
Rational Software Corporation ®

RATIONAL ® CLEARCASE®

COMMAND REFERENCE (M–Z)

VERSION: 2002.05.00 AND LATER

PART NUMBER: 800-025072-000

UNIX/WINDOWS EDITION

 Command Reference
Document Number 800-025072-000 October 2001

Rational Software Corporation 20 Maguire Road Lexington, Massachusetts 02421

IMPORTANT NOTICE

Copyright
Copyright © 1992, 2001 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California
Copyright 1984–1991 by Raima Corporation

Permitted Usage
THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS INFORMATION PROPRIETARY TO
RATIONAL. ANY COPYING, ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF RATIONAL IS STRICTLY PROHIBITED.
THE RECEIPT OR POSSESSION OF THIS DOCUMENT DOES NOT CONVEY ANY RIGHTS TO
REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, USE, OR SELL ANYTHING
THAT IT MAY DESCRIBE, IN WHOLE OR IN PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF
RATIONAL.

Trademarks
Rational, Rational Software Corporation, the Rational logo, Rational the e-development company, Rational
Suite ContentStudio, ClearCase, ClearCase MultiSite ClearQuest, Object Testing, Object-Oriented Recording,
Objectory, PerformanceStudio, PureCoverage, PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational
Apex, Rational CRC, Rational PerformanceArchitect, Rational Rose, Rational Suite, Rational Summit, Rational
Unified Process, Rational Visual Test, Requisite, RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestMate,
TestStudio, The Rational Watch, among others are trademarks or registered trademarks of Rational Software
Corporation in the United States and in other countries. All other names are used for identification purposes
only, and are trademarks or registered trademarks of their respective companies.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, Windows, the Windows logo,
Windows NT, the Windows Start logo are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc. Licensee
shall not incorporate any Globetrotter software (FLEXlm libraries and utilities) into any product or application
the primary purpose of which is software license management.

Patent
U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,574,898 and 5,649,200 and 5,675,802 and 5,835,701.
Additional patents pending.

Government Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as applicable.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media
and software product and its documentation, including without limitation, the warranties of merchantability
or fitness for a particular purpose or arising from a course of dealing, usage, or trade practice.

Technical Acknowledgments
This software and documentation is based in part on BSD Networking Software Release 2, licensed from the
Regents of the University of California. We acknowledge the role of the Computer Systems Research Group
and the Electrical Engineering and Computer Sciences Department of the University of California at Berkeley
and the Other Contributors in its development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav module
for Apache (http://www.webdav.org/mod_dav/).

 Contents iii

Contents

Preface ..ix

Reference Pages

make ... 547

makefile_aix .. 548

makefile_ccase .. 550

makefile_gnu... 565

makefile_pmake.. 571

makefile_smake .. 573

makefile_sun ... 576

man ... 579

merge.. 582

mkactivity .. 591

mkattr ... 594

mkattype .. 604

mkbl.. 610

mkbranch... 617

mkbrtype.. 622

mkcomp ... 626

mkdir .. 629

mkelem... 632

mkeltype .. 637

mkfolder... 644

mkhlink.. 647

mkhltype.. 654

mklabel... 659

mklbtype.. 665

mkpool ... 670

mkproject ... 677

iv Command Reference

mkregion .. 682

mkstgloc ... 684

mkstream.. 690

mktag .. 697

mktrigger.. 703

mktrtype... 708

mkview... 736

mkvob... 750

mkws... 762

mount.. 765

mount_ccase .. 769

msdostext_mode ... 771

mv.. 773

mvfscache... 777

mvfslog... 781

mvfsstat .. 783

mvfsstorage.. 787

mvfstime... 790

mvfsversion ... 795

mvws .. 796

omake ... 798

pathnames_ccase... 806

permissions .. 821

profile_ccase .. 828

promote_server ... 831

protect... 833

protectvob .. 840

put ... 845

pwd ... 848

pwv ... 850

query_language... 854

quit .. 861

rebase .. 863

recoverview ... 871

reformatview ... 875

reformatvob ... 878

 Contents v

register.. 883

relocate ... 886

rename.. 891

reqmaster ... 896

reserve .. 903

rgy_backup.. 906

rgy_check... 909

rgy_passwd ... 913

rgy_switchover ... 916

rmactivity... 919

rmattr.. 922

rmbl .. 926

rmbranch.. 928

rmcomp.. 931

rmdo ... 934

rmelem ... 938

rmfolder ... 943

rmhlink... 946

rmlabel ... 949

rmmerge... 953

rmname .. 956

rmpool.. 960

rmproject.. 963

rmregion .. 966

rmstgloc ... 968

rmstream.. 970

rmtag .. 973

rmtrigger.. 976

rmtype.. 980

rmver .. 984

rmview ... 989

rmvob ... 995

rmws... 998

schedule ... 1000

schemes .. 1016

scrubber.. 1020

vi Command Reference

setactivity ... 1026

setcache... 1029

setcs ... 1035

setplevel.. 1038

setsite .. 1041

setview.. 1045

setws ... 1047

shell ... 1049

snapshot.conf... 1051

softbench_ccase ... 1053

space.. 1059

startview... 1066

type_manager.. 1069

umount ... 1075

uncheckout... 1077

unlock ... 1081

unregister ... 1083

unreserve.. 1087

update... 1090

version_selector... 1097

view_scrubber ... 1102

vob_restore .. 1106

vob_scrubber ... 1108

vob_sidwalk, vob_siddump.. 1114

vob_snapshot... 1120

vob_snapshot_setup... 1125

wildcards.. 1131

wildcards_ccase... 1133

winkin... 1135

ws_helper ... 1141

wshell.. 1144

xclearcase ... 1146

xcleardiff... 1149

xmldiffmrg... 1154

Tables vii

Tables

Table 11 MVFS Settings and Case Requirements for Makefiles ...562

Table 12 UCM Project Policies ...678

Table 13 UCM Stream Policies...691

Table 14 Element Trigger Definition Operation Keywords ..721

Table 15 UCM Object Trigger Definition Operation Keywords...723

Table 16 Editable Job Properties..1004

Table 17 Fields of the Job Schedule Property ..1005

Table 18 Read-Only Job Properties ...1006

Table 19 Task Properties...1009

Table 20 Identity Types and Identities in Scheduler ACL Entries ...1010

Table 21 Access Types in Scheduler ACL Entries...1011

viii Command Reference

Preface ix

Preface

Rational ClearCase is a comprehensive software configuration management system. It manages

multiple variants of evolving software systems, tracks the versions that were used in software

builds, performs builds of individual programs or entire releases according to user-defined

version specifications, and enforces site-specific development policies.

Rational ClearCase LT offers capabilities like those of ClearCase, but for the smaller software

development group. Rational ClearCase Attache provides a ClearCase client solution for

Microsoft Windows users (see the ClearCase Attache Manual). Rational ClearCase MultiSite is a

layered product option for ClearCase. It supports parallel software development and software

reuse across project teams that are distributed geographically.

About This Manual

This manual includes detailed reference information about ClearCase, ClearCase LT, Attache,

and MultiSite on UNIX and Windows. It is not intended to be a learning tool—it assumes you

have already learned about these products through other means. For a general orientation to the

contents of this manual, read the intro reference page.

The reference pages are in alphabetical order in two volumes. Each reference page has an

Applicability section that lists the products and operating system platforms that support the

command described therein. Within each reference page, product-specific information is

annotated “ClearCase only,” “ClearCase LT only,” and so on. In this context, the term ClearCase
always refers only to ClearCase, not to ClearCase LT, Attache, MultiSite, nor to the ClearCase

Product Family (CPF) in general.

x Command Reference

ClearCase Documentation Roadmap

More Information

Command Reference
Quick Reference

Online documentation

 Administration

Installation Guide

Administrator’s Guide
(Rational ClearCase)

Administrator’s Guide
(Rational ClearCase MultiSite)

Platform Information
(See online help)

Project
Management

Managing Software Projects

Orientation

Introduction
Release Notes

Online Tutorials

Development

Developing Software

Build
Management

OMAKE Guide
(Windows platforms)

Building Software

Preface xi

ClearCase LT Documentation Roadmap

More Information

Command Reference
Online documentation

Administration

Installation Guide
Administrator’s Guide

Project
Management

Managing Software Projects

Orientation

Introduction
Release Notes

Online Tutorials

Development

See online help.

xii Command Reference

Typographical Conventions

This manual uses the following typographical conventions:

➤ ccase-home-dir represents the directory into which the ClearCase Product Family has been

installed. By default, this directory is /usr/atria on UNIX and

C:\Program Files\Rational\ClearCase on Windows.

➤ attache-home-dir represents the directory into which ClearCase Attache has been installed.

By default, this directory is C:\Program Files\Rational\Attache, except on Windows 3.x,

where it is C:\RATIONAL\ATTACHE.

➤ Bold is used for names the user can enter; for example, all command names, file names, and

branch names.

➤ Italic is used for variables, document titles, glossary terms, and emphasis.

➤ A monospaced font is used for examples. Where user input needs to be distinguished

from program output, bold is used for user input.

➤ Nonprinting characters are in small caps and appear as follows: <EOF>, <NL>.

➤ Key names and key combinations are capitalized and appear as follows: SHIFT, CTRL+G.

➤ [] Brackets enclose optional items in format and syntax descriptions.

➤ { } Braces enclose a list from which you must choose an item in format and syntax

descriptions.

➤ | A vertical bar separates items in a list of choices.

➤ ... In a syntax description, an ellipsis indicates you can repeat the preceding item or line

one or more times. Otherwise, it can indicate omitted information.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a wildcard, similar

to “*” or “?”. See the wildcards_ccase reference page for more information.

➤ If a command or option name has a short form, a “medial dot” (⋅) character indicates the

shortest legal abbreviation. For example:

lsc·heckout

This means that you can truncate the command name to lsc or any of its intermediate

spellings (lsch, lsche, lschec, and so on).

Preface xiii

Online Documentation

The ClearCase Product Family (CPF) graphical interfaces include an online help system.

There are three ways to access the online help system: the Help menu, the Help button, or the F1

key. Help > Contents provides access to the complete set of online documentation. For help on

a particular context, press F1. Use the Help button on various dialog boxes to get information

specific to that dialog box.

CPF products also provide access to full reference pages (detailed descriptions of commands,

utilities, and data structures) using the man command. Without any argument man displays the

overview reference page for the command line interface. For information about using a

particular command, specify the command name as an argument.

Examples:

cleartool man (display the cleartool overview page)

multitool man mkreplica (display the multitool mkreplica reference page)

attache-workspace> man checkout (display the Attache checkout reference page)

CPF products provide access to syntax for individual commands. The –help command option

displays individual subcommand syntax. For example:

cleartool uncheckout –help
Usage: uncheckout | unco [-keep | -rm] [-cact | -cwork] pname ...

Without any argument, cleartool help displays the syntax for all cleartool commands.

On UNIX, the apropos command displays command summary information and entries from the

ClearCase glossary. See the apropos reference page for more information.

Additionally, the online tutorials provide important information on setting up a user’s

environment, along with a step-by-step tour through each product’s most important features.

Technical Support

If you have any problems with the software or documentation, please contact Rational Technical

Support via telephone, fax, or electronic mail as described below. For information regarding

xiv Command Reference

support hours, languages spoken, or other support information, click the Technical Support link

on the Rational Web site at www.rational.com.

Your Location Telephone Facsimile Electronic Mail

North America 800-433-5444

toll free or

408-863-4000

Cupertino, CA

408-863-4194

Cupertino, CA

781-676-2460

Lexington, MA

support@rational.com

Europe, Middle

East, and Africa

+31-(0)20-4546-200

Netherlands

+31-(0)20-4546-201

Netherlands

support@europe.rational.com

Asia Pacific 61-2-9419-0111

Australia

61-2-9419-0123

Australia

support@apac.rational.com

Reference Pages 547

make

make
Executes a make program in the current working directory of your workspace

APPLICABILITY

SYNOPSIS
make [arg ...]

DESCRIPTION

The make command executes a make program in the current working directory of your

workspace; this directory must exist locally. On Windows 3.x, the make command invokes

attache-home-dir\etc\wsmake.pif, which can be customized to run the make program of your

choice. On Windows NT and Windows 95, make looks for an environment variable named

WSMAKE. If found, make uses the value of the WSMAKE environment variable as the name of the

program to run. Otherwise, make runs nmake, which must be on your PATH.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

Make Program. Default: No arguments are passed to the make program.

arg ...

Optionally, passes one or more arguments to the make program.

EXAMPLES

• Run the make program in your workspace.

make -n -v -k

SEE ALSO

attache_command_line_interface, wshell

Product Command Type

Attache command

Platform

Windows

548 Command Reference

makefile_aix

makefile_aix
clearmake compatibility with AIX make (on IBM hosts)

APPLICABILITY

SYNOPSIS
clearmake –C aix

DESCRIPTION

NOTE: The distinctive features of clearmake, such as build auditing, derived object sharing, and

build avoidance, are supported in dynamic views only. In addition, while parallel building is

supported in ClearCase snapshot views, it is not supported in ClearCase LT.

The clearmake program has been designed for compatibility with existing make programs,

minimizing the work necessary to switch to clearmake. There are many independently-evolving

variants of make, however, which provide different sets of extended features. clearmake does

not support all the features of all the variants, and absolute compatibility is not guaranteed.

If your makefiles use only the common extensions, they will probably work with clearmake. If

you must use features that clearmake does not support, consider using another make program

in a clearaudit shell. This alternative provides build auditing (configuration records), but does

not provide build avoidance (winkin).

NOTE: When building with configuration records, clearmake handles double-colon rules

differently than other make programs. For details, see Building Software.

Compatibility

When you specify –C aix, the following features are enabled:

• Execution of build script lines that begin with +, even if clearmake is invoked with the –n
option

• Execution of a shell command embedded in a dependency list:

Product Command Type

ClearCase data structure

ClearCase LT data structure

Platform

UNIX

Reference Pages 549

makefile_aix

myprog: ‘ls *.o’

• Specification of a builtins file on the command line, using the macro MAKERULES (the

default builtin file is /usr/ccs/lib/make.cfg)

• Environment variable MAKESHELL overrides the make macro SHELL to specify the shell

in which build script commands are executed (The environment variable SHELL is never

used for this purpose.)

• .POSIX target prohibits execution of recursive makes during make –n invocations

• The –q command-line option (see the clearmake reference page)

SEE ALSO

clearmake, clearmake.options, makefile_ccase

550 Command Reference

makefile_ccase

makefile_ccase
makefiles processed by clearmake

APPLICABILITY

DESCRIPTION

NOTE: The distinctive features of clearmake, such as build auditing, derived object sharing, and

build avoidance, are supported in dynamic views only. In addition, while parallel building is

supported in ClearCase snapshot views, it is not supported in ClearCase LT.

A makefile contains a sequence of entries, each of which specifies a build target, some

dependencies, and the build scripts of commands to be executed. A makefile can also contain

make macro definitions, target-dependent macro definitions, and build directives (special

targets.)

• Target/dependencies line. The first line of an entry is a white-space-separated, nonnull list

of targets, followed by a colon (:) or a double colon (::), and a (possibly empty) list of

dependencies. Both targets and dependencies may contain ClearCase pathname patterns.

(See the wildcards_ccase reference page.)

The list of dependencies may not need to include source objects, such as header files, because

clearmake detects these dependencies. However, the list must include build-order

dependencies, for example, object modules and libraries that must be built before

executables.

• Build script. Text following a semicolon (;) on the same line, and all subsequent lines that

begin with a <TAB> character, constitute a build script: a set of commands to be executed in a

shell (UNIX) or command interpreter (Windows). A command can be continued onto the

next text line with a \<NL> sequence. Any line beginning with a number sign (#) is a

comment.

Product Command Type

ClearCase general information

ClearCase LT general information

Platform

UNIX

Windows

Reference Pages 551

makefile_ccase

A build script ends at the first nonempty line that does not begin with a <TAB> or number

sign (#); this begins a new target/dependencies line or a make macro definition.

Build scripts must use standard pathnames only. Do not include view-extended or

version-extended pathnames in a build script.

Executing a build script updates the target, and is called a target rebuild. The commands in

a build script are executed one at a time, each in its own instances of the subshell or

command interpreter.

clearmake always completely eliminates a \<NL> sequence, even in its compatibility modes.

Some other make programs sometimes preserve such a sequence—for example, in a UNIX

sed(1) insert command:

target: depdcy

sed -e ’/xxx=0/i\

yyy=xxx;’ depdcy > target

• Make macro. A make macro is an assignment of a character-string value to a simple name.

By convention, all letters in the name are uppercase (for example, CFLAGS).

• Target-dependent macro definitions. A target-dependent macro definition takes the form

target-list := macro_name = string

You can use macros in makefiles or in BOS files. For more information, see BOS File Entries.

• Special targets. A line that begins with a dot (.) is a special target, which acts as a directive

to clearmake.

Build Options Specification Files

A build options specification (BOS) file is a text file containing macro definitions and/or

ClearCase special targets. We recommend that you place temporary macros—such as

CFLAGS=–g (UNIX) and CFLAGS=/Zi (Windows)—and others not to be included in a makefile

permanently in a BOS file, rather than specifying them on the clearmake command line.

By default, clearmake reads BOS files in this order:

1. The default BOS files

a. The file .clearmake.options in your home directory as indicated in the password

database (UNIX) or by the HOME environment variable or in the user profile (Windows).

This is the place for macros to be used every time you execute clearmake.

b. One or more local BOS files, each of which corresponds to one of the makefiles specified

with a –f option, or read by clearmake. Each BOS file has a name in the form

makefile-name.options. For example:

makefile.options

552 Command Reference

makefile_ccase

2. BOS files specified in the CCASE_OPTS_SPECS environment variable.

3. BOS files specified on the command line with –A.

If you specify –N, clearmake does not read default BOS files.

clearmake displays the names of the BOS files it reads if you specify the –v or –d option, or if

CCASE_VERBOSITY is set to 1.

For information on the contents of BOS files, see BOS File Entries on page 563.

Format of Makefiles

The following sections describe the special considerations for using makefiles with clearmake.

Restrictions—clearmake does not support the use of standard input as a makefile.

Libraries—If a target or dependency name contains parentheses, it is assumed to be an archive

(library) created by ar(1) (UNIX), lib (Windows), or some other librarian. The string within

parentheses refers to a member (object module) within the library. Use of function names within

parentheses is not supported.

• For example, on UNIX:

lib.a : lib.a(mod1.o) lib.a(mod2.o)

Thus, lib.a(mod1.o)refers to an archive that contains object module mod1.o. The expression

lib.a(mod1.o mod2.o) is not valid.

• Similarly, on Windows:

hello.lib : hello.lib(mod1.obj) hello.lib(mod2.obj)

hello.lib(mod1.obj) refers to an archive that contains mod1.obj. The expression

hello.lib(mod1.obj mod2.obj) is not valid.

Inference rules for archive libraries have the form:

• UNIX: .sfx.a
• Windows: .sfx.lib

where sfx is the file-name extension (suffix) from which the archive member is to be made.

The way in which clearmake handles incremental archive construction differs from other make
variants.

UNIX NOTE: The u key for ar is not reliable within a ClearCase environment. Do not use it.

Makefile.options

project.mk.options

Reference Pages 553

makefile_ccase

Command Echoing and Error Handling—You can control the echoing of commands and the

handling of errors that occur during command execution on a line-by-line basis, or on a global

basis.

You can prefix any command with one or two characters, as follows:

The –k option provides for partial recovery from errors. If an error occurs, execution of the

current target (that is, the set of commands for the current target) stops, but execution continues

on other targets that do not depend on that target.

Built-In Rules—File-name extensions (suffixes) and their associated rules in the makefile

override any identical file-name extensions in the built-in rules. clearmake reads built-in rules

from the file builtin.mk when you run in standard compatibility mode. In other compatibility

modes, other files are read.

Include Files—If a line in a makefile starts with the string include or sinclude followed by white

space (at least one <SPACE> or <TAB> character), the rest of the line is assumed to be a file name.

(This name can contain macros.) The contents of the file are placed at the current location in the

makefile.

For include, a fatal error occurs if the file is not readable. For sinclude, a nonreadable file is

silently ignored.

Order of Precedence of Make Macros and Environment Variables—By default, the order of

precedence of macros and environment variables is as follows:

1. Target-dependent macro definitions

2. Macros specified on the clearmake command line

3. Make macros set in a BOS file

4. Make macro definitions in a makefile

5. Environment variables

For example, target-dependent macro definitions override all other macro definitions, and

macros specified on the clearmake command line override those set in a BOS file.

– Causes clearmake to ignore any errors during execution of the command. By

default, an error causes clearmake to terminate.

The command-line option –i suppresses termination-on-error for all

command lines.

@ Suppresses display of the command line. By default, clearmake displays each

command line just before executing it.

The command-line option –s suppresses display of all command lines. The –n
option displays commands, but does not execute them.

–@ @– These two prefixes combine the effect of – and @.

554 Command Reference

makefile_ccase

If you use the –e option to clearmake, environment variables override macro definitions in the

makefile.

All BOS file macros (except those overridden on the command line) are placed in the build

script’s environment. If a build script recursively invokes clearmake:

• The higher-level BOS file setting (now transformed into an EV) is overridden by a make

macro set in the lower-level makefile. However, if the recursive invocation uses clearmake’s

–e option, the BOS file setting prevails.

• If another BOS file (associated with another makefile) is read at the lower level, its make

macros override those from the higher-level BOS file.

See Building Software for a list of build-related environment variables.

Make Macros—A macro definition takes this form:

macro_name = string

Macros can appear in the makefile, on the command line, or in a build options specification file.

(See Build Options Specification Files.)

Macro definitions require no quotes or delimiters, except for the equal sign (=), which separates

the macro name from the value. Leading and trailing white space characters are stripped. Lines

can be continued using a \<NL> sequence; this sequence and all surrounding white space is

effectively converted to a single <SPACE> character. macro_name cannot include white space, but

string can; it includes all characters up to an unescaped <NL> character.

clearmake performs macro substitution whenever it encounters either of the following in the

makefile:

$(macro_name)
$(macro_name:subst1=subst2)

It substitutes string for the macro invocation. In the latter form, clearmake performs an

additional substitution within string: all occurrences of subst1 at the end of a word within string
are replaced by subst2. If subst1 is empty, subst2 is appended to each word in the value of

macro_name. If subst2 is empty, subst1 is removed from each word in the value of macro_name.

For example, on UNIX:

% cat Makefile
C_SOURCES = one.c two.c three.c four.c
test:

echo "OBJECT FILES are: $(C_SOURCES:.c=.o)"
echo "EXECUTABLES are: $(C_SOURCES:.c=)"

% clearmake test
OBJECT FILES are: one.o two.o three.o four.o
EXECUTABLES are: one two three four

Reference Pages 555

makefile_ccase

And on Windows:

z:\myvob> type Makefile
C_SOURCES = one.c two.c three.c four.c
test:

echo OBJECT FILES are: $(C_SOURCES:.c=.obj)
echo EXECUTABLES are: $(C_SOURCES:.c=.exe)

z:\myvob> clearmake test
OBJECT FILES are: one.obj two.obj three.obj four.obj
EXECUTABLES are: one.exe two.exe three.exe four.exe

NOTE: UNIX and Windows object files have different file extension naming conventions: .o for

UNIX and .obj for Windows. Where this distinction is not important for the purposes of these

discussions, we sometimes use .o to designate any object file in this reference page.

Internal Macros—clearmake maintains these macros internally. They are useful in rules for

building targets.

$* (Defined only for inference rules) The file name part of the inferred

dependency, with the file-name extension deleted.

$@ The full target name of the current target.

$< (Defined only for inference rules) The file name of the implicit dependency.

$? (Defined only when explicit rules from the makefile are evaluated) The list of

dependencies that are out of date with respect to the target. When

configuration lookup is enabled (default), it expands to the list of all

dependencies, unless that behavior is modified with the

.INCREMENTAL_TARGET special target. In that case, $? expands to the list

of all dependencies different from the previously recorded versions.

When a dependency is an archive library member of the form lib(file.o) ,

the name of the member, file.o, appears in the list.

$% (Defined only when the target is an archive library member) For a target of

the form lib(file.o) , $@ evaluates to lib and $% evaluates to the library

member, file.o.

MAKE The name of the make processor (that is, clearmake). This macro is useful for

recursive invocation of clearmake.

556 Command Reference

makefile_ccase

VPATH Macro—The VPATH macro specifies a search path for targets and dependencies.

clearmake searches directories in VPATH when it fails to find a target or dependency in the

current working directory. clearmake searches only in the current view. The value of VPATH can

be one directory pathname, or a list of directory pathnames separated by colons (UNIX) or

semicolons (Windows). (In Gnu compatibility mode, you can also use spaces as separators.)

Configuration lookup is VPATH-sensitive when qualifying makefile dependencies (explicit

dependencies in the makefile). Thus, if a newer version of a dependent file appears in a directory

on the search path before the pathname in the CR (the version used in the previous build),

clearmake rejects the previous build and rebuilds the target with the new file.

The VPATH setting may affect the expansion of internal macros, such as $<.

Special Targets

Like other build tools, clearmake interprets certain target names as declarations. Some of these

special targets accept lists of patterns as their dependents, as noted in the description of the

target. Pattern lists may contain the pattern character, %. When evaluating whether a name

matches a pattern, the tail of the prefix of the name (subtracting directory names as appropriate)

must match the part of the pattern before the %; the file-name extension of the name must match

the part of the pattern after the %. For example:

MAKEFILE During makefile parsing, this macro expands to the pathname of the current

makefile. After makefile parsing is complete, it expands to the pathname of

the last makefile that was parsed. This holds only for top-level makefiles, not

for included makefiles or for built-in rules; in these cases, it echoes the name

of the including makefile.

Use this macro as an explicit dependency to include the version of the

makefile in the CR produced by a target rebuild.

On UNIX:

supersort: main.o sort.o cmd.o $(MAKEFILE)
cc -o supersort ...

On Windows:

supersort: main.obj sort.obj cmd.obj $(MAKEFILE)
link /out:$@ $?

Name Matches Does not match

(UNIX)
/dir/subdir/x.o

%.o
x.o
subdir/%.o
subdir/x.o

/dir/subdir/otherdir/x.o

Reference Pages 557

makefile_ccase

The following targets accept lists of patterns:

• .DEPENDENCY_IGNORED_FOR_REUSE
• .INCREMENTAL_REPOSITORY_SIBLING
• .INCREMENTAL_TARGET
• .NO_CMP_NON_MF_DEPS
• .NO_CMP_SCRIPT
• .NO_CONFIG_REC
• .NO_DO_FOR_SIBLING
• .NO_WINK_IN
• .SIBLING_IGNORED_FOR_REUSE

Special Targets for Use in Makefiles—You can use the following special targets in the makefile.

.DEFAULT :
If a file must be built, but there are no explicit commands or relevant built-in rules to

build it, the commands associated with this target are used (if it exists).

.IGNORE :
Same effect as the –i option.

.PRECIOUS : tgt ...
The specified targets are not removed when an interrupt character (typically, <CTRL-C>)

is typed (also on UNIX, a quit character, which is typically, <CTRL-\>).

.SILENT :
Same effect as the –s option.

Special Targets for Use in Makefiles or BOS Files—You can use the following special targets

either in the makefile itself or in a build options specification file. See Build Options Specification
Files.

.DEPENDENCY_IGNORED_FOR_REUSE: file ...

The dependencies you specify are ignored when clearmake determines whether a target

object in a VOB is up to date and can be reused. By default, clearmake considers that a

target cannot be reused if its dependencies have been modified or deleted since it was

(Windows)
\dir\subdir\x.obj

%.obj
x.obj
subdir\%.obj
subdir\x.obj

\dir\subdir\otherdir\x.obj

Name Matches Does not match

558 Command Reference

makefile_ccase

built. This target applies only to reuse, not to winkin. Also, this target applies only to

detected dependencies, which are not declared explicitly in the makefile.

You can specify the list of files with a tail-matching pattern; for example,

Templates.DB/%.module (UNIX) or %.module (Windows).

Unlike the files listed in most special targets, the files on this list refer to the names of

dependencies and not the names of targets. As such, the special target may apply to the

dependencies of many targets at once. This special target is most useful when

identifying a class of dependencies found in a particular toolset for which common

behavior is desired across all targets that have that dependency.

.INCREMENTAL_REPOSITORY_SIBLING: file ...

The sibling files listed are incremental repository files created as siblings of a primary

target, may contain incomplete configuration information, and prevent clearmake from

winking in the primary target. This special target is useful for situations where a toolset

creates an incremental sibling object, and you want more control over how that object is

used.

You can specify the list of files with a tail-matching pattern; for example, %.pdb.

Unlike the files listed in most special targets, the files on this list refer to the names of

sibling objects and not the names of targets. As such, the special target may apply to the

siblings of many targets at once. This special target is most useful when identifying a

class of siblings found in a particular toolset for which common behavior is desired

across all targets that have that sibling.

.INCREMENTAL_TARGET: tgt ...
Performs incremental configuration record merging for the listed targets; in other words,

combines dependency information from instances of this target generated previously

with the current build of this target. This special target is most useful when building

UNIX library archives or Windows libraries, because typically only some of the objects

going into a library are read each time the library is updated.

You can specify the list of files with a tail-matching pattern; for example, %.a or %.lib.

NOTE: .INCREMENTAL_TARGET applies only to makefile targets built incrementally

using a single make rule. Do not use it for the following kinds of files:

The general guideline is that if you’re not building a library in a single makefile rule, and

you’re not building an executable using an incremental linker, you should not use

.INCREMENTAL_TARGET.

• Files built incrementally that are not makefile targets. For example, sibling objects

like log files or template repositories.

• Files built incrementally from several different build scripts.

Reference Pages 559

makefile_ccase

.NO_CMP_NON_MF_DEPS : tgt ...
The specified targets are built as if the –M option were specified; if a dependency is not

declared in the makefile, it is not used in configuration lookup.

You can specify the list of files with a tail-matching pattern; for example, %.o.

.NO_CMP_SCRIPT : tgt ...
The specified targets are built as if the –O option were specified; build scripts are not

compared during configuration lookup. This is useful when different makefiles (and,

hence, different build scripts) are regularly used to build the same target.

You can specify the list of files with a tail-matching pattern; for example, %.o.

.NO_CONFIG_REC : tgt ...
The specified targets are built as if the –F option were specified; modification time is used

for build avoidance, and no CRs or derived objects are created.

You can specify the list of files with a tail-matching pattern; for example, %.o.

.NO_DO_FOR_SIBLING: file ...

Disables the creation of a derived object for any file listed if that file is created as a sibling

derived object (an object created by the same build rule that created the target). These

sibling derived objects are left as view-private files.

You can specify the list of files with a tail-matching pattern; for example,

ptrepository/_% (UNIX) or %.tmp (Windows).

Unlike the files listed in most special targets, the files on this list refer to the names of

sibling objects and not the names of targets. As such, the special target may apply to the

siblings of many targets at once. This special target is most useful when identifying a

class of siblings found in a particular toolset for which common behavior is desired

across all targets that have that sibling.

.NO_WINK_IN : tgt ...
The specified targets are built as if the –V option were specified; configuration lookup is

restricted to the current view.

You can specify the list of files with a tail-matching pattern; for example, %.o.

.SIBLING_IGNORED_FOR_REUSE: file ...

The files are ignored when clearmake determines whether a target object in a VOB is up

to date and can be reused. This is the default behavior, but this special target can be

useful in conjunction with the .SIBLINGS_AFFECT_REUSE special target or –R
command-line option. This target applies only to reuse, not to winkin.

You can specify the list of files with a tail-matching pattern; for example,

Templates.DB/%.module (UNIX) or %.sbr (Windows).

560 Command Reference

makefile_ccase

Unlike the files listed in most special targets, the files on this list refer to the names of

sibling objects and not the names of targets. As such, the special target may apply to the

siblings of many targets at once. This directive is most useful when identifying a class of

siblings found in a particular toolset for which common behavior is desired across all

targets that have that sibling.

.SIBLINGS_AFFECT_REUSE:
Build as if the –R command line option were specified; examine sibling derived objects

when determining whether a target object in a VOB can be reused (is up to date). By

default, when determining whether a target is up to date, clearmake ignores

modifications to objects created by the same build rule that created the target (sibling

derived objects). This directive tells clearmake to consider a target out of date if its

siblings have been modified or deleted.

UNIX-Only Target—You can use the following target only in UNIX makefiles or BOS files.

.NOTPARALLEL : tgt ...
Without any tgt arguments, disables parallel building for the current makefile.

clearmake builds the entire makefile serially, one target at a time. With a set of tgt
arguments, prevents clearmake from building any of the targets in the set in parallel

with each other. However, targets in a set can be built in parallel with targets in a

different set or with any other targets. For example:

.NOTPARALLEL:%.a

.NOTPARALLEL:foo bar

clearmake does not build any .a file in parallel with any other .a file, and foo is not built

in parallel with bar. However, clearmake may build .a files in parallel with foo or bar.

.NOTPARALLEL does not affect lower-level builds in a recursive make, unless you

specify it in the makefiles for those builds or include it in a BOS file.

You can specify the list of files with a tail-matching pattern; for example, %.a.

Using Makefiles in UNIX Snapshot Views

Because snapshot views do not make use of the MVFS, absolute VOB pathnames (for example,

/vobs/tools/foo.h) are not supported in snapshot views on UNIX. For that reason, your makefiles

must not include absolute VOB pathnames.

To eliminate absolute VOB pathnames from makefiles, use the pwv –root command to get the

value of the current view-root directory. Use that value in one of the following methods:

• Pass the context-dependent view root to the makefile from an external definition (for

example, with Imake).

• Define the context-dependent view root in the makefile. For example:

Reference Pages 561

makefile_ccase

VWROOT=‘cleartool pwv -root‘
TOOLS=$(VWROOT)/vobs/tools

The method shown in this example works for any clearmake compatibility mode. There are

also methods specific to each compatibility mode. See your make documentation for more

information.

Sharing Makefiles Between UNIX and Windows

clearmake is available on both UNIX and Windows NT. In principle, you can write portable

makefiles, but in practice, the obstacles are substantial. The variations in tool and argument

names between systems makes writing portable build scripts particularly challenging. If you

choose to pursue portable makefiles, use the following general procedures to produce usable

results.

• Start on UNIX; avoid most compatibility modes—Windows NT clearmake supports Gnu

compatibility mode but does not support others (for example, Sun compatibility mode).

Instead, it supports basic make syntax. To write or tailor transportable makefiles, begin

makefile development on UNIX, without compatibility modes other than Gnu in effect.

Gnu generates errors and warnings for problematic syntax. When things work cleanly on

UNIX, move your makefiles to Windows NT for testing.

• Use a makefile-generating utility, such as imake, to generate makefiles—Use imake or

some other utility to generate the makefiles you will need, including clearmake makefiles

for Windows NT.

Using Makefiles on Windows

There are several rules to follow when constructing, or converting, makefiles for use by

clearmake on a Windows host. Note that, as a general rule, your makefiles must match the syntax

required by clearmake on UNIX.

The following sections describe how you must specify build macros, targets, and dependencies

in makefiles to avoid case problems.

Build Macros and Case-Sensitivity—clearmake is case-sensitive with respect to makefile

macros. Consider a makefile macro reference, $(CPU) . There are numerous input sources from

which to satisfy this macro:

• From the makefile itself

• From the current table of environment variables

• From the command line

• From a build option specification (BOS) file

For any macro to be expanded correctly from any of these sources, the macro definition and

macro reference must be in the same case. For example, $(CPU) is not replaced by the value of an

EV named cpu.

562 Command Reference

makefile_ccase

Makefile Target/Dependency Pathnames—When you write makefiles, you must be aware of the

MVFS setting on your computer and specify targets and dependencies accordingly. If the MVFS

is case-preserving, you must use case-correct pathnames in makefiles to guarantee the

consistency of the resulting config records. Even if your MVFS is not case-preserving, we

recommend that you use case-correct pathnames so that users on case-preserving computers can

share the makefile.

NOTE: The –d option to clearmake warns you when case is the only difference in pathnames in

the makefile and on the file system.

Table 11 describes makefile requirements for the different MVFS settings.

Supporting Both omake and clearmake— It is possible, but not trivial, to prepare makefiles that

can be used with either omake or clearmake. The general approach is to supply omake-specific

macro definitions in the makefile, and to supply clearmake-specific macro overrides in a build

options specification (BOS) file; clearmake reads the BOS file, but omake does not. When

clearmake executes, it looks for macro definitions in two locations:

• %HOME%\.clearmake.options

• makefile.options, in the same directory as makefile (substitute the actual name of your

makefile, if it is not makefile)

BOS files at other locations can be passed to clearmake with the –A option.

Using UNIX-Style Command Shells in Makefiles—On Windows, clearmake accepts either

slashes (/) or backslashes (\) in pathnames. However, clearmake uses a backslash as the

Table 11 MVFS Settings and Case Requirements for Makefiles

MVFS Setting Build Tool and MVFS Behavior Makefile Requirements

Case-insensitive and case

preserving

The MVFS preserves the case of

created files. The build tool looks

for the file as it is specified in the

makefile.

The case of the target must match

the case of the file produced by the

MVFS.

Case-insensitive and

non-case-preserving

The MVFS converts the names of all

files created to lowercase. The build

tool looks for a lowercase file name.

The case of the target does not

matter.

Case-sensitive and case-preserving The MVFS preserves the case of

created files. The build tool looks

for the file as it is specified in the

makefile.

The case of the target must match

the case of the file produced by the

MVFS.

Reference Pages 563

makefile_ccase

separator in any pathnames that it constructs in build scripts (for example, as a result of VPATH

directory searching). This can cause problems with UNIX-like command shells that require

slashes in any pathnames supplied to them in command lines.

If you are using such a shell (for example, by setting the SHELL makefile variable accordingly),

you can force clearmake to use slashes when constructing pathnames. To do this, set the

CMAKE_PNAME_SEP variable:

CMAKE_PNAME_SEP = /

You can set CMAKE_PNAME_SEP in the makefile, in the BOS file, on the command line, or as an

environment variable.

BOS File Entries

The following sections describe the entries you can put in BOS files.

Standard Macro Definitions—A standard macro definition has the same form as a make macro

defined in a makefile:

macro_name = string

For example:

CDEBUGFLAGS = -g (UNIX)

CDEBUGFLAGS = /Zi (Windows)

Target-Dependent Macro Definitions—A target-dependent macro definition takes this form:

target-pattern-list := macro_name = string

Any standard macro definition can follow the := operator; the definition takes effect only when

targets matching patterns in target-pattern-list and their dependencies are processed. Patterns in

the target-pattern-list must be separated by white space. For example:

foo.o bar.o := CDEBUGFLAGS=-g (UNIX)

foo.o bar.o := CDEBUGFLAGS=/Zi (Windows)

Two or more higher-level targets can have a common dependency. If the targets have different

target-dependent macro definitions, the dependency is built using the macros for the first

higher-level target clearmake considered building (whether or not clearmake actually built it).

Shell Command Macro Definitions—A shell command macro definition replaces a macro name

with the output of a shell command:

macro_name :sh = string

This defines the value of macro_name to be the output of string, any shell command. In command

output, <NL> characters are replaced by <SPACE> characters. For example:

564 Command Reference

makefile_ccase

BUILD_DATE :sh = date (UNIX)

NT_VER :sh = VER (Windows)

Special Targets—You can use some ClearCase special targets in a build options spec. See Special
Targets.

Include Directives—To include one BOS file in another, use the include or sinclude (silent

include) directive. For example, on UNIX:

include /usr/local/lib/ux.options

sinclude $(OPTS_DIR)/pm_build.options

and on Windows:

include \lib\aux.options

sinclude $(OPTS_DIR)\pm_build.options

Comments—A BOS file can contain comment lines, which begin with a number sign (#).

SEE ALSO

clearmake, clearmake.options, makefile_aix, makefile_gnu, makefile_pmake,

makefile_smake, makefile_sun, omake, Building Software

Reference Pages 565

makefile_gnu

makefile_gnu
clearmake compatibility with Gnu make

APPLICABILITY

SYNOPSIS

clearmake –C gnu

DESCRIPTION

NOTE: The distinctive features of clearmake, such as build auditing, derived object sharing, and

build avoidance, are supported in dynamic views only. In addition, while parallel building is

supported in ClearCase snapshot views, it is not supported in ClearCase LT.

The clearmake program has been designed for compatibility with existing make programs,

minimizing the work necessary to switch to clearmake. There are many independently evolving

variants of make which provide different sets of extended features. clearmake does not support

all features of all variants, and absolute compatibility is not guaranteed. If your makefiles use

only the common extensions, they will probably work with clearmake.

NOTE: When building with configuration records, clearmake handles double-colon rules

differently from other make programs. For details, see Building Software.

VPATH Separator Character

As separators in the VPATH macro you can use spaces, colons (UNIX), or semicolons (Windows).

For more information, see the makefile_ccase reference page.

Using UNIX-Style Command Shells in Your Windows makefile

clearmake accepts either slashes (/) or backslashes (\) in pathnames. However, clearmake uses

a backslash as the separator in any pathnames that it constructs in build scripts (for example, as

Product Command Type

ClearCase data structure

ClearCase LT data structure

Platform

UNIX

Windows

566 Command Reference

makefile_gnu

a result of VPATH directory searching). This can cause problems with UNIX-like command shells

that require slashes in any pathnames supplied to them in command lines.

If you are using such a shell (for example, by setting the SHELL makefile variable accordingly),

you can force clearmake to use slashes when constructing pathnames. To do this, set the

CMAKE_PNAME_SEP environment variable:

CMAKE_PNAME_SEP = /

You can set CMAKE_PNAME_SEP in the makefile, in the BOS file, on the command line, or as an

environment variable.

Compatibility

clearmake provides partial compatibility with Gnu make. This section provides the details.

Supported Gnu Make Command-Line Options—clearmake supports most of the

single-character subset of Gnu Make’s command-line interface. However, clearmake does not

accept any of the long-form spellings for Gnu Make command options.

NOTE: If you need to use the long form spellings, you can write a Perl wrapper that translates the

long-form options into short form and invokes clearmake with the short-form options.

clearmake –C gnu supports the following Gnu Make command-line options:

–b
Disables Gnu’s built-in rules (equivalent to gnumake –R).

–d
Prints debugging information in addition to normal processing messages.

–e
Gives variables taken from the environment precedence over variables from makefiles.

–f FILE
Reads FILE as a makefile.

–i
Ignores all errors in commands executed to remake files.

–k
Continues as much as possible after an error.

–I DIR
Specifies a directory DIR to search for included makefiles.

–n
Prints the commands that would be executed, but does not execute them.

Reference Pages 567

makefile_gnu

–p
Prints the database (rules and variable values) that results from reading the makefiles,

then executes as usual or as otherwise specified.

–r
Eliminates use of the built-in implicit rules.

–s
Silent operation. Does not print the commands as they are executed.

–v
Prints the version of the make program.

–w
Prints a message containing the working directory both before and after executing the

makefile.

–q
Question mode. Does not run any commands or print anything. Returns an exit status of

0 if the specified targets are already up to date, or 1 if any remaking is required.

Unsupported Gnu Make Command-Line Options — The following options are not supported:

• –C DIR

--directory=DIR

• --no-print-directory

• --warn-undefined-variables

• –h

--help

• –t

--touch

• –j [JOBS]

--jobs=[JOBS]

• –l [LOAD]

--load-average[=LOAD]

--max-load[=LOAD]

• –o FILE

--old-file=FILE

--assume-old=FILE

• –W FILE

--what-if=FILE

568 Command Reference

makefile_gnu

-new-file=FILE

--assume-new=FILE

• –S

--no-keep-going

--stop)

• –f –

Supported Gnu Make Features — The following features are enabled with –C gnu (see the Gnu
Make manual for details):

• Conditional makefile interpretation; for example:

ifeq ($(CC),gcc)
$(CC) -o foo $(objects) $(libs_for_gcc)

else
$(CC) -o foo $(objects) $(normal_libs)

endif

• Simply expanded variables

y := $(x) bar

in which the RHS is expanded once when the assignment is first scanned

• The += syntax to append to the value of a variable

• The ?= macro operator

• The use of $$ in target names as an equivalent to a literal $

• Special characters ^()<>;!=&|$#:”{}\ (UNIX) or ^()<>;!=&|$#:” (Windows) within macro

names

• Escaping special characters in target names by preceding them with a \. Note that the

escaping must be consistent within the makefile. For example,

test: test#foo

test\#foo:
echo $@

generates a “Don’t know how to make” error.

• Stripping leading sequences of ./ (UNIX) or .\ (Windows) from file names, so that (for

example) .\file and file are considered the same target

• Variable references using pattern substitution:

${VAR:PATTERN_1=PATTERN_2}

• Text-manipulation functions, such as:

Reference Pages 569

makefile_gnu

$(subst FROM,TO,TEXT)

$(patsubst PATTERN,REPLACEMENT,TEXT)

$(strip STRING)

$(findstring FIND,IN)

$(filter PATTERN...,TEXT)

$(filter-out PATTERN...,TEXT)

$(sort LIST)

$(dir NAMES...)

$(notdir NAMES...)

$(suffix NAMES...)

$(basename NAMES...)

$(addsuffix SUFFIX,NAMES...)

$(addprefix PREFIX,NAMES...)

$(join LIST1,LIST2)

$(word N,TEXT)

$(words TEXT)

$(wordlist START, END, TEXT)

$(firstword NAMES...)

$(wildcard PATTERN)

$(foreach VAR,LIST,TEXT)

$(origin VARIABLE)

$(shell COMMAND)

• The VPATH variable for specifying a search path for every dependency

NOTE: clearmake searches only in the current view. For more information, see the

makefile_ccase reference page.

• The vpath statement for specifying a search path for a specified class of names

• The export statement

• The unexport directive

• The .PHONY target declaration

• All of Gnu Make’s built-in implicit rules

570 Command Reference

makefile_gnu

• Pattern rules; for example:

%.o : %.c
COMMANDS
...

• Static pattern rules:

TARGETS ...: TARGET-PATTERN: DEP-PATTERNS ...
COMMANDS
...

• The automatic variables

$@ $* $< $% $? $^ $+

and their file-name and directory-name variants; for example:

$(@F) $(@D) ...

• Multi-line variable definition

define VAR
TEXT
...

endef

Unsupported Gnu Make Features — The following features are not currently supported:

• Automatic remaking of any makefiles that are declared as targets (you must explicitly

rebuild them)

• Controlling sub-makes by explicitly manipulating the MAKEFLAGS variable

• The declarations .DELETE_ON_ERROR, .INTERMEDIATE, .SECONDARY

• Automatic makefile regeneration and restart if the makefile and included makefile

fragments are targets in the makefile itself

• Automatic deletion of intermediate results of a chain of implicit-rules

• Special search method for library dependencies written in the form -lNAME. For each

directory on the VPATH/vpath list, Gnu Make searches in DIR/lib.

• When the EV MAKEFILES is defined, Gnu make considers its value as a list of names of

additional makefiles to be read before the others, as though they were implicitly included.

SEE ALSO

clearmake, clearmake.options, makefile_ccase, omake

Reference Pages 571

makefile_pmake

makefile_pmake
clearmake compatibility with IRIX pmake (on SGI hosts)

APPLICABILITY

APPLICABILITY

ClearCase (data structure)

SYNOPSIS

clearmake –C sgipmake

DESCRIPTION

NOTE: The distinctive features of clearmake, such as build auditing, derived object sharing, and

build avoidance, are supported in dynamic views only. In addition, while parallel building is

supported in ClearCase snapshot views, it is not supported in ClearCase LT.

The clearmake program has been designed for compatibility with existing make programs,

minimizing the work necessary to switch to clearmake. There are many independently evolving

variants of make which provide different sets of extended features. clearmake does not support

all features of all variants, and absolute compatibility is not guaranteed.

If your makefiles use only the common extensions, they will probably work with clearmake. If

you must use features that clearmake does not support, consider using another make program

in a clearaudit shell. This alternative provides build auditing (configuration records), but does

not provide build avoidance (winkin).

NOTE: When building with configuration records, clearmake handles double-colon rules

differently than other make programs. For details, see Building Software.

Compatibility

When you specify –C sgipmake, all the SGI smake features listed in the makefile_smake
reference page are enabled, along with the following:

Product Command Type

ClearCase data structure

ClearCase LT data structure

Platform

UNIX

572 Command Reference

makefile_pmake

• If no target description file is specified on the command line, search for Makefile before

searching for makefile.

• Undefined macros in build scripts are left unexpanded.

• Undefined macros outside build scripts cause a fatal error.

• One shell per build script. With –C sgismake, each command in the build script is executed

in a separate shell.

SEE ALSO

clearmake, clearmake.options, makefile_ccase

Reference Pages 573

makefile_smake

makefile_smake
clearmake compatibility with IRIX smake (on SGI hosts)

APPLICABILITY

SYNOPSIS

clearmake –C sgismake

DESCRIPTION

NOTE: The distinctive features of clearmake, such as build auditing, derived object sharing, and

build avoidance, are supported in dynamic views only. In addition, while parallel building is

supported in ClearCase snapshot views, it is not supported in ClearCase LT.

The clearmake program has been designed for compatibility with existing make programs,

minimizing the work necessary to switch to clearmake. There are many independently evolving

variants of make which provide different sets of extended features. clearmake does not support

all features of all variants, and absolute compatibility is not guaranteed.

If your makefiles use only the common extensions, they will probably work with clearmake. If

you must use features that clearmake does not support, consider using another make program

in a clearaudit shell. This alternative provides build auditing (configuration records), but does

not provide build avoidance (winkin).

NOTE: When building with configuration records, clearmake handles double-colon rules

differently than other make programs. For details, see Building Software.

Compatibility

The following features are enabled when you specify –C sgismake:

• All extended macro-assignment operators:

Product Command Type

ClearCase data structure

ClearCase LT data structure

Platform

UNIX

?= Assign if undefined

:= Expand RHS immediately

574 Command Reference

makefile_smake

• All extended macro-expansion operators:

$(VAR:T)
$(VAR:S/pattern/replace/)
$(VAR:H)
$(VAR:R)
$(VAR:Mpattern)
$(VAR:E)
$(VAR:Npattern)

• Most makefile conditional directives:

• Makefile inclusion with search rules similar to those of cpp(1):

#include <file>
Look for file in /usr/include/make

#include "file"
Look for file in current directory, then in directories specified with –I command-line

options, then in /usr/include/make

• Command line option –I, for use with #include statements

• Aliases for internal make macros:

NOTE: $> is not supported by standard make (1).

+= Append to macro

!= Assign result of shell command

#if (expressions may contain ‘defined’ operator and ‘make’ operator)
#ifdef, #ifndef

#ifmake, #ifnmake

#else

#elif

#elifmake,
#elifnmake

#elifdef,
#elifndef

#endif

$(.TARGET) alias for $@

$(.PREFIX) alias for $*

$(.OODATE) alias for $?

$(.IMPSRC) alias for $<

$(.ALLSRC) alias for $>

Reference Pages 575

makefile_smake

• smake-specific built-ins file: /usr/include/make/system.mk

• Inference rules with nonexistent intermediates

• Search paths for dependencies (.PATH and .PATH.suffix)

• Deferring build script commands (“...” in build script)

• .NULL target: specifies suffix to use when target has no file-name suffix

• .NOTPARALLEL target: disables parallel building

• .MAKE target: specifies that a target corresponds to a sub-make; that target’s build script is

be invoked even when –n is used

• The –q command-line option (see the clearmake reference page)

Limitations

Using –C –sgismake on a non-IRIX system may cause errors because different systems have

different names for their built-in makefiles. You can disable use of built-in rules with

clearmake –r.

SEE ALSO

clearmake, clearmake.options, makefile_ccase

576 Command Reference

makefile_sun

makefile_sun
clearmake compatibility with SunOS 5.x (Solaris) make

APPLICABILITY

SYNOPSIS

clearmake –C sun

DESCRIPTION

NOTE: The distinctive features of clearmake, such as build auditing, derived object sharing, and

build avoidance, are supported in dynamic views only. In addition, while parallel building is

supported in ClearCase snapshot views, it is not supported in ClearCase LT.

The clearmake program has been designed for compatibility with existing make programs,

minimizing the work necessary to switch to clearmake. There are many independently evolving

variants of make which provide different sets of extended features. clearmake does not support

all features of all variants, and absolute compatibility is not guaranteed. If your makefiles use

only the common extensions, they will probably work with clearmake.

NOTE: When building with configuration records, clearmake handles double-colon rules

differently than other make programs. For details, see Building Software.

Compatibility

The following features are enabled when you specify –C sun:

• All extended macro-expansion operators:

• Pattern-replacement macro expansions:

$(macro: op%os=np%ns)

Product Command Type

ClearCase data structure

ClearCase LT data structure

Platform

UNIX

+= Append to macro

:sh= Assign result of shell command

Reference Pages 577

makefile_sun

• Shell-execution macro expansions:

$(macro:sh)

• Conditional (target-dependent) macro definitions:

tgt-list := macro = value
tgt-list := macro += value

You can use target-dependent macro definitions in the makefile and in the BOS file.

• Special-purpose macros:

HOST_ARCH
TARGET_ARCH
HOST_MACH
TARGET_MACH

• Target-dependent macros

• Sun-specific built-ins file:

./make.rules or /usr/share/lib/make/make.rules (SunOS 5.x)

• Sun pattern-matching rules:

tp%ts : dp%ds

• The –q command-line option (see the clearmake reference page)

• Delayed macro evaluation

• MFLAGS environment variable

VPATH: Searches for Both Targets and Dependencies

clearmake –C sun uses the VPATH search list (if there is one) to look in the current view for the

target if both these conditions are true:

• The target’s name is not an absolute pathname.

• There is no existing file corresponding to the target’s name.

For each directory in the value of VPATH, the directory path is concatenated with the target’s

name, and if there is an existing file at the resulting path, then that file is evaluated.

This feature works whether or not clearmake uses configuration lookup (that is, either with or

without the –T or –F option). If it does use configuration lookup, clearmake prefers to use a DO

in the current view:

1. As always, clearmake tries to reuse the candidate DO (if any) in the current view, built at the

target’s name.

578 Command Reference

makefile_sun

2. If such a candidate does not exist or does not qualify for reuse, clearmake searches for a

candidate in the current view that was built in directories on the VPATH.

3. If candidate with an appropriate name exists in a VPATH directory but is rejected by the

configuration lookup algorithm, clearmake looks in the VOB database for other candidates

that were built in that same VPATH directory.

4. If no VPATH directory has any candidate with an appropriate name, clearmake proceeds to

search the VOB database for other candidates in the directory corresponding to the target’s

name.

NOTE: In all these cases, all the DOs on which clearmake performs configuration lookup were

built in a single directory. clearmake traverses multiple VPATH directories only in deciding

where to begin performing configuration lookup.

VPATH Substitutions in Build Scripts — The names of targets and dependencies in build

scripts are replaced by their VPATH-elaborated counterparts. If a file is found using the VPATH,

all white-space-delimited occurrences of the file’s name in a build script are replaced with the

pathname at which the file was found. For example:

VPATH = tgtdir:depdir

bar.o : bar.c
 cc -c bar.c -o bar.o

If bar.c is found in directory depdir, and bar.o is found in directory tgtdir, and the target must be

rebuilt, then this build script is executed:

cc -c depdir/bar.c -o tgtdir/bar.o

Limitations

Using –C sun on a non-SunOS system may cause errors because different systems have different

names for their built-in makefiles. You can disable use of built-in rules with clearmake –r.

clearmake –C sun uses the SunOS arch(1) and mach(1) commands to set the values of special

macros (for example, HOST_ARCH and HOST_MACH). This generates error messages on systems

that do not support these commands. You can safely ignore such messages if your build scripts

do not use the special macros. Some alternatives:

• Comment out the lines in sunvars.mk that define the .CLEARMAKE_ARCH and

.CLEARMAKE_MACH macros.

• Write shell scripts to implement the arch and mach commands.

SEE ALSO

clearmake, clearmake.options, makefile_ccase

Reference Pages 579

man

man
Displays an online reference page

APPLICABILITY

SYNOPSIS

• ClearCase, ClearCase LT, and MultiSite on UNIX:

man [–g⋅raphical] [command_name]

• Attache on UNIX; ClearCase, ClearCase LT, and MultiSite onWindows:

man [command_name]

DESCRIPTION

This command does not require a product license.

The man command displays the specified online reference page in flat-ASCII format, Windows

Help format, or in Windows-style UNIX help format in a separate help viewer. For cleartool and

multitool subcommands, Attache local commands, and hybrid commands, or if your Attache

helper is running on a UNIX host, you can use any valid command abbreviation or alias. For

example:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

MultiSite multitool subcommand

Platform

UNIX

Windows

cmd-context man lscheckout (abbreviation; in Attache, valid for local or hybrid command or UNIX
only)

cmd-context man lsch (full command name)
cmd-context man lsco (alias; in Attache, valid for local or hybrid command or UNIX only)

580 Command Reference

man

With no arguments, man displays the cleartool reference page. In Attache, help is a synonym for

man.

CLEARCASE, CLEARCASE LT, AND MULTISITE ON UNIX—USE OF MANPATH

Reference pages are stored in subdirectories of ccase-home-dir/doc/man. The man subcommand

modifies the environment to include a MANPATH variable set to this directory. It then executes the

UNIX man(1) command in a subprocess. Thus, the shell from which you invoke cleartool need

not have MANPATH set.

If, however, you want to use UNIX man directly, without going through cleartool or multitool,
be sure to include ccase-home-dir/doc/man in your MANPATH. For example:

setenv MANPATH /usr/catman:/usr/man:/usr/atria/doc/man

Note that with UNIX man, you must match the reference page file name. File names of cleartool
subcommands have a ct+ prefix; file names of multitool subcommands have a mt+ prefix.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

DISPLAYING THE REFERENCE PAGE IN HELP FORMAT. Default: Displays the reference page in

flat-ASCII format.

–g⋅raphical
Starts a help viewer to display the reference page.

SPECIFYING THE REFERENCE PAGE. Default: Displays the overview reference page for the product.

command_name
The name (or abbreviation, or alias) of a cleartool or multitool subcommand, Attache

local or hybrid command, or the name of any other ClearCase, ClearCase LT, or

MultiSite reference page.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

% man ct+describe (correct)
% man mt+syncreplica (correct)
% man describe (incorrect)
% man des (incorrect)

Reference Pages 581

man

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Display the reference page for the mkview command.

cmd-context man mkview

• Display the reference page for the lstype command in Windows-style help on a UNIX

machine.

cmd-context man –graphical lstype

SEE ALSO

attache_command_line_interface, help, man(1)

582 Command Reference

merge

merge
Merges versions of a text-file element or a directory

APPLICABILITY

SYNOPSIS

• ClearCase and ClearCase LT on UNIX:

merge { –out output-pname | –to contrib-&-result-pname }

[–g⋅raphical [–tin⋅y] |

[–tin⋅y | –win⋅dow] [–ser⋅ial_format | –dif⋅f_format | –col⋅umns n]]

[–bas⋅e pname | –ins⋅ert | –del⋅ete] [–nda⋅ta | –nar⋅rows] [–rep⋅lace]

[–q⋅uery |–abo⋅rt | –qal⋅l]
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–opt⋅ions pass-through-options]

{ –ver⋅sion contrib-version-selector ... | contrib-pname ... }

• ClearCase and ClearCase LT on Windows:

merge { –out output-pname | –to contrib-&-result-pname }

[–g⋅raphical [–tin⋅y] | [–ser⋅ial_format | –dif⋅f_format | –col⋅umns n]]

[–bas⋅e pname | –ins⋅ert | –del⋅ete] [–nda⋅ta | –nar⋅rows] [–rep⋅lace]

[–q⋅uery |–abo⋅rt | –qal⋅l]
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–opt⋅ions pass-through-options]

{ –ver⋅sion contrib-version-selector ... | contrib-pname ... }

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 583

merge

• Attache:

merge { –out output-pname | –to contrib-&-result-pname }

{ –g⋅raphical [–tin⋅y] [–nda⋅ta | –nar⋅rows] [–q⋅uery |–abo⋅rt | –qal⋅l] |
{ –nda⋅ta | –abo⋅rt [–nar⋅rows] }

[–ser⋅ial_format | –dif⋅f_format | –col⋅umns n] }

[–bas⋅e pname | –ins⋅ert | –del⋅ete] [–rep⋅lace]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–opt⋅ions pass-through-options]

{ –ver⋅sion contrib-version-selector ... | contrib-pname ... }

DESCRIPTION

ClearCase and ClearCase LT

The merge command calls an element-type-specific program (the merge method) to merge the

contents of two or more files, or two or more directories. Typically the files are versions of the

same file element. A directory merge must involve versions of the same directory element.

When used to merge directory versions in a snapshot view, this command also updates the

directory (and subdirectories, if necessary). (See update.)

You can also perform a subtractive merge, which removes from a version the changes made in

one or more of its predecessors.

merge uses the type manager mechanism to select a merge method. For details, see the

type_manager reference page. merge methods are supplied only for certain element types.

Attache

This command merges the contents of two or more files, or two or more directories. Typically the

files are versions of the same file element. A directory merge must involve versions of the same

directory element.

merge presumes that all files are text files, using the built-in textual diff and merge, and

bypassing the type manager mechanism. Any missing file contributors are downloaded

temporarily to the workspace. For a directory merge, the text file encodings of the directories are

downloaded. If the merge is successful and should have a merge hyperlink created, a remote

merge –ndata command is issued to create the hyperlink. The merged result is not uploaded to

the view until a checkin or put of the result occurs. Local directories are not updated after a

directory merge; you must issue get commands to update merged directories.

You can also perform a subtractive merge, which removes from a version the changes made in

one or more of its predecessors.

584 Command Reference

merge

RESTRICTIONS

Identities: For all operations except creating a merge arrow, no special identity is required. To

create a merge arrow, you must have one of the following identities:

• Element owner

• Element group member

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element,

branch type, branch, hyperlink type.

Mastership: (Replicated VOBs) No mastership restrictions.

OPTIONS AND ARGUMENTS

DESTINATION OF MERGE OUTPUT. Default: None.

–out output-pname
(File merge) Specifies a view-private or workspace file or non-MVFS file to be the merge

target. output-pname is not used as a contributor, and no merge arrows are created. Use

this option to perform a merge that does not overwrite any of its contributors. An error

occurs if output-pname already exists.

(Attache) Note that output-pname is not uploaded to the view. If it corresponds to a

checked-out version, it remains in the workspace until it is checked in.

–to contrib-&-result-pname
Specifies a version of a file or directory element to be the merge target: one of the

contributors to the merge, and also the location where the merged output is stored.

merge proceeds as follows:

1. (ClearCase and ClearCase LT file merge) Preserves the target’s current contents in

view-private file contrib-&-result-pname.contrib. The file name may get a .n
extension, to prevent a name collision.

2. Stores the merged output in the workspace in contrib-&-result-pname.

You can suppress these data-manipulation steps by using –ndata; you must do so

to avoid an error if the file is not checked out:

cleartool: Error: ...
Only a checked out version can be modified to have the data
resulting from the merge.

Reference Pages 585

merge

PERFORMING A GRAPHICAL MERGE. Default: Performs the merge in the command window and

uses the default display font.

–g⋅raphical [–tin⋅y]

Performs the merge graphically. With –tiny, a smaller font is used to increase the amount

of text displayed in each display pane.

NOTE: When merging files of type html, if the machine on which you execute merge –graphical
is not the machine on which you run your HTML browser, your browser may not be able to find

the pathname to the files being merged.

USING A SEPARATE WINDOW. Default: Sends output to the current window.

–tin⋅y
Same as –window, but uses a smaller font in a 165-character window.

–win⋅dow
Displays output in a separate window, formatted as with –columns 120. Type an

operating system interrupt character (typically, CTRL+C in the window to close it. The

merge command returns immediately, not waiting for the window to be closed.

INTERACTIVE MERGES NOT SUPPORTED IN ATTACHE. You must specify –ndata or –abort from

below.

OUTPUT FORMAT. Default: Displays output in the format described in the diff reference page.

–ser⋅ial_format
Reports differences with each line containing output from one contributor, instead of in

a side-by-side format.

–dif⋅f_format
Displays output in the same style as the UNIX diff(1) utility.

–col⋅umns n
Establishes the overall width of side-by-side output. The default width is 80; only the

first 40 or so characters of corresponding difference lines appear. If n does not exceed the

default width, this option is ignored.

3. Creates a merge arrow (hyperlink of type Merge) from all other contributors to

the checked-out version. You can suppress this step by using the –narrows option.

In ClearCase and ClearCase LT, if the merge target cannot be overwritten, merge
saves its work in the view-private file contrib-&-result-pname.merge The file name

may have a .n extension, to prevent a name collision.

In Attache, if the merge target cannot be overwritten, merge saves its work in the

workspace file contrib-&-result-pname.mrg, or if that extension exists, .m00 , .m01 ,

and so on.

586 Command Reference

merge

SPECIFYING THE BASE CONTRIBUTOR. Default: If all contributors are versions of the same element,

this command determines the base contributor. If contributors are not all versions of the same

element, there is no base contributor and you must resolve discrepancies among the

contributors.

–bas⋅e pname
Specifies pname as the base contributor for the merge. You cannot use the –version option

to specify this argument; use a version-extended pathname.

SPECIFYING SPECIAL MERGES. Default: A standard merge is performed: all the differences between

the base contributor and each non-base contributor are taken into account.

–ins⋅ert
Invokes a selective merge of the changes made in one or more versions. If you specify

one contributor with –version or a pname argument, only that version’s changes are

merged. Specifying two contributors defines an inclusive range of versions; only the

changes made in that range of versions are merged.

No merge arrow is created in a selective merge.

RESTRICTIONS: You must specify the target version with the –to option. No version

specified with –version or a pname argument can be a predecessor of the target version.

–del⋅ete
Invokes a subtractive merge of the changes made in one or more versions on the same

branch. If you specify one contributor with –version or a pname argument, only that

version’s changes are removed. Specifying two contributors defines an inclusive range

of versions; only the changes made in that range of versions are removed.

No merge arrow is created in a subtractive merge.

RESTRICTIONS: You must specify the target version with the –to option. All versions

specified with –version or a pname argument must be same-branch predecessors of the

target version.

SUPPRESSING PARTS OF THE MERGE PROCESS. Default: merge stores its results in the workspace

location specified by –to or –out; with –to, it also creates merge arrows.

–nda⋅ta
(Use only with –to) Suppresses the merge, but creates the corresponding merge arrows.

An error occurs if you use –ndata along with –out; together, the two options leave merge
with no work to do.

–nar⋅rows
(For use with –to; invoked by –out) Performs the merge, but suppresses the creation of

merge arrows.

Reference Pages 587

merge

REPLACING A PREVIOUS MERGE. Default: An error occurs if a merge arrow is already attached to

any version where merge would create one.

–rep⋅lace
Allows creation of new merge arrows to replace existing ones.

CONTROLLING USER INTERACTION. Default: Works as automatically as possible, prompting you to

make a choice only when two or more non-base contributors differ from the base contributor.

NOTE: In Attache, the –query and –qall options are available only when performing a graphical

merge (–graphical).

–q⋅uery
Turns off automatic merging for nontrivial merges and prompts you to proceed with

every change in the from-versions. Changes in the to-version are automatically accepted

unless a conflict exists. When you specify the –out option, cleartool uses the last

pathname on the command line as the to-version.

–abo⋅rt
Cancels the command instead of engaging in a user interaction; a merge takes place only

if it is completely automatic. If two or more nonbase contributors differ from the base

contributor, a warning is issued and the command is canceled. This command is useful

in shell scripts that batch many merges (for example, all file elements in a directory) into

a single procedure.

