree browser?......... 32
Exporting ComponentModels i 34
5 Working with Rational
Process Workbench. 37
Setting Up and Configuringthe RPW Tool. 38
Enabling and disabling the RPW add-in to Rational Rose 39
Customizingtemplates. i 39
Setting Up and Managing the RPW Workspace 40
Managing the process model and Process Content Library from the RUP 40
Creating your customization workspace. 41
Sharing process material among developers. 42

vi Contents

6

Developing Process Models. 43

Defining new processelements. 43
Deriving new process elements from existingelements 46
Creating variation points in your processmodel 48
Replacing Activities e 49
Replacing Workflow Details i 50
Managing Process Content 51
Creating and editingcontentpages. i i 51
Synchronizing a Process Content Library with its process model 53
Translating a Process Content Library into a different language 54
Managing Web Site Forms. 54
Defininga Custom Process 55
Creatingyourownprocessmodel 56
Authoring your processtext. 58
Organizing your Process Content Library 60
Creating your own process COMpONENtSouu it 61
Defininga process closure. i 62
Defining how the published tree browser will be organized................ 64
Upgrading to a new version of the RUP. 66
Publishinga Process 68
Assessing the closure of yourprocess. 68
Publishinga Web site. 69
Using custom-designed graphics inyour Web site 70
Command Referencecciiiiiiiiiiiiinnanernnn 73
Process Element Commands. i 73
Check Syntax command 74
Overview Commandt e 75
Artifact Overview 76

Role overview 76

ACtiVIty OVeIVIEW . . . e 77

Tool Mentor OVEIVIBW. e e 79
DisCipline OVEIVIEWo e 79
Workflow Detail overview. 80

Attach Activity command e 80
Attach Workflow Detailcommand 81
Process Content Library Association Commands 82
Associate Text Library command. i 82
Inject Component Realizationcommand 83

Contents vii

viii

Process Content Filescommand 84

Web Site Formcommand. e 85

Check Filescommand e 86

Process ComponentCommands. 0. 87

Assess Configurationcommand. 87

Publish Configuration command. i 88

Capture Component Realizationscommand 89

Export to Configuration Unit Filecommand 89

A Rational Process Workbench Commands in HTML Files....... 91

HTML commands for Artifacts 92

HTML commands for Activities. 94

HTML commands for Tools and ToolMentors 96

HTML commands forRoles i 97

HTML commands for Disciplines and Workflow Details 97

HTML commands fortreenodes, 101

HTML commands for diagram areamap filetypes 102

General HTMLcommands it e e 103

[Lo =T= - T 107
Contents

Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36

Overview of the semanticmodel 3
Rational Rose modelingspace 4
Process elements of the semanticmodel 6
A sample model segment 7
Dynamic specifications of the semanticmodel 10
Modeling a Discipline workflow 11
Modeling Workflow Details i i, 12
RUP components defined in Rose’s componentview. 13
Process components of the semanticmodel. 14
An example of component dependencies 15
An overview of the RUP processmodel 16
Elements for managing the processmodel 17
An example of how to use interfaces., 20
Process Content Files dialogbox 23
Presentation Name dialogbox 24
Process model derived fromthe RUP 31
Tree browsermenufiles i 33
RUP processmodel. i i 34
RUP Process Closuret 63
Check Syntaxcommand 74
Overview command.ttt e 75
Artifact overview 76
Role overview 76
Activity overview 77
Tool Mentor tab on Artifact overview 78
Disciplines tab on Artifact overview. L. 78
Tool Mentor oVerview. e 79
Discipline Overview e 79
Workflow Detail overview. e 80
Attach Activity command L 80
Attach Workflow Detailcommand 81
Associate Text Library command. 82
Inject Component Realization command. 83
Process Content Filescommand. 84
Web Site Formcommand e 85
Check Filescommand. e 86

Figures ix

Figure 37
Figure 38
Figure 39
Figure 40

x Figures

Assess Configurationcommand 87
Publish Configurationcommand 88
Capture Component Realizations command. 89
Export to Configuration Unit File command. 90

Preface

This document is the user’s guide for the Rational Process Workbench™ (RPW),
which is a tool for customizing and publishing the Rational Unified Process® or
RUP® based process.

This manual describes in detail how you use RPW to develop and model your own
process, and how to publish Web sites based on your own process definition. The
RPW assists process engineers by accelerating their delivery of a customized software
development process, allowing them to visually model process using Unified
Modeling Language (UML).

This tool is for use with Microsoft Windows 98 SE, ME, Windows NT, Windows 2000,
and XP operating systems.

Audience

This manual is intended for process engineers who are familiar with UML as an
object-oriented modeling language and with object-oriented design using Rational
Rose.

Other Resources

You can view online Help whenever you need assistance by doing the following:

» From any RPW display, press the F1 key and select an option from the Help menu.
This manual is available in both printed and PDF formats. See the Rational® Suite
Documentation CD for the PDF file.

For information on developing process plug-ins using Rational Process Workbench
(RPW), refer to the RUP Resource Center (www.rational.net/rupcenter/). The RPW
Tutorial is also located on the RUP Resource Center.

For an introduction to RPW and information about installing this tool, see the
Rational Process Workbench manual titled Getting Started.

Xi

Rational Process Workbench Documentation

This document covers the following topics:

» It presents and describes the underlying semantic model, which is both the
foundation of RPW'’s operation and the model that defines the terminology of the
process modeling language.

» Jtdescribes RPW’s operation, and the steps involved in developing and publishing
processes.

= It provides a complete command reference for RPW.

For anyone interested in process engineering, in general, and how this product
applies to your organization, please read:

» Chapter 1, An Overview of the Rational Process Workbench

» Chapter 2, Modeling Elements and Principles

= Chapter 3, Process Content Libraries

= Chapter 4, Working with Process Models and Publishing Web Sites

Of particular interest to process engineers are:

» Chapters 1 through 4, introduced above

= Chapter 5, Working with Rational Process Workbench

» Chapter 6, Command Reference

= Appendix A for information on RPW commands in HTML files

A Glossary of terms is also provided.

Contacting Rational Technical Publications

To provide feedback about documentation for Rational products, please send e-mail
to our technical publications department at techpubs @rational.com.

xii Chapter - Preface

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

Your Location Telephone Facsimile E-mail
The Americas (800) 433-5444 (781) 676-2460 support@rational.com
(toll free) Lexington, MA
(408) 863-4000
Cupertino, CA
Europe, Middle +31 (0)20 4546 200 [+31 (0)20 4546 202 | support@ europe.rational.com
East, Africa Netherlands Netherlands
Asia Pacific +61 29419 0111 +61 29419 0123 support@apac.rational.com
Australia Australia

World Wide Web | www.rational.com

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

* Your name, telephone number, and company name
* Your computer’s make and model

* Your operating system and version number

* Product release number and serial number

* Your case ID number (if you are following up on a previously-reported problem)

Contacting Rational Technical Support xiii

xiv Chapter - Preface

An Overview of the
Rational Process
Workbench

RPW is a new type of tool that brings process engineering to its next level of maturity.
Your ultimate goal in using this product is to publish process Web sites that describe
your software engineering processes.

RPW introduces process modeling to manage the structural complexity of software
engineering processes and to allow specification of process at a higher level of
abstraction than the process text itself.

With RPW you use both the expressiveness of UML as a modeling language and
Rational Rose’s visual modeling support. RPW defines a specific language for process
modeling and provides support for modeling when using this language.

There are four entities involved in developing process with RPW.

Process Model — In the process model, you define your process elements; that is,
your Roles, Artifacts, Disciplines, and so forth. This is also where you express how
they relate to each other and specify how they collaborate during the course of the
process. Process Models are defined in Rose’s logical view.

Component Model — The component model contains the definitions of process in
terms of process components. This is where you select those process elements you
want to include in your own process. Component Models are defined in Rose’s
component view.

Process Content Library — The Process Content Library is the collection of HTML
files, including their descriptions and any other material that will ultimately make
up the Web site. This is where you author the text that describes your own process.

Process Web Site — Process Web sites are published by RPW. The process Web site
is the final result of your development activities using RPW.

The underlying metamodel recognized by RPW is an extension to the Unified
Modeling Language (UML). RPW uses the UML’s standardized extension
mechanisms to specify its modeling concepts and operates as an add-in to Rose.

Configuration Management

RPW separates the process structure (model) from its content (process text).

When several process developers work in parallel to develop the same process model,
the basic principle of dividing the process model into controlled units is applied, just as
it’s described for Rational Rose usage in general. To keep your process modeling
situation simple, we recommend that only one person is assigned the responsibility of
actually modeling the process inside of the process model.

This basic principle of configuration management is also used to control branching
and merging of process models: the RUP® process model is delivered as a separately
“controlled unit” file, and your customizations of that model needs to occur in your
own separate process model. This pattern may be repeated. For example, a large-scale
organization may want to customize their process at multiple organizational levels.
This is achieved through each organizational level developing its unique
customization in its own, separate process model, which is based on the process
customization of its enclosing organizational unit. This forms a chain of dependent
process models, with each process model developed independently of the others, and
where each process model is a refinement of its parent model.

Configuration management of a Process Content Library is not integrated with the
configuration management of its process model. The Process Content Library is a
directory structure where the files and folders may be units of configuration
management. Each process model is associated with its own Process Content Library.
Therefore, in an environment where multiple process models are used, multiple
Process Content Libraries will also exist, each of which may be
configuration-controlled separately.

To maintain the integrity of the RUP Process Content Library, it must be treated as a
read-only 1ibra1ry.1 In the same way that customizations occur in separate process
models, their accompanying Process Content Libraries reside in their own file
directory.

1. See the section titled Setting Up and Managing the RPW Workspace on page 40 for details.

2 Chapter 1 - An Overview of the Rational Process Workbench

Modeling Elements and
Principles

This chapter defines the elements and principles that you use to define your own
process models. Collectively, these definitions are referred to as the semantic model of
the RPW.

A fundamental premise for RPW, and its semantic model, is that it’s entirely based on
UML—each element in the semantic model is derived from a standard UML element.
RPW uses stereotypes to designate the UML elements to their particular (process
modeling) kind. Therefore, RPW defines a “small language” that’s specific for process
modeling based entirely on UML and for which the “words of the language” are
given by the stereotypes used.! In fact, this “small language” uses only a small subset
of UML to define the dozen, or so, modeling concepts supported by RPW.

Figure 1 illustrates the semantic model, not the organization of your process model,
using three packages to separate and logically group its concepts.

Frocess
Elements
7R
Cynamic

specifications

.
N
B

Frocess
Components

Figure 1 Overview of the semantic model

Process modeling concepts are divided into three categories, depending on their
purpose in process models:

1. From a UML perspective, this semantic model and its stereotypes form what UML calls a
profile.

* Process elements define the core concepts used in process modeling and how
these are associated to each other. This is where concepts like Role, Artifact, Activity,
and Discipline are defined.

* Dynamic specifications define concepts that specify how the process elements
collaborate in a process. UML activity diagrams and sequence diagrams are used
for these specifications.

» Process components define concepts that specify how process elements are
grouped into components to form “chunks of process” that will be deployed as
collective units.

This chapter refers to the two Rose views used by RPW —logical view and
component view. Process elements and dynamic specifications are defined in the
logical view, and process components and process closures are defined in the
component view.

Figure 2 shows the Rose modeling space where you'll be developing your process
models. Process models are developed in Rose’s logical view and component models
are developed in its component view.

4> Rational Rose - rup - [Class Diagram: RUP / Process model overview]
File Edit “iew Format Browse Beport Query Toolz Adddne ‘'window Help _|ﬁl|1|

‘DD"E\&E\@M’:’D\@I#IQ%@
@IUD ; W ;

£33 Use Case View BEC
=3 Logical View
: =
=17 <<process models > RUP
B Aditacts in RUP -
77 Interface 5pecifications P
73] Roles in RUP P
=)
a
_

RUP disciplines and
process

77 RUP disciplines and process
7] Toolsin RUP

Package dependencies
Process madel overview

Tool dependencies

B Variant extensions

0 templates! RPWtemplatesPath =
-0 content_librar! RPwAlibargR oot Theelll

_:>>, Aszociations B BT -z fArifacts in RUP
|| Main y
3, Assoristions .

=3 Component View ‘.‘ -
=-{13 RUP companert madel Y e
[atifact components | ﬁf s i

- digciplines and tooks -

[role components Taols in RUP
[RUP closure

-] additional rales

5] analysiz_design artifacts
8] analysts

5] business_engineering artifacts

2] com artifacts
=

¥ 1 Aarlournant arkifanks

[
[
[
[

Roles in RUP

1] | » [
For Help, press F1 |Default Language : /ﬂ

Figure 2 Rational Rose modeling space

4 Chapter 2 - Modeling Elements and Principles

The Use of Stereotypes

RPW’s entire operation is based on using UML stereotypes as the means of assigning
process elements to their particular kind. RPW defines stereotype icons for the
different concepts, and you specify the model element kind by setting the stereotype
value for the modeled element. This is key to the whole operation of RPW.

Process Elements

Process elements are defined using UML classes and operations, which are
stereotyped to carry their specific meaning. In addition, the various relationships
between elements are defined using associations, also stereotyped to their specific
kind.

Figure 3 presents all process concepts recognized by RPW. In this diagram, which is
extracted from the semantic model shown in Figure 1, the stereotypes show the UML
constructs that are used for their modeling.

Although Figure 3 may appear complex at first glance, here’s how to read it—the
“things” in the diagram are the “things”, or process concepts, that you use to build
your process models. In a way, these are the terms of the “process modeling
language”.

The Use of Stereotypes 5

<<classifiers=
discipline
<2 ionzs T -
P tion s 1N unidirectional associations>

wioddfl o detail

pafﬁcip%t

1 iations>

2<activity statess -

< <ol assifiers> o.n i

ole wodifies

1
<<parametar=>
<<yunidiractiogal aszociation=»

1

P rspontisle <<olassifiers=
<<aperations> O.n arifact
activity . &nd
1.0 |&model
Spmodel elament
signature
Eoin
Spout <zunidirectional associations>
Epin0ut
top!
<esemipticss>
foo!
ol wredpr on
<<operation»> <4classifier==
tool mentor toal

Figure 3 Process elements of the semantic model

Each process concept defines how it’s modeled (operation or classifier) and its
associations to other process concepts. For example, Role elements are modeled as
classifiers, and they define operations to represent their Activities; Role elements can
define associations to Artifact elements through «modifies» and «responsible»
associations.

6 Chapter 2 - Modeling Elements and Principles

Figure 4 displays an example of a model segment showing the use of stereotypes in

your process model.

4> Rational Rose - rup.mdl - [Class Diagram: Developers / Designer Overview]
le Edt Yiew Format Browse Report Query Teols Add-Ins Window Help

=18 x|
=13

0ER|sme(s ROEBROEE B+« “aOE|

3 Use Case View

3 Logical View

£ «<process modsly » RUP

(3 Atitacts in RUP

(3 Interfacs Speciisations

3 Roles in RUP

3 <<tres nodey> Additional Roles

3 <<tiss nodey> Analysts

3 <tres nodes> Developers
Developers privilsass

5 architect [developers |

& archiecture_reviewer [developers |
& code_ieviewer | developers)

& database_designer [developers |
& design_reviewer [developers |
designer [developers]

plemente: [develapers]

& integrator [developers]
L] lwks_developers.htmldescription
= Associations

Architect Overview

Designer Overview

3 <<tiee nodes> Managers

Role sets overview

3, Associations

(3 RUP disciplines and process

£ Test Discipline

(3 TookinRUP

Package dependencies

= &
BEC
=

0~ sms

e b

=

sortain other model slements) and a clsss (it has behavier)
The behavior of the subsystem is provided by classes or other
subsystems it contains. & subsystem reslizes one o more
inteitaces, which defin the behavicr it can perform.

[& model element which has the semaniics of a package (i can =

=

by

<«<modifies>>
. g:\

designer (from Design Model..)

»<<activity>> class_design()

»<<activity>> subsystem_design)

J<<activity>> use_case_analysis{)

s <<activity=> use_case_dssign
J<<acthity>> design test_classes_and_packages()

(from Design Modal...)

<<responsibles>

<<respansible>> /| |

use_case_realization

<<modifiess >

(fvom Dasign Wodel.)
. .
realizes

- 1.

design_subsystem

=
interface

(from Design Model..)

For Help, press F1

Figure 4

Artifacts

Artifacts are modeled as classes. RPW recognizes three stereotypes for Artifacts:
«model», «xmodel element», and «document».

Roles

=

|Default Language: Analpsis I

A sample model segment

This classification of Artifacts is not currently used by RPW and they’re all treated the
same. However, it’s good practice to determine what an Artifact’s type is when it’s
created and what relationships exist between the different Artifacts specified.

Roles? are modeled as classes, stereotyped to «role».

Roles are assigned responsibility over Artifacts through «responsible» associations.

Roles define associations to those Artifacts that the Role is authorized to modify
through «modifies» associations. Only these Artifacts can be specified as being
created or modified by Activities defined on the Role.

2. Formerly known as “workers” in previous versions of the RUP and RPW.

Process Elements

7

Activities

Activities are modeled as operations, stereotyped to «activity» on their performing
Roles.

Activities operate upon Artifacts and the UML signatures of {In, InOut, Out} are used
to specify the way a particular Activity uses and modifies its parameter Artifacts.
Only Artifacts that the performing Role is «responsible» for or has «modifies»
authority over are eligible for InOut or Out assignment.® Artifacts within the
visibility scope of the Role are eligible for In assignment.

Tool Mentors are associated to Activities and this association is managed by the RPW
Overview Dialog.

Disciplines
Disciplines* are modeled as classes, stereotyped to «discipline.

Disciplines are process elements that define distinct boundaries within a process.
Each Discipline identifies a set of Roles that participate in the Discipline and defines a
set of Workflow Details that specify the collaborations of these Roles, and their
Activities, within the Discipline.

The Roles that participate in a particular Discipline are associated to that Discipline
through «participant» stereotyped, unidirectional associations from the Discipline to
its Roles.

Note: One Role may participate in multiple Disciplines.

You specify how its Workflow Details engage as the Discipline is conducted in an
activity diagram, associated to the Discipline class itself. This diagram provides an
overview of the Discipline itself, and the details of the collaborations of the Discipline
are defined entirely by its Workflow Details and their respective activity diagrams.

The activity states in the Discipline’s activity diagram designate the Workflow
Details.>

Workflow Details

Workflow Details are modeled as operations, stereotyped to «workflow detail» on
their Discipline classes. Workflow Details do not specify any operation parameters.

A Workflow Detail specifies one specific collaboration within its Discipline.

3. A special-purpose RPW dialog supports the insertion of this information in process models.
4. Formerly known as “workflows” in previous versions of RUP and RPW.

8 Chapter 2 - Modeling Elements and Principles

The collaborations of Roles and their Activities in a Workflow Detail are specified in
an activity diagram associated to the Workflow Detail. Only Roles that participate in a
Discipline are eligible for being involved in its Workflow Details.

Tools
Tools are modeled as classes, stereotyped to «tool».

Tools represent a particular development tool used in an organization.

