
Rational Software Corporation
Guide to Team Development
RATIONAL ROSE® REALTIME

VERSION: 2002.05.00

PART NUMBER: 800-025114-000
support@rational.com
http://www.rational.com

WINDOWS/UNIX

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1993-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-025114-000

Version Number: 2002.05.00

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company,
ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest,
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime
& Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage,
PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational
CRC, Rational Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite,
RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The
Rational Watch, AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development
Accelerators, ObjecTime, Rational Dashboard, Rational PerformanceArchitect,
Rational Process Workbench, Rational Suite AnalystStudio, Rational Suite
ContentStudio, Rational Suite Enterprise, Rational Suite ManagerStudio, Rational
Unified Process, SiteLoad, TestStudio, VADS, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or
in othercountries.All other names are used for identification purposes only, and are
trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client,
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore,
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView,
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX,
DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the

IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint,
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe,
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-20xx, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents

Chapter 1 Team Development 1

Contents 1

Goals of Team Development 1

Sharing Within a Team Environment 3

Protecting Configuration Items From Unintentional Changes 5
Overwriting A Modification 6
Adding Dependency Issues 9
Changing Language Semantics 10

Managing Relationships Between Configuration Items 12

Managing and Delivering Configuration Items 14

Improving Efficiency in Team Development 17
Team Development Roles 18
Architect Role 19
Developer Role 19
Product Tester Role 20
Integrator Role 20
Source Control Administrators 21
Configuration Managers 21
Project Managers 21
Customer Role 22
Rational Rose RealTime, Guide to Team Development v

Recommendations 22
Delivering the Product 22
Source Control Fundamentals 23
Preempting Conflicts 25
Packaging Strategy 26
Managing Dependencies 27
Labeling 27
When Merging is Necessary 28
Merging Detail Code Before Using Model Intgrator 29
Artifact Freeze 29
Building and Executing a Rational Rose RealTime Model 30

Advanced Concepts and Heuristics 31
Moving Controlled Model Elements 31
Renaming a Controlled Model Element 32
Primary and Secondary Edits 32
Understanding Blue Deltas 35
Parallel Development 36
Model Integrator 37
Using Rational ClearCase Multi-Site 38
Using Rational ClearCase UCM 38
Unique Ids 39
Rational Quality Architect - RealTime Edition 43
Additional Heuristics for Team Development 43
Additional Recommendations 45

Chapter 2 Storage of Model Data 47

Contents 47

Storing Model Data 47

What is a Controllable Element and a Controllable Unit? 48
What Elements Can Be Controlled? 50
Parent and Child Controlled Elements 51
Directory Structure for Model Data 52
vi Rational Rose RealTime, Guide to Team Development

File Names for Controlled Units 55
Controlled Units are Saved when Building 56
Unit Information Tab 57
What Level of Granularity Should I Use? 59

Sharing Controlled Units 61
Overview of Import, Add, and Share 62

Creating Sharable Controlled Units 64
Sharing Model Properties with Controlled Units 64

Working with Controlled Units 65
Controlling a Subset of the Controllable Elements 65
Controlling All of the Controllable Elements 66
Changing the Granularity of Controlled Units 66

Moving Controlled Units 67
Moving Controlled Units Between Model Directories 67
Moving Elements Between Controlled Units 67

Synchronizing Models with the File System 68

Export Controllable Elements from a Model to a File 68

Services Library packages 68

Import Controllable Elements from a File to a Model 69

Add an Existing Controlled Unit to a Model 70

Share an Existing Controlled Unit into a Model 71

Produce a Single Model File from a Model with Many Units 73

Virtual Path Maps 73
How Do Virtual Paths Work? 74
Defining Virtual Paths 74
Rational Rose RealTime, Guide to Team Development vii

Chapter 3 Source Control Fundamentals 79

Source Control in Rational Rose RealTime 80
Source Control Status 80
What are Primary and Secondary Edits? 81
Source Control Operations 87
Types of Source Control Systems 91

Source Control Development Concepts 92
Development Activity 92
Integration 92
Lineup 92
Working in Isolation 93

Versioning Strategies 93
Single Stream Versioning 93
Parallel Stream Versioning 94

Chapter 4 Organizing a Model (Architect Activities) 97

Packages, Models, and Subsystems 97

One Model versus Multiple Models 99

Getting Started 100
Mapping the Architecture to Subsystems 100
Decomposing a Model into Subsystems 100
Splitting a Model 101

Checking Package Dependencies for Completeness 101
Show Access Violations 101
Determine the External Dependencies for a Package 102

Check if a Subsystem is Self-contained 104

Define Subsystem Interface 104
Best Practices 104

Scratch Pad Packages 105
viii Rational Rose RealTime, Guide to Team Development

Setup Subsystem Components 107
Background 107
Components in Subsystems 108

Support for Unit Testing 110

Use Property Sets for Build Settings 110

Processors and Component Instances 111
Project Level Processors 111
Subsystem Level Processors 112
Component Instances 112

Preparing and Releasing Subsystems 113

Splitting a Model into Subsystem Models 114
Should You Split a Model Before Adding to Source Control? 114
Splitting a Model Not in Source Control 115

Splitting a Model Under Source Control 118

Chapter 5 Working with a Model Under Source Control (Developer Tasks)
123

Setting up your Source Control Tool 123

Configuring Work Areas 124

Getting a Specific Lineup of a Model 124

Opening a Model Under Source Control 125

Adding a new Controlled Unit into Source Control 125
Check Out Parent Package 125

Checking Controlled Units In and Out of Source Control 126
Checking Out Controlled Units 126
Checking In Controlled Units 126
Submitting All Changes to Source Control 126
Undoing a Check Out 128
Rational Rose RealTime, Guide to Team Development ix

Building and Running Locally 129
Reusing Build Settings 129
Probes and Inject Messages 130

Unit Testing within a Subsystem 130
Best Practices 130

Set up Private Components 130

Differencing and Merging Model Elements 131

Synchronizing Models with Source Control 132

Promoting Changes for Integration 132

Chapter 6 Building and Integrating (Integrator Tasks) 133

Building using Automated Scripts 133
Virtual Path Map Symbols 135

Building within a Larger Build Procedure 135

Reuse of Build Artifacts 136
Creating Reuseable Build Artifacts 136
Using Build Artifacts 137

Integrating Changes 137

Automating Model Validation 137

Chapter 7 Source Control Administration 139

Set up a Source Control System and Repository 140

Control Appropriate Model Elements as Units 140

Create a Local Work Area 140

Save Model to Local Work Area 141

Configure the Workspace Source Control Options 141

Add the Model to Source Control 141
x Rational Rose RealTime, Guide to Team Development

Make Default Workspace Available to Project Members 141

Defining Developer Work Areas 142

Creation of Labels and Lineups 142

Manipulation of the Source Control Repository 142

Chapter 8 Source Control Tools 143

Rational ClearCase 144
General Recommendations 144

UCM Integration 146
Activity Selection Combination Box 146
Run Project Explorer 146
Rebase 146
Deliver 147

Snapshot Views 147

ClearCase Workstation Setup 150
Command Line Access to the Source Control Tool 150
Element type setup: type manager 150
ClearCase Options 151

ClearCase Repository Setup 151

ClearCase Work Area Setup 152

Microsoft Visual SourceSafe 152
General Recommendations 153
Source Control Operation Behaviour with SourceSafe 153
Label 153

SourceSafe Workstation Setup 153
Command Line Access to the Source Control Tool 153
Set Project Mapping Option 154
Let Visual SourceSafe Know Which Database to Use 154
SourceSafe Repository Setup 154
SourceSafe Work Area Setup 155
Rational Rose RealTime, Guide to Team Development xi

RCS and SCCS 155
Repository Mapping Files (.rmf) 156
Source Control Operation Behaviour with SCCS 157
RCS/SCCS Repository Setup 157
RCS/SCCS Workstation Setup 157
RCS/SCCS Work Area Setup 158

PVCS 159
Source Control Operation Behavior with PVCS 159
PVCS Workstation Setup 159
PVCS Repository Setup 160
PVCS Work Area Setup 161

Chapter 9 Model Validation 163

What is a Model Inconsistency? 164

What is an Unresolved Reference? 165

What do the Errors/Warnings Mean? 167

Validating Names 169

Chapter 10 ClearCase Parallel Development: Sample Process 171

Parallel Development Overview 172
Making Design Changes in Parallel 174

Using View Templates 175

ClearCase Entities 176
Views 176
View Template 176
Labels 176

Initial Setup 176
Create the Integrator View 177
Create Project Labels 177
Create Initial Lineup 177
Creating the Developer View Template 178
xii Rational Rose RealTime, Guide to Team Development

Automated Builds 181
Create the Build View 181
Label Build Files 182
Perform Build 182
When the Build Completes Successfully 182

Developer Process 184
Creating a Developer View 184
Starting a Development Activity 185
Working on a Development Activity 185
Finishing a Development Activity 185

Integration Process 186
Integrating Intermediate Changes 187

View Template Script Usage 187
vtadmin 187
vtsetview 188

Chapter 11 Customizing Source Control Interface Scripts 189

Customizing Scripts 190
Input Parameters 190
Output Expected 190
Output Format 190
Script Return Code 190
Notes 190

Script Parameters 191
cm_getcaps 193
cm_status 195
cm_get 196
cm_add 197
cm_checkout 198
cm_checkin 199
cm_uncheckout 200
Rational Rose RealTime, Guide to Team Development xiii

cm_history 201
cm_extract 202
cm_label 203
cm_diff 204
cm_merge 205

Index 207
xiv Rational Rose RealTime, Guide to Team Development

Figures
UML Class Diagram of a Shared and Isolated Implementation 4
Overwriting a modification 6
Check-out and Check-in Scenario 6
Checking Out an Artifact After it is Checked In 7
Merging Changes Prior to Check-In 8
Comparison Between Versions 8
Removing Required Dependencies 9
Code Example Showing Changes to Language Semantics 11
Resulting Artifact After Merging Changes 11
Comparing Dependency Reports 13
Labelling Configuration Items 14
Example of Labelling Items 16
Comparing Reports 17
Parallel Stream Versioning Strategy 24
Packaging Strategies 26
Incorrect Merge Scenario 41
A Correct Merge Scenario 42
Browser Icons for Controlled Units 49
Browser Icons Example 50
Sample model structure 52
Directory structure for sample model 53
Sample directory after granularity is reduced 54
Filename Selection dialog 55
Directory Name Selection dialog 56
Unit Information tab 57
Unique id conflict dialog 70
Export shared package dialog 73
Virtual Path Map dialog 75
Controlled Unit Icons with Source Control 80
Model Validation Example 82
Source Control Settings 83
Tools > Source Control Menu 86
Source Control in the Browser context menu 87
History dialog example 90
Figures xv

Example Version Tree 95
Model, Packages, and Subsystems 99
Show Access Violations dialog 102
Package Dependencies Diagram Example 103
Scratch Pad Package Unit Information Tab 106
Example Subsystem Components 109
Add to Source Control dialog 127
Check In Dialog 128
Undo Check Out Dialog 129
Version Tree Example 173
xvi Figures

Chapter 1

Team Development

Contents

This chapter is organized as follows:

� Goals of Team Development on page 1

� Sharing Within a Team Environment on page 3

� Protecting Configuration Items From Unintentional Changes on
page 5

� Managing Relationships Between Configuration Items on page 12

� Managing and Delivering Configuration Items on page 14

� Improving Efficiency in Team Development on page 17

� Team Development Roles on page 18

� Source Control Fundamentals on page 23

� Building and Executing a Rational Rose RealTime Model on page 30

� Advanced Concepts and Heuristics on page 31

Goals of Team Development

Developing complex systems requires that groups of people, such as
analysts, architects, developers, and testers, coordinate their efforts to
produce the finished product. Consequently, they must ask themselves
the following questions:

� What are we trying to accomplish in team development?

� What are the goals of team development?
Rational Rose RealTime, Guide to Team Development 1

Chapter 1 Team Development
� How does Rational help implement strategies and best practices to
meet those goals?

� What do I need to do to have efficient and effective team
development?

The purpose of this book is to outline the goals of team development,
and recommend some best practices when using Rational Rose
RealTime to help ensure success.

Team development touches on development, testing, configuration
management, project management, and other disciplines such as
engineering, analysis and design.

This overview of team development helps provide the entire team with
an overview of the challenges associated with team development, while
specifically outlining the tools and mechanisms Rational Rose
RealTime supports to aid in implementing a team development
strategy.

To support teams of analysts, architects, and software developers,
Rational Rose RealTime:

� Allows team development of a single model by supporting
decomposition of the model into versionable units, called controlled
units.

� Permits moving or copying controlled units between work areas
using virtual path maps.

� Permits sharing subsystems and layers among project members
and external projects through shared packages.

� Allows you to generate C++ libraries in a development model, and
share these libraries into user models.

� Enables teams to manage their model in concert with other project
artifacts by integrating with source control systems, such as
Rational ClearCase.

� Provides a tool called Model Integrator, to compare and merge
controlled units.

� Enables teams to build their models in concert with other project
artifacts by integrating with standard build environments, such as
Rational ClearCase clearmake.
2 Rational Rose RealTime, Guide to Team Development

Sharing Within a Team Environment
The Guide to Team Development provides an overview of the basic
team development concepts in Rational Rose RealTime and specifies
how to configure and use Rational Rose RealTime in a team
environment.

The goals of team development are to:

� Allow team members to share their work with a team. See Sharing
Within a Team Environment on page 3.

� Protect configuration items from unintentional change. See
Protecting Configuration Items From Unintentional Changes on
page 5.

� Manage the relationship between configuration items. See
Managing Relationships Between Configuration Items on page 12.

� Deliver specific versions of configuration items to interested
parties. See Managing and Delivering Configuration Items on
page 14

� Reduce or eliminate disruptions to team activities. See Improving
Efficiency in Team Development on page 17.

Sharing Within a Team Environment

After a developer completes an activity (work), they require a
mechanism to share that work with others. Integration is the
mechanism that permits the integration of changes made by a team
member into what is currently being shared.

A version control system can facilitate the work flow of team members.
A team member working on a shared artifact acquires some type of
implicit or explicit permission to check-in their work by performing a
check-out prior to working on the artifact.

The check-out status for the artifact indicates to other team members
that work is currently being done to change the artifact. A
configuration manager or configuration system can monitor these
operations and enforce any policies. The mechanism can involve the
use of a version control system, or it may be an unsophisticated
implementation whereby the check-in is a simple copy, and the
communication is verbal between developers. Regardless of the
mechanism used, an awareness of a change at the appropriate levels
must be achieved, and you must assess the implications of the change.
Rational Rose RealTime, Guide to Team Development 3

Chapter 1 Team Development
A check-in does not necessarily imply that the artifact is immediately
available to team members. Typically, it is useful to work with older
versions of shared artifacts until such time as the team is ready to
access the latest version.

A version control system allows the team to return to previous versions
of work, while providing an audit trail of changes. The desire to
associate work with specific requirements is a type of policy the
Integrator can enforce at integration time.

Work produced by a member of a team can affect other members of the
team; therefore, those effects must be intentional. A copy of the work
is made available to a team member in an environment isolated from
other team members.

The environment is only isolated one-way. The work environment can
see shared team artifacts, but other environments are not effected by
the isolated environment. Figure 1 is a UML class diagram that shows
a typical implementation of how work is shared and isolated. The Work
class in Figure 1 is not available to other team members.

Figure 1 UML Class Diagram of a Shared and Isolated Implementation

Note: Some version control tools may implement a strategy where the
multiplicity between the SharedWork class and the SharedWorkRevision
would be 0..*
4 Rational Rose RealTime, Guide to Team Development

Protecting Configuration Items From Unintentional Changes
The benefits of this type of implementation are:

� Development team members can produce builds in their isolated
environment in an iterative, non-intrusive way. It also allows team
members to see a read-only version of shared work.

� Testing teams can perform a series of tests on a specific lineup of
work in their own test environment. A lineup is a collection of
specific versions of files from a version control repository.

� Production users can use a particular lineup of work that has met
quality control criteria.

Protecting Configuration Items From Unintentional Changes

There are several ways a revision can cause unintentional changes to
configuration items:

� Direct conflicting change where one change overwrites another. See
Overwriting A Modification on page 6.

� The source from one change conflicts with another change by
removing a dependency that one of the changes relies on. See
Adding Dependency Issues on page 9.

� A second modification changes the language semantics of the first
change.

Table 1 shows the legend that explains some images found in
Figure 2 through Figure 6.

Table 1 Image Legend

Image Description

Represents an unintended change

Represents movement

Represents a unit of work or configuration item
Rational Rose RealTime, Guide to Team Development 5

Chapter 1 Team Development
Overwriting A Modification

If a team member shares their work with the team, not realizing that
someone else produced or edited some work with the same name, they
may overwrite the changes of the other team member.

Figure 2 Overwriting a modification

Most version control tools provide adequate protection from this type
of unintentional change through a process of obtaining permission to
make modifications, called a check-out. The version control tool grants
implicit permission when there are no check-outs currently in place.
When one team member has an artifact checked out, other team
members are denied permission to check out that same artifact until it
is no longer required by the first team member. Figure 3 shows a
scenario where a check-out is followed by a check-in, allowing the
sequence of events to iterate.

Figure 3 Check-out and Check-in Scenario
6 Rational Rose RealTime, Guide to Team Development

Protecting Configuration Items From Unintentional Changes
This type of scenario may cause contention that is unacceptable for
high traffic work items. The diagonal lines in Figure 4 indicate that a
check-out cannot occur until the previous check-in process completes.

Figure 4 Checking Out an Artifact After it is Checked In

The problem illustrated in Figure 2 commonly occurs in strategies that
do not use a version control system. Because previous versions of
configuration items are always available to developers, the possibility
of having this type of unintended change always exists. A developer
may make changes to a private copy of an artifact without permission
to do so. Subsequently, they may acquire the appropriate permission
and check-in the changes of the local copy that may not represent the
latest version of the configuration item.
Rational Rose RealTime, Guide to Team Development 7

Chapter 1 Team Development
You can use a merge tool to apply a combined set of changes in
situations when multiple team members have permissions to make
changes to a single artifact. Figure 5 shows how you can merge two
changes made to the same artifact.

Figure 5 Merging Changes Prior to Check-In

It may be difficult to remove a set of changes that occurred in a
previous version of an artifact. The situation in Figure 6 shows us
three versions of an artifact. If you want to remove all changes applied
to the second version (the changes occurring between the two diagonal
lines), you may encounter difficulties.

Figure 6 Comparison Between Versions

For example, the changes between version 1 and version 2 must be
compared to the changes between version 1 and version 3.
8 Rational Rose RealTime, Guide to Team Development

Protecting Configuration Items From Unintentional Changes
Obtaining adequate permission to modify artifacts helps to ensure that
unintentional changes do not occur. Configuration management can
choose to implement and enforce this type of policy.

Adding Dependency Issues

Modifying an artifact may cause a conflict with another change if it
removes a dependency that one or more other artifacts rely on.
Figure 7 shows how this type of problem can occur.

Figure 7 Removing Required Dependencies
Rational Rose RealTime, Guide to Team Development 9

Chapter 1 Team Development
Developer A and B individually check out artifacts A and B
respectively, and have access to the shared version of artifact A and
B respectively.

Developer A creates a new dependency in foo() by adding
myBar-> bar().

Developer B makes changes to bar() in class A by changing the
parameter signature to integer.

Changes to bar - from bar() to bar(int) - cause any references to this
function to fail. The changes made by Developer B (to artifact B) that
are referenced by foo in artifact A are not valid.

Note: Most merge tools are unable to identify a conflict here because
they compare items of work individually, and not against all referenced
work.

This type of change is common and may have serious implications.
Often, when product maintenance is underway and feature
development is concurrently managed, the maintenance person or
developer may be unsure or unaware of all dependencies involved in a
proposed change. Rather than research all the dependencies
associated with the artifact, they do not modify the original item.
Instead, they create a new item with the proposed changes.

Changing Language Semantics

This type of change is common and may have serious implications.
Often, when product maintenance is underway and feature
development is concurrently managed, the maintenance person or
developer may be unsure or unaware of all dependencies involved in a
proposed change. Rather than search all the dependencies associated
with the artifact, they do not modify the original item. Instead, they
create a new item with the proposed changes.

When modifying an artifact, team members must be aware that
subsequent changes can affect the language semantics of the artifact.
Figure 8 shows an example of how changes can produce unexpected
results.
10 Rational Rose RealTime, Guide to Team Development

Protecting Configuration Items From Unintentional Changes
Figure 8 Code Example Showing Changes to Language Semantics

Unless your merge tool knows something of the language semantics
used, it may produce a file like that in Figure 9.

Figure 9 Resulting Artifact After Merging Changes
Rational Rose RealTime, Guide to Team Development 11

Chapter 1 Team Development
The function dothat() is called only when there is trouble, and the
function dotheotherthing() is called only when okay is true. Since
most developers do not comment ending braces, it is difficult to identify
the problem created by merging. Figure 9 only illustrates a small
example. A much more complex code block may present a situation
where it is difficult to see the unintended change.

Rational Rose RealTime Model Integrator is aware of the language
semantics/model syntax of model files.

Note: Note: Although Rational Rose RealTime files are text files, the
standard text file merge tool is not aware of the Rational Rose RT
language semantics or model syntax, and it will corrupt the model files
when it attempts to merge them.

Model Integrator is aware of the Rational Rose RealTime language
semantics/model syntax, but not of the language semantics for any
language add-ins, or the UML.

Managing Relationships Between Configuration Items

Note: Team members must understand and use the dependencies
between configuration items to reduce or prevent unintended
changes in the system.

Because most configuration items do not work in isolation from other
configuration items, a set of particular versions of configuration items
has a set of dependencies. When a set of versions of configuration items
changes, the possibility exists that the set of dependencies also
changes. It is useful to compare the set of dependencies from one set
of versions to a previous set to ensure that dependency changes are
intentional.
12 Rational Rose RealTime, Guide to Team Development

Managing Relationships Between Configuration Items
A set of versions of configuration items is also known as a lineup.
Figure 10 shows a generated dependency report for the lineup
identified by the label called ALabel. Later, a comparison is made
between ALabel and another dependency report generated for the
lineup identified by BLabel. Although the dependency reports
themselves may be too large to be of any use, a good differencing tool
can make it easy to see dependencies modified since a previous stable
lineup of the project artifacts.

Figure 10 Comparing Dependency Reports

Specific to Rational Rose RealTime, there are several levels of
dependencies that must be understood and managed:

� Dependencies between control units in a model. See Storage of
Model Data on page 47 for more information on model files.

The Rational Rose RealTime Toolset interprets what is loaded into
memory as the entire model. When loaded from separate
configuration items, the model elements stored on secondary
storage must be loaded such that it creates a model where
elements are consistent with any corresponding relationships.

� Model element relationships
Rational Rose RealTime, Guide to Team Development 13

Chapter 1 Team Development
Managing and Delivering Configuration Items

A specific set of configuration items in their appropriate version (a
lineup) must be accessible and reproducible. Test teams, packaging
teams, and production end users must be able to work with a release
of the entire system that is not in flux. Most version control tools use
labelling to produce an environment that contains the desired set of
configuration items. Labelling allows you to identify a version of a
configuration item with a retrieval marker through association.

Protection of these version sets is important. For example, in a test
environment, a small change to a single configuration item can render
an entire set of test results unreliable. Often, testing teams only have
enough time to perform a specific group of tests once. When an element
changes in the test environment while a set of tests are underway, the
schedule may not allow for regression testing, and the level of
confidence in the test results is downgraded.

Like most one-to-many relationships, a label is often stored many
times; once with each configuration item.

Figure 11 Labelling Configuration Items

Figure 11 shows the following:

� The full set of configuration items are not all labelled at the same
time.

Note: If the label is applied while the lineup changes, this may
create an inconsistent state.
14 Rational Rose RealTime, Guide to Team Development

Managing and Delivering Configuration Items
� A configuration item may be overlooked or may not be associated
with the label. Sometimes, it is better if the configuration item is
not associated with the label. The label associated with a previous
version of the configuration item would make the problem difficult
to find.

A fixed label is the first primary use of a label, forever identifying a
version of a configuration item with a specific label. An example
identifier of this type of label is “Build 2000.10.04 night” or “Release
1.0”. It is also useful to include naming convention details, such as the
date and time in a label name.

The two types of floating labels (logical and explicit) become associated
with different versions of a configuration item.

Over time, a logical floating label is arbitrarily associated with the
latest version of a configuration item on a particular branch or stream.
For example, “LatestDevelopment” or “JanesLatest”.
Rational Rose RealTime, Guide to Team Development 15

Chapter 1 Team Development
An explicit floating label is explicitly assigned to different versions over
time, and it is almost always based on the associations of another label
and not with the latest versions on a branch or development stream.
This means that it is not necessary to “freeze” the configuration items
to associate a label with versions already assigned to another label;
only the state of the base label must be frozen. For example, Figure 12
shows that the SYSTEMTEST label is associated with version 3 of this
particular configuration item.

Figure 12 Example of Labelling Items

When the test team for the system is ready, they can associate the label
with all the versions associated with FUNCTIONALTEST. No changes
should occur to the FUNCTIONALTEST label until the SYSTEMTEST
label change is complete. However, assigning LATESTSTABLE with the
current versions of all the files on the main branch of development
requires that no new main branch versions are added to any of the
configuration items until the LATESTSTABLE label change has
completed the operation. Since labels can be moved, it is good practice
to produce and keep a dated report on the versions associated with
important labels for milestones.
16 Rational Rose RealTime, Guide to Team Development

Improving Efficiency in Team Development
Creating and comparing label reports of different dates on a regular
basis can reveal trends and areas that require additional testing to
ensure quality of volatile areas of the system. Figure 13 shows label
reports for two consecutive weeks.

Figure 13 Comparing Reports

Teams looking at a particular lineup of configuration items should
retrieve artifacts solely on the selection of configuration items
associated with a specific label. Testing in this type of environment
quickly identifies overlooked configuration items because of a missing
association. It also ensures that all necessary configuration items are
included as they are made available to other teams.

Improving Efficiency in Team Development

The implementation of some team development practices can hinder
the implementation of other team development goals. Planned
activities may be part of the strategy to deal with implementation
issues in a team environment.

You can reduce unplanned activities by using an effective strategy that
promotes handling conflicts up front. Your configuration management
plan should implement a strategy that promotes team development
goals with as little impact to team activities as possible. See Goals of
Team Development on page 1 for more information about specific team
development goals.

The stakeholders of the configuration management plan are almost
everyone, and their needs vary significantly. The description of the
roles and tasks in this document is general and must be customized to
suit your particular development organization.
Rational Rose RealTime, Guide to Team Development 17

Chapter 1 Team Development
Team Development Roles

This section provides an overview of the typical development roles
played by team members in a software project. The organization of the
remaining sections elaborate on the logical activities associated with
these roles.

Typical Roles

A role is a named behavior of an entity participating in team
development, and each role has assigned tasks to complete. There are
typically seven roles to consider in your team environment:

� Architect

� Developer

� Integrator

� Tester

� Administrator (for source control)

� Configuration Manager

� Project Manager

� Consumer

Roles Vary Based on Team Size

In a large team environment, several people can be responsible for
different team tasks associated with the same role, whereas smaller
projects can have only one person responsible for most or all of the
tasks for a specific role.

A single person can play multiple roles. A user can perform Architect
tasks while working on the initial architecture of the system. Later,
they can perform Developer tasks when they are performing detailed
implementation. After they make changes, the user can perform
Integrator tasks to promote this change to the integration branch of
their source control system.
18 Rational Rose RealTime, Guide to Team Development

Improving Efficiency in Team Development
Architect Role

The Architect establishes the overall structure of the model: the
grouping of elements into packages, the separation of models into
subsystems, and the interfaces between these major groupings. The
Architect adapts the structure of the model to reflect the organization
of the team.

Architect Tasks:

� Packages, Models, and Subsystems on page 97

� Decomposing a Model into Subsystems on page 100

� Splitting a Model on page 101

See Organizing a Model (Architect Activities) on page 97 for a description
of these tasks.

Developer Role

A Developer is anyone given check-in and check-out privileges for
ongoing system development or system maintenance.

Developer Tasks:

� Configuring Work Areas on page 124

� Getting a Specific Lineup of a Model on page 124

� Opening a Model Under Source Control on page 125

� Checking Controlled Units In and Out of Source Control on page 126

� Building and Running Locally on page 129

� Unit Testing within a Subsystem on page 130

� Promoting Changes for Integration on page 132

See Working with a Model Under Source Control (Developer Tasks) on
page 123 for a description of these tasks.
Rational Rose RealTime, Guide to Team Development 19

Chapter 1 Team Development
Product Tester Role

The Test Designer is the principal role in testing, and is responsible for
planning, designing, implementing, and evaluating the test.

Tester Tasks:

� Configuring Work Areas on page 124

� Getting a Specific Lineup of a Model on page 124

� Opening a Model Under Source Control on page 125

� Sharing controlled units

� Building and Running Locally on page 129

� Generating a test plan and test model

� Implementing test procedures

� Evaluating test coverage, results, effectiveness

� Generating a test evaluation summary

The Tester is responsible for:

� Setting up and executing the test.

� Valuating test execution.

� Recovering from errors.

Integrator Role

An Integrator combines changes from multiple developers to produce
an internal build that they can use as the basis for the next set of
development activities.

Integrator Tasks:

� Working with an integration model

� Sharing controlled units

� Building using Automated Scripts on page 133

� Building within a Larger Build Procedure on page 135

� Reuse of Build Artifacts on page 136

� Integrating Changes on page 137

See Building and Integrating (Integrator Tasks) on page 133 for a
description of these tasks.
20 Rational Rose RealTime, Guide to Team Development

Improving Efficiency in Team Development
Source Control Administrators

The Source Control Administrator provides the overall source control
infrastructure and environment for all required members of the team.

Source Control Administrator Tasks:

� Configuring the source control system for use with Rational Rose
RealTime

� Placing a model under source control

� Creating a default workspace file

� Defining work areas

� Defining lineup policies

� Enforcing all other configuration management plan policies

Depending on your team organization, the Integrator role can perform
one or more of these tasks.

Configuration Managers

The Configuration Manager provides the overall Configuration
Management (CM) infrastructure and environment. The CM function
supports the product development activity so that developers,
integrators, and testers have:

� Appropriate workspaces to build and test their work.

� All artifacts are available for inclusion in the deployment unit, as
required.

The Configuration Manager must ensure that the CM environment
facilitates product review, change, and defect tracking activities. The
Configuration Manager is ultimately responsible for a comprehensive
plan that identifies and deals with pitfalls to team development in the
most efficient way for the project.

Project Managers

The Project Manager allocates resources, determines priorities,
coordinates interactions with customers and users, and generally
keeps the project team focused on the right goal. The Project Manager
also establishes a set of practices to ensure the integrity and quality of
project artifacts.
Rational Rose RealTime, Guide to Team Development 21

Chapter 1 Team Development
Customer Role

The result of the development effort is customer consumable. It is
usually impossible to tell from the product the specific versions of
source files used to create it.

Most products have some way of providing information to the customer
that could assist in determining the versions of source files used to
create it. Sometimes, a combination of product version label and build
numbers are reported to the customer in an About dialog box, much
like the Rational Rose RealTime Toolset. Label the particular lineup of
source files used to create the product delivered to the customer for
possible retrieval. Customers need to know that any bug fixes provided
by the maintenance team will contribute to the stability of the product.