–qal⋅l
Turns off automated merging. merge prompts you to make a choice every time a

nonbase contributor differs from the base contributor. This option is turned on

automatically if merge cannot determine a common ancestor (or other base contributor),

and you do not use –base.

SPECIFYING A COMMENT FOR THE MERGE ARROW. Default: Attaches a comment to each merge

arrow (hyperlink of type Merge) with commenting controlled by your .clearcase_profile file

(default: –nc). See the comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

PASSING THROUGH OPTIONS TO THE ’MERGE’ METHOD. Default: Does not pass any special options

to the underlying merge method (in ClearCase and ClearCase LT, implemented by the cleardiff
utility for all predefined element types).

–opt⋅ions pass-through-options
Allows you to specify merge options that are not directly supported on the merge
command line.

588 Command Reference

merge

If you are specifying more than one pass-through option, enclose them in quotes; merge
must see them as a single command-line argument.

For descriptions of the options valid for ClearCase and ClearCase LT, see the cleardiff
reference page.

For example, this cleartool command passes through the –quiet and –blank_ignore
options:

cmd-context merge –options "–qui –b" –to util.c /main/bugfix/LATEST/main/3

Attache accepts the following pass-through options:

For example, this Attache command passes through the –quiet and –blank_ignore
options:

cmd-context merge –ndata –options "–qui –b" –to util.c \main\bugfix\LATEST
\main\3

SPECIFYING THE DATA TO BE MERGED. Default: None.

–ver⋅sion contrib-version-selector ...

(For use only if all contributors are versions of the same element) If you use the –to
option to specify one contributor, you can specify the others with –ver followed by one

or more version selectors. (See the version_selector reference page.)

contrib-pname ...

One or more pathnames, indicating the objects to be merged: versions of file elements,

–hea⋅ders_only
–qui⋅et (mutually exclusive)

–headers_only lists only the header line of each difference. The

difference lines themselves are omitted.

–quiet suppresses the file summary from the beginning of the report.

–b⋅lank_ignore
Ignores extra white space characters in text lines: leading and trailing white

space is ignored; internal runs of white space are treated like a single SPACE

character.

–vst⋅ack
–hst⋅ack

–vst⋅ack stacks the difference panes vertically, with the base contributor at the

top.

–hst⋅ack displays the difference panes horizontally, with the base contributor

on the left (the default behavior).

Reference Pages 589

merge

versions of directory elements, or any other files. If you don’t use –to, you must specify

at least two contrib-pname arguments.

These two commands are equivalent:

(ClearCase and ClearCase LT)

cmd-context merge –to foo.c –version /main/bugfix/LATEST /main/3

cmd-context merge –to foo.c foo.c@@/main/bugfix/LATEST foo.c@@/main/3

(Attache)

cmd-context merge –nda –to foo.c –version \main\bugfix\LATEST \main\3

cmd-context merge –nda –to foo.c foo.c@@\main\bugfix\LATEST foo.c@@\main\3

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Merge the version of file util.c in the current view or workspace with the most recent

versions on the rel2_bugfix and test branches; suppress the creation of merge arrows.

cmd-context merge –to util.c –narrows \
–version /main/rel2_bugfix/LATEST /main/test/LATEST (ClearCase and
ClearCase LT)

cmd-context merge –to util.c –abort –narrows –version /main/rel2_bugfix/LATEST
/main/test/LATEST (Attache/this command must be entered on a single line)

• Merge the version of file util.c, in view jk_fix, to version 3 on the main branch, placing the

merged output in a temporary file.

cmd-context merge –out \tmp\proj.out util.c@@\main\3 \jk_fix\users_hw\src\util.c

• Merge the version of file util.c to version 3 on the main branch, placing the merged output

in a temporary file.

cmd-context merge –abort –out /tmp/proj.out util.c@@/main/3 util.c

590 Command Reference

merge

• Subtractive merge: remove the changes made in version 3 from file util.c.

cmd-context merge –to util.c –abort –delete –version util.c@@\main\3

• (Attache) Use merge –graphical to merge the file util.c in the current workspace with the

most recent version on the rel2_bugfix branch.

cmd-context merge –to util.c –graphical –version \main\rel2_bugfix\LATEST

SEE ALSO

describe, diff, find, findmerge, rmmerge, update, xclearcase, xcleardiff

Reference Pages 591

mkactivity

mkactivity
Creates an activity

APPLICABILITY

SYNOPSIS
mkact⋅ivity [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–hea⋅dline headline] [–in stream-selector] [–nse⋅t] [–f⋅orce] [activity-selector ...]

DESCRIPTION

The mkactivity command creates an activity. Activities track the work you do in completing a

development task. An activity consists of a headline, which describes the task, and a change set,

which identifies all versions of elements that are created or modified by work on the activity.

Each stream can have one current activity, which records any changes being made. Use –nset if
you do not want to use an activity immediately. To begin recording changes in an activity, issue

a setactivity command from a view that is attached to the activity’s stream.

Behavior for Projects Enabled for ClearQuest

When executed in a view that is associated with a project enabled for ClearQuest, this command

generates an error. The correct way to create an activity is to use the setactivity command,

specifying a ClearQuest record ID as the activity-selector.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if one or more of these objects are locked: the project VOB.

Mastership: (Replicated VOBs only) No mastership restrictions.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

592 Command Reference

mkactivity

OPTIONS AND ARGUMENTS

ASSIGNING A HEADLINE TO AN ACTIVITY. Default: The activity’s name as specified by the

activity-selector argument.

–hea⋅dline headline
Specifies a description of the activity. The headline argument can be a character string of

any length. Enclose a headline with special characters in double quotes. The headline is

applied to all activities created with this invocation of the command.

SPECIFYING THE STREAM. Default: The stream attached to the current view.

–in stream-selector
Specifies that the activity be created in this stream.

stream-selector is of the form [stream:]stream-name[@vob-selector], where vob-selector
specifies the stream’s project VOB.

SETTING THE CURRENT ACTIVITY. Default: If one activity is created with this command: the newly

created activity. If more than one activity is created or any number of activities is created outside

a view context: none.

–nse⋅t
Specifies that the new activity not be set as the current activity for the view.

CONFIRMATION STEP. Default: Prompts for confirmation of a generated name for the activity if no

name is specified by activity-selector.

–f⋅orce
Suppresses the confirmation step.

NAMING THE ACTIVITY. Default: If one activity is created with this command: a generated name.

If more than one activity is created: none.

activity-selector ...
Specifies one or more activities to create. The specifier must be unique within the project

VOB.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

Reference Pages 593

mkactivity

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Create an activity, but do not set it to be the current activity for the view.

cmd-context mkact –nset
Create activity with automatically generated name? [yes] yes
Created activity "activity990917.133218".

• Create an activity. The activity is created in the stream attached to the current view.

cmd-context mkact new_activity
Created activity "new_activity".
Set activity "new_activity" in view "java_int".

• Create an activity whose name is generated automatically. You are not prompted for

confirmation.

cmd-context mkact -f
Created activity "activity990917.134751".
Set activity "activity990917.134751" in view "java_int".

• Create an activity with the headline “Create directories”.

cmd-context mkactivity -headline "Create directories" create_directories
Created activity "create_directories".
Set activity "create_directories" in view "webo_integ".

SEE ALSO

chactivity, lsactivity, rmactivity, setactivity

594 Command Reference

mkattr

mkattr
Attaches attributes to objects

APPLICABILITY

SYNOPSIS

• Attach attributes to specified file-system objects:

mkattr [–rep⋅lace] [–r⋅ecurse] [–ver⋅sion version-selector]

[–pna⋅me] [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
{ attribute-type-selector value | –def⋅ault attribute-type-selector }

pname ...

• Attach attributes to specified non-file-system objects:

mkattr [–rep⋅lace] [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
{ attribute-type-selector value | –def⋅ault attribute-type-selector }

object-selector ...

• Attach attributes to versions listed in configuration record:

mkattr [–rep⋅lace] [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
[–sel⋅ect do-leaf-pattern] [–ci] [–typ⋅e { f | d } ...]

[–nam⋅e tail-pattern] –con⋅fig do-pname
{ attribute-type-selector value | –def⋅ault attribute-type-selector }

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 595

mkattr

DESCRIPTION

The mkattr command attaches an attribute to one or more objects. You can specify the objects

themselves on the command line, or you can specify a particular derived object. In the latter case,

mkattr attaches attributes to versions only—some or all the versions that were used to build that

derived object.

An attribute is a name/value pair:

Restrictions on Attribute Use

In several situations, attempting to attach a new attribute causes a collision with an existing

attribute:

• You want to change the value of an existing attribute on an object.

• (If the attribute type was created with mkattype –vpbranch) An attribute is attached to a

version, and you want to attach an attribute of the same type to another version on the same

branch.

• (If the attribute type was created with mkattype –vpelement) An attribute is attached to a

version, and you want to attach an attribute of the same type to any other version of the

element.

A collision causes mkattr to fail and report an error, unless you use the –replace option, which

first removes the existing attribute.

Referencing Objects by Their Attributes

The find command can locate objects by their attributes. Examples:

• On a UNIX system, list all elements in the current working directory for which some

version has been assigned a BugNum attribute.

cmd-context find . –element ’attype_sub(BugNum)’ –print

Now do the same thing on a Windows system; note the difference in quoting.

cmd-context find . –element attype_sub(BugNum) –print

• List the version of element util.c to which the attribute BugNum has been assigned with the

value 4059 (note UNIX quoting).

cmd-context find util.c –version ’BugNum==4059 ’ –print

BugNum / 455 (integer-valued attribute)
BenchMark / 12.9 (real-valued attribute)
ProjectID / "orange" (string-valued attribute)
DueOn / 5-Jan (date-value attribute)

596 Command Reference

mkattr

• On a Windows system, list the version of all elements in the current working directory to

which the attribute Tested has been assigned with the string value "TRUE" .

cmd-context find . –version 'Tested=="TRUE"' –print

More generally, queries written in the query language can access objects using attribute types

and attribute values. See the query_language reference page for details.

RESTRICTIONS

Identities: You must have one of the following identities:

• Element owner

• Element group member

• Object owner

• Object group member

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element,

branch type, branch, attribute type, object to which the attribute is being attached (for

non-file-system objects).

Mastership: (Replicated VOBs only) If the attribute’s type is unshared, your current replica must

master the type. If the attribute’s type is shared, your current replica must master the object to

which you are applying the attribute.

OPTIONS AND ARGUMENTS

MOVING AN ATTRIBUTE OR CHANGING ITS VALUE. Default: An error occurs if an attribute collision

occurs (see Restrictions on Attribute Use).

–rep⋅lace
Removes an existing attribute of the same type before attaching the new one, thus

avoiding the collision. (No error occurs if a collision would not have occurred.)

SPECIFYING THE ATTRIBUTE TYPE AND VALUE. Default: None. You must specify an existing

attribute type; you must also indicate a value, either directly or with the –default option.

attribute-type-selector
An attribute type, previously created with mkattype. The attribute type must exist in

each VOB containing objects to which you are applying attributes, or (if

attribute-type-selector is a global type) in the Admin VOB hierarchy associated with each

VOB. Specify attribute-type-selector in the form [attype:]type-name[@vob-selector]

type-name Name of the attribute type

Reference Pages 597

mkattr

–def⋅ault
If the attribute type was created with a default value (mkattype –default), you can use

–default attribute-type-name to specify the name/value pair. An error occurs if the

attribute type was not created with a default value.

value
Specifies the attribute’s value. The definition of the attribute type specifies the required

form of this argument (for example, to an integer). It may also restrict the permissible

values (for example, to values in the range 0–7).

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag

(whether or not the VOB is mounted) or of any files-ystem

object within the VOB (if the VOB is mounted)

Value Type Input Format
integer Any integer that can be parsed by the Windows strtol or UNIX strtol(2)

system calls

real Any real number that can be parsed by the Windows strtod or UNIX

strtod(2) system calls

date A date-time string in one of the following formats:

date.time | date | time | now
where

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today | yesterday | Sunday |...| Saturday |
Sun |...| Sat

long-date := d[d]-month[-[yy]yy]

month := January |... |December |Jan |... |Dec
Specify time in 24-hour format, relative to the local time zone. If you

omit the time, the default value is 00:00:00. If you omit date, the default

is today. If you omit the century, year, or a specific date, the most recent

one is used. Specify UTC if you want to resolve the time to the same

moment in time regardless of time zone. Use the plus (+) or minus (-)

operator to specify a positive or negative offset to the UTC time. If you

specify UTC without hour or minute offsets,Greenwich Mean Time

(GMT) is used. (Dates before January 1, 1970 UTC are invalid.)

598 Command Reference

mkattr

DIRECTLY SPECIFYING THE OBJECTS. The options and arguments in this section specify objects to

be assigned attributes directly on the command line. Do not use these options and arguments

when using a derived object to provide a list of versions to be assigned attributes.

object-selector ...

(Required) One or more names of objects to be assigned attributes. Specify object-selector
in one of the following forms:

string Any string in standard C-language string literal format. It can include

escape sequences: \n, \t, and so on.

UNIX SYSTEMS NOTE: The string must be enclosed in double quotes.

Also note that the double-quote (") character is special to both the

cleartool command processor and the UNIX shells. Thus, you must

escape or quote this character on the command line. These two

commands are equivalent:
cleartool mkattr QAed ’"TRUE"’ hello.c
cleartool mkattr QAed \"TRUE\" hello.c
WINDOWS SYSTEMS NOTE: The Windows shell removes double quotes,

so to pass them through to the cleartool command processor, you must

precede them with a backslash character on the command line:

c:\> cleartool mkattr QAed \"TRUE\" hello.c
opaque A word consisting of an even number of hexadecimal digits (for

example, 04a58f or FFFB). The value is stored as a byte sequence in a

host-specific format.

vob-selector vob:pname-in-vob
pname-in-vob can be the pathname of the

VOB-tag (whether or not the VOB is mounted) or

of any file-system object within the VOB (if the

VOB is mounted). It cannot be the pathname of

the VOB storage directory.

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

hlink-selector hlink:hlink-id[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

Reference Pages 599

mkattr

[–pna⋅me] pname ...

(Required) One or more pathnames, indicating objects to be assigned attributes. If pname
has the form of an object selector, you must include the –pname option to indicate that

pname is a pathname.

Use –version to override these interpretations of pname.

–ver⋅sion version-selector
For each pname, attaches the attribute to the version specified by version-selector. This

option overrides both version-selection by the view and version-extended naming. See

the version_selector reference page for syntax details.

–r⋅ecurse
Processes the entire subtree of each pname that is a directory element (including pname
itself). VOB symbolic links are not traversed during the recursive descent into the

subtree.

NOTE: mkattr differs from some other commands in its default handling of directory

element pname arguments: it assigns an attribute to the directory element itself; it does

not assign attributes to the elements cataloged in the directory.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

USING A DERIVED OBJECT TO SPECIFY VERSIONS. The options and arguments in this section

specify versions to be assigned attributes by selecting them from the configuration records

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]

• A standard or view-extended pathname to an element specifies the version in the

view.

• A version-extended pathname specifies an element, branch, or version,

independent of view.

Examples:
foo.c
/view/gamma/usr/project/src/foo.c
foo.c@@\main\5
foo.c@@/REL3
foo.c@@
foo.c@@\main

(version of ’foo.c’ selected by current view)
(version of ’foo.c’ selected by another view)
(version 5 on main branch of ’foo.c’)
(version of ’foo.c’ with version label ’REL3’)
(the element ’foo.c’)
(the main branch of element ’foo.c’)

600 Command Reference

mkattr

associated with a particular derived object. Do not use these options when specifying objects to

be assigned attributes directly on the command line.

–con⋅fig do-pname
(Required) Specifies one derived object. A standard pathname or view-extended

pathname specifies the DO that currently appears in a view. To specify a DO

independent of view, use an extended name that includes a DO-ID (for example,

hello.o@@24–Mar.11:32.412) or a version-extended pathname to a DO version.

With the exception of checked-out versions, mkattr attaches attributes to all the versions

that would be included in a catcr –flat listing of that derived object. Note that this

includes any DO created by the build and subsequently checked in as a DO version.

If the DO’s configuration includes multiple versions of the same element, the attribute is

attached only to the most recent version.

Use the following options to modify the list of versions to which attributes are attached.

–sel⋅ect do-leaf-pattern
–ci
–nam⋅e tail-pattern
–typ⋅e { f | d } ...

Modify the set of versions to be assigned attributes in the same way that these options

modify a catcr listing. For details, see the catcr reference page and the EXAMPLES
section.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Create an attribute type named BugNum. Then, attach that attribute with the value 21 to

the version of util.c that fixes bug 21.

cmd-context mkattype –nc –vtype integer BugNum
Created attribute type "BugNum".

cmd-context mkattr BugNum 21 util.c
Created attribute "BugNum" on "util.c@@/main/maintenance/3".

Reference Pages 601

mkattr

• On a UNIX system, attach a TESTED attribute to the version of hello.h in the view,

assigning it the value "TRUE" .

UNIX:

cmd-context mkattr TESTED '"TRUE"' hello.h
Created attribute "TESTED" on "hello.h@@/main/2".

Windows:

cmd-context mkattr TESTED \"TRUE\" hello.h
Created attribute "TESTED" on "hello.h@@\main\2".

• Update the value of the TESTED attribute on hello.h to "FALSE". This example shows that

to overwrite an existing attribute value, you must use the –replace option.

UNIX:

cmd-context mkattr –replace TESTED ’"FALSE"’ hello.h
Created attribute "TESTED" on "hello.h@@/main/2".

Windows:

cmd-context mkattr –replace TESTED \"FALSE\" hello.h
Created attribute "TESTED" on "hello.h@@\main\2".

• Attach a RESPONSIBLE attribute to the element (not a particular version) hello.c.

UNIX:

cmd-context mkattr RESPONSIBLE ’"Anne"’ hello.c@@
Created attribute "RESPONSIBLE" on "hello.c@@".

Windows:

cmd-context mkattr RESPONSIBLE \"Anne\" hello.c@@
Created attribute "RESPONSIBLE" on "hello.c@@".

• On a UNIX system, attach a TESTED_BY attribute to the version of util.c in the view,

assigning it the value of the USER environment variable as a double-quoted string. Using \"
causes the shell to pass through (to cleartool) the double-quote character instead of

interpreting it. (Specifying the attribute value as ’"$USER"’ does not work, because the

single quotes suppress environment variable substitution.)

cmd-context mkattr TESTED_BY \"$USER\" util.c
Created attribute "TESTED_BY" on "util.c@@/main/5".

• On a Windows system, Attach a TESTED_BY attribute to the version of util.c in the view,

assigning it the value of the USERNAME environment variable.

cmd-context mkattr TESTED_BY \"%USERNAME%\" util.c
Created attribute "TESTED_BY" on "util.c@@\main\5".

602 Command Reference

mkattr

• Attach a TESTED attribute to the version of foo.c in the current view, specifying an

attribute string value that includes a space.

UNIX:

cmd-context mkattr TESTED ’"NOT TRUE"’ foo.c
Created attribute "TESTED" on "foo.c@@/main/CHECKEDOUT"

Windows:

cmd-context mkattr TESTED "\"NOT TRUE\"" foo.c
Created attribute "TESTED" on "foo.c@@\main\CHECKEDOUT".

• On a Windows system in cleartool interactive mode, attach an OWNER attribute to the

version of bar.c in the current view.

cleartool> mkattr OWNER ’"jpm"’ bar.c
Created attribute "OWNER" on bar.c

The same command in cleartool single-command mode shows the difference in quoting.

cleartool mkattr OWNER \"jpm\" bar.c
Created attribute "OWNER" on bar.c

• Attach a TESTED attribute with the default value to each version that was used to build

derived object hello.obj. Note that the attribute is assigned to versions of both files and

directories.

cmd-context mkattr –config hello.obj -default TESTED

Created attribute "TESTED" on "\usr\hw\@@\main\1".
Created attribute "TESTED" on "\usr\hw\src@@\main\2".
Created attribute "TESTED" on "\usr\hw\src\hello.c@@\main\3".
Created attribute "TESTED" on "\usr\hw\src\hello.h@@\main\1".

• On a UNIX system, attach a TESTED attribute with the value "FALSE" to those versions

that were used to build hello, and whose pathnames match the *.c tail pattern.

cmd-context mkattr –config ’hello’ –name '*.c' TESTED '"FALSE"'
Created attribute "TESTED" on "/usr/hw/src/hello.c@@/main/3".
Created attribute "TESTED" on "/usr/hw/src/util.c@@/main/1".

• On a Windows system, attach a TESTED attribute with the value "FALSE" to those versions

that were used to build hello.exe, and whose pathnames match the *.c tail pattern.

cmd-context mkattr –config hello.exe –name '*.c' TESTED \"FALSE\"
Created attribute "TESTED" on "\usr\hw\src\hello.c@@\main\3".
Created attribute "TESTED" on "\usr\hw\src\util.c@@\main\1".

Reference Pages 603

mkattr

• On a Windows system, attach a TESTED attribute with the value "TRUE" to all versions in

the VOB mounted at \src\lib that were used to build hello.exe.

cmd-context mkattr –config hello.exe –name '\src\lib\...' TESTED \"TRUE\"
Created attribute "TESTED" on "\src\lib\hello.c@@\main\8".
Created attribute "TESTED" on "\src\lib\util.c@@\main\5".
Created attribute "TESTED" on "\src\lib\hello.h@@\main\1".

• On a UNIX system, attach a TESTED attribute with the value "TRUE" to all versions in the

VOB mounted at /src/lib that were used to build hello. Use interactive mode to enable use

of the "..." wildcard.

% cleartool

cleartool> mkattr –config hello –name '/src/lib/...' TESTED '"TRUE"'
Created attribute "TESTED" on "/src/lib/hello.c@@/main/8".
Created attribute "TESTED" on "/src/lib/util.c@@/main/5".
Created attribute "TESTED" on "/src/lib/hello.h@@/main/1".

SEE ALSO

describe, mkattype, query_language, rmattr

604 Command Reference

mkattype

mkattype
Creates or updates an attribute type object

APPLICABILITY

SYNOPSIS
mkattype [–rep⋅lace] [–glo⋅bal [–acq⋅uire] | –ord⋅inary]

[–vpe⋅lement | –vpb⋅ranch | –vpv⋅ersion] [–sha⋅red]

[–vty⋅pe { integer | real | time | string | opaque }]

[[–gt low-val | –ge low-val] [–lt high-val | –le high-val]
| –enu⋅m value[,...]]

[–def⋅ault default-val]
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

attribute-type-selector ...

DESCRIPTION

The mkattype command creates one or more attribute types for future use within a VOB. After

creating an attribute type in a VOB, you can use mkattr to attach attributes of that type to objects

in that VOB.

Attributes as Name/Value Pairs

An attribute is a name/value pair. When creating an attribute type, you must specify the kind of

value (integer, string, and so on). You can also restrict the possible values to a particular list or

range. For example:

• Attributes of type FUNC_TYPE could be restricted to integer values in the range 1–5

• Attributes of type QAed colud be restricted to the string values TRUE and FALSE.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 605

mkattype

Predefined Attribute Types

Each new VOB is created with two string-valued attributes types, named HlinkFromText and

HlinkToText. When you enter a mkhlink –ftext command, the from-text you specify is stored as

an instance of HlinkFromText on the hyperlink object. Similarly, an HlinkToText attribute

implements the to-text of a hyperlink.

RESTRICTIONS

Identities: No special identity is required unless you specify the –replace option. For –replace,

you must have one of the following identities:

• Type owner

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, attribute type (for –replace
only).

Mastership: (Replicated VOBs only) With –replace, your current replica must master the type.

OPTIONS AND ARGUMENTS

HANDLING OF NAME COLLISIONS. Default: An error occurs if an attribute type named type-name
already exists in the VOB.

–rep⋅lace
Replaces the existing definition of type-name with a new one. If you do not include

options from the existing definition, their values are replaced with the defaults

(Exception: the type’s scope does not change; you must explicitly specify –global or

–ordinary).

If you specify a comment when using –replace, the comment appears in the event record

for the modification (displayed with lshistory –minor); it does not replace the object’s

creation comment (displayed with describe). To change an object’s creation comment,

use chevent.

Constraints:

• If there are existing attributes of this type, you cannot change the –vtype value.

• If there are existing attributes of this type or if the containing VOB is replicated,

you cannot replace a less restrictive –vpelement, –vpbranch, or –vpversion
specification with a more restrictive one. (–vpelement is the most restrictive.)

• You cannot replace the predefined attribute types HlinkFromText and

HlinkToText.

606 Command Reference

mkattype

SPECIFYING THE SCOPE OF THE ATTRIBUTE TYPE. Default: Creates an ordinary attribute type that

can be used only in the current VOB.

–glo⋅bal [–acq⋅uire]

Creates an attribute type that can be used as a global resource by client VOBs in the

administrative VOB hierarchy. With –acquire, mkattype checks all eclipsing types in

client VOBs and converts them to local copies of the new global type.

For more information, see the Administrator’s Guide.

–ord⋅inary
Creates an attribute type that can be used only in the current VOB.

INSTANCE CONSTRAINTS. Default: In a given element, one attribute of the new type can be

attached to each version, to each branch, and to the element itself. One attribute of the type can

be attached to other types of VOB objects.

–vpe⋅lement
Attributes of this type can be attached only to versions; and only one version of a given

element can get an attribute of this type.

–vpb⋅ranch
Attributes of this type can be attached only to versions; and only one version on each

branch of a given element can get an attribute of this type.

–vpv⋅ersion
Attributes of this type can be attached only to versions; within a given element, all

versions can get an attribute of this type.

SPECIFYING THE KIND OF VALUE. Default: One or more string-valued attribute types are created.

–vty⋅pe integer
Attributes of this type can be assigned integer values. You can use these options to

restrict the possible values: –gt, –ge, –lt, –le, –enum.

–vty⋅pe real
Attributes of this type can be assigned floating-point values. You can use these options

to restrict the possible values: –gt, –ge, –lt, –le, –enum.

• When replacing an attribute type that was created with the –shared option, you

must use –shared again; that is, you cannot convert an attribute type from shared

to unshared.

• When converting a global type to ordinary, you must specify the global type as

the attribute-type-selector argument. You cannot specify a local copy of the global

type.

Reference Pages 607

mkattype

–vty⋅pe time
Attributes of this type can be assigned values in the date-time format described in the

mkattr reference page. You can use these options to restrict the possible values: –gt, –ge,

–lt, –le, –enum.

–vty⋅pe string
Attributes of this type can be assigned character-string values. You can use the –enum
option to restrict the possible values.

–vty⋅pe opaque
Attributes of this type can be assigned arbitrary byte sequences as values.

MASTERSHIP OF THE ATTRIBUTE TYPE. Default: Attempts to attach or remove attributes of this type

succeeda only in the VOB replica that is the current master of the attribute type. The VOB replica

in which the new attribute type is created becomes its initial master.

–sha⋅red
If you specify –vpbranch, –vpelement, or –vpversion, ClearCase and ClearCase LT

check the mastership of the branch, element, or version’s branch to which you attach or

remove the attribute when you invoke the mkattr or rmattr command. If you do not

specify –vpbranch, –vpelement, or –vpversion, and the object to which you attach or

remove the attribute is a version, mastership of the branch is checked when you invoke

the mkattr or rmattr command. If you do not specify –vpbranch, –vpelement, or

–vpversion, and the object to which you attach or remove the attribute is not a version,

the mastership of the object is checked when you invoke the mkattr or rmattr command.

RESTRICTING THE POSSIBLE VALUES. Default: The values that can be assigned to attributes of the

new type are unrestricted within the basic value type (any integer, any string, and so on). You

can specify a list of permitted values, using –enum; alternatively, you can specify a range using

–gt or –ge to specify the lower bound, and –lt or –le to specify the upper bound.

–gt low-val or –ge low-val
Lower bound of an integer, real, or time value. –gt means greater than. –ge means greater

than or equal to.

–lt high-val or –le high-val
Upper bound of an integer, real, or time value. –lt means less than. –le means less than

or equal to.

–enu⋅m value[,...]

Comma-separated list (no white space allowed) of permitted values for any value type.

See the description of the value argument in the mkattr reference page for details on how

to enter the various kinds of value arguments.

SPECIFYING A DEFAULT ATTRIBUTE VALUE. Default: You cannot use mkattr –default to create an

instance of this attribute type; you must specify an attribute value on the command line.

608 Command Reference

mkattype

–def⋅ault default-val
Specifies a default attribute value; entering a mkattr –default command creates an

attribute with the value default-val.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

NAMING THE ATTRIBUTE TYPES. Default: The attribute type is created in the VOB that contains the

current working directory unless you specify another VOB with the @vob-selector argument.

attribute-type-selector ...

Names of the attribute type(s) to be created. Specify attribute-type-selector in the form

[attype:]type-name[@vob-selector]

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Create a string-valued attribute type named Responsible.

cmd-context mkattype -nc Responsible
Created attribute type "Responsible".

type-name Name of the attribute type

See t the cleartool reference page for rules about composing

names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

Reference Pages 609

mkattype

• Create an integer-valued attribute type named Confidence_Level, with a low value of 1 and

a high value of 10. Constrain its use to one per branch.

cmd-context mkattype -nc -vpbranch -vtype integer -gt 0 -le 10 Confidence_Level
Created attribute type "Confidence_Level".

• Create a string-valued attribute type named QAed, with an enumerated list of valid values.

cmd-context mkattype -nc -enum '"TRUE","FALSE","in progress"' QAed
Created attribute type "QAed".

• On a Windows system in cleartool interactive mode, create an enumerated attribute type,

with a default value, called Released.

cleartool> mkattype -nc -enum "TRUE","FALSE" -default "FALSE" Released
Created attribute type "Released".

The same command in cleartool single-command mode shows the difference in quoting.

cleartool mkattype -nc -enum \"TRUE\",\"FALSE\" -default \"FALSE\" Released
Created attribute type "Released".

• Create a time-valued attribute type named QA_date, with the current date as the default

value. Provide a comment on the command line.

cmd-context mkattype -c "attribute for QA date" -vtype time -default today QA_date
Created attribute type "QA_date".

• On a UNIX systems, create an enumerated attribute type, with a default value, called

Released.

cmd-context mkattype -nc -enum "'TRUE","FALSE'" -default "'FALSE'" Released
Created attribute type "Released".

• Change the default value of an existing attribute type named TESTED. Provide a comment

on the command line.

cmd-context mkattype -replace -default '"TRUE"' -c "changing default value" TESTED
Replaced definition of attribute type "TESTED".

SEE ALSO

lstype, mkattr, rename, rmattr

610 Command Reference

mkbl

mkbl
Creates a baseline or set of baselines

APPLICABILITY

SYNOPSIS

• Create a baseline of a component or set of baselines of components:

mkbl [–c⋅omment comment | –cfi⋅ le pname | –cq⋅ uery| –nc⋅omment]

[–vie⋅w view-tag]

[–com⋅ponent component-selector[,...] | –all | –act⋅ivities activity-selector[,...]]
[–ide⋅ntical]
[–nla⋅bel | –inc⋅remental | –fu⋅ll]
baseline-root-name

• Create or change the dependency relationships for a composite baseline:

mkbl [–c⋅omment comment | –cfi⋅ le pname | –cq⋅ uery| –nc⋅omment]

–com⋅ponent component-selector
{ [–ade⋅pends_on depend-component-selector[,...]]
[–dde⋅pends_on depend-component-selector[,...]] }
[–nla⋅bel | –inc⋅remental | –fu⋅ll] [–nac⋅t]

baseline-root-name

• Create a baseline by importing a label type:

mkbl [–c⋅omment comment | –cfi⋅ le pname | –cq⋅ uery| –nc⋅omment]

–imp⋅ort [–com⋅ponent component-selector[,...]] label-type-selector ...

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

Reference Pages 611

mkbl

DESCRIPTION

The mkbl command creates baselines or composite baselines. A baseline represents a snapshot

of the changes made to a particular component in the context of a particular stream: it is a version

of a component. For each element in the component, the baseline records the version of that

element selected by the stream’s configuration at the time mkbl is executed. The baseline also

records the list of activities in the stream whose change sets contain versions of the component’s

elements.

A baseline selects one version of each element of a component. You can create multiple baselines

per component, just as you can create multiple versions of an element. A baseline is associated

with only one component, and you can only create one baseline per component per invocation

of mkbl.

By default, all components that have been modified since the last full baseline are considered as

candidates for new baselines. You can also create baselines for a subset of components in the

stream or for components modified by specific activities.

If your project team works on multiple components, you may create a composite baseline. A

composite baseline is a baseline that selects baselines in other components. You can use a

composite baseline to represent the entire project baseline; this is easier than keeping track of a

set of baselines, one for each component. We recommend that you create a component for storing

the composite baselines. (For information about how to create this type of component, see

mkcomp.) In that component, create the composite baseline by adding member baselines with

the –adepends_on option.

Initial Baseline

When you create an ordinary component (that is, one that contains directories and elements), it

includes an initial baseline whose name is of the form component-name_INITIAL. This baseline

selects the /main/0 version of the component's root directory and serves as a starting point for

successive baselines of the component.

Creating a Baseline for an Unmodified Component

Use the –identical option to create a new baseline for a component that has not been modified.

This can be useful in working with several components. You can create new baselines for a set of

components regardless of whether they have been modified.

Creating Baselines That Include a Set of Activities

By default, all activities modified since the last baseline was made are captured in new baselines.

You can select a subset of activities for inclusion in the baseline. If there are dependencies

between the change sets of activities, you may not be able to include only the activity you want;

you’ll need to include the activities it depends on as well.

A single baseline is created if the selected activities are part of the same component. If an activity

modifies more than one component, a new baseline is created for each component it modifies.

612 Command Reference

mkbl

Creating a New Composite Baseline with Existing Dependency Relationships

The operation of creating a new composite baseline is recursive. That is, the operation first

creates baselines of its member components and then creates dependency references to those

baselines in the composite. The result is a composite baseline that retains the dependency

structure of its predecessor.

Creating or Changing Dependency Relationships for a Composite Baseline

You can create or change the dependency relationships for a composite baseline by using the

–adepends_on or –ddepends_on options. When a dependency reference to a component is

added, a baseline of that component is made, if necessary. These operations apply only to direct

members of a composite baseline and do not affect indirect members in a baseline hierarchy. A

dropped component can still have a baseline that is lower in the dependency hierarchy.

NOTE: To change the existing dependency relationships, you must create a new composite

baseline. You cannot change the relationships of an existing baseline with chbl.

Creating a Baseline by Importing a Label

You can recognize a VOB as a component with the mkcomp command. When you do this, the

VOB is given an initial baseline that selects the /main/0 version of the component root directory.

However, this baseline does not automatically enable access to files and directories that are

already in the VOB.

You can create a new baseline that corresponds to a set of labeled versions in the VOB or one of

the VOB’s components. To do this, use the –import option. The mkbl command creates a

baseline that selects the labeled versions, making them accessible to the UCM project.

Before creating the baseline, be sure that the label is unlocked and ordinary (not global) and that

labeled elements are checked in. The label is locked when the baseline is created; you cannot

move the label later. Be certain the label selects some version of all visible elements.

Baseline Names

Baseline identifiers are made up of two parts: a user-specifiable root name and a generated,

unique numeric extension. The same root name can be used for baselines of more than one

component. However, a root name can be used only once per component per stream.

When you create a baseline by importing a label, the root name is derived from the label’s type

selector. For example, the label-type selector REL1@/vobs/baz generates a baseline root name of

REL1 whose scope is the baz component.

Baseline Labels

You can choose whether versions of the baseline are to be labeled when the baseline is created.

Baselines can be unlabeled, incrementally labeled, or fully labeled. After they are applied,

baseline labels cannot be moved.

Reference Pages 613

mkbl

All baselines record a component’s current configuration in a stream, but only labeled baselines

can be used to configure other streams (by means of rebase or mkstream).

Choose a labeling scheme that suits your project’s structure. Incremental baselines typically can

be created more quickly than full baselines.

• For a full baseline, the time required is proportional to the number of elements in the

component.

• For an incremental baseline, the time required is proportional to the number of elements

changed since the last full baseline.

These options control labeling during baseline creation:

• The –nlabel option, which creates an unlabeled baseline. Unlabeled baselines cannot be

used as foundation baselines to configure a stream. They can be used with the diffbl
command.

• The –incremental option, which labels versions of elements that have changed since the last

full baseline was created.

• The –full option, which creates a baseline by selecting and labeling a version of each

element in the component.

You can change the labeling status for a baseline with the chbl command.

Promotion Levels

Baselines are marked with a promotion level that signifies the quality of the baseline. When

created, a project VOB is assigned an ordered set of promotion levels, one of which is designated

the default promotion level, which is the level assigned to new baselines when they are created.

See setplevel for more information.

RESTRICTIONS

Identities: No special identity required.

Locks: An error is generated if there are locks on any of the following objects: the UCM project

VOB, the component, the containing stream; and if you are importing a label type, the label type

being imported.

Mastership: (Replicated VOBs only) Your current replica must master the stream where you make

the baseline. When you create an imported baseline from a pre-UCM label, your current replica

must master the component and label type.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cq). See the comments reference page.

Comments can be edited with chevent.

614 Command Reference

mkbl

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE VIEW AND STREAM. Default: The stream to which the current view is attached.

–vie⋅w view-tag
Specifies the view from which to create baselines. Baselines are created in the stream that

the view is attached to.

For example, if you are working in coyne_dev_view, but want to create a baseline from

the configuration specified by the view coyne_integration_view, use –view
coyne_integration_view. This option creates a baseline in the project’s integration

stream that includes all the checked-in versions contained in coyne_integration_view. If

you do not specify view-tag, the current view is used.

SPECIFYING THE COMPONENTS OR ACTIVITIES. Default: –all.

–com⋅ponent component-selector[,...]
Specifies the components for which baselines are made.

component-selector is of the form [component:]component-name[@vob-selector], where

vob-selector specifies the component’s project VOB.

–all
Creates a baseline for each component in the project that has been modified since the last

baseline.

–ide⋅ntical
Creates new baselines for all components, regardless of whether they have been

modified.

–act⋅ivities activity-selector, ...
Specifies a list of activities to include in the new baselines.

activity-selector is of the form [activity:]activity-name[@vob-selector] where vob-selector
specifies the activity’s project VOB.

By default, all activities with changes that are not recorded in the last baselines are

recorded in the new baselines. You can use this option to include only a subset of the

unrecorded changes in the new baselines. A baseline is created for each component that

has unrecorded changes in the specified list of activities.

The list of activities must be complete. That is, they must not depend on the inclusion of

any other activities. Activity A2 is dependent on activity A1 if they both contain versions

of the same element and A2 contains a later version than A1. If the list of activities is

incomplete, the operation fails and lists the required activities.

Reference Pages 615

mkbl

SELECTING LABELING BEHAVIOR. Default: –incremental.

–nla⋅bel
Specifies that versions for this baseline are not labeled. Unlabeled baselines cannot be

used as foundation baselines, but can be used by the diffbl command and labeled later.

–inc⋅remental
Labels only versions that have changed since the last full baseline was created.

–fu⋅ll
Labels all versions visible below the component's root directory.

SPECIFYING THE BASELINE ROOT. Default: None.

baseline-root-name
Specifies the root portion of the baseline name. See Baseline Names. For rules about

composing names, see the cleartool reference page.

CREATING OR CHANGING DEPENDENCY RELATIONSHIPS FOR A COMPOSITE BASELINE. Default:
Creates a composite baseline that retains the dependency structure of its predecessor.

–com⋅ponent component-selector
Specifies the component whose dependency relationship you want to change. The

component’s currently selected baseline is used as the initial configuration.

–ade⋅pends_on depend-component-selector[,...]
Adds dependency references to the specified components for the composite baseline.

–dde⋅pends_on depend-component-selector[,...]
Drops dependency references to the specified components for the composite baseline.

–nac⋅t
Makes a baseline only in the component specified by –component.

SPECIFYING A LABEL TO IMPORT. Default: None.

–imp⋅ort [–com⋅ponent component-selector[,...]] label-type-selector ...
Creates a baseline using versions marked with the specified label-type-selector. The

–component option is required when the label type is in a VOB that contains multiple

components. The label type must be applied to the component's root directory and to

every element below the root directory that you want to include in the component.

Baselines are created as successors to the initial baseline. The scope of the label type must

be ordinary, not global.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

616 Command Reference

mkbl

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• Create a baseline for a component xroutines by importing a label type.

cmd-context mkbl -c “Import BL2 label” –import BL2@/vobs/xroutines

• Create baselines for all components in the project that have been modified since the last

baseline was created.

cmd-context mkbl BL1

Created baseline "BL1.119" in component "webo_modeler".
Begin incrementally labeling baseline "BL1.119".
Done incrementally labeling baseline "BL1.119".
Created baseline "BL1.120" in component "webo_gui".
Begin incrementally labeling baseline "BL1.120".
Done incrementally labeling baseline "BL1.120".

• Create baselines for the components modified by a particular activity.

cmd-context mkbl -activities line-lib@\pvob1 BL2

SEE ALSO

chbl, chstream, diffbl, lsbl, mkcomp, rmbl

Reference Pages 617

mkbranch

mkbranch
Creates a new branch in the version tree of an element

APPLICABILITY

SYNOPSIS
mkbranch [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment] [–nwa⋅rn]

[–nco] [–ver⋅sion version-selector] branch-type-selector pname ...

DESCRIPTION

The mkbranch command creates a new branch in the version trees of one or more elements. The

new branch is checked out, unless you use the –nco option. In Attache, after the command is

executed, any files checked out successfully are downloaded to the workspace.

Auto-Make-Branch

The checkout command sometimes invokes mkbranch automatically. If the view’s version of an

element is selected by a config spec rule with a –mkbranch branch-type clause, checkout does the

following:

1. Creates a branch of type branch-type.

2. Checks out (version 0 on) the newly created branch.

Similarly, entering a mkbranch command explicitly can invoke one or more additional
branch-creation operations. See Multiple-Level Auto-Make-Branch in the checkout reference page.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

618 Command Reference

mkbranch

RESTRICTIONS

Identities: You must have one of the following identities:

• Element group member

• Element owner

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, element type, branch type,

element, pool (nondirectory elements).

Mastership: (Replicated VOBs) Your current replica must master the branch type.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SUPPRESSING WARNING MESSAGES Default: Warning messages are displayed.

–nwa⋅rn
Suppresses warning messages.

CHECKOUT OF THE NEW BRANCH. Default: The newly created branch is checked out. Additional

checkouts may ensue; see the Auto-Make-Branch section.

–nco
Suppresses automatic checkout of the branch. In Attache, this option also suppresses

downloading of the files to the workspace.

SPECIFYING THE BRANCH TYPE. Default: None.

branch-type-selector
An existing branch type, previously created with mkbrtype. The branch type must exist

in each VOB in which you are creating a branch, or (if branch-type-selector is a global type)

in the Admin VOB hierarchy associated with each VOB. Specify branch-type-selector in

the form [brtype:]type-name[@vob-selector]

type-name Name of the branch type

vob-selector VOB specifier

Reference Pages 619

mkbranch

SPECIFYING THE BRANCH POINTS. Default: None.

–ver⋅sion version-selector
For each pname, creates the branch at the version specified by version-selector. This option

overrides both version-selection by the view and version-extended naming. See the

version_selector reference page for syntax details.

pname ...

One or more pathnames, indicating the versions at which branches are to be created.

Use –version to override these interpretations of pname.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• On a UNIX system, create a branch type named bugfix. Then, set a view (in Attache, a

workspace) with a config spec that prefers versions on the bugfix branch, and create a

branch of that type in file util.h.

cmd-context mkbrtype –c "bugfixing branch" bugfix

Created branch type "bugfix".

cmd-context setview smg_bugfix (ClearCase and ClearCase LT)

cmd-context setws smg_bugfix (Attache)

cmd-context mkbranch –nc bugfix util.h

pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

• A standard or view-extended pathname to an element specifies the version in the

view.

• A version-extended pathname specifies a version, independent of view.

620 Command Reference

mkbranch

Created branch "bugfix" from "util.h" version "/main/1".
Checked out "util.h" from version "/main/bugfix/0".

• On a Windows system, create a branch type named bugfix. Then, set a view drive (in

Attache, a workspace) with a config spec that prefers versions on the bugfix branch, and

create a branch of that type in file util.h.

cmd-context mkbrtype –c "bugfixing branch" bugfix

Created branch type "bugfix".

> net use y: \\view\smg_bugfix (ClearCase and ClearCase LT)
...
> y:

cmd-context setws smg_bugfix (Attache)

cmd-context mkbranch –nc bugfix util.h

Created branch "bugfix" from "util.h" version "\main\1".
Checked out "util.h" from version "\main\bugfix\0".

• Create a branch named rel2_bugfix off the version of hello.c in the view, and check out the

initial version on the branch.

cmd-context mkbranch –nc rel2_bugfix hello.c

Created branch "rel2_bugfix" from "hello.c" version "/main/4".
Checked out "hello.c" from version "/main/rel2_bugfix/0".

• Create a branch named maintenance off version /main/1\main\1 of file util.c. Do not check

out the initial version on the branch.

cmd-context mkbranch –version \main\1 –nco –nc maintenance util.c

Created branch "maintenance" from "util.c" version "\main\1".

• Create a branch named bugfix off version /main/3 of file hello.c, and check out the initial

version on the branch. Use a version-extended pathname to specify the version.

cmd-context mkbranch –nc bugfix hello.c@@/main/3
Created branch "bugfix" from "hello.c" version "/main/3".
Checked out "hello.c" from version "/main/bugfix/0".

• For each file with a .c extension, create a branch named patch2 at the currently selected

version, but do not check out the initial version on the new branch. Provide a comment on

the command line.

cmd-context mkbranch –nco –c "release 2 code patches" patch2 *.c

Reference Pages 621

mkbranch

Created branch "patch2" from "cm_add.c" version "\main\1".
Created branch "patch2" from "cm_fill.c" version "\main\3".
Created branch "patch2" from "msg.c" version "\main\2".
Created branch "patch2" from "util.c" version "\main\1".

SEE ALSO

mkbrtype, rename

622 Command Reference

mkbrtype

mkbrtype
Creates/updates a branch type object

APPLICABILITY

SYNOPSIS
mkbrtype [–rep⋅lace] [–glo⋅bal [–acq⋅uire] | –ord⋅inary] [–pbr⋅anch]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

branch-type-selector ...

DESCRIPTION

The mkbrtype command creates one or more branch types with the specified names for future

use within a particular VOB. After creating a branch type in a VOB, you can create branches of

that type in that VOB’s elements, using mkbranch.

Instance Constraints

The version-extended naming scheme requires that a branch of a version tree have at most one

subbranch of a given type. (If there were two bugfix subbranches of the main branch, the

version-extended pathname foo.c@@/main/bugfix/3 would be ambiguous.) However, by default

only one branch of this type can be created in an element’s entire version tree. The –pbranch
option loosens this constraint.

Recommended Naming Convention

A VOB cannot contain a branch type and a label type with the same name. For this reason, we

strongly recommend that you adopt this convention:

• Make all letters in names of branch types lowercase (a – z).

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 623

mkbrtype

• Make all letters in names of label types uppercase (A – Z).

RESTRICTIONS

Identities: No special identity is required unless you specify the –replace option. For –replace,

you must have one of the following identities:

• Type owner

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, branch type (with –replace
only).

Mastership: (Replicated VOBs only) With –replace, your current replica must master the type.

OPTIONS AND ARGUMENTS

HANDLING OF NAME COLLISIONS. Default: An error occurs if a branch type named type-name
already exists in the VOB.

–rep⋅lace
Replaces the existing definition of type-name with a new one. If you do not include

options from the existing definition, their values are replaced with the defaults

(Exception: the type’s scope does not change; you must explicitly specify –global or

–ordinary).

If you specify a comment when using –replace, the comment appears in the event record

for the modification (displayed with lshistory –minor); it does not replace the object’s

creation comment (displayed with describe). To change an object’s creation comment,

use chevent.

Constraints:

SPECIFYING THE SCOPE OF THE BRANCH TYPE. Default: Creates an ordinary branch type that can be

used only in the current VOB.

• You cannot replace the predefined branch type main.

• If there are existing branches of this type or if the containing VOB is replicated,

you cannot replace a less constrained definition (–pbranch specified) with a more

constrained definition (omitting the –pbranch option).

• When converting a global type to ordinary, you must specify the global type as

the branch-type-selector argument. You cannot specify a local copy of the global

type.

624 Command Reference

mkbrtype

–glo⋅bal [–acq⋅uire]

Creates a branch type that can be used as a global resource by client VOBs in the

administrative VOB hierarchy. With –acquire, mkbrtype checks all eclipsing types in

client VOBs and converts them to local copies of the new global type.

For more information, see the Administrator’s Guide.

–ord⋅inary
Creates a branch type that can be used only in the current VOB.

INSTANCE CONSTRAINTS. Default: Only one branch of the new type can be created in a given

element’s version tree.

–pbr⋅anch
Multiple branches of the same type can be created in the version tree, but they must be

created off different branches.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE BRANCH TYPES. Default: The branch type is created in the VOB that contains the

current working directory unless you specify another VOB with the @vob-selector argument.

branch-type-selector...
Names of the branch types to be created. Specify branch-type-selector in the form

[brtype:]type-name[@vob-selector]

Also see the section Recommended Naming Convention on page 622.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

type-name Name of the branch type

See the cleartool reference page for rules about composing

names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

Reference Pages 625

mkbrtype

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Create a branch type named bugfix_v1, which can be used only once in an element’s

version tree. Provide a comment on the command line.

cmd-context mkbrtype –c "bugfix development branch for V1" bugfix_v1

Created branch type "bugfix_v1".

• Create two branch types for working on program patches, and a bugfix branch for release 2.

Constrain their use to one per branch.

cmd-context mkbrtype –nc –pbranch patch2 patch3 rel2_bugfix
Created branch type "patch2".
Created branch type "patch3".
Created branch type "rel2_bugfix".

• Change the constraint on an existing branch type so that it can be used only once per

branch. Provide a comment on the command line.

cmd-context mkbrtype -replace -pbranch -c "change to one per branch" bugfix_v1
Replaced definition of branch type "bugfix_v1".

SEE ALSO

chtype, describe, lstype, mkbranch, rename, rmtype

626 Command Reference

mkcomp

mkcomp
Creates a component object

APPLICABILITY

SYNOPSIS
mkcomp [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –nc⋅omment]

{ –roo⋅t root-dir-pname | –nro⋅ot }

component-selector

DESCRIPTION

The mkcomp command creates a component. The scope of a UCM project is declared in terms of

components. A project must contain at least one component, and it can contain multiple

components. Projects can share components.

An ordinary component groups directory and file elements. The directory and file elements of a

component are stored in a VOB. The component object is stored in a project VOB (PVOB). You

organize a component’s directory and file elements into a directory tree in a VOB. A component’s

root directory must be the VOB’s root directory or one level beneath it. A component includes all

directory and file elements under its root directory. To store multiple components in a VOB, make

each component’s root directory one level beneath the VOB’s root directory. If you make a

component at the VOB’s root directory, that VOB can never contain more than that one

component.

An initial baseline is created when you create a component. This baseline selects the /main/0
version of the component's root directory. Use this as a starting point for making changes to the

component.

You can use the –nroot option to create a special type of component that holds only composite

baselines and no file elements.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

Reference Pages 627

mkcomp

Elements cannot be moved from one component to another. Therefore, you cannot reorganize a

component into multiple components.

When converting a subdirectory of an existing nonUCM VOB into a component, mkcomp checks

each element recursively to see whether any are already associated with a different component

(this may occur when an element has hard links outside the component). If any are found, the

command fails. Remove such hard links with rmname and replace them with a symbolic link

before proceeding.

RESTRICTIONS

Identities: You must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: the project VOB, the root

directory VOB.

Mastership: (Replicated VOBs only) For a component whose root directory is the VOB’s root

directory, you must master the root directory element. For a component whose root directory is

one level beneath the VOB’s root directory, you must master all elements that are to be grouped

in the component.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

The comment is stored in the creation event of the component object.

SPECIFYING WHAT TYPE OF COMPONENT TO CREATE.

–roo⋅t root-dir-pname
Specifies a component to be created to group directories and elements and the root

directory pathname for this component. To create one component per VOB, the

root-dir-pname must be the root directory of a VOB. To create multiple components per

VOB, the root-dir-pname must be one level beneath the VOB’s root directory.

–nro⋅ot
Specifies a component to be created to hold only composite baselines. This type of

component does not contain directories or file elements.

628 Command Reference

mkcomp

SPECIFYING A COMPONENT SELECTOR.

component-selector
Identifies the component.

component-selector is of the form [component:]component-name[@vob-selector] where vob is

the component’s UCM project VOB.

If no vob-selector is given, the component is created in the project VOB if it contains the

current working directory; otherwise, the component is not created.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• Create a component.

cmd-context mkcomp -c "modeling component" \
-root /vobs/webo_modeler webo_modeler@/vobs/webo_pvob

Set Admin VOB for component "webo_modeler"
Created component "webo_modeler".

SEE ALSO

lscomp, mkbl, rmcomp

Reference Pages 629

mkdir

mkdir
Creates a directory element

APPLICABILITY

SYNOPSIS
mkdir [–nco] [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment] dir-pname ...

DESCRIPTION

NOTE: A new directory element can be created only if its parent directory is checked out. mkdir
appends an appropriate line to the parent directory’s checkout comment.

The mkdir command creates one or more directory elements. (Operating system directory

creation commands create view-private directories, not elements.) Unless you specify the –nco
(no checkout) option, the new directory is checked out automatically. A directory element must

be checked out before you can create elements and VOB links within it.

The mkelem –eltype directory command is equivalent to this command.

The new directory element is associated with the same storage pools (source, derived object, and

cleartext) as its parent directory element. You can assign the directory to different pools with the

chpool command. Note that the directory itself is stored in the database, but files created in the

directory are stored in the pools associated with the directory.

In a snapshot view, this command also updates the directory element.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

630 Command Reference

mkdir

UNIX File Modes

New directory elements are created with mode 777, as modified by your umask. However, the

meanings of the read, write, and execute permissions do not have their standard UNIX

meanings. See the protect reference page for details.

Converting View-Private Directories

You cannot create a directory element with the same name as an existing view-private file or

directory, and you cannot use mkdir to convert an existing view-private directory structure into

directory and file elements. To accomplish this task, use clearfsimport.

RESTRICTIONS

Identities: No special identity is required.

Locks: An error occurs if one or more of these objects are locked: VOB, element type.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

CHECKOUT OF THE NEW DIRECTORY. Default: mkdir checks out the new directory element.

–nco
Suppresses checkout of the new directory element.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

NAMING THE DIRECTORIES. Default: None.

dir-pname ...

One or more pathnames, specifying directories to be created.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

Reference Pages 631

mkdir

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Create a subdirectory named subd, and check out the directory to the current view.

cmd-context mkdir –nc subd
Created directory element "subd".
Checked out "subd" from version "/main/0".

• Create a subdirectory named release, but do not check it out. Provide a comment on the

command line.

cmd-context mkdir -nco -c "Storage directory for released files" release
Created directory element "release".

SEE ALSO

checkout, mv, protect, pwd, rmelem, update

632 Command Reference

mkelem

mkelem
Creates a file or directory element

APPLICABILITY

SYNOPSIS
mkelem [–elt⋅ype element-type-name] [–nco | –ci [–pti⋅me]] [–master] [–nwa⋅rn]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

element-pname ...

DESCRIPTION

The mkelem command creates one or more new elements. A new element can be created in a

directory only if that directory is checked out. mkelem appends an appropriate line to the

directory’s checkout comment.

In Attache, any corresponding local files are uploaded before the command is executed remotely.

Wildcards are expanded locally by searching in the workspace, rather than remotely.

mkelem processes each element as follows:

1. Determines an element type from the specified –eltype option or by performing file-typing

2. Creates an element object with that element type in the appropriate VOB database

3. UNIX systems: if you are using the –ci option to convert a view-private file to an element,

uses the permissions of that file including set-UID and/or set-GID bits; otherwise, sets the

mode of the new element to 444 (for a file element) or 777 (for a directory element), as

modified by your current umask(1) setting

4. Initializes the element’s version tree by creating a single branch (named main), and a single,

empty version (version 0) on that branch

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 633

mkelem

5. Does one of the following:

• By default, checks out the element to your view.

NOTE: At this point, other views see an empty file when they look at the element.

• With the –nco option, does nothing.

• With the –ci option, creates version 1 by copying a view-private file or an uploaded

view-private file.

In Attache, if elements are checked out, the corresponding files are downloaded to your

workspace if they did not exist locally, or the local files are made writable.

6. Assigns the element to the same source storage pool, cleartext storage pool, and (for new

directory elements) derived object storage pool as its parent directory element

7. In a snapshot view, updates the newly created element

NOTE: Error messages appear if your config spec lacks a /main/LATEST rule. The mkelem
command succeeds in creating version /main/0. However, because your view does not have a

rule to select this version, you cannot see or check out the element.

RESTRICTIONS

Identities: No special identity is required.

Locks: An error occurs if one or more of these objects are locked: VOB, element type, pool

(nondirectory elements).

Mastership: (Replicated VOBs) No mastership restrictions.

OPTIONS AND ARGUMENTS

SPECIFYING THE ELEMENT TYPE. Default: mkelem performs file-typing to select an element type.

If file-typing fails, an error occurs. See the cc.magic reference page for details on file-typing.

–elt⋅ype element-type-name
Specifies the type of element to be created. The element type must be a predefined type,

or a user-defined type created with the mkeltype command. The element type must exist

in each VOB in which you are creating a new element, or (if element-type-selector is a

global type) in the Admin VOB hierarchy associated with each VOB. Specifying –eltype
directory is equivalent to using the mkdir command.

CHECKOUT OF THE NEW ELEMENT. Default: mkelem checks out the new element. If a view-private

file already exists at that pathname, it becomes the checked-out version of the element.

Otherwise, an empty view-private file is created and becomes the checked-out version. In

Attache, if neither the –nco or –ci option is specified, the checked-out files are downloaded if they

did not exist locally, or the local files are made writable.

634 Command Reference

mkelem

–nco
Suppresses automatic checkout; mkelem creates the new element, along with the main
branch and version \main\0, but does not check it out. If element-pname exists, it is

moved aside to a .keep file, as explained earlier.

–ci [–pti⋅me]

Creates the new element and version /main/0, performs a checkout, and checks in a new

version containing the data in view-private file or DO element-pname, which must exist.

In Attache, local files corresponding to successfully checked-in versions are made

read-only. You cannot use this option when creating a directory element.

With –ptime, mkelem preserves the modification time of the file being checked in. If you

omit this option, the modification time of the new version is set to the checkin time.

UNIX SYSTEMS: On some UNIX platforms, it is important that the modification time be

preserved for archive files (libraries) created by ar(1) (and perhaps updated with

ranlib(1)). The link editor, ld(1), will complain if the modification time does not match a

time recorded in the archive itself. Be sure to use this option, or (more reliably) store

archive files as elements of a user-defined type, created with the mkeltype –ptime
command. This causes –ptime to be invoked when the element is checked in.

MASTERSHIP OF THE MAIN BRANCH. Default: Assigns mastership of the element’s main branch to

the VOB replica that masters the main branch type.

–master
Assigns mastership of the main branch of the element to the VOB replica in which you

execute the mkelem command. If your config spec includes –mkbranch lines or

mkbranch rules that apply to the element, and you do not use the –nco option, mkelem
creates these branches and assigns their mastership to the current VOB replica. mkelem
also prints a note that these branches are explicitly mastered by the current replica; the

output also displays the master replica of each associated branch type.

SUPPRESSING WARNING MESSAGES Default: Warning messages are displayed.

–nwa⋅rn
Suppresses warning messages.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE ELEMENTS. Default: None.

Reference Pages 635

mkelem

element-pname ...

The pathnames of one or more elements to be created. If you also specify the –ci option,

each element-pname must name an existing view-private object. You cannot create a

directory element with the same name as an existing view-private file or directory.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Create a file element named rotate.c of type compressed_text_file, and check out the initial

version (version 0).

cmd-context mkelem –nc –eltype compressed_text_file rotate.c
Created element "rotate.c" (type "compressed_text_file").
Checked out "rotate.c" from version "/main/0".

• Create three file elements, cm_add.c, cm_fill.c, and msg.c, allowing the file-typing

mechanism to determine the element types. Do not check out the initial versions.

cmd-context mkelem –nc –nco cm_add.c cm_fill.c msg.c
Created element "cm_add.c" (type "text_file").
Created element "cm_fill.c" (type "text_file").
Created element "msg.c" (type "text_file").

• Convert a view-private file named test_cmd.c, to an element, and check in the initial

version.

cmd-context mkelem –nc –ci test_cmd.c
Created element "test_cmd.c" (type "text_file").
Checked in "test_cmd.c" version "\main\1".

• Create two directory elements and check out the initial version of each.

cmd-context mkelem –nc –eltype directory libs include
Created element "libs" (type "directory").
Checked out "libs" from version "/main/0".
Created element "include" (type "directory").
Checked out "include" from version "/main/0".

636 Command Reference

mkelem

• Create an element type named lib for library files, with the predefined binary_delta_file as

its supertype. Then, change to the libs directory, check it out, and create two elements of

type lib without checking them out.

cmd-context mkeltype –nc –supertype binary_delta_file lib
Created element type "lib".

cmd-context cd libs

cmd-context co –nc .
Checked out "." from version "\main\1".

cmd-context mkelem –nc –nco –eltype lib libntx.lib libpvt.lib
Created element "libntx.lib" (type "lib").
Created element "libpvt.lib" (type "lib").

SEE ALSO

cc.magic, checkin, checkout, chpool, config_spec, lstype, mkdir, mkeltype, mkpool, protect,
update

Reference Pages 637

mkeltype

mkeltype
Creates or updates an element type object

APPLICABILITY

SYNOPSIS
mkeltype [–rep⋅lace] [–glo⋅bal [–acq⋅uire] | –ord⋅inary]

–sup⋅ertype elem-type-selector [–man⋅ager mgr-name]

[–pti⋅me] [–att⋅ype attr-type-selector[,...]]

[–mer⋅getype { auto | user | never }]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

element-type-selector ...

DESCRIPTION

The mkeltype command creates one or more user-defined element types for future use within a

VOB. User-defined element types are variants of the predefined types. (See complete list in the

section Predefined Element Types.) After creating an element type, you can create elements of that

type using mkelem, or change an existing element’s type using chtype. To remove an element

type, use the rmtype command.

NOTE: You cannot remove an element type from a replicated VOB or change the definition of an

element type in a replicated VOB.

Setting Merge Behavior for an Element Type

In some cases, you can select the merge behavior of an element type when you create it. This is

true for element types of elements used in a UCM deliver or rebase operation. (See the deliver
and rebase reference pages). There are three kinds of behaviors, described here with their

associated keywords.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

638 Command Reference

mkeltype

To specify a behavior, use one of the keywords as the argument to the –mergetype option. If the

option is not specified, automatic merge behavior is in effect for elements of this element type.

Element Supertypes

When you create a new element type, you must specify an existing element type as its supertype.

The new element type inherits the type manager of the supertype, unless you use the –manager
option. The type manager performs such tasks as storing/retrieving the contents of the element’s

versions. (See the type_manager reference page.)

For example, you create an element type c_source, with text_file as the supertype; c_source
inherits the type manager associated with the text_file supertype—the text_file_delta manager.

You can use the lstype command to list both the supertype and the type manager of an element

type.

Predefined Element Types

Each VOB is created with the following element types:

Keyword Behavior

auto (default) A ClearCase or ClearCase LT findmerge operation

attempts to merge elements of this type.

user A ClearCase or ClearCase LT findmerge operation

performs trivial merges only. Nontrivial merges must be

made manually.

never A ClearCase or ClearCase LT findmerge operation

ignores elements of this type. The never attribute is

useful for working with files such as binary files or

bitmap graphics images.

file Versions can contain any kind of data (text, binary, bitmap, and so

on). Uses the whole_copy type manager.

compressed_file Versions can contain any kind of data. Uses the z_whole_copy type

manager.

text_file All versions must contain text (multibyte text characters are

allowed). Null bytes are not permitted (a byte of all zeros); no line can

contain more than 8,000 characters. Uses the text_file_delta type

manager.

compressed_text_file All versions must contain text; no line can contain more than 8,000

characters. Uses the z_text_file_delta type manager.

binary_delta_file Versions can contain any kind of data. Uses the binary_delta type

manager.

html Subtype of the text_file element type. Uses the _html type manager.

Reference Pages 639

mkeltype

You can use any of these element types as the –supertype specification.

Text Files, Cleartext, and a View’s Text Mode

This section applies to the element types text_file and compressed_text_file, to all subtypes of

these types, and to all user-defined element types derived from them through the supertype

mechanism.

When a load operation is issued from a snapshot view, or a user program accesses a version

through a dynamic view, the type manager handles it as follows:

1. Extracts the text lines of that particular version from the data container.

2. Stores the extracted lines in a cleartext file, within the cleartext storage pool directory

associated with the element.

3. Arranges for the program to access the cleartext file (not the structured data container).

On subsequent accesses to the same version, steps 1 and 2 are skipped; the program accesses the

existing cleartext file, which is cached in the cleartext storage pool.

Operating systems vary in their use of text-file line terminators. To avoid confusion, each

ClearCase and ClearCase LT view has a text mode, which determines the line terminator for text

files in that view. (See the mkview reference page.) After the type manager constructs a cleartext

file for a version, its line terminators may be adjusted before the version is presented to the

calling program. Adjustment of line terminators can also occur when the checkout command

copies a version of a text file element, creating a view-private file (the checked-out version).

RESTRICTIONS

Identities: No special identity is required unless you specify the –replace option. For –replace,

you must have one of the following identities:

• Type owner

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

ms_word Subtype of the file element type. All versions must be Microsoft

Word files. Uses the _ms_word type manager.

rose Subtype of the text_file element type. Uses the _rose type manager.

xml Subtype of the text_file element type. Uses the _xml type manager.

directory Versions of a directory element catalog (list the names of) elements

and VOB symbolic links. Uses the directory type manager, which

compares and merges versions of directory elements.

file_system_object Generic element type, with no associated type manager.

640 Command Reference

mkeltype

Locks: An error occurs if one or more of these objects are locked: VOB, element type (with

–replace only).

Mastership: (Replicated VOBs only) With –replace, your current replica must master the type.

OPTIONS AND ARGUMENTS

HANDLING OF NAME COLLISIONS. Default: An error occurs if an element type named type-name
already exists in the VOB.

–rep⋅lace
Replaces the existing definition of type-name with a new one. If you do not include

options from the existing definition, their values are replaced with the defaults.

(Exception: the type’s scope does not change unless you explicitly specify a –global or

–ordinary option.)

If you specify a comment when using –replace, the comment appears in the event record

for the modification (displayed with lshistory –minor); it will not replace the object’s

creation comment (displayed with describe). To change an object’s creation comment,

use chevent.

You cannot change the following:

Also, when converting a global type to ordinary, you must specify the global type as the

element-type-selector argument. You cannot specify a local copy of the global type.

SPECIFYING THE SCOPE OF THE ELEMENT TYPE. Default: Creates an ordinary element type that can

be used only in the current VOB.

–glo⋅bal [–acq⋅uire]

Creates an element type that can be used as a global resource by client VOBs in the

administrative VOB hierarchy. With –acquire, mkeltype checks all eclipsing types in

client VOBs and converts them to local copies of the new global type.

For more information, see the Administrator’s Guide.

–ord⋅inary
Creates an element type that can be used only in the current VOB.

SUPERTYPE / TYPE MANAGER INHERITANCE. Default: None. You must specify a supertype; the new

element type inherits the type manager of this supertype, unless you use the –manager option.

