
support@rational.com
http://www.rational.com

Rational the e-development company™

Using Rose

Rational Rose®

VERSION: 2001A.04.00

PART NUMBER: 800-024462-000

COPYRIGHT NOTICE

Copyright  2000 Rational Software Corporation. All rights reserved.

THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS INFORMATION PROPRIETARY
TO RATIONAL. ANY COPYING, ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF RATIONAL IS STRICTLY
PROHIBITED. THE RECEIPT OR POSSESSION OF THIS DOCUMENT DOES NOT CONVEY ANY
RIGHTS TO REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, USE, OR SELL
ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART, WITHOUT THE SPECIFIC WRITTEN
CONSENT OF RATIONAL.

U.S. GOVERNMENT RIGHTS NOTICE

U.S. GOVERNMENT RIGHTS. Use, duplication, or disclosure by the U.S. Government is subject to
restrictions set forth in the applicable Rational License Agreement and in DFARS 227.7202-1(a) and
227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR
52.227-14, as applicable.

TRADEMARK NOTICE

Rational, the Rational logo, Rational Rose, ClearCase, and Rational Unified Process are trademarks or
registered trademarks of Rational Software Corporation in the United States and in other countries.

Visual C++, Visual Basic, Windows NT, Developer Studio, and Microsoft are trademarks or registered
trademarks of the Microsoft Corporation. BasicScript is a trademark of Summit Software, Inc. All other
names are used for identification purposes only and are trademarks or registered trademarks of their
respective companies.

Portions of Rational Rose include source code from Compaq Computer Corporation; Copyright 2000
Compaq Computer Corporation.

U.S. Registered Patent Nos. 5,193,180 and 5,335,334 and 5,535,329. Licensed under Sun Microsystems Inc.’s
U.S. Pat. No. 5,404,499. Other U.S. and foreign patents pending.

Printed in the U.S.A.

Contents
Preface. xxi
Audience . xxi

Other Resources. xxi

Contacting Rational Technical Publications . xxi

Contacting Rational Technical Support .xxii

1 Introduction to Visual Modeling Using Rational Rose1
Contents . 1

Overview . 1

Visual Modeling. 1

Modeling with Rational Rose . 3

Notations . 3

Features . 4

Extending Rational Rose . 4

2 Getting Started with Rational Rose. .7
Contents . 7

Overview . 7

Application Window. 9
Title Bar . 9

Control-Menu Box . 9
Minimize, Restore, and Close Buttons . 10

Menu Bar . 10
Toolbar . 10

Toolbox . 13
Customizing the Toolbox . 14

Browser. 14

Documentation Window . 14

Log Window . 15

Diagram Window. 16

Overview Window . 16

Specification Window . 17

Printing Diagrams and Specifications . 17
Print Preview . 18
Contents iii

Apply Filter Dialog Box . 18

Saving in Various Formats . 19

3 The Browser . 21
Contents . 21

Overview . 21

Viewing the Browser . 21
Hiding and Displaying the Browser. 22
Positioning the Browser . 22
Docking and Undocking the Browser . 22

Navigating a Model . 23
Expanding and Collapsing the Browser Tree . 24
Creating and Editing Model Elements . 24
Naming an Element in the Browser . 24
Selecting Multiple Elements in the Browser . 25
Sorting Packages in the Browser . 26

Using Drag-and-Drop in the Browser . 26
Browser to Browser Capabilities. 27
Browser to Diagram Capabilities . 28
Browser to Specification Capabilities . 29

4 Introduction to Diagrams . 31
Contents . 31

Overview . 31

Diagram Windows . 32
Viewing Diagrams. 32
Displaying Multiple Diagrams . 33

Creating, Linking, Displaying, Renaming, and Deleting Diagrams 34
Creating a New Diagram . 34
Linking a Diagram. 35
Displaying a Diagram . 35
Renaming a Diagram . 35
Deleting a Diagram. 36

Creating and Naming Model Elements . 36
Creating an Element on the Diagram . 36
Creating an Element in the Browser. 36
Naming Model Elements. 36
Reassigning Model Elements . 38

Manipulating Icons . 39
iv Contents

Selecting Icons. 39
Deselecting Icons. 40
Resizing an Icon. 40
Moving One or More Icons. 40
Changing from One Kind of Element or Relationship to Another. 41
Cutting, Copying, and Pasting Icons . 41

Deleting Model Elements . 42
Shallow Delete . 42
Deep Delete . 42

Correlations . 43
Creating Correlations Between Elements . 43
Bending a Correlation Icon. 43
Reconnecting a Correlation Icon from One Icon to Another 44
Naming a Correlation . 44

Laying Out a Diagram. 44
Laying Out All Shapes in a Diagram . 45
Laying Out Selected Shapes in a Diagram . 46

Adorning the Diagrams. 46
Placing Text in a Diagram . 46
Manipulating Text . 46

Understanding Model Workspaces. 47
Differences Between a Saved Model and a Model Workspace 47
Model Workspace Scenario . 48
Saving a Model Workspace . 49
Loading a Model Workspace . 49

5 Introduction to Specifications. 51
Contents . 51

Overview. 51

Displaying Specifications . 51
Custom Specifications . 52

Editing Specifications . 52

Common Specification Elements . 53
Dialog Boxes . 53
General Tab . 53
Detail Tab . 55
Files Tab. 55
Tab Buttons . 57
Contents v

Navigating the Tabs. 58
Adding and Deleting Entries . 58
Editing Entries . 58

6 Class Diagrams and Specifications . 59
Contents . 59

Class Diagram Overview. 59
Class Diagram Toolbox. 60
Creating and Displaying a Class Diagram . 61
Assigning a Class to Another Logical Package . 61
Adding and Hiding Classes and Filtering Class Relationships 62

Class Specification . 62
Class Specification—General Tab . 63

Type . 63
Parent. 64
Stereotype . 64
Export Control . 64

Class Specification—Detail Tab . 65
Cardinality . 66
Space . 66
Persistence . 67
Concurrency. 68
Abstract . 68
Formal Arguments . 68

Class Specification—Operations Tab . 69
Show Inherited . 70

Class Specification—Attributes Tab . 71
Class Specification—Relations Tab . 73
Class Specification—Component Tab . 74
Class Specification—Nested Tab . 75
Class Specification—Files Tab . 77

Class Attribute Specification . 77
Class Attribute—General Tab . 78

Class . 78
Show Classes . 78
Type . 78
Initial Value. 79

Class Attribute—Detail Tab. 79
Containment. 79
Static . 80
vi Contents

Derived . 80

Operation Specification . 80
Operation Specification—General Tab. 81

Return Type . 81
Operation Specification—Detail Tab . 82

Arguments . 82
Protocol . 82
Qualifications . 83
Exceptions . 83
Size . 83
Time. 83
Concurrency . 83

Operation Specification—Preconditions Tab . 84
Preconditions . 84
Interaction Diagram . 84

Operation Specification—Semantics Tab. 85
Semantics . 85
Interaction Diagram . 85

Operation Specification—Postconditions Tab . 86
Postconditions . 86
Interaction Diagram . 86

Operation Specification—Files Tab . 86

Parameter Specification . 87
Defining a New Parameter . 87
Parameter Specification—General Tab . 88

Default . 88
Owner . 88
Type . 88

Association Specification . 89
Association Specification—General Tab . 89

Parent . 89
Stereotype . 90
Role . 90
Element . 90

Association Specification—Detail Tab . 90
Derived . 91
Link Element . 91
Name Direction . 91
Constraints. 91

Association Specification—Role B General Tab . 92
Contents vii

Association Specification—Role A and B Detail Tab . 93
Navigable . 93
Aggregate. 93
Static . 94
Friend . 94
Containment of. 94
Keys/Qualifiers . 95

Generalize Specification . 95
Generalize Specification—General Tab . 95

Friendship Required. 96
Virtual Inheritance . 96

Realize Specification. 96
Realize Specification—General Tab . 96

Dependency Specification. 97
Dependency Specification—General Tab. 97

Has Relationship (Booch Only) . 98
Has Specification—General Tab. 98
Has Specification—Detail Tab . 99

Key/Qualifier Specification . 99
Defining a New Key/Qualifier . 99
Key/Qualifier Specification—General Tab . 100

Owner. 100

7 Use-Case Diagrams and Specifications . 101
Contents . 101

Use-Case Diagram Overview . 101
Actors . 102
Use Case . 102
Flow of Events . 103
Relationships . 103
Association . 103
Dependency . 104

Extend Stereotype . 104
Include Stereotype . 104
Refine Stereotype. 105

Generalization . 105
Use-Case Diagram Toolbox . 105

Use-Case Specification. 106
Use-Case Specification—General Tab . 107

Name . 107
viii Contents

Package. 107
Rank . 107
Abstract . 108

Use-Case Specification—Diagram Tab . 108
Diagram List . 108

Use-Case Specification—Relations Tab . 109
Relations . 109

Generalize Specification. 109
Generalize Specification—General Tab .110

Stereotype .110
Friendship Required .110
Virtual Inheritance . 111

Actor Specification . 111

8 State Machine Diagrams and Specifications 113
Contents .113

Overview. .114

Creating and Displaying a State Machine Diagram .114

State Machine Specification .114
State Machine Specification—General Tab .115

Statechart Diagram Overview .115
Creating a Statechart Diagram. .116

Automatic Transmission Example .117

Activity Diagram Overview .118
Using Activity Diagrams .118
Understanding Workflows .118

Creating an Activity Diagram .119

Workflow Modeling .119
Purposes of Workflow Modeling. .119
Defining a Workflow . 120

Modeling a Workflow with an Activity Diagram . 121

Activity Diagram-Specific Model Elements . 122
Activities . 122
Swimlanes . 122
Objects . 122
Object Flow . 123
Understanding Objects and Object Flows . 124

Changing the State of an Object . 125

Shared State Machine Diagram Model Elements . 125
Contents ix

States . 125
Start and End States . 125
Transitions . 126
Transition to Self. 126
Decisions . 126
Synchronizations . 126

Swimlane Specification . 127
Swimlane Specification—General Tab . 127

State and Activity Specification . 128
State and Activity Specification—General Tab . 128
State and Activity Specification—Actions Tab . 129

Type . 129
Action Expression . 130

State and Activity Specification—Transitions Tab. 130
State and Activity Specification—Swimlanes Tab . 131

Action Specification. 131

State Transition Specification . 133
State Transition Specification—General Tab . 133
Transition Specification—Detail Tab . 134

Guard Condition . 134
Transition Between Substates . 134

Decision Specification . 135
Decision Specification—General Tab . 135
Decision Specification—Transitions Tab. 136
Decision Specification—Swimlanes Tab. 137

Synchronization Specification . 137
Synchronization Specification—General Tab . 138
Synchronization Specification—Transitions Tab. 139

Object Specification (Activity Diagrams) . 139
Object Specification—General Tab. 140
Object Specification—Incoming Object Flows Tab . 141
Object Specification—Outgoing Object Flows Tab . 142

Object Flow Specification . 142
Object Flow Specification—General Tab . 143

9 Interaction Diagrams and Specifications . 145
Contents . 145

Interaction Diagram Overview. 145
Creating and Displaying an Interaction Diagram . 146
x Contents

Collaboration Diagrams . 146

Sequence Diagrams . 147

Toolboxes . 148
Collaboration Diagram Toolbox . 148
Sequence Diagram Toolbox . 149
Common Collaboration and Sequence Diagram Icons 150

Object . 150
Messages . 151
Message Numbering . 152
Assigning an Operation to a Message. 152

Collaboration-Specific Toolbox Icons . 153
Links . 153

Sequence Numbering . 154
Top-Level Numbering . 154
Hierarchical Numbering . 154
Scripts . 155

Focus of Control . 156
Displaying Focus of Control . 157
Coloring Focus of Control . 157
Moving the Focus of Control . 157
Nested Focus of Control . 157

Object Construction and Destruction . 158
Object Construction Markers . 158
Object Destruction Markers . 159

Creating Alternative Diagrams . 159
Toggling Between Interaction Diagrams. 159
Creating a Collaboration Diagram from a Sequence Diagram. 159
Creating a Sequence Diagram from a Collaboration Diagram. 159

Object Specification (Interaction Diagrams) . 160
Object Specification—General Tab . 160

Name . 160
Class . 161
Persistence Field . 161
Multiple Instances Check Box . 161

Class Instance Specifications . 161
Class Instance Specification—General Tab . 162

Class . 162

Link Specification . 163
Contents xi

Link Specification—General Tab . 163
Assoc . 164
Supplier and Client Visibility . 164
Shared . 165
Role . 165

Link Specification—Messages Tab. 166
Icon . 166
Sequence . 166
Message Name . 166
Receiver . 167

Message Specification . 167
Message Specification General Tab . 167

Class . 168
Message Specification—Detail Tab . 168

Synchronization . 169
Frequency . 170

10 Component Diagrams and Specifications. 171
Contents . 171

Component Diagram Overview . 171
Creating and Displaying a Component Diagram . 172
Component Diagram Toolbox . 172
Assigning a Component to Another Package. 172

Component Specification . 173
Component Specification—General Tab . 174

Stereotype (Component) . 174
Language . 174

Component Specification—Detail Tab . 175
Declarations . 175

Component Specification—Realizes Tab . 176
Show All Classes . 176
Classes . 176
Language . 177

Component Specification—Files Tab . 177

Package Specification. 177
Package Specification—General Tab . 178

Package . 178
Package Specification—Detail Tab. 179

Component Diagrams . 179
Package Specification—Realizes Tab . 179
xii Contents

Package Specification—Files Tab . 179

11 Deployment Diagrams and Specifications. 181
Contents . 181

Deployment Diagram Overview . 181
Creating and Displaying a Deployment Diagram . 182
Deployment Diagram Toolbox . 182

Processor Specification . 182
Processor Specification—General Tab . 183
Processor Specification—Detail Tab . 184

Characteristics . 184
Processes . 184
Scheduling. 185

Device Specification . 185
Device Specification—General Tab . 186
Device Specification—Detail Tab . 187

Connection Specification . 187

Process Specification . 188
Process Specification—General Tab . 188

Processor . 189
Priority . 189

12 Stereotypes . 191
Contents . 191

Overview. 191
Benefits to Using Stereotypes . 192
User-Defined Stereotypes . 192

Viewing Stereotypes . 192
Diagram Tab. 193
Browser Tab . 194

Creating Stereotypes . 195
Creating a New Stereotype for the Current Model . 195
Creating a New Stereotype Configuration File . 195
Creating a New Stereotype for All Rose Models . 196
Creating Stereotype Icons . 197
Creating a Diagram Icon . 198
Creating Diagram Toolbox and List View Icons . 198

Adding Stereotypes to the Diagram Toolbox . 199

Subsystem Stereotype Package. 200
Contents xiii

Subsystem Stereotype Sample . 200

13 Framework Wizard Add-In. 201
Contents . 201

Overview . 201

Activating the Framework Wizard Add-In . 202

Creating a New Model from a Framework . 202

Creating and Deleting Frameworks. 203
The Framework Library . 204
Creating a New Framework . 205
Changing or Deleting a Framework . 206

14 Type Library Importer . 207
Contents . 207

Overview . 207

What Is a Type Library? . 208

Why Would I Want to Import Type Libraries into the Model? 208

What COM Components Can Be Imported into the Model? 209

How Is a Type Library Presented? . 209
A Type Library in Rational Rose . 209
Type Library in the OLE Viewer in Visual Studio . 214
Type Library in the Object Browser in Visual Basic . 215

Importing a Type Library into the Model . 216

Importing a New Version of an Existing Type Library . 217

Hiding Type Library Items . 218
Show Hidden Items Selected . 218
Show Hidden Items Cleared. 219

Using an Imported Type Library . 220

Adding Class Members to a Quick Import Type Library . 220

Customizing the Type Library Importer . 221

A Upgrading from a Previous Release . 225
Contents . 225

Upgrading from Rational Rose 3.0 or Later . 225

Upgrading from Releases Prior to Rational Rose 3.0 . 225

Understanding Petal File Versions . 225

Index . 227
xiv Contents

Figures
Figure 1 Application Window . 9
Figure 2 Standard Toolbar . 10
Figure 3 Application Window . 22
Figure 4 Navigating a Model . 23
Figure 5 Browser—Collapsed and Expanded Tree . 24
Figure 6 Diagram Window . 33
Figure 7 Multiple Diagrams—Cascade Windows . 33
Figure 8 Multiple Diagrams—Tiled Windows . 34
Figure 9 Selected Elements in a Diagram . 39
Figure 10 Example Layout of a Class Diagram . 45
Figure 11 Model Workspace Loaded Units . 48
Figure 12 General Tab . 53
Figure 13 Detail Tab. 55
Figure 14 Files Tab . 56
Figure 15 Tab Buttons . 57
Figure 16 Class Diagram Example . 60
Figure 17 Class Diagram Toolbox . 61
Figure 18 Class Specification—General Tab . 63
Figure 19 Class Specification—Detail Tab. 65
Figure 20 Class Specification—Operations Tab . 69
Figure 21 Class Specification—Attributes Tab. 71
Figure 22 Class Specification—Relations Tab . 73
Figure 23 Class Specification—Component Tab . 74
Figure 24 Class Specification—Nested Tab . 75
Figure 25 Class Attribute—General Tab . 78
Figure 26 Class Attribute—Detail Tab . 79
Figure 27 Operations Specification—General Tab . 81
Figure 28 Operation Specification—Detail Tab . 82
Figure 29 Operation Specification—Preconditions Tab . 84
Figure 30 Operations Specification—Semantics Tab . 85
Figure 31 Operation Specification—Postconditions Tab . 86
Figure 32 Parameter Specification—General Tab . 88
Figure 33 Association Specification—General Tab . 89
Figure 34 Association Specification—Detail Tab . 90
Figure 35 Association Specification—Role A and B General Tab 92
Figure 36 Association Specification—Role A and B Detail Tab 93
Figures xv

Figure 37 Generalize Specification—General Tab. 95
Figure 38 Realize Specification—General Tab . 96
Figure 39 Dependency Specification—General Tab . 97
Figure 40 Has Specification—General Tab . 98
Figure 41 Has Specification—Detail Tab . 99
Figure 42 Key/Qualifier Specification—General Tab . 100
Figure 43 Use Case Diagram Toolbox. 106
Figure 44 Use-Case Specification—General Tab . 107
Figure 45 Use-Case Specification—Diagram Tab . 108
Figure 46 Use-Case Specification—Relations Tab . 109
Figure 47 Generalize Specification—General Tab. 110
Figure 48 State Machine Specification—General Tab . 115
Figure 49 Automatic Transmission Example . 117
Figure 50 Objects on an Activity Diagram Sample . 123
Figure 51 Object Flow Sample . 124
Figure 52 CD Player Sample . 124
Figure 53 Swimlane Specification—General Tab. 127
Figure 54 State and Activity Specification—General Tab. 128
Figure 55 State and Activity Specification—Actions Tab 129
Figure 56 State and Activity Specification—Transitions Tab 130
Figure 57 State and Activity Specification—Swimlanes Tab 131
Figure 58 State Transition Specification—General Tab . 133
Figure 59 State Transition Specification—Detail Tab . 134
Figure 60 Decision Specification—General Tab . 135
Figure 61 Decision Specification—Transitions Tab . 136
Figure 62 Decision Specification—Swimlanes Tab . 137
Figure 63 Synchronization Specification—General Tab. 138
Figure 64 Synchronization Specification—Transitions Tab 139
Figure 65 Object Specification—General Tab . 140
Figure 66 Object Specification—Incoming Object Flows Tab 141
Figure 67 Object Specification—Outgoing Object Flows Tab 142
Figure 68 Object Flow Specification—General Tab . 143
Figure 69 Collaboration Diagram Example . 147
Figure 70 Sequence Diagram Example . 148
Figure 71 Collaboration Diagram Toolbox . 149
Figure 72 Sequence Diagram Toolbox . 149
Figure 73 Multiple Object Diagram . 150
Figure 74 Focus of Control Diagram Example. 156
Figure 75 Object Specification—General Tab . 160
Figure 76 Class Instance Specification—General Tab. 162
Figure 77 Link Specification—General Tab . 163
xvi Figures

Figure 78 Link Specification—Messages Tab . 166
Figure 79 Message Specification General Tab . 167
Figure 80 Message Specification—Detail Tab. 168
Figure 81 Component Diagram Example . 171
Figure 82 Component Diagram Toolbox . 172
Figure 83 Component Specification—General Tab . 174
Figure 84 Component Specification—Detail Tab. 175
Figure 85 Component Specification—Realizes Tab . 176
Figure 86 Package Specification—General Tab . 178
Figure 87 Package Specification—Detail Tab . 179
Figure 88 Deployment Diagram Example . 181
Figure 89 Deployment Diagram Toolbox . 182
Figure 90 Processor Specification—General Tab . 183
Figure 91 Processor Specification—Detail Tab . 184
Figure 92 Device Specification—General Tab. 186
Figure 93 Device Specification—Detail Tab . 187
Figure 94 Process Specification—General Tab. 188
Figure 95 Options Dialog Box—Diagram Tab . 193
Figure 96 Options Dialog Box—Browser Tab . 194
Figure 97 Subsystem Stereotype Sample . 200
Figure 98 Create New Model Dialog Box . 203
Figure 99 Framework Wizard Specification Page . 205
Figure 100 Framework Wizard Summary Page . 206
Figure 101 Component View of the Microsoft Scripting Runtime Type Library . . . 209
Figure 102 Component Overview Diagram for a Model . 210
Figure 103 Logical View of the Microsoft Scripting Runtime Type Library211
Figure 104 Overview Diagram of the Microsoft Scripting Runtime Type Library. . 212
Figure 105 OLE Viewer in Visual Studio . 215
Figure 106 Object Browser in Visual Basic . 216
Figure 107 Type Library with Show Hidden Items Option Selected 218
Figure 108 Type Library with Show Hidden Items Option Cleared 219
Figure 109 COM Properties Dialog Box . 221
Figures xvii

Tables xix

Table 1 Print Dialog Box Tabs . 17
Table 2 Browser to Browser Capabilities . 27
Table 3 Browser to Diagram Capabilities . 28
Table 4 Browser to Specification Capabilities. 29
Table 5 Export Control Field Options . 64
Table 6 Cardinality Field Options . 66
Table 7 Persistence Field Options . 67
Table 8 Class Concurrency Options. 68
Table 9 Physical Containment Options . 79
Table 10 Concurrency Field Options . 83
Table 11 Containment Field Options . 94
Table 12 Persistence Field Options . 161
Table 13 Supplier and Client Visibility Options . 164
Table 14 Synchronization Options . 169
Table 15 Frequency Options . 170
Table 16 Scheduling Field Options. 185
Table 17 COM Stereotypes . 213
Table 18 Rational Rose Petal File Version . 226

Tables

Preface
This manual provides an introduction to Rational Rose. Rational Rose is the visual
modeling tool that is part of a comprehensive set of tools that embody software
engineering best practices and span the entire software development life cycle.
Rational Rose helps improve communication both within teams and across team
boundaries, reducing development time and improving software quality.

Audience

This guide is intended for all users of Rational Rose, including administrators,
analysts, architects, and developers.

Other Resources

■ Online Help is available for Rational Rose and its add-ins. In Rational Rose, select
an option from the Help menu.

■ Manuals for Rational Rose and its add-ins are available. All manuals are available
online in either HTML or PDF format. The online manuals are on the Rational
Solutions for Windows Online Documentation CD.

■ A Rational Rose tutorial is available for Rational Rose. The tutorial is on the
Rational Solutions for Windows Online Documentation CD.

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our Technical Documentation department at techpubs@rational.com.
xxi

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support.

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

■ Your name, telephone number, and company name

■ Your computer’s make and model

■ Your operating system and version number

■ Product release number and serial number

■ Your case ID number (if you are following up on a previously-reported problem)

Your Location Telephone Fax E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4545-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
xxii Preface

1Introduction to Visual
Modeling Using Rational
Rose
Contents

This chapter is organized as follows:

■ Overview on page 1

■ Visual Modeling on page 1

■ Modeling with Rational Rose on page 3

■ Notations on page 3

■ Features on page 4

■ Extending Rational Rose on page 4

Overview

Rational Rose provides support for two essential elements of modern software
engineering: component-based development and controlled iterative development.
While these concepts are conceptually independent, their usage in combination is
both natural and beneficial.

Rational Rose’s model-diagram architecture facilitates use of the Unified Modeling
Language (UML), Component Object Modeling (COM), Object Modeling Technique
(OMT), and Booch ‘93 method for visual modeling. Using semantic information
ensures correctness by construction and maintaining consistency.

Visual Modeling

Increasing complexity, resulting from a highly competitive and ever-changing
business environment, offers unique challenges to system developers. Models help
you organize, visualize, understand, and create complex things.

Visual modeling is the mapping of real world processes of a system to a graphical
representation. Models are useful for understanding problems, communicating with
everyone involved with the project (customers, domain experts, analysts, designers,
1

etc.), modeling complex systems, preparing documentation, and designing programs
and databases. Modeling promotes better understanding of requirements, cleaner
designs, and more maintainable systems.

As software systems become more complex, we cannot understand them in their
entirety. To effectively build a complex system, the developer begins by looking at the
big picture without getting caught up in the details. A model is an ideal way to
portray the abstractions of a complex problem by filtering out nonessential details.
The developer must abstract different views or blueprints of the system, build models
using precise notations, verify that the models satisfy the requirements of the system,
and gradually add detail to transform the models into an implementation.

The models of a software system are analogous to the blueprints of a building. An
architect could not design a structure in its entirety with one blueprint. Instead a
blueprint is drawn up for the electrician, the plumber, the carpenter, and so on. When
designing a software system, the software engineer deals with similar complexities.
Different models are drawn up to serve as blueprints for marketing, software
developers, system developers, quality assurance engineers, etc. The models are
designed to meet the needs of a specific audience or task, thereby making them more
understandable and manageable.

Visual modeling has one communication standard: the Unified Modeling Language
(UML). The UML provides a smooth transition between the business domain and the
computer domain. Using the UML, all members of a design team can work with a
common vocabulary, minimizing miscommunication and increasing efficiency.

Visual modeling captures business processes by defining the software system
requirements from the user’s perspective. This streamlines the design and
development process. Visual modeling also defines architecture by providing the
capability to capture the logical software architecture independent of the software
language. This method provides flexibility to your system design since the logical
architecture can always be mapped to a different software language. Finally, with
visual modeling, you can reuse parts of a system or an application by creating
components of your design. These components can then be shared and reused by
different members of a team allowing changes to be easily incorporated into already
existing development software.
2 Chapter 1 - Introduction to Visual Modeling Using Rational Rose

Modeling with Rational Rose

Rational Rose is the visual modeling software solution that lets you create, analyze,
design, view, modify, and manipulate components. You can graphically depict an
overview of the behavior of your system with a use-case diagram. Rational Rose
provides the collaboration diagram as an alternative to a use-case diagram. It shows
object interactions organized around objects and their links to one another. The
statechart diagram provides additional analysis techniques for classes with significant
dynamic behavior. A statechart diagram shows the life history of a given class, the
events that cause a transition from one state to another, and the actions that result
from a state change. Activity diagrams provide a way to model a class operation or
the workflow of a business process.

Rational Rose provides the notation needed to specify and document the system
architecture. The logical architecture is captured in class diagrams that contain the
classes and relationships that represent the key abstractions of the system under
development. The component architecture is captured in component diagrams that
focus on the actual software module organization within the development
environment. The deployment architecture is captured in deployment diagrams that
map software to processing nodes—showing the configuration of run-time processing
elements and their software processes.

Notations

Notation plays an important part in any application development activity—it is the
glue that holds the process together. UML provides a very robust notation, which
grows from analysis into design. Certain elements of the notation (that is, use cases,
classes, associations, aggregations, inheritance) are introduced during analysis. Other
elements of the notation (that is, containment indicators and properties) are
introduced during design.

Notation has the following roles:

■ Communicates decisions that are not obvious or cannot be inferred from the code
itself

■ Provides semantics that capture important strategic and tactical decisions

■ Offers concrete forms and tools that can be manipulated
Modeling with Rational Rose 3

Features

Rational Rose provides the following features to facilitate the analysis, design, and
iterative construction of your applications:

■ Use-Case Analysis

■ Object-Oriented Modeling

■ User-Configurable Support for UML, COM, OMT, and Booch ‘93

■ Semantic Checking

■ Support for Controlled Iterative Development

■ Round-Trip Engineering

■ Parallel Multiuser Development Through Repository and Private Support

■ Integration with Data Modeling Tools

■ Documentation Generation

■ Rational Rose Scripting for Integration and Extensibility

■ OLE Linking

■ OLE Automation

■ Multiple Platform Availability

Extending Rational Rose

The add-in feature allows you to quickly and accurately customize your Rational Rose
environment depending on your development needs. Using the add-in tool, you can
install language (for example, Visual Basic, Visual Java) and non-language (for
example, Microsoft Project) tools while in Rational Rose.

When an add-in is installed, it is automatically in an activated state. Add-ins can
install:

■ Menus (.mnu file)

■ Help files (.hlp file)

■ Contents tab files (.cnt file)

■ Properties (.pty file)

■ Executables (.exe)
4 Chapter 1 - Introduction to Visual Modeling Using Rational Rose

■ Script files (.ebs script source file and .ebx compiled script file)

■ OLE servers (.dll file)

Additionally, an add-in can define fundamental types, predefined stereotypes, and
metafiles. Note that an add-in is not to be considered strictly a one-to-one association
with a round-trip engineering (RTE) integration.

Add-In Manager

The Add-In Manager allows you to control the state of the add-in, whether it is
activated or deactivated. If the add-in is deactivated, it is still visible through the
Add-In Manager. However, the add-in’s properties and menus are not available.