Recommendations

Protection of configuration items and the ability to deliver a consistent
set of configuration items are the main priorities of the configuration
management plan. An implementation of a plan to achieve the other
goals should support this ideal.

Use the source control operations supported through Rational Rose
RealTime to facilitate the implementation of a greater configuration
management plan. For complex projects, a large part of the
configuration management strategy that deals with Rational Rose
RealTime models may be strict ownership of shared packages.

You may think of shared packages as the building blocks of the system.
One Rational Rose RealTime model brings all the building blocks
together in a coherent system. Many working models are used with the
sole purpose of creating and testing those building blocks.

Delivering the Product

Associate the creation of configuration items and subsequent changes
with an activity under the approval of a single point of contact. This
single point of contact is sometimes implemented as a Change Control
Board (which may have an alternate name within your organization)
that is aware of all the requirements and activities that change the
system. Their awareness of the changes to the system at a high level
can help them identify functional or esthetic conflicts, or
nonconformance.
22 Rational Rose RealTime, Guide to Team Development

Recommendations
Source Control Fundamentals

Chapter 3, called Source Control Fundamentals on page 79, specifies
the source control operations supported from Rational Rose RealTime.
It outlines some of the differences in view-based and file-based source
control systems. There is also a discussion on versioning strategies.

The ability to associate labels and create a lineup exists in both types
of source control systems. Using a parallel stream versioning strategy
while maintaining a single stream versioning policy, provides the safety
inherent in single stream versioning strategies, and also the ability to
control parallel development of the same artifacts among different
teams.

Any source control tool that allows branching is capable of supporting
a parallel stream versioning strategy. An example of appropriate
streams of development are:

� Development streams, where developers make changes to the
configuration items.

� Integration stream (implementing requirements and features)
managed by Integrators.

� Product version maintenance streams (providing fixes for
bugs/defects identified after release date) also managed by
Integrators.

Include a maintenance stream for every product version currently
supported by your organization. When support for the specific product
version is concluded, these streams should end.

Note: You can use merge tools, such as Model Integrator, for merging
simple, non-conflicting changes. However, because of their limited
semantic support, we do not recommend that you use automated merge
tools when there are many conflicting changes.

Bugs and defects reported against a version of the product should be
evaluated against the product under continued development in the
new development stream. Other versions of the product that may be
affected by the bug/defect are under continued support. Apply
corrections to all affected versions through a manual merge, or
through focused merges.
Rational Rose RealTime, Guide to Team Development 23

Chapter 1 Team Development
If you implement a parallel stream versioning strategy, maintain
virtual single streams within the parallel streams. For example,
Figure 14 shows a version tree history for a configuration item. A
branching of development effort occurs at version 1.0, and version 2.0
of the configuration item.

Figure 14 Parallel Stream Versioning Strategy
24 Rational Rose RealTime, Guide to Team Development

Recommendations
Only one side of the branch is checked back into that integration
stream. The Integrator uses the main streams of development and may
be unaware of the details of individual changes. Therefore, from the
perspective of these streams, they are a single stream of development
only receiving updates from one source that has permission to modify
the next version in the stream. If you require merging, perform it
outside of these integration streams, and sanity test it before
integrating it as a new version.

Do not associate product verification labels and packaging or
deployment labels with versions outside these main integration
streams of development. When working with files such as test scripts
that are version controlled, consider these files as if they were in a
separate project.

You may have separate streams for the development and maintenance
of these scripts as well, but this should be thought of as a different
project than the one it supports from a version control perspective.
That supporting system may have logical ties or parallels with the
product under development.

Preempting Conflicts

You want to minimize more than one concurrent check-out of a
configuration item. If this strategy results in unacceptable contention
for a configuration item, or a dead-lock occurs, put overrides in place
to deal with the contention.

A dead-lock occurs when Developer A requires a configuration item
checked out to Developer B to finish his work, and Developer B
requires the configuration item that Developer A currently has checked
out. Because this is done up front, there is an awareness that changes
are being concurrently made to the same configuration item, and these
changes can be managed to minimize the likelihood of unintended
change.

This type of concurrent work must occur outside the main
development streams. When it occurs, resolve this type of situation as
quickly as possible and provide adequate testing of the configuration
item following the period of concurrent change, to ensure no
unintended changes occurred as a result.
Rational Rose RealTime, Guide to Team Development 25

Chapter 1 Team Development
The Rational Rose RealTime shared package capability, defined in
chapter 2, Storage of Model Data on page 47, can implement an
ownership strategy to limit the scope of implicit permissions to change
configuration items.

Packaging Strategy

Think of a model as a structure containing packages, that in turn
contain the design of the system. Work models create packages that
contain the particular part of the system a team or developer is
responsible for. These work models can also see other required
packages on a read-only basis by using the Rational Rose RealTime
shared package facility. An integration model can then reference the
work contributions by team members exclusively as shared packages.

Figure 15 Packaging Strategies
26 Rational Rose RealTime, Guide to Team Development

Recommendations
Managing Dependencies

To effectively manage changes to the dependencies in your system, you
must create and enforce your own team processes.

Note: For Rational Rose RealTime projects, you must identify the
dependencies between control units in a model.

See chapter 2, Storage of Model Data on page 47 for more information
on model files.

Additionally, it is good practice for you to identify your model element
relationships. And, it would be beneficial if you also had an
understanding of the generated source dependencies and data
dependencies.

If you do not have a formal reporting mechanism that automatically
identifies these dependencies, every change must be addressed to
ensure that dependencies are researched and assessed as a result of
the change.

Labeling

When considering labelling, we recommend the following:

� Establish an environment for each group or individual that will
work with a specific set of configuration items in isolation from
other changes for any length of time. For most version control
tools, this is established with directories containing a copy of the
appropriate version of the configuration item identified through a
movable label. The team member performs work on artifacts in
these directories, and this set of directories is also called the
sandbox.

� When using file-based version control tools in Unix systems,
developers can configure a directory that references the shared
work through soft links. When team members modify the reference
in the directory, the link is broken and it is replaced in the sandbox
by the modified file.

� Create dated reports for each floating label on a regular basis,
listing all configuration items associated with the label and the
associated version. We recommend that you add the report to your
version control system. You can use the data from the report to
identify how the set of configuration items changed over time, and
Rational Rose RealTime, Guide to Team Development 27

Chapter 1 Team Development
to help you identify volatile and stable elements of the system.
Fixed labels do not require this type of report. For a label
associated with a set of configuration items that do not change
often, you can reduce the frequency to some appropriate interval,
or on an ad-hoc basis.

� Define your labeling strategy as much as possible before you begin.
Use a naming convention so that everyone can understand the
labels.

� Identify labels that may require protection from modification, and
those labels that may require restricted access.

When Merging is Necessary

Merging is necessary when an awareness exists that concurrent
development may result in conflicting changes. Perform the merge as
often as possible. Each developer involved in a concurrent change
must regularly work with a merged version of the ongoing work to
identify adverse or unintended change.

The intention is to reduce the amount of lost work that can occur when
conflicts arise. A conflict identified early reduces the amount of re-work
necessary. This kind of concurrent work on the same artifacts must be
done in isolation from other work.

The way ClearCase facilitates integration branches, it is wise to choose
a special integration stream for the concurrent changes to a
configuration item. This isolates the remaining artifacts in your system
(which uses mutual exclusion) from these changes until the
configuration item can go through extensive quality verification.

With other sandbox type systems, one developer merges other
developer's work, and then provides the merged version to the other
developer.

After every merge, assess changes to semantic relationships and other
dependencies.
28 Rational Rose RealTime, Guide to Team Development

Recommendations
Merging Detail Code Before Using Model Intgrator

In Model Integrator, when models include detailed code, you must
select one contributor over another.

When comparing models, Model Integrator looks at the model
elements, which it then compares with other elements based on
properties. For example, for a base model, called ModelX, there are two
contributors, Contrib1 and Contrib2. If property A of element A from
Contrib1 is equal to element A of property A for Contrib2, then all code
associated with the transition is in a single property; the base model
has element A.

When property A of element A from Contrib1 is not equal to element A
of property A for Contrib2, Model Integrator detects the difference and
allows you to select a contributor. Selecting a contributor causes the
base model to change.The result is a merged model with the changes
from a single contributor.

To merge before using Model Integrator:

1. Abandon the merge.

2. Export the code from Contrib1 to a file.

3. Export the code from Contrib2 to another file.

4. Use another merge tool, such as Rational ClearCase, to merge the
source code from the two files.

5. Import the merged source code into Contrib1 in Rational Rose
RealTime Model Integrator.

6. Use Model Integrator to merge Contrib1.

Artifact Freeze

Occasionally, a set of configuration items may require protection from
more than one change. We recommend that all changes currently
underway be completed, verified, shared, and re-verified. Do not allow
any additional changes to that set. This is sometimes referred to as a
freeze. Following the freeze period, refresh the work areas that use that
set of shared work.
Rational Rose RealTime, Guide to Team Development 29

Chapter 1 Team Development
The artifact freeze allows testing to occur in one environment using
only shared configuration item versions before promoting those
versions to more formal testing environments. The duration of the
freeze must be long enough to label all configuration items with a fixed
label, such as “Delivered to Test on day 58”. This labelling occurs prior
to the movable “Test” label assigned the same versions as those
assigned to “Delivered to Test on day 58”.

Because “Delivered to Test on day 58” is a fixed label, it is not
necessary to produce a label report at this time. However, if reports on
the dependencies between these configuration items is available,
generate and check in the set of configuration items with the fixed
label.

A Special Type of Artifact Freeze

If a change to the model results in a change between the dependencies
of a model’s control units, check in all model-related configuration
items before making the change. Ensure that the model is checked-out
to allow for the change, and checked-in after the change. Then, refresh
work areas with the new copy of the model files. Configuration items
checked-in as a result of this special type of freeze may now be
checked-out to continue the work. This type of a change is a change to
the model’s architecture, and not necessarily a change to the
architecture being modeled. Possible scenarios include:

� Changing how to store a model file, adding control units, or
reducing the number of control units. You can make these changes
by clicking File > Control Unit or File > Uncontrol Unit from the pop-up
menu on model elements.

� Moving an element from one package to another package where
this represents a move from one control unit to another control
unit.

Building and Executing a Rational Rose RealTime Model

Rational Rose RealTime models are executable. To execute a model, a
user must compile/build a component in the model to produce the
executable.
30 Rational Rose RealTime, Guide to Team Development

Advanced Concepts and Heuristics
On a large project, we recommend sharing build artifacts, such as
generated code and object files, to reduce the build time for developers.
Rational Rose RealTime has features to support build reuse, and the
ability to integrate with other tools to leverage their features (for
example, the wink-in capabilities of ClearCase clearmake).

The Integrator is responsible for many of the ‘infrastructure’ build
tasks, while the Architect and Developer roles typically participate in
local build tasks.

On large projects, you can generate, then share an external library
interface. This feature allows you to reuse builds; you only need to
rebuild when there are changes. For information on external library
interfaces, see Generating and Sharing an External Library Interface in
the C++ Reference.

Advanced Concepts and Heuristics

This section includes additional information about advanced concepts
and heuristics in the following areas:

� Moving Controlled Model Elements on page 31

� Primary and Secondary Edits on page 32

� Understanding Blue Deltas on page 35

� Parallel Development on page 36

� Model Integrator on page 37

� Using Rational ClearCase Multi-Site on page 38

� Using Rational ClearCase UCM on page 38

� Unique Ids on page 39

� Rational Quality Architect - RealTime Edition on page 43

� Additional Heuristics for Team Development on page 43

� Additional Recommendations on page 45

Moving Controlled Model Elements

When a model element moves from one package to another, Rational
Rose RealTime does not move the file corresponding to the model
element into its new directory.
Rational Rose RealTime, Guide to Team Development 31

Chapter 1 Team Development
When a UML package is assigned a CM system label, tis later performs
the operation on the directory and all its contents. However, if the
controlled unit moved, its corresponding element will not be labeled
correctly.

Considerations

In ClearCase, the relationship between a file element and directory
elements is such that an element may be in multiple directories at the
same time, possibly even in the same view. This does not necessarily
complicate things for the toolset, but requires careful consideration.

A Rational Rose RealTime model element may be saved as two
distinctly named Rational ClearCase elements.

Heuristics

Until your system architecture is stable, use package-level granularity
rather than class-level granularity. When the system architecture is
stable, use Class-level granularity. This level of granularity reduces the
probability of having to merge units later.

Renaming a Controlled Model Element

When the name of a controlled package, diagram, or classifier changes,
the storage unit file is not changed.

Primary and Secondary Edits

When a change occurs in a model, it affects the immediate controlled
unit and Rational Rose RealTime requires that you check-out the
model. Often, more than one controlled unit may be affected by the
original change and Rational Rose RealTime also requires that you
check-out these controlled units. If you cannot check-out all of the
affected controlled units, the original change is not permitted.

The original change and all required (affected) changes are called
primary edits. Primary edits must be made effective at some point
otherwise, they will cause inconsistencies in the model that cannot be
resolved by Rational Rose RealTime as it loads the model.
32 Rational Rose RealTime, Guide to Team Development

Advanced Concepts and Heuristics
Secondary edits involve changes as a result of primary edits, but do not
have to be completed at the time as the primary edits. Rational Rose
RealTime can resolve secondary edits as it loads the model, but the
fixed model only persists in memory. You must save the affected
secondary edit control units for the changes to persist between model
loading. Since we assume a highly controlled environment, this means
that the affected controlled units must be checked out, then saved.

In summary, in a highly controlled environment, a single edit can often
affect other controlled units. As a result, some controlled units may
require immediate check-out, and some can be resolved later to have a
consistent model across all its controlled elements.

A complication to this process may occur in a project exercising best
practices; where the person making the original primary edit may only
own the controlled unit that is immediately affected. The other primary
edit controlled units may belong to another team member. Additionally,
the same holds true for the secondary edit controlled units.

To handle the secondary edits, let the owner accept the changes and
make them persistent. All other users can let Rational Rose RealTime
resolve secondary edits when loading the model, and they can choose
to ignore prompts to save the changed controlled units they do not
own.

Primary edits that do not impact more than one controlled unit are
trivial and only require that the user making the change be the one who
owns the affected controlled unit.

Primary edits that involve more than one controlled unit are the most
troublesome, and is more common in projects where specific Best
Practice guidelines are not followed. When these situations arise, there
are typically two approaches to implementing change:

� The user making the primary edits performs a private check-out of
all affected controlled units. The affected controlled units are then
later merged into another stream, possibly at integration time.
Unfortunately, the type of merging that must be performed is less
predictable and planned. It is difficult for any tool to properly and
completely address the complexities of these merges in a reliable
and robust manner. Such is the case with the Model Integrator.
Rational Rose RealTime, Guide to Team Development 33

Chapter 1 Team Development
� The user making the primary edits coordinates with the owners of
the other affected controlled units to implement a change.
Ultimately, to avoid the necessity for a merge later. This approach
is difficult to do and does not take advantage of the change
management features of the tools in the tool chain. An important
consideration for this approach to implementing a change, is who
will do the changes, and when.

Model Conversion

The following guidelines may help minimize the occurrence of problems
when dealing with primary edits:

� Every controlled unit must have an owner.

� Assign one user a number of controlled units that are related
and may involve a lot of coupling, particularly inheritance
coupling.

� Use components and layers in the architecture to reduce coupling
and minimize the number of dependent elements.

� The interaction between unsaved secondary edits and blue delta
syndrome affects the ability to build the model. Therefore, it is very
important to resolve secondary edits as soon as possible. Blue
deltas represent a changes that cannot be resolved by Model
Integrator.

� Do not over populate diagrams with information; try to focus on
model elements having the same ownership. For example, focus on
Class X and its subclasses, or Class Y and its dependencies.

Focused diagrams help reduce the effects of Primary Edits and
merge conflicts in Rational Rose RealTime Model Integrator.

Possible Solutions:

� The owners of the affected controlled unit must save secondary
edits, or save the controlled unit with the permission of the owner
of the affected controlled unit.
34 Rational Rose RealTime, Guide to Team Development

Advanced Concepts and Heuristics
Heuristics:

Some model and architecture characteristics can make secondary
edits better or worse. Whenever possible, use loosely coupled
architectures as in the access and resource manager patterns. Also,
avoid reusing packages from a production model into a consumer
model (shared external packages). Secondary edits are not recognized
until the consumer model is refreshed/loaded, which may not occur
until integration time.

Solutions:

� There are consequences associated with not saving secondary edits
in a persistent manner. For controlled units that have not had their
underlying representation updated for consistency with the
associated primary edits, Rational Rose RealTime prompts the
team member with warnings when the control unit(s) are first
loaded. These changes do not cause irreparable model
inconsistencies; however, unsaved secondary edits have a
consequence on builds. If blue deltas are not saved, then a build is
not possible.

� Rational Rose RealTime lets you build without committing changes
to source control.

Note: The worst case scenario is when an edit performed in one model
forces a primary edit in a controlled unit in another model (or other
models), but not in the model where the initial edit was performed. For
this case, the owner of a model that is affected by a primary edit in
another model, must perform the integration of changes.

Understanding Blue Deltas

Blue Deltas occur when changes are made to a model, and due to the
control over the unit by the CM system, the file cannot be saved.
Rational Rose RealTime attempts to save all controlled units where the
memory image differs from the image on the file system, but is
unsuccessful because the controlled unit is read-only. This is one of
the negative effects of unsaved secondary edits.
Rational Rose RealTime, Guide to Team Development 35

Chapter 1 Team Development
Parallel Development

Parallel Development is a term that sets high expectations regarding
collaborative development, where there is a need for multiple users to
work together on a common set of artifacts to achieve the same goals.

When collaborating on a common set of artifacts, consider the following
approaches to collaborative development:

� When more than one user needs to make changes to the same
artifact, they must share the artifact; the changes are made
serially, one after the other. Although this is the most reliable
approach, it is perceived by most users as not being most
efficient. This approach can be managed using the check-in
and check-out features of most CM systems.

� When more than one user needs to make changes to the same
artifact, they can make the changes at the same time. The changes
are merged back into one artifact at a later date. The benefit of this
approach is that work goes on in parallel, and it saves time. The
problem is that arbitrary and uncoordinated changes on the copies
of the same artifact can be difficult to resolve during the merge
process. In fact, they may never be resolved, and the changes from
only one contributor are accepted and from the other, discarded.

Note: We recommend that these types of changes be coordinated and
merged often.

The development process and tool chain can have a significant impact
on the opportunity to use and the effectiveness of the second approach.
The second approach is known as Parallel Development. For the
purpose of this discussion, the term Parallel Development refers
specifically to this second approach to collaborative development.

It is unrealistic to expect to employ parallel development without any
constraint or guidance. Too often, this technique is used without
coordination or planning. Sophisticated tools, such as Rational
ClearCase, may not be properly used and can lead to this
misperception. The design artifacts at the center of collaborative
development have complex interrelationships within them, and
between them. These higher level abstractions and concepts are not
easily, and cannot arbitrarily, be merged without some experience.
Fortunately, when team members are working within a well-defined
process, and there is a clear definition of roles and responsibilities,
most changes made in parallel are done in a complementary manner.
36 Rational Rose RealTime, Guide to Team Development

Advanced Concepts and Heuristics
A certain amount of conflicting changes are inevitable. You can resolve
the changes by choosing one or the other. These conflicting changes
must be expected and their frequency should be minimized. If they are
unexpected, it may be counterproductive and time is being wasted by
changes that will not be discarded.

The following guidelines will help maximize the efficiency and
productivity of a process that employs parallel development:

� Scrutinize and minimize the occurrence of every conflicting change
in the merge.

� Create a well documented and communicated development plan to
help ensure that every developer knows how they are contributing
and what they will implement. This helps minimize duplication of
effort, even at the lowest level of detail.

� Establish clear ownership of design artifacts, and use source
control to enforce it.

� Invest time into understanding what the Rational Rose RealTime
Model Integrator will and will not do during a merge.

� Follow all guidance specific to the Rational Rose RealTime Model
Integrator regarding the types of changes that it can reliably merge.

� Resolve all issues relating to merging parallel changes prior to
integration.

Model Integrator

The Rational Rose Model Integrator is a powerful tool that manages the
merging and differencing of models at the Rational Rose RealTime
meta-model level. It is not a visual model or UML semantic-level merge
tool, therefore it lacks a number of features that can make the merging
of models more efficient and more accurate.

For every use-case of Model Integrator that fails to do what you may
expect, there are many other use-cases that do add value or do what is
expected, and will save time. When using Model Integrator, you must
understand what it can do efficiently and properly, and what should be
avoided.

When you plan for a graphical change (a layout change) to a diagram
within a model, only one person should make this change. This
ensures that during the merge process, all of the graphical changes are
accepted by one contributor and merging at a lower level of detail is not
allowed.
Rational Rose RealTime, Guide to Team Development 37

Chapter 1 Team Development
Using Rational ClearCase Multi-Site

When a team follows best practices, (for example, being careful about
artifact ownership) they can use Rational ClearCase Multi-Site to work
on separate branches.

Rational ClearCase Multi-Site is a powerful tool that can help you with
the challenges of a distributed team development. When using Rational
ClearCase Multi-Site, you must consider the following:

� Rational ClearCase Multi-Site has a restriction that a branch is
owned by a site.

� Only developers on that specific site can check out to that
particular branch.

Using Rational ClearCase UCM

Unified Change Management (UCM) is an activity-based process for
managing changes to all software artifacts. It supports a change
management usage model and is a key component of the Rational
Unified Process (RUP). The RUP is a comprehensive framework for
delivering software development best practices. You can use UCM to
unify cross-functional teams and provide meaningful, common data
access, along with processes and tools, that enable teams to manage
change, monitor quality, and communicate more effectively from
requirements to release.

For larger teams, you can use a combination of UCM and “base”
ClearCase functionality on a project-by-project basis. However, you
may want to consider the following facts about UCM:

� Existing Rational ClearCase users can upgrade from their current
version to UCM and continue to work the same way by choosing
not to use UCM. New Rational ClearCase users can use the UCM
model or implement a more traditional model using base ClearCase
functionality.

� If you want to use the new UCM capabilities for a subset of your
current projects, it is possible for some teams to use UCM while
others do not, even if they share some or all of the same code.

� Additional capabilities are available with the combination of
Rational ClearCase and ClearQuest-enabled UCM.
38 Rational Rose RealTime, Guide to Team Development

Advanced Concepts and Heuristics
� The UCM model provides an enhanced integration between
Rational ClearCase and Rational ClearQuest that is not available
outside of UCM.

� Rational ClearCase LT supports UCM and offers an activity-based
process model for managing change and controlling workflow. This
provides for a seamless upgrade path from the basic source control
management functions provided by ClearCase LT to the enterprise
capabilities featured in ClearCase. With Rational ClearCase LT, you
can also take advantage of UCM to manage changes to artifacts
other than source code, including requirements documents, test
scripts, and design models.

Unique Ids

Unique ids are unique internal names associated with model elements.
They are used internally by Rational Rose RealTime, and not all model
elements require unique ids. Rational Rose RealTime includes a
feature that helps Model Integrator by generating unique ids for those
model elements that would otherwise not require them, for internal
use. For Model Integrator, an element with a unique id is easier to
merge.

RRTEI users will find traceability easier when they set this option.
Unique ids improve the traceability of model elements of other tool
integrations that use RRTEI.

It is necessary to plan and choose when to incorporate the new unique
ids into the project model since virtually all controlled units will be
modified implicitly. Additionally, the generated new ids are dependent
on time and location. For example, generating unique ids for a given
model at different times, or on different machines, produces different
ids.

The following model elements do not have unique ids, unless you set
this option:

� Protocol In Signals ()

� Protocol Out Signals ()

� States (CompositeState)

� Capsule Roles (CapsuleRole)

� Ports (Port)

� Port Roles (PortRole)
Rational Rose RealTime, Guide to Team Development 39

Chapter 1 Team Development
� Capsule Structure diagram (CapsuleStructure)

� Classifier Role (ClassifierRole)

� Transitions (Transition)

� Junction Point (JunctionPoint)

� Choice Point (ChoicePoint)

� Connectors (Connector)

� (Guards)

� (Events)

� (EventGuards)

� Parameters ()

� Element hyperlinks (ExternalDocument)

Caution: We strongly recommend any team involved in parallel
development use this option.

Setting this option creates unique ids for model elements that currently
do not have them. This typically affects most of the model, so you will be
prompted to check out those parts when setting this option.

When saving the model, the size of the affected file increases by
approximately 20%, and the time to load the model also increases.

Caution: Do not set this option in multiple streams as shown in
Figure 16; otherwise, objects with similar characteristics will be treated
differently since their unique id’s will differ.

Figure 16 shows an example of an incorrect merge scenario.
40 Rational Rose RealTime, Guide to Team Development

Advanced Concepts and Heuristics
Figure 16 Incorrect Merge Scenario

An example of when to set this option is shown in Figure 17.
Rational Rose RealTime, Guide to Team Development 41

Chapter 1 Team Development
Figure 17 A Correct Merge Scenario

Note: This option must be set prior to branching.

For information on how to enable the Unique ids, see Model
Specification in the online help.

To clear the unique id option, follow the same procedure in Figure 17.

Caution: If you clear this option, your merge results will not be as
reliable.
42 Rational Rose RealTime, Guide to Team Development

Advanced Concepts and Heuristics
Rational Quality Architect - RealTime Edition

When using the Rational Quality Architect - RealTime Edition in a CM
controlled environment, ensure that you check-out the following:

� Top level model file

� Logical view

� Component view

� Deployment view

When several developers are working with Rational Quality Architect -
RealTime Edition in parallel, they must have separate models or be on
different branches.

You can use scratchpad packages to avoid complications in using
Rational Quality Architect - RealTime Edition in a highly source
controlled project. You can only specify the package that the generated
model goes into; you have no control of the component or component
instance.

Additional Heuristics for Team Development
� Begin with a high level of granularity for controlled units when an

area of a model is immature. As the area of a model becomes more
mature, then its level of granularity can be lowered, possibly to the
capsule and diagram level.

� During the architecture phase, the granularity is course. When the
architecture is released to the designers, decrease the granularity
to manageable pieces for efficient team development.

� Use a layered architecture where the coupling between layers is
minimal and well-defined. This kind of architecture is also called
loosely coupled.

� Define the interfaces between layers of the architecture early and
minimize changes to these interface elements.

� Release the interfaces and associated components at a layer
boundary separately and ensure that they have their own test and
release schedule. There should be one or more separately released
components in each layer.

� Every controlled unit should have only one owner.

� Plan for conflicting merges and attempt to minimize them
throughout the development life-cycle.
Rational Rose RealTime, Guide to Team Development 43

Chapter 1 Team Development
� Only merge controlled units with primary edits back into the
integration stream.

� If the system is sufficiently complex, divide each layer into
subsystems.

� Ensure that subsystems have a well-defined and minimal interface
to other subsystems.

� Subsystems are not necessarily confined to one layer. Interfaces at
lower and higher levels of abstractions should coincide with one of
the architectural layers. Subsystems may encapsulate their own
set of layers that satisfy particular objectives.

� Use different models (.rtmdl files) to develop different subsystems
and share them in the top-level model.

� Employ at least three streams of development: release stream,
integration stream, and developer stream.

� Place a new part of a model under source control after it has had
some (minimal) testing.

� As an inheritance heuristic, do not use a classifier to derive
classes (for example, Capsules, Classes, and Protocols) until its
superclass has a stable design element.

� Do not make frequent or large changes to a superclass.

❑ Subsystem interfaces (protocols and data classes) may need to
be modified by both users, but changes should be planned,
controlled, and authorized by owner (or group).

❑ Appoint one responsible person for each interface. This person
is the only one that can change the interface. For example, all
requests for changes must be sent to this single team member
for them to make the required change.
44 Rational Rose RealTime, Guide to Team Development

Advanced Concepts and Heuristics
Additional Recommendations
� Perform integration at least once a week.

� Use a build coordinator to ensure that all required components
make it into the build. The build coordinator has granularity to the
capsule protocol level.

� The following structure represents a recommended general layout
of a model, with particular focus on the Logical view:

+UCVP
+LVP
+Project/Model Name

+Layer1
+SubSystem1
+SubSystemn
+CommonSubSystemProtocols
+CommonSubSystemDataClasses
+TopCapsules

+LayerN
+SubSystem1
+SubSystemn
+CommonSubSystemProtocols
+CommonSubSystemDataClasses
+TopCapsules

+CommonLayerProtocols
+CommonLayerDataClasses
+TopCapsules

+CVP
+DVP
Rational Rose RealTime, Guide to Team Development 45

Chapter 2

Storage of Model Data

Contents

This chapter is organized as follows:

� Storing Model Data on page 47

� What is a Controllable Element and a Controllable Unit? on page 48

� Sharing Controlled Units on page 61

� Creating Sharable Controlled Units on page 64

� Working with Controlled Units on page 65

� Moving Controlled Units on page 67

� Export Controllable Elements from a Model to a File on page 68

� Import Controllable Elements from a File to a Model on page 69

� Add an Existing Controlled Unit to a Model on page 70

� Share an Existing Controlled Unit into a Model on page 71

� Produce a Single Model File from a Model with Many Units on
page 73

� Virtual Path Maps on page 73

Storing Model Data

The following sections describe how Rational Rose RealTime stores
model data. This information is useful for understanding how Rational
Rose RealTime interacts with source control systems, as well as for
learning the capabilities that may impact the performance of Toolset
operations that read and write model data to files.
Rational Rose RealTime, Guide to Team Development 47

Chapter 2 Storage of Model Data
By default, Rational Rose RealTime saves a model as one file. When
multiple users work on the model at the same time, there is reduced
contention for files if the model is stored as many small files rather
than one large file. Rational Rose RealTime supports users saving
models as a series of individual files, called controlled units, rather
than one large file. As a general guideline, the more granular the
storage, the better it is for large team development because each file is
a potential bottleneck when multiple users work on it concurrently.

Rational Rose RealTime provides a great deal of flexibility in how the
model data is stored as files. A very simple model may be stored in a
single file and a very large model can be stored in hundreds or
thousands of files. Understanding how to control the storage of model
data is important for using Rational Rose RealTime successfully.

What is a Controllable Element and a Controllable Unit?

A controllable element is a Rational Rose RealTime element (for
example, class, package, class diagram) that supports being
controlled/saved to a separate PetalRT file, independent of its parent
element. The term controllable unit, or just unit, is generally used to
refer to the file itself as opposed to the element.

Each controllable element has a "controlled" flag which determines if it
is stored in its own unit file or in the same file as its parent. This flag
can be changed for a specified element using the File > Control Unit and
File > Uncontrol Unit menu items in the browser context menu. See
Controlling a Subset of the Controllable Elements on page 65 for the
details of this process. The initial setting for the controlled flag is based
on the setting of the "Control new child units" flag of the parent unit.

The model itself is always a controlled unit. Thus, a model is made up
of a hierarchical set of controlled units where the granularity of the
controlled units is fully configurable by the user.

If an element is controlled, then its Specification Dialog includes a Unit
Information tab which lists the associated file name and other
settings. See Unit Information Tab on page 57.
48 Rational Rose RealTime, Guide to Team Development

What is a Controllable Element and a Controllable Unit?
The Rational Rose RealTime browser uses the following icons for
controlled units (the icons are much smaller when shown in the
browser)

Figure 18 Browser Icons for Controlled Units

The first icon indicates a controlled unit that has been saved.