Tool Mentors

Tool Mentors are modeled as operations, stereotyped to «tool mentor», defined on
Tool classes. They do not specify any parameters.

A Tool Mentor provides a recipe for how to perform a certain Activity using a
particular Tool.>

Processes

Processes, as static elements®, are modeled as classes, stereotyped to «process».
Process is the model element that contains the definition of the Web Site Form, which
is the invariable part of your process Web site.

Dynamic Specifications

The dynamic behavior of a process is described by the collaborations that occur
among its participants. Such collaborations exist at different levels and with different
levels of “exactness and formality”.

Figure 5 provides an overview of the diagram types used to specify the dynamic
behavior of a process and the respective process elements that they describe.

* Discipline workflows provide an abstract overview of the collaborations that
occur within their Disciplines.

» Activity Overviews provide a concrete, more detailed overview of individual
collaborations within Disciplines.

5. “Process” also exists in the context of components, which is a different thing. For details,
refer to the information under the heading Process Components, in the subsection titled Process
components.

Dynamic Specifications 9

==classifier==
discipline
(from Process Bements)

warkflow details
defined by this
discipline anly.

==activity diagram==
discipline workflow

;/

<_<acti\rity state==

==pperation==
ikt o detail
(from Process Hements)

/

==gctivity diagram==
activity overview

==gctivity state==

Cnly activities of roles
that participate in this
discipline

==pperation==
activity

(from Process Bements)

Figure 5 Dynamic specifications of the semantic model

Discipline Workflows

Discipline workflows are abstract workflows that describe the overall Activity model of
their Disciplines.

Each activity state in a Discipline workflow diagram is associated to one particular
Workflow Detail operation, defined on the Discipline.

10 Chapter 2 - Modeling Elements and Principles

Figure 6 illustrates how Discipline workflows are modeled using activity diagrams.

%> Rational Rose - rup.mdl - [Activity Diagram: analysis_design / Workflow Activity Overview Diagram]
1 File Edt View Format Browse Report GQuery Took Adddns Window Help

=181
=181|

LW =R aMOBREED B«|aamx|

E-. analysis_design (analysis_design_disciplin a |
- analyze_behavior

7} def_candidate_architecture

+- ™ design_components

7] M design_database

+- @ r1efine_architecture

v M perform_arch_synthesis

25 State/betivity Model

@ End of inception iteration
-& End of iteration

nalyze Behavior

of Candidate Architecture

ifoim architectural synthesis
sfine Auchitecture
,_and himlactivity overview RLIP
-] Wfov_and area_maplactivity averview
L] towu_and.giflactivity overview diagram
4] larsg_and.area_maplaititact overview
L] larsg_and himlartifact overviewlRUP
] lars_dsg giflartifact owerview diagram ir
L] Wwi_orang.giflbrowserconlRUP
-] Ioo_laver himlconceptALIP
Lf] leo_view. himlconceptRUP

-] loo_piew himloancepHRUP =
4 »

- |

&

‘“04\3\@-m@\

B ||

[Early elaboration |

Linception]

B

Def Candidate Architecture

i‘

i

perfarm archite stural synthesis

gsna vflncel%(wn iteration

L

s

Analyze Behaviar

Refine

Design Components

|

[Dptional]

Design Database

}

—

End of iteration

.

For Help. press F1

Figure 6

Activity Overview

[Defau Langu

Modeling a Discipline workflow

age: Andysis [

Activity Overviews are activity diagrams that describe the collaborations of

individual Workflow Details.

Each activity state in an Activity Overview diagram is associated to one Activity
operation. Only Activity operations performed by the Discipline’s participating Roles
are eligible for association.

Figure 7 shows how Workflow Details are modeled using activity diagrams. It also
shows the technique that RPW uses for associating activity states to their Activity

operations.

Dynamic Specifications 11

% Rational Rose - rup - [Activity Diagram: analyze_behavior / Workflow D etail Diagram]

[File Edit View Fomat Browss Fepot Quew Toolk Addine Window Help =181 x|
Dsd|:mE(g/¥DpRERE|F«-|las D]

-7 Arttacts in RUP =l W —

L3 Interface Specifications ARG 2

{3 Rolesin RUP =

=3 RUP disciplines and procass

analysis_design participants
business_engineering participants

config_change_management participants
deployment participants
environment participants
implementation participants
Overview of all disciplines in RUP
Package dependencies
project_management participants
requirements participants
test participants
analysis_design [disciplines)
- analyze_behavior

E-£57 StatedActivity Model
i [Workflow Detail Diagram

5

Identify Design Elements

l Use Case Analysis

‘cno—\D\.@‘[ﬂ@“\

&

> |dentity Design Elements
= Review the Design
D> Use Case Analysis Review the Design
fepy lwbs_and3 htmldescription

fepy lwis_and3. area_map!diagram aream
fepy lwhs_and3.gifldiagram image
def_candidate_architecture
design_components

design_database
design_realtime_companents
refing_architecture

B e _sreb_cmtharic | ;'ﬂ . | L@
2

1EEEEE

For Help, press F1 |Default Language [[0 [

Figure 7 Modeling Workflow Details

Process Deployment Specification

RPW bases the publishing of processes on process components, which are
components specified in the component view of Rose. A collection of components
specifies the closure of a given process.

A process component realizes one or more process elements from one or more process
models. Process components represent non-arbitrary sets of process elements that are
internally consistent and may be reused with other process components to assemble
complete processes. A natural criteria for defining a component is that its realized
elements should form a natural group of process elements that are strongly related to
each other.

The component view of Rose is used for specifying how processes are deployed to
their resulting process Web sites.

12 Chapter 2 - Modeling Elements and Principles

The concept of component as supported by Rose is used for specifying which process
elements that should be realized as “atomic units of process deployment”.

A special kind of process component, «process», represents a complete, end-to-end
process. It is distinguished from other process components in that it does not realize

any process elements itself, but instead it identifies the component models that
collectively constitute its particular configuration.

Component models package process components into configurable units.

Figure 8 shows an example of a process configuration and how it is specified in terms

of its included component models.

> Rational Rose - rup.mdl - [Component Diagram: Component Yiew / Main]
Fie Edt Wiew Format Browse Report Query Tools Add-Ins Window Help

=18l x|
=181 |

Ded|ltme s RO0BREBRE F+laamm

RUF closue

-] addiional rles

4] analysis_design arlilacts
] analysic_design_discipine
] anaysts

] cem anifacts

] deployment aifacts
] deplayment_discipline
] develapers
] environment artifacts
] environment_discipine
] implementation artifacts
] implementation_discipine
] managers
-] project_management artifacts
#] project_management_discipline
] requitements anfacts
] requirements_discipline
RUP
#] RUP static_process
] RUP tale
] test artifacts
] test_discipine
] testers
[E Main
Deployment Yiew
~83 Modsl Properies

4

4] configuration_change_management_discipline

=l

tag-generic

|

&
B
=

MILEEEERE R

«

1

<<component model>>
RUP component model

F:AProgram Files\Riatianalivpu\RLIP_2002_05_00up_2002_05 sub (Wit enabled)

Figure 8

|Default Language: Analpsis [[

RUP components defined in Rose’s component view

Process Deployment Specification

13

Figure 9 shows the section of the semantic model that specifies the concepts involved
in process deployment.

<<components>
Process

zzdependency>>
% " +plugi
extension

<<package=>
Componentiadel

only within enclosing
Componenthodel's
extension

<<realizeser

. +replacing
J 1.5
repiacgment

<<component>>
ProcessComponent

<<classifier=>
incluted elerment ProcessElement
(from Process Elements))

+has

Figure 9 Process components of the semantic model

Process Component Models

Process Component Models package process components into process plug-ins, and
process configurations are specified in terms of such component models.

A process component model can be a base model, which means that it specifies a
standalone and self-contained process closure—an extension model—it extends an
existing component model and adds or replaces components to the set defined by its
base. An extension component model requires the presence of its base component
model to form a complete closure.

Extension component models can also extend other extension component models to
any depth forming more specialized plug-ins.

Each extension component model specifies the relationships between its contained
components and the components in its base. The default is that an extension model
receives all components from its base component model in addition to its own
components.

An extension component model, however, can also specify replacement dependencies
between its own components and components in its base, in which case the replaced
component from the base is suppressed in the extension component model and only

14 Chapter 2 - Modeling Elements and Principles

the replacing component will be included. This mechanism, therefore, provides the
means to replace base elements with more specialized ones in processes (see

Figure 10).
‘¢ Rational Rose - rup_rt.mdl - [Component Diagram: RUP realtime / RT closure new style] 1= x|
File Edit Yiew Format Browse Report Query Tools Add-Ins Window Help =18 x|
DEH| mEg O BREBEE @+ annd|
FB unt W i tools -
[
(3 Use Case View A0
=3 Logical Yisw = — @

B3 <<process madel> RUP

&7 <<process model>> AUP realime & . ——— n_analysis_de
Main RUP realtime sign_dizcipline
2y, Associations —]
B3 Component View — :
B3 <<component model>> RUP componen :
; it analysis 1 H
1
design atifacts L developers
——1 | —
i |Replacement :
relationships

E147 <<component model> RUP realime
o Main
* &l AT clasue new shie
]t additional roles
o] thanalysis design artifacts
] tt developers
L] thtodls
] tt_analpsis_design_discipline
RUP realtime
Main

Deplapment View

[Model Froperties

FLILECEREER

; analysig_design
_discipline

analysis_design

: devela
¥ arlifacts pers
[additional
—
1

] 14 |‘@I\

For Help, press F1 [Diefaul Language: Analysis [l

Figure 10 An example of component dependencies

Assess the closure of a process configuration

The special-purpose component type—designated with the «process» stereotype
—represents the configuration of a process. A «process» component is associated to
one or more component model packages, each of which contains a set of process
components.

The closure of a process configuration is transitively defined through the contained
components of its associated component models, and to their realized process
elements.

Therefore, «process» components can be regarded as the roots from which closures of
process are calculated. It is through the process’ configuration that you determine the
exact set of process elements that will be deployed into its published Web site at the
time of generation.

Process Deployment Specification 15

A process configuration’s closure can be checked for well-formedness to determine if
it is correct or not. A well-formed process configuration is one where all realized
process elements’ expectations, in terms of other elements, are satisfied and where no
ambiguity exists.

Model Management

Process models can accommodate any structure and organization of their contained
process elements. This includes the use of packages, in general, to manage the
complexity of the process model.

However, two types of packages that have special meaning in RPW exist—«process
model» and «tree node» packages. RPW’s operation is based on the visibility scope of
process elements, established at their enclosing package. For example, in a
well-formed process model, a «<role» element can only reference «artifact» elements
that are within the visibility scope of the «role» element. You use package
dependencies to control visibility.

Figure 11 displays an overview of the RUP process model.

@ p

D Use Case View

=-3 Logical View

The «process model» package is a mandatory SR]
process element that provides the top-level

container for the elements of a process model.

#-((J <<tree nodes » Analysis & Design
7] <<tree nodes » Business Engineering
7] <<tree nodes» Configuration and Change Management
#-(CJ <<tree nodes > Deployment

7] <<tree nodey > Environment

#-(CJ <<tree nodes» Implementation
#-(CJ <<tree nodes» Project Management
#-((J <<tree nodes > Requirements

H-(CJ <<tree nodes» Test

1] RUF attifact sets overview

-3, Associations

®-C7 Interface Specifications

=3 Rales in RUP

#-[7 <<tree noder> Additional Roles
F-7 <<tree noder> Analysts

#-7 <<tree noder> Developers

[

[

«Tree node» packages are elements that
structure their contents with respect to their
organization in a published Web site and their
presentation in the tree browser.

- - - - - -

f-(7 <<tree nodes > Managers
7-7 <<tree noder> Testers
~[E| Role sets ovendew

-3 Aszociations

®-3 RUP disciplines and process
#-C3 Took in RUP

Package dependencies
Process model overview
Tool dependencies

@ “Jariant extenzions

Figure 11 An overview of the RUP process model

16 Chapter 2 - Modeling Elements and Principles

Using

Using

Figure 12 illustrates these two package types used for structuring process models. For
further details, please refer to the section titled What determines the content and
organization of the tree browser?, found in Chapter 4, Working with Process Models and
Publishing Web Sites.

<<package=>
process model

»\

<<package>>/
nested

ProcessElerment
from Process Elements)

tree node

Figure 12 Elements for managing the process model

«process model» packages

The term process model is somewhat confusing because it’s used both to loosely
describe “the whole entity that RPW operates upon” and one specific package type
inside such “whole entities”. This section describes the latter—the special purpose
package type that exists in Rose’s logical view and that constitutes the mandatory
top-level container of process elements.

Process models are modeled in packages in the logical view, stereotyped to «process
model». To be valid, every process element must reside inside of a process model.

Within a «process model», its contained process elements may be arbitrarily
structured using regular packages to manage the complexity of the model, as well as
the «tree node» packages to specify the organization of the tree browser. Process
elements obey the visibility rules defined between packages.

«tree node» packages

«Tree node» packages are used for structuring your process elements as you want to
see them organized in published Web sites. They appear as intermediate nodes in the
published tree browser.

Deriving process models from existing process models

A Rose model may contain multiple «process model» packages simultaneously. This
is the case when, for example, a customized process model is defined that’s based on
an existing RUP process model.

Model Management 17

The general structure for working with process model derivations—that is, to create a
customized version of the RUP—is that the base process model is maintained in its
own separately controlled unit (. cat file) and the derived process model in another
.cat file. For a detailed description on how to work within this structure, see
Chapter 4, Working with Process Models and Publishing Web Sites, under the heading
titled Branching and merging process models.

Modeling Techniques

The modeling language, defined by RPW, employs only a small subset of the full
modeling language as defined by UML, using stereotypes to specify the process
elements to their particular kind.

In addition to these specific element types, RPW supports the use of inheritance® to
define new process elements based on existing ones and it supports the use of
interfaces to separate specification from implementation of process elements. It also
supports the inheritance paradigm in general; for example, to use operator overloading
as the technique to replace existing process elements, modeled as operations, with
more specialized ones.

Achieving variability

Variability of process is achieved by varying the underlying “implementation” of
process elements behind their corresponding interfaces, similar to how you model
object-oriented (OO) software. Such variation is best achieved using interfaces as
modeling elements, but may also be achieved using inheritance or combinations
thereof.

Using interfaces in process modeling

Interfaces may be used anywhere that classifiers are expected in process models, and
can represent Roles, Artifacts, Tools, and Disciplines.

RPW uses regular UML interfaces in process modeling, specified to their exact kind”.
For example, an interface defining a Role is modeled with operations stereotyped to
«activity» and may be assigned «modifies» and «responsible» responsibility over
Artifacts in the process model, just like their corresponding classes. Role classes that
realize a particular interface receive the same responsibilities as the interface.

6. Single inheritance only.

7. Rational Rose does not support stereotyping of interfaces—it uses the stereotype
compartment to specify the fact that a classifier is an interface—and a set of special
constructs needs to exist in a process model to support modeling with interfaces.

18 Chapter 2 - Modeling Elements and Principles

As in software modeling, interfaces are involved in two aspects of modeling:

» they provide a specification perspective of elements in the logical view and,
therefore, enable variability of a process model

= they support the composition of a process in terms of its constituent components

Interfaces are not process elements per se and are, therefore, only a concern in the
modeling space, not in the authoring or publishing of process. In particular, they are
not visible in the generated Web site and they do not have text files associated to
them.

In the logical view of Rose, interfaces can be used to specify the various
responsibilities of the process model. Here interfaces are applied just like when
designing software: interfaces are used to enable variation of its elements.

Due to the limitations of Rose with respect to stereotyping interfaces—Rose uses the
concept of “class” stereotyped to ‘interface’—RPW has invented a special modeling
technique to specify the particular kinds of interfaces supported by RPW:
Rolelnterface, ArtifactInterface, Disciplinelnterface, and Toollnterface. Every interface
present in a model should be derived from one of these interface elements.

In the component view, process components are assigned the responsibility to realize
interfaces defined in the logical view.

Figure 13 demonstrates the modeling of Roles using interfaces. Two
capabilities—"“Designer” and “RealtimeDesigner”—are modeled with IDesigner and
IRealtimeDesigner respectively.

The two Disciplines specify their participants: both capabilities are involved in the
real-time analysis and design, whereas only the standard “IDesigner” capability is
involved in the standard Analysis & Design Discipline.

Modeling Techniques 19

The particular subsection of a process model shown in Figure 13 illustrates that the
capabilities promised by the two interfaces can be realized in different combinations:
either by the ComboRealtimeDesigner Role alone or by the two individual Roles
Designer and OnlyRealtimeDesigner.

% <<participant== / Designer

Lo==activity=>> Class design()

IDesigner

Analysis & design
r==activity==> Class design()

O
)

Combo realtime designer
- s<<activity=» Class design()
< =participart== O o=<activity== Capsule designi)
IRealtime Designer\ O

Realtime analysis & design
Ls=<activity=> Capsule design() U

Only realtime designer

=<partjeipant>>

ee<activity=> Capsule design()

Figure 13 An example of how to use interfaces

Using inheritance

Process elements can be defined using inheritance to base definitions of new process
elements on existing ones. Inheritance can occur across the boundaries of process
models and this common technique is used to derive new customized specializations
from existing process elements.

UML's definition of inheritance also applies in process modeling and inheriting
process elements may substitute for their inherited elements with retained
well-formedness of their process closures. The inheriting Role assumes the Activities
defined on the inherited Role, along with all of its associations. In a given process
closure, either class can be realized to represent the base Role.

20 Chapter 2 - Modeling Elements and Principles

Using operator overloading

Process elements that are modeled with operations cannot alternate by
themselves—redefining an operation means you have to redefine its class as well.

RPW supports operation variability using the principle of operator overloading: a new
operation with the same name® replaces an existing one. The new operation is defined
on a derived class.

This applies to Activities, Workflow Details, and Tool Mentors.

8. Note that overloading is determined by the name only and does not involve parameters.

Modeling Techniques 21

22 Chapter 2 - Modeling Elements and Principles

Process Content
Libraries

RPW is designed to work with any file organization and uses an explicit file reference
schema to associate model elements in process models with their content files. The
explicit file reference schema means that file references are explicitly modeled as
properties of process elements inside process models.

All process elements have one or more files associated to them and these are the files
by which the process element is represented in a published process Web site. Files are
included in a published Web site under the condition that one or more process
elements included in the closure of the Web site has an association to them.

Figure 14 shows an example of the Process Content Files dialog used for associating
files to process elements.

B8] <<process model>> RUP process model .~
E1-C3 Artifacts in RUP = N |
E1-C7 <<tree noder> Analysis & Design - sofbuare_arc
| Analysis & Design toals analysiz_model
ELEE NPT Ll @] analysis_class - Process Content Files =] E3
analpsis_class [analysis desigr IW

% analysis_model [analysis desig description
% architectural_proof_of_concep
capsule [analysis design artifac

ar_acles. htm pracesshartifacty

brawserl con ar_acls.gif pracesshartifact\browsericonsy

% data_model | analysis design al f—— .
% deplopment_model [analysis d¢ quideline md_acls2. htm ‘process\modgulde\ |
design_class [analysis design .
%% design_model [analysis design Delats
design_package [analysis des
design_subsystem [analpsiz de imiee Vz=

Change Presentation Name
Create New
Edit

event [analysiz design artifacts oK Cancel

interface [analysis design artitacreT J ‘/
pratacol [analysis design artifacts | I 2 |

[ER IR F i ea Wwa W en W a8 F O o B ra e Wen W W
L S S)

Figure 14 Process Content Files dialog box

File references are always relative to the Process Content Library root specified for the
enclosing «process model» element. This means that you can associate the same
model to alternate Process Content Libraries as long as they have the same internal
structure and filenames.

