
Rational Software Corporation
C Reference
RATIONAL ROSE® REALTIME

VERSION: 2002.05.00

PART NUMBER: 800-025100-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1993-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-025100-000

Version Number: 2002.05.00

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company,
ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest,
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime
& Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational
CRC, Rational Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite,
RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The
Rational Watch, AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development
Accelerators, ObjecTime, Rational Dashboard, Rational PerformanceArchitect,
Rational Process Workbench, Rational Suite AnalystStudio, Rational Suite
ContentStudio, Rational Suite Enterprise, Rational Suite ManagerStudio, Rational
Unified Process, SiteLoad, TestStudio, VADS, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or
in othercountries.All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client,
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore,
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView,
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX,
DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the

IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint,
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe,
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-20xx, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents

Chapter 1 Overview of the C Guide 1

Workflows for your host workstation and embedded target 2

Using C code in models 3

Model Properties 3

C Services Library 4

Code generation 5
Modifying generated code 6

Compilation 6
Linking the model with the Services Library 6

Model executables 7
Target Observability 7

Chapter 2 Using C code in your model 9

Where can you add C code to a model? 9

The syntax of code segments 10
Choice point code condition segment 11

Encapsulating target-specific behavior 11

Code Sync 12
Making changes outside the toolset 12

Identifying designated Code Sync areas 12
De-activating Code Sync 13
C Reference - Rational Rose RealTime i

Chapter 3 Code Generation 15

Model to code correspondence 15
Capsules 16

A header file (.h) 17
An implementation file (.c) 17
The ‘this’ pointer 17

Capsule state diagrams 19
Classes 19

A header file (.h) 20
An implementation file (.c) 20
Properties that affect the way classes are generated 20

Attributes 21
Associations 21

Valid code generation associations 21
User-defined operations 22

The ‘this’ pointer 23
Generalizations 24

Example 24
Dependencies 24
Logical Packages 25
Standard operations 25
Protocols 25
Components 26
Relationships and elements ignored by C code generation 26

Code generator behaviour 27
Incremental generation 28

The effect of controlled units 29
Generated code directory layout 30

src 30
build 31

Code generator command line arguments 31
Command line arguments 32

Command-line build interface 33
ii C Reference - Rational Rose RealTime

Chapter 4 Classes and Data Types 35
Terminology 35

Introduction to sending data in messages 36
Protocols 36
Sending by value 36
Sending by reference 36

Considerations 37
Data classes that are marshallable 38

Basic structures 39

C data type examples 39
Syntax examples of sending data classes between capsule
instances 39
Class modeling examples 39
Creating and using common C constructs 39
Class creation examples 40

Sending/receiving data by value 40
Sender 40
Receiver 41

Sending/receiving data by reference 41
Sender 41
Receiver 42

Creating a class data member from the class diagram 42
A data member is not generated if... 43

Specifying arrays using association multiplicity 44
Creating array and pointer attributes 45

Tasks 45
Creating a constant (#define) 46

Examples 46
Tasks 46
Usage 46

Creating a typedef 48
Example 48
Tasks 48
Usage 48

Creating an enumeration 48
Example generated code 48
Tasks 48
C Reference - Rational Rose RealTime iii

Creating a union 49
Example 49
Tasks 49

Creating and using classes with no pointer attributes 49
Usage 50

Creating and using classes with attributes that are pointers 51

Integrating an external class (not defined in the toolset) 51
Integration questions 52
Integration for case #1 52
Integration for cases #2 and #3 52

Integration option 1: describing an external type to Rose RealTime
53

Example external definition 53
Tasks 53

Integration option 2: providing own marshalling functions 54
Tasks 55

Chapter 5 C Services Library 57

C Services Library Framework 57
The big advantage 58

Message processing 58
Processing overview 59

Single and multi-threaded message processing 59
Introduction to threads 60
Types of concurrency 60
Mapping capsules to threads 61
Single-threaded Services Library 62
Multi-threaded Services Library 62
C Services Library Framework 63
Capsules are generated as subclasses of RTCapsule 64
Ports are generated as fields of a capsule structure 64
Every capsule instance has access to its controller 65
Capsule instances, logical, and physical threads 65
Capsule instances have access to a RTMessage object 66
iv C Reference - Rational Rose RealTime

Log service 67
Implementation functions 67
Characteristics 67

Communication services 67
Implementation functions 67
Concepts 67
Primitives 68

Communication Service properties 68
Order-preserving 68
Minimal overhead in message handling 68

The semantics of usage of message priorities 69
Support for unwired ports 70
Published versus unpublished unwired ports 70
Registration by name 71

Registration string 71
Deferring and recalling messages 71

Timing service 72
Implementation functions 72
Characteristics 72
Usage 72

Timer thread configurations 73
Customizing the Timing Service 74
Timing precision and accuracy 75

RTController error codes 75
Accessing the error value 76
Example 76

Error enumeration 77
RTController_alreadyDeferred 77
RTController_badClass 77
RTController_badId 78
RTController_badOperation 78
RTController_badMessage 78
RTController_badSignal 78
RTController_badState 78
RTController_badValue 78
RTController_cannotRegTimer 79
C Reference - Rational Rose RealTime v

RTController_cannotSetTimer 79
RTController_dereg 79
RTController_internalError 79
RTController_noConnect 79
RTController_noMem 80
RTController_ok 80
RTController_prio 80
RTController_reg 80
RTController_unauthorizedMemoryAllocation 80
RTController_unexpectedStatus 81
RTController_unexpectedPrimitive 81

Chapter 6 Running models on target boards 83
Step 1: Verify tool chain functionality 83
Step 2: Kernel configuration 84
Step 3: Verify main.c 85
Step 4: Try manual loading 85
Step 5: Running with observability 86

Chapter 7 Command Line Model Debugger 89

Starting the Run time System debugger 89
Differences Between Single-threaded and Multi-threaded
Services Library Debugger 90

Application-specific command line arguments 90
Accessing 91
Providing arguments on targets that do not support command
line arguments 91

Run Time System Debugger Command Summary 91
taskId, capsuleId, portId 92
Running a model 93

Thread commands 93
tasks 93
attach <taskId> 94
detach <taskId> 94
vi C Reference - Rational Rose RealTime

Informational commands 94
saps 94
system <capsuleId> <depth> 94
info 96
printstats <taskId> 97

Tracing commands 97
log <category> <detail-level> 97

Control commands 98
exit 98
go [<n>] 98
step [<n>] 99
quit 99

Chapter 8 Inside the C Services Library 101

Organization of the Services Library source 102
$RTS_HOME 102

Configuration naming convention 102
Platform name (or configuration) 102
Target base name 103
Libset name 103
Summary 103

Directory structure 104
codegen 104
include 105
config 105
target 105
lib 105
libset 105
src 105
tools 105

Configuration preprocessor definitions 106
DEFAULT_DEBUG_PRIORITY 106
DEFAULT_MAIN_PRIORITY 106
DEFAULT_TIMER_PRIORITY 107
INTERNAL_LAYER_SERVICE 107
MAX_NUM_SPPS 107
RTS_NAMES 107
TIMING_SERVICE 108
TO_OVER_TCP 108
C Reference - Rational Rose RealTime vii

USE_THREADS 108
LOG_MESSAGE 109
MULTIPLE_PRIORITIES 109
OVERRIDE_BASIC_SIZES 109
OBJECT_DECODE 109
OBJECT_ENCODE 110
STDIO_ENABLED 110
RTS_CLEANUP_MECHANISM 110
RTS_COMPATIBLE 110
RTS_MEMORY_POLICY 111
MESSAGE_DEFERRAL 111
OTRTSDEBUG 111
PURIFY 112
RTS_INLINE 112
INLINE_CHAINS 112
INLINE_METHODS 112
RTMESSAGE_PAYLOAD_SIZE 113
SEND_BY_VALUE 113
OBSERVABLE 113

Creating the minimum Services Library configuration 114

Optimizing designs 115
Capsule instances and capsule behavior 116

Guards 116
State Machines 116
Capsules versus Data 117
Unnecessary Sends 117
Sending typed data by value in messages 117
Cross Thread Message Sending 118

General C performance notes 118
Additional Design Considerations 119

Hardware differences 119
Availability of external library on different platforms 120

Tool Chains 120

Chapter 9 Configuring and customizing the Services Library 121
Configuration and customization explained 121

Configuration options 122
Customization options 122
viii C Reference - Rational Rose RealTime

Changing pre-processor macros 122
Before you start 122
Why 122
Where 123
How 123

Changing build options 124
Before you start 124
Why 124
Where 124
How 125

Overriding or adding operations and classes 126
Why 126
Where 126
How 126
Tasks 127

Building the Services Library 128
Updating a component to use a different Services Library 129

Chapter 10 Model properties Reference 131
Generalization and properties 132

Expanded property symbols 132
Environment variables and pathmap symbols 133

C model element properties 134
GenerateClass (Class, C) 135
ClassKind (Class, C) 135
ImplementationType (Class, C) 136
ConstructFunctionName (Class, C) 136
GlobalPrefix(Class, C) 136
HeaderPreface (Class, C) 137
HeaderEnding (Class, C) 137
ImplementationPreface (Class, C) 137
ImplementationEnding (Class, C) 137
AttributeKind (Attribute, C) 137
InitializerKind (Attribute, C) 138
InitializerKind (Role, C) 138
InitialValue (Role, C) 138
GenerateConstructFunction (Capsule, C) 139
C Reference - Rational Rose RealTime ix

GlobalPrefix (Capsule, C) 139
HeaderPreface (Capsule, C) 139
HeaderEnding (Capsule, C) 139
ImplementationPreface (Capsule, C) 140
ImplementationEnding (Capsule, C) 140
KindInHeader (Uses, C) 140
KindInImplementation (Uses, C) 141

C TargetRTS properties 142
GenerateDescriptor (Class, C TargetRTS) 143
Version (Class, C TargetRTS) 143
InitFunctionBody (Class, C TargetRTS) 143
CopyFunctionBody (Class, C TargetRTS) 143
DestroyFunctionBody (Class, C TargetRTS) 143
DecodeFunctionBody (Class, C TargetRTS) 144
EncodeFunctionBody (Class, C TargetRTS) 144
GenerateDescriptor (Attribute, C TargetRTS) 145
TypeDescriptor (Attribute, C TargetRTS) 145
NumElementsFunctionBody (Attribute, C TargetRTS) 145
GenerateDescriptor (Role, C TargetRTS) 145
TypeDescriptor (Role, C TargetRTS) 145
NumElementsFunctionBody (Role, C TargetRTS) 146

C Generation properties 147
OutputDirectory (Component, C Generation) 147
CodeGenDirName (Component, C Generation) 147
ComponentUnitName (Component, C Generation) 148
CommonPreface (Component, C Generation) 148
CodeGenMakeType (Component, C Generation) 149
CodeGenMakeCommand (Component, C Generation) 149
CodeGenMakeArguments (Component, C Generation) 150
CodeGenMakeInsert (Component, C Generation) 150
CodeSyncEnabled (Component, C Generation) 150

C Compilation properties 151
CompilationMakeType (Component, C Compilation) 151
CompilationMakeCommand (Component, C Compilation) 152
CompilationMakeArguments (Component, C Compilation) 152
x C Reference - Rational Rose RealTime

CompilationMakeInsert (Component, C Compilation) 152
CompileCommand (Component, C Compilation) 153
CompileArguments (Component, C Compilation) 154
InclusionPaths (Component, C Compilation) 154
TargetServicesLibrary (Component, C Compilation) 154
TargetConfiguration (Component, C Compilation) 155

C Executable properties 157
Capsule To Logical Thread Mapping (Capsule, C Executable) 157
TopCapsule (Component, C Executable) 159
PhysicalThreads (Component, C Executable) 160
ExecutableName (Component, C Executable) 162
DefaultArguments (Component, C Executable) 162
LinkCommand (Component, C Executable) 163
LinkArguments (Component, C Executable) 163
UserLibraries (Component, C Executable) 163
UserObjectFiles (Component, C Executable) 163

C Library properties 165
LibraryName (Component, C Library) 165
BuildLibraryCommand (Component, C Library) 166
BuildLibraryArguments (Component, C Library) 166

C External Library properties 167
GenerateClassInclusions (Component, C External Library) 167
CodeGenDirName (Component, C External Library) 167
InclusionPaths (Component, C External Library) 168
Libraries (Component, C External Library) 168

Chapter 11 Services Library API Reference 171
Minimally configured Services Library 171

RTCapsule 172
msg and RTCapsule_getMsg 174
rts and RTCapsule_context 175
RTCapsule_getIndex 176
C Reference - Rational Rose RealTime xi

RTCapsule_getName 177
RTCapsule_getTypeName 178
RTCapsule_getCurrentStateString 179

RTController 180
RTController_getError 181
RTController_strError 182
RTController_perror 183
RTController_name 184
RTController_registerTimer 185
RTController_overrideSyncMethods 186
RTController_abort 187

RTLog 188
Log show primitives 189

RTMessage 191
RTMessage_getPriority 192
RTMessage_getSignal 193
RTMessage_copyData 194
RTMessage_getSignalName 195
RTMessage_getData 196
RTMessage_getType 197
RTMessage_getPortIndex 198
RTMessage_getPort 199
RTMessage_defer 200

RTObject_class 201
When would you use the type descriptor? 202
RTType_<typename> structure 202

RTPeerController 203
RTPeerController_timedWait 204
RTPeerController_waitForEvents 205

RTPort 206
RTPort_getCardinality 208
RTPort_purge 209
RTPort_purgeAt 210
RTPort_recall 211
xii C Reference - Rational Rose RealTime

RTPort_recallAt 212
RTPort_recallAll 213
RTPort_recallAllAt 214
RTPort_send 215
RTPort_sendAt 216
RTPort_enqueue 217
RTPort_registerAs 218
RTPort_deregister 219
RTPort_isBound 220
RTPort_getRegisteredName 221
RTPort_isRegistered 222
RTPort_informIn 223
RTPort_cancelTimer 224
RTPort_isTimerValid 225
RTPort_createInSignal 226
RTPort_createOutSignal 227

RTPriority 228

RTSoleController 229
RTSoleController_waitForEvents 230

RTSignal 231

RTTimerId 232

RTTimespec 233
tv_sec and tv_nsec 234
RTTimespec_clock_gettime 235
RTTimespec_lessEqualTo 236
RTTimespec_addTo 237

Index 239
C Reference - Rational Rose RealTime xiii

Chapter 1

Overview of the C Guide

Use this guide to learn how to use the C Language Add-in to build,
compile and debug C based Rose RealTime models. Additional
information is given on how to deploy the model executables to a target
system, and how to optimize and configure your target to fit your
project’s needs.

Using the C Language Add-in, you can produce C source code, compile
it, then build an executable from the information contained in a Rose
RealTime model. The code generated for each selected model element
is a function of that element’s specification, model properties, and the
models design properties. Model properties Reference provide the
language-specific information required to map your model onto C.

To understand how the C language add-in works, first you should
understand the main parts of the language add-in:

� “Workflows for your host workstation and embedded target” on
page 2

� The ability to configure and minimize footprint.

� Static structure with the ability to map fixed capsule instances to
any logical thread.

� The means of integrating a user-designed timing service.

� The ability to configure memory policy (should memory be allocated
after startup or not).

� 8.3 file naming compliance.

� “Using C code in models” on page 3

� “Model Properties” on page 3

� “C Services Library” on page 4
C Reference - Rational Rose RealTime 1

Chapter 1 Overview of the C Guide
� “Code generation” on page 5

� “Compilation” on page 6

� “Model executables” on page 7

In addition, there are a number of C example models that demonstrate
features of the toolset, the model properties, and the C Services
Library.

Note: You can find example models in the Examples directory located in
the root Rose RealTime installation directory.

Workflows for your host workstation and embedded target

There is an expected sequence of work activities for taking a model
from early prototyping to final production.

During the initial phases of model development, you probably want to
run your models primarily on the host workstation. This keeps the
modify-compile-debug cycle as short as possible. Also, you can take
advantage of workstation-based debug tools, such as C source-level
debuggers and C analysis tools (such as PurifyTM) which may not be
available on your target platform. For many projects, this is the final
step, if you are using a workstation-based target.

The final step for projects using some form of RTOS-based embedded
target platform is to compile the model for that target platform, and
download and run it on the target. These tasks are explained in
“Running models on target boards” on page 83.

The workflow of Rose RealTime is intended to provide as much up-front
verification and debugging as possible in the tool-rich environment of
the host workstation. This environment is typically provided by a
combination of Rose RealTime host-based tools and workstation-based
C tools. This leaves a minimal amount of debugging to do on the target,
where debugging is typically more difficult. The use of target
observability to monitor and control models at the model level greatly
enhances the ability to debug target applications.
2 C Reference - Rational Rose RealTime

Using C code in models
Using C code in models

C is used as a detail-level coding language in Rose RealTime. At a
higher level of abstraction, the program is described both structurally
and behaviorally as a graphical model using the Unified Modeling
Language (UML). C code can be added to a variety of behavioral
elements in a UML model. The abstract behavior of a capsule is
described as a graphical state diagram, which shows the allowable
sequence of events that the capsule can process. In order to actually
carry out useful activity, detailed code must be added to the states,
transitions, and operations in the model. There are no restrictions on
the code that you enter into your model. You can also make use of
external C classes (that is, classes defined outside of Rose RealTime)
and libraries in your model.

Rose RealTime is designed to be the central interface point for
developing C based models, and provides support for all activities in
the development process, including requirements capture, high-level
design, coding, versioning, loadbuilding, and testing. It does not,
however, replace your existing C tools. Rather, it depends on the
existence of other tools to handle language-specific work - it
coordinates and controls these activities in the context of your model.
For example, the toolset does not include a C compiler or linker. Rose
RealTime requires that you already have a C compiler or linker
installed and accessible in your environment prior to compiling a C
model.

Model Properties

The notations supported in Rose RealTime are more abstract than the
C programming language. Model properties enable you to provide
language-specific information that is not expressed in the notation, but
that is necessary for generating and building source code. Each model
property can be assigned a model property value. When a model
element is created, each model property is assigned a default value,
which you can optionally modify.
C Reference - Rational Rose RealTime 3

Chapter 1 Overview of the C Guide
In order to build source code, the code generator also generates
makefiles which specify how to build the generated source code. Hence,
certain properties affect how these makefiles are to be generated and
their contents.

You can use model properties to:

� Add an #include directive automatically to more than one file.

� Add a global prefix to functions generated for a class.

� Specify the kind of C data type generated for a class (e.g. struct,
union, enum, typedef).

� Suppress the generation of a class.

� Add compilation flags, include paths, and other build related
settings.

Controlling a particular aspect of code generation may require several
model properties. For example, several model properties applying to
components are used to control of the aspects of building and linking
a model. See “Model properties Reference” on page 131 for detailed
reference to the model properties.

Note that not all model components for which code is generated require
model properties. For example, there are no model properties for
generalization relationships, yet the code generator adds the attributes
from the parent into the childs struct as fields, then adds #include
directives; in such cases, information obtained from specifications is
sufficient to control code generation.

C Services Library

The behavior of a model is specified using a combination of capsule
state diagrams and operations defined on classes and capsules. The
relationships in the model are specified with a combination of capsule
structure and class diagrams. When a model is built, these
abstractions are automatically converted to implementation. The Rose
RealTime Services Library provides a set of built-in services commonly
required in real-time systems. These services include: state machine
4 C Reference - Rational Rose RealTime

Code generation
handling, message passing, timing, concurrency control, thread
management, and debugging facilities. The Rose RealTime Services
Library provides a standard set of services across all supported
platforms, so that your model can be readily ported to different target
platforms.

In summary the facilities provides by the RealTime Services Library are

� The mechanisms that support the implementation of concurrent
communicating state machines, and message communication.

� Thread management and concurrency control

� Timing

� Observation and debugging of a running model

This document includes the following basic topics:

� “C Services Library” on page 57

� “Running models on target boards” on page 83

This document includes the following advanced topics:

� “Organization of the Services Library source” on page 102

� “Configuration preprocessor definitions” on page 106

� “Optimizing designs” on page 115

� “Configuring and customizing the Services Library” on page 121

Code generation

This section discusses some aspects of how a model is converted to C
code and compiled. This should clarify the output you will see in the
Build Log window and help you browse the generated code.
C Reference - Rational Rose RealTime 5

Chapter 1 Overview of the C Guide
The C generator uses the specifications and model properties of
elements in the current model to produce C source code. You generate
code for a component which in turn references a set of elements from
the logical view. The location of the source files that are generated for
elements referenced by (or assigned to) a component is determined by
the name of the component, the location of your model file (.rtmdl), and
the OutputDirectory (Component, C Generation) property.

For more information on code generation, see “Code generation” on
page 5.

Modifying generated code

Rational Rose Real Time with Code Sync provides a means to modify
certain identified sections of the generated code from outside the
toolset. You can make changes to specific portions of the generated
code using an external editor and, using Code Sync, have these
changes propagated back into the model. Do not make changes to the
generated code outside of the identified sections; you may lose these
changes. For more information, see “Code Sync” on page 12.

Compilation

The C Language Add-in will convert a model to C code but does not
include the compiler which will build the generated source code. Before
trying to build a generated model ensure that your compiler tools are
correctly installed. For example, try building a simple C program from
the command line, if that works then the C Language Add-in will be
able to properly invoke the configured compiler and make utilities.

Linking the model with the Services Library

Rose RealTime models are created by linking the two components, the
user-compiled model files, and the pre-compiled C Services Library,
into a single executable file. All the versions of the pre-compiled
Services Libraries are available for all supported hosts, in addition the
Services Library can be ported and built for new hosts as required.
6 C Reference - Rational Rose RealTime

Model executables
Model executables

Compiling a Rose RealTime model results in a stand-alone executable.
The generated executable is not connected to the Rose RealTime
session unless desired. If targeted for a workstation platform, the
model can be run simply by typing the name of the generated
executable on the command line. If targeted for a real-time operating
system, the resulting executable must be downloaded to the target and
executed using the tools particular to that target operating system.

For more information, see “Running models on target boards” on
page 83.

Target Observability

Rose RealTime's graphical observation tools are a sophisticated, yet
intuitive debugging environment allowing you to use the toolset to
execute, monitor and control a model running on the Services Library,
even on a remote target platform. The Services Library is a high-
performance implementation intended for use in a wide-range of real-
time products.
C Reference - Rational Rose RealTime 7

Chapter 1 Overview of the C Guide
Figure 1 Target Observability
8 C Reference - Rational Rose RealTime

Chapter 2

Using C code in your model

This chapter discusses how to add C code to your model. Specific
topics include:

� “Where can you add C code to a model?” on page 9

� “The syntax of code segments” on page 10

� “Encapsulating target-specific behavior” on page 11

� “Code Sync” on page 12

Where can you add C code to a model?

You can use C in your Rose RealTime model to:

� Perform detailed actions that occur on transitions.

� Perform detailed actions that occur on state entry or exit.

� Code capsule operations that can then be invoked from any other
code segment (the common name for the C code contained inside
any one model element, such as a transition code segment);
capsule functions can be used to capture common operations,
which may be performed as part of several different transitions,
state entry actions, and so forth, or to simplify the transition code.

� Perform condition tests as part of choice points or event guard
conditions.

� Write operations on classes.
C Reference - Rational Rose RealTime 9

Chapter 2 Using C code in your model
In addition to these various mechanisms for adding C details to your
model, you are always free to define C classes and functions outside of
your model and make use of them within your model, or make calls to
other existing C libraries from your model. As long as the external C
code is visible to the compiler and linker you can use them in a model.

The syntax of code segments

C code is added to your model by filling-in the body portion of
operations, transitions, etc. For this reason, you do not have to add
curly braces to the beginning and end of any action code segments.
These will be added automatically by the code generator.

Figure 2 Sample transition action written in C.
10 C Reference - Rational Rose RealTime

Encapsulating target-specific behavior
Choice point code condition segment

The choice point segments are created as functions which return an
int. Hence, the condition C code that is entered in a choice point must
have a return statement that returns either false (0) or true (non-0).
You can have any number of other C statements in the choice point
segment as long as it returns an int.

Figure 3 Example C code in a choice point condition

Encapsulating target-specific behavior

The workflow of Rose RealTime is intended to provide as much up-front
verification and debugging as possible in the tool-rich environment of
the host workstation. This environment is typically provided by a
combination of Rose RealTime host-based tools and workstation-based
C tools. This leaves a minimal amount of debugging to do on the target,
where debugging is typically more difficult.
C Reference - Rational Rose RealTime 11

Chapter 2 Using C code in your model
In order to accomplish this, you should isolate any platform-specific
behavior in a few well-encapsulated places. If direct calls to native OS
functions or target-specific libraries are spread throughout your
model, you are restricted to compiling and testing on target. This can
cause serious bottlenecks for testing and bug-fixing at the most crucial
times in the project as developers line up for lab time, or unstable
hardware makes target testing difficult. By encapsulating target-
specific calls to a few key parts, the rest of the model can readily be
tested on the workstation.

Code Sync

Code Sync lets you make changes to the code from outside the toolset
within an IDE (Integrated Development Environment) or text editor of
your choice, and propagate the changes back into the model.

For more information, see Using Code Sync to Change Generated Code
in the Toolset Guide.

Making changes outside the toolset

In order for the changes to be recaptured into the model, Code Sync
must be enabled, and the changes must be made to designated Code
Sync areas.

Identifying designated Code Sync areas

Designated Code Sync areas are always delimited by the Code Sync
identification tags. These areas may be modified from the generated
code and captured into the model using the Code Sync feature. For
more information, see Using Code Sync to Change Generated Code in
the Toolset Guide.

User modifiable code for C is identified as follows:

/* {{{USR <location_tag> */
<insert or modify code here>
/* }}}USR <location_tag> */
12 C Reference - Rational Rose RealTime

Code Sync
For example,

/* {{{USR capsuleClass 'NewCapsule1' tool 'OT::C' property
'HeaderPreface' */
<insert or modify code here>
/* }}}USR capsuleClass 'NewCapsule1' tool 'OT::C' property
'HeaderPreface' */

In some cases where a field is omitted or left as its default, the code
generator may generate an optimized code pattern that does not
provide the empty Code Sync areas or its identification tags. If you wish
to use Code Sync area for an area which has been optimized out, you
must provide a non-default value for the field (such as a comment)
within the model, then re-generate before you can modify that Code
Sync area.

De-activating Code Sync

Each component, by default, has Code Sync activated. To de-activate
Code Sync, change the CodeSyncEnabled property of the Generation tab
for the component(s).
C Reference - Rational Rose RealTime 13

Chapter 3

Code Generation

This chapter discusses some relevant aspects of the Rose RealTime
code generation interface to clarify the output that users will see in the
compiler output and for browsing the generated code. Developers who
need to start debugging their C designs through external debugging
tools also need to understand the generated code structure.

� “Model to code correspondence” on page 15

� “Code generator behaviour” on page 27

� “Incremental generation” on page 28

� “Incremental generation” on page 28

� “Generated code directory layout” on page 30

� “Command-line build interface” on page 33

Model to code correspondence

From a modeling perspective, designing capsules, data classes, and
their interactions is relatively independent from the programming
language. However, with respect to code generation, certain generic
parts of a model element’s specification are interpreted by the code
generator and translated to C code, while other elements are ignored.
This section outlines how the UML model is translated into C code.
C Reference - Rational Rose RealTime 15

Chapter 3 Code Generation
The C generator uses the specifications and model properties of
elements in the current model to produce C source code. You generate
code for a component which in turn references a set of elements from
the logical view. The location of the source files that are generated for
elements referenced by (or assigned to) a component is determined by
the name of the component, the location of your model file (.rtmdl), and
the OutputDirectory (Component, C Generation) property.

If logical view elements have not been assigned to components, either
directly or by means of a dependency to other elements that are, the
code generator will not see those elements and they will never be
generated.

For specific information about code generated for a model element, see
the following topics:

� “Capsules” on page 16

� “Capsule state diagrams” on page 19

� “Classes” on page 19

� “Attributes” on page 21

� “Associations” on page 21

� “Standard operations” on page 25

� “Generalizations” on page 24

� “Dependencies” on page 24

� “Protocols” on page 25

� “Logical Packages” on page 25

� “Standard operations” on page 25

� “Components” on page 26

� “Relationships and elements ignored by C code generation” on
page 26

Capsules

Each capsule is generated in it’s own .h and .c file. The code generator
converts a capsule’s structure and state diagrams into C code.
16 C Reference - Rational Rose RealTime

Model to code correspondence
Some of the code segments can be modified from the generated code
and captured into the model using the Code Sync feature. For more
information, see Using Code Sync to Change Generated Code in the
Toolset Guide.

By default, for each capsule the following files are generated:

A header file (.h)

The following code is generated in the header file:

� Inclusions, forward references, value of the HeaderPreface
(Capsule, C) property.

� Capsule definition with any attributes, and associations as fields of
the generated struct.

� Ports generated as attributes of the capsule struct.

� Standard operations prototypes prefixed with the value of the
GlobalPrefix (Capsule, C)

� Value of the HeaderEnding (Capsule, C) property.

An implementation file (.c)
� Inclusions, forward references, value of the ImplementationPreface

(Capsule, C) property.

� Implementation scope operation prototypes and implementations.

� Operations implementation.

� Transition code, choice point code.

� State behavior implementation.

� Value of the ImplementationEnding (Capsule, C) property.

The ‘this’ pointer

All user code in the context of a capsule (e.g. state transition detail
code, instance operations, choice points, entry/exit code, etc...) has a
reference to its own capsule instance data through a this pointer
passed as an argument to each generated function. The this pointer
points to an instance of a capsule on which the function is being called,
effectively allowing access to its fields (e.g. attributes, ports, etc...).
C Reference - Rational Rose RealTime 17

Chapter 3 Code Generation
If the following capsule is defined:

From within any of the state machine detail code and functions, you
would access the capsule instance data via the this pointer as follows:

/*
Here we assume that this is transition
code. Via the ‘this’ pointer you can access
the capsule’s instance data.

*/
this->counter = 34;
this->connections++;

/*
Here we are calling a capsule function
which requires access to the instance
data as well.

*/
NewCapsule1_open_connection(this);

/*
Sending a message via the NewPort3 port, you
are required to access the port instance
via the ‘this’ pointer.

*/
RTPort_send(&this->NewPort3,

RTPort_createOutSignal(NewPort3, go),
RTPriority_General,
&this->counter,
&RTType_long);
18 C Reference - Rational Rose RealTime

Model to code correspondence
Capsule state diagrams

Capsule state diagrams are parsed by the code generator and included
in the generated code for the owning capsule. All C code added to a
state diagram is added to operations defined on the capsule.

Note: Protocol and class state diagrams are ignored by the C generator.

You should never modify code directly in the generated source files. It
may however be useful to understand that transitions are generated as
operations when debugging code using source level debuggers.

Classes

Classes are emulated in C through structures. Depending on their
defined scope, attributes and associations are generated as fields
(instance scoped) in the structure, or global (class scoped) variables.

When creating attributes as a type of existing C classes (which are
really structs) you are required to conform to C programming rules and
prefix the class name with the class key (e.g. union, struct, enum).