The second icon indicates a controlled unit that has unsaved changes.
This blue triangle is often referred to as a "delta". (Delta is a greek letter
drawn as a triangle and means "change".) The blue delta symbol
indicates that the version of a unit in the toolset is different from the
file on disk from which it was loaded.

The last icon indicates a shared external package, such as the
RTClasses package.

Controllable elements that are not individually controlled do not have
these icons (but they will have their respective element type icon, such
as package or diagram). Additional browser icons relating to source
control status are described in Source Control Status on page 80.

Figure 19 shows an example of these icons in the browser. If we look at
the elements in the Logical View, then we see:

� RTCClasses and RTClasses are shared external packages,

� Collaboration1 is a controlled unit with unsaved changes,
Rational Rose RealTime, Guide to Team Development 49

Chapter 2 Storage of Model Data
� the Main class diagram and NewClass1 are controlled units that
were saved,

� NewPackage1 is not a controlled unit since it does not have a
controlled unit icon

.

Figure 19 Browser Icons Example

What Elements Can Be Controlled?

Rational Rose RealTime supports the following controlling elements as
separate units (file extensions for corresponding files are shown in
parentheses):

� Model (.rtmdl)

� Package (.rtlogpkg), (includes Use Case Packages and Logical
Packages)

� Class Diagram (.rtclassdgm) (includes Use Case Diagram)

� Class (.rtclass)

� Capsule (.rtclass)

� Protocol (.rtclass)

� Use Case (.rtclass)

� Actor (.rtclass)
50 Rational Rose RealTime, Guide to Team Development

What is a Controllable Element and a Controllable Unit?
� Collaboration (.rtcollab)

� Component Package (.rtcmppkg)

� Component Diagram (.rtcmpdgm)

� Component (.rtcmp)

� Deployment Package (.rtdeploy)

� Deployment Diagram (.rtdeploydgm)

� Processor (.rtprcsr)

� Device (.rtdev)

Parent and Child Controlled Elements

Some types of controlled elements are containers for other controlled
elements. For example, a logical package is a container for classes,
capsules, protocols, class diagrams, collaborations, and other logical
packages. The package is often called the parent for the controlled
elements it contains (which are often called children).

When you create a controlled unit from a child element and then save
it, its contents are moved from its parent unit’s file and stored in a new
file. Thus, the original file will no longer hold the contents of the child.
Instead, the original file only references the new controlled unit file.

The complete list of container controlled elements and their possible
child controlled elements are:

� model: package, component package, deployment package

� package: package, class diagram, use case diagram, class, capsule,
protocol, use case, actor, collaboration

� component package: component package, component diagram,
component

� deployment package: deployment package, deployment diagram,
processor, device

The "Control new child units" flag for a parent unit specifies whether
children of that unit are controlled by default.

If a parent element is not a controlled unit, then its child elements
cannot be controlled units. Similarly, when a package is uncontrolled,
all children will also be uncontrolled.
Rational Rose RealTime, Guide to Team Development 51

Chapter 2 Storage of Model Data
A package that is a controlled unit has the following file system
elements:

� a file with model specifications

� a directory created to save child units

Directory Structure for Model Data

If a package is a controlled unit, then there is a directory created to
contain the saved child units. As an example, assume we have the
following model structure:

Figure 20 Sample model structure
52 Rational Rose RealTime, Guide to Team Development

What is a Controllable Element and a Controllable Unit?
If all controllable elements in this model are controlled units, then the
default directory structure would look like:

Figure 21 Directory structure for sample model
Rational Rose RealTime, Guide to Team Development 53

Chapter 2 Storage of Model Data
As an alternative, if we decided to reduce the number of controlled
units as follows:

� FCapsule1, FClass1, and FProtocol1 should not be independently
controlled; instead, they should be saved in the same unit as the
FrameworkLib logical package;

� ReleaseBuild and DebugBuild should not be independently
controlled; instead, they should be saved in the same unit as the
FrameworkLib component package.

These changes would result in the following directory structure:

Figure 22 Sample directory after granularity is reduced

The FrameworkLib.rtlogpkg file contains FrameworkLib, FClass1,
FCapsule1, and FProtocol1. The FrameworkLib.rtcmppkg file contains
DebugBuild and ReleaseBuild.
54 Rational Rose RealTime, Guide to Team Development

What is a Controllable Element and a Controllable Unit?
File Names for Controlled Units

Rational Rose RealTime can generate a default name for the file used
for a controlled unit. This default is based on the name of the
controllable element and the file extension that is appropriate for its
type. If a file with the same name exists in the directory, the Toolset
appends a number to generate a unique name. See What Elements Can
Be Controlled? on page 50 for a list of the file extensions.

A default name can also be generated for the directory used to store the
child units for a model or package. This default is also based on the
name of the controllable element (with no file extension). As before, if a
directory with the same name exists, the Toolset appends a number to
the directory to generate a unique name.

By default the Toolset prompts the user to determine whether to use
the default name and, if not, determines a name for the file. Prompting
occurs the first time the controllable unit is saved.

Figure 23 Filename Selection dialog
Rational Rose RealTime, Guide to Team Development 55

Chapter 2 Storage of Model Data
Figure 24 Directory Name Selection dialog

If you want to always use the generated default file names, then you
can avoid these dialogs by selecting the “Always use generated file
names” option in the File tab of the Tools > Options dialog.

See Moving Controlled Units Between Model Directories on page 67 for a
description of the steps involved in moving or renaming the
controllable unit file.

Controlled Units are Saved when Building

Rational Rose RealTime creates executables or libraries by generating
programming language (for example, C, C++, or Java) code from a UML
meta-model. It does this through the use of an external UML Model
Compiler. This compiler reads a model in PetalRT form and outputs
the corresponding code.

For this reason, the Toolset saves all modified units before perfoming
a build.This can cause some issues if, for some reason, the user is
unable to save a modified unit. Possible reasons for this include check-
out conflicts or read-only files. The Toolset attempts to save to read-
only files (after appropriate warnings and prompting) so that it can
build any local changes which have been made.
56 Rational Rose RealTime, Guide to Team Development

What is a Controllable Element and a Controllable Unit?
Unit Information Tab

The specification dialog for a controlled element includes a Unit
Information tab.

Figure 25 Unit Information tab

Owned by model

This check box indicates whether the unit is owned by this model, or
whether it is owned by another model and shared into this model. This
setting is not directly editable. See Overview of Import, Add, and Share
on page 62 for more information on sharing.
Rational Rose RealTime, Guide to Team Development 57

Chapter 2 Storage of Model Data
Under source control

This check box indicates whether this element has been added to
source control. This setting is not directly editable.

Control new child units

This setting controls whether newly created controllable elements in
this package will be individually controlled by default. This check box
is only displayed in the Unit Information tab for a package.

Disallow model-relative pathnames

This setting will inform Rational Rose RealTime to not use the implicit
$@ virtual pathmap symbol when saving units located anywhere within
this package. See Implicitly Defined Pathmap Symbols on page 76 for
details on using this setting. This check box is only displayed in the
Unit Information tab for a package.

Scratchpad

This setting indicates that the package is a scratch pad. See Scratch
Pad Packages on page 105 for a more complete description. This check
box is only enabled in the Unit Information tab for a package that is
not under source control.

Filename

This field displays the name of the file that is used to save this
controllable unit. This field is not directly editable.

Version

This field displays the version identifier for this controlled unit. If this
information is not known, then ‘<unknown>’ displays. The ability to
extract this version information depends on the source control tool
being used. If a unit is not under source control, then this field will not
be displayed.
58 Rational Rose RealTime, Guide to Team Development

What is a Controllable Element and a Controllable Unit?
What Level of Granularity Should I Use?

The primary benefit of having a fine granularity of controlled units (for
example, having every controllable element as its own controlled unit)
is to reduce possible contention for the file containing an element.
When the model is under source control, this translates into a lower
probability that a controlled unit will already be checked out when a
user wants to make changes.

The granularity of controlled units determines the number of files that
are used to store the model. A larger number of files may result in a
degradation in the performance of the source control system. This may
translate into longer times for operations such as opening a model.

The level of granularity that you use should consider the following
factors:

How Stable is the Architecture?

In the early stages of analysis and design the architecture can change
very frequently (and often, very drastically). During these early stages,
modeling elements are created/moved/deleted often. At this point in
development, it is recommended that not every possible element be
controlled as individual units. Usually controlling only one or two
levels of the package hierarchy will provide enough flexibility until the
architecture stabilizes. Once areas of the architecture stabilize, then it
is recommended that the elements in those areas be controlled down
to a finer granularity before proceeding with detailed implementation.

The goal for this approach is to create an understandable directory
structure for the model. When a controlled element is moved in the
model, the corresponding controlled unit file is not automatically
moved in the directory structure. If there is significant movement of
elements in the model, the directory structure can become very
fragmented resulting in situations where controlled units which are
logically grouped within the model will not be physically located in the
same directory hierarchy. For source control purposes it is often very
useful to have controlled units for each subsystem within the same
directory hierarchy since this makes it easier to perform source control
operations on entire portions of the model, for example to label or
search.
Rational Rose RealTime, Guide to Team Development 59

Chapter 2 Storage of Model Data
How Many Users Will Be Working on This Model?

If the model is only modified by a single user, and the model is not too
large, then it is reasonable to store the whole model in one .rtmdl file.
Otherwise, you will want to partition the model into a set of controlled
units. Some teams prefer to have packages as their lowest level of
granularity while others control all elements down to the class level so
as to have maximum flexibility.

How Many Users Modify Elements in the Same Package?

Some teams practice strict ‘class ownership’ so that a single user is
responsible for changes to elements in a package. In this situation the
controlled elements within the package do not need to be controlled
independent of the package.

How Large is Your Model?

The larger the model, the more controlled units you are likely to have.
As mentioned previously, using too fine a level of granularity could
cause degradation in the performance of some source control systems.
Most likely, you will have to find a balance between flexibility and
performance.

Implications of Changing Unit Granularity

It is possible to change the granularity of the controlled units by
controlling elements that previously were not controlled (or by
uncontrolling elements that previously were controlled). These actions
should be taken with care since changing the granularity of a unit will
move an element out of the current file and into a new file (or vice
versa). If you are using a source control system to provide a history of
changes for an element, then the audit trail for this element will not be
easily traceable (for example, version history does not automatically
include details on granularity changes).
60 Rational Rose RealTime, Guide to Team Development

Sharing Controlled Units
Code Generation Performance

For the best performance from the Rational Rose RealTime code
generator, every class/capsule/protocol should be stored in its own
unit. This allows the code generator to parse less information when
doing incremental compiles.

If multiple classes are stored in the same controllable unit, then a
change to any one of these classes will cause an incremental code
generation for all classes that dependent on any class in this unit, as
opposed to all classes that depend on this particular changed class.

Model elements that do not influence code generation can be grouped
together without influencing performance. Controllable elements that
do not influence code generation are:

� Collaborations

� Class Diagrams

� Actors

� Use Cases

� Use Case Diagrams

� Deployment Packages

� Deployment Diagrams

� Processors

� Devices

Sharing Controlled Units

A large software project is typically developed by multiple teams
following a layered architecture. The software produced by the "lower
level" teams is used by the "higher level" teams.

Typically, an organization may have several software projects being
developed at one time. Often, there is a possibility for reuse between
the projects. Sometimes, this is as simple as some common ‘data
structure’ classes. In other instances, there might be more significant
framework reuse.

These sections describe the Rational Rose RealTime capabilities that
support sharing and reuse in these situations.
Rational Rose RealTime, Guide to Team Development 61

Chapter 2 Storage of Model Data
Overview of Import, Add, and Share

Rational Rose RealTime provides three mechanisms for reuse. Each
mechanism provides different capabilities and the correct mechanism
to use depends on the situation.

Import a file

A collection of controllable elements may be exported to a file from one
model and imported into another model. This is similar to a copy and
paste of the selected elements. The imported elements are editable in
both models but, since this is equivalent to creating new elements that
are copies of the original elements, changes made in one model are not
visible within the other model (unless the copied elements are deleted
and the original elements are exported/imported again).

See Import Controllable Elements from a File to a Model on page 69.

Add a controlled unit

A controlled unit saved from one model may be added to another
model. The elements in this unit are editable in both models and
changes saved in one model are visible in the other model after the unit
is reloaded. The controlled unit should be added to the same place in
the hierarchy of each model.

See Add an Existing Controlled Unit to a Model on page 70.

Share a controlled package

A controlled package saved from one model may be shared into another
model. The elements in this unit are still editable in the original model
but they are not editable in the model that shares them. Changes saved
for this unit are visible in the other model after the unit is reloaded. The
controlled unit should be shared into the same location in the
hierarchy as it is found in its owning model.

This is the same mechanism used to include the RTClasses,
RTCClasses, RTComponents, and RTCComponents packages in the
default model.
62 Rational Rose RealTime, Guide to Team Development

Sharing Controlled Units
For models that are under source control, Rational Rose RealTime
provides a setting that controls whether the source control status of
shared packages should be queried when the model is opened. Since
the time required to query for source control status can be significant,
and is often longer than the time required to read the model files,
turning off this setting can significantly improve the time required to
open a large model if the model makes use of shared packages. See
Refresh shared unit status on model load on page 85.

See Share an Existing Controlled Unit into a Model on page 71.

Summary of Import, Add, and Share

The following table summarizes the pros and cons of each of these
mechanisms and describes some situations where each is appropriate.

Table 2 Summary of Import, Add, and Share

Mechanism Pros Cons Situations

Import - supports unstructured
sharing

- changes are
difficult to
propagate

- when you want to use
existing elements as a basis
for new elements
- when propagation of
changes is not required

Add - supports structured sharing
- changes are easy to propagate
by reloading unit

- when an existing unit needs
to be owned by a new model
- supports moving an element
from one model to another

Share - supports structured sharing
- changes are easy to propagate
by reloading unit
- enforces read-only access to
shared elements
- can improve opening time for
a source controlled model
- can generate libraries in a
model, and share them into any
user model
- shared library contains only
the required referenced
elements
- only have to rebuld a library
interface when there are
changes

- changes must
be made in a
model which
owns the shared
unit
- generating
multiple library
interfaces from
the same model
may cause
conflicts with
guids

- useful in multiple team
development where certain
units should not be editable
in all models
Rational Rose RealTime, Guide to Team Development 63

Chapter 2 Storage of Model Data
Note: For additional information on issues associated with generating
and sharing an external library interface, see Generating and Sharing
and External Library Interface in the C++ Reference.

Creating Sharable Controlled Units

When a controlled unit is brought into another model, Rational Rose
RealTime attempts to resolve all references contained in these
elements. If an element has a reference that cannot be resolved, the
problem is logged and the reference removed.

See Model Validation on page 163 for a description of the problems that
can be encountered when references cannot be resolved.

It is best to avoid unresolved references when sharing controlled units.
The simplest way to avoid unresolved references is to make sure the
controlled unit is self-contained so that it does not require elements in
any other controlled units. See Check if a Subsystem is Self-contained
on page 104.

The term "external dependency" can be used to describe the
relationship from an element inside a controlled unit to an element
outside that controlled unit. When creating a sharable controlled unit
it is important to ensure that the external dependencies are reasonable
and documented.

See Determine the External Dependencies for a Package on page 102.

Sharing Model Properties with Controlled Units

If elements in a controlled unit use custom property sets, you must
ensure that they are present in the model that will be sharing this unit.
Rational Rose RealTime supports exporting the properties from the
producer model and updating the properties in the consumer model.
This should be done before sharing or adding the controlled unit.

See Managing Model Properties in the Toolset Guide for more
information.
64 Rational Rose RealTime, Guide to Team Development

Working with Controlled Units
Working with Controlled Units

The following sections describe common tasks involved in defining and
manipulating controlled units in a Rational Rose RealTime model:

Common Tasks:

� Controlling a Subset of the Controllable Elements on page 65

� Controlling All of the Controllable Elements on page 66

� Changing the Granularity of Controlled Units on page 66

� Moving Controlled Units Between Model Directories on page 67

� Moving Elements Between Controlled Units on page 67

� Synchronizing Models with the File System on page 68

� Export Controllable Elements from a Model to a File on page 68

� Import Controllable Elements from a File to a Model on page 69

� Add an Existing Controlled Unit to a Model on page 70

� Share an Existing Controlled Unit into a Model on page 71

� Produce a Single Model File from a Model with Many Units on
page 73

Controlling a Subset of the Controllable Elements

There are several ways to control a subset of the controllable elements
in your model as individual units. The browser context menu for a
controllable element contains some or all of the following relevant
menu items:

� File > Control Unit - the selected elements will now be controlled as
individual units

� File > Uncontrol Unit - the selected elements will not be controlled

� File > Control Child Units - the child elements of the selected packages
will now be controlled as individual units (this menu item is only
available for packages)

� File > Uncontrol Child Units - the child elements of the selected
packages will not be controlled (this menu item is only available for
packages)

If only a small number of elements will be controlled, then it may be
easiest to multi-select the elements in the browser and choose the File >
Control Unit context menu item.
Rational Rose RealTime, Guide to Team Development 65

Chapter 2 Storage of Model Data
If most of the elements will be controlled, then control all the elements
first, then click File > Uncontrol Unit on the elements that should not be
controlled.

Remember:

� The controlled units are not written to disk until a save is
performed.

� See What is a Controllable Element and a Controllable Unit? on
page 48 for details on controlled unit status information available
in the model browser.

Controlling All of the Controllable Elements

To control all the controllable elements in your model as individual
units:

1. Select the Model in the model browser and click
File > Control Child Units .

2. When prompted about controlling all child units recursively, click
Yes. Also click Yes on the subsequent confirmation dialog.

This causes the model to be partitioned into individual files (one file for
each controllable element).

Remember:

� The controlled units are not written to disk until a save is
performed.

� See What is a Controllable Element and a Controllable Unit? on
page 48 for details on controlled unit status information available
in the model browser.

Changing the Granularity of Controlled Units

It is possible to change the granularity of controlled units using the
File > Control Unit and File > Uncontrol Unit menu items in the browser
context menu.

Changing the granularity of controlled units changes the file in which
some model data is stored. If the model is under source control, then
changing the granularity of the controlled unit disconnects some of the
elements in the unit from their history.
66 Rational Rose RealTime, Guide to Team Development

Moving Controlled Units
Moving Controlled Units

Moving Controlled Units Between Model Directories

After a controllable element is saved as a controlled unit, moving that
element in the model’s package structure does not move the associated
file in the underlying directory structure. This move causes the logical
grouping of elements in the model to differ from the physical grouping
of the corresponding files on disk.

If you moved a controlled unit in the package hierarchy so that the
directory structure does not correspond to the model structure, then it
is possible to change the location of the file by using the following
steps:

1. Outside of the Rational Rose RealTime Toolset, move the file to the
desired location.

2. Open the model in the Toolset.

3. When prompted about the missing model element, enter the new
file location and click OK. You can use the Browse button to
navigate to the new location.

4. After the model is open, save the package containing this model
element in order to remember the new file location. If the model is
under source control, check out then check in the element.

Similarly, you can rename the file associated with a controlled unit.

Moving Elements Between Controlled Units

Controllable elements can be moved from one parent package to
another by dragging in the browser. If a controllable element that is not
individually controlled is moved from one controlled package to
another, then this will change the file in which the element is stored. If
the model data is stored in a source control system, then this will
disconnect that element from its history.
Rational Rose RealTime, Guide to Team Development 67

Chapter 2 Storage of Model Data
Synchronizing Models with the File System

It is possible to perform actions outside of Rational Rose RealTime that
may cause the Toolset view of the file contents to be inaccurate. Also,
in some situations you may wish to discard changes made in the
Toolset in favor of the last saved versions.

To reload all the controlled units from disk, click
Tools > Synchronize Mode with File System.

To reload a selected set of controlled units, click File > Reload from File.

If the model is under source control, see Synchronizing Models with
Source Control on page 132.

Note: Be very careful when reloading subsets of the model. Some edits
to the model affect multiple units - reloading only one of the units
involved in such an edit may cause undesired changes.

Export Controllable Elements from a Model to a File

To export a collection of controllable elements (e.g., package, capsule,
component, etc.) from a model:

1. Open the original model.

2. Select the elements in the browser.

3. Click File > Export... from the browser context menu and specify the
desired file name.

This will generate an .rtptl file containing these elements.

Services Library packages

You should never export and add the Services Library shared
packages. These are the packages that appear in all new models, and
are prefixed with RT. For example, RTClasses, RTCClasses,
RTComponents, RTCComponents.
68 Rational Rose RealTime, Guide to Team Development

Import Controllable Elements from a File to a Model
If you export the RT packages to Rose format and then re-import, the
imported RT packages are merged with the existing model and causes
duplication with the default model's RT packages. This result is that
the duplicate packages are renamed, which is also undesirable.

See Produce a Single Model File from a Model with Many Units on
page 73 for details on how to export a whole model.

Import Controllable Elements from a File to a Model

Use the import mechanism to reuse existing controllable elements in
another model and evolve them independently of the original versions.

These steps allow you to create a file that contains a mixture of any of
the controllable element types. For example, you can export a capsule
and a component into the same file. Since a Rational Rose RealTime
model has restrictions on the types of controlled elements that can
appear in each part of the model, when you import the elements from
the file, you must place them in a valid location. In the previous
example, the capsule must be placed in a logical package and the
component must be placed in a component package.

If you would like the elements in the file to be imported into the
appropriate top level package (for example, Logical View for capsules,
Component View for components), then use the following steps:

1. Open the model.

2. Click File > Import... from the application menu and specify the file
name in the dialog.

If there is a specific package into which you would like to import these
elements, then use the following steps:

1. Open the model.

2. Select the package in the browser that should contain the
elements.

3. Click File > Import... from the browser context menu and specify the
file name.
Rational Rose RealTime, Guide to Team Development 69

Chapter 2 Storage of Model Data
The elements will be added to this package unless the file contains
elements that are not allowed in this package type, in which case the
invalid elements will be placed in the appropriate root packages.
Continuing the previous example, if we tried to import a capsule and a
component into a logical package, the toolset will place the capsule in
the logical package and the component in the Component View
package.

After the elements have been imported into the model, they will behave
like any other newly created elements.

Rational Rose RealTime will not allow you to import the same elements
multiple times into the same model. This would lead to unique id
conflicts within the model, which may result in incorrect behavior by
the Toolset. If a unique id conflict would occur as a result of the import,
the following dialog will appear and the import will fail.

Figure 26 Unique id conflict dialog

Add an Existing Controlled Unit to a Model

You can add an existing controlled unit when the elements in the unit
should be editable in multiple models. If the original model is
abandoned, then you can also "move" this unit to another model.

To add an existing unit to a model:

1. Open the model.

2. Select the package in the browser that should contain the
controlled unit.

You should add the controlled unit to the same location in this model
hierarchy as in the original model.
70 Rational Rose RealTime, Guide to Team Development

Share an Existing Controlled Unit into a Model
3. Click File > Add File... from the browser context menu and specify the
file name of the unit. You can change the filter to see the different
types of files that you can add in.

The controlled unit is added to this package.

Note: The original model must have already saved the desired controlled
unit.

After the controlled unitis added to the model, it will behave like the
other units in the model.

Note: The file contains this unit is the same as it was in the original
model.

Create a virtual path map entry to specify the location of the controlled
unit added to this model. See Defining Virtual Paths on page 74.

If the controlled unit being added is under source control, then the
model you are adding into must have source control enabled.

Share an Existing Controlled Unit into a Model

When a product involves many developers and development teams, or
when multiple projects are developed, it may be very useful to make
portions of a model available to other teams in a read-only format.

The shared package is indicated as "not owned" by the sharing model.
See Unit Information Tab on page 57. This is the same facility used to
include the RTClasses, RTCClasses, RTComponents, and
RTCComponents packages in the default model. The interface for the
TargetRTS library is shared into a model.

With Rose RealTime, you develop your application in a high level
language using state diagrams and structure diagrams. These
elements are automatically converted, such as Java to RTJava, and are
placed in a framework that provides critical real-time system
services.The key to using the services provided by the framework is to
understand how your application will integrate into the Java UML
Services Library skeleton.
Rational Rose RealTime, Guide to Team Development 71

Chapter 2 Storage of Model Data
The ability to share packages is intended to support the development
of layered models with sharing between the groups working on the
different layers. For example, if a project involves a services layer with
an application on top, the services layer and the application could be
developed as separate models. Since the application model requires
access to the services layer it could share one or more packages from
the services model. In addition, sharing the elements enforces the
restriction that developers working on the application layer should not
modify the elements in the services layer.

It is important to properly partition the system if you wish to make use
of shared packages.

Shared package producer:

The producer of the shared package must ensure that the shared
package is either self contained or that all the required packages are
being provided. If the package makes use of customized property sets,
then the producer must also make these property sets available.

Shared package consumer:

To share an existing package into a model:

1. Open the model.

2. Select the package in the browser that should contain the shared
package. For example, if you want the shared package to appear
under the Logical View, select the Logical View package in the
browser. Share the package to the same location in the model
hierarchy as in the original model.

3. Click File > Share External Package... from the browser context menu
and specify the appropriate file name. You can change the filter to
see the different types of files that you can share.

The package is shared into this package and the containing
package is marked as modified, but the shared package is not.

The original model must have previously saved the desired package as
a controlled unit.

We recommend that you create a virtual path map entry to specify the
location of the controlled unit added to this model. See Defining Virtual
Paths on page 74.
72 Rational Rose RealTime, Guide to Team Development

Produce a Single Model File from a Model with Many Units
Produce a Single Model File from a Model with Many Units

This can be useful for sending a model to someone at another location
who does not have access to your work area.

To create a single .rtmdl file for the complete model:

1. Open the model.

2. Click File > Export Model... to save the model into a single .rtmdl file.
You will be prompted for the file name and location.

You will be prompted about whether the file should include each of
the shared packages (for example, RTClasses).

Typically, you click No for each package that is available to the user
who will open the model, and click Yes for packages that are not
available to that user.

Figure 27 Export shared package dialog

Note: Since the resulting file contains a complete model, it must be
opened (for example, click File > Open...) instead of being imported (for
example, click File > Import...). Rational Rose RealTime does not allow you
to import a complete model into another model.

Virtual Path Maps

When multiple users are working on the same model, there is the
possibility that they may use slightly different directory paths to the
model data files. Rational Rose RealTime provides virtual path maps as
a general mechanism to solve this, and other similar, problems.
Rational Rose RealTime, Guide to Team Development 73

Chapter 2 Storage of Model Data
How Do Virtual Paths Work?

When Rational Rose RealTime saves a model element, it attempts to
substitute every absolute path with a virtual path. Later, when a
controlled unit is opened, each virtual path is transformed back into
an absolute path.

For example, if a user has defined a virtual path:

$MYPATH=Z:\ordersystem

and saves a package as

Z:\ordersystem\user_services.rtlogpkg

the model file will refer to the package as:

$MYPATH\user_services.rtlogpkg.

When another user, who has defined $MYPATH as:

$MYPATH=X:\ordersystem

opens the same model from their X drive, Rational Rose RealTime
resolves the internal reference to the controlled unit and loads the
following file:

X:\ordersystem\user_services.rtlogpkg.

Defining Virtual Paths

To define a virtual path:

1. Click File > Edit Path Map to open the Virtual Path Map dialog.

2. Type the name of the new virtual path in the Symbol field (for
example, "MYPATH"), but omit the leading “$” character.

3. In the Actual Path field, enter the folder location for the model file.

4. Click Add. You now defined a virtual path map symbol $MYPATH.

5. To substitute the current physical paths to any existing controlled
units in the model files, explicitly force a save of the units affected.

Note: Each user that is going to work on a model has to define the
same path map symbols before opening the model.
74 Rational Rose RealTime, Guide to Team Development

Virtual Path Maps
The virtual paths in the dialog box are pre-defined in Rational Rose
RealTime, although actual path values may be different for your
system.

Figure 28 Virtual Path Map dialog

When anyone in the team opens or saves a model, Rational Rose
RealTime attempts to match the longest possible file path to the
symbols in the path map. For example, if there is a path map entry for
MYPATH which is set to X:\ordersystem, and a model references the
controlled unit X:\ordersystem\units\data_serv.rtlogpkg, the actual reference
in the model file will be $MYPATH\units\data_serv.rtlogpkg. Thus, when
another user opens the model in their private workspace, $MYPATH will
be substituted with the path defined by that user’s path map.
Rational Rose RealTime, Guide to Team Development 75

Chapter 2 Storage of Model Data
Defining a New Path Map Using Another Path Map Symbol

The actual path in a path map definition can contain previously
defined path map symbols. For example, if there is a path map

$ROOT=X:\model_vob

you can define a path map $MYPATH for the path

X:\model_vob\ordersys

by adding the path map

$MYPATH=$ROOT\ordersys.

Implicitly Defined Pathmap Symbols

To make simple model sharing transparent between users, two implicit
pathmap symbols are defined for use by controlled unit filenames:

� $&: the context of the unit, which is the directory of the package
which contains the unit in question.

� $@: the location of the .rtmdl file for the current model.

If you are creating a package that will be shared into other models, you
should use the "Disallow model-relative pathnames" option on the
package’s Unit Information tab. This will ensure that filenames below
the package in the unit hierarchy do not attempt to use $@. This is
important because for each model to which the shared package
belongs, $@ will have a different interpretation, leading to problems
loading any files that use $@ in their path.

Using Path Maps When Sharing Packages

When sharing and adding packages between models, it is
recommended that you use virtual paths in order to avoid having
explicit "hard-coded" paths saved in controlled unit files.

The controlled unit file for a controllable element is referenced by a
relative file name within the directory structure of the model in which
the unit was created. If another model references (for example, adds or
shares) this controlled unit, the path name pointing to the shared, or
added element can no longer be relative. Having these explicit paths
can cause problems in team development.
76 Rational Rose RealTime, Guide to Team Development

Virtual Path Maps
This problem can be avoided by using a path map set to the root model
directory of the model where the shared controlled unit was created. A
model which shares this controlled unit will use the path map variable
to reference the file.

You must ensure that this path map is defined when you create or open
any model which shares controlled units from another model.

Using virtual paths in the value of a model property

Rational Rose RealTime does not convert actual paths in model
properties to virtual paths. In order to use a virtual path in the value
of a model property, you must manually enter the virtual path map
symbol, including the "$" sign - for example, $ROOT - into the value of
the model property.
Rational Rose RealTime, Guide to Team Development 77

Chapter 3

Source Control Fundamentals

Rational Rose RealTime provides source control facilities by integrating
with existing source control systems to provide versioning and
controlled access to model files.

Source control systems are repositories that store successive versions
of files, usually with a comment attached to each version. Before a
repository can begin keeping track of a file’s versions, the file must be
added to the repository.

Each user of a source control system typically has their own local
working area that stores a copy of the files from the repository which
they wish to access. Even though a repository may contain thousands
of files, each user’s working area need only be populated with the files
from the repository that they will be accessing.

If a file is checked out to a user’s working area, then it will be write-
enabled; if the file is not checked out, it will be read-only. To prevent
multiple users from attempting to make changes to the same file
simultaneously, exclusive access is usually enforced. This is
accomplished by allowing only one user at a time to check out a file
version. As well, some source control systems only allow the most
recent version to be checked out.