Installing an Add-In

Use the following steps to install an add-in on your Windows 95, Windows 98, or
Windows NT system:

1 Exit Rational Rose.

2 Insert the CD ROM or the application that you wish to install.

3 Run the setup.exe program.

4 Respond to the dialogs to complete your installation.

5 Restart Rational Rose. Confirm that your add-in is activated using the Add-In
Manager menu.
Extending Rational Rose 5

2Getting Started with
Rational Rose
Contents

This chapter is organized as follows:

■ Overview on page 7

■ Application Window on page 9

■ Toolbox on page 13

■ Browser on page 14

■ Documentation Window on page 14

■ Log Window on page 15

■ Diagram Window on page 16

■ Overview Window on page 16

■ Specification Window on page 17

■ Printing Diagrams and Specifications on page 17

■ Saving in Various Formats on page 19

Overview

When you first start Rational Rose, some editions will display a Framework dialog
box. From this dialog box, you can load a model with predefined model elements,
allowing you to focus your modeling efforts on the parts that are unique to your
system. For further information on the Framework Wizard, refer to the Framework
Wizard Add-In on page 201.
7

Independent of Frameworks, you can use Rational Rose’s graphical user interface to
display, create, modify, manipulate, and document the elements in a model using
these windows:

■ Application window

■ Browser window

■ Documentation window

■ Diagram window

■ Overview window

■ Specification window

■ Log window

Rational Rose displays the diagram, specification, and documentation windows
within the application window. The log window is a dockable window you can move,
dock or undock, or close.
8 Chapter 2 - Getting Started with Rational Rose

Application Window

An application window contains a title bar, menu bar, toolbar, and a work area where
the toolbox, browser, documentation window, diagram window, and specification
window appear.

Figure 1 Application Window

Title Bar

The title bar always displays the diagram type. Additional information (like the view
or diagram name) is often displayed depending on the diagram/model being viewed.
The title bar includes a Control-Menu box, Minimize button, Restore button, and
Close button.

Control-Menu Box

Clicking the Control-Menu box (on the application or diagram window) displays a
menu with the following commands:

Diagram
Window

Menu Bar

Browser

Documentation
Window

Specification
Window

Title Bar

Toolbar

Toolbox Icon for Overview
Window

Restore Restores focus to that diagram window.

Move Highlights the border of the window. Move your pointer to the Title
Bar, click and drag the window to the desired location.
Application Window 9

Minimize, Restore, and Close Buttons

These buttons allow you to minimize, restore, or close the diagram or application
window.

Menu Bar

The menu bar changes depending on which diagram you are working. For a
description of each menu and command, refer to the Rational Rose online Help.

Toolbar

The standard toolbar is displayed directly under the menu bar, along the top of the
application window. This toolbar is independent of the open diagram window.

The following icons are available for use on the standard toolbar.

Figure 2 Standard Toolbar

New Model

Clicking the New Model icon creates a new model.

Open Model

Clicking the Open Model icon opens the Load Model dialog box. You can open a model
from anywhere within the design.

New and Open icons: If you have a model open when you click either the New
or Open icon, you are prompted to save your current model. Clicking No
discards all changes since your last save. Clicking Yes saves your changes and
either opens a new model or displays the Load Model dialog box.

Size Highlights the border of the window. Move your pointer to the border
and resize the window as desired.

Minimize Reduces the window to an icon placing it in the bottom of the
application window.

Maximize Enlarges the window to fit the entire screen.

Close Closes the window.
10 Chapter 2 - Getting Started with Rational Rose

Save Model or Log

Clicking the Save Model icon opens the Save Model to dialog box. Enter a new file
name. After the model is named and saved, clicking this icon automatically saves
your changes to the current model without displaying the dialog box. This will also
save the log if the log window is open.

Cut

Clicking the Cut icon removes icons from your model. Element(s) must be selected to
activate the icon. Cutting an element will also cut associated relationships. You can
cut multiple selected items.

Copy

Clicking the Copy icon copies an element to a new location on the same model, or to a
new model, without affecting the original model.

Paste

Clicking the Paste icon pastes a previously cut or copied element on the Clipboard
onto another location.

Print Diagrams

Clicking the Print icon prints diagrams to the default printer.

Context Sensitive Help

Clicking the Context Sensitive Help icon makes all topics covered in the online Help
available. Click this icon and then click the item with which you want help.

View Documentation

Clicking the View Documentation icon displays the documentation window on the
diagram.

Browse Class Diagram

Clicking the Browse Class Diagram icon opens the Select Class Diagram dialog box.

Browse Interaction Diagram

Clicking the Browse Interaction Diagram icon opens the Select Interaction Diagram
dialog box.
Application Window 11

Browse Component Diagram

Clicking the Browse Component Diagram icon opens the Select Component Diagram
dialog box.

Browse State Machine Diagram

Clicking the Browse State Machine Diagram icon opens the Select Statechart Diagram
or Activity Diagram dialog box.

Browse Deployment Diagram

Clicking the Browse Deployment Diagram icon opens the Deployment Diagram dialog
box.

Browse Use-Case Diagram

Clicking the Browse Use-Case Diagram icon opens the Selected Use Case Diagram
dialog box.

Browse Parent

Clicking the Browse Parent icon displays the “parent” of the selected diagram or
specification. If you have a specification selected, the specification for the parent of the
“named” item is displayed.

Browse Previous Diagram

Clicking the Browse Previous Diagram icon displays the last displayed diagram.

Zoom In

Clicking the Zoom In icon magnifies the current diagram to view an area in detail.

Zoom Out

Clicking the Zoom Out icon minimizes the current diagram allowing you to view more
information.

Fit in Window

Clicking the Fit in Window icon centers and displays a diagram within the limits of the
window. This command changes the zoom factor so that the entire diagram appears.
12 Chapter 2 - Getting Started with Rational Rose

Undo Fit in Window

Clicking the Undo Fit in Window icon undoes the actions performed on the previous Fit
In Window command.

Help Topics

Clicking the Help Topics icon opens the online Help contents.

Toolbox

The diagram toolbox consists of tools that are appropriate for the current diagram.
Changing diagrams automatically displays the appropriate toolbox.

When a modifiable diagram window is active, a toolbox with tools appropriate for the
current diagram is displayed. If the current diagram is contained by a controlled unit
or the model is write-protected, the toolbox is not displayed.

While each diagram has a set of tools applicable for the current diagram, all toolboxes
have the Selector, Separator, and Lock icons.

Selector Icon

The selector icon is used to select icons on the diagram. This icon cannot be removed
from the toolbox.

Separator Icon

The separator icon is used to put a small space between icons on the toolbox. You can
have as many separators as you want, but you must have at least one.

Lock Icon

The lock icon can be set to locked or unlocked. In the locked mode, any tool icon stays
in the selected state until the diagram loses focus or another tool button is selected.
This option facilitates the rapid placement of several identical icons without
repeatedly returning to the diagram toolbox.

This icon is usually not displayed, but you can add it to the toolbox. Refer to
Customizing the Toolbox on page 14.

You can obtain the lock functionality without the icon through the shortcut menu or
by pressing the SHIFT key while placing an element. Releasing the SHIFT deactivates
the lock feature.
Toolbox 13

The toolbox for each diagram type is discussed in the appropriate chapter.

Note: You can also extend the toolbox. This allows you to view stereotype icons and
additional tools if applicable. Refer to Adding Stereotypes to the Diagram Toolbox on
page 199 for more details.

Customizing the Toolbox

To access the Customize Toolbar dialog box in order to modify the displayed toolbox:

■ Right-click anywhere on the toolbox and then click Customize from the shortcut
menu.

■ Double-click anywhere on the toolbox not occupied by a button.

■ Click View > Toolbars > Configure.

■ Click Tools > Options. On the Option dialog box, click the Toolbars tab. This
approach gives you the ability to modify all the diagram toolboxes without first
displaying a specific diagram type.

Browser

The browser is a hierarchical navigational tool that allows you to view the names and
icons of interaction, class, use case, statechart, activity, and deployment diagrams as
well as many other model elements.

When a class or interface is assigned to a component, the browser displays the
assigned component name in an extended name. The extended name is a
comma-separated list within parenthesis to the right of the class and interface name.
The extended list includes all the assigned components.

For more information about the browser, refer to The Browser on page 21.

Documentation Window

The documentation window is used to describe model elements or relationships. The
description can include such information as the roles, keys, constraints, purpose, and
essential behavior of the element. You can type information either here or through the
documentation field of a specification.

To view the documentation window, click View > Documentation. A check mark next
to documentation indicates the window is open.
14 Chapter 2 - Getting Started with Rational Rose

Only one documentation window can be open at a time, but as you select different
items, the window will be updated accordingly.

When the window is first displayed, it will be docked to the lower left corner of the
Rose application window. To move the window, click and drag on its border. The
window outline indicates the window state: a thin, crisp line indicates the window
will be docked, while a thicker, hashmark-type border indicates it will be floating.

Characteristics of the docked and floating states of the window are as follows:

Docked

■ The window can be moved within the dockable region of the model, but it remains
positioned along the border.

■ The size remains fixed.

■ The title can be displayed through a tool tip (place your pointer anywhere in the
window).

■ The window may be docked at any time.

Floating

■ The window can be moved to any location and is always displayed on top of the
diagram.

■ Size can be changed by clicking and dragging along the border in a vertical or
horizontal direction.

■ The window title displays the type (class or object) and name of the class or object.

Log Window

Rose uses the log window to report progress, results, and errors that occur as a result
of a command or action in your model. The messages posted to the log are prefixed
with a time stamp, enabling you to track when an event or action occurred.

Like the documentation window, the log window can be docked or floating. You can
dock or undock the window by right-clicking anywhere in the window and toggling
Allow Docking . When docked, the log window is positioned along the border of the
application window. If docking is not enabled or if you drag the window outside of
the application frame, the window is floating. A floating window is always on top.

In addition, you can hide the log window by right-clicking anywhere in the window
and clicking Hide. To redisplay the window, click View > Log.
Log Window 15

You can save the contents of the log window to a file as well as clear the log contents.
To save the log, click File > Save Log As. To clear the log, right-click anywhere in the
log window and click Clear.

Diagram Window

Diagram windows allow you to create and modify graphical views of the current
model. Each icon in a diagram represents an element in the model. Since diagrams are
used to illustrate multiple views of a model, each model element can appear in none,
one, or several of a model’s diagrams. This means you can control which elements
and properties appear on each diagram.

Diagrams are contained by the model elements they represent:

■ A logical package (also User Services, Business Services, and Data Services)
contains an automatically created class diagram called “Package Overview,” and
user created class diagrams, collaboration diagrams, interaction diagrams, and
three-tiered diagrams.

■ A component package contains component diagrams.

■ A class contains its state diagrams.

■ A model contains the diagram for its top level components, its three-tiered service
model diagram, its deployment diagram, and the diagram contained by its logical
package and component packages. These top-level components can be classes,
components, devices, connections, and processors.

Overview Window

The overview window is a navigational tool that helps you move to any location on
all Rational Rose diagrams. When a diagram is larger than the viewable area within
the diagram window, it is not possible to see the whole diagram without scrolling.
The overview window provides a scaled-down view of the current diagram so you
can see the entire diagram.

To move to an exact area of your diagram, use the following steps:

1 Move the pointer over the hand located in the lower, right side of the diagram
window. Notice how the pointer appears as a + when the pointer is located over
the active hand.

2 Click on the hand icon so the overview window appears.
16 Chapter 2 - Getting Started with Rational Rose

3 Hold down the mouse button and move the box inside the overview window to a
desired diagram location.

Note: The overview window closes automatically when you release the mouse
button.

Specification Window

A specification enables you to display and modify the properties and relationships of
a model element, such as a class, a relationship, an operation, or an activity. The
information in a specification is presented textually; some of this information can also
be displayed inside icons representing the model element in diagrams.

You can change properties or relationships by editing the specification or modifying
the icon on the diagram. The associated diagram or specification is automatically
updated.

To display a specification:

■ Right-click the icon in either the diagram or browser, and then click Open
Specification from the shortcut menu.

■ Click the icon in either the diagram or browser, and then click Browse >
Specification.

■ Double-click on the icon in either the diagram or browser. (If you have selected the
Double-Click to Diagram option in the Options dialog box, a diagram may appear
instead of a specification.)

The specifications are displayed as tabs and you can easily navigate through them.

Printing Diagrams and Specifications

The Print dialog box allows you to print diagrams and specifications. Table 1 describes
the tabs in the Print dialog box.

Table 1 Print Dialog Box Tabs

Tab Description

General Allows you to specify a printer, a selection of diagrams and
specifications, and the number of copies to be printed.

Diagrams Allows you to select and view a list of diagrams to be printed.

Specifications Allows you to select and view a list of specifications to be printed.
Specification Window 17

Print Preview

The print preview option allows you to see how a diagram will appear when printed.
Also, print preview displays the total number of pages the diagram will take to print
on the status bar.

Apply Filter Dialog Box

The Apply Filter dialog box allows you to search for diagrams and specifications
within your model. The filter is especially useful when you print diagrams from large
models.

To print a specific diagram in a model, type in the name, type, or path of the diagram
you are trying to print.

Next, press the OK button to locate the diagram. Then, with the diagram selected,
press OK from the Print dialog box to print the diagram.

Layout Allows you to select layout settings for printing diagrams and
specifications.

Table 1 Print Dialog Box Tabs

Tab Description

Zoom In

Zoom Out

Click either Zoom In or Zoom Out to view a diagram at different
magnified sizes. Also, you can click on any part of the diagram to
get a magnified view.

Print Click Print to display the Print dialog box.

One Page

Two Page

Click Two Page to display the diagram in two pages or click One
Page to view the diagram in one page. When diagrams are viewed
in two pages, the Next Page button becomes active and enables
you to view other pages. The Previous Page button becomes active
when there is a previous page to view.

Close Click Close to return to an active window.

Name Provides a list of all diagram names depending on search criteria.

Type Provides a list of all diagram types depending on search criteria.

Path Provides a list of each path for diagrams displayed.
18 Chapter 2 - Getting Started with Rational Rose

To search for a diagram or a specification in the Apply Filter dialog box, you can use
the * (asterisk) wildcard character. For example:

■ A* matches any name beginning with the letter A

■ *A matches any name ending with the letter A

■ *A* matches any name containing the letter A

Saving in Various Formats

If you want to save a Rational Rose model as a different format, you may select any of
the following options from the Save As Type list in the Save Model To dialog box:

■ Models *.mdl (the current version of Rose)

■ Petal *.ptl

■ Rose 6.1/6.5 Model

■ Rose 4.5/6.5 Model

■ Rose 4.0 Model

■ Rose 3.0 Model
Saving in Various Formats 19

3The Browser
Contents

This chapter is organized as follows:

■ Overview on page 21

■ Viewing the Browser on page 21

■ Navigating a Model on page 23

■ Using Drag-and-Drop in the Browser on page 26

Overview

The browser is an easy-to-use alternative to menus and toolbars for visualizing,
navigating, and manipulating items within your model. The browser provides:

■ A hierarchical view of many items in a model

■ Drag-and-drop capabilities that change a model’s characteristics

■ Automatic updating of model items to reflect changes in the browser

Viewing the Browser

When you start Rational Rose, the browser is visible by default. It appears in a docked
position, to the left of the toolbox and diagram windows.
21

Figure 3 Application Window

Hiding and Displaying the Browser

To hide (or display) the browser window, click View > Browser. A check mark next to
the word Browser indicates the browser is visible.

Positioning the Browser

You can change the size and position of the browser according to your own
preferences. The browser can be:

■ Docked: Positioned along the border with a fixed size

■ Floating: Moved to any location with a variable size

Docking and Undocking the Browser

The browser is in a docked position by default.

To dock the browser:

1 Click on any border of the browser.

2 Drag the browser to any application window border.

To undock the browser:

Browser
22 Chapter 3 - The Browser

1 Click on any border of the browser.

2 Drag the browser to the desired position.

3 Resize the browser window, if necessary.

Note: As with any resizeable window, you can resize the browser by pointing to a
border and dragging the pointer to increase or decrease the window’s dimensions.

Navigating a Model

The browser provides a visual representation of your model’s hierarchy. As you make
changes in a diagram window or in the browser window, the windows remain
synchronized:

■ To display a diagram window, double-click on its name or icon in the browser
window.

■ To display an item’s specification, double-click on the item in the browser or in a
diagram window. (Any changes you make to the specification are automatically
reflected in both the browser and the diagram).

■ To focus an item in the current diagram, click the item in the browser or in the
diagram window.

Figure 4 shows MyClass1 highlighted in both the browser and class diagram.

Figure 4 Navigating a Model
Navigating a Model 23

Expanding and Collapsing the Browser Tree

The current model’s hierarchy is visible in the tree structure of the browser window:

■ A plus (+) sign next to an icon indicates that the icon is collapsed; that is, it
contains other model elements. Click the + sign to expand the icon and view its
subordinate items.

■ A minus (-) sign next to an icon indicates that the icon is fully expanded. Click the
minus (-) sign to collapse the item.

Figure 5 Browser—Collapsed and Expanded Tree

Creating and Editing Model Elements

You can use the drag-and-drop capabilities in the browser to create and edit model
elements in two ways:

■ Drag-and-drop one item in the browser to another item in the browser. Your
diagram will automatically be updated to reflect the changes in the browser.

■ Drag-and-drop elements from the browser to the appropriate diagrams.

■ If the class belongs to a parent different from the diagram, and Show Visibility is on,
the class is annotated with the term ‘(from x)’ where x is the class’ location. If Show
Visibility is off, only the class name is displayed.

Naming an Element in the Browser

1 Create or select an element.

2 Type in a new name.

If this name already exists in another package, a message appears and states that
the name of the element and type already exist in another package. For example:
“Class AA now exists in multiple name spaces.”

Collapsed Tree
Expanded Tree
24 Chapter 3 - The Browser

You can either click Cancel, which ignores the name, or OK. If you do not want to
see this dialog box any more, select the Don’t warn anymore this session check box.
To start seeing this dialog box again, restart the application.

Selecting Multiple Elements in the Browser

You can select multiple elements in the browser to manipulate items within your
model for version control purposes. Version control functionality is available through
the Version Control add-in or through ClearCase. Selecting multiple elements in the
browser allows you to check in or check out more than one file at a time using a
version control system. When multiple icons are selected, only the browser options
are available on the shortcut menu.

Note: Add-ins have the ability to modify shortcut menus.

To select multiple items in any order:

1 Select an item in the browser.

2 Hold down the CTRL key.

3 Click each item in the browser that you want to select.

Note: To deselect an item, press the CTRL key and click the item.
Navigating a Model 25

To select sequential items:

1 Select an item in the browser.

2 Hold down the SHIFT key.

3 Select another item in the browser. Notice that the browser selects every item
between the two items that you selected.

Sorting Packages in the Browser

Use the following steps to sort packages in the browser:

1 Create a new package in the browser and name it Temp.

2 In the browser, drag and drop all of the packages you want to sort into the Temp

package.

3 In the browser, retrieve the packages one by one from the Temp package and place
them back in the original location.

4 Delete the Temp package.

Note: Your new folder organization is temporary. If the folders are collapsed under
the parent icon or Rose is shut down, the packages will be rearranged in alphabetical
order the next time that the parent icon is expanded.

Using Drag-and-Drop in the Browser

The drag-and-drop feature allows you to move elements within the browser and from
the browser to diagrams and specifications.

Specifically, you can use drag-and-drop to do the following tasks:

■ Assign classes and interfaces to components

■ Move class operations and attributes between classes

■ Move class, sequence, and collaboration diagrams between packages

■ Move component diagrams between component packages

■ Move nested classes from one specification to another

■ Place components and component packages on component diagrams

■ Place classes, interfaces, and component packages on class diagrams

■ Place objects, class instances (and class assignments) on interaction diagrams

■ Relocate components and component packages between component packages
26 Chapter 3 - The Browser

■ Relocate classes, nested classes, use cases, interfaces, associations, and packages
between packages

■ Place activity diagram model elements on an activity diagram

Note: You cannot re-order elements on the browser.

Browser to Browser Capabilities

Table 2 lists the actions you can perform by dragging-and-dropping objects within the
browser.

Table 2 Browser to Browser Capabilities

Capability Description

Add ■ Class to class diagram
■ Logical package to class diagram
■ Component to component diagram
■ Component package to component diagram

Assign ■ Component to class and interface
■ Class and interface to component
■ Logical package to component package

Move ■ Class diagram to logical package
■ Interaction diagram to logical package
■ Collaboration diagram to logical package
■ Component diagram to component package
■ State/activity model to the logical or use-case view
■ Process to processor
■ Activities and states to different state machines

Move/Copya

a. The default action is Move. To Copy, hold down the CTRL key while dragging the
element to its destination.

■ Operation to class and interface
■ Class attribute to class and interface

Relocate ■ Class and interface to logical package
■ Class to nested class
■ Logical package to logical package
■ Component to component package
■ Component package to component package
■ Use case to package
Using Drag-and-Drop in the Browser 27

Browser to Diagram Capabilities

Table 3 lists the actions you can perform by dragging-and-dropping elements from
the browser to diagrams.

Table 3 Browser to Diagram Capabilities

Capability Description

Add ■ Class and interface to class diagram
■ Logical package to class diagram
■ Component to component diagram
■ Component package to component diagram
■ Processor to deployment diagram
■ Device to deployment diagram
■ Add activities and objects to activity diagrams

Assign ■ Component to class and interface
■ Class and interface to component
■ Component package to package
■ Logical package to component package

Move/Copya

a. The default action is Move. To Copy, hold down the CTRL key while dragging the
element to its destination.

■ Operation to class and interface
■ Class attribute to class and interface

Relocate ■ Class to logical package
■ Logical package to logical package
■ Component to component package
■ Component package to component package

Create Object ■ Class in interaction diagram
■ Class in collaboration diagram
28 Chapter 3 - The Browser

Browser to Specification Capabilities

Table 4 lists the actions you can perform by dragging and dropping model elements
from the browser to a specification.

Table 4 Browser to Specification Capabilities

Capability Description

Assign ■ Class and interface to/from Component Specification
Realizes tab

■ Component to Class Specification Components tab

Move/Copy ■ Operations to/from Class Specification Operations tab
■ Attributes to/from Class Specification Attribute tab
Using Drag-and-Drop in the Browser 29

4Introduction to Diagrams
Contents

This chapter is organized as follows:

■ Overview on page 31

■ Diagram Windows on page 32

■ Creating, Linking, Displaying, Renaming, and Deleting Diagrams on page 34

■ Creating and Naming Model Elements on page 36

■ Manipulating Icons on page 39

■ Deleting Model Elements on page 42

■ Correlations on page 43

■ Laying Out a Diagram on page 44

■ Adorning the Diagrams on page 46

■ Understanding Model Workspaces on page 47

Overview

Diagrams are views of the information contained in a model. Rational Rose
automatically maintains consistency between the diagram and its specifications. You
can change properties or relationships by editing the specification or modifying the
icon on the diagram. The associated diagrams or specifications are automatically
updated.
31

Diagram Windows

In a diagram window, you can create and modify graphical views of the model.
Rational Rose supports the following kinds of diagrams:

■ Class diagram

■ Use-case diagram

■ Collaboration diagram

■ Sequence diagram

■ Component diagram

■ Statechart diagram

■ Deployment diagram

■ Activity diagram

Each icon on a diagram represents an element in the model. Since diagrams illustrate
multiple views of a model, each model element can appear in none, one, or several of
a model’s diagrams. You can control which elements and properties appear on each
diagram.

To add icons to a diagram, click Tools > Create and click one of the model elements.
Click the diagram to place the element.

Viewing Diagrams

When a diagram is opened, it is displayed in a window within the application
window. This diagram window has its own control-menu box, title bar, minimize
button, and maximize button. Each diagram window also has vertical and horizontal
scroll bars for panning across diagrams larger than the window. The application
window presents a toolbox that contains tools appropriate for the current diagram.
32 Chapter 4 - Introduction to Diagrams

Figure 6 Diagram Window

You can resize a diagram window by using the left mouse button to drag a side or
corner of the diagram’s border. You can reduce a diagram to an icon by clicking its
minimize button.

Displaying Multiple Diagrams

You can display multiple diagrams simultaneously in the application window. To
display diagrams in cascaded windows (Figure 7) or tiled windows (Figure 8), click
Window > Cascade or Tile.

Figure 7 Multiple Diagrams—Cascade Windows

Vertical
Scroll Bar

Horizontal
Scroll Bar

Toolbox
Diagram Windows 33

Figure 8 Multiple Diagrams—Tiled Windows

The shaded title bar indicates that it is the current diagram. Diagram-specific
commands apply to the current diagram, and the application window displays the
toolbox associated with the current diagram. Menu commands and toolbox icons not
appropriate for the current diagram are dimmed and cannot be used. You can make a
diagram “current” by clicking it.

Creating, Linking, Displaying, Renaming, and Deleting
Diagrams

Creating a New Diagram

1 Click Browse > xxx Diagram, where xxx is the diagram type. (If you select
Deployment Diagram, the diagram is immediately displayed and the following
steps can be ignored.)

2 In the resulting dialog box, select a view from the list on the left.

3 Click <New> from the list on the right. (If you are creating a new interaction
diagram, you must click either Sequence or Collaboration from the New Interaction
dialog box.)

4 Click OK.

5 Type the diagram title. If you do not enter a title, the diagram is labeled untitled.

6 Click OK.
34 Chapter 4 - Introduction to Diagrams

Linking a Diagram

You can link one diagram to another diagram through the note icon. This feature
works somewhat like the shortcut method you may be familiar with in the Windows
operating environment. Once the diagram is linked, you can double-click the note and
the linked diagram is immediately displayed. A linked diagram is indicated by
underlined text in the note.

1 Create a note on any diagram.

2 Display the browser if not already visible.

3 In the browser, locate the diagram that you want to link.

4 Drag the diagram icon from the browser onto the note icon on the diagram.

As you position the cursor onto the note, you will see the shortcut symbol (a
dotted square and a curved arrow inside a solid square). Also, the fully qualified
name is displayed in an underline font.

Note: You may need to resize the note to see the entire name.

5 Change the text in the note (if desired) to something more meaningful to your
project.

6 Double-click the note to view the linked diagram.

Displaying a Diagram

1 Click Browse > xxx Diagram, where xxx is the diagram type. (If you select
Deployment Diagram the diagram is immediately displayed and the following
steps can be ignored.)

2 In the resulting dialog box, select an element from the list on the left.

3 Select a diagram from the list on the right.

4 Click OK.

Renaming a Diagram
Note: You cannot rename a deployment diagram.

1 Click Browse > xxx Diagram, where xxx is the diagram type.

2 In the resulting dialog box, select the package containing the diagram from the list
on the left.

3 Select the diagram from the list on the right.

4 Click Rename.
Creating, Linking, Displaying, Renaming, and Deleting Diagrams 35

5 Type a new diagram title.

6 Click OK.

Deleting a Diagram

1 Click Browse > xxx Diagram, where xxx is the diagram type.

2 In the resulting dialog box, select the package containing the diagram from the list
on the left.

3 Select the diagram from the list on the right.

4 Click Delete.

5 Click Yes on the confirmation box.

Creating and Naming Model Elements

Creating an Element on the Diagram

1 Click the appropriate creation tool.

2 Click a location in the diagram.

Rational Rose creates a model element of the appropriate kind and places an icon
representing this element on the diagram and in the browser.

Creating an Element in the Browser

1 Click the appropriate package.

2 From the shortcut menu, click New, and then point to the element you want to
create.

The element exists only in the browser until you drag it on a diagram.

Naming Model Elements

You can name model elements with any combination of characters that are
meaningful to you. Depending on the model element and its location, you may or
may not be restricted to unique names.

For example, actors, use cases, classes, components, and packages that reside in
different packages do not require unique names. When different elements have the
same name, the elements are said to be “overloaded.”

Overloading gives you the flexibility of using existing software libraries that may
have the exact names you have in your code or in another software library.
36 Chapter 4 - Introduction to Diagrams

Overloading also allows you to do multi-lingual, component-based development. For
example, an application can be modeled even if the GUI for screen input is in VB or
Java, the processing is in C++, and the database in Oracle. In this example, each
application can have its definition of a class “Customer” do different things.

Another useful feature of overloading is the ability to have actors in the use-case view
and classes in the logical view with the same name.

When naming an element, it is important to note that in some cases an overloaded
element is created, while in other cases, the existing element with the same name is
used (and therefore an overloaded element is not created).

To name an element on the diagram:

1 Create a new element on the diagram from the toolbox.

2 Type in a name. As soon as you start typing, a pop-up box listing all the available
class names in the model is displayed.

You can select one of the highlighted names by double-clicking a name or by
pressing the ENTER or TAB key. Otherwise, you can continue typing (and click
outside the edit area) to enter a new name.

❑ If you do not want to see this window, you can turn this option off. To do so,
click Tools > Options. Click the Diagram tab. Under the Miscellaneous section on
the lower left, click Class Name Completion to turn the feature off.

If the name you select is an overloaded name, clicking outside the box displays a
secondary window, asking you to select the name from the fully qualified path.

To create/name an overloaded element on the diagram:

If you want to create an overloaded element name on the diagram, you must enter the
name through the specification. If you instead enter the duplicate name on the
element in the diagram, you will be using an existing element rather than creating a
new one with its own characteristics.

1 Create a new element on the diagram from the toolbox.

2 Double-click the element or click Browse > Specification, to display the
specification.

3 Type a name in the name field.

4 Click OK.

If this name already exists in another package, a warning dialog is displayed
telling you the name of the element and type already exists in another package.
For example: “Class AA now exists in multiple name spaces.”
Creating and Naming Model Elements 37

You can dismiss this box either by clicking Cancel which ignores the name or OK. If
you do not want to see the dialog box anymore, select the Don’t warn anymore this
session check box. To start seeing the dialog box again, restart the application.

The element is now named with a duplicate name, but has its own unique
characteristics.

To place an overloaded element on the diagram from the browser:

From the browser, drag the element onto the diagram.

If the element belongs to a parent different from the diagram, and Show Visibility is on,
the element is annotated with the term ‘(from x)’ where x is the element’s location. If
Show Visibility is off, only the element name is displayed.

To use fully qualified names:

A fully qualified name is displayed as you place your pointer over the model element.
A fully qualified name consists of the element hierachy (starting at the package level),
where each level is separated by double colons. For example, Logical View::Package

B::Class 1 is a fully qualified name.