Figure 4 Example attribute specification with ‘struct’ keyword
C Reference - Rational Rose RealTime 19

Chapter 3 Code Generation
Each class has its own .h and .c files generated.

A header file (.h)

By default, for classes, the following code is generated in the header
file:

� Inclusions, forward references, value of the HeaderPreface (Class,
C) property.

� Declarations of global attributes and associations.

� Attributes generated from class associations or explicitly defined as
fields of the structure.

� User-defined operations: these operations are generated with the
prefix defined in GlobalPrefix(Class, C) property.

� If GenerateDescriptor (Class, C TargetRTS) property is true, a
declaration for a class type descriptor of type RTObject_class.

� Value of the HeaderEnding (Class, C) property.

An implementation file (.c)
� Inclusions, forward references, value of the ImplementationPreface

(Class, C) property.

� Operation bodies for Standard operations.

� If GenerateDescriptor (Class, C TargetRTS) property is set, default
and user-defined descriptor functions bodies are generated.

� If GenerateDescriptor (Class, C TargetRTS) property is set, the type
descriptor structure is initialized.

� Value of the ImplementationEnding (Class, C) property.

Properties that affect the way classes are generated
� The GenerateClass (Class, C) property is used to turn off

generation of a class.

� The ClassKind (Class, C) property can be used to generate
typedefs, enums, or unions instead of the default struct.

� The GenerateDescriptor (Class, C TargetRTS) property controls the
generation of the classes’ type descriptor.
20 C Reference - Rational Rose RealTime

Model to code correspondence
Attributes

By default, an attribute is represented in code as an attribute in the
client class.

The following properties affect how attributes will be generated:

� AttributeKind (Attribute, C): use this property to toggle between
generating the attribute as a field of the struct or as a #define.

� Scope: attributes can the scoped to the instance, or to the class.
Class scoped attributes are generated as global variables, to avoid
possible name clashes, the generated global variable is prefixed
with the value of the GlobalPrefix(Class, C) property.

Associations

An association is a relationship among two or more elements. The ends
of each association are called association ends. Ends may be labelled
with an identifier that describes the role that an associate element
plays in the association. An end has both generic and language
specific properties that affect the generated code which traverses to
that end. For example, marking an end navigable means that traversal
from the opposite role's class to this role's class is to be implemented.

By default if an end is named, association, aggregation, and
composition relationships are represented in code as a field in the
generated structure for the client class. The code generation does not
generate attributes for ends which are not named.

Valid code generation associations

Only the following association relationships are considered by the C
code generator:

� Capsule to protocol (port)

For these associations the code generator generates a port on the
capsule. Associations between capsules and protocols are only
navigable from the capsule to the protocol. The port specification
page controls the specific characteristics of the port: public,
protected, wired, etc.

� Class to class (data member)
C Reference - Rational Rose RealTime 21

Chapter 3 Code Generation
For these associations the code generator by default generates a
data member (attribute) for navigable and named ends. Several
factors affect the code that is actually generated: the scope
property affects if a member or global data member is generated,
the multiplicity affects whether an array of attributes should be
created, the containment affects whether the attribute should be a
reference (pointer) or an object.

Association end multiplicity is specified as x..z, only the upper
bound is used.

� Capsule to class (data member)

For these associations the code generator by default generates a
data member (field) on the generated capsule structure. A class
cannot navigate to a capsule. The same factors affecting class to
class associations affect capsule to class.

� Capsule to capsule (capsule role)

For these associations the code generator generates a capsule role
on the client capsule. Associations between capsules are always
unidirectional. The capsule role specification page controls the
specific characteristics of the capsule role: fixed, cardinality, etc.

User-defined operations

When generating code for a class, a global function is generated for
each operation that is listed in the class or capsule specification. The
function is named based on the value of the GlobalPrefix(Class, C)
property of its owning class.

For each such operation, the generator produces:

� A function declaration in the header file for the class.

� A function body in the implementation file containing the C code
added to the code region. You should never modify generated code.
22 C Reference - Rational Rose RealTime

Model to code correspondence
The ‘this’ pointer

In order to mimic the behavior of true object-oriented languages, where
operations have access to the attributes of the class instance on which
they were called, the C code generator creates for each generated
instance operation a parameter which is a pointer to instance data. The
parameter is always named this. Via the this pointer you can access
the attributes defined on the instance passed to the function.

Given the class definition shown in the diagram below, the add()
function would be declared and access the counter attribute as follows:

void ClassA_add(struct ClassA * const this)
{

this->counter++;
}

Note: The ‘const’ modifier enforces that the user cannot change the
value of this, only what it points to.

And to call the add() function from detail code, you would use the
following syntax to pass the instance data to the function:

/*
Here we create and initialize a temporary
tclass variable, then call the add() function
passing a pointer to the instance data.

*/
struct ClassA tclass;
tclass.counter = 10;
ClassA_add(&tclass);
C Reference - Rational Rose RealTime 23

Chapter 3 Code Generation
Generalizations

Inheritance is emulated in C through the flattening and re-use of
classes and capsules. A subclass’ attributes and associations are
inherited by regenerating each element in the subclass’ structure. The
code generator ensures that the superclass’ fields are inherited in the
same order as they are specified in the superclass. This means that a
pointer to a subclass can be cast upwards to a superclass instance
pointer.

Example

Let’s take a simple example to demonstrate how you can call functions
defined on a superclass. Given ClassA and ClassB defined as follows:

If the GlobalPrefix(Class, C) prefix property for each class is defined as
${name}_ then ClassB could call the add() or init() functions using the
following syntax:

ClassA_add((Class A*)this);

Dependencies

When the code generator produces code for an element (the client) that
uses another element (the supplier), the code generator produces
either an include directive referencing the file that contains the
supplier class or a forward reference to the supplier.
24 C Reference - Rational Rose RealTime

Model to code correspondence
You can configure the directive so that an include statement, forward
reference, or nothing, is generated in the header file (.h) and in
implementation file (.c) with the KindInHeader (Uses, C) and
KindInImplementation (Uses, C) properties.

Logical Packages

No code is actually generated for logical packages. They provide a good
way of assigning a set of elements to a component.

In the logical design of a system, related classes are grouped into
packages. In a Rose RealTime model you define the mapping from
logical design to a physical design via components. You can explicitly
assign a logical package to a component. This assignment is contained
in the logical package’s specification. Assigning a package to a
component is a shorthand method of assigning every element
contained within the package to the component.

Standard operations

When generating code for a class, the C generator will also generate a
construct function which initializes the classes’ attributes with either
the initial value or by calling the attribute’s construct function.

For capsules, the construct function is generated automatically. Use
the GenerateConstructFunction (Capsule, C) property to configure the
generation of the construct function for capsules.

Protocols

Each protocol is generated in its own .h and .c file.
C Reference - Rational Rose RealTime 25

Chapter 3 Code Generation
Components

When generating a component the code generator creates a set of
makefiles which contain rules for generating and building all elements
referenced by the component. In addition, a system wide .c and .h file
may be created for certain types of components. These source files
contain initialization, thread creation, and other classes and
operations required by the C Services Library.

When the code generator produces code for the elements referenced by
a component, the resulting files are stored in a directory structure. The
location and name of the root of this directory structure can be
configured using the OutputDirectory (Component, C Generation)
property.

By default, the directory is created in the same directory containing the
mode file (.rtmdl) and the name is derived from the name of the
corresponding component.

Relationships and elements ignored by C code generation

The following modeling elements are ignored by the C code generator:

� Realizes relationship

� Capsule roles specified as optional or plug-in

� Package dependencies

� State diagrams on protocols and classes

� Collaboration diagrams

� Sequence diagrams

� Actors

� Use-cases

� Deployment diagrams
26 C Reference - Rational Rose RealTime

Code generator behaviour
For this release of the C code generator, the following aspects of a
model are ignored by the code generator:

� Attribute/operation visibility: all attribute and operations are
generated with public visibility, and the code generator outputs a
warning to this effect if private or protected visibility is set on any
of these generated elements.

� Polymorphic operations: a v-table mechanism for function pointers
is not provided.

� Multiple inheritance

� Nested classes

Code generator behaviour

Code generation produces source files and makefiles for the items
referenced by the component. When the source files are compiled,
object code files are produced. Finally in the link stage, the object files
from the top level component and all the components contained by
aggregation (the whole component hierarchy) are then linked together
to form an executable. The source code, object files and executable are
all build results.

Note: The source code generation, compilation, and linking is managed
by the make utility, and is external from the Rose RealTime toolset.
These build makefiles are called from within Rose RealTime to build a
component.

The compilation paradigm for producing a working C executable is
shown in Figure 5.
C Reference - Rational Rose RealTime 27

Chapter 3 Code Generation
Figure 5 Compilation paradigm for producing C executable

Incremental generation

The code generation and compilation processes are driven by a third-
party Make utility, whose behavior is dependent on Makefile
dependencies and file timestamps. Without Makefile dependencies,
incremental builds would produce incorrect builds. The code generator
takes steps to reduce development churn and produce incremental
builds quickly and reliably.
28 C Reference - Rational Rose RealTime

Code generator behaviour
The code-generator reduces incremental compilation time by
preserving previously generated files that do not need to change. When
you build a component that has been previously built (or even partially
built), the code generator attempts to preserve the previously built
results. If the generated C files (header files and implementation files)
do not need changing, they are not updated. This improves compilation
performance, since:

� if an implementation file does not need to be updated, its
corresponding object file does not need to be recompiled, and

� if a header file does not need to be updated, all object files which
depend on that header file do not need to be recompiled.

Consequently, the incremental generation behavior of the code
generator greatly improves compilation performance.

The code generation also allows incremental code-generation by
tracking its own dependencies for each invocation. Some Make utilities
(such as ClearCase’s clearmake and omake) can automatically track
dependencies of build scripts; for other Make utilities, the code
generator tracks all of the controlled units (CUs) that were read during
each invocation. All of these model elements become dependencies (in
a Makefile sense) of the files generated by each invocation of the code
generator. This dependency information is then available for the next
incremental build, and the Make utility will only invoke the code
generator to re-examine, and if necessary regenerate, source code that
depends on a CU that has changed. Consequently, the incremental
behavior of the code generator safely reduces the time to generate
subsequent builds.

The effect of controlled units

Any single invocation of the code-generator will generate:

� a single specific classifier stored in its own controlled unit (CU), or

� all classifiers (that are referenced by the component) in a specific
package, except for classifiers that are stored in their own CU, or

� all classifiers (that are referenced by the component) in the model,
except for classifiers that are stored in their own CU or in a
package CU.
C Reference - Rational Rose RealTime 29

Chapter 3 Code Generation
If a model is saved into one monolithic .rtmdl file, then every time you
change anything in the model, every model element has to be re-
examined during generation. To improve code generation performance
it is recommended that you save your model as controlled units.

See Working with Controlled Units in the Team Development Guide for
instructions on how to save models as controlled units.

Because the compiler reads generated source files not controlled units,
and because the incremental generation behavior is independent of
controlled units, the choice of controlled units does not affect
compilation performance. The incremental behavior of the code
generator is independent of the choice of controlled units.

Generated code directory layout

The build output is contained in a separate directory from the model
file(s). Each Component in a model is built in its own directory
structure. There is an option in the component specification dialog,
that allows the user to specify a different directory for this purpose.

Note: It is recommended that each component has a different output
path. This is to avoid overwriting files for other components.

Inside the Component directory is a directory tree that separates the
model files, generated source files, and build results, including the
executable.

After building a Component whose name is “Component1” the default
directory structure below the output directory would look like:

Component1\
src\
build\

src

This directory contains all C source files that have been generated for
the Component. Depending on the value of the component C
Generation property called CodeGenDirName, source files may either
appear directly in src or in a sub-directory of src as specified by the
CodeGenDirName property. The generated code consists primarily of
30 C Reference - Rational Rose RealTime

Code generator behaviour
C representations of the classes from the users model. The code
segments that contain the C code entered in various portions of the
model are included in the generated source, including the transition
actions, choice points, state entry and exit actions, operations, and so
forth.

There will be a header and source file generated for each model element
referenced by the component. The files will have the same name as the
elements from the model. In most cases, generated classes and other
constructs will be named as defined in the model.

For each capsule, a struct is generated with the name:

<capsule name>_InstanceData

The best way to understand the generated source code is to build one
of the example models, or tutorials, then browse the generated source
code.

build

The build directory contains the result of the compilation. The object
files as well as the linked executable are included in these results. By
default the executable name will be the name of the top-level capsule
for the Component. You can change this by specifying a different name
in the General tab of the Component specification dialog.

Code generator command line arguments

There are two methods of passing command line parameters to the
external code generator:

1. Adding the command line options to the ROSERT_RTGENOPTS
environment variable.

2. Modifying the $RTS_HOME/codegen/rtgen.mk file by adding the
command line parameters to the RTGEN macro. The macro defined
in this file will be included by all generated makefiles and used to
generate source and build files. For example, to add command line
parameters simply add these to the macro definition:

RTGEN = rtcgen -crlf

This will pass the -crlf command to the code generator.
C Reference - Rational Rose RealTime 31

Chapter 3 Code Generation
Command line arguments

The rtcgen program accepts the following arguments:

-crlf
-forcewrite
-spacedeps bs | dq | fail | none
-version

There are other options for internal use only.

� The -crlf flag forces files to be written Windows style, with lines
terminated with a carriage return and line feed. By default, files are
written with Unix style end-of lines conventions.

� The -forcewrite flag disables the code-generator's incremental file
output and is useful for producing incremental load-builds. It is
typically only used within the environment variable
ROSERT_RTGENOPTS, when integrating a new set of changes on
top of a previously-built load-build.

� The -spacedeps flag tells the code generator how to write code
generation dependencies for file-paths that contain spaces, such
that the Code Generation Make Type can read it. This would
typically be overridden by users of a generic Unix Make utility who
have experimented with space-handling in their Make variant. For
the Compilation Make Type, there is a corresponding option to the
rtcomp.pl script (except that "-spacedeps none" is replaced by "-
nodeps").

bs: precede space with backslash (for Gnu_make).

dq: surround filename with double-quotes (for MS_nmake).

fail: cause a fatal error (for Unix_make).

none: no escape sequence (intended for ClearCase_omake and
ClearCase_clearmake whose dep files need not be Clearmake-
readable).

� The -version flag prints the version identifier of the code-generator
to STDOUT.
32 C Reference - Rational Rose RealTime

Code generator behaviour
Command-line build interface

Rose RealTime uses an external build engine for code generation,
compilation, and linking. To mimic the toolset's build mode, you can
run the build from the command line. This might be useful if the build
host is different then the toolset host. Before generating and building
an existing model, it is important that the model has been validated by
the toolset. If a model is valid (e.g. there are no unresolved references)
then you can generate and build a component from the command line.

The main steps that must be performed from outside the toolset are:

1. Create the makefiles

2. Generate the source code

3. Build the generated source files

Refer to the Team Development Guide for extensive syntax examples on
how to build a model from outside the toolset.
C Reference - Rational Rose RealTime 33

Chapter 4

Classes and Data Types

In most models, capsules require the use of lower-level data types (or
classes) to create and maintain internal data structures and variables,
to send and receive data values in messages, and to interact with
legacy code or third-party code libraries. With Rose RealTime you are
free to use any C data types within your model, whether it is defined
within the Toolset or not, as long as the type is visible to the compiler.

Terminology

The terminology for data type and class may be confusing at times.
Throughout this section, we will use the term class for the generic
concept of a named definition that encompasses a notion of storage of
values, and of operations which may be performed on those values. In
C, there is technically speaking no such thing as a class, so the data is
implemented as a struct, and the methods are implemented as global
functions with a pointer to the struct as the first parameter. We will
also use the term instance rather than object.

As with any C program, although the Toolset can generate classes and
type descriptors, the user is still responsible for ensuring that the
classes created are well formed. For example, they shouldn’t leak
memory, and they should have appropriate initialize, copy and destroy
methods defined.

This section provides a pragmatic overview of how to use data classes
within Rose RealTime.
C Reference - Rational Rose RealTime 35

Chapter 4 Classes and Data Types
Introduction to sending data in messages

In order to implement the behavior of a system, capsules send
messages to either request a service or provide a service to other
interconnected capsules. The messages that are sent between capsules
contain a required signal name (which identifies the message), a
priority (relative importance of this message compared to other
unprocessed messages on the same thread—default to General), and
optional application data. If there is application data to send, it can be
sent either by value or by reference.

Similarly to operations, which don't always require parameters,
messages do not always have to be sent with application data.
However, when operations require parameters the developer must
decide whether to pass the parameters by value or by reference, the
same applies when sending application data in messages.

Protocols

The protocol definition is where you specify what type of data is to be
sent with a specific signal. To send data by value, specify the data type
in the data class field of the signal. To send data by reference, leave the
data class field empty.

Sending by value

An alternative to sending data by reference is to send it by value. This
means that a deep copy of the data is sent instead of a pointer to the
data. This option is less efficient but simplifies concurrency issues.

To send data by value, the C Services Library must know how to
initialize, copy and destroy instances that are sent. This is where type
descriptors come in (see RTObject_class for more details). Type
descriptors describe the class to the Services Library to allow it to
manipulate the instances that it sends.

See Sending/receiving data by value for an example of the send syntax.

Sending by reference

Sending data by reference is primarily used for efficiency; instead of
copying a block of memory, a pointer to the memory is passed.
36 C Reference - Rational Rose RealTime

There are some rules that you should keep in mind when sending
pointers in messages:

� Do not send pointers across thread boundaries without
considering concurrency access issues.

� Do not send pointers across process or processor boundaries
unless you have shared memory. You must also consider
concurrency issues.

� Do not send pointers to stack objects to other capsules because the
stack object gets deleted when the transition code segment
completes. Since sends are asynchronous, when the receiving
capsule instance dereferences the pointer, the data it is pointing to
has been deleted.

See Sending/receiving data by reference for an example of the send
syntax.

Considerations

When using data in Rose RealTime, as in any other program that you
will write, you must be careful to provide well formed classes. Memory
that is allocated on the heap should be deleted at a proper time, and
initialize, copy and destroy methods should work as intended.

Classes can be created that have any combination of the following:

� Sendable by value - The class can safely be sent between capsules
using the init, copy and destroy semantics for the class.

� Marshallable - The class can be safely encoded and output via the
observability feature to the Rose RealTime Toolset (when tracing a
message or inspecting an attribute), or via the log service to a
console. And/or it can be safely decoded when received from the
Toolset (when injecting a message or modifying an attribute).

Please note that any piece of data is sendable by reference - it’s just a
pointer value that’s being transferred, and no data initialization,
copying, destruction, encoding or decoding takes place.
C Reference - Rational Rose RealTime 37

Chapter 4 Classes and Data Types
Data class rule #1

Simple data types that do not contain pointers (any indirect attributes)
are by default sendable by value and marshallable.

Data class rule #2

Data types which contain pointers can be made sendable by value and
marshallable. You will, however, have to add details to your class to
make it well formed by creating or modifying, when needed, the
following functions:

Data classes that are marshallable

In addition to making data classes sendable by value - see Introduction
to sending data in messages - they can be made marshallable. This
means that the instance can be encoded and decoded into a string of
bytes. This functionality allows the Toolset to display the contents of
instances at run-time.

Data type constructor A construct method will be automatically
generated, and populated with each attribute’s
entry from the ‘Initial value’ field.

Type descriptor
functions (defined for
each class under the C
TargetRTS tab)

These functions define how a class is initialized,
copied, destroyed, decoded and encoded. By
default the functions RTstruct_init,
RTstruct_copy, RTstruct_destroy,
RTstruct_decode, and RTstruct_encode are called.
Generally you won't have to modify these type
descriptor functions.

NumElementsFunction
(defined for each
attribute under the C
TargetRTS tab)

This is a function which determines (at run-time)
the size of an indirect field (the number of things
a pointer references), which if left unspecified, will
be set to 1. This is used by the encode/decode
functions.
38 C Reference - Rational Rose RealTime

C data type examples
When you are debugging a running model and request an attribute or
data within a message to be displayed in the Toolset (similar to the
watch facility available in most source debuggers), the Toolset sends a
request to the running model. The Services Library then calls the
encode function (defined within the type descriptor) on the class
instance. The result of the encode function is passed as is to the
Toolset and shown in either a watch window or a message trace.

Basic structures

Simple data classes - see Introduction to sending data in messages -
are by default encoded using an ASCII encoder meaning that they are
marshallable. However, for data classes which contain attributes of
types which are not known by the Toolset, these functions must be
written by the user. They are not automatically generated by the
Toolset.

This kind of flexibility allows for almost every kind of class or data type
to be used within Rose RealTime.

C data type examples

This section contains examples which demonstrate the different
methods of creating and using data types within Rose RealTime.

Syntax examples of sending data classes between capsule
instances
� Sending/receiving data by reference

� Sending/receiving data by value

Class modeling examples
� Creating a class data member from the class diagram

� Specifying arrays using association multiplicity

Creating and using common C constructs
� Creating array and pointer attributes

� Creating a constant (#define) or a #define

� Creating a typedef
C Reference - Rational Rose RealTime 39

Chapter 4 Classes and Data Types
� Creating an enumeration

� Creating a union

Class creation examples

Before starting the examples, please make sure you are familiar with
the considerations described in Introduction to sending data in
messages.

� Creating and using classes with no pointer attributes

� Creating and using classes with attributes that are pointers

� Integrating an external class (not defined in the toolset)

Sending/receiving data by value

An alternative to sending data by reference, is to send it by value.
Meaning that a copy of the data is sent instead of a pointer to the data.
This is the preferred method of sending data between capsules.
Although this option is sometimes less efficient it does simplify
concurrency issues.

Note: The fact that a data type is sent by deep or shallow copy depends
on the init, copy and destroy methods defined on the data class.

The examples below demonstrate how to send and receive data by
value. We assume that the detail code is part of transitions on both the
sender and receiver capsules.

Sender
int result;
SomeClass sendData;
SomeClass_construct(&sendData, "hello");

/* Given a port called ‘port’ based on a protocol with a
** signal ‘start’ with data class ‘SomeClass’. */
result = RTPort_send(&this->port,

RTPort_createOutSignal(port, start),
 RTPriority_General,
 &sendData,
 &RTType_SomeClass);

/* If ‘result’ is > 0, send was successful. */
40 C Reference - Rational Rose RealTime

C data type examples
Receiver

int result;
SomeClass recData;

result = RTMessage_copyData(this->std.msg,
 &recData,
 sizeof(recData));

/* If ‘result’ is > 0, copyData was successful. */

Sending/receiving data by reference

Users should be aware of the issues around sending data by reference.
(See Introduction to sending data in messages.) Nevertheless for
performance reasons it is sometimes an effective way of sending data.

The examples below demonstrate how to send and receive data by
reference. We assume that the detail code is part of transitions on both
the sender and receiver capsules. The most important thing to
remember is that you should never pass a pointer to an object
allocated on the stack (local variable). You will also have to coordinate
who is responsible for freeing the allocated memory. In the case below
the receiver does.

Sender

SomeClass * pSendData = create_SomeClass();

/* Initialize with default values */
SomeClass_construct(pSendData);

/* Given a port called ‘port’ based on a protocol with a
** signal ‘stop’ with data class left empty. */
result = RTPort_send(&this->port,

RTPort_createOutSignal(port, stop),
 RTPriority_General,
 pSsendData, (const RTObject_class *)0);

/* If ‘result’ is > 0, send was successful. */
C Reference - Rational Rose RealTime 41

Chapter 4 Classes and Data Types
Receiver

const SomeClass * pRecData =
(const SomeClass *)RTMessage_getData(this->std.msg);

/* Free memory when finished with the data */
delete_SomeClass(pRecData);

Note: Subtle bugs are possible if the receiver actually writes to the data
at the end of the received pointer. This is why the const type modifier is
used.

Creating a class data member from the class diagram

Given an association between two classes or between a capsule and a
class, a data member will be created in the generated source code for
the classes participating in the relationship.
42 C Reference - Rational Rose RealTime

C data type examples
The above relationships will result in the creation of a data member
named end2 in NewClass1 as well as another named end1 in
NewClass2, and one named end3 in NewCapsule1. The properties for
the end (association end) control how the code will be generated for the
data member. The key point to remember is that the end affects the
class at the other end of the association. Assume that end1 and end2
are contained by reference, here is a simplified version of the code that
would be generated:

struct NewClass1
{
 /* {{{RME classItem 'NewClass2' associationEnd 'end2' */
 struct NewClass2 * end2;
 /* }}}RME */
};

struct NewClass2
{
 /* {{{RME classItem 'NewClass1' associationEnd 'end1' */
 struct NewClass1 * end1;
 /* }}}RME */
};

You can specify the containment, visibility, and other attribute features
to control how attributes are generated. These are found in the
association specification dialog.

A data member is not generated if...
� the association end name is not specified

� the Derived option is checked

� The end is not navigable

� both ends are defined as aggregate
C Reference - Rational Rose RealTime 43

Chapter 4 Classes and Data Types
Specifying arrays using association multiplicity

The association end multiplicity specifies the number of instances of
this end that will appear in the related class. The data member that is
created is an array with its size being the largest possible value in the
multiplicity range specified. If the multiplicity is unspecified (e.g. 1..*)
the association is forced to be by reference.

Assume end1 is contained by value and end2 is contained by reference.
The following code will be generated for the association:

struct NewClass1
{
 /* {{{RME classItem 'NewClass2' associationEnd 'end2' */
 struct NewClass2 end2[10];
 /* }}}RME */
};

struct _NewClass2
{
 /* {{{RME classItem 'NewClass1' associationEnd 'end1' */
 struct NewClass1 * end1;
 /* }}}RME */
};
44 C Reference - Rational Rose RealTime

C data type examples
Creating array and pointer attributes

Attributes can be created as arrays or as pointers.

Tasks

Create an attribute and set its type to any valid C type. If it is an array,
then specify the array size within brackets after the type If it is a
pointer then add a star after the type.
C Reference - Rational Rose RealTime 45

Chapter 4 Classes and Data Types
Creating a constant (#define)

C constants are implemented as #defines and are scoped globally.

Note: Symbolic capsule role and port multiplicity values must be defined
using constants created within the toolset.

Examples

#define num_retries 4

The above source code fragments show an example of a global
constant.

Tasks

This shows how to create a global constant:

4. Create an attribute that will be the constant, so name it
appropriately.

5. In the attribute’s C properties tab, change the AttributeKind field to
constant.

6. In the attribute’s detail tab, set the Initial value for the constant. The
type field is ignored, since it’s implemented as a #define, so it can
be left blank.

7. Add a dependency between the class where the constant(s) are
defined and the capsules or classes which use the constant. If the
constant is global, ensure that the dependency C properties are:
KindInHeader = inclusion, and KindInImplementation = none.

Note: This mechanism can not be used to create parametrized macros
with names containing ‘(‘ and ‘)’. We also advise against creating
complex macro expressions using this method. If either of this is needed,
create the macro in the class C tab HeaderPreface property instead.

Usage

You can use constants to specify the cardinality of replicated capsule
roles, ports, and bindings by adding the fully qualified name (e.g.
Package1::ClassX::Constant) of the constant to the Cardinality field in
the capsule role specification dialog.
46 C Reference - Rational Rose RealTime

C data type examples
The reason constant values have to be specified using the class name
of the class in which they have been created, is that Rose RealTime
must resolve and verify cardinalities before generating the source code.
In the generated source code the actual value of the constant is used
and not the expression class::constant.

Note: You are allowed to specify any valid C expression in the initial
value field for the constant/define. However, if the constant is used to
specify a cardinality, the constant’s initial value must be a literal integer
(e.g. 2, 50, 100). If the cardinality cannot be understood by the Toolset
at generation time, a warning is issued and a default value of 0 is used.

If the constants are used in detail level code, attribute array sizes, or
other common C usages, ensure that there is a dependency added
between the class containing the constants and the elements which
reference the constants. Apart from specifying cardinalities, constants
can be used as in any C program.
C Reference - Rational Rose RealTime 47

Chapter 4 Classes and Data Types
Creating a typedef

Example
typedef unsigned int u_int;

The above source code fragment shows an example C typedef. The
name of the typedef and the type used are examples only, you can
create a typedef of any name and type.

Tasks
1. Create a class with the name of the typedef.

2. In the class C properties tab, change the ClassKind property to
typedef and add the desired type to the ImplementationType field.

Note: Don't forget to add a dependency between the typedef class
element and the capsules or classes which use the type as attribute
types or in detail level code.

Usage

You can create attributes of this type by setting the Type of the attribute
to this new typedef (the typedef appears in the type drop-down list for
attributes).

Creating an enumeration

Example generated code
enum e { a = 1, b };

Tasks
1. Create a class named e.

2. In the General tab of the class specification dialog, set the
stereotype of the class to enumeration.

3. Create an attribute named a in the class.

4. In the detail properties sheet of this new attribute, change the Initial
value field to 1.

5. Create an attribute named b in the class.
48 C Reference - Rational Rose RealTime

C data type examples
Creating a union

You can create a C union instead of a struct or typedef.

Example
union NewClass3
{

int theInt;
float theFloat;
unsigned long int theUnsignedLongInt;

};

Tasks
1. Create a class.

2. In the class C properties tab, change the ClassKind property to union.

3. Fill in the attributes.

Creating and using classes with no pointer attributes

These classes are:

� Sendable by value

� Marshallable (can be observed and injected)

Classes without pointers have the above properties if all of its
attributes are of types which do not have pointers or are also well
formed data classes.
C Reference - Rational Rose RealTime 49

Chapter 4 Classes and Data Types
Figure 6 Classes Composed of Predefined Types

Usage

The classes shown above, ConnectParams and Nodes are composed of
predefined types (the Services Library knows how to init, copy, destroy,
encode, and decode because of generated type descriptors). The type
descriptor generated by the toolset will be called RTType_<class name>
and can be referenced directly in detail level code where an
RTObject_class is required by a Services Library operation.

int result;
ConnectParams conn_p;
ConnectParams_construct(&conn_p, <arguments>);

/* Here the class is sent by value to another capsule instance
** Given a port called ‘port’ based on a protocol with a
** signal ‘connect’ with data class ‘ConnectParams’.
*/
result = RTPort_send(&this->port,

RTPort_createOutSignal(port, connect),
 RTPriority_General,
 &conn_p,
 &RTType_ConnectParams);

/* The encode function is called when the log service is used
*/
RTLog_show_data(&conn_p, &RTType_ConnectParams);
50 C Reference - Rational Rose RealTime

Integrating an external class (not defined in the toolset)
Creating and using classes with attributes that are pointers

If you provide a CopyFunctionBody and a DestroyFunctionBody (Class,
C TargetRTS), the class can be sendable by value.

If you also provide the NumElementsFunctionBody (Attribute, C
TargetRTS), the class can be marshallable (can be observed, inspected
and injected).

If you don't provide any of these operations, the class should never be
sent by value. That would cause incorrect behavior, and possibly a
crash.

Note: If a class has attributes which are pointers, then you must ensure
that the memory is managed properly by the class. Rose RealTime will
NOT create a destroy function which knows how to delete allocated
memory, you will have to write your own destructor/constructor.