Rational Rose RealTime supports many different source control
systems. For details on which systems are supported, see Source
Control Tools on page 143.
Rational Rose RealTime, Guide to Team Development 79

Chapter 3 Source Control Fundamentals
Source Control in Rational Rose RealTime

Source Control Status

When source control is enabled, Rational Rose RealTime queries the
active source control system for the status of each controlled unit. For
each unit, the status indicates whether the corresponding file is
present in the source control system, and if present, indicates whether
the file is checked out to a specific user.

If a unit’s file is checked out from source control, the browser shows a
check mark next to the unit. The Unit Information tab in the
specification dialog for a unit shows whether the unit is under source
control. This status is also visible in the browser: units that are under
source control are shown in the browser with a darkened controlled
unit indicator; units not under source control are shown with a faded
controlled unit indicator.

The following figure shows the different source control status options
that are displayed in Rational Rose RealTime browsers:

� The lightened unit box opposite RTClasses and Scratch indicates
that they are controlled units, but not currently under source
control

� The checkmark in the unit box opposite System indicates that it is
a controlled unit under source control that is checked out to the
current user

� The empty darkened unit box opposite TestHarnesses indicates
that it is a controlled unit under source control that is not checked
out to the current user

Figure 29 Controlled Unit Icons with Source Control
80 Rational Rose RealTime, Guide to Team Development

Source Control in Rational Rose RealTime
What are Primary and Secondary Edits?

Changes to a UML model sometimes require that several model
elements be modified to effect the change. Some edits, such as element
name changes and hierarchy manipulations, may need to modify every
reference to the element being changed.

Updating all of the cross-references is not necessary to maintain the
model’s integrity — only direct references must be updated, such as
the reference from a derived class to its superclass. Even though the
model integrity is maintained in this way, code generation may not
work properly unless all references are updated.

Due to the many cross-references in a model, it is often infeasible to
check out all of the units that are affected by an edit so that all
references can be updated immediately. To prevent excessive check-
out contention for units, Rational Rose RealTime enforces that only the
elements absolutely required for an edit be accessible in order to allow
the edit to proceed. The changes that will affect these required units is
called the "primary" edit. If these units are not accessible and cannot
be checked out, then Rational Rose RealTime will not allow the edit to
proceed.

All other changes, such as references that will be modified as a result
of the edit, are lumped together and called "secondary" edits. Rational
Rose RealTime optionally prompts the user to check out secondary edit
units after the operation has completed.

It is important that secondary edits be updated as soon as possible.
Otherwise model validation problems may arise.
Rational Rose RealTime, Guide to Team Development 81

Chapter 3 Source Control Fundamentals
As an example, if we have a model with the classes shown in Figure 30:

Figure 30 Model Validation Example

If a user tries to delete port P1 from capsule class Capsule1, then this
would cause the port role P1 on capsule role role1 in Capsule2 to be
deleted. This, in turn, would cause the connector to be deleted in
Capsule2. Therefore:

� Capsule1 is a primary edit and so it must be checked out to
proceed with the edit

� Capsule2 is a secondary edit and so it should be checked out but,
if not, the edit can proceed

If Capsule2 is not checked out and the edited Capsule1 is checked in
to source control, then users who open a model with those versions of
Capsule1 and Capsule2 will encounter a model validation error that
corresponds to the deletion of the connector in Capsule2. In other
words, model validation has performed the secondary edit for this user.
See Model Validation on page 163 for more infomation.
82 Rational Rose RealTime, Guide to Team Development

Source Control in Rational Rose RealTime
Source Control Settings

All source control settings are stored in the workspace file. Source
control settings are located on the Source Control tab on the Model
specification sheet. The Source Control tab can also be accessed via the
Tools > Source Control > Configure... menu item.

Figure 31 Source Control Settings

Enable source control

Allow model elements to be checked into and out of a source control
system.
Rational Rose RealTime, Guide to Team Development 83

Chapter 3 Source Control Fundamentals
Check out files when edited

Forces the tool to automatically check out a model element if the user
tries to edit it.

It is recommended that this option be selected if the model is under
source control. If this option is not selected, you may have difficulty
saving the changes you have made, which can also lead to problems
when building.

Check out files with secondary edits

Forces the source control tool to automatically check out a model
element if an edit to some other model element causes a change in the
element.

It is recommended that this option be selected if the model is under
source control. If this option is not selected, you may have difficulty
saving the changes to the affected model elements, which can also lead
to problems when building.

Only allow edits to checked out files

Prevents edits to model elements unless the element is checked out.

It is recommended that this option be selected if the model is under
source control. If this option is not selected, then you may have
difficulty saving your changes, which can also lead to problems when
building.

Add files to source control when first saved

Causes all model elements to be placed in the source control when the
model is saved.

This options is usually not selected. Instead the Tools > Source Control >
Submit All Changes to Source Control menu item is used when submitting
additions/changes.
84 Rational Rose RealTime, Guide to Team Development

Source Control in Rational Rose RealTime
Refresh shared unit status on model load

Indicates whether the Toolset refreshes the source control status of
shared controlled units when a model is first loaded.

Clearing this option can significantly improve the time it takes to open
a model with source control enabled. The status of a unit can always
be refreshed later should it be required.

Scripts directory

When working with source control, Rational Rose RealTime must know
the location of the scripts that interface with your source control tool.

Click Browse to select the directory that contains the appropriate
scripts. The Browse button opens a directory browser dialog showing a
subdirectory for each of the supported source control tools. The
directory names corresponding to the source control systems directly
supported by Rational Rose RealTime are listed below:

� cc - Rational ClearCase (Unix and Windows)

� msvss - Microsoft Visual SourceSafe (Windows only)

� rcs - Revision Control System (Unix only)

� sccs - Source Code Control System (Unix only)

Note: Source control interface scripts are located in
$ROSERT_HOME/bin/<host platform>/cmscripts

Accessing Source Control Operations

In Rational Rose RealTIme, you can access source control operations
in several ways. The first is by clicking Tools > Source Control. These
operations generally apply to all controlled units in the entire model,
and include several add-in helpers and convenience operations.
Rational Rose RealTime, Guide to Team Development 85

Chapter 3 Source Control Fundamentals
Figure 32 Tools > Source Control Menu

The second way to access source control operations is through context
menus in browsers. When you select a controlled unit from the
browser, the context menu contains source control operations. To
apply an operation to multiple units at the same time, select all the
desired units, and access the source control operation through the
context menu, as shown in the following figure.
86 Rational Rose RealTime, Guide to Team Development

Source Control in Rational Rose RealTime
Figure 33 Source Control in the Browser context menu

Source Control Operations

The following source control operations are available from within the
Rational Rose RealTime toolset with all supported source control
systems. Some operations are handled slightly differently in some
source control systems. See Source Control Tools on page 143 for more
information.

Unless otherwise noted, the following operations are all enabled for any
selection of units.

Refresh Status

Refresh Status queries the active source control system for each unit
selected and determines whether the unit’s file is under source control,
and if so, whether the file is checked out. Refreshing status does not
retrieve new versions of files, nor does it reload files if they have been
changed outside the toolset.
Rational Rose RealTime, Guide to Team Development 87

Chapter 3 Source Control Fundamentals
Synchronize

Synchronize does the same status updating that Refresh Status
performs. However, Synchronize also determines if the file on disk has
changed since the file was loaded into the toolset. If the underlying file
has changed, it will be reloaded into the toolset.

Get

Get interfaces with the active source control system and requests the
latest version of the files corresponding to the selected units. If a new
version is retrieved, Rational Rose RealTime reloads the file.

Check Out

Check out asks the source control system to lock the specified files so
that the user may edit and change them, and in the future submit a
new version via Check In. If the specified file is currently checked out
to another user, the operation will fail. Check out will retrieve the latest
version of the files being operated on.

Uncheckout

Uncheckout is available for any file that is currently checked out to the
user. Uncheckout will remove the lock that the user holds on the file in
the source control system and will replace their local file with the most
recent file from the repository.

Add

Add attempts to place the selected units under source control. After a
unit has been added to source control, it can be versioned via check
out and check in. Unless a file needs to be added to source control
without submitting other changes at the same time, Submit All Changes
should be used rather than explicitly clicking Add.

Check In

Check In submits a checked out file to the repository so that a new
version will be stored. Unless a file needs to be checked in without
submitting other changes at the same time, click Submit All Changes to
submit changes to the repository.
88 Rational Rose RealTime, Guide to Team Development

Source Control in Rational Rose RealTime
Submit All Changes

Submit All Changes is only available from the Tools > Source Control menu.
This command performs the following actions:

� Determines which units are not under source control, and queries
the user to add them.

� Determines which units are checked out from source control, and
prompts the user to check them in.

After Submit All Changes successfully completes, the repository is
updated with all changes made by the user.

Apply Label

Apply Label instructs the source control system to apply a specified
label to the the selected units. Directories may also be labelled, with
the option of working recursively on the directory contents.

Some source control systems do not support labelling. See Source
Control Tools on page 143 for more information.

Show Differences

Show Differences compares the local version of a unit with the latest
version stored in the source control repository. See the Rational Rose
RealTime Model Integrator documentation for details on using the
merge/differencing tool.

Show Differences is only enabled when a single unit is selected.
Rational Rose RealTime, Guide to Team Development 89

Chapter 3 Source Control Fundamentals
Show History

Show History displays the version history of a unit based on the
revisions of the file that are in the source control repository.

Figure 34 History dialog example

Most source control systems support the retrieval of a specific version
of a file. For such systems, the Get button is enabled when a version is
selected in the list.

To compare the local version of the unit with a specific version, right
click on the version to compare with and click Show Differences....

For source control systems that support applying a label to arbitrary
versions of elements, the context menu will also include Apply Label....

Show History is only enabled when a single unit is selected.
90 Rational Rose RealTime, Guide to Team Development

Source Control in Rational Rose RealTime
Types of Source Control Systems

There are two types of source control systems: file based and view
based. Each type of system has different features and methods of
supporting the source control process. Consequently there are features
of each type that are not supported with the other.

File Based Source Control Systems

Source control systems in this category include Microsoft Visual
SourceSafe, Rational ClearCase with snapshot views, RCS, and SCCS.

File based source control systems require each user to have a copy of
the files in a local folder and use the file system’s read-only attribute to
control writing to files.

While working in a file-based system, you will sometimes encounter a
unit in the Toolset that is marked as dirty, despite it not being checked
out (see What are Primary and Secondary Edits? on page 81 for more
information). If you are building anything that includes the dirty unit,
you will need to save the changes to disk for the build to include these
changes. The most desirable option is to check out the file in question.

However, if the file is already checked out by someone else, another
avenue is required to make the file writeable and save the changes
locally. Since the file is not checked out, the read-only attribute must
be changed manually. The Make Files Writeable addin is included with
Rational Rose RealTime to make this task simpler. With this addin
enabled, the following two operations are available in the Tools > Source
Control menu.

Make Files Writeable

Performing this operation will attempt to turn off the read-only
attribute on the files for units that are dirty but not checked out.

Make Files Read Only

Performing this operation changes the read-only attribute of files to
match the checked out status of the corresponding unit. This means
that if a unit is not checked out and the file for that unit is writeable,
this operation changes the file to be read only.
Rational Rose RealTime, Guide to Team Development 91

Chapter 3 Source Control Fundamentals
View Based Source Control Systems

In view based source control systems all versions of a file are stored in
a versioned file system.

Users do not work with the contents of the versioned file system
directly. Instead, they use a work area called a view that provides
access to a set of files in the versioned file system. Moreover, a view
provides access to an appropriate set of versions of those files by
specifying how to choose the version of each file that will be seen in the
view.

Rational ClearCase is the only currently supported view based source
control system.

Source Control Development Concepts

The following concepts are helpful when designing a development
process for working with Rational Rose RealTime.

Development Activity

A development activity is comprised of changes to several elements.
Each activity should encompass a unit of work, such as fixing a bug or
adding a new feature. When the changes for an activity are submitted
to the repository, the model will evolve to a consistent new state.

Integration

Integration is the process of making changes available for use by other
developers. Integration may be performed by a specific person, but it is
also common for developers to play this role.

Lineup

A lineup is a collection of specific versions of files from the source
control repository. Examples of lineups are:

� version 4 of every file involved in a project.

� the latest version of each file in the project that is dated before
midnight, May 12.

� the version labelled “Build 6.1.112” of each file in the project
92 Rational Rose RealTime, Guide to Team Development

Versioning Strategies
Lineups are used to represent significant combinations of files. In most
development environments, the files that go into any nightly or
production build form a lineup. Lineups are also valuable for
reproducing specific builds of the system. The term baseline is also
used to refer to a formal lineup.

Working in Isolation

It is essential that a developer’s work be isolated from the work that
other developers are doing. This is important for a number of reasons:

� To ensure that each developer can work without being influenced
by other developers’ editing, compiling, testing and debugging.

� To ensure that each developer can access the appropriate material
to perform their role. This usually requires using some sort of
lineup process.

� To ensure that each developer does not expose their work to the
rest of the team until it is ready for integration.

To support these basic team development requirements, each
developer should have their own work area. Work areas refer to private
areas where developers can implement and test code, in accordance
with the project’s adopted standards, in relative isolation from other
developers. A work area must provide private (isolated) storage for files
generated during software development:

� Working (checked-out) versions of source files

� Executables

� Other work area private objects and source code, test
subdirectories, and test data files

A work area private storage would be typically located within a
developer’s home directory on a workstation.

Versioning Strategies

Single Stream Versioning

Single stream versioning refers to having a single series of version
numbers for each file. In effect, the version history for a file is a linear
sequence of revisions.
Rational Rose RealTime, Guide to Team Development 93

Chapter 3 Source Control Fundamentals
While developing a project using single stream versioning, each
developer always works with the most recent version of files in the
repository. To edit a file, a reserved check out is performed on the latest
version of the file. After changes have been made, they are submitted.
This immediately makes the new version visible to other users, and will
become the latest version for others to base their changes on.

This also means that only one person can work on each file at any one
time since they must have the most recent version checked out in order
to perform work.

Single stream versioning is not ideally suited to doing bug fixes on an
existing release while doing new development for a future release.

You can use both file and view based source control systems for small
projects without the need for branching or multiple stream
development.

Parallel Stream Versioning

Parallel stream versioning permits each file to have a branching tree of
versions. This allows many versions of the same file to be active at the
same time. The following figure shows the version tree for a typical file
in a parallel development project.
94 Rational Rose RealTime, Guide to Team Development

Versioning Strategies
Figure 35 Example Version Tree
Rational Rose RealTime, Guide to Team Development 95

Chapter 3 Source Control Fundamentals
Most parallel development environments involve nominating a branch
in the source control system as the integration branch. The integration
branch is used for collecting all changes to the project (/main is the
integration branch in the above diagram). Testing, release builds, and
new development are all based on the contents of the integration
branch.

All labelled lineups should consist of file versions from the integration
branch. Once established, a labelled lineup can serve as a the basis for
builds, testing, or further development. Frequently, a temporary lineup
is established and built. If the build completes successfully and passes
basic sanity tests, the lineup is then made available as a baseline. This
process is usually automated, and should be done on a nightly/weekly
basis. In the version tree above, the TC_BASELINE_<NNN> labels
indicate stable baselines on the integration branch.

The lineup of file versions in the baseline is used for subsequent
development. Development activities should not be performed on the
integration branch, but separate from it. When a development activity
is finished, the changes for that activity can be merged by an integrator
back onto the integration branch. This ensures that the integration
branch is strongly controlled and that only correctly working models
are used to base further development on.
96 Rational Rose RealTime, Guide to Team Development

Chapter 4

Organizing a Model (Architect Activities)

One of the primary goals of the Architect’s activities is to create an
initial structure or organization of the model to facilitate team
development.

Product development will often start with a small team working on one
model. As development progresses, the team (and the model) will grow
to a point where you should think about how to organize the model to
support multiple teams working in parallel.

It is also useful to think about how sets of modeling elements can be
reused by other groups. You can use Rational Rose RealTime to split
parts of a model into highly cohesive layers or frameworks that can be
reused in multiple models.

The actual division of a model into packages and subsystems is
somewhat of an art form and we will only attempt to describe some
guidelines to help you get started. Remember that once a model is well
partitioned into subsystems, you can either work with one model or
split the model into separate models for each subsystem.

Packages, Models, and Subsystems

Packages are used to group model elements. There are 3 kinds of
packages in Rational Rose RealTime:

� Logical packages (both the Logical View and Use Case View
packages are the same kind)

� Component packages

� Deployment packages.
Rational Rose RealTime, Guide to Team Development 97

Chapter 4 Organizing a Model (Architect Activities)
Each kind of package can only group certain model elements. For
example a logical package can group capsules and classes whereas a
component package can only group component diagrams and
components. Packages can also contain packages of the same kind and
so it is possible to decompose your models hierarchically.

A model is composed of the four root packages: Use Case View, Logical
View, Component View, and the Deployment View. The model is the top
level model element which contains all sub-elements.

A subsystem is a concept and not an explicit modeling element in
Rational Rose RealTime. The term subsystem represents a set of
related packages that can be developed, tested, and released together.

Subsystems form the basis for reuse between models. In a layered
development approach, the model for each layer will share in the
subsystems for the layers beneath it.

A subsystem will typically consist of one or more logical packages and
one or more component packages. The logical packages contain the
classes in the subsystem and the component packages contain the
components that are used to build the subsystem. Usually one of the
components will be an external library in order to avoid having to
compile the classes in the subsystem when it is reused in another
model.
98 Rational Rose RealTime, Guide to Team Development

One Model versus Multiple Models
Figure 36 Model, Packages, and Subsystems

One Model versus Multiple Models

A large development project can result in a corresponding large model
for the complete application. If the model has a layered architecture,
then it is possible to produce a set of smaller models that follow the
layering of the larger model.

One of the goals of having a separate model for each layer/subsystem
is to reduce the number of developers working on the same model. This
technique helps to isolate development work and reduce parallel
development issues.

To build the full project, one designer, typically called the builder,
opens a model referencing all the subsystems that make up the project,
thus loading all the changes done to the packages in the subsystems,
and build from that model.

Before splitting a model into a set of subsystem models, you should
first consider the trade-offs:
Rational Rose RealTime, Guide to Team Development 99

Chapter 4 Organizing a Model (Architect Activities)
Advantages of a model for each subsystem:

� Improves Toolset performance and memory footprint simply
because a smaller model is opened and worked on.

� You can build, test, and release subsystems separately, reducing
system complexity.

� Groups can share subsystems. Teams can share stable versions of
subsystems.

� Toolset enforces ownership by not allowing developers to modify
elements in shared subsystems.

Disadvantages:

� Can be more complicated to setup.

� Build process can be more involved.

� Might not be appropriate for small teams.

The following sections describe steps to perform before splitting a
model to ensure that your model is well partitioned.

Getting Started

Mapping the Architecture to Subsystems

With Rational Rose RealTime, you decompose a model by grouping
modeling elements into packages. You then assign a set of these
packages to subsystems.

You should consider each subsystem as a distinct unit that you can
build and test independently, whether the model is split or not. You
must also define and enforce the interfaces between subsystems.

Decomposing a Model into Subsystems
� Checking Package Dependencies for Completeness on page 101

� Check if a Subsystem is Self-contained on page 104

� Define Subsystem Interface on page 104

� Scratch Pad Packages on page 105

� Setup Subsystem Components on page 107
100 Rational Rose RealTime, Guide to Team Development

Checking Package Dependencies for Completeness
� Support for Unit Testing on page 110

� Use Property Sets for Build Settings on page 110

� Processors and Component Instances on page 111

Splitting a Model
� Should You Split a Model Before Adding to Source Control? on

page 114

❑ Splitting a Model Not in Source Control on page 115

❑ Splitting a Model Under Source Control on page 118

Checking Package Dependencies for Completeness

After you create packages and move the model elements into the
packages (subsystems), you want to ensure that the subsystems you
created have dependencies that you expect. If the interdependencies
between subsystems are too complex, it will be difficult to work in
teams (changes will not be isolated) and split the model.

Show Access Violations

Click Report > Show Access Violations... to verify that the designed
dependencies between packages (subsystems) are correct and
complete. For a description of this menu item, see the Report Menu in
the Toolset Guide.

The Architect should revisit the package dependencies periodically to
check that the detailed implementation has not violated the intended
architecture.

Click Report > Show Access Violations... to verify that there are no
violations in the logical packages and component packages in the
subsystem. You should also verify that every class and logical package
referenced by the components in the subsystem are also part of the
subsystem.
Rational Rose RealTime, Guide to Team Development 101

Chapter 4 Organizing a Model (Architect Activities)
Figure 37 Show Access Violations dialog

Determine the External Dependencies for a Package

The Specification dialog for a package contains a Relations tab which
shows the dependencies for this package. This is a quick way to see if
a package has any dependencies but it can be difficult to visualize the
dependencies if you just look at this list. In order to properly visualize
the package relationships, use a class diagram.

To quickly create a class diagram showing the relationships for a
specific package:

1. Open the class diagram.

2. If this package is not already on this diagram, then drag it from the
browser onto the diagram.

3. Select the package in the diagram and click Query > Expand Selected
Elements.

The resulting dialog allows you to add related elements to this diagram
based on the chosen options.

4. To see the direct dependencies for this package, set the options to
expand one level of suppliers. Ensure that dependency relations
are chosen in the Relations dialog.

5. Click OK to add the related packages to the diagram.

The following figure shows the package dependencies in a simple traffic
light control model.
102 Rational Rose RealTime, Guide to Team Development

Checking Package Dependencies for Completeness
Figure 38 Package Dependencies Diagram Example

These steps are also supported for component packages on a
component diagram.

By varying the options you set in these dialogs, you can quickly
produce a diagram showing the desired information. If many packages
were added to the diagram, then you can use the automatic layout
mechanism to produce an initial layout for the diagram.

By reviewing the relationships in this diagram, the Architect can detect
any undesirable dependencies. Resolving an undesirable dependency
can involve either modifying the class(es) that caused the violation
and/or moving some of these classes to another package.
Rational Rose RealTime, Guide to Team Development 103

Chapter 4 Organizing a Model (Architect Activities)
Check if a Subsystem is Self-contained

A self-contained subsystem is composed of packages that do not have
any dependencies to packages outside of the subsystem. A self-
contained subsystem can be shared without requiring any other
subsystems.

Assuming the package dependencies are complete (see Checking
Package Dependencies for Completeness on page 101), then checking
whether a subsystem is self-contained involves examining the
dependencies for the packages in the subsystem to ensure that all of
them are linked to other packages within the subsystem.

A subsystem does not need to be self-contained in order to be shared,
provided that the sharing model contains all the other subsystems that
are required.

Define Subsystem Interface

By reducing the coupling between subsystems, you can lessen the
chance of having integration problems caused by using subsystems
that have complex dependencies into one another.

It is important for the producer of the subsystem to pay close attention
to the classes in a subsystem that are public (for example, is visible and
usable outside of the subsystem) and which are private. For ease of
use, it is also recommended that the subsystem contain a set of class
diagrams that illustrate the public classes.

Best Practices
1. Specify the visibility of each class (public or implementation).

2. Include one or more class diagrams showing the public classes.
You may also use different visual clues for the public classes in a
class diagram, for example, color.
104 Rational Rose RealTime, Guide to Team Development

Scratch Pad Packages
Scratch Pad Packages

When working on a model in a team environment, it is common for a
developer to create temporary model elements that are not intended to
be shared with the rest of the team. For example, a developer may
create a temporary component when unit testing a change to a capsule
class. If the model is under source control, the developer may not want
these temporary elements checked in to source control with the other
changes they are making.

To support temporary work within a controlled model, Rational Rose
RealTime supports scratch pad packages. A scratch pad package is a
package that is not added to source control. Also, changes can be made
to a scratch pad package without the Toolset requiring that package to
be checked out. This allows multiple team members to make temporary
changes within their own local scratch pad package without
encountering any contention issues.

Elements can be moved into or out of a scratch pad package by
dragging them to another package in the browser. Elements can also
be copied into (or out of) a scratch pad package using control-drag in
a model browser.

The controllable elements within a scratch pad package cannot be
individually controlled. If a controlled unit is moved into a scratch pad
package, then it will no longer be controlled.

To create a scratch pad package:

1. Create a package and give it a descriptive name, e.g.,
TemporaryComponents.

2. Select the package in the browser and click File > Control Unit menu
item. If this menu item is not enabled, then ensure that the parent
element for this package is also controlled.

3. Open the Specification dialog box for this package and change to the
Unit Information tab.

4. Select the Scratchpad option and click OK.

5. Save the package containing the scratch pad. Optionally, you may
also save the scratch pad. If the containing package is under
source control, then it should be checked out and checked in.
Rational Rose RealTime, Guide to Team Development 105

Chapter 4 Organizing a Model (Architect Activities)
Figure 39 Scratch Pad Package Unit Information Tab

Remember

Scratch pad packages are only intended to be used for temporary work.
If you initially create an element in a scratch pad package and you
decide that it should be placed under source control, then it is possible
to move the elements from a scratch pad package to another package
by dragging them in the browser.

Conversely, if you initially create an element in a (non-scratch pad)
package and you decide that it should not be placed under source
control, then it is possible to move an element from another package
into a scratch pad package by dragging in the browser.
106 Rational Rose RealTime, Guide to Team Development

Setup Subsystem Components
When you open a model that contains a scratch pad package, the
Rational Rose RealTime Toolset will try to read its file based on the file
information for this package. If the file does not exist, then the Toolset
will prompt to allow you to specify an alternative file location. If you do
not have a local file for this scratch pad, then you may click Cancel to
this dialog with no repercussions. If you wish to avoid any prompts
about missing scratch pad packages, open the Tools > Options dialog box
and select Ignore missing scratch pad files on the File tab.

Potential Problems

Since a scratch pad package is never placed under source control, you
must ensure that the elements within it are not referenced by elements
that are checked in to source control. For example, if you create a
capsule class in a scratch pad package, this capsule class should not
be referenced within a component that is checked in to source control.

Note: Elements in a scratch pad package can reference elements either
inside or outside of that package with no problems.

If you accidentally check in an element that references an element in a
scratch pad, then other developers will encounter model validation
errors when they load that version of the referencing element. For more
information on model validation, see Model Validation on page 163.

Setup Subsystem Components

Background

Rational Rose RealTime supports three general types of components:

1. executables — building an executable component results in an
executable (for example, .exe files).

2. libraries — building a library component results in a static library
(e.g. .lib file).

3. external libraries — an external library specifies the path to an
existing static library so it does not need to be built.
Rational Rose RealTime, Guide to Team Development 107

Chapter 4 Organizing a Model (Architect Activities)
It is also possible to create dependencies from an executable
component to a library or external library component. The dependency
indicates that the static library associated with the library component
should be linked in with the executable created when building the
executable component. See the language-specific guides for more
information about components and component dependencies.

A small model may have a single executable component that is built to
produce the application. A large model will have an executable
component and many library components, typically corresponding to
the layering in the architecture.

In addition to the components that are used to build the complete
application, it is often useful to have components that build subsets of
the model, for example, for unit testing purposes.

Components in Subsystems

Ideally, each subsystem will contain one or more external library
components. These components are built as part of the build process
of a subsystem and are referenced in models that use the subsystem.
An external library component will allow the sharing model to reuse the
prebuilt library, which can dramatically reduce build times for a large
model.

A subsystem will often include multiple variations of each component.
For example, a debug component and a release component. For ease of
navigation and organization, the subsystem should group the
components into packages, for example, a Debug package and a
Release package containing the debug and the release components
respectively.

The subsystem model will need one or more executable components
that are used to test the subsystem. Typically, the executable
component will only contain the testing classes and it will have a
dependency on the library component for the subsystem.

The following component diagram shows three components for an
example subsystem. The BaseRelease component is a library that
contains the subsystem. The SanityTests and FullRegressionTests
components are executables that use the BaseRelease component.
108 Rational Rose RealTime, Guide to Team Development

Setup Subsystem Components
Figure 40 Example Subsystem Components

After you create the necessary components and the dependencies
between them, you have to determine which classes belong to which
components. Typically, this will follow naturally from the architecture
of the model, but there can be some issues that arise during
development. As new classes are created, they will need to be added to
the appropriate component(s). If multiple developers create classes
referenced by the same component, then the component can become a
source of contention.

The contention for a component can sometimes be avoided, or at least
reduced, if the component references logical packages instead of
classes themselves. Remember that referencing a package from a
component is equivalent to referencing all the classes in that package.
The added benefit is that the component does not need to be updated
when a new class is added to the package provided that class belongs
in that component. The risk is that a component may contain classes
that it does not require.
Rational Rose RealTime, Guide to Team Development 109

Chapter 4 Organizing a Model (Architect Activities)
Support for Unit Testing

While working within a subsystem model, a developer may find it
useful to create a component for use in unit testing their changes. If
this component has lasting value, then it should be created as part of
the subsystem model so that it can be reused. To support the organized
storage of unit testing components, the Architect may find it useful to
create component packages that can be used for grouping these
components.

If this component is temporary, then it can be created within a scratch
pad package. Often a temporary component is created by copying an
existing component by control-dragging it in the browser.

It is recommended that the Architect creates one or more scratch pad
packages in the Logical View, Component View, and Deployment View
in order to support unit testing with temporary components. It may
also be useful to create a scratch pad package in the Use Case View.

If many developers are creating components in the same (non-scratch
pad) package, then this package can become a source of contention. If
your development process requires the creation and source control of
unit testing components, then you may wish to create several
component packages that are used for this.

For more information on the tasks involved in developer testing, see
Unit Testing within a Subsystem on page 130.

Use Property Sets for Build Settings

Using property sets for common build settings is a suggested method
of maintaining and reusing project level configuration information for
building components. See Managing Model Properties in the Toolset
Guide.

Tasks:

� The builder or architect defines custom sets of component
properties which are specific to a project. For example you can
have debug and release build settings. Custom properties are
stored in the .rtmdl file for this model.
110 Rational Rose RealTime, Guide to Team Development

Processors and Component Instances
� A component should be based on the appropriate properties sets
by modifying the Default set field in appropriate property tabs of the
component Specification dialog. Any local overrides should also be
added.

� For each executable component, the top level capsule must be set.

� When the loadbuilder updates a property set then all components
that use this set must be updated by opening the Specification
dialogs and clicking Apply Defaults on the corresponding property tab. The
development team should also be notified so that they can update
their private test components in the same way.

Processors and Component Instances

Project Level Processors

For each project, there is usually a known set of processors that
component instances are intended to execute on. Since all the
subsystems in the model are intended to execute on this set of
processors, these project level processors should be defined in a
deployment package that is shared between the various subsystem
models.

The builder should setup a deployment package containing these
project level processors. For example the builder could configure
processors for the labs that are available for the development teams.
These deployment package(s) can then be shared in each subsystem
model. Each package should be owned by one of the models so that
modifications can be made to it in a controlled manner.

The processors in these project level deployment packages will typically
not contain any component instances. If they did contain a component
instance, then sharing them would also require the corresponding
component packages which contain the required components. In turn,
these components would require the referenced classes and logical
packages. Unless these elements are present in all subsystem models,
these processors should only be used as ‘templates’ in the subsystem
models.
Rational Rose RealTime, Guide to Team Development 111

Chapter 4 Organizing a Model (Architect Activities)
Subsystem Level Processors

A development team may choose to create additional processors for
their own use, either by copying the project level processors or by
creating new processors for platforms that are not shared with other
teams.

The subsystem level processors can contain component instances
based on the components present in the subsystem. Typically this
would include component instances for regression testing the
subsystem and for unit testing major classes in the subsystem.