To rename model elements:

1 Click the name of an icon to display the insertion point (flashing vertical bar).

2 Backspace and type additional text.

Note: Stereotypes in the form <<stereotype>> are extracted from the name of an
item when you edit it.

3 Click outside the named icon.

Alternatively, you can double-click an icon to display its specification; modify the
Name field, and click OK.

If double-clicking a logical package icon displays the main class diagram, click Tools >
Options, and then click the Diagram tab. Clear the Double-Click to Diagram check box.
With this option turned off, double-clicking a package will display the specification.

Reassigning Model Elements

This feature allows you to make a selected icon represent a different model element.

1 Select the icon to reassign.

2 Click Edit > Reassign.

The dialog box lists the packages in the model on the left and a list of the valid
elements to choose from on the right.
38 Chapter 4 - Introduction to Diagrams

3 Choose the model element that the selected icon will represent.

This operation affects only the selected icon; other icons representing the original
model element—on the current diagram and all other diagrams—maintain their
original representation. Model elements involved in the operation of this
command are themselves unchanged.

Manipulating Icons

Manipulating icons includes selecting, deselecting, moving, and resizing. These
features are similar to those you might find in most major drawing tools.

Selecting Icons

To select a single icon:

■ Left-click the icon to be selected.

Rational Rose displays the icon’s selection handles and deselects all other icons.

To select multiple icons:

■ Press and hold the CONTROL or SHIFT key and click each icon to be selected.

- or -

1 Point near the border of one of the icons to be selected.

2 Left-drag to create a dashed selection box around the icons you want to select.

3 Release the left mouse button.

Rational Rose displays each icon’s selection handles, and deselects all other icons.
Figure 9 shows multiple elements selected in a diagram:

Figure 9 Selected Elements in a Diagram

Note: You can select any element in the diagram.
Manipulating Icons 39

Deselecting Icons

To deselect all icons:

■ Click any open area of the diagram.

To deselect a specific icon:

1 Press and hold the CONTROL or SHIFT key.

2 Click the icon.

Other icons that were previously selected remain selected.

Resizing an Icon

1 Click the icon to be resized.

2 Choose the appropriate selection handle and left-drag to the new dimension.

Rational Rose redraws the icon at the new size, preserving its proportions. To
change the proportions of an icon, press the CTRL key while resizing it.

Moving One or More Icons

To move icons using the mouse:

1 Select the icon(s).

2 Left-drag to the desired location.

3 Release the left mouse button.

To move icons using the keyboard:

1 Select the icon(s).

2 Use the four directional arrow keys to move the icons by one pixel in the indicated
direction, or press the CTRL key while using the arrow keys to move eight pixels in
the indicated direction.

If the snap-to-grid operation is enabled, icons and text boxes that are created or
moved will be aligned with the nearest grid coordinate. To enable or disable this
operation, in the Options dialog box, click Snap To Grid. To specify the size of the grid
in pixels, on the Options dialog box, click Grid Size.
40 Chapter 4 - Introduction to Diagrams

Changing from One Kind of Element or Relationship to Another

1 Click the toolbox tool bearing the desired icon.

2 Press and hold the ALT or META key.

3 Click the icon to be changed.

Rational Rose redraws the icon and updates the model to reflect the change, or
reports an error if the change is not legal.

Cutting, Copying, and Pasting Icons

You can cut, copy, and paste icons between different diagram windows using
commands on the Edit menu or the tools on the toolbar.

To cut, copy, and paste:

Clicking Edit > Cut, Copy, or Paste can manipulate selections containing icons and text
in diagrams, and text information in specification fields. Clicking Edit > Cut performs
a delete operation on some diagrams and a delete from model operation on others.

Clicking Copy will copy the selected icons to the platform Clipboard. Clicking Cut
performs this same operation and then performs a delete operation. You can use these
commands to move portions or all of a class diagram to other tools that support the
platform Clipboard.

Clicking Paste in a class diagram adds icons from the Clipboard to the center of the
current diagram as if you manually created them with the toolbox.

To use other menu commands:

Clicking Edit > Undo reverses the last Delete, Delete From Model, or Cut.

The Edit menu also provides commands that allow you to Select All, Find, and Rename
icons.

The Browse menu provides commands to navigate among diagrams, and create,
rename, and delete them.

When you right-click an icon, Rational Rose displays a shortcut menu. This menu
allows you to modify properties (for icons that represent relationships) or select
properties to be displayed within the icon.
Manipulating Icons 41

Deleting Model Elements

There are two ways to delete model elements in Rational Rose: you can perform a
shallow delete or a deep delete. A shallow delete removes the element icon from a
diagram. A deep delete removes model elements from a model completely.

Shallow Delete

A shallow delete is useful when you want to remove a model element icon from a
diagram but keep the model element in the model. A shallow delete keeps the model
element in the browser and removes the icon of the element from the diagram.

To perform a shallow delete on a selected model element that appears on a diagram:

■ Click Edit > Delete.

■ Press DELETE.

Note: If you perform a shallow delete on an element without a name, Rational Rose
will delete the model element completely from the model.

Deep Delete

A deep delete is useful when you want to remove a model element completely from a
model.

To perform a deep delete on a selected diagram model element(s):

■ Click Edit > Delete from Model.

■ Press CTRL + D.

■ Right-click an element in the browser and then click Delete from the shortcut
menu.
42 Chapter 4 - Introduction to Diagrams

Correlations

Depending on the diagram selected, a correlation can be a relationship, a link, a
dependency, a transition, or a connection. The word correlation can stand for any of
the items previously listed.

Creating Correlations Between Elements

1 Click the relationship’s tool in the toolbox.

2 Point to the client icon on the diagram.

3 Press and hold the left mouse button.

4 Drag the pointer to the supplier icon on the diagram.

❑ You can create vertices by releasing the mouse button while still on the
diagram. A new vertex is created each time you lift the mouse button.

❑ You can modify a vertex by dragging on a selected vertex.

❑ Joining an inherits relationship to another inherits relationship will create a
tree, rather than a hierarchical structure.

5 Release the mouse button at the supplier element.

Rational Rose inserts and selects the relationship, deselecting any other icons.
Moving the relationship or class element(s) automatically adjusts the size or
vertices as necessary.

Bending a Correlation Icon

1 Point to the section of the icon to introduce or modify a bend.

2 Left-drag the pointer to the new location for that section of the icon.

3 Release the mouse button.

When you release the mouse button, Rational Rose redraws the correlation icon with
the new or modified bend. If the modification nearly eliminates a bend, Rational Rose
will replace the bend with a straight segment.
Correlations 43

Reconnecting a Correlation Icon from One Icon to Another

1 Point to the end you want to reconnect.

2 Left-drag to the new icon.

3 Release the left mouse button.

Rational Rose redraws the relationship between the two icons and updates the model
to reflect the change, or reports an error if the change is not legal.

Naming a Correlation

To name a newly-created correlation:

1 Click the icon.

2 Type the name.

3 Click outside the named icon.

To change the name of a correlation:

1 Click the name to display a flashing vertical bar that designates the insertion point.

2 Backspace and type additional text.

3 Click outside the named icon.

Alternatively, you can change the name in the Name field of the specification.

Laying Out a Diagram

When a diagram contains many elements (also called shapes) and many relationships
(also called correlations), it can become difficult to read. The layout diagram feature is
designed to make a diagram easier to read by rearranging elements on a diagram to
clarify their relationships. This is done by minimizing the number of crossed links and
positioning shapes in an order that reflects their relationships.

Figure 10 on page 45 provides an example of how the Layout Diagram command
rearranges classes in a class diagram. Additional information and examples about the
feature can be found in the “Layout Diagram (Overview)” topic in the online Help.
44 Chapter 4 - Introduction to Diagrams

Figure 10 Example Layout of a Class Diagram

When you perform a layout command, Rational Rose follows these two rules:

■ Shapes that have relationships with other shapes are rearranged based on their
relationship(s) in the diagram. Refer to the Layout Diagram (Overview) topic in
the online Help for more information.

■ Shapes that do not have relationships (called “unconnected shapes”) are placed in
one or more rows at the bottom of the diagram or selected area. Examples of
unconnected shapes include any element (e.g., class, actor, package) that does not
have a relationship to another element, notes that are not attached to elements, and
text boxes created with the ABC Text tool.

Laying Out All Shapes in a Diagram

1 Click Tools > Options to display the Options dialog box.

2 On the General tab, set the options under Layout Options. For help on an option,
click the question mark , and then click the option.

Before clicking
Format > Layout Diagram

After clicking
Format > Layout Diagram
Laying Out a Diagram 45

3 Click OK to save the settings and close the dialog box.

4 Click Format > Layout Diagram.

Rational Rose rearranges all shapes in the diagram according to the settings
specified in the Options dialog box.

Note: To undo the layout, select Edit > Undo.

Laying Out Selected Shapes in a Diagram

1 Select the shapes and relationships in the diagram that you want to rearrange.

Shapes will be rearranged either in an order based on their relationships if the
relationships between them are selected or in horizontal rows if only the shapes
are selected. If you are working in an activity diagram or a three-tier diagram, all
shapes that you select must be within the same swimlane.

2 Click Format > Layout Selected Shapes.

Rational Rose rearranges the selected shapes within the area of the diagram that
they currently occupy.

Note: To undo the layout, select Edit > Undo.

Adorning the Diagrams

You can select which adornments (symbols) to display on the diagram through the
shortcut menu. The shortcut menu is displayed by right-clicking an icon. You can
click the menu choices to enable and disable them; a check mark indicates that a
choice is enabled. You can also adorn your diagram with annotations that you add.
This annotation or adornment is typically a note to yourself or others about
specification features or functions not noted by Rational Rose.

Placing Text in a Diagram

1 Choose the ABC tool from the toolbox.

2 Click a location in the diagram.

Manipulating Text

To change the default font parameters:

1 Ensure that nothing is selected by clicking an empty region in any diagram.

2 In the Options dialog box, click Font or Font Size. The default font parameters
apply to all diagrams.
46 Chapter 4 - Introduction to Diagrams

To change the dimensions of the invisible box containing text in a diagram:

1 Click the text to make the text box’s selection handles visible.

2 Left-drag the appropriate selection handle to resize the text box.

To move the invisible box containing text in a diagram using the mouse:

1 Click the text.

2 Left-drag the text to the location.

3 Release the left mouse button.

To move the invisible box containing text in a diagram using the keyboard:

1 Click the text.

2 Use the four arrow keys to move the text box by one pixel in the indicated
direction, or press the CTRL key while using the arrow keys to move eight pixels in
the desired direction.

Understanding Model Workspaces

A model workspace is a snapshot of all currently loaded units and open diagrams. By
defining one or more workspaces, you can set up your working environment in
Rational Rose and return to that environment each time you are ready to work. When
you load the workspace, Rose restores the snapshot by loading the specified
controlled units and opening the correct diagrams.

If you are working with large models that are divided into many controlled units, you
will notice even greater productivity gains by using workspaces to load predefined
units and diagrams.

Differences Between a Saved Model and a Model Workspace

A saved Rational Rose model contains the diagrams, elements, and controlled units
that make up the complete model. A model workspace contains the actual state of
open diagrams and controlled units for a specific saved model at a given point in
time.

It is possible to have multiple workspaces corresponding to only one model. For
example, during analysis and design, you might want to define one model workspace
that displays the most important analysis diagrams and controlled units, and another
model workspace that displays the most important design diagrams and controlled
units. Each workspace is different but points to the same model.
Understanding Model Workspaces 47

It is also important to note that saving a model workspace will not affect how the
model is loaded on another machine. If a co-worker wants to load a model using a
model workspace you defined on your machine, the co-worker must have a copy of
the model workspace and model located in the same folder on his or her machine.

By default, Rational Rose will name the workspace <model name>-<Operating System

User Name>.wsp. For example, the name of a saved model workspace might look like
MyModelName-JillUser.wsp.

Note: Rational Rose stores all workspace files (*.wsp) in the workspaces folder.

Model Workspace Scenario

The following scenario shows how using model workspaces can benefit a team
working on a large model. A new software developer has just joined a distributed
team that is working on a very large model containing over 200 controlled units.
Through the course of the next several months, the new developer will model several
systems in the use case model and will modify the business actors and use cases (as
shown in Figure 11). In order to help the new developer, the team’s project manager
created a model workspace that will load all of the units the software developer will
be responsible for, as well as some of the more important diagrams.

When the developer loads the model workspace, the Business Actors, Business Use
Cases, eCommerce System, POS System, Telesales System, and Warehouse System
controlled units all load. (See Figure 11.) The workspace configuration will also
display some important class and activity diagrams in the diagram window.

Figure 11 Model Workspace Loaded Units
48 Chapter 4 - Introduction to Diagrams

The model workspace will help the new developer by:

■ Automatically loading the controlled units for which the developer is responsible

■ Displaying some of the more important diagrams the developer should examine
first

■ Saving the developer time because Rational Rose only has to load six out of 200+
controlled units

■ Eliminating confusion by limiting the scope of information the developer sees

After working in the model, the developer can easily customize the model workspace
the project manager created, or create additional model workspaces for greater
efficiency.

Saving a Model Workspace

1 Click File > Save Model Workspace.

Rational Rose will save both the model and workspace files.

2 Name your workspace file in the Save As dialog box. By default, Rational Rose will
name the workspace <model name>-<Operating System User Name>.wsp. For
example, the name of a saved model workspace might look like
MyModelName-JillUser.wsp.

Note: Rational Rose stores all workspace files (*.wsp) in the workspaces folder.

Loading a Model Workspace

1 Click File > Load Model Workspace.

2 Select the name of workspace file (*.wsp) to load.

3 Click Open.
Understanding Model Workspaces 49

5Introduction to
Specifications
Contents

This chapter is organized as follows:

■ Overview on page 51

■ Displaying Specifications on page 51

■ Editing Specifications on page 52

■ Common Specification Elements on page 53

■ Navigating the Tabs on page 58

Overview

A specification allows you to display and modify the properties and relationships of a
model element, such as a class, a relationship, or an operation.

Some of the information displayed in a specification can also be displayed inside
icons representing the model element in diagrams.

The specification fields are standard interface elements such as text boxes, list boxes,
option buttons, and check boxes.

Displaying Specifications

You can display a specification in the following ways:

■ Double-click an item in a diagram or browser.

■ Click a diagram item, and then click Browse > Specification.

■ Right-click an item, and then click Open Specification from the shortcut menu.

■ Select the diagram item, and press CTRL+B.

Rational Rose displays a specification that corresponds to the selected item.
51

In order to view a specification when you double-click a logical or component
package, you must turn off the Double-Click to diagram option. To disable this option,
click Tools > Options. Click the Diagram tab. A check mark inside the Double-Click to
diagram check box indicates the main diagram will be displayed when you
double-click. If there is no check mark in the check box, double-clicking a logical or
component package displays the package specification.

Custom Specifications

When you open the specification of an element that has an assigned language, a
custom specification will be displayed if supported. If not supported, the standard
Rose specification will be displayed.

The following specifications can be customized by language add-ins:

■ Association

■ Class

■ Class Attribute

■ Generalize

■ Key/Qualifier

■ Parameter

■ Operation

■ Component

■ Class Instance

Editing Specifications

If you change a model element’s properties or relationships by editing its specification
or modifying the icons on the diagram, Rational Rose will automatically update the
corresponding diagrams or specifications.

If a model element is write-protected or contained by a controlled unit that is
write-protected, the OK button on the specification will be disabled to prevent the
element from being modified.

Specifications can be resized by placing the pointer on a specification corner. Click
and drag the specification to the desired size.

Specifications can also be printed by clicking File > Print.
52 Chapter 5 - Introduction to Specifications

Common Specification Elements

The specifications share a number of common elements which are discussed on the
following pages. For details on specific specifications and their unique elements, refer
to the chapter specific to that specification.

Dialog Boxes

All specifications are presented in a dialog box format and contain tabs for navigating
to specific pages or items. You can resize all specifications.

General Tab

The first tab presented in all specifications is labeled General and usually contains
information such as Name and Documentation.

Figure 12 General Tab
Common Specification Elements 53

Name

Every model element and each relationship can be labeled with a word or phrase that
denotes the semantics or purpose of the relationship. You can enter the name in the
diagram or in the Name field of a specification.

■ If you enter the name in the diagram, Rational Rose displays the entry in the Name
field.

■ If you enter the name in the specification, Rational Rose displays the new name in
the icon and updates the information in the model.

You can rename an element using one of the following methods:

■ Change its name in the diagram or browser.

■ Change its name in the specification.

Documentation

Use the Documentation field to describe relationships. The description can include
such information as the roles, keys, constraints, purpose, and essential behavior of the
element. You can enter information in the Documentation field in one of two ways:

■ Enter text directly in the free-form text field.

■ Click View > Documentation.

Rational Rose does not display this field in the diagram.

Note: If you document a class and identify the concepts or functions represented by
the entity, you can use the field to form a basis of a more traditional data dictionary.
You can also list the statements of obligation to provide certain behavior with the
class. You can use this entry as a placeholder for the responsibilities of the class that
you will determine during development.
54 Chapter 5 - Introduction to Specifications

Detail Tab

The Detail tab contains information specific to the model element you have selected.

Figure 13 Detail Tab

Files Tab

The Files tab allows you to insert new files or URLs, or view files and URLs already
inserted or attached to your model element or diagram.

The Files tab is useful for maintaining links to supplemental documentation about the
system being built (Vision Documents, GUI sketches, project plans, etc.).

Any attached URLs or files listed here are also displayed when the element or
diagram is expanded in the browser.
Common Specification Elements 55

Figure 14 Files Tab

Viewing Existing Files or URLs

If a file is already inserted, the file name and path are displayed on the tab. To open
the document or go the Web site, double-click either the file name or path, or
right-click the file name or path, and then click Open File/URL from the shortcut menu.

Inserting New Files

You can insert (or attach) files by:

■ Using the drag-and-drop technique.

■ Right-clicking in the text box, clicking Insert File from the shortcut menu, and
navigating through the dialog box to locate your file.

Inserting New URLs

Right-click in the text box, and then click Insert URL from the shortcut menu; this will
insert the default address www.rational.com. Edit the file name and path to point to the
correct Web site.
56 Chapter 5 - Introduction to Specifications

Tab Buttons

The bottom of each tab, regardless of type (General, Detail, etc.), contains five buttons
to control the actions on each tab.

Figure 15 Tab Buttons

OK

Clicking OK applies the changes made to the specification, closes the dialog box, and
returns focus to the diagram.

Cancel

Clicking Cancel ignores all changes made to the specification since the last Apply,
closes the dialog box, and returns focus to the diagram.

Apply

Clicking Apply enacts the changes made to the specification and leaves the
specification open.

Changes to a Specification field are not enacted until you click OK or Apply. These
buttons are disabled if the model element is assigned to a controlled unit that is
write-protected.

Browse

Clicking Browse displays four choices:

■ Select in Browser, which highlights the selected item in the browser.

■ Browse Parent, which opens the specification for the parent of the selected item.

■ Browse Selection, which opens the specification for the currently selected item.

■ Show Usage, which displays a list of all diagrams in which the currently selected
element is the supplier, or in the case of a collaboration diagram, a list that shows
the usage of a message.

Help

Clicking Help invokes the online Help topic related to the dialog box.
Common Specification Elements 57

Navigating the Tabs

Many tabs contain lists of elements related to the specification. The lists typically
consist of one row per related element. The rows are typically divided into columns,
describing aspects of the rows (e.g. Filename and Path on the Files tab). To navigate
between rows and columns in the list, either select the row and column with the
pointer or use the arrow keys on the keyboard.

Adding and Deleting Entries

To insert a new row in a list, click Insert from the shortcut menu or press the INSERT
key. An untitled entry is added.

To delete a row, select the row and click Delete from the shortcut menu or press the
DELETE key.

Editing Entries

To edit a column in a row, select the column and press F8 or select the column twice
with the pointer. Enter text into the column or select an entry from the drop-down
menu (if available). After the column has been edited, either accept the change (by
clicking outside the column or by pressing the ENTER or TAB key) or cancel the
addition (by pressing the ESC key).

To open the specification for an element displayed in a list, select the row and column
and click Specification from the shortcut menu or double-click the column. For
example, double-clicking the Name column in the Relations tab of the class
specification will open the specification for the relation, while double-clicking the End
Class column in the same list will open the specification of the related class.

To reorder the rows in a list, select the row to be moved and drag it to the new location
in the list. It is not possible to reorder rows in every list tab. To move an element in a
list to another specification, the browser, or to an open diagram, select the row and
drag it to the new location.
58 Chapter 5 - Introduction to Specifications

6Class Diagrams and
Specifications
Contents

■ Class Diagram Overview on page 59

■ Class Specification on page 62

■ Class Attribute Specification on page 77

■ Operation Specification on page 80

■ Parameter Specification on page 87

■ Association Specification on page 89Generalize Specification on page 95

■ Realize Specification on page 96

■ Dependency Specification on page 97

■ Has Relationship (Booch Only) on page 98

■ Key/Qualifier Specification on page 99

Class Diagram Overview

A class diagram is a picture for describing generic descriptions of possible systems.
Class diagrams and collaboration diagrams are alternate representations of object
models. Class diagrams contain classes and object diagrams contain objects, but it is
possible to mix classes and objects when dealing with various kinds of metadata, so
the separation is not rigid.
59

Figure 16 Class Diagram Example
.

Class diagrams contain icons representing classes, interfaces, and their relationships.
You can create one or more class diagrams to depict the classes at the top level of the
current model. Such class diagrams are themselves contained by the top level of the
current model. You can also create one or more class diagrams to depict classes
contained by each package in your model. Such class diagrams are themselves
contained by the package enclosing the classes they depict. The icons represent logical
packages and classes in class diagrams.

You can change properties or relationships by editing the specification or modifying
the icon in the diagram. The associated diagrams or specifications are automatically
updated.

Class Diagram Toolbox

The graphic below shows all the tools that can be placed on the class diagram toolbox.
See Customizing the Toolbox on page 14 for more information about adding or deleting
tools in a diagram toolbox.

The application window displays the following toolbox when the current window
contains a class diagram, you have selected View > As Unified, and you have
customized the toolbox to display all the tool options.
60 Chapter 6 - Class Diagrams and Specifications

Figure 17 Class Diagram Toolbox

Creating and Displaying a Class Diagram

You can create or display a class diagram in one of three ways:

■ Click Browse > Class Diagram.

■ On the toolbar, click the class diagram icon.

■ On the browser, double-click the class diagram icon.

Assigning a Class to Another Logical Package

Every class is assigned to a logical package. When you create a class using a creation
tool from the class diagram toolbox, the class is assigned to the logical package
containing the class diagram. For example, a class diagram named Main is directly
contained by the logical package named LinkManager. All of the classes depicted on

Note

Selector

Generalization

Class

Unidirectional
Association

Package

Refine Dependency

Include Dependency

Actor

Association Relationship

Instantiate Class Utility

Instantiate Class

Business Use Case

Control Class

Server Class

Business Worker Class

Business Use Case
Realization

Form Class

Boundary Class

Business Actor

Note Anchor

Text

Realize Relationship

Interface

Association Class

Dependency

Extend Dependency

Use Case

Aggregation

Unidirectional Aggregation

Parameterized Class Utility

Class Utility

Use-case Realization

Subsystem Package

Client Page Class

Parameterized Class

Organization Unit

Applet Class

Entity

Business Entity
Class Diagram Overview 61

Main are assigned to LinkManager, except the class SafeStorage. This is assigned to
logical package StorageManagement. Rational Rose annotates the icon representing
SafeStorage with the phrase from Storage Management.

To re-assign a class from one logical package to another:

1 Select an icon (or icons) representing the class in a diagram contained by the
logical package to which the class should be assigned. (You might need to create
such a diagram or icon if one does not currently exist.)

2 Click Edit > Relocate.

Rational Rose updates all class diagrams to reflect the new assignment. Like
classes, logical packages are also assigned to logical packages—permitting nesting
to an arbitrary depth. You can assign and reassign logical packages and classes.

Adding and Hiding Classes and Filtering Class Relationships

The commands on the Query menu allow you to control which model elements are
represented by icons in the current diagram.

On the Query menu, clicking:

■ Add Classes adds classes to the diagram by name.

■ Add Use Cases adds use cases to the diagram by name.

■ Expand Selected Elements adds classes to the diagram based on their relationships
to selected classes.

■ Hide Selected Elements removes selected classes from the diagram and optionally
removes their clients or suppliers from the diagram.

■ Filter Relationships controls which kinds of relationships appear in the diagram.

Class Specification

A Class Specification displays and modifies class properties and relationships. Some
of the information in the specification can also be displayed inside class icons.

If a field does not apply to a particular class type, the field is unavailable and you
cannot add or change information in the field.

To display a Class Specification, click an icon representing the class in a class diagram
and click Browse > Specification.
62 Chapter 6 - Class Diagrams and Specifications

If you have not clicked Tools > Options and selected the Double-Click to diagram check
box, you can double-click any icon representing the class. You can also click
Specification from the shortcut menu.

Specification Content

The Class Specification consists of the following tabs: General, Detail, Operations,
Attributes, Relations, Component, Nested, and Files.

Class Specification—General Tab

Figure 18 Class Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Type

Your Type choices include: Class, Parameterized Class, Instantiated Class, Class
Utility, Parameterized Class Utility, Instantiated Class Utility, and Metaclass.
Class Specification 63

Parent

The parent to which the class belongs (its package) is displayed in this static field.

Stereotype

A stereotype represents the subclassification of an element. It represents a class within
the UML metamodel itself; that is, a type of modeling element. Some stereotypes are
already predefined. You can also define your own stereotypes.

Stereotypes can be shown in the browser and on diagrams. The name of the
stereotype may appear in angle brackets <<>>, depending on the settings found in
either the Diagram or Browser tabs of the Options dialog box. Click Tools > Options to
display the Options dialog box. Refer to the Stereotypes chapter for more information
on stereotypes.

To show stereotypes on the diagrams, right-click a class, and then click Options >
Stereotype Display > None, Label, Decoration, or Icon from the shortcut menu. These
commands display the following information.

Export Control

The Export Control field specifies how a class and its elements are viewed outside of
the defined package.

Command Description

None Stereotype information is not displayed.

Label The name of the stereotype is displayed between angle brackets (for example,
<<stereotype>>).

Decoration A small icon is displayed in the class icon to indicate the stereotype.

Icon The class icon is transformed into a stereotype icon.

Table 5 Export Control Field Options

Option Description

Public The element is visible outside of the enclosing package and you can
import it to other portions of your model. Operations are accessible to
all clients.

Protected The element is accessible only to subclasses, friends, or the class itself.

Private The element is accessible only to its friends or to the class itself.
64 Chapter 6 - Class Diagrams and Specifications

The Export Control field can be set only in the specification. No special annotation is
related to access control properties.

To change the export control type for the class, click the appropriate option in the
Export Control field. You can display the implementation export control in the
component compartment. You can display visibility in an icon through the shortcut
menu.

Class Specification—Detail Tab

Figure 19 Class Specification—Detail Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Implementation The element is visible only in the package in which it is defined. An
operation is part of the implementation of the class.

Table 5 Export Control Field Options

Option Description
Class Specification 65

Cardinality

The Cardinality field specifies the number of expected instances of the class. In the case
of relationships, this field indicates the number of links between each instance of the
client class and the instance of the supplier. You can set a specific cardinality value for
the client class, supplier class, or both.

Use the following syntax to express cardinality.

To display class cardinality on an icon, right-click the icon and select a cardinality
through the shortcut menu. A literal value can only be specified on the specification.

Space

Use the Space field to document the amount of storage required by objects of the class
during execution.

Table 6 Cardinality Field Options

Type Description

n (default) Unlimited number of instances

1 One instance only

0..n Zero or more instances

1..n One or more instances

0..1 Zero or one instance

<literal>a

a. Where <literal> is any integer greater than or equal to one.

Exact number of instances

<literal>..n Exact number or more instances

<literal>..<literal> Specified range of instances

<literal>..<literal>,<literal> The number of instances will be in
the specified range or an exact
number of instances

<literal>..<literal>,

<literal>..<literal>

The number of instances will be in
one of the specified ranges
66 Chapter 6 - Class Diagrams and Specifications

Persistence

Persistence defines the lifetime of the instances of a class. A persistent element is
expected to have a life span beyond that of the program or one that is shared with
other threads of control or other processes. Use this field to identify the persistence for
elements of this class.

The persistence of an element must be compatible with the persistence that you
specified for its class. If a class persistence is set to Persistent, then the object
persistence is either persistent, static, or transient. If a class persistence is set to
Transient, then the object persistence is either static or transient.

You can set the persistence only through the specification. This field is inactive for
class utilities, parameterized class utilities, and instantiated class utilities.

To set the persistence, click the applicable option in the Persistence field. You can
display the persistence in the diagram by clicking Show Persistence from the shortcut
menu.

Table 7 Persistence Field Options

Type Description

Persistent (Default) The state of the element transcends the lifetime of the
enclosing element.

Transient The state and lifetime of the element are identical.

Static The element exists during the entire execution of a
program.
Class Specification 67

Concurrency

A class concurrency defines its semantics in the presence of multiple threads of
control.

Abstract

The Abstract check box identifies a class that serves as a base class. An abstract class
defines operations and states that will be inherited by subclasses. This field
corresponds to the abstract class adornment displayed inside the class icon.

To toggle the abstract adornment, select or clear the abstract check box in the Class
Specification.

When you click Abstract and you view the model in Booch notation, the abstract class
adornment is displayed in the lower left corner of the class icon.

You can change the abstract class adornment only through the specification.

The Abstract field is inactive for metaclasses, class utilities, parameterized class
utilities, and instantiated class utilities.

Formal Arguments

In the Parameterized Class or Parameterized Class Utility Specification, the formal,
generic parameters declared by the class or class utility are listed.

In the Instantiated Class or Instantiated Class Utility Specification, the actual arguments
that match the generic parameters of the class being instantiated are listed.

Table 8 Class Concurrency Options

Type Description

Sequential (default) The semantics of the operation are guaranteed
only in the presence of a single thread of control.
Only one thread of control can be executing in
the method at any one time.