When attributes are pointers, there is are some extra steps required to
make them sendable and marshallable. This extra step is required
because pointers can be pointing to anything, and the Services Library
cannot guess how many things the pointer references. You will have to
help the Services Library determine how many things the pointer is
pointing to.

Integrating an external class (not defined in the toolset)

Let's say you have classes defined outside of the Toolset, either in
third-party libraries or in code that will be reused for a new project.
These externally defined classes can be integrated with Rose RealTime
and used for class modeling, and available in the drop-down type lists,
or more simply just used within detail level code.

The important point to remember is that any class or type defined
outside the Toolset can be used in your model, and depending on how
the class or type is needed in your model, there are a couple of ways
that the class or type will have to be integrated with Rose RealTime.
C Reference - Rational Rose RealTime 51

Chapter 4 Classes and Data Types
Integration questions

The first question to ask yourself before integrating classes into Rose
RealTime is how the class or data type will be used within the model.

1. Will objects of this type only be used to store information within a
single capsule instance, or only sent by reference never to be
observed, injected, or sent between processes?

2. Will objects of this type need to be sent by value between capsule
instances?

3. Will objects of this type need to be observed during debugging, or
encoded/decoded because they are injected or inspected/modified?

Integration for case #1

In the first case the only step required for using this class in your
model is to make the external class definitions visible to the compiler
by adding the include files to the HeaderPreface field in the class
properties or to the component compiler inclusions page.

Once the definition is visible to the compiler, you can use the class or
type within any detail level code.

Integration for cases #2 and #3

If you answered yes to questions 2 and 3, then a type descriptor will
have to be created for the external types in order to describe the types
to the Services Library.

There are essentially two possibilities for handling an externally
defined class or data type: either you create a class within Rose
RealTime with the same attributes as the external class and let Rose
RealTime generate the type descriptor, or you add the code yourself for
describing how to init, copy, destroy, encode and decode an instance of
this type.

An external class can be made sendable by value without being
observable and vice versa.

� Integration option 1: describing an external type to Rose RealTime

� Integration option 2: providing own marshalling functions
52 C Reference - Rational Rose RealTime

Integrating an external class (not defined in the toolset)
Integration option 1: describing an external type to Rose RealTime

If the class is described to Rose RealTime it can be made:

� Marshallable (can be observed, inspected and injected)

If your external class has well defined init, copy and destroy methods,
then the class can be (the default type descriptor will use the
operations already defined on the class):

� Sendable by value

Example external definition

The class shown below is defined in a header file outside of the toolset.

/* This is an example definition of a class in a user-defined
** external library */
struct Ext_Simple
{

int a;
char b[80];
float c[8];

};

Tasks

A class is sendable by value and observable if all its attributes are also
sendable by value and observable. In the case above, all Ext_Simple
attributes are types which are sendable by value and observable. In
this case the Toolset can generate a complete type descriptor for this
class. Once the class is integrated within Rose RealTime it can be used
to create other more complex classes.

1. Create a class with the same name as the external class.

2. In the class C tab, uncheck GenerateClass option. Since the class is
already defined outside the toolset, you will not want another class
to be generated, you are merely describing the type to Rose
RealTime.

3. In the class C tab, make the header file which contains the actual
class definition visible to this class by adding an #include
statement to include the definition of the external class or type to
the HeaderPreface property.
C Reference - Rational Rose RealTime 53

Chapter 4 Classes and Data Types
4. In the class C TargetRTS tab, set the GenerateDescriptor property to
True.

The next step will allow the C code generator to create marshalling
functions for the external class. This is only required to
encode/decode the class.

5. Add all the attributes that are defined in the external class to the
class you have just created in Rose RealTime. The attributes must
have the same names but don't have to be declared in the same
order as in the external class.

Note: If the external class contains pointers you will also have to follow
the steps in creating attributes as arrays and pointers to correctly define
the attribute and ensure that the external class has a well formed (no
memory leaks) init and destruct methods.

Integration option 2: providing own marshalling functions

Instead of having to redefine all the attributes defined in an external
class to allow an external data type to be marshalled (as described in
the integration option 1), a data type can be integrated for marshalling
with Rose RealTime if it already contains operations to encode and
decode to and from a string of bytes.

To integrate classes in this manner, you must understand the usage of
the two functions defined in the class C TargetRTS tab:
DecodeFunctionBody (Class, C TargetRTS) and EncodeFunctionBody
(Class, C TargetRTS).

As shown above, when writing the type descriptor functions, you will
have access to a pointer to an instance of the class (target), and in some
cases both a target and a source object instance (the source can not be
modified in this case). To demonstrate how these can be used see the
Integrating data example model.

Note: Ensure that the external class has well defined init, copy and
destruct methods, and call these from within the InitFunctionBody,
CopyFunctionBody and DestroyFunctionBody properties, respectively.
54 C Reference - Rational Rose RealTime

Integrating an external class (not defined in the toolset)
Tasks
1. Create a class with the same name as the external class.

2. In the class C tab, set the GenerateClass to false.

3. In the same tab, make the header file which contains the actual
class definition visible to this class by adding #include
<An_External.h> to the HeaderPreface property.

4. In the class C TargetRTS tab, set the GenerateDescriptor property to
True.

5. In the class C TargetRTS tab, edit the EncodeFunctionBody (Class,
C TargetRTS) property. Add code to encode the data class. See
“EncodeFunctionBody (Class, C TargetRTS) “ on page 238 for an
example.

6. In the class C TargetRTS tab, edit the DecodeFunctionBody (Class,
C TargetRTS) property. Add code to decode the data class. See
“DecodeFunctionBody (Class, C TargetRTS) “ on page 238 for an
example.

Because the GenerateClass property was set to false, only a type
descriptor will be generated for this new type. Moreover, it is important
that the class definition in the external header file is visible to the
compiler.
C Reference - Rational Rose RealTime 55

Chapter 5

C Services Library

The Rose RealTime Services Library provides a set of built-in services
commonly required in real-time systems. These services include: state
machine handling, message passing, timing, concurrency control,
thread management, and debugging facilities. The Rose RealTime
Services Library provides a standard set of services across all
supported platforms, so that your model can be readily ported to
different target platforms.

The following topics are discussed in this chapter:

� “C Services Library Framework” on page 57

� “Log service” on page 67

� “Communication services” on page 67

� “Timing service” on page 72

� “RTController error codes” on page 75

C Services Library Framework

Taken together the classes and data types defined in the C Services
Library provide an application framework - the framework in which
your application will run.

At a very general level, the framework defines the skeleton of a real-
time application: messaging, timing, concurrency, event based
processing, platform independence. Your job as a Rose RealTime
developer is to fill in the rest of the skeleton - the classes, capsules, and
protocols which are specific to your system.
C Reference - Rational Rose RelTime 57

Chapter 5 C Services Library
The big advantage

Now you can understand the power of code generation. With Rose
RealTime you will be developing your application in a high level
language using state diagrams and structure diagrams, and
automatically these elements are converted to C and placed in a
framework which already provides critical real-time system services.

Before you start developing the key to using the services provided by
the framework, is to understand how your application will integrate
into the C Services Library skeleton. The framework provides 3 main
services to our application:

� Communication services is the basic mechanism for using
message-based communication via ports.

� Timing service provides general purpose timing facilities. It also
provides an interface for implementing custom timer capsules.

� Log service is a general purpose logging service.

Services are explained by introducing the general concepts related to
the service followed by the functions that are used to implement the
service. You should become familiar with the C syntax and notational
conventions used in these sections as well as the “Services Library API
Reference” on page 171.

Message processing

An event is a message arriving on a capsule's port. Message-based
communication is the basic mechanism for communication between
capsules. Only aynchronous communication between capsules is
supported in the C Services Library. Messages are also used by the
Services Library to communicate with the capsules in the model.

A message has three attributes:

� A signal that succinctly conveys the application-specific “meaning”
of the message.

� A priority that indicates the urgency of the message. The priority of
a message is determined by the sender.

� An optional data attribute, which contains additional information.
This attribute can consist of an arbitrarily complex composite data
object.
58 C Reference - Rational Rose RelTime

Message processing
Processing overview

The Services Library does not preempt capsule processing. The heart
of the Services Library is a controller object that dispatches messages
to capsules. Its basic mode of operation is to take the next message
from the outstanding message queue and deliver it to the destination
capsule for processing. When it delivers the message, it invokes the
destination capsule's state machine to process the message.

Control is not returned to the Services Library until the capsule's
transition has completed processing the message. Each capsule
processes only one message at a time. It processes the current message
to the completion of the transition chain (for example, guard, exit,
transition, Choice Point, exit, and entry) and then returns control to
the Services Library and waits for the next message. This is referred to
as run-to-completion semantics. Typically, transition code segments
are short, and result in rapid handling of messages.

Single and multi-threaded message processing

The Services Library runs in a loop executed by a system controller
object. This loop waits for messages and delivers them, one at a time,
to capsules for processing. Each physical thread in a Rose RealTime
model has its own controller object and its own set of message queues.
Messages that cross threads are placed in a special queue and picked
up by the receiving thread in its processing.

� Single-threaded Services Library

� Multi-threaded Services Library

The model is first initialized by queueing a special system-level
message (the initialization message) for the top-level capsule. This
causes initialization messages to be queued for all fixed capsules
contained inside the top-level capsule. This continues recursively for
all contained fixed capsules, so that all the fixed capsules in the model
(those that aren't contained in optional capsules) are initialized.
C Reference - Rational Rose RelTime 59

Chapter 5 C Services Library
After the initialization message is queued, the controller object enters
its main processing loop (the mainLoop function). In mainLoop, it takes
the next highest priority message from the message queues and
delivers it to the receiver capsule and invokes that capsule's behavior
to process the message. During start-up, the highest priority message
on the queue of the main thread will be the initialization message.
When a capsule processes the initialization message, the capsule's
initial transition segment is executed.

When the capsule has completed processing a message, it returns
control to the controller. The controller continues this loop until there
are no more messages to be processed. At that point, it waits for a
message from a timer or another physical thread in the model.

Introduction to threads

A capsule can be thought of as having its own logical thread of control,
and operating independently of other capsules, as if each capsule had
its own dedicated processor. These independent capsules synchronize
to perform higher-level scenarios through message-passing. One
capsule sends a message to another capsule allowing the other capsule
to update its state based on this outside stimulus. In practice, most
Rose RealTime models run on a machine with a single processor, or
possibly in a distributed environment, with a few processors. In any
case, there are almost always more capsules than processors. Thus,
the capsules must share the processor in some manner.

Types of concurrency

The underlying operating system provides preemption to allow
concurrent programs to share the processor in a fair way, where each
program is guaranteed to get some processing time (depending on the
prioritization of the programs), and any program that blocks does not
stop processing of other programs. Many operating systems support
one or both of the following forms of concurrency:
60 C Reference - Rational Rose RelTime

Message processing
1. A heavy-weight unit of concurrency (usually referred to as a
process), which has its own memory space, is completely separate
from other processes (for integrity), and which communicates with
other processes through special mechanisms (shared memory,
sockets, signals, and so forth).

2. A light-weight unit of concurrency, referred to as a thread (or task
on most RTOSs), shares a common memory space with other
threads, and is not as robust (can be corrupted by other threads).
Processes usually have a significant amount of protection such
that if one process crashes it does not affect any other processes.
Threads do not have as much protection as processes. Depending
on the type of failure, an error in one thread may affect other
threads.

Mapping capsules to threads

Rose RealTime allows designers to make use of the underlying multi-
tasking operating system so that the processing of a capsule on one
thread does not block the processing of capsules on other threads.
Designers can specify the physical operating system threads onto
which the capsules will be mapped at run-time. In a system with only
one thread, there are situations where a single capsule transition can
block other capsules from running, such as if the capsule invokes a
blocking system call. By placing some capsules in different threads,
the designer can avoid the problems that arise from these situations,
and make better use of the underlying processor. Not every capsule
should run on a separate thread. For most capsules, it is sufficient to
leave them in one thread and allow the Services Library controller to
invoke their behavior as messages arrive.

Capsules with transitions that may block, or that have excessively long
processing times, should be placed on separate threads. Deciding
which capsules need to execute in different threads is a matter for
design consideration.
C Reference - Rational Rose RelTime 61

Chapter 5 C Services Library
Single-threaded Services Library

The use of threads is not supported for certain targets, and may not be
desirable for some applications. There is a single-threaded version of
the Services Library, which is used for these situations. In the single-
threaded model there is a single controller object that is responsible for
queueing and delivering messages among capsules. The main
processing loop runs inside this object. The single-threaded Services
Library has the basic structure shown in Figure 7.

Figure 7 Single-threaded Services Library

Multi-threaded Services Library

In this version, capsules can belong to different logical threads. Logical
threads are mapped to a set of concurrent physical threads defined by
the user. No other capsules in a thread can execute until the currently
executing capsule returns control to the main loop of that thread
(except for the case of invoke). However, other capsules on other
physical threads may be executing simultaneously (at least, from the
designer's perspective). The operating system is responsible for
switching control among active physical threads. The operating system
may preempt one physical thread in the middle of execution to switch
62 C Reference - Rational Rose RelTime

Message processing
to another physical thread. Each thread can be assigned a separate
priority, so that the designer has some control over the scheduling. In
the multi-threaded model there is a separate controller object for each
physical thread. This controller object contains the basic message
delivery and processing loop. The basic structure of the multi-threaded
Services Library is shown in Figure 8.

Figure 8 Multi-threaded Services Library

C Services Library Framework

The capsules, capsule roles, protocols, ports and classes in a Rose
RealTime model will eventually be generated to C code and integrate
into the C Services Library framework. The framework provides a set of
pre-defined data structures and functions which you will use in the
detail level code of your model.

The complete API is explained in the chapter called “Services Library
API Reference” on page 171.
C Reference - Rational Rose RelTime 63

Chapter 5 C Services Library
As well as the reference material detailed in the API the following
characteristics of the C Services Library framework are important to
understand:

� “Capsules are generated as subclasses of RTCapsule” on page 64

� “Ports are generated as fields of a capsule structure” on page 64

� “Every capsule instance has access to its controller” on page 65

� “Capsule instances, logical, and physical threads” on page 65

� “Capsule instances have access to a RTMessage object” on page 66

Capsules are generated as subclasses of RTCapsule

Every generated capsule structure contains, as the first field in the
structure, an RTCapsule called std. Thus, for any API function that
requires an RTCapsule * as a parameter, you can either cast the
capsule instance’s ‘this’ pointer or pass the address of the std field. For
example, the RTCapsule_context() function, which requires a
RTCapsule pointer, can be called in the following syntax:

/* both expressions are equivalent */
RTController * rts1 = RTCapsule_context(&this->std);
RTController * rts2 =

RTCapsule_context((const RTCapsule *)this);

Ports are generated as fields of a capsule structure

The ports on the structure of a capsule are generated as RTPort fields
in the generated capsule structure. The field is named exactly as the
port is named in the model. Most communication service functions
require that you specify a port as a parameter to the function. For
example, the asynchronous send function has the following prototype:

int RTPort_send (const RTPort *, RTSignal, RTPriority, void *,
const RTObject_class *);

The first parameter is a pointer to a port. Therefore you would access
the port via the capsule instance pointer this, and send a message out
of that port using the following syntax:
64 C Reference - Rational Rose RelTime

Message processing
/*
Assume a port called ‘control’ that has
an out signal ‘ack’.

*/
RTPort_send(&this->control,

RTProtocol_createOutSignal(&this->control, ack),
RTPriority_General,
(void *)0, /* don’t send data */
(RTObject_class *)0);

Every capsule instance has access to its controller

Each capsule instance has access to the controller for the thread on
which it is running. The RTController class provides several functions
that can be useful in a capsule’s implementation. The function
RTCapsule_context() returns a pointer to the controller instance,
which can then be passed to RTController functions.

For example, to find out the name of the thread on which a capsule is
running, you would use the following function:

/*
This code would be in a capsule’s
transition

*/
char * name =

RTController_name(RTCapsule_context(this));

Capsule instances, logical, and physical threads

As described in the “Introduction to threads” on page 60, your
application may required that certain capsule instances run on
separate physical threads. Logical threads are used to represent a
conceptually independent thread of execution. Logical threads may be
mapped to different physical thread configurations when generating an
executable. However, the mapping of capsule roles is defined purely in
terms of logical threads.
C Reference - Rational Rose RelTime 65

Chapter 5 C Services Library
Since all C capsule instances are created when a model is run, the
mapping of capsule instances to logical threads must be provided at
design time. The top level capsule is where you defined the logical
threads and map the capsule instances to logical threads. The top level
capsule is always mapped to the MainThread, and you cannot map it
to any other. See “Capsule To Logical Thread Mapping (Capsule, C
Executable)” on page 157 for details of how to work with logical
threads.

Note: You must use this same process to map a timer capsule role to its
own logical thread. This logical thread can then be mapped to a separate
physical thread. You then have a timer capsule running on its own
physical thread.

The mapping from logical thread to physical thread is performed on a
component. The component uses the logical thread information
contained within the top level capsule assigned to that component, and
allows you to map the logical threads defined in the top level capsule
to physical threads. See “PhysicalThreads (Component, C Executable)”
on page 160 for details of how to work with physical threads.

Note: Only logical threads defined on the top level capsule are
considered by the component.

Capsule instances have access to a RTMessage object

Every capsule has an attribute msg which is a pointer to the current
message delivered to a capsule instance. This attribute can be used
within transition detail level code to retrieve a message that was sent
to the capsule instance. In your detail level code, you will first retrieve
the message using RTCapsule_getMsg(this); then use the RTMessage
methods to query the message.
66 C Reference - Rational Rose RelTime

Log service
Log service

Implementation functions

RTLog

Characteristics

The Log service is a stream of ASCII text in which system or application
events can be recorded. The Log output is directed to the stream
RTSTDIO_STREAM, which is defined in

$ROSERT_HOME/C/TargetRTS/src/include/RTPriv/Stdio.h

as stdout. It can be changed to stderr if so desired, but this will also
affect all calls to RTStdio_put used internally in the Services Library.

Basically there is a Log method for each basic C data type, plus a
generic Log method for user-defined data types. Each call to a Log
method involves locking RTStdio, writing the resulting text, flushing
the output, and unlocking RTStdio.

Communication services

Implementation functions

RTMessage, RTPort, RTPriority

Concepts

This fundamental service provides most of the standard
communication models prevalent in concurrent software system
design including inter-capsule asynchronous messaging.

The Communication Service is accessed by calling the RTPort
functions. The port name is the user defined name of the port declared
in the model. The named port is generated as a field of the capsule
containing the port.

Every named port may actually have a number of port instances
associated with it (depending on the multiplicity of the port). Each port
instance is capable of sending and receiving messages.
C Reference - Rational Rose RelTime 67

Chapter 5 C Services Library
A service request results in the creation of an instance of RTMessage.
This message is delivered by the Services Library to the port at the
other end of the connection. It is eventually processed by the behavior
of the capsule containing that port.

Primitives

This service is used for messages passing between capsules in real
time. Messages sent via this service are processed whenever the
necessary CPU cycles become available.

A capsule instance accesses the message that was just received by
calling the RTCapsule_getMsg() method.

Upon processing a message received at a particular end port, the
RTMessage_getPortIndex() method returns an index to the particular
port instance that received the message. Calling RTPort_sendAt() on
the port instance returned by RTMessage_getPortIndex() results in a
send to only that particular port instance.

Communication Service properties

Messages have a high probability of delivery to the receiving object, but
it is not guaranteed. For example, messages may be lost if they are sent
through unbound ports

Order-preserving

Messages of equal priority sent along the same binding are delivered in
the same order both for messages sent to capsules executing within the
same thread and for messages going to another thread.

Minimal overhead in message handling

This is due to the relative simplicity of the service and its lack of any
automatic form of acknowledgment or flow-control protocols.
68 C Reference - Rational Rose RelTime

Communication services
The semantics of usage of message priorities

A message priority is interpreted as the relative importance of an event
with respect to all other unprocessed messages on a thread. This is
reflected in a bias towards higher-priority messages over lower-priority
messages when scheduling CPU time. If two or more messages of
different priority are queued and waiting to be processed, messages
with a higher priority are usually processed before messages of lower
priority. The slight ambiguity of this definition reflects the variability of
scheduling policies due to the inherent non-determinism of distributed
systems, as well as to changing implementations. In general, good
designs should not be critically sensitive to a particular scheduling
policy. (The current Services Library scheduler, in fact, uses simple
priority scheduling so that messages at a particular priority level are
not processed until all higher-priority messages on that controller have
been processed.)

Within a given priority level, the Services Library guarantees that
messages will be processed in the order of arrival. (Keep in mind,
however, that in a distributed system, the order of arrival is not
necessarily the same as the order in which the messages were sent.)

Message priorities do not imply interruption of the processing of the
current event even if a newly-arrived message is of a higher priority.
This is due to the “run-to-completion” semantics of transitions as
described in the previous section.

A user-defined message has one of five priority levels associated with
it. The following predefined symbols allow the user to specify the
priority of a message by name:

� RTPriority_Panic - highest priority available to users; to be used
only for emergencies

� RTPriority_High - for high-priority processing

� RTPriority_General - for most processing

� RTPriority_Low - for low-priority

� RTPriority_Background - lowest priority used for background-type
activities

Message priorities disrupt the temporal order of events, which, in
practice, often leads to implementation problems. For this reason, it is
recommended that, as much as possible, applications limit themselves
to a single priority level. However, if priorities are used, then it is good
programming practice to avoid the high and low extremes of the range
C Reference - Rational Rose RelTime 69

Chapter 5 C Services Library
in order to leave room for subsequent design changes. In addition to
these user-defined message priorities, there are some system-level
priorities. System-level priorities are higher than the highest user-level
priority in order to guarantee the correct operation of Service Library
routines.

Support for unwired ports

Ports can be either wired or unwired. Wired ports are explicitly
connected to other wired ports with connectors. But unwired ports are
not connected during design, instead they are dynamically connected
at run-time. Unwired ports are bound to other unwired ports by a
registered name.

Layer communication therefore involves the support for managing
connections between unwired ports.

Published versus unpublished unwired ports

In the layered communication paradigm, unwired published ports
(SPP) can only connect with unwired unpublished ports (SAP), or vice
versa. A SAP cannot connect to another SAP, and a SPP cannot connect
to another SPP. You can think of an SPP as being the server side of a
connection and the SAP as being the client. The client always initiates
the communication with the server. The terms SAP and SPP are used
to abbreviate 'unwired [published|unpublished] port'. You will see that
some of the communication service operations are named with these
abbreviations to differentiate SAP and SPP operations.

The basic model is that for any given service, there is one server (the
SPP), and there may be many clients (the SAPs). The notion of a
"service" here is a loose one—a service is some functionality provided
by the server capsule to the client capsules. The service is uniquely
identified by name. There may exist many different server capsules,
each providing a different service. Any given service (name) may have
only one server (SPP) registered for it at any given time. Any other
providers that attempt to register an SPP of the same name will be
declined (the registration will fail).
70 C Reference - Rational Rose RelTime

Communication services
SPPs are often replicated, with their multiplicity specifying the
maximum number of clients that can be bound to the server at run-
time; otherwise, no SAPs can be bound. By default, a SAP or SPP is
automatically registered under its reference name when the capsule
containing that SAP/SPP is initialized.

Registration by name

The basic element of layer communication is a generic name server.
SAPs register to the layer service for binding to a SPP under a unique
name. SPPs need also register to the layer service in order to publish
its unique name for binding with SAPs.

All SAPs are bound to the first SPP that registered for binding under
that name. If no SPP exists, the SAP registrations are queued (usually
in order) waiting for the SPP to register. SAPs will be bound with the
SPP up to the maximum multiplicity of that SPP. SAPs not bound will
continue to be queued until an instance of the SPP becomes available
due to either a SAP deregistering, an SPP with a larger multiplicity
registering.

Registration string

A registration string is used to identify a unique name and service
under which SAPs and SPPs will connect, and can be of any length > 0.

Deferring and recalling messages

The Services Library enforces the reactive model of behavior by
automatically putting a capsule into a receive mode between
successive transitions. This means that there is no need for an explicit
user-specified receive method. When a message is selected for
processing, the Services Library wakes up the capsule and starts
execution of the appropriate transition according to the algorithm
described in the previous section.

In some cases, a message may be received and the capsule may decide
that it would be more convenient to postpone the handling of this event
for some later time. For example, the behavior may be in the middle of
a complex sequence of state transitions when it receives an
asynchronous request to handle a new sequence. Instead of trying to
C Reference - Rational Rose RelTime 71

Chapter 5 C Services Library
execute two sequences in parallel, it is often simpler to serialize them.
To do this, the newly-received message must be held somehow until
the current event-handling sequence is complete and then
resubmitted. The Services Library allows messages to be deferred and
then recalled at a more convenient time.

Timing service

Implementation functions

RTTimespec, RTTimerId, RTPort_informIn, RTPort_cancelTimer,
RTPort_isTimerValid

Characteristics

The timing services provide a way for a user to specify a timeout. Once
a timeout has occurred, a timeout message is then delivered to a timing
port on the originating capsule. It’s possible to keep track of a specific
timeout through it’s RTTimerId which is returned by the
RTPort_informIn function. You may then check that the timeout is still
valid, or cancel it via this index. The timing services also allow one to
get the current system time into a RTTimespec structure, and to
perform arithmetic operations on that structure.

Usage

The implementation of a timing service is very much dependent on the
timing interface provided by an operating system. For this reason, the
timing solution provided with the C Language Add-in is tailored to be
easily customizable. The Services Library does not contain the timing
algorithms and data structures, instead the Services Library acts like
a dispatcher of timing messages by calling timing functions which have
been registered on a controller. The RTController functions allow
registration of timing functions with a controller, thus when
subsequent timing requests are received by the controller, the
controller calls the timing functions that have been registered.

The C Language Add-in provides a generic timer implementation which
is supplied in the RTCClasses package. The complete implementation
for the timers is in the classes and data structures in this package, this
allows easy customization of timers from within the toolset.
72 C Reference - Rational Rose RelTime

Timing service
Follow these steps to add timing services to your model:

1. Decide which timer configuration you require. Do you want a timer
on each thread, one timer for all threads, the timer on it’s own
thread servicing all other threads? You must consider the timing
requirements for your application, and take into consideration the
overhead of having the timer capsule on its own thread.

2. Drag the appropriate timer capsule (Timer or SelfTimer) from the
RTCClasses package into the structure of a capsule in your model.

Note: The RTCClasses package should be included by default in all
models. If you are migrating or have deleted the package, you can share
the package back into your model by selecting the Logical View and
right-clicking then select File > Share. Browse to the $ROSERT_HOME/C
directory, select the file called RTCClasses.rtlogpkg. This will share the
package that contains the C timer implementation capsules and data
classes.

3. Create a port based on the CTiming protocol on each capsule
which will be using the timing services.

4. Use the RTPort_informIn function to request a timer.

5. When the timer expires, a timeout signal will be sent via the
CTiming protocol port that was passed as an argument to the
RTPort_informIn function. Lastly, you must add a transition to
your model to handle the receipt of timeout signals.

Timer thread configurations

Every application has different requirements in terms of timing. For
this reason it will be important to consider how timers will be
configured in your model. You should carefully consider the
performance requirements you require from your timers; depending on
this requirement you can chose from the following common timer
configurations:

1. One timer for whole model, timer runs on main thread and services
all threads in the model. This behavior is implemented by the
Timer capsule provide in the RTCClasses::TimerPackage. If you
add this capsule to your model it will register with all threads and
by default be incarnated on the main thread.
C Reference - Rational Rose RelTime 73

Chapter 5 C Services Library
2. One timer per thread, the timer runs on the thread it is assigned to
and provides timing services on that thread only. This behavior is
provided by the SelfTimer capsule provided in the
RTCClasses::TimerPackage.

3. One timer for whole model, but runs on it’s own thread. In this
case you would use the Timer capsule but map to it’s own logical
and physical thread.

Customizing the Timing Service

Although there are platform independent timing capsules available
with Rose RealTime, you may wish to implement your own timing
capsules. A timer capsule doesn’t need to have any internal structure,
or any state machine. It registers certain functions with the Services
Library during system start-up, and those functions modify the
behavior of a thread when it would normally perform a wait. Instead of
performing a wait it can perform a timed wait, and then send timeout
messages when a timeout occurs. To create a timer capsule, you must
create functions with the following signatures:

Note: The best way of understanding how to implement a timer capsule
is to browse the Timer capsule provided in the RTCClasses package.

RTTimerId informIn(RTCapsule * this, RTPort * replyToPort,
RTTimespec * timeout, void * data, const RTObject_class * type
)

Creates a timeout and puts it into the active timeout queue.

int cancel(RTCapsule * this, RTTimerId timerId)

Cancels a timeout.

int valid(RTCapsule * this, RTTimerId timerId)

Checks if a timeout is still active.

void sleep(RTController * this)

Checks for expired timers and sends timeout messages. Does timed
wait on lowest timeout in queue until expiry or a signal.

void wakeup(RTController * this)

Signals a sleeping thread to wake up.

void setup(void)
74 C Reference - Rational Rose RelTime

RTController error codes
This function performs all the initialize functions necessary for the
timer to be fully operational towards any timing requests it may
receive. The setup function is called before any initial transition in the
model.

You will also need to allocate the supporting structures for your
functions, like timer queues and mutexes, and you will probably want
to create some supporting functions to modularize your code as well.

Timing precision and accuracy

The precision of the timing service depends on the granularity of timing
supported by the underlying operating system. Although you can
request timeouts with a granularity down to the nanosecond, this does
not mean you will get nanosecond precision. Most operating system
timing facilities only have a granularity in the millisecond range.
Further, the granularity of timing supported on most real-time
operating systems is much finer than that of general-purpose
workstation operating systems, such as UNIX and WindowsNT.

The service does not guarantee absolute accuracy. This means that
intervals can take slightly longer than specified, and events scheduled
for a particular time may in fact happen slightly after the actual time
has occurred. The magnitude of the delay depends on many factors.
However, unless the system is under severe overload, the discrepancy
is usually not significant.

RTController error codes

Many of the Services Library operations can set an error code. If any
operation in a controller fails, an internal variable is set with an error
code. The error values are defined with an enumeration in the
RTController class.
C Reference - Rational Rose RelTime 75

Chapter 5 C Services Library
Accessing the error value

The error enum identifier for the current error can be obtained via
RTController_getError(). A description of the current error code can be
accessed by calling the operation RTController_strError() on the
current controller object. The controller object for any capsule can be
retrieved by calling the RTCapsule_context() operation on the instance.

Example

The initialization phase of an application might include a transition
with code like that shown below where a capsule instance must
establish contact with a peer before beginning a more involved
exchange. The relevant portions include testing the return value from
the send primitive and choosing the appropriate reaction by examining
the reason for failure.