Component Instances

Component instances provide the ability to run a specified executable
component on a specified processor. A component instance is
controlled with the processor. As mentioned previously, project level
processors will usually not have any component instances and so they
will typically be copied before they can be used to execute/test a
component.

Subsystem level processors will typically contain component instances
that execute/test the entire subsystem. Developers working on the
subsystem can use these component instances, but they may find it
easier to create specific unit testing components and corresponding
component instances.

If the model is under source control, then scratch pad packages
provide a way to create and execute temporary component instances.

Tasks

� A set of deployment packages can be created to hold processors
that are available i- house for testing. The processors will contain
ip addresses, host names, and other configuration information that
can be re-used by all developers.

� Subsystem processors can be created by copying project level
processors and creating the component instances desired for
executing/testing the subsystem.

� A developer copies one of the pre-defined processors into a scratch
pad package, and then creates the desired component instance to
run on the processor.
112 Rational Rose RealTime, Guide to Team Development

Preparing and Releasing Subsystems
Preparing and Releasing Subsystems

In a model composed of multiple subsystems, there should be policies
in place which describe how new versions of the subsystems will be
made available to the other models.

Subsystem Supplier

When a team is ready to release a new version of a subsystem, they
must ensure that the correct version of all the necessary elements of
the subsystem are available. This includes:

� logical packages containing the classes in the subsystem

� component packages containing the library components and/or
external library components for the subsystem

� any other required Rational Rose RealTime elements

� any other required external (non-Rational Rose RealTime) elements
including .lib files for external library components

The team which is releasing the subsystem will typically prepare the
required elements using one of the following mechanisms:

1. Label Subsystem Elements

If the model is under source control, then a label can be applied to
the elements in the subsystem.

2. Copy Subsystem Elements

The elements in the subsystem can be copied to a known location.

Subsystem Consumer

The architect for a model which requires this subsystem must then
ensure that their model includes the new version of the subsystem. The
mechanism for this depends on how the subsystem elements were
made available.

If the subsystem elements were copied to a known location, the
architect must ensure that this location is referenced by the model. If
the location is the same as the previous version of the subsystem, then
no changes should be necessary. If the location has changed, then the
architect may have to recreate their model by sharing in the shared
packages from the new locations and adding in the packages that are
owned by this model.
Rational Rose RealTime, Guide to Team Development 113

Chapter 4 Organizing a Model (Architect Activities)
If the subsystem was packaged using a source control label, then the
architect must ensure that this label is used for getting the new lineup
for their model.

If there are changes to the subsystem interface, then the architect of a
model which uses this subsystem must ensure that the corresponding
changes are made within their model.

Splitting a Model into Subsystem Models

Splitting a large model into smaller subsystem models can improve
team development. A developer can now work on the appropriate model
for their particular subsystem. Working on this smaller model should
reduce the Toolset footprint and improve the performance of several
operations (e.g., opening a model).

It is possible to split a model before or after it has been placed under
source control. If a model has not been controlled, it is recommended
to split the model first, then add the resulting controlled units to
source control.

Before a model is split into subsystem models, you must ensure that
the dependencies between the subsystems will support this
partitioning. Specifically you must ensure that the subsystems form a
layered architecture that will allow each subsystem to exist in a model
that does not contain any of the ‘higher level’ subsystems. See
Checking Package Dependencies for Completeness on page 101.

Should You Split a Model Before Adding to Source Control?

If your model is not already in source control then it is best to split the
model before adding it to source control. If your model is already in
source control, then it is still possible to split it into separate models
but the process is a bit different.

See Splitting a Model Not in Source Control on page 115 or Splitting a
Model Under Source Control on page 118 for the full description.
114 Rational Rose RealTime, Guide to Team Development

Splitting a Model into Subsystem Models
Splitting a Model Not in Source Control

At this point we assume that you have a base model (in this example
we will call it Base) and that the model is not yet in source control. We
also assume that you will be creating separate models for each of your
subsystems.

Lastly, this description also assumes that you will want to keep the
controlled units for each subsystem model together and so they will be
moved into the subsystem directory tree. Moving the files is optional
but it can make it much easier to manage the files that make up each
model.

The section Overview of Import, Add, and Share on page 62 provides
valuable background information that should be understood before
proceeding with this task.

Tasks

1. Ensure that the base model has defined the initial controlled units,
at least at the package level corresponding to the subsystem
partitioning.

The base model (Base) directory hierarchy for the sample model
would look something like:

Base.rtmdl
<Base>

UseCaseView.rtlogpkg
<UseCaseView>
LogicalView.rtlogpkg
<LogicalView>

SubSystem1.rtlogpkg
<SubSystem1>
SubSystem2.rtlogpkg
<SubSystem2>

ComponentView.rtcmppkg
<ComponentView>

SubSystem1.rtcmppkg
<SubSystem1>
SubSystem2.rtcmppkg
<SubSystem2>

DeploymentView.rtdeploy
<DeploymentView>
Rational Rose RealTime, Guide to Team Development 115

Chapter 4 Organizing a Model (Architect Activities)
2. Click File > Edit Path Map to create a Virtual Path Map variable for
each top level package in the model (for example, each subsystem
package). In our example, we could create path map variables
SubSystem1LogicalPkg, SubSystem1ComponentPkg,
SubSystem2LogicalPackage, SubSystem2ComponentPkg, etc.

3. Explicitly save the Base model units affected by the new pathmap
variable.

4. If the Base model makes use of custom property sets, then these
must be made available to the subsystem models. Click
Tools > Model Properties > Export... to create a file that can be imported
to the subsystem models.

5. Create a new model by clicking File > New. This model will be used
for the first subsystem. Ensure that the path map variables are
still defined correctly.

6. If the Base model makes use of custom property sets, then ensure
that these are available in the subsystem model. Click Tools > Model
Properties > Replace... to import the file containing the property sets.

7. Control all the elements in the new model by right-clicking on the
Model in the browser and clicking File > Control Child Units.

8. Save the model (.rtmdl) into an appropriate directory by clicking File
> Save As.... We suggest that you create a dedicated directory for
each subsystem.

For example, we could name the subsystem model SubSystem1
and store it in a directory called SubSystem1. Answer yes to all the
prompts about file names for the control units.

9. Next, you can optionally move the packages for your subsystem
from the base model directory hierarchy into the subsystem model
directory hierarchy created when you saved the new model.

For each package that will be part of the subsystem, move the
package controlled units (in our example this would be
SubSystem1.rtlogpkg and SubSystem.rtcmppkg into the
corresponding directory level in the new model) and then move the
directories for each package to the corresponding location.
116 Rational Rose RealTime, Guide to Team Development

Splitting a Model into Subsystem Models
The resulting directory hierarchy for the new model should look
something like:
SubSystem1.rtmdl
<SubSystem1>

UseCaseView.rtlogpkg
<UseCaseView>
LogicalView.rtlogpkg
<LogicalView>

SubSystem1.rtlogpkg
<SubSystem1>

ComponentView.rtcmppkg
<ComponentView>

SubSystem1.rtcmppkg
<SubSystem1>

DeploymentView.rtdeploy
<DeploymentView>

If you move the files, then edit the associated path map variables to
reflect the new file locations.

10. Next you will have to add the subsystem packages into the
subsystem model by clicking File > Add Files... in the context menu
for a package. These packages should be added in at the same
location in the subsystem model hierarchy as they were in the base
model. In our example, SubSystem1.rtlogpkg should be added to the
Logical View and SubSystem1.rtcmppkg should be added to the
Component View.

11. Save the subsystem model.

Steps 5 - 11 should be repeated for each remaining subsytem with the
following addition.

� Before adding the subsystem packages to the new subsystem
model (for example, step 8 above), you must share in the packages
from the other subsystems that are required by this subsystem.

In our example, assume that SubSystem2 in the Base model
depends on SubSystem1. In the SubSystem2 model we must first
click File > Share External Package... in the browser context menu to
share SubSystem1.rtlogpkg and SubSystem1.rtcmppkg into the Logical
View and Component View respectively.
Rational Rose RealTime, Guide to Team Development 117

Chapter 4 Organizing a Model (Architect Activities)
If we attempt to add the packages for SubSystem2 before the other
required packages are present in the model, then the Rational Rose
RealTime Toolset will prompt to determine the location of the
required elements. If you encounter this prompt, click Cancel on
this dialog and the subsequent dialog, and then share the required
packages as described above before trying to add the SubSystem2
packages again.

After splitting the original model, you will typically not use that
model for any further development. You may choose to create an
equivalent model that shares in all the subsystems. For example,
in our example we could create a new model called NewBase which
shares in the packages in SubSystem1 and SubSystem2. This
model cannot be used to edit any of the subsystems but it might be
useful for building and/or testing.

Note: If the original model is not controlled, see Controlling All of the
Controllable Elements on page 66 and Controlling a Subset of the
Controllable Elements on page 65.

Splitting a Model Under Source Control

At this point we assume that you have a base model (in this example
we will call it Base) and that the model is under source control. We also
assume that you will be creating separate models for each of your
subsystems.

Lastly, this description also assumes that you will want to keep the
controlled units for each subsystem model together and so they will be
moved into the subsystem directory tree. Moving the files is optional
but it can make it much easier to manage the files that make up each
model.

The section Overview of Import, Add, and Share on page 62 provides
valuable background information that should be understood before
proceeding with this task.

Tasks

1. Ensure that the base model has defined the initial controlled units,
at least at the package level corresponding to the subsystem
partitioning.
118 Rational Rose RealTime, Guide to Team Development

Splitting a Model Under Source Control
The base model (Base) directory hierarchy for the sample model
would look something like:
Base.rtmdl
<Base>

UseCaseView.rtlogpkg
<UseCaseView>
LogicalView.rtlogpkg
<LogicalView>

SubSystem1.rtlogpkg
<SubSystem1>
SubSystem2.rtlogpkg
<SubSystem2>

ComponentView.rtcmppkg
<ComponentView>

SubSystem1.rtcmppkg
<SubSystem1>
SubSystem2.rtcmppkg
<SubSystem2>

DeploymentView.rtdeploy
<DeploymentView>

2. Click File -> Edit Path Map to create a Virtual Path Map variable for
each top level package in the model (for example, each subsystem
package). In our example, we could create path map variables
SubSystem1LogicalPkg, SubSystem1ComponentPkg,
SubSystem2LogicalPackage, SubSystem2ComponentPkg, and so
on.

3. Check out the root packages in the Base model.

4. Explicitly save the Base model units affected by the new pathmap
variable.

5. Check in the root packages in the Base model in order to save the
modified file path information under source control.

6. If the Base model makes use of custom property sets, then these
must be made available to the subsystem models. Click Tools >
Model Properties > Export... menu item to create a file that can be
imported to the subsystem models.

7. Create a new model by clicking File > New. This model will be used
for the first subsystem. Enable source control for this model by
opening its Specification dialog, switching to the Source Control
tab, and specifying the desired settings. Ensure that the path map
variables are still defined correctly.
Rational Rose RealTime, Guide to Team Development 119

Chapter 4 Organizing a Model (Architect Activities)
8. If the Base model makes use of custom property sets, then ensure
that these are available in the subsystem model. Click Tools > Model
Properties > Replace... to import the file containing the property sets.

9. Control all the elements in the new model by right-clicking on the
Model in the browser and clicking File > Control Child Units.

10. Save the model (.rtmdl) in the appropriate local working directory
for your source control system by clicking File > Save As... (for
example, /vob/SubSystem1). We suggest that you create a dedicated
directory for each subsystem.

For example, we could name the subsystem model SubSystem1
and store it in a directory called SubSystem1. Answer yes to all the
prompts about file names for the control units.

If you choose, you may add the subsystem model to source control
at this stage. Click Tools > Source Control > Submit All Changes to
Source Control to ensure that all the controllable units are added.

11. Next you can optionally move the packages that make up your
subsystem from the base model directory hierarchy into the
subsystem model directory hierarchy that was created when you
saved the new model.

The actual steps involved in moving the files and directories within
source control are dependent on the source control tool.

For each package that will be part of the subsystem, move the
package controlled units, in our example this would be
SubSystem1.rtlogpkg and SubSystem.rtcmppkg into the corresponding
directory level in the new model, and then move the directories for
each package to the corresponding location. The resulting directory
hierarchy for the new model should look something like:

SubSystem1.rtmdl
<SubSystem1>

UseCaseView.rtlogpkg
<Use Case View>
LogicalView.rtlogpkg
<Logical View>

SubSystem1.rtlogpkg
<SubSystem1>

ComponentView.rtcmppkg
<Component View>

SubSystem1.rtcmppkg
<SubSystem1>

DeploymentView.rtdeploy
<Deployment View>
120 Rational Rose RealTime, Guide to Team Development

Splitting a Model Under Source Control
If you move the files, edit the associated path map variables to
reflect the new file locations.

12. Add the subsystem packages into the subsystem model by clicking
File > Add Files... in the context menu for a package. These packages
should be added in at the same location in the subsystem model
hierarchy as they were in the base model. In our example,
SubSystem1.rtlogpkg should be added to the Logical View and
SubSystem1.rtcmppkg should be added to the Component View.

If you added the subsystem model to source control previously,
then you will be prompted to check out the root packages that are
affected. Click OK for these dialog boxes.

13. Save the subsystem model.

14. Enter the changes for this subsystem model into source control by
clicking Tools > Source Control > Submit All Changes to Source Control.

15. We recommend that you create a default workspace for each
subsystem model. See Make Default Workspace Available to Project
Members on page 141 for more information on this task.

Steps 7- 15 should be repeated for each remaining subsystem with the
following addition.

� Before adding the subsystem packages to the new subsystem
model (for example, step 12 above), you must share the packages
from the other subsystems that are required by this subsystem.

In our example, assume that SubSystem2 in the Base model
depends on SubSystem1. In the SubSystem2 model we must first
click File > Share External Package... menu item share in the browser
context menu to share SubSystem1.rtlogpkg and SubSystem1.rtcmppkg
into the Logical View and Component View respectively.

If we attempt to add the packages for SubSystem2 before the other
required packages are present in the model, then the Rational Rose
RealTime Toolset prompts you to determine the location of the
required elements. If you encounter this prompt, click Cancel and
on subsequent dialog boxes as well, and then share the required
packages as described previously before attempting to add the
SubSystem2 packages again.
Rational Rose RealTime, Guide to Team Development 121

Chapter 4 Organizing a Model (Architect Activities)
After splitting the original model, you will typically not use that
model for any further development. You may choose to create an
equivalent model that shares in all the subsystems. For example,
in our example we could create a new model called NewBase which
shares in the packages in SubSystem1 and SubSystem2. This
model cannot be used to edit any of the subsystems, but it might
be useful for building and/or testing.

Note: If the original model is not controlled yet., see Controlling All of
the Controllable Elements on page 66 and Controlling a Subset of the
Controllable Elements on page 65.
122 Rational Rose RealTime, Guide to Team Development

Chapter 5

Working with a Model Under Source
Control (Developer Tasks)

As a developer, you work with a subsystem model under source
control. Before reading the following sections, you should be familiar
with the material in Source Control Fundamentals on page 79.

These are the tasks a developer will need to become familliar with:

� Setting up your Source Control Tool on page 123

� Configuring Work Areas on page 124

� Getting a Specific Lineup of a Model on page 124

� Opening a Model Under Source Control on page 125

� Adding a new Controlled Unit into Source Control on page 125

� Checking Controlled Units In and Out of Source Control on page 126

� Building and Running Locally on page 129

� Unit Testing within a Subsystem on page 130

� Promoting Changes for Integration on page 132

Setting up your Source Control Tool

Before using Rational Rose RealTime with your source control tool, you
must perform any tool-specific configuration, as specified in the
sections referenced below:

� ClearCase Workstation Setup on page 150

� SourceSafe Workstation Setup on page 153

� RCS/SCCS Workstation Setup on page 157
Rational Rose RealTime, Guide to Team Development 123

Chapter 5 Working with a Model Under Source Control (Developer Tasks)
Other Source Control Tools

If you customized Rational Rose RealTime to work with another source
control tool, ensure that the source control tool is correctly installed on
each developer workstation.

Configuring Work Areas

Before working on a source controlled model you first have to get a
specific lineup of controlled units onto your local disk. From there, you
can start working on a model by opening the workspace file.

Your Source Control Administrator or Integrator will know how to
determine the specific label or configuration used to create a local work
area. Next, it is a matter of setting up a local work area before running
Rational Rose RealTime.

See the following tool specific sections:

� ClearCase Work Area Setup on page 152

� SourceSafe Work Area Setup on page 155

� RCS/SCCS Work Area Setup on page 158

Getting a Specific Lineup of a Model

When a Developer begins a development task, they must start with the
correct version of the model files. The steps involved vary depending on
your team development process and the underlying source control tool.

For Rational ClearCase, the developer should be using a config spec
that defines their view to include the correct versions of the model
elements.

For Microsoft Visual SourceSafe, your team may be using labels to
mark the correct versions and the developer should perform a Get
based on that label by using the Label field available from the
Parameters... button in the Get dialog box.

Similar labelling strategies can be used with RCS/SCCS.
124 Rational Rose RealTime, Guide to Team Development

Opening a Model Under Source Control
Opening a Model Under Source Control

Opening a model under source control is no different than opening a
non-source controlled model. In either case, opening the associated
workspace (.rtwks) file is the recommended way to load the model into
the Toolset. A default workspace will typically be made available by the
Source Control Administrator, see Make Default Workspace Available to
Project Members on page 141.

Note: When opening the model from source control, open the associated
workspace file. The workspace stores the source control configuration
settings for the model. If you open the model directly (without using the
workspace), the source control settings will not be set, and you will have
to go to the Model Specification dialog and set them. See Configure the
Workspace Source Control Options on page 141.

Adding a new Controlled Unit into Source Control

After your model is under source control, any new controlled units you
create in the model must be added to source control.

Check Out Parent Package

When a new controlled unit is added to a source controlled model, you
will have to check out the package in which the new unit will be placed.
If there is excessive contention for parent packages, then you may wish
to partition the package into several smaller packages.

To add a new controlled unit to source control:

1. Add a new unit to your model.

2. If the parent package is not checked out the Toolset prompts you to
check it out.

3. Click Tools > Source Control > Submit All Changes To Source Control.

Clicking Source Control > Add to Source Control... can also add selected
units to source control.

Note: Until a unit is saved to disk, it cannot be added to source control.

The advantage of clicking Tools > Source Control > Submit All Changes To
Source Control is that you will not forget to add any units.
Rational Rose RealTime, Guide to Team Development 125

Chapter 5 Working with a Model Under Source Control (Developer Tasks)
Checking Controlled Units In and Out of Source Control

Checking Out Controlled Units

After a model is under source control, check out elements before you
edit them. Depending on the source control settings, the Toolset may
force you to check out before editing. See What are Primary and
Secondary Edits? on page 81.

To check out an element for editing:

1. Select the appropriate controlled unit(s) in the browser.

2. Click Source Control > Check Out... from the browser context menu

A confirmation dialog appears. After accepting, the check out
operation will proceed on all selected elements.

While editing these elements you may affect other elements that are
not checked out. See What are Primary and Secondary Edits? on
page 81 .

Checking In Controlled Units

To check in a controlled unit after editing:

1. Select the unit(s) in the browser.

2. Click Source Control > Check In... menu item from the browser context
menu.

The unit will be automatically saved to its file before the file is
checked in.

If you make changes to multiple units, and/or you have several new
units to add to source control, it is recommended that you use the
Submit All Changes to Source Control menu item (described below).

Submitting All Changes to Source Control

If you have several controlled units to check in or add to source control,
then it can be errorprone to select them and use the Check In... or Add
to Source Control... menu items. Forgetting to add new units can result
in model validation errors when other users get the new version of the
other units. See Model Validation on page 163.
126 Rational Rose RealTime, Guide to Team Development

Checking Controlled Units In and Out of Source Control
To avoid these portential problems, you should add or check in all
checked out and new units in your model at once by clicking Tools >
Source Control > Submit All Changes to Source Control.

You are prompted to add any new units to source control (see
Figure 41), then asked to check in any checked out units (see
Figure 42). These dialogs will list all new and checked out units
respectively.

Figure 41 Add to Source Control dialog

The Add to Source Control dialog box has a Keep checked out option that
automatically checks these units out after they have been added to
source control.
Rational Rose RealTime, Guide to Team Development 127

Chapter 5 Working with a Model Under Source Control (Developer Tasks)
Figure 42 Check In Dialog

By default, all new and checked out units are submitted. You can use
the check boxes on the left side of each unit to filter items from the list
in each dialog box. The check in dialog has a Keep checked out option to
keep these units checked out after the new version has been checked
in.

Undoing a Check Out

After you check out a controlled unit, you may choose to undo the
check out and not submit a new version.

To undo a check out for an element:

1. Select the appropriate controlled unit(s) in the browser.

2. Click Source Control > Undo Check Out... from the browser context
menu. The following dialog box appears.
128 Rational Rose RealTime, Guide to Team Development

Building and Running Locally
Figure 43 Undo Check Out Dialog

Note: When you undo a check out, you will lose your local changes for
these units and they will not be submitted to source control.

Building and Running Locally

You can build any component that exists in a source controlled model
without having to check out any files. If the component is an
executable and already has an associated component instance, you
can also run and observe the component instance without having to
check out anything from the model.

However, if you want to create your own components, for example to
change the top capsule or modify certain build settings, you will have
to create a local component, processor, and component instance.

Reusing Build Settings

Typically, your development team will have a set of build properties
that are used to for your components. Whenever you are creating a new
component, you should try to use one of these property sets.
Rational Rose RealTime, Guide to Team Development 129

Chapter 5 Working with a Model Under Source Control (Developer Tasks)
For a description of the steps involved in creating temporary
components for testing purposes, see Set up Private Components on
page 130.

Probes and Inject Messages

When running a component instance locally, all probes and inject
messages added to the component instance are saved locally in the
<model>.rtto file. This allows a user to debug and run a component
instance without having to check it out of source control.

See User-specific Working Environments (.rtus and .rtwks)in the Toolset
Guide for more information on the .rtto file.

Unit Testing within a Subsystem

It is possible to unit test a capsule by building and running it. You may
need to create a new component that has this capsule defined to be its
top capsule, and you may also need to create a new component
instance to run. If there are existing unit test components for this
capsule, they can be reused directly.

Best Practices

It is recommended that your Architect setup a package for saving
useful test harnesses that would be of interest to developers working
on the subsystem. Support for Unit Testing on page 110

If you are creating your own unit testing components, see Use Property
Sets for Build Settings on page 110.

Set up Private Components

Each developer will want to create their own components during day to
day development, for example, to unit test the changes they are
working on. Often these private components are not meant to be
released or added to source control. Through the use of scratch pad
packages, Rational Rose RealTime provides each developer the option
of creating local modeling elements which are not checked into source
control.
130 Rational Rose RealTime, Guide to Team Development

Differencing and Merging Model Elements
Tasks

� The developer creates any required testing classes in a scratch pad
package.

� The developer creates a component in a scratch pad package. If the
testing component is only a variation of an existing component,
this can be done by copying (for example, control-dragging) the
existing component into the scratch pad.

� The developer can set the build properties for the component by
applying a property set. This will ensure that the build settings
default to the desired values, typically defined by a project level
build settings property set.

� The developer adds/modifies references to the required classes in
the component and sets the top level capsule.

� The developer can now build the component.

� The developer should copy (for example, control-drag) the desired
processor into a scratch pad package and drag the test component
onto this processor to create a component instance.

� The developer can now run this component instance and test their
changes.

Differencing and Merging Model Elements

The local version of a unit may be compared to its previous versions
that may exist in your source control tool. Click Source Control > Show
Differences... to compare the local file with the most recent version under
source control. To compare with an earlier version, see Show History
on page 90.

Similarly, if a unit is checked out, then a Get performed on that unit
will prompt the user if a merge should be performed. To merge from the
most recent version under source control, perform a Get on the desired
checked out unit. To merge from a previous version, use the Get
facilities provided in the Show History dialog box.

See the Rational Rose RealTime Model Integrator documentation for a
complete description of how to use the merge/differencing tool.
Rational Rose RealTime, Guide to Team Development 131

Chapter 5 Working with a Model Under Source Control (Developer Tasks)
Synchronizing Models with Source Control

To synchronize the status of units displayed in the model browser with
the status as reported by source control, click Tools > Source Control >
Refresh Status of Model.

To synchronize and reload any elements that are different from what is
loaded in the Toolset, click Source Control > Synchronize.

Note: This is different from Synchronize with File System, which ignores
source control information.

To extract the latest version of all files from source control, click Tools
> Source Control > Get Latest Version of Model.

All of the above actions can be performed on subsets of the model using
context menus in the browser.

See Source Control Operations on page 87 for more information.

Promoting Changes for Integration

When working in a single stream development process, there is no
explicit integration step. Instead, submitting changes to the source
control repository effectively integrates them with the existing file
versions.

For an example of integration with a parallel stream development
process, see ClearCase Parallel Development: Sample Process on
page 171.
132 Rational Rose RealTime, Guide to Team Development

Chapter 6

Building and Integrating (Integrator
Tasks)

The Integrator combines changes from multiple developers to produce
a lineup to use as a basis for the next set of development activities. The
Integrator will typically be responsible for the automated building
process.

Some of the specific tasks involved in building an integrating are:

� Building using Automated Scripts on page 133

� Building within a Larger Build Procedure on page 135

� Reuse of Build Artifacts on page 136

� Integrating Changes on page 137

� Automating Model Validation on page 137

Building using Automated Scripts

The Rational Rose RealTime code generator assumes it is generating
for a valid lineup of classes and packages. See Automating Model
Validation on page 137 for an example of how you can validate the
model as part of the automated build process.

Starting with a valid model, it is possible to initiate a build from a clean
directory using the following two steps.These are effectively the same
steps used by the Rational Rose RealTime Toolset.

Note: The "\" character in the following command syntax represents the
command line continuation character. This may be different on your
system.
Rational Rose RealTime, Guide to Team Development 133

Chapter 6 Building and Integrating (Integrator Tasks)
To initiate a build from a clean directory:

1. Build the makefiles:
${CodeGenMakeCommand} ${CodeGenMakeArguments} \

–f $ROSERT_HOME/codegen/bootstrap/${CodeGenMakeType}.mk \
"RTS_HOME=${TargetServicesLibrary}" \
"MODEL=${ModelFile}" "COMPONENT=${QualifiedName}" \
RTmakefiles

where CodeGenMakeCommand, CodeGenMakeArguments,
CodeGenMakeType, and TargetServicesLibrary are replaced by the
corresponding value in the component; QualifiedName is replaced
by the fully qualified name for the component; and ModelFile is
replaced by the file name for the model (.rtmdl) file.

2. Generate the code and compile using:

${CodeGenMakeCommand} ${CodeGenMakeArguments} \
–f Makefile RTcompile

For example, if the following substitutions are made:

The resulting commands are:

clearmake -k -J4 \
-f $ROSERT_HOME/codegen/bootstrap/ClearCase_clearmake.mk \
“RTS_HOME=$ROSERT_HOME/C++/TargetRTS” \
“MODEL=/my/path/MyModel.rtmdl” \
“COMPONENT=Component View::MyComponent” \
RTmakefiles

clearmake -k -J4 -f Makefile RTcompile

Note: Automated builds are not restricted to clearmake.

Argument Example Value

${CodeGenMakeCommand} clearmake

${CodeGenMakeArguments} -k –J4

${CodeGenMakeType} ClearCase_clearmake

${TargetServicesLibrary} $ROSERT_HOME/C++/TargetRTS

${ModelFile} /my/path/MyModel.rtmdl

${QualifiedName} Component View::MyComponent
134 Rational Rose RealTime, Guide to Team Development

Building within a Larger Build Procedure
Virtual Path Map Symbols

If you wish to build a component outside of the Toolset, all virtual path
map symbols used in the model must have corresponding environment
variables defined.

Building within a Larger Build Procedure

For integration into a larger build procedure, automated builds can
generate the code and compile the code in two separate steps. This
involves a slight change to the steps listed above.

To integrate into a large build procedure:

1. Build the Makefiles using the same command as above.

2. Generate the code (without compiling it) by replacing “RTcompile”
above with “RTgenerate”:

$CodeGenMakeCommand} ${CodeGenMakeArguments} \
–f Makefile RTgenerate

3. Compilation of the generated code (without regenerating it) uses
“RTmycompile”:

${CodeGenMakeCommand} ${CodeGenMakeArguments} \
–f Makefile RTmycompile

Note: The "\" character in the command syntax represents the command
line continuation character. This may be different on your system.

If we use the same example substitions as above, then the resulting
commands are:

clearmake -k -J4 \
-f $ROSERT_HOME/codegen/bootstrap/ClearCase_clearmake.mk \
"RTS_HOME=$ROSERT_HOME/C++/TargetRTS" \
"MODEL=/my/path/MyModel.rtmdl" \
"COMPONENT=Component View::MyComponent" \
RTmakefiles

clearmake -k -J4 -f Makefile RTgenerate

clearmake -k -J4 -f Makefile RTmycompile
Rational Rose RealTime, Guide to Team Development 135

Chapter 6 Building and Integrating (Integrator Tasks)
Reuse of Build Artifacts

Build artifact reuse is supported in Rational ClearCase environments
only by using the ClearCase "wink-in" feature. Both “clearmake” (Unix,
Windows NT, and Windows 200) and "omake" (Windows NT and
Windows 2000 only) provide the wink-in mechanism.

Creating Reuseable Build Artifacts

In order for build artifacts to be "wink-in-able", the following criteria
must be met:

� The component’s OutputDirectory must be in a view.

� All controlled units within the model must be version controlled in
a ClearCase VOB.

� All controlled units must not be checked out to the view performing
the build.

� The build must be performed from a clean directory. If a build is
unsuccessful, the OutputDirectory must be completely cleaned in
order to guarantee wink-in.

� In the component, the CodeGenMakeType and
CompilationMakeType properties must both be set to either
"ClearCase_clearmake" or "ClearCase_omake" as appropriate.
Similarly, the CodeGenMakeCommand and
CompilationMakeCommand properties must be set to something
appropriate, typically either "clearmake" or "omake".

The OutputDirectory can be a view-private directory, but that requires
every developer to create that directory in their view first. A
recommended practice is to use a directory element that is stored in a
VOB.

The following are encouraged practices:

� All external include files should be version-controlled in a
ClearCase VOB.

� The TargetServicesLibrary should be version-controlled in a
ClearCase VOB.

� Other linked libraries should be version-controlled in a ClearCase
VOB.

� Optionally, $ROSERT_HOME should be version-controlled in a
ClearCase VOB.
136 Rational Rose RealTime, Guide to Team Development

Integrating Changes
Using Build Artifacts

A developer wishing to reuse the artifacts from a build should:

� assign his or her environment variables (such as $ROSERT_HOME
and $PATH) appropriately,

� use the same versions of elements that the build used,

� create in his or her view, if it does not already exist, the same
OutputDirectory used by the builder

� perform the same activity that the builder performed (a compile or
a generate, from within the Toolset or from the command-line).

See ClearCase Parallel Development: Sample Process on page 171 for a
description of a development process that provides significant build
artifact reuse.

Integrating Changes

Integrating developer changes is highly dependent on the development
process being used. The primary goal of the Integrator is to produce an
updated lineup of model elements that can be used as a basis for
subsequent development activities. This will often involve merging
changes from multiple developers (using the Rational Rose RealTime
Model Integrator) and performing local builds to verify sanity.