23

Presentation Names

The concept of presentation name is central to the operation of RPW. Each file in a
published Web site is represented by its presentation name, which is defined inside of
the file itself. This means that any generated hyperlinks or existing hyperlinks will
adopt the defined presentation name as the anchor text in hyperlinks designating a
file.

Presentation names are modified from within RPW. The Presentation Name dialog,
which is invoked from the Process Content Files dialog, is displayed in Figure 15.

B8] <<process model:> RUP process model wm-
B3 Artifacts in FUP =1 ./ m
B3 <¢hree noder» Analysis & Design - -
Analysiz & Design tools analys\‘s_mode\
::!Ez:z:z[:::l["’::ai:i:S;!;:ign . @] analysis_class - Process Content Files 9 =] B
% analpsis_model [analysis design
%+ architectural_proof_of_concept [

saftware_arch

FileMarne

tyhchklistsh

capsule [analysis design artifact: | checklist ck_aclss.htm processhactivi
*% data_model [analysiz design artif | browser con ar_acls.gif processhartifact\browsericonsh
" deployment_maodel [analysis des | quideline rad_arls? him rracesshrmndoidet
oo (s coin AR
*% design_model [analysis design a
design_package [analysis desigi <| ﬂ
design_subsystem [analysis desi Cancel | QK |

FEm R e e e T W I B e O e e

event [analysiz design artifacts |

Figure 15 Presentation Name dialog box

Common Files

A common set of file types is defined for all types of process elements, and additional
file types are defined for some process elements to give them a broader description:

» Description files
= Browser icons

» Folders

» Diagram files

* Anonymous files

24 Chapter 3 - Process Content Libraries

Description files

Each process element must have one description file associated with it. A description
file provides the fundamental process description of that particular process element.

Browser icons

Each process element may specify an individual icon for its representation in the tree
browser of the published Web site. This feature is used in the RUP for Artifacts and
Tools, but may be used for any element. Browser icon files are expected to be .gif
files.

Browser icon files are optional and RPW uses default icons to represent elements that
don’t specify their own browser icon files.

Folders

All process elements can have any number of folders associated to them. Folders are
file elements that allow for the association of a process element to an entire folder in
the content library, regardless of the files it contains. When published, the entire folder
is included in the resulting Web site.

Folders can contain additional HTML files that represent decomposition of large
description files or other files such as . doc files that are referenced from description

pages.
Diagram files

Some element types present certain overview information in a graphical format. Some
of this information can be generated by RPW as it publishes Web sites. You can
override this generation and use your own handcrafted graphics by associating an
element to its override graphics. Each diagram is represented by two files: the image
file and an areamap that defines the clickable regions in the file. See Using
custom-designed graphics in your Web site on page 70.

Anonymous files

Process elements can be associated with any number of anonymous files. Just like
folders, they are included in published Web sites, but have no further semantics.

Additional Files

Artifact, Discipline, and Activity elements types define additional sets of files, which
help to describe their elements in a more detailed way. They’re listed in the next three
subsections.

Additional Files 25

In the following subsections, the information in the bracketed text—for example, (zero
or one)—signifies the number of files for each type.

Artifact file types

Artifacts define the following additional file types:

Checkpoint file (zero or one)

Guidelines files (zero or more)

Diagram .gif symbol file (zero or one)

Report file (zero or one)

HTML template file (zero or one)

Word template file (zero or one)

Discipline file types

Disciplines define the following additional file types:

Concept files (zero or more)

In addition, a set of six files constitutes the sophisticated presentation structure for
Disciplines in the RUP:

a

a

a

Introduction (zero or one)

Workflow Detail overview (zero or one)
Activity overview (zero or one)

Artifact overview (zero or one)
Guidelines overview (zero or one)

Concepts overview (zero or one)

Activity file types

Activities define the following additional file types:

Concept files (zero or more)

Guideline files (zero or more)

Checkpoints (zero or more)

26 Chapter 3 - Process Content Libraries

Templates

The rpw\template folder in Process Content Libraries contains HTML template
files for those files you can create using RPW.

For details on modifying these templates, please refer to Customizing templates on
page 39.

Web Site Form

«Process» classes specify the contents of Web Site Forms, which are the collection of
HTML files and directories that constitutes the framework into which process Web
sites are published.

The Web Site Form is comprised of the following file types:
» Folders (one or more)

* Anonymous files (zero or more)

» A pointer to a tree browser folder (one)

The tree browser folder is assumed to exist in one of the folders defined in the Web
Site Form; that is, it does not add a folder, but only points to an existing one.

Templates 27

28 Chapter 3 - Process Content Libraries

Working with Process
Models and Publishing
Web Sites

The Structure and Content of Process Models

The only mandatory element in a process model is the package that represents the
process model itself. This package is stereotyped to «process model» and serves as a
container of process elements. Within this package, a process model may have any
organization and structure.

Process models, which are essentially free-form design models, are developed using
the modeling capabilities of Rational Rose with some additional constraints and
capabilities added by RPW. For the most part, RPW operates within any process
model structure and it “successfully ignores” any elements in the model space that do
not concern it, operating only on the ones it recognizes. This means that a process
model can also contain additional model elements beyond those recognized by RPW.
For example, you may want to define Artifact dependencies so you can provide a
graphical view over all of your Artifacts. Such modeling information is maintained by
Rose, but ignored by RPW in its support for modeling and generating process Web
sites.

In cases where you want to model using interfaces, RPW dictates the existence of the
four model elements that represent the four supported interface types, described
earlier in Chapter 2, Modeling Elements and Principles, under the heading titled Using
interfaces in process modeling.

A general UML modeling element is the package, which is used to manage the
complexity of design models. RPW bases some of its operation upon UML'’s definition
of visibility of packages to support modeling and determine the validity of process
modeling constructs.

Maintaining parallel process models

A Process Content Library may exist in multiple versions; for example, one for each
translation into a different language. An important property across such multiple
process models is that they use the same internal file organization and that the files
carry the same names. If this structure is maintained, RPW can associate the same
process model to any of its Process Content Libraries, and it can publish a Web site
using HTML files from the currently associated Process Content Library.

29

Branching and merging process models

Branching and merging are common terms for the activities involved in supporting
parallel development streams. Although this is most common in software
development, it’s also applicable in process development.

The following scenario demonstrates situations where branching and merging occurs:

1 RUP is delivered as a process model with an accompanying content library. (New
versions come out approximately every six months with an updated process
model and content library.)

2 Using RPW, customers customize the RUP to suit their specific needs. This entails
both customizing the process model and the content library. For this purpose, they
use one RUP version as their baseline process and create customizations relative to
this baseline process.

3 A new version of the RUP becomes available, and customers who had already
customized RUP now want to update their customizations to use the updated RUP
as their baseline.

The activity of creating a customized process model is called branching and the
activity of updating to a new baseline process is called merging.

A simple rule exists to facilitate branching and merging in a controlled fashion — any
customizations should occur in a space that is separate from the RUP. This means
that a separate process model, in Rose’s workspace, should be established in which all
new and derived process elements are defined, and that a separate content library
should be established in which all customized text material is stored.

Technically, Rose’s concept of separately controlled units enables the separation of a
customized process model from the baseline RUP process model. By accommodating
the RUP process model in its own package and making this package separately
controllable, it’s possible to include a newer version of the RUP process model
without disturbing the customized process elements.

Central activities in merging process models are:

» to verify the synchronization of the customized process model with the updated
RUP process model to ensure that all expected elements still exist in the RUP
process model

* to determine what changes in the RUP process model affect your customized
process model

* to re-establish component realizations into the RUP process model

30 Chapter 4 - Working with Process Models and Publishing Web Sites

Within this scheme of separately controlled process models (. cat files), a base
process model and its derived process models can be assessed and modeled
independently, yet with maintained integrity between the models, inside the same
Rose modeling space. When a subsequent release of the RUP process model is
received, the new model is loaded into the Rose modeling space and the derivation

path is assessed using RPW’s check syntax feature. This feature helps detect missing
elements in the new base model.

Figure 16 represents a process model derived from the RUP, showing that you derive
both the process model and the component model.

%> Rational Rose - up. mdl 15 [3

File Edt Yiew Fomat Browse Repot Ouey Tooks Addins Window Help

DR 2E &8 vipREeBB| &« @adm

=] I, ABC [Ei Class Diagram: Logical View . M= 9 | & Component Diagram: Com... i!
up
3 Use Case View ’ =
-3 Logical Visw =
i @13 Customized process mods!
£ <<process models> RUP procsss model < [
B [Main| c<process models> RUP compaonent
o E:, Assn:\ail/nr\s A4 RUP process madel model
&3 Component iew
(3 Customized component mods! A)
&3 FUP component medel | A A
Main TR : i
6 Deplapment View o
B Model P i
{8 Mods Properties _.-. n : :
l\ =] - s
e Gustomized Custornized
pracess model component model
-
4 [-
] | C
For Help, press F1 2

Figure 16 Process model derived from the RUP

The Structure and Content of Process Models 31

Publishing Web Sites

The ultimate goal of process development with RPW is to publish a process, resulting
in a Web site that contains your customized process. Publishing a process is simply
the act of generating the set of HTML files and graphics that constitute your process
using RPW. You can generate a published Web site into any selected location in the file
system.

Hyperlinks and presentation names

One important property of RPW is that files in a published Web site preserve their internal
structure and organization relative to their enclosing library root. This means that any
hyperlinks in a content library, that were defined relative to its root, are preserved and
still function in a published Web site.

The concept of presentation name is central to the operation of RPW. They are the
names by which their elements are represented in published Web sites. Presentation
names are defined for each of the files contained in the content library.

What determines the organization of the files in a published Web site?

Process publishing preserves the organization of files relative to their respective
content library root.

A published Web site may draw its contained files from several parallel content
libraries in cases where multiple process models contribute to the published process.
In such cases, their file structures are superimposed on one another in the resulting
Web site.

What determines the content and organization of the tree browser?

The published tree browser contains two parts: the static part, which does not vary
depending on the process that’s published, and the variable part, which varies with
the particular published process.

The generic structure of the tree browser defines four compartments that contain the
four types of process elements, modeled using classifiers: Roles, Artifacts, Disciplines,
and Tools. Each type of element is presented in its own subtree in the tree browser.

Five menu files created by the publishing process contain the complete definitions of
the tree browser’s organization, as shown in Figure 17.

32 Chapter 4 - Working with Process Models and Publishing Web Sites

< Rational Unified Process - Micros

J File Edit “iew Favortes Tools

I < I

Back Eanyard Stop Re

J Address IE C
troe mena files = Jr Ju s

F ationallnifiedPr

ﬁ

- Treebhrowser

£} Phases main menu file
-2 | Disciplines
A48 Roles and Activities | | e

-4 Artifacts — %
4%, Taol Mentars J

[
[
[
[
- - Templates tree.dat
B 7 White Papers
[
[
[

ripwy_dizcipline _subtree dat

rpwy_role_subtree dat

rpwe_attifact_suktree dat - Work Guidelines
-l Examples Owerview
H-8 Process Endineer Toolkit 7
rpw_tool_sitresdst | | P i Web Resource Center =t
----- \f 2bout the Rational Unifisd i—

Figure 17 Tree browser menu files

Inside each subtree, the process elements are organized with the preserved structure
of «tree node» stereotyped packages in the process model, relative to their respective
«process model» package.

A published Web site may draw its process elements from several process models.
Process publishing superimposes the «tree node» structures from the constituent
process models into the single tree browser. In the case of two «tree node» packages
from different process models having the same names, they will be considered the
same and only one tree node will be created into which elements from the two
packages will be stored.

Once generated, you can reorganize the generated tree files from their default
alphabetical order, which was implemented in the first generation, in any order you
like. This order will be preserved, with the same location, over subsequent
generations.

Publishing Web Sites 33

Figure 18 displays the process model from the RUP, and shows how its process
elements are structured using a mix of «tree node» packages and regular packages. In
the generated RUP Web site, only the «tree node» stereotyped packages are included
as intermediate nodes in the tree browser.

& e
D Use Case View
EID Logical Yiew

BN

3 aditacts in RUP

E-7 <<tree noder> Analpsis & Design
®-7 <<tree noder> Business Enginesring
#-[7 <<tree nodex» Configuration and Change Management
®-C3 «<tree nodex> Deplopment
#-C7 <<tree nodex> Environment
#-7 <<tree node>> Implementation
®-C7 <<tree nodex> Project Management
®-C3 <<tree nodes> Requiements
#-C7 <<tree nodex> Test

(B RUP artifact sets overdew

- _—>_), Associations

-7 Interface Specifications

=7 Roles in RUP

#-C7 <<tree node>> Additional Fales

m-C3 <<tree nodex> Analpsts

-7 <<tree nodes» Developers

[

[

m
i)

b-CJ «<<tree nodes» Managers
77 <<tree nodex> Testers
(B Role sets overview

- _—>_), Associations

#-J RUP disciplines and process
-3 Tools in RUP

| Package dependencies
Process model overview
Tool dependencies

—[H] Variant extensions

Figure 18 RUP process model

Exporting Component Models

Component models can be exported to the file system, into what is referred to as
Configuration Unit files. These files can then be used in the RUP Builder application.
RUP Builder represents a lightweight mechanism used to customize process based on
these configuration units, instead of through process modeling in the RPW
workspace. Using RUP Builder you define process configurations, which can then be
published to the process Web sites.

RUP Builder operates on the same concepts as RPW, and publishing a configuration
from RUP Builder yields the same result as when it’s published using RPW. The only
difference is in the terminology: RUP Builder talks about its process material in terms
of base process and process plug-ins, whereas RPW uses the more generic terms
component model and configuration units for the same things.

34 Chapter 4 - Working with Process Models and Publishing Web Sites

From the component view of Rose in the RPW workspace, export your component
models to individual configuration unit files in the file system. Those files are
transportable and can be inserted into the RUP Builder workspace separately.

The same associations as defined in the component view are preserved in the
configuration unit files, and are used to determine the correctness and combinational
properties of configuration units in the context of one another.

Exporting Component Models 35

36 Chapter 4 - Working with Process Models and Publishing Web Sites

Working with Rational
Process Workbench

A successful installation of RPW on your computer is a prerequisite to proceeding

with this chapter.

This chapter contains descriptions of tasks you will perform in the course of your

work. Those tasks include:

= Setting Up and Configuring the RPW Tool

Q

Q

Enabling and disabling the RPW add-in to Rational Rose

Customizing templates

» Setting Up and Managing the RPW Workspace

=)

=)

=)

Managing the process model and Process Content Library from the RUP

Creating your customization workspace

Sharing process material among developers

» Developing Process Models

Q

Q

Q

Q

Q

Defining new process elements

Deriving new process elements from existing elements
Creating variation points in your process model
Replacing Activities

Replacing Workflow Details

* Managing Process Content

a

a

a

Creating and editing content pages
Synchronizing a Process Content Library with its process model
Translating a Process Content Library into a different language

Managing Web Site Forms

37

* Defining a Custom Process

s}

s}

s}

s}

s}

s}

s}

Creating your own process model

Authoring your process text

Organizing your Process Content Library

Creating your own process components

Defining your own process closure

Defining how the published tree browser will be organized

Upgrading to a new version of RUP

= Publishing a Process

Q

Q

Q

Assessing the closure of your process
Publishing a Web site

Using custom-designed graphics in your Web site

Setting Up and Configuring the RPW Tool

RPW is an add-in to Rose, and requires that Rose is installed and operational on your
system before RPW can be installed. All RPW functions become available when the

add-in is enabled in the Rose add-in menu.

RPW helps you develop process models that are maintained as separate files in the
file system, process component models that are maintained as separate files in the file
system, and content libraries that are regular file structures in the file system.

For details on installing RPW, refer to Chapter 2 in the Getting Started with Rational

Process Workbench manual.

38 Chapter 5 - Working with Rational Process Workbench

Enabling and disabling the RPW add-in to Rational Rose

RPW operates as an add-in component to Rose and installs itself as that during
installation. As such, RPW can be enabled or disabled using Rose’s Add-in Manager.

Select Add-ins > Add-in Manager ...

Locate and select to enable or deselect to disable RPW in the presented list.
Apply the change.

Close the Add-in Manager window.

Customizing templates

Each Process Content Library contains a template section that provides the HTML
templates for any new content files you create. These template files are themselves
standard HTML files, which can be modified using your favorite HTML editor to
include or exclude sections, your logo, and so forth.

Once a template is modified, files subsequently created and based on that template
will include those modifications.

1

Edit file templates

Template files are located in the rpw\templates folder in the Process Content
Library. A file exists for each type of file that can be created by RPW.

Each time you request the creation of a new file in the Process Content Files dialog,
the corresponding template is copied from this directory into your specified
location to provide the starting point for your file. RPW’s General HTML
commands' will be processed by RPW during the creation of these new files.

Note: A word of warning—the template files contain certain RPW commands to
support the publishing operation that may not be modified. These commands
determine where, and what, information is generated during publishing.
Commands categorized as General HTML commands are processed by RPW during
the creation of new files to resolve references. Therefore, creating new files outside
of RPW, based on these templates, may cause unexpected results.

1. See Appendix A for details of these commands.

Setting Up and Configuring the RPW Tool 39

Setting Up and Managing the RPW Workspace

RPW’s workspace is comprised of one or more process models and one or more
component models inside the Rose modeling space. Each model is contained in a
separate package, in either Rose’s logical view or component view.

In your modeling space, you'll have both:
* an existing process model and component model from the RUP

» your own process model and component model that accommodate your
customization

Each process model is associated to a Process Content Library, which contains the
process text for those elements in the model.

Managing the process model and Process Content Library from the RUP

The process material from the RUP is considered to be read-only? and, therefore, must
be kept separate from your customizations. This separation facilitates future updates
of the RUP without disturbing your customizations.

The RUP material consists of the process model, component model, and Process
Content Library. The first two are separately controlled Rose units, maintained in
their own files, whereas the Process Content Library is a regular directory structure in
the file system.

The files represent the RUP packages that exist in Rose’s logical view and component
view respectively, and they are loaded into your workspace as separately-controlled
units.

1 Insert the RUP process and component models into your workspace

The RUP is delivered in the form of two separate model files—one containing the
process model and one containing the component model.

s When you receive updates of the RUP, bring the process model into your Rose
model by using the Rose load unit function and specify its location.

2 If your Rose model already has a previous RUP process model loaded, you
must unload it first.

2. This is not physically read-only because certain modeling can only be achieved if the model
is write-accessible.

40 Chapter 5 - Working with Rational Process Workbench

2 Associate the RUP process model with the RUP Process Content Library

s}

3

Q

Once you've successfully loaded the new RUP process model into your Rose
model, associate it with its Process Content Library by using the Associate
Content Library command on its «process model» package, and then select the
root of the new Process Content Library in the presented File Selection dialog.