The following is an example of how to obtain an error and how to
recover with a send on a unconnected port:

if(! RTPort_send(&this->port,
RTPort_createOutSignal(port, start),

 RTPriority_General,
 &sendData,
 &RTType_SomeClass))
{
switch(RTController_getError(sendingController))

{
case RTController_noConnect:

RTPort_informIn(timingPort, 1, 0, 0, 0);/*try later*/
break;

default:
RTStdio_putString("Unexpected send error: ");
RTStdio_putString(RTController_strError(

sendingController));
RTStdio_putString("\n");
break;

} /* switch */
} /* if */
76 C Reference - Rational Rose RelTime

RTController error codes
Error enumeration

The error values are defined with an enum which is defined in the
RTController class as follows:

typedef enum _RTController_PrimitiveError
{

RTController_ok, /* all */
RTController_internalError, /* all */
RTController_unexpectedStatus, /* debugger ops */
RTController_unexpectedPrimitive, /* debugger ops */
RTController_cannotSetTimer,
RTController_cannotRegTimer,
RTController_unauthorizedMemoryAllocation,
RTController_alreadyDeferred, /* CommDefer */
RTController_badClass, /* CommDeliver, CommSend */
RTController_badId, /* TimerInform */
RTController_badOperation, /* LayerDeregister */
RTController_badMessage, /* CommSend */
RTController_badSignal, /* CommSend */
RTController_badState, /* CommSend */
RTController_badValue, /* TimerInform */
RTController_dereg, /* LayerDeregister */
RTController_noConnect, /* TimerInform */
RTController_noMem, /* all */
RTController_prio, /* CommSend */
RTController_reg, /* LayerRegister */
RTController_tooManySAPs /* LayerRegister */

} RTController_PrimitiveError;

RTController_alreadyDeferred

A message can only be deferred one time within the chain of transitions
it triggers. Subsequent calls fail and set the error code to this value.

RTController_badClass

This is not set anywhere at this point. The error should be set when
there is an incompatible subclass detected.
C Reference - Rational Rose RelTime 77

Chapter 5 C Services Library
RTController_badId

The cancelTimer primitive of the timing service requires a valid timer
identifier returned by the informIn primitive. These identifiers are
invalidated by the cancelTimer primitive and, except for the case of
informEvery, during the delivery of the time-out message. This error is
recorded if cancelTimer is applied to an expired or cancelled timer
identifier.

RTController_badOperation

This is not set anywhere at this point. It should be set when the
controller attempts to execute a primitive it’s not permitted to execute.

RTController_badMessage

This is set when a capsule receives a message for which it has no event
handling.

RTController_badSignal

An unindentifiable message without any capsule information occurred.
Since the message was destined for the controller, but didn’t fall into
the types of message a controller knows how to handle, it’s a bad
signal.

RTController_badState

A capsule has entered an invalid state.

RTController_badValue

This is not currently set anywhere. An invalid argument has been
passed to the controller.
78 C Reference - Rational Rose RelTime

RTController error codes
RTController_cannotRegTimer

Registering a timer service has failed since there is already another
timer registered.

RTController_cannotSetTimer

Attempting to set an interval timer has failed.

RTController_dereg

Attempting to deregister an unwired port which is not currently
registered results in this error.

RTController_internalError

This error signifies that there are null function pointers for necessary
functions, unbound end ports on sends, or unrecognized controller
wait options when checking for events.

RTController_noConnect

Successful use of the send and reply primitives requires an established
binding involving the port instances referenced in the primitive. This
error results when that binding does not exist. Remember that send,
applied to a replicated port, is equivalent to the use of the same
primitive on each instance within the reference. If any port is unbound
this error will result.
C Reference - Rational Rose RelTime 79

Chapter 5 C Services Library
RTController_noMem

RTController instances each maintain a local list of unused
RTMessage objects. When this list is exhausted and a request for more
messages from the associated RTResourceMgr object is not satisfied,
the result is this error. This usually indicates that available free
memory on the target is exhausted. RTMessage objects are required in
many Services Library primitives.

RTController_ok

So far, no error conditions have occurred. This value is set during
controller construction.

RTController_prio

Send and informIn primitives accept an argument which is interpreted
as a message priority. Applications are restricted to the use of the five
priorities Panic, High, General, Low, and Background. Other values are
disallowed and trigger this error.

RTController_reg

A name must be given in the application of the register primitive of
unwired ports. A nil pointer is illegal and is the source of this error.

RTController_unauthorizedMemoryAllocation

A call to RTMemoryUtil_new has been made to allocate memory, yet the
Run Time system is in the executing state, so no memory allocations
should occur at this point.
80 C Reference - Rational Rose RelTime

RTController error codes
RTController_unexpectedStatus

The controller has its state field set to something unrecognizable.

RTController_unexpectedPrimitive

The debugger is trying to trace a controller operation, but the primitive
that the controller is doing is unrecognizable by the debugger.
C Reference - Rational Rose RelTime 81

Chapter 6

Running models on target boards

This chapter describes what you need to know to successfully compile,
build, and run models with the C Services Library on target boards.
Because of the different brands of embedded operating systems, and
varying configurations found on each, it is critical that you understand
your target operating system and what services the C Services Library
will expect exist in the target operating system before you try to run a
model on your target RTOS.

The C Services Library ships with supported configurations for a set of
target processors, operating systems, and compilers. See the C
Language Add-in Getting Started Guide for a listing of the supported
targets. You may however have to configure and customize the shipped
libraries to work with your specific configuration.

Before trying to compile and download a complex model from Rose
RealTime, run through the following steps to validate that your
environment, operating system, kernel, and C Services Library is setup
correctly.

Step 1: Verify tool chain functionality

A functioning development environment must be in place prior to
building and running models with Rose RealTime. You should be able
to compile, load, and execute non Rose RealTime programs from the
command line. This includes the correct installation of tools such as
compilers, linkers, assemblers, debuggers included with your RTOS
installation. In addition, it is important to ensure that all environment
variables are defined to provide access to the header files and library
files shipped with your compiler.
C Reference - Rational Rose RealTime 83

Chapter 6 Running models on target boards
Often you will need to setup environment variables that point to the
root of the RTOS tools installation directory and also to the include and
library directories.

Rose RealTime expects all tools to be available from the command line.

How to test

An easy way to test that your tool chain is setup properly is to create,
build, and run a simple “Hello World” program which prints something
to the console. This program should not use (be linked with) the C
Services Library.

Write, compile, link, download, and run the “Hello World” program on
the target. If it executes successfully then your tool chain is setup
properly. Your RTOS usually comes with a set of example programs
that you can also use to validate your environment.

Step 2: Kernel configuration

The standard configuration of the Services Library anticipates that the
target operating system will support a set of services, for example:
mutual exclusion mechanisms, multithread support, timing, standard
input/output, memory management, and TCP/IP. In general, most
commercial real-time operating systems (RTOS) have these services.

Ensure that the RTOS has the following minimum services built into
the kernel:

� a service which provides infinite and timed blocking.

� A function that returns the current time.

� Task/thread creation with a specified stack size and priority.

� Standard input/output.

� For observability, TCP/IP support is required.

� Some support for memory management is required.

� Main function, some RTOS have their own defined. If so then the
main function in the Services Library must be redefined. See the
next step for more information.

If your RTOS kernel does not support these services then read your
RTOS documentation on how to rebuild your kernel to include them.
84 C Reference - Rational Rose RealTime

Step 3: Verify main.c

In order for the execution of the model to begin, code must be provided
to call RTMain::entryPoint(int argc, const, char * const *
argv) passing in arguments to the program. This code is placed in the
file $RTS_HOME/src/target/<target name>/Main/main.c.

On many platforms this is the code for the main function, which simply
passes argc and argv directly. However, on other platforms, these
parameters must be constructed. For example, with VxWorks, the
arguments to the program are placed on the stack, thus an array of
strings must be explicitly created before calling RTMain::entryPoint.
Look at the implementation added to the
$RTS_HOME/src/target/TORNADO2/Main/main.c file.

A C Services Library model assumes that it is the root task in the
system. The model will define the root task, initialize the C run-time,
the system timer and other things. For some targets you may have to
modify this behavior in main.c.

If your platform does not provide a mechanism for passing arguments
to an executable, the arguments for RTMain::entryPoint can be defined
from within the toolset in the DefaultArguments (Component, C Exec)
property.

Step 4: Try manual loading

At this point you should be able to build a simple “Hello World” model
in Rose RealTime. Build it for your target board. Then load, and run it
manually.

Note that with some target operating systems when a Rose RealTime
model is built you still aren’t finished. In some cases, as with pSOS+,
the Rose RealTime model is built as a library and you have to compile
and link the board support package with the Rose RealTime model
library to create an executable. The simplest way to do all of this is to
see your target board documentation, sample makefiles and programs.

Note: To compile for a specific platform ensure that a C Executable
component is created in Rose RealTime with the correct
TargetConfiguration set to the library for your platform. This will tell the
code generator which build scripts and libraries to use.
C Reference - Rational Rose RealTime 85

Chapter 6 Running models on target boards
After the simple model is built, download to the target board and run
it. See your target documentation for steps required to download and
run an executable.

On some target boards the root process or the main function is
spawned automatically, but on others, for example with Tornado, you
have to specify the entry point function. Look in main.c for your target
to see what function to call to start the model. For example, on Tornado
it is rtsMain.

When the executable is run you will see the C Services Library banner
and the debugger prompt:

Rational Rose RealTime C Target Run Time System
Release 6.40.C.00 (+c)
Copyright (c) 1993-2001 Rational Software
rosert: observability listening not enabled
RTS debug: ->

Type ‘quit’ to let your model run.

At this point you have successfully verified that the environment is
setup properly and that your RTOS is configured correctly.

Step 5: Running with observability

Next you can try running the model with observability and watch the
execution of the model from within the toolset.

Try to connect the toolset to the running model. First, download the
model and run it with the following command line parameter:

-obslisten=<portnumber> for example:

-obslisten=12345

Note: If your RTOS does not support command line arguments you must
add this argument to the DefaultArguments (Component, C Exec)
property on the component you create to build this model.

When the model is started with -obslisten it won’t start actually
running the model until you have connected to the model via the
toolset and pressed the start button. You should see the following
banner after running the model executable with the -obslisten
command line parameter:
86 C Reference - Rational Rose RealTime

Rational Rose RealTime C Target Run Time System
Release 6.40.C.00 (+c)
Copyright (c) 1993-2001 Rational Software
rosert: observability listening not enabled

* * Please note: STDIN is turned off.
* To use the command line, telnet to the above mentioned port.
* The _output_ of any command will be displayed in _this_
* window.

Once the telnet client has connected to the target, you must hit <enter>
a couple of times to give the target a chance to recognize that this is a
telnet connection rather than a Toolset connection.

Next, within Rose RealTime create a processor and component
instance from the component that you used to build your model. In the
component instance specification change the Target Observability
Port to the value you specified from the command line <portnumber>.
Press OK, then right-click on the component instance and chose
Attach Target. The RTS Browser will appear. Next press the start
button and you can use the observability tools to watch the execution
of your model.

The target guide is meant to help developers build, compile, debug, and
deploy their models to a target system. The C Services Library is at the
heart of the C Language Add-in. It will be essential that you
understand its architecture if you are to start optimizing and
configuring it for your projects needs.

This document includes the following topics:

� “Organization of the Services Library source” on page 102

� “Configuration preprocessor definitions” on page 106

� “Optimizing designs” on page 115

� “Configuring and customizing the Services Library” on page 121

� “Command Line Model Debugger” on page 89
C Reference - Rational Rose RealTime 87

Chapter 7

Command Line Model Debugger

This section describes the Services Library debugger commands. The
Services Library debugger provides a mechanism to allow UML for
Real-Time models executing on the Services Library to be debugged at
the UML for Real-Time concept level. The Services Library debugger
does not provide source-level debugging. Source code debugging
requires an external source level debugger for C, such as gdb. Note that
some versions of the Services Library libraries are supplied with the
command line debugger disabled for optimum efficiency. You can
recompile the Services Library source code to configure the Services
Library without the debugger. This saves some space in the executable
model. For additional information, see “Configuring and customizing
the Services Library” on page 121.

Note: The debugger must be configured in order for Observability to be
enabled.

Starting the Run time System debugger

URTS_DEBUG parameter

You can use the URTS_DEBUG parameter to initialize the Services
Library debugger with a set of commands to run at start-up. This is
used most commonly to tell the debugger to quit, causing the model to
run without the Services Library interaction. The URTS_DEBUG
parameter can be passed on the command line to the executable. Add
the -URTS_DEBUG= parameter on the command line. For example, to
run the executable without the debugger interaction, set the debug
command to “quit” before starting the executable as follows:
MyTopLevel_Capsule -URTS_DEBUG=quit. You can also set
C Reference - Rational Rose RealTime 89

Chapter 7 Command Line Model Debugger
URTS_DEBUG as an environment variable. This variable is used by
default whenever no -URTS_DEBUG parameter is passed on the
command line. The URTS_DEBUG variable should be set to a command
sequence to be performed by the debugger on start-up. Multiple
commands should be separated by semicolons (;).

Differences Between Single-threaded and Multi-threaded
Services Library Debugger

In single-threaded mode—that is, when using a Services Library which
has been configured to support only a single thread—the debugger
must share the same thread of control as the user's capsules. This has
two fundamental implications. Input to the debugger is accepted only
when the system is in a stopped state, and blocking calls in user
transitions may prevent the debugger from operating correctly. The
system can be considered to be in a stopped state when one of the
following occurs:

� The top capsule is about to be instantiated.

� A trace point is encountered.

� The debugger has accepted a command from the user to allow N
messages, and N messages have been dispatched.

In multi-threaded mode, the debugger has its own thread of control.
This may lead to the case where any model output is interleaved with
the debugger output. In general, the threads related to timing and
external layer should be detached when using the debugger; other
threads can be attached or detached as desired.

Application-specific command line arguments

You can supply additional command line arguments for use by your
model, as you would for any other application. The arguments are
passed on the command line after the name of the executable, for
example:

myTopCapsule -URTS_DEBUG=quit foo 99

Alternatively, they can be specified in the Parameters text box on the
component instance specification dialog.
90 C Reference - Rational Rose RealTime

Run Time System Debugger Command Summary
The first item on the command line is the name of the executable.
Several arguments can be supplied for the Services Library (-obslisten),
while another argument that can be passed to the debugger
(-URTS_DEBUG).

Accessing

The following static functions are provided on the class RTMain to
allow the user model to examine the argument list:

int RTMain::argCount()
const char * const * RTMain::argStrings()

Use argCount() to return the number of arguments passed on the
command line. RTMain::argCount() is equivalent to argc in a
traditional C/C++ program.

Use argStrings() to return an array of pointers to the actual arguments.
Each argument is stored in a char *. RTMain::argStrings() is equivalent
to argv in a traditional C/C++ program.

Providing arguments on targets that do not support
command line arguments

Some targets do not provide the ability to start up a program with
command line arguments. Rose RealTime provides an interface within
the toolset that allows you to specify startup arguments that are made
available to the program at run-time. You can specify arguments via
the component property DefaultArguments (Component, C
Executable).

Run Time System Debugger Command Summary

Thread commands

� tasks - prints the list of tasks (threads)

� detach <taskId> - do not monitor a thread specified by taskId.
Allows the thread to run freely.

� attach <taskId> - monitor a thread specified by taskId. TaskIds of
the different physical threads in the model can be determined
using the tasks command.
C Reference - Rational Rose RealTime 91

Chapter 7 Command Line Model Debugger
Informational commands

� saps - shows all registered SPPs and the corresponding SAPs.

� system [<capsule> [<depth>]] - lists all instantiated capsules in
the system, starting with the specified capsule, to a specific depth.

� info <capsuleId> - shows information about the capsule instance
specified by the capsuleId.

� printstats <testId> - prints the run-time statistics for thread
taskId.

Control commands

� exit - terminates the Services Library process

� go [<n>] - delivers n messages

� step [<n>] - delivers n messages

� quit -— quits debug mode. Allows all tasks to run freely.

Tracing commands

� log <category> <detail-level> - logs UML for Real-Time primitives.
Selects the service to log (communication, layer, timer, system, all)
and the detail (none, errors, all).

Help

� help - prints help information.

taskId, capsuleId, portId

Physical threads in the application are each identified by a taskId.
Listing the threads in the application using the tasks command shows
the Id of each task. Use this Id when referring to a particular thread for
commands such as attach, detach and printstats.

Each capsule instance has a unique capsuleId. The capsuleId
indicates the capsule's position in the containment hierarchy. The top-
level capsule instance always has an Id of 1. The instances contained
in it are called 1/1, 1/2 and so on. Replicated references, however, are
shown by a single Id. They can be identified individually by suffixing
the Id number with n, where n is the particular instance number (for
example, 1/5.1). Note that the default replication factor is always 1; for
example, 1/5 is exactly the same as 1.1/5.1. The capsuleId is used in
conjunction with the info command. The system command shows the
capsuleId corresponding to each capsule.
92 C Reference - Rational Rose RealTime

Thread commands
Each port is identified by its portId. These portIds are relative to the
capsule where they are defined and unique only within this capsule
class.

The portIds for a capsule class can be listed using the info command.

Running a model

When running a model using the command line debugger, you will see
the following setup:

Rational Rose RealTime C Target Run Time System
Release 6.20.C.00 (+c)
Copyright (c) 1993-2000 Rational Software
rosert: observability listening not enabled

RTS debug: ->

Thread commands

The example used in the following description has been configured to
use threads. The output is slightly different for applications compiled
in a non-threaded world.

tasks

Lists all threads in the model. Each thread is identified with a taskId.
The main thread always appears in the list of threads. Any additional
user-defined physical threads also appear in the list.

RTS debug: -> tasks
0: stopped main
1: stopped Thread1
2: stopped Thread2

RTS debug: ->
C Reference - Rational Rose RealTime 93

Chapter 7 Command Line Model Debugger
attach <taskId>

Allows the debugger to interact with the specified task (thread). TaskId
must be one of the taskIds listed by the tasks command. When a
thread is attached, messages within that thread are only processed
when the go command is given.

RTS debug: ->attach 1
Attached Task 1

RTS debug: ->

detach <taskId>

Allows the thread (taskId) to run freely. The debugger does not control
the specified thread any longer. The thread processes all outstanding
messages and then waits for new messages.

RTS debug: ->det 1
Task 1 detached

RTS debug: ->

Informational commands

saps

Lists all registered unwired ports (SAPs and SPPs).

RTS debug: ->saps
Name: prot2
 SAP: Compile_OnTop[0]/prot2[0]
 SPP: echo2[0]/prot2[0]

RTS debug: ->

system <capsuleId> <depth>

The system command lists all the active capsules in the system,
starting with <capsuleId> (default: 1 = the top capsule) and <depth>
(default: 0 = all) levels down.
94 C Reference - Rational Rose RealTime

Informational commands
Both the parameters <capsuleId> and <depth> are optional; however,
if you give the <depth> parameter, you must give the <capsuleId>
parameter as well.

Each capsule is displayed in the following form:

refName : className (type = fixed) capsuleId [more]

Containment is indicated by indentation and one leading dot for each
containment level. For example, in the following output, the top level
capsule is listed first, followed by all the capsule instances in its
decomposition:

RTS debug: ->system
Main_OnTop : Main (fixed) 1
. gen1 : Generator (fixed) 1/1
. gen2 : Generator (fixed) 1/2
. echo : Echo (fixed) 1/3
. . logger : LogBuffer (fixed) 1/3/1
. . . servus : GreetServer (fixed) 1/3/1/1
. . logger : LogBuffer (fixed) 1/3/1.2
. . . servus : GreetServer (fixed) 1/3/1.2/1

RTS Debug: ->

In the following example, we want to start with a different capsule:

RTS debug: ->system 1/3
echo : Echo (fixed) 1/3
. logger : LogBuffer (fixed) 1/3/1
. . servus : GreetServer (fixed) 1/3/1/1
. logger : LogBuffer (fixed) 1/3/1.2
. . servus : GreetServer (fixed) 1/3/1.2/1

RTS Debug: ->

And in this example, we start with a different capsule, and also limit
the depth to 1 level:

RTS debug: ->system 1/3 1
echo : Echo (fixed) 1/3 [2 more]

RTS Debug: ->
C Reference - Rational Rose RealTime 95

Chapter 7 Command Line Model Debugger
In the last example, we can see the [2 more] message after the capsule.
This means that the capsule in question has 2 contained capsules that
were not displayed since the depth parameter we supplied limited the
output. This [N more] message is not recursive, so it only indicates the
number of hidden capsules in the next immediate level.

info

The info command returns information about a particular capsule
instance. The info command displays the name of the capsule class for
the identified instantiation, the role name (from the container), the
current state of the capsule, the memory address of the capsule,
whether any probes are attached to the capsule, and a list of ports and
roles. As with capsules, ports listed are identified by an id number.

RTS debug: ->info 1/3/1
ClassName: LogBuffer
ReferenceName: logger
CurrentState: wait4activity
Address: (LogBuffer_InstanceData *)0x42BEEF
No Capsule Probe attached.

Relay ports:
0: commandPort[10]

End ports:
0: commandPort[10] (wired)
1: echoAccess (SPP)

Components:
0: servus

RTS debug: ->
96 C Reference - Rational Rose RealTime

Tracing commands
printstats <taskId>

Prints information about the number of messages delivered,
outstanding messages, and a breakdown of messages by priority. The
alias stats is mapped to this command.

RTS debug: ->print 0
main
No error.

messages[Synchronous] : 0
messages[System] : 0
messages[Panic] : 0
messages[High] : 0
messages[General] : 1
messages[Low] : 0
messages[Background] : 0

In this command the output consists of the name of the thread, the last
error encountered, the number of outstanding messages available to be
delivered for each of the distinct priorities.

Tracing commands

log <category> <detail-level>

The log command turns ON the logging of all system services.

The categories are communication, exception, frame, layer, timer,
system, and all. The detail levels are none, errors, and all.

Each message log shows the direction of the message, the receiving
capsule (the ̀ to' capsule), the sending capsule (the ̀ from' capsule), and
the data. The form of each message log is as follows:

RTS debug: 0>

message
to capsule(Class)<state>.portName[index]:signalName

from capsule(Class)<state>.portName[index]
data dataValue
C Reference - Rational Rose RealTime 97

Chapter 7 Command Line Model Debugger
An example of message trace is shown below:

RTS debug: ->log comm all

RTS debug: -> go 1
go 1

message
to client(Client)<Dozing>.cliServComm[0]:hello

from server(Server)<S1>.cliServComm[0]
data (void *)0

RTS debug: ->log comm none

RTS debug: ->go 1

go 1
RTS debug: 1>

Events that will be logged are:

� Communications: Defer, Recall, RecallAll, Send,

� Layer: Register SAP, Deregister SAP, Register SPP, Deregister SPP

� Timer: Cancel, InformIn

Note that the detail levels are as follows:

� none — suppresses all log messages

� all — logs all events as described above.

Control commands

exit

Exits the process. If you have logs turned ON, you may notice a
sequence of cancellation/stop messages before the process is exited.

go [<n>]

Delivers n messages in the model. If <n> is omitted, the default is 10.
98 C Reference - Rational Rose RealTime

Control commands
step [<n>]

Delivers n messages in the model. If <n> is omitted, the default is 1.

quit

Detaches the debugger and lets the model run freely. The command
line debugger is turned off and the program is run to completion (all
messages are delivered).
C Reference - Rational Rose RealTime 99

Chapter 8

Inside the C Services Library

This section provides extended details regarding the C Services
Library. For those who want to configure the C Services Library for
speed or size see the “Configuring and customizing the Services
Library” on page 121.

Topics discussed in this chapter include:

� “Organization of the Services Library source” on page 102

� “Configuration preprocessor definitions” on page 106

� “Optimizing designs” on page 115
C Reference - Rational Rose RealTime 101

Chapter 8 Inside the C Services Library
Organization of the Services Library source

Much of the configurability of the C Services Library is done at the
source code level. Understanding the organization of the source code
and build files will help you navigate the directory structures.

The services library is organized to be highly configurable, not only for
customers but also to provide an easy way to support a large number
of different platforms and configurations.

$RTS_HOME

The C Services Library source files are by default installed in the
$ROSERT_HOME/C/TargetRTS directory. $RTS_HOME will be used
often in this document to refer to this directory.

Configuration naming convention

When you start browsing the directories and files that make up the
Services Library you will notice directory names and file names that
may seem cryptic. These names are actually based on an easy to use
naming scheme to uniquely identify the many library configurations.

Platform name (or configuration)

A specific Services Library configuration is identified by its platform
name. The platform name is made up of 2 parts: the target base name
and the libset name.

<platform name> ::= <target base name>.<libset name>

For example:

TORNADO2S.ppc-cygnus-2.7.2-960126
SUN5T.sparc-gnu-2.7.1
NT40T.x86-VisualC++-6.0
102 C Reference - Rational Rose RealTime

Organization of the Services Library source
Target base name

The target base name identifies the operating system, and it’s
configuration and version. For this reason the target base name is
made up of 3 parts which describe the operating system(os), the os
name, the os version, and the os configuration (single (S), multi-
threaded(T)):

<target base name> ::= <os name><os version><os configuration>

For example:

TORNADO2S -> Tornado 2.x Single-threaded
SUN5T -> Solaris 5.x Multi-threaded
NT40T -> WindowsNT 4.x Multi-threaded

Libset name

The libset name identifies a processor architecture and compiler. The
libset name is made up of 3 parts: the processor, the compiler name,
and the compiler version.

<libset name> ::= <processor>-<compiler>-<compiler version>

For example:

ppc-cygnus-2.7.2-960126 ->
PowerPC processor using Cygnus version 2.7.2-960126

sparc-gnu-2.7.1 ->
Sparc processor using Free Software Foundation gnu version
2.7.1

x86-VisualC++-6.0 ->
X86 processor using Microsoft Visual C++ version 6.0

Summary

You would therefore read the platform name introduced in the first
section as:

TORNADO2S.ppc-cygnus-2.7.2-960126 ->
For the Tornado 2.x Single-threaded RTOS running on a PowerPC
processor using Cygnus version 2.7.2-960126

This naming scheme is used throughout the C Services Library.
C Reference - Rational Rose RealTime 103

Chapter 8 Inside the C Services Library
Directory structure

The source structure basically contains directories that mirror the
convention described in the library “Configuration naming convention”
on page 102. For example the libset directory contains libset specific
files (processor, compiler), the same goes for the target directory
(operating system).

The best way to understand the directory structure is to browse it
yourself.

Figure 9 Example C Services Library directory structure

codegen

This directory contains scripts for compiling models on different
platforms.
104 C Reference - Rational Rose RealTime

Organization of the Services Library source
include

This directory contains interface definitions for library classes and
structures.

config

This directory contains platform specific (operating system and
compiler) configurations. Each platform (see “Platform name (or
configuration)” on page 102) has its own directory that contain the
platform specific scripts and configuration files.

target

This directory contains target (operating system) configurations. Each
target (see “Target base name” on page 103) has its own directory that
contain the target specific scripts and configuration files.

lib

This directory contains the compiled libraries.

libset

This directory contains processor and compiler specific configurations.
Each libset (see “Libset name” on page 103) has its own directory that
contain the libset specific scripts and configuration files.

src

This directory contains the generic (platform independent) source files
for the Services Library. Each class has a directory that contains the
class’ implementation. Within the src directory is a target directory
which contains target specific (OS) implementation files. Each target
(see “Target base name” on page 103) has its own directory that
contains target specific source files.

tools

This directory contains scripts used for building models and building
the libraries.
C Reference - Rational Rose RealTime 105

Chapter 8 Inside the C Services Library
Configuration preprocessor definitions

Much of the configurability of the Services Library is done at the source
code level within a source file using C preprocessor definitions. The
configuration is set in the following C header files:

� $RTS_HOME/target/<target>/RTTarget.h for specifying
operating system specific definitions

� $RTS_HOME/libset/<libset>/RTLibSet.h for specifying
compiler specific definitions. This is not required for most
compilers, as they can use the default
$RTS_HOME/include/RTLibSet.h file.

Any macros defined in these files will override the corresponding macro
defaults which appear in $RTS_HOME/include/RTPubl/Config.h.
The macros and their default values are listed in the following pages.

Note: In the following section, in general, defining a symbol with the
value 1 enables the feature the symbol represents, defining it with the
value 0 disables the feature, and leaving it undefined means it will get
a default value from $RTS_HOME/include/RTPubl/Config.h.

DEFAULT_DEBUG_PRIORITY

Possible values: Any valid thread priority for the OS in question

Default value: Dependant upon OS and values in RTTarget.h file

Description: Thread priority of the debug thread to be used as a
parameter to the OS call used to create the Debug thread.

DEFAULT_MAIN_PRIORITY

Possible values: Any valid thread priority for the OS in question

Default value: Dependant upon OS and values in RTTarget.h file

Description: Thread priority of the debug thread to be used as a
parameter to the OS call used to create the Main thread.
106 C Reference - Rational Rose RealTime

Configuration preprocessor definitions
DEFAULT_TIMER_PRIORITY

Possible values: Any valid thread priority for the OS in question

Default value: Dependant upon OS and values in RTTarget.h file

Description: Thread priority of the debug thread to be used as a
parameter to the OS call used to create the Timer thread.

INTERNAL_LAYER_SERVICE

Possible values: 0 or 1

Default value: 1

Description: This enables SAP/SPP functionality. If a model has no
Services (unwired ports), and relies solely on wired ports, you can
disable this option to save space.

MAX_NUM_SPPS

Possible values: 0 or more

Default value: 10

Description: This defines how many SPPs are possible in the model.
You can lower this if you’re crunching for bits, and you’re not using
them all, or if you’re using more than the default you can increase it.

RTS_NAMES

Possible values: 0 or 1

Default value: 1

Description: Target Observability and debugging require a lot of strings
to make the Run Time System presentable to a human being. If you
want to save space in your final shippable executable, you can compile
out a lot of these strings by setting this macro to 0.
C Reference - Rational Rose RealTime 107

Chapter 8 Inside the C Services Library
Turning this definition off will minimize footprint. It is up to those who
make the models that use this configuration to not use the API that
refers to the names of objects, or at least capture these calls in the
following code blocks:

#if RTS_NAMES
code...
#endif

TIMING_SERVICE

Possible values: 0 or 1

Default value: 1

Description: Enables all the code required for supporting a timing
service.

TO_OVER_TCP

Possible values: 0 or 1

Default value: 1

Description: This flag should be set to 1 when Target Observability is
run over TCP, 0 otherwise. It is used to compile code required for the
tcp stack and the supporting functionality.

USE_THREADS

Possible values: 0 or 1

Default value: not set, must be defined in the platform headers (usually
RTTarget.h)

Description: Determines whether the single-threaded or multi-
threaded version of the Services Library is used. If USE_THREADS is
0, the Services Library is single-threaded. If USE_THREADS is 1, the
Services Library is multi-threaded.
108 C Reference - Rational Rose RealTime

Configuration preprocessor definitions
LOG_MESSAGE

Possible values: 0 or 1

Default value: 1

Description: Controls whether the debugger will log the contents of
messages or not.

MULTIPLE_PRIORITIES

Possible value: 0 or 1

Default values: 1

Description: When this feature is enabled, the Services Library creates
multiple priority queues as opposed to one priority queue. Higher
priority messages will be processed before lower priority messages.