Guarded The semantics of the operation are guaranteed
in the presence of multiple threads of control. A
guarded class requires collaboration among
client threads to achieve mutual exclusion.

Active The class has its own thread of control.

Synchronous The semantics of the operation are guaranteed
in the presence of multiple threads of control;
mutual exclusion is supplied by the class.
68 Chapter 6 - Class Diagrams and Specifications

You can add, update, or delete parameters only through the Class Specification. This
field applies only to parameterized classes, parameterized class utilities, instantiated
classes, and instantiated class utilities.

To define the parameters for a class, position the pointer within the Parameters field
and click Insert from the shortcut menu or press the INSERT key.

Parameters are displayed on class diagrams.

Class Specification—Operations Tab

Operations denote services provided by the class. Operations are methods for
accessing and modifying Class fields or methods that implement characteristic
behaviors of a class.

The Operations tab lists the operations that are members of this class. Rational Rose
stores operation information in an Operation Specification. You can access Operation
Specifications from the Class Specification or from the Browser.

Figure 20 Class Specification—Operations Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.
Class Specification 69

To enter an operation in the Class Specification, use Insert from the shortcut menu.
Rational Rose adds the operation name to the operations list.

The descriptions for each field on the Operations tab are discussed below:

■ Access Control Adornment (Unlabeled):

Public—members of a class are accessible to all clients.

Protected—members of a class are accessible only to subclasses, friends, or
to the class itself.

Private—members of a class are accessible only to the class itself or to its
friends.

Implemented—the class is accessible only by the implementation of the
package containing the class.

■ Stereotype—displays the name of the stereotype.

■ Operation—displays the name of the operation.

■ Return Type—identifies the type of value returned from the operation.

■ Parent—identifies the class that defines the operation.

The Operation tab is active for all class types. In the class diagram, you can display
operation names in the class compartment.

Show Inherited

Select the Show Inherited check box to see operations inherited from other classes. If
there is no check mark in this field, you can view only operations associated with the
selected class.
70 Chapter 6 - Class Diagrams and Specifications

Class Specification—Attributes Tab

Figure 21 Class Specification—Attributes Tab

Refer to the descriptions earlier in this chapter and in the Introduction to Specifications
chapter for information on the specification elements not covered in the following
section.

The Rational Unified Process asserts that attributes are data values (string or integer)
held by objects in a class. Thus, the Attributes tab lists attributes defined for the class
through the Class Attribute Specification.

You can add an attribute relationship through Insert on the shortcut menu or by
pressing the INSERT key. An untitled entry is added.

Attributes and relationships created using this technique are added to the model, but
do not automatically appear in any diagrams.
Class Specification 71

The descriptions for each field are discussed below:

■ Access Control Adornment (Unlabeled):

Public—members of a class are accessible to all clients.

Protected—members of a class are accessible only to subclasses, friends, or
to the class itself.

Private—members of a class are accessible only to the class itself or to its
friends.

Implemented—the class is accessible only by the implementation of the
package containing the class.

■ Stereotype—displays the name of the stereotype.

■ Name—displays the name of the attribute.

■ Class—identifies where the attribute is defined.

■ Type—this can be a class or a traditional type, such as int.

■ Initial—displays the initial value of an object.

This Attribute tab is active for all class types.
72 Chapter 6 - Class Diagrams and Specifications

Class Specification—Relations Tab

Classes collaborate with other classes in a variety of ways. The Relations tab identifies
the relationships in which this class is the client (class) and the corresponding supplier
(end) class. If you labeled the relationship, Rational Rose displays its name after the
kind of relationship.

Figure 22 Class Specification—Relations Tab
.

Refer to the descriptions earlier in this chapter or in the Introduction to Specifications
chapter for information on the specification elements not covered in the following
section.

Rational Rose automatically updates this list when you draw relationships between
classes.

The description for each field is discussed below:

■ Name—displays the name of the relationship.

■ Parent—displays the client name.

■ End Class—displays the supplier name.
Class Specification 73

Class Specification—Component Tab

Figure 23 Class Specification—Component Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Show All Components

Select this option if you want to get a list of all components in a model. If this option is
not selected, you will see only the components to which this class is assigned.

Component Name

The component list identifies the components to which this class is assigned (with a
check mark). A class can be assigned to a note or to several components with the same
implementation language assigned.

You can assign the class to a component through Assign on the shortcut menu or by
dragging a component from the browser and dropping it in the list.

Package Name

This field displays the package that the component belongs to.
74 Chapter 6 - Class Diagrams and Specifications

Language

The Language field identifies the implementation language assigned to this element.

Note: When you change the implementation language of a component, the data types
that are used in the specification of operations or attributes of the assigned classes are
not automatically converted to data types in the new implementation language. Also
if you change the implementation language for a component with classes assigned to
other components, a dialog box is displayed and asks how to handle those classes.

Class Specification—Nested Tab

A nested class is a class that is enclosed within another class. Classes may contain
instances of, inherit from, or use a nested class. Enclosing classes are referred to as
parent classes, and a class that lies underneath the parent class is called a nested class.

Figure 24 Class Specification—Nested Tab

Refer to the descriptions earlier in this chapter and in the Introduction to Specifications
chapter for information on the specification elements not covered in the following
section.
Class Specification 75

A nested class is typically used to implement functionality for the parent class. In
many designs, a nested class is closely coupled to the parent class and is often not
visible outside of the parent class. For example, think of your computer as a parent
class and its power supply as a nested class. While the power supply is not visible
outside the computer, the task it completes is crucial to the overall functionality of the
computer.

Note: Nested classes can be cut and pasted.

To add a nested class to a class specification:

1 Create and name a class.

2 Display the Class Specification.

3 Click the Nested tab.

4 Right-click to display the shortcut menu, and then click Insert.

An untitled class entry is inserted. A nested class entry with a default class name is
inserted.

To display a nested class:

1 Click Query > Add Classes.

2 Select the nested class and place it in the Selected Classes list box.

To delete a nested class from a class specification:

1 Select the nested class from the Nested tab in the Class Specification.

2 Right-click the class to display a shortcut menu.

3 From the shortcut menu, click Delete.

- or -

1 Select the name of the nested class from the Nested Classes list box in the Class
Specification.

2 Press the DELETE key.

If you delete a nested class that is also a parent to other nested classes, all the nested
classes will be deleted.

Note: When you attempt to delete a nested class from a Class Specification, a warning
message will appear to verify the deletion.
76 Chapter 6 - Class Diagrams and Specifications

To relocate nested classes from the browser to a specification:

Classes and nested classes can be moved from the browser to the Class Specification
Nested tab. If you move a class (NewClassA) from the browser and place it directly on
top of a class (NewClassB) on the Nested tab, NewClassA becomes nested underneath
NewClassB. However, only one level of class nesting appears on the Nested tab. You
can view all levels of nesting in the browser.

For additional information on the browser, refer to The Browser chapter.

To move nested classes between class specifications:

Nested classes can be dragged and dropped between Class Specification Nested tabs.

Class Specification—Files Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
this tab.

Class Attribute Specification

A Class Attribute Specification allows you to display and modify the properties of a
class attribute in the current model.

To display an Attribute Specification, select the entry on the Attribute tab of the Class
Specification and click Insert from the shortcut menu. Alternatively, double-clicking
the entry will display the Class Attribute Specification.

Specification Content

The Class Attribute Specification consists of the following tabs: General and Detail.
Class Attribute Specification 77

Class Attribute—General Tab

Figure 25 Class Attribute—General Tab

Refer to the descriptions earlier in this chapter and in the Introduction to Specifications
chapter for information on the specification elements not covered in the following
section.

Class

The class to which the attribute belongs is displayed in this static field.

Show Classes

Select the Show Classes check box to list all classes defined in the model and any
fundamental types that reside in the model.

If you clear this check box, the selection lists include only the fundamental types that
reside in the model.

Type

Attribute types can either be classes or language-specific types. When the attribute is a
data value, the type is defined as a language-specific type. You can enter the type in
the Type field of the Class Attribute Specification. Rational Rose displays the type
beside the attribute name in the class icon and updates the information in the model.
78 Chapter 6 - Class Diagrams and Specifications

Initial Value

You can assign an initial value to your class attribute through this field. Click the
Initial Value field and enter the value.

Class Attribute—Detail Tab

Figure 26 Class Attribute—Detail Tab

Containment

Physical containment plays a role in the construction and destruction of an
aggregate’s parts through semantics. The specification of physical containment is
necessary for meaningful code generation from the model.

You can set one of the following types of physical containment.

Table 9 Physical Containment Options

Type Description

By Value Physical containment of a value of the part.

By Reference Physical containment of a pointer or reference to the
part.

Unspecified (default) The type of physical containment has not been specified.
Class Attribute Specification 79

To set or change the containment type in the Relationship Specification, click the
applicable option in the Containment field. The application places an adornment at the
supplier end of the relationship. You can also select a value from the shortcut menu.

Static

Select the Static check box to specify that the client class, not the client’s instances,
owns the supplier class. In the case of an attribute, a static attribute is an attribute
whose value is common to a class of objects rather than a value peculiar to each
instance.

You can set this field in the specification or through the shortcut menu.

Derived

The Derived check box indicates whether the element was computed (derived) or
implemented directly.

To define a element as derived, select the Derived check box. The element name is
adorned by a “/” in front of the name.

Operation Specification

You should complete one Operation Specification for each operation that is a member
of a class and for all free subprograms.

If you change the property of a class operation by editing its specification, Rational
Rose will update all class diagrams containing icons representing that class.

To access the Operation Specification, select an entry on the Operation tab of the Class
Specification and double-click the entry or click Insert from the shortcut menu. You
can also bring the specification up through the shortcut menu.

Specification Content

The Operation Specification consists of the following tabs: General, Detail,
Preconditions, Semantics, Postconditions, and Files.
80 Chapter 6 - Class Diagrams and Specifications

Operation Specification—General Tab

Figure 27 Operations Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to Specifications
chapter for information on the specification elements not covered in the following
section.

Return Type

For operations that are functions, set this field to identify the class or type of the
function’s result. If Show classes is checked, the list box displays all the classes in the
package. If Show classes is not checked, only the predefined set of return class types
is displayed.

If you enter a class name and it does not exist in your model, the application does not
create one.
Operation Specification 81

Operation Specification—Detail Tab

Figure 28 Operation Specification—Detail Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Arguments

This field contains a list of the arguments of the operation. You may express these
arguments in your selected implementation language.

The argument list can be rearranged with the click and drag technique. Select an
argument from the list, drag it to the location, and release. The list will reflect the new
order.

Protocol

This field lists a set of operations that a client can perform on an object and the legal
orderings in which they might be invoked. The protocol of an operation has no
semantic impact.
82 Chapter 6 - Class Diagrams and Specifications

Qualifications

This field identifies language-specific features that qualify the method. You will find
this especially useful in Common Lisp Object System (CLOS), in which methods can
be described as before or after.

Exceptions

This field contains a list of the exceptions that can be raised by the operation. Enter the
name of one or more classes identifying the exception.

Size

This field identifies the relative or absolute amount of storage consumed by the
invocation of the operation.

Time

This field contains a statement about the relative or absolute time required to
complete an operation. Use this field to budget time for the operation.

Concurrency

This field denotes the semantics in the presence of multiple threads of control. The
Concurrency field shows the concurrency for the elements of a class. The concurrency
of an operation should be consistent with its class.

Table 10 Concurrency Field Options

Type Description

Sequential (default) The semantics of the operation are guaranteed
only in the presence of a single thread of control.
Only one thread of control can be executing in
the method at any one time.

Guarded The semantics of the operation are guaranteed
in the presence of multiple threads of control. A
guarded class requires collaboration among
client threads to achieve mutual exclusion.

Synchronous The semantics of the operation are guaranteed
in the presence of multiple threads of control;
mutual exclusion is supplied by the class.
Operation Specification 83

You can set the concurrency of a class only through the Class Specification. The
Concurrency field is inactive for class utilities, parameterized class utilities, and
instantiated class utilities.

To change the concurrency, click an applicable option in the Concurrency field. You
can display the concurrency in the class diagram by clicking Show Concurrency from
the shortcut menu.

Operation Specification—Preconditions Tab

Figure 29 Operation Specification—Preconditions Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Preconditions

Invariants that are assumed by the operation (the entry behavior of an operation) are
listed.

Interaction Diagram

Select an interaction diagram from the list that illustrates the appropriate semantics.
84 Chapter 6 - Class Diagrams and Specifications

Operation Specification—Semantics Tab

Figure 30 Operations Specification—Semantics Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Semantics

The action of the operation is shown in this area.

Interaction Diagram

Select an interaction diagram from the list box that illustrates the appropriate
semantics.
Operation Specification 85

Operation Specification—Postconditions Tab

Figure 31 Operation Specification—Postconditions Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Postconditions

Invariants that are satisfied by the operation (the exit behavior of an operation) are
listed in this area.

Interaction Diagram

Select an interaction diagram from the list box that illustrates the appropriate
semantics.

Operation Specification—Files Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
this tab.
86 Chapter 6 - Class Diagrams and Specifications

Parameter Specification

A Parameter Specification allows you to modify an argument of an operation.

Specification Content

The Parameter Specification consists of the General tab.

Defining a New Parameter

To display a Parameter Specification:

1 From a Class Specification Operation Tab, double-click an operation to display the
Operation Specification.

2 Click the Detail tab.

3 Move the pointer to the arguments section.

4 Right-click to display the shortcut menu.

5 Click Insert, and a new argument is added.

6 Double-click the argument to display the Parameter Specification.
Parameter Specification 87

Parameter Specification—General Tab

Figure 32 Parameter Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Default

The default field may contain a value that an instance takes unless otherwise
specified.

Owner

The operation is the owner of the parameter.

Type

Type is a description of a set of instances that share the same operations, abstract
attributes and relationships, and semantics. Depending upon the language installed,
different types will appear.
88 Chapter 6 - Class Diagrams and Specifications

Association Specification

An association represents a bidirectional semantic relationship between two classes.

To display the association specification, double-click any icon representing the
processor or click Browse > Specifications.

Specification Content

The Association Specification consists of the following tabs: General, Detail, Role A and
Role B General, and Role A and Role B Detail.

Association Specification—General Tab

Figure 33 Association Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Parent

The parent to which the component belongs (its package) is displayed in this static
field.
Association Specification 89

Stereotype

A stereotype represents the subclassification of an element. It represents a class within
the UML metamodel itself (that is, a type of modeling element). Some stereotypes are
predefined. You can define your own stereotypes.

Role

Use this field to label the role with a name that denotes the purpose or capacity
wherein one class associates with another.

To enter a role name, click in the Role field and enter the text.

Element

The Element field describes the two elements linked by this association. This field
cannot be edited.

Association Specification—Detail Tab

Figure 34 Association Specification—Detail Tab
90 Chapter 6 - Class Diagrams and Specifications

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Derived

This field indicates whether the element was computed (derived) or implemented
directly.

To define an element as derived, select the Derived check box. The element name is
adorned by a “/” in front of the name.

Link Element

This field lists the attributed associations linked to the association. These attributed
associations apply to the association as a whole.

Name Direction

This field defines the direction of an association name.

Constraints

The constraint is an expression of some semantic condition that must be preserved
while the system is in a steady state. The constraint on the Detail tab applies to the
association as a whole, while the constraint on the Detail A or Detail B tab applies to a
particular role.

To apply a constraint, click the Constraint field and enter the text. A constraint is
displayed notationally, surrounded by braces under the role to which it applies.
Association Specification 91

Association Specification—Role B General Tab

Figure 35 Association Specification—Role A and B General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to Specifications
chapter for information on the specification elements.
92 Chapter 6 - Class Diagrams and Specifications

Association Specification—Role A and B Detail Tab

Figure 36 Association Specification—Role A and B Detail Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Navigable

The Navigable field indicates the direction in which the role is navigating. By default,
roles are bidirectional and no navigation notation is provided.

To set a role’s navigation, select the Navigable check box in the Association
Specification or click Navigable through the shortcut menu. The navigable arrowhead
points in the direction of the role, unless a containment adornment is displayed.
Containment adornments override navigable adornments.

Aggregate

Use the Aggregate field to set a direction to either all or part of the relationship among
instances of these classes. Only one end of the relationship can be aggregate.
Association Specification 93

To set the aggregate adornment, select the Aggregate check box in the Association
Specification or click Aggregate through the shortcut menu. The adornment is a
diamond on the relationship.

Static

Use the Static field to specify that the client class, not the client’s instances, owns the
supplier class. In the case of an attribute, a static attribute is an attribute whose value
is common to a class of objects rather than a value peculiar to each instance.

You can set this field in the specification or through the shortcut menu. To switch the
static adornment in the Relationship Specification, select the Static check box.

Friend

The Friend check box designates that the supplier class has granted rights to a client
class to access its non-public parts.

You can select this check box in the Relationship Specification or through the
relationship’s shortcut menu.

Containment of

Physical containment has semantics that play a role in the construction and
destruction of an aggregate’s parts. The specification of physical containment is
necessary for meaningful code generation from the model.

You can set one of the following types of physical containment.

You can change the containment type in the Relationship Specification or you can
select a value from the relationship’s shortcut menu.

Table 11 Containment Field Options

Type Description

By Value Physical containment of a value of the part.

By Reference Physical containment of a pointer or reference to
the part.

Unspecified (default) The type of physical containment has not been
specified.
94 Chapter 6 - Class Diagrams and Specifications

Keys/Qualifiers

A key or qualifier is an attribute that uniquely identifies a single target object. The
attributes allow 1..n or n..n associations and reduce the number of instances. The list
box will display all keys or qualifiers currently defined.

To enter a key or qualifier, click Insert from the shortcut menu or press the INSERT key.
An untitled entry is placed in the name and type field. To change the entry, select to
highlight and type in a new name.

For information on the Key/Qualifier Specification, refer to the Key/Qualifier
Specification on page 99.

Generalize Specification

A generalize relationship between classes shows that one class shares the structure or
behavior defined in one or more other classes.

Specification Content

The Generalize Specification consists of the General tab.

Generalize Specification—General Tab

Figure 37 Generalize Specification—General Tab
Generalize Specification 95

Refer to the descriptions earlier in this chapter or in the Introduction to Specifications
chapter for information on the specification elements not covered in the following
section.

Friendship Required

Select the Frendship required check box to specify that the supplier class has granted
rights to the client class to access its non-public members.

Virtual Inheritance

Select the Virtual Inheritance check box to ensure that only one copy of the base class
will be inherited by descendants of the subclasses.

Realize Specification

A realize relationship connects a class to an interface or a component to an interface.

Specification Content

The Realize Specification consists of the General tab.

Realize Specification—General Tab

Figure 38 Realize Specification—General Tab
96 Chapter 6 - Class Diagrams and Specifications

Refer to the descriptions earlier in this chapter or in the Introduction to Specifications
chapter for information on the specification elements.

Dependency Specification

The dependency relationship indicates that the client class depends on the supplier
class to provide certain services. One class can use another class in a variety of ways.
Typically, a dependency relationship indicates that the operations of the client invoke
operations of the supplier. Dependency relationships appear on component diagrams
and they can also be used to connect use cases.

Note: A dependency that connects two use cases together contains a simpler form of
the Dependency Specification in Figure 39. Only the name, class, stereotype, and
documentation fields are present.

Specification Content

The Dependency Specification consists of the General tab.

Dependency Specification—General Tab

Figure 39 Dependency Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to Specifications
chapter for information on the specification elements.
Dependency Specification 97

Has Relationship (Booch Only)

A has relationship shows a whole and part relationship between two classes, where
one class is the whole and the other is the part. The whole class contains or owns its
parts. This relationship is also called an aggregation relationship.

Because attributes for a class can be expressed by a has by-value relationship with
cardinality of “1,” attributes are also defined in the has relationship specifications.

To display a has relationship’s specification, select any icon representing the has
relationship and either double-click or click Browse > Specifications.

Specification Content

The Has Specification consists of the following tabs: General and Detail.

Has Specification—General Tab

Figure 40 Has Specification—General Tab

Refer to Class Attribute—General Tab on page 78 for more information.
98 Chapter 6 - Class Diagrams and Specifications

Has Specification—Detail Tab

Figure 41 Has Specification—Detail Tab

Refer to the descriptions earlier in this chapter or in the Introduction to Specifications
chapter for information on the specification elements.

Key/Qualifier Specification

A Key/Qualifier Specification allows you to modify a specific attribute whose value
uniquely identifies a single target object.

Defining a New Key/Qualifier

To display a Key/Qualifier Specification:

1 Double-click an association or aggregation.

2 From either the Association Specification or the Aggregation Specification, click the
Role A Detail or Role B Detail tab.

3 Move the pointer to the Key/Qualifier section of either specification.
Key/Qualifier Specification 99

4 Right-click to display the shortcut menu.

5 Click Insert to add a key/qualifier.

6 Double-click the entry to display the Key/Qualifier Specification.

Specification Content

The Key/Qualifier Specification consists of the General tab.

Key/Qualifier Specification—General Tab

Figure 42 Key/Qualifier Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Owner

The Owner field identifies the name, or owner, of the role from which the
key/qualifier evolved.
100 Chapter 6 - Class Diagrams and Specifications

7Use-Case Diagrams and
Specifications
Contents

This chapter is organized as follows:

■ Use-Case Diagram Overview on page 101

■ Use-Case Specification on page 106

■ Generalize Specification on page 109

■ Actor Specification on page 111

Use-Case Diagram Overview

Use-case diagrams present a high-level view of how a system is used as seen from an
outsider’s (or actor’s) perspective. These diagrams graphically depict system
behavior (also known as use cases). A use-case diagram may depict all or some of the
use cases of a system.

A use-case diagram can contain:

■ Actors (“things” outside the system).

■ Use cases (system boundaries identifying what the system should do).

■ Interactions or relationships between actors and use cases in the system including
the associations, dependencies, and generalizations.

Use-case diagrams can be used during analysis to capture the system requirements
and understand how the system should work. During the design phase, use-case
diagrams can be used to specify the behavior of the system as implemented.

You can create or display a use-case diagram in one of three ways:

■ Click Browse > Use Case Diagram.

■ On the toolbar, double-click the use-case diagram icon.

■ In the browser, double-click the use-case diagram icon.
101

Actors

Actors represent system users. They help define the system and give a clear picture of
what the system should do. It is important to note that an actor interacts with, but has
no control over, the use cases.

An actor is someone or something that:

■ Interacts with or uses (but is not part of) the system.

■ Provides input to and receives information from the system.

■ Is external to the system and has no control over the use cases.

Actors are discovered by examining:

■ Who directly uses the system.

■ Who is responsible for maintaining the system.

■ External hardware used by the system.

■ Other systems that need to interact with the system.

An actor is a stereotype of a class and is depicted as a “stickman” on a use-case
diagram. The name of the actor is displayed below the icon.

Use Case

A use case is a sequence of events (transactions) performed by a system in response to
a trigger initiated by an actor. A use case contains all the events that can occur
between an actor-use case pair, not necessarily the ones that will occur in any
particular scenario.

In its simplest form, a use case can be described as a specific way of using the system
from a user’s (actor’s) perspective. A use case also illustrates:

■ A pattern of behavior the system exhibits.

■ A sequence of related transactions performed by an actor and the system.

Use cases provide a means to:

■ Capture system requirements.

■ Communicate with the end users and domain experts.

■ Test the system.

Use cases are best discovered by examining what the actor needs and defining what
the actor will be able to do with the system; this helps ensure that the system will be
what the user expects.
102 Chapter 7 - Use-Case Diagrams and Specifications

Since all the needs of a system typically cannot be covered in one use case, it is usual
to have a collection of use cases. Together this use case collection specifies all the ways
of using the system.

A use case may have a name, although it is typically not a simple name. It is often
written as an informal text description of the actors and the sequences of events
between objects. Use case names often start with a verb.

The name of the use case is displayed below the icon.

Flow of Events

A flow of events is a sequence of transactions (or events) performed by the system.
They typically contain very detailed information, written in terms of what the system
should do, not how the system accomplishes the task. Flows of events are created as
separate files or documents in your favorite text editor and then attached or linked to
a use case using the Files tab of a model element. See the Files Tab on page 55 for a
discussion the Files tab.

A flow of events should include:

■ When and how the use case starts and ends

■ Use case/actor interactions

■ Data needed by the use case

■ Normal sequence of events for the use case

■ Alternate or exceptional flows

You can use activity diagrams to further model flows of events.

Relationships

Relationships show interactions between actors and use cases. Association,
dependency, and generalization relationships can be drawn from an actor to a use
case. The generalize relationship can be drawn between actors.

Any association relationships are also presented in a text format on the Relations tab
(described later) for a selected use case or actor.

Association

An association provides a pathway for communication between use cases and actors.
Associations are the most general of all relationships and consequentially, the most
semantically weak. If two objects are usually considered independently, the
relationship is an association. The association name and its stereotype are typically
verbs or verb phrases and are used to identify the type or purpose of the relationship.
Use-Case Diagram Overview 103

There are two different types of associations connected with use-case diagrams:
uni-directional and bi-directional.

Uni-directional association: By default, associations in use cases are uni-directional
and drawn with a single arrow at one end of the association. The end with the arrow
indicates who or what is receiving the communication.

Bi-directional association: To change the communication to be bi-directional,
double-click the association to view the Association Specification. Click the
appropriate Role A (or B) Detail tab, select the Navigable check box, and click Apply.
You have now made the association bi-directional. The graphic changes from a line
with an arrow at one end to a line with no arrow.

If you prefer, you can also customize the toolbox to include the bi-directional tool in
the use-case toolbox. See Customizing the Toolbox on page 14 for information on adding
or deleting diagram toolbox tools.

Dependency

A dependency is a relationship between two model elements in which a change to one
model element will affect the other model element. Use a dependency relationship to
connect model elements with the same level of meaning. Typically, on class diagrams,
a dependency relationship indicates that the operations of the client invoke
operations of the supplier.

You can connect model elements with dependencies on any diagram except state
machine diagrams and object diagrams. For example, you can connect a use case to
another use case, a package to another package, and a class to a package.
Dependencies are also used on component diagrams to connect model elements.

Extend Stereotype

An extend relationship is a stereotyped relationship that specifies how the
functionality of one use case can be inserted into the functionality of another use case.
You can place extend stereotypes on all relationships. However, most extend
stereotypes are placed on dependencies or associations. Extend relationships are
important because they show optional functionality or system behavior.

Include Stereotype

An include relationship is a stereotyped relationship that connects a base use case to
an inclusion use case. An include relationship specifies how behavior in the inclusion
use case is used by the base use case. Include relationships are important because they
represent that the inclusion use case functionality is used by the base use case.
104 Chapter 7 - Use-Case Diagrams and Specifications

Refine Stereotype

A refine relationship is a stereotyped relationship that connects two or more model
elements at different semantic levels or development stages. It represents a fuller
specification of something that has already been specified at a certain level of detail.
For example, a design class is a refinement of an analysis class. In a refine relationship,
the source model element is general and more broadly defined whereas the target
model element is more specific and refined.

Generalization

A generalization relationship is a relationship between a more general class or use
case and a more specific class or use case. A generalization is shown as a solid-line
path from the more specific element to a more general element. The tip of a
generalization is a large hollow triangle pointing to the more general element.

You can place a stereotype on any generalization through the Generalization
Specification. However, three common stereotypes for generalizations are extends,
includes, and generalization.

Use-Case Diagram Toolbox

The graphic below shows all the tools that can be placed on the use-case diagram
toolbox. Refer to “Customizing the Toolbox” on page 14 for information on adding or
deleting diagram toolbox tools.

The application window displays the following toolbox when the current window
contains a use-case diagram and As Unified is selected from the View menu.

Some icons will be different if As Booch or As OMT is selected from the View menu.
Use-Case Diagram Overview 105

Figure 43 Use Case Diagram Toolbox

Use-Case Specification

A Use-Case Specification allows you to display and modify the properties and
relationships of a use case in the current model.

Specification Content

The Use-Case Specification contains the following tabs: General, Diagram, Relations,
and Files.

Note

Selector

Generalization

Class

Unidirectional
Association
Package

Refine Dependency

Include Dependency

Actor

Association Relationship

Instantiate Class Utility

Instantiate Class

Business Use Case

Control Class

Server Class

Business Worker Class

Business Use Case
Realization

Form Class

Boundary Class

Business Actor

Note Anchor

Text

Realize Relationship

Interface

Association Class

Dependency

Extend Dependency

Use Case

Aggregation

Unidirectional Aggregation

Parameterized Class Utility

Class Utility

Use-case Realization

Subsystem Package

Client Page Class

Parameterized Class

Organization Unit

Applet Class

Entity

Business Entity
106 Chapter 7 - Use-Case Diagrams and Specifications

Use-Case Specification—General Tab

Figure 44 Use-Case Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Name

A use case name is often written as an informal text description of the external actors
and the sequences of events between elements that make up the transaction. Use-case
names often start with a verb. The name can be entered or changed on the
specification or directly on the diagram.

Package

This static field identifies the package to which the components belong.

Rank

The Rank field prioritizes use cases. For example, you can use the rank field to plan
the iteration in the development cycle at which a use case should be implemented.
Use-Case Specification 107

Abstract

An abstract notation indicates a use case that exists to capture common functionality
between use cases (uses) and to describe extensions to a use case (extends).

Use-Case Specification—Diagram Tab

Figure 45 Use-Case Specification—Diagram Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Diagram List

The diagram list contains all the diagrams owned by the use case. The diagram list
consists of two columns. The first (unlabeled) column displays the diagram icon type
for the diagram. The second column displays the diagram name. To insert a new
diagram in the list, click one of the Insert choices in the shortcut menu that
corresponds to the diagram type.
108 Chapter 7 - Use-Case Diagrams and Specifications

Use-Case Specification—Relations Tab

Figure 46 Use-Case Specification—Relations Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Relations

The Relations tab lists all the association relationships that correspond to the selected
use case. The client and supplier names and type icons are displayed to the right of
the relation name. Double-clicking on any column in a row displays the element’s
specification.

Generalize Specification

A Generalize Specification allows you to display and modify the properties and
relationships of a use case in the current model.

Specification Content

The Generalize Specification contains the General tab.
Generalize Specification 109

Generalize Specification—General Tab

Figure 47 Generalize Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to Specifications
chapter for information on the specification elements not covered in the following
section.