Invoke the check files command on the process model to verify that all of its
files are present in the Process Content Library.

Insert the RUP component model into your workspace

Insert the RUP component model into your workspace in a similar way to
which you inserted the RUP process model into your Rose model.

If your Rose model already contains a RUP component model package, you
unload the current file, if loaded, and then load from the new file.

If your Rose model does not contain a RUP component model package already,
create a package in the component view and name it exactly “RUP Component
Model”. Make the package controlled and unload it. Load the newly received
component model in its place.

Creating your customization workspace

All of your process customizations must be maintained separately from the RUP
material. The basic structure of your customization material will be the same as that of
the RUP material. You define your customized process elements in your own process
model, specify your customized processes in your own component model, and store
all process text you create in your own Process Content Library.

1

Q

Create your own process model

Create your process model at the top-level of Rose’s logical view, parallel with
the RUP process model. Create a package and stereotype it to «process model».

If you already have a Process Content Library, create an association from your
process model to it using the Associate Content Library function.

2 Create your own Process Content Library

=)

Invoke the Associate Content Library function on the «process model» package
and select the root folder of your Process Content Library, if you already have
one.

Setting Up and Managing the RPW Workspace 41

a If you don’t have a Process Content Library already, create a new folder in the
file system and populate it by copying files from the RUP content library.

Note: All files except the files in the process folder in RUP constitute the
invariable Web Site Form, and will serve as an excellent starting point for your
own Web Site Form, if you want to create one.

Also note that you can reuse Web Site Form files and folders in the RUP content
library without copying them—you just reference the files directly in the RUP
content library.

3 Create your own component model

@ Create your own component model at the top-level of Rose’s component view,
parallel with the RUP component model. A component model is a package
used to control the model separately. Stereotype your new package to
«component model».

s Create a dependency from your new component model package and RUP’s
component model package. This dependency enables reuse of RUP
components in your closures.

Sharing process material among developers

Depending on the size of your process development and customization effort, you
might want to organize your process material to allow for parallel, yet controlled,
process development.

We advise that you avoid sharing your process model among multiple developers,
although it's technically possible. We recommend you organize your team in such a
way that one person is responsible for the whole process model, or that the team
members share the responsibility of the model, but only one developer works on it at
a time. This also applies to the component model.

The core activity in your process development is authoring the process contents. As
such, it's important that you set up your Process Content Library so multiple
developers can simultaneously work in it.

1 Share a process model

A process model can be shared, using the same techniques you use when sharing
Rose design models, in general. The basis for this is the concept of
separately-controlled packages. Refer to the Work in Teams topic in Rose’s online
Help for instructions on separately controlled packages.

42 Chapter 5 - Working with Rational Process Workbench

We recommend that you assign only one person the responsibility for updating
your process model. This avoids any extra complexity that may be introduced
when supporting multiple users.

2 Share a component model

Component models can be shared among process modelers, using the same
techniques used when sharing process models. Again, refer to the Work in Teams
topic in Rose’s online Help for a description of how to do it.

For the same reasons as for process models, we advise against sharing of
component models.
3 Share a Process Content Library

A Process Content Library is a regular hierarchy of files in the file system, possibly
controlled using a configuration management strategy.

Authoring of process contents occurs outside of RPW and the actual strategies you
use for sharing the content library are determined by factors in your environment.
For example, you could divide the authoring work along the package boundaries
in your process model, but other strategies could be adopted.

Developing Process Models

This section describes how to define new process elements, in addition to those
elements already defined in the process model found in the RUP, and how to derive
new process elements from existing RUP elements. Basic modeling principles are
described in Chapter 2, Modeling Elements and Principles in this manual.

RPW uses the Rose workspace to develop process models and includes a process
model from the RUP.

A common way to customize the RUP is to remove one or more of its Disciplines and
to add custom-defined Disciplines that will exist in parallel to those Disciplines
defined in the RUP.

Other types of customization occur at more detailed levels, where you modify
individual Roles, Activities, and Artifacts to better suit your needs.

Defining new process elements

Any customization of the RUP you make must be maintained in your own process
model. When you work inside of your process model, you use the notation supported
by RPW to define new process elements that support your specific process needs.

Developing Process Models 43

Defining new process elements is a general-purpose, object-oriented, modeling
exercise that uses the specific process modeling concepts RPW has introduced in the
Rose workspace.

1 Create your own process model

Process models, described in detail in Chapter 4, are represented by top-level,
stereotyped packages in the logical view. Each process model defines its process
elements, and their classifications and relationships.

s Create a package in Rose’s Logical View and stereotype it to «process model».
2 Right-click on the created Process Model and select Associate Content Library.

» In the displayed File Selection dialog, select the folder that represents the root
of your Process Content Library. If you don’t have a Process Content Library at
this point, that’s fine. Your subsequent modeling activities do not require this
association to exist, and you can always establish this association later on.

s Right-click again and select Set Template Directory.

2 In the dialog that displays, select the directory inside your Process Content
Library where RPW templates are stored.

2 Create new Roles and Activities

Inside a process model, create a class to represent your new Role. This can be
achieved in a number of ways using Rose’s functions. For example, in a class
diagram, create a new Role class using the Role symbol from the toolbar. (You may
need to customize your toolbar to add the process elements to it.) Give the created
Role class an appropriate name.

Note: This name is a modeling name, which is different than its presentation name.

You can also create a role by selecting create new class from the context menu of
the enclosing package and stereotyping it to «role» in its specification dialog.

2 Define the new Role’s responsibilities in terms of owning or modifying
Artifacts.

In a class diagram where the Role is present, include the Artifacts that the Role
is responsible for and create Unidirectional Associations going from the Role
class to the Artifact classes. Stereotype the association to «responsible».

For other Artifacts where the Role should be granted update privileges, create
unidirectional associations and stereotype them to «modifies».

2 To create an Activity, create an operation on its performing Role, stereotype the
new operation to «activity».

44 Chapter 5 - Working with Rational Process Workbench

s}

To define the Activity’s Artifacts, right-click and select Overview. In the
Artifacts tab, populate the panes to the right by double-clicking the Artifacts
from the list presented to the left. The three lists present those Artifacts eligible
for inclusion in the respective categories of In, Out, InOut signature.

To assign Tool Mentors to the created Activity, select the Tool Mentor tab,
right-click on it, and then select Add.

A dialog is presented where you first select the Tool, and then the Tool Mentor.

3 Create new Artifacts

Inside a process model, create a class to represent your new Artifact:

=)

In a class diagram, create a new class and stereotype it to either «model»,
«model element», or «document».

Give the created Artifact class an appropriate name.

Note: This name is a modeling name, which is different than its presentation
name.

4 Create new Tools and Tool Mentors

Inside a process model, create a class to represent your new Tool:

Q

In a class diagram, create a new class and stereotype it to «tool». Give the
created Tool class an appropriate name.

Note: This name is a modeling name, which is different than its presentation
name.

To create a Tool Mentor, create an operation on its Tool, and then stereotype the
new operation to «tool mentor».

5 Create new Disciplines and Workflow Details

Inside a process model, create a class to represent your new Discipline:

Q

In a class diagram create a new class and stereotype it to «discipline». Give the
created Discipline class an appropriate name.

Note: This name is a modeling name, which is different than its presentation
name.

To create a Workflow Detail, create an operation on its Discipline, and then
stereotype the new operation to «workflow detail».

Developing Process Models 45

The activity models for Disciplines and Workflow Details are both expressed using
activity diagrams. Please see the information in Chapter 2, Dynamic Specifications
for more details.

6 Structure your process model

Process models may be structured internally to manage their complexity by using
packages as grouping concepts. Packages may be nested to any depth and a
process model may contain any number of packages. A special type of «tree node»
package controls the way a published process’ tree browser is composed and
presented.

2 Create a Tree Node package inside your process model by creating a package
and stereotyping it to «tree node».

s Populate the «tree node» package by moving its process elements to physically
reside in the package.

Deriving new process elements from existing elements

If you have the process model from the RUP in your Rose workspace, in parallel to
your own process model, you can reuse existing process elements in the context of
your customization. For example, you can create a derived Role from one of the RUP
Roles, and then extend it with additional Activities. The resulting derived Role
assumes the Activities of both the RUP Role and the new ones. You would do this to
reuse existing definitions without having to recreate them, as well as being able to use
them in their original context. This technique applies when you want to reuse
elements within the same process model also.

In steps 1, 3, 4, and 6, the topic of inheritance is discussed. For further details, refer to
Chapter 2, Modeling Techniques, under the heading Using inheritance.

Steps 2, 5 and 7 refer to the topic of operator overloading and you can find more
information on this in Chapter 2, Modeling Techniques, under the heading Using operator
overloading.

Note: It needs to be noted that associated files are not part of what is inherited. When
you associate files in the Process Content Files dialog for an inheriting element, you
can include files from both the RUP content library and your own content library, as
well as create new files in your own content library.

46 Chapter 5 - Working with Rational Process Workbench

Derive a Role
New Roles can be created using the concept of inheritance.
2 Create a new Role class to represent the new Role.

2 Ina class diagram, create an inheritance association from the new Role to the
existing Role from which it will inherit properties.

Redefine an Activity

Existing Activities can be redefined using what’s commonly referred to as
“operator overloading”. For details on this topic, please refer to Chapter 2, Using
operator overloading. This implies that a derived Role exists and can be assigned the
redefined Activity.

On an inherited Role, create a new Activity operation and give it the same name as
the one it will replace.

Specify the Artifact signature and Tool Mentors for the new Activity in the
Overview dialog.

Derive an Artifact
New Artifacts can be created using the concept of inheritance.
» Create a new Artifact class to represent the new Artifact.

@ Inaclass diagram, create an inheritance association from the new Artifact to
the existing Artifact from which it will inherit properties.

Derive a Discipline
New Disciplines can also be created using the concept of inheritance.
s Create a new Discipline class to represent the new Discipline.

2 Inaclass diagram, create an inheritance association from the new Discipline to
the existing Discipline from which it will inherit properties.

Derive a Workflow Detail

Workflow Details can be redefined using what’s commonly referred to as
“operator overloading”. This implies that a derived Discipline exists, which can be
assigned the redefined Workflow Detail.

2 On an inherited Discipline, create a new Workflow Detail and give it the same
name as the one it will replace.

2 Specify the Activity overview for the new Workflow Detail.

Developing Process Models 47

6 Derive a Tool

New Tools can be created using the concept of inheritance.
2 Create a new Tool class to represent the new Tool.

2 Ina class diagram, create an inheritance association from the new Tool to the
existing Tool from which it will inherit properties.

Derive a Tool Mentor

Tool mentors can be redefined using what is commonly referred to as “operator
overloading”. This implies that a derived Tool exists, which can be assigned the
redefined Tool Mentor.

2 On an inherited Tool, create a new Tool Mentor and give it the same name as
the one it will replace.

Creating variation points in your process model

RPW supports using interfaces to create variation points in your process model. A
variation point is a point in your model that can assume any variant of a construct,
provided it obeys the contract of the variation point and leaves the remaining model
intact. As modeling elements, interfaces provide the specification perspective of such
constructs, behind which its variation occurs. Variation points can be formed around
the process elements that are modeled using the class construct Roles, Artifacts,
Disciplines, and Tools.

For more information on interfaces, refer to Chapter 2, Modeling Technigues, under the
heading Using interfaces in process modeling.

1

Create an interface to represent the variation point

Create a new interface where appropriate in the process model. Specify the type of
the new interface by assigning it an inheritance association to one of the four
predefined interfaces, named:

2 Rolelnterface

2 ArtifactInterface

» Disciplinelnterface
2 Toollnterface

These are defined in the Interface Specifications package in the process model.

48 Chapter 5 - Working with Rational Process Workbench

2 Specify the interface’s properties

Interfaces assume the same specification properties as the concepts they represent,
except for associated files.

After an interface has been given its type as instructed in step 1 above, you can
model it as if it was a real class, and the appropriate dialogs become available for
specification of the interface’s properties.

3 Associate a class with its interface

In a class diagram, create a «realizes» association from the class to its interface. It’s
important that the realizing class includes the exact profile of the interface. One
class can realize multiple interfaces.

Replacing Activities

A common customization is to redefine existing Activities to use and produce a
different set of Artifacts.

The modeling technique used to achieve this is commonly referred to as operator
overloading. For more details on this topic, refer to Chapter 2, Modeling Techniques,
under the heading Using operator overloading. In process modeling, this means that a
new Activity, with the same name but a different Artifact list is modeled. The new
Activity can then substitute for the existing Activity in a process closure.

Following our recommendation to separate your process model from the one in the
RUP, it becomes necessary to create a new Role on which the replacing Activity can be
defined. This is where you use the inheritance construct to associate the new Role
with the original one; an association through which the new Role assumes the original
Role's other Activities and responsibilities.

1 Create a replacing Activity

To create the new Activity, you first have to create a Role that performs the
Activity. Replace an Activity by giving it the same name as the original.

2 Create a «role» class that will perform the replacing Activity.

2 Create an inheritance association from the new class to the «role» that defines
the original operation.

» Create a new «activity» operation on the new class.
» Name it the same as the original «activity».

2 Define the Artifact list for the new Activity.

Developing Process Models 49

2 Using their Process Content Files dialog, specify the description files for the
new Role and the new Activity. You can add the same files as the original Role
and Activity, or you can create new files to be used instead.

2 Include the derived Role in your process’ closure

A process closure can only include one class from the same inheritance structure. This
means that a derived Role can take the place of its superclass Role, but they cannot
reside in the same closure at the same time. Use the component specification
realization to substitute a derived Role in a closure.

For more details regarding process closure, please refer to Chapter 2, under the
headings Process Components, Process closure as a special type of component.

Replacing Workflow Details

Another common customization is to replace existing Workflow Details with new
ones that have the same purpose, but different definitions. You use operator
overloading to replace Workflow Details in the existing RUP.

A replacing Workflow Detail can have a different Activity overview, which employs a
different Activity set in a different way. To accommodate your replacing Workflow
Detail you need to create a new Discipline on which the new Workflow Detail is
created.

1 Create a replacing Workflow Detail
s Create a «discipline» class that will perform the new Workflow Details.

s Create an inheritance association from the new class to the «discipline» that
performs the original Workflow Detail.

@ Create a new «workflow detail» operation on the new Discipline.

2 Name the new Workflow Detail operation exactly the same as the original
«workflow detail».

2 Define the activity diagram for the new Workflow Detail. This activity diagram
can be different from the original one, and can exclude existing Activities and
include others.

2 Using their Process Content Files dialogs, specify the description files for the
new Discipline and the new Workflow Detail. You can add the same files as the
original Discipline and Workflow Detail, or you can create new files to be used
instead.

50 Chapter 5 - Working with Rational Process Workbench

2 Include the derived Discipline in your process’ closure

A process closure can only include one class from the same inheritance structure.
RPW supports single inheritance, and this means that a derived Discipline can
take the place of its superclass Discipline, but they cannot reside in the same
closure at the same time. Use the component specification functions to substitute a
derived Discipline in a closure.

For more details regarding process closure, please refer to Chapter 2, under the
headings Process Components, Process closure as a special type of component.

Managing Process Content

This section describes how to manage your content when you develop your own
process material.

RPW allows you to create new HTML files based on provided templates. This allows
you to author process content—either inside or outside of RPW's control—with your
preferred HTML editor. Most process HTML files have presentation names. These are
the names by which files are represented in published Web sites. RPW supports
changing the presentation names in a separate user interface.

During publishing RPW processes hyperlinks encountered in the text material and
updates them with their appropriate presentation names. This means that you can use
spontaneous hyperlinks in your process text. If a particular process closure, however,
does not include the file designated by a hyperlink, RPW disables the hyperlink as it
processes the file during publishing.

Web Site Forms provide the “static” portions of generated Web sites, which are those
portions that do not vary with the closure of the generated process. RPW supports
composing Web Site Forms using the same paradigm it does for content files in
general, and allows you to modify the set of files and folders of which it's comprised.

Creating and editing content pages

Content pages provide the text descriptions of process elements. As you develop your
customized process material, you need to create new pages to describe the new
process elements you create, or you need to add or replace files for existing elements.

The content pages reside in a Process Content Library. Content pages are ordinary
HTML pages with some additional RPW constructs embedded in them. These
constructs are clearly marked in the files and must not be modified or removed.

Managing Process Content 51

RPW does not include an HTML editor. It does, however, support template-based
creation of new pages in the Process Content Library, as well as navigation from the
Rose modeling space to an HTML editor. This allows you to create new content files
from your modeling context, and to navigate back and forth between your modeling
and authoring activities.

1 Create a new file in your Process Content Library

Using this capability, you request the creation of a new page and are prompted for
its type and destination location. RPW provides a prepopulated file containing all
necessary constructs to make the file operational in a published Web site.

Conversely, if you have existing files that you want to incorporate into your
Process Content Library, such files need to be updated to include the necessary
RPW constructs. We recommend that all new material finds its way into the
Process Content Library using the provided RPW functions. (Any reuse of such
text material occurs using the cut-and-paste functions provided with your HTML
editor.)

2 Edit a content page

Editing content files is an activity that occurs outside of RPW’s control, using your
preferred HTML editor.

RPW allows you to associate the HTML editor you choose and supports
invocation of that editor on individual files in the process model.

3 Change the presentation name of a page

The presentation name of a content file is a notation of the name by which the file
is represented in a published process Web site. This feature allows you to change a
presentation name in one place, with the effect that the new name is used the next
time you publish its process. RPW provides a function for changing a presentation
name from the context of process elements in the model.

In the Process Content Files dialog, select the file, and then select change
presentation name. This displays a text entry dialog where you type the new
name.

Note: The presentation name is a general property defined for a number of file
types, not only description files. Also note that the presentation name of a file is
stored in the file itself and changing its presentation name causes an update of the
file itself, which may violate your configuration management strategies.

52 Chapter 5 - Working with Rational Process Workbench

4

Insert hyperlinks in your text material

You can use regular hyperlinks anywhere in your process text material to provide
spontaneous navigation between process elements in your Web site.

At the time of publishing, RPW processes such hyperlinks and resolves them to
the correct file in the Web site, provided the actual designated element exists inside
of the closure of the published process. If not, RPW will visually indicate such
links as non-operational.

Note: RPW always automatically generates the regularly structured hyperlinks
that appear in the overview pages of process elements.

Synchronizing a Process Content Library with its process model

A Process Content Library and its process model are considered to be synchronized if
all file references existing in the process model are satisfied by the Process Content
Library. RPW provides a function that determines whether a process model is
synchronized with its associated Process Content Library, which operates at any level
inside of your process model, from the entire process model down to individual
process elements.

1

Check files in a process model

On the process model package, use check files to determine whether all files
associated from the elements in a process model exist in their expected location in
the file system. Check files is applicable at any package level in the process model
and on individual process elements.

On a «process model» package, or any package or file therein, select Check Files
from its context menu.
Associate a new file with a process element

2 Use the Add option in the Process Content Files dialog to associate new files to
a process element.

2 In the presented File Selection dialog, select the file you want to add.
2 In the subsequent dialog, specify the type of the file it is.