OVERRIDE_BASIC_SIZES

Default value: undefined

Possible values: defined or undefined

Description: If defined in RTTarget.h, can be used to override the basic
sizes of many RTS types. Check in
$RTS_HOME/include/RTPubl/Config.h for the types that are meant
to be overridden.

OBJECT_DECODE

Possible values: 0 or 1

Default value: 1

Description: Enable the conversion of strings to objects, needed for
Target Observability and message injection.
C Reference - Rational Rose RealTime 109

Chapter 8 Inside the C Services Library
OBJECT_ENCODE

Possible values: 0 or 1

Default value: 1

Description: Enable the conversion of objects to strings, needed for
Target Observability and variable inspection.

STDIO_ENABLED

Possible values: 0 or 1

Default value: 1

Description: If you disable this define, you can remove all I/O
operations that the Target Services Library generally performs. This
can save a substantial amount of code space, and makes a lot of sense
to disable if your final target doesn’t have any stdio output mechanism.

RTS_CLEANUP_MECHANISM

Possible values: 0 or 1

Default value: 1

Description: During system shutdown, you might want to clean up all
the resources the Target Services Library allocated during start-up and
during the execution of the model. This might be especially important
if you’re using a tool like purify and want to match up all the
allocations and deletions, and only see the inconsistencies. But, if
you’re more concerned with saving space, disabling it gets rid of a
substantial amount of cleanup code.

RTS_COMPATIBLE

Possible values: 521 or undefined

Default value: 521
110 C Reference - Rational Rose RealTime

Configuration preprocessor definitions
Description: If this value is set to 521, then the ROOM macros in
$RTS_HOME/include/RTPubl/UMLRT.h that were used in the
officially published interface of ObjecTime Developer 5.2.1 will
continue to work.

RTS_MEMORY_POLICY

Possible values: RTS_CAN_ALLOCATE, RTS_WARN_ALLOCATE,
RTS_NEVER_ALLOCATE

Default value: RTS_CAN_ALLOCATE

Description: Generally, you don’t want to allocate memory in a Real-
Time system once system initialization has completed. By toggling this
flag you can easily check if it is being allocated for some reason, or
explicitly forbid it, making the call fail. On the other hand, if your
system is not excessively concerned about memory allocations after
start-up, you can allow it.

MESSAGE_DEFERRAL

Possible values: 0 or 1

Default value: 1

Description: If enabled, activates the capability to defer processing a
message received until a later time. An explicit RTMessage_defer call
must be made to actually defer a message.

OTRTSDEBUG

Possible values: DEBUG_NONE or DEBUG_VERBOSE

Default value: DEBUG_VERBOSE

Description: Determines whether the Services Library debugger should
be enabled. If set to DEBUG_VERBOSE, makes it possible to log all
important internal events such as the delivery of messages, the
creation and destruction of capsules, and so on.

If set to DEBUG_NONE, neither logging, Target Observability nor the
Services Library debugger will be available.
C Reference - Rational Rose RealTime 111

Chapter 8 Inside the C Services Library
PURIFY

Possible values: 0 or 1

Default value: 0

Description: Set this flag to 1 to indicate that the Purify tool is being
used. This tells the Services Library to disable all object caching which
will degrade performance but allow Purify to monitor RTMessage
objects properly.

RTS_INLINE

Possible values: inline or blank

Default value: blank

Description: Controls whether Services Library header files define any
inline functions.

INLINE_CHAINS

Possible values: inline or <blank>

Default value: <blank>

Description: This variable is used to indicate whether transition code
chains are to be inserted directly into the code or invoked as functions.
The basic trade-off is performance against memory. Preliminary
measurements indicate that with this feature disabled, the size of a
capsule class definition is reduced on the average. (Note that this gain
is incurred only once for each capsule class.) This feature depends on
whether your compiler supports inlining or not.

INLINE_METHODS

Possible values: inline or <blank>

Default value: inline
112 C Reference - Rational Rose RealTime

Configuration preprocessor definitions
Description: This causes transition functions to be inlined for better
performance at the expense of potentially larger executable memory
size. Note that not all compilers will handle this option correctly.
Failures will generally be in the form of link errors.

RTMESSAGE_PAYLOAD_SIZE

Possible values: Any numerical value >= 0

Default value: 36

Description: This defines the size of the payload area in each
RTMessage, where small objects are copied for better performance.
When sending typed data by value, and the data to be sent fits into the
payload area, the data will simply be copied into the message. If the
data doesn’t fit inside the payload area, memory will be allocated for
the data and free’d after the message has been received. If set to 0,
there will be no payload area.

SEND_BY_VALUE

Possible values: 0 or 1

Default value: 1

Description: Determines whether the Services Library has the code
compiled into it that will allow for sending typed data by value, instead
of just sending a pointer. If this is turned off, ensure that your model
does not use type descriptors (e.g. for example to send data by value in
RTPort_send() functions).

OBSERVABLE

Possible values: 0 or 1

Default value: 1

Description: Determines whether the Services Library has the code
compiled into it that will allow for Target Observability.
C Reference - Rational Rose RealTime 113

Chapter 8 Inside the C Services Library
Creating the minimum Services Library configuration

Configuring the Services Library with the minimum services allows you
to most often reduce the size and/or increase the speed of the resulting
Rose RealTime model using the library.

To create the minimum configuration, the values described below
should be defined to the values in the Minimum Configuration
column. This is not the only minimum configuration, you are free to
configure the Services Library to fit your project needs.

Table 1 Definitions for minimum Services Library configuration

Note: Not all C compilers support inlining.

Note: Disabling the LOG_MESSAGE definition will turn off the logging
capability of the Services Library. Log messages will no longer appear
when the model is running.

Additional definitions that affect important functionality from the C
Services Library can also be turned off. Ensure that your model does
not rely on any of these services before removing them from the
Services Library.

Definition Default Minimum
Configuration

LOG_MESSAGE 1 0

OBJECT_DECODE 1 0

OBJECT_ENCODE 1 0

RTS_NAMES 1 0

STDIO_ENABLED 1 0

RTS_CLEANUP_MECHA
NISM

1 0

OTRTSDEBUG DEBUG_VERBOSE DEBUG_NONE

INLINE_CHAINS <blank> inline
114 C Reference - Rational Rose RealTime

Optimizing designs
Table 2 Additional minimum configuration definitions

See “Changing pre-processor macros” on page 122 for a description of
how to modify configuration parameters and rebuild a Services Library.

Optimizing designs

Performance is usually a significant consideration in any real-world
design. This section provides some guidelines for improving the
performance of your Services Library-based models in the following
areas:

� “Capsule instances and capsule behavior” on page 116

� “General C performance notes” on page 118

� “Additional Design Considerations” on page 119

� “Tool Chains” on page 120

Definition Default Minimum
Configuration

SEND_BY_VALUE 1 0

MULTIPLE_PRIORITIES 1 0

TIMING_SERVICE 1 0

INTERNAL_LAYER_SERVICE 1 0

MESSAGE_DEFERAL 1 0
C Reference - Rational Rose RealTime 115

Chapter 8 Inside the C Services Library
Capsule instances and capsule behavior

Guards

Problem:

Guard conditions can incur significantly more performance overhead
than choice points. A guard condition has an associated function,
which is called each time the trigger event is evaluated. Because many
events may be evaluated before the transitions are executed, placing
guard conditions on triggers will cause the guard functions to be called
for every message delivery, regardless of whether the associated
transition is being fired. Event triggers are evaluated until a matching
event is found. At that point, evaluation of events stops. The order in
which event triggers on a given state are evaluated is arbitrary.

Recommendation:

Do not use guards unless absolutely necessary.

State Machines

Problem:

State machines are traversed from an innermost state to an outermost
state when searching for transition triggers, which match the current
event. This means that if a transition is placed on an “outer” state
boundary, and that transition fires frequently while the capsule is in
an “inner” state, many other transition triggers may be evaluated
before the correct one is found.

Recommendation:

Place frequently executed transitions on leaf states.
116 C Reference - Rational Rose RealTime

Optimizing designs
Capsules versus Data

Problem:

Capsules and message sending have more overhead (both processing
and memory) than simple data objects. You must decide at what point
in your design the use of simple objects with no state machine to
achieve performance becomes more important than the abstractions
provided by capsules.

Recommendation:

Capsules with minimal state machines and few ports may be converted
to data classes.

Unnecessary Sends

Problem:

Sending on replicated ports involves a send on every replication.

Recommendation:

If you have a replicated port with only a few known connections, calling
RTPort_sendAt() on only the connected instances may be much quicker
than the broadcast approach used by RTPort_send().

Sending typed data by value in messages

Problem:

When typed data is sent by value in a message, the data is deep copied
before being sent. For large data structures (such as a large user-
defined data type), this operation involves several memory copies and
possible allocations and deallocations if the data does not fit inside of
the message’s payload area.
C Reference - Rational Rose RealTime 117

Chapter 8 Inside the C Services Library
Recommendation:

For best performance when sending between capsules within the same
memory space, you should consider sending pointers instead of
objects. This will introduce more complexity into the design and coding
(with respect to memory management and thread issues), but is more
efficient for performance. In particular, if a few messaging interactions
are identified as happening very frequently, these interactions could be
optimized to send pointers rather than objects.

Cross Thread Message Sending

Problem:

Message sends across thread boundaries involve more overhead than
message sends within the same thread.

Recommendation:

This should be taken into consideration when determining the
allocation of capsules to threads. Lower latency is achieved between
two capsules on the same thread than can be obtained with two
capsules on different threads. Note: When using threads, time-
ordering of messages is not preserved. That is, if you send messages to
a capsule on the same thread and to a capsule on a different thread,
subsequent messages on the same thread may be processed before the
context switch occurs to allow the other thread to begin processing its
messages.

General C performance notes

Problem:

File input and output functions (printf, scanf, etc.) are quite expensive
(about 100 x function call overhead)

Recommendation:

In performance-critical software these IO functions should only be
used in exceptional circumstances, or as part of optional debugging
code (calls that can be avoided). You may also consider using a low
priority logging thread to do the IO when the system is idle.
118 C Reference - Rational Rose RealTime

Optimizing designs
Problem:

Dynamic creation and destruction of objects, particularly of large
complex user-defined data types, is expensive (relative to a function
call).

Recommendation:

Do not dynamically create objects on the critical data path.
Preallocation and application level management of objects can provide
a substantial performance gain.

Additional Design Considerations

This section has probably just whetted your appetite for other ideas
that will help solve your particular integration problem. As food for
thought, an initial checklist of design areas to consider is provided.
Many of these areas may not be critical to your application but all have
been proven to be important in at least one project using Rose
RealTime. Complete discussion of these topics is beyond the scope of
this document.

Hardware differences

In many cases, a key difference between the application running on a
workstation-based Services Library and a RTOS-based Services
Library is the presence of special hardware in the RTOS case. Before
just stubbing out non-existent hardware functionality, it is important
to understand its impact on the overall execution of the model, in
terms of the range of functionality which can be tested. For example,
real-time platforms often have integrated Non-Volatile-Store (NVS).
While it is easy to stub out this behavior on the workstation (for
example, use RAM) this eliminates a whole range of recovery/restart
functionality. A better “stub” would be to simulate the NVS using the
file system, thereby allowing the full model to be tested on the
workstation.

The key point here is to always consider hardware availability when
using Rose RealTime so as to take full advantage of the ease of moving
a model from one platform to another. It is often the case that there are
more developers than there is hardware available for testing.
C Reference - Rational Rose RealTime 119

Chapter 8 Inside the C Services Library
Availability of external library on different platforms

Sometimes, for whatever technical reasons, an external library cannot
be integrated with the workstation-based Services Library. In this case,
the option of integrating external libraries only with the Services
Library should be considered. In many cases this allows all the
capabilities of the underlying OS to be utilized and this is important
when the goal is to use the library unmodified. In the cases where the
library is available only as a binary (for example, CORBA ORB) this
may be the only alternative.

Tool Chains

As a project moves through its lifecycle, it is important that any
conflicts that may arise from the integration of external libraries be
discovered as soon as possible. It is recommended that regular builds
be done for the workstation, for the Services Library on the
workstation, and for the Services Library on RTOS so that even if the
actual target board or processor isn't available, the compilation and
linking step can be exercised.
120 C Reference - Rational Rose RealTime

Chapter 9

Configuring and customizing the
Services Library

This section discusses the different ways that are available for
configuring and customizing the C Service Library. After this section
you should:

� Know what configuration options are available and how to change
them.

“Changing pre-processor macros” on page 122

“Changing build options” on page 124

� Understand how to change the classes, functions, and definitions
contained in the Services Library source code.

“Overriding or adding operations and classes” on page 126

� Understand how to compile the Services Library and compile and
link customizations in with your model.

“Building the Services Library” on page 128

“Updating a component to use a different Services Library” on
page 129

Configuration and customization explained

The difference between configuring and customizing is that configuring
modifies pre-defined parameters built-in to the Services Library to
increase speed, or reduce size of your model. Whereas with
customization you are changing the behavior of the Services Library by
adding source files or overriding existing operations.
C Reference - Rational Rose RealTime 121

Chapter 9 Configuring and customizing the Services Library
There are several different ways of changing the functionality of the
Services Library:

Configuration options
� “Changing pre-processor macros” on page 122

This is useful for optimizing the library for speed or size. The
library must be rebuilt, as well as your model.

� “Changing build options” on page 124

This is useful for rebuilding the library with different build options,
for example to turn on or off compiler optimizations or add debug
information to the library. The library must be rebuilt, as well as
your model.

Customization options
� “Overriding or adding operations and classes” on page 126

You can override any Services Library operation. This is most often
used to change the way the library is initialized, to modify the main
processing loop, or to add platform specific implementations.

Changing pre-processor macros

Before you start

Ensure that you understand the “Organization of the Services Library
source” on page 102, the “Configuration naming convention” on
page 102 and “Directory structure” on page 104.

Why

Modify pre-defined parameters built-in to the Services Library. This is
often useful for configuring the library for optimal speed or size.
122 C Reference - Rational Rose RealTime

Where

The file $RTS_HOME/include/RTPubl/Config.h contains all
Configuration preprocessor definitions, or pre-processor macros with
their default values. You can override any of these macros by adding a
definition in one of these files:

� $RTS_HOME/libset/<libset>/RTLibSet.h

To change for a specific processor and compiler.

� $RTS_HOME/include/RTLibSet.h

To change for all libsets that don’t have their own RTLibSet.h file.

� $RTS_HOME/target/<target>/RTTarget.h

To change for all libraries for an operating system.

It is usually preferable to perform a libset configuration, that is to
reconfigure only for a specific processor and compiler.

How

Follow these steps to reconfigure the Services Library, build, and
update your model to use the new library. In this example we will
create a new libset to localize the changes to a compiler. To make
changes at the target level follow the same steps but create a new target
instead of a new libset.

For this example we will assume that our current platform is:

SUN5T.sparc-gnu-2.8.1

1. Choose a name for the new libset. Usually, you can just append to
the existing libset name. In this example let’s name the new libset:

sparc-gnu-2.8.1-minimal

2. Create a new directory called $RTS_HOME/libset/sparc-gnu-
2.8.1-minimal.

3. Create a new directory called $RTS_HOME/config/SUN5T.sparc-
gnu-2.8.1-minimal

4. Copy all the files from the original libset and config directories to
the new directories:

From $RTS_HOME/libset/sparc-gnu-2.8.1 to
$RTS_HOME/libset/sparc-gnu-2.8.1-minimal

From $RTS_HOME/config/SUN5T.sparc-gnu-2.8.1 to
$RTS_HOME/config/SUN5T.sparc-gnu-2.8.1-minimal
C Reference - Rational Rose RealTime 123

Chapter 9 Configuring and customizing the Services Library
5. In the new libset directory, add pre-processor statements to
RTLibSet.h, and save the file. For example, to turn off logging
messages you would add:
#define LOG_MESSAGE 0

6. Build the new Services Library for the platform SUN5T.sparc-gnu-
2.8.1-minimal, see “Building the Services Library” on page 128

7. Update components in model to use the new Services Library, see
“Updating a component to use a different Services Library” on
page 129

Changing build options

Before you start

Ensure that you understand the “Organization of the Services Library
source” on page 102, the “Configuration naming convention” on
page 102 and “Directory structure” on page 104.

Why

This is useful for rebuilding the library with different build options, for
example to turn on or off compiler optimizations or add debug
information to the library.

Where

The build options used to compile both the Services Library and the
model can be found in these makefiles:

� $RTS_HOME/libset/<libset>/libset.mk

To change for a specific processor and compiler.

� $RTS_HOME/target/<target>/target.mk

To change for all libraries for an operating system.

� $RTS_HOME/config/<platform>/config.mk

To change for a specific platform.

It is usually preferable to perform a libset configuration, that is to
reconfigure only for a specific processor and compiler.
124 C Reference - Rational Rose RealTime

How

Follow these steps to modify to build a Services Library with debug
symbols. In this example we will create a new libset to localize the
changes to the compiler. To make changes at the target level follow the
same steps but create a new target instead of a new libset.

For this example we will assume that our current platform is:

SUN5T.sparc-gnu-2.8.1

1. Chose a name for the new libset, usually you can just append to
the existing libset name. In this example let’s name the new libset:

sparc-gnu-2.8.1-debug

2. Create a new directory called $RTS_HOME/libset/sparc-gnu-
2.8.1-debug.

3. Create a new directory called $RTS_HOME/config/SUN5T.sparc-
gnu-2.8.1-debug

4. Copy all the files from the original libset and config directories to
the new directories:

From $RTS_HOME/libset/sparc-gnu-2.8.1 to
$RTS_HOME/libset/sparc-gnu-2.8.1-debug

From $RTS_HOME/config/SUN5T.sparc-gnu-2.8.1 to
$RTS_HOME/config/SUN5T.sparc-gnu-2.8.1-debug

5. In the new libset directory open the libset.mk file and change the
-04 flag from LIBSETCCEXTRA and replace with -g. LIBSETCCEXTRA
should now look like:
LIBSETCCEXTRA=-g -finline -finline-functions -mv8 \

 -Wall -Winline -Wwrite-strings

6. Build the new Services Library see “Building the Services Library”
on page 128

7. Update components in model to use the new Services Library, see
“Updating a component to use a different Services Library” on
page 129

Now you have a Services Library with debug information. You can use
your source level debugger to step through the code.
C Reference - Rational Rose RealTime 125

Chapter 9 Configuring and customizing the Services Library
Overriding or adding operations and classes

Why

You can override any Services Library operation. This is most often
used to change the way the Service Library is initialized, to modify the
main processing loop, or to add platform specific implementations.

Where

Any Services Library modification has to be done on the target level;
that is, in the Services Library itself and not in the model.

The most interesting operations that can be candidates for overriding
are the following:

� RTMain_targetStartup(), RTMain_targetShutdown()

These operations are typically overridden to initialize/cleanup
drivers specific to the target environment, startup OS services
(such as clock or timings etc.), initialize specific libraries or
structures that are needed by the Services Library, or initialize
signal handlers.

� RTPeerController_mainloop(), RTSoleController_mainloop()

This operation is typically overridden if you want a message
handling strategy that is different than the default. For example
you could perform regular sanity checks or audits, or receive
message from other applications.

How

In general any operation in the Services Library can be overridden by
placing an override version of the operation into the following
subdirectory:

$RTS_HOME/src/target/<target>/<class>
126 C Reference - Rational Rose RealTime

The target/<target> base directory mirrors the $RTS_HOME/src
directory. Thus it must have a directory for each class that has an
overridden operation. When the library is built, existing files in
directories in $RTS_HOME/src/target/<target> are used instead of
the corresponding files in $RTS_HOME/src.Have a look at the
“Organization of the Services Library source” on page 102.

Tasks

In this example we will override the RTCapsule_logMsg() operation by
creating a new target configuration. You can also override for an
existing target configuration but you won’t be able to easily go back and
forth between the original libraries and the customized versions.

For this example we will assume that our current platform is

SUN5T.sparc-gnu-2.8.1

1. Choose a name for the new target. Usually, you can just append to
the existing target name. In this example let’s name the new target

SUN5NEWT

2. Create a new directory called $RTS_HOME/target/SUN5NEWT.

3. Create a new directory called
$RTS_HOME/config/SUN5NEWT.sparc-gnu-2.8.1

4. Create a new directory called
$RTS_HOME/src/target/SUN5NEW/Capsule

5. Copy all the files and sub-directories from the original target and
config directories to the new directories:

From $RTS_HOME/target/SUN5T to
$RTS_HOME/target/SUN5NEWT

From $RTS_HOME/config/SUN5T.sparc-gnu-2.8.1 to
$RTS_HOME/config/SUN5NEWT.sparc-gnu-2.8.1

From $RTS_HOME/src/target/SUN5 to
$RTS_HOME/src/target/SUN5NEW

6. Copy the file that contains the logMsg() operation from the generic
source directory to the new target source directory:

From $RTS_HOME/src/Capsule/logMsg.c to
$RTS_HOME/src/target/SUN5NEW/Capsule/logMsg.c
C Reference - Rational Rose RealTime 127

Chapter 9 Configuring and customizing the Services Library
7. Edit $RTS_HOME/src/target/SUN5NEW/Capsule/logMsg.c.

8. Build the new Services Library see “Building the Services Library”
on page 128

9. Update components in model to use the new Services Library, see
“Updating a component to use a different Services Library” on
page 129

Building the Services Library

Whenever you create a new libset or target, you have to build the new
configuration of the Services Library. The Services Library is always
built from the $RTS_HOME/src directory and the target for the make
utility is the Platform name (or configuration) (<target>.<libset>).

Assuming we are using a custom configured OSE Diab C compiler
version 4.1a for the Motorola PowerPC platform, the name of our
reconfigured platform is OSE401T.ppc603-Diab-4.1a-Debug. To
build this Services Library perform the following commands:

Unix:

cd $ROSERT_HOME/C/TargetRTS/src
make CONFIG=OSE401T.ppc603-Diab-4.1a-Debug

WindowNT:

cd %ROSERT_HOME%\C\TargetRTS\src
nmake CONFIG=OSE401T.ppc603-Diab-4.1a-Debug

After the Services Library has been rebuilt, you must rebuild your Rose
RealTime models to link against the new Services Library libraries, see
“Updating a component to use a different Services Library” on
page 129.

Remember that if your new Services Library changed the debugging,
logging, or Target Observability functionality, visibility into the model
may be removed. Debugging the resulting model via the toolset may no
longer be possible.
128 C Reference - Rational Rose RealTime

Updating a component to use a different Services Library

After you have build a new Services Library, ensure that your
components reference the new library.

1. Open the Component specification dialog.

2. On the C Compilation tab press the Select... button.

3. A list of built libraries found in the current Services Library root
($RTS_HOME) directory are listed. If your library built properly it
should be listed. Select it and press OK.

4. Rebuild your model.
C Reference - Rational Rose RealTime 129

Chapter 10

Model properties Reference

Using the C code generator, you can produce C source code from the
information contained in a model. The code generated for each selected
model component is a function of that component's specification and
the C Language Add-in model properties. The model properties provide
the language-specific information required to map your model to C.
The C properties are grouped into the following property sets:

� “C model element properties” on page 134

� “C TargetRTS properties” on page 142

� “C Generation properties” on page 147

� “C Compilation properties” on page 151

� “C Executable properties” on page 157

� “C Library properties” on page 165

� “C External Library properties” on page 167

To facilitate the management of C code generation properties, use the
property set mechanism. This mechanism establishes settings for each
of the properties associated with a model element type. This allows you
to create your own property sets, each new set having its own default
values for any of the properties.
C Reference - Rational Rose RealTime 131

Chapter 10 Model properties Reference
Generalization and properties

Custom properties that are added to a model element, for example code
generation properties, are not inherited when two model elements
participate in a generalization relationship. For example, if class A is
the parent and B the child, and class A has overridden the default
value of the C::ClassKind property to typedef, this property in class B
will remain set to the default. For this reason it is important that you
use property sets to define default values that can be re-used in
different model elements.

Expanded property symbols

When the C code generator parses the properties, it expands a set of
pre-defined symbols. To delimit these symbols within a composite
property string, use curly braces ‘{‘ and ‘}’. For example, the
Class::C::ConstructFunctionName property is defined as:

${name}_construct

If the class name is NewClass1, this property will be expanded by the
code generator to:

NewClass1_construct

The following symbols are recognized by the C Code generator and are
expanded:

If you enter: Gets expanded to:

${name}
or $name

The name of the model element on which the
property is defined.

$@ The full directory path to where the owning
model file is saved. The model file name is not
included when the symbol is expanded.

$defaultMakeCommand On Windows expands to nmake and on all
others to make.
132 C Reference - Rational Rose RealTime

Expanded property symbols
Environment variables and pathmap symbols

You can use environment variables and pathmap symbols in certain
property fields. Environment variables are not interpreted by the code
generator, instead they are passed as is into the generated files.
Naturally, environment variables don’t make sense in .c and .h files,
however they do in makefiles. For this reason we encourage that
environment variables be primarily used with components. For
example, it is very common to define inclusion paths as an
environment variable as opposed to hard-coded values.

Pathmap symbols are expanded by the code generator into the
generated source code. So these can also be used to avoid having to
hard code paths into a component.

The following properties are usually defined using environment
variables or pathmap symbols:

� “InclusionPaths (Component, C Compilation)” on page 154

� “TargetServicesLibrary (Component, C Compilation)” on page 154

� “InclusionPaths (Component, C External Library)” on page 168

� “Libraries (Component, C External Library)” on page 168

� “UserLibraries (Component, C Executable)” on page 163

� “UserObjectFiles (Component, C Executable)” on page 163

Note: Other properties can be defined with environment variables, but
these are the ones you will have to modify the most often.

$(MACRO) $(MACRO) This may be useful in some Makefile
fields so that Make can expand MACRO.

$$ $ (a single dollar sign) This may be useful for
some Makefile fields such as
CodeGenMakeInsert or CompileCommand.

$VARIABLE This is expanded to whatever the toolset’s Path
Map is defined for VARIABLE. If no such Path
Map variable exists, this is evaluated to nothing.
C Reference - Rational Rose RealTime 133

Chapter 10 Model properties Reference
C model element properties

This group of model properties is used to control the general aspects of
the C language. For example, several C properties applying to classes
are used to control the generation of operations, and class kinds. This
page contains a summary of the C properties grouped by model
element to which they are associated.

Class

� “GenerateClass (Class, C)” on page 135

� “ClassKind (Class, C)” on page 135

� “ImplementationType (Class, C)” on page 136

� “ConstructFunctionName (Class, C)” on page 136

� “GlobalPrefix(Class, C)” on page 136

� “HeaderPreface (Class, C)” on page 137

� “HeaderEnding (Class, C)” on page 137

� “ImplementationPreface (Class, C)” on page 137

� “ImplementationEnding (Class, C)” on page 137

Attribute

� “AttributeKind (Attribute, C)” on page 137

� “InitializerKind (Attribute, C)” on page 138

Association end

� “InitializerKind (Role, C)” on page 138

� “InitialValue (Role, C)” on page 138

Capsule

� “GenerateConstructFunction (Capsule, C)” on page 139

� “GlobalPrefix (Capsule, C)” on page 139

� “HeaderPreface (Capsule, C)” on page 139

� “HeaderEnding (Capsule, C)” on page 139

� “ImplementationPreface (Capsule, C)” on page 140

� “ImplementationEnding (Capsule, C)” on page 140
134 C Reference - Rational Rose RealTime

C model element properties
Dependency

� “KindInHeader (Uses, C)” on page 140

� “KindInImplementation (Uses, C)” on page 141

GenerateClass (Class, C)

Determines if a class is generated by the code generator. If
GenerateClass is not checked, the C code generator does not generate
a definition for this class. This should be used when modeling code
that has already been implemented external to the tool, and hence
doesn't need to be generated.

For example, it is common to create a class within the toolset which is
a place-holder for an external data type. This allows you to specify the
data type in a protocol and use it for modeling purposes. If you leave
the GenerateDescriptor (Class, C TargetRTS) property set, a type
descriptor can still be generated even if the class won’t be.

Even if the GenerateClass property is not checked you should set the
ClassKind (Class, C) so that the C code generator can generate forward
references when needed.

ClassKind (Class, C)

Defines the kind of C construct generated for the class element.
Possible values are: struct, union, typedef, none. By default classes
are generated as a struct.

If ClassKind = union, this will generate a C union. Note that type
descriptors cannot be generated for unions. In addition default values
of all possibilities of the union and constructor operations are not used
with this type of class.

If ClassKind = typedef, the ImplementationType (Class, C) property is
used to specify the type.

If ClassKind set to none is used for backwards compatibility. If you
don’t want a class to be generated use the GenerateClass (Class, C)
property to turn off code generation.
C Reference - Rational Rose RealTime 135

Chapter 10 Model properties Reference
ImplementationType (Class, C)

Provides the type for the typedef when the ClassKind (Class, C)
property is set to typedef.

Example:

typedef char MyString[30];

Would be generated by creating a class named MyString, setting the
ClassKind to typedef, and setting the ImplementationType to
char[30].

ConstructFunctionName (Class, C)

Use this property to configure the name of the constructor function for
the generated class. The default name for the construct function is
${name}_construct, where ${name} is the name of the class. For
example, if your class is called ConfigData then the generated function
would be called ConfigData_construct.

If this property is blank, a constructor function is not generated.

The default constructor function is generated to initialize each
attribute defined in the class. Each attribute is initialized with its
initial value, or by calling the construct function for the attribute. This
is configurable for each attribute by using the InitializerKind
(Attribute, C) property.

GlobalPrefix(Class, C)

This is a global prefix by which you wish to prefix all generated class
operations. The default is empty.

Adding a global prefix will minimize conflicts with operations defined
on other classes and make your detail code more intuitive. A common
value for this property is ${name}_. This will prefix each operation with
the name of the class on which it is defined.
136 C Reference - Rational Rose RealTime

C model element properties
HeaderPreface (Class, C)

Specifies the text that will appear before the declaration of the class in
the header file.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see
Using Code Sync to Change Generated Code in the Toolset Guide.

HeaderEnding (Class, C)

Specifies the text that will appear after the declaration of the class in
the header file.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see
Using Code Sync to Change Generated Code in the Toolset Guide.

ImplementationPreface (Class, C)

Specifies the text that will appear before the class implementation.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see
Using Code Sync to Change Generated Code in the Toolset Guide.

ImplementationEnding (Class, C)

Specifies the text that will appear after the class implementation.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see
Using Code Sync to Change Generated Code in the Toolset Guide.

AttributeKind (Attribute, C)

Specifies whether the attribute is generated as a field of the generated
struct, or as a #define defined within the file generated for the class.
Options are normal and constant.
C Reference - Rational Rose RealTime 137

Chapter 10 Model properties Reference
If set to constant, a #define will be generated using the name of the
attribute as the name of the macro and the initial value as the value.

If an attribute is set to constant and is to be used in detail level code,
attribute array sizes, or other common C usages, ensure that there is
a dependency added between the class containing the definition and
the elements which use the definitions. Also ensure that the
dependency KindInHeader (Uses, C) property is set to inclusion.