• The type manager (–manager or –supertype option) if there are existing elements

of type type-name
• The definition of a predefined element type (such as file or text_file)

Reference Pages 641

mkeltype

–sup⋅ertype elem-type-selector
The name of an existing element type, predefined or user-defined. Predefined element

types are listed in Predefined Element Types. You can specify –supertype
file_system_object only if you also specify a type manager with –manager.

Specify element-type-selector in the form [eltype:]type-name[@vob-selector]

The lstype command lists a VOB’s existing element types.

–man⋅ager mgr-name
Specifies the type manager for the new element type, overriding inheritance from the

supertype. The section Predefined Element Types lists the type managers. For more

information about these type managers, see the type_manager reference page.

CONTROLLING VERSION-CREATION TIME. Default: For all elements of the newly created type:

when a new version is checked in, its time stamp is set to the checkin time.

–pti⋅me
For all elements of the newly created type: preserves the time stamp of the checked-out

version during checkin. In effect, this establishes checkin –ptime as the default for

elements of this type.

MERGETYPE. Default: Instantiations of the new element type use automatic merging.

–mer⋅getype keyword
Specifies the merge behavior for an element type. This is in effect only when the element

type is used in a UCM deliver or rebase operation. There are three types of merge

behavior: automatic, for which a findmerge operation attempts to automatically merge

elements; user-controlled, for which a findmerge operation performs trivial merges only

(other merges must be made manually); and never, meaning findmerge ignores

elements of this type. The corresponding keyword arguments are auto, user, and never;
auto is the default.

SUGGESTED ATTRIBUTES. Default: The new element type has no list of suggested attributes.

–att⋅ype attr-type-selector[,...]

A comma-separated list (no white space) of existing attribute types. Use this option to

inform users of suggested attributes for use with elements of the newly created type.

type-name Name of the element type

See the cleartool reference page for rules about composing

names.

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag

(whether or not the VOB is mounted) or of any file-system

object within the VOB (if the VOB is mounted)

642 Command Reference

mkeltype

This does not restrict users from using other attributes. (Users can view the list with

describe or lstype.) Specify attribute-type-selector in the form

[attype:]type-name[@vob-selector]

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

NAMING THE ELEMENT TYPES. Default: The element type is created in the VOB that contains the

current working directory unless you specify another VOB with the @vob-selector argument.

type-name ...

Names of the element types to be created. Specify element-type-selector in the form

[eltype:]type-name[@vob-selector]

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

type-name Name of the attribute type

See the cleartool reference page for rules about composing

names.

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag

(whether or not the VOB is mounted) or of any file-system

object within the VOB (if the VOB is mounted)

type-name Name of the element type

See the cleartool reference page for rules about composing

names.

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag

(whether or not the VOB is mounted) or of any file-system

object within the VOB (if the VOB is mounted)

Reference Pages 643

mkeltype

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Create an element type named c_source using the predefined text_file element type as the

supertype.

cmd-context mkeltype –supertype text_file –nc c_source
Created element type "c_source".

• Create an element type for storing binary data named bin_file, using the predefined file
element type as the supertype.

cmd-context mkeltype –supertype file –nc bin_file
Created element type "bin_file".

• Create an element type based on the user-defined element type bin_file (from previous

example) for storing executable files. Include an attribute list.

cmd-context mkeltype –supertype bin_file –attype Confidence_Level,QAed –nc exe_file
Created element type "exe_file".

• Create a "directory of include files" element type, using the predefined directory element

type as the supertype. Provide a comment on the command line.

cmd-context mkeltype –supertype directory –c "directory type for include files" incl_dir
Created element type "incl_dir".

• Change the checkin default for an existing element type so that it preserves the file

modification time. Provide a comment on the command line.

cmd-context mkeltype –replace –supertype bin_file –ptime
–c "change archive mod time default" archive
Replaced definition of element type "archive".

• Create an element type for storing binary data named grph_file, using the predefined file
element type as the supertype. Specify the merge type as never. Merge type information is

applied when an element of this type is used in a UCM deliver or rebase operation.

cmd-context mkeltype –supertype file –mergetype never –nc grph_file
Created element type "grph_file".

SEE ALSO

checkin, chtype, describe, lstype, mkelem, rmtype, rename, type_manager

644 Command Reference

mkfolder

mkfolder
Creates a folder for a project

APPLICABILITY

SYNOPSIS
mkfolder [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

–in parent-folder-selector [folder-selector ...]

DESCRIPTION

The mkfolder command creates a folder for a project. Folders have these characteristics:

• They can contain projects or other folders.

• They must reside in a project VOB.

• Each folder must have a parent folder.

The parent folder for a top-level folder is named RootFolder, a predefined object.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if one or more of these objects are locked: the project VOB.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –c). See the comments reference page.

Comments can be edited with chevent.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

Reference Pages 645

mkfolder

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE PARENT FOLDER. Default: None.

–in parent-folder-selector
Specifies a parent folder for the new folder. To create a top-level folder, you must specify

the predefined folder object RootFolder as its parent folder.

folder-selector is of the form [folder:]folder-name[@vob-selector], where vob-selector specifies

the folder’s project VOB.

SPECIFYING THE FOLDER NAME. Default: A generated name.

folder-selector ...

Identifies one or more new folders.Each folder must reside in the same project VOB as

its parent folder and is created in the folder specified by the –in option.

You can specify the folder as a simple name or as an object selector of the form

[folder]:folder-name@vob-selector, where vob-selector specifies a project VOB (see the

cleartool reference page). If you specify a simple name and the current directory is not a

project VOB, then this command assumes the folder resides in the project VOB

associated with the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the folder.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

646 Command Reference

mkfolder

• Create a top-level folder whose parent is the predefined object RootFolder.

cmd-context mkfolder -in \
RootFolder@/vobs/webo_pvob webo_projects@/vobs/webo_pvob

Created folder "webo_projects".

SEE ALSO

chfolder, lsfolder, mkproject, rmfolder

Reference Pages 647

mkhlink

mkhlink
Attaches a hyperlink to an object

APPLICABILITY

SYNOPSIS
mkhlink [–uni⋅dir] [–tte⋅xt to-text] [–fte⋅xt from-text]

[–fpn⋅ame] [–tpn⋅ame] [–acq⋅uire]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

hlink-type-selector from-obj-selector [to-obj-selector]

DESCRIPTION

The mkhlink command creates a hyperlink between two objects, each of which may be an

element, branch, version, VOB symbolic link, or non-file-system VOB object (except another

hyperlink).

Logically, a hyperlink is an “arrow” attached to one or two VOB-database objects:

• A bidirectional hyperlink connects two objects, in the same VOB or in different VOBs, with

optional text annotations at either end. It can be navigated in either direction: from-object →
to-object or to-object → from-object.

• A unidirectional hyperlink connects two objects in different VOBs, with optional text

annotations at either end. It can be navigated only in the from-object → to-object direction.

• A text-only hyperlink associates one object with a user-defined text string (for example, an

element that implements a particular algorithm with the name of a document that describes

it).

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

648 Command Reference

mkhlink

• A null-ended hyperlink has only a from-object. Use this kind of hyperlink to suppress

hyperlink inheritance (see Hyperlink Inheritance).

Contrast with Other Kinds of Metadata

Like other kinds of metadata annotations—version labels, attributes, and triggers—a hyperlink

is an instance of a type object: the mkhlink command creates an instance of an existing hyperlink

type object. However, hyperlinks differ from other kinds of metadata annotations:

• The hyperlink created by mkhlink is also an object in itself. Each hyperlink object has a

unique ID (see Hyperlink-IDs) and can itself be annotated with attributes. By contrast, a

mklabel, mkattr, or mktrigger command does not create a new object; it simply annotates

an existing object.

• You can attach several hyperlinks of the same type to one object, but only one instance of a

particular label, attribute, or trigger type. (For example, you can attach two different

DesignFor hyperlinks to the same object, but not two different ECOnum attributes.)

Hyperlink-IDs

Each new hyperlink object gets a unique identifier, its hyperlink-ID. You can specify any

hyperlink by appending its hyperlink-ID to the name of the hyperlink type. Following are some

examples.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

cmd-context describe hlink:DesignFor@52179@/vobs/doctn

In this example, DesignFor is the name of a hyperlink type, and @52179@/vobs/doctn is the

hyperlink-ID. Note that the hyperlink-ID includes a pathname: the VOB-tag of the VOB in which

the hyperlink is created.

• When specifying a hyperlink in UNIX, you can use any pathname within the VOB in place

of the VOB-tag pathname:

cd /vobs

cmd-context describe hlink:DesignFor@52179@doctn

You can omit the pathname if the current working directory is in that VOB:

cd /vobs/doctn

cmd-context describe hlink:DesignFor@52179

Reference Pages 649

mkhlink

• When specifying a hyperlink in Windows, you can omit the pathname if the current

working directory is in that VOB:

cd \doctn_vb\src

cmd-context describe hlink:DesignFor@52179

A hyperlink-ID is unique in that it is guaranteed to differ from the hyperlink-ID of all other

hyperlinks. But it can change over time; when a VOB’s database is processed with reformatvob,

the numeric suffixes of all hyperlink-IDs change:

before ’reformatvob’:@52179@/vobs/doctn
after ’reformatvob’:@8883@/vobs/doctn

Similarly, the VOB-tag part of a hyperlink-ID can change over time and can vary from host to

host.

Hyperlink Inheritance

By default, a version implicitly inherits a hyperlink attached to any of its ancestor versions, on

the same branch or on a parent branch. Inherited hyperlinks are listed by the describe command

only if you use the –ihlink option.

A hyperlink stops being passed down to its descendents if it is superseded by another hyperlink

of the same type, explicitly attached to some descendent version. You can use a null-ended

hyperlink (from-object, but no to-object) as the superseding hyperlink to effectively cancel

hyperlink inheritance.

RESTRICTIONS

Identities: You must have one of the following identities:

• Element owner

• Element group member

• Object owner

• Object group member

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element,

branch type, branch, hyperlink type, object or object type (for non-file-system objects).

Mastership: (Replicated VOBs only) If the hyperlink’s type is unshared, your current replica must

master the type. If the hyperlink’s type is shared, there are no mastership restrictions.

650 Command Reference

mkhlink

OPTIONS AND ARGUMENTS

UNIDIRECTIONAL/BIDIRECTIONAL. Default: Creates a bidirectional hyperlink. If the objects being

linked are in different VOBs, a notation is made in the VOB database of the to-object, making it

possible to see the hyperlink from either VOB.

–uni⋅dir
Creates a unidirectional hyperlink; no notation is made in the VOB database of the

to-object (if that object is in a different VOB).

NOTE: In all cases, a single hyperlink object is created, in the VOB of the from-object.

TEXT ANNOTATIONS. Default: The hyperlink has no text annotations.

–tte⋅xt to-text
Text associated with the to-end of a hyperlink. If you also specify to-obj-pname, the text is

associated with that object. If you do not specify to-obj-pname, cleartool creates a

text-only hyperlink, originating from from-obj-pname. If you omit both –ttext and

to-obj-pname, cleartool creates a null-ended hyperlink.

–fte⋅xt from-text
Text associated with the from-end of a hyperlink.

HANDLING ECLIPSED HYPERLINK TYPES. Default: If the hyperlink type in a client VOB would

eclipse an existing hyperlink type in an administrative VOB, hyperlink type creation fails.

–acq⋅uire
Converts eclipsing types to local copies of the new global type.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE HYPERLINK TYPE. Default: None.

hlink-type-selector
An existing hyperlink type. The hyperlink type must exist in each VOB containing an

object to be hyperlinked, or (if hlink-type-selector is a global type) in the Admin VOB

hierarchy associated with each VOB. Specify hlink-type-selector in the form

[hltype:]type-name[@vob-selector]

type-name Name of the hyperlink type

Reference Pages 651

mkhlink

OBJECTS TO BE HYPERLINKED. Default: None. You must specify at least one object.

[–fpn⋅ame] from-obj-selector
[–tpn⋅ame] to-obj-selector

from-obj-selector specifies the from-object, and to-obj-selector specifies the to-object.

to-obj-selector is optional; omitting it creates a text-only hyperlink (if you use –ttext) or a

null-ended hyperlink (if you don’t).

NOTE: An error occurs if you try to make a unidirectional hyperlink whose to-obj-selector
is a checked-out version in another VOB.

Specify from-obj-selector and to-obj-selector in one of the following forms:

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag

(whether or not the VOB is mounted) or of any file-system

object within the VOB (if the VOB is mounted)

pname
• A standard or view-extended pathname to an element specifies the version

in the view.

• A version-extended pathname specifies an element, branch, or version,

independent of view.

• The pathname of a VOB symbolic link.

NOTE: If pname has the form of an object selector, you must include the –fpname
or –tpname option to indicate that pname is a pathname.

Examples:

foo.c
/view/gam/usr/project/src/foo.c
foo.c@@\main\5
foo.c@@/REL3
foo.c@@
foo.c@@\main

(version of ’foo.c’ selected by current view)
(version of ’foo.c’ selected by another view)
(version 5 on main branch of ’foo.c’)
(version of ’foo.c’ with version label ’REL3’)
(the element ’foo.c’)
(the main branch of element ’foo.c’)

vob-selector vob:pname-in-vob
pname-in-vob can be the pathname of

the VOB-tag (whether or not the VOB

is mounted) or of any filesystem object

within the VOB (if the VOB is

mounted). It cannot be the pathname

of the VOB storage directory.

attribute-type-selector attype:type-name[@vob-selector]

652 Command Reference

mkhlink

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• Create a hyperlink type. Then create a unidirectional, element-to-element hyperlink

between an executable and its GUI counterpart in another VOB.

cmd-context mkhltype -nc gui_tool
Created hyperlink type "gui_tool".

cmd-context mkhlink -unidir gui_tool monet@@ /vobs/gui/bin/xmonet@@
Created hyperlink "gui_tool@1239@/usr/hw".

• Create a hyperlink of type design_spec connecting the versions of a source file and design

document labeled REL2.

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]

Reference Pages 653

mkhlink

cmd-context mkhlink design_spec util.c@@\REL2 \users_hw\doc\util.doc@@\REL2
Created hyperlink "design_spec@685@\users_hw".

• Create three hyperlinks of the same type from the same version of a design document; each

hyperlink points to a different source file element.

cmd-context mkhlink design_for sortmerge.doc ../src/sort.c
Created hyperlink "design_for@4249@/vobs/proj".

cmd-context mkhlink design_for sortmerge.doc ../src/merge.c
Created hyperlink "design_for@4254@/vobs/proj".

cmd-context mkhlink design_for sortmerge.doc ../src/sortmerge.h
Created hyperlink "design_for@4261@/vobs/proj".

• Create an element-to-element hyperlink between a source file and a script that tests it.

Specify both from-text and to-text for further annotation.

cmd-context mkhlink -ttext "regression A" -ftext "edge effects" ^
tested_by cm_add.c@@ edge.sh@@
Created hyperlink "tested_by@714@\users_hw".

• Create a hyperlink of type fixes between the version of util.c in your view and the element

bug.report.21. Use to-text to indicate the bug number (“fixes bug 21”).

cmd-context mkhlink -ttext "fixes bug 21" fixes util.c /usr/hw/bugs/bug.report.21@@
Created hyperlink "fixes@746@/usr/hw".

• Create a text only hyperlink of type design_spec to associate the algorithm convolution.c
with the third-party document describing that algorithm. Make the hyperlink between the

element convolution.c and the to-text that describes it.

cmd-context mkhlink -ttext "Wilson: Digital Filtering, p42-50" ^
design_spec convolution.c@@
Created hyperlink "design_spec@753@\users_hw".

SEE ALSO

describe, lstype, mkhltype, rename, rmhlink, xclearcase

654 Command Reference

mkhltype

mkhltype
Creates or updates a hyperlink type object

APPLICABILITY

SYNOPSIS
mkhltype [–rep⋅lace] [–glo⋅bal [–acq⋅uire] | –ord⋅inary]

[–att⋅ype attr-type-selector[,...]] [–sha⋅red]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

hlink-type-selector ...

DESCRIPTION

The mkhltype command creates one or more hyperlink types for future use within a VOB. After

creating a hyperlink type, you can connect pairs of objects with hyperlinks of that type, using

mkhlink.

Conceptually, a hyperlink is an “arrow” from one VOB-database object (version, branch,

element, or VOB symbolic link) to another. To enable objects in two different VOBs to be

connected, a hyperlink type with the same name must be created in both VOBs.

For example, you create a hyperlink type named design_spec, for use in linking source code files

to the associated design documents. Later, you can use mkhlink to create a hyperlink of this type

between my_prog.c and my_prog.dsn.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 655

mkhltype

Predefined Hyperlink Types

The following predefined hyperlink types are created in a new VOB:

RESTRICTIONS

Identities: No special identity is required unless you specify the –replace option. For –replace,

you must have one of the following identities:

• Type owner

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, hyperlink type (with

–replace only).

Mastership: (Replicated VOBs only) With –replace, your current replica must master the type.

OPTIONS AND ARGUMENTS

HANDLING OF NAME COLLISIONS. Default: An error occurs if a hyperlink type named type-name
already exists in the VOB.

–rep⋅lace
Replaces the existing definition of type-name with a new one. If you do not include

options from the existing definition, their values are replaced with the defaults

(Exception: the type’s global scope does not change; you must explicitly specify –global
or –ordinary).

If you specify a comment when using –replace, the comment appears in the event record

for the modification (displayed with lshistory –minor); it does not replace the object’s

Merge Merge hyperlinks record a merge of two or more versions of

an element (performed by the merge command) with one or

more merge arrows. Each merge arrow is actually a

hyperlink of type Merge, connecting one of the contributors

to the target version.

GlobalDefinition GlobalDefinition hyperlinks record the relationship

between a global definition and a local instance of a global

type.

AdminVOB AdminVOB hyperlinks record a VOB’s administrative VOB.

RelocationVOB RelocationVOB hyperlinks point from VOBs to which

objects have been relocated to the VOBs in which the objects

were originally located. These hyperlinks occur only

between VOB objects. (See the relocate reference page.)

656 Command Reference

mkhltype

creation comment (displayed with describe). To change an object’s creation comment,

use chevent.

Constraints:

SPECIFYING THE SCOPE OF THE HYPERLINK TYPE. Default: Creates an ordinary hyperlink type that

can be used only in the current VOB.

–glo⋅bal [–acq⋅uire]

Creates a hyperlink type that can be used as a global resource by client VOBs in the

administrative VOB hierarchy. With –acquire, mkhltype checks all eclipsing types in

client VOBs and converts them to local copies of the new global type.

For more information, see the Administrator’s Guide.

–ord⋅inary
Creates a hyperlink type that can be used only in the current VOB.

SUGGESTED ATTRIBUTES. (Advisory only, not restrictive) Default: The new hyperlink type has no

list of suggested attributes.

–att⋅ype attr-type-selector[,...]

A comma-separated list (no white space) of existing attribute types. Use this option to

inform users of suggested attributes for use with hyperlinks of the newly created type.

(Users can view the list with describe or lstype.) See the mkattype and mkattr reference

pages for more information about attributes.

MASTERSHIP OF THE HYPERLINK TYPE. Default: Attempts to attach hyperlinks of this type succeed

only in the VOB replica that is the current master of the hyperlink type. The VOB replica in which

the new hyperlink type is created becomes its initial master.

–sha⋅red
Hyperlinks of this type can be created in any VOB replica. (You can delete a hyperlink of

this type only at the master site.)

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See the comments reference page.

Comments can be edited with chevent.

• You cannot replace predefined hyperlink types.

• When replacing a hyperlink type that was created with the –shared option, you

must use –shared again; that is, you cannot convert a hyperlink type from shared

to unshared.

• When converting a global type to ordinary, you must specify the global type as

the hlink-type-selector argument. You cannot specify a local copy of the global type.

Reference Pages 657

mkhltype

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

NAMING THE HYPERLINK TYPES. Default: The hyperlink type is created in the VOB that contains

the current working directory unless you specify another VOB with the @vob-selector argument.

hlink-type-selector ...

Names of the hyperlink types to be created. Specify hlink-type-selector in the form

[hltype:]type-name[@vob-selector]

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• Create a hyperlink type named tested_by.

cmd-context mkhltype -nc tested_by

Created hyperlink type "tested_by".

type-name Name of the hyperlink type

See the cleartool reference page for rules about composing

names.

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag

(whether or not the VOB is mounted) or of any file-system

object within the VOB (if the VOB is mounted)

658 Command Reference

mkhltype

• Create a hyperlink type named design_spec in the \docs VOB, and provide a comment on

the command line.

cmd-context mkhltype -c "source to design document" design_spec@\docs

Created hyperlink type "design_spec".

• Create a hyperlink type named test_script, providing a suggested-attribute list.

cmd-context mkhltype -nc -attype run_overnight,error_rate test_script

Created hyperlink type "test_script".

SEE ALSO

describe, lstype, mkhlink, rename, rmtype

Reference Pages 659

mklabel

mklabel
Attaches version labels to versions of elements

APPLICABILITY

SYNOPSIS

• Attach label to specified versions:

mklabel [–rep⋅lace] [–r⋅ecurse] [–fol⋅low] [–ver⋅sion version-selector]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

label-type-selector pname ...

• Attach label to versions listed in configuration record:

mklabel [–rep⋅lace] [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
[–sel⋅ect do-leaf-pattern] [–ci] [–typ⋅e { f | d } ...]

[–nam⋅e tail-pattern] –con⋅fig do-pname label-type-selector

DESCRIPTION

The mklabel command attaches a version label to one or more versions. You can attach a label

to only one version of a particular element. You can specify the versions themselves on the

command line, or you can specify a particular derived object. In the latter case, mklabel labels

some or all the versions that were used to build that derived object.

RESTRICTIONS

Identities: You must have one of the following identities:

• Element owner

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

660 Command Reference

mklabel

• Element group member

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: If it encounters a VOB lock while trying to write data during an import operation, mklabel
pauses and retries the operation every 60 seconds until it succeeds. Because labels are applied in

batches, some labeling in a batch may still fail due to a lock being placed on the VOB while a

batch transaction is in progress; however, the next batch is not applied until the lock is released.

Mastership: (Replicated VOBs only) If the label’s type is unshared, your current replica must

master the label type. If the label’s type is shared, the following restrictions apply:

• If the label type is one per branch, your current replica must master the branch of the

version.

• If the label type is one per element, your current replica must master the element of the

version.

OPTIONS AND ARGUMENTS

MOVING A VERSION LABEL. Default: An error occurs if a version label of this type is already

attached to some other version of the same element.

–rep⋅lace
Removes an existing label of the same type from another version of the element:

No error occurs if there is no such label to remove, but the label is attached to all versions

specified in the command.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE LABEL TYPE. Default: None.

label-type-selector
A label type, previously created with mklbtype. The label type must exist in each VOB

containing a version to be labeled, or (if label-type-selector is a global type) in the Admin

• From another version on the same branch, if label-type-name was created with

mklbtype –pbranch
• From another version anywhere in the element’s version tree, if label-type-name

was not created with mklbtype –pbranch

Reference Pages 661

mklabel

VOB hierarchy associated with each VOB. Specify label-type-selector in the form

[lbtype:]type-name[@vob-selector]

NOTE: The mklabel command is disallowed on label types for UCM baselines.

DIRECTLY SPECIFYING THE VERSIONS TO BE LABELED. The options and arguments in this section

specify elements and their versions directly on the command line. Do not use these options and

arguments when using a derived object to provide a list of versions.

pname ...

(Required) One or more pathnames, indicating versions to be labeled:

Use –version to override these interpretations of pname.

NOTE: mklabel differs from some other commands in its default handling of directory

element pname arguments: it labels the directory element itself; it does not label the

elements cataloged in the directory (unless you specify -recurse).

–ver⋅sion version-selector
For each pname, attaches the label to the version specified by version-selector. This option

overrides both version-selection and version-extended naming. See the version_selector
reference page for syntax details.

When you specify this option with –recurse, mklabel recursively descends directories

even if there is no version match for a specified directory—the directory version selected

by the view’s config_spec is used for the recursion.

–r⋅ecurse
Processes the entire subtree of each pname that is a directory element (including pname
itself). VOB symbolic links are not traversed during the recursive descent into the

subtree.

type-name Name of the label type

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

• A standard or view-extended pathname to an element specifies the version

selected in the view.

• A version-extended pathname specifies a version, independent of view.

662 Command Reference

mklabel

When you specify this option with –version, mklabel recursively descends directories

even if there is no version match for a specified directory—the directory version selected

by the view’s config_spec is used for the recursion.

When you specify this option, a summary is printed at the completion of this command

that lists the number of labeling successes, labeling failures, moved labels, and

unchanged labels.

–fol⋅low
For any VOB symbolic link encountered, labels the corresponding target.

USING A DERIVED OBJECT TO SPECIFY THE VERSIONS TO BE LABELED. The options and arguments

in this section specify versions by selecting them from the configuration records associated with

a particular derived object. Do not use these options when specifying elements and versions

directly on the command line.

NOTE: Derived objects are created only in dynamic views.

–con⋅fig do-pname
Specifies one derived object. A standard pathname or view-extended pathname specifies

the DO that currently appears in a view. To specify a DO independent of view, use an

extended name that includes a DO-ID (for example, hello.obj@@24–Mar.11:32.412) or a

version-extended pathname to a DO version.

With the exception of checked-out versions, mklabel labels all the versions that would

be included in a catcr –long –flat –element_only listing of that derived object. Note that

this includes the following objects:

If the DO’s configuration includes multiple versions of the same element, only the most

recent version is labeled.

When you specify this option, a summary is printed at the completion of this command

that lists the number of labeling successes, labeling failures, moved labels, and

unchanged labels.

Use the following options to modify the list of versions to be labeled.

–sel⋅ect do-leaf-pattern
–ci
–typ⋅e { f | d } ...

–nam⋅e tail-pattern
Modify the set of versions to be labeled in the same way that these options modify a catcr
listing. See the catcr reference page for details, and also the EXAMPLES section.

• Any DO created by the build and subsequently checked in as a DO version.

• Any file in the CR that was view-private at the time of the build, was converted

to an element after the creation of the CR, and has at least one checked-in version.

Reference Pages 663

mklabel

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Create a label type named REL6. Attach that label to the version of the current directory

selected by your view, and to the currently selected version of each element in and below

the current directory.

cmd-context mklbtype –nc REL6
Created label type "REL6".

cmd-context mklabel –recurse REL6 .

Created label "REL6" on "." version "/main/4".
Created label "REL6" on "./bin" version "/main/1".
Created label "REL6" on "./include" version "/main/1".
Created label "REL6" on "./libs" version "/main/2".
Created label "REL6" on "./lost+found" version "/main/0".
Created label "REL6" on "./release" version "/main/1".
Created label "REL6" on "./src" version "/main/6".
Created label "REL6" on "./src/Makefile" version "/main/2".
Created label "REL6" on "./src/cm_add.c" version "/main/1".
Created label "REL6" on "./src/convolution.c" version "/main/4".
Created label "REL6" on "./src/edge.sh" version "/main/1".
.
.
.

• Attach label REL1 to the version of msg.c in the view.

cmd-context mklabel REL1 msg.c

Created label "REL1" on "msg.c" version "\main\1".

• Attach label REL2 to version 3 on the rel2_bugfix branch of file util.c.

cmd-context mklabel –version /main/rel2_bugfix/3 REL2 util.c
Created label "REL2" on "util.c" version "/main/rel2_bugfix/3".

664 Command Reference

mklabel

• Move label REL2 to a different version of element hello.c, using a version-extended

pathname to indicate that version.

cmd-context mklabel –replace REL2 hello.c@@\main\4
Moved label "REL2" on "hello.c" from version "\main\3" to "\main\4".

• Attach label REL3 to each version that was used to build derived object hello.o. Note that

both directories and files are labeled.

cmd-context mklabel –config hello.o REL3
Created label "REL3" on "/usr/hw/" version "/main/1".
Created label "REL3" on "/usr/hw/src" version "/main/2".
Created label "REL3" on "/usr/hw/src/hello.c" version "/main/3".
Created label "REL3" on "/usr/hw/src/hello.h" version "/main/1".

• Attach label REL5 to each C-language source file version that was used to build derived

object hello.exe.

cmd-context mklabel –config hello.exe –name '*.c' REL5
Created label "REL5" on "\users_hw\src\hello.c" version "\main\3".
Created label "REL5" on "\users_hw\src\util.c" version "\main\1".

• Attach label REL5 to all versions in the VOB mounted at /usr/hw that were used to build

derived object hello. Use interactive mode to enable use of the ClearCase and ClearCase LT

"..." wildcard.

cmd-context mklabel –config hello –name ' /usr/hw/...' REL5
Created label "REL5" on "/usr/hw/" version "/main/1".
Created label "REL5" on "/usr/hw/src" version "/main/2".
Created label "REL5" on "/usr/hw/src/hello.c" version "/main/3".
Created label "REL5" on "/usr/hw/src/hello.h" version "/main/1".
Created label "REL5" on "/usr/hw/src/util.c" version "/main/1".

SEE ALSO

mklbtype, rmlabel

Reference Pages 665

mklbtype

mklbtype
Creates or updates a label type object

APPLICABILITY

SYNOPSIS
mklbtype [–rep⋅lace] [–glo⋅bal [–acq⋅uire] | –ord⋅inary] [–pbr⋅anch] [–sha⋅red]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

label-type-selector ...

DESCRIPTION

The mklbtype command creates one or more label types with the specified names for future use

within a VOB. After creating a label type in a VOB, you can attach labels of that type to versions

of that VOB’s elements, using mklabel.

Instance Constraints

The same version label can be attached to multiple versions of the same element. (The versions

must all be on different branches. If two versions were labeled JOHN_TMP on branch

/main/bugfix, the version-extended pathname foo.c@@/main/bugfix/JOHN_TMP would be

ambiguous.) However, there are drawbacks to using the same version label several times in the

same element:

• It is potentially confusing.

• In a version-extended pathname, you must always include a full branch pathname along

with the version label (for example, foo.c@@\main\new_port\JOHN_TMP).

By default, a new label type is constrained to use on only one version in an element’s entire

version tree. This allows you to omit the branch pathname portion of a version-extended

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

666 Command Reference

mklbtype

pathname (for example, foo.c@@/JOHN_TMP). The –pbranch option relaxes this constraint,

allowing the label type to be used once per branch.

Recommended Naming Convention

A VOB cannot contain a branch type and a label type with the same name. For this reason, we

strongly recommend that you adopt this convention:

• Make all letters in names of branch types lowercase (a – z).

• Make all letters in names of label types uppercase (A – Z).

RESTRICTIONS

Identities: No special identity is required unless you specify the –replace option. For –replace,

you must have one of the following identities:

• Type owner

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, label type (with –replace
only).

Mastership: (Replicated VOBs only) With –replace, your current replica must master the type.

OPTIONS AND ARGUMENTS

HANDLING OF NAME COLLISIONS. Default: An error occurs if a label type named type-name already

exists in the VOB.

–rep⋅lace
Replaces the existing definition of type-name with a new one. If you do not include

options from the existing definition, their values will be replaced with the defaults

(Exception: the type’s global scope does not change; you must explicitly specify –global
or –ordinary).

If you specify a comment when using –replace, the comment appears in the event record

for the modification (displayed with lshistory –minor); it does not replace the object’s

creation comment (displayed with describe). To change an object’s creation comment,

use chevent.

Constraints:

• You cannot replace either of the predefined label types LATEST and

CHECKEDOUT.

Reference Pages 667

mklbtype

SPECIFYING THE SCOPE OF THE LABEL TYPE. Default: Creates an ordinary label type that can be used

only in the current VOB.

–glo⋅bal [–acq⋅uire]

Creates a label type that can be used as a global resource by client VOBs in the

administrative VOB hierarchy. With –acquire, mklbtype checks all eclipsing types in

client VOBs and converts them to local copies of the new global type.

For more information, see the Administrator’s Guide.

–ord⋅inary
Creates a label type that can be used only in the current VOB.

INSTANCE CONSTRAINTS. Default: A label of the new type can be attached to only one version of

a given element.

–pbr⋅anch
Relaxes the default constraint, allowing the label type to be used once per branch in a

given element’s version tree. You cannot attach the same version label to multiple

versions on the same branch.

MASTERSHIP OF THE LABEL TYPE. Default: Attempts to attach or remove labels of this type succeed

only in the VOB replica that is the current master of the label type. The VOB replica in which the

new label type is created becomes its initial master.

–sha⋅red
Allows you to create or delete labels of this type at any replica in the VOB family. If you

also specify –pbranch, the replica must master the branch of the version you specify in

the mklabel or rmlabel command. If you do not specify –pbranch, the replica must

master the element of the version you specify in the mklabel or rmlabel command.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

• If there are existing labels of this type or if the containing VOB is replicated, you

cannot replace a less constrained definition (–pbranch specified) with a more

constrained definition. (The default is once per element.)

• When replacing a label type that was created with the –shared option, you must

use –shared again; that is, you cannot convert a label type from shared to

unshared.

• When converting a global type to ordinary, you must specify the global type as

the label-type-selector argument. You cannot specify a local copy of the global type.

668 Command Reference

mklbtype

NAMING THE LABEL TYPES. Default: The label type is created in the VOB that contains the current

working directory unless you specify another VOB with the @vob-selector argument.

label-type-selector ...

Names of the label types to be created. Specify label-type-selector in the form

[lbtype:]type-name[@vob-selector]

See the section Recommended Naming Convention.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Create a label type that can be used only once per element. Provide a comment on the

command line.

cmd-context mklbtype –c "Version label for V2.7.1 sources" V2.7.1

Created label type "V2.7.1".

• Create a label type that can be used once per branch in any element’s version tree.

cmd-context mklbtype –nc –pbranch REL3

Created label type "REL3".

type-name Name of the label type

See the cleartool reference page for rules about composing

names.

vob-selector VOB specifierf

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

Reference Pages 669

mklbtype

• Change the constraint on an existing label type so that it can be used once per branch. (This

change does not affect existing labels of this type.)

cmd-context mklbtype –replace –pbranch –c "allow use on multiple branches" V2.7.1

Replaced definition of label type "V2.7.1".

SEE ALSO

describe, lstype, mklabel, rename, rmtype

670 Command Reference

mkpool

mkpool
Creates a VOB storage pool or modifies its scrubbing parameters

APPLICABILITY

SYNOPSIS

• Create source pool:

UNIX only—mkpool –sou⋅rce [–ln pname]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pool-selector ...

• UNIX only—Create derived object pool or cleartext pool:

mkpool { –der⋅ived | –cle⋅artext } [–ln pname]

[–siz⋅e max-kbytes reclaim-kbytes [–age hours] [–ale⋅rt command]]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pool-selector ...

• Windows only—Create source pool:

mkpool –sou⋅rce
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pool-selector ...

• Windows only—Create derived object pool or cleartext pool:

mkpool { –der⋅ived | –cle⋅artext }
[–siz⋅e max-kbytes reclaim-kbytes [–age hours] [–ale⋅rt command]]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pool-selector ...

Product Command Type

ClearCase cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 671

mkpool

• Update pool parameters:

mkpool –upd⋅ate [–siz⋅e max-kbytes reclaim-kbytes] [–age hours] [–ale⋅rt command]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pool-selector ...

DESCRIPTION

The mkpool command creates a source storage pool, derived object storage pool, or cleartext

storage pool, and initializes the pool’s scrubbing parameters. You can also use this command to

update the scrubbing parameters of an existing storage pool.

Storage pools are directories used as physical storage areas for different kinds of data:

• A source storage pool stores the data containers that contain versions of elements.

• A derived object storage pool stores shared derived objects—those that are referenced by

more than one view.

• A cleartext storage pool is a cache of text files. If an element’s versions are stored in a

compressed format, accessing a particular version involves some processing overhead; a

type manager program is invoked to extract the cleartext of that version from the data

container. As a performance optimization, the extracted version is cached as a file in a

cleartext storage pool. The next access to that same version uses the cached copy, saving the

cost of extracting the version from the data container again.

Creating a new VOB with the mkvob command creates one default pool of each kind: sdft
(source pool), ddft (derived object pool), and cdft (cleartext pool).

mkpool creates a storage pool as a directory within the VOB storage area. Source pools are

always created within subdirectory s of the VOB storage directory; derived object pools are

created within subdirectory d; cleartext pools are created within subdirectory c. The –ln option

allows you to create pools elsewhere, to be accessed at the standard locations through symbolic

links.

Pool Allocation and Inheritance

Each file element is assigned to one source pool and one cleartext pool. The source pool provides

permanent storage, in one or more data container files, for all of the element’s versions. If the

element’s versions are stored in a compressed format, the cleartext pool is used to cache extracted

versions of that element, as described earlier. (If each version is stored uncompressed in a

separate data container, the cleartext pool is not used.)

Each directory element is also assigned to one source pool and one cleartext pool. But directory

versions themselves are not stored in these pools. (They are stored directly in the VOB database.)

Rather, a directory’s pool assignments are used solely for pool inheritance: each element created

within the directory inherits its source and cleartext pool assignments.

672 Command Reference

mkpool

Each directory element is also assigned to one derived object pool. All shared derived objects

with pathnames in that directory are stored in that pool. A new directory element inherits the

derived object pool of its parent, along with the source and cleartext pools.

The pool inheritance scheme begins at the VOB root directory (top-level directory element)

created by mkvob, which is automatically assigned to the default pools.

You can change any of an element’s pool assignments with the chpool command.

Scrubbing

Scrubbing is the process of reclaiming space in a derived object pool or cleartext pool. (Source

pools are not subject to scrubbing.) This process is performed by the scrubber utility. mkpool
initializes or updates these scrubbing parameters:

The default settings for the scrubbing parameters are max-kbytes = 0, reclaim-kbytes = 0, hours = 96.

See the scrubber reference page for details on how these parameters are interpreted.

By default, the scheduler runs scrubber periodically. See the schedule reference page for

information on describing and changing scheduled jobs.

Getting Information on Storage Pools

The lspool command lists a VOB’s storage pools. If you include the –long option, the current

settings of the scrubbing parameters are listed, as well. (The describe –pool command displays

the same information as lspool –long.)

RESTRICTIONS

Identities: You must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, pool (for -update only).

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

SPECIFYING THE KIND OF STORAGE POOL / SPECIFYING AN UPDATE. Default: You must specify the

kind of pool, unless you use –update and name an existing pool. The following options are

mutually exclusive.

maximum size (max-kbytes) Maximum pool size

reclaim size (reclaim-kbytes) Size to which scrubber attempts to reduce the pool

age (hours) Threshold to prevent premature scrubbing of recently referenced

objects

Reference Pages 673

mkpool

–sou⋅rce
Creates a source pool.

–der⋅ived
Creates a derived object pool.

–cle⋅artext
Creates a cleartext pool.

–upd⋅ate
Asserts that the parameters of an existing pool are to be updated. You must also use a

–size and/or –age option.

LOCAL VS. REMOTE STORAGE. Default: Creates a storage pool as a subdirectory under the VOB

storage directory.

–ln pname
Creates a storage pool directory at pname, and creates pool-name in the VOB storage

directory as a symbolic link to pname. You can create only one pool when using this

option.

RESTRICTION: pname must be a full pathname, starting with a slash (/). It must also be a

global pathname, valid on every host from which users will access the VOB. mkpool
attempts to verify that this pathname is truly global, using a simple heuristic. (For

example, a pathname that begins with /net is likely to be global.) If it suspects that pname
is not global, mkpool proceeds anyway, but displays a warning message:

Warning: Linktext for pool does not appear to be a global path.

This mechanism is independent of the network storage registry facility. Thus, the

pathname to a remote storage pool directory must be truly global, not global within a

particular network region.

CAUTION: We recommend that you keep source pools local, within the VOB storage

directory. This strategy optimizes data integrity: a single disk partition contains all of the

VOB’s essential data. It also simplifies backup/restore procedures.

SPECIFYING NEW PARAMETERS. Default: For a new derived object or cleartext pool: the maximum
size and reclaim size parameters are set to 0, which enables a special scrubbing procedure. (See the

scrubber reference page.) The age parameter is set to 96 (hours). These parameters are

meaningless for a source pool.

When updating an existing pool, you must use at least one of –size and –age.

–siz⋅e max-kbytes reclaim-kbytes
Specifies that the pool is scrubbed if its size exceeds max-kbytes KB; scrubbing will

continues until the pool reaches the goal size of reclaim-kbytes KB.

674 Command Reference

mkpool

–age hours
Prevents scrubbing of derived objects or cleartext files that have been referenced within

the specified number of hours. Specifying –age 0 restores the default age setting (96

hours).

SCRUBBER FAILURE PROCESSING. Default: If scrubber fails to scrub a pool below its max-kbytes
level, it logs a warning message in /var/adm/atria/log/scrubber_log (UNIX) or the Windows

event log, but takes no other action.

–ale⋅rt command
Causes scrubber to run the specified command (typically, a shell script or batch file)

whenever it fails to scrub a pool below its max-kbytes level.

WINDOWS: If you invoke a command built in to the Windows shell (for example, cd, del,
dir, or copy) instead of a batch file, you must invoke the shell with cmd /c. For example:

–alert 'cmd /c cd \tmp & del *.*'

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE POOL. Default: Creates or updates a pool in the VOB containing the current

working directory unless you specify another VOB with the @vob-selector suffix.

pool-selector ...

One or more names for the storage pools to be created. Specify pool-selector in the form

[pool:]pool-name[@vob-selector]

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

pool-name Name of the storage pool

See the cleartool reference page for rules about composing

names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

Reference Pages 675

mkpool

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Create a source pool that uses the default pool parameters.

cmd-context mkpool –source –c "pool for c source files" c_pool

Created pool "c_pool".

• Create a derived object pool with a maximum size of 10,000 KB (10 MB) and a reclaim size

of 8,000 KB (8 MB). Allow the age parameter to assume its default value.

cmd-context mkpool –derived –nc –size 10000 8000 do1

Created pool "do1".

• Update the derived object pool created in the previous example, so that any derived object

referenced within the last week (168 hours) is not scrubbed.

cmd-context mkpool –nc –update –age 168 do1

Updated pool "do1".

• On a UNIX system, create a nonlocal cleartext storage pool at the globally accessible

location /usr/vobstore/ccase_pools/c2, to be accessed as pool cltxt2.

cmd-context mkpool –nc –cleartext –ln /usr/vobstore/ccase_pools/c2 cltxt2

Created pool "cltxt2".

This command creates this symbolic link:

vob-storage-dir-pname/c/cltxt –> /usr/vobstore/ccase_pools/c2

• Create a cleartext pool named my_ctpool that uses the default pool parameters. Then,

change all elements using pool cdft (the default cleartext pool) to use my_ctpool instead.

cmd-context mkpool -cleartext -c "alternate cleartext pool" my_ctpool

Created pool "my_ctpool".

cmd-context find . -all -element ’pool(cdft)’ -exec ’cleartool chpool ^
-force my_ctpool $CLEARCASE_PN’

676 Command Reference

mkpool

Changed pool for "\users_hw" to "my_ctpool".
Changed pool for "\users_hw\bin" to "my_ctpool".
Changed pool for "\users_hw\bin\hello" to "my_ctpool".
Changed pool for "\users_hw\bugs" to "my_ctpool".
Changed pool for "\users_hw\bugs\bug.report.21" to "my_ctpool".
Changed pool for "\users_hw\doc" to "my_ctpool".
Changed pool for "\users_hw\doc\util.doc" to "my_ctpool".
Changed pool for "\users_hw\include" to "my_ctpool".
Changed pool for "\users_hw\libs" to "my_ctpool".
Changed pool for "\users_hw\libs\libntx.a" to "my_ctpool".
Changed pool for "\users_hw\libs\libpvt.a" to "my_ctpool"
.
.
.

SEE ALSO

chpool, find, lspool, mkvob, schedule, scrubber

Reference Pages 677

mkproject

mkproject
Creates a project

APPLICABILITY

SYNOPSIS
mkproj⋅ect [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–mod⋅comp component-selector[,...]]
–in folder-selector
[–pol⋅icy policy-keyword[,...]] [–npo⋅licy policy-keyword[,...]]
[–spo⋅licy policy-keyword[,...]]
[–crm⋅enable ClearQuest-user-database-name]

[project-selector ...]

DESCRIPTION

The mkproject command creates a project. A project includes policy information and

configuration information.

Projects are created in folders. A folder or folder hierarchy must be in place before you create a

project. If no folder exists, you can specify RootFolder as the folder selector with the –in option.

RootFolder is a predefined object that represents the parent folder of a folder hierarchy. See

mkfolder for more information.

Projects maintain a list of components that can be modified within the project. You can specify

these with the –modcomp option. Streams in the project can make changes, such as checking out

files, only in modifiable components; all other components are read-only.

Project Policies

You can set or unset projectwide policies, such as specifying that views attached to the

integration stream must be snapshot views. Policies are identified by their keywords. Table 12

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

678 Command Reference

mkproject

describes these policies and lists the keywords used to set them. For more information about

setting policies, see Managing Software Projects.

Table 12 UCM Project Policies

Policy Keyword

Recommend snapshot views for integration

work.

POLICY_UNIX_INT_SNAP (UNIX)

POLICY_WIN_INT_SNAP (Windows)

Recommend snapshot views for development

work.

POLICY_UNIX_DEV_SNAP (UNIX)

POLICY_WIN_DEV_SNAP (Windows)

Require a development stream to be based on

the current recommended baselines before it

can deliver changes to its default target stream.

POLICY_DELIVER_REQUIRE_REBASE

Do not allow delivery from a development

stream that has checkouts.

POLICY_DELIVER_NCO_DEVSTR

Allow a deliver operation from a stream in the

same project to include changes from the

stream’s foundation baselines.

POLICY_INTRAPROJECT_DELIVER
_FOUNDATION_CHANGES

Allow a deliver operation from a stream in the

same project to contain changes in components

that are not included in the target stream’s

configuration. The changes in the missing

components are not delivered.1

POLICY_INTRAPROJECT_DELIVER
_ALLOW_MISSING_TGTCOMPS

Allow streams in this project to accept changes

in a deliver operation from a stream in a

different project.

POLICY_INTERPROJECT_DELIVER

Allow a deliver operation from a stream in a

different project to include changes from the

stream’s foundation baselines. This policy is

ignored if interproject delivery is disabled.

POLICY_INTERPROJECT_DELIVER
_FOUNDATION_CHANGES

Require a deliver operation from a stream in a

different project to deliver changes in all

components. This policy is ignored if

interproject delivery is disabled.1

POLICY_INTERPROJECT_DELIVER
_REQUIRE_TGTCOMP_VISIBILITY

Reference Pages 679

mkproject

Using Rational ClearQuest with Projects

Optionally, you can link a project to a Rational ClearQuest database. For related information, see

chproject.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if one or more of these objects are locked: the project VOB.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –c). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING A FOLDER FOR THE PROJECT. Default: None.

–in folder-selector
Specifies a folder.

folder-selector is of the form [folder:]folder-name[@vob-selector], where vob-selector specifies

the folder’s project VOB.

SPECIFYING MODIFIABLE COMPONENTS. Default: None.

–mod⋅comp component-selector[,...]

Specifies the components that can be modified by this project.

Allow a deliver operation from a stream in a

different project to contain changes in

components that are not modifiable in the target

stream’s configuration. The changes in the

nonmodifiable components are not delivered.

This policy is ignored if interproject delivery is

disabled.

POLICY_INTERPROJECT_DELIVER
_ALLOW_NONMOD_TGTCOMPS

1. Defaults are different for intraproject and interproject deliver operations.

Table 12 UCM Project Policies

Policy Keyword

680 Command Reference

mkproject

SETTING PROJECT POLICY. Default: None.

–pol⋅icy policy-keyword
Enables the specified policy. See Project Policies.

–npo⋅licy policy-keyword
Disables the specified policy. See Project Policies.

–spo⋅licy policy-keyword
Allows the specified policy to be enabled or disabled by individual streams. See Project
Policies.

SPECIFYING A LINK TO THE CLEARQUEST DATABASE. Default: No linking.

–crm⋅enable ClearQuest-user-database-name

Enables a link from the project to the specified Rational ClearQuest database. The

schema of the ClearQuest database must be UCM-enabled, and your system must be

configured for the correct schema repository.

SPECIFYING THE PROJECT NAME. Default: A generated name.

project-selector
Specifies the project.

You can specify the project as a simple name or as an object selector of the form

[project]:project-name@vob-selector, where vob-selector specifies a project VOB (see the

cleartool reference page). If you specify a simple name and the current directory is not a

project VOB, then this command assumes the project resides in the project VOB

associated with the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the project.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

Reference Pages 681

mkproject

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• Create a project in the webo_projects folder of the project VOB webo_pvob.

cmd-context mkproject -c "creating webo project release 1" \
-in webo_projects@/vobs/webo_pvob webo_proj1@/vobs/webo_pvob

Created project "webo_proj1".

SEE ALSO

chproject, lsproject, mkfolder, rmproject

682 Command Reference

mkregion

mkregion
Registers a new ClearCase network region

APPLICABILITY

SYNOPSIS
mkregion –tag region-tag [–tco⋅mment tag-comment] [–rep⋅lace]

DESCRIPTION

The mkregion command registers a new network region by adding a new region tag (region

name) and, optionally, a comment to the regions file on the ClearCase registry server host. Use

the lsregion command to display the region tags contained in regions.

After creating a new region, you can create VOB-tags and view-tags for the region with mktag,

mkvob, and mkview.

A ClearCase client host (which may also be an Attache helper host) can belong to only one

region. Use the hostinfo –long command to display the client host’s registry region. See the

Administrator’s Guide for more information on ClearCase network regions.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE REGION TAG. Default: None. You must name the region.

–tag region-tag
Names the region. region-tag can be up to 32 characters.

Product Command Type

ClearCase cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 683

mkregion

–tco⋅mment tag-comment
Adds a comment to the region-tag’s entry in the registry file. Use lsregion –long to display the

tag-comment.

OVERWRITING AN EXISTING TAG. Default: An error occurs if mkregion names a region-tag that

already exists.

–rep⋅lace
Replaces the tag-comment of an existing region-tag. No error occurs if the region-tag does

not exist. You cannot use –replace to change an existing region-tag; to do so, you must

first delete the existing tag with rmregion –tag, and then create a new one with

mkregion –tag.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Register a new region with tag us_east.

cmd-context mkregion –tag us_east –tcomment "all east coast ClearCase hosts"

• Change the comment stored with region-tag us_east.

cmd-context mkregion –tag us_east –tcomment "east coast development hosts" –replace

UNIX FILES

/var/adm/atria/rgy/regions
/var/adm/atria/rgy/rgy_region.conf

WINDOWS FILES

ccase-home-dir\var\rgy\regions

SEE ALSO

lsregion, lsview, mktag, mkview, mkvob, rmregion

684 Command Reference

mkstgloc

mkstgloc
Creates a server storage location for views or VOBs.

APPLICABILITY

SYNOPSIS

• ClearCase:

mkstgloc { –vie⋅w | –vob } [–f⋅orce] [–c⋅omment comment]
[–reg⋅ion network-region]

[–hos⋅t hostname –hpa⋅th host-storage-pname –gpa⋅th global-storage-pname
| –ngp⋅ath [–hos⋅t hostname –hpa⋅th host-storage-pname]]

stgloc-name stgloc-pname

• ClearCase LT:

mkstgloc { –vie⋅w | -vob } [–f⋅orce] [–c⋅omment comment]
stgloc-name stgloc-pname

DESCRIPTION

The mkstgloc command creates and registers a named server storage location for view or VOB

storage directories. The command initializes a physical directory and writes information

describing that directory to the ClearCase or ClearCase LT registry. For information on the

registry, see the Administrator’s Guide.

Other Uses for mkstgloc

You can also use mkstgloc for other purposes:

• Adopting an existing directory as a server storage location. An existing directory is adopted

if stgloc-pname specifies that directory.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

Reference Pages 685

mkstgloc

• (ClearCase) Registering an existing server storage location in a new region. A server storage

location is registered in a new region if stgloc-pname specifies an existing server storage

location. Specify new arguments for options such as –region and –host as appropriate for

the region in which you are registering the server storage location.

Default Selection of Server Storage Locations During View and VOB Creation

Refer to the mkview and mkvob reference pages for information on the default selection of

server storage locations in view and VOB creation.

ClearCase—File System Connectivity Considerations

Before creating a server storage location for a ClearCase view or VOB, determine whether there

is file system connectivity between the server storage location’s host and its clients in the regions

that advertise the server storage location. File system connectivity determines how you can use

the server storage location, as follows:

ClearCase—Derived and Explicitly Specified Client Accessibility Information

To be accessible to its clients, a ClearCase server storage location needs to be registered with the

following information:

• The name of the host where the server storage location resides.

• A host-local pathname to the server storage location.

• For dynamic views or VOBs accessed through dynamic views, a global pathname to the

server storage location relative to the host’s network region.

• The network region in which the host resides.

In many cases, ClearCase heuristically derives appropriate accessibility information from the

stgloc-pname argument. In cases where there is no file-system connectivity between the server

storage location and its clients, ClearCase derives the host name and host-local path, but because

Server storage location use File system connectivity

Dynamic views Required (a global path to the server storage

location must exist)

VOB to be accessed through dynamic views Required (a global path to the server storage

location must exist)

Snapshot views Not required

VOB to be accessed only through snapshot

views

Not required

686 Command Reference

mkstgloc

no meaningful global path can be derived, you must specify –ngpath to unset the global path

information.

An unusual network configuration may defeat the heuristic by which accessibility information

is derived, thereby preventing access to the server storage location by some or all ClearCase

clients. In such cases, set the registry information explicitly, following these guidelines:

• To create a server storage location for dynamic views or for VOBs intended to be accessed

through dynamic views, use the option set, –host –hpath –gpath.

• To create a server storage location for snapshot views or for VOBs intended to be accessed

only through snapshot views, use these options:

• –host –hpath –gpath when there is file-system connectivity between the server storage

location host and its clients.

• –ngpath –host –hpath when there is no file-system connectivity between the server

storage location host and its clients.

To create a server storage location on a supported network attached storage (NAS) device, you

must specify the option set, –host –hpath –gpath. (NAS devices must be specially configured for

use with ClearCase. See the Administrator’s Guide for more information.)

ClearCase LT—File System Connectivity and Client Accessibility

For ClearCase LT, issues related to file system connectivity and client accessibility to server

storage locations are not as complex as they can be for ClearCase. ClearCase LT assumes there is

no file system connectivity such as that provided by NFS, so there are no command options or

arguments related to the presence or absence of file system connectivity.

All server storage locations reside at the ClearCase LT server host. ClearCase LT clients learn the

name of that host at client-install time. In rare cases, the host chosen to serve as the ClearCase LT

server host is known by different names through different network interfaces. However,

ClearCase LT requires that the ClearCase LT server host be known to all its clients by the same

host name. Therefore, you must set up the host’s network configuration to ensure that a single

host name maps to different network addresses that are appropriate for the various client hosts

of the server. See the Administrator’s Guide for more information.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE OBJECT TYPE FOR WHICH A SERVER STORAGE LOCATION IS TOBE CREATED. Default:
None.

–vie⋅w
Specifies that the server storage location is for view storage directories.

Reference Pages 687

mkstgloc

–vob
Specifies that the server storage location is for VOB storage directories.

CONFIRMATION STEP. Default: Prompts for confirmation that the server storage location is to be

created as specified only if you are adopting an existing directory (see Other Uses for mkstgloc).

–f⋅orce
Suppresses the confirmation step.

COMMENTS. Default: None.

–c⋅omment comment
Specifies a comment for the server storage location’s entry in the registry. Use lsstgloc to

display the comment.

SPECIFYING A NETWORK REGION. Default: The host’s network region.

–reg⋅ion network-region
Causes the server storage location to be registered in the specified network region. An

error occurs if the region does not exist.

SPECIFYING NETWORK ACCESSIBILITY. Default: A host name, host-local path, and global path are

derived from the specified stgloc-pname.

–hos⋅t hostname
–hpa⋅th host-storage-pname
–gpa⋅th global-storage-pname
–ngp⋅ath

Use these options only after you have determined that you need to explicitly set a server

storage location’s registry information (see ClearCase—Derived and Explicitly Specified
Client Accessibility Information). The information is written to the registry exactly as you

specify it.

You must either specify the –host, –hpath, and –gpath options as a set; or use –ngpath
and optionally specify –host and –hpath.

–host hostname—The name of the host where the server storage location is to reside or, if

the storage is on a NAS device, the name of the host on which the VOB or view server

serving the storage location will run.

–hpath host-storage-pname—A standard full pathname to the server storage location that

is valid on the specified host.

–gpath global-storage-pname—A standard full pathname to the server storage location

that is valid in the target network region for all client hosts that are to access the server

storage location.

688 Command Reference

mkstgloc

–ngp⋅ath—Specifies that in the target region there is no global path by which the server

storage location can be accessed.

SPECIFYING A NAME AND PATH FOR THE SERVER STORAGE LOCATION. Default: None.

stgloc-name
Specifies the name under which the server storage location is to be registered. The name

must be unique within the target region.

stgloc-pname
Specifies the path to the server storage location.

ClearCase on UNIX—stgloc-pname must specify a location on a host where the ClearCase

installation is not client-only. For storage intended for snapshot views or VOBs to be

accessed only through snapshot views, stgloc-pname must be a UNC name only if there

is a global path to the server storage location (that is, you did not specify –ngpath).

ClearCase on Windows—stgloc-pname must specify a location on a host where the

ClearCase installation is not client-only. For storage intended for dynamic views or

VOBs they access, stgloc-pname must be a UNC name. For storage intended for snapshot

views or VOBs to be accessed only through snapshot views, stgloc-pname must be a UNC

name only if there is a global path to the server storage location (that is, you did not

specify –ngpath). stgloc-pname must not be within a Windows special share, such as the

share that is designated by drive$ and that allows administrators to access the drive over

the network.

NAS devices providing storage for ClearCase on UNIX or Windows—stgloc-pname must

specify a location on the NAS device that is accessible to all ClearCase hosts in the

region.

ClearCase LT on UNIX—stgloc-pname must be located on the ClearCase LT server host

and must be must be a UNC name.

ClearCase LT on Windows—stgloc-pname must be located on the ClearCase LT server

host and must be must be a UNC name. stgloc-pname must not be within a Windows

special share, such as the share that is designated by drive$ and that allows

administrators to access the drive over the network.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

Reference Pages 689

mkstgloc

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Create a server storage location for VOBs that dynamic views can access, allowing

mkstgloc to derive client accessibility information from the specified server storage location

pathname.

cmd-context mkstgloc –vob stgloc_vob1 ~/stgloc_vob1
Created and advertised Server Storage Location.
Host-local path: peroxide:/export/home/bert/stgloc_vob1
Global path: /net/peroxide/export/home/bert/stgloc_vob1

• Create a server storage location for dynamic views, allowing mkstgloc to derive client

accessibility information from the specified server storage location pathname.

cmd-context mkstgloc –view stgloc_view1 ~/stgloc_view1
Created and advertised Server Storage Location.
Host-local path: peroxide:/export/home/bert/stgloc_view1
Global path: /net/peroxide/export/home/bert/stgloc_view1

• Create a server storage location for a VOB that only snapshot views will access.

cmd-context mkstgloc –vob –ngpath store1 C:\store1
Created and advertised Server Storage Location.
Host-local path: peroxide: C:\store1
Global path: <no-gpath>

• Create a server storage location for VOBs on a NAS device. The VOB server will run on

ClearCase host ccvobsvr1

cmd-context mkstgloc -vob -host ccvobsvr1 -gpath \\nasdevice\vobstg\nasvobstg \
-hpath \\nasdevice\vobstg\nasvobstg ccnasvobstg \\nasdevice\vobstg\nasvobstg
Created and advertised Server Storage Location.
Host-local path: ccvobsvr1:\\nasdevice\vobstg\nasvobstg
Global path: \\nasdevice\vobstg\nasvobstg

SEE ALSO

lsstgloc, mkview, mkvob, rmstgloc, Administrator’s Guide

690 Command Reference

mkstream

mkstream
Creates a stream for a project

APPLICABILITY

SYNOPSIS

• Create an integration stream in a project:

mkstream –int⋅egration –in project-selector
[–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]
[–bas⋅eline baseline-selector[,...]]
[–pol⋅icy policy-keyword[,...]]
[–npo⋅licy policy-keyword[,...]]
[–tar⋅get stream-selector]

[stream-selector...]

• Create a development stream in a project or a stream:

mkstream {–in project-selector | stream-selector }

[–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]
[–bas⋅eline baseline-selector[,...]]
[–pol⋅icy policy-keyword[,...]]
[–npo⋅licy policy-keyword[,...]]
[stream-selector...]

DESCRIPTION

The mkstream command creates a stream for use with a UCM project. A stream consists of a

name, a set of baselines that configure the stream, and a record of the set of activities associated

with the stream.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

Reference Pages 691

mkstream

There are two kinds of streams with UCM projects:

• As a shared work area for integrating work from different sources. This is called the

project’s integration stream. Each project has exactly one integration stream.

• As an isolated work area for use in code development. This is called a development stream.

A project can have any number of development streams. A development stream can have

child streams. There is no limitation on the number of nested levels of streams.

To create an integration stream, you must specify its project. Note that a project’s integration

stream must be present before a development stream can be created.

To create a development stream, you must specify a stream as its parent. Specifying a project is

equivalent to specifying the project’s integration stream. By default, the development stream

delivers to the integration stream and rebases from recommended baselines of the integration

stream. If you specify a development stream as its parent, the stream becomes the child of that

development stream and by default delivers to and rebases from its parent.

Optionally, you can assign the stream a set of foundation baselines. Foundation baselines specify

a stream’s configuration by selecting the file and directory versions that are accessible in the

stream.

Streams are accessed through views (see mkview –stream). A stream can have more than one

view attached to it.

Stream Policies

You can set or unset policies for integration streams or development streams. Note that the

project’s policy settings take precedence over the stream’s settings, unless –spolicy is used in the

project to allow individual streams to control the policy. Table 13 describes these policies and lists

the keywords used to set them. For more information about setting policies, see Managing
Software Projects.

Table 13 UCM Stream Policies (Part 1 of 2)

Policy Keyword

Require a development stream to be based on

the current recommended baselines of its

parent stream before it can deliver changes to

the parent stream.

POLICY_DELIVER_REQUIRE_REBASE

Do not allow delivery from a development

stream that has checkouts.

POLICY_DELIVER_NCO_DEVSTR

692 Command Reference

mkstream

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if there are locks on any of the following objects: the UCM project VOB,

the project, the parent stream (for development streams).

Allow a deliver operation from a stream in the

same project to include changes from the

stream’s foundation baselines

POLICY_INTRAPROJECT_DELIVER
_FOUNDATION_CHANGES

Allow a deliver operation from a stream in the

same project to contain changes in components

that are not included in the target stream’s

configuration. The changes in the missing

components are not delivered.1

POLICY_INTRAPROJECT_DELIVER
_ALLOW_MISSING_TGTCOMPS

Allow a stream from a different project to

deliver changes from its stream to this stream.

POLICY_INTERPROJECT_DELIVER

Allow a deliver operation from a stream in a

different project to include changes from the

stream’s foundation baselines. This policy is

ignored if interproject delivery is disabled.

POLICY_INTERPROJECT_DELIVER
_FOUNDATION_CHANGES

Require a deliver operation from a stream in a

different project to deliver changes in all

components. This policy is ignored if

interproject delivery is disabled.1

POLICY_INTERPROJECT_DELIVER
_REQUIRE_TGTCOMP_VISIBILITY

Allow a deliver operation from a stream in a

different project to contain changes in

components that are not modifiable in the target

stream’s configuration. The changes in the

nonmodifiable components are not delivered.

This policy is ignored if interproject delivery is

disabled.

POLICY_INTERPROJECT_DELIVER
_ALLOW_NONMOD_TGTCOMPS

1. Defaults are different for intraproject and interproject deliver operations.

Table 13 UCM Stream Policies (Part 2 of 2)

Policy Keyword

Reference Pages 693

mkstream

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

SPECIFYING THE STREAM’S ROLE IN THE PROJECT. Default: Development stream.

–int⋅egration
Creates an integration stream, which is used for shared elements on a project and as a

source for recording baselines. Each project can have exactly one integration stream.

SPECIFYING THE STREAM’S PARENT. Default: None.

–in project-selector | stream-selector
Specifies the stream’s parent. For an integration stream, it must be a project. For a

development stream, it can be an integration stream or another development stream.

project-selector is of the form [project:]project-name[@vob-selector], where vob-selector
specifies the project’s project VOB.

stream-selector is of the form [stream:]stream-name[@vob-selector], where vob-selector
specifies the stream’s project VOB.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –c). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

STREAM CONFIGURATION. Default: The stream’s configuration is empty (that is, it has no

foundation baselines).

–bas⋅eline baseline-selector[,...]
Specifies one or more baselines to use as the stream's initial configuration—you can

subsequently use rebase to change the stream’s configuration.

baseline-selector is of the form [baseline:]baseline-name[@vob-selector], where vob-selector
specifies the baseline’s project VOB.

The following restrictions apply to the specified baselines:

• For a development stream, all foundation baselines must be recommended baselines in

its parent stream or baselines created in the project’s integration stream.

• For an integration stream, all foundation baselines must be either baselines created in

other projects’ integration streams, or be imported or initial baselines. You cannot use

baselines created in development streams.

694 Command Reference

mkstream

SETTING PROJECT POLICY. Default: None.

–pol⋅icy policy-keyword[,...]
Enables the specified policy. See Stream Policies.

–npo⋅licy policy-keyword[,...]
Disables the specified policy. See Stream Policies.

SETTING THE DEFAULT DELIVER TARGET FOR INTEGRATION STREAMS ONLY. Default: None.

–tar⋅get stream-selector
Specify the default deliver stream of an integration stream. The target must be a stream

in a different project and mastered in the local replica.

stream-selector is of the form [stream:]stream-name[@vob-selector] and where vob-selector
specifies the project VOB of a different project.

SPECIFYING THE STREAM NAME. Default: A generated name.

stream-selector ...
Specifies a stream name.

You can specify the stream as a simple name or as an object selector of the form

[stream]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the stream resides in the project VOB associated with

the current view. If the current directory is a project VOB, then that project VOB is the

context for identifying the stream.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

Reference Pages 695

mkstream

• Create a development stream for the webo project.

cmd-context mkstream –in webo_proj1@/vobs/webo_pvob \
chris_webo_dev@/vobs/webo_pvob

Created stream "chris_webo_dev".

• Create an integration stream.

cmd-context mkstream -integration -in webo_proj1 integration@\webo_pvob \

Created stream "integration".