Note: You can Add files, from both your own content library and from the RUP
content library, or from any other derived process models, to your process
elements.

Managing Process Content 53

Translating a Process Content Library into a different language

A Process Content Library can be translated into different languages, retaining the
associations to its process model. Conversely, this means that the same process model
can serve as the model for multiple translations of its Process Content Library.

1 Associate a process model with a Process Content Library

s Invoke the Associate Content Library command on the «process model»
package.

2 In the presented File Selection dialog, select the root of the Process Content
Library.

2 Verify the synchronization between the process model and the Process
Content Library

On the process model package, use check files to determine whether all files
associated from the elements in a process model exist in their expected location in
the file system. Check files is applicable at any package level in the process model
and on individual process elements.

Managing Web Site Forms

Web Site Form is a collective term for the invariable portions of a published
process—those portions that are not published by RPW, but exist there to provide the
context for your process. The Web Site Form is comprised of a collection of folders and
individual files that reside in the Process Content Library.

Most notably, a tree . dat file exists that specifies the layout of the static portions of
presented tree browsers.

RPW defines a «process» process element, which is the element type on which Web
Site Forms are defined. The Web Site Form File Association dialog is used for this
purpose and allows for the association of any number of anonymous folders and files.
The only mandatory element in a Web Site Form is the “tree browser folder”, which is
the folder that contains the definition of the initial pre-generation tree browser and
other associated files.

In a generated process Web site, all files referenced from the non-generated portions
of the tree browser need to be included in the published material. This applies to all
sections except Disciplines, Artifacts, Roles, Activities, and Tools. Every page
referenced, directly or indirectly, by the tree browser must be included in the Web Site
Form definition.

54 Chapter 5 - Working with Rational Process Workbench

To facilitate the process development stage, you might want to define an alternative,
smaller Web Site Form—one that excludes the many files included in your
production-quality Web Site Form.

Note: The tree.dat file in your tree browser folder needs to be updated in tandem
with any changes to the Web Site Form to ensure that the files that the tree . dat file
references are actually present in the published Web site. They become present in the
published Web site if they were directly specified as a file or indirectly specified
through their enclosing folder.

1 Modify the Web Site Form

Essentially a Web Site Form is a set of anonymous files and folders, which together
constitute the invariable portions of a published Web site.

2 Invoke the Web Site Form command on the «process» class. This displays a list
of folders and files that are currently included in the Web Site Form.

= In the presented dialog, you can add and remove files and folders.

2 Modify the Web Site Form portions of the tree browser

The tree browser consists of four parts that RPW automatically generates and one
part that is static.

The tree browser is specified in the tree. dat file in the folder designated by the
tree browser folder in the Web Site Form. This file is a simple text file and you can
modify it, using an editor of your choice, to include additional entries, and to
modify or remove existing entries.

3 Define a new «process» representation

«Process» classes define Web Site Forms as their properties. Each process closure
(which is represented by a «process» component) includes the realization of
exactly one «process» class in its components. This provides the Web Site Form for
the published Web site.

Defining a Custom Process

This section describes how to define your custom process using the process model
supplied with the RUP and the Process Content Library as the starting point for your
customized RUP.

Defining a Custom Process 55

You can customize the process model, component model, and Process Content
Library included with the RUP to your specific needs using RPW. This work entails
defining new process elements, either right from the beginning or derived from
existing RUP elements, authoring their associated process text, and specifying the
closure of your process.

Creating your own process model

Essentially, a process model is a stereotyped package that resides at the top-level in
the Rose workspace’s logical view. Process models serve as containers of process
definitions and you can have multiple process model packages simultaneously
loaded in the same Rose workspace. This allows you to view and share information
between the various process models.

Your process customizations are developed in your own process models, where they
are separate from the RUP definitions, which are kept in another process model. This
separation facilitates future updates of the RUP.

You work inside of the process model, where you use the notation of RPW to define
new process elements to support your specific process needs. See Chapter 2, Modeling
elements and principles in this manual.

In addition to creating new elements, using the object-oriented extension mechanism
of inheritance you can derive new process elements from existing ones in the RUP,
and you can create variations points using interfaces.

1 Derive new Roles from existing ones

You derive new Roles from existing ones when you want to extend an existing
Role definition, but the existing Role is defined in a different process model and,
therefore, cannot be directly manipulated. You use inheritance to achieve this effect.
Inheritance can also be used to refine existing Role definitions in your process
model and thereby create similar, but not identical, definitions of Roles.

This is useful when your process model supports multiple process variants, across
which related but not identical Role definitions are used. For example, you could
have a designer Role and a specialized realtime designer Role. Through an
inheritance relationship, an inheriting Role assumes the Activities and «modifies»
and «responsible» associations from the inherited Role. An inheriting Role can also
define additional Activities and associations.

This is how you do it:

2 Create a new Role class in your process model to represent the derived Role.

56 Chapter 5 - Working with Rational Process Workbench

s}

Establish a package dependency between this Role’s enclosing package (either
«tree node» package or regular package) and the enclosing package of the Role
from which it will be inherited. This allows your new Role to “see” its parent
Role. You create package dependencies in class diagrams.

Put both your new Role and the inherited Role in the same class diagram, and
create a generalization association from your Role to the inherited Role.

The following well-formedness rule applies to modeling using inheritance in Role
modeling:

In a given process closure an inheriting Role can assume the position of
its inherited Role, since it possesses all its properties. However,
including multiple Roles from the same inheritance structure creates
ambiguity in the closure and, therefore, only one Role from the same
inheritance structure can appear in a closure.

Use the Process Content Files dialog on the derived Role to specify its files. You
can use the same file as the inherited Role or you can create a new file. A given
Role can use files from both the Process Content Library associated to its
enclosing process model and the files in the content libraries of derived process
models.

Create a replacement Activity

Create replacement Activities when you want to redefine an existing Activity in
terms of the Artifacts it uses, creates, and modifies. To create the replacement
Activity:

=)

You first inherit the performing Role in your process model to create a new
Role that can perform the replacing Activity, as described in the previous step.

You replace Activities using the technique of operator overloading. On the
derived Role you create a new Activity and give it exactly the same name as the
Activity that it will replace.

Now you can specify the Artifacts that the replacing Activity uses, modifies,
and creates by using the Artifacts tab in its Overview dialog. Make sure that
your inherited Role defines «modifies» and «responsible» associations to
accommodate the demands of your new Activity.

On the Tool Mentor tab, specify the Tool Mentors that support the Activity.

Using the Process Content Files dialog, you can also redefine the set of files that
the Activity uses.

Defining a Custom Process 57

3 Create a replacement Discipline

Create a replacement Discipline when you want to alternate its specification in
terms of performing Activities. This type of replacement can occur both at the level
of adding and replacing entire Workflow Details, as well as modifying the
specifications of individual Workflow Details.

2 Use the same techniques as described in step 1 for Role and step 2 for Activity
to create the replacement Discipline, and its added and replacing Workflow
Details in your process model. Workflow Details are modeled as operations,
just like Activities.

2 Now you can redefine the properties of both your Discipline and its defined
Workflow Details in terms of their Activity overviews, participating Roles, and
the content files associated to the Discipline and Workflow Details.

4 Use several process models to achieve multi-tier customizations

The derivation schema from process model to process model may be repeated to
achieve derivation in several steps. This is useful, for example, when you're
deriving a process model from the RUP to serve your organization level, and then
refining this process model individually for individual project types inside of your
organization. In this scenario, you'll have one organization process model and one
project process model for each project type.

2 Use the same techniques as described above to derive new and replacing
process elements in your process models. A given process model can use
elements from any process model in the derivation chain, as long as the proper
process model dependencies exist.

Authoring your process text

Each process element in your process model is accompanied by one or more HTML
files that constitute the element's process text.

Process text is maintained in the file system as regular HTML pages and you can use
your preferred HTML editor to author the text. RPW enables you to create new
process text files using templates, which populate your new files with their initial
structure. This includes inserting the required RPW constructs in the HTML material,
which are the foundation for generating the process, as well as creating the initial
outline for your new file.

RPW is only involved in the initial creation of the process text, therefore, you may
prefer to invoke your HTML editor from outside of RPW environment.

58 Chapter 5 - Working with Rational Process Workbench

Use the Process Content Files dialog to create files for all of the different element
types. The dialog is tailored to recognize the various file types defined for each
process element type.

Refer to Chapter 3, Process Content Libraries for a complete description of the types of
files that can be defined for the different types of process elements.

1

Associate the HTML editor to be used for HTML editing

RPW does not include an HTML editor itself, but allows you to associate to your
favorite HTML editor, which it then invokes when you request the editing of
HTML text from the Process Content Files dialog.

@ Go to Rose’s Tools menu and select Process Workbench > Options.

» The resulting dialog allows you to set your HTML editor. This setting remains
in effect between sessions.

Create process text for Roles and Activities

Both Roles and Activities specify description files, which is the mandatory file type
for all elements. In addition, Activities specify Concepts and Guidelines, which
can be used to expand its description and provide more detailed how-to
information.

Create process text for Artifacts

In addition to the mandatory description file, Artifacts specify a variety of file
types that provide more specific descriptions, as well as a means to specify
templates files that can accompany the Artifact in a generated Web site. Those file
types include:

@ Guideline

2 Checkpoint

= Report

s Microsoft Word template
2 HTML template

Create process text for Disciplines and Workflow Details

Disciplines specify a set of files, which collectively constitute the elaborate
presentation of Disciplines as found in the final Web sites (see Chapter 3, under the
headings Additional files, Discipline file types):

2 Artifacts overview

Defining a Custom Process 59

s Concepts overview

2 Guidelines overview

2 Workflow Details overview
@ Activity overview

@ These are all mandatory files that need to exist in the process model. However,
they do not contain any edited text so creating them from the Process Content
Files dialog, as RPW creates them, is sufficient.

2 Both Disciplines and Workflow Details are specified in terms of activity
diagrams. Following the general diagram management direction given later in
this chapter, under the heading titled Using custom-designed graphics in your Web
site, you can override the diagrams generated by RPW by inserting your own
into the model.

5 Create process text for Tools and Tool Mentors

Tools and Tool Mentors do not specify any file types in addition to the mandatory
description file type.

You can add or create their description files from their Process Content Files
dialog.

6 Insert hyperlinks

You can use regular hyperlinks anywhere in your process text material to provide
spontaneous navigation between process elements in your Web site.

At the time of publishing, RPW processes such hyperlinks and resolves them to
the correct actual file in the Web site, provided that the actual designated element
exists inside of the closure of the published process. If not, RPW will visually
indicate such links as non-operational.

Organizing your Process Content Library

Your Process Content Library stores the many files that provide the process text,
graphics, icons, and so on, for your process Web site. To facilitate the incorporation of
future updates of the RUP, you must maintain your own process text in its own
Process Content Library, separate from the RUP material.

Although RPW does not impose any particular organization of your Process Content
Library, it does require that some information exists there to operate correctly.

60 Chapter 5 - Working with Rational Process Workbench

1 Associate your process model with its Process Content Library

2 On the «process model» package, select Associate content library and specify
the root of the Process Content Library in the presented File Selection dialog.

2 The created association defines the path through which all file associations are
resolved between a process model and its files. You can successfully establish
such associations only after you have associated a Process Content Library to
your process model.

2 Create the rpw directory

The rpw directory contains all of the things that RPW requires to work correctly.
This directory contains one sub-directory, the templates directory, which
contains the templates that RPW uses when creating new HTML files in the
Process Content Library.

The rpw directory needs to reside at the top-level of content libraries.
Populate the templates directory with the templates from the RUP content
library as a starting point for your template customizations.

3 Create a tree browser folder directory

The tree browser folder isa directory that is treated somewhat specially.
RPW uses the contents of the tree browser folder as the basis for published tree
browsers. A tree browser folder is a regular folder inside the content library, and it
can have any name.

In the Web Site Form dialog, on «process» elements, you point out the tree browser
folder that will be used for publishing that process.

See Chapter 3, Web Site Form for a description of this folder.

Creating your own process components

When you've defined your customized process elements and created their
accompanying process content files, it's time to create the process components that
specify how these elements will be grouped together for publishing. See the section
titled Publishing a Process later in this chapter for more details.

The component view in Rose is used to define both process components and process
closures. RPW uses regular components stereotyped to process components, and uses
their realization properties to specify those process elements to include.

Defining a Custom Process 61

1 Create a new component

Create a new process component using Rose’s support for component creation.
Process components, in general, are not stereotyped.

One special type of component, «process» component, exists which is the
representation of process closures. For more details on this, refer to the
information under the heading Defining your own process closure.

2 Specify which process elements will be realized by the component

Process components realize sets of process elements. The process elements realized
by a particular process component are all included in a process closure where the
component is included. In this way, process components represent units of
deployment into process Web sites.

The set of process elements realized by a process component can be assessed and
determined whether or not it’s correct.

The following rules apply:

2 Only one class (Role, Discipline, Artifact, Tool) can appear from an inheritance
structure. Realizing two classes from the same structure creates an ambiguous
specification that RPW cannot resolve.

2 The component must realize exactly one class for each interface it
realizes—Role, Discipline, Artifact, Tool.

s The same element can only be realized by one component in the closure.

As you specify the realization of a process component, you can use the Assess

Component command on the «process» component to determine its correctness.
Defining a process closure

A process configuration is a collection of component models that collectively
constitute a complete process.

The closure of a process is represented by a «process» stereotyped component in
Rose’s component view and its configuration is defined in terms of the component
models that it includes.

Component models are either “base models”, in which case they are self-contained
and can be deployed as-is, or “extension models” that extend an existing base model
with additional elements. Extension models may extend other extension models.

The closure of a process is specified by created dependencies from the process closure
component to its included component models.>

62 Chapter 5 - Working with Rational Process Workbench

The process elements associated to those process components included in the process
define the closure of a particular process configuration. It is a transitive closure,
meaning that all process elements associated to already-included process elements are
also included. For a process configuration to be considered as having closure, all of its
associated and, therefore, expected, elements must exist inside of its component
models. This is a prerequisite for publishing a process configuration. See the section
titled Publishing a Process for more details.

Figure 19 shows the RUP process closure.

> Rational Rose - rup.mdl - [Component Diagram: Component Yiew / Main] - 181 x|
File Edt Wiew Format Browse Report Query Tools Add-Ins Window Help =] x|

‘D@ﬂl%é\@\k’-”ﬁ\@\ﬁﬁlﬁa|
& RUF closue = W =

] addtonsl roles =
%] analysis_design artfacts

] anaysis_design_discipine =
] analysts

] cem anfacts

%] configuration_change_management_discipine
] deplogmert atfacts

] deployment_discipline

] develapers

] envionment artiftacts

] envitcrment_discipline

] implementation artfacts

] implementation_dscipine

#] managers

-] praject_management artfacts

#] project_management_discipline

] requirements artfacts

] requirements._discipline

RUP

#] RUP static_process

] RUP tacks

7 test artfacts

] test_discipline

] testers

FEm -
Deployment View

8 Model Propetes =
4 »

<<component model>>
RUP component model

‘Hu[!ﬁﬂmlillll:ﬂ*u@ﬂ"\
P
D
2
sl

aa=genciic El

= i I [

F:AProgram Files\Riatianalivpu\RLIP_2002_05_ 00up_2002_05 sub (write enabled) [Diefaul Language: Analysis [T

Figure 19 RUP Process Closure

1 Create a component to represent a new process

In Rose’s component view, create a new process component using Rose’s support
for component creation. In general, process components are not stereotyped—the
special components that represent process closures are.

s Create a new component in your component model.

3. If you are familiar with the RUP Builder application and the way it defines process
configurations in terms of their base process and process plug-ins, this is how they were
modeled in RPW before they were exported to their respective plug-in files.

Defining a Custom Process 63

2 Stereotype it to «process».

Note: «process» components can reside anywhere inside of Rose’s component view.
We recommend you maintain them inside of their respective component models.

2 Specify component models to be included in the process

The configuration of a process is specified in terms of its included component
models.

Specify those component models that should be included by pointing to them
using model dependencies from the «process» component to all component model
packages that it includes.

For each included extension component, the component model that provides its
base must also be included in the closure.

s Create a component diagram in the component view if you don’t already have
one.

= Drag your «process» component onto the diagram.
s Drag each «component model» to be included onto the diagram.

= Establish dependencies from the «process» component to the component
model packages.

3 Assess the completeness and well-formedness of the process’ closure

On the «process» component, select the Assess closure command. This
determines the correctness and completeness of the included components and
their resolution within the closure.

The following rules apply in assessing closures
s All expected classes are represented in the configuration.
s All expected classes are represented exactly once in the closure.
2 Exactly one «process» class—not component—is realized inside the
configuration. The «process» class is where the Web Site Form is defined.
Defining how the published tree browser will be organized

You can control how the published tree browser is organized in the four predefined
compartments into which published information is inserted—namely the Disciplines,
Roles, Artifacts, and Tools sections—by using a «tree node» package stereotype to
structure the process elements in your process model. This stereotyped package type
may exist in arbitrary structures, which contain process elements, in your process

64 Chapter 5 - Working with Rational Process Workbench

model. When published, the structure of Tree Node packages is preserved for each
process element and is superimposed on the existing structure in its designated
compartment in the tree browser.

Additionally, you can override a published tree browser organization, which defaults
to be ordered alphabetically, with your own preferred order. Such rearrangements are
preserved over subsequent generations into the same location.

Those portions outside of the four predefined compartments of the tree browser are
configured by editing a text file, instead of from the modeling space.

1 Create a Tree Node package in your process model

Tree nodes are packages in process models with a special meaning: they are used
for providing structure to published tree browsers. A given process element is
published under the same folder path, in the tree browser as the path formed by its
enclosing tree node packages in the process model. The path for each element is
computed relative to the enclosing process model.

a Create a tree node package by creating a package in the process model.

2 Stereotype it to «tree node».

2 Insert new process elements into the existing tree browser folders

Consider the following example: let’s say you want to insert new elements into an
existing Artifact set defined in RUP.

RPW supports this operation by superimposing tree node paths from the various
elements, using the model names of the tree nodes to determine equality.

2 Following the example above, insert an element in the existing structure by
creating «tree node» packages in your process model.

2 Give them the same names as the ones in the RUP process model.

2 Insert the elements in their respective tree node.

3 Create new folders in the tree browser

2 Create new folders in the tree browser by creating «tree node» packages in your
process model, and give them unique names.

2 You can also create hierarchies of tree nodes by nesting «tree node» packages in
the process model.

Defining a Custom Process 65

Upgrading to a new version of the RUP

New versions of the RUP are released at regular intervals. If you've followed our
recommendations to keep your customized process models and content library
separate from the base RUP material, merging a new version of the RUP with your
customized material is straightforward.

To upgrade to a new RUP version, you need to bring the new process model into your
Rose workspace, synchronize it with your customized process elements, connect the
new RUP process model with its accompanying Content Library, and capture and
reestablish your component realization from the RUP process model. A combination
of Rose and RPW functions support you in determining if a received process model is
compatible with its predecessor and, if not, where the differences exist and reestablish
your realization dependencies.