InitializerKind (Attribute, C)

Use this property to configure how the attribute is initialized. Possible
values are assignment and call construct function. When the owner
class generates and uses a construct function, then the construct will
try and initialize its attributes however it can.

If InitializerKind = assignment then in the owners construct the
attribute will be initialized with the attributes initial value
(Attribute::Detail Page::Initial value).

If InitializerKind = call contruct function then the classes’ construct
function will call the attributes’ construct function.

InitializerKind (Role, C)

Use this property to configure how the generated attribute for the
association end is initialized. The values and usage of this property is
described in InitializerKind (Attribute, C).

InitialValue (Role, C)

If the association end (Role) InitializerKind (Role, C) property is set to
assignment then this value is used to initialize the generated attribute.
138 C Reference - Rational Rose RealTime

C model element properties
GenerateConstructFunction (Capsule, C)

Specifies if a construct function is to be generated for the capsule to
initialize all of its attributes with either their initial values or by calling
the attributes’ construct functions.

GlobalPrefix (Capsule, C)

This text field represents the string that all operations will be prefixed
with. By default this is blank. A good value for this is ${name}_, as this
will prefix all functions that serve as operations with the name of the
capsule followed by an underscore then the operation name. This is the
convention used in the C Services Library.

HeaderPreface (Capsule, C)

Specifies a block of C code to be included in the generated code of the
capsule class header, after any generated #include's and before the
generated capsule declarations. Code can include: comments,
#define's, #include's, declarations, etc.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see
Using Code Sync to Change Generated Code in the Toolset Guide.

HeaderEnding (Capsule, C)

Specifies a block of C code to be included at the end of the generated
code for the capsule class header. The HeaderEnding is generated
after the generated capsule declarations.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see
Using Code Sync to Change Generated Code in the Toolset Guide.
C Reference - Rational Rose RealTime 139

Chapter 10 Model properties Reference
ImplementationPreface (Capsule, C)

Specifies a block of C code to be included in the generated code of the
capsule class implementation, after any generated #include's and
before the generated capsule definitions. Code can include: comments,
#define's, #include's, declarations, etc.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see
Using Code Sync to Change Generated Code in the Toolset Guide.

ImplementationEnding (Capsule, C)

Specifies a block of C code to be included at the end of the generated
code for the capsule class implementation. The ImplementationEnding
is generated after the generated capsule definitions.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see
Using Code Sync to Change Generated Code in the Toolset Guide.

KindInHeader (Uses, C)

Specifies the representation of the dependency in the header file of the
source class.

The options are

� inclusion — include the header file for the target class

� forward reference — declare a forward reference to the target class

� none — dependency is not generated in header
140 C Reference - Rational Rose RealTime

C model element properties
KindInImplementation (Uses, C)

Specifies the representation of the dependency in the implementation
file of the source class.

The options are:

� inclusion - include the header file for the target class

� forward reference - declare a forward reference to the target class

� none - dependency is not generated in implementation
C Reference - Rational Rose RealTime 141

Chapter 10 Model properties Reference
C TargetRTS properties

This group of model properties is used to control the C Service Library
aspects of the code generation. For example, several C Target RTS
properties applying to classes are used to control the generation of
specialized classes and structures which describe the class to the
Services Library. This page contains a summary of the C TargetRTS
properties grouped by model element to which they are associated.

Class

� “GenerateDescriptor (Class, C TargetRTS)” on page 143

� “Version (Class, C TargetRTS)” on page 143

� “InitFunctionBody (Class, C TargetRTS)” on page 143

� “CopyFunctionBody (Class, C TargetRTS)” on page 143

� “DestroyFunctionBody (Class, C TargetRTS)” on page 143

� “DecodeFunctionBody (Class, C TargetRTS)” on page 144

� “EncodeFunctionBody (Class, C TargetRTS)” on page 144

Attribute

� “GenerateDescriptor (Attribute, C TargetRTS)” on page 145

� “TypeDescriptor (Attribute, C TargetRTS)” on page 145

� “NumElementsFunctionBody (Attribute, C TargetRTS)” on
page 145

AssociationEnd

� “GenerateDescriptor (Role, C TargetRTS)” on page 145

� “TypeDescriptor (Role, C TargetRTS)” on page 145

� “NumElementsFunctionBody (Role, C TargetRTS)” on page 146
142 C Reference - Rational Rose RealTime

C TargetRTS properties
GenerateDescriptor (Class, C TargetRTS)

If checked the C code generator will create a type descriptor for the
class. The type descriptor will allow marshalling (encode/decode) of the
class. The type descriptor contains information that the C Services
Library requires to initialize, copy, destroy, encode, and decode data
types. If the GenerateDescriptor property is unchecked, the data type
cannot be sent by value in messages and won’t be observable or
injected.

Version (Class, C TargetRTS)

Specifies the version of the data type.

InitFunctionBody (Class, C TargetRTS)

Specifies the body of a function to initialize a data type. By default the
C code generator generates a function which calls RTstruct_init.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see
Using Code Sync to Change Generated Code in the Toolset Guide.

CopyFunctionBody (Class, C TargetRTS)

Specifies the body of a function to copy a data type. By default the C
code generator generates a function which calls the data types copy
constructor.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see
Using Code Sync to Change Generated Code in the Toolset Guide.

DestroyFunctionBody (Class, C TargetRTS)

Specifies the body of a function to destroy a data type. By default the
C code generator calls the data types default constructor.
C Reference - Rational Rose RealTime 143

Chapter 10 Model properties Reference
This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information,
seesee Using Code Sync to Change Generated Code in the Toolset
Guide.

DecodeFunctionBody (Class, C TargetRTS)

Specifies the body of a function to decode a data type from a stream of
bytes. By default the C code generator uses a built-in function. If the C
Services Library does not know about a data type, because it may be
externally defined, or have private fields, then you can write your own
decoder. The function is passed a RTDecoding object from which the
stream of bytes can be retrieved and then used to create a new object
of this type. The decode function target argument is an already
allocated object that you should be initialized with the new data.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see
Using Code Sync to Change Generated Code in the Toolset Guide.

EncodeFunctionBody (Class, C TargetRTS)

Specifies the body of a function to encode a data type to a stream of
bytes. By default the C code generator uses a built-in function. If the C
Services Library does not know about a data type, because it may be
externally defined, or have private fields, then you can write your own
encoder. The function is passed a RTEncoding object from which the
stream of bytes should be passed from the object that is being encoded.
The encode function source argument is an already allocated object
that is to be encoded.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information,
seesee Using Code Sync to Change Generated Code in the Toolset
Guide.
144 C Reference - Rational Rose RealTime

C TargetRTS properties
GenerateDescriptor (Attribute, C TargetRTS)

Specifies whether to generate a descriptor for the attribute. If a
descriptor is not generated the C Services Library will not be able to
encode/decode the attribute.

TypeDescriptor (Attribute, C TargetRTS)

Specifies an explicit descriptor for the attribute. Normally the code
generator will determine which descriptor should be used for the
attribute, but in some cases you may want to override this.

NumElementsFunctionBody (Attribute, C TargetRTS)

If the attribute is a pointer to an object, this pointer may point to one
or many objects. The NumElementsFunctionBody property provides
the body of the function which calculates the number of objects the
pointer points to. If the body is empty, the pointer is assumed to point
to only one object.

This function is required to make attributes which are pointers to
arrays deep copied and observable in the execution monitors.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see
Using Code Sync to Change Generated Code in the Toolset Guide.

GenerateDescriptor (Role, C TargetRTS)

Specifies whether to generate a descriptor for the attribute. If a
descriptor is not generated the C Services Library won’t be able to
encode/decode the attribute.

TypeDescriptor (Role, C TargetRTS)

Specifies an explicit descriptor for the attribute. Normally the code
generator will determine which descriptor should be used for the
attribute, but in some cases you may want to override this.
C Reference - Rational Rose RealTime 145

Chapter 10 Model properties Reference
NumElementsFunctionBody (Role, C TargetRTS)

If the association end is generated as a pointer, the pointer may point
to one or many objects. See NumElementsFunctionBody (Attribute, C
TargetRTS) for more details.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see
Using Code Sync to Change Generated Code in the Toolset Guide.
146 C Reference - Rational Rose RealTime

C Generation properties
C Generation properties

Code generation properties are used to configure the way in which a
component is generated to C. These properties apply equally to
Executable and Library component types.

Component

� “OutputDirectory (Component, C Generation)” on page 147

� “CodeGenDirName (Component, C Generation)” on page 147

� “ComponentUnitName (Component, C Generation)” on page 148

� “CommonPreface (Component, C Generation)” on page 148

� “CodeGenMakeType (Component, C Generation)” on page 149

� “CodeGenMakeCommand (Component, C Generation)” on page 149

� “CodeGenMakeArguments (Component, C Generation)” on
page 150

� “CodeGenMakeInsert (Component, C Generation)” on page 150

� “CodeSyncEnabled (Component, C Generation)” on page 150

OutputDirectory (Component, C Generation)

The output path can be changed to allow you to set the directory into
which the generated files will be written. By default this property is set
to $@/$name where $@ is the model file directory, and $name is the
name of the component.

CodeGenDirName (Component, C Generation)

Specifies the name of the directory that will be created to hold the
generated C code for the component elements. This directory will be
generated as a subdirectory of the output directory identified in the
OutputDirectory (Component, C Generation).
C Reference - Rational Rose RealTime 147

Chapter 10 Model properties Reference
ComponentUnitName (Component, C Generation)

Specifies the name of the source files generated for the component
itself.

CommonPreface (Component, C Generation)

Component level inclusion files are entered as inclusions in this list.
Any number can be specified and are entered independently of any
directory search list. The list of directories to search for these
inclusions is entered through the InclusionPaths (Component, C
Compilation). Inclusions items can be added and deleted as desired.

The scope of inclusions is system level. For example, if all elements
being built by this component make use of a set of math routines, the
math header file can be specified here instead of on each individual
element. In addition, the inclusions are declared in exactly the
sequence they appear in the list (top to bottom). One way this ordering
can be useful is by using it to have normal system include files
specified before user includes. Specifying system includes in this way
can aid visibility and ensure completeness.

Note: The compiler you are using may search some paths automatically;
for example, a compiler hosted on Unix often searches /usr/include.

Generally, inclusions can be declared at both the component and class
level. The former specified in this inclusion list, the latter specified
through the classes specification dialog. In either case the directory
search list is taken from the InclusionPaths (Component, C
Compilation) property.

You can add class level inclusions via the ImplementationPreface
(Class, C) and HeaderPreface (Class, C) properties on classes and
capsules.
148 C Reference - Rational Rose RealTime

C Generation properties
Both inclusion types get dropped into the global space. However, the
only semantic difference between them is the scope guarantee: the
component-level inclusions are guaranteed to have all classes in their
scope, while the class-level inclusions guarantee that only that classes
and its subclasses will have the declared inclusion in scope (that is,
visible). These includes are actually in the global space regardless of
type, so we recommend that you restrict usage of these inclusions to
extern and type declarations; otherwise, multiple definitions are
reported at link time.

This field may also be modified from the generated code and captured
into the model using the Code Sync feature. For more information, see
Using Code Sync to Change Generated Code in the Toolset Guide.

CodeGenMakeType (Component, C Generation)

Can be one of <default>, Unix_make, MS_nmake,
ClearCase_clearmake or Gnu_make. This influences the format of the
generated makefiles so they conform to differences in the make
variants. For example, if nmake on Windows NT is being used, then
MS_nmake must be selected as the make type.

Leaving the entry as <default> will allow the code generator to
automatically select the make type based on the platform on which the
component is being generated. Either Unix_make (for Unix) or
MS_nmake (for WindowsNT) will be substituted for <default>. If you
require another make type, then you should explicitly specify the make
type in this field.

CodeGenMakeCommand (Component, C Generation)

When a model is built, Rose RealTime generates the model files then
invokes the make utility to generate the source code from the model
files. Code generation is, therefore, external. Make handles
incremental code generation by using the time-stamps on the toolset
generated model files.
C Reference - Rational Rose RealTime 149

Chapter 10 Model properties Reference
The name of the make utility being used to control the code generation.
The make name must be the exact name of the make command. By
default the default make command is $defaultMakeCommand which
which will allow the code generator to automatically select the make
type based on the platform on which the component is being generated.
Either make (for Unix) or nmake (for WindowsNT) will be substituted.
If you require a different make utility, just type it in.

CodeGenMakeArguments (Component, C Generation)

Any flags supported to be passed to the make utility.

CodeGenMakeInsert (Component, C Generation)

The overrides file is a makefile fragment which is included in the
compilation makefile that allows for the addition of user-defined
dependencies, compile, and link options.

CodeSyncEnabled (Component, C Generation)

The flag which is used to enable or disable Code Sync for a component,
from the component’s Generation tab.
150 C Reference - Rational Rose RealTime

C Compilation properties
C Compilation properties

Compilation properties are used to configure the way in which the
generated source files for a component are compiled. These properties
apply equally to Executable and Library component types. Both
executables and libraries require compilation.

Component

� “CompilationMakeType (Component, C Compilation)” on page 151

� “CompilationMakeCommand (Component, C Compilation)” on
page 152

� “CompilationMakeArguments (Component, C Compilation)” on
page 152

� “CompilationMakeInsert (Component, C Compilation)” on page 152

� “CompileCommand (Component, C Compilation)” on page 153

� “CompileArguments (Component, C Compilation)” on page 154

� “InclusionPaths (Component, C Compilation)” on page 154

� “TargetServicesLibrary (Component, C Compilation)” on page 154

� “TargetConfiguration (Component, C Compilation)” on page 155

CompilationMakeType (Component, C Compilation)

Can be one of <default>, Unix_make, MS_nmake,
ClearCase_clearmake or Gnu_make. This influences the format of the
generated makefiles so they conform to differences in the make
variants. For example, if nmake on Windows NT is being used, then
MS_nmake must be selected as the make type.

Leaving the entry as <default> will allow the code generator to
automatically select the make type based on the platform on which the
component is being generated. Either Unix_make (for Unix) or
MS_nmake (for WindowsNT) will be substituted for <default>. If you
require another make type, then you should explicitly specify the make
type in this field.
C Reference - Rational Rose RealTime 151

Chapter 10 Model properties Reference
CompilationMakeCommand (Component, C Compilation)

When a model is built, Rose RealTime generates the model files then
invokes the make utility to generate the source code from the model
files. Code generation is, therefore, external. Make handles
incremental code generation by using the time-stamps on the toolset
generated model files.

The make name must be the exact name of the make command. The
make name must be the exact name of the make command. By default
the default make command is $defaultMakeCommand which will allow
the code generator to automatically select the make type based on the
platform on which the component is being generated. Either make (for
Unix) or nmake (for WindowsNT) will be substituted. If you require a
different make utility, just type it in.

CompilationMakeArguments (Component, C Compilation)

Any flags supported to be passed to the make utility.

CompilationMakeInsert (Component, C Compilation)

The overrides file is a makefile fragment which is included in the
compilation makefile that allows for the addition of user-defined
dependencies, compile, and link options.

Although you can add any valid make information to the overrides
makefile the following example is how the overrides makefile while is
most commonly used:

A quick way to add object or library files to the link line of a component
is to add the object file or library to the link flags field. However, NO
dependency is automatically generated for the object or library files.
This means that if the object or library files change, it will not
automatically cause your component to become out-of-date, and need
recompiling.
152 C Reference - Rational Rose RealTime

C Compilation properties
The overrides makefile can be used to add these dependencies by using
the USER_DEPS and USER_OBJS macros within your makefile. For
example:

CompileCommand (Component, C Compilation)

The compile command property is used to replace the pre-configured
compiler shell command defined in libset.mk. You would normally
leave this entry (e.g. usually set to $(CC))and use the default compiler
specified in the libset makefile.

When building your model, a compiler will be used to compile the
generated code and a linker will be used to link the executable. By
default, when you specify the Service Library, you identify the make
files to be used to build the component and the tools are specified in
the makefile called:

$ROSERT_HOME/RTSType/TargetLibrary/libset/Library/libset.mk

While you can override in the component, the compiler and/or the
linker to be used, the new tools used should be compatible with the
ones being overridden. Typically you want to override the
compiler/linker to

� perform preprocessing.

For example, instead of invoking the compiler straight away, you
can invoke a script that will perform some preprocessing, as well
as compiling (such as running the source file through lint before
invoking the compiler).

� qualify the path to the compiler/linker because they are not in the
current path.

If you want to choose a completely different type of compiler (e.g.
gnu vs. greenhills), or even a different release of a compiler, you
should be changing the Service Library specification instead. That
way the make files used will pass flags understood by the
compiler/linker. As well, you will be sure the pre-compiled Service
Library that is to be linked will have been compiled with the
compiler you are using.
C Reference - Rational Rose RealTime 153

Chapter 10 Model properties Reference
CompileArguments (Component, C Compilation)

Any flags supported by your compiler utility. This is where you would
specify a parallel make flag to increase compilation efficiency.

InclusionPaths (Component, C Compilation)

Any number of entries can appear as inclusion path items. As a group
they comprise the directory search set used by the compiler to find
user-specified inclusion files. They are searched in the order specified
in the list.

Note: Enclose directory names with embedded spaces in double quotes
(").

You should avoid adding unnecessary inclusion paths to this list. The
number of directories that need to be searched for a file can slow down
the compilation process because of the file access that is required for
searching all the directories.

It is recommended that shell/environment variables be used when
specifying the inclusion paths. This way other team members can
configure their environment without having to modify the component.

Note: Path map variables, those defined within the toolset, cannot be
used to specify indirect inclusion paths because they are not substituted
into the generated makefiles. ONLY use environment/shell variables
because they will be visible to the makefiles (which will be built outside
the toolset) when the build occurs.

TargetServicesLibrary (Component, C Compilation)

The text field is used to specify the path to the root directory for the
specific Services Library desired. This can be any legal directory name.
This name must be specified as a full path to the root directory of the
Services Library root.

The Target Services directory contains all the scripts and programs to
generate and compile a component. Hence, if this directory is not
configured correctly, you won't be able to generate or compile. You are
likely to see the “name not found” or “Build Failed” error appear in the
Build Log Window if it is incorrectly configured.
154 C Reference - Rational Rose RealTime

C Compilation properties
By default this field references the Services Library in your Rose
RealTime home directory $ROSERT_HOME/C/TargetRTS.

TargetConfiguration (Component, C Compilation)

This property is used to uniquely identify the configuration of the
Services Library that will be used to compile and link the component.
By pressing the Select... button the following dialog will appear:

Select one from the list. The list was created from the entries found in
$ROSERT_HOME/$RTS_HOME/lib. The configuration name is
composed of three parts: os.processor-compiler-version. For example,
the configuration for a WindowsNT 4.0 multithreaded platform with an
x86 processor built with version 6.0 of Microsoft Visual C++ would be
called:

NT40T.x86-VisualC++-6.0
C Reference - Rational Rose RealTime 155

Chapter 10 Model properties Reference
If you would like to see the valid configuration names, look at the
directories located in the lib subdirectory of the Services Library root.
If you build different configurations of the Services Library the new
configuration will appear in this list.
156 C Reference - Rational Rose RealTime

C Executable properties
C Executable properties

This group of model properties is used to control the aspects of
generating an executable from a C model. C Executable properties
apply only to components which of type C Executable. This page
contains a summary of the C Executable properties grouped by model
element to which they are associated.

Component

� “TopCapsule (Component, C Executable)” on page 159

� “PhysicalThreads (Component, C Executable)” on page 160

� “ExecutableName (Component, C Executable)” on page 162

� “DefaultArguments (Component, C Executable)” on page 162

� “LinkCommand (Component, C Executable)” on page 163

� “LinkArguments (Component, C Executable)” on page 163

� “UserLibraries (Component, C Executable)” on page 163

� “UserObjectFiles (Component, C Executable)” on page 163

Capsule

� “Capsule To Logical Thread Mapping (Capsule, C Executable)” on
page 157

Capsule To Logical Thread Mapping (Capsule, C Executable)

In the C product logical threads are defined in the Logical View and
Physical Threads are defined in the Component View. Individual
capsule instances can be mapped to any logical thread and logical
threads can be mapped to any physical thread.

Logical threads may be mapped to different actual physical thread
configurations for generating the executable implementation. However,
the model entities are defined purely in terms of logical threads. That
is, in the design, the model entities get allocated to a particular logical
thread. Only at implementation time does the designer have to worry
about mapping these to physical threads on the target system.
C Reference - Rational Rose RealTime 157

Chapter 10 Model properties Reference
The definition and mapping of capsule roles to logical threads is done
on the top level capsule of your C model. This property is edited with
an advanced property editor which provides a graphical interface. To
open the dialog press the Edit... button shown to the right of the
property name. The following dialog will appear:

The dialog will automatically show all the contained capsule roles of
the current capsule. If the Mapped logical thread field is set to
<default>, it means that the capsule role will run on the same logical
thread as its parent. Thus, assigning Device2 to LogThread2, shown
in the example dialog above, will cause, unless overridden in a
contained capsule, all contained capsules to be assigned to the same
thread as its containing capsule.
158 C Reference - Rational Rose RealTime

C Executable properties
You can define capsule to logical thread mappings on any capsule,
however when mapping logical threads to physical threads on a
component, the component will only look at the logical threads defined
on the top level capsule.

TopCapsule (Component, C Executable)

Specifies the top capsule to be compiled for this component. The top
capsule defines the compilation closure for the component. All classes,
including capsule and protocol classes referenced directly or indirectly
by the top capsule will be compiled as part of the component.
Dependencies are verified before every component build, and are added
to this list before the build. The top capsule also defines the default
executable name to be produced by the compilation.

This property uses an advanced property editor. When you press the
Select... button a dialog is shown which lists all capsules referenced
by the component. Select the desired top level capsule, and press OK.
C Reference - Rational Rose RealTime 159

Chapter 10 Model properties Reference
PhysicalThreads (Component, C Executable)

On some platforms, the Services Library supports multiple threads. By
default, all logical threads are assigned to a pre-defined thread called
MainThread. The top-level capsule is always placed on the
MainThread. The C Services Library is responsible for allocating all
capsule instance to the appropriate threads as defined by the thread’s
configuration.

This property is edited with a property editor which provides a
graphical interface. To open the dialog press the Edit... button shown
to the right of the property name. The following dialog will appear:
160 C Reference - Rational Rose RealTime

C Executable properties
The dialog will automatically be populated with the list of logical
threads that have been defined on the capsule that is assigned as the
top level capsule for this component.

The physical threads list contains the list of physical threads that are
defined for this component. Depending on the implementation of
threads provided by the Target Real-Time Operating System, each
physical thread is a light-weight, time-sliceable process, running in a
shared address space with the Services system threads and the other
physical threads in the model.

By default, every configuration contains the following physical thread:

� MainThread - here all of the capsules in your model execute by
default. If you want capsules to execute in a thread other than the
MainThread, you must define additional physical threads.

At this point you can create new physical threads, and either drag and
drop logical threads to other physical threads or use the Logical
threads list at the bottom of the dialog to assign the logical threads to
physical threads.

Physical thread properties

For each physical thread you define you can also modify the following
thread properties:

Note: Although stack size is configurable, for some target operating
systems this stack size is effective at the time the main thread is created.
This is because on some targets the OS creates the main thread with a
default thread size, and this thread size cannot be modified at run-time.
In these situations, the desired stack size for the main thread can be set
by configuring the OS kernel or by the way in which the executable is
spawned on the target.

Stack Size Size (in bytes) of the call stack allocated for this
thread. By default is set to 20KB.

Priority The priority at which this thread will run.

Free message queue The number of messages allocated for inter-
capsule messaging on this thread.
C Reference - Rational Rose RealTime 161

Chapter 10 Model properties Reference
Using physical thread trade-offs

Before choosing to create another physical thread in your model, you
should consider the following costs:

� memory overhead for the thread stack space, and control objects
created by the C Services Library required for each physical thread.

� processing overhead; inter-thread message sending is generally an
order of magnitude slower that intra-thread messaging.

ExecutableName (Component, C Executable)

You can specify the name, or a name with an absolute path, of the
executable that will be created as a result of the component being built.
If left unspecified, the executable name is set to the name of the
component's top-level capsule.

If an absolute path is not used in the executable name, the executable
will be located in the following component build output directory:

<output_dir>/build

DefaultArguments (Component, C Executable)

Some platforms do not allow command line arguments to be passed to
an executable at load time (namely, on some real-time operating
systems). In this case, the default arguments provides a mechanism for
getting execution arguments into the executable. You can use
RTMain_argv() to retrieve any passed command line argument within
your model. Enter a comma separated list of quoted arguments into
this field.

"134.434.344.4","barneyht","delay=98"

The default arguments field will only be used for targets that cannot
accept command line arguments. Targets that accept command line
arguments will ignore the content of this field.
162 C Reference - Rational Rose RealTime

C Executable properties
LinkCommand (Component, C Executable)

The linker override field is used to replace the pre-configured linker
shell command defined in libset.mk. You would normally leave this
entry and use the default linker specified in the libset makefile.

LinkArguments (Component, C Executable)

Any flags supported by your linker utility.

UserLibraries (Component, C Executable)

Specifies libraries that are to be passed to the linker. You have to
specify the library prefix, path, and extension correctly. The code
generator does not modify these library names. For example, you can
either add libraries on separate lines or separated by a space on the
same line:

$@/userfiles.lib
$PROJECTX/lib/userfiles.lib

Note: Enclose pathnames with spaces in double quotes ‘”’.

This property is intended for backwards compatibility. We recommend
that you model externally created libraries with external library
components instead of adding them to this property. This will allow
libraries to be visible in the toolset and more easily re-used with
different executable components.

UserObjectFiles (Component, C Executable)

Specifies object files that are to be passed to the linker. You have to
specify the library prefix, path, and extension correctly. The code
generator does not modify these object names. For example:

$@/userfiles.o
$PROJECTX/lib/userfiles.o

Note: Enclose pathnames with spaces in double quotes ‘”’.
C Reference - Rational Rose RealTime 163

Chapter 10 Model properties Reference
This property is intended for backwards compatibility. It would be
more flexible to create libraries for object files and then create external
library components to model externally created libraries. This will
allow libraries to be visible in the toolset and more easily re-used with
different executable components.
164 C Reference - Rational Rose RealTime

C Library properties
C Library properties

This group of model properties is used to control the aspects of
generating a library from a C model. C Library properties apply only to
components which are of type C Library. This page contains a
summary of the C Library properties. To re-use libraries that have
already been built within a Rose RealTime mode use an External
Library component.

Component

� “LibraryName (Component, C Library)” on page 165

� “BuildLibraryCommand (Component, C Library)” on page 166

� “BuildLibraryArguments (Component, C Library)” on page 166

LibraryName (Component, C Library)

The name of the generated library file. By default this name is
${LIB_PFX}$name${LIB_EXT}. The library file is written to a directory
called build which is located in the directory specified by the
OutputDirectory (Component, C Generation) property.

LIB_PFX is defined as “lib” and can be configured. You can change the
default setting for this make macro by modifying its definition in either
of the following files:

$RTS_HOME/libset/default.mk

$RTS_HOME/libset/<libset name>/libset.mk.

LIB_EXT is defined as the default library extension for your platform.
You can change the default setting for this make macro by modifying
the following file:

$RTS_HOME/libset/<libset name>/libset.mk.

Note: $RTS_HOME is the location of your Services Library root
directory. See TargetServicesLibrary (Component, C Compilation) for
more details about the Services Library directory.
C Reference - Rational Rose RealTime 165

Chapter 10 Model properties Reference
BuildLibraryCommand (Component, C Library)

Specifies the archiving command. You would normally leave this entry
and use the pre-configured linker shell command defined in libset.mk.

BuildLibraryArguments (Component, C Library)

Any flags supported by your archiver utility. They are passed as is to
the archiver.
166 C Reference - Rational Rose RealTime

C External Library properties
C External Library properties

This group of model properties is used to control the aspects of
generating the makefile fragments which allow pre-built libraries to be
re-used within a C Executable. C External Library properties apply
only to components which of type C External Library.

Component

� “GenerateClassInclusions (Component, C External Library)” on
page 167

� “CodeGenDirName (Component, C External Library)” on page 167

� “InclusionPaths (Component, C External Library)” on page 168

� “Libraries (Component, C External Library)” on page 168

GenerateClassInclusions (Component, C External Library)

Turn this property off if you don't what inclusions generated in classes
and capsule that use the elements referenced by the external library.
This is useful if the inclusion is actually provided somewhere else in
the model or in an external file. Normally this should stay on.

CodeGenDirName (Component, C External Library)

This property is only required if GenerateClassInclusions (Component,
C External Library) is turned on and the external library represents a
library build from the toolset. This is the prefix directory for the
generated source code. This should be set to the same value as
CodeGenDirName (Component, C Generation) for the library
component that was used to create the library to which this external
library references.

Having this prefix will ensure that all inclusions generated for model
elements that reference elements in the external library will be prefixed
with this value. This will reduce the chance of having inclusion
conflicts. For example if this property is set to rtg, then inclusions will
be generated as:

#include <rtg/foo.h>
C Reference - Rational Rose RealTime 167

Chapter 10 Model properties Reference
InclusionPaths (Component, C External Library)

Specifies the location of the definitions for the external library.
Components which reference this external library will automatically
include the definitions header file.

$@/include
$PROJECTX/include
$@/ALibraryComponent/src

It is recommended that you use pathmap symbols or environment
variables for pathnames in this property. See Environment variables
and pathmap symbols.

If Compute Dependancies is set to Yes, then the make depends utility
will be used to calculate dependencies in that directory and the object
file for the model becomes dependent on the inclusion files in this
directory that it needs.

Note: As always, it is recommended that you use environment variables
instead of hard-coded paths. Or you can use the pre-defined code gen
variables, such as $@. Environment variables are recongnized by the
make utility.

Libraries (Component, C External Library)

Specifies the location and names of the libraries that this external
component represents. This libraries listed in this field will be added to
the link line for any executable component that references this external
library.You have to specify the complete path and filename. For
example:

On Unix:

/home/projectX/lib/classes.a
$@/lib/classes.a
$PROJECTX/lib/classes.a
-L@/lib
-lclasses
168 C Reference - Rational Rose RealTime

C External Library properties
On Windows NT:

$@/lib/classes.lib
C:\local\projects\ProjectX\lib\classes.lib

It is recommended that you use pathmap symbols or environment
variables for pathnames in this property. See “Environment variables
and pathmap symbols” on page 133.

If Generate Dependancies is set to Yes, the executable for the model
becomes dependent on the library files. You must set Generate
Dependencies to False for any entries which are directories (-L) or
prefixed libraries (-lmath).
C Reference - Rational Rose RealTime 169

Chapter 11

Services Library API Reference

The C Services Library Class Reference is a reference to the structures
and abstract data types that you will need to use within the detailed
code of a capsule to access the services provided by the C Services
Library.

In the alphabetical listing section, each class description includes a
member summary by category, followed by alphabetical listings of
operations and attributes. This reference does not describe private or
restricted operations and attributes from the Services Library. Some
features and classes in the Services Library are internal to the library
itself and thus are not supported as interfaces into a users application.

For each of the classes listed in this reference, only the operations and
attributes explicitly detailed in this chapter represent the supported
interface to the C Services Library.