Stereotype

Stereotypes allow you to provide additional distinctions in your model that are not
explicitly supported by the UML. The use of stereotypes makes it easy to add
information about modeling elements that may be specific to a project or process.

The Generalize Specification uses stereotypes to create two new use-case relationships
that can be attached to a model element to indicate a special relationship between use
cases.

Friendship Required

Select the Friendship required check box to specify that the supplier class has granted
rights to the client class to access its non-public members.
110 Chapter 7 - Use-Case Diagrams and Specifications

Virtual Inheritance

Select the Virtual inheritance check box to ensure that only one copy of the base class
will be inherited by descendants of the subclasses.

Actor Specification

An Actor Specification is similar to a Class Specification, except that the stereotype
field is set to actor. However, some of the fields in the Class Specification are not
applicable to actors and are therefore disabled. Refer to Class Specification on page 62
for more information.
Actor Specification 111

8State Machine Diagrams
and Specifications
Contents

This chapter is organized as follows:

■ Overview on page 114

■ Creating and Displaying a State Machine Diagram on page 114

■ State Machine Specification on page 114

■ Statechart Diagram Overview on page 115

■ Activity Diagram Overview on page 118

■ Creating an Activity Diagram on page 119

■ Workflow Modeling on page 119

■ Modeling a Workflow with an Activity Diagram on page 121

■ Activity Diagram-Specific Model Elements on page 122

■ Shared State Machine Diagram Model Elements on page 125

■ Swimlane Specification on page 127

■ State and Activity Specification on page 128

■ Action Specification on page 131

■ State Transition Specification on page 133

■ Decision Specification on page 135

■ Synchronization Specification on page 137

■ Object Specification (Activity Diagrams) on page 139

■ Object Flow Specification on page 142
113

Overview

The state/activity model icon that appears in the browser can be thought of as a
“container” for statechart and activity diagrams and all of their model elements. A
state/activity model owns statecharts and activity diagrams and is represented
semantically with a state machine. A state machine can be defined as a behavior that
specifies the valid sequences of activities that an object or interaction goes through
during its life in response to events, together with its responses and actions.

Rational Rose automatically creates one state/activity model when you create a
statechart or activity diagram. A state/activity model can be relocated to a new
owner, such as a class operation or a use case, by dragging it to a new location in the
browser. Rational Rose limits you to only one state/activity model per owner.

Creating and Displaying a State Machine Diagram

To create a state/activity model:

1 Click Browse > State Machine Diagram.

2 Double-click New.

3 Name the diagram.

4 Specify the type of diagram you want to create: Activity or Statechart.

5 Click OK.

State Machine Specification

A State Machine Specification allows you to display and modify the properties and
relationships of a state/activity model. A state/activity model contains statechart and
activity diagrams.

To view the State Machine Specification, double-click the state/activity model in the
browser.

Changes made either through the specification or directly on the icon are
automatically updated throughout the model.

Specification Content

The State Machine Specification consists of the General tab.
114 Chapter 8 - State Machine Diagrams and Specifications

State Machine Specification—General Tab

Figure 48 State Machine Specification—General Tab

Statechart Diagram Overview

Statechart diagrams model the dynamic behavior of individual classes or any other
kind of object. They show the sequences of states that an object goes through, the
events that cause a transition from one state or activity to another, and the actions that
result from a state or activity change.

Statechart diagrams are closely related to activity diagrams. The main difference
between the two diagrams is statechart diagrams are state centric, while activity
diagrams are activity centric. A statechart diagram is typically used to model the
discrete stages of an object’s lifetime, whereas an activity diagram is better suited to
model the sequence of activities in a process.
Statechart Diagram Overview 115

Each state represents a named condition during the life of an object during which it
satisfies some condition or waits for some event. A statechart diagram typically
contains one start state and multiple end states. Transitions connect the various states
on the diagram. As with activity diagrams, decisions and synchronizations may also
appear on statechart diagrams.

Creating a Statechart Diagram

You can create statechart diagrams on most model elements except for attributes,
associations, or model elements that appear in the component view.

To create a statechart diagram:

1 In the browser, right-click any model element except for attributes, associations, or
model elements that appear in the component view.

2 Click New > Statechart Diagram.

Another way to create a statechart diagram:

1 Click the Browse State Machine Diagram button from the toolbar.

2 Click New.

3 Select the Statechart Diagram check box in the New State Machine dialog box.

4 Enter the statechart diagram title.

5 Click OK.
116 Chapter 8 - State Machine Diagrams and Specifications

Automatic Transmission Example

Figure 49 Automatic Transmission Example

Figure 49 illustrates some of the major model elements in a statechart diagram:

■ Decisions

■ Synchronizations

■ States

■ Transitions

■ Start states

■ End states
Statechart Diagram Overview 117

Activity Diagram Overview

Activity diagrams provide a way to model the workflow of a business process. You
can also use activity diagrams to model code-specific information, such as a class
operation. Activity diagrams are very similar to a flowchart because you can model a
workflow from activity to activity. An activity diagram is basically a special case of a
state machine in which most of the states are activities and most of the transitions are
implicitly triggered by completion of the actions in the source activities. The main
difference between activity diagrams and statecharts is activity diagrams are activity
centric, while statecharts are state centric. An activity diagram is typically used for
modeling the sequence of activities in a process; whereas, a statechart is better suited
to model the discrete stages of an object’s lifetime.

Using Activity Diagrams

Activity diagrams can model many different types of workflows. For example, a
company could use activity diagrams to model the flow of approvals for orders or to
model the paper trail of invoices. An accounting firm could use activity diagrams to
model any number of financial transactions. A software company could use activity
diagrams to model a software development process.

Understanding Workflows

Each activity represents the performance of a group of actions in a workflow. Once the
activity is complete, the flow of control moves to the next activity or state through a
transition. If an outgoing transition is not clearly triggered by an event, then it is
triggered by the completion of the contained actions inside the activity. A unique
activity diagram feature is a swimlane that defines who or what is responsible for
carrying out the activity or state. It is also possible to place objects on activity
diagrams. The workflow stops when a transition reaches an end state.

You can attach activity diagrams to most model elements in the use case or logical
views. Activity diagrams cannot reside within the component view.

You can use the following tools on the activity diagram toolbox to model activity
diagrams:

■ Decisions ■ States

■ Swimlanes ■ Synchronizations

■ Objects ■ Transitions

■ Object flows ■ Start state

■ Activities ■ End state
118 Chapter 8 - State Machine Diagrams and Specifications

Creating an Activity Diagram

You can create activity diagrams on most model elements except for attributes,
associations, or model elements that appear in the component view.

To create an activity diagram:

1 In the browser, right-click any model element except for attributes, associations, or
model elements that appear in the component view.

2 Click New > Activity Diagram.

3 Rename or double-click to display the NewDiagram icon in the browser.

Another way to create an activity diagram:

1 Click the Browse State Machine Diagram button from the toolbar.

2 Click New.

3 Select the Activity Diagram check box in the New State Machine dialog box.

4 Enter the activity diagram title.

5 Click OK.

Workflow Modeling

In business and in other industries, there are many manual and automated systems.
Each of these systems contains one or more workflows. A workflow is best defined as
a well-defined sequence of activities that produces an observable value or objective to
an individual or entity when performed. You can model workflows with activity
diagrams.

Purposes of Workflow Modeling

The purposes of workflow modeling are threefold:

■ To understand the structure and dynamics of an organization

■ To ensure that customers, end users, and developers have a common
understanding of the organization

■ To derive requirements on systems to support the organization
Creating an Activity Diagram 119

Defining a Workflow

When you define a workflow, your activity diagram should answer the following
questions:

■ Who or what has overall responsibility for the workflow?

A use case or class could own each activity diagram, for example.

■ What activities need to be performed to meet your objective or goal?

Define all of the high-level activities that need to take place in the workflow. You
do not need to define every activity or state, just the ones with the greatest
importance in the workflow.

■ Who will be responsible for performing the various activities and states?

Define each activity within a swimlane so you know who is responsible for
carrying out the activity. Any element within a swimlane is owned and should be
carried out by the swimlane.

■ Do the activities create or modify objects?

Connect objects and activities with object flows. Specify the state of the object
through the state specification.

■ Where do the activities and states take place with respect to other elements on
your diagram?

Placement of your activities on the diagram determines the order of your
workflow.

■ Why does this activity or state need to take place?

The reason or purpose for each activity or state should be placed in the
specification Documentation field.
120 Chapter 8 - State Machine Diagrams and Specifications

Modeling a Workflow with an Activity Diagram

Modeling a workflow in an activity diagram can be done several ways; however, the
following steps present just one logical process:

1 Identify a workflow objective. Ask, “What needs to take place or happen by the
end of the workflow? What needs to be accomplished?” For example, if your
activity diagram models the workflow of ordering a book from an online
bookstore, the goal of the entire workflow could be getting the book to the
customer.

2 Decide the pre- and post-conditions of the workflow through a start state and an
end state. In most cases, activity diagrams have a flowchart structure so start and
end states are used to designate the beginning and end of the workflow. Start and
end states clarify the perimeter of the workflow.

3 Define and recognize all activities and states that must take place to meet your
objective. Place and name them on the activity diagram in a logical order.

4 Define and diagram any objects that are created or modified within your activity
diagram. Connect the objects and activities with object flows.

5 Define who or what is responsible for performing the activities and states through
swimlanes. Name each swimlane and place the appropriate activities and states
within each swimlane.

6 Connect all elements on the diagram with transitions. Begin with the “main”
workflow.

7 Place decisions on the diagram where the workflow may split into an alternate
flow. For example, based on a Boolean expression, the workflow could branch to a
different workflow.

8 Evaluate your diagram and see if you have any concurrent workflows. If so, use
synchronizations to represent forking and joining.

9 Set all actions, triggers, and guard conditions in the specifications of each model
element.
Modeling a Workflow with an Activity Diagram 121

Activity Diagram-Specific Model Elements

Activities

An activity represents the performance of “task” or “duty” in a workflow. It may also
represent the execution of a statement in a procedure. An activity is similar to a state,
but expresses the intent that there is no significant waiting (for events) in an activity.

Swimlanes

Swimlanes are helpful when modeling a business workflow because they can
represent organizational units or roles within a business model. Swimlanes are very
similar to objects because they provide a way to tell who is performing a certain role.
Swimlanes only appear on activity diagrams. You should place activities within
swimlanes to determine which unit is responsible for carrying out the specific activity.

When a swimlane is dragged onto an activity diagram, it becomes a swimlane view.
Swimlanes appear as small icons in the browser while swimlane views appear
between thin, vertical lines with a header that can be renamed and relocated.

Objects

Rational Rose allows objects on activity, collaboration, and sequence diagrams.
Specific to activity diagrams, objects are model elements that represent something you
can feel and touch. It might be helpful to think of objects as the nouns of the activity
diagram and activities as the verbs of the activity diagram. Further, objects on activity
diagrams allow you to diagram the input and output relationships between activities.
In Figure 50 on page 123, the Submit Defect and Fix Defects activities can be
thought of as the verbs and the Defect objects can be thought of as the nouns in the
activity diagram vocabulary. Objects are connected to activities through object flows.
122 Chapter 8 - State Machine Diagrams and Specifications

Figure 50 Objects on an Activity Diagram Sample

Most objects can appear in an infinite number of states. For example, look at both
instances of the Defect object. In one instance, the customer (noted by the swimlane)
placed the defect in a [submitted] state. In the other, the software engineer (noted by
the swimlane) placed the defect in a [fixed] state. Each time you associate a new state
with an object, a new state appears in the browser along with the object. You may
specify more details of the object’s state in the state specification.

Object Flow

An object flow on an activity diagram represents the relationship between an activity
and the object that creates it (as an output) or uses it (as an input).

Rational Rose draws object flows as dashed arrows rather than solid arrows to
distinguish them from ordinary transitions. Object flows look identical to
dependencies that appear on other diagram types.

You do not need a transition if your diagram has two activities connected through an
object and two corresponding object flows. The sample in Figure 51 on page 124 does
not require a transition because the transition is redundant.
Activity Diagram-Specific Model Elements 123

Figure 51 Object Flow Sample

Understanding Objects and Object Flows

The object flow sample demonstrates how activities affect object state on activity
diagrams. The object flow sample illustrates three important aspects of activity
diagram objects:

■ Objects may appear more than once and in several states.

■ Activities may change object states.

■ Objects connect with activities through object flows.

Figure 52 CD Player Sample

Object Flow

This transition is not
needed.
124 Chapter 8 - State Machine Diagrams and Specifications

In Figure 52 on page 124, notice that the CD Player object appears on the diagram
more than once. However, each object appears in a different state: playing, paused,
and stopped. Each activity in the sample changes the state of the CD Player when you
push the various buttons or perform the activity. For example, when you push the
Pause button, the state of the CD Player changes to [Paused].

In most cases, the same object may be (and usually is) the output of one activity and
the input of one or more subsequent activities.

Changing the State of an Object

To change the state of an object on an activity diagram:

1 Double-click the object to display the Object Specification.

2 Select New from the State list.

A new State Specification appears.

3 Enter descriptive information about the object state in the State Specification.

4 Click OK to close the State Specification.

5 Click OK to close the Object Specification.

Shared State Machine Diagram Model Elements

This section describes the elements that can appear in both activity diagrams and
statechart diagrams:

States

A state represents a condition or situation in the life of an object during which it
satisfies some condition or waits for some event. Each state represents the cumulative
history of its behavior.

Start and End States

A start state explicitly shows the beginning of a workflow on an activity diagram or
the beginning of the events that cause a transition on a statechart. You can have only
one start state on a statechart or activity diagram.

An end state represents a final or terminal state on an activity diagram or statechart
diagram. Place an end state when you want to explicitly show the end of a workflow
on an activity diagram or the end of a statechart diagram.
Shared State Machine Diagram Model Elements 125

Transitions

A state transition indicates that an object in the source state will perform certain
specified actions and enter the destination state when a specified event occurs or
when certain conditions are satisfied. A state transition is a relationship between two
states or two activities, or between an activity and a state.

You can show one or more state transitions from a state as long as each transition is
unique. Transitions originating from a state cannot have the same event, unless there
are conditions on the event. Transitions appear on statechart and activity diagrams.

You should label each state transition with the name of at least one event that causes
the state transition. You do not have to use unique labels for state transitions because
the same event can cause a transition to many different states or activities.

Transitions are labeled with the following syntax:

event (arguments) [condition] / action ^ target.sendEvent (arguments)

Only one event is allowed per transition, and one action per event.

Events, conditions, and actions must be added by editing the label or through the
State Transition Specification.

Transition to Self

A transition to self is very similar to a state transition; however, it does not move the
focus of control to another state or activity when an event occurs. A transition to self
contains the same source and target state or activity.

A transition to self contains actions and events just like transitions.

The icon for a transition to self is a looped line with an arrowhead pointing toward the
same source state or activity. The transition to self arc appears on the top of an activity
or state icon.

Decisions

A decision represents a specific location on an activity diagram or statechart diagram
where the workflow may branch based upon guard conditions. There may be more
than two outgoing transitions with different guard conditions but, for the most part, a
decision will have only two outgoing transitions determined by a Boolean expression.

Synchronizations

Synchronizations allow you to see a simultaneous workflow in an activity diagram or
statechart diagram. They also visually define forks and joins representing parallel
workflow.
126 Chapter 8 - State Machine Diagrams and Specifications

Swimlane Specification

A Swimlane Specification allows you to display and modify the properties and
relationships of a swimlane on an activity diagram.

To display a Swimlane Specification, select the swimlane header on an activity
diagram and double-click. You may also double-click on the swimlane icon in the
browser.

Specification Content

The Swimlane Specification consists of the General tab.

Swimlane Specification—General Tab

Figure 53 Swimlane Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements.
Swimlane Specification 127

State and Activity Specification

A State and Activity Specification allows you to display and modify the properties and
relationships of a state or activity on a statechart diagram or activity diagram.
Although a state and activity have almost identical features, they are used for
different purposes. Start states and end states use the same specifications as states
because they are a type of state. However, they appear as circles on statechart and
activity diagrams.

Specification Content

The State, Activity, Start State, and End State Specifications consists of the following
tabs: General, Action, Transitions, and Swimlanes.

State and Activity Specification—General Tab

Figure 54 State and Activity Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Information about the name, stereotype, owner, context, documentation,
state/activity history, and sub state/activity history is entered or displayed on the tab.
128 Chapter 8 - State Machine Diagrams and Specifications

State/Activity History

History provides a mechanism to return to the most recently visited state when
transitioning directly to a state with substates. History applies to the level in which it
appears. It may also be applied to the lowest depth of nested states.

To apply history at the state or activity level, click State/activity history. Click
Sub state/activity history to apply history to all the depths of nested states or activities
within the state or activity level.

State and Activity Specification—Actions Tab

Figure 55 State and Activity Specification—Actions Tab

Information about the type and action expression is entered or displayed on this tab.

Type

The Type field identifier bar lists the kind of action specified in the Action
Specification.
State and Activity Specification 129

Action Expression

The Action Expression field identifier bar lists the four possible timing options that
specify when to carry out an action, and it specifies the types of actions that are
carried out. You can modify the action settings through the Action Specification Detail
tab.

For information on the Action Specification, refer to the Action Specification on
page 131.

State and Activity Specification—Transitions Tab

Figure 56 State and Activity Specification—Transitions Tab

Information about the icon, event, and end is displayed on this tab.
130 Chapter 8 - State Machine Diagrams and Specifications

State and Activity Specification—Swimlanes Tab

Figure 57 State and Activity Specification—Swimlanes Tab

Information about the swimlane name is displayed on this tab.

Action Specification

An Action Specification allows you to display and modify the action properties in a
statechart diagram or activity diagram.

To define a new action on a state or activity:

1 Click the Actions tab of a State Specification or Activity Specification.

2 Right-click to display the shortcut menu.

3 Click Insert and an entry item is added.

4 Double-click the entry to display the Action Specification.

5 Type the action description in the Name field. If this field is not active, click Action
on the Type field.
Action Specification 131

If you select Send Event, you may type optional arguments to the triggered event in
the Send Arguments field and the name of another object in the model in the Send
Target field.

State and Activity Actions

Each state and activity on a statechart or activity diagram may contain any number of
internal actions. An action is best described as a “task” that takes place while inside a
state or activity. There are four possible actions within a state or activity:

■ On Entry

■ On Exit

■ Do

■ On Event

On Event

The On Event parameters are only enabled when you set the On Event timing
parameter.

Event—In a statechart or activity diagram, an event is an occurrence that can trigger a
state transition. Type the name of the event that will trigger the action.

Arguments—Consist of any optional arguments associated with the event.

Condition—May contain a conditional Boolean expression.

There is an advantage to using an On Event state action rather than a transition to self.
Transitions to self trigger all the actions associated with a state; whereas, state actions
handle internal state transitions. This provides you with the control to process an
internal event without triggering the entry and exit actions. The Trigger Specification
contains the same features as the Action Specification. The Trigger Specification
defines the properties of a trigger.

Specification Content

The Action Specification consists of the Detail tab.
132 Chapter 8 - State Machine Diagrams and Specifications

State Transition Specification

A State Transition Specification allows you to display and modify the properties and
relationships of a transition on a statechart diagram or activity diagram. The State
Transition Specification lists the events and actions that are comprised by the
transition.

Specification Contents

The State Transition Specification consists of the following tabs: General and Detail.

State Transition Specification—General Tab

Figure 58 State Transition Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to Specifications
chapter for information on the specification elements.
State Transition Specification 133

Transition Specification—Detail Tab

Figure 59 State Transition Specification—Detail Tab

Guard Condition

Conditional state transitions are triggered only when the conditional expression
evaluates to true. Conditions are denoted by surrounding brackets:

Event (args) [condition] / Action ^target.someEvent (args)

To add a condition, click Guard Condition on the State Transition Specification and type
the conditional expression. You may also include a condition by selecting the event
label and changing the text.

Transition Between Substates

Transition between substates is useful when a transition is placed to or from a substate
that has been hidden from view. The From field displays the state name from which
the transition is initiated. The To field displays the state name to which the transition
is pointing. Both fields are active at all times.
134 Chapter 8 - State Machine Diagrams and Specifications

To enter a transition substate, click the scrolling arrow on the right side of the field. A
list of potential transition substates will be presented. The list includes the name of all
the states that reside within the bounds of the top level superstate, including the
superstate. Select a state from the list.

Decision Specification

A Decision Specification allows you to display and modify the properties and
relationships of a decision on a statechart diagram or activity diagram.

The Decision Specification consists of the following tabs: General, Transitions, and
Swimlanes.

Decision Specification—General Tab

Figure 60 Decision Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to Specifications
chapter for information on the specification elements.
Decision Specification 135

Decision Specification—Transitions Tab

Figure 61 Decision Specification—Transitions Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements.
136 Chapter 8 - State Machine Diagrams and Specifications

Decision Specification—Swimlanes Tab

Figure 62 Decision Specification—Swimlanes Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements.

Synchronization Specification

A Synchronization Specification allows you to display and modify the properties and
relationships of a synchronization on a statechart diagram or activity diagram.

The Synchronization Specification consists of the following tabs: General and
Transitions.
Synchronization Specification 137

Synchronization Specification—General Tab

Figure 63 Synchronization Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to Specifications
chapter for information on the specification elements.
138 Chapter 8 - State Machine Diagrams and Specifications

Synchronization Specification—Transitions Tab

Figure 64 Synchronization Specification—Transitions Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements.

Object Specification (Activity Diagrams)

An Object Specification allows you to display and modify the properties of an activity
diagram object. The object specifications that appear from objects on an activity
diagram are slightly different from the object specifications derived from a sequence
or collaboration diagram. Activity diagram object specifications contain state and
stereotype menus.

The Object Specification for an activity diagram consists of the following tabs: General,
Incoming Object Flows, and Outgoing Object Flows.
Object Specification (Activity Diagrams) 139

Object Specification—General Tab

Figure 65 Object Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

State

The State drop-down list specifies and displays the object state.
140 Chapter 8 - State Machine Diagrams and Specifications

Object Specification—Incoming Object Flows Tab

Figure 66 Object Specification—Incoming Object Flows Tab

The Incoming Object Flows tab displays the name of all incoming object flows.
Object Specification (Activity Diagrams) 141

Object Specification—Outgoing Object Flows Tab

Figure 67 Object Specification—Outgoing Object Flows Tab

The Outgoing Object Flows tab displays the name of all outgoing object flows.

Object Flow Specification

An Object Flow Specification allows you to display and modify the properties and
relationships of an object flow on an activity diagram.

The Object Flow Specification consists of the General tab.
142 Chapter 8 - State Machine Diagrams and Specifications

Object Flow Specification—General Tab

Figure 68 Object Flow Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements.
Object Flow Specification 143

9Interaction Diagrams and
Specifications
Contents

This chapter is organized as follows:

■ Interaction Diagram Overview on page 145

■ Collaboration Diagrams on page 146

■ Sequence Diagrams on page 147

■ Toolboxes on page 148

■ Sequence Numbering on page 154

■ Focus of Control on page 156

■ Object Construction and Destruction on page 158

■ Creating Alternative Diagrams on page 159

■ Object Specification (Interaction Diagrams) on page 160

■ Class Instance Specifications on page 161

■ Link Specification on page 163

■ Message Specification on page 167

Interaction Diagram Overview

An interaction is an important sequence of interactions between objects. Rational Rose
provides two alternate views or representations of each interaction—a collaboration
and sequence diagram. These are collectively referred to as interaction diagrams. The
main difference between sequence and collaboration diagrams is that sequence
diagrams show time-based object interaction while collaboration diagrams show how
objects associate with each other.
145

You can specify and modify an interaction with either kind of diagram, or with both.
Rational Rose automatically reflects all changes made either to a sequence or
collaboration diagram in the corresponding collaboration or sequence diagram, if one
has been created.

Creating and Displaying an Interaction Diagram

To create or display a collaboration or sequence diagram:

1 Click Browse > Interaction Diagram.

The Select Interaction Diagram dialog box is displayed.

2 Select a package to “own” the diagram.

3 On the right side of the dialog box, click the diagram name, and then click OK.

4 From the New Interaction Diagram dialog box, enter the diagram title and click the
diagram type. Your choices are Sequence or Collaboration. Each diagram type is
described in detail later in this chapter.

Collaboration Diagrams

A collaboration diagram is an interaction diagram which shows the sequence of
messages that implement an operation or a transaction. These diagrams show objects,
their links, and their messages. They can also contain simple class instances and class
utility instances. Each collaboration diagram provides a view of the interactions or
structural relationships that occur between objects and object-like entities in the
current model.

You can create one or more collaboration diagrams to depict interactions for each
logical package in your model. Such collaboration diagrams are themselves contained
by the logical package enclosing the objects they depict.

During analysis, collaboration diagrams can indicate the semantics of the primary
and secondary interactions.

During design, collaboration diagrams can show the semantics of mechanisms in the
logical design of the system.

Use collaboration diagrams as the primary vehicle to describe interactions that
express your decisions about the behavior of the system. They can also be used to
trace the execution of a scenario by capturing the sequential and parallel interaction of
a cooperating set of objects.

Collaboration diagrams may also depict interactions that illustrate system behavior.
146 Chapter 9 - Interaction Diagrams and Specifications

Figure 69 Collaboration Diagram Example

Sequence Diagrams

A sequence diagram is a graphical view of a scenario that shows object interaction in a
time-based sequence—what happens first, what happens next. Sequence diagrams
establish the roles of objects and help provide essential information to determine class
responsibilities and interfaces. Sequence diagrams are normally associated with use
cases.

This type of diagram is best used during early analysis phases in design because they
are simple and easy to comprehend. A sequence diagram has two dimensions:
typically, vertical placement represents time and horizontal placement represents
different objects.

Sequence diagrams are closely related to collaboration diagrams and each are
alternate representations of an interaction.

A sequence diagram traces the execution of a scenario in time. Figure 70 shows a
sequence diagram.
Sequence Diagrams 147

Figure 70 Sequence Diagram Example

Toolboxes

Each diagram type has its own unique toolbox. The collaboration and sequence
diagram toolboxes are illustrated in this section.

Collaboration Diagram Toolbox

The graphic below shows all the tools that can be placed on the collaboration diagram
toolbox. Refer to Customizing the Toolbox on page 14 for information on adding or
deleting tools on a diagram toolbox.

The application window displays the following toolbox when the current window
contains a collaboration diagram and you have selected View > As Unified.

Note: Some icons will be different if you have selected View > As Booch or View > As
OMT.
148 Chapter 9 - Interaction Diagrams and Specifications

Figure 71 Collaboration Diagram Toolbox

Sequence Diagram Toolbox

The graphic below shows all the tools that can be placed on the sequence diagram
toolbox. Refer to Customizing the Toolbox on page 14 for information on adding or
deleting tools on a diagram toolbox.

The application window displays the following toolbox when the current window
contains a sequence diagram and you have selected View > As Unified.

Note: Some icons will be different if you have selected View > As Booch or View > As
OMT.

Figure 72 Sequence Diagram Toolbox

Note: The object and message icons are also found in the collaboration toolbox.

Note

Selector

Link Message

Object

Object Link

Data Flow

Lock

Note Anchor

Text

Class Instance

Link to Self

Reverse Link Message

Reverse Data Flow

Note

Object

Message to
self

Procedure
Call

Return

Selector
Text

Note Anchor

Object Message

Destruction
Marker

Asynchronous

Lock
Toolboxes 149

Common Collaboration and Sequence Diagram Icons

There are a number of common tools that are used on both collaboration and
sequence diagrams. Although they differ slightly, they illustrate common concepts or
elements. Tools unique to a specific diagram type are discussed after this section.

Object

One of the primary elements of a collaboration or sequence diagram is an object. An
object has state, behavior, and identity. The structure and behavior of similar objects
are defined in their common class. Each object in a diagram indicates some instance of
a class. An object that is not named is referred to as a class instance.

The object icon is similar to a class icon except that the name is underlined.

If you use the same name for several object icons appearing in the same collaboration
diagram, they are assumed to represent the same object; otherwise, each object icon
represents a distinct object. Object icons appearing in different diagrams denote
different objects, even if their names are identical. Objects can be named three
different ways: object name, object name and class, or just by the class name itself.

Multiple Objects

If you have multiple objects that are instances of the same class, you can modify the
object icon by selecting the Multiple Instances check box in the Object Specification.
When you select this check box, the icon is changed from one object to three staggered
objects.

To create an icon representing multiple objects:

1 Create an object.

2 Double-click its icon to display its specification.

3 Select the Multiple Instances check box.

4 Click OK.

Rational Rose displays the Multiple Object icon.

Figure 73 Multiple Object Diagram
150 Chapter 9 - Interaction Diagrams and Specifications

Messages

A message icon represents the communication between objects, indicating that an
action will follow.

Each message icon represents a message passed between two objects, and indicates
the direction a message is going. A message icon in a collaboration diagram can
represent multiple messages. A message icon in a sequence diagram represents
exactly one message.

A message is the communication carried between two objects that triggers an event. A
message carries information from the source focus of control to the destination focus
of control.

A message is represented on collaboration diagrams and sequence diagrams by a
message icon which visually indicates its synchronization. The synchronization of a
message can be modified through the message specification.

If all messages represented by a message icon do not have the same synchronization,
the simple message icon is displayed. You can change the synchronization of the
message by editing the message specification.

The sequence diagram toolbox contains two message tools. The message icon tool
appears as a horizontal arrow. The message to self icon appears as a message that
returns to itself.

The collaboration diagram toolbox contains two message tools. The forward message
tool, bearing an arrow pointing up and to the right, places a message icon from client
to supplier. The reverse message tool, bearing an arrow pointing down and to the left,
places a message icon from supplier to client. The default synchronization for a
message is simple.

Scripts may be attached to messages to enhance the messages.

If a message is deleted, the link on the collaboration diagram remains intact.