For an example of how integration can be performed in a parallel
development environment with ClearCase, see ClearCase Parallel
Development: Sample Process on page 171.

Automating Model Validation

Rational Rose RealTime provides an automated way of determining if a
model is valid. These steps can be incorporated into an automated
build process to determine if the code generation and compilation steps
of the build should be performed.
Rational Rose RealTime, Guide to Team Development 137

Chapter 6 Building and Integrating (Integrator Tasks)
Using the Rational Rose RealTime Extensibility Interface (RRTEI), you
can write a script that:

� Opens a specified model (using the Application.OpenModel method).

� Saves the log to a specified file (using the Application.SaveLogAs
method).

� Closes the Toolset (using the Application.Exit method).

For more information on the RRTEI, see the Rational Rose RealTime
Extensibility Interface References Online Help.

You can invoke this script as part of an automated build. The
automated build script can then search (for example, grep) the log file
to determine if any errors or warnings were encountered when the
model opens. If problems were encountered, then the build script can
email the log file to the builder. If no problems were encountered, then
the build script can continue with the code generation and compilation
steps.
138 Rational Rose RealTime, Guide to Team Development

Chapter 7

Source Control Administration

The source control administrator provides the overall source control
infrastructure and environment for the development team. It is
assumed that the source control administrator is familiar with both
Rational Rose RealTime and your source control tool.

Prior to any team development work with Rational Rose RealTime, the
following tasks must be completed:

� Set up a Source Control System and Repository on page 140

For each project, the following tasks will be required:

� Control Appropriate Model Elements as Units on page 140

� Create a Local Work Area on page 140

� Save Model to Local Work Area on page 141

� Configure the Workspace Source Control Options on page 141

� Add the Model to Source Control on page 141

� Make Default Workspace Available to Project Members on page 141

After these steps are completed, development can start on the project.
However, there are additional responsibilities to consider:

� Defining Developer Work Areas on page 142

� Creation of Labels and Lineups on page 142

� Manipulation of the Source Control Repository on page 142

The details of many of these tasks are dependent on the source control
plan developed for the project.
Rational Rose RealTime, Guide to Team Development 139

Chapter 7 Source Control Administration
Set up a Source Control System and Repository

Prior to placing Rational Rose RealTime models under source control,
there are some setup steps that must be followed to configure the
source control system to allow proper integration with Rational Rose
RealTime. Most of these tasks are performed outside of Rational Rose
RealTime and require knowledge of the source control tools you will be
using. If you are unsure about the procedures, please see your source
control tools documentation.

Before continuing, please review the tool-specific documentation in the
sections referenced below:

� Rational ClearCase on page 144

� Microsoft Visual SourceSafe on page 152

� RCS and SCCS on page 155

After reviewing this material, ensure that a repository is properly set
up for integration with Rational Rose RealTime.

Control Appropriate Model Elements as Units

Determine the granularity you require for your project and team
environment at the current stage in development. Do this in
collaboration with the architect(s) for the project. See What Level of
Granularity Should I Use? on page 59 for information on choosing the
right granularity.

See Controlling All of the Controllable Elements on page 66 and
Controlling a Subset of the Controllable Elements on page 65 for a
description of the mechanics involved in specifying which model
elements should be controlled.

Create a Local Work Area

You will want to establish a local work area for you to save models.
Setting up a work area is specific to each source control tool:

� ClearCase Work Area Setup on page 152

� SourceSafe Work Area Setup on page 155

� RCS/SCCS Work Area Setup on page 158
140 Rational Rose RealTime, Guide to Team Development

Save Model to Local Work Area
Save Model to Local Work Area

Before placing the model under source control, it must be saved to the
local work area. Save the model to the directory you have associated
with your source control repository.

Configure the Workspace Source Control Options

To enable source control, fill in the proper settings on the Source
Control tab, as described in Source Control Settings on page 83.

Add the Model to Source Control

The simplest way to add all applicable units to source control is to use
the Submit All Changes to Source Control tool as described in Submit All
Changes on page 89. If you require finer control over which units will
be added, see Source Control Operations on page 87 and Add on
page 88.

Make Default Workspace Available to Project Members

The workspace (.rtwks) file contains information that is common to all
users that will be working on the project. Settings in the workspace will
rarely, if ever, change after it is initially set up. All developers on a
project should use identical copies of the workspace file. For this
reason, you may want to place this file under source control so that a
fixed version is available to all project users. Rational Rose RealTime
does not provide explicit support for checking in or checking out this
file.

After the source control manager adds the model to source control, the
workspace should be manually added using your source control tool.
Other users should then retrieve the workspace as part of their initial
update of their local work area. This will ensure that all team members
use the same source control settings for the project.
Rational Rose RealTime, Guide to Team Development 141

Chapter 7 Source Control Administration
Defining Developer Work Areas

At this point, the source control administrator should think about how
each worker (developer, integrator, etc) will work individually and
access specific versions (lineups) of a model. This usually involves
defining labelling policies.

The source control administrator should provide guidelines to the rest
of the team as to how work areas should be created for each developer.
In some cases the source control administrator may need to actually
create the work areas.

Defining work areas is tool dependent, and the steps required for
setting up a work area for single stream and parallel stream
development can be quite different. See the section below that
corresponds to your source control system for more information:

� ClearCase Work Area Setup on page 152

� SourceSafe Work Area Setup on page 155

� RCS/SCCS Work Area Setup on page 158

Creation of Labels and Lineups

Labels, and the use of labels to create lineups, are crucial to any
successful development strategy. There are many ways to use labels
and lineups, though, and the specifics of each are highly specific to
each organizations development environment and source control tools.

For an example of an effective labelling and lineup strategy, see
ClearCase Parallel Development: Sample Process on page 171.

Manipulation of the Source Control Repository

It may be necessary to move or rename files in the repository. This
should only be performed by someone who is familiar with the source
control tool being used. In many development environments, such
moving and renaming is always carried out by the source control
administrator, who will be able to carry out the task most effectively.

See Moving Controlled Units Between Model Directories on page 67 for
details on relocating controlled units.
142 Rational Rose RealTime, Guide to Team Development

Chapter 8

Source Control Tools

This chapter contains information on integrating Rational Rose
RealTime with the different supported source control tools. Each
source control tool requires specific configuration for proper use with
Rational Rose RealTime.

The following source control systems are supported:

� Rational ClearCase (Windows and Unix) - see Rational ClearCase
on page 144

� Microsoft Visual SourceSafe (Windows only) - see Microsoft Visual
SourceSafe on page 152

� RCS and SCCS (Unix only) - see RCS and SCCS on page 155

� PVCS (Windows only) - see PVCS on page 159

Before starting, understand how the tasks described in this chapter
relate to the overall team development process, described in Team
Development on page 1.

For details on adding support for other source control systems, see
Customizing Source Control Interface Scripts on page 189.

Note: These sections assume you are already familiar with the
capabilities and terminology of your chosen source control tool.
Rational Rose RealTime, Guide to Team Development 143

Chapter 8 Source Control Tools
Rational ClearCase

ClearCase uses a view model combined with a virtual file system that
allows users to specify the lineup of file versions with which they want
to work (a config spec controls the lineup used for a particular view).
Rational Rose RealTime then sees the files in the current view just as
if they were stored on a regular (non-ClearCase) file system. Rational
Rose RealTime specifies the set of files that make up the model, and
ClearCase provides the versions of these files determined by the view's
config spec. Thus the model must be saved to a view directory that is
not view-private in order for the files to be added to source control.

As mentioned in Working in Isolation on page 93, it is important that
each developer have their own work area. When working with
ClearCase, a work area is a view. This means that each developer
should use a view that is dedicated for their sole usage and that should
not be shared with other developers.

ClearCase has a feature allowing a new element "type" to be defined
that includes specifying a merge and differencing tool that should be
used on files of the new type. Rational Rose RealTime uses this to
define an element type that applies to all Rational Rose RealTime files
placed under source control. With this element type defined, all new
Rational Rose RealTime files that are placed into a VOB are associated
with that file type and will use Rational Rose RealTime Model
Integrator as their default merge and differencing tool.

Registering a new ClearCase element type involves two steps. First,
each ClearCase installation must be set up with a "type manager" that
will map file extensions to the new element type and indicates which
executable to invoke for merge and diff operations. Second, the new
element type must be registered in all VOB’s in which it will be used.
The setup required for these steps is detailed later in this section.

General Recommendations

Windows NT/2000

Users should not access views through the MVFS mount point or M:
drive. Instead, use the views through explicit drive mountings (usually
X:, Y:, Z:). This improves "wink-in" and eliminates dependencies on
view names.
144 Rational Rose RealTime, Guide to Team Development

Rational ClearCase
Source Control Operation Behaviour with ClearCase

Certain operations behave differently in ClearCase than as described
in Source Control Operations on page 87. These differences are detailed
below.

Get

Get is not able to retrieve a specific version of a file to a view because
the version being observed in a view can only be changed via the config
spec for that view. However, if a file is checked out, then Get may be
used to replace the checked out file with a copy of a particular version
of the file.

In the case where a file is not checked out, performing a Get on that file
is the same as performing a Synchronize on the file.

See Snapshot Views on page 147 for details about how the get
command works with Snapshot Views.

Synchronize

If a dynamic view is being used and the version of a file available in the
view changes, then Synchronize will detect this and reload the file.
Synchronize is a safer operation to perform than Get, as Synchronize
will not lose any checked out changes, while Get may replace your
checked out changes with the most recent version in the VOB.

Add

When adding files to source control, the ClearCase integration
assumes that the containing directory is under source control and not
currently checked out. If the containing directory is already checked
out, the add will fail.

Label

Labelling of a directory will only apply the label to the directory element
itself. To apply the label to the files contained within a directory, the
Recursive option must be used.
Rational Rose RealTime, Guide to Team Development 145

Chapter 8 Source Control Tools
UCM Integration

The UCM integration allows users working in a UCM VOB to assign
activities to revisions from within the Toolset. In addition, you can
Rebase, Deliver, and launch the Project Explorer from within the
Toolset.

Activity Selection Combination Box

If ClearCase is enabled and if the model is stored in a UCM VOB, an
activity selection combination box appears in the Add, Check in and
Check out dialog boxes. If the activity box appears, an activity must be
selected or created to continue with the operation. To create a new
activity simply type it into the activity combination box.

The activity selector contains the list of activities that exist in the view
containing the model. The view’s current activity is automatically
selected.

Run Project Explorer

To load the ClearCase project explorer application within its own
process, click Run project explorer. You can continue using Rational Rose
RealTime while the project explorer is loaded.

If the project explorer binary cannot be found, due to a problem with
the path, an error message is generated in Rational Rose RealTime.

Rebase

To start a rebase, click Rebase from Stream from Tools > Source Control.
The Rebase ClearCase dialog box appears.

1. After the rebase has started, a Rational Rose RealTime dialog box
appears, prompting you to synchronize the model with rebase
changes. Ignore this dialog for now. You will return to Rational
Rose RealTime after the rebase operation has been started.

2. Change to the Rebase dialog box and proceed with the operation.

3. After the initial rebase is finished, the Rebase dialog box will
suggest that you build and test before checking in any undelivered
work.
146 Rational Rose RealTime, Guide to Team Development

Snapshot Views
4. Test the rebase from within Rational Rose RealTime, then return to
the rebase ClearCase dialog box.

5. To keep the changes, click Complete from the Rebase dialog box.

Deliver

Before using the Deliver command, you need to check in all changes to
be delivered. After you check in your changes, click Deliver Stream from
Tools > Source Control. The Deliver ClearCase dialog box appears.

1. From the Deliver ClearCase dialog box, select the activities to deliver.

2. Merge changes if applicable.

3. The Rational Rose RealTime session from which the rebase was
started will be unavailable until the rebase is completed. Load
another Rational Rose RealTime session to test changes in your
own integration stream.

4. When satisfied with deliver, return to the Deliver ClearCase dialog
box.

5. To save the changes, click Complete from the Deliver ClearCase dialog
box.

Snapshot Views

Snapshot views are supported by Rational Rose RealTime. With
ClearCase, you initiate a snapshot view update from within the Toolset,
to work on files that you did not check out. The snapshot view contains
the directory tree of source files.

You will want to use snapshot views if any of the following conditions
apply:

� your computer does not support dynamic views

� you want to optimize build performance to achieve native build
speeds

� you want to work with source files under ClearCase control when
you are either disconnected from the network that hosts the VOBs,
or connected to the network intermittently

� you want access to a view from a computer that is not a ClearCase
host

� your project does not use ClearCase build auditing and build
avoidance
Rational Rose RealTime, Guide to Team Development 147

Chapter 8 Source Control Tools
Certain operations behave differently in ClearCase snapshot views
than as described in Source Control Operations on page 87 and Source
Control Operation Behaviour with ClearCase on page 145.

Check in

When checking in files, ClearCase copies the new version to the VOB,
as long as there is no successor version already in VOB.

If there is a successor, an error is returned from the scripts an will
appear in the log. In order to check in your changes, you must first
merge the most recent version from the VOB into your local copy. There
are a couple of methods to perform the merge:

1. Update your snapshot view by clicking Tools > Source Control >
Update Snapshot View.... The Update Snapshot View... command helps you
merge any changes. This is the preferred method since your snapshot view will
also get any new elements that appear in the VOB.

2. If you know that the only the one element has changed in the VOB,
use the context-menu Source Control > Get to retrieve the most
recent version and perform the merge.

Check out

When working with a snapshot view, ClearCase marks elements in
VOB as checked out. When checking out an element you will not be
warned if a more recent version exists in VOB.

Get

The Get command for snapshot views in Rational Rose RealTime uses
the update command to copy elements to a snapshot view. Unless you
are certain that there are no new elements in the VOB, you can use Get
to update existing model elements in your view. However, to get all new
elements that may of been added to a VOB, use the Update Tool.

1. If the element is checked in, the Get command updates that
element with the most recent version from the VOB.

2. If the element is checked out and is not the most recent in the
VOB, the Get command prompts you to merge.

3. You cannot update an element which is already the most recent
version in the VOB.
148 Rational Rose RealTime, Guide to Team Development

Snapshot Views
It may happen that the Get command updates a model element which
references new elements that have not been copied into your snapshot
view. This will happen if, after the Get operation, a dialog box appears
prompting for the location of elements the Toolset could not find. If this
happens, simply run the Update Tool to copy all new elements into your
snapshot view.

Update

If a model is version controlled in a ClearCase snapshot view, the
Update Snapshot View... menu item appears from the Tools > Source Control
menu. Update launches the ClearCase update tool. When the update
is completed, a dialog is displayed to help you resync the model with
the new elements that have been copied to your view and elements that
have been checked in.

Hijacking a File

If you work in a snapshot view while not connected to a network, you
can modify a loaded model element that you have not checked out. This
is what ClearCase calls hijacking a file. Once reconnected to the
network (VOB), launch the Update tool to resolve hijacked files.

Deliver

When delivering a stream that has associated snapshot views, use the
Tools > Source Control > Update Snapshot View... command to update the
snapshot view before delivering. Click Tools > Source Control > Deliver
Stream to deliver the changes.

Rebase

Use the project explorer to rebase, then update your snapshot view
from within the Toolset.

Activities

Activities work just like dynamic views. The check in, check out and add
dialog boxes contain an activity combination box if the snapshot view
is UCM enabled.
Rational Rose RealTime, Guide to Team Development 149

Chapter 8 Source Control Tools
ClearCase Workstation Setup

The following setup must take place on all workstations that will be
accessing a VOB or view. For Windows NT and Windows 2000, this
includes all workstations used for development. For Unix, this includes
all machines that are view servers.

These steps will also need to be run on all machines that act as view
servers for the ClearCase views used by Rational Rose RealTime. If you
use ClearCase MultiSite, you will need to do this at all the sites where
the VOBs containing the Rose elements are replicated.

You can determine which machines are view servers by typing

cleartool lsview

in a command window. The second item on each output line indicates
the machine name where the view server is running. For example, if
you see the following line in the output of the lsview command:

myview \\mymachine\vws\myview.vws

then "mymachine" is the name of the machine where the view server
for myview exists.

For further details, see your ClearCase administrator.

Command Line Access to the Source Control Tool

For any user wishing to use Rational Rose RealTime’s integration with
ClearCase, cleartool must be accessible from the command prompt.

Element type setup: type manager

The following steps are required for making ClearCase clients aware of
the new element type.

Windows NT/2000

In the instructions below, <atria-home> refers to the ClearCase
installation directory. For newer releases, this typically is c:\Program
Files\Rational\ClearCase. For older releases, this typically was c:\Atria.

� From a command prompt, run

rtperl <ROSERT_HOME>\bin\<ROSERT_HOST>\cc\mi_typeman.pl
-atriahome <atria-home>
150 Rational Rose RealTime, Guide to Team Development

ClearCase Repository Setup
Unix

Use the $ROSERT_HOME/bin/$ROSERT_HOST/cc/mi_typeman script to install
the type manager in each ClearCase installation. To set up the
extensions and tool mappings, the user executing the script must have
access to the following directories in the ClearCase installation:

/lib/mgrs
/config/ui/icons
/config/ui/bitmaps
/config/magic

Use the following command line to set up the proper file extensions and
tool invocations:

<ROSERT_HOME>/bin/<ROSERT_HOST>/cc/mi_typeman.sh install
-server

ClearCase Options

Windows NT/2000

Rational Rose RealTime is case sensitive when looking for file names,
so you must turn on the preserve case option for the ClearCase MVFS
on WindowsNT:

1. In the ClearCase HomeBase tool, select the MVFS tab. (The
ClearCase Control Panel tool can be started from either the
Windows Control Panel or from the Administration tab in the
HomeBase tool)

2. Make sure the "preserve case" check box is checked.

3. The MVFS service must be restarted for this change to take effect.

Unix

There are no options that need configuring for Unix ClearCase.

ClearCase Repository Setup

Each VOB must be set up to allow files of the new element type to be
created. Follow the steps that apply to your platform below for each
VOB that will be storing Rational Rose RealTime files.
Rational Rose RealTime, Guide to Team Development 151

Chapter 8 Source Control Tools
Windows NT/2000

Open a command prompt window and change directory to a path
within the VOB in which you wish to register the type. To create the
element type, use the following command syntax:

cleartool mkeltype -supertype text_file -manager
petalrt_file_delta -c "RoseRT files" rosert_unit

Unix

Use the $ROSERT_HOME/bin/$ROSERT_HOST/cc/mi_typeman script to
register the rosert_unit element type in each VOB using the following
syntax:

<ROSERT_HOME>/bin/<ROSERT_HOST>/cc/mi_typeman.sh install
-eltype -vob <vob_path>

Test the Type Manager

To determine if the rosert_unit element type has been successfully
registered in the VOB, perform the following command from a
command prompt after changing to a directory contained in the VOB:

cleartool lstype -long eltype:rosert_unit

A listing of the type details will verify that it is correctly registered.

ClearCase Work Area Setup

With ClearCase, a work area is defined by a view. Each developer
accessing Rational Rose RealTime files in a VOB should use their own
dedicated view. For an example of a developer view that could be used
in a parallel development process, see Creating a Developer View on
page 184.

Microsoft Visual SourceSafe

Microsoft Visual SourceSafe (VSS) stores and retrieves files on your
local disk. Each VSS “project” has a working folder specified for it.
Rational Rose RealTime saves model elements to and load elements
from this working folder. VSS then checks those local files into and out
of its repository. After modifying the local file, Rational Rose RealTime
invokes a script that instructs VSS to check in a file.
152 Rational Rose RealTime, Guide to Team Development

SourceSafe Workstation Setup
For Visual SourceSafe, this involves setting up a project and
associating a folder on your local disk with that project.

General Recommendations

On some systems, command line access to SourceSafe is extremely
slow if the Visual SourceSafe explorer is currently running. If you find
SourceSafe access to be slow, try closing any open SourceSafe
explorers.

Note: SourceSafe settings are not saved to disk immediately when they
are set. If you change a setting, close the Visual SourceSafe explorer to
ensure that the change will be used by future invocations of the
SourceSafe command line tool.

Source Control Operation Behaviour with SourceSafe

Certain operations behave differently in Visual SourceSafe than as
described in Source Control Operations on page 87. These differences
are detailed below.

Label

Visual SourceSafe allows labels to be applied only to the most recent
versions in the database.

Labelling a directory automatically applies the label to everything
recursively contained within it.

SourceSafe Workstation Setup

Command Line Access to the Source Control Tool

The ss SourceSafe tool must be available from the command line. To test
this, open a command prompt and type “ss about”. If an error occurs,
you will need to modify your path so that the ss tool can be found.
Rational Rose RealTime, Guide to Team Development 153

Chapter 8 Source Control Tools
Set Project Mapping Option

Visual SourceSafe must be configured to determine which projects
correspond to file system directories. Follow these steps to correctly set
up Visual SourceSafe for this:

1. In Visual SourceSafe Explorer, click Tools > Options.

2. CLick the Command Line Options tab.

3. Set the Assume project based on working folder check box.

Let Visual SourceSafe Know Which Database to Use

Rational Rose RealTime will not be able to determine which database
to use if you have more than one SourceSafe database configured on
your system unless the SSDIR environment variable is set. Visual
SourceSafe uses SSDIR to determine which database to use. This
variable tells Visual SourceSafe where to find the srcsafe.ini file for the
database you wish to use.

You should set the SSDIR variable in the System control panel, or with
a shell script. To set SSDIR in a shell, use the following command:

set ssdir=<path to srcsafe.ini>

The path given should be the directory that contains the srcsafe.ini file
for the database you wish to use.

Note: Do not put a space between the equal sign and the location of the
srcsafe.ini file.

SourceSafe Repository Setup

Rational Rose RealTime does not support multiple checkouts with
single stream source control systems. For proper integration with
Rational Rose RealTime, the Visual SourceSafe database should be
configured to not allow multiple checkouts.

A common practice is to create a project in Visual SourceSafe that will
serve as a container for all Rational Rose RealTime models that will be
placed in the repository.
154 Rational Rose RealTime, Guide to Team Development

RCS and SCCS
SourceSafe Work Area Setup

A local work area for SourceSafe is a directory that maps to a project
in your SourceSafe database. For Rational Rose RealTime to integrate
properly with SourceSafe, the working directory of the project must be
set to the corresponding local directory. See the Visual SourceSafe
documentation for details on setting up projects and working folders.

Test

To ensure that SourceSafe is correctly configured for your database
and work area:

1. In to your local model directory, and type ss project.

2. Then type ss dir -E.

There should be no prompts for username or password.

RCS and SCCS

Rational Rose RealTime is designed to work with SCCS and RCS
through a set of scripts that are provided. Rational Rose RealTime
saves model elements as individual files which are stored and version
controlled by SCCS/RCS.

Neither RCS nor SCCS directly support directory hierarchies, and
Rational Rose RealTime uses hierarchical storage by default to store
the model elements. To support a hierarchical repository, Rational
Rose RealTime creates a separate RCS/SCCS storage directory for
each level in the model hierarchy.
Rational Rose RealTime, Guide to Team Development 155

Chapter 8 Source Control Tools
For example, the repository structure might look something like the
following, where <dir> indicates a directory:

<repository>
<models>

<RCS>
MyModel.rtmdl,v

<MyModel>
<RCS>

LogicalView.rtlogpkg,v
ComponentView.rtlogpkg,v
UseCaseView.rtlogpkg,v
DeploymentView.rtlogpkg,v

<LogicalView>
<RCS>

...
<ComponentView>

<RCS>
...

Repository Mapping Files (.rmf)

Each developer in a team will use their own local working directory for
working on models. A special mapping file is then required to map the
local working directory to the repository directory representing the root
of the hierarchy. This map file is referred to as a Repository Mapping
File (RMF). Each line in the RMF is a file name prefix mapping that
works similar to the virtual pathmap mechanism within Rational Rose
RealTime. Each entry consists of two path prefixes, separated by an
equals sign (=).

Example:

/home/john_doe/RoseRT/models=/repository/models

By applying this map file, the Rational Rose RealTime rcs integration
will map local working directory

/home/john_doe/RoseRT/models

to repository directory

/repository/models/RCS

The RMF may contain multiple entries. The first valid prefix will be
used, and successive substitutions will not be applied.
156 Rational Rose RealTime, Guide to Team Development

RCS and SCCS
Before determining if an RMF source prefix is valid for a given path,
both the source and destination prefixes will have environment
variable substitution performed on them. Thus, assuming every user
had a RoseRT/models directory in their home directory, the following
RMF file could be used by all users working from the given repository:

/home/$user/RoseRT/models=/repository/models

Note: The RMF must not contain softlinks to directories. It must contain
the actual path to the directory.

Source Control Operation Behaviour with SCCS

Certain operations behave differently in SCCS than as described in
Source Control Operations on page 87. These differences are detailed
below.

Label

SCCS does not support labelling. All labelling operations will be
unavailable from the Toolset.

RCS/SCCS Repository Setup

The repository root directory must be created. Be sure to place
appropriate access permissions on the directory so that the users will
have the required access to the files in it.

If you will be using a global RMF for all users accessing the repository,
you should create it now and place it in a location accessible by all
users.

RCS/SCCS Workstation Setup

Command line access to the source control tool

The rcs/sccs executables must be available from your path in order for
Rational Rose RealTime to integrate with them.
Rational Rose RealTime, Guide to Team Development 157

Chapter 8 Source Control Tools
Create an RMF File

Use a text editor to create the RMF file that will contain the mapping
between your local working directory and the RCS/SCCS repository.
Create an entry in your RMF to point to the working directory set aside
for your models (create a working directory if you do not already have
one).

Set RMF Environment Variable

The RCS/SCCS scripts examine an environment variable to determine
what RMF to use.

For RCS:

� Set the ROSERT_RCS_MAPFILE environment variable to the name
of the file containing the map entry. For example:

setenv ROSERT_RCS_MAPFILE ~/MyRCSMap.txt

For SCCS:

� Set the ROSERT_SCCS_MAPFILE environment variable to the
name of the file containing the map entry. For example:

setenv ROSERT_SCCS_MAPFILE ~/MySCCSMap.txt

RCS/SCCS Work Area Setup

To populate the local work area initially from the repository, use the
provided cm_update script:

For RCS:

� Run the following command from a command line:

rtperl $ROSERT_HOME/bin/<platform>/cmscripts/rcs/cm_update
-D <dir_name_and_path> -R

Where <platform> is the name of you platform (for example, sun5)
and <dir_name_and_path> is the name of your local working
directory with the full path to it, for example:

/home/john_doe/RoseRT/models
158 Rational Rose RealTime, Guide to Team Development

PVCS
For SCCS:

� Run the following command from a command line:

rtperl $ROSERT_HOME/bin/<platform>/cmscripts/sccs/cm_update
-D <dir_name_and_path> -R

Where <platform> is the name of you platform (for example, sun5)
and <dir_name_and_path> is the name of your local working
directory with the full path to it, for example:

/home/john_doe/RoseRT/models

PVCS

Rational Rose RealTime is designed to work with PVCS through a set
of scripts. The PVCS source control scripts are supported on Windows
only. PVCS lets you organize your versioned files using project
databases, projects, and subprojects. Configuration files are used to
add directives to PVCS commands. The PVCS scripts use configuration
files to map the current working directory to a PVCS database.

Source Control Operation Behavior with PVCS

Certain operations behave differently in PVCS than as described in
Source Control Operations on page 87.

Label

PVCS does support labeling, however the scripts do not. All labelling
operations will be unavailable from the Toolset.

PVCS Workstation Setup

Command Line Access to the Source Control Tool

The PVCS command line tools must be available from the command
line. To test this, open a command prompt and type "get -help". The
command should return help for the get command. The first line of the
help will read:

GET - extract revisions from PVCS archives
Rational Rose RealTime, Guide to Team Development 159

Chapter 8 Source Control Tools
Let PVCS Know Which Database to Use

Before adding a Rational Rose RealTime model to a PVCS database,
you will need to define the initial (root) directory to use for the version
control repository (for example, database or archive). This is done by
creating a file named pvcs.cfg in the directory where you save your
model (for example, the directory where the .rtmdl file is located). This
file will contain a single directive on one line:

VCSDir C:\pvcs\rrtmodels

where C:\pvcs\rrtmodels is the root directory of the PVCS archive in
whichthe versioned model files will be stored. This allows the scripts to
mapthe work directory to a repository. A sample file is provided in the
scripts directory.

Rational Rose RealTime uses a hierarchical structure to store files.
When using these scripts, a pvcs.cfg file will automatically be created in
each of the Rational Rose RealTime sub-directory to create a
comparable directory structure in the repository. If a pvcs.cfg file
already exists in any one of these sub-directories, it will not be over-
written. It is the responsibility of the user to make sure that such a file
contains a valid VCSDir directive.

Note: Any sub-directory will automatically have repository sub-directory
created according to its parent's VCSDir.

Note: The repository path has only been tested with mapped drives
under Windows. No tests have been conducted using UNC paths.

PVCS Repository Setup

This assumes that you are familiar with PVCS configuration and have
already created a database for your model. Before using PVCS with
Rose Real Time you must change a small set of PVCS configuration
parameters. A file called pvcsMaster.cfg located with the scripts contains
a sample configuration file that will work with Rational Rose RealTime.
The configuration changes are described below.

Archive Suffixes

The default archive suffixes must be changed so that the versioned
filename does not get changed. By default the ??v__ suffix template
will have to be changed so that extensions of more than 3 characters
are maintained. We suggest using +,v as the suffix template.
160 Rational Rose RealTime, Guide to Team Development

PVCS
Write Protect Workfiles

Ensures that checked in files are write protected and not deleted.

One Lock Per Version/User

Rational Rose RealTime does not support multiple checkouts with
single stream source control systems. For proper integration with
Rational Rose RealTime, the pvcs database should be configured to not
allow multiple checkouts.

Registering a New Configuration

There are a couple of ways to do this. This example demonstrates one
method, which may or may not be appropriate for all project
configurations.

The configuration parameters required for Rose Real Time are located
in a file called pvcsMaster.cfg. This file should be located with the PVCS
scripts. It is suggested that you do not modify the options marked as
required.

Example of registering a master configuration file with PVCS: This file
should be located in a write-protected directory so only the
configuration manager can change it. The master configuration file
should then be enabled in the following manner:

vconfig -cI:\PVCSRepository\pvcsMaster.cfg
I:\bin\pvcs\vmwfvc.dll

where I:\PVCSRepository\pvcsMaster.cfg is the master configuration file
I:\bin\pvcs is the directory where the PVCS binaries are found.
Alternately, this information can be added to PVCS' master.cfg file.

PVCS Work Area Setup

Creating a Working Directory Tree From an Existing Archive

To create a working directory tree from an archive, you can use the
cm_update script. Create a starting pvcs.cfg file that points to the
archive directory. You can then issue the following command:

rtperl -w %ROSERT_HOME%\bin\win32\cmscripts\Pvcs\cm_update -R

This will recreate the correct directory tree for your project.PVCS
repository setup.
Rational Rose RealTime, Guide to Team Development 161

Chapter 9

Model Validation

The purpose of model validation is to produce a consistent and
complete model within the Toolset. Every time a model is loaded into
Rational Rose RealTime, the Toolset does a complete pass over the
model looking for model inconsistencies and unresolved references. If
any inconsistencies or unresolved references are found, then the
elements that have these problems are either deleted or repaired. The
containing controllable units for the affected elements will also be
marked as modified.

When individual controlled units are loaded into the model (e.g., when
getting a new version of a class), the Toolset will validate only the
elements affected by replacing this unit.