Minimally configured Services Library

If you have reconfigured the Services Library which has resulted in the
removal of functionality from the library, beware that some functions
of the interfaces defined in this API may no longer be available in the
minimally configured Services Library. For details on configuring the
Services Library refer to the C Target Guide.In addition, the functions
described in this section refer to the pre-processor macros on which
they depend.
C Reference - Rational Rose RealTime 171

Chapter 11 Services Library API Reference
RTCapsule

Every capsule when generated as C code is a subclass of RTCapsule;
thus, the first field of every generated capsule’s instance data is a
RTCapsule named std. In any user code where capsule instance data
exists through the this pointer, one can access a pointer to the
RTCapsule information in the following ways:

(RTCapsule *)this /* or */
&this->std

This common base class for all capsules defines attributes and
operations which allow the Services Library to communicate with the
running capsule instances.

Since all detail level code added to a capsule class is generated as part
of a capsule class, the detail level code has direct access to some useful
attributes and operations that are defined on RTCapsule. Under the
Rose RealTime paradigm, you should only be calling the operations of
RTCapsule or using attributes that are defined below:

Note: The attributes and operations on RTActor are private. One
capsule may not manipulate another capsule’s attributes.

Attributes

msg and
RTCapsule_getMsg

Contains a pointer to the current message which
triggered a transition. Neither it nor the object is
points to should be modified.

rts and
RTCapsule_context

Contains a pointer to the controller for the physical
thread on which a capsule instance is executing.
172 C Reference - Rational Rose RealTime

RTCapsule
Operations

RTCapsule_getCurrentStateString Gets the current state name
containing the executing segment.

RTCapsule_getIndex Gets the replication index of this
capsule instance in the home capsule
role.

RTCapsule_getName Gets the capsule role name in which
this capsule instance is running.

RTCapsule_getTypeName Gets the capsule class name of this
capsule instance.
C Reference - Rational Rose RealTime 173

Chapter 11 Services Library API Reference
msg and RTCapsule_getMsg

const RTMessage * msg;

const RTMessage * RTCapsule_getMsg(const RTCapsule *);

Remarks

Every capsule class has an attribute msg which contains a pointer to
the current message delivered to a capsule instance. This attribute can
be used within transition detail level code to retrieve a message that
was sent to the capsule instance.

Examples

Retrieve the void * pointer to the data portion of the message.

int theData = *(int *)
RTMessage_getData((RTCapsule *) this)->msg);

RTSignal theSignal =
RTMessage_getSignal(RTCapsule_getMsg(&this->std));

Explanation of the RTMessage primitives used in the above example
can be found in RTMessage section.
174 C Reference - Rational Rose RealTime

RTCapsule
rts and RTCapsule_context

RTController * RTCapsule_context(const RTCapsule *);

Return value

A pointer to the controller for the thread on which this capsule instance
is running.

Remarks

There are some public operations on the RTController class that can
be accessed this way. In particular, you may find it useful for printing
error information, as in the example below.

Examples

int result =
RTPort_send(port,RTPort_createOutSignal(port, hey),
RTPriority_General, (void *)0, (RTObject_class *)0);

if(! result)
{

RTController * context = RTCapsule_context(this);
log.show("Error on physical thread: ");
RTLog_show(RTController_name(context));
RTController_perror(context, "send");

}

C Reference - Rational Rose RealTime 175

Chapter 11 Services Library API Reference
RTCapsule_getIndex

int RTCapsule_getIndex(const RTCapsule *);

Return value

The replication index of this capsule instance in its “home” role (where
it was incarnated). The replication value is zero (0) based.
176 C Reference - Rational Rose RealTime

RTCapsule
RTCapsule_getName

const char * RTCapsule_getName(const RTCapsule *);

Return value

The name of the capsule role in which this capsule instance is running
(where it was incarnated).

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under RTS_NAMES.
C Reference - Rational Rose RealTime 177

Chapter 11 Services Library API Reference
RTCapsule_getTypeName

const char * RTCapsule_getTypeName(const RTCapsule *);

Return value

Returns the class name of this capsule instance.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under RTS_NAMES.
178 C Reference - Rational Rose RealTime

RTCapsule
RTCapsule_getCurrentStateString

const char * RTCapsule_getCurrentStateString(const RTCapsule *
) ;

Return value

The name of the current state containing the executing segment.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under RTS_NAMES.
C Reference - Rational Rose RealTime 179

Chapter 11 Services Library API Reference
RTController

The RTController is an abstract class that defines the interface to a
group of executing capsule instances within a single thread of
concurrency. There is one controller object for each physical thread in
the system. The controller object maintains information about the
state of the thread as a whole, including the most recent error. Since
the majority of operations in the Services Library return either 1 (true)
if successful, and 0 (false) otherwise, the controller object can provide
the precise cause of failure. Refer to the error values description for a
complete listing of the Services Library run-time errors.

Also, with regards to the timing service, controllers serve as the
interface between user-designed timing actors and the Services
Library.

Note: From within a capsule instance, you can retrieve a pointer to its
controller by calling the RTCapsule_context operation.

Operations

RTController_abort Terminates the current process.

RTController_getError Returns the value of the most recent error within
a particular thread.

RTController_name Obtains the name of the controller (physical
thread name).

RTController_perror Prints a user-supplied error message along with
the string for the current error as returned by
getError.

RTController_strError Describes the current error code.

RTController_registerTi
mer

Register a RoseRT defined timer capsule as the
timer service for this controller.

RTController_overrideS
yncMethods

Override this controller’s interface to going to
sleep and waking up, in order to implement a
RoseRT defined timing service.
180 C Reference - Rational Rose RealTime

RTController
RTController_getError

RTController_PrimitiveError RTController_getError(const
RTController *);

Return Value

The value of the most recent error within the thread.

Remarks

The error code is not reset by a subsequent successful primitive
operation call. It should be called immediately following the failure of a
Services Library operation call.

Examples

See the example shown in the RTController error codes descriptions.
C Reference - Rational Rose RealTime 181

Chapter 11 Services Library API Reference
RTController_strError

const char * RTController_strError(const RTController *);

Return Value

A description of the current error code on the current RTController,
that is, the controller for a physical thread.

Examples

See the example shown in the RTController error codes descriptions.
182 C Reference - Rational Rose RealTime

RTController
RTController_perror

void RTController_perror(const RTController *, const char *);

The string to be printed to stderr along with the current error string as
returned by the RTController_strError operation. By default, the string
"error" will be printed.

Example
int result =

RTPort_sendAt(&this->aPort, 0,
RTPort_createOutSignal(aPort, ack),
RTPriority_General,
(const void *)0,
(const RTObject_class *)0);

if(! result)
RTController_perror(

RTCapsule_context((RTCapsule *)this),
"Error sending ack");

Output
Error sending ack: Port not connected.
C Reference - Rational Rose RealTime 183

Chapter 11 Services Library API Reference
RTController_name

const char * RTController_name(const RTController *);

Return value

Returns the name of the controller. Controllers are named based on the
physical thread on which they run. The assigned physical thread
names are taken from the physical thread specification dialog. This
method is a way of allowing capsules to find out what thread they are
running on.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under RTS_NAMES.
184 C Reference - Rational Rose RealTime

RTController
RTController_registerTimer

int RTController_registerTimer(RTController * this, void * timer,
RTController__informIn informInFn, RTController__cancel cancelFn,
RTController__valid validFn);

Remarks

This function allows for the integration of a RoseRT designed timer
capsule with the Services Library. To implement the functionality of the
timing service, a timer capsule must provide informIn, cancelTimer
and isTimerValid primitives. These are fed in through this primitive to
register these particular timing services on the physical thread that
this RTController interfaces to.

Return value

This function returns positive logic values indicating its level of
success.

Example

/* register this capsule as the timing service
for this particular thread */
if(! RTController_registerTimer(

RTCapsule_context(this),
(void *)this,
MyCapsule_informIn,
MyCapsule_cancel,
MyCapsule_valid))

RTController_perror("Thread already has timing service");
C Reference - Rational Rose RealTime 185

Chapter 11 Services Library API Reference
RTController_overrideSyncMethods

int RTController_overrideSyncMethods(RTController * this,
RTController__sleep sleepFn, RTController__wakeup wakeupFn);

Remarks

This function services as the other half of the timer capsule registration
puzzle. In order to integrate timing functionality into the RTController,
it is important that the timer capsule provides a mechanism for the
controller’s synchronization methods to be overriden. Otherwise, if a
thread goes to sleep when there are no messages to process or timeouts
to work upon, how will it wake up when it is given a timer request to
handle? See the CTimer class for an example of how to implement sync
methods.

Return Value

This function returns positive logic values to indicate success.

Example

/* override my thread’s synch methods */
if(!

RTController_overrideSyncMethods(
RTCapsule_context(this),
MyCapsule_nap, MyCapsule_awaken))

RTController_perror(RTCapsule_context(this), "cannot
override sync methods");
186 C Reference - Rational Rose RealTime

RTController
RTController_abort

void RTController_abort(RTController *);

Remarks

Calling this operation on any controller will terminate the current
process. The top-level capsule instance is destroyed, which in turn
destroys all capsule instances in the system, messages that have not
been processed are deleted, all threads are destroyed, and the process
quits.

Examples

RTController_abort(RTCapsule_context(&this->std));
C Reference - Rational Rose RealTime 187

Chapter 11 Services Library API Reference
RTLog

The Log service is a stream of ASCII text in which system or application
events can be recorded.

Note: Currently all log service output is directed to stdout.

Operations

Log show primitives Writes an ASCII string to the log with no leading or
trailing carriage returns
188 C Reference - Rational Rose RealTime

RTLog
Log show primitives

void RTLog_show_string(const char * data);

void RTLog_show_char (char data);

void RTLog_show_double(double data);

void RTLog_show_float (float data);

void RTLog_show_int (int data);

void RTLog_show_uint (unsigned int data);

void RTLog_show_long (long data);

void RTLog_show_ulong (RTulong data);

void RTLog_show_short (short data);

void RTLog_show_ushort(RTushort data);

void RTLog_show_ptr (const void *data);

void RTLog_show_data (const void * data, const RTObject_class *
type);

Parameters

data, type

Is the object, type information, or simple type that is to be displayed to
the log.

Remarks

The log knows how to display simple types, but it can also display any
user-defined type as well. In order for a user-defined type to be
displayable it must have type information defined with a function to
encode the object. The log will simply call this encode function.

RTLog_show_string() prints a string and is always available, even if
OBJECT_ENCODE Services Library configuration parameter is turned
off.

RTLog_show_data() prints the value of the user-defined data type and
is available only if OBJECT_ENCODE and STDIO_ENABLED are
turned on
C Reference - Rational Rose RealTime 189

Chapter 11 Services Library API Reference
Examples

/* Print as an ASCII string the contents of a class */
RTLog_show_data(&SubscriberData, &RTType_SubscriberData);

/* Print a string */
RTLog_show_string("Timer has expired");

/* Print an int */
RTLog_show_int(19);
190 C Reference - Rational Rose RealTime

RTMessage
RTMessage

This class is the data structure used within the Services Library to
represent messages that are communicated between capsule
instances. The messages that are sent between capsules contain a
required signal name (which identifies the message), a priority, and
optional application data.

You will most oftenly use the operations on the RTMessage class to
manipulate the messages that trigger transitions.

Do not treat an RTMessage as an object that can be stored, instead,
you should extract the relevant information from the message and
store it separately.

Note: Applications should treat the msg field of an RTCapsule and all
data addressed beyond that pointer as read-only.

Operations

RTMessage_defer Defer the current message against the
receiving ports defer queue.

RTMessage_getData Returns a pointer to the data that was sent
along with a message.

RTMessage_getPriority Returns the priority of the message.

RTMessage_getSignalName Returns the name of the message signal.

RTMessage_getType Returns a pointer to the type information
describing the data contained within the
message.

RTMessage_getSignal Returns the signal of the message.

RTMessage_copyData Copies the data (by value) into a local buffer.

RTMessage_getPort Retreives a pointer to the port which received
the message.

RTMessage_getPortIndex Finds the index of the port on which the
message was received (0 and 1 based).
C Reference - Rational Rose RealTime 191

Chapter 11 Services Library API Reference
RTMessage_getPriority

RTPriority RTMessage_getPriority(const RTMessage *);

Return value

Returns the value of the priority of the message.
192 C Reference - Rational Rose RealTime

RTMessage
RTMessage_getSignal

RTSignal RTMessage_getSignal(const RTMessage *);

Return value

Returns the value of the signal of the message.
C Reference - Rational Rose RealTime 193

Chapter 11 Services Library API Reference
RTMessage_copyData

int RTMessage_copyData(const RTMessage *, void * buffer, int size);

Return value

Returns the number of bytes copied into buffer. If the size of the buffer
(specified by the size parameter) is not large enough,
RTMessage_copyData shall return 0.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under SEND_BY_VALUE.

Example

SomeDataClass buffer;

/* copy RTMessage data into buffer */
int copied = RTMessage_copyData(

RTCapsule_getMessage(),
&buffer,
sizeof(SomeDataClass));
194 C Reference - Rational Rose RealTime

RTMessage
RTMessage_getSignalName

const char * RTMessage_getSignalName(const RTMessage *);

Return value

Returns the name of the signal that was sent with the message. This
name will be the same as the name of the signal defined in the protocol.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under RTS_NAMES.

Example

log_show_string(RTMessage_getSignalName(
RTCapsule_getMsg(this));
C Reference - Rational Rose RealTime 195

Chapter 11 Services Library API Reference
RTMessage_getData

const void * RTMessage_getData(const RTMessage *);

Return value

Returns the pointer to the data that was sent along with a message.

aDataType dt =
*(aDataType *)RTMessage_getData(RTCapsule_getMsg(this));
196 C Reference - Rational Rose RealTime

RTMessage
RTMessage_getType

const RTObject_class * RTMessage_getType(const RTMessage *);

Return value

Returns a pointer to an RTObject_class which contains the type
information that describes the data in the message, or (RTObject_class
*)0 if only data pointer sent.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under SEND_BY_VALUE.
C Reference - Rational Rose RealTime 197

Chapter 11 Services Library API Reference
RTMessage_getPortIndex

int RTMessage_getPortIndex(const RTMessage *);

Return Value

Returns the index of the port on which the message was received. The
RTMessage_getPortIndex function returns a zero-based index (index
values begin at 0).

Example

Use to send a message to a particular port instance, as follows:

const RTMessage * msg = RTCapsule_getMsg(this);
/* reply to message */
RTPort_sendAt(

port,
RTMessage_getPortIndex(msg),
RTPort_createOutSignal(port, reply),
RTPriority_High,
&someData,
&RTType_typeOfSomeData);
198 C Reference - Rational Rose RealTime

RTMessage
RTMessage_getPort

RTPort * RTMessage_getPort(const RTMessage *);

Return Value

Returns a pointer to the port instance on which this message was
received, or (RTPort *)0 if called in the initial transition.
C Reference - Rational Rose RealTime 199

Chapter 11 Services Library API Reference
RTMessage_defer

int RTMessage_defer(const RTMessage *);

Return value

Returns true (1) if the message was successfully deferred and false (0)
otherwise. An error will be returned if you try and defer an invoked
message or a message which has already been deferred.

Remarks

Deferred messages can be recalled using the recall functions defined
on RTPort.

Example

In the transition where a message is to be deferred you would defer the
message as follows:

RTMessage_defer(this->std.msg);
200 C Reference - Rational Rose RealTime

RTObject_class
RTObject_class

The RTObject_class is a structure that contains information describing
a data type. These type descriptors may be generated automatically for
any class created in the toolset. The Services Library uses the
information in the descriptors to initialize, copy, destroy, encode, and
decode objects of the corresponding type.

Using type descriptors has several advantages:

� Arbitrary structures can be used in models even if they cannot be
expressed in the toolset or are provided by third-parties.

� Encoding and decoding can be extended to arbitrary data
structures.

� More efficient handling of data is possible by avoiding memory
allocation and de-allocation. By adding the size to the type
descriptor, the Library Services can decide when a payload area of
a message is large enough to hold the data to be sent.

� Any user-defined type can be sent (by value), using the copy, and
destroy functions in the type descriptor, and inspected via the
observability interface using the init, encode, and decode
functions.

The important thing to remember is that the toolset will generate these
descriptors for most classes which are defined using basic types (see
below for the list). If classes contain more complicated structures you
can write your own type descriptor functions from within the toolset.
See C Target RTS properties for more information on this subject.

/* A type is described by one of these structures. */
Field Meaning
----- -------
_super The base type of this type
_name The name of this type
_version The version of this type
_size The byte size of this type (sizeof)
_init_func The default constructor for this type
_copy_func The copy constructor for this type
_decode_func The decode function for this type
_encode_func The encode function for this type
_destroy_func The destructor for this type
_num_fields The number of fields or array elements
_fields The field types or array element type
*/
C Reference - Rational Rose RealTime 201

Chapter 11 Services Library API Reference
When would you use the type descriptor?

Whenever data is passed to the Services Library, you need to provide
the type descriptor, along with the data to be sent. If the type descriptor
is not provided to the Services Library, data objects will not be observed
with the debugger, or sent to another process.

RTType_<typename> structure

For every generated class in your model there is a type descriptor
created which is called RTType_<typename>. For example, if you define
a class called RobotControlData the generated type descriptor would
be:

const RTObject_class RTType_RobotControlData;

You can provide the generated type descriptor for a generated class to
any Service Library operation that requires it.
202 C Reference - Rational Rose RealTime

RTPeerController
RTPeerController

RTPeerController is a refinement of the RTController class which
represents the interface to a physical thread in the multi-threaded run-
time system. In order to implement a timer capsule that plugs into the
C Services Library, you may need to use the following primitives.

Operations

RTPeerController_tim
edWait

Allows for a means of doing a timed wait. This is
useful for implementing your own timing service.

RTPeerController_wai
tForEvents

Put the RTPeerController in the phase of waiting
for events to happen (either timer timeout,
message arrival or timer request).
C Reference - Rational Rose RealTime 203

Chapter 11 Services Library API Reference
RTPeerController_timedWait

int RTPeerController_timedWait(RTPeerController *, RTTimespec
*);

This function allows for a thread to block on a timed wait. The thread
will be awoken by either an external event like a message delivered to
a controller (return 0) or by the time expiry (return 1).

Example

int weTimedOut =
RTPeerController_timedWait(RTCapsule_context(), &time);
204 C Reference - Rational Rose RealTime

RTPeerController
RTPeerController_waitForEvents

void RTPeerController_waitForEvents(RTPeerController *);

This is the means by which an RTController in the multithreaded
Services Library goes to sleep. Using this method to go to sleep ensures
that if the thread receives a message, it shall be woken up in order to
deliver it.
C Reference - Rational Rose RealTime 205

Chapter 11 Services Library API Reference
RTPort

For each port specified on a capsule, an RTPort is generated within the
instance data. RTPort serves as the interface to most of the primitives
of the communications, layer and timing services of the Service
Library. A RTPort instance contains a list of all the individual instances
of that port that may be bound (at runtime or through connectors) to
one or more RTPort instances.

Operations

RTPort_send Broadcast a message across the entire port
using the communications and/or internal
layer service.

RTPort_sendAt Send a message solely on this index using
the communications and/or internal layer
service.

RTPort_enqueue Enqueue a message onto a port without
having to be bound to it. This is very
useful to implement a timing capsule in
order to deliver timeout messages.

RTPort_getCardinality Returns the cardinality of the port.

RTPort_isBound Returns the bound status of the port
instance specified by index.

RTPort_getRegisteredName Returns the name of the registration that
the unwired port has registered as.

RTPort_isRegistered Determines the registration status of the
port instance specified by the index.

RTPort_registerAs Registers an unwired port by name.

RTPort_deregister Deregisters an unwired port.

RTPort_recall Recall a message that came in on this port
and that was deferred.

RTPort_recallAt Recall a message that came in on this port
instance and was deferred.
206 C Reference - Rational Rose RealTime

RTPort
RTPort_recallAll Recall all messages that came in on this
port that were deferred.

RTPort_recallAllAt Recall all messages that came in on this
port instance that were deferred.

RTPort_purge Purge all messages from the defer queue
that came in on this port.

RTPort_purgeAt Purge all messages from the defer queue
that came in on this port instance
specified by index.

RTPort_informIn Request a one-shot timer to expire in a
specified amount of time.

RTPort_cancelTimer Cancel a timer that was created on this
timer port.

RTPort_isTimerValid Determine if a timer (that was created on
this timer port) is valid.

RTPort_createOutSignal Create an out signal local to the protocol.

RTPort_createInSignal Create an in signal local to the protocol.
C Reference - Rational Rose RealTime 207

Chapter 11 Services Library API Reference
RTPort_getCardinality

int RTPort_getCardinality(const RTPort *);

Return Value

Returns the cardinality of the port.

Remarks

Remember that port instances are indexed in the Services Library as 0
based. That means that if a port has a cardinality of N, you should only
reference instances using index numbers 0..N-1.
208 C Reference - Rational Rose RealTime

RTPort
RTPort_purge

int RTPort_purge(const RTPort *);

Return Value

Returns the number of deleted messages from the defer queue.

Remarks

To delete deferred messages for one port instance use RTPort_purgeAt.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under MESSAGE_DEFERRAL.
C Reference - Rational Rose RealTime 209

Chapter 11 Services Library API Reference
RTPort_purgeAt

int RTPort_purgeAt(const RTPort *, int index);

Parameters

index

The port index for which deferred messages should be purged.

Return Value

Returns the number of deleted messages from the port instance defer
queue.

Remarks

To delete deferred messages for all port instances use RTPort_purge.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under MESSAGE_DEFERRAL.
210 C Reference - Rational Rose RealTime

RTPort
RTPort_recall

int RTPort_recall(const RTPort *);

Return Value

Returns the number of recalled messages (either 0 or 1).

Remarks

Calling recall on a port gets the first deferred message from one of the
port instances, starting from the first (instance 0). Messages are
recalled from the front of the defer queue.

There is no time limit on deferral, therefore applications must take
precautions against forgetting messages on defer queues.

This operation recalls the first deferred message on any port instance.
To recall the first message on one port instance of a replicated port, use
the RTPort_recallAt operation.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under MESSAGE_DEFERRAL.
C Reference - Rational Rose RealTime 211

Chapter 11 Services Library API Reference
RTPort_recallAt

int RTPort_recallAt(const RTPort *, int index);

Return Value

Returns the number of recalled messages (either 0 or 1).

Parameters

index

Port instance index for which to recall a deferred message.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under MESSAGE_DEFERRAL.
212 C Reference - Rational Rose RealTime

RTPort
RTPort_recallAll

int RTPort_recallAll(const RTPort *);

Return Value

Returns the number of recalled messages.

Remarks

This operation recalls all deferred message on any port instance.
Messages are recalled from the front of the defer queue.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under MESSAGE_DEFERRAL.
C Reference - Rational Rose RealTime 213

Chapter 11 Services Library API Reference
RTPort_recallAllAt

int RTPort_recallAllAt(const RTPort *, int index);

Return Value

Returns the number of recalled messages from a given port instance.

Remarks

Calling RTPort_recallAllAt on a port will get all the deferred message
from the port instance indicated by index.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under MESSAGE_DEFERRAL.
214 C Reference - Rational Rose RealTime

RTPort
RTPort_send

int RTPort_send (const RTPort *, RTSignal, RTPriority, void *,
const RTObject_class *);

Remarks

Construct a message (of particular signal, data, priority, and type) and
send it across the specified port. If the port has cardinality greater than
1, then the message is broadcast across each of the instances.

Returns

RTPort_send returns the number of successful messages sent. If all
messages are sent properly, then this value should be equivalent to
RTPort_getCardinality().
C Reference - Rational Rose RealTime 215

Chapter 11 Services Library API Reference
RTPort_sendAt

int RTPort_sendAt(const RTPort *,int, RTSignal, RTPriority, void
*, const RTObject_class *);

Remarks

Construct a message (of particular signal, data, priority, and type) and
send it across the specified port instance.

Returns

Positive logic values indicate success.
216 C Reference - Rational Rose RealTime

RTPort
RTPort_enqueue

RTMessage * RTPort_enqueue(const RTPort *, int index, RTSignal,
RTPriority, const void * data, RTCapsule * fromCapsule, const
RTObject_class * type);

Remarks

Construct a message (of particular signal, data, priority and type) and
enqueue it upon the port instance specified by the port and index. The
RTCapsule field is for the capsule doing the enqueuing, so that the
Services Library knows what controller to allocate the message from.

Returns

A pointer to the constructed message. This can be useful in designing
a timer service, as after you deliver the message through an
RTPort_enqueue, you still may be able to cancel the timer request if a
cancelTimer request is made by following this pointer.
C Reference - Rational Rose RealTime 217

Chapter 11 Services Library API Reference
RTPort_registerAs

int RTPort_registerAs(RTPort *, const char * service);

Return Value

Returns 1 (true) if the registration of the service name was successful,
and 0 (false) otherwise. The registration can fail if this operation is
called on a port instance which is not an unwired end port. The port
knows whether or not to register itself as a published or unpublished
unwired port based upon the appropriate code generation model
properties.

Note: The protocols referenced by the unwired ports cannot be verified
by the toolset, since there are no connectors. At runtime, protocol
compatibility is not preformed and it is possible to register a SAP and
SPP with the same name but incompatible protocols.

Parameters

service

This parameter is a string that is used to identify a unique name and
service under which the unwired ports will connect.

The pointer to the registration name, i.e. service, is stored in the
SAP/SPP registration table. RTPort_registerAs does not make a copy of
the registration name. Therefore, the application should never change
the service contents.

Remarks

If this operation is invoked on an unwired port which is already
registered with a different name, then the original registered name is
automatically deregistered, and the SAP is registered with the new
name.

When an unwired port is registered, it does not necessarily mean that
the port has been connected to another unwired port. The successful
completion of the register operation simply indicates that the name has
been registered.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under INTERNAL_LAYER_SERVICE.
218 C Reference - Rational Rose RealTime

RTPort
RTPort_deregister

int RTPort_deregister(RTPort *);

Return Value

Returns 1 (true) if the deregistration of the service name was
successful, and 0 (false) otherwise.

Remarks

When an unwired port is deregistered if it is currently connected to
another unwired port, the connection is terminated.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under INTERNAL_LAYER_SERVICE.
C Reference - Rational Rose RealTime 219

Chapter 11 Services Library API Reference
RTPort_isBound

int RTPort_isBound(const RTPort *, int index);

Return Value

Returns 1 (true) if the port instance specified by the index is bound
(either through a connector or a layer registration).
220 C Reference - Rational Rose RealTime

RTPort
RTPort_getRegisteredName

const char * RTPort_getRegisteredName(const RTPort *, int index);

Return Value

Returns the name of the service by which an unwired port instance
specified by the RTPort and index parameters has registered as. If the
port is not unwired, or it the port has not yet registered, this function
returns (const char *)0.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under INTERNAL_LAYER_SERVICE.
C Reference - Rational Rose RealTime 221

Chapter 11 Services Library API Reference
RTPort_isRegistered

int RTPort_isRegistered(const RTPort *, int index);

Return Value

Returns positive logic values to indicate if the unwired port instance
specified by index is registered under a particular name. If the port is
unwired, this method returns 0.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under INTERNAL_LAYER_SERVICE.
222 C Reference - Rational Rose RealTime

RTPort
RTPort_informIn

RTTimerId RTPort_informIn(const RTPort * this, long sec, long nsec,
RTPriority prio, void * data, const RTObject_class * type);

Remark

RTPort serves as an interface to a registered timing service which
hooks up to particular RTController objects on a global or per-thread
basis. This function sets a timer to expire in sec seconds and nsec
nano-seconds. When this timer expires, the timer capsule shall
enqueue a message on the specified port, with the specified data,
priority and type.

Returns

An RTTimerId object that represents the timer entry in the timing
capsule. This RTTimer instance may be used to cancel or query the
timer’s status.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under TIMING_SERVICE.
C Reference - Rational Rose RealTime 223

Chapter 11 Services Library API Reference
RTPort_cancelTimer

int RTPort_cancelTimer(const RTPort * this , RTTimerId id);

Remark

The RTPort serves as an interface to a registered timing service which
hooks up to particular RTController objects on a global or per-thread
basis. This method serves as a means of cancelling a timer request
indicated by the id, which was returned by an RTPort_informIn call.

Returns

This function returns positive logic to indicate its success.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under INTERNAL_LAYER_SERVICE.
224 C Reference - Rational Rose RealTime

RTPort
RTPort_isTimerValid

int RTPort_isTimerValid (const RTPort * this, RTTimerId id);

Remark

This operation checks the RTPort_informIn request made upon the
port passed as a parameter that the given timer id is still an
outstanding timer (i.e. if the timer is to expire). The RTPort serves as
an interface to a registered timing service which hooks up to particular
RTController objects on a global or per-thread basis.

Returns

A boolean logic value that indicates if the timer specified by the
RTTimerId is valid.

Note: Unavailable in certain Services Library configurations. Please
refer to the C Target Guide under INTERNAL_LAYER_SERVICE.
C Reference - Rational Rose RealTime 225

Chapter 11 Services Library API Reference
RTPort_createInSignal

RTPort_createInSignal(port, signal)

This operation is not a function, but a macro used to define a local
signal given the name of a port and a signal. By using macros, if the
name of a protocol class changes, all of the capsule user code that uses
these signals does not need to be updated. This method is meant to be
used for In signals only, to distinguish between triggers when
forwarding messages.
226 C Reference - Rational Rose RealTime

RTPort
RTPort_createOutSignal

RTPort_createOutSignal(port, signal)

This operation is not a function, but a macro used to define a local
signal given the name of a port and a signal. By using macros, if the
name of a protocol class changes, all of the capsule user code that uses
these signals does not need to be updated. This method is meant to be
used for out signals only, to create signals that are to be used in
RTPort_send, RTPort_sendAt and RTPort_enqueue operations.
C Reference - Rational Rose RealTime 227

Chapter 11 Services Library API Reference
RTPriority

Priorities are abstracted through the RTPriority enumeration. The
following priorities are available (from highest to lowest):

� RTPriority_System

� RTPriority_Panic

� RTPriority_High

� RTPriority_General

� RTPriority_Low

� RTPriority_Background

These priorities must be specified the following primitives:

� RTPort_send

� RTPort_enqueue

� RTPort_sendAt

� RTPort_informIn
228 C Reference - Rational Rose RealTime

RTSoleController
RTSoleController

RTSoleController is a refinement of the RTController class which
represents the interface to a physical thread in the single-threaded
run-time system. In order to implement a timer capsule that plugs into
the C Services Library, you may need to use the following primitives.