To create a client-to-supplier message and assign it to a link between two objects
(collaboration diagram only):

1 Click the Message icon.

2 Click an icon representing the link.

Rational Rose creates an unnamed, empty message assigned to the designated link.
The source of this message is the client object, and the destination of this message is
the supplier object.
Toolboxes 151

To create a supplier-to-client message, use the Reverse Message Creation tool in the
above procedure. The source of the resulting message is the supplier-object, and the
destination of this message is the client-object.

To name an unnamed message:

1 Click the icon representing the message.

2 Type the name.

3 Click outside the named icon.

Rational Rose will name the message as specified and assign it a sequence number
based on creation order, starting with 1.

To change message names in interaction diagrams:

1 Click the name to display a flashing vertical bar that designates the insertion point.

2 Enter additional text.

3 Click outside the named icon.

Alternatively, you can double-click an icon representing the message to display the
message specification. Then, modify the Name field and click OK.

Message Numbering

To enable or disable the display of message numbers click Tools > Options. Click the
Diagram tab and click Collaboration Numbering (for collaboration diagrams) or
Sequence Numbering (for sequence diagrams).

To change messages numbering in interaction diagrams:

1 Create or display the interaction’s sequence diagram, click Browse > Create
Sequence Diagram or Browse > Go to Sequence Diagram.

2 Reorder the messages by dragging the message icons into the preferred order.

3 Redisplay the interaction diagram by clicking Browse > Go to Collaboration
Diagram or Browse > Go to Sequence Diagram.

Assigning an Operation to a Message

Rational Rose allows you to assign an operation to a message by presenting a list of all
operations accepted by the destination object. The list of valid operations is defined
by the specification of the object’s parent class and the specifications of the parent
class’ superclasses, as specified by its inheritance hierarchy. The Class field of the
destination object’s specification must be set to identify the destination object’s parent
class before operations can be assigned to a message to that destination object.
152 Chapter 9 - Interaction Diagrams and Specifications

Assigning an operation to a message changes the name of the message to the name of
the operation.

To assign an operation to a message:

1 Right-click the message icon.

2 Click an operation from the pop-up list, or click <new operation> to add and
specify a new operation to the destination object’s Class Specification.

If you click <new operation>, you must repeat this procedure after specifying the new
operation to assign the newly-created operation to the message.

You can associate multiple messages with a message icon. Each new message is
represented by an independent name and sequence number. If a message icon
represents multiple messages, you must select a specific message by clicking its name.

You can also create multiple messages associated with the same message icon using
the Link Specification. This method is described in Link Specification on page 163.

To change a message’s assigned operation, display its specification by double-clicking
its message icon. If the message icon represents multiple messages, double-click the
name of the message whose operation you select to change. Select the desired
operation from the specification’s Referenced Operation field, or directly enter an
operation name in the Name field.

Collaboration-Specific Toolbox Icons

Links

Objects interact through their links to other objects. A link is an instance of an
association, analogous to an object being an instance of a class.

A link should exist between two objects, including class utilities, only if there is a
relationship between their corresponding classes. The existence of a relationship
between two classes symbolizes a path of communication between instances of the
classes: one object may send messages to another.

Links can support multiple messages in either direction. If a message is deleted, the
link remains intact.

The link is depicted as a straight line between objects or objects and class instances in
a collaboration diagram. If an object links to itself, use the loop version of the icon.

To create a link between two objects:

1 Click the Link tool.

2 Drag the pointer between the two object icons.
Toolboxes 153

Rational Rose will create and display an unnamed link.

To create a reflexive link (a link between an object and itself):

1 Click the Link to Self tool.

2 Click an icon representing the object.

Rational Rose will create and display an unnamed reflexive link.

Sequence Numbering

Sequence numbering allows you to clearly see how messages interact and relate to
one another. Numbering messages can be done two ways on sequence diagrams: top
level numbering (a 1, 2, 3 pattern) or hierarchical numbering (a 1.1, 1.1.2, 1.1.3
pattern). Only top level numbering is available on collaboration diagrams. However,
if you create a collaboration diagram from a sequence diagram with hierarchal
numbering, the hierarchal numbering is retained.

Top-Level Numbering

Top-level numbering gives each message or message to self a single number. There are
no number subsets. Top-level numbering is useful in small sequence diagrams with
few objects and messages.

Hierarchical Numbering

Hierarchical numbering bases all messages on a dependent message. For example,
you could have messages numbered 1., 1.1, 1.2, 1.2.1, where message number 1 is an
independent message. All other message numbers numbered 1.x and beyond are
dependent on message 1. If you remove independent message 1 from the diagram, all
dependent messages will be removed.

To display hierarchical numbering:

1 Click Tools > Options.

2 Click the Diagram tab.

3 Select the Sequence Numbering check box.

4 Select the Hierarchical Messages check box.
154 Chapter 9 - Interaction Diagrams and Specifications

Scripts

Scripts are used to enhance messages on sequence diagrams; they are text fields that
attach to messages.

To create and attach a script:

1 Click the message icon and drag it between two objects.

2 Create text by either:

❑ Using the ABC icon.

❑ Clicking Tools > Create >Text.

3 Select one or more labels. Press the CTRL or SHIFT key to enable multiple
selections.

4 Select one message.

5 Click Edit > Attach Script to attach the script to the message.

To move a script:

1 Select the message and drag it.

The script moves next to the message.

2 Select only the script and drag it.

The script moves independently of the message.

To detach a script:

1 Select either a script or a message.

2 Click Edit > Detach Script.

To delete messages, scripts, or objects:

■ Messages

Click the message, and then click Edit > Delete to delete all dependent messages
and attached scripts.

■ Scripts

Click the script, and then click Edit > Delete to delete the script with no effect on the
messages.

■ Objects

Click the object, and then click Edit > Delete to delete all messages and attached
scripts.
Sequence Numbering 155

To undo:

■ Click Edit > Undo to reverse the latest change.

Focus of Control

Focus of Control (FOC) is an advanced notational technique that enhances sequence
diagrams. This technique shows the period of time during which an object is
performing an action, either directly or through an underlying procedure.

FOC is portrayed through narrow rectangles that adorn lifelines (the vertical lines
descending from each object). The length of an FOC indicates the amount of time it
takes for a message to be performed. When you move a message vertically, each
dependent message will move vertically as well. Also, you can move an FOC
vertically off the source FOC to make it detached and independent.

Figure 74 illustrates a sequence diagram with FOC notation and scripts.

Figure 74 Focus of Control Diagram Example
156 Chapter 9 - Interaction Diagrams and Specifications

Displaying Focus of Control

To enable the Focus of Control notation on a sequence diagram:

1 Click Tools > Options.

2 Click the Diagram tab.

3 Select the Focus of control check box.

Coloring Focus of Control

To help distinguish a particular FOC from other items in a sequence diagram, you can
fill an FOC with a color.

To color an FOC:

1 Select the message icon that enters the FOC you want to color.

2 Click Format > Fill Color.

3 Click the color you want to make the selected FOC.

4 Click OK.

Moving the Focus of Control

Sometimes it is helpful to move the starting point of an FOC and all corresponding
messages. If the FOC has an entry point message, you can move the message.
Otherwise, follow these steps:

To move the FOC on a sequence diagram:

1 Select the first message from the FOC you want to move.

2 Press the ALT key.

3 Click the source message and move it to the desired location on a sequence
diagram.

The source FOC changes locations.

Nested Focus of Control

A nested Focus of Control is an FOC that resides on another FOC. Nested FOC allows
you to distinguish exactly where a message starts and where it ends. If you want to
add a message to an existing sequence diagram, the nested FOC feature helps you
determine where to place it.
Focus of Control 157

Object Construction and Destruction

Object Construction Markers

To model an object that existed before or at the start of a sequence, you create a new
object or drag an element from the browser to a sequence diagram. By default, the
object is placed at the upper left side of the diagram. Any objects that you
subsequently add are placed as close as possible to where they are created or dropped
if they are dropped between two other objects.

To model an object that is constructed during a sequence, you can create the object or
drag and drop an element from the browser then drag it down to where to the point
where it is created. Once you place the object, you can draw a message from the
calling object to the new object. Once placed, you cannot move the object above the
calling object's construction. If you move the object below the message that it sends to
create another object, the other object moves lower as well. To uncouple an object
from its caller (for example, to change which is the calling object) you must reassign
the message from the caller by moving the head from the object to the lifeline or by
deleting the message.

It isn't a requirement that a construction message be sent to an object since an object's
position determines its construction. However, if you do use a message, it will extend
from the lifeline of the caller object to the constructed object. For example:
158 Chapter 9 - Interaction Diagrams and Specifications

Object Destruction Markers

A destruction marker is often accompanied by a return message from the destroyed
object to the caller that initialized the sequence, but the message is optional. To create
a destruction marker, select the destruction message type from the toolbar and place
the cursor on the class that is destroyed. This places an X at the cursor and causes the
lifeline and focus of control to end.

Creating Alternative Diagrams

The Create Collaboration Diagram command creates a collaboration diagram from
information contained in the sequence diagram. The Create Sequence Diagram
command creates a sequence diagram from information contained in the
collaboration diagram. The Go to Sequence Diagram and Go to Collaboration Diagram
commands traverse between an interaction’s two representations.

Toggling Between Interaction Diagrams

When you work in either a collaboration or sequence diagram, it is possible to view
the corresponding diagram by pressing the F5 key. For example, if you are working on
a sequence diagram, you can press F5 and Rational Rose will automatically create a
collaboration diagram with the same diagram name and model elements. If you make
a change to one diagram and then press F5, the change will appear on the
corresponding diagram as well.

Note: When toggling from a sequence diagram to a collaboration diagram, you may
need to rearrange the collaboration diagram model elements.

Creating a Collaboration Diagram from a Sequence Diagram

To create a collaboration diagram from a sequence diagram, click anywhere on the
sequence diagram and click Browse > Create Collaboration Diagram. Note that if this
collaboration diagram already exists, the Browse menu will instead present the Go to
Collaboration Diagram option.

Creating a Sequence Diagram from a Collaboration Diagram

To create a sequence diagram from a collaboration diagram, click anywhere on the
collaboration diagram and click Browse > Create Sequence Diagram. Note that if this
sequence diagram already exists, the Browse menu will instead present the Go to
Sequence Diagram option. Class instances in the collaboration diagram are
represented as objects in the sequence diagram.
Creating Alternative Diagrams 159

Object Specification (Interaction Diagrams)

An object specification allows you to display and modify the properties and
relationships of an object in the current model.

To display an Object Specification, double-click any icon representing an object, or
click Browse > Specifications.

Specification Content

The Object Specification consists of the General tab.

Object Specification—General Tab

Figure 75 Object Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Name

If you specify the name of the object's class in the Object Specification, the name must
identify a class defined in the model.
160 Chapter 9 - Interaction Diagrams and Specifications

Class

The Class field displays the name of the object’s parent class. The default class for a
newly created object is Unspecified.

The object will accept messages conveying the operations of its parent class, and the
operations of the superclasses of its parent class.

If you subsequently delete the class from the model, its name will be displayed in
parentheses. If you recreate the class or create a new class with the same name, the
object becomes an instance of this class.

Persistence Field

Use these options to specify the object’s persistence.

To display an object’s persistence in a collaboration diagram, right-click an icon
representing the object, and click Show Persistence.

Multiple Instances Check Box

Select the Multiple Instances check box to indicate that this object represents multiple
instances of the same class. When you select this field, the icon changes from one
object to three staggered objects. The object group is considered one entity, but this
icon indicates that several objects are involved.

Class Instance Specifications

A class instance places a representation of a class on a collaboration diagram.

To display a Class Instance Specification, double-click any icon representing a class
instance, or click Browse > Specifications.

Table 12 Persistence Field Options

Type Description

Persistent The object exists after the termination of the program
in which it was created.

Static The object exists during the entire execution of a
program.

Transient The object is created and destroyed dynamically
during the execution of a program.
Class Instance Specifications 161

Specification Content

The Class Instance Specification consists of the General tab.

Class Instance Specification—General Tab

Figure 76 Class Instance Specification—General Tab

Refer to the descriptions earlier in this chapter or in the Introduction to Specifications
chapter for information on the specification elements not covered in the following
section.

Class

The class the element belongs to is displayed here. The default class for a newly
created element is (Unspecified). If you specify an object’s class in the Object
Specification, the class name must identify a class defined in the model, or you may
create a new class.

To create a new class through the Object Specification, click the scroll arrow to the
right of the Class field. A list box will display all the possible class selections,
including <New>. Double-click <New>. A Class Specification dialog box is displayed.
Enter the information regarding the new class.
162 Chapter 9 - Interaction Diagrams and Specifications

If you delete a class from the model after you have associated it with one or more
objects, the class name is enclosed in parentheses. If you re-create the class or create a
new class with the same name, the object becomes an instance of the new class.

You can set this field only through the dialog box.

Link Specification

A link is the path of communication between two objects. A link can exist between
two objects, between an object and a class instance, or between an object and itself.

To display a Link Specification, double-click any icon representing a link, or click
Browse > Specifications.

Specification Content

The Link Specification consists of the following tabs: General and Messages.

Link Specification—General Tab

Figure 77 Link Specification—General Tab
Link Specification 163

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Assoc

The Assoc field lists any valid role(s) or association(s) tied to the classes belonging to
the two objects.

Select an association from the drop-down list. The name of the role tied to the
association is displayed beside the link on the diagram. The keys are displayed in
brackets under the role, and the constraints are displayed in braces under the keys.

Supplier and Client Visibility

Visibility is the ability of one object to see another object.

You can specify the following visibility types for the supplier object, the client object
or both.

An object visibility adornment is a letter inside a box placed at the supplier end of the
link. Each letter identifies the type of visibility used. The adornment box is either open
(shared) or filled (unshared).

Table 13 Supplier and Client Visibility Options

Type Description

Unspecified (Default) The object visibility has not been specified.

Field The supplier object is visible because it is a
field of the client.

Parameters The supplier object is visible to the client
because it is a parameter for one of the client’s
operations.

Local The supplier is local to an operation of the
client object.

Global The supplier object is global to the client.
164 Chapter 9 - Interaction Diagrams and Specifications

You can set link visibility through the Link Specification or through the shortcut menu.
These fields correspond to visibility adornments displayed in the collaboration
diagram.

■ To set visibility for the supplier object, click a visibility type in the Supplier
Visibility section.

■ To set visibility for the client object, click a visibility type in the Client Visibility
section.

The visibility adornment is placed at the appropriate end of the link. The unspecified
object visibility does not have a corresponding visibility adornment. Use this
adornment only when you need to document an important tactical decision.

Shared

If visibility is an important detail in your software model, use visibility adornments to
show these details in a collaboration diagram.

Shared visibility indicates structural sharing of the given object; that is, the shared
object’s state can be altered through more than one path. Unshared visibility
represents unique access given to the client object. When you create a link, unshared
visibility is the default.

You can set the shared indicators in the Link Specification or by selecting a visibility
value from the shortcut menu.

To toggle the shared indicator, select or clear the Shared check box below the
appropriate visibility section.

■ If you select the Shared check box, the visibility adornment changes from a filled
square to an open square of the corresponding type.

■ If you clear the Shared check box, the visibility adornment changes to a filled
square of the corresponding type.

Role

This field lists the role names tied to the selected associations. This is especially useful
since many associations are not named. This field cannot be edited.

Note: The Link to Self Specification contains only the Name, Visibility, and Shared
elements.
Link Specification 165

Link Specification—Messages Tab

Figure 78 Link Specification—Messages Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

You can add a message either directly on the diagram or through Insert on the
shortcut menu.

Icon

This left-most unlabeled field contains a small version of the link message icon
indicating the direction of the message.

Sequence

This is a system-assigned, sequential message number.

Message Name

Click the item to see the Picklist box showing all available operations on the class. This
is the only editable column on this tab.
166 Chapter 9 - Interaction Diagrams and Specifications

Receiver

This is the object receiving the message.

Note: You can double-click every field except the icon field to display the message
specification.

Message Specification

A message conveys an operation through a link between objects. A message’s
specification identifies the operation it conveys, its synchronization, its frequency, and
its associated documentation.

To display a Message Specification, double-click any icon representing a message, or
click Browse > Specifications.

Specification Content

The Message Specification consists of the following tabs: General and Detail.

Message Specification General Tab

Figure 79 Message Specification General Tab
Message Specification 167

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Class

The Class field displays the name of the class to which the element belongs.

Message Specification—Detail Tab

Figure 80 Message Specification—Detail Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.
168 Chapter 9 - Interaction Diagrams and Specifications

Synchronization

Use these options to specify concurrency semantics for the operation named in the
Synchronization field.

Table 14 Synchronization Options

Type Description

Simple (default) The message has a single thread of control.

Synchronous The operation proceeds only when the client sends a
message to the supplier and the supplier accepts the
message.

Balking The client passes a message only if the supplier is
immediately ready to accept the message; the client
abandons the message if the supplier is not ready.

Timeout The client abandons a message if the supplier cannot
handle the message within a specified amount of
time.

Asynchronous The client sends a message to the supplier for
processing and continues to execute its code without
waiting for or relying on the supplier’s receipt of the
message.

Procedure Call The entire nested sequence is completed before the
outer level sequence resumes. This can be used with
ordinary procedure calls as well as with concurrently
active objects when one of them sends a signal and
waits for a nested sequence of behavior to complete.

Return Return from a procedure call. The return arrow may
be suppressed since it is implicit at the end of an
activation.
Message Specification 169

Frequency

Use these options to indicate whether the message is sent periodically or
aperiodically.

Table 15 Frequency Options

Type Description

Aperiodic The message is sent at irregular intervals, or does not
have a regular interval.

Periodic The message is sent at regular intervals.
170 Chapter 9 - Interaction Diagrams and Specifications

10Component Diagrams
and Specifications
Contents

This chapter is organized as follows:

■ Component Diagram Overview on page 171

■ Component Specification on page 173

■ Package Specification on page 177

Component Diagram Overview

A component diagram shows the physical dependency relationships (mapping to a
file system) between components—main programs, subprograms, packages, and
tasks—and the arrangement of components into component packages.

Figure 81 Component Diagram Example
171

Component diagrams are contained (owned) either at the top level of the model or by
a package. This means the diagram will depict the components and packages in
which the diagram is contained.

Creating and Displaying a Component Diagram

You can create or display the component diagram in one of three ways:

■ Click Browse > Component Diagram.

■ On the toolbar, click the component diagram icon.

■ On the browser, double-click the component diagram icon.

Component Diagram Toolbox

The application window displays the following toolbox when the current window
contains a component diagram and View > As Unified is selected.

Figure 82 Component Diagram Toolbox

Assigning a Component to Another Package

Every component is assigned to a package. When you create a component using a
creation tool from the component diagram toolbox, the component is assigned to the
package containing the component diagram.

To reassign a component from one package to another:

Note Anchor

Text

Package

Package

Subprogram Specification

Generic Specification

Generic Specification

Task Body

Note

Selector

Main Program

Component

Dependency

Subprogram Body

Package Body

Task Specification

Lock
172 Chapter 10 - Component Diagrams and Specifications

1 Select a component icon in a diagram directly contained by the package to which
the component should be assigned. (You might need to create such a diagram or
icon if one does not currently exist.)

2 Click Edit > Relocate.

Rational Rose will update all component diagrams to reflect the component’s new
assignment.

Like components, packages are also assigned to packages, permitting nesting to an
arbitrary depth. The mechanisms previously described can be applied to packages as
well as components.

Component Specification

A Component Specification displays and modifies the properties and relationships of
each component in the current model. The same specification is used for all kinds of
components.

Some of the information on this specification can also be displayed inside icons
representing the component in a component diagram.

To display a Component Specification, double-click any icon representing the
component, or click Browse > Specifications.

Specification Content

The Component Specification consists of the following tabs: General, Detail, Realizes,
and Files.
Component Specification 173

Component Specification—General Tab

Figure 83 Component Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Stereotype (Component)

A component stereotype represents the subclassification of an element. The most
common type of components are already predefined as stereotypes, including Main
Program, Package Body, Package Specification, Subprogram Body, Subprogram
Specification, Task Body, and Task Specification. You can also define and add your
own kinds of stereotypes.

Language

This field identifies the implementation language that is assigned to this component.
Note that when changing the implementation language of a component, the data
types that are used in the specification of operations and attributes of the assigned
classes are not automatically converted to data types in the new implementation
174 Chapter 10 - Component Diagrams and Specifications

language. Also, if you change the implementation language for a component with
classes that are assigned to other components, a dialog box that allows you to specify
how to handle those classes appears.

Component Specification—Detail Tab

Figure 84 Component Specification—Detail Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Declarations

The Declarations field contains a list of declarations, such as class names, variables,
and other language-specific features (such as #includes or similar constructs).
Declarations can include classes, objects, and any other language-specific
declarations.

Use this field to list the elements that physically reside in the component. You can
view this field only through the component specification.
Component Specification 175

Component Specification—Realizes Tab

Figure 85 Component Specification—Realizes Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Show All Classes

Select this check box if you want to view a list of all classes in the model. If this check
box is cleared, you will see only the classes that are assigned to this component.

Classes

The list identifies the classes and interfaces that are assigned to this component
(indicated with check marks). The Logical Package column shows to which package a
class belongs, and the Language column shows the programming language that is
assigned to a specific class.

You assign a class or interface to a component through Assign on the shortcut menu in
the list, or by dragging a class or interface from the browser and dropping it in this
list. You can only assign classes that are unassigned or classes that are assigned to
components with the same implementation language as this component.
176 Chapter 10 - Component Diagrams and Specifications

Language

This field identifies the implementation language that is assigned to this component.

When changing the implementation language of a component, the data types that are
used in the specification of operations and attributes of the assigned classes are not
automatically converted to data types in the new implementation language. Also, if
you change the implementation language for a component with classes that are
assigned to other components, a dialog box is displayed in which you must specify
how to handle those classes.

Component Specification—Files Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements.

Package Specification

A Package Specification displays and modifies the properties and relationships of a
package in the current model.

To display a Package Specification, double-click any icon representing the package, or
click Browse > Specifications.

The Package Specification consists of the following tabs: General, Detail, Realizes, and
Files.
Package Specification 177

Package Specification—General Tab

Figure 86 Package Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Package

The package the component belongs to is displayed in this static field.
178 Chapter 10 - Component Diagrams and Specifications

Package Specification—Detail Tab

Figure 87 Package Specification—Detail Tab

Component Diagrams

This field lists the component diagrams contained in the package. You can create a
new component diagram in the package through Insert on the shortcut menu, or click
Browse > Component Diagram. You may rename or delete existing component
diagrams from this field.

To display a specific component diagram listed in this field, double-click its entry.

Package Specification—Realizes Tab

Refer to description earlier in this chapter for information on this tab.

Package Specification—Files Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements.
Package Specification 179

11Deployment Diagrams
and Specifications
Contents

This chapter is organized as follows:

■ Deployment Diagram Overview on page 181

■ Processor Specification on page 182

■ Device Specification on page 185

■ Connection Specification on page 187

■ Process Specification on page 188

Deployment Diagram Overview

A deployment diagram shows processors, devices, and connections. Each model
contains a single deployment diagram that shows the connections between processors
and devices, and the allocation of its processes to processors.

Figure 88 Deployment Diagram Example
181

Creating and Displaying a Deployment Diagram

You can create or display the deployment diagram in one of three ways:

■ Click Browse > Deployment Diagram.

■ On the toolbar, click the deployment diagram icon.

■ In the browser, double-click the deployment diagram icon.

Deployment Diagram Toolbox

The application window displays the following toolbox when the current window
contains a deployment diagram and you have selected View > As Unified:

Figure 89 Deployment Diagram Toolbox

Processor Specification

A Processor Specification displays and modifies the properties and relationships of a
processor in the current model. Some of the information on the specification can also
be displayed inside icons representing the processor in a model's deployment
diagram.

To display a Processor Specification, double-click any icon representing a processor,
or click Browse > Specifications.

Specification Content

The Processor Specification consists of the following tabs: General and Detail.

Note Anchor

Text

Connection

Lock

Note

Selector

Processor

Device
182 Chapter 11 - Deployment Diagrams and Specifications

Processor Specification—General Tab

Figure 90 Processor Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements.
Processor Specification 183

Processor Specification—Detail Tab

Figure 91 Processor Specification—Detail Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.

Characteristics

Use the Characteristics field to specify a physical description of an element. For
example, you can describe the kind and bandwidth of a connection; the manufacturer,
model, memory, and disks of a machine; or the kind and size of a device. You can set
this field only through the specification. This information is not displayed in the
deployment diagram.

To update this field, click the Characteristics field and enter the information.

Processes

Use this field to identify the processes assigned to this processor. Processes denote
either the root of a main program from a component diagram or the name of an active
object from a collaboration diagram.
184 Chapter 11 - Deployment Diagrams and Specifications

To create a process, right-click in the processes area and click Insert from the shortcut
menu. A new process entry is created. To change the name or priority, click the item
and type the changes.

You can display a list of the processes by selecting the processor icon and clicking
Show Processes from the shortcut menu.

Scheduling

The Scheduling field specifies the type of process scheduling used by the processor.
Use these options to specify the appropriate scheduling.

You can set this field only through the specification. To set the scheduling type, click
the applicable option button in the Scheduling field.

You can display the scheduling type in the processor icon by clicking Show
Scheduling from the shortcut menu.

Device Specification

A Device Specification displays and modifies the properties and relationships of a
device in the current model. Some of the information on this specification can also be
displayed inside icons representing the device in a deployment diagram.

Table 16 Scheduling Field Options

Type Description

Preemptive

(default)

Higher-priority processes that are ready to execute
can preempt lower-priority processes that are
currently executing. Processes with equal priority are
given a time slice in which to execute, allowing
computation resources to be fairly distributed.

Non preemptive The current process continues to execute until it
relinquishes control.

Cyclic Control passes from one process to another; each
process is given a fixed amount of processing time.

Executive An algorithm controls process scheduling.

Manual Processes are scheduled by a user outside of the
system.
Device Specification 185

To display a Device Specification, double-click any icon representing a device, or click
Browse > Specifications.

Specification Content

The Device Specification consists of the following tabs: General and Detail.

Device Specification—General Tab

Figure 92 Device Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements.
186 Chapter 11 - Deployment Diagrams and Specifications

Device Specification—Detail Tab

Figure 93 Device Specification—Detail Tab

Refer to the descriptions earlier in this chapter or in the Introduction to Specifications
chapter for information on the specification elements.

Connection Specification

A Connection Specification indicates a communication path between two processors,
two devices, or a processor and a device. A connection usually represents a direct
hardware coupling, such as an RS-232 cable. It can also represent an indirect coupling.

To display a Connection Specification, double-click any icon representing a
connection, or click Browse > Specifications.

The Connection Specification consists of two tabs, which contain the same elements as
the Device Specification. Refer to Device Specification on page 185.
Connection Specification 187

Process Specification

Processes are threads of control that execute on a processor. One process specification
documents one thread of control.

You access the Process Specification through the Processes field of a Processor
Specification. None of the information contained in the Process Specification is
displayed in a diagram; thus, process properties can only be viewed and modified
through a Process Specification.

Specification Content

The Process Specification consists of the General tab.

Process Specification—General Tab

Figure 94 Process Specification—General Tab

Refer to the descriptions in the Introduction to Specifications chapter for information on
the specification elements not covered in the following section.
188 Chapter 11 - Deployment Diagrams and Specifications

Processor

The owner of the process is shown here.

Priority

This field contains the relative priority of this process, if there is one. You can use this
information with the scheduling type identified in the Processor Specification to
schedule process execution.
Process Specification 189

12Stereotypes
Contents

■ This chapter is organized as follows:

■ Overview on page 191

■ Viewing Stereotypes on page 192

■ Creating Stereotypes on page 195

■ Adding Stereotypes to the Diagram Toolbox on page 199

■ Subsystem Stereotype Package on page 200

Overview

A stereotype is a modeling element subclassification that carries a specific meaning.
Stereotypes can be applied to:

A stereotype can be depicted by either a name or an icon.

■ Activities ■ Generalization Relationships

■ Association Relationships ■ Objects (on activity diagrams)

■ Attributes ■ Operations

■ Classes ■ Packages

■ Components ■ Processors

■ Connections ■ States

■ Dependency Relationships ■ Use Cases

■ Devices
191

Benefits to Using Stereotypes

A stereotype allows you to provide additional distinctions in your model that are not
explicitly supported by the UML. The use of stereotypes:

■ Allows for customization of your development process.

■ Provides mnemonic help and visualization aids.

■ Allows you to make presentations with greater detail.

User-Defined Stereotypes

Some stereotypes are predefined, but you can also define your own to add new kinds
of modeling types. User-defined stereotypes are defined in a stereotype configuration
file. For each stereotype, you can customize icons to be displayed in diagrams, in the
browser, and in the toolbox.

Rational Rose offers ten stereotype icons that you can use when modeling a business:

For more information on these icons, refer to the online Help.

Viewing Stereotypes

You can control how stereotypes are displayed. Click Tools > Options to display the
Options dialog box. The settings are found on the Diagram tab.

■ Business Use Case ■ Business Worker

■ Use-Case Realization ■ Entity Class

■ Boundary Class ■ Control Class

■ Business Actor ■ Business Use-Case Realization

■ Business Entity ■ Organization Unit Package
192 Chapter 12 - Stereotypes

Diagram Tab

Figure 95 Options Dialog Box—Diagram Tab

The following selections are applied to new model elements that are added to the
diagrams. To make changes to existing model elements, use the shortcut menu.

Compartments—Show Stereotypes

This check box allows you to control the display of stereotype names for operations
and attributes of new classes in the class compartments.

Stereotype Display—None, Label, Decoration, Icon

These options allow you to control the display of stereotypes on model elements
(except for relationships) in diagrams. The selection is applied to new model elements
that are added to diagrams.

Selecting Label, makes the name of the stereotype appear inside guillemets (<< >>).
Decoration displays a graphic marker such as highlighting an icon or tool. Selecting
None means the name is not displayed, while selecting Icon means the icon created for
that stereotype is displayed.

Stereotype
Settings

Stereotype
Settings
Viewing Stereotypes 193

Stereotype Display—Show labels on relations and associations

This option allows you to control the display of stereotype labels on new relationships
in diagrams. If enabled, the names of stereotypes appear inside guillemets (<< >>).