1 Capture your current realization dependencies into the RUP process model

Before you load the new RUP process model into your workspace, you need to
capture existing dependencies you have established to its predecessor.

On your Component Model, select Capture component realizations.

2 Bring the new process model from the latest version of the Rational process
model into your Rational Rose workspace

The RUP is delivered in the form of two separate model files—one containing the
process model and one containing the component model. These two models are
represented in the RUP model that was included in RPW installation kit: the RUP
process model in the logical view, and the component model in the component
view of your Rose model.

s When you receive updates of these models, bring them into your Rose model
by using the Rose load unit function and specify the location of the RUP model.
If your Rose model already has a previous RUP process model loaded, now you
can unload it.

a If your Rose model doesn’t already contain a representation of the RUP model,
go to the File menu and select Units.

2 In the presented File Selection dialog, select the new RUP process model’s
. cat file or the component model’s . sub file.

3 Inject captured realizations into the new RUP model

The initially captured dependencies in the RUP process model need to be injected
into the new RUP model to reestablish those dependencies.

66 Chapter 5 - Working with Rational Process Workbench

On the new RUP process model, select Inject Captured Realizations.

4 Assess the dependencies from your process model to the RUP’s process
model

=)

On your «process model», select the Check syntax command. This command
verifies that the new model still supports all associations previously
established from your process model to the RUP model. This command takes a
moment to execute and presents you with a bar that indicates the progress.

The command is completed either with an OK message or a list indicating
where syntax violations exist.

5 Associate the process model from the RUP with its accompanying content
library

Once you have successfully loaded the new RUP process model into your Rose
model, do the following;:

Q

Associate it with its Process Content Library by using the Associate Content
Library command on its «process model» package and selecting the root of the
new Process Content Library in the presented File Selection dialog.

Invoke the check files command to verify that all files are present in the Process
Content Library.

6 Synchronize your process model with the latest Process Content Library in

RUP

Verify that all file references from your process model into RUP’s Process Content
Library are still maintained in the new RUP release, as follows:

Invoke the Check files command on your «process model» package. This
command works at any package and element level and invoking it at the process
model level will verify the files for all elements inside the process model.

Assess your process closures

Assessing the closure of your processes ensures that all realized elements from the
RUP process model are still represented in your model.

Q

Invoke the Assess closure command on the process closure component. This
command takes a moment to execute and you are presented with a progress bar
that indicates the progress.

The command is completed either with an OK message or a list indicating
where syntax violations exist.

Defining a Custom Process 67

Publishing a Process

This section describes how to publish process processes that have been specified in a
process model using RPW.

Publishing your process Web site is the final step in making your customized process
available for your software development organization. Publishing creates a complete
process Web site, similar to the RUP Web site itself, but tailored according to your
specifications.

A Process Content Library can be translated into different languages and retain
consistency with its process model. In other words, two or more translated versions of
a Process Content Library can exist for the same process model. RPW supports
associating the process model to one of its Process Content Library variants and
generating its Web site in that language.

Assessing the closure of your process

The closure of a process must be complete and correct before it can be published. A
process closure is deemed complete when all expected process elements are
represented inside of the closure, and it’s deemed correct if there is no conflict
between any two process elements in the closure.

This criteria serves the purpose of preventing attempts to publish nonfunctional Web
sites. It also supports early detection of ill-defined processes during process
development.

RPW provides a function to determine whether a process is correct and complete,
giving you instant feedback and guidance to locate violating process elements.
1 Determine the correctness of your process

s Invoke the Assess Configuration command on the «process» component that
represents the closure.

This command takes a moment to execute and a progress monitor is presented
to indicate its progress until it’s finished.

» Incorrect constructs are reported in an error log, indicating the reason for the
error and the affected process elements.
2 Correct errors in your process’ closure
The following error types are detected during assessment of process closures:
= use of not-recognized element types in process elements

s realization of elements, which are not recognized, in process component

68 Chapter 5 - Working with Rational Process Workbench

s}

s}

s}

violation of modeling principles and rules
unsupported interfaces

unresolved references

You will correct reported errors differently depending on the type of error. The
presented error report indicates the cause of the error and the offending, or
offended, process element.

=)

=)

Modeling errors are corrected by modifying the process model.

Component realization errors are corrected by modifying the component
realizations.

Publishing a Web site

Publishing a process Web site is the final step in creating a customized process for
your organization. A published Web site is a fully functional RUP Web site.

RPW gives you options, such as whether you want to represent certain information in
graphical or tabular format. This helps you work effectively during process
development and allows you to tailor the end result.

1

Publish a Web site

Publish a Web site by selecting the Publish Configuration command on the
«process» component.

Since process Web site publishing is an operation-intensive task, RPW gives you
options as to how complete it should attempt to make the published Web site. Here
are the publishing options RPW prompts for:

=)

=)

=)

spontaneous hyperlinking between process elements
external hyperlinking

generating a keyword index file

generating a site map

generate the Search database

generating graphically captured information; basically, whether graphics or
tables should be generated

Publishing a Process 69

2 Interpret and correct errors reported during the publishing process

Two types of errors are detected during publishing: model errors and file errors.
The same error-detection algorithm is executed, as when assessing closure, prior to
commencing with the file processing operation.

During the file processing operation, any occurrence of missing or incorrect files is
reported. The general mode of operation is that processing continues in an attempt
to publish the best possible Web site to facilitate error correction.

Using custom-designed graphics in your Web site

Some information in a process model is specified using graphical notation; for
example, the activity diagrams that specify the collaborations of the Disciplines and
Workflow Details. RPW exports these diagrams “as-modeled” (that is, the diagram
you create in the Rose modeling space is the diagram that will appear in the Web site),
then inserts them in their place in the published Web site, and makes them navigable.
In this way, RPW creates functional diagrams, albeit less appealing from an artistic
perspective. In this way, RPW provides a means for inserting your own graphics that
will be used in lieu of those graphics it generates. It also provides a function that
notifies you when an inserted graphical image is out of sync with the process model,
so you can always maintain your graphics in synchronization with your process
model.

1 Specify which graphics to use for a process element

When you initiate a Publish command you are presented with a dialog where you
can specify how you would like RPW to process graphical information.

2 In the Publishing Options dialog, select the Graphics tab.

2 Select Use Existing Graphics if you have valid graphics that can be inserted in
lieu of the generated graphics. A prerequisite for such graphics to be included
for an element is that its areamap and image files are defined in the element’s
Process Content Files dialog. If not, publishing will default to tabular (table)
generation.

2 Select Generate Graphics if you want RPW to generate graphical information
based on diagram information in your process model. This option is available
for Disciplines and Workflow Details.

a Select Generate Tables for fast generation. Graphically oriented information is
then published in tabular format (as a table) to convey the same information as
their corresponding graphics, but possibly in a less appealing format.

70 Chapter 5 - Working with Rational Process Workbench

2 Correct graphics that are out of sync

Graphics are out of sync if the set of process elements used in an existing graphics
image (to be precise, in its areamap) is different from the set of process elements
that would actually have been published. This only applies to the Use Existing
Graphics selection.

2 During the publishing operation, any out-of-sync graphics are reported as
warnings in the message log, which indicates the location of the discrepancy.
s To remove the use of existing graphics for individual process elements, and to

allow for the generation of graphics instead, remove the areamap and image
files from their Process Content Files dialogs.

2 To update your graphics to match the to-be-generated graphics, you must
update your existing areamap to include the correct set of process element
references.

Publishing a Process 71

72 Chapter 5 - Working with Rational Process Workbench

Command Reference

Almost exclusively, process model development is conducted in the modeling space
provided by Rational Rose. Rational Process Workbench adds commands only where
native Rose commands are insufficient or cumbersome to use.

RPW operation is based on the stereotypes that designate the different types of
modeling elements. RPW also adds menu items, allowing you to right-click to invoke
context menus for such elements.

All RPW commands can be invoked either in Rose’s tree view or in diagrams,
following the same principles as you would in Rose.

Process Element Commands

Process element commands are directed to process elements in Rose’s logical view,
and support modeling and verifying process elements.

This chapter describes these process element commands:
= Check Syntax
» Overview, including:

2 Artifact overview

2 Role overview

2 Activity overview

2 Tool Mentor overview

» Discipline overview

s Workflow Detail overview
» Attach Activity
» Attach Workflow Detail

73

Check Syntax command

74

The Check Syntax command can be invoked on any package in a process model. This
command checks the syntax of each process element inside of the designated package,
either directly contained or indirectly contained through nested packages, to verify
that the element is well-formed according to the semantic model and that all of its
associated elements exist in the model. The Check Syntax command can be invoked
on any package, at any level, inside of a process model. It can also be invoked on the
process model package itself.

Check Syntax helps you detect when expected derived process elements are missing
in the derivation base process model. For a description of branching and merging
process models, see the information under that heading in Chapter 4 of this document.

Figure 20 illustrates RPW’s Check Syntax command.

¢ Rational Rose - rup.mdl - [Component Diagram: Component ¥iew / Main] —18] x|
Flle Edit View Format Browss Report Query Tools Add-Ins Window Help & x|
Dz =esripraBR@e camm
T [k il
3 Use Case View a8
%| ﬁngu:a\V\ew o=
1 L) el | Open Speciication...

3 Interface New >
Rolesinf—
RUP disc DoBte

£]
B
TestDise Remove Package Assignment A
ToolsinF Rename . <<component modelz>
| u} RUP component model
Units vl el @E
5]
Data Modeler »
s ——— A
Wariant e Set Template Directary
o] DDNEN_'*Q e ——— Assaiate Content Library
£ tomplates | QuallvArchiRedt Y o et s
S Associall pional RequisitsPra »
Main " CheckFies

2, Associtions Add To Yersion Cantrel
3 Comporent View CheckIn

{23 <<componen check Out et
Main _— ligrate tool mentors

Deplogment View Export bo corfiguration uni file ...
{88 Model Properties

Capture companent reslizations
Inject captured realzations

tag-geneic =
tag=reartive
tag=ibm
tag=msit
tag=busmod
-] 4 | » [
F\Program Files\R ationalspwRUP_2002_05_00%up_2002_05.cat (wiite enabled £ modiied) [Default Language: Analysis [T

Figure 20 Check Syntax command

The result of the Check Syntax command is either a list of syntax errors or a message
box indicating that the syntax is correct.

Chapter 6 - Command Reference

Overview command

The Overview command applies to all process element types. This command displays
the Overview dialog, which shows the details of the designated process element. This
Overview dialog is composed differently depending on the type of process element
and shows the specific details of the element types.

The Overview dialog has two purposes:

= it provides an overview of a process element that can otherwise not easily be
achieved

= it provides support for input of certain modeling information

Figure 21 illustrates the invocation of the Overview command.

NEIEY
EIET

%> Rational Rose - rup.mdl - [Component Diagram: Component ¥iew / Main]
File Edit View Format Browse Report Query Tools Add-Ins Window Help

[pzRsme|sr0pRaED Felaamn

B rp o Ik =
(3 Use Case View e
-3 Logical View o
E-f13 <<process models» RUP

= Artifacts in RUP

=7 <<tree nade>> Analpsis & Design o
-0 <<tee nodes> Additional Anslysis & De -
B3 <ctree noder» Analpsis Model
-[B] Artfacts in Analysic Model a i
<=companent model>>
-
+% analpsiz, OPen Specification.., I T RUP cormponent model
laip_ame gy N @
5 1
-3, Assocati g y O
Adifactsinfe——— AR
aichitectwra Delete
deployment_ Rename
- W ref_architectt Data Modeler 2
el tarp_dsn_adi—

- ge] Ladditional. gil
3, Assoviations W Frocesstntent Files

-7 <<hiee mode>> D o - Webisite Farm

Autifacts in Analysis & Design Check Files

- data_model [analpsis_design arifacts Updste diagram presentation names

- W software_architecture_document (ana

-] Vars_dsg btmidescription

Jim] lars_dsg area_mapldiagiam areamap e

-] Vars_dsa gifldiagram image

Jm] lartfc_y gibrowserlcon &
4 »

[Analysis classes represent an early conceptual model for =
[things in the system which have responsibilties and behavior’

i

For Help, press F1 [Default Language: Andlysis I I

Figure 21 Overview command

The next seven subsections present the various overview dialogs for the different
element types.

Process Element Commands 75

Artifact overview

The Artifact Overview, illustrated in Figure 22, presents, in two tabs, the Activities
that use, create, or modify the Artifact.

Note: This information was modeled on the respective Activities and this
presentation is output only.

3 analysis_class -— Artifact Details [H[=] E3 B3 analysis_class - Antifact Details [E[=] E3

Dutput fram activities | Input to activities | Dutput from aCUV‘tieSEI
Activities which use this artifact as input Activities which use this artifact as input/output
identify_design_mechanisms use_case_analysis

identify_design_elements

OK. | Cancel | Epnly | 0K, Cancel | Appl |

Figure 22 Artifact overview

Role overview

The Role Overview, shown in Figure 23, presents the Artifacts that the Role has been

assigned «modifies» or «responsible» responsibility for in one tab, and the Activities
performed by the Role in the other tab.

Note: This information was modeled on the respective Activities and this
presentation is output only.

 rchitect-Role Detas A=

Artifacts I Acliviliasl Disciplinesl Autifacts Activities | D\sciplinesl

Arifacts which architect is responsible for. Aclivities performed by architect

inteiface [responsible) - prioritize_use_cases -

pragramming_guidelines [responzible] architectural_analysis

design_model [responsible] describe_runtime_architecture

implementation_rmodel [responsible] describe_distrbution

software_architecture_document [rezponzible] shiucture_implementation_model

analysiz_model [rezponsible] develop_design_guidelines

design_guidelines [responsible] develop_programming_guidelines

protocol [responsible) - identify_design_mechanisms -
QK Eieiel ok Al

Figure 23 Role overview

76 Chapter 6 - Command Reference

Activity overview

The Activity Overview, as shown in Figure 24, presents information in its three tabs
and supports the entry of modeling information. Figure 25 and Figure 26 illustrate the
Tool Mentor and Disciplines tabs, respectively.

I architectural_analysis - Activity Details
Atitacts I Tool Mentorsl ok o Detailsl

The Artifact Overview tab presents those Candidates For activity input Achivity uses as iInput
. L test || busi biect_model
Artifacts used, created, and modified by the [, P
Activity. The left-hand panel lists all Artifacts that test_madel vision
. . test_package use_case model
are. candidates for b.emg mOdequ’ whereas the test_procedue supplementary_specification
right-hand panel lists those Artifacts currently v:olrk\oad mode | ;lll
selected in the respective category.
This panel is also an input panel, where Artifacts
are selected or deselected either by Candidates for activity output Activity creates a3 output
double-clicking on the Artifact in the appropriate glossary i = ;sel_case_realiz;ti‘un
. . . use_case_realization eployment_mode]
list or clicking Add or Remove. || o0 o ™ pesten
design_class

design_package

desigh_subsyztem
=

capsule

Candidates for activity input/output Activity uses as input/output
glozzany 4 | | design_guidelines
uge_case_realization ref_architecture
implementation_subsystem software_architecture_document
design_class design_model

design_package
design_subsystem
capsule

Apply |

Figure 24 Activity overview

Process Element Commands 77

I architectural_analysis - Activity Details

Ftitacts Tool Mentars | wrkflow Details |
Toal Mentors associated with this activity
The Tool Mentors tab presents those Tool ose capiuie_tesuls s case anshsis

rosecreate_use_case_realization

Mentors assigned to this Activity. This panel is rosezpublishing_webbased_morck:
also an input panel, letting you add and delete
Tool Mentors from the list.

oK | Cancel I Apply

Figure 25 Tool Mentor tab on Artifact overview

B architectural_analysis - Activity Details

Bttacts | Tool Mentors Workilow Dt |
. T Wiotkflow Details associated with the S elected Activity
The Disciplines tab presents the analpsis_design : def_candidate_archiectue
Workflow Details that this Activity is || pefomarh srihesi
modeled to be part of.
This information was modeled on the
respective Activities and this presentation

is output only.

Figure 26 Disciplines tab on Artifact overview

78 Chapter 6 - Command Reference

Tool Mentor overview

The Tool Mentor Overview, see Figure 27, provides an overview of the associated
Activities that have been assigned to this Tool Mentor as Tool Mentor for their task.

Note: This information was modeled on the respective Activities and this

presentation is output only.

4. find_actors_use_cases - ToolMentor Details

Agsociated Activities
Agtivities which this tool mentar applies to
system_analyst:find_actors_and_use_cases

=lol x|

o[

Figure 27 Tool Mentor overview

Discipline overview

Apply |

The Discipline Overview, shown in Figure 28, presents those Roles that have been
associated to the Discipline element through «participant» associations. These Roles
are eligible for participation in the Discipline’s Detail Activity Overview diagrams.

Note: This information was modeled on the respective Activities and this

presentation is output only.

analysis_design - Discipline

Dizcipline |
Roles involved in this discipling

capsule_designer
design_reviewer
architecture_reviewer
architect

designer
database_designer
uzer_interface_designer
implementer

integrator

Figure 28 Discipline overview

Process Element Commands 79

Workflow Detail overview

The Workflow Detail Overview, see Figure 29, presents the Activities that participate
in the Workflow Detail, as specified by its Activity Overview diagram.

Note: This information was modeled on the respective Activities and this
presentation is output only.

[analyze_behavior - WorkflowDetails |_ (O] x]
‘wharkflove Detail |

Activities contained in workflow Detail analyze_behavior
identify_design_elements

use_case_analysiz
review_the_design

Figure 29 Workflow Detail overview

Attach Activity command

The Attach Activity command, shown in Figure 30, applies to activity overviews and
displays the Attach Activity dialog, which supports the association of an activity state
to its Activity. The selection lists presented in this dialog are populated with the
discipline’s participating Roles and their Activities.

W Attach Activity [_ O[]
All Roles:

| desigher _I

Identify Des\gn Element
Use Dase An \ys

Activities
| use_case_analysis -

o |[i

Clear Association |

Review the Design

:

Figure 30 Attach Activity command

80 Chapter 6 - Command Reference

Attach Workflow Detail command

The Attach Workflow Detail command, see Figure 31, applies to Discipline workflow
activity diagrams and displays the Attach Workflow Detail dialog, which supports
the association of a Workflow Detail to a Discipline activity state. The displayed
selection list is populated with the Workflow Details defined on the Discipline.

[Early elaboration | l&ﬂy teration? [inseption]_
perform architactural

! y synthesis
Det Candidate Avchitecture

4

l End of inception fteration

.]
55 Analyze Behavior
D |

'
R 8 Attach Workflow Detail
Workflow Details

I refine_architecturs

De oK

Design Reattime Compenents

|
|

%)End of iteration

Figure 31 Attach Workflow Detail command

Process Element Commands 81

Process Content Library Association Commands

The commands presented in this section support the associations of files to process
models.

Associate Text Library command

The Associate Text Library command, shown in Figure 32, displays a File Selection
dialog where you enter the path to the root of a Process Content Library.