Operations

RTSoleController_wait
ForEvents

Put the RTSoleController in the phase of waiting
for events to happen (either timer timeout,
input/output, or ipc events).
C Reference - Rational Rose RealTime 229

Chapter 11 Services Library API Reference
RTSoleController_waitForEvents

void RTSoleController_waitForEvents(RTSoleController *);

Remarks

This is the means by which an RTController in the singlethreaded
Services Library goes to sleep. Using this method to go to sleep ensures
that if the thread receives a message, it shall be woken up in order to
deliver it.
230 C Reference - Rational Rose RealTime

RTSignal
RTSignal

This class is the encapsulation of signals within the Services Library.
All signals are defined locally, so they must be specified with regards
to the RTPort that they apply to. All of the operations upon RTSignals
can be found in the RTPort module.
C Reference - Rational Rose RealTime 231

Chapter 11 Services Library API Reference
RTTimerId

The Rose RealTime Timing services use RTTimerId as an identifier for
timer requests. The timer identifier is returned by a request to
RTPort_informIn. The timer identifier can be used subsequently to
cancel the timer by calling RTPort_cancelTimer.
232 C Reference - Rational Rose RealTime

RTTimespec
RTTimespec

The RTTimespec class is used to create timer values for passing to the
Timer Service. It is intended for compatibility with POSIX.

RTTimespec is a struct with two fields: tv_sec and tv_nsec, where
tv_sec is the number of seconds for the timer setting, and tv_nsec is
the number of nanoseconds.

Operations

RTTimespec_addTo Arithmetic operators

RTTimespec_lessEqualTo Comparison operators

RTTimespec_clock_gettime Returns the current time
C Reference - Rational Rose RealTime 233

Chapter 11 Services Library API Reference
tv_sec and tv_nsec

long tv_sec;
long tv_nsec;

Remarks

Where tv_sec is the number of seconds for the timer setting, and
tv_nsec is the number of nanoseconds. There are 10e9 nanoseconds
in one second.

Examples

This will initialize an RTTimespec with one second.

RTTimespec t1;
t1.tv_sec = 1;
t1.tv_nsec = 0;

This class is used most often in conjunction with the Timing Service to
specify time values.
234 C Reference - Rational Rose RealTime

RTTimespec
RTTimespec_clock_gettime

void RTTimespec_clock_gettime(RTTimespec *);

Parameters

tspec

The values of this RTTimespec parameter are filled in with the current
time.

Example

RTTimespec t;
RTTimespec_clock_gettime(&t);
C Reference - Rational Rose RealTime 235

Chapter 11 Services Library API Reference
RTTimespec_lessEqualTo

int RTTimespec_lessEqualTo (const RTTimespec *, const
RTTimespec);

Remark

To check for equality, just use the built in operator == for the
structures.

Return value

Nonzero if the first object is less than or equal to the second object;
otherwise 0.
236 C Reference - Rational Rose RealTime

RTTimespec
RTTimespec_addTo

void RTTimespec_addTo (RTTimespec *, const RTTimespec *);

Add the value of the second timespec to the first. Since the first
parameter is not const, the value is saved in it.
C Reference - Rational Rose RealTime 237

Index
Symbols
#define 46
$$ 133
$(MACRO) 133
$@ 132
${name} 132
$defaultMakeCommand 132
$name 132
$RTS_HOME 102
$VARIABLE 133

A
Accessing 91
Accessing the error value 76
adding

C code to model 9
Additional Design Considerations 119
API reference

Services Library 171
Application-specific command line argu-

ments 90
arrary

specifying using association multi-
plicity 44
C Reference - Rational Rose RealTime

array
creating attributes 45

association
multiplicity 44

association (C Reference) 21
Asynchronous and synchronous commu-

nication 68
attach 94
AttributeKind (Attribute, C) 137
attributes

creating array 45
creating pointer 45

attributes (C Reference) 21
Availability of external library on differ-

ent platforms 120

B
build 31

changing options 124
Services Library 128

building
Services Library 128

BuildLibraryArguments (Component, C
Library) 166
239

Index
BuildLibraryCommand (Component, C
Library) 166

C
C code (in model) 9
C Compilation properties 151

component 151
C constructs 39
C data type examples 39
C Executable properties 157

component 157
C External Library properties 167

components 167
C Generation properties 147

component 147
C Library properties 165

component 165
C model element properties 134

AssociationEnd 134
attribute 134
capsule 134
class 134
dependency 135

C Services Library 57
details 101
Services Library

C 4
C Services Library Framework 57, 63
C TargetRTS properties 142

AssociationEnd 142
attribute 142
class 142

C++ code in models 3
240

capsule
mapping to threads 61

Capsule diagrams 140
Capsule Functions 117
Capsule instances and capsule behavior

116
Capsule To Logical Thread Mapping

(Capsule, C Executable) 157
capsuleId 92
capsules (C Reference) 16
Capsules vs. Data 117
changing

build options 124
pre-processor macros 122

choice point
code condition segment (C Refer-

ence) 11
class

properties that affect generation 20
Classes 35
classes (C Reference) 19
Classes and Data Types 35
Classes and data types 35
ClassKind (Class, C) 135
Code Generation 15
Code generation (C) 5
code generator behaviour 27
Code generator command line arguments

31
code generator command line arguments

31
Code Sync

de-activating 13
making changes outside the toolset 12

Code Sync (C Reference) 12
C Reference - Rational Rose RealTime

Index
Code Sync areas 12
codegen 104
CodeGenDirName (Component, C Ex-

ternal Library) 167
CodeGenDirName (Component, C Gen-

eration) 147
CodeGenMakeArguments (Component,

C Generation) 150
CodeGenMakeCommand (Component,

C Generation) 149
CodeGenMakeInsert (Component, C

Generation) 150
CodeGenMakeType (Component, C

Generation) 149
CodeSyncEnabled (Component, C Gen-

eration) 150
Command line arguments 32
command line arguments

application specific 90
code generator 31
code generator (C Reference) 31

Command line debugger
Control commands 98
Informational commands 94
Thread commands 93

Command Line Model Debugger 89
Command-line build interface 33, 63
command-line build interface 33
CommonPreface (Component, C Genera-

tion) 148
Communications services 67
CompilationMakeArguments (Compo-

nent, C Compilation) 152
CompilationMakeCommand (Compo-

nent, C Compilation) 152
C Reference - Rational Rose RealTime

CompilationMakeInsert (Component, C
Compilation) 152

CompilationMakeType (Component, C
Compilation) 151

CompileArguments (Component, C
Compilation) 154

CompileCommand (Component, C Com-
pilation) 153

components 26
Services Library 129

ComponentUnitName (Component, C
Generation) 148

concurrency
types 60

config 105
configuring

Services Library 121
constant

use 46
constant (#define) 46
ConstructFunctionName (Class, C) 136
Constructor 235
context 175
Control commands 98

exit 92
go 92
quit 92
step 92

controlled units 29
Controller_unexpectedStatus 81
CopyFunctionBody (Class, C Targe-

tRTS) 143
COUNT 109
241

Index
creating
array attributes 45
classes with attributes that are point-

ers 51
classes with no pointer attributes 49
pointer attributes 45
union 49

Creating and using common C constructs
39

-crlf 32
Cross Thread Message Sending 118

D
data class

marshallable 38
Data class rule #1 38
Data class rule #2 38
data member 22
Data members 234
Data Types 35
De-activating Code Sync 13
Debugger 111
DecodeFunctionBody (Class, C Targe-

tRTS) 144
DEFAULT_DEBUG_PRIORITY 106
DEFAULT_MAIN_PRIORITY 106
DEFAULT_TIMER_PRIORITY 107
DefaultArguments (Component, C Exe-

cutable) 162
DEFER_IN_ACTOR 109
DEFER_IN_ACTORS 109
Deferring and recalling messages 71
dependencies 24
deregisterSAP 219
242

DestroyFunctionBody (Class, C Targe-
tRTS) 143

detach 94
Diagrams

Capsule 140
Differences Between Single-threaded

and Multi-threaded Services Li-
brary Debugger 90

E
encapsulating target-specific behavior 11
EncodeFunctionBody (Class, C Targe-

tRTS) 144
enumeration (C Reference) 48
environment variables 133
Error enumeration 77
Example 183
Examples 174, 175, 181, 182, 187, 190,

234, 235
ExecutableName (Component, C Execut-

able) 162
exit 98
external types 53
EXTERNAL_LAYER 109

F
-forcewrite 32

G
General C++ performance notes 118
generalizations 24
GenerateClass (Class, C++) 135
C Reference - Rational Rose RealTime

Index
GenerateClassInclusions (Component, C
External Library) 167

GenerateConstructFunction (Capsule, C)
139

Generated code directory layout 30
generated code directory layout 30
Generated code structure 63, 86
GenerateDescriptor (Attribute, C Targe-

tRTS) 145
GenerateDescriptor (Class, C Targe-

tRTS) 143
GenerateDescriptor (Role, C TargetRTS)

145
getCurrentStateString 179
getName 177
getTypeName 178
GlobalPrefix (Capsule, C) 139
GlobalPrefix(Class, C) 136
go 98

H
Hardware differences 119
HAVE_INET 112
header file (.h) 17, 20
HeaderEnding (Capsule, C) 139
HeaderEnding (Class, C) 137
HeaderPreface (Capsule, C) 139
HeaderPreface (Class, C) 137
Help 92
Host workstation and embedded target

workflows 2, 60

I
iIntegration

considerations 52
C Reference - Rational Rose RealTime

Implementation classes 67, 72
implementation file (.c) 20
ImplementationEnding (Capsule, C) 140
ImplementationEnding (Class, C) 137
ImplementationPreface (Capsule, C) 140
ImplementationPreface (Class, C) 137
ImplementationType (Class, C) 136
include 105
InclusionPaths (Component, C Compila-

tion) 154
InclusionPaths (Component, C External

Library) 168
Incremental generation 28
incremental generation 28
Informational commands

info 92
printstats 92
saps 92
system 92

informational commands 94
InitFunctionBody (Class, C TargetRTS)

143
InitializerKind (Attribute, C) 138
InitializerKind (Role, C) 138
InitialValue (Role, C) 138
INLINE_CHAINS 112
INLINE_METHODS 112
INTEGER_POSTFIX 109
integrating

external class 51
INTERNAL_LAYER_SERVICE 107
Introduction to threads 12, 60
243

Index
K
kernel configuration 84
KindInHeader (Uses, C) 140
KindInImplementation (Uses, C) 141

L
lib 105
Libraries (Component, C External Li-

brary) 168
LibraryName (Component, C Library)

165
libset 105
Libset name 103
LinkArguments (Component, C Execut-

able) 163
LinkCommand (Component, C Execut-

able) 163
Linked together into your models execut-

able 6
Linker Override 163
linking

model with Services Library (C) 6
Linking the model together with the Ser-

vices Library 6
Log show primitives 189
LOG_MESSAGE 109
Logical Packages 25

M
macros

changing pre-processor 122
Macros used in code segments 90
main.c 85
manual loading 85
244

Mapping
capsules to threads 61

Mapping capsules to threads 61
Mapping capsules top threads 61
marshallable

data classes 38
marshalling

functions 54
MAX_NUM_SPPS 107
message

processing 58
message priorities 69
Message processing 2, 58
MESSAGE_DEFERRAL 111
messages

cross thread sending 118
deferring 71
recalling 71
sending data in 36
sending typed data by value 117

model 31
adding C code 9
executables 7
linking with Services Library (C) 6
properties reference 131

Model Debugger 89
Model executables 7, 86
model properties reference 131
Model to code correspondence 15
mplementation file (.c) 17
MULTIPLE_PRIORITIES 109
multiplicity

specifying arrays using association
44

multi-threaded message processing 59
Multi-threaded Services Library 62
C Reference - Rational Rose RealTime

Index
Multi-threaded Services Library Debug-
ger 90

Multi-threaded Services Library debug-
ger 90

N
name 184
NumElementsFunctionBody (Attribute,

C TargetRTS) 145
NumElementsFunctionBody (Role, C

TargetRTS) 146

O
OBJECT_ENCODE 110, 112
observability 86
OBSERVABLE 113
One shot timer 72
Operations 174, 181, 189, 192, 235
operations

user-defined 22
Operators 236
Optimizing designs 115
Order-preserving 68
OTRTSDEBUG 111
Output 183
OutputDirectory (Component, C Genera-

tion) 147
OVERRIDE_BASIC_SIZES 109
Overview 1, 15

P
Parameters 189, 209, 210, 211, 213, 214,

218, 235
pathmap symbols 133
C Reference - Rational Rose RealTime

Performance guidelines 115
Periodic timer 74, 75
physical threads 65
PhysicalThreads (Component, C Execut-

able) 160
pointer attributes 45
portId 92
portIds 92
pre-processor macros 122
Primitives 68
printstats 97
priority

RTPriority 228
Processing overview 59
protocols 25
Providing arguments on targets that do

not support command line argu-
ments 91

purge 209, 210
PURIFY 112

Q
quit 99

R
recallAll 214
receiver 41, 42
Registration by name 71
Registration string 71
Relative versus absolute time 81
Remarks 174, 175, 181, 187, 189, 208,

209, 210, 211, 213, 214, 218, 219,
234

Return Value 181, 182, 198, 199, 211,
212, 213
245

Index
Return value 175, 176, 177, 178, 179,
184, 196, 208, 209, 210, 214, 218,
219, 220, 221, 236

RTActor 233
context 175
getCurrentStateString 179
getError 176
getIndex 176
getName 177
getTypeName 178
msg and RTActor
getMsg 174

RTActorClass 233
RTCapsule 64, 172

attributes 172
operations 173

RTCapsule_context 175
RTCapsule_getCurrentStateString 179
RTCapsule_getIndex 176
RTCapsule_getMsg 174
RTCapsule_getName 177
RTCapsule_getTypeName 178
RTController 180

abort 187
getError 181
name 184
perror 183
strerror 182

operations 180
RTController error codes 75
RTController_abort 187
RTController_alreadyDeferred 77
RTController_badClass 77
RTController_badId 78
RTController_badMessage 78
RTController_badOperation 78
246

RTController_badSignal 78
RTController_badState 78
RTController_badValue 78
RTController_cannotRegTimer 79
RTController_cannotSetTimer 79
RTController_getErro 181
RTController_internalError 79
RTController_name 184
RTController_noConnect 79
RTController_noMem 80
RTController_ok 80
RTController_overrideSyncMethods 186
RTController_prio 80
RTController_reg 80
RTController_registerTimer 185
RTController_unauthorizedMemoryAllo

cation 80
RTController_unexpectedPrimitive 81
RTEndPortRef

deregisterSAP 219
incarnationsTo 209, 210
incarnationTo 209, 210
purge 209, 210
recall 211, 212, 213
recallAll 214
registerSAP 218
send 209, 210

RTLog 188
operations 188

RTLogSAP
show and RTLogSAP

log 189
RTMessage 66, 191

defer 198, 200
getData 196
reply 198
C Reference - Rational Rose RealTime

Index
sap 199
sapIndex 198

operations (C) 191
RTMessage_copyData 194
RTMessage_getData 196
RTMessage_getPort 199
RTMessage_getPriority 192
RTMessage_getSignal 193
RTMessage_getSignalName 195
RTMessage_getType 197
RTMESSAGE_PAYLOAD_SIZE 113
RTObject_class 201
RTPeerController 203
RTPeerController_timedWait 204
RTPeerController_waitForEvents 205
RTPort 206
RTPort_cancelTimer 224
RTPort_createInSignal 226
RTPort_createOutSignal 227
RTPort_deregister 219
RTPort_enqueue 217
RTPort_getCardinality 208
RTPort_getRegisteredName 221
RTPort_informIn 223
RTPort_isBound 220
RTPort_isRegistered 222
RTPort_isTimerValid 225
RTPort_purge 209
RTPort_purgeAt 210
RTPort_recall 211
RTPort_recallAll 213
RTPort_recallAllAt 214
RTPort_recallAt 212
RTPort_registerAs 218
RTPort_send 215
RTPort_sendAt 216
C Reference - Rational Rose RealTime

RTPriority 228
RTREAL_INCLUDED 112
RTS_CLEANUP_MECHANISM 110
RTS_COMPATIBLE 110, 112
RTS_COUNT 109
RTS_INLINE 112
RTS_INLINES 112
RTS_MEMORY_POLICY 111
RTS_NAMES 107
RTS_TYPES 112
RTSignal 231
RTSoleController 229
RTSoleController_waitForEvents 230
RTTimerId 232
RTTimespec 233

getclock 235
RTTimespec 235

RTTimespec basic arithmetic operators
237

RTTimespec basic comparison operators
236

RTTimespec time fields 234
RTTimespec_addTo 237
RTTimespec_clock_gettim 235
RTTimespec_lessEqualTo 236
RTType_ structure 202
Run Time System Debugger

command summary 91
Run time System debugger 89
running

models on target boards 83
Running a model 93
247

Index
S
sap 199
saps 94
send 209, 210

by reference 36
by value 36
considerations 37
cross thread message sending 118
data by reference 41
data by value 40
data calsses between capsule instanc-

es 39
data in messages 36
data in messages (C Reference) 36
uncessary sends (troubleshooting)

117
SEND_BY_VALUE 113
sender 40, 41
sending

by reference 36
by value 36
data by reference 41
data by value 40
data classes between capsule instanc-

es 39
data in messages 36
data in messages (C Reference) 36
protocols 36
typed data by value in messages 117

Sending RTDataObjects in messages 117
Services Library 57, 62, 101, 121, 171

API reference 171
building 128
C 57
configuring 121
248

creating minimum configuration 114
customizing 121
directory structure (C) 104
linking model (C) 6
minimally configured 171
optimizing designs 115
organization (C) 102
updating component 129

Services Library configuration 114
Services Library Debugger Command

Summary 91
Services Library Framework 57
Single and multi-threaded message pro-

cessing 59
single-threaded 62
Single-threaded Services Library 62
Single-threaded Services Library Debug-

ger 90
Single-threaded Services Library debug-

ger 90
Single-threaded Services Library mes-

sage processing 62
-spacedeps 32
src 30, 105
State Machines 116
STDIO_ENABLED 110
step 99

syntax of code segments (C Reference)
10

T
target 105
Target base name 103
C Reference - Rational Rose RealTime

Index
TargetConfiguration (Component, C
Compilation) 155

TargetServicesLibrary (Component, C
Compilation) 154

taskId 92
tasks 93
TController_dereg 79
this pointer 17
this pointer (C Reference) 23
Thread commands 91, 93

attach 91
detach 91
tasks 91

threads
introduction 60
mapping to capsules 61

Timer thread configurations 73
Timing precision and accuracy 75, 81
Timing Service

customizing 74
Timing service 72
TIMING_SERVICE 108
TO_OVER_TCP 108
tool chain functionality 83
Tool Chains 120
tool chains 120
tools 105
TopCapsule (Component, C Executable)

159
Tracing commands 97

log 92
troubleshooting

availability of external library on dif-
ferent platforms 120

C performance 118
capsules versus data 117
C Reference - Rational Rose RealTime

cross thread message sending 118
design considerations 119
Guards 116
guards 116
hardware differences 119
relationships and elements ignored by

C code generation 26
sending typed data by value in mes-

sages 117
state machines 116
unnecessary sends 117

tv_nsec 234
tv_sec 234
type descriptor

when to use 202
typedef (C Reference) 48
TypeDescriptor (Attribute, C Targe-

tRTS) 145
TypeDescriptor (Role, C TargetRTS 145
Types of concurrency 60

U
union 49
Unnecessary Sends 117
unpublished unwired ports 70
unwired ports

support for 70
URTS_DEBUG parameter 89
USE_THREADS 106, 108, 113
User-defined operations 22
UserLibraries (Component, C Execut-

able) 163
UserObjectFiles (Component, C Execut-

able) 163
249

Index
V
-version 32
Version (Class, C TargetRTS) 143
250

C Reference - Rational Rose RealTime

	C Reference
	Overview of the C Guide
	Workflows for your host workstation and embedded target
	Using C code in models
	Model Properties
	C Services Library
	Code generation
	Modifying generated code

	Compilation
	Linking the model with the Services Library

	Model executables
	Target Observability

	Using C code in your model
	Where can you add C code to a model?
	The syntax of code segments
	Choice point code condition segment

	Encapsulating target-specific behavior
	Code Sync
	Making changes outside the toolset
	Identifying designated Code Sync areas
	De-activating Code Sync

	Code Generation
	Model to code correspondence
	Capsules
	A header file (.h)
	An implementation file (.c)
	The ‘this’ pointer

	Capsule state diagrams
	Classes
	A header file (.h)
	An implementation file (.c)
	Properties that affect the way classes are generated

	Attributes
	Associations
	Valid code generation associations

	User-defined operations
	The ‘this’ pointer

	Generalizations
	Example

	Dependencies
	Logical Packages
	Standard operations
	Protocols
	Components
	Relationships and elements ignored by C code generation

	Code generator behaviour
	Incremental generation
	The effect of controlled units

	Generated code directory layout
	src
	build

	Code generator command line arguments
	Command line arguments

	Command-line build interface

	Classes and Data Types
	Terminology
	Introduction to sending data in messages
	Protocols
	Sending by value
	Sending by reference

	Considerations
	Data classes that are marshallable
	Basic structures

	C data type examples
	Syntax examples of sending data classes between capsule instances
	Class modeling examples
	Creating and using common C constructs
	Class creation examples
	Sending/receiving data by value
	Sender
	Receiver

	Sending/receiving data by reference
	Sender
	Receiver

	Creating a class data member from the class diagram
	A data member is not generated if...

	Specifying arrays using association multiplicity
	Creating array and pointer attributes
	Tasks

	Creating a constant (#define)
	Examples
	Tasks
	Usage

	Creating a typedef
	Example
	Tasks
	Usage

	Creating an enumeration
	Example generated code
	Tasks

	Creating a union
	Example
	Tasks

	Creating and using classes with no pointer attributes
	Usage

	Creating and using classes with attributes that are pointers

	Integrating an external class (not defined in the toolset)
	Integration questions
	Integration for case #1
	Integration for cases #2 and #3
	Integration option 1: describing an external type to Rose RealTime
	Example external definition
	Tasks

	Integration option 2: providing own marshalling functions
	Tasks

	C Services Library
	C Services Library Framework
	The big advantage

	Message processing
	Processing overview
	Single and multi-threaded message processing
	Introduction to threads
	Types of concurrency
	Mapping capsules to threads
	Single-threaded Services Library
	Multi-threaded Services Library
	C Services Library Framework
	Capsules are generated as subclasses of RTCapsule
	Ports are generated as fields of a capsule structure
	Every capsule instance has access to its controller
	Capsule instances, logical, and physical threads
	Capsule instances have access to a RTMessage object

	Log service
	Implementation functions
	Characteristics

	Communication services
	Implementation functions
	Concepts
	Primitives
	Communication Service properties
	Order-preserving
	Minimal overhead in message handling

	The semantics of usage of message priorities
	Support for unwired ports
	Published versus unpublished unwired ports
	Registration by name
	Registration string

	Deferring and recalling messages

	Timing service
	Implementation functions
	Characteristics
	Usage
	Timer thread configurations
	Customizing the Timing Service
	Timing precision and accuracy

	RTController error codes
	Accessing the error value
	Example
	Error enumeration
	RTController_alreadyDeferred
	RTController_badClass
	RTController_badId
	RTController_badOperation
	RTController_badMessage
	RTController_badSignal
	RTController_badState
	RTController_badValue
	RTController_cannotRegTimer
	RTController_cannotSetTimer
	RTController_dereg
	RTController_internalError
	RTController_noConnect
	RTController_noMem
	RTController_ok
	RTController_prio
	RTController_reg
	RTController_unauthorizedMemoryAllocation
	RTController_unexpectedStatus
	RTController_unexpectedPrimitive

	Running models on target boards
	Step 1: Verify tool chain functionality
	Step 2: Kernel configuration
	Step 3: Verify main.c
	Step 4: Try manual loading
	Step 5: Running with observability

	Command Line Model Debugger
	Starting the Run time System debugger
	Differences Between Single-threaded and Multi-threaded Services Library Debugger
	Application-specific command line arguments
	Accessing
	Providing arguments on targets that do not support command line arguments

	Run Time System Debugger Command Summary
	taskId, capsuleId, portId
	Running a model

	Thread commands
	tasks
	attach <taskId>
	detach <taskId>

	Informational commands
	saps
	system <capsuleId> <depth>
	info
	printstats <taskId>

	Tracing commands
	log <category> <detail-level>

	Control commands
	exit
	go [<n>]
	step [<n>]
	quit

	Inside the C Services Library
	Organization of the Services Library source
	$RTS_HOME
	Configuration naming convention
	Platform name (or configuration)
	Target base name
	Libset name
	Summary

	Directory structure
	codegen
	include
	config
	target
	lib
	libset
	src
	tools

	Configuration preprocessor definitions
	DEFAULT_DEBUG_PRIORITY
	DEFAULT_MAIN_PRIORITY
	DEFAULT_TIMER_PRIORITY
	INTERNAL_LAYER_SERVICE
	MAX_NUM_SPPS
	RTS_NAMES
	TIMING_SERVICE
	TO_OVER_TCP
	USE_THREADS
	LOG_MESSAGE
	MULTIPLE_PRIORITIES
	OVERRIDE_BASIC_SIZES
	OBJECT_DECODE
	OBJECT_ENCODE
	STDIO_ENABLED
	RTS_CLEANUP_MECHANISM
	RTS_COMPATIBLE
	RTS_MEMORY_POLICY
	MESSAGE_DEFERRAL
	OTRTSDEBUG
	PURIFY
	RTS_INLINE
	INLINE_CHAINS
	INLINE_METHODS
	RTMESSAGE_PAYLOAD_SIZE
	SEND_BY_VALUE
	OBSERVABLE
	Creating the minimum Services Library configuration

	Optimizing designs
	Capsule instances and capsule behavior
	Guards
	State Machines
	Capsules versus Data
	Unnecessary Sends
	Sending typed data by value in messages
	Cross Thread Message Sending

	General C performance notes
	Additional Design Considerations
	Hardware differences
	Availability of external library on different platforms

	Tool Chains

	Configuring and customizing the Services Library
	Configuration and customization explained
	Configuration options
	Customization options

	Changing pre-processor macros
	Before you start
	Why
	Where
	How

	Changing build options
	Before you start
	Why
	Where
	How

	Overriding or adding operations and classes
	Why
	Where
	How
	Tasks

	Building the Services Library
	Updating a component to use a different Services Library

	Model properties Reference
	Generalization and properties
	Expanded property symbols
	Environment variables and pathmap symbols

	C model element properties
	GenerateClass (Class, C)
	ClassKind (Class, C)
	ImplementationType (Class, C)
	ConstructFunctionName (Class, C)
	GlobalPrefix(Class, C)
	HeaderPreface (Class, C)
	HeaderEnding (Class, C)
	ImplementationPreface (Class, C)
	ImplementationEnding (Class, C)
	AttributeKind (Attribute, C)
	InitializerKind (Attribute, C)
	InitializerKind (Role, C)
	InitialValue (Role, C)
	GenerateConstructFunction (Capsule, C)
	GlobalPrefix (Capsule, C)
	HeaderPreface (Capsule, C)
	HeaderEnding (Capsule, C)
	ImplementationPreface (Capsule, C)
	ImplementationEnding (Capsule, C)
	KindInHeader (Uses, C)
	KindInImplementation (Uses, C)

	C TargetRTS properties
	GenerateDescriptor (Class, C TargetRTS)
	Version (Class, C TargetRTS)
	InitFunctionBody (Class, C TargetRTS)
	CopyFunctionBody (Class, C TargetRTS)
	DestroyFunctionBody (Class, C TargetRTS)
	DecodeFunctionBody (Class, C TargetRTS)
	EncodeFunctionBody (Class, C TargetRTS)
	GenerateDescriptor (Attribute, C TargetRTS)
	TypeDescriptor (Attribute, C TargetRTS)
	NumElementsFunctionBody (Attribute, C TargetRTS)
	GenerateDescriptor (Role, C TargetRTS)
	TypeDescriptor (Role, C TargetRTS)
	NumElementsFunctionBody (Role, C TargetRTS)

	C Generation properties
	OutputDirectory (Component, C Generation)
	CodeGenDirName (Component, C Generation)
	ComponentUnitName (Component, C Generation)
	CommonPreface (Component, C Generation)
	CodeGenMakeType (Component, C Generation)
	CodeGenMakeCommand (Component, C Generation)
	CodeGenMakeArguments (Component, C Generation)
	CodeGenMakeInsert (Component, C Generation)
	CodeSyncEnabled (Component, C Generation)

	C Compilation properties
	CompilationMakeType (Component, C Compilation)
	CompilationMakeCommand (Component, C Compilation)
	CompilationMakeArguments (Component, C Compilation)
	CompilationMakeInsert (Component, C Compilation)
	CompileCommand (Component, C Compilation)
	CompileArguments (Component, C Compilation)
	InclusionPaths (Component, C Compilation)
	TargetServicesLibrary (Component, C Compilation)
	TargetConfiguration (Component, C Compilation)

	C Executable properties
	Capsule To Logical Thread Mapping (Capsule, C Executable)
	TopCapsule (Component, C Executable)
	PhysicalThreads (Component, C Executable)
	ExecutableName (Component, C Executable)
	DefaultArguments (Component, C Executable)
	LinkCommand (Component, C Executable)
	LinkArguments (Component, C Executable)
	UserLibraries (Component, C Executable)
	UserObjectFiles (Component, C Executable)

	C Library properties
	LibraryName (Component, C Library)
	BuildLibraryCommand (Component, C Library)
	BuildLibraryArguments (Component, C Library)

	C External Library properties
	GenerateClassInclusions (Component, C External Library)
	CodeGenDirName (Component, C External Library)
	InclusionPaths (Component, C External Library)
	Libraries (Component, C External Library)

	Services Library API Reference
	Minimally configured Services Library
	RTCapsule
	msg and RTCapsule_getMsg
	rts and RTCapsule_context
	RTCapsule_getIndex
	RTCapsule_getName
	RTCapsule_getTypeName
	RTCapsule_getCurrentStateString

	RTController
	RTController_getError
	RTController_strError
	RTController_perror
	RTController_name
	RTController_registerTimer
	RTController_overrideSyncMethods
	RTController_abort

	RTLog
	Log show primitives

	RTMessage
	RTMessage_getPriority
	RTMessage_getSignal
	RTMessage_copyData
	RTMessage_getSignalName
	RTMessage_getData
	RTMessage_getType
	RTMessage_getPortIndex
	RTMessage_getPort
	RTMessage_defer

	RTObject_class
	When would you use the type descriptor?
	RTType_<typename> structure

	RTPeerController
	RTPeerController_timedWait
	RTPeerController_waitForEvents

	RTPort
	RTPort_getCardinality
	RTPort_purge
	RTPort_purgeAt
	RTPort_recall
	RTPort_recallAt
	RTPort_recallAll
	RTPort_recallAllAt
	RTPort_send
	RTPort_sendAt
	RTPort_enqueue
	RTPort_registerAs
	RTPort_deregister
	RTPort_isBound
	RTPort_getRegisteredName
	RTPort_isRegistered
	RTPort_informIn
	RTPort_cancelTimer
	RTPort_isTimerValid
	RTPort_createInSignal
	RTPort_createOutSignal

	RTPriority
	RTSoleController
	RTSoleController_waitForEvents

	RTSignal
	RTTimerId
	RTTimespec
	tv_sec and tv_nsec
	RTTimespec_clock_gettime
	RTTimespec_lessEqualTo
	RTTimespec_addTo

	Index