Browser Tab

Figure 96 Options Dialog Box—Browser Tab

The changes made on the Browser tab are reflected in the browser.

Show stereotype names

This check box allows you to control the display of stereotype names of model
elements in the browser.

Hide stereotype name if there is an icon for it

Select this check box to display stereotype icons, but not stereotype names, of model
elements in the browser. This check box is only relevant for stereotypes that have an
icon.

Stereotype
Settings
194 Chapter 12 - Stereotypes

Creating Stereotypes

Creating a New Stereotype for the Current Model

You can create a new stereotype by typing a new name in the Stereotype field of a
model element’s specification. The new stereotype will then be available in the
Stereotype field for all model elements of that type (which are assigned the same
language) in the current model.

If you want the stereotype to be available in all Rose models, follow the steps below. If
you already have a stereotype configuration file, refer to Creating a New Stereotype for
All Rose Models on page 196.

Creating a New Stereotype Configuration File

The stereotypes in Rational Rose must be defined in a stereotype configuration file.
Rational Rose is delivered with a default stereotype configuration file, called
DefaultStereotypes.ini. If possible, add your stereotypes to that file. If you do not want
to use that file, follow these steps to create a new stereotype configuration file:

1 Close Rational Rose.

2 Create a text file (called, for example, MyStereotypes.ini) using Notepad or
another text editor, and save it in the Rose installation folder.

3 Edit the new stereotype configuration file. For information on how to create a new
stereotype and add it to a stereotype configuration file, please refer to Creating a
New Stereotype for the Current Model on page 195.

4 Run the Windows Registry Editor (regedit.exe) by clicking Run on the Start menu.
Type regedit and click OK.

5 Locate and select the section entitled [HKEY_LOCAL_MACHINE\SOFTWARE\Rational

Software\RoseStereotypeCfgFiles] in the registry list.

6 Click Edit > New > String Value. Give the new registry key the name file#, where # is
the next consecutive number (1, 2, or 3, etc.).

7 Double-click the new key, and enter the name of your configuration file (for
example, MyStereotypes.ini).

8 Close the registry.

Next time you open a model in Rational Rose, the stereotypes defined in your new
stereotype configuration file will be available in the model.
Creating Stereotypes 195

Creating a New Stereotype for All Rose Models

To create a new stereotype and make it available in all models in Rose:

1 Close Rational Rose.

Note: Optionally, create icons for the stereotype to be used in diagrams, lists, and
diagram toolboxes. Refer to Creating Stereotype Icons on page 197.

2 Open the default stereotype configuration file, DefaultStereotypes.ini.

3 In the stereotype configuration file, add a line for the new stereotype in the section
called [Stereotyped Items]. For example, to add the class stereotype Controller to an
existing configuration file, add a corresponding line as follows:

[Stereotyped Items]

Class:Model

Class:View

Class:Controller

4 Create a section for the new stereotype, named exactly as the line you added in the
[Stereotyped Items] section, for example:

[Class:Controller]

Item=Class

Stereotype=Controller

5 If you have created a diagram icon for the stereotype, specify the name of that file
(Metafile). Note that you can use an ampersand (&) instead of the folder of the
stereotype configuration file. For example:

Metafile=&\MyStereotypeIcons\controller.emf

6 If you want to create a diagram toolbox button for this stereotype, specify the
name of the file in which you created the corresponding small toolbox icon
(SmallPaletteImages) and the location of the icon in that file (SmallPaletteIndex).
You can also specify the name of the file in which the corresponding large toolbox
icon is defined (MediumPaletteImages) and the location of the icon in that file
(MediumPaletteIndex). For example:

SmallPaletteImages=&\MyStereotypeIcons\

small_palette_icons.bmp

SmallPaletteIndex=3

MediumPaletteImages=&\MyStereotypeIcons\

medium_palette_icons.bmp

MediumPaletteIndex=3
196 Chapter 12 - Stereotypes

7 If you want to graphically display this stereotype in specification lists or in the
browser, specify the name of the file in which you created its list icon (ListImages)
and the location of the icon in that file (ListIndex). For example:

ListImages=&\MyStereotypeIcons\list_icons.bmp

ListIndex=2

8 Add any other setting needed to define the new stereotype. For a list of all
available settings, information on the meaning of each setting, the possible values,
and the default values, please refer to the “Stereotype Configuration File” topic in
the online Help. Note, however, that you only have to include settings for which
you want to assign values other than defaults.

9 Save your changes to the stereotype configuration file.

10 Run Rational Rose. View the log window to make sure there were no problems
loading your icons.

11 If you created a diagram toolbox icon for the new stereotype, and want to add it as
a button on a diagram toolbox, refer to Adding Stereotypes to the Diagram Toolbox on
page 199.

The new stereotype is now available in Rational Rose. For information on how to
control the display of the new stereotype in diagrams and in the browser, refer to
Viewing Stereotypes on page 192.

Creating Stereotype Icons

For each stereotype, four different icons may be supplied:

■ A diagram icon (to customize the appearance of model elements with this
stereotype in diagrams).

■ A small and a large diagram toolbox icon (to be able to add a button for this
stereotype to the diagram toolbox). Two different sizes correspond to the Use Large
Buttons option on the Toolbars tab of the Options dialog box.

■ A list view icon (to graphically display the stereotype for model elements in
specification lists and in the browser).
Creating Stereotypes 197

Creating a Diagram Icon

Diagram icons are symbols or elements that can be placed on a diagram from the
browser, toolbar, or menu. Diagram icons have to be created in Windows Metafile
(.wmf) or Enhanced Metafile (.emf) format. You can download drawing packages that
support these formats at various shareware sites on the Internet. Enhanced Metafiles
are recommended. Diagram toolbox and list view icons must be created in bitmap
(.bmp) format.

Note: If you create an icon (for example, a diagram icon), you will most likely want to
create the other three corresponding icons: a list view icon, a small toolbar icon, and a
large toolbar icon.

To create a diagram icon:

1 Using a vector-based (as opposed to bitmap) drawing application, draw your icon
in the size you want it to appear in Rational Rose. It is not recommended that you
use a drawing application that forces the icon to fit a certain area.

2 Make sure that the scaling factor is set to 100% when deciding on the size of the
icon. Use colors if you like. If you want the name of the model element to appear
within the stereotype icon, leave some blank space for it.

3 Select the icon and export it in either the Windows Metafile (.wmf) format or the
Enhanced Metafile (.emf) format. If you use CorelDraw, make sure the Include
header check box is selected if you save your selection as a Windows Metafile.

Creating Diagram Toolbox and List View Icons

Diagram toolbox icons and list view icons (icons that appear in the browser) are
created in bitmap (.bmp) format. Rational Rose only supports bitmap files saved in
the 256-color bitmap scheme. You can create one bitmap file containing several icons,
arranged horizontally side by side. Note that the SmallPaletteIndex setting in the
configuration file of a stereotype specifies the diagram toolbox icon that belongs to a
specific stereotype. The ListIndex setting specifies the list icon that belongs to a
specific stereotype. Diagram icons can only be created in Windows Metafile (.wmf) or
Enhanced Metafile (.emf) format.

Note: If you create an icon (for example, a list view icon), you will most likely want to
create the other three corresponding icons: a diagram icon, a small toolbar icon, and a
large toolbar icon.
198 Chapter 12 - Stereotypes

To create a new icon:

1 Create or open a bitmap file using a program such as Microsoft Paint or the bitmap
editor in Microsoft Visual Studio.

Note: If you are adding several icons to the same bitmap file in Microsoft Visual
Studio, use the grid setting in the Image menu to help you see the borders of each
icon.

2 Create an icon of the following size and background color:

❑ Small diagram toolbox icon - 15 pixels high and 16 pixels wide, using a gray
background (which is RGB = 192, 192, 192 in Rational Rose).

❑ Large diagram toolbox icon - 24 pixels high and 24 pixels wide, using a gray
background (which is RGB = 192, 192, 192 in Rational Rose).

❑ List view icon - 16 pixels high and 16 pixels wide, using a white background.

3 Save the icon as a 256-color bitmap file (.bmp). To save the color setting in
Microsoft Paint, select 256-color bitmap from the Save as type list in the Save as
dialog box.

Note: Some of your icon colors may not match precisely because the color palette
used by the toolbars is limited.

Adding Stereotypes to the Diagram Toolbox

To make a stereotype available as a button on a diagram toolbox:

1 Create a stereotype and a corresponding diagram toolbox icon. For information on
how to do that, refer to Creating Stereotypes on page 195.

2 Click Tools > Options, and click the Toolbars tab.

3 Under Customize Toolbars, click on the diagram type for which you want to
change the toolbox.

– or –

In an open diagram, right-click in the diagram toolbox and select Customize.

The Customize Toolbars dialog box is displayed. The leftmost column provides the
list of available icons.

4 Select the icon you want to appear on the diagram toolbox and click Add.
Adding Stereotypes to the Diagram Toolbox 199

Subsystem Stereotype Package

Although closely related to a system, a subsystem is a group of model elements that
have specific behavior and objectives. A subsystem is a stereotyped package and is
represented by the package icon with the subsystem stereotype.

Note: The term subsystem is also used in the Rose Extensibility Interface (REI).
However, there is a specific distinction between each term. In the REI, any package
that resides in the component view is considered a subsystem. A subsystem on a Rose
diagram is a stereotyped package.

Subsystem Stereotype Sample

The subsystem stereotype sample demonstrates how subsystems collaborate to make
up a larger system. The sample below illustrates a bookstore system and the smaller
subsystems that make up the total system.

Figure 97 Subsystem Stereotype Sample

The four subsystems in the subsystem sample together make up all the functionality
of the Bookstore Enterprise System. Note that through the <<include>>
relationships, each subsystem provides a certain piece of the Bookstore system
functionality.

Instead of going into separate subsystems, a user of the Bookstore Enterprise

System can verify stock in the Warehouse Subsystem or check the status of a shipped
book in the Mailing Subsystem, for example. All subsystems make up a much larger
system. Each stereotyped package subsystem is just a means of organizing model
elements and diagrams together.
200 Chapter 12 - Stereotypes

13Framework Wizard Add-In
Contents

This chapter is organized as follows:

■ Overview on page 201

■ Activating the Framework Wizard Add-In on page 202

■ Creating a New Model from a Framework on page 202

■ Creating and Deleting Frameworks on page 203

Overview

The Framework Wizard Add-In provides a library of frameworks that can be used as
templates when creating new models. If the Framework Wizard Add-In is active, the
File > New command in Rational Rose displays a dialog box from which you can
choose one of the available frameworks. By choosing an appropriate framework when
you create a new model, the model is automatically initialized with a predefined
architecture and a set of reusable model elements. This way, you can focus your
modeling efforts on the parts that are unique to your system, instead of reinventing
the wheel.

The Framework Wizard Add-In also provides a wizard to help you add additional
frameworks. The Wizard is started by opening the Make New Framework framework.

Note: The Framework Wizard Add-In is only available on Windows and only in some
Rational Rose editions. Also, in order to create models from frameworks and add new
frameworks, the Framework Wizard Add-In must be active (refer to Activating the
Framework Wizard Add-In on page 202).
201

Activating the Framework Wizard Add-In

In order to create models from frameworks and add new frameworks, the Framework
Wizard Add-In must be active. It is active if the File > New command in Rational Rose
displays a Create New Model dialog box. If the File > New command just opens a new
empty model, the Framework Wizard Add-In is not active.

To install the Framework Wizard Add-In:

1 Run the Rational Rose setup program.

2 Select a custom install, and select the Rose Framework Add-In feature. If the
Framework Wizard Add-In feature is not present, the add-in is not available in
your Rational Rose edition.

To activate the Framework Wizard Add-In:

1 Click Add-Ins > Add-In Manager in Rational Rose.

2 Select the Framework Wizard option and click OK. If the option is not present, the
Framework Wizard Add-In is not installed.

Creating a New Model from a Framework

To create a new model from a framework

1 Click File > New.

The Create New Model dialog box opens.
202 Chapter 13 - Framework Wizard Add-In

Figure 98 Create New Model Dialog Box

2 Open the framework that corresponds to the system you are going to develop.

A new model is created and initialized with the contents of the chosen framework.
(If you don’t want to use any of the frameworks, click Cancel. A new model with
only the default contents is created.)

3 Save the new model and give it a name by clicking File > Save As.

Each package in a framework is stored as a controlled unit in a separate file. To
access the contents of a package in a framework, you have to load the
corresponding controlled unit. To load a unit, double-click the package in a
diagram, or click File > Units > Load.

Creating and Deleting Frameworks

Rational Rose provides you with a Framework Wizard that helps you create a new
framework and add it to the framework library. To use the Framework Wizard, the
Framework Wizard Add-In must be installed and activated (refer to Activating the
Framework Wizard Add-In on page 202).
Creating and Deleting Frameworks 203

The Framework Library

The Framework Wizard Add-In provides a library of predefined frameworks. The
frameworks are located in the \Framework\Frameworks folder in your Rational Rose
installation folder. When creating a new model, you can choose to create the model
from one of the listed frameworks. The set of available frameworks is displayed with
the File > New command.

In the framework library, all files that work together to define a specific framework
are located in a folder with the same name as the framework. Each framework is
defined by the following files:

■ FrameworkName.mdl, which contains the model framework itself. This model is an
ordinary Rational Rose model.

■ FrameworkName.ico, which includes the icon that symbolizes the framework in the
Create New Model dialog box. If there is no .ico file, Rational Rose displays a default
icon for the framework.

■ FrameworkName.rtf, which includes a description of the framework that appears in
the Create New Model dialog box when the user clicks Details. If there is no .rtf file,
default description text appears.

■ Parameters, which holds the name of the diagram that is initially opened for
models created from this framework. The Framework Wizard automatically
creates this file and enters the name of the diagram as a line with the following
syntax: StartDiagram=ParentPackage / DiagramName. For example:
StartDiagram=Logical View / Framework Overview.
204 Chapter 13 - Framework Wizard Add-In

Creating a New Framework

To create a new framework:

1 Create and save a model with the contents of the framework in any folder. That
model will be used as the template when creating new models from this
framework.

2 Write a description of the framework in any word processor and save the
document in RTF (Rich Text Format) format in any folder.

3 Use a drawing tool to create an icon that symbolizes the new framework. Save the
icon as an .ico file in any folder (or, look for a suitable existing .ico file).

4 Click File > New.

The Create New Model dialog box opens.

5 Open the “Make New Framework” framework, which starts the Framework
Wizard. (If the welcome page appears, click Next.)

Figure 99 Framework Wizard Specification Page
)

6 In the Framework Name field, specify the name of the new framework. The name
must be unique among the existing frameworks, and it can only contain characters
that are allowed in folder names.

7 In the Model File field, specify the name and location of the file that constitutes the
framework model. (To browse to the file, click in the field. Then, click the
displayed button.)
Creating and Deleting Frameworks 205

8 Click in the Start Diagram field to specify a diagram that is to be initially opened for
models created from this framework. The specified model opens. Click the arrow
to the right of the Start Diagram field and select one of the diagrams.

9 Specify the name and location of the documentation and icon files in the
Documentation File and Icon File fields. (To browse to a file, click in the field. Then
click the displayed button.)

10 Click Next.

A summary of the new framework appears.

Figure 100 Framework Wizard Summary Page

11 If you are satisfied with the framework specification, click Finish. Otherwise, go
back and change your settings.

When the Framework Wizard is finished, a folder with the same name as the new
framework, containing the specified files, will be created in the
\Framework\Frameworks folder. The new framework is now available for creating
new models.

Changing or Deleting a Framework

To change the contents of a framework model, its icon, its description, or the initial
diagram to be opened, update the appropriate file in the framework’s folder.

To delete a framework, delete its folder from the \Framework\Frameworks folder.
206 Chapter 13 - Framework Wizard Add-In

14Type Library Importer
Contents

This chapter is organized as follows:

■ Overview on page 207

■ What Is a Type Library? on page 208

■ Why Would I Want to Import Type Libraries into the Model? on page 208

■ What COM Components Can Be Imported into the Model? on page 209

■ How Is a Type Library Presented? on page 209

■ Importing a Type Library into the Model on page 216

■ Importing a New Version of an Existing Type Library on page 217

■ Hiding Type Library Items on page 218

■ Using an Imported Type Library on page 220

■ Adding Class Members to a Quick Import Type Library on page 220

■ Customizing the Type Library Importer on page 221

Overview

The Type Library Importer allows you to import a type library of a COM component
into the model by dragging the COM component from Windows Explorer and
dropping it in Rational Rose. You can also click Tools > COM > Import Type Library.

You can control several aspects of how type libraries are imported into the model. For
example, you can control:

■ What should happen with existing type libraries when importing new versions.

■ The name and location of new type libraries in the model.

■ The name and contents of the overview diagrams that are created when importing
type libraries.
207

For further information, refer to the Customizing the Type Library Importer on page 221.

Note: Importing a component is not the same as reverse engineering a component
into the model. Imported components are still external to the system, because you
import only the type library of the components; whereas, reverse engineering a
component means that a model of the component’s source code is added to the model.

What Is a Type Library?

A type library contains a description of a COM (component object model) component
as viewed from the outside. The description includes the coclasses, interface items,
dispinterfaces, properties (called attributes in UML), methods (called operations in
UML), data types, and so on of the component. Type library information is needed to
provide a language-neutral description of the interfaces and data types that a COM
component exposes.

This chapter does not explain the different kinds of type library items—coclasses,
interfaces, dispinterfaces, and so on. For information about COM components and
type libraries, refer to:

■ Don Box, Essential COM, Addison-Wesley Pub Co, ISBN 0201634465

■ http://msdn.microsoft.com/library—for example, the Inside OLE section in the
Books section

Why Would I Want to Import Type Libraries into the Model?

By importing type libraries into the model, you can show how classes in the model
use and depend upon classes in other components, regardless of their implementation
language. For example, you can:

■ Reuse COM components—that is, to show how the classes in the model
instantiate, use, and communicate with the items in a COM component.

■ Show how classes in the model implement (or realize) the interface items of a
COM component.

■ Show dependencies between components.

■ Use the data types defined by a COM component when specifying attributes and
operations on the classes in the model.
208 Chapter 14 - Type Library Importer

What COM Components Can Be Imported into the Model?

The following file types can be imported into a Rational Rose model:

■ Dynamic Link Libraries (.dll)

■ Executables (.exe)

■ ActiveX Components (.ocx)

■ Object Libraries (.olb)

■ Type Libraries (.tlb)

The file must contain valid type information. If you drop a file without type
information on an element in the browser, Rational Rose treats it as any file and
attaches the dropped file to the model element that you drop it on. When you drop the
file in Rational Rose, the cursor icon indicates whether the file will be imported or
attached to a model element:

■ A icon means that Rational Rose imports the file.

■ A icon means that the file is attached to the model element that you drop it on.

How Is a Type Library Presented?

In Rational Rose, an imported type library is represented as a component in the
component view and a logical package containing the type library items. In your
implementation environment, a type library is presented differently in different
implementation language environments.

A Type Library in Rational Rose

The Type Library Importer creates a component, such as Scripting Ver 1.0 (Microsoft
Scripting Runtime) in Figure 101, in the component view for an imported type library.

Figure 101 Component View of the Microsoft Scripting Runtime Type Library

Overview
diagram

Imported
COM
component
What COM Components Can Be Imported into the Model? 209

The Component Overview Diagram

The component is automatically inserted into a type library overview diagram in the
component view. For example, the overview diagram in Figure 102 shows that two
type libraries, Scripting and stdole, have been imported into this model and that the
Scripting type library depends upon the stdole type library.

Figure 102 Component Overview Diagram for a Model

The Logical View of a Type Library

The logical view contains a package for the imported COM component, such as
Scripting Ver 1.0 (Microsoft Scripting Runtime) in Figure 103.
210 Chapter 14 - Type Library Importer

Figure 103 Logical View of the Microsoft Scripting Runtime Type Library

Type Library Items

The logical package contains the type library items that are defined by the type
information of the imported COM component—coclasses, interfaces, dispinterfaces,
and so on.

Each item in the type library is represented by a class, such as the coclass
FileSystemObject in Figure 103. The stereotype of the type library’s classes in the
model indicates the kind of project item—coclass, interface, enum, type, module,
struct, and union (refer to COM Stereotypes on page 213). In Figure 103, you can see
that coclasses have their own icon in the browser: .

The kind model property on an interface class indicates whether the class corresponds
to an interface or a dispinterface in COM.

Note: If the type library was imported using a quick import, the Type Library
Importer does not create any class members (attributes and operations) on the
imported items. If you chose a full import, the class members are created. You can
later import the class members for a type library item; refer to Adding Class Members to
a Quick Import Type Library on page 220.

Overview
diagram

Hidden type
library items
(Optional)

Coclass

Interface or
dispinterface
How Is a Type Library Presented? 211

The Type Library Overview Diagram

An overview diagram is created in the logical view, which shows the contents of the
imported type library. Figure 104 shows the overview diagram for the Microsoft
Scripting Runtime type library. As you can see, coclasses, such as Encoder in
Figure 104, are shaded (green) in type library overview diagrams.

Figure 104 Overview Diagram of the Microsoft Scripting Runtime Type Library

Hidden Items

If the Show hidden items check box in the COM Properties dialog box is cleared when a
type library is imported, all hidden items and items with names beginning with “_”
are placed in a separate logical package called “Hidden”. Those items are not
displayed on the overview diagram. The Microsoft Scripting Runtime type library in
Figure 103 on page 211 and Figure 104 on page 212 was imported with the Show
hidden items check box cleared.

For more information, refer to Hiding Type Library Items on page 218.

Referenced Type Libraries

Any referenced type libraries are automatically imported. When importing a type
library item (for example, A), all items that A refers to must exist in the model. If the
referenced items did not exist in the model before, the Type Library Importer
automatically imports the type libraries of the corresponding COM components and
212 Chapter 14 - Type Library Importer

adds dependency relationships between them. For example, the stdole type library in
Figure 102 on page 210 was automatically imported when the Scripting type library
was imported, because Scripting refers to the stdole type library.

Referenced type libraries are imported using a quick import. Also, type library items
that are referenced by the current type library, such as IDispatch in Figure 104 on
page 212, are gray in the type library’s overview diagram.

COM Stereotypes

The Type Library Importer uses the stereotypes in Table 17 for the model elements
that represent a type library in the model.

Table 17 COM Stereotypes

Stereotype Description

Components

COM The Type Library Importer assigns the stereotype and language “COM”
to the component representing an imported type library.

Classes

coclass Represents a coclass in a type library.

enum Represents an enum type definition in a type library. The class members
of the enum in the type library become attributes with initial values on
the class in the model.

interface Represents an interface or dispinterface in a type library. The “kind”
model property on the class in Rational Rose indicates whether the class
is an interface or a dispinterface. Type library interfaces are always
abstract—that is, the Abstract box in the interface’s Class Specification
is checked.

module Represents a module in a type library.

struct Represents a struct type definition in a type library. The class members of
the struct in the type library become typed attributes on the class in the
model.

union Represents a union type definition in a type library. The class members of
the union in the type library become typed attributes on the class in the
model.

Operations

propget Corresponds to a property-accessor function on an interface or
dispinterface.
How Is a Type Library Presented? 213

Type Library in the OLE Viewer in Visual Studio

The contents of a type library as shown in the OLE Viewer correspond to how
Rational Rose presents an imported type library. Figure 105 shows how the OLE
Viewer in Visual Studio presents the Microsoft ActiveX Data Objects type library,
MSADO15.dll. All the type library items displayed by the OLE Viewer can be found
in the model after importing the type library.

propput Corresponds to a property-setting function on an interface or
dispinterface.

propputref Corresponds to a property-setting function that uses a reference instead
of a value.

Realize relationship

none Represents any realize relationship between type library items.

source Indicates that the realized interface contains the coclass’ event
procedures.

default Indicates that the realized interface is the default interface of the coclass.

Dependency relationship

imports Indicates that the supplier COM component was automatically imported
when the client component was imported, because the supplier
component is referenced by the client component.

Table 17 COM Stereotypes (continued)

Stereotype Description
214 Chapter 14 - Type Library Importer

Figure 105 OLE Viewer in Visual Studio

Type Library in the Object Browser in Visual Basic

Figure 106 on page 216 shows how the Object Browser in Visual Basic presents the
Microsoft ActiveX Data Objects type library, MSADO15.dll. The Object Browser in
Visual Basic shows only those type library items that are relevant in Visual Basic. For
example, it does not list the default interfaces of the coclasses, because Visual Basic
assumes the default interface when referring to a coclass.
How Is a Type Library Presented? 215

Figure 106 Object Browser in Visual Basic

Since Rational Rose supports many different programming languages, all items in an
imported type library are shown in the model. However, by clearing the Show hidden
items check box, the top level of the packages of the type libraries that you import, as
well as their overview diagrams, give the same view of the libraries as the Object
Browser in Visual Basic. For more information, refer to Hiding Type Library Items on
page 218.

Importing a Type Library into the Model

The Type Library Importer in Rational Rose allows you to import a type library of a
COM component into the model. By doing that, you can show how classes in the
model use and depend upon classes in other components.

If you want to change the default behavior of the Type Library Importer, click Tools >
COM > Properties to display the COM Properties dialog box. In it, you can control how
to import type libraries. For more information, refer to Customizing the Type Library
Importer on page 221.
216 Chapter 14 - Type Library Importer

To import a type library into the model:

1 If a type library is to be used by Visual Basic classes only, you may want to show
only the type information that is relevant for Visual Basic classes. Refer to Hiding
Type Library Items on page 218.

2 Drag the file—DLL, EXE, OCX, OLB, or TLB—from Windows Explorer and drop it
in the browser or in a diagram. (The drop target is not important, because the type
library is created in the packages defined by the Default package options in the
COM Properties dialog box.)

Note: If the Rational Rose application window is hidden or minimized, point to
the Rational Rose icon in the Windows task bar before dropping the file; this brings
the application to the front. Instead of dragging and dropping the file, you can
click Tools > COM > Import Type Library and select the appropriate file.

3 On the displayed menu, select whether to import the full component (Full Import),
including all operations and attributes of the type library items, or to perform a
Quick Import which excludes the members.

Note: You can later import the members of a quickly imported type library item,
refer to Adding Class Members to a Quick Import Type Library on page 220.

The following results occur:

❑ If the selected COM component contains all the necessary type information, the
Type Library Importer creates a representation of the type library in the model.

❑ If a dragged and dropped COM component does not contain valid type
information, and if you have dropped the component on an element in the
browser, Rational Rose attaches the dropped file to that element if possible.
That is, if the cursor turns into an arrow with a icon, Rational Rose will
attach and not import the file.

Importing a New Version of an Existing Type Library

To import a new version of a type library that already exists in the model, right-click
the component that represents the imported type library and click Upgrade to Latest
Version.
Importing a New Version of an Existing Type Library 217

Hiding Type Library Items

When importing a type library, the created type library in the model is represented
differently depending on whether the Show hidden items check box is selected in the
COM Properties dialog box. Click Tools > COM > Properties to display the COM
Properties dialog box.

Show Hidden Items Selected

If the Show hidden items check box is selected when importing a type library, all type
library items, including coclasses, dispinterfaces, and interfaces, are shown on the
type library’s overview diagram. Also, the type library items are inserted directly
under the type libraries package in the browser.

Figure 107 shows how the Microsoft Scripting Runtime component, scrrun.dll, is
presented when imported with the Show hidden items check box selected. This view is
recommended when developing clients in languages other than Visual Basic.

Figure 107 Type Library with Show Hidden Items Option Selected
218 Chapter 14 - Type Library Importer

Show Hidden Items Cleared

If the Show hidden items check box is cleared when importing scrrun.dll, no hidden
type library items are shown on the type library’s overview diagram. Also, the hidden
type library items are inserted into a separate package called “Hidden” in the type
library’s package in the browser.

Figure 108 shows how the Microsoft Scripting Runtime component, scrrun.dll, is
presented when imported with the Show hidden items check box is cleared.

Figure 108 Type Library with Show Hidden Items Option Cleared

In this view, only the type information that is relevant for Visual Basic clients is shown
on the type libraries overview diagram, and all hidden type library items are inserted
into a separate package called Hidden. This view is recommended when developing
Visual Basic clients because it corresponds to the view that is shown by the Object
Browser in Visual Basic (see Figure 106 on page 216).
Hiding Type Library Items 219

Using an Imported Type Library

By importing type libraries into the model, you are able to show how classes in the
model use and depend upon classes in other components, regardless of their
implementation language. The application you are modeling can use a type library in
several ways, for example:

■ Classes can use the data types defined by a type library.

■ Classes in the model can implement the interface of a COM component.

■ A COM component can be reused by the application.

How to use a type library depends on the programming language. For more
information, refer to the Rational Rose documentation of each language integration.

Adding Class Members to a Quick Import Type Library

If a type library was imported using a quick import, the Type Library Importer did
not create any class members (attributes and operations) on the imported items. You
can later import the class members of a type library item by doing a full import of that
item.

To add class members to a type library:

1 In the browser or in a diagram, right-click:

❑ an interface to import its class members into the model.

❑ a coclass to import the class members of its interfaces into the model.

❑ a COM component to import the class members of all the items in that type
library.

2 Click Full Import on the displayed menu.

Note: It may take several minutes for Rational Rose to perform a full import of an
entire COM component. If you do not want to import the entire type library, perform
a full import of only those type library items that you are using.
220 Chapter 14 - Type Library Importer

Customizing the Type Library Importer

In the COM Properties dialog box, you can control how type libraries are imported into
the model. For example, you can control:

■ What should happen with existing type libraries when importing new versions.

■ The name and location of new type libraries in the model.

■ The name, location, and contents of the overview diagrams that are created when
importing type libraries.

To open the COM Properties dialog box, click Tools > COM > Properties.

Figure 109 COM Properties Dialog Box

Note: Changing the settings in the COM Properties dialog box affects only type
libraries that are imported after the settings are changed.

To replace existing type libraries when importing new versions:

Select the Upgrade older type libraries check box in the COM Properties dialog box.

The next time you import a new version of a type library, the current version is
replaced by the new version. If this check box is cleared when you import a new
version of a type library, the model will contain both versions.
Customizing the Type Library Importer 221

To hide items that are defined as hidden or called “_item”:

Refer to Hiding Type Library Items on page 218.