In order to avoid having the same validation problems reported in the
future, the controlled units which were modified by the Toolset should
be saved. If the model is under source control, then these units should
be checked out and checked in.

Information about each validation problem is written to the Rational
Rose RealTime log. If you have a large number of validation messages,
then the log may overflow and some messages will be lost. You can
change the log size by opening the Tools > Options dialog and editing the
value in the Log size field in the General tab. Also, the Log warnings option
in this dialog should be checked to ensure that all messages will
appear in the log.
Rational Rose RealTime, Guide to Team Development 163

Chapter 9 Model Validation
What is a Model Inconsistency?

A model inconsistency is reported when the combination of the
elements in the model has resulted in a violation of a modeling
constraint.

The following example scenerio creates a model inconsistency by
violating the contraint that the initial state must have at most one
outgoing transition:

1. Create two capsule classes C1 and C2 where C2 is a subclass
of C1.

2. Create a state S1 in the state machine for capsule C1.

3. Create a transition T1 from the initial state to S1 in the state
machine for capsule C2.

4. Save C2 as a controlled unit.

5. Delete transition T1 from the state machine for C2.

6. Create a transition T2 from the initial state to S1 in the state
machine for C1.

7. Reload C2 from the saved file.

These actions will result in a model inconsistency where the state
machine for capsule C2 would have two transitions originating in the
initial state. The Toolset resolves this inconsistency by excluding T2
from the state machine of C2.

These actions will result in the following message being written to the
log:

Warning: Removed transition "T2" from class "C2".

A model inconsistency is often caused by saving changes to one
controlled unit without saving the related changes to other controlled
units. The related changes are usually classified by the Toolset as
secondary edits. See What are Primary and Secondary Edits? on
page 81. It can also be caused by opening a model that is composed of
an inconsistent lineup of unit versions.
164 Rational Rose RealTime, Guide to Team Development

What is an Unresolved Reference?
Model inconsistencies can also be reported for the following modeling
constraints:

� Circular inheritance loop - there cannot be a cycle in the
inheritance graph for a class
Warning: Removed Generalization from class ""C1"" to class
""Logical View::C2"".

� Multiple transitions from the same pseudostate - initial states and
junction points can have at most one outgoing transition; also the
true and false branches of a choice point can each have at most
one outgoing transition

Warning: Removed transition "T2" from class "C2".

� Connector to an unwired port - a connector can only be attached to
wired ports

Warning: Removed connector "c1" from class "C2".

� Event guard with no events - an event guard must have at least one
event defined for it

Warning: Removed empty trigger event on transition "t1" in
class "C2".

What is an Unresolved Reference?

An unresolved reference is reported when the combination of elements
in the model has invalidated a reference from one element to another.

The following example scenario creates an unresolved reference from a
transition to a state:

1. Create two capsule classes C1 and C2 where C2 is a subclass of
C1.

2. Create two states S1 and S2 in the state machine for capsule C1.

3. Create a transition T1 from S1 to S2 in the state machine for
capsule C2.

4. Save C2 as a controlled unit.

5. Delete state S1 from the state machine for C1.

6. Reload C2 from the saved file.
Rational Rose RealTime, Guide to Team Development 165

Chapter 9 Model Validation
These actions will result in an unresolved reference related to the
transition T1. Since state S1 has been deleted, the transition (and its
associated junction points) cannot be properly created and so they are
deleted. Similar unresolved references will exist because of the view
elementss in the state diagram for C2.

These actions will result in the following messages being written to the
log (see the next subsection for a detailed description of these
messages):

Error: Unresolved reference from Capsule "C2"
to Item with name :TOP:S1
by Refinement "<unnamed>".

Error: Unresolved reference from State "TOP"
to StateVertex with name :TOP:S1:Junction1
by Transition "t1".

Warning: Removed transition "t1" from class "C2".

Warning: Unresolved reference to State with name S1.
in StateView S1 in State Diagram: Logical View / C2 -

Top State

Warning: Unresolved reference to State with name S1.
in StateView S1 in State Diagram: Logical View / C2 -

Warning: Unresolved reference to JunctionPoint with name
:TOP:S1:Junction1.

in JunctionPointView :TOP:S1:Junction1 in State
Diagram: Logical View / C2 -

Warning: Unresolved reference to InitialPoint with name
Initial.

in InitialPointView Initial in State Diagram: Logical
View / C2 -

Warning: Unresolved reference to JunctionPoint with name
:TOP:S1:Junction1.

in JunctionPointView :TOP:S1:Junction1 in State
Diagram: Logical View / C2 - Top State
166 Rational Rose RealTime, Guide to Team Development

What do the Errors/Warnings Mean?
Warning: Unresolved reference to JunctionPoint with name
:TOP:S2:Junction1.

in JunctionPointView :TOP:S2:Junction1 in State
Diagram: Logical View / C2 - Top: S2

Warning: Unresolved reference to JunctionPoint with name
:TOP:S2:Junction1.

in JunctionPointView :TOP:S2:Junction1 in State
Diagram: Logical View / C2 - Top State

As with a model inconsistency, an unresolved reference is often caused
by saving changes to one controlled unit without saving the related
changes to other controlled units. It can also be caused by opening a
model that is comprised of an inconsistent lineup of units.

Unresolved references can also be reported for the following situations:

� classifier role referencing a missing classifier

� connector referencing a missing port or port role

� interaction instance referencing to a missing classifier role

� generalization, realization, association, aggregation, or dependency
relationship referencing a missing class, capsule, protocol, use
case, package, or component

� port referencing a missing protocol

� signal referencing a missing class

� component referencing a missing class, capsule, protocol, or
package

� port event referencing a missing port or signal

� protocol role event referencing a missing signal

� message referencing a missing interaction instance

� component instance referencing a missing component

� refinement of a missing inherited state, transition, capsule role,
port, or connector

What do the Errors/Warnings Mean?

The error/warning messages for a model inconsistency should be self
explanatory. Each message typically describes the deletion or
exclusion of a model element.
Rational Rose RealTime, Guide to Team Development 167

Chapter 9 Model Validation
The error/warning messages for an unresolved reference may require
a bit more explanation. The elements in a model fall into two
categories: model elements and view elements. A model element is the
underlying UML element (for example, class, state, transition, classifier
role). A view element is the a graphic object representing a model
element within a diagram.

Unresolved References Between Model Elements

These messages tend to use the following templates:

Error: Unresolved reference from <element type> <element name>
to <element type> with name <element name>
by <element type> <element name>

where:

<element type> describes a kind of model element, for example,
Capsule, State

<element name> is the name of a model element, for example, C1, S1

Unresolved References from a View Element

These messages tend to use the following template:

Warning: Unresolved reference to <element type> with name
<element name>

in <view type> <element name> in <diagram type>
<diagram name>

where:

<element type> describes a kind of model element, for example,
Capsule, State

<element name> is the name of a model element, e.g., C1, S1

<view type> describes a kind of view element which is a presentation of
a model element in a diagram; these are usually formed by adding View
to the end of the element type, for example, StateView.
168 Rational Rose RealTime, Guide to Team Development

Validating Names
Validating Names

In conjunction with model validation, the Rational Rose RealTime
Toolset checks the names of the model elements to ensure that they are
valid. If a name conflict is detected, then the Toolset will rename one of
the conflicting elements. This ensures that names are unique where
required.

As with model validation problems, a name conflict can be caused by
saving changes to one controlled unit without saving the related
changes to other controlled units. It can also be caused by opening a
model that is comprised of an inconsistent lineup of units.

An example scenerio to create a name conflict is:

1. Create two capsule classes C1 and C2 where C2 is a subclass
of C1.

2. Create a state S1 in the state machine for capsule C1.

3. Save C1 as a controlled unit.

4. Delete state S1 from the state machine for C1.

5. Create another state S1 in the state machine for C2.

6. Reload C1 from the saved file.

In the state machine for C2 we have a locally defined state S1 and an
inherited state S1. These two states have a name conflict since a state
name must be unique among all states in its containing state. The
Toolset will rename one of the states and output the following message
to the log:

Warning: Renamed State "S1" to "S1_0" in class/package "C1".

A name conflict can also be caused by multiple users making changes
to related classes. For example:

1. Assume we have a model where class C2 is a subclass of class C1.

2. One user adds an attribute named ‘m_name’ to a C1

3. Another user adds an attribute with the same name to C2

If the modified versions of C1 and C2 are loaded in as part of the same
model, then there will be a name conflict between the attributes.

See Naming Guidelinesin the Toolset Guide for more information on the
naming rules.
Rational Rose RealTime, Guide to Team Development 169

Chapter 10

ClearCase Parallel Development:
Sample Process

This chapter details how to set up a parallel development process to
use Rational Rose RealTime with Rational ClearCase. The process
presented here is an illustrative example meant to explain parallel
development and is not in any way a definitive guide for working with
ClearCase. Feel free to use this process as is, or to modify and
customize it as necessary to fit your project’s needs.

Many of the techniques presented in this example are not specific to
either ClearCase or parallel development, although the details certainly
are. This example assumes a homogeneous ClearCase installation (for
example, Windows NT, WIndows 2000, or Unix) and does not address
the details of how to setup ClearCase in a multi-sited environment. It
should be noted that view profiles are not recommended in a mixed
ClearCase installation and are used in this example for simplicity only.
The process of installing more advanced configurations of ClearCase
does not affect the usage of Rational Rose RealTime, but requires more
advanced knowledge of ClearCase itself. For that reason, this example
uses a simple ClearCase configuration to illustrate the parallel
development process. Please refer to the ClearCase product
documentation for help with multi-site and heterogeneous
installations and administrations.

Note: Throughout this example, the prefix TC is used to indicate an
identifier that is unique to the project being worked on. Using distinct
labels for each project will help keep their development progress self-
contained and more manageable.
Rational Rose RealTime, Guide to Team Development 171

Chapter 10 ClearCase Parallel Development: Sample Process
Parallel Development Overview

The benefits of a proper parallel development process are:

� reduced contention for checkouts

� private version streams for development activities

� shared build results to reduce incremental development times

� stable and controlled evolution of the system being developed

As explained in Parallel Stream Versioning on page 94, the integration
branch plays a central role in most parallel development strategies. In
this example, /main is used as the integration branch. All automated
builds are generated from the integration branch, all lineups are
created from elements on the integration branch, and all development
is based on the integration branch.

Automated builds are performed on the contents of the integration
branch. To ensure reproducible builds (and provide wink-in of build
artifacts), the latest version of each file and directory on the integration
branch is labelled with an identifier such as TC_BUILDFILES. Using a
label instead of a timestamp or whatever happens to be in view insures
that a build is completely reproducible. If the version of a file labelled
with TC_BUILDFILES causes compile problems, then a previous
version of the file can be used simply by applying TC_BUILDFILES to
the appropriate version and re-building incrementally.

When the buildis successful, a new label is generated of the form
TC_BASELINE_NNN. The label is then applied to the exact version of
each file that was included in the build (for example, every version that
labelled with TC_BUILDFILES is now labelled TC_BUILD_NNN).

As far as development is concerned, no actual development occurs on
the integration branch. All development is carried out on private
branches, one per development activity. Each private branch is based
off of a lineup on the integration branch, conveniently labelled by the
automated build process. Since the file versions used in the build are
also used by developers, wink-in of build artifacts comes for free.

After a development activity finishes, an integrator is given the branch
name and merges the changes for that activity onto the integration
branch when time permits.
172 Rational Rose RealTime, Guide to Team Development

Parallel Development Overview
The following diagram illustrates a typical version tree for an element
in this process:

Figure 44 Version Tree Example
Rational Rose RealTime, Guide to Team Development 173

Chapter 10 ClearCase Parallel Development: Sample Process
The remainder of this chapter explains the details behind the process
just described. See the following sections:

� Using View Templates on page 175

� ClearCase Entities on page 176

� Initial Setup on page 176

� Automated Builds on page 181

� Developer Process on page 184

� Integration Process on page 186

Making Design Changes in Parallel

Generally, if the editing you do on a private branch causes a problem
in the C++ environment, it will also cause a problem in the Rational
Rose RealTime environment. Considerations should be made regarding
the number of elements that must be checked out to make design
changes versus syntax changes. As a rule, do not make design changes
in parallel because you face the danger of having difficulty merging
them together.

Things that should be safe to perform in parallel:

� modify transition code

� modify member function code

� add attributes/members to classes

Things that should not be performed in parallel:

� deletion of model elements

� renaming of model elements

� relocation of model elements

By saying these operations should not be done in parallel, this means
that the developer/designer making these changes should ensure that
no-one else will be modifying the elements affected before the next
integration. It certainly should not be interpreted as "don't use a
private branch for this work".
174 Rational Rose RealTime, Guide to Team Development

Using View Templates
Using View Templates

To ensure that developers use a common base for their view’s config
spec, and to make it easier to work on private branches, view templates
are used. A view template specifies the integration branch to work
from, lists labelled checkpoints that can be used to base a private
branch on, and includes a config spec template that can be filled in
with additional config spec rules.

Windows NT/2000

This functionality is provided with ClearCase 3.2.1 for Windows
NT/2000 through View Profiles.

Unix

ClearCase for Unix does not include support for View Profiles. To
replicate similar functionality, Perl scripts exist to provide essentially
the same functionality. The vtadmin and vtsetview scripts are located in
the $ROSERT_HOME/bin/$ROSERT_HOST/cc/vt directory.

Every developer will need access to a common location from which the
view templates will be accessed. The view template scripts look for the
view templates in the directory named by the CCVIEWTEMPLATES
environment variable.

Each view template consists of the following parts:

� A list of labels that indicate integration branch lineups

� A config spec for browsing any specific integration branch lineup

� A config spec for performing a development activity on a private
branch

� A config spec used by the integrator

� A config spec used by the builder

Since the config specs for each project will be different, a view template
must be generated for each project.

See “View Template Script Usage” on page 187 for complete details on
how to use the view template scripts.
Rational Rose RealTime, Guide to Team Development 175

Chapter 10 ClearCase Parallel Development: Sample Process
ClearCase Entities

This development process will require the creation and usage of the
following ClearCase entities.

Views

A separate view will be needed for the integrator, for the builder, and
for each developer.

View Template

A view template will be needed to provide a standard config spec for
each developer.

Labels

Labels will be used to define various lineups. Significant labels include:

� TC_BASELINE_0: Represents the initial state of the project.

� TC_BUILDFILES: This label indicates what element versions
should be included in the next automated build. Only the builder
should use this label.

� TC_LATEST_STABLE: This label is applied to the most recent
stable lineup on the integration branch.

Note: This label is not fixed. The elements it refers to will change
whenever a new stable lineup is established.

Initial Setup

Before starting with the parallel development process outlined below,
it is assumed that the model that will be worked on is already under
source control in a VOB. See Set up a Source Control System and
Repository on page 140 for details on this.
176 Rational Rose RealTime, Guide to Team Development

Initial Setup
Create the Integrator View

All project setup can occur from the integrator view. The integrator
view will see the latest versions of elements on the integration branch,
which in this case is /main. The config spec should look like this:

element * CHECKEDOUT
element * /main/LATEST

Views are created with this config spec by default, so create a view with
the name tc_int. If the integrator role will be played by multiple team
members, be sure to choose a storage location for the view that will
provide suitable performance for all. As always, integrators should not
share views and so no two integrators should use this view at the same
time.

Create Project Labels

The standard project labels mentioned above should now be created.
These labels include TC_BASELINE_0, TC_BUILDFILES, and
TC_LATEST_STABLE.

Each of these labels should be created before starting work on the
project. A label type can be created with the following cleartool syntax:

[x:\dev]cleartool mklbtype -c "Initial Project State"
TC_BASELINE_0

Created label type "TC_BASELINE_0".

Create Initial Lineup

After the labels have been created, the initial lineup label should be
applied to the VOB (\dev is the BOB being used in this example):

[x:\dev]cleartool mklabel -recurse TC_BASELINE_0 \dev

The initial model should be a valid stable model, so the
TC_LATEST_STABLE label should be applied to all versions that are
covered by the initial lineup:

[x:\dev]cleartool mklabel -recurse -version TC_BASELINE_0 -
replace TC_LATEST_STABLE \dev
Rational Rose RealTime, Guide to Team Development 177

Chapter 10 ClearCase Parallel Development: Sample Process
Creating the Developer View Template

To ensure consistent and controlled access to the model, and to ease
the usage of lineups and private branches, all developers should derive
their config specs from a common base.

There are two primary functions that developers will be performing,
and each requires a different config spec:

� Browsing: allows the view to see the latest stable lineup on the
integration branch.

� Development: this sees a snapshot of the integration branch based
on a labelled stable lineup, and branches files to a developer-
private branch when files are checked out.

The rules for the browsing config spec are as follows:

element * TC_LATEST_STABLE
element * /main/LATEST

The TC_LATEST_STABLE label in the rule above can be changed to a
different label if a developer wishes to view a lineup other than the
latest. Optionally, the -nocheckout modifier can be added to the above
rules so that checkouts can not occur accidentally while browsing.

For the development config spec, the rules should be:

element * CHECKEDOUT

element * ...\paulr_timing\LATEST
mkbranch paulr_timing

element * TC_BASELINE_5
element * \main\LATEST

In these rules, paulr_timing is the name of the private branch on which
the development is taking place and TC_BASELINE_5 is the stable lineup
that the development is based on. The rules have the following
meaning:

� All versions checked out to the view will be seen

� If there is no checked out version, then the latest version on the
private branch will be seen.

� If there is no version on the private branch, then take the version
labelled by the lineup.
178 Rational Rose RealTime, Guide to Team Development

Initial Setup
� If an element from the lineup is checked out, immediately branch it
to the private branch, and check out the newly branched version.

� If an element does not exist on the private branch and does not
have the lineup label applied to it, simply choose the latest version
on the main branch.

Windows NT/2000

The developer view template can be implemented using view profiles by
creating and maintaining a view profile, and having each developer
associate their view with the view profile. Using the ClearCase View
Profiles tool, create a new view profile using the supplied wizard,
entering the following details:

� Name: tc_dev_profile

� Include the storage VOB for the model

� The work for the profile will not be done on a branch. (Though
private branches will be used by developers, the view profile itself
will provide a config spec to be used only for browsing the
integration branch, not for making changes on it.)

� Give the label for the initial lineup, TC_BASELINE_0, as the
checkpoint label for creating private branches. This is not used for
the default config spec, but instead marks TC_BASELINE_0 as a
possible branching point.

� The diagram annotation can be modified as appropriate.

The default browsing config spec produced will look similar to the
following:

[CC_PROJECT - Checked Out Rule
element * CHECKEDOUT
#
Any modifications to the Profile config spec should
be made following this comment.
CC_PROJECT]

[CC_PROJECT - Profile Config Spec
Do not directly modify the text below, it has been
automatically generated by the ClearCase View Profile
Tool. To change the Profile config spec, use the
ClearCase View Profile Wizard to update the Profile
status as needed.
element * \main\LATEST
CC_PROJECT]
Rational Rose RealTime, Guide to Team Development 179

Chapter 10 ClearCase Parallel Development: Sample Process
Unfortunately, this config spec will let developers see changes that
have been merged to the integration branch but that have not yet been
built and tested. What is wanted instead is a config spec that shows
the latest stable build at any point in the development process. The
change required is:

[CC_PROJECT - Checked Out Rule
element * CHECKEDOUT
#
Any modifications to the Profile config spec should
be made following this comment.
CC_PROJECT]

element * TC_LATEST_STABLE
[CC_PROJECT - Profile Config Spec
Do not directly modify the text below, it has been
automatically generated by the ClearCase View Profile
Tool. To change the Profile config spec, use the
ClearCase View Profile Wizard to update the Profile
status as needed.
element * \main\LATEST
CC_PROJECT]

The view profile is now ready for developers to use.

Unix

Use the supplied vtadmin script to create a new template. The following
command syntax can be used:

vtadmin -mktemplate -template tc -lateststable TC_LATEST_STABLE
-buildlabel TC_BUILDFILES -integrationbranch /main -snapshot
/vobs/TrafficControl

After the command finishes, a template with the supplied parameters
will have been created in the $CCVIEWTEMPLATES directory, and is now
ready for use in the project.

To add the initial lineup label as a supported branching point, use the
following vtadmin invocation:

vtadmin -addlineup -template tc -baselinelabel TC_BASELINE_0
180 Rational Rose RealTime, Guide to Team Development

Automated Builds
Automated Builds

To provide the ability to selectively choose the versions of files that go
into the build, the builder will select all versions that are labelled with
the build label TC_BUILDFILES. This allows flexibility in changing the
exact versions that go into the build should it be needed (for example,
if the most recent version of a file contains code that does not compile,
then the previous version can be labelled instead).

There are several steps involved in the build:

� Label Build Files

� Perform Build

� When the Build Completes Successfully

❑ Create a new lineup label and apply to build file versions

❑ Apply TC_LATEST_STABLE to build file versions

❑ Make New Lineup Available to Developers

Before any of this can occur, though, the build view must first be
created.

Create the Build View

The build view is similar to the integrator view in that it selects files
from the integration branch, but different in that it needs to select
labelled versions when performing the build.

When performing the labelling, the latest version of files on the
integration branch need to be in view for the labelling to select the
correct file versions. This config spec is identical to the one presented
above for the integrator.

When performing a build, the build view must see the labelled version
of all files that are contained in the build. For files and directories that
are not labelled, it suffices to select the latest version on the main
branch. The following config spec rules capture these requirements:

element * TC_BUILDFILES
element * \main\LATEST

For the build view to be used for both labelling and building, the config
spec for the view must be switched back and forth. This can be done
by having textfiles that contain the two config specs and using cleartool
setcs to invoke the appropriate config spec.
Rational Rose RealTime, Guide to Team Development 181

Chapter 10 ClearCase Parallel Development: Sample Process
Depending on your development environment, it may be possible to
use the integrator view for labelling and leave the build view always
configured to pick up the TC_BUILDFILES labelled files.

A typical name for the build view is tc_build.

Unix

The view template scripts produce a text version of the build and
integrator config spec rules indicated above. Use the vtsetview script to
select the approprate config spec rules into the build view.

Label Build Files

After ensuring that the current view has the integrator config spec,
apply the TC_BUILDFILES label to the latest version of each element on
the integration branch. The following command will do this:

cleartool mklabel -recurse -replace -version \main\LATEST
TC_BUILDFILES \dev

Perform Build

After ensuring that the current view has the builder config spec,
perform the build.

If the build does not complete successfully, or if the produced build
does not pass sanity testing, determine if it is possible to fix the
problem simply by backing up the version of a file used. If so, apply the
TC_BUILDFILES label to the earlier version of the file and restart the
build. Continue until a successful build is produced.

If there are build problems that cannot be resolved in the above
manner, then ensure that the developers responsible for the problem
are notified so that the next build will be successful.

When the Build Completes Successfully

Create a New Lineup Label and Apply to Build File Versions

Create a label that will encompass all versions used in the build just
completed. This should be a unique label in a regular form, such as
TC_BASELINE_NNN, where NNN is an integer preferably generated
automatically in an incremental manner from the previous lineup
label.
182 Rational Rose RealTime, Guide to Team Development

Automated Builds
Apply the label to all versions that were used in the build:

cleartool mklabel -recurse -replace -version TC_BUILDFILES
TC_BASELINE_NNN \dev

If you wish to prevent the lineup contents from being changed in the
future, you may wish to lock the TC_BASELINE_NNN build label at this
point.

Apply TC_LATEST_STABLE to Build File Versions

As a convenience, the TC_LATEST_STABLE label is used to show the most
recent successful stable build. To update the versions that
TC_LATEST_STABLE applies to, use a similar mklabel invocation to the
one presented above.

Make New Lineup Available to Developers

The newly labelled lineup should now be exposed for developers to use
as a branching point for private branches. This is done by adding the
TC_BASELINE_NNN label to the view template.

Although it may seem that TC_LATEST_STABLE could be added as a
potential branching point label, this is not the case. Branching points
are intended to be unchanging specifications of a lineup of versions.
However, TC_LATEST_STABLE changes with every build, and is therefore
not appropriate for use as a branching point.

Windows NT/2000

Using view profiles, the build label should be added to the tc_dev_profile
view profile. This is done in the ClearCase View Profiles editor by using
the context menu on the tc_dev_profile profile.

Unix

Use vtsetadmin to add the build label to the view template:

vtadmin -addlineup -template tc -baselinelabel TC_BASELINE_NNN
Rational Rose RealTime, Guide to Team Development 183

Chapter 10 ClearCase Parallel Development: Sample Process
Developer Process

Each development activity is completed by a single developer and is
performed on a private branch specific to that activity. Again, each
developer requires their own view. The view is based on a branching
point on the integration branch identified by a build label.

A unique branch name must be chosen that identifies the work being
performed (such as paulr_timing). The view’s config spec rules are set
up to automatically check out and branch files from the branching
point to the private branch. As well, new elements created during the
development activity are immediately branched to the private branch.

Because the branch is hidden from other developers, the user may
check in incremental changes to the branch. When the developer is
satisfied that their changes are completed and ready to be integrated,
the developer informs the integrator that all changes on the private
branch are ready for integration.

By basing developer private branches off of labels that correspond to
the versions used by automated builds, each developer will be able to
reuse most of the build results in the form of winked-in derived objects.
This significantly reduces the amount of building that is required by
each developer when they make changes.

Creating a Developer View

It is important to note that each developer needs their own view. Under
no circumstances should multiple users work from the same view.

Windows NT/2000

After creating the view, associate the view with the tc_dev_profile View
Profile. The view will be set up for browsing as per the description in
Creating the Developer View Template on page 178.

Unix

After creating the view, use the vtsetview script to set the view config
spec to the default browsing config spec using the following command:

vtsetview -setview browse -template tc

The view will now show the latest stable build of the model.
184 Rational Rose RealTime, Guide to Team Development

Developer Process
Starting a Development Activity

Each development activity is performed on a private branch. The name
of the private branch should be appropriate to the activity being
worked on. One strategy for avoiding branch name clashes is to start
each branch name with the user id of the developer doing the work (for
example, paulr_timing).

Windows NT/2000

To start an activity, use the Set Up Private Branch wizard that is available
from ClearCase HomeBase. Rather than base the branch on the
elements currently in view, choose to use a different branch point. On
the version selection page, click by View Profile checkpoint, and select the
integration branch label you wish to work from, which is likely the
most recent label in the list.

Unix

Use the vtsetview script with the -listbaselines option to see what lineups
are available for basing the private branch on. To start the private
branch, use the following invocation of vtsetview:

vtsetview -startbranch -template tc
-brname paulr_timing -brpoint TC_BASELINE_4

Working on a Development Activity

After the view has been set up like this, the model should be loaded into
Rational Rose RealTime. Work now proceeds until the entire
development activity is complete. The developer may check in
intermediate results, as they will not be seen by other developers since
the changes will all occur on the private branch.

Finishing a Development Activity

When all development is complete on the activity, and everything
submitted to source control, the changes are ready to be propagated to
the integration branch. The propagation is performed by the integrator,
so the only task remaining for the developer is to end the private
branch and notify the integrator that the changes on the completed
branch are ready for integration.
Rational Rose RealTime, Guide to Team Development 185

Chapter 10 ClearCase Parallel Development: Sample Process
Windows NT/2000

Use the Finish Private Branch wizard in ClearCase HomeBase. Since
integration of the changes made onto the integration branch will be
done by the integrator, choose to leave the changes on the branch.

Unix

Use the following invocation of vtsetview to finish the private branch:

vtsetview -endbranch -template tc -brname paulr_timing

Integration Process

Each development activity must eventually be merged into the
integration branch. ClearCase has several tools available for
performing such a merge. The cleartool findmerge command can be used
to merge all changes from a branch onto another branch. From the
integrator view, the following command syntax can be used:

cleartool findmerge \dev -all -fversion .../paulr_timing/LATEST
-merge

Alternately, Windows NT and Windows 2000 users can use the
ClearCase Merge Manager to perform the same merge.

Both of these methods will merge directory versions and also use
Rational Rose RealTime Model Integrator to merge changes in model
files. After performing the merge, the integrator should load the model
into Rational Rose RealTime and verify that no merge errors have
occurred. If the model loads correctly, the changes should be checked
in by clicking Tools > Source Control > Submit All Changes to Source Control.

The following sequence of steps is quite efficient when integrating a
series of development activities:

1. Load the model from the integrator’s view.

2. Perform the merge as detailed above.

3. Click Tools > Source Control > Synchronize Entire Model. This command
reloads all files that changed in the merge.

4. Ensure that the merged differences are as desired.

5. Click Tools > Source Control > Submit All Changes to Source Control to
accept the changes and check them into source control.

6. Repeat steps 2 through 5 for each activity that requires integration.
186 Rational Rose RealTime, Guide to Team Development

View Template Script Usage
Integrating Intermediate Changes

It is quite common that when a developer is working on feature X on
branch Y, they may require that intermediate versions of the files
modified integrated back to the integration branch. This enables other
developers to have access to their changes, but the original developer
can continue working on the classes. To accomplish this, the
recommendation is as follows:

1. Developer creates a new label.

2. Developer applies the label to the versions of elements on their
branch which they want integrated.

3. Developer tells the integrator which label/branch combination
specifiesthe changes to be merged.

4. Integrator uses available CC tools (findmerge or merge manager) to
perform the integration.

View Template Script Usage

vtadmin

The vtadmin script is used to list, create, delete, and update view
templates. Each usage of vtadmin is detailed below:

vtadmin -lstemplates

This invocation lists the available view templates.

vtadmin -mktemplate -template <templatename>
-lateststable <stablelabel> -buildlabel <buildlabel>
[-integrationbranch <intbranch>] [-snapshot <vob directory>]

This invocation creates a new template with the specified name, latest
stable label, build label and integration branch. If the integration
branch is not supplied, then /main is assumed.

Note: Creating a view template does not create the labels and branches
indicated; they are assumed to already exist. You can also specify that
a load rule be added to the templates so that you can create and use
snapshot views.

vtadmin -lslineups -template <templatename>
Rational Rose RealTime, Guide to Team Development 187

Chapter 10 ClearCase Parallel Development: Sample Process
This invocation lists the lineup labels associated with the specified view
template.

vtadmin -addlineup -template <templatename>
-lineuplabel <lineuplabel>

This invocation adds a lineup label to the specified view template.

vtadmin -rmlineup -template <templatename>
-lineuplabel <lineuplabel>

This invocation removes the indicated lineup label from the specified
view template.

When invoked with no parameters the script will output usage help.

vtsetview

The vtsetview script is used to configure config spec and perform
common developer queries. Each usage of vtsetview is detailed below:

vtsetview -startbranch -template <templatename>
-brname <branchname> -brpoint <labelname>

This invocation attempts to start a private branch using the supplied
parameters.

vtsetview -endbranch -template <templatename>
-brname <branchname>

This invocation is used to end the indicated private branch.

vtsetview -setview (integrate | build | browse)
 -template <templatename>

This invocation is used to set a specific config spec into the current
view.

vtsetview -lslineups -template <templatename>

This invocation lists the available lineups for the specified view
template.

When invoked with no parameters, the script will output usage help.
188 Rational Rose RealTime, Guide to Team Development

Chapter 11

Customizing Source Control Interface
Scripts

Rational Rose RealTime implements source control through a generic
script interface that allows it to work with many source control
systems. Each Rational Rose RealTime source control action has an
associated script that is executed when that action is performed in the
Toolset. Rational Rose RealTime looks for the script in the directory
selected in Source Control configuration. It executes the script (passing
certain information to the script via command-line options), and reads
the results from the standard output stream.