• Join a project. This example shows the sequence of commands to follow to join a UCM

project.

a. Find the project-selector for the project you want to join. For example:

cmd-context lsproject –invob /vobs/webo_pvob

01-Mar-00.16:31:33 webo_proj1 ktessier "webo_proj1"
05-Jun-00.12:31:33 webo_proj2 ktessier "webo_proj2"

b. Create your development stream. For example:

cmd-context mkstream -in webo_proj1@/vobs/webo_pvob \
–baseline BL3@/vobs/webo_pvob chris_webo_dev@/vobs/webo_pvob

Created stream "chris_webo_dev".

c. Create a view attached to your development stream:

cmd-context mkview -stream chris_webo_dev@/vobs/webo_pvob \
-tag chris_webo_dev /export/views/chris_webo_dev.vws

Created view.
Host-local path: venus:/export/views/chris_webo_dev.vws
Global path: /net/venus/export/views/chris_webo_dev.vws
It has the following rights:
User : chris : rwx
Group: user : rwx
Other: : r-x
Attached view to stream "chris_webo_dev".

d. Create a view attached to the project’s integration stream:

cmd-context mkview -stream integration@/vobs/webo_pvob \
-tag webo_integ /export/views/webo_integ.vws

696 Command Reference

mkstream

SEE ALSO

chproject, chstream, lsstream, rebase, rmstream

Reference Pages 697

mktag

mktag
Creates a tag for a view or VOB

APPLICABILITY

SYNOPSIS

• ClearCase and Attache on UNIX—Create a tag for a dynamic view:

mktag –vie⋅w –tag dynamic-view-tag [–tco⋅mment tag-comment]
[–rep⋅lace | –reg⋅ion network-region] [–nst⋅art] [–nca⋅exported]

[–hos⋅t hostname –gpa⋅th global-storage-pname] dynamic-view-storage-pname

• ClearCase and Attache on Windows—Create a tag for a dynamic view:

mktag –vie⋅w –tag dynamic-view-tag [–tco⋅mment tag-comment]
[–rep⋅lace | –reg⋅ion network-region] [–nst⋅art]
[–hos⋅t hostname –gpa⋅th global-storage-pname] dynamic-view-storage-pname

• ClearCase and Attache—Create a tag for a snapshot view:

mktag –vie⋅w –tag snapshot-view-tag [–tco⋅mment tag-comment]
[–rep⋅lace | –reg⋅ion network-region] [–nst⋅art]
[–hos⋅t hostname –gpa⋅th global-storage-pname
| –ngpath [–host hostname]] snapshot-view-storage-pname

• ClearCase and Attache on UNIX—Create a VOB-tag:

mktag –vob –tag vob-tag [–tco⋅mment tag-comment]
[–rep⋅lace | –reg⋅ion network-region] [–opt⋅ions mount-options]

[–pub⋅lic] [–pas⋅sword tag-registry-password] [–nca⋅exported]

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

698 Command Reference

mktag

[–hos⋅t hostname –gpa⋅th global-storage-pname
| –ngp⋅ath [–hos⋅t hostname]] vob-storage-pname

• ClearCase and Attache on Windows—Create a VOB-tag:

mktag –vob –tag vob-tag [–tco⋅mment tag-comment]
[–rep⋅lace | –reg⋅ion network-region] [–opt⋅ions mount-options]

[–pub⋅lic] [–pas⋅sword tag-registry-password] ⋅
[–hos⋅t hostname –gpa⋅th global-storage-pname
| –ngp⋅ath [–hos⋅t hostname]] vob-storage-pname

• ClearCase LT—Create a view-tag:

mktag –vie⋅w –tag view-tag [–tco⋅mment tag-comment] [–rep⋅lace] [–nst⋅art]
snapshot-view-storage-pname

• ClearCase LT—Create a VOB-tag:

mktag –vob –tag vob-tag [–tco⋅mment tag-comment] [–rep⋅lace] vob-storage-pname

DESCRIPTION

For an existing view or VOB, the mktag command creates or replaces an entry in the registry. A

view or VOB gets one tag when it is created with mkview or mkvob.

ClearCase and Attache—Using mktag

In ClearCase and Attache, you can use mktag to create additional tags, enabling access from

multiple network regions. Each network region needs its own tag for a view or VOB. A single

region cannot have multiple tags for the same VOB. (Multiple tags for a view are valid, but not

recommended.) However, a single tag can be assigned to multiple regions with multiple mktag
commands. See the Administrator’s Guide for a discussion of network regions.

By default, creating a view-tag activates the view on your host, by implicitly performing a

startview command. This does not occur if your host is not in the tag’s assigned network region,

or if you use the –nstart option. For a dynamic view, creating the view-tag also activates the view.

However, creating a VOB-tag does not activate the VOB; use mount for this purpose.

ClearCase LT—Using mktag

In ClearCase LT, mktag is used to replace a tag. mktag –view activates the view unless you use

the –nstart option.

RESTRICTIONS

Identities: In ClearCase and Attache, you must be the VOB owner to create a private VOB-tag. In

ClearCase LT, no special identity is required.

Locks: No locks apply.

Mastership: (Replicated VOBs) No mastership restrictions.

Reference Pages 699

mktag

OPTIONS AND ARGUMENTS

SPECIFYING THE KIND OF TAG TO REPLACE. Default: None.

–vie⋅w
Specifies a view-tag.

–vob
Specifies a VOB-tag.

SPECIFYING THE TAG. Default: None.

–tag dynamic-view-tag | snapshot-view-tag
A name for the view, in the form of simple file name.

–tag vob-tag
ClearCase and Attache—Either a standard full pathname, which specifies the location at

which the VOB will be mounted; or a name for the VOB, in the form of an absolute

single-component pathname (for example, /big_vob). If the region is a ClearCase LT

region (these regions are named CCLT), the VOB-tag must be in the form of an absolute

single-component pathname.

ClearCase LT—A name for the VOB, in the form of an absolute single-component

pathname; for example, \big_vob.

–tco⋅mment tag-comment
Adds a comment to the tag’s entry in the registry. Use the –long option with lsvob or

lsview to display the tag comment.

OVERWRITING AN EXISTING TAG. Default: None.

–rep⋅lace
Replaces an existing tag registry entry with a new entry. (No error occurs if the tag does

not exist.) You can use this option to change the tag comment and access paths. You

cannot use –replace to change an existing tag’s name; to do this, delete the tag with

rmtag and then use mktag.

ClearCase and Attache—This option also enables you to convert private VOBs to public

and vice versa, and to change startview behavior. (To change a private VOB to public,

you must provide the tag-registry password. To change a public VOB to private, you

must be the VOB owner.)

700 Command Reference

mktag

STARTING THE VIEW. Default for ClearCase and Attache: Starts the view_server process on the host

where the view storage location resides, if it isn’t already running. For a dynamic view, creating

a view-tag also makes the view active on your host, making the view-tag appear as a directory

entry in the viewroot directory. Default for ClearCase LT: Starts the view_server process on the

ClearCase LT server host.

–nst⋅art
Suppresses starting of the view_server process.

MARKING A VIEW OR VOB FOR EXPORT. Default: The view-tag or VOB-tag is not marked for export.

–nca⋅exported
Marks the view-tag or VOB-tag in the registry as an export view or VOB. See the mkview
and mkvob reference pages for more information. This option applies to dynamic view

environments only.

SPECIFYING A NETWORK REGION. Default: Creates a tag in the local host’s network region. (Use

the hostinfo –long command to list a host’s network region.) See the Administrator’s Guide for a

discussion of network regions.

–reg⋅ion network-region
Creates the tag in the specified network region. An error occurs if the region does not

already exist. An error occurs if the VOB already has a tag in the specified network

region.

SPECIFYING MOUNT OPTIONS. Default: No mount options are included in the VOB registry entry

for a new VOB-tag.

–opt⋅ions mount-options
(VOB-tags only. You must be root (UNIX) or a member of the ClearCase administrators

group to use this option.) Specifies mount options to be used when the VOB is activated

through this VOB-tag. See the mkvob and mount reference page for syntax details.

PUBLIC VS. PRIVATE VOB. Default: Creates a private VOB-tag (does not apply to view-tags). An

error occurs if you are not the VOB owner.

–pub⋅lic
Creates a public VOB-tag. See the mkvob reference page for a discussion of public and

private VOBs.

–pas⋅sword tag-registry-password
Specifies the VOB-tag password, which is required to create a public tag or to create a

private tag when you include suid as an argument to –options.

In these cases, if you do not include a password, you are prompted for it. The value you

specify is checked against the tag registry password; an error occurs if there is no match.

For more information, see the Administrator’s Guide.

Reference Pages 701

mktag

NOTE: The VOB-tags for a given VOB must all be private, or all be public.

SPECIFYING CLIENT ACCESSIBILITY INFORMATION. Default: Derived from

dynamic-view-storage-pname or snapshot-view-storage-pname for a view tag, or from

vob-storage-pname for a VOB-tag.

–hos⋅t hostname
–gpa⋅th global-pname
–ngp⋅ath

See the mkstgloc reference page for general information on these options; note, however,

that the view or VOB for which you are making a tag need not necessarily reside in a

server storage location created with mkstgloc.

To create a tag for a VOB or view that resides on a supported network attached storage

(NAS) device, you must specify the option set, –host –gpath. (NAS devices must be

specially configured for use with ClearCase. See the Administrator’s Guide for details.)

The information you provide is written to the registry exactly as you specify it.

SPECIFYING THE PATH TO THE VOB OR VIEW STORAGE. Default: None.

dynamic-view-storage-pname

snapshot-view-storage-pname
vob-storage-pname

Specifies the path to an existing storage directory for a view or a VOB (the directory may

be in a server storage location; see mkstgloc).

ClearCase and Attache—The pathname must specify a location on a host where the

ClearCase installation is not client-only. For storage intended for snapshot views or

VOBs to be accessed only through snapshot views, the pathname must be a UNC name

only if there is a global path to the server storage location (that is, you have not specified

–ngpath).

ClearCase and Attache on Windows—For storage intended for dynamic views or VOBs

they access, the pathname must be a UNC name.

NAS devices providing storage for ClearCase on UNIX or Windows— The pathname

must specify a location on the NAS device that is accessible to all ClearCase hosts in the

region.

ClearCase, ClearCase LT, and Attache on Windows—The pathname must not be within

a Windows special share, such as the share that is designated by drive$ and that allows

administrators to access the drive over the network.

ClearCase LT—The pathname must be located on the ClearCase LT server host and must

be must be a UNC name.

702 Command Reference

mktag

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• For the network region europe, assign the new view-tag view5 to an existing view storage

area.

cmd-context mktag -view -tag view5 -region europe /net/gw/host3/view_store/view5.vws

• For the network region europe, register an existing VOB with a public VOB-tag.

cmd-context mktag -vob -tag \us_east1 -region europe -public -password tagPword ^
\\earth\vb_store\vob1.vbs

• Convert a private VOB to a public VOB, by replacing its private VOB-tag with a public one.

cmd-context mktag -vob -tag \publicvob -replace -public ^
-pass tagPword \\saturn\vobs\private.vbs

• Mark an existing view and VOB for export.

cmd-context mktag -view -tag bugfix -replace -ncaexported /net/neon/views/bugfix.vws

cmd-context mktag -vob -tag /vobs/dev -replace -ncaexported /net/pluto/vobstore/dev.vbs

SEE ALSO

lsview, lsvob, mkstgloc, mkview, mkvob, rmtag, startview

Reference Pages 703

mktrigger

mktrigger
Attaches a trigger to an element or UCM object

APPLICABILITY

SYNOPSIS

• ClearCase and ClearCase LT only—Attach a trigger to an element or a UCM object:

mktrigger [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
[–r⋅ecurse] [–nin⋅herit | –nat⋅tach] [–f⋅orce]

trigger-type-selector { pname | ucm-object-selector } ...

• Attache only—Attach a trigger to an element:

mktrigger [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
[–r⋅ecurse] [–nin⋅herit | –nat⋅tach] [–f⋅orce]

trigger-type-selector pname ...

DESCRIPTION

The mktrigger command attaches a trigger to one or more elements or UCM objects. An attached

trigger fires (executes the trigger action) when the element (or any of its versions) or the UCM

object is involved in an operation specified in the trigger type definition. For example, if a trigger

type is defined to fire on a checkin command, the attached trigger fires when the specified

element is checked in. If a VOB operation causes multiple attached triggers to fire, the order of

firing is undefined.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

704 Command Reference

mktrigger

NOTE: A trigger type object, created with mktrtype –element must already exist in the VOBs

containing the specified elements. Similarly, you use mktrtype –ucmobject to create a trigger

type object in the project VOB containing the specified UCM objects before you can use this

command.

Element Trigger Inheritance

By means of a trigger inheritance scheme, newly created elements (but not existing elements)

inherit the triggers that are currently associated with their parent directory element. But a simple

inherit-all-triggers strategy does not suit the needs of many sites. For example:

• You may want some of a directory’s triggers not to propagate to its subtree.

• You may want some triggers to fire only for file elements, not for directory elements.

To enable such flexibility, each directory element has two independent lists of trigger types:

• Its attached list specifies triggers that fire on operations involving the directory element.

• Its inheritance list specifies triggers that elements created within the directory inherit.

By default, attaching a trigger to a directory element updates both lists:

cmd-context mktrigger trig_co proj

Added trigger "trig_co" to inheritance list of "proj".
Added trigger "trig_co" to attached list of "proj".

Each file element has only an attached list:

cmd-context mktrigger trig_co util.c

Added trigger "trig_co" to attached list of "util.c".

You can use the –ninherit and –nattach options to control exactly which triggers on a directory

element are inherited. (And you can make adjustments using the –ninherit and –nattach options

of the rmtrigger command.)

RESTRICTIONS

Identities: You must have one of the following identities:

• Object owner

• Object group member

• VOB owner (for an element trigger)

• Project VOB owner (for a UCM object trigger)

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Reference Pages 705

mktrigger

Locks: An error occurs if one or more of these objects are locked: VOB (for an element trigger),

project VOB (for a UCM object trigger), object type, object, trigger type.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

ATTACHING ELEMENT TRIGGERS TO AN ENTIRE SUBDIRECTORY TREE. Default: If a pname argument

names a directory element, the trigger is attached only to the element itself, not to any of the

existing elements within it.

–r⋅ecurse
Processes the entire subtree of each pname that is a directory element (including pname
itself). UNIX VOB symbolic links are not traversed during the recursive descent into the

subtree.

CONTROLLING ELEMENT TRIGGER INHERITANCE. Default: For a directory element, the specified

trigger type is placed both on the element’s attached list and its inheritance list. (For a file

element, the trigger type is placed on its attached list, which is its only trigger-related list.) The

following options apply to directory elements only.

–nin⋅herit
The trigger is placed on the element’s attached list, but not on its inheritance list. This

option is useful when you want to monitor operations on a directory, but not operations

on the files within the directory.

–nat⋅tach
The trigger is placed on the element’s inheritance list, but not on its attached list. This

option is useful when you want to monitor operations on the files within a directory, but

not operations on the directory itself.

OBSERVING TYPE RESTRICTIONS. Default: If trigger-type-name is defined with a restriction to one or

more object types, mktrigger refuses to process an object of another type.

–f⋅orce
Attaches a trigger to an object whose type does not match the definition of the trigger

type. Such a trigger does not fire unless you change the object’s type (chtype) or you

redefine the trigger type (mktrtype –replace).

706 Command Reference

mktrigger

SPECIFYING THE TRIGGER TYPE. Default: None.

trigger-type-selector
The name of an existing element trigger type. Specify trigger-type-selector in the form

[trtype:]type-name[@vob-selector]

SPECIFYING THE ELEMENT. Default: None.

pname ...

One or more pathnames, specifying elements to which the specified trigger type is to be

attached.

SPECIFYING THE UCM OBJECT. Default: None.

ucm-object-selector ...

The name of the UCM object. Specify ucm-object-selector in the form

[ucm-object-type:]type-name[@vob-selector].

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

type-name Name of the trigger type

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

ucm-object-type Name of the UCM object type

vob-selector UCM project VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the project VOB-tag

(whether or not the project VOB is

mounted) or of any file-system object

within the project VOB (if the project

VOB is mounted)

Reference Pages 707

mktrigger

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Attach a trigger to element hello.c.

cmd-context mktrigger trig1 hello.c
Added trigger "trig1" to attached list of "hello.c".

• Attach a trigger to element util.c, even if its element type does not appear in the trigger

type’s restriction list.

cmd-context mktrigger -force trig1 util.c
Added trigger "trig1" to attached list of "util.c".

• Attach a trigger to directory element src.

cmd-context mktrigger trig1 src
Added trigger "trig1" to attached list of "src".
Added trigger "trig1" to inheritance list of "src".

• Add a trigger to the release directory’s inheritance list, but not to its attached list.

cmd-context mktrigger -nattach trig1 release
Added trigger "trig1" to inheritance list of "release".

SEE ALSO

describe, mktrtype, rmtrigger

708 Command Reference

mktrtype

mktrtype
Creates a trigger type object

APPLICABILITY

SYNOPSIS

• ClearCase, ClearCase LT, and Attache only—Create element trigger type:

mktrtype –ele⋅ment [–a⋅ll] [–rep⋅lace]

{ –pre⋅op | –pos⋅top } opkind[,...] [–nus⋅ers login-name[,...]]

{ –exe⋅c command
| –execu⋅nix command
| –execw⋅in command
| –mkl⋅abel label-type-selector
| –mka⋅ttr attribute-type-selector=value
| –mkh⋅link hlink-type-selector,to=pname
| –mkh⋅link hlink-type-selector,from=pname } ...

[restriction-list]
[–pri⋅nt]
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

type-selector ...

• ClearCase, ClearCase LT, and Attache only—Create type trigger type:

mktrtype –typ⋅e [–rep⋅lace] { –pre⋅op | –pos⋅top } opkind[,...]

[–nus⋅ers login-name[,...]]

{ –exe⋅c command
| –execu⋅nix command

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 709

mktrtype

| –execw⋅in command
| –mkl⋅abel label-type-selector
| –mka⋅ttr attribute-type-selector=value
| –mkh⋅link hlink-type-selector,to=pname
| –mkh⋅link hlink-type-selector,from=pname } ...

inclusion-list [–pri⋅nt]
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

type-selector ...

• ClearCase and ClearCase LT only—Create a UCM trigger type:

mktrtype –ucm⋅object [–a⋅ll] [–rep⋅lace]

{ –pre⋅op | –pos⋅top } opkind[,...] [–nus⋅ers login-name[,...]]

{ –exe⋅c command
| –execu⋅nix command
| –execw⋅in command
| –mka⋅ttr attribute-type-selector=value
| –mkh⋅link hlink-type-selector,to=pname
| –mkh⋅link hlink-type-selector,from=pname } ...

[restriction-list]
[–pri⋅nt]
[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

type-selector ...

• A restriction-list for an element trigger type contains one or more of:

• An inclusion-list for a type trigger type contains one or more of:

• A restriction-list for a UCM trigger type contains one or more of:

–att⋅ype attr-type-selector[,...] –hlt⋅ype hlink-type-selector[,...]

–brt⋅ype branch-type-selector[,...] –lbt⋅ype label-type-selector[,...]

–elt⋅ype elem-type-selector[,...] –trt⋅ype trigger-type-selector[,...]

–att⋅ype attr-type-selector[,...] or –att⋅ype –all
–brt⋅ype branch-type-selector[,...] or –brt⋅ype –all
–elt⋅ype elem-type-selector[,...] or –elt⋅ype –all
–hlt⋅ype hlink-type-selector[,...] or –hlt⋅ype –all
–lbt⋅ype label-type-selector[,...] or –lbt⋅ype –all
–trt⋅ype trigger-type-selector[,...] or –trt⋅ype –all

–com⋅ponent component-selector[,...] (Default: All components)

–pro⋅ject project-selector[,...] (Default: All projects)

–str⋅eam stream-selector[,...] (Default: All streams)

710 Command Reference

mktrtype

NOTE: –xxxtype aaa,bbb is equivalent to –xxxtype aaa –xxtype bbb.

DESCRIPTION

The mktrtype command creates one or more trigger types for use within a VOB or UCM project

VOB. A trigger type defines a sequence of one or more trigger actions to be performed when a

specified ClearCase, ClearCase LT, or Attache operation occurs. The set of operations that

initiates each trigger action—that is, causes the trigger to fire—can be very limited (for example,

checkout only) or quite general (for example, any operation that modifies an element). You can

use a restriction list to further limit the circumstances under which a trigger action is performed.

The trigger types are as follows:

• An element trigger type works like a label type or attribute type: an instance of the type

(that is, a trigger) must be explicitly attached to one or more individual elements with the

mktrigger command. The trigger actions are performed when the specified operation is

invoked on any of those elements. An element must exist before the trigger can be attached.

(Putting a trigger on a mkelem operation has no effect.)

A variant of this type, called an all-element trigger type, is associated with the entire VOB.

(Hence, no mktrigger command is required.) In effect, an instance of the type is implicitly

attached to each element in the VOB, even those created after this command is executed. This

trigger type is useful for disallowing creation of elements that have certain characteristics.

• A type trigger type is associated with one or more type objects. The trigger actions are

performed when any of those type objects is created or modified.

• A UCM trigger type is attached to one or more UCM objects, such as a stream or activity,

and fires when the specified operation is invoked on the UCM object. You can also create an

all-UCM-object trigger type. Like the all-element type, this type is implicitly attached to all

existing and potential UCM objects in the project VOB (that is, no mktrigger command is

required).

Unlike other types, trigger types cannot be global.

TRIGGER FIRING

Causing a set of trigger actions to be performed is called firing a trigger. Each trigger action can

be either of the following:

• Any command (or sequence of commands) that can be invoked from a shell or command

prompt. A command can use special environment variables (EVs), described in the Trigger
Environment Variables section, to retrieve information about the operation.

• Any of several built-in actions defined by mktrtype. The built-in actions attach metadata

annotations to the object involved in the operation.

Trigger actions execute under the identity of the process that caused the trigger to fire.

Reference Pages 711

mktrtype

Interactive Trigger Action Scripts

A script or batch file executed as (part of) a trigger action can interact with the user. The

clearprompt utility is designed for use in such scripts; it can handle several kinds of user

interactions through either the command line or GUI.

Multiple Trigger Firings

A single operation can cause any number of triggers to fire. The firing order of such simultaneous

triggers is indeterminate. If multiple trigger operations must be executed in a particular order,

use a single trigger that defines all operations in order of execution.

It is also possible for triggers to create a chain reaction. For example, a checkin operation fires a

trigger that attaches an attribute to the checked-in version; the attach attribute operation, in turn,

fires a trigger that sends mail or writes a comment to a file. You can use the CLEARCASE_PPID

environment variable to help synchronize multiple firings (for more information, see Trigger
Environment Variables).

If a trigger is defined to fire on a hyperlink operation, and the hyperlink connects two elements,

the trigger fires twice—once for each end of the hyperlink.

Suppressing Trigger Firing

The firing of a trigger can be suppressed when the associated operation is performed by certain

identities. Firing of a trigger is suppressed if the trigger type has been made obsolete. (See the

lock reference page).

Trigger Interoperation

The –execunix and –execwin options allow a single trigger type to have different paths for the

same script, or completely different scripts, on UNIX and Windows hosts. When the trigger is

fired on UNIX, the command specified with –execunix runs; when the trigger is fired on

Windows, the command specified with –execwin runs.

Triggers with only –execunix commands always fail on Windows. Likewise, triggers that only

have –execwin commands fail when they fire on UNIX.

The –exec option, whose command will run on both platforms, can be used in combination with

the platform-specific options. For example, you can cascade options:

–exec arg1 –execunix arg2 –execwin arg3 –mklabel arg4 ...

PREOPERATION AND POSTOPERATION TRIGGERS

A preoperation trigger (–preop option) fires before the corresponding operation begins. The one

or more actions you’ve specified take place in their order on the command line.

This type of trigger is useful for enforcing policies:

• If any trigger action returns a nonzero exit status, the operation is canceled.

712 Command Reference

mktrtype

• If all trigger actions return a zero exit status, the operation proceeds.

For example, a preoperation trigger can prohibit checkin of an element that fails to pass a

code-quality test.

A postoperation trigger (–postop option) fires after completion of the corresponding operation.

The one or more actions you’ve specified take place in their order on the command line. This kind

of trigger is useful for recording—in the VOB or UCM project VOB, or outside them—the

occurrence of the operation. If a postoperation trigger action returns a nonzero exit status, a

failed exit status warning message is printed, but other trigger actions, if any, are executed.

For example, a postoperation trigger on checkin attaches an attribute to the checked-in version

and sends a mail message to interested users and/or managers.

RESTRICTION LISTS AND INCLUSION LISTS

You can define an element trigger type or UCM trigger type (but not a type trigger type) with a

restriction list. The restriction list limits the scope of the operation specified with –preop or

–postop. The trigger fires only if the operation involves particular type objects.

A type trigger type is not associated with an element or UCM object, but with one or more type

objects. When creating a type trigger type, you must specify an inclusion list, naming the type

objects to be associated with the new trigger type. (Hence, it is unnecessary to use mktrigger to

create the association.) The special keyword –all allows you to associate a type trigger type with

every type object of a particular kind (for example, all branch type objects), even those objects

created after you enter this command.

TRIGGER ENVIRONMENT VARIABLES

When a trigger fires, the trigger action executes in a special environment whose EVs make

information available to –exec, –execunix, and –execwin routines: what operation caused the

trigger to fire, what object was involved in the operation, and so on. The complete set of EVs is

listed in TRIGGER OPERATIONS AND TRIGGER ENVIRONMENT VARIABLES on page 719.

RESTRICTIONS

Identities: For each object processed, you must be one of the following: type owner (applies to

–replace only), VOB owner (element trigger types), project VOB owner (UCM trigger types) or:

• UNIX: root

• ClearCase on Windows: member of the ClearCase group

• ClearCase LT on Windows: local administrator of the ClearCase LT server host

Locks: An error occurs if one or more of these objects are locked: the VOB (for an element trigger

type), the project VOB (for a UCM trigger type), the trigger type (applies to –replace only).

Mastership: (Replicated VOBs only) No mastership restrictions.

Reference Pages 713

mktrtype

See the permissions reference page.

OPTIONS AND ARGUMENTS

SPECIFYING THE KIND OF TRIGGER TYPE. Default: None.

–ele⋅ment
Creates an element trigger type, which can be attached to individual elements with

mktrigger.

–ele⋅ment –a⋅ll
Creates an all-element trigger type, which is implicitly attached to all VOB objects,

subject to the restriction list.

–typ⋅e
Creates a type trigger type and associates it with specific type objects and/or kinds of

type objects.

–ucm⋅object
Creates a UCM object trigger type, which can be attached to individual UCM objects

with mktrigger.

–ucm⋅object –a⋅ll
Creates an all-UCM-object trigger type, which is implicitly attached to all project VOB

objects, subject to the restriction list.

HANDLING OF NAME COLLISIONS. Default: An error occurs if a trigger type named type-name
already exists in the VOB.

–rep⋅lace
Replaces the existing definition of type-name with a new one. If you do not include

options from the existing definition, their values are replaced with the defaults.

If you specify a comment when using –replace, the comment appears in the event record

for the modification (displayed with lshistory –minor); it does not replace the object’s

creation comment (displayed with describe). To change an object’s creation comment,

use chevent.

If an instance of an element or UCM trigger type is currently attached to any object, the

replacement definition must correspond in kind: the new definition must be of an

element trigger type or a UCM trigger type (but not an all-element or all-UCM object

trigger type). You can remove an existing trigger type and all of its attached instances

using the rmtype command.

SPECIFYING THE OPERATIONS TO BE MONITORED. Default: None.

For both –preop and –postop, you must specify a comma-separated list of operations, any of

which fire the trigger. Many of the operation keywords have the same names as cleartool

714 Command Reference

mktrtype

subcommands (for example, checkout and unlock). Uppercase keywords (for example,

MODIFY_ELEM) identify groups of operations. See the TRIGGER OPERATIONS AND
TRIGGER ENVIRONMENT VARIABLES section for a list of operation keywords.

–pre⋅op opkind[,...]

Specifies one or more operations that cause the trigger to fire before the operation starts.

The exit status of the trigger actions is significant: for each trigger action, a zero exit

status allows the operation to proceed; a nonzero exit status cancels the operation.

–pos⋅top opkind[,...]

Specifies one or more operations that cause the trigger to fire after the operation

completes. The exit status of the trigger action is not significant.

SUPPRESSING TRIGGER FIRING FOR CERTAIN USERS. Default: Triggers fire regardless of who

performs the operation.

–nus⋅ers login-name[,...]

Suppresses trigger firing when any user on the comma-separated login-name list

performs the operation.

SPECIFYING THE TRIGGER ACTION. Default: None. Specify one or more of the following options to

indicate the action to be performed when the trigger fires; you can use more than one option of

the same kind. With multiple options, the trigger actions are performed in the specified

sequence.

–exe⋅c command
Executes the specified command in a shell when the trigger fires. If command includes

one or more arguments, quote the entire string. Use single quotes ('command ') if the

command includes ClearCase, ClearCase LT, or Attache environment variables, to delay

interpretation until trigger-firing time.

ClearCase, ClearCase LT, and Attache on Windows—If you do not run mktrtype from

the cleartool prompt, enclose command—and any single quotes—in double quotes (" '

command ' "). (See also the cleartool reference page.)

If you invoke a command built in to the Windows shell (for example, cd, del, dir, or

copy), you must invoke the shell with cmd /c. For example:

–exec 'cmd /c copy %CLEARCASE_PN% %HOME%'

–execu⋅nix command
–execw⋅in command

These options have the same behavior as –exec when fired on the appropriate platform

(UNIX or Windows, respectively). When fired on the other platform, they do nothing;

however, triggers with only –execunix commands always fail on Windows, and triggers

that only have –execwin commands always fail on UNIX.

Reference Pages 715

mktrtype

NOTE TO UNIX USERS: If you use –execwin when defining a trigger type on UNIX, you

must escape backslashes in command with a backslash. Also, if you invoke a command

built in to the Windows shell (for example, cd, del, dir, or copy), you must invoke the

shell with cmd /c. For example:

–execwin 'cmd /c copy %CLEARCASE_PN% %HOME%'

–mkl⋅abel label-type-selector
(With –postop only) Attaches the specified version label to the element version involved

in the operation that caused trigger firing. If the label type is a global type, a local copy

of the type must exist in the VOB in which you are creating the trigger type. Specify

label-type-selector in the form [lbtype:]type-name[@vob-selector]

–mka⋅ttr attribute-type-selector=value
(With –postop only) Attaches the specified attribute name/value pair to the object

involved in the operation that caused trigger firing. If the attribute type is a global type,

a local copy of the type must exist in the VOB in which you are creating the trigger type.

Specify attribute-type-selector in the form [attype:]type-name[@vob-selector]

–mkh⋅link hlink-type-selector,to=pname
(With –postop only) Creates a hyperlink from the object involved in the operation that

caused the trigger to fire to the object specified by pname. If the hyperlink type is a global

type-name Name of the label type

See the cleartool reference page for rules about composing

names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

type-name Name of the attribute type

See the cleartool reference page for rules about composing

names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

716 Command Reference

mktrtype

type, a local copy of the type must exist in the VOB in which you are creating the trigger

type. Specify hlink-type-selector in the form [hltype:]type-name[@vob-selector]

–mkh⋅link hlink-type-selector,from=pname
(With –postop only) Creates a hyperlink from the object specified by pname to the object

involved in the operation that caused the trigger to fire. If the hyperlink type is a global

type, a local copy of the type must exist in the VOB in which you are creating the trigger

type. Specify hlink-type-selector in the form [hltype:]type-name[@vob-selector]

NOTES: With the built-in actions –mklabel, –mkattr, and –mkhlink, you can specify the

information either literally or using environment variables:

The built-in actions never cause additional triggers to fire. However, scripts or other

programs invoked with –exec may cause such chain reactions. For example, a mklabel
command in a shell script can cause another trigger to fire, but the corresponding

–mklabel trigger action cannot.

type-name Name of the hyperlink type

See the cleartool reference page for rules about composing

names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

type-name Name of the hyperlink type

See the cleartool reference page for rules about composing

names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

–mklabel RLS_2.3 (literal)
–mklabel RLS_$RLSNUM (depends on value of EV at trigger firing time)
–mklabel %THIS_RLS% (depends on value of EV at trigger firing time)
–mkattr ECO=437 (literal)
–mkattr ECO=$ECONUM (depends on value of EV at trigger firing time)

Reference Pages 717

mktrtype

ELEMENT TRIGGER TYPES: SPECIFYING A RESTRICTION LIST. Default: No restrictions; triggers fire

when any of the specified operations occurs, no matter what type objects are involved.

–att⋅ype attr-type-selector[,...]

–brt⋅ype branch-type-selector[,...]

–elt⋅ype elem-type-selector[,...]

–hlt⋅ype hlink-type-selector[,...]

–lbt⋅ype label-type-selector[,...]

–trt⋅ype trigger-type-selector[,...]

Use one or more of the above options (or multiple options of the same kind) to specify a

set of type objects for the restriction list. If the type object is an ordinary type, it must

already exist. If a type object is a global type and a local copy does not exist in the VOB,

a local copy is created automatically.

Repeated options, such as –elt text_file –elt c_source, are equivalent to a single option:

–elt text_file,c_source. Wildcarding (–eltype ‘*file’) is not supported.

At trigger-firing time, the items on the restriction list form a logical condition. If the

condition is met, the trigger fires.

Specify the type-selector arguments in the form [type-kind:]type-name[@vob-selector]

NOTE: Suppressing the firing of a preoperation trigger allows the operation to proceed.

Here is a simple condition:

type-kind One of

attype attribute type

brtype branch type

eltype element type

hltype hyperlink type

lbtype label type

trtype trigger type

type-name Name of the type object

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

–brtype rel2_bugfix Fire the trigger only if the operation

involves a branch of type rel2_bugfix.

718 Command Reference

mktrtype

If the list includes multiple type objects, they are combined into a compound condition:

type objects of the same kind are grouped with logical OR; objects (or groups) of

different kinds are then logically ANDed.

In forming the condition, a type object is ignored if it could not possibly be affected by

the operation. (The relevant information is included in the TRIGGER OPERATIONS
AND TRIGGER ENVIRONMENT VARIABLES section.) For example, the restriction list

–lbtype REL2,REL2.01 applies only to the operations chtype, mklabel, and rmlabel.

TYPE TRIGGER TYPES: SPECIFYING AN INCLUSION LIST. Default: None. You must specify at least one

item for the inclusion list of a type trigger type.

You must specify at least one existing type object, or at least one kind of type object,

using the special keyword –all. The trigger fires only if the inclusion list contains the

type object that is being modified or used by the operation.

UCM TRIGGER TYPES: SPECIFYING A RESTRICTION LIST: Default: For –component, all components;

for –project, all projects; for –stream, all streams.

–com⋅ponent component-selector[,...]

–pro⋅ject project-selector[,...]

–str⋅eam stream-selector[,...]

Use one or more of the above options to specify a set of UCM objects for the restriction

list. At trigger firing time, the items on the restriction list form a logical condition: if the

condition is met, the trigger fires.

component-selector is of the form [component:]component-name[@vob-selector], where

vob-selector specifies the component’s project VOB.

project-selector is of the form [project:]project-name[@vob-selector], where vob-selector
specifies the project’s project VOB.

stream-selector is of the form [stream:]stream-name[@vob-selector], where vob-selector
specifies the stream’s project VOB.

–brtype rel2_bugfix –eltype
text_file,c_source

Fire the trigger only if the operation

involves a branch of type rel2_bugfix AND

it involves either an element of type text_file
OR of an element of type c_source.

–att⋅ype attr-type-selector[,...] or –att⋅ype -all
–brt⋅ype branch-type-selector[,...] or –brt⋅ype -all
–elt⋅ype elem-type-selector[,...] or –elt⋅ype -all
–hlt⋅ype hlink-type-selector[,...] or –hlt⋅ype -all
–lbt⋅ype label-type-selector[,...] or –lbt⋅ype -all
–trt⋅ype trigger-type-selector[,...] or –trt⋅ype -all

Reference Pages 719

mktrtype

TRACING TRIGGER EXECUTION. Default: At trigger firing time, if the environment variable

CLEARCASE_TRACE_TRIGGERS is set to a nonnull value for the process that causes the

trigger to fire, a message that includes the trigger type name is printed when the trigger

fires; a similar message is generated when the trigger action completes.

–pri⋅nt
Causes the messages to be generated at trigger firing time, whether or not

CLEARCASE_TRACE_TRIGGERS is set. –print writes to stdout; on Windows systems

therefore, you need to define stdout for this option to be effective.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

NAMING THE TRIGGER TYPE. Default: The trigger type is created in the VOB or UCM project VOB

that contains the current working directory unless you use the @vob-selector suffix to specify

another VOB.

type-selector ...

One or more names for the trigger types to be created. Specify trigger-type-selector in the

form [trtype:]type-name[@vob-selector]

TRIGGER OPERATIONS AND TRIGGER ENVIRONMENT VARIABLES

Trigger Operations for Type Trigger Types

The following list shows the operation keywords (opkind) for use in definitions of type trigger

types (mktrtype –type). In UNIX, the operation fires a trigger only if the affected object is a type

object specified on the inclusion list, which is required.

type-name Name of the trigger type

See the cleartool reference page for rules about composing

names.

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB or project VOB is

mounted) or of any file-system object

within the VOB or project VOB (if the

VOB is mounted)

720 Command Reference

mktrtype

NOTE: These operations are not ClearCase or ClearCase LT commands, although some have the

same names as cleartool subcommands. These are lower-level operations, similar to function

calls. See the events_ccase reference page for a list of which commands cause which operations.

MODIFY_TYPE

chevent
chmaster
lock
mkattr
mkhlink
mktype (see NOTE)

modtype (see NOTE)

rmattr
rmhlink
rmtype
rntype
unlock

NOTE: If you specify mktype, the corresponding inclusion list cannot specify individual type

objects; all relevant options must use the –all keyword. For example:

... –postop mktype –eltype –all –brtype -all ...

The modtype operation fires on the redefinition of attribute, branch, element, hyperlink, label,

and trigger types.

Trigger Operations for Element and All-Element Trigger Types

Table 14 lists the operation keywords (opkind) for use in definitions of element and all-element

trigger types (–element and –element –all). For any opkind, not all restrictions specified in the

restriction-list argument are especially relevant; Table 14 also shows which restrictions are

checked for each opkind. The opkinds in capitals (such as MODIFY_ELEM) specify all opkinds that

appear under them; in other words, they are generalizations of the more specific opkinds.

See also the events_ccase reference page.

NOTE: These operations are not ClearCase or ClearCase LT commands, although some have the

same names as cleartool subcommands. These are lower-level operations, similar to function

calls. See the events_ccase reference page for a list of which commands cause which operations.

Reference Pages 721

mktrtype

Table 14 Element Trigger Definition Operation Keywords

Operation keyword Restrictions checked when trigger fires

MODIFY_ELEM

checkout Element type, branch type

chevent See NOTE at end of table

reserve Element type, branch type

uncheckout Element type, branch type

unreserve Element type, branch type

MODIFY_DATA

checkin Element type, branch type

chtype All type objects

lnname Element type, branch type

lock See NOTE at end of table

mkbranch Element type, branch type

mkelem Element type

mkslink N/A

protect See NOTE at end of table

rmbranch Element type, branch type

rmelem Element type

rmname N/A

rmver Element type, branch type

unlock See NOTE at end of table

MODIFY_MD

chmaster See NOTE at end of table

mkattr Element type, attribute type, branch type

722 Command Reference

mktrtype

NOTE: The operation fires a trigger only if the affected object is one of the following:

• A branch object or version object (in this case, only element type and branch type

restrictions apply)

• An element object (in this case, only element type restrictions apply)

• A type object (in this case, only restrictions on that kind of type object apply)

Trigger Operations for UCM Objects and All-UCM-Object Trigger Types

Table 15 lists the operation keywords (opkind) for use in definitions of UCM object and

all-UCM-object trigger types (–ucmobject and –ucmobject –all). The table shows the kind of

UCM object to which the trigger may be attached—you may also use –all to specify all UCM

objects. For any UCM operation, not all restrictions specified in the restriction-list argument are

especially relevant; Table 15 also shows which restrictions are checked for each operation. You

can use the UCM operation as a synonym for all other UCM operations; it causes a trigger to fire

when any UCM operation for which triggers are enabled occurs.

NOTE: These operations are not ClearCase or ClearCase LT commands, although some have the

same names as cleartool subcommands. These are lower-level operations, similar to function

calls.

mkhlink Element type, hyperlink type, branch type

mklabel Element type, label type, branch type

mktrigger Element type, trigger type

rmattr Element type, attribute type, branch type

rmhlink Element type, hyperlink type, branch type

rmlabel Element type, label type

rmtrigger Element type, trigger type

Table 14 Element Trigger Definition Operation Keywords

Operation keyword Restrictions checked when trigger fires

Reference Pages 723

mktrtype

Table 15 UCM Object Trigger Definition Operation Keywords

Operation keyword Object type Restrictions checked when trigger fires

UCM

deliver_start Target

(integration)

stream

Stream, Project

deliver_cancel Target

(integration)

stream

Stream, Project

deliver_complete Target

(integration)

stream

Stream, Project

rebase_start Target

(development)

stream

Stream, Project

rebase_cancel Target

(development)

stream

Stream, Project

rebase_complete Target

(development)

stream

Stream, Project

mkactivity Stream that is to

contain the

activity

Stream, Project

chactivity Activity being

changed

Stream, Project

rmactivity Activity being

removed

Stream, Project

setactivity Activity being set Stream, Project

mkstream Project that is to

contain the

stream

Project

724 Command Reference

mktrtype

chstream Stream being

changed

Stream, Project

rmstream Stream being

removed

Stream, Project

mkbl Component that

is to contain the

baseline

Stream, Component, Project. No triggers are

fired if the baseline is initial; if imported,

triggers fire but the environment variables

CLEARCASE_STREAM and

CLEARCASE_PROJECT are undefined.

chbl Component that

contains the

baseline

Component, Project

rmbl Component that

contains the

baseline

Component, Project

mkproject The entire project

VOB

None

chproject Project being

changed

Project

rmproject Project being

removed

Project

mkcomp The entire project

VOB

None

rmcomp The entire project

VOB

None

mkfolder Folder that is to

contain the folder

Project

Table 15 UCM Object Trigger Definition Operation Keywords

Operation keyword Object type Restrictions checked when trigger fires

Reference Pages 725

mktrtype

Trigger Environment Variables

The following list shows the EVs that are set in the environment in which a trigger action script

runs. The words in parentheses at the beginning of the description indicate which operations

cause the EV to be set to a significant string; for all other operations, the EV is set to the null

string. (See the events_ccase reference page for a list of which commands cause which

operations.)

CLEARCASE_ACTIVITY

(All deliver and rebase operations; checkin, checkout, mkactivity, chactivity,

rmactivity, setactivity, uncheckout) The UCM activity, if applicable, involved in the

operation that caused the trigger to fire. For checkin, checkout, and uncheckout
operations, the activity that is set in the view used for the operation. For the mkactivity,

deliver_start, and rebase_start operations, this environment variable is set only for a

postoperation trigger.

CLEARCASE_ATTACH

(mktrigger, rmtrigger) Set to 1 if an element trigger type (except an all-element trigger

type) is on the affected element’s attached list; set to 0 if it is on a directory element’s

inheritance list. See the mktrigger reference page for a description of these lists.

CLEARCASE_ATTYPE

(All operations that can be restricted by attribute type) Attribute type involved in

operation that caused the trigger to fire. In a rename operation, the old name of the

renamed attribute type object.

CLEARCASE_BASELINES

(All rebase operations, mkbl, chbl, rmbl) A space-separated list of all UCM foundation

baselines to which the destination stream is to be rebased. For the mkbl operation, a

postoperation trigger only (list of length 1); for the chbl and rmbl operations, the list

may specify only one foundation baseline.

chfolder Folder that

contains the

folder

Project

rmfolder Folder that

contains the

folder

Project

Table 15 UCM Object Trigger Definition Operation Keywords

Operation keyword Object type Restrictions checked when trigger fires

726 Command Reference

mktrtype

CLEARCASE_BRTYPE

(All operations that can be restricted by branch type) Branch type involved in the

operation that caused the trigger to fire. In a rename operation, the old name of the

renamed branch type object.

CLEARCASE_CHGRP

(protect) New group of the reprotected object as specified in the command line; unset if

not specified.

CLEARCASE_CHMOD

(protect) New protection of the reprotected object as specified in the command line;

unset if not specified.

CLEARCASE_CHOWN

(protect) New owner of the reprotected object as specified in the command line; unset if

not specified.

CLEARCASE_CI_FPN

(checkin) Pathname in checkin –from.

CLEARCASE_CMDLINE

(All operations initiated through use of the cleartool command) A string that specifies

the cleartool subcommand and any options and arguments included on the command

line.

NOTES:

CLEARCASE_COMMENT

(All operation kinds that support comments) Comment string for the command that

caused the trigger to fire.

CLEARCASE_COMPONENT

(mkbl, chbl, rmbl, mkcomp, rmcomp) The UCM component containing the object

involved in the action that caused the trigger to fire, if applicable.

CLEARCASE_DLVR_ACTS

(deliver_start, deliver_complete) A space-separated list of all UCM activities merged

during the deliver operation.

CLEARCASE_ELTYPE

(All operations that can be restricted by element type) Element type of the element

• This EV’s value is set by the cleartool command only. If a trigger is fired by any

other means (through the use of a ClearCase or ClearCase LT GUI, for example)

the EV is not set.

• The EV’s value may be garbled if the command line contains nested quotes.

Reference Pages 727

mktrtype

involved in the operation that caused the trigger to fire. In a rename operation, the old

name of the renamed element type object.

CLEARCASE_FOLDER

(mkfolder, chfolder, rmfolder, mkproject, chproject, rmproject) The folder that

contains the project.

CLEARCASE_FREPLICA

(chmaster) The old master replica, or from-replica: the replica that mastered the object at

the time the command was entered.

When the command chmaster –default brtype:branch-type-name is run at the site of the

replica that masters the branch type, CLEARCASE_FREPLICA is set to the name of the

current replica. If the command is run at a site that does not master the branch type, the

command fails, but CLEARCASE_FREPLICA is set to the name of the replica that masters the

branch type.

When the command chmaster –default branch-name is run, CLEARCASE_FREPLICA is set to

the name of the current replica. (If the command is run at a site that does not master the

branch, it fails.)

CLEARCASE_FTEXT

(mkhlink, rmhlink) Text associated with hyperlink from-object.

CLEARCASE_FTYPE

(mkhlink, mkhlink on type) (“from” type) Object selector of the type that the hyperlink

being applied or removed is from.

CLEARCASE_FVOB_PN

(mkhlink, rmhlink) Pathname of VOB containing hyperlink from-object.

CLEARCASE_FXPN

(mkhlink, rmhlink) VOB-extended pathname of hyperlink from-object.

CLEARCASE_HLTYPE

(All operations that can be restricted by hyperlink type) Hyperlink type involved in

operation that caused the trigger to fire. In a rename operation, the old name of the

renamed hyperlink type object.

CLEARCASE_ID_STR

(chactivity, checkin, checkout, mkattr, mkbranch, mkhlink, mklabel, rmattr, rmhlink,

rmlabel, rmver) Version-ID of version, or branch pathname of branch, involved in the

operation.

CLEARCASE_IS_FROM

(mkhlink, rmhlink) Set to 1 if CLEARCASE_PN contains name of hyperlink from-object;

set to 0 if CLEARCASE_PN contains name of hyperlink to-object.

728 Command Reference

mktrtype

CLEARCASE_LBTYPE

(All operations that can be restricted by label type) Label type involved in the operation

that caused the trigger to fire. In a rename operation, the old name of the renamed label

type object.

CLEARCASE_MODTYPE

(mkattr, mkhlink, rmattr, rmhlink on type) Object selector of the type for which the

attribute or hyperlink is being applied or removed.

CLEARCASE_MTYPE

(All) Kind (that is, the metatype) of the object involved in the operation that caused the

trigger to fire: element type, branch type, directory version, and so on.

For mkattr, mkhlink, rmattr, rmhlink type triggers, CLEARCASE_MTYPE specifies the

metatype of the type being modified, not the metatype of the attribute or hyperlink.

CLEARCASE_NEW_TYPE

(rename) New name of the renamed type object.

CLEARCASE_OP_KIND

(All) Actual operation that caused the trigger to fire.

CLEARCASE_OUT_PN

(checkout) Pathname in checkout –out. (Same as CLEARCASE_PN if –out not used.)

CLEARCASE_PN

(All operations; element triggers only) Name of element specified in the command that

caused the trigger to fire.

NOTES:

• With an all-element trigger, a pathname in the root directory of a VOB is reported

with an extra (but still correct) "/." or “\.” pathname component:

/vobs/proj/./releasedir (if VOB is mounted at ’/vobs/proj’)
\proj1\.\releasedir (if VOB-tag is \proj1)

• Some cleartool and Attache commands rename files during their execution.

Usually, such manipulations are unnoticeable, but you may need to adjust your

trigger scripts or batch files accordingly. For example, the script for a preoperation

mkelem trigger may need to operate on file

name “$CLEARCASE_PN.mkelem” instead of “$CLEARCASE_PN” (UNIX)

or on

name “%CLEARCASE_PN%.mkelem” instead of “%CLEARCASE_PN%” (Windows)

• If the file does not exist (for example, the checked-out file was removed), the value

of CLEARCASE_PN is different from its value when the file exists.

Reference Pages 729

mktrtype

CLEARCASE_PN2

(lnname)

CLEARCASE_POP_KIND

(mkelem, mkslink, lnname, rmname, deliver, rebase) Parent operation kind. The

mkelem and mkslink operations both cause an lnname operation. If lnname happens

as a result of either of these parent operations, CLEARCASE_POP_KIND is set to mkelem or

mkslink, respectively. Note that both the parent operations (mkelem and mkslink) and

the child operation (lnname) set CLEARCASE_POP_KIND to the applicable parent

operation value—mkelem or mkslink.

The move or mv command is a special case because there is no move operation.

Therefore, the CLEARCASE_POP_KIND environment variable is set to the values rmname
and lnname to show that those operations were part of the command execution.

CLEARCASE_PPID

(All) Parent Process ID: the process ID of the ClearCase or ClearCase LT program (for

example, cleartool) that invoked the trigger. This is useful for constructing unique

names for temporary files that will pass data between a preoperation trigger and a

postoperation trigger, or between successive parts of a multipart trigger action.

CLEARCASE_PPID is not useful for Attache clients.

CLEARCASE_PROJECT

(All deliver and rebase operations; mkactivity, chactivity, rmactivity, mkstream,

chstream, rmstream, mkbl, chbl, rmbl, mkproject, chproject, rmproject, setactivity)

• When a side-effect of a mkelem operation, gets the same value as CLEARCASE_PN.

• When a side-effect of a mv operation, gets the old pathname of the element.

User Commands that Cause
Multiple Operations

Operations CLEARCASE_POP_KIND value

mkelem mkelem
lnname

mkelem
mkelem

ln –s mkslink
lnname

mkslink
mkslink

move | mv lnname
rmname

rmname
lnname

deliver_start mkactivity
setactivity
mkbl

deliver_start

rebase_start mkactivity
setactivity
mkbl

rebase_start

730 Command Reference

mktrtype

The UCM project containing the object involved in the action that caused the trigger to

fire, if applicable. Not set for the mkbl, chbl, or rmbl operation if this is an initial (or

imported) baseline.

CLEARCASE_REPLACE

(mkattr, mklabel) Set to 1 if the user specified that the attribute or label instance is to be

replaced; otherwise, set to 0.

CLEARCASE_RESERVED

(checkin, checkout) Set to 1 if the user requested a reserved checkout; set to 0 if user

requested an unreserved checkout.

CLEARCASE_SLNKTXT

(mkslink; that is, the ln –s command) Text of the new VOB symbolic link.

CLEARCASE_SNAPSHOT_PN

(All operations executed in a snapshot view) The path to the root of the snapshot view

directory in which the operation that caused the trigger to fire took place.

CLEARCASE_STREAM

(All deliver and rebase operations; mkactivity, chactivity, rmactivity, setactivity,

mkstream, chstream, rmstream, mkbl, chbl, rmbl) The UCM stream containing the

object involved in the action that caused the trigger to fire, if applicable. For the

mkstream operation, a postoperation trigger only. Not set for the mkbl, chbl, or rmbl
operation if this is an initial (or imported) baseline.

CLEARCASE_TO_ACTIVITY

(chactivity) The activity that will contain the versions of elements. The activity that

previously contained the versions is CLEARCASE_ACTIVITY.

CLEARCASE_TO_FOLDER

(chproject, chfolder) The folder that will contain the project or folder.

CLEARCASE_TREPLICA

(chmaster) The new master replica, or to-replica: the replica specified to receive

mastership.

When the command chmaster –default brtype:branch-type-name is run at the site of the

replica that masters the branch type, CLEARCASE_TREPLICA is set to the name of the

current replica. If the command is run at a site that does not master the branch type, the

command fails, but CLEARCASE_TREPLICA is set to the name of the current replica.

When the command chmaster –default branch-name is run, CLEARCASE_TREPLICA is set

to the name of the replica that masters the branch type. (If the command is run at a site

that does not master the branch, it fails.)

Reference Pages 731

mktrtype

CLEARCASE_TRTYPE

(All operations that can be restricted by trigger type) Trigger type involved in the

operation that caused the trigger to fire. In a rename operation, the old name of the

renamed trigger type object.

CLEARCASE_TRTYPE_KIND

(All operations that can be restricted by trigger type) Kind of trigger type; setting this

variable to pre-operation or post-operation causes the trigger to fire before or after the

trigger operation, respectively.

CLEARCASE_TTEXT

(mkhlink, rmhlink) Text associated with hyperlink to-object.

CLEARCASE_TYPE

(mkhlink, mkhlink on type) Object selector of the type which the hyperlink being

applied or removed is to.

CLEARCASE_TVOB_PN

(mkhlink, rmhlink) Pathname of VOB containing hyperlink to-object.

CLEARCASE_TXPN

(mkhlink, rmhlink) VOB-extended pathname of hyperlink to-object.

CLEARCASE_USER

(All) The user who issued the command that caused the trigger to fire; derived from the

UNIX real user ID or the Windows user ID.

CLEARCASE_VAL

(mkattr) String representation of attribute value for CLEARCASE_ATTYPE (for example,

"Yes" or 4657).

CLEARCASE_VIEW_KIND

(All operations) The kind of view in which the operation that caused the trigger to fire

took place; the value may be dynamic, snapshot, or snapshot web.

CLEARCASE_VIEW_TAG

(All non-UCM operations; for UCM, all deliver and rebase operations and setactivity)

View-tag of the view in which the operation that caused the trigger to fire took place.

CLEARCASE_VOB_PN

(All) VOB-tag of the VOB or UCM project VOB whose object was involved in the

operation that caused the trigger to fire.

A combination of the CLEARCASE_VOB_PN and CLEARCASE_PN environment variables can

be used to extract the VOB-only pathname. Because the CLEARCASE_VOB_PN variable

contains the VOB-tag, it can be used to determine where the VOB part of a pathname

begins in CLEARCASE_PN.

732 Command Reference

mktrtype

CLEARCASE_VTYPE

(mkattr) Value type of the attribute in CLEARCASE_ATTYPE (for example, string or

integer).

CLEARCASE_XN_SFX

(All) Extended naming symbol (such as @@) for host on which the operation took place.

CLEARCASE_XPN

(All operations; element triggers only) Same as CLEARCASE_ID_STR, but prepended with

CLEARCASE_PN and CLEARCASE_XN_SFX values, to form a complete VOB-extended

pathname of the object involved in the operation.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: Trigger environment variables are typically evaluated when the trigger fires, not when

you enter the mktrtype command. If this is the case, escape the $ (UNIX) or % (Windows)

environment variable symbol according to the conventions of the shell you are using. Escaping

is not necessary if you enter the command manually in cleartool’s interactive mode (that is, if it

is not interpreted by a shell).

• Create an element type named script for use with shell-script files. Then, create an

all-element trigger type, chmod_a_plus_x, that makes newly created elements of type

script executable. Convert a view-private file to an element of this type.

cmd-context mkeltype -supertype text_file -c "shell script" script
Created element type "script".

cmd-context mktrtype -element -all -postop mkelem -eltype script -nc \
-exec ’/usr/atria/bin/cleartool protect -chmod a+x $CLEARCASE_PN’ chmod_a_plus_x
Created trigger type "chmod_a_plus_x".

cmd-context mkelem -eltype script -ci -nc cleanup.sh
Created element "cleanup.sh" (type "script").
Changed protection on "/usr/hw/src/cleanup.sh".
Checked in "cleanup.sh" version "/main/1".

Reference Pages 733

mktrtype

• Create an all-element trigger type, to prevent files with certain extensions from being made

into elements.

cmd-context mktrtype -element -all -nc -preop mkelem ^
-exec ‘\\photon\triggers\check_ext %CLEARCASE_PN%’ check_ext

Created trigger type “check_ext”.

• Create an all-element trigger type, to run a script each time a checkin takes place.

cmd-context mktrtype -element -all -postop checkin -nc \
-exec /usr/local/bin/notify notify_admin
Created trigger type "notify_admin".

notify script:

mail jones adm <<!
"notify_admin" Trigger:
checkin of "$CLEARCASE_PN"
version: $CLEARCASE_ID_STR
by: $CLEARCASE_USER
comment:
$CLEARCASE_COMMENT
!

• Create an element trigger type that runs a script when a mkbranch command is executed.

Specify different scripts for UNIX and Windows platforms.

cmd-context mktrtype –element –postop mkbranch –nc ^
–execunix /net/neon/scripts/branch_log.sh ^
–execwin \\photon\triggers\branch_log.bat branch_log
Created trigger type "branch_log".

• Create an all-element trigger type to monitor checkins of elements of type c_source. Firing

the trigger runs a test program on the file being checked in and may cancel the checkin.

cmd-context mktrtype -element -all -nc -preop checkin \
-exec ’/net/neon/scripts/metrics_test $CLEARCASE_PN’ \
-eltype c_source metrics_trigger
Created trigger type "metrics_trigger".

• Create an all-element trigger type to attach a version label to each new version created on

any element’s main branch.

cmd-context mktrtype -element -all -postop checkin -mklabel REL\$BL_NUM \
-nc -brtype main label_i
Created trigger type "label_it".

Environment variable BL_NUM determines which version label is to be attached. This EV is

evaluated at trigger firing time, because the dollar sign ($) is escaped.

734 Command Reference

mktrtype

• Create a type trigger type to send a mail message each time any new branch type is created.

cmd-context mktrtype -type -nc -postop mktype -brtype -all \
-exec /net/neon/scripts/mail_admin new_branch_trigger
Created trigger type "new_branch_trigger".

• Create a type trigger type to monitor the creation of new label types. The trigger aborts the

label-type-creation operation if the specified name does not conform to standards.

cmd-context mktrtype -type -nc -preop mktype -lbtype -all
-exec ’\\photon\triggers\check_label_name’ ^
check_label_trigger
Created trigger type "check_label_trigger".

• Create an element trigger type that, when attached to an element, fires whenever a new

version of that element is checked in. Firing the trigger attaches attribute TestedBy to the

version, assigning it the value of the CLEARCASE_USER environment variable as a

double-quoted string.

NOTE: In this example, the single quotes preserve the double quotes on the string literal, and

suppress environment variable substitution by the shell. The CLEARCASE_USER environment

variable is evaluated at firing time.

cmd-context mktrtype -element -postop checkin \
-c "set attribute to record which user checked in this version" \
-mkattr ’TestedBy="$CLEARCASE_USER"’ trig_who_didit
Created trigger type "trig_who_didit".

• Create an all-element trigger type that prompts for the source of an algorithm when an

element of type c_source is created. Firing the trigger executes a script named

hlink_algorithm, which invokes the clearprompt utility to obtain the necessary

information. The script then creates a text-only hyperlink between the newly created

element object (for example, foo.c@@) and the specified text. The hlink_algorithm script is

shown immediately after the mktrtype command.

cmd-context mktrtype -element -all -nc -postop mkelem -eltype c_source \
-exec /net/neon/scripts/hlink_algorithm describe_algorithm
Created trigger type "describe_algorithm".

hlink_algorithm script:

clearprompt text -outfile /usr/tmp/alg.$CLEARCASE_PPID -multi_line \
-def "Internal Design" -prompt "Algorithm Source Document:"

TOTEXT=‘cat /usr/tmp/alg.$CLEARCASE_PPID‘
cleartool mkhlink -ttext "$TOTEXT" design_spec
$CLEARCASE_PN$CLEARCASE_XN_SFX

rm /usr/tmp/alg.$CLEARCASE_PPID

Reference Pages 735

mktrtype

• Use a postoperation trigger to modify the user-supplied comment whenever a new version

is created of an element of type header-file

cmd-context mktrtype -element -all -nc -postop checkin -eltype header_file \
-exec ’/usr/local/scripts/hdr_comment’ change_header_file_comment
Created trigger type "change_header_file_comment".

hdr_comment script:

analyze change to header file
CMNT=‘/usr/local/bin/analyze_hdr_file $CLEARCASE_PN‘

append analysis to user-supplied checkin comment
cleartool chevent -append -c "$CMNT" $CLEARCASE_PN‘

• Create an all-element trigger type and a type trigger type that prevent all users except

stephen, hugh, and emma from running the chmaster command on element-related objects

and type objects in the current VOB:

cleartool mktrtype –element –all –preop chmaster –nusers stephen,hugh,emma ^
–execunix "Perl –e \"exit –1;\"" –execwin "ccperl –e \"exit (–1);\"" ^
–c "ACL for chmaster" elem_chmaster_ACL

cleartool mktrtype –type –preop chmaster –nusers stephen,hugh,emma ^
–execunix "Perl –e \"exit –1;\"" –execwin "ccperl –e \"exit (–1);\"" ^
–attype –all –brtype –all –eltype –all –lbtype –all –hltype –all ^
–c "ACL for chmaster" type_chmaster_ACL

• Create a preoperation trigger type that fires on the deliver_start operation.

cmd-context mktrtype -ucmobject -all -preop deliver_start $PREOPCMDU
$PREOPCMDW -stream $STREAM -nc $PREOPTRTYPE

• Create a postoperationeration trigger type that fires on the deliver_complete operation.

cmd-context mktrtype -ucmobject -all -postop deliver_complete $WCMD $UCMD
-stream $STREAM -nc $TRTYPE

SEE ALSO

events_ccase, lstype, mktrigger, rmtype

736 Command Reference

mkview

mkview
Creates and registers a view

APPLICABILITY

SYNOPSIS

• ClearCase and Attache on UNIX—Create and register a dynamic view:

mkview –tag dynamic-view-tag [–tco⋅mment tag-comment]
[–tmo⋅de { insert_cr | transparent | strip_cr }]

[–reg⋅ion network-region] [–ln remote-storage-dir-pname]

[–nca⋅exported] [–cac⋅hesize size]

[–sha⋅reable_dos | –nsh⋅areable_dos] [–str⋅eam stream-selector]

{ –stg⋅loc { view-stgloc-name | –aut⋅o }

| [–hos⋅t hostname –hpa⋅th host-storage-pname –gpa⋅th global-storage-pname]

dynamic-view-storage-pname }

• ClearCase and Attache on Windows—Create and register a dynamic view:

mkview –tag dynamic-view-tag [–tco⋅mment tag-comment]
[–tmo⋅de { insert_cr | transparent | strip_cr }]

[–reg⋅ion network-region] [–cac⋅hesize size]

[–sha⋅reable_dos | –nsh⋅areable_dos] [–str⋅eam stream-selector]

{ –stg⋅loc { view-stgloc-name | –aut⋅o }

| [–hos⋅t hostname –hpa⋅th host-storage-pname –gpa⋅th global-storage-pname]

dynamic-view-storage-pname }

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 737

mkview

• ClearCase and Attache—Create and register a snapshot view:

mkview –sna⋅pshot [–tag snapshot-view-tag] [–tco⋅mment tag-comment]
[–tmo⋅de { insert_cr | transparent | strip_cr }]

[–cac⋅hesize size] [–pti⋅me] [–str⋅eam stream-selector]

[–stg⋅loc view-stgloc-name
| –col⋅ocated_server [–hos⋅t hostname –hpa⋅th host-snapshot-view-pname
–gpa⋅th global-snapshot-view-pname]

| –vws view-storage-pname [–hos⋅t hostname –hpa⋅th host-storage-pname
–gpa⋅th global-storage-pname]

] snapshot-view-pname

• ClearCase LT—Create and register a snapshot view:

mkview [–sna⋅pshot] [–tag view-tag] [–tco⋅mment tag-comment]
[–tmo⋅de { insert_cr | transparent | strip_cr }]

[–pti⋅me] [–str⋅eam stream-selector]

[–stg⋅loc view-stgloc-name] snapshot-view-pname

DESCRIPTION

The mkview command creates a new view as follows:

• Creates a view storage directory. The view storage directory maintains information about

the view. Along with other files and directories, the directory contains the view’s config

spec and the view database. In ClearCase LT, the locations of view storage directories are

restricted to the ClearCase LT server host.

• Creates a view-tag, the name by which users access a dynamic view. Snapshot views also

have view-tags, but these are for administrative purposes; users access snapshot views by

setting their working directory to the snapshot view directory (for example, using the cd
command.

• For a snapshot view, creates the snapshot view directory. This is the directory into which

your files are loaded when you populate the view using update. This directory is distinct

from the view storage directory.

• Places entries in the network’s view registry; use the lsview command to list view tags.

• Starts a view_server process on the specified host. The view_server process manages

activity in a particular view. It communicates with VOBs during checkout, checkin, update,

and other operations.

738 Command Reference

mkview

DISCONNECTED USE OF SNAPSHOT VIEWS

If you want to use a snapshot view on a host that is disconnected from the network:

• Create the snapshot view directory on the device that is to be disconnected from the

network from time to time.

• Create the view storage directory in a location that is consistently connected to the network,

on a host where ClearCase or ClearCase LT has been installed or on a NAS device that

provides storage for such a host. This location could be a server storage location (specified

by –stgloc) or a location specified by the –vws option. Do not use –colocated_server; this

option creates the view storage directory as a subdirectory of the snapshot view directory

(where it can be disconnected from the network).

INTEROP TEXT MODES

Operating systems use different character sequences to terminate lines of text files. In UNIX, the

line terminator for text files is a single <LF> character. On Windows systems, the standard line

terminator is <CR><LF>. Each view has an interop text mode—specified by the –tmode option—

that determines the line terminator sequence for text files in that view. The interop text mode also

determines whether line terminators are adjusted before a text file is presented to the view (at

checkout time, for example). For example, a text file element created by a Windows client that is

accessed through a UNIX view would be stripped of <CR> characters, and the <CR> characters

would be reinserted when the file was written to the VOB as a new version.

In Attache, when you use mkws to create a workspace, you can create an associated view at the

same time. The mkws command does not take the –tmode option, but the Attache client has a

preference you can set to specify the interop text mode for any views created on behalf of a

workspace.

For more information, see the Administrator’s Guide and the reference pages for msdostext_mode
and mkeltype.

VIEWS AND UCM STREAMS

Views are attached to streams in the UCM model. Only views can modify a UCM stream. Views

cannot be moved between streams or detached from a stream without removing the view.

SETTING THE CACHE SIZE FOR VIEWS

Although both kinds of views use caches, cache size is more significant for a dynamic view than

for a snapshot view. The dynamic view’s cache size determines the number of VOB lookups that

can be stored. You can set the size of the cache with the –cachesize option. This creates the

following line in the .view file for the view:

–cache size

Reference Pages 739

mkview

When a view_server process is started, it uses this value. For more information about the

view_server cache and changing its size, see the setcache and chview reference pages and the

Administrator’s Guide.

RECONFIGURING A VIEW

A view’s associated view_server process reads a configuration file when it starts up. You can

revise this file—for example, to make the view read-only. See the Administrator’s Guide.

BACKING UP A VIEW

For information about performing view backups, see the Administrator’s Guide.

If you create a snapshot view in which the view-storage directory is located outside the snapshot

view directory, you must back up recursively both the view storage directory and the snapshot

view directory.

DELETING A VIEW

The view created by this command is the root of a standard directory tree; but a view must be

deleted only with the rmview command, never with an operating system file deletion command.

See the rmview reference page for details.

INFORMATION SPECIFIC TO PRODUCTS, VIEW TYPES AND PLATFORMS

This section contains information about view creation that differs depending on the product,

view type, and platform you are using.

ClearCase and Attache Dynamic Views—Using Express Builds

You can configure a dynamic view to use the express builds feature by creating the view with the

–nshareable_dos option. When you invoke clearmake or omake in this kind of view, clearmake
or omake builds nonshareable derived objects (DOs). Information about these DOs is not written

into the VOB, so the build is faster; however, nonshareable DOs cannot be winked in by other

views.