To show the composition hierarchy for imported type libraries:

Select the Construct composition hierarchy check box. The next time you import a type
library, the Type Library Importer adds association relationships between its related
interfaces, which indicate the type library's composition hierarchy.

To change the name of the logical packages in which type libraries are created:

In the Default package box under Logical view in the COM Properties dialog box, type
the name of the package including the path of any enclosing packages. You can use
the following variables in the package name:

■ $library — the name of the imported type library, which corresponds to the library
model property

■ $version — the version of the imported type library, which corresponds to the
version model property

■ $helpstring — a description of the type library, which corresponds to the helpstring
model property

For example, COM/$library Ver $version ($helpstring) means that the following logical
package is created for a new type library called stdole:

Logical View

COM

stdole Ver 2.0 (OLE Automation)

To change the name of the component packages in which type library components are
created:

In the Default package box under Component view in the COM Properties dialog box,
type the name of the package including the path of any enclosing packages. You can
use the same variables as above.

For example, COM/$library Ver $version ($helpstring) means that the following
component package is created for a new type library called stdole:

Component View

COM

stdole Ver 2.0 (OLE Automation)
222 Chapter 14 - Type Library Importer

You can change the name and location of the diagrams on which type libraries are
displayed. In the Overview diagram box under Logical view or Component view in the
COM Properties dialog box, type the name of the diagram including the path of any
enclosing packages. You can use the same variables as above in the diagram name.

For example, the default value for the logical view is COM/$library Ver $version

($helpstring)/Overview of $library, which means that the Type Library Importer creates a
diagram called Overview of stdole Ver 2.0 (OLE Automation) when you import a COM
component called stdole.

The default value for the component view is COM/Overview of type libraries. This means
that the Type Library Importer inserts all imported type library components into the
same diagram, which is called Overview of type libraries.
Customizing the Type Library Importer 223

AUpgrading from a
Previous Release
Contents

This appendix is organized as follows:

■ Upgrading from Rational Rose 3.0 or Later on page 225

■ Upgrading from Releases Prior to Rational Rose 3.0 on page 225

■ Understanding Petal File Versions on page 225

Upgrading from Rational Rose 3.0 or Later

If you are upgrading from release 3.0 or later of Rational Rose for Windows, your
models are converted automatically when you open them. When you save your
model, Rational Rose asks you if you want to save your model in the new format.

Upgrading from Releases Prior to Rational Rose 3.0

If you are upgrading from a Rational Rose release prior to 3.0, please contact technical
support for assistance.

Understanding Petal File Versions

Petal files and model files are very similar. However, a petal file is a portion of a
model file; whereas, a model file is really the complete or entire model. You can create
a petal file by saving your model in petal file format through the File > Save As
command. Petal files are also created when you export part of a model through the
File > Export command.
225

The following table contains the petal file version numbers for each Rational Rose
release. If you save a model as an older version of Rose, some model elements and
features will be lost. For example, if you save a Rose 2000 model in a Rose 98i format,
your model will not include activity diagrams.

Table 18 Rational Rose Petal File Version

Rose Version Petal File Version Rose Format

Rose 3.0 Petal 37 3.0 Model

Rose 4.0 Petal 40 4.0 Model

Rose 98 and Rose 98i Petal 42 4.5/6.0 Models

Rose 98i Service Pack 1 and
Rose 2000

Petal 43 6.1/6.5 Models

Rose 2000e Petal 44 7.0 Model
226 Appendix A - Upgrading from a Previous Release

Index
Symbols
(-) Minus Sign 24
(+) Plus Sign 24

A
Abstract 68, 108
Action Expression 130
Action Specification 131
Actions Tab 129
Activities 122
Activity Actions 132
Activity Diagram

Creating 119
Overview 118
Using 118
Workflows 118

Activity Specification 128
Actions Tab 129
General Tab 128
Swimlanes Tab 131
Transitions Tab 130

Actor Specification 111
Actors 102
Add-In

Installing 5
Manager 5

Adding
Classes 62
Stereotypes to the Toolbox 199

Adorning Diagrams 46
Aggregate 93
Application Window 9
Apply Button 57
Argument 82
Assigning a Component to a Package 172
Association 103, 164

Association Specification 89
Detail Tab 90
General Tab 89
Role A and B Detail Tab 93
Role A and B General Tab 92

Attributes Tab 71

B
Bending Correlations 43
Browse Button 57
Browse Class Diagram Button 11
Browse Component Diagram Button 12
Browse Deployment Diagram Button 12
Browse Interaction Diagram Button 11
Browse Parent Button 12
Browse Previous Diagram Button 12
Browse State Machine Diagram Button 12
Browse Use-Case Diagram Button 12
Browser

Collapsing a Tree 24
Creating Icons for 198
Description 14, 21
Displaying 22
Docking 22
Drag-and-Drop 26
Expanding a Tree 24
Hiding 22
Illustration 9, 22
Naming an Element 24
Navigating 23
Positioning 22
Viewing 21

Browser to Browser Capabilities 27
Browser to Diagram Capabilities 28
Browser to Specification Capabilities 29
Buttons

on Specifications 57
on the Toolbar 10
227

C
Cancel Button 57
Cardinality 66
Changing Model Elements 41
Changing the State of an Object 125
Characteristics 184
Class 78, 161, 162, 168
Class Attribute Specification 77

Detail Tab 79
General Tab 78

Class Diagram
Creating 61
Displaying 61
Overview 59
Re-assign a Class 62
Toolbox 60

Class Instance Specification 161
Class Specification 62

Attributes Tab 71
Component Tab 74
Detail Tab 65
Files Tab 77
General Tab 63
Nested Tab 75
Operations Tab 69
Relations Tab 73

Classes 176
Client Visibility 164
Close Button 10
Coclass 211
Collaboration Diagram

Creating 146, 159
Overview 146
Toolbox 148

Collapsing a Browser Tree 24
COM

Components 209
Properties Dialog Box 221
Stereotypes 213

Component Diagram 179
Creating 172
Displaying 172
Overview 171
Toolbox 172

Component Name 74
Component Specification 173

Detail Tab 175
Files Tab 177
General Tab 174
Realizes Tab 176

Component Tab 74
Concurrency 68, 83
Connection Specification 187
Connections 181
Constraints 91
Containment 79, 94
Context Sensitive Help Button 11
Control-Menu Box 9
Copy Button 11
Copying Icons 41
Correlation

Bending 43
Creating 43
Description 43
Naming 44
Reconnecting 44

Creating
Activity Diagrams 119
Class Diagrams 61
Collaboration Diagrams 146, 159
Component Diagram 172
Correlations 43
Diagrams 34
Icons 198
List View Icons 198
Model Elements 24, 36
New Stereotype Configuration File 195
Overloaded Elements 37
Sequence Diagrams 146, 159
Statechart Diagrams 116
Stereotypes 195
Toolbox Icons 198

Customizing the Toolbox 14
Cut Button 11
Cutting Icons 41
228 Index

D
Decision Specification 135

General Tab 135
Swimlanes Tab 137
Transitions Tab 136

Decisions 126
Declarations 175
Deep Delete 42
Default 88
Default Font Parameters 46
Deleting

Deep vs. Shallow 42
Diagrams 36
Messages 155
Model Elements 42
Objects 155
Scripts 155

Dependency 104
Dependency Specification 97
Deployment Diagram

Creating 182
Displaying 182
Overview 181
Toolbox 182

Derived 80, 91
Deselecting Icons 40
Detail Tab

About 55
Association Specification 90
Class Attribute Specification 79
Class Specification 65
Component Specification 175
Device Specification 187
Has Specification 99
Logical Package Specification 99
Message Specification 168
Operation Specification 82
Package Specification 179
Processor Specification 184
State Transition Specification 134

Device Specification 185
Detail Tab 187
General Tab 186

Devices 181

Diagram Icon, see Icons
Diagram List 108
Diagram Tab 108
Diagram Toolbox, see Toolbox
Diagram Window

Cascading 33
Description 16, 32
Illustration 9
Tiling 33
Viewing 32

Diagrams
Adorning 46
Creating 34
Deleting 36
Displaying 35
Laying Out 44
Linking 35
Placing Text 46
Printing 17
Renaming 35
Saving 19
Type Library 212
Viewing 32

Dialog Box, see Specification
Dispinterface 211
Displaying

Browser 22
Diagrams 35
Focus of Control 157
Multiple Diagrams 33
Specifications 51
Stereotype Names 194

Docking 15, 22
Documentation 54
Documentation Window

Description 14
Illustration 9

Drag-and-Drop 24, 26

E
Editing Model Elements 24, 39
Editing Specifications 52
Element 90
Index 229

Elements, see Model Elements
End State 125
Exceptions 83
Expanding a Browser Tree 24
Export Control 64
Extend Stereotype 104
Extending Rational Rose 4

F
F5 Key 159
Features 4
Files 19, 225
Files Tab

About 55
Class Specification 77
Component Specification 177
Operation Specification 86
Package Specification 179

Filtering 18, 62
Fit in Window Button 12
Floating 15, 22
Flow of Events 103
Focus of Control

Coloring 157
Description 156
Displaying 157
Moving 157
Nested 157

Formal Arguments 68
Framework

Activating the Framework Wizard 202
Changing 206
Creating a Model from a Framework 202
Creating a New Framework 205
Deleting 206
Library 204
Wizard 201

Frequency 170
Friend 94
Friendship Required 96, 110
Full Import 220
Fully Qualified Names 38

G
General Tab

About 53
Association Specification 89
Class Attribute Specification 78
Class Instance Specification 162
Class Specification 63
Component Specification 174
Decision Specification 135
Dependency Specification 97
Device Specification 186
Generalize Specification 95, 110
Has Specification 98
Key/Qualifier Specification 100
Link Specification 163
Logical Package Specification 98
Message Specification 167
Object Flow Specification 143
Object Specification 140, 160
Operation Specification 81
Package Specification 178
Parameter Specification 88
Process Specification 188
Processor Specification 183
Realize Specification 96
State and Activity Specifications 128
State Machine Specification 115
State Transition Specification 133
Swimlane Specification 127
Synchronization Specification 138

Generalization 105
Generalize Specification 95, 109
Guard Condition 134

H
Has Relationship 98
Has Specification 98

Detail Tab 99
General Tab 98

Help Button 57
Help Topics Button 13
230 Index

Hiding
Browser 22
Classes 62
Stereotype Names 194
Type Library Items 218

I
Icon 166
Icons

Copying 41
Creating on the Diagram 36
Creating User-Defined Icons 198
Cutting 41
Deselecting 40
Moving 40
Pasting 41
Resizing 40
Selecting 39

Implementation 65
Importing a Type Library 216
Include Stereotype 104
Incoming Object Flows Tab 141
Initial State, see Start State
Initial Value 79
Installing an Add-In 5
Interaction Diagram 84, 85, 86

Creating 146
Overview 145

Interface
in Type Library 211
of COM Component 211

K
Key/Qualifier Specification 99
Keys 95

L
Language 75, 174, 177
Laying Out a Diagram 44

Library
Frameworks 204
Imported 220
Type 208

Link Element 91
Link Specification 163

General Tab 163
Messages Tab 166

Linking Diagrams 35
Links

Creating 153
Description 153
see also Correlation 153

Loading a Model Workspace 49
Log Window 15
Logical Package Specification 98

Detail Tab 99
General Tab 98

M
Manipulating Icons 39
Manuals xxi
Maximize Button 10
Menu Bar

Description 10
Illustration 9

Menu Control Box 9
Message Name 166
Message Specification 167

Detail Tab 168
General Tab 167

Message Tab 166
Messages

Assigning an Operation to 152
Creating 151
Deleting 155
Description 151
Naming 152
Numbering 152

Minimize Button 10
Minus Sign 24
Index 231

Model
Navigating 23
Printing 17
Saving 19

Model Elements
Changing 41
Creating 24
Deleting 42
Editing 24
Laying Out 44
Naming 36
Reassigning 38
Selecting in the Browser 25

Model File 225
Model Workspaces

Loading 49
Saving 49
Understanding 47, 48

Modeling with Rational Rose 3
Moving Icons 40
Multiple Instances 161
Multiple Objects 150

N
Name 54, 107, 160
Name Direction 91
Naming

Correlations 44
Diagrams 35
Element 24
Element in the Browser 24
Fully Qualified Names 38
Model Elements 36, 37, 38
Overloaded Elements 37

Navigable 93
Navigating a Model 23
Navigating the Tabs 58

Adding and Deleting Entries 58
Editing Entries 58

Nested Class 76
Nested Focus of Control 157
Nested Tab 75
New Model Button 10

Notations 3
Numbering Messages 152
Numbering Sequences 154

O
Object 150
Object Browser in Visual Basic 215
Object Flow 123
Object Flow Specification 142
Object Specification 139, 160

General Tab 140
Incoming Object Flows Tab 141
Outgoing Object Flows Tab 142

Objects 122
OK Button 57
OLE Viewer 214
On Event 132
Online Help xxi
Open Model Button 10
Operation Specification 80

Detail Tab 82
Files Tab 86
General Tab 81
Postconditions Tab 86
Preconditions Tab 84
Semantics Tab 85

Operations Tab 69
Outgoing Object Flows Tab 142
Overloaded Elements 37, 38
Overview Window

Description 16
Icon 9

Owner 88, 100

P
Package 62, 64, 107, 178, 200
Package Name 74
Package Specification 177

Detail Tab 179
Files Tab 179
General Tab 178
Realizes Tab 179
232 Index

Parameter Specification 87
Parent 12, 64, 89
Paste Button 11
Pasting Icons 41
Persistence 67
Persistence Field 161
Petal File 225
Plus Sign 24
Positioning the Browser 22
Postcondition 86
Postconditions Tab 86
Preconditions 84
Preconditions Tab 84
Print Diagrams Button 11
Printing 17
Priority 189
Private 64
Process Specification 188
Processes 184
Processor 189
Processor Specification 182

Detail Tab 184
General Tab 183

Processors 181
Protected 64
Protocol 82
Public 64

Q
Qualifications 83
Qualifiers 95
Quick Import 220

R
Rank 107
Realize Specification 96
Realizes Tab 176, 179
Reassigning Model Elements 38
Receiver 167
Redo Command 41
Referenced Type Libraries 212
Refine Stereotype 105

Relations 109
Relations Tab 73, 109
Relationship, see Correlation
Relationships 103
Renaming Model Elements 38
Resizing Icons 40
Return Class 81
Role 90, 165
Role A and B Detail Tab 93
Role A and B General Tab 92

S
Save Model, Log, or Script Button 11
Saving

Files 19
Model Workspaces 49

Scheduling 185
Scripts

Creating 155
Deleting 155
Detaching 155
Moving 155

Selecting Elements 25
Selecting Icons 39
Semantics 85
Semantics Tab 85
Sequence 166
Sequence Diagram

Creating 146, 159
Overview 147
Toolbox 149

Sequence Numbering 154
Shallow Delete 42
Shapes, see Model Elements
Shared 165
Show all Classes 176
Show All Components 74
Show Classes 78
Show Inherited 70
Show labels 194
Show Stereotype Names 194
Show Stereotypes 193
Size 83
Index 233

Snap-to-grid 40
Sorting Packages 26
Space 66
Specification

About Common Elements 53
Action 131
Activity 128
Actor 111
Association 89
Class 62
Class Attribute 77
Class Instance 161
Component 173
Connection 187
Decision 135
Dependency 97
Device 185
Displaying 51
Editing 52
Generalize 95, 109
Has 98
Illustration 9
Key/Qualifier 99
Link 163
Logical Package 98
Message 167
Navigating the Tabs 58
Object 139, 160
Object Flow 142
Operation 80
Package 177
Parameter 87
Process 188
Processor 182
Realize 96
State 128
State Machine 114
State Transition 133
Swimlane 127
Synchronization 137
Tab Buttons 57
Use-Case 106
Window 17

Standard Toolbar 10
Start State 125

State 140
State Actions 132
State Machine

Creating 114
Overview 114

State Machine Specification 114
State Specification 128

Actions Tab 129
General Tab 128
Swimlanes Tab 131
Transitions Tab 130

State Transition 126
State Transition Specification 133

Detail Tab 134
General Tab 133

State/Activity History 129
State/Activity Model Icon 114
Statechart Diagram

Creating 116
Overview 115

States 125
Static 80, 94
Stereotype 64, 90, 110, 174

Benefits 192
Creating 195
Creating Configuration File 195
Creating Icons 197
Description 191
Display 193
Icon 197
Sample 200
User-Defined 192
Viewing 192

Subsystem Stereotype Package 200
Supplier Visibility 164
Swimlane Specification 127
Swimlanes 122
Swimlanes Tab 131, 137
Synchronization 169
Synchronization Specification 137

General Tab 138
Transitions Tab 139

Synchronizations 126
234 Index

T
Tabs

Buttons 57
Common 53
Navigating 58

Text
Changing Default Font Parameters 46
Moving 47
Placing in Diagrams 46
Resized the Text Box 47

Time 83
Title Bar

Description 9
Illustration 9

Toolbar
Description 10
Illustration 9

Toolbox
Adding Stereotypes 199
Class Diagram 60
Collaboration Diagram 148
Component Diagram 172
Creating Icons for 198
Customizing 14
Deployment Diagram 182
Description 13
Illustration 9
Sequence Diagram 149
Use-Case Diagram 105

Training xxi
Transition Between Substates 134
Transition to Self 126
Transitions 126
Transitions Tab 130, 136, 139
Type 63, 78, 88, 129

Type Libraries
About 208
Adding Class Members 220
Customizing the Importer 221
Hiding and Displaying Items 218
Importing into a Model 216
Overview Diagram 212
Reasons for Importing 208
Referenced 212
Types of Files to Import 209
Updating 217
Using 220
Viewing in Rational Rose 209
Viewing in Visual Studio 214

U
Undo Fit in Window Button 13
Undo Mistakes 41
Upgrading 225
URLs 56
Use Cases 102
Use-Case Diagram

Overview 101
Toolbox 105

Use-Case Specification 106
Diagram Tab 108
Relations Tab 109

User-Defined Stereotype 192

V
View Documentation Button 11
Virtual Inheritance 96, 111
Visibility 164
Visual Modeling 1
Index 235

W
Workflows

Defining 120
Modeling with Activity Diagrams 121
Purposes 119
Understanding 118

Workspaces, see Model Workspaces

Z
Zoom In Button 12
Zoom Out Button 12
236 Index

	Using Rose
	Preface
	Audience
	Other Resources
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Introduction to Visual Modeling Using Rational Rose
	Contents
	Overview
	Visual Modeling
	Modeling with Rational Rose
	Notations
	Features
	Extending Rational Rose

	Getting Started with Rational Rose
	Contents
	Overview
	Application Window
	Title Bar
	Control-Menu Box
	Minimize, Restore, and Close Buttons

	Menu Bar
	Toolbar

	Toolbox
	Customizing the Toolbox

	Browser
	Documentation Window
	Log Window
	Diagram Window
	Overview Window
	Specification Window
	Printing Diagrams and Specifications
	Print Preview
	Apply Filter Dialog Box

	Saving in Various Formats

	The Browser
	Contents
	Overview
	Viewing the Browser
	Hiding and Displaying the Browser
	Positioning the Browser
	Docking and Undocking the Browser

	Navigating a Model
	Expanding and Collapsing the Browser Tree
	Creating and Editing Model Elements
	Naming an Element in the Browser
	Selecting Multiple Elements in the Browser
	Sorting Packages in the Browser

	Using Drag-and-Drop in the Browser
	Browser to Browser Capabilities
	Browser to Diagram Capabilities
	Browser to Specification Capabilities

	Introduction to Diagrams
	Contents
	Overview
	Diagram Windows
	Viewing Diagrams
	Displaying Multiple Diagrams

	Creating, Linking, Displaying, Renaming, and Deleting Diagrams
	Creating a New Diagram
	Linking a Diagram
	Displaying a Diagram
	Renaming a Diagram
	Deleting a Diagram

	Creating and Naming Model Elements
	Creating an Element on the Diagram
	Creating an Element in the Browser
	Naming Model Elements
	Reassigning Model Elements

	Manipulating Icons
	Selecting Icons
	Deselecting Icons
	Resizing an Icon
	Moving One or More Icons
	Changing from One Kind of Element or Relationship to Another
	Cutting, Copying, and Pasting Icons

	Deleting Model Elements
	Shallow Delete
	Deep Delete

	Correlations
	Creating Correlations Between Elements
	Bending a Correlation Icon
	Reconnecting a Correlation Icon from One Icon to Another
	Naming a Correlation

	Laying Out a Diagram
	Laying Out All Shapes in a Diagram
	Laying Out Selected Shapes in a Diagram

	Adorning the Diagrams
	Placing Text in a Diagram
	Manipulating Text

	Understanding Model Workspaces
	Differences Between a Saved Model and a Model Workspace
	Model Workspace Scenario
	Saving a Model Workspace
	Loading a Model Workspace

	Introduction to Specifications
	Contents
	Overview
	Displaying Specifications
	Custom Specifications

	Editing Specifications
	Common Specification Elements
	Dialog Boxes
	General Tab
	Detail Tab
	Files Tab
	Tab Buttons

	Navigating the Tabs
	Adding and Deleting Entries
	Editing Entries

	Class Diagrams and Specifications
	Contents
	Class Diagram Overview
	Class Diagram Toolbox
	Creating and Displaying a Class Diagram
	Assigning a Class to Another Logical Package
	Adding and Hiding Classes and Filtering Class Relationships

	Class Specification
	Class Specification—General Tab
	Type
	Parent
	Stereotype
	Export Control

	Class Specification—Detail Tab
	Cardinality
	Space
	Persistence
	Concurrency
	Abstract
	Formal Arguments

	Class Specification—Operations Tab
	Show Inherited

	Class Specification—Attributes Tab
	Class Specification—Relations Tab
	Class Specification—Component Tab
	Class Specification—Nested Tab
	Class Specification—Files Tab

	Class Attribute Specification
	Class Attribute—General Tab
	Class
	Show Classes
	Type
	Initial Value

	Class Attribute—Detail Tab
	Containment
	Static
	Derived

	Operation Specification
	Operation Specification—General Tab
	Return Type

	Operation Specification—Detail Tab
	Arguments
	Protocol
	Qualifications
	Exceptions
	Size
	Time
	Concurrency

	Operation Specification—Preconditions Tab
	Preconditions
	Interaction Diagram

	Operation Specification—Semantics Tab
	Semantics
	Interaction Diagram

	Operation Specification—Postconditions Tab
	Postconditions
	Interaction Diagram

	Operation Specification—Files Tab

	Parameter Specification
	Defining a New Parameter
	Parameter Specification—General Tab
	Default
	Owner
	Type

	Association Specification
	Association Specification—General Tab
	Parent
	Stereotype
	Role
	Element

	Association Specification—Detail Tab
	Derived
	Link Element
	Name Direction
	Constraints

	Association Specification—Role B General Tab
	Association Specification—Role A and B Detail Tab
	Navigable
	Aggregate
	Static
	Friend
	Containment of
	Keys/Qualifiers

	Generalize Specification
	Generalize Specification—General Tab
	Friendship Required
	Virtual Inheritance

	Realize Specification
	Realize Specification—General Tab

	Dependency Specification
	Dependency Specification—General Tab

	Has Relationship (Booch Only)
	Has Specification—General Tab
	Has Specification—Detail Tab

	Key/Qualifier Specification
	Defining a New Key/Qualifier
	Key/Qualifier Specification—General Tab
	Owner

	Use-Case Diagrams and Specifications
	Contents
	Use-Case Diagram Overview
	Actors
	Use Case
	Flow of Events
	Relationships
	Association
	Dependency
	Extend Stereotype
	Include Stereotype
	Refine Stereotype

	Generalization
	Use-Case Diagram Toolbox

	Use-Case Specification
	Use-Case Specification—General Tab
	Name
	Package
	Rank
	Abstract

	Use-Case Specification—Diagram Tab
	Diagram List

	Use-Case Specification—Relations Tab
	Relations

	Generalize Specification
	Generalize Specification—General Tab
	Stereotype
	Friendship Required
	Virtual Inheritance

	Actor Specification

	State Machine Diagrams and Specifications
	Contents
	Overview
	Creating and Displaying a State Machine Diagram
	State Machine Specification
	State Machine Specification—General Tab

	Statechart Diagram Overview
	Creating a Statechart Diagram
	Automatic Transmission Example

	Activity Diagram Overview
	Using Activity Diagrams
	Understanding Workflows

	Creating an Activity Diagram
	Workflow Modeling
	Purposes of Workflow Modeling
	Defining a Workflow

	Modeling a Workflow with an Activity Diagram
	Activity Diagram-Specific Model Elements
	Activities
	Swimlanes
	Objects
	Object Flow
	Understanding Objects and Object Flows
	Changing the State of an Object

	Shared State Machine Diagram Model Elements
	States
	Start and End States
	Transitions
	Transition to Self
	Decisions
	Synchronizations

	Swimlane Specification
	Swimlane Specification—General Tab

	State and Activity Specification
	State and Activity Specification—General Tab
	State and Activity Specification—Actions Tab
	Type
	Action Expression

	State and Activity Specification—Transitions Tab
	State and Activity Specification—Swimlanes Tab

	Action Specification
	State Transition Specification
	State Transition Specification—General Tab
	Transition Specification—Detail Tab
	Guard Condition
	Transition Between Substates

	Decision Specification
	Decision Specification—General Tab
	Decision Specification—Transitions Tab
	Decision Specification—Swimlanes Tab

	Synchronization Specification
	Synchronization Specification—General Tab
	Synchronization Specification—Transitions Tab

	Object Specification (Activity Diagrams)
	Object Specification—General Tab
	Object Specification—Incoming Object Flows Tab
	Object Specification—Outgoing Object Flows Tab

	Object Flow Specification
	Object Flow Specification—General Tab

	Interaction Diagrams and Specifications
	Contents
	Interaction Diagram Overview
	Creating and Displaying an Interaction Diagram

	Collaboration Diagrams
	Sequence Diagrams
	Toolboxes
	Collaboration Diagram Toolbox
	Sequence Diagram Toolbox
	Common Collaboration and Sequence Diagram Icons
	Object
	Messages
	Message Numbering
	Assigning an Operation to a Message

	Collaboration-Specific Toolbox Icons
	Links

	Sequence Numbering
	Top-Level Numbering
	Hierarchical Numbering
	Scripts

	Focus of Control
	Displaying Focus of Control
	Coloring Focus of Control
	Moving the Focus of Control
	Nested Focus of Control

	Object Construction and Destruction
	Object Construction Markers
	Object Destruction Markers

	Creating Alternative Diagrams
	Toggling Between Interaction Diagrams
	Creating a Collaboration Diagram from a Sequence Diagram
	Creating a Sequence Diagram from a Collaboration Diagram

	Object Specification (Interaction Diagrams)
	Object Specification—General Tab
	Name
	Class
	Persistence Field
	Multiple Instances Check Box

	Class Instance Specifications
	Class Instance Specification—General Tab
	Class

	Link Specification
	Link Specification—General Tab
	Assoc
	Supplier and Client Visibility
	Shared
	Role

	Link Specification—Messages Tab
	Icon
	Sequence
	Message Name
	Receiver

	Message Specification
	Message Specification General Tab
	Class

	Message Specification—Detail Tab
	Synchronization
	Frequency

	Component Diagrams and Specifications
	Contents
	Component Diagram Overview
	Creating and Displaying a Component Diagram
	Component Diagram Toolbox
	Assigning a Component to Another Package

	Component Specification
	Component Specification—General Tab
	Stereotype (Component)
	Language

	Component Specification—Detail Tab
	Declarations

	Component Specification—Realizes Tab
	Show All Classes
	Classes
	Language

	Component Specification—Files Tab

	Package Specification
	Package Specification—General Tab
	Package

	Package Specification—Detail Tab
	Component Diagrams

	Package Specification—Realizes Tab
	Package Specification—Files Tab

	Deployment Diagrams and Specifications
	Contents
	Deployment Diagram Overview
	Creating and Displaying a Deployment Diagram
	Deployment Diagram Toolbox

	Processor Specification
	Processor Specification—General Tab
	Processor Specification—Detail Tab
	Characteristics
	Processes
	Scheduling

	Device Specification
	Device Specification—General Tab
	Device Specification—Detail Tab

	Connection Specification
	Process Specification
	Process Specification—General Tab
	Processor
	Priority

	Stereotypes
	Contents
	Overview
	Benefits to Using Stereotypes
	User-Defined Stereotypes

	Viewing Stereotypes
	Diagram Tab
	Browser Tab

	Creating Stereotypes
	Creating a New Stereotype for the Current Model
	Creating a New Stereotype Configuration File
	Creating a New Stereotype for All Rose Models
	Creating Stereotype Icons
	Creating a Diagram Icon
	Creating Diagram Toolbox and List View Icons

	Adding Stereotypes to the Diagram Toolbox
	Subsystem Stereotype Package
	Subsystem Stereotype Sample

	Framework Wizard Add-In
	Contents
	Overview
	Activating the Framework Wizard Add-In
	Creating a New Model from a Framework
	Creating and Deleting Frameworks
	The Framework Library
	Creating a New Framework
	Changing or Deleting a Framework

	Type Library Importer
	Contents
	Overview
	What Is a Type Library?
	Why Would I Want to Import Type Libraries into the Model?
	What COM Components Can Be Imported into the Model?
	How Is a Type Library Presented?
	A Type Library in Rational Rose
	Type Library in the OLE Viewer in Visual Studio
	Type Library in the Object Browser in Visual Basic

	Importing a Type Library into the Model
	Importing a New Version of an Existing Type Library
	Hiding Type Library Items
	Show Hidden Items Selected
	Show Hidden Items Cleared

	Using an Imported Type Library
	Adding Class Members to a Quick Import Type Library
	Customizing the Type Library Importer

	Upgrading from a Previous Release
	Contents
	Upgrading from Rational Rose 3.0 or Later
	Upgrading from Releases Prior to Rational Rose 3.0
	Understanding Petal File Versions

	Index