% Rational Rose - up [=
File Wiew Help
|DB“H|§E EREGe0dBRnE =B Ble|®a dE
e [k
[Use Case View it
03 Logieal View =
[ERow] - 0
in DOpen Specification =
Interface Specilicati
Rules in RUP Hew ' r
3 RUF disciplines and B
3 Tookin RUP .
ackage dependent B
acess madel overy =
ool dependencies =
-

5] Wariant extensions

Associate Content Library

o templatesiRFWltemy
o content_lbrarlRFW

"2 Associations Chenk Syntax Lockin |1 RUP_2001A_04_00 =l | %
Main Check. Files
=, Associations (Eapture comperent realzatnns _| content_libram
-3 Component View It eaptied realizations 1 published

Deplayment Wiew
@& Model Froperties

File name: [rantent_library

Files of type: IFnIdars ;I LCancel

f\RationalspwhRUP_20014_04_00%up_20014_04.cat [wite enabled / modit

Figure 32 Associate Text Library command

82 Chapter 6 - Command Reference

Inject Component Realization command

The Inject Component Realizations command, shown in Figure 33, injects previously
captured component realizations into a process model. Component realizations are
captured using the Capture Component Realizations command. The sequences of that
command and this one support the carrying forward of component realizations over

consecutive releases of RUP process models, as part of process model merging.

%> Rational Rose - rup.mdl - [Activity Diagram: analysis_design / Workflow Activity Overview Diagram] o [|
[F] File Edit View Format Browse Report Query Tooks Add-Ins Window Help & x|
[Dem/mE(g/¥0pREREE B-aa@m
B we -] Uk
(3 Use Case View E [] =
-7 Logical View
& = i
=) Open Specification. ..) [Early elaboration] [inception]
(3 Aifacts i y
(3 Interface Mew 3 =
= (7 Rolesinf @ perfarm architectural synthesis
507 <cue | Delete =
-3 ¢cyre Remove Package Assignment . Def Candidate Arshitecture
B3] <cre| Rename ® J{ End of inception iteration
-7 <ate ; ,
Roke| oo A
Data Modeler »
=, Assou s .
B Set Template Directory
T culvarchtot | Pssoriste Content Library
kil Pracess Content Files
Rational RequisitePra b Check Syntax
Check Files
Add To Version Contral . Analyze Behavior
Caphure component realzations
Check In e
Inject captureqyrealizations
check Out X,
Migrats tool mettars "
P ol [Optional]
project_management participants Expaiabe) oont G ation b
requirements participants
s devin anchsi_design i @ @
- analyze_behavior
BT StatesActivity Madel Design Companents Design Database
[&) workflow Detal Diagram - —
Ll L2 \lz ‘lf
[Eem— =l L
tag=reactive
tag=ibm
tag=mstt
tag=busmod End of iteration
_I 4 | N ﬂ

F:\Program Files\Rationalspe\RUP_2002_05_00%wp_2002_05.cat [wite enabled / modified] |Default Language: Analysis [|l [

Figure 33 Inject Component Realization command

Process Content Library Association Commands 83

Process Content Files command

The Process Content Files command, displayed in Figure 34, launches a dialog where

files can be associated to process elements.

Each process element type defines its own set of file types, which are the files that are
relevant in the published process Web site for the element type. For a complete listing

of the file types that apply to the different element types, see the discussion in

Chapter 3 of this document, under the headings Common Files and Additional Files.

Files from either the enclosing process model’s associated Process Content Library or
from the Process Content Library of a derived process model may be associated to a

process element.

=10 <<process model > RUP process model
=3 Arifacts in RUP

L—‘_IE:I <<tiee noder > Analyzis & Design
Analysiz & Design tools
artifacts in Analysiz & design
analysiz_clasz [analysis desigr
% analysiz_model [analysiz desig
% architectural_proof_of_concep
W capsule [analyzis design artifac
» data_model [analysiz design al
» deployment_model [analysis de
design_class [analysiz design .
» design_model [analysiz design
design_package [analysis des
design_subsystem [analyzis de
event [analysiz design artifacts

= -
N
- |- software_ar
analysiz_model
B3 analysis_class -— Process Content Files |_ (O] x|
Type | FilzM ame | Path |
description ar_aclss.htm processhartifact

checklist
browigercon

guideline md_acls2 htm |prncess\mndgulde\
Delete
Change Type
0K Cancel Change Presentation Marne

e T T e - -
[l L - [[T o - - - [(T

FEEE T

interface [analysis design artifacte T
protocol [analysiz design artifacts |

il 5

Yy

Create Mew
Edit

Figure 34 Process Content Files command

84 Chapter 6 - Command Reference

Web Site Form command

The Web Site Form command, shown in Figure 35, displays the Web Site Form
dialog, which is a file selection dialog similar to the Process Content Files dialog
described previously, except this one defines the Folders and files that constitute the
Web Site Form of published processes.

%-Rational Rose - rup.mdl - [Activity Diagram: analysi: =15 =|
[F) File Edit View Format Browss Report Query Tools Add-Ins Window Help =1 x|
BRI EEEEEE R Y
=3 RUP disciplines and process B W
analysis_design participants AEC . =
config_change_management participants =
deployment participants {) [Early elaboration] [inception]
fanvironmenl parl\cipa.nts R For %
implementation participants ;
lfecycle madeling Type FileMame Library Path te ctural synthesis
Ovarview of all disciplines in B | el vik_sthld. him $APYw_COMTENT_HOMESRUIP_2002_D5_D0%contert_libra &
Package dependencies (file) toclment.htm $RPw_COMTENT_HOMENRUP_2002_05 00wcontent_libra
project_management participal | (file] templates.him $APw_COMTENT_HOME'\RUP_2002_05_00%:ontent_libra End of inception iteration
requirements participants [file) stertype htm $RPwW_COMTENT_HOMESRUP_2002_05_00hcontent_libra
analysis_design [analysis_des | [fle) spscieen.him $APw_COMTENT_HOME\RUP_2002_05_00%content_libra
configuration_changs_managt | fie) up_relnotes. htm $RPw_COMTENT_HOMENRUP_2002_05_00content_libra
deplopment [deployment_disci | i) Top.css $RPW_COMTENT_HOME \RUP_2002_D5_0D\cortent_libra
environment [envionment_di | (e relrotes: him $APYw_COMTENT_HOMEARLIP_2002_05_D0hcortert_libra
mplementation [mplementati |G, referenc him SRPw/_CONTENT_HOMENRUP_2002_05_0Bhcontert_libra
Praject_management { project |) ov_works ki | $RPw_CONTENT_HOMENRUP_2002_05_0Dhcontert_libra
= '(iqp“:gz’::s“:j [F"ETD“;'BHT;‘?;:‘E Ife) ovuL_reps:him $APW_CONTENT_HOME\RUP_2002_05_Olcontent_ira
% Associgtions [fike] ovL_proc.hitm $RPw_COMTENT_HOMESRUP_2002_05_00%:ontent_libra
1477 Test Discipline (file) ovi_core.hitm $RPw_COMTENT_HOMENRUP_2002_05_00content_libra
@3 Tooks in RUP [fik] ovL_busm.htm $RPw_COMTENT_HOMESRUP_2002_05_004content_libra
[Package dependencies (fle) ovu_arts htm $RPw_COMTENT_HOMEARLUP_2002_05_D0hcontent_libra
[B) Pracess madel overview (file) ovu_armnd.hitm $RFYW_CONTENT_HOMENRUP_2002_05_OChcontent_libra
[B) Tool dependercies (fle) hrstols. him $APYw_COMTENT_HOMEARUIP_2002_05_D0hcortert_libra
- [H] Yariant extensions (file) md_style htm $RPw_COMTENT_HOMENRUP_2002_05 00wcontent_libra
E content_librar AP libaryRaot (file) mid_files.htm $APw_COMTENT_HOME'\RUP_2002_05_004:ontent_libra
E templates!RPwWitemplatesPath (file) iwf_iwfs. htm $RPw_COMTENT_HOMENRUP_2002_05_00content_libra b
4 (file) ins_tmpl.himn $F\F’W’_EDNTENT_HUME\HUP_2UUZ_U5_UU\chlent_\|bra_v|
This class represents the generic porlion of a prace ¥/ Ghow Inherked Files
appear in a generated web site.
& generated process must include exactly one <<pr
class | which provides the static parts of the browse
paints out the locatian of the applet tree data. @ End of iteration
4 | (5
For Help, press F1 |Default Language: Analysis [[—

Figure 35 Web Site Form command

Process Content Library Association Commands 85

Check Files command

The Check Files command, see Figure 36, can be invoked at any level, both on
individual process elements and on packages. Invoking the command on a package
applies the command to all process elements contained in that package.

The Check Files command verifies that all files associated to a process element exist
in their specified location in the file system.

4> Rational Rose - rup.mdl - [Activity Diagram: analysis_design / Workflow Activity Overview Diagram] =[]
B File Edt Yew Format Browse Report Query Tools Add-Ins Window Help =8 x|

DR Re(s ROEBROEE B aaOE|

B p < Ik
3 Use CaseView i [] =
3 Logical View
£ =
(3 Afffacts | QPen Specication. .
C3 Interface o s =
3 Roles inf pertorm architectural fynlhei\;
CJ RUPdsc Delete (=)
£ TestDisc Remove Package Assignment + Def Candidats Architzcturs
3 TookinF Rename ® \lf Enn of inception iteration
Units » A
Data Madslar »
. DataModsler ¥ o
| Qualtyrchtsct) Associate Content Library
%] " Process Contzrt HEs
= Assooid | RequisiteF: b Check Synt
8 tan Rational RequisitePro eck Syntax
3 Associstions ndd To Version Cortral Ar\:\vze Behavior
3 ConponentView cpeck Captire Cobaneri: real zatarns
eck In
Inject captured reslizations
B3 <coomponen oy g ject eapk
AUP closer————————— Migrate tool mentors [Optianall
] additional roles Export b configuration unt e ...
] analysis_desian attitacts
0 snsbst.cosn ciine EB EB
] analysts
] com artfacts Design :am;.m.enes Design Databass
4] confiquration_changs_management_disciplng -
] deployment artitacts i} l
tag=gereiic =] \L
tag=reactive
tag=ibm
tag=msit
tag=busmod End of taration
| 4 | O
F:\Ptogram Files\Riationaltyw\ALIP_2002_05_D0\up_2002_05.cat (wite enabled / modified] [Defauit Language: Analysis I [

Figure 36 Check Files command

86 Chapter 6 - Command Reference

Process Component Commands

Process Component commands assist in the development of the component model,
and in publishing of process Web sites. This section describes these process
component commands:

» Assess Configuration
» Publish Configuration
» Capture Component Realization

= Export to Configuration Unit

Assess Configuration command

The Assess Configuration command assesses the correctness of your process
configuration. It validates the process closure defined by your process configuration
and reports any violations of the modeling principles and any unresolved or
ambiguous element references (see Figure 37).

%> Rational Rose - rup.mdl - [Activity Diagran: analysis_design / Workflow Activity Dverview Diagram] =181
[F) File Edit %ew Format Browse Report Query Tools AddIns ‘Wirdow Help =181x|

DEHl/BE & eO0pRREB | RClaanm|

3 <<component model> RUP component model a | W
[RUP closure e [] =
] addiional rales =
] analysis_design arfacts ! [Eatly elaboration] Lincaption] D
4] analpsis_design_discipline %
4] analysts
£] com artitacts
4] configuration_change_management_discipline
4] deplopment ariifacts
4] deployment_discipline
] developers
] ervitonment artitacts
4] envionmen_discipline
4] implementation artifacts
] implementation_discipline
4] managers
] project_management artifacts

-] project_management_disciplne
] requitements anfacts E,b Analyze Senavior
] requrements_discipline P

@ Rafine Architecture

perform architectural synthesis

Aém ofinsepion tersion

|ac-12ve .00
|

-] ROF Open Specffication [Optiona)
SR 5
gltest ———
S EB EE
-] teste Rename
Main Data Modeler » Gesign Companents Design Database
Deployment — | —

tag=geneiic

&) Hode! Prop- IR Chec Sytax ‘

tag=reactive:
tag=busmod
End of teration
-] il | H[
For Help, press F1 |Default Language: Analpsis [I [

Figure 37 Assess Configuration command

Process Component Commands 87

Publish Configuration command

The Publish Configuration command, shown in Figure 38, publishes the designated
process into the file directory currently associated to the designated «process»
component.

Note: Any previous content in the designated directory will be erased.

Publishing a process takes considerable time to complete, depending on its size. For
reference, publishing the full RUP takes about 15-20 minutes, depending on the
particular configuration of the computer where the publishing takes place.

$:| requ\remenls
$:| requ\remenls

$:| =1 Open Specification..,

CER ey ’
(33
&) te Delete

~E]te Rename

The current status of an ongoing publishing Activity is
presented in a Generation Log window, where any
errors and warnings encountered during publishing
are also reported.

Check Syntax

Prabe Configuration
Assess Configuration
Publish Configuration

Figure 38 Publish Configuration command

88 Chapter 6 - Command Reference

Capture Component Realizations command

The Capture Component Realizations command, shown in Figure 39, is performed
in preparation for merging a new RUP process model into your modeling space. This
command is the second of two commands (the other being Inject Component
realizations) that support the carrying forward of component realizations over
consecutive releases of RUP process models, as part of process model merging.

4> Rational Rose - rup.mdl - [Component Diagram: Component View / Dverview] - 151 %[
Fie Edt Yiew Format Browse Report Query Tools Add-Ins Window Help =& x|

DEH|tRE g RO BRERE P« |aann|
5 e & 7

(3 Use CaseView e
E-CJ Logical View
=17 <<process model>» RUP
23 Artifacts in RUP
3 Interface Specifications
3 Roles inRUP
3 RUP disciplines and process
£33 Test Discipline
3 Todksin RUP
Package dependencies
Process model overview
Tool dependencies
B Variant extensions
LGl content_lbran! APy lbanRoat
[templates! RPWtemplatesPath
3 Associations
Main
3, Associations
= C3 Component Yiew
A7 <<companent modeb> RUP component model

Main
om

Overview s N
Deployment View Hew ,
28 Model Properties 7

<<component model>>
RUP component model

£]
E
u]
5]
a
£
&
£
F

Open Speciication. ..

Delete
Rename
e <<component model=>
Cusomized Component Model

Units »
Data Modeler »

pissodate Contert library:

Process Content Files
Rational RequistePro b Cherk Syntax

T ChiedkFiles

QualityArchitect »

Add To Version Contral

CheckTn
Inject captured realizstions
Check Out |
L Mesetones | [T
Eapart to it Fl ..
For Help, press F1 1 SRS E R EE T o | emileqs e Aaelee [T

Figure 39 Capture Component Realizations command

Export to Configuration Unit File command

Exporting component models to the file system applies only those users who develop
process plug-ins, because it assists them in creating their deliverables.

The Export to Configuration Unit File command exports the component model, and
its included components and their associated process elements, as one entity to the
file system. In preparation for export processing, RPW prompts for additional input
similar to what happens when you publish a configuration to a process Web site.

Process Component Commands 89

For further details on developing process plug-ins (using RPW) and RUP Builder,
please refer to the RUP Resource Center (www.rational.net/rupcenter/). The paper is
titled Creating Process Plug-ins Using Rational Process Workbench.

EID Companent Yiew | | = I

5] implementatior
5] implementatior
-] managers
8] project_mana
8] project_mana
8] requirements ¢
8] requirements_
=-[@] RUP |
-] RUP static_pr
-] RUP toolz
~@1 test artifacts

Capbure component realizations
Inject captured realizations
I Migrate tool mentors

onfiguration unit file ...

EI"EJ T Open Specification...
e
-] addition. Mew L4
-] analysis —
-] analysis Delete
-] analysts REname
- ccm.artll Lrits »
-] configur ———
g7 deploym Set Template Directary.
8] deployment_d =i fssaciate Content Library
-] developers £] Process Contert Files
8] environment & Check Syntax
8] environment_t = Check Filzs
=

Figure 40 Export to Configuration Unit File command

90 Chapter 6 - Command Reference

Rational Process
Workbench Commands in
HTML Files

The generation capabilities of RPW are based on the insertion of commands into the
HTML text material. These mark the places where RPW will insert generated
information and defines or indicates the type of information to be inserted. These
commands are already inserted into the templates provided with RPW and are
generally not a concern for you in your process authoring.

When publishing your process Web sites, RPW requires specific HTML tags,
recognized only by RPW, to determine the type of information to generate and where
in the HTML document to insert this information. All HTML commands used by
RPW follow this structure:

<rpw name="COMMAND” [attribute name] =" [attribute
valuel] " >ARGUMENT</rpw>

Note: The [attribute name] [attribute value] pair can occur from zero to
many (0...n) times.

The command, attribute name, attribute value, and argument parameter are all
case-sensitive. If the argument parameter is not required, RPW will ignore any text
entered in this area. All commands used by RPW are described in this format.

Command Argument: required argument
Attribute: required attributes

RPW Element: valid elements that the command
containing the HTML file can be
associated

Required File Type required file type that must be
Association: associated to the element parameter
specified above

Description: a description of the command and in
some cases an example is provided

Caution: Do not embed RPW commands within each other or within an HTML
hyperlink tag.

91

HTML commands for Artifacts

InsertArtifactImage

Argument:

Attribute:

RPW Element:

Required File Type

InsertArtifactResponsibleRole

Association:

Description:

Argument:

Attribute:

RPW Element:

Required File Type

InsertArtifactReport

Association:

Description:

Argument:

Attribute:

RPW Element:

Required File Type

InsertArtifactMorelnfo

Association:

Description:

Argument:

Attribute:

RPW Element:

Required File Type

92 Rational Process Workbench Commands in HTML Files

Association:

Description:

none

none

document, model element, model
diagram image

inserts the associated diagram
image file type

none

none

Artifact

none

inserts a relative link to the Role
responsible for this Artifact

none

none

Artifact

report

inserts a list of relative links to the
associated report file for the
Artifact

none

none

Artifact

checkpoint or guideline or concept
inserts a list of relative links to all

associated checkpoint or guideline
or concept files for the Artifact

InsertArtifactTemplate Argument:

Attribute:

RPW Element:

Required File Type
Association:

Description:

InsertArtifactInputActivity Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:

InsertArtifactOutputActivity Argument:
Attribute:
RPW Element:

Required File Type
Association:

none

target (optional)
ul_tags (optional)

Artifact

Microsoft Word template and /or
HTML template

Inserts a list of relative links to all
Microsoft Word templates or
HTML templates for this Artifact.

1 target

The attribute target is used in the
same way as the HTML target
attribute. By default, if it’s not
provided, the target="_blank”,
which opens the link into a new
window.