If you do not specify –shareable_dos or –nshareable_dos, mkview uses the site-wide default set

in the registry (with the setsite command). If there is no site-wide default, mkview configures

the view so that builds in the view create shareable DOs.

To change the DO property for an existing view, use the chview command. For more information

on shareable and nonshareable DOs, see Building Software.

ClearCase and Attache Dynamic Views on UNIX—Marking a View for Export

A dynamic view to be used for NFS export of one or more VOBs (for access by applications other

than those in the ClearCase Product Family) must be marked in the registry as an export view.

Each export view is assigned an export ID, which ensures that NFS-exported view/VOB

combinations have stable NFS file handles across server reboots or shutdown and restart of

ClearCase.

740 Command Reference

mkview

If the dynamic view is registered in multiple regions, the export marking must be on the view-tag

in the server host’s default region. To create an export view, use the –ncaexported option. You

can register an existing dynamic view or VOB for export by using mktag –replace –ncaexported.

For information about exporting view-VOB combinations, see the export_mvfs reference page.

ClearCase and Attache Dynamic Views on UNIX—Activating a View

Creating a view-tag also executes the startview command, which activates the dynamic view on

the current host (unless the tag’s target network region does not include the local host.) It also

places an entry in the host’s viewroot directory. (For example, specifying –tag gamma creates the

entry /view/gamma.)

After it is activated, a dynamic view can be set with the setview command; it can also be accessed

with view-extended naming. (For details, see the startview and pathnames_ccase reference

pages.)

ClearCase and Attache Dynamic Views on Windows—Activating a View

Creating a view-tag also executes the startview command, which activates the dynamic view on

the current host (unless the tag’s target network region does not include the local host.) It also

places an entry in the host’s dynamic-views root directory (by default, drive M). (For example,

specifying –tag gamma creates the entry gamma.)

After a dynamic view is activated, you can assign it to a drive letter with the net use command

or by clicking Tools > Map Network Drive in Windows Explorer; it can also be accessed with

view-extended naming. (For details, see the startview and pathnames_ccase reference pages.)

ClearCase, Attache, and ClearCase LT Snapshot Views—Activating a View

Snapshot views cannot be explicitly activated and cannot be accessed using view-extended

naming. However, a snapshot view becomes active when you change to the view directory and

issue a ClearCase or ClearCase LT command.

ClearCase, Attache, and ClearCase LT on UNIX—View Creator Identity and umask Permissions

Avoid creating views as root. This often causes problems with remote access to a view, because

root on one host often becomes user ID –2 (user nobody) when accessing other hosts.

Your current umask(1) setting determines which users can access the view. For example, a umask

value of 2 allows anyone to read data in the view, but only you (the view’s owner) and others in

your group can write data to it—create view-private files, build derived objects, and so on. If

your umask value is 22, only you can write data to the new view.

ClearCase and Attache—View Storage Directory on a Network Attached Storage Device.

You may create a view with storage on a supported network attached storage (NAS) device. We

recommend using a server storage location for this purpose. See the mkstgloc reference page for

information. To use mkview to create a view that resides on a NAS device, you must specify the

Reference Pages 741

mkview

option set, –host –hpath –gpath. (NAS devices must be specially configured for use with

ClearCase. See the Administrator’s Guide for details.)

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE VIEW-TAG. Default for ClearCase and Attache dynamic views: None. Default for
ClearCase LT and ClearCase/Attache snapshot views: A generated tag.

–tag view-tag
Dynamic view—Specifies a name for the view, in the form of a simple file name. This

name appears in the local host’s file system as a subdirectory of the viewroot directory.

For example, the view experiment appears as /view/experiment (UNIX) or

M:\experiment (Windows).

Snapshot view—Specifies a name for the view as it is recorded in the registry.

ClearCase and Attache —If your network has multiple regions, use the mktag command

to create an additional view-tag for each additional region.

–tco⋅mment tag-comment
Adds a comment to the view-tag’s entry in the view_tag registry. Use lsview –long to

display the tag comment.

SPECIFYING THE KIND OF VIEW. Default for ClearCase and Attache: Dynamic view. Default for
ClearCase LT: –snapshot (The ClearCase LT synopsis for this command retains this option, even

though it is the default, for easier migration of view-creation scripts from ClearCase LT to

ClearCase.)

–sna⋅pshot
Specifies a snapshot view. See the Administrator’s Guide for a discussion of views and the

differences between snapshot and dynamic views.

SPECIFYING THE INTEROP TEXT MODE. Default: –tmode transparent for views created on UNIX or

those created through by the cleartool mkview command on Windows. –tmode transparent is
also the default for views created through the Windows GUI unless a different site-wide interop

text mode has been set with setsite.

NOTE: VOBs that are to be accessed by interop text mode views must be enabled to support such

views. See the msdostext_mode reference page.

–tmo⋅de transparent
A transparent interop text mode view is created. The line terminator for text files is a

single <NL> character. The view does not transform text file line terminators in any way.

742 Command Reference

mkview

–tmo⋅de insert_cr
Creates an insert_cr interop text mode view. The view converts <NL> line terminators to

the <CR><NL> sequence when reading from a VOB, and <CR><NL> line terminators to

single <NL> characters when writing to the VOB.

–tmo⋅de strip_cr
Creates a strip_cr interop text mode view. The view converts <CR><NL> line terminators

to <NL> when reading from a VOB, and <NL> line terminators back to the <CR><NL>

sequence when writing to the VOB.

SPECIFYING A NETWORK REGION. Default: The local host’s network region, as listed by the

hostinfo –long command. See the Administrator’s Guide for a discussion of network regions.

–reg⋅ion network-region
Creates the view-tag in the specified network region. An error occurs if the region does

not exist.

CAUTION: The view-tag created with mkview must be for the network region to which

the view server host belongs. Thus, use this option only when you are logged on to a

remote host that is in another region. Moreover, a view-tag for the view’s home region

must always exist.

REMOTE PRIVATE STORAGE AREA. Default: Creates the view’s private storage area as an actual

subdirectory of dynamic-view-storage-pname. This subdirectory, named .s, holds checked-out

versions, newly created derived objects, and other view-private objects.

–ln remote-storage-dir-pname
Creates the .s directory at the location specified by remote-storage-dir-pname. A

UNIX-level symbolic link to pname is created at view-storage-dir-pname/.s, providing

access to the remote storage area. Restrictions:

This mechanism is independent of the network storage registry facility. The pathname

to a remote storage area must be truly global, not global within a particular network

region.

• remote-storage-dir-pname must be a valid pathname on every host (regardless

of its network region) from which users will access the view.

• This view cannot be used to export a VOB to a non-ClearCase host. (See the

exports_ccase reference page.)

• Some operations performed by root in this view may fail. This is another

symptom of the root-becomes-nobody problem explained in ClearCase,
Attache, and ClearCase LT on UNIX—View Creator Identity and umask
Permissions.

Reference Pages 743

mkview

MARKING THE VIEW FOR EXPORT. Default: The view is not marked as an exporting view.

–nca⋅exported
Assigns an export ID to the view-tag.

SETTING THE CACHE SIZE. Default: Set to the value of the site-wide default (set with setcache
–view –site); if this default is not set, the cache size is set to 500 KB for a 32-bit platform and 1

MB for a 64-bit platform.

–cac⋅hesize size
Specifies a size for the view_server cache. size is an integer number of bytes, optionally

followed by the letter k to specify kilobytes or m to specify megabytes; for example, 800k
or 3m.

SPECIFYING THE KIND OF DERIVED OBJECTS TO CREATE IN A DYNAMIC VIEW. Default: mkview uses

the site-wide default. If a site-wide default is not set, mkview configures the view to create

shareable DOs.

–sha⋅reable_dos
Specifies that DOs created in the dynamic view can be winked in by other views.

–nsh⋅areable_dos
Specifies that DOs created in the dynamic view cannot be winked in by other views.

SETTING AN INITIAL DEFAULT FOR MODIFICATION TIME STAMPS FOR A SNAPSHOT VIEW. Default: The

initial default for the time stamps of files copied into the view as part of the snapshot view

update operation is the time at which the file is copied into the view. Using the update command,

users can change the default time-stamp mode: the most recently used time scheme is retained

as part of the view’s state and is used as the default behavior for the next update.

–pti⋅me
Changes the initial default for file time stamps copied into the snapshot view to the time

at which the version was created (as recorded in the VOB).

ATTACHING A VIEW TO A STREAM. Default: None.

–str⋅eam stream-selector
Specifies a UCM stream. The view being created is attached to this stream.

stream-selector is of the form [stream:]stream-name[@vob-selector], where vob-selector
specifies the stream’s project VOB.

SPECIFYING THE VIEW STORAGE DIRECTORY LOCATION. Either dynamic-view-pname or

snapshot-view-pname is always a required argument. In addition, default behavior related to

specifying view storage location is as follows:

Default for ClearCase and Attache dynamic views: None; a server storage location must be specified

explicitly using –stgloc or indirectly using –auto.

744 Command Reference

mkview

For dynamic views, automatic server storage selection proceeds as follows:

1. Server storage locations that have no global path (–ngpath) are disqualified.

2. Server storage locations on heterogeneous hosts are disqualified.

3. Local server storage locations are preferred over remote ones.

4. A server storage location is selected at random from the remaining candidates.

Default for ClearCase and Attache snapshot views: An automatically selected server storage location,

if any can be found; else –colocated_server.

Default for ClearCase LT (snapshot) views: An automatically selected server storage location.

For snapshot views, automatic server storage selection proceeds as follows:

1. Server storage locations with global paths (–gpath) that reside on heterogeneous hosts are

disqualified.

2. Local server storage locations are preferred over remote ones.

3. A server storage location is selected at random from the remaining candidates.

–stg⋅loc { view-stgloc-name | –aut⋅o }

Specifies a server storage location to hold the view storage directory. (You must have

previously used mkstgloc to create the server storage location.) Either specify the server

storage location by name, or specify –auto to indicate a server storage location is to be

automatically selected as described previously.

For information on using this option to create snapshot views for disconnected use, see

the section, DISCONNECTED USE OF SNAPSHOT VIEWS.

You cannot create a view on a remote heterogeneous host unless the view is a snapshot

views that is to be created in no-global-path (–ngpath) server storage location.

–col⋅ocated_server
Specifies a view storage directory that is colocated with the snapshot view directory;

specifically, the view storage directory is created as a subdirectory of the snapshot view

directory (snapshot-view-pname).

We recommend you use –stgloc rather than this option whenever possible.

–vws
Specifies the location for the snapshot view storage directory. On Windows systems, this

must be a UNC name.

For information on using this option to create snapshot views for disconnected use, see

the section, DISCONNECTED USE OF SNAPSHOT VIEWS.

We recommend that you use –stgloc rather than this option whenever possible.

Reference Pages 745

mkview

–hos⋅t hostname
–hpa⋅th local-pname
–gpa⋅th global-pname

See the mkstgloc reference page for information on these options.

NOTE: The argument names shown above are generalizations of the argument names as

they appear in the synopses for this command in association with the –colocated_server
and –vws options.

When you use one or more of the –host/–hpath/–gpath options in combination with

–colocated_server, the values you specify for –host/–hpath/–gpath must correspond to

the snapshot view directory (snapshot-view-pname), not the colocated view storage

directory.

When you use one or more of the –host/–hpath/–gpath options in combination with

–vws, the values you specify for –host/–hpath/–gpath must correspond to the view

storage directory (view-storage-pname), not the snapshot view directory.

To create a view that resides on a supported network attached storage (NAS) device, you

must specify the option set, –host –hpath –gpath.

dynamic-view-storage-pname
The location at which a new view storage directory is to be created for a dynamic view.

(An error occurs if something already exists at this pathname.) You can create a view

storage directory at any location in the file system where operating system permissions

allow you to create a subdirectory, with these restrictions:

In addition, on Windows systems:

snapshot-view-pname
The location at which the snapshot view directory is to be created.(An error occurs if

something already exists at this pathname.) You can create a snapshot view directory at

• You cannot create a view storage directory under the dynamic views root

directory (on UNIX, this directory is /view; on Windows, drive M)

• dynamic-view-storage-pname must specify a location on a host where ClearCase has

been installed or a location on a supported network attached storage device

attached to such a host; the view database files must physically reside on a

ClearCase host or a supported network attached storage device to enable access

by the view_server process.

• dynamic-view-storage-pname must be a UNC name

• The directory must not be within a Windows special share, such as the share that

is designated by drive$ and that allows administrators to access the drive over the

network.

746 Command Reference

mkview

any location in the file system where operating system permissions allow you to create

a subdirectory, with the restriction that you cannot create a snapshot view under the

dynamic views root directory (on UNIX, this directory is /view; on Windows, drive M).

In addition, on Windows systems:

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

On a UNIX system, create a dynamic view storage directory and assign it the view-tag mainr2.

cmd-context mkview -tag mainr2 /net/host3/view_store/mainr2.vws
Created view.
Host-local path: host3:/view_store/mainr2.vws
Global path: /net/host3/view_store/mainr2.vws
It has the following rights:
User : anne : rwx
Group: dev : rwx
Other: : r-x

• snapshot-view-pname must be a UNC name only if the storage is colocated

(colocated storage can be the default in the circumstances described previously).

• For a colocated server, the snapshot view directory must not be within a Windows

special share, such as the share that is designated by drive$ and that allows

administrators to access the drive over the network.

Reference Pages 747

mkview

• On a Windows systems, create a dynamic view and assign it the view-tag main_r2. This

example assumes that host pluto shares drive C as c_share.

cmd-context mkview -tag main_r2 \\pluto\c_share\vw_store\winproj\main_r2.vws

Created view.
Host: pluto
Local path: c:\vw_store\winproj\main_r2.vws
Global path: \\pluto\c_share\vw_store\winproj\main_r2.vws
It has the following rights:
User : anne : rwx
Group: dev : rwx
Other: : r-x

• On a UNIX system, create a dynamic view storage directory, assign it the view-tag

main_exp, and mark it for export.

cmd-context mkview -tag main_exp -ncaexported /net/neon/views/main_exp.vws

• On a UNIX system, create a dynamic view storage directory named Rel2.vws in the current

working directory, but with its private storage area on a remote host.

cmd-context mkview -tag Rel2 -ln /net/host4/priv_view_store/Rel2.vps Rel2.vws
Created view.
Host-local path: host3:/view-store/Rel2.vws
Global path: /net/host3/view-store/Rel2.vws
It has the following rights:
User : anne : rwx
Group: dev : rwx
Other: : r-x

• On a UNIX system, create a dynamic view on the local host. Then activate the view on a

remote host.

cmd-context mkview -tag anneRel2 /view_store/anneRel2.vws
Created view.
Host-local path: host3:/view-store/anneRel2.vws
Global path: /net/host3/view-store/anneRel2.vws
It has the following rights:
User : anne : rwx
Group: dev : rwx
Other: : r-x

rsh host4 cleartool startview anneRel2

The remote shell command is named remsh on some systems.

748 Command Reference

mkview

• On a UNIX system, create a dynamic view storage directory, assign it the view-tag

smg_bigvw, and specify a large cache size.

cmd-context mkview –tag smg_bigvw –cachesize 1m /home/smg/vws/smg_bigvw.vws

Created view.
Host-local path: neon:/home/smg/vws/smg_bigvw.vws
Global path: /net/neon/home/smg/vws/smg_bigvw.vws
It has the following rights:
User : susan : rwx
Group: user : rwx
Other: : r-x

• On a Windows system, create a dynamic view, assign it the view-tag smg_bigvw, and

specify a large cache size.

cmd-context mkview –tag smg_bigvw –cachesize 1m \\neon\vws\smg_bigvw.vws

Created view.
Host-local path: neon:C:\USERS\vws\smg_bigvw.vws
Global path: \\neon\vws\smg_bigvw.vws

• On a UNIX system, create a snapshot view tagged dev with the view path ~bert/my_views.

cmd-context mkview -tag dev -snapshot ~bert/my_views

Created view.
Host-local path: peroxide:/export/home/bert/my_views/.view.stg
Global path: /net/peroxide/export/home/bert/my_views/.view.stg
It has the following rights:
User : bert : rwx
Group: user : r-x
Other: : r--
Created snapshot view directory
"/net/peroxide/export/home/bert/my_views".

• On a UNIX system, create a UCM view and attach it to the specified stream.

cmd-context mkview -stream java_int@/vobs/core_projects -tag java_int
/usr1/views/java_int.vws

Created view.
Host-local path: propane:/usr1/views/java_int.vws
Global path: /net/propane/usr1/views/java_int.vws
It has the following rights:
User : bill : rwx
Group: user : rwx
Other: : r-x
Attached view to stream "java_int".

Reference Pages 749

mkview

• On a UNIX system, create a dynamic view at a server storage location that has been

established for views.

cmd-context mkview -tag viewbert -stgloc view_stgloc
Created view.
Host-local path: dioxin:/export/home/frank/view_stgloc/bert/viewbert.vws
Global path:
/net/dioxin/export/home/frank/view_stgloc/bert/viewbert.vws
It has the following rights:
User: bert : rwx
Group: user : rwx
Other: : r-x

SEE ALSO

chflevel, chview, endview, lsview, mkstream, mkstgloc, mktag, rmtag, rmview, setcache,

setview, startview, umask(1), unregister, update

750 Command Reference

mkvob

mkvob
Creates and registers a versioned object base (VOB)

APPLICABILITY

SYNOPSIS

• ClearCase and Attache on UNIX:

mkvob –tag vob-tag [–ucm⋅project]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–tco⋅mment tag-comment] [–reg⋅ion network-region]

[–opt⋅ions mount-options] [–nca⋅exported]

[–pub⋅lic] [–pas⋅sword tag-registry-password]

{ [–hos⋅t hostname –hpa⋅th host-storage-pname –gpa⋅th global-storage-pname]

vob-storage-pname | -stgloc { vob-stgloc-name | –auto } }

• ClearCase and Attache on Windows:

mkvob –tag vob-tag [–ucm⋅project]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–tco⋅mment tag-comment] [–reg⋅ion network-region]

[–opt⋅ions mount-options] [–pub⋅lic] [–pas⋅sword tag-registry-password]

{ [–hos⋅t hostname –hpa⋅th host-storage-pname –gpa⋅th global-storage-pname]

vob-storage-pname | -stgloc { vob-stgloc-name | –auto } }

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 751

mkvob

• ClearCase LT:

mkvob –tag vob-tag [–ucm⋅project]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–tco⋅mment tag-comment] [-stg⋅loc vob-stgloc-name]

NOTE: In ClearCase LT, you can run this command only on the ClearCase LT server host.

DESCRIPTION

The mkvob command creates a new versioned object base, or VOB, as follows:

• Creates a VOB storage directory at a specified path or in a VOB server storage location

created with mkstgloc.

• Creates a VOB-tag with which the VOB is accessed by users.

• Places entries in the network’s VOB registries; use the lsvob command to list registered

VOBs.

• Starts a VOB server process on the named host.

A VOB storage directory is the root of a directory tree whose principal contents are a VOB

database and a set of storage pools. See the mkstgloc reference page for details.

VOB DIRECTORY ELEMENTS

mkvob creates the following directory elements in a VOB:

• VOB root directory — A mkdir command is implicitly executed to create a directory

element—the VOB root directory—in the new VOB. Activating a VOB makes its root

directory accessible at the pathname specified by the VOB-tag.

• lost+found directory—In ClearCase and Attache, mkvob also creates a special directory

element, lost+found, as a subdirectory of the VOB root directory. In this directory are

placed elements that are no longer entered in any versioned directory.

DEFAULT STORAGE POOLS

Each VOB storage directory is created with default storage pool subdirectories:

ACCESS PERMISSIONS

In considering access permissions, it is important to distinguish these two top-level directories:

• VOB storage directory — The standard directory created by this command, which is at the

top level of a server storage location for VOBs.

sdft Default source storage pool

cdft Default cleartext storage pool

ddft Default derived object storage pool (ClearCase and Attache dynamic views)

752 Command Reference

mkvob

• VOB root directory — The ClearCase or ClearCase LT directory element accessed at the

VOB-tag.

ClearCase, ClearCase LT, and Attache implement their own access scheme that goes beyond the

standard operating system facilities. These settings control access to many operations involving

the VOB; they can be changed with the protectvob command.

WARNING: Do not use operating system permission-setting utilities on a VOB storage directory.

This creates inconsistencies and causes confusion.

See also the protect reference page (this command affects access to individual elements and

shared derived objects) and the Administrator’s Guide.

UNIX VOBs

When you create a VOB on a UNIX system, you become its VOB owner and your groups become

its group list. These settings control access to many operations involving the VOB; they can be

changed with the protectvob command.

Your operating system-level UID and GID are assigned to the VOB storage and the default

storage pools. The mode of the VOB storage directory is set according to your current umask
setting. This affects which users, and which views, can access the VOB. The modes of storage

pool directories are set to 755, regardless of your current umask setting.

The mode of the VOB root directory, by contrast, is derived from your current umask setting. The

mode can changed subsequently with the protect command. Note that the w permission on this

directory (as on any directory element) affects only the creation of view-private objects; changes

to the VOB itself are controlled by ClearCase or ClearCase LT permissions, not those at the

operating system level.

Windows VOBS

When you create a VOB on a Windows system, you become its VOB owner and your primary

group becomes the VOB’s assigned group. These settings control access to many operations

involving the VOB; they can be changed with the protectvob command.

Your operating system-level user name and the name of the ClearCase administrators group are

assigned to the VOB storage and the default storage pools. All users can read and search the

storage pools, but only the VOB owner and ClearCase or ClearCase LT server processes can

modify them.

INTEROP TEXT MODE SUPPORT

By default, VOBs are created with interop text mode support enabled. In this mode, the VOB

database keeps track of the number of lines in all versions of each text file. This mode is required

to support access to the VOB by interop text mode views (see the mkview reference page). To

change the state of a VOB’s interop text mode support, use the msdostext_mode utility. For more

information, see the Administrator’s Guide.

Reference Pages 753

mkvob

CLEARCASE AND ATTACHE—REGIONAL TAGS

mkvob creates exactly one VOB-tag for the newly created VOB. This tag applies to the local

host’s network region by default. To make additional VOB-tags for other regions, use the mktag
command. In general, the VOB-tags for a given VOB should all be public or all private.

CLEARCASE AND ATTACHE DYNAMIC VIEWS—PUBLIC AND PRIVATE VOBS

Some VOBs are to be shared, and others are to be used primarily by their creators. Accordingly,

there are two kinds of VOB-tags: public and private.

UNIX—Public VOB Tags

A public VOB-tag specifies a location at which any dynamic-view user can mount the VOB.

Furthermore, after a public VOB is mounted on a host, any user on that host can access it (subject

to the standard access permissions).

Typically, all public VOBs are mounted at startup time with the command cleartool mount –all.
(To create a public VOB that is not mounted automatically, specify –options noauto in the mkvob
command.)

When creating a public VOB-tag with mkvob or mktag, you must supply the network’s VOB-tag

password; if you don’t use the –password option, you are prompted to provide one.

You need not create a public VOB’s mount-over directory; the cleartool mount command creates

it, if necessary.

UNIX—Private VOB Tags

A private VOB-tag specifies a mount point at which only the VOB’s owner (usually, its creator)

can mount the VOB using cleartool. For example:

cleartool mount /vobs/myPrivateVob

root can use the cleartool mount vob-tag command to bypass the “owner only” mount restriction.

The command cleartool mount –all does not mount private VOBs.

After a private VOB is mounted, any user can access it (subject to the standard access

permissions). You must explicitly create the mount-over directory for a private VOB; the

cleartool mount command does not create it automatically.

Windows—Public VOB Tags

A public VOB can be activated with the following command:

cmd-context mount –all

Usually, the system administrator automates this command for users in either of two ways:

• By adding it to the startup script for ClearCase or Attache users.

• By supplying it in a batch file for use in each user’s Startup folder.

754 Command Reference

mkvob

This technique is particularly useful because, in its role as a network provider, the MVFS

deactivates all VOBs and views on the local host at user logon time. That is, each time a user logs

on, the dynamic-views drive (by default drive M) is empty until VOBs and views are reactivated.

See the mount reference page for information on persistent VOB mounting.

When creating a public VOB-tag with mkvob or mktag, you must supply the network’s VOB-tag

password; if you don’t use the –password option, you are prompted to type one. See rgy_passwd
for information on how to create or change the VOB registry password.

Windows—Private VOB Tags

Any user can mount any VOB, public or private. The private designation means only that a VOB

must be mounted separately, by name.

UNIX and Windows—Private-to-Public VOB Conversion

To convert a private VOB to a public VOB, use a command like this:

cmd-context mktag -vob -tag \vob3.p -replace -public \\saturn\users\vbstore\private3.vbs

This replaces the VOB’s private VOB-tag with a public one. mktag prompts you to enter the

VOB-tag password.

CLEARCASE, CLEARCASE LT, AND ATTACHE SNAPSHOT VIEWS—ACCESSING PUBLIC AND PRIVATE VOBS

For an explanation of public and private VOBs, see CLEARCASE AND ATTACHE DYNAMIC
VIEWS—ACTIVATING THE VOB on page 754.

• ClearCase and Attache—Snapshot views make no distinction between public and private

VOBs: you can access private VOBs from a snapshot view regardless of who owns them.

• ClearCase LT—All VOBs are private and can be accessed from any view.

CLEARCASE AND ATTACHE DYNAMIC VIEWS—ACTIVATING THE VOB

A VOB cannot be used for development work in a dynamic view until it is activated with the

cleartool or Attache mount command. This causes the VOB’s storage directory to be mounted

on the host at the VOB-tag location, as a file system of type MVFS. See the mount reference page

for details.

CLEARCASE ON UNIX—MARKING A VOB FOR EXPORT

A VOB to be used by some view for NFS access must be marked for export. Each export VOB is

assigned an export ID, which ensures that NFS-exported view/VOB combinations have stable

NFS file handles across server reboots or shutdown and restart of ClearCase.

If the VOB is registered in multiple regions, the export marking must appear on all of that VOB’s

tags in all the regions in which it is registered. To mark a VOB for export, use the –ncaexported
option. To mark an existing VOB for export, use mktag –replace –ncaexported.

Reference Pages 755

mkvob

The VOB export ID is stored in the mount options field in the VOB-tag registry. If you use the

–ncaexported option and specify additional mount options in the mktag or mkvob command,

the mount options field includes an appropriate export ID mount option.

For information on exporting VOBs, see the export_mvfs reference page.

NOTE: Marking a VOB for export is not required for NFS export to work, but it is required if you

want to avoid stale file handle messages after a server restart.

CLEARCASE AND ATTACHE—LOCATION OF THE VOB DATABASE DIRECTORY

The VOB database directory must be located on the VOB server host or on a supported network

attached storage device that has been configured for VOB storage. See the Administrator’s Guide
for a discussion of network attached storage devices.

CLEARCASE AND ATTACHE—VOB STORAGE DIRECTORY ON A NETWORK ATTACHED STORAGE DEVICE.

You may create a VOB with storage on a supported network attached storage (NAS) device. We

recommend using a server storage location for this purpose. See the mkstgloc reference page for

information. To use mkvob to create a VOB that resides on a NAS device, you must specify the

option set, –host –hpath –gpath. (NAS devices must be specially configured for use with

ClearCase. See the Administrator’s Guide for details.)

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE VOB-TAG. Default: None.

–tag vob-tag
ClearCase, ClearCase LT, and Attache on UNIX—VOB tags are names for VOBs that are

entered in the registry and are of either single-component (/vob1) or multicomponent

(/vob/src) form. The VOB tag is where the VOB appears under the view root.

ClearCase and Attache dynamic views on UNIX—A pathname—typically

multicomponent—that specifies the mount-over directory at which the VOB is mounted

as a file system of type MVFS. The VOB-tag is entered in the VOB tag registry. If you are

creating a private VOB (no –public option), you must also create the mount-over

directory on each host where you will mount the VOB. (The cleartool mount command

creates mount-over directories for public VOBs.)

ClearCase LT on UNIX—The VOB tag must be of the single-component form.

ClearCase and Attache—If your network has multiple regions from which the VOB is to

be accessed, use mktag to create an additional VOB-tag for each region.

756 Command Reference

mkvob

ClearCase, ClearCase LT, and Attache on Windows—VOB tags are names for VOBs of

the form \dirname. The backslash is required. The VOB tag is entered in the registry and

is where the VOB appears under the view root.

SPECIFYING THE KIND OF VOB. Default: A standard (that is, nonproject) VOB.

–ucm⋅project
Creates a UCM project VOB for storing UCM-related objects including activities,

baselines, components, folders, projects, and streams. Typically, a single project VOB is

shared by multiple source VOBs—those that store versioned source code, documents,

and so on.

ClearCase LT—You cannot create more than one project VOB.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –cqe). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

–tco⋅mment tag-comment
Adds a comment to the VOB-tag’s entry in the vob_tag registry file. Use lsvob –long to

display the tag comment.

SPECIFYING A NETWORK REGION. Default: Creates the VOB-tag in the local host’s network region.

(Use the hostinfo –long command to display the network region.) See the Administrator’s Guide
for a discussion of network regions.

–reg⋅ion network-region
Creates the VOB-tag in the specified network region. An error occurs if the region does

not already exist.

CAUTION: The VOB-tag created with mkvob must be for the network region to which the

VOB host belongs. Thus, use this option only when you are logged on to a remote host

that is in another region. Moreover, a VOB-tag for the VOB’s home region must always

exist.

SPECIFYING MOUNT OPTIONS. Default: Mounts each VOB using the –options field in its vob_tag
registry file.

–opt⋅ions mount-options
UNIX—Options to be used in mounting the VOB. The following options are valid: ro,

rw, soft, hard, intr, nointr, noac, noauto, nodev, nodnlc, nosuid, suid, retrans, timeo,

acdirmin, acdirmax, acregmin, acregmax, actimeo. See the appropriate operating

system reference page (for example, mount(1M)) for the meanings of these options. If

the mount options list contains white space, enclose it in quotes. By default, a VOB is

Reference Pages 757

mkvob

mounted in nointr mode. This means that operations on MVFS files (for example,

open(2)) cannot be interrupted by typing the INTR character (typically, CTRL+C). To

enable keyboard interrupts of such operations, use the intr mount option.

Windows—Specifies mount options to be invoked when the VOB is activated through

this VOB-tag. See mount for details. (You must be a member of the ClearCase group to

use this option.)

MARKING THE VOB FOR EXPORT. Default: The VOB is not marked for export.

–nca⋅exported
Assigns an export ID to the VOB. See CLEARCASE ON UNIX—MARKING A VOB FOR
EXPORT on page 754.

PUBLIC VS. PRIVATE VOB. Default: A private VOB.

–pub⋅lic
Creates a public VOB. See CLEARCASE AND ATTACHE DYNAMIC VIEWS—
ACTIVATING THE VOB on page 754.

–pas⋅sword tag-registry-password
A password is required to create a public tag or to create a private tag when you include

suid as an argument to –options.

In these cases, if you do not include the VOB-tag password, mkvob prompts for it. An

error occurs if there is no match. Note that the VOB is created, but without a VOB-tag.

Use mktag to supply a public or private VOB-tag.

CAUTION: This is a potential security breach, because the password remains visible on

the screen.

SPECIFYING THE VOB’S LOCATION AND NETWORK ACCESSIBILITY. Default for ClearCase and Attache:
None. Default for ClearCase LT: The server storage location on the ClearCase LT server host with

the most free space.

–hos⋅t hostname
–hpa⋅th host-storage-pname
–gpa⋅th global-storage-pname

See the mkstgloc reference page for information on these options.

To create a VOB that resides on a supported network attached storage (NAS) device, you

must specify the option set, –host –hpath –gpath.

vob-storage-pname
The location at which a new VOB storage directory is to be created. (An error occurs if

something already exists at this pathname.) You can create a VOB at any location where

the operating system allows you to create a subdirectory, with these restrictions:

758 Command Reference

mkvob

UNIX—vob-storage-pname may be a full pathname, relative pathname, or simple

subdirectory name.

Windows—vob-storage-pname must be a UNC name.

–stg⋅loc { vob-stgloc-name | –aut⋅o }

Specifies a server storage location in which the VOB storage directory is to be created.

The server storage location must have been created previously with mkstgloc. You can

specify the name of the VOB server storage location explicitly as vob-stgloc-name, or

specify –auto to direct mkvob to select one.

If you specify –auto, a server storage location for the VOB is selected as follows:

a. Server storage locations that have no global path (mkstgloc –ngpath) and that reside on

remote hosts are disqualified.

b. Server storage locations on heterogeneous hosts are disqualified.

c. Local server storage locations are preferred over remote ones.

d. Globally accessible server storage locations (mkstgloc –gpath) are preferred over those

that are not (mkstgloc –ngpath).

e. The server storage location with the most free space is selected.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

• You cannot create a VOB within an existing VOB storage directory.

• You cannot create a VOB under an existing VOB-tag (VOB mount point).

• You cannot create a VOB within the view root directory.

• vob-storage-pname must specify a location on a host where ClearCase has been

installed or a location on a supported NAS device. The VOB database (located in

subdirectory db of the VOB storage directory) must be located on the VOB server

host or on a supported NAS device that has been configured for VOB storage.

Reference Pages 759

mkvob

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

UNIX Examples

• Create a private VOB storage directory, project3.vbs, in the /usr/vobstore directory on local

host venus, and give it the VOB-tag /vobs/project3. Then, mount the VOB on the local host.

cmd-context mkvob -tag /vobs/project3 -c "main development sources" \
/usr/vobstore/project3.vbs
Created versioned object base.
Host-local path: venus:/usr/vobstore/project3.vbs
Global path: /net/venus/usr/vobstore/project3.vbs
VOB ownership:
 owner anne
 group dev
Additional groups:
 group usr
 group adm

% mkdir /vobs/project3 (create VOB mount point to match the VOB-tag)

cmd-context mount /vobs/project3 (mount VOB as file system of type MVFS)

• Create a public VOB, which will be mounted at startup time (by all hosts in the current

host’s network region), and mark it for export.

cmd-context mkvob -tag /vobs/src1 -public -password tagPword \
-ncaexported /vobstore/src1.vbs
Created versioned object base.
Host-local path: saturn:/vobstore/src1.vbs
Global path: /net/saturn/vobstore/src1.vbs
.
.
.

• Create a private VOB in a different region, explicitly specifying the registry information.

760 Command Reference

mkvob

cmd-context mkvob –tag /vobs/doctools –c "storage for documentation tools" \
–region unix_dev –host neon –hpath /vobstg/doctools.vbs \
–gpath /net/neon/vobstg/doctools.vbs /vobstg/doctools.vbs
Created versioned object base.
Host-local path: neon:/vobstg/doctools.vbs
Global path: /net/neon/vobstg/doctools.vbs
.
.
.

• Create a VOB at VOB server storage location.

cmd-context mkvob -tag /vobbert -stgloc stgloc1
Comments for "/export/home/bert/stgloc1/vobbert.vbs":
test vob
.
Created versioned object base.
Host-local path: peroxide:/export/home/bert/stgloc1/vobbert.vbs
Global path: <no-gpath>
cleartool: Warning: This global path value precludes use of this VOB by
dynamic views from region "test_region".
.
.
.

Windows Examples

• Create a private VOB storage directory, project3.vbs, in the C:\users\vbstore directory on

local host venus, and give it the VOB-tag \project3. Assume c:\users is shared as

\\venus\users. Then, mount the VOB on the local host.

cmd-context mkvob -tag \project3 -c "main development sources" ^
\\venus\users\vbstore\project3.vbs

Created versioned object base.
Host: venus
Local path: C:\users\vbstore\project3.vbs
Global path: \\venus\users\vbstore\project3.vbs
VOB ownership:
 owner anne
 group dev

cmd-context mount \project3 (mount VOB as file system of type MVFS)

• Create a public VOB, which will be mounted at startup time (by all hosts in the current

host’s network region).

cmd-context mkvob -tag \src1 -public -password tagPword \\saturn\vbstore\src1.vbs

Reference Pages 761

mkvob

Created versioned object base.
Host: saturn
Local path: C:\vbstore\src1.vbs
Global path: \\saturn\vbstore\src1.vbs
.
.
.

SEE ALSO

chpool, lsvob, mkpool, mkstgloc, mount, protectvob, rgy_passwd, rmvob, uncheckout,
umount, umask(1)

762 Command Reference

mkws

mkws
Makes a workspace associated with a dynamic view

APPLICABILITY

SYNOPSIS

• Make and register a workspace and associate it with an existing dynamic view:

mkws [–sho⋅st hostname] –tag tagname ws-stg-pname

• Make and register a workspace and a create a new associated dynamic view:

mkws –hos⋅t hostname –hpa⋅th host-stg-pname –gpa⋅th global-stg-pname
[–sho⋅st hostname] –tag tagname ws-stg-pname

DESCRIPTION

The mkws command creates and adds a workspace to the local workspace registry and either

associates it with an existing dynamic view or creates a new associated dynamic view.

ws-stg-pname specifies the location of the workspace storage directory. tagname specifies the

workspace name which is also the associated view’s tag. A username and password combination

for the workspace helper host are required. You are prompted for this information if it has not

already been requested, or previously stored using the Login info command on the Options
menu. After the workspace is created, it becomes the current workspace.

Attache’s Client Process Startup Directory

There is a separate startup directory associated with the Attache client process. This directory

changes depending upon how Attache is started. For example, it is the “working directory”

specified in Attache’s program item properties if Attache is started from the icon. Once the

Attache client process is started, this directory never changes. The pathname of a new workspace

storage directory (if not specified absolutely) is relative to the Attache startup directory, not your

workspace working directory. For this reason, we recommend that you always specify a full local

pathname for your workspace storage directory.

Product Command Type

Attache command

Platform

UNIX

Windows

Reference Pages 763

mkws

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE ATTACHE HELPER’S LOCATION. Default: View host.

–sho⋅st hostname
Specifies the name of the ClearCase host on which the associated Attache helper process

will run.

SPECIFYING THE WORKSPACE NAME. Default: None.

–tag tagname
Specifies the name of the workspace and dynamic view, in the form of a simple helper

host file name. tagname specifies both the view-tag name and the workspace name,

which are created if they do not exist.

SPECIFYING THE WORKSPACE STORAGE DIRECTORY. Default: None. You must specify a location for

the workspace storage directory.

ws-stg-pname
Specifies the name of the workspace storage directory: full pathname, relative pathname,

or simple directory name. This directory can already exist, but if it doesn’t, it is created.

As with any operating-system directory-creation command, the entire directory tree

above the workspace storage directory name must already exist. A relative pathname or

simple directory name begins from Attache’s startup directory, not the working

directory.

SPECIFYING THE NEW DYNAMIC VIEW’S LOCATION. Default: None..

–hos⋅t hostname
–hpa⋅th host-stg-pname
–gpa⋅th global-stg-pname

See the mkstgloc reference page for descriptions of how to use these options and

arguments to specify VOB and view storage directories.

Values of other view creation options (–tcomment, –tmode, –ln, –region) are provided

by default. To control these attributes of view creation, use mkview instead and then use

mkws to connect to this dynamic view. The default behavior for text mode can also be

specified with the Preferences command on the Options menu.

EXAMPLES

• Make a workspace and associate it with the existing dynamic view jo_doc. At an Attache

prompt:

mkws –shost darkover –tag jo_doc c:\users\jo\doc

764 Command Reference

mkws

• Make a workspace and create a new dynamic view named lee_main to associate with it.

This command must be entered on a single line. At an Attache prompt:

mkws –host oz –hpath /usr /lee/vws/mn.vws –gpath /net/oz/usr/lee/vws/mn.vws –tag
lee_main c:\users\lee\main

SEE ALSO

attache_graphical_interface, attache_command_line_interface, lsview, lsws, mkview, rmws,

setws

Reference Pages 765

mount

mount
Activates a VOB at its VOB-tag directory

APPLICABILITY

SYNOPSIS

• UNIX only—Mount a single VOB:

mount [–opt⋅ions mount-options] vob-tag

• Windows only—Mount a single VOB:

mount [–per⋅sistent] [–opt⋅ions mount-options] vob-tag

• UNIX only—Mount all public VOBs:

mount –a⋅ll

• Windows only—Mount all public VOBs:

mount [–per⋅sistent] –a⋅ll

DESCRIPTION

Prerequisite: The VOB being activated must already have a VOB-tag for your host’s network

region in the ClearCase registry. See the mkvob and mktag reference pages.

The mount command activates one or more VOBs on the local host.The mount command

mounts a VOB as a file system of type MVFS (multiversion file system) and is inapplicable to

non-MVFS installations.

Mounting All VOBs

The mount –all command mounts all public VOBs listed for your host’s network region in the

VOB registry. (It does not mount private VOBs or VOBs whose tag entries include the mount

Product Command Type

ClearCase cleartool subcommand

Attache command

Platform

UNIX

Windows

766 Command Reference

mount

option noauto.) On UNIX systems, this command executes at ClearCase startup time; see the

init_ccase reference page.

UNIX—Mounting of Public and Private VOBs

A public VOB can be activated by any user; if the mount-over directory does not already exist, it

is created.

A private VOB can be activated only by its owner. The root user or VOB owner can use the

standard mount(1M) command to mount a private VOB; other users cannot mount it. The

mount-over directory must already exist and be owned by the VOB owner.

Windows—Mounting of Public and Private VOBs

A public VOB can be activated with the following command:

cmd-context mount –all

Usually, the system administrator automates this command for ClearCase users at login time.

Any user can mount any VOB, public or private. The private designation means only that a VOB

must be mounted separately, by name.

VOB-TAGS AND THE VOB STORAGE REGISTRY

You reference a VOB by its VOB-tag (the full pathname of its mount point), not by its storage area

pathname. The mount command uses the VOB-tag to retrieve all necessary information from the

ClearCase registry: pathname of VOB storage area, pathname of mount point, and mount

options.

RESTRICTIONS

See UNIX—Mounting of Public and Private VOBs and Windows—Mounting of Public and Private
VOBs.

OPTIONS AND ARGUMENTS

MAKING A MOUNT PERSISTENT. Default: The VOB does not stay mounted across reboots.

–per⋅sistent
The VOB is mounted after a reboot.

SPECIFYING MOUNT OPTIONS. Default: Mounts each VOB using the –options field in its VOB tag

registry file.

–opt⋅ions mount-options
Ignores the –options field in the VOB tag registry file entry and uses the specified set of

options, which can include these:

All platforms—ro, rw, soft, hard, intr, nointr, timeo, retrans, noauto, nodnlc, noac,

acdirmin, acdirmax, acregmin, acregmax, actimeo

Reference Pages 767

mount

UNIX—nodev, nosuid, suid

Windows— suid (applicable only for a tag used to mount a VOB on UNIX), poolmap

NOTE TO UNIX USERS: See the appropriate operating system reference page (for example,

mount(1M)) for a description of these options. Enclose this argument in quotes if it

contains white space.

NOTE TO UNIX USERS: If you don’t specify a time-out or retransmission option, default

values are used:

timeo=5 (seconds)

retrans=7 (retries)

NOTE TO UNIX USERS: By default, a VOB is mounted in nointr mode. This means that

operations on MVFS files (for example, open(2)) cannot be interrupted by typing the

INTR character (typically, CTRL+C). To enable keyboard interrupts of such operations,

use the intr mount option.

NOTE TO WINDOWS USERS: Use commas to separate multiple options, not commas and

white space. Options that take numeric arguments take the form option=n. Enclose the

entire option list in quotes if it contains white space.

ro/rw Read-only or read-write. VOBs are mounted rw by default.

soft/hard Soft mount operations time out and return an error if the server

does not respond; hard mount operations (the default) will block

until successful completion, or until interrupted (see also intr).

intr/nointr By default, a VOB is mounted in no-interrupt mode. This means

that operations on MVFS files cannot be interrupted by typing

the interrupt character (typically, CTRL+C or CTRL+BREAK). To

enable keyboard interrupts of such operations, use the intr
mount option.

timeo/retrans If you don’t specify a time-out or retransmission option, default

values are used: timeo=5 (seconds); retrans=7 (retries).

noauto Prevents a public VOB from being mounted by a cleartool mount
–all command.

nodnlc Turns off the MVFS name cache. See also mvfscache.

noac Turns off the MVFS attribute cache. See also mvfscache.

acdirmin/

acdirmax
Set minimum and maximum time-out values for directory name

lookups in the MVFS attribute cache. See also mvfscache.

acregmin/

acregmax
Set minimum and maximum time-out values for file name

lookups in the MVFS attribute cache. See also mvfscache.

actimeo Sets a single cache timeout value for all four parameters

acdirmin, acdirmax, acregmin, and acregmax. Setting one of

these specific values overrides the value in actimeo.

768 Command Reference

mount

NOTE: The time-out values specified in several of these mount options affect the view’s metadata

latency (the delay before changes to VOB metadata become visible in a dynamic view other than

the one in which the changes were made). Longer time-out values improve performance at the

expense of greater latency. Shorter time out values decrease latency, but also have an impact on

view performance because the caches must be refreshed more frequently.

SPECIFYING THE VOB(S). Default: None.

vob-tag
Mounts the VOB with this VOB-tag, which must be specified exactly as it appears in the

vob_tag registry file. Use lsvob to list VOBs.

–a⋅ll
(Mutually exclusive with –options) Mounts all public VOBs listed for your host’s

network region in the VOB registry, using the mount options in their VOB tag registry

entries. (Including the mount option noauto in a VOB-tag’s registry entry prevents the

VOB from being mounted by mount –all.)

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Mount the VOB storage directory that is registered with VOB-tag /vobs/Rel4.

cmd-context mount /vobs/Rel4

• Mount all VOBs registered with public VOB-tags.

cmd-context mount –all

SEE ALSO

lsvob, mkvob, mktag, mount_ccase, register, umount, mount(1M)

poolmap Supports remote storage pools on UNIX VOB hosts. See the

Administrator’s Guide for details.

Reference Pages 769

mount_ccase

mount_ccase
Mount/unmount commands for VOBs and the viewroot directory

APPLICABILITY

SYNOPSIS

The mount_mvfs program must never be invoked explicitly.

The cleartool mount subcommand invokes an architecture-specific mount command:

DESCRIPTION

This reference page describes the mechanisms that mount VOBs as file systems of type MVFS

(the ClearCase multiversion file system).

AUTOMATIC VOB ACTIVATION AT SYSTEM STARTUP. At system startup, the architecture-specific

ClearCase startup script (see the init_ccase reference page) issues a mount –all command. This

activates on the local host all the VOBs that are registered as public in the (local host’s network

region of the) ClearCase tags registry. During this procedure, the architecture-specific mount

command performs the actual work of mounting the VOB as a file system of type MVFS. (The

command is actually a symbolic link to ccase-home-dir/etc/mount_mvfs.)

VOB ACTIVATION AFTER SYSTEM STARTUP. After system startup, a mount command can be used to

activate or reactivate any VOB that is listed in the tags registry.

• root can activate any VOB in this way.

• Another identity can activate any public VOB, or any private VOB owned by that identity.

Product Command Type

ClearCase command

Platform

UNIX

Solaris, Reliant UNIX /usr/lib/fs/mvfs/mount
AIX 4 /sbin/helpers/mvfsmnthelp
Digital UNIX /sbin/mount_mvfs
IRIX, MP-RAS /usr/etc/mount_mvfs
HP-UX 10, HP-UX 11 /sbin/fs/mvfs/mount
UnixWare /etc/fs/mvfs/mount

770 Command Reference

mount_ccase

AUTOMATIC VOB DEACTIVATION AT SYSTEM SHUTDOWN. At system shutdown, the

architecture-specific ClearCase startup script is invoked with the stop option to execute the

ClearCase shutdown procedure. As part of this procedure, a umount –all command deactivates

all VOBs currently active on the local host. On all platforms except for AIX 4, umount –all
invokes the standard umount(1M) utility directly. On AIX 4, umount –all invokes the

architecture-specific mount command /sbin/helpers/mvfsmnthelp with U as its first argument,

and /sbin/helpers/mvfsmnthelp then invokes umount(1M).

INDIVIDUAL VOB DEACTIVATION. While ClearCase is running, a umount command can be used

to deactivate any mounted VOB:

• root can deactivate any VOB in this way.

• A non-root user can deactivate any public VOB, or any private VOB owned by that user.

SEE ALSO

exports_ccase, mount, umount, mount(1M), umount(1M), mountall(1M) [some architectures]

Reference Pages 771

msdostext_mode

msdostext_mode
Enables or disables a VOB’s interop text mode support

APPLICABILITY

SYNOPSIS

msdostext_mode [–c | –d | –r] [–f] vob-stg-pname

DESCRIPTION

Before a VOB can be accessed from an interop text-mode view, the VOB must be enabled for

interop text mode support. The msdostext_mode utility enables or disables the ability of a VOB

to support interop text mode views. This utility does not physically convert or modify files in any

way; rather, it affects the information recorded for text file versions in the VOB database. For a

detailed discussion of interop text mode, see the Administrator’s Guide.

RESTRICTIONS

Identities: You must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: (Replicated VOBs only) No mastership restrictions.

Product Command Type

ClearCase command

ClearCase LT command

Platform

UNIX

Windows

772 Command Reference

msdostext_mode

OPTIONS AND ARGUMENTS

With no options, msdostext_mode does the following:

1. Directs the VOB to store line counts in the VOB database for all versions of all elements of

type text_file and compressed_text_file (and any element types derived from these).

2. Enables interop text mode support, so that line counts can be recorded for newly created

versions.

–c
Converts the VOB but does not enable interop text mode support. Running

msdostext_mode periodically (as a cron or at job, for example) with –c enabled offers a

small performance advantage over having the VOB continually track file sizes for all

new versions. The disadvantage is that recorded file sizes become increasingly

inaccurate as new versions are checked in between invocations of msdostext_mode –c
For this reason, we do not recommend this usage of the utility..

Do not use this option for the initial conversion of a VOB. This option is intended to

allow for conversions of a replicated VOB subsequent to its initial conversion so that any

elements replayed from a VOB that is not enabled for interop text mode support can get

line counts.

–d
Disables interop text mode support.

–r
Resets the line counters for elements of type text_file that have been changed to a binary

type. Generally speaking, chtype resets the line counter when it changes a text element

type to a binary type, but in some circumstances—for example, with VOBs created under

older releases of ClearCase—it is necessary to use this option to reset the counter

–f
Forces a recalculation of the line count of all VOB objects of type text_file. Sometimes the

stored line count and actual line count of a text element can diverge. Symptoms include

truncated files and snapshot view update failures. Usethis option to fix such problems.

vob-stg-pname
Storage directory pathname of the VOB.

SEE ALSO

mkview, Administrator’s Guide

Reference Pages 773

mv

mv
Moves or renames an element or VOB link

APPLICABILITY

SYNOPSIS

• Rename:

mv | move [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment] pname target-pname

• Move to another directory:

mv | move [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment] pname [pname ...] target-dir-pname

DESCRIPTION

NOTE: The directory where the element to be moved or renamed resides must be checked out. The

destination directory must also be checked out; this directory may be the same as the source

directory. mv appends an appropriate line to the checkout comment for all relevant directories.

The mv command changes the name or location of an element or VOB symbolic link. For a file

element that is checked out to your view, it relocates the checked-out version, also. (That is, it

moves the view-private file with the same name as the element.) If the version is checked out to

another view, it issues a warning:

cleartool: Warning: Moved element with checkouts to "overview.doc";
view private data may need to be moved.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

774 Command Reference

mv

The mv command can move an element only within the same VOB. To move an element to

another VOB, use the relocate command.

NOTE: The mv command does not affect the previous versions of the directory containing the

element. If you set your config spec to select a previous version of the directory, you see the old

name of the element.

Moving in Attache

In Attache, if the move operation would overwrite an existing writable file or directory subtree

containing writable files in the workspace, a confirming query is issued. Otherwise, local files or

directories corresponding to successfully renamed elements in the view are moved or renamed

as well.

Moving in Snapshot Views

When you move a file element in a snapshot view, only the to/from pathnames you specify are

updated in the view. If the view contains multiple copies of the element (because VOB symbolic

links or hard links exist), the copies are not updated. To update the copies, you must use the

update command.

If the move operation would overwrite a writable file or directory subtree containing writable

files, mv renames the files to filename.renamed.

Moving View-Private or Attache Workspace Objects

This command is for VOB-database objects. To rename or move view-private files, use an

operating system command. To rename or move local files in the Attache workspace, use the

Windows rename or move command in a DOS window or in the File Manager.

RESTRICTIONS

Identities: No special identity is required.

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). Seethe comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

Reference Pages 775

mv

SPECIFYING THE EXISTING OBJECTS. Default: None.

pname
One or more pathnames, specifying elements or VOB links. If you specify more than one

pname, you must specify a directory (target-pname) as the new location.

SPECIFYING THE NEW LOCATION. Default: None.

target-pname
The new location for the single element or VOB link specified by pname. Both pname and

target-pname must specify locations in the same VOB. An error occurs if an object already

exists at target-pname.

target-dir-pname
The pathname of an existing directory element, to which the elements or links are to be

moved. This directory must be located in the same VOB as the objects being moved.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In all the examples, all directories involved must be checked out.

• Rename a C-language source file from hello.c to hello_1.c.

cmd-context mv hello.c hello_1.c
Moved "hello.c" to "hello_1.c".

• Move all files with a .c extension into the src directory.

cmd-context mv *.c src
Moved "cm_add.c" to "src/cm_add.c".
Moved "cm_fill.c" to "src/cm_fill.c".
Moved "convolution.c" to "src/convolution.c".
Moved "hello.c" to "src/hello.c".
Moved "hello_old.c" to "src/hello_old.c".
Moved "messages.c" to "src/messages.c".
Moved "msg.c" to "src/msg.c".
Moved "util.c" to "src/util.c".

776 Command Reference

mv

• Rename a symlink from messages.c to msg.lnk, and show the result with ls.

cmd-context mv messages.c msg.lnk
Moved "messages.c" to "msg.lnk".

cmd-context ls -long msg.lnk
symbolic link msg.lnk --> msg.c

SEE ALSO

checkout, cd, ln, ls, relocate, update

Reference Pages 777

mvfscache

mvfscache
Controls and monitors MVFS caches (dynamic views only)

APPLICABILITY

SYNOPSIS

• Determine cache status:

mvfscache [cache_name]

• Control cache operation:

mvfscache { –e cache_list | –d cache_list | –f cache_list }

• Display name cache contents:

mvfscache –p [–n name] [–v dbid] [–i]

DESCRIPTION

NOTE: This utility is not intended for general use. It is intended primarily to help ClearCase

engineering and Rational Technical Support personnel diagnose problems with the MVFS. For

information on user-level cache commands, see the getcache and setcache reference pages.

mvfscache manipulates a dynamic view host’s MVFS caches, which are used to optimize file

system performance.

RESTRICTIONS

Identities: No special identity is required to flush a cache. To enable or disable a cache, you must

have one of the following identities:

• root (UNIX)

• Local Windows system administrator (Windows)

• Member of the Windows Administrators group (Windows)

Product Command Type

ClearCase command

Platform

UNIX

Windows

778 Command Reference

mvfscache

Locks: No locks apply.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

DETERMINING CACHE STATUS. With no options or arguments, mvfscache displays the

enabled/disabled status of all MVFS caches. If you don’t use any of the options, but specify a

cache name as an argument, mvfscache does not display any output; it returns an appropriate

exit status:

CONTROLLING CACHE OPERATION. Use one of the following options to control a cache, a set of

caches, or cache-related behavior.

–e cache-list
(Must be root (UNIX) or Administrator (Windows)) Enables the specified caches and

(with cto) cache-related behavior. Descriptions of these caching parameters are in the

Administrator’s Guide. The cache-list must be comma-separated, with no white space, and

can include one or more of the following keywords.

–d cache-list
(Must be root (UNIX) or Administrator (Windows)) Disables the specified caches and

cache-related behavior. The syntax is the same as for –e.

–f cache-list
Flushes the specified caches. Use this option only under direction from Rational

0 specified cache is enabled

1 specified cache is disabled

attr Attribute cache. Caches information on recently accessed file-system

objects.

name Name cache. Caches name lookup translations for recently accessed

files and directories.

slink Symbolic link text cache. Caches the contents of recently accessed

symbolic links.

rvc VOB root version cache. Caches VOB mount point data for each

dynamic view.

cto (cache-related behavior) Close-to-open consistency behavior. Forces

a ”get file info”-type operation to the view_server on every

operating-system open operation.

Disabling this behavior may boost performance if mvfsstat or

mvfstime shows heavy cto activity and the user is not sharing views.

However, disabling this behavior may result in consistency loss.

Reference Pages 779

mvfscache

Technical Support. The cache-list can include any number of the following keywords; the

list must be comma-separated, with no white space.

DISPLAYING NAME CACHE CONTENTS. Use –p by itself or with one or more of –n, –v, and –i. The

name cache contains the name lookup translations for recently accessed files and directories. The

first line of a name lookup translation has this form:

–p
Prints the contents of the name cache.

–n name
Prints only the entries in the name cache that match name.

–v dbid
Prints only the entries in the name cache that match directory-dbid (database-ID for the

directory in which name is found) or lookup-dbid (database-ID for the result of the

lookup).

–i
Includes invalidated name cache entries in the output. These are entries that have been

marked bad and are not used in lookups, but are retained for statistical purposes. This

helps determine how often invalid entries are replaced with new data. Invalidations

usually happen when cleartool or clearmake changes something in the VOB and knows

that the MVFS needs to refetch that information for its cache.

EXAMPLES

• Determine the status of all caches.

mvfscache
Attr: on
Name: on
Rvc: on
Slink: on
Cto: on

• Clear busy mount points, to prepare for unmounting VOBs.

mvfscache –f mnode

mnode Mnode freelist cache. Flushes the attr and slink caches, open

freelist files, and mnode storage for all freelist mnodes.

name Name cache.

rvc VOB root version cache.

lcred Global credentials cache for cleartext lookup permissions.

VOB-tag view:directory-dbid name ==> view:lookup-dbid

780 Command Reference

mvfscache

• Enable the name and attr caches:

mvfscache –e name,attr

SEE ALSO

mvfslog, mvfsstat, mvfsstorage, mvfstime, mvfsversion, csh(1), stat(2)

Reference Pages 781

mvfslog

mvfslog
Sets or displays MVFS console error logging level

APPLICABILITY

SYNOPSIS

• UNIX only:

mvfslog [–kern⋅log file | –nokern⋅log]

[none | error | warn | info | stale | debug] [–quiet]

• Windows only:

mvfslog [none | error | warn | info | stale | debug]

DESCRIPTION

The mvfslog command sets or displays the verbosity level and location for MVFS console error

logging. The initial setting is error, in which only RPC errors and actual MVFS errors are logged;

warnings and diagnostics are suppressed.

Each logging level includes messages from the previous levels. For example, info includes

messages from error and warn.

RESTRICTIONS

Identities: No special identity is required to display the logging level and location. To change the

level or location, you must have one of the following identities:

• root (UNIX)

• Local Windows system administrator (Windows)

• Member of the Windows Administrators group (Windows)

Locks: No locks apply.

Mastership: (Replicated VOBs only) No mastership restrictions.

Product Command Type

ClearCase command

Platform

UNIX

Windows

782 Command Reference

mvfslog

OPTIONS AND ARGUMENTS

SPECIFYING A LOG FILE. Default: MVFS output is written to /var/adm/atria/log/mvfs_log.

–kern⋅log file
Specifies a log file for MVFS output.

–nokern⋅log
Closes the log file and directs MVFS output to the system console.

SETTING THE LOGGING LEVEL. Default: Displays the current error logging level. Use one of the

following keywords to specify a new level; none is the least verbose; debug is the most verbose.

SUPPRESSING OUTPUT. Default: Output is written to the log as specified by the logging level.

–quiet
Suppresses output, returning only the exit status.

SEE ALSO

mvfscache, mvfsstat, mvfsstorage, mvfstime, mvfsversion

none RPC errors only.

error MVFS errors are logged (default setting).

warn MVFS warnings are logged.

info MVFS diagnostics on some expected errors are logged.

stale MVFS diagnostics related to ESTALE errors are logged.

debug Verbose information on many expected errors.

Reference Pages 783

mvfsstat

mvfsstat
Displays MVFS statistics

APPLICABILITY

SYNOPSIS

• UNIX:

mvfsstat [–icrvVhalzAdF] [–o outfile] [time] [count]

• Windows:

mvfsstat [–iIcrvVhalzAdF] [–o outfile] [time] [count]

DESCRIPTION

NOTE: This utility is not intended for general use. It is intended primarily to help ClearCase

engineering and Rational Technical Support personnel diagnose problems with the MVFS. For

information on improving ClearCase client performance, see the Administrator’s Guide.

The mvfsstat command displays MVFS usage and operating statistics, including cumulative

statistics on MVFS cache usage, rpc statistics, cleartext I/O counts, vnode operation counts, and

VFS operation counts. This data is useful for evaluating file-system performance and

determining whether MVFS cache sizes require adjustment.

MVFS CACHE STATISTICS

The –c option reports on the usage of the host’s MVFS caches. This report is cumulative, covering

the entire period since the MVFS was reloaded. The following example covers a 23-day period:

Product Command Type

ClearCase command

Platform

UNIX

Windows

784 Command Reference

mvfsstat

----------------- Fri Jul 16 16:20:16 1999 ---------------------
dnlc: 2267082 2229727(98.4%) hit 1301984 dot 846301 dir 62901 reg 18541 noent

37355(1.6%) miss 25099 events
42761(1.9%) add 27820 dir 7368 reg 7573 noent

attr: 2355186 2349946(99.8%) hit 120 lvut
5240(0.2%) miss (3902cto+0gen+970timo+74new,294ev;35lvut)

 57302 updates 5546unexp+2206exp mod, 2295 vmod

The following sections describe the particular statistics that are useful in tuning MVFS

performance on a ClearCase client host.

Directory Name Lookup Cache (dnlc)

The dnlc section reports on usage of a name-lookup cache that maps pathnames to ClearCase

identifiers. Note that the value precedes the keyword. For example, 1301984 dot means that the

reported value of the "dot" statistic is 1301984.

Cache Hits. The hit line reports on the number of times an entry type was found in the cache

(hit):

This cache has low hit rates (around 50%) for activities that walk a large tree—for example, a find
command, or a recursive clearmake that examines many files and determines that nothing needs

to be built.

Cache Misses. The miss line reports on total cache misses. The events value is the number of

cache misses that occurred because of a significant VOB event, a time-out of the entry, or vnode

recycling. Cache misses can occur because there was no entry in the cache. The total number of

cache misses equals the events value plus the number of misses occurring because there was no

entry in the cache.

Cache Additions. The add line reports on cache misses that occurred because a new entry was

being added to the cache. The additions are categorized as directory entries (dir), file entries

(reg), and ENOENT entries (noent).

Attribute Cache

The attr section reports on usage of a cache of stat(2) returns (UNIX) or object status inquiry

records (Windows). This cache generally has hit rates comparable to that for the directory name

lookup cache.

dot Number of times the current working directory was looked up (always a

cache hit)

dir Number of times a directory object entry was found in the cache.

reg Number of times a file object entry was found in the cache.

noent Number of times a cached File not found (ENOENT) entry was found.

Reference Pages 785

mvfsstat

RESTRICTIONS

Identities: No special identity is required unless you specify the –z option. For –z, you must have

one of the following identities:

• root (UNIX)

• Local Windows system administrator (Windows)

• Member of the Windows Administrators group (Windows)

Locks: No locks apply.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

time
Time in seconds between samples. Display deltas on each sample. If you omit this

option, only the absolute values of all information are printed.

count
Number of samples. If omitted, defaults to “infinite”.

–o outfile
Writes the output to outfile.

–i
Displays cleartext I/O counts and wait times.

–I
Displays count and wait times for the NT I/O Request Packets that the MVFS has

processed.

–c
Displays statistics for the MVFS caches, as described in MVFS CACHE STATISTICS
above.

–r
Displays MVFS remote-procedure-call (RPC) statistics. These statistics include both

counts and real-time waited. Real-time waited may be greater than 100% of a sample

period in two cases:

In general, real-time percentages are meaningful only when a single process is accessing

a VOB.

• When an operation took longer to complete than the sample period; for example,

60 seconds of wait time is recorded in a 30-second sample.

• Multiple processes are waiting at the same time.

786 Command Reference

mvfsstat

–v
Displays counts of vnode operations.

–V
Displays counts of vfs operations.

–h
Displays an RPC histogram. Cleartext fetch RPCs are tallied separately from all other

RPCs.

–a
Displays auditing statistics.

–l
Adds more detail to the statistics generated by –c, –r, –i, –I, –v, and/or –V, by providing

a breakdown by individual operations. With –c, also provides per-cache-entry hit ratios.

–z
Resets all running counters to zero.

–A
Displays all statistics.

–d
With –c or –A, displays additional debugging information for use in diagnosing

problems. Use this option only under direction from Rational Technical Support.

–F
Displays statistics for mnode operations and the directory name lookup cache. Use this

option only under direction from Rational Technical Support.

SEE ALSO

mvfscache, mvfslog, mvfsstorage, mvfstime, mvfsversion

Reference Pages 787

mvfsstorage

mvfsstorage
Lists data container pathname for MVFS file

APPLICABILITY

SYNOPSIS

• UNIX:

mvfsstorage pname ...

• Windows only—Display pathname of data container:

mvfsstorage [–a | –k | –u] pname ...

• Windows only—Display help on command options:

mvfsstorage –h

DESCRIPTION

mvfsstorage lists the pathname of an MVFS file’s data container. The pathname may be within

view-private storage, the source pool, or the cleartext pool, depending on the kind of file.

Product Command Type

ClearCase command

Platform

UNIX

Windows

For a ... mvfsstorage displays

View-private file (including checked-out

versions, unshared derived objects, and

nonshareable derived objects)

Pathname to the data container in the view’s

private storage area

788 Command Reference

mvfsstorage

mvfsstorage is intended for use in finding discrepancies in OS-level access rights between the

view and the underlying MVFS storage. Such discrepancies may occur when you do not have

access rights to the remote underlying storage (for example, in UNIX, the storage may be owned

by root). If you encounter a permissions error that seems unfounded, run this utility as a

diagnostic and ensure that you have valid access to the remote storage directory and specifically

to the underlying data container pathname.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

–h
Displays help on command options.

–a
Displays both kernel and UNC/drive letter pathnames.

–k
Displays pathname in kernel mode format, which includes the device name.

–u
Displays the pathname in user mode format. The path is displayed in drive letter form

for local paths and automounted NFS volumes, and in UNC form for remote SMB or

nonautomounted NFS paths.

pname ...

One or more names of files whose pathnames are under a VOB-tag (an MVFS object). For

directories and non-MVFS objects, mvfsstorage echos the pathnames you give it.

Version whose element uses a single data

container file

Pathname to the data container in the VOB

cleartext storage pool

NOTE: If you have accessed the version

recently, this is the actual pathname of the data

container. If you have not accessed the version

recently, this is the pathname to which

ClearCase would extract the version.

Version whose element uses a separate data

container file for each version

Pathname to the data container in the VOB

source storage pool

For a ... mvfsstorage displays

Reference Pages 789

mvfsstorage

EXAMPLES

• For a view-private file, compare view-level ownership and permissions against those on the

file’s underlying storage location.

% ls -l unixV7 ‘/usr/atria/etc/mvfsstorage unixV7‘
-rwxrwxrwx 1 nobody 65534 2210032 May 12 09:33 /net/myhost/home/myview/

.s/0008.VOB/016D.2E2F.unixV7*
-rwxrwxrwx 1 root sys 2210032 May 12 09:33 unixV7*

• For a local view-private file, return data on the file’s underlying storage location.