A list of scripts follows:

� cm_getcaps

� cm_status

� cm_get

� cm_add

� cm_checkout

� cm_checkin

� cm_uncheckout

� cm_history

� cm_extract

� cm_label

� cm_diff

� cm_merge
Rational Rose RealTime, Guide to Team Development 189

Chapter 11 Customizing Source Control Interface Scripts
Customizing Scripts

Input Parameters

Parameters are categorized as optional or required. This is not an
indication of whether the script needs to support the parameter. All
parameters must be supported. Optional parameters are those that
may be passed by the Toolset in a particular invocation of the script. If
the parameter is not passed this indicates that some default behavior
is expected. The default behavior is described for each parameter.
Required parameters are those that the script can expect the Toolset
will always pass to it. There is no default behavior for required
parameters, as they will always be present. The detailed information
about each parameter is provided below in the section Script
Parameters on page 191.

Output Expected

All output is to stdout.

Output Format

The format of the information in the script output expected by the
Toolset.

Script Return Code

All scripts should return either 0 or > 0. If the return code is non-zero,
the Toolset interprets this to mean that the operation failed. In this
case, the Toolset displays whatever the script writes to stderr as an error
message.

Notes

Any more detailed notes or warnings.

Note: All scripts must be written in Perl. They will be invoked as

rtperl -w <scriptname> <args>
190 Rational Rose RealTime, Guide to Team Development

Script Parameters
Script Parameters

Each of these scripts is passed one or more parameters from Rational
Rose RealTime. Values occupy the next argument position, for
example, -T data.

The following is a description of each of the parameters that can be
passed to the various source control scripts. Not every parameter is
applicable for every source control script. See the description of each
script for the list of parameters that may be passed to that script.

-D <directory>

<directory> is a string containing the path to the directory where the files
to be operated on are contained. The default if no -D is given is the
current working directory.

-E <element>, -S <element>

<element> is a string containing the name of the file to be checked out,
unchecked out, submitted, extracted, and so forth by the script (for
example, MyCapsule). There is no default. If -E is specified, <element>
indicates a file; if -S is specified, <element> indicates a directory.

For scripts that can operate on multiple elements at the same time, all
elements passed to the script will be located in the same directory. This
means that all elements specified will be located in the directory
specified by -D.

-O <file>

<file> is the file name (including path if necessary) where the result of
the operation should be written.

-C <commentfile>

<commentfile> is name of a file containing the user supplied reason for
the operation. This parameter is only submitted to the script if
cm_getcaps indicates that the script supports it and the user enters
something valid in the dialog displayed when the operation is carried
out.
Rational Rose RealTime, Guide to Team Development 191

Chapter 11 Customizing Source Control Interface Scripts
-V <version>

<version> is the version tag of the element to be operated on. If the
Toolset asks for a particular version, the script must attempt to return
the requested version. If no version is specified (no -V is given), the
default is the latest.

A Note About Version Tags

For each version in the source control repository there is a unique
version tag that the scripts return to the Toolset. Version tags get
passed to and from the scripts when the Toolset performs source
control operations. The tag may be numerical or an arbitrary string.
192 Rational Rose RealTime, Guide to Team Development

Script Parameters
cm_getcaps

Returns the set of capabilities supported by the source control system.

Sometimes, it is necessary to specify other information during a
particular source control operation. For example, some source control
systems must be given an ‘update number’ when an object is
submitted. By simply defining a collection of prompts for a source
control operation, the user will be prompted for this additional
information and then passed to the corresponding script.

Input parameters

None

Output format

<output>::= <cap_entry>*
<cap_entry>::= <capability> '\n'
<capability>::= "Parameter" <operation_param>

| "Comment" <operation_comment>
| "Option" <option>

<operation_param>::= <operation_name> PromptString
<argument_type> <required> CommandFlag <default>
<saveDefault>

<operation_name>::= "CheckOut"
| "CheckIn"
| "Add"
| "Get"
| "Label"
| "UnCheckout"

<argument_type>::= "string"
| "integer"
| "list" "(" <paramlist> ")"

<paramlist>::= <listelement>
| <listelement> <paramlist>

<list element>::= "(" value string ")"
<required>::= "mandatory"

| "optional"
<default>::= Default

| "NONE"
<saveDefault>::= "saveDefault"

| "noSaveDefault"
Rational Rose RealTime, Guide to Team Development 193

Chapter 11 Customizing Source Control Interface Scripts
<operation_comment>::= <operation_name> PromptString <required>
CommandFlag <default> <saveDefault>

<option>::= "CanDetermineFileVersions" <boolean>
| "ScriptTimeout" Integer
| "BatchedStatus" <boolean>
| "IsClearCase" <boolean>
| "SupportsDiff" <boolean>
| "SupportsMerge" <boolean>
| "SupportsLabel" <boolean>

<boolean>::= "TRUE"
| "FALSE"

Notes
� Specifying CheckOut as the operation means that a new argument

is being defined for the cm_checkout script. Similarly, add defines a
new argument for the cm_add script.

� <argument_type> defines the valid type of the argument. If additional
validation is required, it must be done by the script that is given
this argument.

� <required> defines whether the user must specify a value. If the user
does not specify a value for an optional argument, then that
argument will not be passed to the corresponding script.

� <flag> defines the command line flag to use when this value is
passed to the corresponding script.

� <default> defines the default value to be displayed in the prompting
dialog. A value of NONE means that there is no default.

� <saveDefault> defines whether the previously entered value is
remembered and used as the default the next time this operation is
performed.

Example

To specify that the user should be prompted for a mandatory update
number and an optional reason for use during checkin, modify the
cm_getcaps script to produce output similar to the following:

parameter checkin "Update No" Integer mandatory -U NONE saveDefault
Comment checkin "Comment" optional -C NONE saveDefault
194 Rational Rose RealTime, Guide to Team Development

Script Parameters
cm_status

Used to sync the status of files in the Toolset with the state of the files
in the source control repository.

Input parameters
-D <directory>
-S <dir element>
-E <file element>

Output format
<item> <status> <user> <version>

See supplied scripts for the allowable values of these fields.
Rational Rose RealTime, Guide to Team Development 195

Chapter 11 Customizing Source Control Interface Scripts
cm_get

Retrieves the latest version of a file from the source control repository.

Input parameters
-D <directory>
-E <filename>
-V <version>

Output format
<item> <status> <user> <version>

See supplied scripts for the allowable values of these fields.
196 Rational Rose RealTime, Guide to Team Development

Script Parameters
cm_add

Used to add a file into the source control system.

Input parameters
-D <directory>
-S <dir element>
-E <file element>
-C <commentfile>

Output format
<item> <status> <version>

See supplied scripts for the allowable values of these fields.
Rational Rose RealTime, Guide to Team Development 197

Chapter 11 Customizing Source Control Interface Scripts
cm_checkout

Used to lock an element (file) in the source control repository. Upon
successful completion, the specified element should be reserved for
modification by a particular user.

Input parameters
-D <directory>
-E <filename>
-C <commentfile>

Output format
<item> <status> <version>

See supplied scripts for the allowable values of these fields.
198 Rational Rose RealTime, Guide to Team Development

Script Parameters
cm_checkin

Used to submit a new version of an element to the source control
repository. Upon successful completion, the repository should be
updated to include the new version of the specified element.

Input parameters
-D <directory>
-E <filename>
-C <commentfile>

Output format
<item> <status> <version>

See supplied scripts for the allowable values of these fields.
Rational Rose RealTime, Guide to Team Development 199

Chapter 11 Customizing Source Control Interface Scripts
cm_uncheckout

Used to unlock an element in the source control repository. Upon
successful completion, the specified element should no longer be
reserved for modification by the user.

Input parameters
-D <directory>
-E <filename>

Output format
<item> <status> <version>

See supplied scripts for the allowable values of these fields.
200 Rational Rose RealTime, Guide to Team Development

Script Parameters
cm_history

Used to produce the list displayed by the History Browser in Rational
Rose RealTime. The script should output one line for each version of
the specified element.

Input parameters
-D <directory>
-E <filename>

Output format
<version> <author> <date> <time> <locked-by>

See supplied scripts for the allowable values of these fields.
Rational Rose RealTime, Guide to Team Development 201

Chapter 11 Customizing Source Control Interface Scripts
cm_extract

Used to extract a version of an element from the source control
repository. Upon successful completion, a copy of the specified element
version should be written to a file.

Input parameters
-D <directory>
-E <filename>
-O <output file>
-V <version>

Output format
<item> <status>

See supplied scripts for the allowable values of these fields.
202 Rational Rose RealTime, Guide to Team Development

Script Parameters
cm_label

Used to apply a label to an element or directory in the source control
repository. The labelling operation will not be exposed in Rational Rose
RealTime unless the SupportsLabel option is set to TRUE in the
cm_getcaps file.

Input parameters
-D <directory>
-E <filename>
-S <dir_element>
-L <label>
-C <commentfile>
-V <version>

Output format
<item> <status>

See supplied scripts for the allowable values of these fields.
Rational Rose RealTime, Guide to Team Development 203

Chapter 11 Customizing Source Control Interface Scripts
cm_diff

Used to difference two versions of a file in the repository. This script
will only be called for diffing operations if the SupportsDiff options is
set to TRUE in the cm_getcaps file. Only source control systems that
can integrate with Rational Rose RealTime Model Integrator should use
this mechanism, as a standard textual diff does not provide useful
results for Rational Rose RealTime model files.

Input parameters
-D <directory>
-E <filename>
-V <version>

Output format
<item> <status>

See supplied scripts for the allowable values of these fields.
204 Rational Rose RealTime, Guide to Team Development

Script Parameters
cm_merge

Used to merge a version of a file from the repository into the currently
checked out file. This script will only be called for merging operations
if the SupportsMerge options is set to TRUE in the cm_getcaps file.
Only source control systems that can integrate with Rational Rose
RealTime Model Integrator should use this mechanism, as a standard
textual merge does not provide useful results for Rational Rose
RealTime model files.

Input parameters
-D <directory>
-E <filename>
-V <version>

Output format
<item> <status>

See supplied scripts for the allowable values of these fields.
Rational Rose RealTime, Guide to Team Development 205

Index
A
access violations 101
accessing source control operations 85
adding

controlled units 62, 65
controlled units to source control 65
existing controlled units to models 70
files to source control 84

Apply Label operation 89
architect role 19
automated builds 181
automated scripts for building 133
automating model validation 137

B
blue delta 35
build files 182
build settings 110
build views 181
building

components 129
creating reusable build artifacts 136
reusing build artifacts 136
Rational Rose RealTime, Guide to Team Developme

using automated scripts 133
using build artifacts 137
within a larger build 135

C
-C parameter 191
changing

controlled unit granularity 66
granularity of controlled units 60

Check in operation 88
Check out operations 88
checking dependencies 101
checking in

controlled units 126
elements 126
model elements 126

checking out files
when edited 84
with secondary edits 84

child controlled elements 51
ClearCase 144

activities 149
Add 145
check in 148
check out 148
nt 207

Index
command line access 150
Deliver 147, 149
element type 150
entities 176
Get 145, 148
hijacking 149
Label 145
Rebase 146
Rebase (snapshot) 149
recommendations 144
repository setup 151
snapshot views 147
Synchronize 145
UCM 38
UCM Integration 146
Update 149
work area setup 152
workstation setup 150

ClearCase options
Unix 151
Windows 151

cm_add 197
cm_checkin 199
cm_checkout 198
cm_diff 204
cm_extract 202
cm_get 196
cm_getcaps 193
cm_history 201
cm_label 203
cm_merge 205
cm_status 195
cm_uncheckout 200
code generation performance 61
command line access to ClearCase 150
component instances 112
208 Ra

component packages 97
composition of a model 98
configuration management 47, 97, 123,

133
configuration manager role 21
configuring for PVCS 161
configuring source control tools 123
controllable element 48

child 51
controlling a subset 65
controlling all elements 66
directory structure 53
exporting from model to a file 68
importing from a file to a model 69
influence on code generation 61
parent 51

controlled unit 48
adding a controlled unit 62
adding existing units to models 70
changing granularity 66
common tasks 65
creating sharable units 64
granularity 59
importing a file 62
moving between model directories 67
moving elements between 67
owned by model 57
problems when saving 56
reducing number of 54
reloading 68
saving 56
sharing 61
sharing a controlled package 62
sharing an existing unit into a model

71
sharing model properties 64
tional Rose RealTime, Guide to Team Development

Index
summary 63
unresolved references 64
version identifier 58

controlled units
moving 31

controlling
child element 51
element

files 50
types 50

model elements as units 140
new child units 58
parent element 51

controlling a subset 65
converting

model 34
creating

build view 181
class diagram 102
developer view template 178
initial lineup 177
integrator view 177
labels 142
lineups 142
local work area 140
project labels 177
reusable build artifacts 136
RMF file 158
scratch pad package 105
work area 140

creating an rmf file 157
creating sharable controlled units 64
cross-references 81
customer roles 22
customizing scripts 189
Rational Rose RealTime, Guide to Team Developme

D
-D parameter 191
decomposing a model into subsystems

100
default workspace 125, 141
defining

developer work areas 142
new path maps 76
parameterized path map 77
path map 77
path map using another symbol 76
subsystem interface 104

defining a virtual path 74
Deliver 149
delivering (ClearCase) 147
deployment packages 97
developer processes 184

creating
developer view 184

finishing a development activity 185
starting a development activity 185
working on a development activity

185
developer role 19
developer view template 178
developer work areas 142
differencing model elements 131
directory structure for model data 52

E
-E parameter 191
edit types

primary 32
secondary 32
nt 209

Index
editing
checked out files 84

element type setup
Unix 151
Windows 150

elements
child 51
controlling 50
file types 50
parent 51

enable source control 83
exporting controlled elements 68
external dependencies 102
external dependency 64

F
file based source control 91
file history 90

G
Get operation 88
granularity of controlled units 59

architecture 59
code generation performance 61
implications of changing 60
modifying

elements in same package 60
number of users 60
size of model 60

H
hijacking a file 149
210 Ra

I
implicitly defined path map symbols 76
importing

controllable elements 69
importing a file 62
inject messages 130
input parameters 190
integrating changes 137
integrating immediate changes 187
integration

promoting changes 132
integration process 186
integrator role 20
interface scripts 85

L
labelling build files 182
labels 142
lineups 142
logical packages 97

M
Make File Writeable command 91
Make Files Read Only command 91
making design changes in parallel 174
mapping architecture to subsystems 100
mapping files 156
merging model elements 131
Microsoft Visual SourceSafe 152

command line access 153
databases 154
recommendations for Rational Rose

RealTime 153
tional Rose RealTime, Guide to Team Development

Index
repository setup 154
setting project mapping 154
work area setup 155

model 71
adding an existing controlled unit 70
automating validation 137
blue delta 35
composition 98
controllable element 48
controlled unit 48
controlled units 48
controlling all controllable elements

66
controlling elements as units 140
converting 34
creating a single model 73
cross-references 81
decomposing into subsystems 100
export elements to a file 68
granularity of controlled units 60
importing controllable elements 69
inconsistency 164
lineup 124
mapping architecture to subsystems

100
moving controlled units 67
one versus multiple 99
opening under source control 125
recommended layout 45
setting to improve opening time 85
splitting 101
storing data 48
subsystems 98
synchronizing 68
unique Id 39
unit 48
Rational Rose RealTime, Guide to Team Developme

unit testing 110
unresolved reference 165
validating names 169
validation scenarios 82

Model Conversion 34
model data

controlled units 48
directory structure 52
guidelines 48

model elements
differencing 131
merging 131

model elements, checking in 126
Model Integrator 37
model structure 45
model validation 163
model-relative path names 58
models

synchronizing 132
modifying

elements in a package 60
moving controlled units 31
multiple models 99

O
-O parameter 191
opening model under source control 125
operations

Apply Label 89
Check in 88
check out 88
Get 88
Refresh status 87
Show Differences 89
Show History 90
nt 211

Index
Submit all Changes 89
Synchronize 88
Uncheckout 88

organizing a model
build settings 110
component instances 112
decomposing a model into sub-

systems 100
model composition 98
one versus multiple 99
packages 97
processors 111
property sets 110
splitting 101
subsystem 98
unit testing 110
verifying self-containment 104

output format 190

P
package

dependencies 101
determine external dependencies 102

packages
check out parent 125
component 97
creating a scratch pad 105
deployment 97
determine external dependencies 102
logical 97
parent 125
scratch pad 58, 105
scratch pad considerations 107
Services Library 68
show access violations 101
212 Ra

parallel design changes 174
parallel development 36
parallel stream versioning 94
parent controlled elements 51
paths

defining a parameterized path map 77
defining using another path map sym-

bol 76
primary edit guidelines 34
primary edits 32, 81
private component setup 130
probes 130
processors

project level 111
subsystem level 112

product tester role 20
project level processors 111
project manager role 21
promoting changes 132
property sets 110
PVCS 159

archive suffixes 160
command line access 159
database 160
locking 161
registering a new configuration 161
repository setup 160
source control operation behavior

159
work area setup 161
write-protect work files 161

R
Rational ClearCase Multi-Site 38
Rational Quality Architect 43
tional Rose RealTime, Guide to Team Development

Index
RCS 155
command line access 157
creating an rmf file 157
repository setup 157
setting environment variable 158
work area setup 158

Rebase (snapshot) 149
rebasing in ClearCase 146
reducing controlled units 54
Refresh status operations 87
refreshing shared unit status 85
relationships

managing between configuration
items 12

reloading controlled units 68
repository mapping Files 156
repository setup for ClearCase 151
reusing build artifacts 136
reusing build settings 129
rmf files 156
roles 18

architect 19
configuration manager 21
customer 22
developer 19
integrator 20
product tester 20
project manager 21
source control administrator 21
team size 18
tester 20

rtwks (workspace) 141
Rational Rose RealTime, Guide to Team Developme

S
-S parameter 191
saving controlled units 56
SCCS 155

command line access 157
creating and rmf file 157
repository setup 157
setting environment variable 158
source control operation behavior

157
work area setup 159

scratch pad 58
scratch pad packages 58, 105

considerations 107
script parameters 191
script return code 190
scripts

cm_add 197
cm_checkin 199
cm_checkout 198
cm_diff 204
cm_extract 202
cm_get 196
cm_getcaps 193
cm_history 201
cm_label 203
cm_merge 205
cm_status 195
cm_uncheckout 200
creating 190
input parameters 190
version tags 192
vtadmin 187
vtsetview 188
written using Perl 190
nt 213

Index
scripts directory 85
secondary edits 32, 81
Services Library packages 68
Set MSVSS options 154
setting rmf environment variable 158
setting up source control 123
sharing

Add 63
controlled package 62
controlled units 61, 63

existing units 71
model properties 64

Import 63
model properties 64
Share 63

sharing and existing controlled unit 71
sharing controlled units

adding 62
external dependency 64
import 62
sharing 62
unresolved references 64

sharing packages
using path maps 76

Show Differences operation 89
Show History operation 90
single models 99
single stream versioning 93
snapshot views 147
Source control

repository setup for RCS 157
source control

accessing operations 85
adding files 84
Apply Label 89
building a component 129
214 Ra

Check in 88
Check out 88
checking in controlled units 126
checking out files

automatically 84
checking out files automatically 84
ClearCase 145
command line access to ClearCase

150
command line access to PVCS 159
command line access to RCS 157
command line access to SCCS 157
creating a local work area 140
customizing 189
development concepts 92
enabling 83
file based 91
Get 88
interface scripts 85, 189
location of interface scripts 85
Make Files Read Only 91
Make Files Writeable 91
Microsoft Visual SourceSafe 152
operations 87
primary edits 81
PVCS 159
RCS 155
Refresh status 87
repository 140
repository setup for SCCS 157
SCCS 155
scratch pad packages 106
scripts directory 85
secondary edits 81
settings 83
Show Differences 89
tional Rose RealTime, Guide to Team Development

Index
Show History 90
splitting a model 118
status options 80
Submit all Changes 89
supported systems 85
Synchronize 88
types of 91
Uncheckout 88
undo a check out 128
versionable elements 85
versioning strategies 93
view based systems 92

source control administration 139
source control administrator role 21
source control development concepts 92

development activity 92
integration 92
lineup 92
working in isolation 93

source control interface scripts 189
cm_add 197
cm_checkin 199
cm_checkout 198
cm_diff 204
cm_extract 202
cm_get 196
cm_getcaps 193
cm_history 201
cm_label 203
cm_merge 205
cm_status 195
cm_uncheckout 200
input parameters 190
script parameters 191
script return code 190

source control status 80
Rational Rose RealTime, Guide to Team Developme

source control tools 143
sources control

repository setup for VSS 154
splitting a model 101, 114

in source control 118
not in source control 115
tasks 115

stdout output 190
storing model data

controlled units 48
granularity of controlled units 59
guidelines 48

Submit all Changes operation 89
submitting changes to source control

source control
submit changes 126

subsystem
consumer 113
define interface 104
verify self-containment 104

subsystem level processors 112
subsystems

components of 108
preparing and releasing 113
splitting a model

into subsystem models 114
supplier 113

summary
sharing controlled units 63

supported source control systems 85
synchronize operations 88
synchronizing

models with source control 132
synchronizing models 68
nt 215

Index
T
tasks 101

architect role 19
component instances 112
developer role 19, 20
integrator role 20
private component setup 131
source control administrator role 21
splitting a model 115
splitting a model in source control

118
working with controlled units 65

team development
architect role 19
configuration manager role 21
customer role 22
developer role 19
heuristics 43
integrator role 20
parallel development 36
product tester role 20
project manager role 21
roles 18
source control administrator role 21
team size 18
tester role 20
typical roles 18

tester roles 20
troubleshooting

Managing Relationships Between
Configuration Items 12

When more than one user needs to
make changes to the same ar-
tifact 36

types of source control systems 91
216 Ra

U
UCM 38
UCM integration 146
Uncheckout operations 88
undo a check out 128
Unified Change Management 38
unique id collisions 70
unique Id’s 39
unit information 85
unit testing 110, 130

best practices 130
unresolved model reference 165
updating cross-references 81
using path maps 76
using view templates 175
using virtual paths 77

V
-V parameter 192
validating names 169
verifying dependencies 101
version tags 192
versioning strategies 93

parallel stream 94
single stream 93

view based source control system 92
virtual path

defining 74
defining a new path map 76
implicitly defined symbols 76

virtual path map
symbols 135

virtual path maps 73
vtadmin script 187
vtsetview script 188
tional Rose RealTime, Guide to Team Development

Index
W
working in isolation 93
workspace file 125
Rational Rose RealTime, Guide to Team Developme

nt 217

	Guide to Team Development
	Team Development
	Contents
	Goals of Team Development
	Sharing Within a Team Environment
	Protecting Configuration Items From Unintentional Changes
	Overwriting A Modification
	Adding Dependency Issues
	Changing Language Semantics

	Managing Relationships Between Configuration Items
	Managing and Delivering Configuration Items
	Improving Efficiency in Team Development
	Team Development Roles
	Typical Roles
	Roles Vary Based on Team Size

	Architect Role
	Developer Role
	Product Tester Role
	Integrator Role
	Source Control Administrators
	Configuration Managers
	Project Managers
	Customer Role

	Recommendations
	Delivering the Product
	Source Control Fundamentals
	Preempting Conflicts
	Packaging Strategy
	Managing Dependencies
	Labeling
	When Merging is Necessary
	Merging Detail Code Before Using Model Intgrator
	Artifact Freeze
	A Special Type of Artifact Freeze

	Building and Executing a Rational Rose RealTime Model

	Advanced Concepts and Heuristics
	Moving Controlled Model Elements
	Considerations
	Heuristics

	Renaming a Controlled Model Element
	Primary and Secondary Edits
	Model Conversion

	Understanding Blue Deltas
	Parallel Development
	Model Integrator
	Using Rational ClearCase Multi-Site
	Using Rational ClearCase UCM
	Unique Ids
	Rational Quality Architect - RealTime Edition
	Additional Heuristics for Team Development
	Additional Recommendations

	Storage of Model Data
	Contents
	Storing Model Data
	What is a Controllable Element and a Controllable Unit?
	What Elements Can Be Controlled?
	Parent and Child Controlled Elements
	Directory Structure for Model Data
	File Names for Controlled Units
	Controlled Units are Saved when Building
	Unit Information Tab
	What Level of Granularity Should I Use?
	How Stable is the Architecture?
	How Many Users Will Be Working on This Model?
	How Many Users Modify Elements in the Same Package?
	How Large is Your Model?
	Implications of Changing Unit Granularity
	Code Generation Performance

	Sharing Controlled Units
	Overview of Import, Add, and Share
	Import a file
	Add a controlled unit
	Share a controlled package
	Summary of Import, Add, and Share

	Creating Sharable Controlled Units
	Sharing Model Properties with Controlled Units

	Working with Controlled Units
	Controlling a Subset of the Controllable Elements
	Controlling All of the Controllable Elements
	Changing the Granularity of Controlled Units

	Moving Controlled Units
	Moving Controlled Units Between Model Directories
	Moving Elements Between Controlled Units

	Synchronizing Models with the File System
	Export Controllable Elements from a Model to a File
	Services Library packages
	Import Controllable Elements from a File to a Model
	Add an Existing Controlled Unit to a Model
	Share an Existing Controlled Unit into a Model
	Produce a Single Model File from a Model with Many Units
	Virtual Path Maps
	How Do Virtual Paths Work?
	Defining Virtual Paths
	Defining a New Path Map Using Another Path Map Symbol
	Implicitly Defined Pathmap Symbols
	Using Path Maps When Sharing Packages
	Using virtual paths in the value of a model property

	Source Control Fundamentals
	Source Control in Rational Rose RealTime
	Source Control Status
	What are Primary and Secondary Edits?
	Source Control Settings
	Accessing Source Control Operations

	Source Control Operations
	Refresh Status
	Synchronize
	Get
	Check Out
	Uncheckout
	Add
	Check In
	Submit All Changes
	Apply Label
	Show Differences
	Show History

	Types of Source Control Systems
	File Based Source Control Systems
	View Based Source Control Systems

	Source Control Development Concepts
	Development Activity
	Integration
	Lineup
	Working in Isolation

	Versioning Strategies
	Single Stream Versioning
	Parallel Stream Versioning

	Organizing a Model (Architect Activities)
	Packages, Models, and Subsystems
	One Model versus Multiple Models
	Getting Started
	Mapping the Architecture to Subsystems
	Decomposing a Model into Subsystems
	Splitting a Model

	Checking Package Dependencies for Completeness
	Show Access Violations
	Determine the External Dependencies for a Package

	Check if a Subsystem is Self-contained
	Define Subsystem Interface
	Best Practices

	Scratch Pad Packages
	Remember
	Potential Problems

	Setup Subsystem Components
	Background
	Components in Subsystems

	Support for Unit Testing
	Use Property Sets for Build Settings
	Processors and Component Instances
	Project Level Processors
	Subsystem Level Processors
	Component Instances

	Preparing and Releasing Subsystems
	Splitting a Model into Subsystem Models
	Should You Split a Model Before Adding to Source Control?
	Splitting a Model Not in Source Control

	Splitting a Model Under Source Control

	Working with a Model Under Source Control (Developer Tasks)
	Setting up your Source Control Tool
	Configuring Work Areas
	Getting a Specific Lineup of a Model
	Opening a Model Under Source Control
	Adding a new Controlled Unit into Source Control
	Check Out Parent Package

	Checking Controlled Units In and Out of Source Control
	Checking Out Controlled Units
	Checking In Controlled Units
	Submitting All Changes to Source Control
	Undoing a Check Out

	Building and Running Locally
	Reusing Build Settings
	Probes and Inject Messages

	Unit Testing within a Subsystem
	Best Practices

	Set up Private Components
	Differencing and Merging Model Elements
	Synchronizing Models with Source Control
	Promoting Changes for Integration

	Building and Integrating (Integrator Tasks)
	Building using Automated Scripts
	Virtual Path Map Symbols

	Building within a Larger Build Procedure
	Reuse of Build Artifacts
	Creating Reuseable Build Artifacts
	Using Build Artifacts

	Integrating Changes
	Automating Model Validation

	Source Control Administration
	Set up a Source Control System and Repository
	Control Appropriate Model Elements as Units
	Create a Local Work Area
	Save Model to Local Work Area
	Configure the Workspace Source Control Options
	Add the Model to Source Control
	Make Default Workspace Available to Project Members
	Defining Developer Work Areas
	Creation of Labels and Lineups
	Manipulation of the Source Control Repository

	Source Control Tools
	Rational ClearCase
	General Recommendations
	Source Control Operation Behaviour with ClearCase

	UCM Integration
	Activity Selection Combination Box
	Run Project Explorer
	Rebase
	Deliver

	Snapshot Views
	Check in
	Check out
	Get
	Update
	Hijacking a File
	Deliver
	Rebase
	Activities

	ClearCase Workstation Setup
	Command Line Access to the Source Control Tool
	Element type setup: type manager
	ClearCase Options

	ClearCase Repository Setup
	ClearCase Work Area Setup
	Microsoft Visual SourceSafe
	General Recommendations
	Source Control Operation Behaviour with SourceSafe
	Label

	SourceSafe Workstation Setup
	Command Line Access to the Source Control Tool
	Set Project Mapping Option
	Let Visual SourceSafe Know Which Database to Use
	SourceSafe Repository Setup
	SourceSafe Work Area Setup

	RCS and SCCS
	Repository Mapping Files (.rmf)
	Source Control Operation Behaviour with SCCS
	RCS/SCCS Repository Setup
	RCS/SCCS Workstation Setup
	Command line access to the source control tool
	Create an RMF File
	Set RMF Environment Variable

	RCS/SCCS Work Area Setup

	PVCS
	Source Control Operation Behavior with PVCS
	PVCS Workstation Setup
	Command Line Access to the Source Control Tool
	Let PVCS Know Which Database to Use

	PVCS Repository Setup
	Archive Suffixes
	Write Protect Workfiles
	One Lock Per Version/User
	Registering a New Configuration

	PVCS Work Area Setup
	Creating a Working Directory Tree From an Existing Archive

	Model Validation
	What is a Model Inconsistency?
	What is an Unresolved Reference?
	What do the Errors/Warnings Mean?
	Validating Names

	ClearCase Parallel Development: Sample Process
	Parallel Development Overview
	Making Design Changes in Parallel

	Using View Templates
	ClearCase Entities
	Views
	View Template
	Labels

	Initial Setup
	Create the Integrator View
	Create Project Labels
	Create Initial Lineup
	Creating the Developer View Template

	Automated Builds
	Create the Build View
	Label Build Files
	Perform Build
	When the Build Completes Successfully

	Developer Process
	Creating a Developer View
	Starting a Development Activity
	Unix

	Working on a Development Activity
	Finishing a Development Activity

	Integration Process
	Integrating Intermediate Changes

	View Template Script Usage
	vtadmin
	vtsetview

	Customizing Source Control Interface Scripts
	Customizing Scripts
	Input Parameters
	Output Expected
	Output Format
	Script Return Code
	Notes

	Script Parameters
	cm_getcaps
	Notes
	Example

	cm_status
	cm_get
	cm_add
	cm_checkout
	cm_checkin
	cm_uncheckout
	cm_history
	cm_extract
	cm_label
	cm_diff
	cm_merge

	Index