2 ul_tags

The attribute ul_tags determines
if RPW will start and end the list
with the and tags. All
list entries will still be enclosed
in and tags. Valid
values for this attribute are true
and false. If the attribute is not
present, the default value is true.

none

none

Artifact

none

inserts a list of relative links to all
Activity elements that use this
Artifact as input

none

none

Artifact

none

93

HTML commands for Activities

InsertActivityGuideline

Description:

Argument:

Attribute:

RPW Element:

Required File Type

InsertActivityConcept

Association:

Description:

Argument:

Attribute:

RPW Element:

Required File Type

InsertActivityCheckpoint

Association:

Description:

Argument:

Attribute:

RPW Element:

Required File Type

InsertActivityToolmentor

Association:

Description:

Argument:

Attribute:

RPW Element:

Required File Type

94 Rational Process Workbench Commands in HTML Files

Association:

inserts a list of relative links to all
Activity elements that use this
Artifact as output

none
none

Activity

guideline

inserts a list of relative links to all
guideline files for an Activity
none

none

Activity

concept

inserts a list of relative links to all
concept files for an Activity

none

none

Activity

checkpoint

inserts a list of relative links to all
checkpoint file for an Activity
none

none

Activity

none

Description:

InsertActivityResponsibleRole Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:

InsertActivityWFD Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:

InsertActivityInputArtifacts Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:

InsertActivityResultingArtifacts Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:

inserts a list of relative links to all
Tool Mentors associated with this
Activity

none

none

Activity

none

inserts a list of relative links to the
Role responsible for this Activity
none

none

Activity

none

inserts a list of relative links to all
Workflow Details in which this
Activity participates

none

none

Activity

none

inserts a list of relative links to all
Artifact elements used as input to
this Activity

none

none

Activity

none

inserts a list of relative links to all

Artifact elements that are output
by this Activity

95

InsertActivityMorelnfo Argument: none
Attribute: ul_tags (optional)
RPW Element: Activity
Required File Type concept, guideline, or
Association: checkpoint—all are optional
Description: inserts a list of relative links to any

HTML commands for Tools and Tool Mentors

ToolmentorOverview Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:

ToolmentorInsertActivityList Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:

96 Rational Process Workbench Commands in HTML Files

associated file types listed above;
each entry will be prefixed with
the file type name

none

none

Tool

none

inserts a list of relative links to all Tool
Mentors contained in the Tool element
none

none

Tool Mentor

none

inserts a list of relative links to all

Activity elements to which this Tool
Mentor is associated

HTML commands for Roles

OverviewRole Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:

none
none
Role

optionally diagram image and diagram areamap

performs two functions with two possible outputs,
depending on your selection during the generation
process:

= Table—which contains a list of Activities this Role
is responsible for, with their corresponding
Artifacts either created or modified by each
Activity.

= Existing Graphics with Area Map—RPW inserts
the associated diagram image and diagram
areamap files. It reports any inconsistencies that
may be present between the associated diagram
areamap file and what is present in the Rational
Rose model. If either of the two required files are
missing, RPW defaults to the table format.

HTML commands for Disciplines and Workflow Details

OverviewWorkflow

Argument: none

Attribute: none

RPW Element: Discipline

Required File Type optionally diagram image and diagram
Association: —areamap

97

98

Description:

WorkflowConceptsPage Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:

WorkflowGuidelinesPage Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:
WorkflowArtifactsPage Argument:
Attribute:

RPW Element:

Rational Process Workbench Commands in HTML Files

performs three functions with three

possible outputs, depending on your

selection during the generation process:

= List—which contains all Workflow
Details contained in this Discipline.

= Generated Graphics—RPW inserts the
Rational Rose Activity flow diagram
contained in this Discipline, complete

with relative links to the appropriate
Workflow Detail.

= Existing Graphics with Area
Map—RPW inserts the associated
diagram image and diagram areamap
files. It reports any inconsistencies that
may be present between the associated
diagram areamap file and what is
present in the Rational Rose model. If
either of the two required file types are
missing, RPW defaults to the generated
graphics.

none

none

Discipline

none

inserts a list of relative links to all

associated concept file types from all

elements contained in this Discipline

none

none

Discipline

none

inserts a relative link to all associated

guideline file types from all elements

contained in this Discipline

none

none

Discipline

Required File Type
Association:

Description:

WorkflowActivitiesPage Argument:
Attribute:

RPW Element:
Required File Type
Association:

Description:

WorkflowDetailsList Argument:
Attribute:

RPW Element:

optionally Artifact overview diagram
image and Artifact overview diagram
areamap

performs two functions with these two
possible outputs, depending on your
selection of the output format for
Workflow Diagrams during the
generation process:

= Table—which contains a list of relative
links to all Artifact elements contained
in this Discipline.

= Existing Graphics with Area
Map—RPW inserts the associated
Artifact overview diagram image and
Artifact overview diagram areamap
file. If either of the two required files
are missing, RPW defaults to the table
format.

none
none
Discipline

optionally Activity overview diagram
image and Activity overview diagram
areamap

performs two functions with these two

possible outputs, depending on your

selection of the output format for

Workflow Diagrams during the

generation process:

= Table—which contains a list of relative
links to all Activity elements contained
in this Discipline.

= Existing Graphics with Area
Map—RPW inserts the associated
Activity overview diagram image and
Activity overview diagram areamap
file. If either of the two required files
are missing, RPW defaults to the table
format.

none
none

Discipline

99

Required File Type
Association:

Description:

WorkflowDetailsDiagram Argument:
Attribute:
RPW Element:

Required File Type
Association:

100 Rational Process Workbench Commands in HTML Files

optionally wfd overview diagram and
wid overview diagram areamap

performs three functions with three
possible outputs, depending on your
selection during the generation process:

List—which contains all Workflow
Details contained in this Discipline.

Generated Graphics—RPW inserts the
Rational Rose Activity flow diagram
contained in this Discipline, complete
with relative links to the appropriate
Workflow Detail.

Existing Graphics with Area
Map—RPW inserts the wfd overview
diagram and wfd overview diagram
areamap files. It reports any
inconsistencies that may be present
between the associated wfd overview
diagram file and what is present in the
Rational Rose model. If either of the
two required file types are missing,
RPW defaults to the generated
graphics.

none

none

Workflow Detail

optionally diagram image and diagram
areamap

Description: performs three functions with three

HTML commands for tree nodes

TreeNode Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:

possible outputs, depending on your
selection during the generation process:

= Table—which contains all Roles
contained in this Workflow Detail. In
addition, all Activities along with all
resulting Artifacts are displayed with
the appropriate Role.

= Generated Graphics—RPW inserts the
Rational Rose Activity flow diagram
contained in this Workflow Detail,
complete with relative links to the
appropriate Activities.

= Existing Graphics with Area
Map—RPW inserts the associated
diagram image and diagram areamap
files. It reports any inconsistencies that
may be present between the associated
diagram areamap file and what is
present in the Rational Rose model. If
either of the two required file types are
missing, RPW defaults to the generated
graphics.

none
none
tree node

optionally diagram image and diagram areamap

performs two functions with two possible outputs,
depending on your selection during the generation
process:

= Table—which contains a list of elements nested
one-level deep.

= Existing Graphics with Area Map—RPW inserts
the associated diagram image and diagram
areamap files. If either of the two required files
are missing, RPW defaults to the table format.

101

HTML commands for diagram areamap file types

ImageHeight Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:

ImageWidth Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:

AreaMap Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:

diagram image height

none

Discipline, Workflow Details, tree node, Role
diagram image

provides the height of the associated diagram image
file type

diagram image width

none

Discipline, Workflow Details, tree node, Role
diagram image

provides the width of the associated diagram image
file type

HTML tag

none

Discipline, Workflow Details, tree node, Role
diagram image

contains the standard HTML tag area for a hot spot to
the associated diagram image file type

102 Rational Process Workbench Commands in HTML Files

General HTML commands

Include

Argument:
Attribute:
RPW Element:

Required File Type
Association:

Description:

relative path to a file from the output directory
none
any

none

inserts the contents of the file specified in the argument

RPW will process any General HTML Commands that
are contained in the included file.

RPW will search for the include file in the following
location and in the order specified here:

1 The specified “rpw folder” file type that is
specified in your «process» element file collection if
your relative path starts with this value

2 The current content library directory

3 If the file name is stripped from the relative path in
the “rpw folder” specified in the «process» file
collection

In all cases, you will continue through this order. If
the last one listed here (3) fails, you’ll receive an error
message.

Example of the include command:

<rpw name="Include”>rpw/myincludes/
include.inc</rpw>

If the “rpw folder” is in the content_library
installation path “c:\program

files\rational \rpw\myProcess\content_library
\rpw” and the current root library directory is
“c:\program files\rational\rpw\rup\
content_library”, RPW will proceed as follows:

1 check to see if the file is present in c:\program
files\rational \rpw\myProcess\content_
library \rpw\myincludes\include.inc

2 check to see if the file is present in c:\program
files\rational \rpw\rup\content_library\
myincludes\include.inc

3 check to see if the file is present in c:\program
files\rational \rpw\myProcess\
content_library\rpw\include.inc

103

InsertRelative Argument:
HyperLink
Attribute:
RPW Element:
Required File Type
Association:
Description:
InsertRelative Argument:
Path
Attribute:
RPW Element:
Required File Type
Association:
Description:
InsertTemplate Argument:
FileName

anchor display text

link
any

none

inserts a relative link to the target location specified
by the link attribute

The link attribute must be a relative link from the
output directory.

Example:

<rpw name="InsertRelativeHyperLink"
link="toolment/toolment.htm">Toolmentor
Overview</rpw>

will produce <a href="{relative link to
<outputdirecotry>\toolment\toolment.htm}">
Toolmentor Overview

none

link, pre, post
any

none

inserts a relative path enclosed in the contents of the
pre and post attribute values

The following symbols cannot be contained in the pre
and post, but must be entered using the HTML
equivalent:

<> &l

> > >

mys

-> "

Example:

<rpw name="InsertRelativePath" pre="&Ilt;img src="
post=">" link="images/rup1.gif"></rpw>

will produce <img src="{relative link to
<outputdirecotry>\images\rup1l.gif}">

none

104 Rational Process Workbench Commands in HTML Files

Attribute: link, pre, post
RPW Element: Discipline template file

Required File Type none
Association:

Description: inserts links to all of the supporting files for a new
discipline
Example: create a new Discipline called
newDiscipline.

RPW will automatically create all of the supporting
files with the following names:

* newDiscipline_Introduction.htm
* newDiscipline_guideline_overview.htm
* newDiscipline_concepts_overview.htm
» newDiscipline_artifact_overview.htm
* newDiscipline_activity_overview.htm
* newDiscipline_wfd_overview.htm
Once the files are copied, this command is run to
insert the names of the supporting files into the links
from the overview page.
Warning Argument: none
Attribute: none

RPW Element: any

Required File Type none
Association:

Description: ~ does not perform any function and is removed during
the generation process

105

106 Chapter - Rational Process Workbench Commands in HTML Files

Glossary

Activity. An activity describes an action that is performed by a role.

Activity overview. Activity overviews are activity diagrams that describe the collaborations within
individual Workflow Details.

Artifact. An artifact describes a product of software engineering.

branching and merging. Branching and merging are common terms for the activities involved in
maintaining parallel development streams. Although this is most common in software development, it’s
also applicable in process development.

class. A description of a set of objects that share the same attributes, operations, methods, relationships,
and semantics.

class diagram. A class diagram shows the existence of classes and their relationships in the logical
design of a system. A class diagram may represent all or part of the class structure of a system.

closure. See process closure.
Discipline. Disciplines are process elements that define distinct boundaries within a process.

Discipline workflows. Discipline workflows are abstract workflows that describe the overall activity
model of a process.

dynamic specifications. Dynamic specifications define concepts that specify how the process elements
collaborate in a process. UML activity diagrams and sequence diagrams are used for these specifications.

inheritance. The mechanism by which more specific elements incorporate structure and behavior of
more general elements.

interfaces. In Rational Rose’s logical view, interfaces can be used to specify various responsibilities of
the process model. Applied when designing process, interfaces are used to enable variation of a given
deployment of a process.

operation. A service that can be requested from an object to effect behavior.

process. A software development process—the steps and guidelines by which to develop a system.
Process specifies a particular lifecycle and defines the phases that constitute this lifecycle.

process closure. The process elements included in a process.

process components. Process components specify how process elements are grouped into components
to form “chunks of process” that will be deployed as a collective unit.

Process components represent non-arbitrary sets of process elements that are internally consistent and
may be reused with other Process components to assemble complete processes.

Process Content Library. This is a container of process text descriptions and Web graphics.

process elements. Process elements define the core concepts—Ilike role, artifact, activity, and
workflow—used in process modeling and how these are associated to each other.

process model. A process model captures the design of a process. A process model defines a complete
set of process elements and any processes that include these process elements in their specifications.

Glossary 107

Role. A role describes an agent in software engineering.

semantic model. The definitions of the elements and principles you use to define your own process
models is referred to as the semantic model.

sequence diagram. A diagram that describes a pattern of interaction among objects arranged in a
chronological order. It shows the objects participating in their “lifelines” and the messages that they send
to one another.

stereotypes. A type of modeling element that extends the semantics of the metamodel. Stereotypes must
be based on certain existing types or classes in the metamodel. Stereotypes may extend the semantics,
but not the structure of pre-existing types and classes.

Tools. A tool element describes the tool mentors for the particular tool used in the software engineering
environment. A Tool represents a particular development tool used in an organization.

Tool Mentors. A tool mentor provides a recipe for how to perform specific process activities using a
particular software tool.

Web Site Forms. Web Site Forms are the collection of HTML files and directory structure that constitutes
the framework into which published process Web sites are generated.

Workflow Detail. A grouping of activities that are performed in close collaboration to accomplish some
result.

108 Glossary

	Rational Process Workbench‰
	Process Developer’s Guide
	IMPORTANT NOTICE
	Preface
	Audience
	Other Resources
	Rational Process Workbench Documentation
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	An Overview of the Rational Process Workbench
	Configuration Management

	Modeling Elements and Principles
	The Use of Stereotypes
	Process Elements
	Artifacts
	Roles
	Activities
	Disciplines
	Workflow Details
	Tools
	Tool Mentors
	Processes

	Dynamic Specifications
	Discipline Workflows
	Activity Overview

	Process Deployment Specification
	Process Component Models
	Assess the closure of a process configuration

	Model Management
	Using «process model» packages
	Using «tree node» packages
	Deriving process models from existing process models

	Modeling Techniques
	Achieving variability
	Using interfaces in process modeling
	Using inheritance
	Using operator overloading

	Process Content Libraries
	Presentation Names
	Common Files
	Description files
	Browser icons
	Folders
	Diagram files
	Anonymous files

	Additional Files
	Artifact file types
	Discipline file types
	Activity file types

	Templates
	Web Site Form

	Working with Process Models and Publishing Web Sites
	The Structure and Content of Process Models
	Maintaining parallel process models
	Branching and merging process models

	Publishing Web Sites
	Hyperlinks and presentation names
	What determines the organization of the files in a published Web site?
	What determines the content and organization of the tree browser?

	Exporting Component Models

	Working with Rational Process Workbench
	Setting Up and Configuring the RPW Tool
	Enabling and disabling the RPW add-in to Rational Rose
	Customizing templates
	1 Edit file templates

	Setting Up and Managing the RPW Workspace
	Managing the process model and Process Content Library from the RUP
	1 Insert the RUP process and component models into your workspace
	2 Associate the RUP process model with the RUP Process Content Library
	3 Insert the RUP component model into your workspace

	Creating your customization workspace
	1 Create your own process model
	2 Create your own Process Content Library
	3 Create your own component model

	Sharing process material among developers
	1 Share a process model
	2 Share a component model
	3 Share a Process Content Library

	Developing Process Models
	Defining new process elements
	1 Create your own process model
	2 Create new Roles and Activities
	3 Create new Artifacts
	4 Create new Tools and Tool Mentors
	5 Create new Disciplines and Workflow Details
	6 Structure your process model

	Deriving new process elements from existing elements
	1 Derive a Role
	2 Redefine an Activity
	3 Derive an Artifact
	4 Derive a Discipline
	5 Derive a Workflow Detail
	6 Derive a Tool
	7 Derive a Tool Mentor

	Creating variation points in your process model
	1 Create an interface to represent the variation point
	2 Specify the interface’s properties
	3 Associate a class with its interface

	Replacing Activities
	1 Create a replacing Activity
	2 Include the derived Role in your process’ closure

	Replacing Workflow Details
	1 Create a replacing Workflow Detail
	2 Include the derived Discipline in your process’ closure

	Managing Process Content
	Creating and editing content pages
	1 Create a new file in your Process Content Library
	2 Edit a content page
	3 Change the presentation name of a page
	4 Insert hyperlinks in your text material

	Synchronizing a Process Content Library with its process model
	1 Check files in a process model
	2 Associate a new file with a process element

	Translating a Process Content Library into a different language
	1 Associate a process model with a Process Content Library
	2 Verify the synchronization between the process model and the Process Content Library

	Managing Web Site Forms
	1 Modify the Web Site Form
	2 Modify the Web Site Form portions of the tree browser
	3 Define a new «process» representation

	Defining a Custom Process
	Creating your own process model
	1 Derive new Roles from existing ones
	2 Create a replacement Activity
	3 Create a replacement Discipline
	4 Use several process models to achieve multi-tier customizations

	Authoring your process text
	1 Associate the HTML editor to be used for HTML editing
	2 Create process text for Roles and Activities
	3 Create process text for Artifacts
	4 Create process text for Disciplines and Workflow Details
	5 Create process text for Tools and Tool Mentors
	6 Insert hyperlinks

	Organizing your Process Content Library
	1 Associate your process model with its Process Content Library
	2 Create the rpw directory
	3 Create a tree browser folder directory

	Creating your own process components
	1 Create a new component
	2 Specify which process elements will be realized by the component

	Defining a process closure
	1 Create a component to represent a new process
	2 Specify component models to be included in the process
	3 Assess the completeness and well-formedness of the process’ closure

	Defining how the published tree browser will be organized
	1 Create a Tree Node package in your process model
	2 Insert new process elements into the existing tree browser folders
	3 Create new folders in the tree browser

	Upgrading to a new version of the RUP
	1 Capture your current realization dependencies into the RUP process model
	2 Bring the new process model from the latest version of the Rational process model into your Rat...
	3 Inject captured realizations into the new RUP model
	4 Assess the dependencies from your process model to the RUP’s process model
	5 Associate the process model from the RUP with its accompanying content library
	6 Synchronize your process model with the latest Process Content Library in RUP
	7 Assess your process closures

	Publishing a Process
	Assessing the closure of your process
	1 Determine the correctness of your process
	2 Correct errors in your process’ closure

	Publishing a Web site
	1 Publish a Web site
	2 Interpret and correct errors reported during the publishing process

	Using custom-designed graphics in your Web site
	1 Specify which graphics to use for a process element
	2 Correct graphics that are out of sync

	Command Reference
	Process Element Commands
	Check Syntax command
	Overview command
	Artifact overview
	Role overview
	Activity overview
	Tool Mentor overview
	Discipline overview
	Workflow Detail overview

	Attach Activity command
	Attach Workflow Detail command

	Process Content Library Association Commands
	Associate Text Library command
	Inject Component Realization command
	Process Content Files command
	Web Site Form command
	Check Files command

	Process Component Commands
	Assess Configuration command
	Publish Configuration command
	Capture Component Realizations command
	Export to Configuration Unit File command

	Rational Process Workbench Commands in HTML Files
	HTML commands for Artifacts
	HTML commands for Activities
	HTML commands for Tools and Tool Mentors
	HTML commands for Roles
	HTML commands for Disciplines and Workflow Details
	HTML commands for tree nodes
	HTML commands for diagram areamap file types
	General HTML commands

	Glossary