Z:\myvob\mydir> mvfsstorage util.c
D:\myviews\anneview.vws\.s\0008\016D.2E2F.util.c

• For a remote VOB file, return data on the file’s underlying storage location.

C:\users> mvfsstorage z:\vob1\src\foo.c
\\neon\usr3\vobs\vob1.vbs\c\cdft\24\27\2cf992fb839477d2b77300018909a766

SEE ALSO

mvfscache, mvfslog, mvfsstat, mvfstime, mvfsversion, Administrator’s Guide

790 Command Reference

mvfstime

mvfstime
Summarizes MVFS activity while a command is executing

APPLICABILITY

SYNOPSIS
mvfstime [–icrvVhalzAd] [–o outfile] [time] [count] command [args]

DESCRIPTION

The mvfstime command executes a command and reports on:

• Timing statistics

• MVFS usage statistics, similar to those generated by mvfsstat.

Use this command to perform timing experiments for applications running in a ClearCase

environment.

IMPORTANT: The statistics gathered while command is running under mvfstime are systemwide

statistics for that time period and are not limited to that command’s activities. To get an accurate

reading of the MVFS activity of command, make sure that no other activity is taking place on the

machine when you invoke mvfstime.

See the mvfsstat reference page for an explanation of MVFS statistics. See the csh(1) reference

page for information on UNIX statistics.

RESTRICTIONS

See the mvfsstat reference page for a description of the restrictions.

OPTIONS AND ARGUMENTS

See the mvfsstat reference page for a description of the command-line options.

Product Command Type

ClearCase command

Platform

UNIX

Windows

Reference Pages 791

mvfstime

EXAMPLES

• Generate timing statistics for an invocation of the clearmake program.

% /usr/atria/etc/mvfstime -iclr clearmake
----------------- Started at Mon Jul 19 10:58:48 1999 -------------------
 cp test2.txt file2sub.txt

 cp file2sub.txt file2.txt

 cat file1.txt > foo
 cat file2.txt >> foo

----------------- Ended at Mon Jul 19 10:59:01 1999 -------------------
time: 0.7u 0.9s 0:13 13% 0+0io 0pf+0w
Directory Name Cache: 93 calls
 82 (88.2%) hit:
 24 current directory
 0/1 directories (0.0%)
 42/48 regular files (87.5%)
 16/26 name not found (61.5%)
 11 (11.8%) miss
 0 event misses
 17 (18.3%) add:
 1 directories
 6 regular files
 10 name not found
Attribute cache: 287 calls
 274 (95.5%) hit: 2 lvut-generated
 13 (4.5%) miss:
 10 close-to-open
 0 build generation mismatch
 0 timed out
 0 new
 3 vob/view event;
 0 lvut also missed
 56 updates
 14 unexpected modifications
 7 expected modifications
 0 VOB/view cache modifications

792 Command Reference

mvfstime

Cleartext I/O:
 Cleartext layer:
 -------clriotype------calls---c/s------rt--rt/call-rt%
 get 3 0.23 0.001 0.000 0%
 create 5 0.38 0.142 0.028 1%
 read 19 1.46 0.017 0.001 0%
 write 19 1.46 0.006 0.000 0%
 open 12 0.92 0.000 0.000 0%
 clrio total: 58 4.46 0.167 1%

 MVFS layer:
 -------clriotype------calls---c/s------rt--rt/call-rt%--mvfs%
 cto_getattr 10 0.77 0.016 0.002 0%
 read 19 1.46 0.002 0.000 0% 11%
 write 19 1.46 0.002 0.000 0% 25%
 get/open/cto 16 1.23 0.216 0.013 2% 92%

Remote calls to view server:
 ----------rpc-------calls---c/s------rt--rt/call
 setattr 18 1.38 0.176 0.010 1%
 create 5 0.38 0.102 0.020 1%
 rename 2 0.15 0.132 0.066 1%
 readdir 1 0.08 0.006 0.006 0%
 cltxt 3 0.23 0.012 0.004 0%
 chg oid 7 0.54 0.201 0.029 2%
 revalidate 1 0.08 0.007 0.007 0%
 ch mtype 3 0.23 0.028 0.009 0%
 lookup 11 0.85 0.036 0.003 0%
 getattr 13 1.00 0.021 0.002 0%
 replica root 1 0.08 0.002 0.002 0%
 rpc total: 65 5.00 0.722 6% 0
retransmissions

RPC handles:
 gets 65
 creates 0 (0% of gets)
 destroys 0
Largest excessive RPC delay: 0 seconds

Reference Pages 793

mvfstime

• Generate timing statistics for an invocation of the omake program.

G:\smg_bld> mvfstime –iclr omake
copy test.txt test
 1 file(s) copied.
Child process created on 07/19/1999 at 10:52:20.488
Child process ended on 07/19/1999 at 10:52:25.855
time: 0.1u 0.2s 0:05 6%
Directory Name Cache: 102 calls
 88 (86.3%) hit:
 1 current directory
 40/40 directories (100.0%)
 26/30 regular files (86.7%)
 21/28 name not found (75.0%)
 14 (13.7%) miss
 1 event misses
 11 (10.8%) add:
 0 directories
 4 regular files
 7 name not found
Attribute cache: 250 calls
 234 (93.6%) hit: 0 lvut-generated
 16 (6.4%) miss:
 13 close-to-open
 0 build generation mismatch
 0 timed out
 0 new
 3 vob/view event;
 0 lvut also missed
 45 updates
 4 unexpected modifications
 4 expected modifications
 0 VOB/view cache modifications
Cleartext I/O:
 Cleartext layer:
 -------clriotype------calls---c/s------rt--rt/call-rt%
 get 4 0.72 0.010 0.003 0%
 create 2 0.36 0.000 0.000 0%
 read 7 1.27 0.000 0.000 0%
 write 7 1.27 0.000 0.000 0%
 open 13 2.35 0.000 0.000 0%
 clrio total: 33 5.97 0.010 0%

 MVFS layer:
 -------clriotype------calls---c/s------rt--rt/call-rt%--mvfs%
 cto_getattr 13 2.35 0.030 0.002 1%

794 Command Reference

mvfstime

 read 7 1.27 0.000 0.000 0% 0%
 write 7 1.27 0.000 0.000 0% 0%
 get/open/cto 41 7.42 0.060 0.001 1% 60%

Remote calls to view server:
 ----------rpc-------calls---c/s------rt--rt/call
 setattr 5 0.90 0.010 0.002 0%
 create 2 0.36 0.020 0.010 0%
 remove 1 0.18 0.000 0.000 0%
 rename 1 0.18 0.010 0.010 0%
 readdir 8 1.45 0.010 0.001 0%
 chg oid 7 1.27 0.060 0.009 1%
 revalidate 8 1.45 0.010 0.001 0%
 ch mtype 1 0.18 0.010 0.010 0%
 lookup 6 1.09 0.010 0.002 0%
 getattr 16 2.89 0.030 0.002 1%
 rpc total: 55 9.95 0.170 3% 0
retransmissions

RPC handles:
 gets 55
 creates 0 (0% of gets)
 destroys 0
Largest excessive RPC delay: 0 seconds

SEE ALSO

csh(1), mvfscache, mvfslog, mvfsstat, mvfsstorage, mvfsversion

Reference Pages 795

mvfsversion

mvfsversion
Displays MVFS version string

APPLICABILITY

SYNOPSIS
mvfsversion [–r] [–s]

DESCRIPTION

The mvfsversion command displays the version string of your host’s MVFS, in RCS or SCCS

format. This string also appears at operating system startup.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

Default: The MVFS version string is displayed in SCCS format.

–s
Same as default.

–r
Displays the version string in RCS format.

EXAMPLES

• Display the MVFS version string in RCS format.

mvfsversion –r
$Header: MVFS version 4.0 (Wed Jan 21 02:15:44 EST 1999) $

SEE ALSO

mvfscache, mvfslog, mvfsstat, mvfsstorage, mvfstime

Product Command Type

ClearCase command

Platform

UNIX

Windows

796 Command Reference

mvws

mvws
Move or rename current workspace

APPLICABILITY

SYNOPSIS
mvws ws-dir-name

DESCRIPTION

The mvws command changes the name of the current workspace storage directory or moves it

to a new parent directory in the local file system.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE WORKSPACE’S NEW LOCATION. Default: None. You must specify a new location for

the workspace storage directory.

ws-dir-name
If ws-dir-name already exists, it specifies the parent directory into which the workspace

storage directory will be moved. If ws-dir-name does not already exist, it specifies the new

name for the workspace storage directory.

EXAMPLES

• Show a listing of the current workspace, and then move its storage directory to the bin
directory. At an Attache prompt:

lsws

Product Command Type

Attache command

Platform

UNIX

Windows

Workspace name Local storage directory Server host

 jed_ws C:\users\jo\jed_ws agora

Reference Pages 797

mvws

mvws c:\users\jo\bin

lsws

• Show a listing of the current workspace, and then rename its storage directory. At an

Attache prompt:

lsws

mvws c:\users\rdc\darren_ws

lsws

SEE ALSO

attache_command_line_interface, mkws, lsws, rmws

Workspace name Local storage directory Server host

 jed_ws C:\users\jo\bin\jed_ws agora

Workspace name Local storage directory Server host

 rdc_ws C:\users\rdc\rdc_ws neon

Workspace name Local storage directory Server host

 darren_ws C:\users\rdc\darren_ws neon

798 Command Reference

omake

omake
ClearCase build utility — maintain, update, and regenerate groups of programs

APPLICABILITY

SYNOPSIS
omake [–f makefile ...] [–b builtins-file ...]

[–akinservdphzACDGM] [–x file] [-OLWT]
[-EN | -EP | -EO] [-#1] [-#2] [-#4] [-#8]
[macro=value ...] [target_name ...]

DESCRIPTION

omake is a ClearCase utility for making (building) software. It includes many of the

configuration management (CM) facilities provided by the clearmake utility. It also features

emulation modes, which enable you to use omake with makefiles that were constructed for use

with other popular make variants, including Microsoft NMAKE, Borland Make and the PVCS

Configuration Builder (Polymake).

NOTE: omake is intended for use in dynamic views. You can use omake in a snapshot view, but

none of the features that distinguish it from ordinary make programs — build avoidance, build

auditing, derived object sharing, and so on — works in snapshot views. The rest of the

information in this reference page assumes you are using omake in a dynamic view.

omake features a number of ClearCase extensions:

• Configuration Lookup — a build-avoidance scheme that is more sophisticated than the

standard scheme based on the time-modified stamps of built objects. For example, this

guarantees correct build behavior as C-language header files change, even if the header files

are not listed as dependencies in the makefile.

• Derived Object Sharing — developers working in different views can share the files

created by omake builds.

Product Command Type

ClearCase command

ClearCase LT command

Platform

Windows

Reference Pages 799

omake

• Creation of Configuration Records — software bill-of-materials records that fully

document a build and support rebuildability; also includes automatic dependency

detection.

Related Reference Pages

The following reference pages include information related to omake operations and results:

See also Building Software.

View Context Required

For a build that uses the data in one or more VOBs, the command interpreter from which you

invoke omake must have a view context—you must be on a drive assigned to a view or the

dynamic-views drive (default: M:\). If you want derived objects to be shared among views, you

should be on a drive assigned to a view.

You can build objects in a standard directory, without a view context, but this disables many of

omake’s special features.

omake AND MAKEFILES

omake is designed to read makefiles in a way that is compatible with other make variants. For

details, see the OMAKE Guide.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

omake supports the options below. In general, standard make options are lowercase characters;

omake extensions are uppercase. Options that do not take arguments can be ganged on the

command line (for example, –rOi).

–f makefile
Use makefile as the input file. If you omit this option, omake looks for input files named

makefile and Makefile (in that order) in the current working directory. You can use more

than one –f makefile argument pair. Multiple input files are effectively concatenated.

clearmake Alternative make utility - provides the same functionality as the

clearmake tool in the UNIX version of ClearCase.

clearaudit Alternative to make utilities, for performing audited builds without

makefiles.

lsdo cleartool subcommand to list derived objects created by omake or

clearaudit.
catcr, diffcr cleartool subcommands to display and compare configuration

records created by omake or clearaudit.
rmdo cleartool subcommand to remove a derived object from a VOB.

800 Command Reference

omake

–b file
Specify an initialization (built-ins) file to be read instead of the default. If file is the empty

string, omake does not read an initialization file. Valid empty strings are "–b " (one

space), –b" ", or –b "".

NOTE: If you do not include the –b option, omake uses the file named by the OMAKECFG

environment variable. If this environment variable is not set, omake looks for a file

called make.ini in (in order) the current directory, ccase-home-dir\bin, and in directories

specified by the INIT environment variable.

–a
Rebuild all goal targets specified on the command line, along with the recursive closure

of their dependencies, regardless of whether or not they need to be rebuilt.

–k
Abandon work on the current entry if it fails, but continue on other targets that do not

depend on that entry.

–i
Ignore error codes returned by commands.

–n
(no-execute) List command lines from the makefile for targets which need to be rebuilt,

but do not execute them. Even lines beginning with an at-sign (@) character are listed.

To override this option for a recursive make, use the .MAKE target attribute. For

example:

nt .MAKE :
cd nt.dir & $(MAKE) $(MFLAGS)

Typing the command omake –n nt does a cd nt.dir , then a recursive make with omake

–n . Without the .MAKE attribute, omake would display but not execute the (cd nt.dir &
$(MAKE) $(MFLAGS) line.

–s
(silent) Do not list command lines before executing them.

–e
Environment variables override macro assignments within the makefile. (But

macro=value assignments on the command line override environment variables.)

–r
Do not use the built-in rules.

–v
(verbose) Slightly more verbose than the default output mode. Particularly useful

features of verbose mode include:

Reference Pages 801

omake

–d
(debug) Quite verbose; appropriate only for debugging makefiles.

–p
Lists all target descriptions and all macro definitions, including target-specific macro

definitions and implicit rules.

–h
Displays the command-line syntax.

–x file
Redirects error messages into file. If file is “ -” , the error messages are redirected to

standard output.

–z
Ignore the MFLAGS macro.

–A
Use automatic dependencies. This option is enabled only if you are not using

configuration lookup (because you are processing non-MVFS files or using the –W
option).

–C
(Check out DOs) Before building or winking in a target, omake determines whether the

target is a checked-in DO visible in the view at the path named in the makefile. If such a

DO is found, omake -C checks it out before rebuilding it or winking it in.

–D
Keep-directory mode. The first access of a directory to look for a file results in the

directory being read into memory.

–G
Restricts dependency checking to makefile dependencies only — those dependencies

declared explicitly in the makefile or inferred from an inference rule. All detected

dependencies are ignored. For safety, this automatically disables winkin of DOs from

other views; it is quite likely that other views select different versions of detected

dependencies.

For example, a derived object in your view may be reused even if it was built with a

different version of a header file than is currently selected by your view. This option is

mutually exclusive with –W.

• listing of why omake does not reuse a DO that already appears in your view (for

example, because its CR does not match your build configuration, or because

your view does not have a DO at that pathname)

• listing of the names of DOs being created

802 Command Reference

omake

–M
Makes the makefile before reading it.

–EN
Emulates Microsoft NMAKE utility.

–EP
Emulates PVCS Configuration Builder (PolyMake) utility.

–EO
Default emulation mode (that is, no emulation).

For details on emulation features, see the OMAKE Guide.

–O
–L (mutually exclusive)

–O compares only the names and versions of objects listed in the targets’ CRs; it does

not compare build scripts or build options. This is useful when this extra level of

checking would force a rebuild that you do not want. Examples:

–L makes rebuild decisions using the standard algorithm, based on time-modified

stamps; configuration lookup is disabled. Also suppresses creation of configuration

records. All MVFS files created during the build will be view-private files, not derived

objects.

–W
Restricts configuration lookup to the current view only. Winkin of DOs from other views

is disabled.

–T
Examines sibling derived objects (objects created by the same build rule that created the

target) when determining whether a target object in a VOB can be reused (is up to date).

By default, when determining whether a target can be reused, omake ignores

modifications to sibling derived objects. –T directs omake to consider a target out of date

if its siblings have been modified or deleted.

–#1
Read-time debugging mode. Displays omake reading makefiles and interpreting

conditional directives.

• The only change from the previous build is the setting or canceling of a

“compile-for-debugging” option.

• A target was built using a makefile in the current working directory. Now, you

want to reuse it in a build to be performed in the parent directory, where a

different makefile builds the target (with a different script, which typically

references the target using a different pathname).

Reference Pages 803

omake

–#2
Displays a warning when omake tries to expand the value of an undefined macro.

–#4
Displays a warning when omake reads a makefile line that it can’t understand.

–#8
Do not delete generated response files and batch files.

MAKE MACROS AND ENVIRONMENT VARIABLES

String-valued variables called make macros can be used anywhere in a makefile: in target lists,

in dependency lists, and/or in build scripts. For example, the value of make macro CFLAGS can

be incorporated into a build script as follows:

cl $(CFLAGS) msg.c

Conflict Resolution

Conflicts can occur in specifications of make macros and environment variables. For example,

the same make macro might be specified both in a makefile and on the command line; or the

same name might be specified both as a make macro and as an environment variable.

omake resolves such conflicts similarly to other make variants:

• Make macros specified on the command line override any other settings.

• Make macros specified in a makefile or make.ini file have the next highest priority.

• Builtin macros override EVs, which in turn have the lowest priority.

Using the –e option changes the precedence rules — EVs get higher priority than make macros

specified in a makefile.

CONFLICT RESOLUTION DETAILS. The following discussion treats this topic more precisely (but

less concisely).

omake starts by converting all EVs in its environment to make macros. These EVs will also be

placed in the environment of the command interpreter process in which a build script executes.

Then, it adds in the make macros declared in the makefile. If this produces name conflicts, they

are resolved as follows:

• If omake was not invoked with the –e option, the make macro wins: the macro value

overwrites the EV value in the environment.

• If omake was invoked with the –e option, the EV wins: the EV value becomes the value of

the make macro.

Finally, omake adds make macros specified on the command line; these settings are also added

to the environment. These assignments always override any others that conflict.

804 Command Reference

omake

omake reads the following environment variable at startup:

CCASE_AUDIT_TMPDIR (or CLEARCASE_BLD_AUDIT_TMPDIR)

Sets the directory where omake creates temporary build audit files. If this variable is not

set, omake creates these files in %tmp%. All temporary files are deleted when omake
exits. CCASE_AUDIT_TMPDIR must not name a directory under a VOB-tag; if it does,

omake prints an error message and exits.

CCASE_AUTO_DO_CI

Checks in DOs checked out by omake –C unless the build of the corresponding target

fails or the automatic checkout of the DO or a sibling DO fails. Checkout comments are

preserved. The checkin is invoked with the -ptime option to preserve the DO’s

modification time. This environment variable has no effect unless you specify –C.

Default: Undefined

BUILD REFERENCE TIME AND BUILD SESSIONS

omake takes into account the fact that software builds are not instantaneous. As your build

progresses, other developers can continue to work on their files, and may check in new versions

of elements that your build uses. If your build takes an hour to complete, you would not want

build scripts executed early in the build to use version 6 of a header file, and scripts executed

later to use version 7 or 8. To prevent such inconsistencies, omake locks out any version that

meets both these conditions:

• The version is selected by a config spec rule that includes the LATEST version label.

• The version was checked in after the time the build began (the build reference time).

This reference-time facility applies to checked-in versions of elements only; it does not lock out

changes to checked-out versions, other view-private files, and non-MVFS objects. omake
automatically adjusts for the fact that the system clocks on different hosts in a network may be

somewhat out of sync (clock skew).

For more information, see Building Software.

EXIT STATUS

omake returns a zero exit status if all goal targets are successfully processed. It returns various

nonzero exit status values when the build is not successful. See the OMAKE Guide.

EXAMPLES

• Build target hello.exe without checking build scripts or build options during configuration

lookup. Be moderately verbose in generating status messages.

> omake –v –O hello.exe

Reference Pages 805

omake

• Build the default target in the default makefile, with a particular value of make macro

INCL_DIR.

> omake INCL_DIR=c:\src\include_test

• Build target bgrs.exe, restricting configuration lookup to the current view only. Have

environment variables override makefile macro assignments.

> omake –e –W bgrs.exe

• Unconditionally build the default target in a particular makefile, along with all its

dependent targets.

> omake –a –f project.mk

FILES

ccase-home-dir\bin\builtins.cb
ccase-home-dir\bin\builtins.nm
ccase-home-dir\bin\make.ini

SEE ALSO

clearmake, clearaudit, cleartool, config_spec, promote_server, scrubber, Building Software,

OMAKE Guide

806 Command Reference

pathnames_ccase

pathnames_ccase
Pathname resolution, dynamic view context, and extended namespace

APPLICABILITY

SYNOPSIS

• VOB-extended pathname:

• UNIX dynamic views—Absolute VOB pathname:

/vob-tag/pname-in-vob

• Windows dynamic views—Absolute VOB pathname:

\vob-tag\pname-in-vob

• UNIX dynamic views—View-extended pathname:

/view /view-tag /full-pathname

• Windows dynamic views—View-extended pathname:

drive-letter:\view-tag\vob-tag\pname-in-vob

Product Command Type

ClearCase general information

ClearCase LT general information

Platform

UNIX

Windows

Element: element-pname@@
Branch: element-pname@@branch-pname
Version: element-pname@@version-selector
VOB symbolic link: link-pname
Derived object: derived-object-pname@@derived-object-ID

Reference Pages 807

pathnames_ccase

DESCRIPTION

This reference page describes ClearCase and ClearCase LT extensions to the standard

file/directory namespace provided by the operating system. These extensions can be used as

follows:

• From a dynamic view, you can use the pathname forms described here as arguments to any

cleartool command that takes a pathname.

• From a snapshot view, you can use the VOB-extended pathname forms as arguments to

those cleartool commands that return information about elements and versions (for

example, describe, ls, lshistory, and diff). Such operations do not require the MVFS.

However, you cannot use VOB-extended pathnames forms to check out an element version

that is not loaded into your view.

NOTE TO WINDOWS USERS: cleartool is case-sensitive. In cleartool subcommands, pathnames to

MVFS objects, including view-private files in the MVFS namespace, must be case-correct. Also

see the cleartool reference page for information on restrictions on object names.

DYNAMIC VIEW CONTEXTS

A pathname can access ClearCase or ClearCase LT data only if it has a view context:

• UNIX ONLY—SET VIEW CONTEXT — A process, typically a shell, created with the setview
command is said to have a set view context. That process, along with all of its children, is

“set to the view.”

• WORKING DIRECTORY VIEW CONTEXT — You can change the current working directory of a

process to a view-extended pathname:

% cd /view/david/vobs/proj

Such a process is said to have a working directory view context.(The process may or may not

also have a set view context.)

• VIEW-EXTENDED PATHNAME — A pathname can specify its own view context, regardless of

the current (UNIX) set view or (UNIX and Windows) working directory view contexts, if

any.

WINDOWS ONLY—DYNAMIC VIEW ACCESS MODEL

All ClearCase data is accessed through the MVFS, which, by default, occupies drive M: on each

ClearCase host. Each active view’s view-tag appears in the root directory of M:, and each active

VOB’s VOB-tag appears as a subdirectory under each active view.

From the M: drive, you can access VOBs using view-specific pathnames of the form

\view-tag\vob-tag\pname-in-vob. Typically, however, you do not work directly on the M: drive,

but on a drive you have assigned to a view.

808 Command Reference

pathnames_ccase

From any drive, you can specify view-extended pathnames of the form

M:\viewtag\vobtag\rest-of-path. If you move to the M: drive, you are in view-extended

namespace, and all VOB access is via view-extended pathnames.

To eliminate any confusion that may result from unintentional use of view-extended pathnames,

we recommend that you work from a drive letter assigned to a view. This permits you to use VOB

pathnames of the form \myvob\vob-object-pname in both cleartool and standard operating

system commands, from any view. Furthermore, this approach is required if you want to share

DOs between views at build time.

KINDS OF PATHNAMES

The following sections describe the kinds of pathnames you can use with ClearCase and

ClearCase LT.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

UNIX Only—Standard Pathnames

A standard pathname is either full or relative:

• A full pathname begins with a slash (/):

/usr/bin/cc

The slash can be implied. For example:

~bertrand/proj/doc

A full pathname is interpreted in the process’s set view context. An error occurs if you

attempt to use a full pathname to access ClearCase data in a process that is not set to a view.

• A relative pathname does not begin with a slash:

foo.c

../motif/libX.a

A relative pathname is interpreted in the process’s working directory view context, if it has one.

Otherwise, it uses the process’s set view context. If a process has neither kind of view context, an

error occurs.

A standard pathname can reference any kind of file system object: For example, /vobs/proj/BAR
references "file-system object named ’BAR’, as seen through the current view." This can be any of

the following:

Reference Pages 809

pathnames_ccase

• VERSION — If BAR names an element, the pathname references the version of that element

selected by the current view’s config spec.

• VOB SYMBOLIC LINK — BAR can name a VOB symbolic link that is visible in the current

view. Depending on the command, the link may or may not be traversed.

• DERIVED OBJECT — BAR can name a derived object that was built in the current view or was

winked in to the view.

• VIEW-PRIVATE OBJECT — BAR can name a view-private object (including a checked-out

version) located in the current view’s private storage area.

• NON-MVFS OBJECT — BAR can name an object that is not under ClearCase or ClearCase LT

control, such as objects in your home directory or in /usr/bin.

Using standard pathnames to reference MVFS objects is termed transparency: a view’s

view_server process resolves the standard pathname into a reference to the appropriate MVFS

object. In essence, transparency makes a VOB appear to be a standard directory tree.

Windows Only—Standard Pathnames

A standard pathname is either full or relative:

• A full pathname begins with an optional drive letter and a backslash (DRIVE:\, or just \).

The following full pathnames all refer to the same VOB object, main.c, using view1. The

element main.c resides in a vob with VOB-tag \vob3.

M:\view1\vob3\src\main.c
\view1\vob3\src\main.c (current drive is M:)
Z:\vob3\src\main.c (Z: assigned to M:\view1)
\vob3\src\main.c (current drive is Z:)

Full pathnames to non-VOB objects:

C:\users\anne\bin\myperl.exe
Z:\vob3\src\viewPriv.c (view-private file: an MVFS object, but not in a VOB)
\users\anne (current drive is C:)

• A relative pathname does not begin with a backslash character, nor with DRIVE:\:

main.c
..\src\main.c
Z:main.c

A standard pathname can reference any kind of file system object. Typically, you use the net use
command or click Tools > Map Network Drive in Windows Explorer to set a working view

(myview, for example), and then work from the drive assigned to M:\myview. In this case, a

pathname like \vob1\proj\bar references “file system object named bar, as seen through the

current view.” The referenced object can be any of the following:

810 Command Reference

pathnames_ccase

• VERSION — If BAR names an element, the pathname references the version of that element

selected by the current view’s config spec.

• VOB SYMBOLIC LINK — BAR can name a VOB symbolic link that is visible in the current

view. Depending on the command, the link may or may not be traversed.

• DERIVED OBJECT — BAR can name a derived object that was built in the current view or was

winked in to the view.

• VIEW-PRIVATE OBJECT — BAR can name a view-private object (including a checked-out

version) located in the current view’s private storage area.

• NON-MVFS OBJECT — BAR can name an object that is not under ClearCase or ClearCase LT

control, such as objects in your home directory or on other machines (for example,

\\hyperion\c\misc\files.txt.

Using standard pathnames to reference MVFS objects is termed transparency: a view’s

view_server process resolves the standard pathname into a reference to the appropriate MVFS

object. In essence, transparency makes a VOB appear to be a standard directory tree.

NOTE: Most ClearCase and ClearCase LT utilities, including cleartool, accept a slash (/) or

backslash (\) as pathname separators. That is, the following pathnames, when used as

arguments to ClearCase or ClearCase LT programs, are equivalent:

Z:\myvob\src\test.h
Z:/myvob/src/text.h

Windows Only—Absolute VOB Pathnames

An absolute VOB pathname is full pathname that starts with a VOB-tag.

Z:\myvob\src\main.c (full pathname to VOB object—Z: drive assigned to some view)

\myvob\src\main.c (absolute VOB pathname— begins with a VOB-tag (\myvob)

Absolute VOB pathnames are legal only if the current drive is assigned to a view. (Manually

attaching a drive letter to M:\view-tag with the subst command also enables absolute VOB

pathnames.) This form of pathname is commonly used in config specs (see config_spec), and it

is also the form in which configurations records store references to MVFS objects.

Extended Pathnames

The MVFS supports two kinds of extensions to the standard pathname scheme:

• You can add two pathname components (UNIX) or a view-tag prefix (Windows) to any

MVFS object pathname, turning it into a view-extended pathname:

/view/david/vobs/proj/foo.c (view-extended full pathname)

M:\dri_view\proj_vob\foo.c (view-extended full pathname)
\dri_view\proj_vob\foo.c (view-extended full pathname; M: is the current drive)

Reference Pages 811

pathnames_ccase

• In certain situations, a relative pathname can include a view specification:

../../david/vobs/proj/foo.c (view-extended relative pathname)

..\..\dri_view\proj_vob\foo.c (view-extended relative pathname)

• You can add characters to the end of a relative or full pathname, turning it into a

VOB-extended pathname. VOB-extended pathnames that specify versions of elements are the

most commonly used; they are termed version-extended pathnames.

UNIX:

foo.c@@/main/12 (version-extended pathname)

/vobs/proj/foo.c@@/main/motif/4 (version-extended pathname)

foo.c@@/RLS4.3 (version-extended pathname)

foo.c@@/main (VOB-extended pathname to a branch)

foo.c@@ (VOB-extended pathname to an element)

hello.o@@15-Sep.08:10.439 (VOB-extended pathname to a derived object)

Windows:

foo.c@@\main\12 (version-extended pathname)

\proj_vob\foo.c@@\main\bugfix\4 (version-extended pathname)

foo.c@@\RLS4.3 (version-extended pathname)

foo.c@@\main (VOB-extended pathname to a branch)

foo.c@@ (VOB-extended pathname to an element)

hello.o@@15-Sep.08:10.439 (VOB-extended pathname to a derived object)

VIEW-EXTENDED PATHNAMES

On UNIX systems, a view-extended pathname is a standard pathname, along with a specification

of a view. For example, /view/david/vobs/proj/BAR references file-system object named BAR,

as seen through view david.A view-extended pathname can access any kind of file-system

object, as described in UNIX Only—Standard Pathnames on page 808.

On Windows systems, a view-extended pathname is a standard pathname that references a VOB

object or view-private object via a specific view. For example, M:\dri_view\proj_vob\BAR
references file-system object named BAR, as seen through view dri_view. A view-extended

pathname can access any kind of file-system object, as described in UNIX Only—Standard
Pathnames on page 808.

812 Command Reference

pathnames_ccase

NOTE TO WINDOWS USERS: In general, you perform ClearCase and ClearCase LT operations in a

view, on a drive assigned to a view with the net use command. It is rare to work directly on drive

M:. It is common to use view-extended pathnames that include the M:\view-tag prefix. If you

work directly on M:, you are in view-extended namespace.

UNIX Only—The Viewroot Directory / View-Tags

In most view-extended pathnames, a full pathname is prepended with two components: the

name of the host’s viewroot directory and the view-tag of a particular view. The viewroot

directory is a virtual data structure, whose contents exist only in MVFS buffers in main memory.

Each view is made accessible to standard programs and ClearCase programs through a view-tag

entry in the viewroot directory. No standard command or program can modify this directory.

Only a few ClearCase commands use or modify it: mkview, mktag, rmtag, rmview, startview.

The viewroot directory is activated by a standard mount(1M) command, which considers the

virtual data structure to be a file system of type MVFS. The ClearCase pathname of the viewroot

directory is /view. See the init_ccase reference page and the Administrator’s Guide for details.

Windows Only—The MVFS Directory / View-Tags

Most view-extended pathnames are full pathnames that begin with the view-tag of a particular

view. Unless you are working explicitly on M:, the view-extended pathname also includes the M:
prefix. Each view is made accessible to standard programs and ClearCase programs through a

view-tag entry on the dynamic-views drive, M:. No standard command or program can modify

the dynamic-views drive’s root directory. Only a few ClearCase commands use or modify it:

mkview, mktag, rmtag, rmview, startview.

SYMBOLIC LINKS AND THE VIEW-EXTENDED NAMESPACE

Pathnames are resolved component-by-component by the operating system kernel and the

MVFS. When a UNIX symbolic link or VOB symbolic link is traversed, a full pathname needs a

UNIX set view context or a Windows view context to access ClearCase data. Thus, a symbolic

link whose text is a full UNIX pathname such as

/vobs/aardvark -> /vobs/all_projects/aardvark ...

or a Windows absolute VOB pathname such as

\aardvark -> \all_projects\aardvark

is interpreted in the current UNIX set view context or Windows view context. If the process has

no context, traversing such a symbolic link will fail.

VOB-EXTENDED PATHNAMES

The transparency feature enables you to use standard pathnames to access version-controlled

data; the view_server does the work of locating the data. But you can also bypass transparency

and do the work yourself:

Reference Pages 813

pathnames_ccase

• You can access any version of an element by using its version-ID, which specifies its exact

version-tree location:

sort.c@@/main/motif/4

• If a version has been assigned a version label, you can access it using the label:

Typically, you can use the label, without having to specify the branch on which the labeled

version resides; see Version Labels in Extended Namespace.

• You can access any element object or branch object directly:

• You can access any derived object directly, regardless of the view it was created in:

The pathnames in the above examples are termed VOB-extended pathnames. A VOB’s

file/directory namespace is extended in two ways from the standard namespace: one extension

enables direct access to elements, branches, and versions; the other enables direct access to

derived objects. Both extensions allow you to access objects not visible in your own view (and

perhaps not currently visible in any other view, either).

Extended Namespace for Elements, Branches, and Versions

An element’s version tree has the same form as a standard directory tree.

sort.c@@\main\bugfix\RLS_1.3 (branch and version label)
sort.c@@\RLS_1.3 (version label only)

sort.c@@ (element object)
sort.c@@/main (branch object)
sort.c@@/main/motif (branch object)

sort.o@@13-Aug.09:45.569 (derived object created on 13-Aug)
sort.o@@23-Sep.19:09.743 (derived object created on 23-Sep)

Component of
Version Tree

Component of Directory Tree in Extended Namespace

element Root of tree: The element itself appears to be a directory, which

contains a single subdirectory, corresponding to the main branch. (It

can also contain some version label; see Version Labels in Extended
Namespace.)

branch Subdirectory: Each branch appears to be a directory, which contains

files (individual versions and version labels), directories

(subbranches), and links (version labels).

814 Command Reference

pathnames_ccase

Accordingly, any location within an element’s version tree can be identified by a pathname in

this extended namespace:

Extended Naming Symbol

The previous pathname examples incorporate the extended naming symbol (@@). This symbol

is required to effect a switch from the standard file/directory namespace to the extended

element/branch/version namespace. There are two equivalent ways to think of @@

• When appended to the name of any element, the extended naming symbol turns off

transparency (automatic version-selection). Thus, you must specify one of the element’s

versions explicitly.

• The extended naming symbol is part of an element’s official name. For example, foo.c is the

name of a version (the particular version that appears in the view); foo.c@@ is the name of

the element itself.

NOTE: The establishment of @@ as the extended naming symbol occurs at system startup time

with a file system table entry. Thus, different symbols may be used on different hosts. See the

init_ccase reference page for details.

Version Labels in Extended Namespace

Version labels appear in the extended namespace as hard links (UNIX) or as additional files

(Windows).

In UNIX, if version /main/4 of an element is labeled RLS_1, the extended namespace directory

corresponding to the element’s main branch lists both 4 and RLS_1 as hard links to the version:

version Leaf name: Each version appears to be a leaf of a directory tree. For a

file element, the leaf contains text lines or binary data. For a directory

element, the leaf contains a directory structure.

sort.c@@ (specifies an element)
sort.c@@/main (specifies a branch)
sort.c@@/main/branch1 (specifies a branch)
sort.c@@/main/branch1/2 (specifies a version)
doctn/.@@/main/3 (special case: extra component is required in VOB’s

top-level directory)

Component of
Version Tree

Component of Directory Tree in Extended Namespace

Reference Pages 815

pathnames_ccase

% ls -il sort.c@@/main
246 -r--r--r-- 1 drp user 217 Oct 6 21:12 4
.
.
.
246 -r--r--r-- 1 drp user 217 Oct 6 21:12 RLS_1

In Windows, if version \main\4 of an element is labeled RLS_1, the extended namespace

directory corresponding to the element’s main branch lists both 4 and RLS_1:

Z:\myvob\src> dir sort.c@@\main
11/10/98 05:34p 1846 4

...
11/10/98 05:34p 1846 RLS_1

If the label type was created with the once-per-element restriction, an additional UNIX hard link

to the labelled version the labeled version appears in the element’s top-level directory:

% ls -il sort.c@@
246 -r--r--r-- 1 drp user 217 Oct 6 21:12 RLS_1

or a Windows entry for the labeled version appears in the element’s top-level directory:

Z:\myvob\src> dir sort.c@@
11/10/98 05:34p 1846 RLS_1

In this case, all the following are equivalent extended pathnames to the labeled version:

UNIX:

sort.c@@/RLS_1 (version label at top level of element)
sort.c@@/main/4 (version-ID)
sort.c@@/main/RLS_1 (version label at branch level)

Windows:

sort.c@@\RLS_1 (version label at top level of element)
sort.c@@\main\4 (version-ID)
sort.c@@\main\RLS_1 (version label at branch level)

(The once-per-element restriction is the mklbtype default. A mklbtype –pbranch command

creates a label type that can be used once on each branch of an element.)

Pathnames Involving More Than One Element

A VOB can implement a deep directory structure. Thus, a pathname can involve several

elements. For example:

• UNIX:

/vobs/proj/src/include/sort.h

816 Command Reference

pathnames_ccase

• Windows:

\proj_vob\src\include\sort.h

If proj or proj_vob is the VOB’s root directory element, then src and include also name directory

elements, and sort.h names a file element.

After a pathname crosses over into the extended namespace with @@, you must specify a version

for each succeeding element in the pathname. For example:

• UNIX:

/vobs/proj/src/include@@/main/4/sort.h/main/LATEST

• Windows:

\proj_vob\src\include@@\main\4\sort.h\main\LATEST

To automatically select versions for elements proj and src: cross over to extended namespace at

directory element include, specifying a version of include and a version of sort.h:

• UNIX:

/vobs/proj/src@@/RLS_1/include/RLS_1/sort.h/RLS_1

• Windows:

\proj_vob\src@@\RLS_1\include\RLS_1\sort.h\RLS_1

To automatically select versions for element proj only: cross over to extended namespace at

directory element src, specifying the version labeled RLS_1 of each succeeding element:

• UNIX:

/vobs/proj@@/main/1/src/main/4 (invalid)
/vobs/proj/.@@/main/1/src/main/4 (valid)

• Windows:

\proj_vob@@\main\1\src\main\4 (invalid)
\ proj_vob\.@@\main\1\src\main\4 (valid)

SPECIAL CASE: When crossing over into extended namespace at the VOB root directory (that is, at

the VOB-tag or VOB mount point), you must use /.@@ or \.@@ instead of @@.

The extended naming symbol need be used only once in a pathname, to indicate the crossover

into extended namespace. You can, however, append it to any element name:

• UNIX:

/vobs/proj/src@@/RLS_1/include@@/RLS_1/sort.h@@/RLS_1

• Windows:

Reference Pages 817

pathnames_ccase

\proj_vob\src@@\RLS_1\include@@\RLS_1\sort.h@@\RLS_1

Reading and Writing in the Extended Namespace

A VOB-extended pathname references an object in a VOB database. The reference can either read

or write the database—that is, either query metadata or modify metadata:

• UNIX:

% cleartool mklabel RLS2.1 util.c@@/RLS2.0 (attach an additional label to a version)

% cleartool rmattr BugNum util.c@@/main/3 (remove an attribute)

• Windows:

Z:\myvob> cleartool mklabel RLS2.1 util.c@@\RLS2.0 (attach an additional label to a version)
Z:\myvob> cleartool rmattr BugNum util.c@@\main\3 (remove an attribute)

For a version, an extended pathname can also read the version’s data, but cannot write or delete

it:

• UNIX:

%grep ’env’ util.c@@/main/rel2_bugfix/1 (valid)

% rm util.c@@/main/rel2_bugfix/1 (invalid)

ERROR: util.c@@/main/rel2_bugfix/1 not removed: Read-only file system.

• Windows:

Z:\myvob\src> find "env" util.c@@\main\rel2_bugfix\1 (valid)
Z:\myvob\src> del util.c@@\main\rel2_bugfix\1 (invalid)

Access is denied.

Extended Namespace for Derived Objects

The extended namespace allows multiple derived objects to exist at the same standard

pathname. Multiple versions of an element also exist at the same standard pathname, but the two

extensions work differently. Derived objects created at the same location are distinguished by

their unique derived object identifiers, or DO-IDs:

sort.obj@@14-Sep.09:54.418
sort.obj@@13-Sep.09:30.404
sort.obj@@02-Sep.16:23.353
.
.
.

An extended name provides access only to the derived object’s metadata in the VOB database—

principally, its configuration record. DO-IDs can be used only with ClearCase commands; they

cannot be used in non-ClearCase programs (for example, editors or compilers).

818 Command Reference

pathnames_ccase

Navigating the VOB-Extended Namespace

You can use the operating systems directory-navigation commands in a VOB’s extended

namespace. For example, these are two equivalent ways to display the contents of an old version:

• In UNIX:

• Use a version-extended pathname from a standard directory:

% cat util.c@@/main/rel2_bugfix/1

• Change to branch “directory” in the VOB-extended namespace, and then display the

version:

%cd util.c@@/main/rel2_bugfix

% cat 1

• In Windows:

• Use a version-extended pathname from a standard directory:

Z:\myvob\src> type util.c@@\main\rel2_bugfix\1

• Change to branch “directory” in the VOB-extended namespace, and then display the

version:

Z:\myvob\src> cd util.c@@\main\rel2_bugfix

Z:\myvob\src> type 1

In VOB-extended namespace, elements and branches are directories; you can change to such

directories with cd; you can lists their contents—branches and versions—with operating system

commands.

You can access versions of file elements as ordinary files with operating system commands—

even executing versions that happen to be compiled programs or scripts.

UNIX ONLY—SPECIAL VIEW-TAG REPORTED BY PWD. When you have changed to a VOB-extended

namespace directory, the pwd(1) command reports your current working directory as under a

special view-tag: For example:

% cd /view/akp_vu/vobs/proj/special@@

% pwd
/view/akp_vu@@/vobs/proj/main/4/special

The special view-tag akp_vu@@ appears as a separate entry from akp_vu in your host’s viewroot

directory. When in the context of a special view-tag, version-selection is suppressed completely.

To access a particular version of any file or directory element, you must specify the version

explicitly. These special entries are periodically deleted on a least-recently-used basis.

Reference Pages 819

pathnames_ccase

UNIX ONLY—EXITING FROM VOB-EXTENDED NAMESPACE. To exit VOB-extended namespace,

change to a standard full pathname or a view-extended pathname. (The pathname can specify a

VOB or non-VOB location.) For example:

% cd /vobs/proj/src@@/main (enter VOB-extended namespace)
% pwd /view/david@@/vobs/proj/main/4/src/main
/view/david@@/vobs/proj/main/4/src/main
% cd /vobs/proj (exit VOB-extended namespace)
% pwd
/vobs/proj

Repeated use of cd .. does not work as you may expect. You do not exit extended namespace

where you entered it; instead, you ascend through all the extended-namespace directories listed

by pwd. For example:

% cd util.c@@/main/rel2_bugfix

% ls
0 1 2 LATEST

%pwd
/view/drp_fix@@/usr/hw/main/1/src/main/2/util.c/main/rel2_bugfix

% cd ../../..

% pwd
/view/drp_fix@@/usr/hw/main/1/src/main/2

% cd ../..

% pwd
/view/drp_fix@@/usr/hw/main/1/src

% cd ../../../

% pwd
/view/drp_fix@@/usr/hw

WINDOWS ONLY—SPECIAL “@@” VIEW-TAGS VISIBLE ON M:. When you activate a view, a

subdirectory, view-tag, appears on the M: drive for that view. If you enter version-extended

namespace while in that view, a parallel subdirectory, view-tag@@, also appears on M:. For

example:

C:\> net use f: \\view\myview
...

820 Command Reference

pathnames_ccase

C:\> dir M:\
11/15/98 10:24p <DIR> myview

C:\> f:
F:\> cd \dev\lib@@
F:\dev\lib@@> dir M:
11/15/98 10:24p <DIR> myview
11/15/98 10:24p <DIR> myview@@

SEE ALSO

cleartool, query_language, version_selector, wildcards_ccase

Reference Pages 821

permissions

permissions
Identity checking

APPLICABILITY

DESCRIPTION

In general, only commands that modify (write to) a VOB or a project VOB are subjected to

identity checking. The following hierarchy of identity checking is used, in a command-specific

manner, to determine whether a command can proceed or be canceled:

• All products on UNIX only—root

• All products except ClearCase LT on Windows only—member of the ClearCase group

• ClearCase LT on Windows only—local administrator of the ClearCase LT server host

NOTE: We strongly recommend that you do not make ordinary ClearCase users members of

the ClearCase group, nor allow ClearCase LT users to log on as the local administrator at the

ClearCase LT server host.

• VOB owner

• Owner of the relevant element (for modifications to branches and versions)

• Owner of the relevant type object (for modifications to objects of that type)

• Creator of a version or derived object

• Owner of the object (pool, hyperlink, replica, activity, checkpoint, domain, role, state, user)

Product Command Type

ClearCase general information

ClearCase LT general information

Attache general information

MultiSite general information

Platform

UNIX

Windows

822 Command Reference

permissions

• User associated with an event

• Members of an object’s group (same group-ID)

Both file-system and non-file-system objects have an owner and a group; this information is

storedwith the object. When an object is created, its owner and group are set to that of the user

who created it. Use the protect command to change the owner (–chown) or group (–chgrp) of the

object. The describe command displays the owner and group of the object.

The scheduler maintains its own access control list (ACL),which determines who is allowed

access to the scheduler and to the ACL itself. See the schedule reference page for more

information.

The reference page for a command lists the special identities (if any) required to use the

command along with other restrictions on its use.

The sections below list all cleartool subcommands and Attache commands, categorized by their

identity requirements. For information on identity checking for ClearCase and ClearCase LT

commands (that is, other than cleartool subcommands and Attache commands), refer to the

corresponding reference pages.

Reference Pages 823

permissions

None

annotate

apropos

catcr

catcs

cd

chactivity

checkvob (except

with –fix or –hlink)

chfolder

describe

diff

diffbl

diffcr

deliver

dospace 1

edcs

endview (except with

-server)

file

find

findmerge 2

get

getcache

getlog

help

hostinfo

import 3

ln 4

ls

lsactivity

lsbl

lscheckout

lsclients

lscomp

lsdo

lsfolder

lshistory

lslocal

lslock

lsmaster

lspool

lsprivate

lsproject

lsregion

lsreplica

lssite

lsstgloc

lsstream

lstype

lsview

lsvob

lsvtree

lsws

make

man

mkactivity

mkattype 5

mkbl

mkbrtype 5

mkdir 4

mkelem 4

mkeltype 5

mkfolder

mkhltype 5

mklbtype 5

mkproject

mkregion

mkstgloc

mkstream

mktag 6

mkview 7

mkvob 7

mkws

mount 10

mv 4

mvws

put

pwd

pwv

quit

rebase

recoverview

reformatview

register

reqmaster
(requesting

mastership only) 9

rmname 4 8

rmregion

rmstgloc

rmtag

rmws

setactivity

setcs

setplevel

setsite

setview

setws

shell

space 1

startview

umount (public

VOB)

unregister

update

winkin

wshell

1 Except with –update or –generate
2 No special identity required for “search” functionality
3 For created elements only
4 One or more directory elements must be checked out
5 Except with –replace
6 Except for private VOB-tag

824 Command Reference

permissions

one of: element group member, element owner, VOB owner, root, member of the ClearCase group, local
administrator of the ClearCase LT server host; (for commands that operate on objects) object group member,
object owner , VOB owner, root, member of the ClearCase group, local administrator of the ClearCase LT server
host

one of: version creator, element owner, VOB owner, root, member of the ClearCase group, local administrator of
the ClearCase LT server host

one of: element owner, VOB owner, root, member of the ClearCase group, local administrator of the
ClearCase LT server host

one of: user associated with event, object owner, VOB owner, root, member of the ClearCase group, local
administrator of the ClearCase LT server host

chevent

one of: branch creator, element owner, VOB owner, root, member of the ClearCase group, local administrator of
the ClearCase LT server host

7 Standard UNIX/Windows NT permissions for creating a subdirectory required
8 Except with –nco
9 Must be on ACL at master replica
10 Only for public VOB

checkout

checkvob –hlink

import 1

merge 2

mkattr

mkbranch

mkhlink

mklabel

mktrigger

reserve

rmattr

rmhlink

rmlabel

rmmerge

rmtrigger

unreserve
1 For checked-out directories only
2 Applies to creation of merge arrows only, not to data

checkin

rmver

uncheckout

chtype (element)

lock (element)

rmelem

unlock (element)

chtype (branch)

lock (branch)

rmbranch

unlock (branch)

Reference Pages 825

permissions

one of: type owner, VOB owner, root, member of the ClearCase group, local administrator of the ClearCase LT
server host

one of: pool owner, VOB owner, root, member of the ClearCase group

one of: DO group member, DO owner, VOB owner, root, member of the ClearCase group

rmdo

NOTE: Only the VOB owner and root, members of the ClearCase group can delete a shared

derived object.

one of: view owner, root, member of the ClearCase group, local administrator of the ClearCase LT server host

one of: owner, VOB owner, root, member of the ClearCase group, local administrator of the ClearCase LT server
host

one of: owner, project VOB owner, root, member of the ClearCase group, local administrator of the ClearCase LT
server host

one of: owner, stream owner, root, member of the ClearCase group, local administrator of the ClearCase LT
server host

one of: owner, VOB owner, root, member of the ClearCase group

lock (type object)

mkattype –replace

mkbrtype –replace

mkeltype –replace

mkhltype –replace

mklbtype –replace

mktrtype –replace

rename (type object)

rmtype

unlock (type object)

rename (pool) rmpool

endview -server

rmview

setcache –view

space –view –generate

protect

chproject

chstream

rmactivity

rmbl

rmcomp

rmfolder

rmproject

rmstream

chbl

chmaster

826 Command Reference

permissions

one of: VOB owner, root, member of the ClearCase group

one of: VOB owner, root, member of the ClearCase group, local administrator of the ClearCase LT server host

VOB owner

mktag (private VOB-tag)

mount (private VOB)

view owner

chview (can also be root on view server host)

root, member of the ClearCase group, local administrator of the ClearCase LT server host

root, local administrator of the ClearCase VOB server host, local administrator of the ClearCase LT server host

same permissions as those for creating the corresponding type object

cptype

permissions controlled by the scheduler ACL

checkvob –fix

chpool

dospace –generate

ln –nco

lock (pool or VOB)

mkpool

mktrtype 1

reformatvob

relocate

reqmaster (to set access controls)

rmname –nco

rmvob

space –vob –generate

umount (private VOB)

unlock (pool or VOB)

1 except with –replace

checkvob –fix

ln –nco

lock (pool or VOB)

mkcomp

mktrtype 1

reformatvob

rmname –nco

rmvob

space –vob –generate

unlock (pool or VOB)
1 except with –replace

setcache –host setcache –mvfs

protectvob

dospace –update

schedule

space –update

Reference Pages 827

permissions

SEE ALSO

Reference pages for individual commands

828 Command Reference

profile_ccase

profile_ccase
cleartool user profile: .clearcase_profile

APPLICABILITY

SYNOPSIS

command_name flag
.
.
.

DESCRIPTION

The cleartool user profile (.clearcase_profile) is an ordered set of rules that determine certain

command option defaults for one or more cleartool commands. An option you supply in a

command line overrides the command option default specified in .clearcase_profile.

For example, many cleartool commands accept user comments with the –c, –cfile, –cq, –cqe, or

–nc option. If you specify none of these options, cleartool invokes one of them by default. The

option invoked varies from command to command, but is always one of –cq, –cqe, or –nc. If

cleartool finds a file named .clearcase_profile in your home directory, it checks to see whether it

contains a comment rule that applies to the current command. If so, it invokes the comment

option indicated by that rule. No error occurs if this file does not exist; cleartool invokes the

command’s standard comment default.

An alternate name for the user profile can be specified with the environment variable

CLEARCASE_PROFILE. Its value should be a full pathname.

Product Command Type

ClearCase data structure

ClearCase LT data structure

Platform

UNIX

Windows

Reference Pages 829

profile_ccase

HOW cleartool SELECTS A RULE

For a given command, cleartool consults the user profile to determine which rule, if any, applies

to a command. The method is similar to the one used by the view_server process to evaluate a

config spec:

• cleartool examines the first rule in the user profile and decides whether it applies to the

specified command.

• If the rule does not apply, cleartool goes on to the next rule in the file; it repeats this step for

each succeeding rule until the last.

• If no rule applies, cleartool invokes the standard default for the command option.

cleartool uses the first rule that applies. Therefore, the order of rules in the user profile is

significant. For example, to ensure that you are always prompted for a comment when you create

a directory element, you must place a rule for the mkdir command before any more general rule

that may also apply to mkdir, such as * –nc.

RULE SYNTAX

Rules must be placed on separate lines. Extra white space (space, tab) is ignored.

Comments begin with a number sign (#). For example:

#element rules
mkelem -cqe #prompt for comment for each new element being created

Each rule consists of two tokens, separated by white space:

command_name flag

COMMENT RULES

When specifying a comment rule:

• command_name must be one of these or an asterisk (*), which matches all of them:

• flag must be one of these: –nc, –cqe, –cq. The –c and –cfile options are not valid here.

If you do not provide a comment rule for one of these commands, cleartool uses –cqe as its

default comment option. cleartool uses –nc as the default for all other commands that accept

comments.

checkin

checkout

mkattype

mkbrtype

mkdir

mkelem

mkeltype

mkhltype

mklbtype

mkpool

mktrtype

mkvob

830 Command Reference

profile_ccase

RULES FOR CHECKED-OUT VERSION STATES

When specifying a rule for the state of a checked-out version:

• command_name must be checkout.

• flag must be -reserved or -unreserved.

If one rule only is specified, all checkouts are reserved or unreserved by default. If the rules are

specified as

checkout -reserved
checkout -unreserved

then a reserved checkout is attempted. If there is a conflict, an unreserved checkout is performed.

RULE FOR INTERACTIVE RESOLUTION OF CHECKOUT PROBLEMS

When specifying the rule for the interactive resolution of checkout problems:

• command_name must be checkout.

• flag must be -query.

When this rule is specified, you are queried about how to proceed when checkout encounters

certain kinds of checkout problems.

EXAMPLES

• Never prompt for a comment.

* –nc

• During a checkin operation, prompt for a comment for each element. During a make

directory operation, prompt for a single comment to be applied to all the new directories. In

all other cases, do not prompt at all.

• Make all checkouts unreserved.

checkout -unreserved

• Ask how to proceed in the event of a checkout problem.

checkout -query

SEE ALSO

checkout, cleartool, comments, config_spec

checkin –cqe
mkdir –cq
* –nc

Reference Pages 831

promote_server

promote_server
Changes storage location of derived object data container

APPLICABILITY

SYNOPSIS

Invoked by clearmake, omake, or winkin, if necessary, when it winks in a derived object

DESCRIPTION

NOTE: Never run promote_server manually. It must be invoked only by clearmake or omake. See

the view_scrubber reference page for information on transferring a derived object’s data

container to VOB storage.

The promote_server program migrates a derived object’s data container file from private storage

to shared storage. When clearmake or omake winks in a derived object (DO) that was previously

unshared, it invokes promote_server to copy the data container file from view-private storage to

a VOB storage pool.

NOTE: clearmake or omake also migrates a DO’s configuration record from private storage to

shared storage at the same time. This work is performed by clearmake or omake itself, not by

promote_server.

The destination storage pool is determined by the DO’s pathname. By definition, this pathname

is under a VOB-tag; that is, the DO is in some VOB directory. The DO storage pool to which the

directory element is assigned is the destination of the promotion. (On UNIX systems, some build

scripts create multiple hard links, in different directories, to a derived object. In this case, the data

container is promoted to the storage pool of only one of the directories.)

clearmake or omake invokes promote_server by making a request to the ClearCase master

server, albd_server. promote_server runs as the owner of the view in which the data container

to be copied resides (UNIX), or as the user clearcase (Windows), guaranteeing read access to the

data container.

Product Command Type

ClearCase command

Platform

UNIX

Windows

832 Command Reference

promote_server

After promoting a DO, the promote_server remains active for several minutes to ensure that

subsequent promotions from the same view are processed with the least overhead. During this

time, the promote_server remains associated with the view from which the DO was promoted;

if two users try to promote DOs from the same view, at the same time, they share (serially) the

same promote_server.

SEE ALSO

clearmake, omake, view_scrubber

Reference Pages 833

protect

protect
Changes permissions or ownership of a VOB object

APPLICABILITY

SYNOPSIS
protect [–cho⋅wn login-name] [–chg⋅rp group-name] [–chm⋅od permissions]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

{ [–fil⋅e | –d⋅irectory] [–r⋅ecurse] [–pna⋅me] pname ...

| object-selector ...

}

DESCRIPTION

The protect command sets the owner, group, or permissions for one or more elements, shared

derived objects, or named VOB objects. This information is maintained in the VOB database.

NOTE: This command does not apply to files loaded in a snapshot view.

The main use of protect is to control access by standard programs to an element or object’s data.

For example, you may make some elements readable by anyone, and make others readable by

only their group members.

Modifying the permissions of an element changes the permissions of all of its source containers

and (if applicable) cleartext containers. That is, the change affects all versions, not just the version

selected by the current view. There is no way to change the permissions of an individual version.

Some forms of protect affect ClearCase and ClearCase LT access. For example, a checkout or

checkin is permitted only if the user is the element’s owner, or is a member of the element’s

group.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

834 Command Reference

protect

View-Private Objects

This command does not affect view-private objects. For this reason, entering a protect command

sometimes seems to have no effect:

• Changing an element’s permissions has no effect on its checked-out versions. After you

check in the element, your view selects the checked-in version, thus making the updated

permissions appear.

• Changing a DO’s permission has no effect on the way the DO appears in the view where it

was originally created, or in the dynamic views where it has been winked in. To have your

dynamic view use a shared DO with updated permissions:

a. Use protect to change the permissions on the DO in the VOB database.

b. Use rm to remove the DO from your view.

c. Use clearmake or the winkin command to wink in the DO, with its new permissions.

You can change the permissions on any view-private object (including a checked-out version),

with the standard operating system commands commands.

NOTE TO UNIX USERS: We support the BSD semantics (POSIX CHOWN RESTRICTED) for chown:

only root can change the owner-IDs. (In a view, this means the root identity on the machine on

which the view storage directory resides.)

A winked-in DO is not really a view-private object, but it behaves like one (so that users in

different views can build software independently). Moreover, changing the permissions of a

winked-in DO actually converts it to a view-private file in your view. See Building Software.

Owner Setting

The initial owner of an element is the user who creates it with mkelem or mkdir. The initial

owner of a named VOB object is the user who creates it. The initial owner of a derived object is

the user who builds it with clearmake. When the derived object is winked in and becomes

shared, its data container is promoted to a VOB storage pool. This process preserves the derived

object’s ownership, no matter who performs the build that causes the winkin.

See the permissions reference page for a list of operations that can be performed by an element’s

owner.

Group Setting

The initial group of an element or named VOB object is the principal group of its creator. The new

group specified in a protect –chgrp command must be one of the groups on the VOB’s group list.

See the permissions reference page for a list of operations that can be performed by members of

an element’s or derived object’s group.

Reference Pages 835

protect

NOTE TO UNIX USERS: When you execute protect –chgrp, the set-UID and set-GID bits of the file

mode (04000 and 02000, respectively) are always cleared. This differs from UNIX practice, where

clearing occurs only when a non-root identity runs the chgrp command.

Read and Execute Permissions

The read and execute permissions of an element or shared derived object control access to its data

in the standard manner. The permissions are also applied to all its associated data containers.

NOTE: protect sometimes adds group-read permission to your specification. This ensures that the

owner of an element always retains read permission to its data containers.

Write Permission

The meaning of the write permission varies with the kind of object:

• For a file element, write permission settings are ignored. To obtain write permission to a file

element, you must check it out (see the checkout reference page).

• For a directory element, write permission allows view-private files to be created within it.

ClearCase or ClearCase LT permissions control changes to the directory element itself. (See

the permissions reference page.)

• For a shared derived object, write permission allows it to be overwritten with a new

derived object during a target rebuild. (The shared derived object is not actually affected;

rather, the view sees the new, unshared derived object in its place.)

Protection of Global Types and Local Copies

Changing the protection of a global type or a local copy of a global type changes the protection

of the global type and all its local copies. You must have permission to change the protection of

the global type.

If the protection cannot be changed on one or more of the local copies, the operation fails and the

global type’s protection is not changed. You must fix the problem and run the protect command

again.

For more information, see the Administrator’s Guide.

RESTRICTIONS

Identities: You must have one of the following identities:

• Object owner

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

836 Command Reference

protect

NOTE: For protect –chgrp, you must be a member of the new group, and it must also be in the

VOB’s group list.

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element, pool

(non-directory elements only). For named objects, an error occurs if the VOB, object, or object’s

type is locked.

Mastership: (Replicated VOBs only) If your current replica is ownership-preserving, it must

master the object being processed. If your current replica is non-ownership-preserving, no

mastership restrictions apply.

OPTIONS AND ARGUMENTS

SPECIFYING PERMISSION CHANGES. Default: None.

–cho⋅wn login-name
New owner for the elements or VOB objects.

UNIX: The argument must be in chown(1) format. The owner may be either a decimal

user-ID or a login name found in the passwd(4) file.

Windows: The login-name must specify a domainwide user account.

–chg⋅rp group
New group for the elements or VOB objects.

UNIX: The argument must be in chgroup(1) format. The group may be either a decimal

group-ID or a group name found in the group(4) file.

Windows: The group must be registered in the domainwide account database.

–chm⋅od permissions
New permissions—owner, group, other (world)—for the elements or VOB objects. Both

symbolic and absolute codes are valid, such as go–x (symbolic) or 666 (absolute).

Following is a summary (UNIX users may read chmod(1) for details):

Specify symbolic permissions in one or more of the following forms:

[identity]+permission
[identity]-permission
[identity]=permission

where identity is any combination of

u user/owner

g group

o other

a all (owner, group, and other)

Reference Pages 837

protect

When identity is unspecified, its default value is a.

permission can be any combination of

To combine the forms, separate them with a comma (no white space). For example, to

specify read and write permissions for an element’s owner and no access by group or

other:

cmd-context protect –chmod u=rw,go-rwx test.txt

Absolute permissions are constructed from the OR of any of the following octal

numbers:

For example, the value 600 specifies read/write permission for the owner and no access

by any other identity. The value 764 gives all permissions to the owner, read/write

permissions to the group, and read permission to others.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

r read

w write

x execute

400 read by owner

200 write by owner

100 execute (and directory search) by owner

700 read, write, and execute (and directory search) by owner

040 read by group

020 write by group

010 execute (and directory search) by group

070 read, write, and execute (and directory search) by group

004 read by others

002 write by others

001 execute (and directory search) by others

007 read, write, and execute (and directory search) by others

838 Command Reference

protect

SPECIFYING THE OBJECTS. Default: None.

–fil⋅e
Restricts the command to changing file elements only. This option is especially useful in

combination with the –recurse option.

–d⋅irectory
Restricts the command to changing directory elements only. This option is especially

useful in combination with the –recurse option.

[–pna⋅me] pname ...

One or more pathnames, each of which specifies an element or shared derived object. If

pname has the form of an object selector, you must use the –pname option to indicate that

pname is a pathname. An extended pathname to a version or branch is valid, but keep in

mind that protect affects the entire element. Shared derived objects can be referenced by

DO-ID.

If you specify multiple pname arguments, but you do not have permission to change the

permissions on a particular object, protect quits as soon as it encounters this error.

object-selector ...

One or more named VOB objects. Specify object-selector in one of the following forms:

PROCESSING OF DIRECTORY ELEMENTS. Default: Any pname argument that specifies a directory

causes the directory element itself to be changed.

–r⋅ecurse
Changes the entire tree of elements including and below any pname argument specifying

a directory element. UNIX VOB symbolic links are not traversed during the recursive

descent. (Use –file or –directory to restrict the changes to one kind of element.)

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

hlink-selector hlink:hlink-id[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]

Reference Pages 839

protect

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Add read permission to the file element hello.c, for all users.

cmd-context protect –chmod +r hello.c
Changed protection on "hello.c".

• Change the group-ID for all elements in the src directory to user.

cmd-context protect –recurse –chgrp user src
Changed protection on "src".
Changed protection on "src/cm_fill.c".
Changed protection on "src/convolution.c".
Changed protection on "src/hello.c".
Changed protection on "src/msg.c".
Changed protection on "src/util.c".

• Change the owner of the branch type qa_test to tester.

cmd-context protect –chown tester brtype:qa_test
Changed protection on "qa_test".

• Allow users in the same group to read/write/execute the shared derived object hello, but

disable all access by others. Use an absolute permission specification.

cmd-context protect –chmod 770 hello
Changed protection on "hello".

SEE ALSO

protectvob, chmod(1), chown(1), chgrp(1), passwd(4), group(4)

840 Command Reference

protectvob

protectvob
Changes owner or groups of a VOB

APPLICABILITY

SYNOPSIS
protectvob [–f⋅orce] [–cho⋅wn user] [–chg⋅rp group]

[–add⋅_group group[,...] [–del⋅ete_group group[,...]]

vob-storage-pname ...

DESCRIPTION

protectvob manages the ownership and group membership of the files and directories in a VOB,

by changing the OS-level permissions on files and directories within the VOB storage area.

ClearCase on UNIX only—If the VOB has remote storage pools, you may need to execute this

command on the remote host also to complete the permissions update.

RESTRICTIONS

Identities: You must have one of the following identities:

• root (UNIX)

• Local administrator of the VOB server host (Windows)

NOTE: You cannot use the -add_group option to add the ClearCase administrators group. This

group already has rights to all VOB objects.

Locks: An error occurs if one or more of these objects are locked: VOB.

Mastership: (Replicated VOBs only) If your current replica is ownership-preserving, it must

master the VOB. If your current replica is non-ownership-preserving, no mastership restrictions

apply.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

Reference Pages 841

protectvob

OPTIONS AND ARGUMENTS

CONFIRMATION STEP. Default: protectvob asks for confirmation before changing the permissions

in one or more storage pools.

–for⋅ce
Suppresses the confirmation step.

CHANGING VOB OWNERSHIP. Default: None. You can use –chown by itself, or in combination with

–chgrp.

NOTE TO WINDOWS USERS: A member of the Backup Operators or Administrators group can

change ownership of any VOB with protectvob –chown. If you are the VOB owner, you can

change ownership of that VOB by running protectvob –chown user as yourself, andthen logging

in as user and running protectvob –force vob-storage-pname with no other options.

–cho⋅wn user
Specifies a new VOB owner, who becomes the owner of all the VOB’s storage pools and

all of the data containers in them. user can be a login name or

UNIX—a numeric user-ID. protectvob rebuilds the .identity subdirectory of the VOB

storage directory, reflecting the new VOB owner’s user-ID, group-ID, and additional

groups (if any).

Windows—the numeric user-ID displayed by ccase-home-dir\etc\utils\creds username
(this is not the same as the Windows NT Security Identifier). protectvob rebuilds the

Security Descriptor on the VOB root directory (on NTFS only) and the identity.sd and

group.sd files in the VOB storage directory, reflecting the new VOB owner’s user-ID,

group-ID, and additional groups (if any).

–ch⋅grp group
Specifies a new principal group for the VOB. group can be a group name or

UNIX—a numeric group-ID

Windows—the numeric group-ID displayed by

ccase-home-dir\etc\utils\creds –g groupname.

MAINTAINING THE SECONDARY GROUP LIST. Default: None. You can use –add_group and

–delete_group singly, or together.

–add⋅_group group[,...]

Adds one or more groups to the VOB’s secondary group list. group can be a group name

or

UNIX—a numeric group ID

Windows—a numeric group-ID displayed by ccase-home-dir\etc\utils\creds
–g groupname (Windows).

842 Command Reference

protectvob

You must enclose group names that contain spaces in double quotes.

–del⋅ete_group group[,...]

Deletes one or more groups from the VOB’s secondary group list. group can be a group

name or

UNIX—a numeric group-ID

Windows—the numeric group-ID displayed by ccase-home-dir\etc\utils\creds
–g groupname. You must enclose group names that contain spaces in double quotes.

SPECIFYING THE VOB. Default: None.

vob-storage-pname
Local pathname of a VOB storage directory.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• On a UNIX system, make user jackson the owner of the VOB whose storage area is

/usr/lib/vob.vb.

cmd-context protectvob -chown jackson /usr/lib/vob.vb
This command affects the protection on your versioned object base.
While this command is running, access to the VOB will be limited.
If you have remote pools, you will have to run this command remotely.
Pool "sdft" needs to be protected correctly.
Pool "ddft" needs to be protected correctly.
Pool "cdft" needs to be protected correctly.
Protect versioned object base "/usr/lib/vob.vb"? [no] yes
Do you wish to protect the pools that appear not to need protection? [no]
no
Protecting "/usr/lib/vob.vb/s/sdft"...
Protecting "/usr/lib/vob.vb/s/sdft/0"...
Protecting "/usr/lib/vob.vb/s/sdft/1"...
...

Reference Pages 843

protectvob

Protecting "/usr/lib/vob.vb/d/ddft"...
Protecting "/usr/lib/vob.vb/d/ddft/0"...
...
Protecting "/usr/lib/vob.vb/c/cdft"...
Protecting "/usr/lib/vob.vb/c/cdft/2d"...
Protecting "/usr/lib/vob.vb/c/cdft/35"...
...
VOB ownership:
 owner jackson
 group user
Additional groups:
 group doc

Change the owner and group of a remote VOB storage pool.

% rlogin ccsvr01

Password:
<enter password>

% /usr/atria/etc/chown_pool jackson.user /vobaux/vega_src/s001

• On a Windows system, make user smg the owner of the VOB whose storage area is

c:\vobs\docs.vbs.

cmd-context protectvob –chown smg c:\vobs\docs.vbs
This command affects the protection on your versioned object base.
While this command is running, access to the VOB will be limited.
Pool “sdft” appears to be protected correctly.
Pool “ddft” appears to be protected correctly.
Pool “cdft” appears to be protected correctly.
Protect versioned object base “c:\vobs\docs.vbs”? [no] yes
Do you wish to protect the pools that appear not to need protection? [no]
no
VOB ownership:

owner smg
group user

Additional groups:
group Backup Operators

844 Command Reference

protectvob

• On a UNIX systems, add one group to a VOB’s group list, and remove another group.

cmd-context protectvob -add_group devel -delete_group doc /usr/lib/vob.vb
This command affects the protection on your versioned object base.
While this command is running, access to the VOB will be limited.
If you have remote pools, you will have to run this command remotely.
Pool "sdft" appears to be protected correctly.
Pool "ddft" appears to be protected correctly.
Pool "cdft" appears to be protected correctly.
Protect versioned object base "/usr/lib/vob.vb"? [no] yes
Do you wish to protect the pools that appear not to need protection? [no]
no
VOB ownership:
 owner jackson
 group user
Additional groups:
 group devel

• On a Windows system, add the group Doc Group to a VOB’s group list.

cmd-context protectvob –add_group "Doc Group" c:\vobs\docs.vbs
This command affects the protection on your versioned object base.
While this command is running, access to the VOB will be limited.
Pool “sdft” appears to be protected correctly.
Pool “ddft” appears to be protected correctly.
Pool “cdft” appears to be protected correctly.
Protect versioned object base “c:\vobs\docs.vbs”? [no] yes
Do you wish to protect the pools that appear not to need protection? [no]
no
VOB ownership:

owner smg
group user

Additional groups:
group Backup Operators
group Doc Group

SEE ALSO

chpool, mkpool, mkvob, protect, Administrator’s Guide

Reference Pages 845

put

put
Uploads writable files from the workspace to the view

APPLICABILITY

SYNOPSIS
put [–r⋅ecurse] [–compress] [–pti⋅me] [–to to-name] [–log pname] pname...

DESCRIPTION

The put command uploads the specified writable files from the workspace to the associated view.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE FILES TO BE UPLOADED. Default: None.

pname...

Specifies the files and/or directories to be uploaded. Wildcard patterns apply to the

workspace contents; / (slash) denotes the root of the workspace.For example, /*.c refers

to all of the .c files in the workspace root. In addition, arguments of the form @pname can

be used to add the contents of the local file pname as pathname arguments. The pathname

arguments can contain wildcards, and must be listed in the file one per line, or also be of

the form @pname. Specifying a relative pathname for @pname begins from Attache’s

startup directory, not the working directory, so a full local pathname is recommended.

SPECIFYING HOW THE FILES ARE TO BE UPLOADED. Default: When a directory is specified, its file

contents are uploaded. Only writable files are uploaded, and only if the file does not exist in the

view or it is different from the source file.

–to to-name
Specifies a destination file name or directory. If the specified destination is a directory, it

Product Command Type

Attache command

Platform

UNIX

Windows

846 Command Reference

put

becomes a prefix for each uploaded filename. If the specified destination is a file, or does

not exist, then only one source argument can be specified, and it must be a file.

–pti⋅me
Applies the last-modified time stamp of the source file to the destination file. –ptime has

no effect on directories.

–compress
Causes files to be compressed while being uploaded and uncompressed after the

transfer to improve performance over slow communications lines. The default behavior

for this option can be set with the Preferences command on the Options menu.

HANDLING OF DIRECTORY ARGUMENTS. Default: For each pname that specifies a directory element,

put uploads the contents of that directory, but not the contents of any of its subdirectories.

–r⋅ecurse
Includes writable files from the entire subtree below any subdirectory pname. Directories

are created as necessary and specified patterns are relative to the current directory.

SPECIFYING A FILE TRANSFER LOG. Default: None.

–log pname
Specifies a log file for the operation. The log file lists the workspace-relative pathname

of each file transferred by the put command, as well as an indication of any errors that

occur during the operation. Log file pathnames are absolute, not relative to the current

workspace root.

Each line in a log file is a comment line, except for the names of files that were not

transferred. Log files, therefore, can be used as indirect files to redo a file transfer

operation.

EXAMPLES

• Upload the writable file hello.c to the view, naming it hello_new.c and preserving the time

stamp. At an Attache prompt:

put –to hello_new.c –ptime hello.c

• Upload to the view all of the writable files and subdirectories beneath the directory src. At

an Attache prompt:

put –r src

• Upload to the view all of the writable files listed in the file c:\users\jed\prj_files. At an

Attache prompt:

put @c:\users\jed\prj_files

Reference Pages 847

put

SEE ALSO

attache_command_line_interface, attache_graphical_interface, get, checkin, checkout,
wildcards

848 Command Reference

pwd

pwd
Prints working directory

APPLICABILITY

SYNOPSIS
pwd

DESCRIPTION

The pwd command lists the current working directory. This command is intended for use in

interactive cleartool and multitool sessions, and in batch files or shell scripts that simulate

interactive sessions.

UNIX—The version-Extended Namespace

In version-extended namespace, the current working directory is listed as a pathname that is

both view-extended and version-extended. (See the pathnames_ccase reference page.) It

includes the version of each directory element between the current location and the VOB root

directory. For example:

% cd util.c@@main

cmd-context pwd

/view/akp@@/usr/hw/main/1/src/main/1/util.c/main

RESTRICTIONS

None.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

MultiSite multitool subcommand

Platform

UNIX

Windows

Reference Pages 849

pwd

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• List the name of the current working directory.

cmd-context pwd
/usr/hw

• (ClearCase and ClearCase LT) Use a view-extended pathname to go to the \users_hw\src
directory in the context of the jackson_old view, and then list the name of the directory.

cleartool> cd M:\jackson_old\users_hw\src

cleartool> pwd
M:\jackson_old\users_hw\src

• (ClearCase and ClearCase LT) Change to a version-extended namespace directory and list

its name. Then change back to the original directory and list its name.

% cleartool> cd src@@

% cleartool> pwd
/view/jackson_vu@@/usr/hw/main/2/src

% cd /usr/hw/src

cleartool> cd

cleartool> pwd
/usr/hw/src

SEE ALSO

cd, pwv

850 Command Reference

pwv

pwv
Prints the working view

APPLICABILITY

SYNOPSIS

• ClearCase and Attache:

pwv [–s⋅hort] [–wdv⋅iew | –set⋅view | –root]

• ClearCase LT:

pwv [–s⋅hort] [–wdv⋅iew | –root]

DESCRIPTION

The pwv command lists the view-tag of your current view context, or ** NONE ** if there is none.

There are two kinds of view contexts, as follows:

• The working directory view context, which any view may have

• The set view context, which only a UNIX dynamic view may have

NOTE: This command does not require a product license.

Dynamic Views

You can establish or change your dynamic view context by

• Using the setview command (UNIX)

• Changing to a Windows view drive

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 851

pwv

• Changing your working directory to a view-extended pathname (see pathnames_ccase).

On UNIX, if you use setview and change your working directory to a view-extended pathname,

you have two view contexts: your working directory view, which is used to process simple file

names and relative pathnames; and your set view, which is used to process full pathnames (those

that begin with a slash. On Windows, there is no notion of a set view context.

Snapshot Views

You can establish or change your snapshot view context when you change to a snapshot view

directory. There is no notion of a set view context for a snapshot view.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

LISTING FORMAT. Default: The annotation Working directory view: or Set view: precedes a

view’s view-tag.

–s⋅hort
Omits the annotation string. Specifying –short invokes –wdview also, unless you use

–setview.

WORKING DIRECTORY VIEW VS. SET VIEW. Default: Lists both your working directory view and

your set view, unless you specify –short.

–wdv⋅iew
Lists your working directory view only.

–set⋅view
Lists your set view only. There is no notion of a set snapshot view, so when you work in

a snapshot view, the set view is always ** NONE ** .

MISCELLANEOUS

–root
Returns the root directory path of the current working view. This root is the portion of

an element’s absolute path that precedes the VOB tag.

NOTE TO UNIX USERS: Use the root directory path as the prefix for element paths in build

scripts originally developed to work in a dynamic view that you now want to use in a

snapshot view.

If you start a dynamic view (see startview) and then change to the view (rather than

using setview), this option returns the extended view path. This option returns nothing

when issued from a set UNIX dynamic view (see setview), a Windows dynamic view

path or a Windows snapshot view path that has been mapped to a drive (using the subst
command) that is your current drive.

852 Command Reference

pwv

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

On a UNIX system, list the current set view and working directory view. In this case, they are the

same.

cmd-context pwv
Working directory view: jackson_vu
Set view: jackson_vu

• On a Windows system, display the current view.

cmd-context pwv
Working directory view: jackson_vu
Set view: jackson_vu

• On a UNIX system, list the working directory view only.

cmd-context pwv –wdview
Working directory view: jackson_vu

• On a UNIX system, list the current view after changing the working directory view, but

before setting a view.

% cd /view/jackson_old/usr/hw/src

cmd-context pwv
Working directory view: jackson_old
Set view: ** NONE **

Reference Pages 853

pwv

• (ClearCase) On a UNIX system, list the current view after setting a view and changing the

working directory view.

cmd-context setview jackson_vu

% cd /view/jackson_old/usr/hw/src

cmd-context pwv
Working directory view: jackson_old
Set view: jackson_vu

• On a UNIX system, set a dynamic view, change to a VOB directory, and then use pwv –root.
Notice that no value is returned.

cmd-context setview bert_dynview_v5

 % cd /vobs/doc
cmd-context pwv –root
 %

• On a UNIX system, change to a snapshot view directory and get the root of the working

view directory path.

 % cd /usr/ssview/bert_v5/vobs/doc

cmd-context pwv –root
/usr/ssview/bert_v5

• List the current view after changing to a version-extended namespace directory. Use the

short format to list the view name only.

cd src@@

cmd-context pwv –short
jackson_vu@@

SEE ALSO

cd, setview, startview, pathnames_ccase

854 Command Reference

query_language

query_language
Selects objects by their metadata

APPLICABILITY

SYNOPSIS
Query Primitives:

query-function (arg-list)
attribute-type-name comparison-operator value

Compound Queries:

query && query
query || query
! query
(query)

DESCRIPTION

The query language is used to formulate queries on VOBs. It includes logical operators similar

to those in the C programming language. A query searches one or more VOBs and returns the

names of objects: versions, branches, and/or elements. A query may return a single object, many

objects, or no objects at all.

A query primitive evaluates to TRUEor FALSE. A TRUEvalue selects an object, such as an element,

branch, or version; a FALSE value excludes it.

A query must be enclosed in quotes if it includes spaces. You may also need to enclose a query

in quotes to prevent shell-level interpretation of characters such as ((open parenthesis). Quoting

parentheses in config specs is not required.

Product Command Type

ClearCase general information

ClearCase LT general information

Attache general information

Platform

UNIX

Windows

Reference Pages 855

query_language

Queries in Version Selectors

You can use a query in a version selector in these contexts:

• Command-line options in the following cleartool commands:

describe, merge, mkattr, mkbranch, mklabel, rmattr, rmlabel, rmver

• Configuration rules; see the config_spec reference page

• Version-extended pathnames in ClearCase, ClearCase LT, and Attache commands; see the

pathnames_ccase reference page

A query in a version selector must be enclosed in braces ({}).

When a query is applied to a single branch, ClearCase and ClearCase LT select the most recent

version on that branch that satisfies the query. For example:

cmd-context describe -ver ’/main/{attype(QAed)}’ util.c

Using a query without a branch pathname causes an element’s entire version tree to be searched.

If the query returns a single version, the version-selection operation succeeds; the operation fails

if the query returns no version (not found) or returns more than one version (ambiguous). For

example:

cmd-context describe -ver "{attype(QAed)}" util.c
cleartool: Error: Ambiguous query: "{attype(QAed)}"

Queries in the find and findmerge Commands

You can also use queries in the find and findmerge commands. In this context, the query can be

enclosed in braces ({...}). The query returns the names of all matching objects. For example:

• UNIX:

cleartool find util.c -ver attype(QAed) -print
util.c@@/main/1
util.c@@/main/3

• Windows (notice the quotes):

cleartool find util.c -ver "attype(QAed)" -print
util.c@@\main\1
util.c@@\main\3

QUERY PRIMITIVES

The query language includes these primitives:

attribute-type-name comparison-operator value

comparison-operator is one of the following:

856 Command Reference

query_language

== != < <= > >=

Examples:

BugNum==4053
BugNum>=4000
Status!="tested"

This primitive is TRUE if the object itself has an attribute of that type and the value

comparison is true. To test whether an object or its subobjects has a particular attribute

(for example, an element or its branches and versions), use the attr_sub primitive.

NOTE: If no attribute named BugNum has been attached to an object, then

!BugNum==671 is TRUE, but BugNum!=671 is FALSE. The second query would be true if

an attribute of type BugNum existed, but had a different value.

attr_sub (attribute-type-name, comparison-operator, value)

attype (attribute-type-name)

attype_sub (attribute-type-name)

brtype (branch-type-name)

With elements TRUE if the element or any of its branches or versions has an

attribute of type attribute-type-name that satisfies the specified

comparison with value.

With branches TRUE if the branch or any of its versions has an attribute of type

attribute-type-name that satisfies the specified comparison with

value.

With versions TRUEif the version itself has an attribute of type attribute-type-name
that satisfies the specified comparison with value.

With elements TRUEif the element itself has an attribute of type attribute-type-name.

With branches TRUEif the branch itself has an attribute of type attribute-type-name.

With versions TRUEif the version itself has an attribute of type attribute-type-name.

With elements TRUE if the element or any of its branches or versions has an

attribute of type attribute-type-name.

With branches TRUE if the branch or any of its versions has an attribute of type

attribute-type-name.

With versions TRUEif the version itself has an attribute of type attribute-type-name.

With elements TRUE if the element has a branch named branch-type-name.

With branches TRUE if the branch is named branch-type-name.

With versions TRUE if the version is on a branch named branch-type-name.

Reference Pages 857

query_language

created_by (login-name)

In all cases, TRUE if the object was created by the user login-name (as shown by the describe
command).

created_since (date-time)

In all cases, TRUE if the object was created since date-time. The date-time argument can

have any of the following formats:

date.time | date | time | now
where:

Specify the time in 24-hour format, relative to the local time zone. If you omit the time,

the default value is 00:00:00. If you omit the date, the default is today. If you omit the

century, year, or a specific date, the most recent one is used. Specify UTC if you want to

resolve the time to the same moment in time regardless of time zone. Use the plus (+) or

minus (-) operator to specify a positive or negative offset to the UTC time. If you specify

UTC without hour or minute offsets, Greenwich Mean Time (GMT) is used. (Dates

before January 1, 1970 Universal Coordinated Time (UTC) are invalid.)

eltype (element-type-name)

In all cases, TRUE if the element to which the object belongs is of type element-type-name.

hltype (hlink-type-name)

hltype (hlink-type-name , ->)

hltype (hlink-type-name , <-)
In all cases, TRUE if the object is either end of a hyperlink (first form) named

hlink-type-name, or is the from-end of a hyperlink (second form), or is the to-end of a

hyperlink (third form)

lbtype (label-type-name)

In all cases, TRUE if the object itself is labeled label-type-name. (Because elements and branches

cannot have labels, this primitive can be true only for versions.)

lbtype_sub (label-type-name)

date := day-of-week | long-date
time := h[h]:m[m][:s[s]] [UTC [[+ | -]h[h][:m[m]]]]

day-of-week := today |yesterday |Sunday | ... |Saturday |Sun | ... |Sat
long-date := d[d]–month[–[yy]yy]

month := January |... |December |Jan |... |Dec

With elements TRUE if the element has a version that is labeled label-type-name.

With branches TRUE if the branch has a version that is labeled label-type-name.

With versions TRUE if the version itself is labeled label-type-name.

858 Command Reference

query_language

merge (from-location , to-location)

In all cases, TRUEif the element to which the object belongs has a merge hyperlink (default name:

Merge) connecting the from-location and to-location. You can specify either or both locations with

a branch pathname or a version selector. Specifying a branch produces TRUE if the merge

hyperlink involves any version on that branch. The branch pathname must be complete (for

example, /main/rel2_bugfix, not rel2_bugfix).

pool (pool-name)

In all cases, TRUE if the element to which the object belongs has a source pool or cleartext pool

named pool-name.

trtype (trigger-type-name)

In all cases, TRUE if the element to which the object belongs has an attached or inherited trigger

named trigger-type-name.

version (version-selector)

Note that in this context, version-selector cannot itself contain a query. For example,

version(REL1) is valid, but version(lbtype(REL1)) is not.

COMPOUND QUERIES

Primitives can be combined into expressions with logical operators. An expression can take any

of these forms, where query is a primitive or another expression:

OPERATOR PRECEDENCE

The precedence and associativity of the operators for attribute comparisons and formation of

logical expressions are the same as in the C programming language:

With elements TRUE if the element has a version with the specified version-selector.
With branches TRUE if the branch has a version with the specified version-selector.
With versions TRUE if the version itself has the specified version-selector.

query || query (logical OR)
query && query (logical AND)
! query (logical NOT)
(query) (grouping to override precedence)

highest precedence: ! (right associative)
lower precedence: < <= > >= (left associative)
lower precedence: == != (left associative)
lower precedence: && (left associative)
lowest precedence: || (left associative)

Reference Pages 859

query_language

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• On a UNIX system, display all versions of test .c for which the attribute QAed has the value

Yes.

% cat ‘cleartool describe –s –ver /main’{QAed==”Yes”}’ test.c‘

• Attach the label REL6 to the version of test.c that is already labeled REL5.

UNIX:

% cleartool mklabel -ver ’{lbtype(REL5)}’ REL6 test.c
Created label "REL6" on "test.c" version "/main/4".

Windows:

Z:\vob2\src> cleartool mklabel -ver "{lbtype(REL5)}" REL6 test.c
Created label "REL6" on "test.c" version "\main\4".

• Attach an attribute to the latest version of test.c created since yesterday at 1 P.M. by user

asd. Note the use of backslashes (\) to escape quote characters (") required to specify a

string argument to mkattr.

UNIX:

% mkattr -ver ’{created_since(yesterday.13:00)&&created_by(asd)}’ QAed \"No\" test.c
Created attribute "QAed" on "test.c@@/main/5".

Windows:

cleartool> mkattr -ver "{created_since(yesterday.13:00)&&created_by(asd)}" QAed ^
\"No\" test.c
Created attribute "QAed" on "test.c@@\main\5".

860 Command Reference

query_language

• List each branch named rel2_bugfix that occurs in an element to which a trigger named

mail_all has been attached.

UNIX:

% cleartool find . -branch ’brtype(rel2_bugfix)&&trtype(mail_all)’ -print
./util.c@@/main/rel2_bugfix

Windows:

Z:\vob2\src> cleartool find . -branch "brtype(rel2_bugfix)&&trtype(mail_all)" -print
.\util.c@@\main\rel2_bugfix

SEE ALSO

config_spec, pathnames_ccase, version_selector

Reference Pages 861

quit

quit
Quits an interactive or Attache session

APPLICABILITY

SYNOPSIS
q⋅uit

DESCRIPTION

The quit command ends an interactive cleartool or multitool session or an Attache session,

returning control to the parent process. In Attache, the ws_helper program exits as well. In

ClearCase, ClearCase LT and MultiSite, you can also exit by entering the exit command. In

ClearCase, ClearCase LT and MultiSite on UNIX, you can also type a UNIX EOF character

(typically CTRL+D).

RESTRICTIONS

None.

EXAMPLES

• End a cleartool interactive session.

cleartool> quit

• End a multitool interactive session with the quit synonym, exit.

multitool> exit

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

MultiSite multitool subcommand

Platform

UNIX

Windows

862 Command Reference

quit

• End a cleartool interactive session with the UNIX EOF character.

cleartool> <CTRL+D>
%

• End an Attache session and exit the ws_helper program.

cmd-context quit

SEE ALSO

attache_command_line_interface, attache_graphical_interface

Reference Pages 863

rebase

rebase
Changes the configuration of a stream

APPLICABILITY

SYNOPSIS

• Begin a rebase operation using the graphical user interface:

rebase –gr⋅aphical [–vie⋅w rebase-view-tag] [–str⋅eam stream-selector] [–q⋅uery | –qal⋅l]

• Cancel or check the status of a rebase operation:

rebase { –can⋅cel | –sta⋅tus [–l⋅ong] } [–vie⋅w rebase-view-tag] [–str⋅eam stream-selector]

• Preview a rebase operation:

rebase –pre⋅view [–s⋅hort | –l⋅ong] [–vie⋅w rebase-view-tag] [–str⋅eam stream-selector]

{ –rec⋅ommended | { –bas⋅eline baseline-selector[,...] –dba⋅seline baseline-selector[,...] } }

• Begin a rebase operation:

rebase
{ –rec⋅ommended | { –bas⋅eline baseline-selector[,...] –dba⋅seline baseline-selector[,...] } }
[–vie⋅w rebase-view-tag] [–str⋅eam stream-selector][–com⋅plete] [–gm ⋅erge | –ok]

[–q⋅uery | –abo⋅rt | –qal⋅l] [–ser⋅ial] [–f⋅orce]

• Resume or complete a rebase operation:

rebase { –res⋅ume | –com⋅plete } [–vie⋅w rebase-view-tag] [–str⋅eam stream-selector]

[–gm⋅erge | –ok] [–q⋅uery | –abo⋅rt | –qal⋅l] [–ser⋅ial] [–f⋅orce]

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

864 Command Reference

rebase

DESCRIPTION

The rebase command reconfigures a stream by adding, dropping, or replacing one or more of the

stream’s foundation baselines. The file and directory versions selected by those new baselines

(and thus their associated activities) then become visible in the stream’s views.

Only labeled baselines can serve as foundation baselines.

Any changes made in the stream prior to a rebase operation are preserved during the rebase. For

any file modified in the stream, rebase merges any changes that are present in versions of that

file in the new foundation baselines into the latest version of that file in the stream, thereby

creating a new version. All such merged versions are captured in the change set of an integration

activity that rebase creates. This integration activity becomes the view’s current activity until the

rebase operation is completed or canceled.

You must perform a rebase operation in a view belonging to the stream that is being rebased.

Before starting the rebase operation, check in all files in that view. This way, you avoid potential

problems caused by rebase merging changes into an checked-out file; rebase cannot reliably

unmerge those changes should you cancel the rebase operation.

If you want to recommend a baseline after rebasing to it, you must add it to the list of

recommended baselines with chstream –recommended.

As a rule, you should rebase development streams often to pick up changes in the project’s

recommended baselines. By doing so you can find integration problems early, when they are

easier to fix. In addition, rebasing just before performing a deliver operation should reduce or

eliminate the need for manual merging during the delivery.

You may not rebase when a deliver operation is in progress.

Rules for Development Streams

A development stream can be rebased to baselines that were created in its parent stream, that are

in the parent stream’s foundation, or that were created in other streams in the project, provided

that they have been delivered to the parent stream and they contain the foundation baselines for

the stream to be rebased. The parent stream of a development stream can be the project’s

integration stream or a feature-specific development stream (a stream created for developers

working together on specific parts of the project). These rules allow flexibility in sharing work

across streams in the project, but also ensure that a stream only delivers work created by itself,

and does not leave stranded changes created by the stream.

rebase is typically used to advance a stream’s configuration, that is, to replace its current

foundation baselines with more recent ones. However, you can also use rebase for other

purposes:

• To revert to earlier baselines

• To add baselines for components not currently in the stream’s configuration

Reference Pages 865

rebase

• To drop components from the stream’s configuration

You cannot revert or drop a component that has been modified (that is, new versions have been

created) in the development stream. Without this rule, rebase could leave stranded the changes

made against baselines that are no longer in the stream’s configuration.

rebase allows different baselines to be moved in different directions; you can advance one

baseline while reverting another.

Rules for Integration Streams

An integration stream can be rebased only to baselines created in other projects or to imported

or initial baselines. See the mkcomp and mkbl reference pages for information about imported

and initial baselines.

Just as for development streams, rebase can advance or revert baselines in an integration

stream’s configuration, and add or drop components. It can also switch to another baseline that

originates from a project with a different foundation baseline; that is, a baseline that is neither an

ancestor nor a descendant of the current foundation.

You cannot revert, switch, or drop baselines for components that are in the project’s modifiable

component list. This rule prevents rebase from leaving stranded the changes made to those

components in the integration stream, as well as in the project’s development streams in the same

or a different VOB replica.

Handling of Elements of Non-default Merge Types

In a rebase operation, automatic merging is the default behavior for elements, unless user or

never merge types were set for the elements. For information about setting merge behavior for

an element type, see mkeltype.

Rebase and deliver operations handle elements of user or never merge types in much the same

way. For more information, see this topic in deliver.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if one or more of these objects are locked: the project VOB, the

development stream.

Mastership: (Replicated VOBs only) Your current replica must master the development stream.

OPTIONS AND ARGUMENTS

INVOKING THE GRAPHICAL USER INTERFACE. Default: Command-line interface.

–gr⋅aphical
Starts the graphical user interface for the rebase operation.

866 Command Reference

rebase

SPECIFYING THE REBASE VIEW. Default: If a stream is specified, the view attached to the stream

(provided only one view is attached to the stream. If multiple views are attached, a view must be

specified). If a stream is not specified, the current working UCM view.

–vie⋅w rebase-view_tag
Specifies the view in which to execute the rebase command. The view must be associated

with a stream that is the stream to be rebased.

SPECIFYING THE STREAM TO BE REBASED. Default: If a view is specified, the stream attached to the

view. If a view is not specified, the stream attached to the current UCM view.

–str⋅eam stream-selector
Specifies the stream to be rebased.

Specifying the stream alone is sufficient for canceling, previewing, resuming,

completing, and checking status of a rebase operation. A view is not required. When

beginning a new rebase operation, a view is required if it cannot be uniquely

determined.

stream-selector is of the form [stream:]stream-name[@vob-selector], where vob-selector
specifies the stream’s project VOB.

CANCELING A REBASE OPERATION.

–can⋅cel

Cancels a rebase operation and restores the stream’s previous configuration. The option

deletes the integration activity and any versions created by the rebase operation that are

not yet checked in.

If any new versions have been checked in, the cancellation process is halted and you are

informed of completed merges and any checked in versions that resulted from the rebase

activity. After undoing the merges and checkins, you must issue the rebase –cancel
command again to cancel the rebase operation.

OBTAINING THE STATUS OF A REBASE OPERATION.

–sta⋅tus
Displays the status of a rebase operation. You are informed whether a rebase operation

is in progress in the specified stream; and if so, this option displays the new foundation

baselines and the list of new activities being brought into the stream.

PREVIEWING THE RESULTS OF A REBASE OPERATION.

–pre⋅view
Shows what baselines would change and what new activities would be brought into the

stream if a rebase operation were to be executed. –preview fails if a rebase operation is

in progress.

Reference Pages 867

rebase

CONTROLLING OUTPUT VERBOSITY. Default: Varies according to the kind of output that the

options described here modify. See the descriptions of –status and –preview.

–l⋅ong
As a modifier of –status, displays a list of activities and change sets, and a list of elements

that will require merging, in addition to the default information displayed by –status.

As a modifier of –preview, displays a list of versions that potentially require merging, in

addition to the default information displayed by –preview.

–s⋅hort
Modifies the –preview option. Displays only a list of the activities.

SPECIFYING BASELINES. Default: None.

–rec⋅ommended
Specifies that a development stream is to be rebased to its parent stream’s recommended

baselines. Using this option clears the existing foundation baselines and replaces them

with the recommended ones.

–bas⋅eline baseline-selector[,...]

Specifies one or more baselines to use as new foundation baselines for the stream. See

Rules for Development Streams and Rules for Integration Streams for criteria for specifying

baselines. Using this option replaces only the baselines in the components for which a

newer baseline is explicitly specified.

If your project has composite baselines, you can rebase to your parent stream’s

composite baseline. Therefore, you need not specify multiple baselines separately. Any

additions to the composite baseline dependencies are propagated through subsequent

rebase operations.

NOTE: Depending on whether –recommended or –baseline is used, the result of rebasing

to a composite baseline may be different. For example, the foundation baseline for a

development stream is composite baseline X1, which selects member baselines A1, B1

and C1. New baselines A2 and A3 are created in the parent stream and picked up by the

development stream through rebase operations. Now the foundation baselines for the

development stream are X1 and A3. Then a new composite baseline, X2, is made and

recommended in the parent stream, which selects A2, B2, and C2. If you rebase to the

recommended baseline,A2 overrides A3 in the development stream. The new

foundation baselines for the development stream is X2. However, if you rebase to X2 by

using the –baseline option, A2 does not override A3 because A3 is explicitly present in

the foundation. The new foundation baselines for the development stream, in this case,

is X2 and A3.

baseline-selector is of the form [baseline:]baseline-name[@vob-selector], where vob-selector
specifies the baseline’s project VOB.

868 Command Reference

rebase

–dba⋅seline baseline-selector[,...]

Specifies one or more baselines to remove from the stream’s configuration. Files in those

baseline’s components are subsequently no longer visible or modifiable in the stream.

See Rules for Development Streams and Rules for Integration Streams for criteria for

specifying baselines.

baseline-selector is of the form [baseline:]baseline-name[@vob-selector], where vob-selector
specifies the baseline’s project VOB.

RESUMING A REBASE OPERATION. Default: None.

–res⋅ume
Restarts a rebase operation from the point at which it has been suspended. A rebase

operation can be interrupted (as with CTRL+C) or when it encounters an external error

or condition that requires more information. To continue the operation, reissue the

rebase command with the –resume option. However, you cannot resume a rebase

operation that has been successfully halted with the –cancel option.

COMPLETING A REBASE OPERATION. Default: None.

–com⋅plete
Completes a rebase operation. Checking in merged versions in the development view

does not complete the rebase operation; you must use –complete to complete a rebase

operation. You can use this option after a rebase has been suspended—for example, to

resolve file conflicts. It resumes the rebase operation, verifies that needed merges were

made, checks in any versions that are checked out, and records changes in the change set

for the rebase activity.

MERGE OPTIONS. Default: Works as automatically as possible, prompting you to make a choice in

cases where two or more contributors differ from the base contributor. For general information,

see the findmerge reference page.

-ok
Pauses for verification on each element to be merged, allowing you to process some

elements and skip others. This option does not remain in effect after a rebase operation

is interrupted.

–gm ⋅erge
 Performs a graphical merge for each element that requires it. This option does not

remain in effect after a rebase operation is interrupted.

–q⋅uery
Turns off automated merging for nontrivial merges and prompts you to proceed with

every change in the from-versions. Changes in the to-version are accepted unless a

conflict exists. This option does not remain in effect after a rebase operation is

interrupted.

Reference Pages 869

rebase

–abo⋅rt
Cancels a merge if it is not completely automatic. This option does not remain in effect

after a rebase operation is interrupted.

–qal⋅l
Turns off all automated merging. Prompts you to specify whether to proceed with each

change. This option does not remain in effect after a rebase operation is interrupted.

–ser⋅ ial
Reports differences with each line containing output from one contributor, instead of in

a side-by-side format. This option does not remain in effect after a rebase operation is

interrupted.

CONTROLLING COMMAND-LINE PROMPTS. Default: Prompt for user input.

–f⋅orce
Suppresses prompting for user input during the course of a rebase operation. The –force
option does not remain in effect if the rebase is interrupted; you must respecify it when

you restart the rebase operation with –resume or –complete. The merge options to the

rebase command are not affected by the –force option.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Start a rebase operation.

cmd-context rebase –recommended
Advancing to baseline "BL1.119" of component "webo_modeler"
Updating rebase view’s config spec...
Creating integration activity...
Setting integration activity...
Merging files...
No versions require merging in stream "chris_webo_dev".
Build and test are necessary to ensure that the merges were completed
correctly.
When build and test are confirmed, run "cleartool rebase -complete".

870 Command Reference

rebase

• Complete a rebase operation.

cmd-context rebase –complete
Rebase in progress on stream "chris_webo_dev".
Started by "ktessier" at 06/06/00 15:36:42.
Merging files...
No versions require merging in stream "chris_webo_dev".
Checking in files...
Clearing integration activity...
Updating stream’s configuration...
Cleaning up...
Rebase completed.

SEE ALSO

checkin, checkout, deliver, findmerge, setactivity

Reference Pages 871

recoverview

recoverview
Recovers a dynamic view database

APPLICABILITY

SYNOPSIS

• Recover files associated with deleted VOB or deleted directory:

recoverview [–f⋅orce] { –vob vob-identifier | –dir dir-identifier }

{ –tag view-tag | view-storage-dir-pname }

• Synchronize a view with one or more VOBs, moving stranded objects to a known location:

recoverview –syn⋅chronize [–vob pname-in-vob]

{ –tag view-tag | view-storage-dir-pname }

DESCRIPTION

The recoverview command repairs a view database and the associated private storage area of a

dynamic view (a snapshot view has no private storage in the same sense as does a dynamic

view). Typically, you use this command after a system crash or similar mishap. You may also

want to use this command to regain access to stranded view-private files. (See RECOVERING
VIEW-PRIVATE FILES: VIEW LOST+FOUND DIRECTORY.)

Automatic Recovery

When necessary, recoverview is invoked by a dynamic view’s associated view_server process.

Enter this command yourself if messages in the view log (view_log) suggest view database

corruption (for example, INTERNAL VIEW DB ERROR).

Product Command Type

ClearCase cleartool subcommand

Attache command

Platform

UNIX

Windows

872 Command Reference

recoverview

Possible Data Loss

recoverview uses reformatview;that is, recovery involves a dump/load of the view database.

recoverview deletes the old, invalid view database, which reformatview has renamed to

db.dumped.

Depending on the state of the view database, this process may cause certain information to be

lost. After a view is recovered, consult the view log to investigate possible data loss.

NOTE TO UNIX USERS: The set-UID bit is always lost on files that the view owner does not own.

See the reformatview reference page for more information.

RECOVERING VIEW-PRIVATE FILES: VIEW LOST+FOUND DIRECTORY

A file in view-private storage is normally accessed through a VOB pathname. That is, the file

appears to be located in the VOB, but is actually stored in the view. But this view-VOB

correspondence can be disrupted:

• A VOB can become temporarily unavailable—for example, by being unmounted.

• A VOB can become permanently unavailable, by being deleted.

• A particular VOB directory can become unavailable permanently, by being deleted with an

rmelem command.

In all these cases, view-private files that are accessed through the unavailable VOB structure

become stranded; the files cannot be used for normal ClearCase operations, because there are no

VOB pathnames through which they can be accessed. You can resynchronize your view with the

available VOBs with the –vob and –dir options. This recovers stranded files by moving them into

the view’s lost-and-found area (lost+found). Recovered files remain inaccessible to normal

ClearCase operations; you can access them through the view storage directory, using standard

operating system utilities and commands.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SYNCHRONIZING A VIEW WITH ONE OR MORE VOBS. The following option synchronizes the

dynamic view with one or more VOBs. With this option, recoverview moves all stranded files to

the lost and found subdirectory. A typical time to synchronize is after performing a relocate

operation.

–syn⋅chronize [–vob pname-in-vob]

Synchronizes the view with all VOBs in which the view has created view-private files.

With –vob, synchronizes the view only with the VOB specified by pname-in-vob.

Reference Pages 873

recoverview

FORCING RECOVERY. Default: recoverview displays a Recovery not needed warning message

and exits immediately if the view database does not need to be recovered.

–f⋅orce
Performs a view database recovery, whether or not it’s needed. Suppresses the warning

message in the situation described above.

SPECIFYING THE VIEW. Default: None.

–tag view-tag
The view-tag of any registered dynamic view.

view-storage-dir-pname
The pathname of a dynamic view storage directory. Use the lsview command to list a

view’s storage directory.

CAUTION: Make sure that the current working directory is not the same as, or anywhere

below view-storage-dir-pname.

RECOVERING VIEW-PRIVATE STORAGE. The following options take ClearCase-internal identifiers

for a VOB or a VOB directory (vob-identifier and dir-identifier) as arguments. The lsprivate
command uses these identifiers when listing an inaccessible VOB or VOB directory.

–vob vob-identifier
Moves all view-private files that correspond to the specified VOB to the lost+found
directory.

–dir dir-identifier
Moves all view-private files that correspond to the specified directory element to the

lost+found directory.

CAUTION: If the VOB or directory is still accessible, using these options is probably incorrect; it

will unsynchronize the view and VOB, not synchronize them.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

874 Command Reference

recoverview

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

NOTE: recoverview writes status messages to the view_log file; it does not print status messages

on the standard output device.

• Synchronize the dynamic view jackson_fix with all VOBs in which it has created

view-private files.

cmd-context recoverview –synchronize –tag jackson_fix

• Synchronize a dynamic view whose storage directory is

/usr/home/jackson/ccviews/std.vws with the /vobs/dvt VOB.

cmd-context recoverview –synchronize –vob /vobs/dvt \
/usr/home/jackson/ccviews/std.vws

• For dynamic view cp_bugfix, recover view-private files from a deleted VOB.

cmd-context lsprivate –tag cp_bugfix
...
cleartool: Warning: VOB is unavailable -- using name:
"<Unavailable-VOB-1>".

If it has been deleted use ’recoverview -vob <uuid>’
VOB UUID is 1127d379.428211cd.b3fa.08:00:69:06:af:65

...

cmd-context recoverview –vob 1127d379.428211cd.b3fa.08:00:69:06:af:65 –tag cp_bugfix

SEE ALSO

reformatview

Reference Pages 875

reformatview

reformatview
Updates the format of a view database

APPLICABILITY

SYNOPSIS
reformatview [–dum⋅p | –loa⋅d] { –tag view-tag | view-storage-dir-pname }

DESCRIPTION

The reformatview command changes the format of a view database from that used in a previous

release of ClearCase or ClearCase LT to the current format. A view database is a set of binary files

in the db subdirectory of the view storage directory. A new release may use a different database

format to support new product features, to enhance storage efficiency, or to improve

performance.

View database conversion involves two major steps:

• Dumping the existing database to a set of ASCII files. This step invalidates the view

database, which is renamed to db.dumped. You cannot use the view until its database is

reloaded.

• Loading the ASCII files into a new database that uses the new format.

NOTE: This does not overwrite the old, invalid view database; it remains in the view storage

directory, as db.dumped, until you explicitly delete it with a standard operating system

command.

A view’s view_server process detects the need for reformatting, logs a message, and

automatically reformats the view. reformatview itself writes status messages to view_log, not to

stdout or stderr.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

876 Command Reference

reformatview

You can also use reformatview to move a view storage area between hosts of different

architectures—that is, hosts on which there are differences in the binary files that implement the

view database.

Possible Data Loss

In the case of a dynamic view, if the view database requires recovery, some information may be

lost in the dump/load process. In addition, some view-private files may be moved into the

view’s lost+found directory. See the recoverview reference page for details.

NOTE TO UNIX USERS: If a view-private file is owned by someone other than the owner of the view

storage area, reformatview always strips its set-UID bit (if the bit is set)

In the case of a snapshot view, the lost information may included loaded files as well as

view-private files.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

FORCING A DUMP. Default: If a view’s database does not require reformatting (it is up to date),

reformatview displays a message and takes no other action; if the database is out of date,

reformatview performs a dump, then a load.

–dum⋅p
Performs only the first step—creating an ASCII dump of the view database in file

view_db.dump_file in the view storage directory.

–loa⋅d
Performs only the second step—replacing the old view database with a new one, using

the contents of a previously created ASCII dump file.

SPECIFYING THE VIEW. Default: None.

–tag view-tag
The view-tag of any registered view.

view-storage-dir-pname
The pathname of a view storage directory.

CAUTION: Make sure that the current working directory is not the same as, or anywhere

below, view-storage-dir-pname.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

Reference Pages 877

reformatview

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Reformat a view whose view-tag is jackson_old.

cmd-context reformatview –tag jackson_old

• Reformat a view whose storage directory is /usr/home/jackson/ccviews/fix.vwS.

cmd-context reformatview /home/jackson/ccviews/fix.vws

UNIX FILES

/var/adm/atria/log/view_log

WINDOWS FILES

ccase-home-dir\var\log\view_log

SEE ALSO

recoverview

878 Command Reference

reformatvob

reformatvob
Updates the format of a VOB database.

APPLICABILITY

SYNOPSIS

• ClearCase and Attache on UNIX:

reformatvob [–dum⋅p | –loa⋅d] [–rm] [–f⋅orce] [–to dumpfile-dir-pname]

[–hos⋅t hostname –hpa⋅th local-pname –gpa⋅th global-pname]

vob-storage-dir-pname

• ClearCase and Attache on Windows:

reformatvob [–dum⋅p | –loa⋅d] [–rm] [–f⋅orce]

[–hos⋅t hostname –hpa⋅th local-pname –gpa⋅th global-pname] vob-storage-dir-pname

• ClearCase LT on UNIX:

reformatvob [–dum⋅p | –loa⋅d] [–rm] [–f⋅orce] [–to dumpfile-dir-pname]

vob-storage-dir-pname

• ClearCase LT on Windows:

reformatvob [–dum⋅p | –loa⋅d] [–rm] [–f⋅orce] vob-storage-dir-pname

DESCRIPTION

NOTE: Always back up a VOB’s storage directory before using this command.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 879

reformatvob

reformatvob is a one-way command. The dump and load phases must be allowed to complete

(although they can take place at different times). You cannot abort and undo a reformat

operation after you have started it; you can only restart and complete the operation.

reformatvob changes the format of a VOB database from a format used in a previous release of

ClearCase or ClearCase LT to the current format. A new release may use a different database

format to support new product features, to enhance storage efficiency, or to improve

performance.

reformatvob also performs the actions of the checkvob –setup command. This checkvob setup

processing must be completed to use the checkvob command. If this processing is interrupted

during the reformatvob command execution, you must run the checkvob command manually.

(See the checkvob reference page for details.)

You can also use reformatvob for other purposes:

• In ClearCase and Attache, to move a VOB storage directory between hosts of different

architectures, that is, hosts with different binary formats for the files that implement the

VOB database

• In ClearCase, Attache, and ClearCase LT, to clean up a VOB database, physically deleting

records that have been logically deleted by vob_scrubber

In both cases, the VOB database has the same internal format, and checkvob –setup is not

invoked.

reformatvob locks the VOB before reformatting it. If the VOB is already locked, reformatvob
proceeds with the reformatting and then unlocks the VOB.

NOTE: reformatvob does not overwrite the old, invalid VOB database; it renames the old

database to db.date. The old database remains in the VOB storage directory until you delete it

with a standard operating system command.

reformat_vob Internals

The information in this section is rpovided as background information only. following programs

are called by the reformatvob command to update a VOB database. Neither is intended to be

invoked directly by administrators.

• The db_dumper program converts binary VOB database files to ASCII files.

• The db_loader program reads the ASCII files, creating a new VOB database that uses the

up-to-date schema.

The bahvior of these programs varies according to platform, as described in the following

sections.

UNIX Systems—reformatvob activates /usr/atria/etc/dumpers/db_dumper.num, where num is

the revision level of the VOB. (This value is stored in the vob_db_schema_version file located in

880 Command Reference

reformatvob

the VOB’s db subdirectory.) If reformatvob cannot find a matching db_dumper, it invokes the

VOB’s own copy of db_dumper: when the VOB is created with mkvob, a db_server running on

the VOB host copies file ccase-home-dir/etc/db_dumper into the new VOB’s database

subdirectory and changes its access mode to 4555. The db_server runs as root; thus, the VOB’s

copy of db_dumper becomes a setUID-root program.

When loading a VOB database, reformatvob always invokes the same program:

ccase-home-dir/etc/db_loader. This is a setUID-root program. (Running site_prep on the

networkwide release host sets the permissions on the original; installation on an individual host

preserves the permissions. See the Installation Guide for details.)

If reformatvob is using the copy of db_dumper stored within the VOB storage directory, it may

fail with a message that db_dumper has the wrong permissions and/or ownership:

cleartool: Error: Database dumper "vob-storage-dir/db.reformat/db_dumper"
must be setUID and owned by the super-user.

Note that the pathname to db_dumper is a location within the VOB’s database subdirectory,

which has been renamed by reformatvob to db.reformat. Enter the following commands to fix

the problem; be sure to enter the pathname of the db_dumper program exactly as it appears in

the error message.

% su root

Password: <enter root password>

% chown root vob-storage-dir/db.reformat/db_dumper

% chmod 4555 vob-storage-dir/db.reformat/db_dumper

% exit

The db_loader program is not setUID-root, and thus does not work correctly, if the

ccase-home-dir/etc/db_loader file is located on a remote host and the local host accesses this

program through a file-system mount that uses a nosuid option.

Windows Systems—reformatvob invokes a VOB’s own copy of db_dumper: when the VOB is

created with mkvob, a db_server running on the VOB host copies file

ccase-home-dir\bin\db_dumper.exe into the new VOB’s database subdirectory.

When loading a VOB database, reformatvob always invokes the same program:

ccase-home-dir\bin\db_loader.

RESTRICTIONS

Identities: You must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

Reference Pages 881

reformatvob

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: No locks apply.

Mastership: (Replicated VOBs) No mastership restrictions.

Other: In ClearCase and Attache, the VOB storage directory must physically reside on either the

host where you enter this command or a supported network-attached storage device mounted

by that host. In ClearCase LT, you must enter this command at the ClearCase LT server host.

In all cases, the current working directory must not be at or below the VOB storage directory.

Your shell or command interpreter must not have a set view context or working directory view

context.

OPTIONS AND ARGUMENTS

PARTIAL REFORMAT. Default: Performs a complete reformat, including both the dump and load

phases.

–dum⋅p
Performs only the first phase of the reformatting process—creating an ASCII dump of

the current VOB database.

–loa⋅d
Performs only the second phase of the reformatting process—creating a new VOB

database using a previously created ASCII dump.

PRESERVING A BACKUP OF THE VOB DATABASE. Default: The original VOB database directory

(subdirectory db of the VOB storage directory) is preserved through renaming. During the dump

phase, it is renamed to db.reformat; during the load phase, it is renamed again, to a name that

includes a date stamp (for example, db.02.18).

–rm
Deletes the original VOB database during the load phase.

CONFIRMATION STEP. Default: Before beginning its work, reformatvob prompts you to confirm

that you want to reformat the VOB database.

–f⋅orce
Suppresses the confirmation step.

ALTERNATE LOCATION FOR ASCII DUMP FILES. Default: The dump phase creates the ASCII dump

files within the VOB storage directory.

–to dumpfile-dir-pname
(Do not use in conjunction with –load) Creates the ASCII dump files within the specified

directory, which must not already exist.

882 Command Reference

reformatvob

VOB REGISTRY OPTIONS. Default: Using the vob-storage-dir-pname argument, reformatvob creates

or updates the vob_object registry file; it leaves the vob_tag registry file unchanged. The

following options update the VOB-tag entry.

–hos⋅t hostname
–hpa⋅th local-pname
–gpa⋅th global-pname

See the mkstgloc reference page for information on these options.

SPECIFYING THE VOB. Default: None.

vob-storage-dir-pname
The pathname of a VOB storage directory. If you use ClearCase or Attache, also refer to

the descriptions of –host, –hpath, and –gpath in the mkstgloc reference page.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Reformat a VOB whose storage directory is /home/jones/tut/tut.vbs.

NOTE: This example shows selected status messages only; reformatvob actually produces

more verbose messages. See the checkvob reference page for the setup output.

% cd

cmd-context reformatvob /home/jones/tut/tut.vbs
Reformat versioned object base "/home/jones/tut/tut.vbs"? [no] y
Dumping database...
Dumper done.
Dumped versioned object base "/home/jones/tut/tut.vbs".
Loading database...
Loader done.
Loaded versioned object base "/home/jones/tut/tut.vbs".

SEE ALSO

checkvob, lsvob, mktag, mkvob, mount, register, vob_scrubber, Administrator’s Guide

Reference Pages 883

register

register
Creates an entry in the VOB or view object registry.

APPLICABILITY

SYNOPSIS

• ClearCase and Attache—Register a view:

reg⋅ister –vie⋅w [–rep⋅lace]

[–hos⋅t hostname –hpa⋅th host-storage-pname]

view-storage-pname

• ClearCase and Attache—Register a VOB:

reg⋅ister –vob [–ucm⋅project] [–rep⋅lace]

[–hos⋅t hostname –hpa⋅th host-storage-pname]

vob-storage-pname

• ClearCase LT—Register a view:

reg⋅ister –vie⋅w [–rep⋅lace] view-storage-pname

• ClearCase LT—Register a VOB:

register –vob [–ucmproject] [–replace] vob-storage-pname

DESCRIPTION

The register command creates or replaces an entry in VOB or view object registries. The registries

enable clients to determine the physical storage locations of VOBs and views they access. Note

that register has no effect on the VOB or view tag registries. You can also use register to update

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

884 Command Reference

register

an existing registry entry, or to re-register a VOB or view that was temporarily removed from

service with unregister.

Other Commands That Affect Registries

The mkview and mkvob commands add an entry to the appropriate registry; the rmview and

rmvob commands remove registry entries. You can use the unregister command to remove an

existing entry. The reformatvob command updates a VOB’s object registry entry (or creates one,

if necessary).

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

VIEW/VOB SPECIFICATION. Default: None.

–vob
Registers a VOB storage directory.

–ucm⋅project
Marks a VOB as a UCM project VOB in the registry.

–vie⋅w
Registers a view storage directory.

OVERWRITING AN EXISTING ENTRY. Default: An error occurs if the view or VOB storage directory

already has an entry in the registry.

–rep⋅lace
Replaces an existing registry entry. (No error occurs if there is no preexisting entry.)

SPECIFYING THE LOCATION OF THE STORAGE DIRECTORY. Default: None.

view-storage-pname
The path to the view storage; to determine the path, use lsview.

vob-storage-pname
The path to the VOB storage; to determine the path, use lsvob.

SPECIFYING NETWORK ACCESSIBILITY. Default: Values are derived from the view-storage-pname or

vob-storage-pname arguments.

–hos⋅t hostname
–hpa⋅th local-pname

See the mkstgloc reference page for descriptions of how to use these options.

To register a VOB or view that resides on a supported network attached storage (NAS)

device, you must specify the option set, –host –gpath. (NAS devices must be specially

configured for use with ClearCase. See the Administrator’s Guide for more information.)

Reference Pages 885

register

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Register a VOB storage directory that was previously unregistered with the unregister –vob
command.

cmd-context register –vob /vobstore/vob2.vbsfs

• Register a view storage directory.

cmd-context register –view –host host2 –hpath C:\vw_store\view3.vws ^
–gpath \\host2\vw_store\view3.vws \\host2\vw_store\view3.vws

• Replace the existing registry entry for a VOB storage directory, explicitly specifying the

access path information.

cmd-context register –vob –replace –host corona –hpath /vobstg/tests.vbs \
–gpath /net/corona/vobstg/test.vbs /vobstg/test.vbs

SEE ALSO

mktag, mkview, mkvob, mount, umount, unregister

886 Command Reference

relocate

relocate
Moves elements and directory trees from one VOB to another

APPLICABILITY

SYNOPSIS
relocate [–f⋅orce] [–qal⋅l] [–log log-pname] [–upd⋅ate]

pname [pname ...] target-dir-pname

DESCRIPTION

The relocate command moves elements, including directory trees, from one VOB to another. All

related VOB database entries and data containers are moved to the target VOB. relocate
preserves the “move from” VOB’s namespace by substituting VOB symbolic links for moved

elements.

NOTE: In Attache, after moving elements from one VOB to another, relocate does not move the

corresponding elements in the workspace.

The more common use of relocate involves splitting a piece from one VOB and moving it to a

newly created VOB. However, you can move an arbitrary collection of elements from one VOB

to a location in any other VOB. You cannot use relocate to move an element to a new location in

the same VOB. Use cleartool mv for this purpose.

For a dynamic view, view-private files and nonversioned DOs are not relocated. If a relocated

directory contains view-private files, they are stranded; DOs are removed.

WARNING: The relocate command makes irreversible changes to at least two VOBs and their

event histories. We recommend that you not use it frivolously or routinely for minor

adjustments. Furthermore, you are advised to stop VOB update activity before and during a

relocate operation.

Product Command Type

ClearCase cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 887

relocate

RESTRICTIONS

Identities: You must have one of the following identities:

• VOB owner (for both VOBs)

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked in the source VOB: VOB, element.

An error occurs if one or more of these objects are locked in the destination VOB: VOB, element,

branch type, element type, label type, hyperlink type, attribute type.

Mastership: (Replicated VOBs only) Your current replica must master any element to be relocated.

Other: The following restrictions apply:

• relocate cannot move checked-out elements. It fails during the selection phase if it finds any

checked-out files among the ones it is going to move.

• relocate may fail if there are restrictive triggers on checkout, checkin, and rmelem
commands. Because relocate runs these commands, triggers on these operations are also

executed. If these triggers cause relocate to fail, you must disable the triggers or remove

them from those operations, and run relocate again.

OPTIONS AND ARGUMENTS

SUPPRESSING THE CONFIRMATION QUERY. Default: After displaying the relocate set, relocate asks

you to confirm that these are the elements you want to relocate.

–f⋅orce
Suppresses the confirmation step.

CONTROLLING SPECIAL CASE HANDLING. Default: See the Administrator’s Guide for information on

how the selection set is filtered.

–qal⋅l
Prompts user to affirm or reject relocate’s handling of each borderline element—one that

is cataloged both in a directory being relocated and in a directory not being relocated.

The default answer in an individual case depends on the element’s visibility in the

current view: yes if the view selects some version of the element; no otherwise.

If you reject these defaults, the result is nonfunctional links that you must repair. If a

version of an element is visible in the current view and you indicate it is not to be

relocated, the result is a bad link in the target VOB. If a version of an element is not

visible in the view and you indicate that it is to be relocated, the result is a bad link in the

source VOB.

888 Command Reference

relocate

WRITING A LOG FILE. Default: relocate creates a log file in the current directory with the name

relocate.log.date-time.

–log log-pname
Creates a relocate log file at location log-pname.

RELOCATING IN UPDATE MODE. Default: relocate proceeds as described in the Administrator’s
Guide.

–upd⋅ate
relocate runs in update mode.

SPECIFYING WHICH FILES TO RELOCATE. Default: None.

pname ...

Specifies the elements to be relocated. A pname can be a file element, directory element,

or VOB symbolic link.

SPECIFYING A TARGET VOB AND DIRECTORY. Default: None. You must supply a target directory in

a second VOB.

target-dir-pname
Specifies the directory in the target, or destination, VOB that will store the relocated

elements. relocate checks out and modifies the version of this directory that is selected

by your current view. The target directory must be in the same view as the source

pathname (that is, you cannot specify a view-extended pathname for target-dir-pname).

On Windows, this pathname must be drive-relative:

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

Valid Invalid

\foo\bar m:\foo\bar
foo f:foo
..\foo g:..\foo

Reference Pages 889

relocate

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• Move subdirectory glib (and its one file, file.c) from /vobs/lib to the newly created VOB

/vobs/gui. Query on borderline elements. To illustrate how relocate replaces element

names with symbolic links in the source VOB, the example uses a relative pathname to

specify the target VOB.

After relocating glib, examine the RelocationVOB hyperlink added to /vobs/gui.

% cd /vobs/lib

cmd-context setcs –default

cmd-context relocate -qall ./glib ../gui
Logfile is "relocate.log.09-Apr-99.14:11:37".
Selected "glib".
Selected "glib/file.c".
Do you want to relocate these objects? [no] yes
Checked out "." from version "/main/3".
Checked out "/vobs/gui" from version "/main/0".
Locking selected objects
Locked "glib"
Locked "glib/file.c"
Recreating selected objects
Created "glib"
updated branch "/main"

updated version "/main/0"
created version "/main/1"
Created "glib/file.c"

updated branch "/main"
updated version "/main/0"
created version "/main/1"

Cataloging new objects

890 Command Reference

relocate

cataloged symbolic link "/vobs/lib/glib/.@@/main/2/glib" ->
"../gui/glib"

cataloged symbolic link "/vobs/lib/glib/.@@/main/3/glib" ->
"../gui/glib"

cataloged "/vobs/lib/.@@/main/CHECKEDOUT.32/glib"
cataloged symbolic link "/vobs/lib/glib/.@@/main/1/file.c" ->

"../gui/glib/file.c"
cataloged symbolic link "/vobs/lib/glib/.@@/main/2/file.c" ->

"../gui/glib/file.c"
cataloged "/vobs/gui/glib@@/main/1/file.c"

Removing original objects
removed "glib/file.c"
removed "glib"

Checked in "/vobs/lib/." version "/main/4".
Checked in "/vobs/gui/." version "/main/1".

cmd-context describe vob:/vobs/gui
versioned object base "/vobs/gui"

created 09-Apr-99.13:50:16 by CCase Admin (clearadm.sys@propane)
"relocate target for former directory /vobs/lib/gui"
VOB storage host:pathname "propane:/usr1/vobstore/gui.vbs"
VOB storage global pathname "/net/propane/usr1/vobstore/gui.vbs"
VOB ownership:

owner clearadm
group sys

Hyperlinks:
RelocationVOB@33@/vobs/gui vob:/vobs/gui -> vob:/vobs/lib/

FILES

relocate.log.date-time

SEE ALSO

ln, mkvob, mv

Reference Pages 891

rename

rename
Assigns a new name to an existing object.

APPLICABILITY

SYNOPSIS
rename [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–acq⋅uire] old-object-selector new-object-selector

DESCRIPTION

NOTE: To move or change the name of a ClearCase or ClearCase LT file or directory element, use

the mv command.

The rename command renames a ClearCase, ClearCase LT or MultiSite object—for example, a

VOB storage pool, a replica, or a type object such as a label type.

If you are renaming a pool, no data container in the pool is affected.

If you are renaming a replica, the name change is propagated to other replicas, through the

standard synchronization mechanism. This command is valid only at the replica that masters the

VOB-replica object being renamed.

If you are renaming a type object, all instances of the type object, throughout the VOB, are also

renamed. If the type object is global, all local copies of the type object are renamed. For example,

if you rename a branch type from bugfix to rel1.3_fixes, all existing bugfix branches are also

renamed to rel1.3_fixes. (For more information about global type renaming, see the

Administrator’s Guide.)

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

MultiSite multitool subcommand

Platform

UNIX

Windows

892 Command Reference

rename

RESTRICTION: A VOB cannot contain a branch type and a label type with the same name.

NOTE: Do not use this command to rename an instance of a type, for example to rename a

particular branch of a particular element. For that purpose, use chtype.

RESTRICTIONS

Identities: You must have one of the following identities:

• Replica creator (for renaming a replica)

• Object owner

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, object.

Mastership: (Replicated VOBs only) Your current replica must master the object.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

HANDLING ECLIPSED OBJECTS. Default: If renaming the object in an administrative VOB would

eclipse an existing object in a client VOB, this command fails.

–acq⋅uire
Converts eclipsing objects to local copies of the new global type. The definitions of the

of the object to be renamed and the object that would be eclipsed as a result of the rename

operation must match, else this command fails.

SPECIFYING THE OLD AND NEW NAMES. Default: None.

old-object-selector
new-object-selector

The name of an existing object and a new name for it. Specify object-selector in one of the

following forms:

vob-selector vob:pname-in-vob

Reference Pages 893

rename

For more information about object selectors, see the cleartool reference page.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

pname-in-vob can be the pathname of any file-system

object within the VOB (if the VOB is mounted). It

cannot be the pathname of the VOB storage directory

or a VOB-tag. (Use mktag to change the name of a

VOB-tag.)

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

hlink-selector hlink:hlink-id[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]

The following object selectors apply to UCM:

activity-selector activity:actvity-name[@vob-selector]

baseline-selector baseline:baseline-name[@vob-selector]

component-selector component:component-name[@vob-selector]

folder-selector folder:folder-name[@vob-selector]

project-selector project:project-name[@vob-selector]
stream-selector stream:stream-name[@vob-selector]

894 Command Reference

rename

• Rename one of the current VOB’s pools from c_pool to c_source_pool.

cmd-context rename -c "make pool name clearer" pool:c_pool pool:c_source_pool
Renamed pool from "c_pool" to "c_source_pool".

• List existing pools in the current VOB. Then, rename pool do1 to do_staged.

cmd-context lspool –short
c_source_pool
cdft
ddft
do1
my_ctpool
sdft

cmd-context rename pool:do1 pool:do_staged
Renamed pool from "do1" to "do_staged".

• Rename a branch type from rel2_bugfix to r2_maint. First, show the version tree for util.c
with the lsvtree command. Then rename the branch type, and show the version tree again.

cmd-context lsvtree –short util.c
util.c@@\main\1
util.c@@\main\rel2_bugfix
util.c@@\main\rel2_bugfix\1
util.c@@\main\3

cmd-context rename brtype:rel2_bugfix brtype:r2_maint
Renamed type from "rel2_bugfix" to "r2_maint".

cmd-context lsvtree –short util.c
util.c@@\main\1
util.c@@\main\r2_maint
util.c@@\main\r2_maint\1
util.c@@\main\3

• On a UNIX system, rename the element type of msg.c and hello.c from text_file to

source_file. Use grep(1) to extract the element name/value from the output of the describe
command. (Note warning about renaming a predefined type.)

cmd-context describe msg.c hello.c | grep ’element type’
element type: text_file
element type: text_file

cmd-context rename eltype:text_file eltype:source_file
cleartool: Warning: Renaming a predefined object!
Renamed type from "text_file" to "source_file".

Reference Pages 895

rename

cmd-context describe msg.c hello.c | grep ’element type’
element type: source_file
element type: source_file

• Rename an attribute attached to a version of element msg.c from TESTED to QAed. Use

describe to show the name/value association before and after the name change.

cmd-context describe –aattr TESTED msg.c
msg.c@@\main\3
 Attributes:
 TESTED = "TRUE"

cmd-context rename attype:TESTED attype:QAed
Renamed type from "TESTED" to "QAed".

cmd-context describe –aattr QAed msg.c
msg.c@@\main\3
 Attributes:
 QAed = "TRUE"

• Rename replica paris to paris_louvre.

cmd-context rename replica:paris paris_louvre
Renamed replica "paris" to "paris_louvre".

SEE ALSO

chactivity, chevent, chpool, chtype, describe, lspool, lstype, mkpool, mkreplica (in the

Administrator’s Guide for Rational ClearCase MultiSite), rmpool, rmtype, chmod(1)

896 Command Reference

reqmaster

reqmaster
Sets access controls for mastership requests or requests mastership of a branch or branch type

APPLICABILITY

SYNOPSIS

• Display or set the ACL for mastership requests:

reqmaster –acl [–edi⋅t | –set pname | –get] vob-selector

• Set access controls for the replica, branches, or branch types:

reqmaster [–c⋅omment comment | –cq⋅uery | –nc⋅omment]
{ { –enable | –dis⋅able } vob-selector
| { –den⋅y | –allow } [–inst⋅ances] branch-type-selector ...
| { –den⋅y | –allow } branch-pname ...
}

• Request mastership of a branch or branch type:

reqmaster [–c⋅omment comment | –cq⋅uery | –nc⋅omment]
[–lis⋅t] { [branch-pname ...] [branch-type-selector ...] }

DESCRIPTION

This command has three forms: two forms to configure access controls for mastership requests

and one form to request mastership of a branch or branch type from the replica that masters the

object. For more information, see Chapter 9, Implementing Requests for Mastership in the

Administrator’s Guide for Rational ClearCase MultiSite.

Product Command type

ClearCase cleartool subcommand

MultiSite multitool subcommand

Platform

UNIX

Windows

Reference Pages 897

reqmaster

SETTING ACCESS CONTROLS

To allow requests for mastership, the MultiSite administrator must set access controls at each

replica:

• Add developers to the replica’s access control list (ACL). Use the –acl option with –edit or

–set to edit the ACL.

• Enable replica-level access. By default, replica-level access is not enabled. To enable it, use

the –enable option.

Also, the type and the object must allow mastership requests. By default, type-level and

object-level access are enabled. You can enable replica-level access, but deny requests for

mastership of specific branches, specific branch types, or all branches of a specific type. Even if

replica-level access is enabled, the reqmaster command fails if requests for mastership are

denied at the type level or object level. Use the –deny option to deny requests at the type and

object level.

REQUESTING MASTERSHIP OF A BRANCH OR BRANCH TYPE

This form of the reqmaster command contacts a sibling replica and requests that the replica

transfer mastership to the current replica. You can also use reqmaster to display information

about whether a mastership request will succeed.

If you specify multiple branches or branch types and the request fails for one or more items,

reqmaster prints error messages for the failures and continues processing the other items.

TROUBLESHOOTING

If the reqmaster command fails, the error message indicates whether the failure occurred at the

current replica or the sibling replica.

If the reqmaster command fails with the message can’t get handle , enter the command again.

If it continues to fail, ask the administrator of the sibling replica to check the status of the VOB

server.

When you request mastership, the reqmaster command may complete successfully, but the

mastership is not transferred to your current replica. In this case, verify that the synchronization

packet was sent from the sibling replica and that your current replica imported it successfully.

Errors that occur during the mastership request process, including errors occurring during the

synchronization export, are written to the msadm log file. To view this log, use the cleartool
getlog command or the ClearCase Administration Console (Windows).

For more information on error messages from the reqmaster command, see Chapter 9,

Implementing Requests for Mastership in the Administrator’s Guide for Rational ClearCase MultiSite.

898 Command Reference

reqmaster

RESTRICTIONS

Setting Access Controls

Identities: To set the ACL, you must have write permission on the ACL or have one of the

following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (Windows)

To enable mastership requests at the replica level, you must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (Windows)

Locks: No locks apply.

Mastership: The replica must be self-mastering. For you to allow or deny mastership requests for

a branch or branch type, your current replica must master the object.

Requesting Mastership of a Branch:

Identities: You must be on the replica’s ACL.

Locks: An error occurs if one or more of these objects are locked: branch, branch type, VOB.

Mastership: Your current replica must not master the branch.

Other: An error occurs in any of the following cases:

• Mastership requests are denied at any of the following levels: replica, type object, object.

• There are checkouts on the branch (except for unreserved, nonmastered checkouts).

• You specify a branch associated with a stream.

Requesting Mastership of a Branch Type:

Identities: You must be on the replica’s ACL.

Locks: An error occurs if one or more of these objects are locked: branch type, VOB, branch

instances that have default mastership.

Mastership: Your current replica must not master the branch type.

Other: An error occurs in any of the following cases:

• Mastership requests are denied at any of the following levels: replica, type object, any

branch type instances with default mastership.

• There are checkouts on any branch type instances with default mastership (except for

unreserved, nonmastered checkouts).

• You specify a branch type associated with a stream.

Reference Pages 899

reqmaster

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by the standard ClearCase user profile (default: –nc). See Customizing Comment
Handling in the multitool reference page. To edit a comment, use chevent.

–c⋅omment comment | –cq⋅uery | –nc⋅omment
Overrides the default with the specified comment option.

DISPLAYING OR SETTING ACCESS CONTROLS. Default: None. You must specify access controls.

Specifying –acl with no other option displays the ACL for the current replica in the VOB family

specified by vob-selector.

–acl [–edi⋅t | –set pname | –get] vob-selector
By default or with –get, displays the ACL for the current replica in the VOB family

specified by vob-selector. With –edit, opens the ACL for the current replica in the editor

specified by (in order) the WINEDITOR (UNIX), VISUAL, or EDITOR environment variable.

With –set, uses the contents of pname to set the ACL for the current replica.

Specify vob-selector in the form vob:pname-in-vob

–enable vob-selector
Allows mastership requests to be made to the current replica in the VOB family specified

by vob-selector.

–dis⋅able vob-selector
Denies all mastership requests made to the current replica in the VOB family specified

by vob-selector.

{ –deny | –allow } [–inst⋅ances] branch-type-selector ...

Denies or allows requests for mastership of the specified branch type. With –instances,

denies or allows requests for mastership of all branches of the specified type. Specify

branch-type-selector in the form brtype:type-name[@vob-selector]

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted)

type-name Name of the branch type

vob-selector VOB specifier; can be omitted if the current working

directory is within the VOB.

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

900 Command Reference

reqmaster

{ –deny | –allow } branch-pname ...

Denies or allows requests for mastership of the specified branch object. Specify

branch-pname in the form file-pname@@branch. For example:

cmdsyn.c@@/main/v3.8
header.h@@\main\v1\bugfix

REQUESTING MASTERSHIP. Default: Sends a request for mastership to the master replica of the

object.

–lis⋅t
Does not request the mastership change; instead, displays information about whether a

request would succeed.

branch-pname
Branch whose mastership you are requesting. For example:

cmdsyn.c@@/main/v3.8
header.h@@\main\v1\bugfix

branch-type-selector
Branch type whose mastership you are requesting. For example:

brtype:v2.0_integration@vob:\tests

EXAMPLES

• Display the ACL for the current replica in the VOB family /vobs/dev, and then change it to

give full access to ccadmin and permission to request mastership to gail and paul.

multitool reqmaster –acl –get vob:/vobs/dev
Replica boston_hub@/vobs/dev
Request for Mastership ACL:
Everyone: Read

cat > /tmp/boston_hub_aclfile
Replica boston_hub@/vobs/dev
Request for Mastership ACL:
User:purpledoc.com/ccadmin Full
User:purpledoc/ccadmin Full
User:purpledoc.com/gail Change
User:purpledoc/gail Change
User:purpledoc.com/paul Change
User:purpledoc/paul Change

multitool reqmaster –acl –set /tmp/boston_hub_aclfile vob:/vobs/dev

Reference Pages 901

reqmaster

multitool reqmaster –acl –get vob:/vobs/dev
Replica boston_hub@/vobs/dev
Request for Mastership ACL:
User:purpledoc.com/ccadmin Full
User:purpledoc/ccadmin Full
User:purpledoc.com/gail Change
User:purpledoc/gail Change
User:purpledoc.com/paul Change
User:purpledoc/paul Change

• Allow requests for mastership for all branches and branch types mastered by the current

replica in VOB family \tests, except for the branch type v2.0_integration and all branches

of that type.

multitool reqmaster –enable vob:\tests
Requests for mastership enabled in the replica object for "vob:\tests"

multitool reqmaster –deny –instances brtype:v2.0_integration@vob:\tests
Requests for mastership denied for all instances of
"brtype:v2.0_integration@vob:\tests"

multitool reqmaster –deny brtype:v2.0_integration@vob:\tests
Requests for mastership denied for branch type
“brtype:v2.0_integration@vob:\tests”

• Allow requests for mastership for all branches and branch types mastered by the current

replica in VOB family \dev, except for the branch cmdsyn.m@@\main\v1.0_bugfix.

multitool reqmaster –enable vob:\dev
Requests for mastership enabled in the replica object for "vob:\dev"

multitool reqmaster –deny \dev\cmdsyn.m@@\main\v1.0_bugfix
Requests for mastership denied for branch
"\dev\cmdsyn.m@@\main\v1.0_bugfix"

• Deny requests for mastership for all branches and branch types mastered by the current

replica.

multitool reqmaster –disable vob:/vobs/dev
Requests for mastership disabled in the replica object for "vob:/vobs/dev"

• Deny requests for mastership of the branch type v2.0_integration.

multitool reqmaster –deny brtype:v2.0_integration@vob:\tests
Requests for mastership denied for branch type
“brtype:v2.0_integration@vob:\tests”

• Display mastership information about the branches include.h@@\main\integ and

acc.c@@\main.

multitool reqmaster –list include.h@@\main\integ acc.c@@\main

902 Command Reference

reqmaster

• Request mastership of the branch cmdsyn.m@@/main/v2.6_dev.

multitool reqmaster cmdsyn.m@@/main/v2.6_dev

• Request mastership of the branch type v2.0_integration.

multitool reqmaster brtype:v2.0_integration@vob:\tests

SEE ALSO

chmaster

Reference Pages 903

reserve

reserve
Converts an unreserved checkout to reserved

APPLICABILITY

SYNOPSIS
res⋅erve [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–cact] pname ...

DESCRIPTION

The reserve command changes the checkout status of a checked-out version of an element to

reserved. A temporary reserve checkout of version event record is written to the VOB

database.

RESTRICTIONS

Identities: You must have one of the following identities:

• Element owner

• Element group member

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element,

branch type, branch.

Mastership: (Replicated VOBs only) Your current replica must master the branch.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

904 Command Reference

reserve

Other: There must be no reserved checkouts of the branch.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE ELEMENTS. Default: None.

–cwo⋅rk
Reserves each checked-out version in the change set of the current activity in your view.

pname ...

One or more pathnames, each of which specifies an element. The checkout in the current

view is changed, unless you use a view-extended pathname to specify another view.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Change the checkout status of an element to reserved.

cmd-context reserve util.c
Changed checkout to reserved for "util.c" branch "/main".

• Verify that you are the only user with a checkout of a certain file, and then convert your

checkout from unreserved to reserved.

cmd-context lscheckout util.c
14 Mar.13:48 drp checkout version "util.c" from \main\3
(unreserved)
 "experiment with algorithm for returning time"

cmd-context reserve util.c
Changed checkout to reserved for "util.c" branch "\main".

Reference Pages 905

reserve

SEE ALSO

checkin, checkout, lscheckout, uncheckout, unreserve

906 Command Reference

rgy_backup

rgy_backup
Copies registry files and client list from primary registry server host to backup registry server

host

APPLICABILITY

SYNOPSIS
rgy_backup

DESCRIPTION

By default, the ClearCase scheduler runs rgy_backup periodically. See the schedule reference

page for information on describing and changing scheduled jobs.

When it runs on a host that is not a backup registry host, rgy_backup checks the backup server

configuration and exits. When it runs on a backup registry server host, rgy_backup takes two

snapshots:

• ClearCase registry files on the primary registry server host.

• Primary registry host’s client list, which is maintained by the registry server host.

rgy_backup stores these snapshot files in the directory /var/adm/atria/rgy/backup (UNIX) or

ccase-home-dir\var\rgy\backup (Windows) on the backup registry server host. rgy_backup
removes files older than 96 hours.

rgy_backup names the snapshot file after the original file and appends a time stamp to the file

name.

• UNIX—rgy_backup also creates a symbolic link, with the same name as the original file,

that points to the snapshot file. For example, for registry file vob_tag, rgy_backup creates in

the backup directory:

• vob_tag .17-Jul-99.18:30:15

• A symbolic link named vob_tag that points to vob_tag .17-Jul-99.18:30:15

Product Command Type

ClearCase command

Platform

UNIX

Windows

Reference Pages 907

rgy_backup

• Windows—rgy_backup names the snapshot file after the original file and appends a time

stamp to the file name. rgy_backup also creates a file, with the same name as the original

file, that contains the full, time-stamp-extended name of the most recent snapshot file. For

example, for registry file vob_tag, rgy_backup creates in the backup directory:

• vob_tag.17-Jul-99.18:30:15

• A file named vob_tag that contains the string vob_tag.17-Jul-99.18:30:15

If the primary registry server fails, you can run rgy_switchover to activate the backup registry

server and reset all client hosts accordingly. The backup server must be running the same release

of ClearCase as that running on the primary server.

rgy_backup logs its snapshot activity in the UNIX file rgy_backup_log or the Windows event

log.

UNIX Systems Only—Designating a Backup Registry Host

Each ClearCase host has a text file, /var/adm/atria/rgy/rgy_hosts.conf. The name of the primary

registry server host appears on the first line, and the name of the backup registry server host

appears on the second line. For example, the following rgy_hosts.conf file names mercury as the

primary registry server host and venus as the backup registry server host:

% cat /var/adm/atria/rgy/rgy_hosts.conf
mercury
venus

Typically, you name a backup registry server host on each ClearCase host by supplying

information to the site_prep utility when you install ClearCase.

Windows Systems Only—Designating a Backup Registry Host

The Windows Registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\RegBackup contains

the name of the backup registry server host (or the string Unknown, if no backup host has been

designated). You can change this key value on the Registry tab in the ClearCase Control Panel.

Typically, a backup registry server host is specified for each client when ClearCase is installed

(although designating the backup registry host is not part of the installation procedure itself).

Changing the Backup Registry Server Host

To change the backup registry server host:

1. Modify the rgy_hosts.conf file on the intended backup registry server to include the host

name of the backup registry server as the second line of the file.

2. Execute rgy_backup on the backup registry server. After you do this, the backup registry

server will include current registry information, which it requires to assume the role of the

primary registry server.

908 Command Reference

rgy_backup

3. Modify the rgy_hosts.conf file on each client to be served by the backup registry server, so

that the second line of the file contains the host name of the backup registry server.

The next time rgy_backup runs, the primary registry server host updates the name of the backup

registry server for all its clients.

Do not designate a backup registry host that is unsuitable to serve as primary registry server

host.

If your site uses multiple ClearCase registries, you cannot configure one primary registry server

as the backup server for a different registry.

RESTRICTIONS

You must have write permission to the directory /var/adm/atria/rgy (UNIX) or

ccase-home-dir\var\rgy (Windows).

OPTIONS AND ARGUMENTS

None.

EXAMPLES

• On a backup registry host, take a snapshot of the ClearCase registry files manually.

rgy_backup

UNIX FILES

/var/adm/atria/rgy/*
/var/adm/atria/rgy/backup/*
/var/adm/atria/rgy/rgy_hosts.conf
/var/adm/atria/rgy/rgy_svr.conf
/var/adm/atria/log/rgy_backup_log
/var/adm/atria/client_list.db

WINDOWS FILES

ccase-home-dir\var\rgy*
ccase-home-dir\var\rgy\backup*

WINDOWS REGISTRY KEYS

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\AtriaRegy
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\ServerType
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\RegBackup

SEE ALSO

lsclients, rgy_switchover, schedule

Reference Pages 909

rgy_check

rgy_check
Check registry files for inconsistencies

APPLICABILITY

SYNOPSIS

• ClearCase:

rgy_check { –vie⋅ws | –vob⋅s } ... [–reg⋅ion region] [–sto⋅rage]

• ClearCase LT:

rgy_check { –vie⋅ws | –vob⋅s } ... [–hst⋅orage]

DESCRIPTION

The rgy_check command examines the contents of ClearCase or ClearCase LT VOB and/or view

registries, and reports any errors or inconsistencies.

Registry problems have various causes:

• Editing registry entries with editors such as emacs or Notepad.

• Improper administration procedures; for example, removing a VOB with an operating

system command rather than with rmvob

• Faulty upgrade procedures; for example, migrating a VOB to a new release that introduces

a database schema change without reformatting the VOB (using reformatvob)

• Defects in older releases of ClearCase or ClearCase LT

If rgy_check finds errors or inconsistencies, it displays a line like the following at the end of its

output:

Product Command Type

ClearCase command

ClearCase LT command

Platform

UNIX

Windows

910 Command Reference

rgy_check

Error: 21 total registry errors/inconsistencies detected.

For each problematic registry entry, rgy_check displays the registry entry and a warning or error

message.

General Problems

rgy_check reports the following general problems:

• Duplicate entries in the registry

• Malformed entries in the registry

Registration Anomalies

rgy_check reports the following VOB or view registration anomalies:

• Objects with no UUID

• Two objects with same UUID

• Objects with no host name

• Objects with no local (server) pathname

• Two objects pointing to same host-local-path
• Tags with no UUIDs

• Tags with UUIDs that do not match any object (stranded tag)

• Tag registry entries with no tag

Region-Related Problems

Region-related problems are more likely to occur ClearCase than in ClearCase LT because

ClearCase installations are not restricted to a single region. However, in either case, rgy_check
may report these problems:

• Objects with no associated tags in any region (stranded object)

• Tags in regions that are not in the region registry

• Tags with no global pathname

• Two tags in one region pointing to same object UUID

• Duplicate tags in the same region

• Tags in one region with duplicate global pathnames

Storage-Related Problems

In ClearCase, if you specify the –storage option, rgy_check also reports these problems:

• View-tags that point to global paths with missing or incorrect .view files:

• Missing .view file (usually a missing view)

• .view file with invalid contents

• .view file that contains an incorrect view UUID (that is, the UUID points to wrong view)

• VOB-tags that point to global paths with missing or incorrect replica_uuid files:

• Missing replica_uuid file (usually a missing VOB)

Reference Pages 911

rgy_check

• replica_uuid file with invalid contents

• replica_uuid file with an incorrect UUID (that is, the UUID points to wrong VOB)

In ClearCase LT, if you specify the –storage option, rgy_check reports the same kinds of

problems that ClearCase reports when you use –storage, except that view and VOB objects

(rather than tags) are checked.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE KIND OF REGISTRY ENTRIES TO DISPLAY. Default: None.

–vie⋅ws
Checks the contents of the view-tag and/or view-object registries.

–vob⋅s
Checks the contents of the vob-tag and/or vob-object registries.

SPECIFYING THE REGION. Default: All regions.

–reg⋅ion region
Specifies the network region for which registry entries are to be checked.

CHECKING STORAGE. Default: None.

–sto⋅rage
Checks for the existence of registered VOB and/or view storage directories. Given a

storage directory’s existence, rgy_check looks for basic storage configuration problems

as well. Typically, registered storage pathnames for multiple network regions are not

accessible from a single host. It is common practice to use –region to confine storage

checks to the current host’s network region.

–hst⋅orage
Checks for the existence of registered VOB and/or view storage directories on the

ClearCase LT server host. Given a storage directory’s existence, rgy_check looks for

basic storage configuration problems as well. You must run rgy_check at the

ClearCase LT server host when you use this option.

EXAMPLES

• Check the VOB registry for errors and anomalies.

rgy_check -vobs
No registry errors/inconsistencies detected.

912 Command Reference

rgy_check

• Check VOB and view registries in the devel region (which includes the local host). Include

storage directory checks. In this example, rgy_check finds a tutorial VOB from which the

user has removed the VOB’s replica_uuid information.

rgy_check -vobs -views -region devel -storage
rgy_check: Error: The VOB storage at \\io\alh\ccasetut\tut.vbs has no
replica_uuid file.
This tag:
-tag = "\alh_IO_hw"
-global_path = "\\io\alh\ccasetut\tut.vbs"
-hostname = "io"
-mount_access = "private"
-mount_options = ""
-region = "devel"
-vob_replica = "7d7031db.6dfb11cf.a398.00:80:c8:81:fa:e0"

rgy_check: Error: 1 total registry errors/inconsistencies detected.

SEE ALSO

Administrator’s Guide

Reference Pages 913

rgy_passwd

rgy_passwd
Creates or changes encrypted VOB-tag registry password

APPLICABILITY

SYNOPSIS

rgy_passwd [–pas⋅sword tag-registry-password]

DESCRIPTION

NOTE: In ClearCase LT, the registry server host is the ClearCase LT server host.

UNIX Systems

The rgy_passwd command places an encrypted password in the VOB-tag password file:

/var/adm/atria/rgy/vob_tag.sec on the network’s registry server host. This file need not already

exist.

Knowledge of this password enables an administrator to create public VOBs. Nonprivileged

users can mount public VOBs by using the ClearCase mount command. See the mkvob, mktag,

and mount reference pages for more information on public VOBs.

Windows Systems

The rgy_passwd command creates a Security subkey in the Windows Registry and places an

encrypted VOB-tag password in

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\Security\RegPasswd.
The Security subkey and RegPasswd value exist only on the registry server host.

Knowledge of this password enables a user to create public VOBs. See the mkvob, mktag, and

mount reference pages for more information on public VOBs.

Product Command Type

ClearCase command

ClearCase LT command

Platform

UNIX

Windows

914 Command Reference

rgy_passwd

RESTRICTIONS

Identities:

• UNIX: If the vob_tag.sec file does not exist, you must be root. If the vob_tag.sec file exists,

you must be the owner of that file.

NOTE: rgy_passwd maintains the access mode of the vob_tag.sec file at 400. You need not use

chmod(1) before or after entering rgy_passwd.

• Windows: No special identity is required.

NOTE: The administrator should apply a security access control list (ACL) to the Security
subkey to prevent users from directly editing the password in the registry. We recommend

that you assign full control to authorized users (users allowed to change the password; for

example, the network administrator), and read permissions to all other users.

Locks: No locks apply.

Mastership: (Replicated VOBs only) No mastership restrictions.

Other: You must run rgy_passwd on the registry server host.

OPTIONS AND ARGUMENTS

By default, rgy_passwd prompts you to type the new password.

–pas⋅sword tag-registry-password
Specifies the password on the command line.

CAUTION: This is a security risk because the password remains visible.

UNIX FILES

/var/adm/atria/rgy/vob_tag.sec

DIAGNOSTICS

rgy_passwd: Error: Not a registry server.

This command must be executed on the network’s registry server host.

rgy_passwd: Error: Unable to open file “/var/adm/atria/rgy/vob_tag.sec”:
Permission denied.

A vob_tag.sec file already exists, and you are not its owner.

EXAMPLE

• Create a VOB-tag registry password interactively.

rgy_passwd
Password: <enter VOB-tag password>

Reference Pages 915

rgy_passwd

SEE ALSO

mktag, mkvob, mount

916 Command Reference

rgy_switchover

rgy_switchover
Makes a backup registry server host the primary registry server host

APPLICABILITY

SYNOPSIS
rgy_switchover [–time file-timestamp]

[–backup new-backup-server] old-registry-server new-registry-server

DESCRIPTION

The rgy_switchover command upgrades a backup registry server host (see rgy_backup) to

primary registry server host and resets ClearCase clients to use the new primary registry server

host. rgy_switchover logs its activities to /var/adm/atria/log/albd_log (UNIX) or the Windows

event log.

rgy_switchover can modify configuration information only on hosts that are running ClearCase.

This means that if the failure of a primary registry server causes a switchover, the (former)

primary registry server cannot be informed of the switchover.

To Re-Initialize the Tag Registry Password

Because rgy_backup does not copy the tag registry passsword file to a backup registry, you must

initialize the tag registry password with the rgy_passwd command after you run

rgy_switchover.

RESTRICTIONS

Identities: No special identity required.

Locks: No locks apply.

Mastership: (Replicated VOBs only) No mastership restrictions.

Product Command Type

ClearCase command

Platform

UNIX

Windows

Reference Pages 917

rgy_switchover

OPTIONS AND ARGUMENTS

SPECIFYING THE NEW BACKUP REGISTRY SERVER. Default: None.

–backup new-backup-server
Configures new-backup-server as the backup registry server host, after switching the

current backup registry server host to the primary registry server host.

SPECIFYING A TIME STAMP. Default: rgy_switchover uses the most recent registry backup files in

the new-primary-rgy-host’s backup directory.

–time file-timestamp
Activates an alternate set of backup registry files. The file-timestamp much match an

existing set of time-stamped files in backup. By default, the ClearCase scheduler runs

rgy_backup periodically and deletes backed-up registry files more than three days old.

SPECIFYING THE OLD AND NEW PRIMARY REGISTRY SERVERS. Default: None. You must specify the

current and target primary registry server hosts.

old-rgy-host
The current primary registry server host.

new-rgy-host
The current backup registry server host that will become the new primary registry server

host.

EXAMPLES

• Make backup registry host beta the new primary registry host.

rgy_switchover alpha beta

• Same as previous example, but make omega the new backup registry host.

rgy_switchover –backup omega alpha beta

UNIX FILES

/var/adm/atria/rgy/*
/var/adm/atria/rgy/backup/*
/var/adm/atria/rgy/rgy_hosts.conf
/var/adm/atria/rgy/rgy_svr.conf
/var/adm/atria/log/albd_log
/var/adm/atria/client_list.db

WINDOWS FILES

ccase-home-dir\var\rgy*
ccase-home-dir\var\rgy\backup*

918 Command Reference

rgy_switchover

WINDOWS REGISTRY KEYS

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\AtriaRegy
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\ServerType
HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\RegBackup

SEE ALSO

lsclients, rgy_backup, rgy_passwd, schedule, Administrator’s Guide

Reference Pages 919

rmactivity

rmactivity
Deletes an activity

APPLICABILITY

SYNOPSIS
rmact⋅ivity [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –nc⋅omment]

[–f⋅orce] activity-selector ...

DESCRIPTION

The rmactivity command deletes one or more activities.

When executed in a view that is associated with a project enabled for ClearQuest, this command

unlinks the activity from its associated ClearQuest record and deletes the activity but it does not

delete the ClearQuest record.

RESTRICTIONS

Identities: You must have one of the following identities:

• Activity owner

• Project VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows only)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows only)

Locks: An error occurs if one or more of these objects are locked: the project VOB, the activity.

Mastership: (Replicated VOBs only) Your current replica must master the activity.

Other: The following restrictions apply:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

920 Command Reference

rmactivity

• The activity can have no versions in its change set. If versions exist in the change set, you

can delete the versions using rmver or move the versions to another change set with

chactivity –fcset –tcset.

• The activity cannot be set as the current activity for a view.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specified activity is to be

deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE ACTIVITY. Default: None.

activity-selector ...
Specifies one or more activities to delete.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

Reference Pages 921

rmactivity

• Remove an activity that is set as the current activity in a view.

a. Issue an rmactivity command. The error message tells you that the specified activity is

in use by the view java_parser_int:

cmd-context rmactivity -f new_object_tree@/usr1/tmp/foo_project
cleartool: Error: Activity
"activity:new_object_tree@/usr1/tmp/foo_project" is setworked in view
"java_parser_int".

cleartool: Error: Unable to remove activity
"new_object_tree@/usr1/tmp/foo_project".

b. Go to the view in which the activity is set and unset it:

cmd-context setact – none
Cleared current activity from view java_parser_int.

c. Reissue the rmactivity command:

cmd-context rmactivity -f new_object_tree@/usr1/tmp/foo_project
Removed activity "new_object_tree@/usr1/tmp/foo_project".

SEE ALSO

chactivity, lsactivity, mkactivity, setactivity

922 Command Reference

rmattr

rmattr
Removes an attribute from an object

APPLICABILITY

SYNOPSIS
rmattr [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

{ [–ver⋅sion version-selector] [–pna⋅me]

attribute-type-selector pname ...

| attribute-type-selector object-selector ... }

DESCRIPTION

The rmattr command removes one or more attributes from VOB-database objects. Attributes can

be attached to objects by the mkattr command and by triggers (mktrtype – mkattr). See the

mkattr reference page for a list of objects to which attributes can be attached.

rmattr deletes an instance of an attribute type object. To delete the attribute type object itself or to

delete the type object and all its instances, use the rmtype command.

RESTRICTIONS

Identities: You must have one of the following identities:

• Element owner

• Element group member

• Object owner

• Object group member

• VOB owner

• root (UNIX)

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 923

rmattr

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element,

branch type, branch, object type, object, attribute type.

Mastership: (Replicated VOBs only) If the attribute’s type is unshared, your current replica must

master the attribute type. If the attribute’s type is shared, your current replica must master the

object whose attribute you are removing.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE ATTRIBUTE TO BE REMOVED. Default: None.

attribute-type-selector
An existing attribute type. Specify attribute-type-selector in the form

[attype:]type-name[@vob-selector]

SPECIFYING AN OBJECT. Default: None.

pname ...

One or more pathnames, indicating file-system objects from which attributes are to be

removed. If you don’t use the –version option:

See the mkattr reference page for examples of pname arguments.

–pna⋅me
Indicates that pname is a pathname. You must use this option if pname has the form of an

object selector.

type-name Name of the attribute type

vob-selector Object-selector for a VOB, in the form [vob:]pname-in-vob.

The pname-in-vob can be the pathname of the VOB-tag

(whether or not the VOB is mounted) or of any file-system

object within the VOB (if the VOB is mounted).

• A standard or view-extended pathname to an element specifies the version in the

view.

• A VOB-extended pathname specifies an element, branch, or version—

independent of view.

924 Command Reference

rmattr

–ver⋅sion version-selector
Specifies the version from which the attribute is to be removed. See the version_selector
reference page for syntax details.

object-selector ...

One or more names of non-file-system objects from which attributes are to be removed.

Specify object-selector in one of the following forms:

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

vob-selector vob:pname-in-vob
pname-in-vob can be the pathname of the VOB-tag

(whether or not the VOB is mounted) or of any

file-system object within the VOB (if the VOB is

mounted). It cannot be the pathname of the VOB

storage directory.

attribute-type-selector attype:type-name[@vob-selector]

branch-type-selector brtype:type-name[@vob-selector]

element-type-selector eltype:type-name[@vob-selector]

hyperlink-type-selector hltype:type-name[@vob-selector]

label-type-selector lbtype:type-name[@vob-selector]

trigger-type-selector trtype:type-name[@vob-selector]

pool-selector pool:pool-name[@vob-selector]

hlink-selector hlink:hlink-id[@vob-selector]

oid-obj-selector oid:object-oid[@vob-selector]

The following object selector is valid only if you use MultiSite:

replica-selector replica:replica-name[@vob-selector]

Reference Pages 925

rmattr

• Remove the Confidence_Level attribute from the version of msg.c in the view.

cmd-context rmattr Confidence_Level msg.c
Removed attribute "Confidence_Level" from "msg.c@@/main/1".

• Remove the attribute TESTED from the most recent version of hello.h on the main branch

that has the attribute value "FALSE" .

cmd-context rmattr –version ’\main\{TESTED=="FALSE"}’ TESTED hello.h

Removed attribute "TESTED" from "hello.h@@\main\2".

• Remove the Responsible attribute from the main branch of hello.c.

cmd-context rmattr Responsible hello.c@@/main
Removed attribute "Responsible" from "hello.c@@/main".

• Remove the Author attribute from a hyperlink of type DesignDoc.

cmd-context rmattr Author hlink:DesignDoc@393@\users_hw

Removed attribute "Author" from "DesignDoc@393@\users_hw".

SEE ALSO

lstype, mkattr, mkattype, rename, rmtype

926 Command Reference

rmbl

rmbl
Removes a baseline

APPLICABILITY

SYNOPSIS
rmbl [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –cqe⋅ach | –nc⋅omment]

[–f⋅orce] baseline-selector ...

DESCRIPTION

The rmbl command deletes one or more baselines. Versions associated with the baseline are not

deleted, only the baseline relationship among the versions.

RESTRICTIONS

Identities: You must have one of the following identities:

• Baseline owner

• Project VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows only)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows only)

Locks: An error occurs if there are locks on any of the following objects: the project VOB, the

baseline.

Mastership: (Replicated VOBs only) Your current replica must master the baseline.

Other: The following restrictions apply:

• The baseline cannot serve as a foundation baseline for any stream.

• The baseline cannot be an initial baseline for a component.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

Reference Pages 927

rmbl

• The baseline cannot be deleted if it is a full baseline and serves as the backstop for any

incremental baseline.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

The comment is stored in a deletion event on the VOB object.

CONFIRMATION STEP. Default: Prompts for confirmation that the specified baseline is to be

deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE BASELINE. Default: None.

baseline-selector ...

Specifies one or more baselines to delete.

baseline-selector is of the form [baseline:]baseline-name[@vob-selector], where vob-selector
specifies the baseline’s project VOB.

 EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove a baseline.

cmd-context rmbl -f START.109@/usr1/tmp/foo_project
Removed baseline "START.109@/usr1/tmp/foo_project".

SEE ALSO

diffbl, lsbl, mkbl

928 Command Reference

rmbranch

rmbranch
Removes a branch from the version tree of an element

APPLICABILITY

SYNOPSIS
rmbranch [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment]
[–f⋅orce] pname ...

DESCRIPTION

This command destroys information irretrievably. Using it carelessly may compromise your

organization’s ability to support old releases.

The rmbranch command deletes one or more branches from their elements. For each branch,

deletion entails the following:

• Removal from the entire branch structure from the VOB database: branch object and

version objects

• Removal of all metadata items (labels, attributes, hyperlinks, and triggers) that were

attached to the deleted objects

• Removal of all event records for the deleted objects

• (File elements only) Removal of the data containers that hold the deleted versions’

file-system data

• Creation of a destroy sub–branch event record for the parent branch of the deleted branch

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 929

rmbranch

NOTE: If all of an element’s versions are stored in a single data container, the deleted versions are

removed logically, not physically.

To delete all instances of a branch and the branch type object, use the rmtype command.

RESTRICTIONS

Identities: You must have one of the following identities:

• Branch creator

• Element owner

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element,

branch type, branch, pool (nondirectory elements only).

Mastership: (Replicated VOBs only) Your current replica must master the branch.

Other: You cannot delete an element’s main branch, or a branch with checkouts. See the reference

page for uncheckout.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: rmbranch prompts for confirmation before deleting anything.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE BRANCHES TO BE REMOVED. Default: None.

pname ...

One or more VOB-extended pathnames, indicating the branches to be deleted.

Examples:

foo.c@@/main/bugfix
/vobs/proj/include/proj.h@@/main/temp_482

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

930 Command Reference

rmbranch

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• Delete the maintenance branch of element util.c.

cmd-context rmbranch util.c@@/main/maintenance

Branch "util.c@@/main/maintenance" has 0 sub-branches, 2 sub-versions
Remove branch, all its sub-branches and sub-versions? [no] yes
Removed branch "util.c@@/main/maintenance".

• Verify, with the lsvtree command, that element msg.c has a patch2 branch. Then, delete that

branch without prompting for confirmation.

cmd-context lsvtree –branch \main\patch2 msg.c

msg.c@@\main\patch2
msg.c@@\main\patch2\1

cmd-context rmbranch –force msg.c@@\main\patch2

Removed branch "msg.c@@\main\patch2".

SEE ALSO

lsvtree, mkbranch, mkbrtype, rmtype, rmver

Reference Pages 931

rmcomp

rmcomp
Removes a component

APPLICABILITY

SYNOPSIS
rmcomp [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach |

–nc⋅omment] [–f⋅orce] component-selector ...

DESCRIPTION

The rmcomp command deletes a component object. Elements of the component and the VOB

associated with the component are not deleted.

RESTRICTIONS

Identities: You must have one of the following identities:

• Component owner

• Project VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows only)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows only)

Locks: An error occurs if there are locks on any of the following objects: the component, the

project VOB.

Mastership: (Replicated VOBs only) Your current replica must master the component.

Other: There cannot be any baselines of the component other than the initial baseline, and the

component’s initial baseline cannot be in use as a foundation baseline for a stream.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

932 Command Reference

rmcomp

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specified component is to be

deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE COMPONENT TO BE DELETED. Default: None.

component-selector ...
Specifies one or more components to delete

component-selector is of the form [component:]component-name[@vob-selector], where

vob-selector specifies the component’s project VOB.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove a component that contains baselines.

a. Issue the rmcomp command for a specified component:

cmd-context rmcomp parser@/usr1/tmp/foo_project
Remove component "parser@/usr1/tmp/foo_project"? [no] yes

cleartool: Error: Cannot remove component that has baselines other than
the initial baseline.

cleartool: Error: Unable to remove component
"parser@/usr1/tmp/foo_project".

Reference Pages 933

rmcomp

b. Use the lsbl command to find the baselines associated with the component:

cmd-context lsbl –component parser@/usr1/tmp/foo_project
07-Sep-99.10:47:47 parser_INITIAL.109 bill "parser_INITIAL"
 component: parser

07-Sep-99.10:49:06 START.109 bill "START"
 component: parser

c. Remove the baseline:

cmd-context rmbl –f START.109@/usr1/tmp/foo_project
Removed baseline "START.109@/usr1/tmp/foo_project".

d. Reissue the rmcomp command:

cmd-context rmcomp –f parser@/usr1/tmp/foo_project
Removed component "parser@/usr1/tmp/foo_project".

SEE ALSO

lscomp, mkcomp, rmbl

934 Command Reference

rmdo

rmdo
Removes a derived object from a VOB

APPLICABILITY

SYNOPSIS

• Remove individual derived objects:

rmdo do-pname ...

• Remove collections of derived objects:

rmdo { –a⋅ll | –zer⋅o } [pname ...]

DESCRIPTION

The rmdo command deletes one or more derived objects (DOs). Use rmdo to remove DOs (for

example, damaged DOs or DOs that were built incorrectly) so that other users do not use them

inadvertently.

NOTE: This command does not apply to snapshot views.

The details of the removal process depend on the kind of DO (use lsdo –long to determine the

kind of DO):

• For a shared derived object whose data container is in VOB storage, rmdo deletes the entry

in the VOB database, and also deletes the data container file (from one of the VOB’s derived

object storage pools).

CAUTION: If you need to remove a shared DO, use lsdo –long to identify the views that

reference the DO. Ask the owner of each view to remove the DO from the view with an

operating system command or by running make clean or an equivalent command. If the DO

is not removed from the referencing views before you use rmdo, error messages appear. For

Product Command Type

ClearCase cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 935

rmdo

example, when users try to access the DO from the referencing views, the view_server logs

VOB warnings. Also, you may see INTERNAL ERRORmessages in the ClearCase error_log file;

these messages are generated when clearmake or an OS-level command tries to access the

DO. The derived object’s name is removed from the directory by the OS-level access; thus,

subsequent accesses return not found errors.

• For an unshared derived object whose data container is in view-private storage, rmdo
deletes the entry from the VOB database, but does not delete the data container from view

storage. The data container is an ordinary file that can still be listed, executed, and so on,

but it cannot be a candidate for configuration lookup. The ls –long command lists it with a

[no config record] annotation. To delete the data file, use an operating system

command.

• For a nonshareable derived object, which does not have an entry in the VOB database, rmdo
converts the DO into an ordinary view-private file. To delete the file, use an operating

system command.

In each case, rmdo also deletes the associated configuration record if it is no longer needed. Both

of the following conditions must be true:

• No other sibling DO (created in the same build script execution) still exists.

• The DO is not a build dependency (subtarget) of another DO that still exists.

rmdo does not delete DO versions. To delete a DO that has been checked in as a version of an

element, use rmver.

SCRUBBING OF DERIVED OBJECTS

ClearCase includes a utility, scrubber, that deletes shareable DOs. scrubber deletes the entries in

the VOB database and (for shared DOs) the data containers in the VOB’s storage pools. By

default, the ClearCase scheduler runs scrubber periodically. See the schedule reference page for

information on describing and changing scheduled jobs.

Each DO pool has scrubbing parameters, which you can modify with the mkpool –update
command.

RESTRICTIONS

Identities: You must have one of the following identities:

• DO owner

• DO group member

• VOB owner

• root (UNIX)

• Member of the ClearCase group (Windows)

936 Command Reference

rmdo

To delete a shared DO, you must have one of the following identities:

• VOB owner

• root (UNIX)

• member of the ClearCase group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, pool.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

HANDLING OF LIKE-NAMED DERIVED OBJECTS. Default: Deletes at most one DO for each file name

specified with command arguments. A file name with a DO-ID (for example,

hello.o@@24–Mar.11:32.412) specifies exactly which DO to delete. A standard or view-extended

pathname specifies the DO that appears in the view.

To determine the DO-IDs of derived objects, use lsdo.

–a⋅ll
Deletes all DOs at a given pathname, regardless of the view they were created in or

currently appear in. (However, see the CAUTION on page 934.)

–zer⋅o
Similar to –all, but deletes only those DOs with zero reference counts.

SPECIFYING DERIVED OBJECTS. Default: With –all or –zero, the default is to list all DOs in the

current working directory. If you do not specify one of these options, you must supply at least

one argument.

do-pname ...

Pathnames of one or more individual DOs. A name with a DO-ID, such as

foo@@10-Nov.10:14.27672, specifies a particular DO, irrespective of view. An operating

system pathname or view-extended pathname specifies the DO that appears in a view.

pname ...

(use with –all or –zero) One or more standard or view-extended pathnames, each of

which can name a file or directory:

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

• A file name specifies a collection of DOs built at the same pathname.

• A directory name is equivalent to a list of all the file names of DOs built in that

directory, including file names that do not currently appear in the view (perhaps

after a make clean).

Reference Pages 937

rmdo

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Delete the derived object hello.obj@@24-Mar.11:32.412.

cmd-context rmdo hello.obj@@24-Mar.11:32.412
Removed derived object "hello.obj@@24-Mar.11:32.412".

• Delete all derived objects named hello in the current working directory.

cmd-context rmdo –all hello.exe
Removed derived object "hello.exe@@23-Mar.14:16.178".
Removed derived object "hello.exe@@23-Mar.19:25.394".

• Delete all zero-referenced derived objects in the hworld directory.

cmd-context rmdo –zero hworld

Removed derived object "hworld/hello.o@@23-Mar.20:42.373".
Removed derived object "hworld/hello.o@@23-Mar.20:36.228".
Removed derived object "hworld/hello@@23-Mar.20:42.382".
Removed derived object "hworld/hello@@23-Mar.20:36.234".
Removed derived object "hworld/util.o@@23-Mar.20:42.376".
Removed derived object "hworld/util.o@@23-Mar.20:36.231".

SEE ALSO

clearmake, lsdo, scrubber, Building Software

938 Command Reference

rmelem

rmelem
Removes an element or symbolic link from a VOB

APPLICABILITY

SYNOPSIS
rmelem [–f⋅orce] [–c⋅omment comment | –cfi⋅le comment-file-pname

|–cq⋅uery | –cqe⋅ach | –nc⋅omment] pname ...

DESCRIPTION

The rmelem command completely deletes one or more elements or symbolic links. In a snapshot

view, rmelem also unloads the element from the view.

This command destroys information irretrievably. Using it carelessly may compromise your

organization’s ability to support old releases. In many cases, it is better to use the rmname
command.

For each element, rmelem does the following:

• Removes the entire version tree structure from the VOB database: element object, branch

objects, and version objects.

• Removes all metadata items (labels, attributes, hyperlinks, and triggers) that were attached

to the element.

• Removes all event records for the element.

• (File elements) Removes the data containers that hold the element’s file-system data from

its source storage pool.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 939

rmelem

• Removes all references to the element from versions of the VOB’s directory elements. (This

means that subsequent listings and comparisons of those directory versions will be

historically inaccurate.)

• (Attache) Removes read-only workspace local files/directories corresponding to

successfully removed elements in the view. Local writable files, including any in a

directory’s subtrees, cause a confirming query to be issued.

• Creates a destroy element event record on the element’s VOB; this event record is

displayed by the lshistory vob: command.

For each symbolic link, rmelem does the following:

• Removes the symbolic link and link object from the VOB.

• Removes all metadata items (attributes and hyperlinks) that were attached to the symbolic

link .

• Removes all event records for the symbolic link.

• Removes all references to the symbolic link from versions of the VOB’s directory elements.

(This means that subsequent listings and comparisons of those directory versions will be

historically inaccurate.)

• (Attache) Removes read-only workspace local files/directories corresponding to

successfully removed symbolic links in the view. Local writable files, including any in a

directory’s subtrees, cause a confirming query to be issued.

NOTE: rmelem does not create an event record when you remove a symbolic link.

rmelem deletes an instance of an element type object. To delete the element type object itself or

to delete the type object and all its instances, use the rmtype command.

Deleting a Directory Element

Deleting a directory element may cause some other elements (and symbolic links, if the VOB is

replicated) to be orphaned: no longer cataloged in any version of any directory. rmelem displays

a message and moves an orphaned element or symbolic link to the VOB’s lost+found directory:

cleartool: Warning: Object "foo.c" no longer referenced.
cleartool: Warning: Moving object to vob lost+found directory
as "foo.c.a0650992e2b911ccb4bc08006906af65".

(See the mkvob reference page for a description of this directory.)

Each derived object in the deleted directory is also moved to lost+found. (Only dynamic views

have derived objects.) The derived object has no data, but you can use it in such commands as

lsdo and catcr. View-private objects in the deleted directory are temporarily stranded, but can be

transferred to the view’s own lost+found directory, as follows:

940 Command Reference

rmelem

1. Use lsprivate to locate stranded files and to determine the ClearCase identifier of the deleted

directory element:

cmd-context lsprivate –invob /tmp/david_phobos_hw
.
.
.

#<Unavailable-VOB-1>/<DIR-c8051152.e2ba11cc.b4c0.08:00:69:06:af:65>/myfile

2. Use recoverview to move all the stranded files for the deleted directory:

cmd-context recoverview –dir c8051152.e2ba11cc.b4c0.08:00:69:06:af:65 –tag myview

Moved file /usr/people/david/myview.vws/.s/lost+found/5ECC880E.00A5.myfile

Deleting Elements and Symbolic Links from the lost+found Directory

Use rmelem to delete unwanted elements or symbolic links from the lost+found directory . If

you need an element in lost+found, catalog it in a versioned directory using mv.

RESTRICTIONS

Identities: You must be the project owner, the project VOB owner, the symbolic link owner, or

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

If the element you are trying to remove has no versions with attached metadata and you created

all branches, you need only be the element owner.

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element, pool

(nondirectory elements).

Mastership: (Replicated VOBs) Your current replica must master the element or symbolic link.

Other: You cannot remove an element if any of its versions are checked out. (You do not have to

check out the parent directory before removing one of its elements.)

OPTIONS AND ARGUMENTS

CONFIRMATION STEP. Default: rmelem prompts for confirmation before deleting anything.

–f⋅orce
(ClearCase and ClearCase LT) Suppresses the confirmation step.

(Attache) Suppresses the confirmation step for deleting anything in the view or VOB.

The confirmation for local writable files still pertains.

Reference Pages 941

rmelem

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE ELEMENTS TO BE REMOVED. Default: None.

pname ...

One or more pathnames, indicating the elements or symbolic links to be deleted. An

extended pathname to a particular version or branch of an element references the

element itself.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• Delete the file element rotate.c.

cmd-context rmelem rotate.c
Element "rotate.c" has 1 branches, 2 versions, and is entered
in 6 directory versions.
Remove element, all its branches and versions and modify all directory
versions containing element? [no] yes
Removed element "rotate.c".

942 Command Reference

rmelem

• Delete the directory element release. Note that an orphaned element, hello, is moved to the

VOB’s lost+found directory.

cmd-context rmelem release
Element "release" has 1 branches, 9 versions, and is entered
in 35 directory versions.
Remove element, all its branches and versions and modify all directory
versions containing element? [no] yes
cleartool: Warning: Object "hello" no longer referenced.
Object moved to vob lost+found directory as
 "hello.5d400002090711cba06a080069061935".
Removed element "release".

• Delete the symbolic link text.c from the lost+found directory.

cmd-context rmelem \dev\lost+found\text.c
CAUTION! This will destroy the symbolic link, and will remove the
symbolic link from all directory versions that now contain it. Once you
destroy the symbolic link, it will be hard to restore it to its current
state. If you want to preserve the symbolic link, but remove references
to it from future directory versions, use the “rmname” command.
Symbolic link ”text.c” is entered in 3 directory versions.
Destroy symbolic link? yes
Removed symbolic link ”text.c”.

SEE ALSO

mkelem, mkvob, rmbranch, rmname, rmtype, rmver

Reference Pages 943

rmfolder

rmfolder
Remove a folder

APPLICABILITY

SYNOPSIS
rmfolder [–c⋅omment comment | –cfi⋅le comment-file-pname | –cq⋅uery | –cqe⋅ach |

–nc⋅omment]
[–f⋅orce] folder-selector ...

DESCRIPTION

The rmfolder command deletes one or more folders.

RESTRICTIONS

Identities: You must have one of the following identities:

• Folder owner

• Project VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows only)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows only)

Locks: An error occurs if one or more of these objects are locked: the project VOB, the folder.

Mastership: (Replicated VOBs only) Your current replica must master the folder.

Other: You cannot delete a folder if it contains any projects or other folders, or is the RootFolder.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

944 Command Reference

rmfolder

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specified folder is to be deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE FOLDER. Default: None.

folder-selector ...
Specifies one or more folders to delete.

folder-selector is of the form [folder:]folder-name[@vob-selector], where vob-selector specifies

the folder’s project VOB.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove a folder that contains a subfolder, moving the subfolder to a new location.

a. Issue the rmfolder command:

cmd-context rmfolder –f top
cleartool: Error: Cannot remove folder that has sub projects or folders.
cleartool: Error: Unable to remove folder "top".

Reference Pages 945

rmfolder

b. Use lsfolder to find subprojects or folders for the specified folder:

cmd-context lsfolder –l top
folder "top"
 07-Sep-99.10:20:08 by Smith
 "My Top Level Folder."
 owner: Smith
 group: user
 title: Top
 contains folders:
 parsers
 contains projects:

c. Move the subfolder to a new location:

cmd-context chfolder –to RootFolder parsers
Changed folder "parsers".

d. Reissue the rmfolder command:

cmd-context rmfolder top
Remove folder "top"? [no] yes
Removed folder "top".

SEE ALSO

chfolder, lsfolder, mkfolder, rmproject

946 Command Reference

rmhlink

rmhlink
Removed a hyperlink object

APPLICABILITY

SYNOPSIS
rmhlink [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment] hlink-selector ...

DESCRIPTION

The rmhlink command removes one or more hyperlinks from VOB-database objects. Hyperlinks

can be attached to objects by the mkhlink command and by triggers (mktrtype –mkhlink). See

the mkhlink reference page for a list of objects to which hyperlinks can be attached.

rmhlink deletes a reference to a hyperlink type object. To delete the hyperlink type object itself

or the type object and all its instances, use the rmtype command.

To list existing hyperlinks, use the describe command, or use the find command with the hltype
primitive.

RESTRICTIONS

Identities: You must have one of the following identities:

• Element owner

• Element group member

• Object owner

• Object group member

• VOB owner

• root (UNIX)

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 947

rmhlink

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element,

branch type, branch, hyperlink type. For non-file-system objects, an error occurs if the VOB,

object, object type, or hyperlink type is locked.

Mastership: (Replicated VOBs only) Your current replica must master the hyperlink.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE HYPERLINKS TO BE REMOVED. Default: None.

hlink-selector ...

One or more names of hyperlink objects, in this form:

hyperlink-type-name@hyperlink-ID[@pname-in-vob]

Hyperlinks are not file system objects; you cannot specify them with command

interpreter wildcards. The final component is required only for a hyperlink in another

VOB. For example:

DesignFor@598f
RelatesTo@58843@/vobs/monet

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove a hyperlink of type tested_by from the element cm_add.c. Use describe to

determine the hyperlink selector.

cmd-context describe –long cm_add.c@@

948 Command Reference

rmhlink

file element "cm_add.c@@"
 created 08-Dec-98.12:12:52 by Chuck Jackson (test user)
(jackson.dvt@oxygen)
 element type: c_source

Protection:
User : jackson : r-x
Group: dvt : r-x
Other: : r-x

source pool: sdft cleartext pool: cltxt2
Hyperlinks:

tested_by@714@/usr/hw /usr/hw/src/cm_add.c@@
"edge effects" -> /usr/hw/src/edge.sh@@ "regression A"

cmd-context rmhlink tested_by@714

Removed hyperlink "tested_by@714".

• Remove two hyperlinks from the src directory. Use describe to determine the hyperlink

selectors.

cmd-context describe –long src

directory version "src@@\main\9"
created 08-Dec-98.12:23:46 by Chuck Jackson (test user)

(jackson.dvt@oxygen)
Element Protection:

User : jackson : rwx
Group: dev : rwx
Other: : rwx

element type: directory
Hyperlinks:
h3@1320@\users_hw \users_hw\src@@\main\9 ->
h1@1324@\users_hw \users_hw\src\hello@@\main\1 -> \users_hw\src@@\main\9
h2@1329@\users_hw \users_hw\bin@@\main\1 -> \users_hw\src@@\main\9

cmd-context rmhlink h1@1324 h2@1329

Removed hyperlink "h1@1324".
Removed hyperlink "h2@1329".

SEE ALSO

describe, lshistory, mkhlink, rmtype

Reference Pages 949

rmlabel

rmlabel
Removes a version label from a version

APPLICABILITY

SYNOPSIS
rmlabel [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment]
[–ver⋅sion version-selector] label-type-selector pname ...

DESCRIPTION

The rmlabel command removes one or more version labels from versions of elements. Labels can

be attached to versions by the mklabel command and by triggers (mktrtype –mklabel).

rmlabel deletes a reference to a label type object. To delete the label type object itself or the type

object and all its instances, use the rmtype command.

RESTRICTIONS

Identities: You must have one of the following identities:

• Element owner

• Element group member

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element,

branch type, branch, label type.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

950 Command Reference

rmlabel

Mastership: (Replicated VOBs only) If the label type is unshared, your current replica must master

the label type. If the label type is shared, your current replica must master the object whose label

you are removing:

• For a one-per-branch shared label type, your current replica must master the branch.

• For a one-per-element shared label type, your current replica must master the element.

Other restrictions: You cannot use this command to remove an instance of a UCM baseline label

type.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE VERSIONS TO BE UNLABELED. Default: None.

pname ...

One or more pathnames, indicating versions from which the label is to be removed.

What kind of pathname is valid depends on how the label has been used:

If the label has been used only once in an element’s version tree, you can specify the

element itself, or any of its branches or versions:

If the label has been used multiple times, you must specify either the version to which

the label is attached, or the branch on which that version resides.

Using the –version option modifies the way in which this argument is interpreted.

–ver⋅sion version-selector
Specifies the version from which the label is to be removed. See the version_selector
reference page for syntax details. Using this option overrides a version-extended

pathname. For example:

foo.c (version selected by view)
foo.c@@ (element itself)
foo.c@@/main/rel2_bugfix (branch of element)

foo.c (version selected by view)
foo.c@@\REL1 (version specified by label)
foo.c@@\main\rel2_bugfix\3 (version specified by version-ID)
foo.c@@\main\rel2_bugfix (branch on which version resides)

Reference Pages 951

rmlabel

SPECIFYING THE LABEL TO BE REMOVED. Default: None.

label-type-selector
An existing label type. Specify label-type-selector in the form

[lbtype:]type-name[@vob-selector]

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove the label REL3 from a version of msg.c without specifying which version (assumes

the label is attached to one version only).

cmd-context rmlabel REL3 msg.c

Removed label "REL3" from "msg.c" version "/main/1".

• Remove the label REL2 from the version of element util.c specified by a version selector.

cmd-context rmlabel –version \main\REL2 REL2 util.c

Removed label "REL2" from "util.c" version "\main\1".

cmd-context rmlabel XXX util.c@@/REL1 (removes label from version
REL1)

cmd-context rmlabel -ver /main/3 XXX util.c@@/REL1 (removes label from version
/main/3)

type-name Name of the label type

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

952 Command Reference

rmlabel

• Remove the label REL1.1 from version 1 on the maintenance branch of file element util.c.

Use a version-extended pathname to indicate the version.

cmd-context rmlabel REL1.1 util.c@@/main/maintenance/1

Removed label "REL1.1" from "util.c" version "/main/maintenance/1".

SEE ALSO

lstype, mklabel, rename, rmtype

Reference Pages 953

rmmerge

rmmerge
Removes a merge arrow from an element’s version tree

APPLICABILITY

SYNOPSIS
rmmerge [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment]
from-pname to-pname

DESCRIPTION

The rmmerge command deletes an existing merge arrow (a hyperlink of the predefined type

Merge) between two versions of an element. Thus, this command is a specialized form of the

rmhlink command. The two commands have an identical result; they differ only in the way you

specify the merge arrow:

• With rmhlink, you specify the merge arrow itself, using a hyperlink selector.

• With rmmerge, you specify the versions linked by the merge arrow.

To list existing merge arrows, use the describe command, or use the find command with the

hltype primitive. For example:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

954 Command Reference

rmmerge

cmd-context describe util.c
version "util.c@@/main/3"
 created 05-Apr-99.17:01:12 by Allison (akp.user@starfield)
 element type: text_file
 Hyperlinks:
 Merge@148@/usr/tmp/poolwk
 /usr/tmp/poolwk/src/util.c@@/main/rel2_bugfix/1 ->
 /usr/tmp/poolwk/src/util.c

Renaming the Merge Hyperlink Type

Renaming the predefined hyperlink type for merge arrows does not defeat rmmerge. You

specify the element’s versions; rmmerge then determines the hyperlink type used for merge

arrows in that element’s VOB.

RESTRICTIONS

Identities: You must have one of the following identities:

• Element owner

• Element group member

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element,

branch type, branch, hyperlink type.

Mastership: (Replicated VOBs only) Your current replica must master the hyperlink.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE VERSIONS. Default: None.

from-pname, to-pname
Extended pathnames of the versions connected by the merge arrow. The order in which

you specify the versions is important: the source version first, the target version second.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

Reference Pages 955

rmmerge

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove the merge arrow between the latest version on the rel2_bugfix branch and the

version of util.c in the view.

cmd-context rmmerge util.c@@/main/rel2_bugfix/LATEST util.c
Removed merge from "util.c@@/main/rel2_bugfix/1" to "util.c".

SEE ALSO

merge, rmhlink

956 Command Reference

rmname

rmname
Removes the name of an element or VOB symbolic link from a directory version

APPLICABILITY

SYNOPSIS
rm⋅name [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery

| –cqe⋅ach | –nc⋅omment]
[–nco [–f⋅orce]] pname ...

DESCRIPTION

By default, a name can be removed from a directory only if that directory is checked out. rmname
appends an appropriate line to the directory’s checkout comment.

rmname modifies one or more checked-out directories by removing the names of elements

and/or VOB symbolic links (in the manner of the UNIX unlink(2) system call). Old versions of

the directories do not change; the names continue to be cataloged in the old versions.

To remove a name from a checked-in directory version, you can use the –nco option. For

example, you may want to remove an old symbolic link that points to a file that has been

removed.

In Attache, for all successfully removed names in the view, any corresponding read-only local

files and directories are deleted in the workspace; local writable files, including any in a

directory’s subtrees, cause a confirming query to be issued.

In a snapshot view, this command implicitly executes an update operation on the affected

elements.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 957

rmname

Example: Suppose you checked out version 3 of a directory named a.dir. Only your view or

workspace sees this directory version while it is checked out. The command rmname foo.c
deletes the name foo.c from the checked-out version of the directory and from your Attache

workspace, but leaves references to foo.c in earlier versions (if any) intact. When you check in the

directory, all views can access the new version 4, which does not include foo.c.

Keep the following points in mind:

• rmname does not delete elements themselves, only references to elements. Use rmelem
(very carefully) to delete elements and all their names from their VOBs.

• Removing the last reference to an element name causes the element to be orphaned. Such

elements are moved to the VOB’s lost+found directory. (See the mkvob command for

details.)

• Removing the last reference to a VOB symbolic link works differently depending on

whether the VOB is replicated:

• If the VOB is unreplicated, the link object is deleted.

• If the VOB is replicated, the link object is moved to the VOB’s lost+found directory.

Undoing the rmname Command

To restore a directory entry for an element that has been removed with rmname, use the ln
command to create a VOB hard link to the element’s entry in any previous version of the

directory. For example:

If there are no entries for the element in any previous version of the directory, the element is

orphaned; ClearCase or Attache has moved it to its VOB’s lost+found directory. You can

move/rename the element to its proper location with the cleartool or Attache mv command.

(You cannot use ln to link elements that are in the lost+found directory.)

RESTRICTIONS

Identities: No special identity is required if the directory is checked out; see the checkout
reference page. For –nco, you must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB.

cmd-context checkout src (checkout parent directory)
cmd-context rmname src/msg.c (oops!)
cmd-context ln src@@/main/LATEST/msg.c src/msg.c (restore deleted name)

958 Command Reference

rmname

Mastership: (Replicated VOBs only) No mastership restrictions.

Other: You cannot use the –nco option in a replicated VOB.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: –nc. Creates one or more event records, with

commenting controlled by your home directory’s .clearcase_profile file (ClearCase and

ClearCase LT) or your remote home directory’s .clearcase_profile file (Attache). See the

comments reference page. Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

REMOVING A NAME FROM A CHECKED-IN DIRECTORY VERSION. Default: You must check out a

directory to remove a name and/or VOB symbolic link from it.

–nco [–f⋅orce]

Prompts for confirmation, then removes the name or link from the checked-in directory

version that you specify. Use the –force option to suppress the confirmation step.

NOTE: You cannot use –nco in a replicated VOB.

SPECIFYING THE NAMES TO BE REMOVED. Default: None.

pname ...

One or more pathnames, specifying the elements and/or VOB symbolic links whose

names are to be removed from their parent directory. In ClearCase and ClearCase LT,

you can specify an element itself, or any of its branches or versions.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: Examples assume that the current working directory is checked out.

• Delete the name util.c from the current directory version. (In Attache, this also removes the

local writable file util.c from the workspace.)

cmd-context rmname util.c

Reference Pages 959

rmname

Removed "util.c".

• Delete the last reference to the directory element subd from the current directory version.

cmd-context rmname subd

cleartool: Warning: Object "subd" no longer referenced.
Object moved to vob lost+found as
 "subd.5a200007ed11f0d709066505efe922a8".
Removed "subd".

• Delete the name hello.h from the directory version .@@\main\2.

cmd-context rmname –nco –force .@@\main\2\hello.h

Removed “.@@\main\2\hello.h”.

SEE ALSO

ln, mv, rmelem, rmver, unlink(2), update

960 Command Reference

rmpool

rmpool
Removes a VOB storage pool

APPLICABILITY

SYNOPSIS
rmpool [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pool-selector ...

DESCRIPTION

The rmpool command deletes one or more storage pool directories from a VOB, along with all

the data container files stored within them.

Reassigning Elements

Before removing a storage pool, you must reassign all its currently assigned elements to a

different pool, using the chpool command. Otherwise, rmpool aborts with an elements using

pool error. To list all the elements in a source or cleartext pool, use a find command. For example

• UNIX:

cmd-context find -all -element ’pool(source_2)’ –print

• Windows:

cmd-context find -all -element pool(source_2) –print

This command does not work with derived object pools.

Deleting Derived Object Pools

There is no way to move a shared derived object from one pool to another. Thus, you can delete

a derived object pool only if either condition is true:

Product Command Type

ClearCase cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 961

rmpool

• No directory elements have been assigned to the pool.

• All data containers in the pool have been removed by the scrubber program or rmdo
commands, and each directory element that currently uses the pool has been assigned to a

different derived object pool.

RESTRICTIONS

Identities: You must have one of the following identities:

• Pool owner

• VOB owner

• root (UNIX)

• Member of the ClearCase group (Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, pool.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE POOLS TO BE REMOVED. Default: Removes a pool from the VOB containing the

current working directory unless you specify another VOB with the @vob-selector suffix.

pool-selector ...

One or more names of existing storage pools. Specify pool-selector in the form

[pool:]pool-name[@vob-selector]

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

pool-name Name of the storage pool

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

962 Command Reference

rmpool

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Change all elements using the c_source_pool to use the default source pool (sdft) instead.

Then, delete c_source_pool.

cmd-context find . –all –element ’pool(c_source_pool)’ \
–exec ’cleartool chpool –force sdft $CLEARCASE_PN’

Changed pool for "/usr/hw/src" to "sdft".
Changed pool for "/usr/hw/src/libutil.a" to "sdft".

.

.

.

cmd-context rmpool c_source_pool

Removed pool "c_source_pool".

SEE ALSO

describe, chpool, find, lspool, mkpool, rmdo, rename, scrubber

Reference Pages 963

rmproject

rmproject
Removes a project

APPLICABILITY

SYNOPSIS
rmproj⋅ect [–c⋅omm ent comment | –cfi⋅le comment-file-pname |–cq⋅uery | –nc⋅omment]

[–f⋅orce] project-selector ...

DESCRIPTION

The rmproject command deletes one or more projects. All streams must be removed before

deleting a project. You cannot delete a project that contains a stream.

Projects Enabled for ClearQuest

When you delete a project that uses the UCM-ClearQuest integration, the project is unlinked

from its associated ClearQuest record, but the ClearQuest record is not deleted.

RESTRICTIONS

Identities: You must have one of the following identities:

• Project owner

• Project VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows only)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows only)

Locks: An error occurs if there are locks on any of the following objects: the project VOB, the

project.

Mastership: (Replicated VOBs only) Your current replica must master the project.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

964 Command Reference

rmproject

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specified project is to be deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFYING THE PROJECT. Default: None.

project-selector ...
Specifies one or more projects to delete.

project-selector is of the form [project:]project-name[@vob-selector], where vob-selector
specifies the project’s project VOB.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove a project that contains a stream.

a. Issue the rmproject command:

cmd-context rmproject html_parser
Remove project "html_parser"? [no] yes
cleartool: Error: Cannot remove project that has streams.
cleartool: Error: Unable to remove project "html_parser".

Reference Pages 965

rmproject

b. Use lsproject –long to see a detailed description of the project, including a list of any

streams contained by the project:

cmd-context lsproject – long html_parser
cleartool lsproject -l html_parser
project "html_parser"
 07-Sep-99.11:24:27 by Bsmith
 owner: bsmith
 group: user
 folder: parsers
 title: html_parser
 integration stream: html_parser_int
 development streams:
 html_parser_int
 modifiable components:
 default rebase promotion level: INITIAL
 recommended baselines:

c. Remove the stream. The –force option bypasses the confirmation step.

cmd-context rmstream -force html_parser_int
Removed stream "html_parser_int".

d. Reissue the rmproject command:

cmd-context rmproject -force html_parser
Removed project "html_parser".

SEE ALSO

lsproject, lsstream, mkproject, rmstream

966 Command Reference

rmregion

rmregion
Unregisters a ClearCase network region

APPLICABILITY

SYNOPSIS

rmregion –tag region-tag [–rma⋅ll [–pas⋅sword tag-registry-password]]

DESCRIPTION

The rmregion command removes a region entry from the ClearCase registry’s regions file.

rmregion modifies the ClearCase registry only. It does not affect client host region assignments.

If you remove a region to which ClearCase client hosts are assigned, those clients receive error

messages.

To reassign a client host to a new region,

• UNIX—Run a command like the following on the client host:

echo "region2" > /var/adm/atria/rgy/rgy_region.conf

• Windows—Open the ClearCase Control Panel on the client, click the Registry tab, and enter

the new region name in the Windows NT Region field

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE REGION TAGS. Default: None. You must specify the name of the region to

unregister.

Product Command Type

ClearCase cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 967

rmregion

–tag region-tag
Specifies a region to unregister.

–rma⋅ll [–pas⋅sword tag-registry-password]

Removes the region specified with –tag, along with any view-tags and VOB-tags in that

region. If the region contains VOB-tags, you must supply the VOB-tag registry password

(either with the –password option or at the prompt).

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove region devel3 from the ClearCase registry.

cmd-context rmregion –tag devel3

• Remove all tags for the test1 region.

cmd-context rmregion –tag test1 –rmall

UNIX FILES

/var/adm/atria/rgy/regions
/var/adm/atria/rgy/rgy_region.conf

WINDOWS FILES

ccase-home-dir\var\rgy\regions

SEE ALSO

mkregion, Administrator’s Guide

968 Command Reference

rmstgloc

rmstgloc
Removes registry entries for server storage locations.

APPLICABILITY

SYNOPSIS

• ClearCase:

rmstgloc [–all] [–reg⋅ion network-region] { stgloc-name | –sto⋅rage stgloc-pname }

• ClearCase LT:

rmstgloc { stgloc-name | –sto⋅rage stgloc-pname }

DESCRIPTION

The rmstgloc command deletes registrations for view and VOB server storage locations. The

associated physical storage is not deleted, and views and VOBs residing at the server storage

location continue to be accessible. However, no views or VOBs may be created at the server

storage location after you have removed its registry entries.

To remove view or VOB physical storage (and their registrations), always use rmview or rmvob,

never an operating system command.

RESTRICTIONS

The specified server storage locations must not contain any views or VOBs.

OPTIONS AND ARGUMENTS

SPECIFYING ALL QUALIFYING SERVER STORAGE LOCATIONS. Default: None.

–all
Deletes all server storage locations that are selected by other options and arguments you

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

Reference Pages 969

rmstgloc

specify. For example, rmstgloc –all stgloc-name deletes all server storage locations with

names that match stgloc-name, regardless of region.

SPECIFYING THE NETWORK REGION. Default: The local host’s network region. (Use the hostinfo
–long command to display the network region.) See the Administrator’s Guide for a discussion of

network regions.

–reg⋅ion network-region
Specifies a network region where a server storage location that is to be deleted resides.

An error occurs if the region does not already exist.

SPECIFYING THE SERVER STORAGE LOCATION. Default: None.

stgloc-name
Unregisters the server storage location with the specified name.

–sto⋅rage stgloc-pname
Unregisters the server storage location specified by the given path.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove the server storage location named stgloc_vob1.

cmd-context rmstgloc stgloc_vob1
cleartool: Warning: The storage location has only been removed from the
ClearCase registry. You must manually remove the physical storage location
directory.

SEE ALSO

lsstgloc, mkstgloc, mkview, mkvob

970 Command Reference

rmstream

rmstream
Remove a stream

APPLICABILITY

SYNOPSIS
rmstream [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach |

–nc⋅omment] [–f⋅orce] stream-selector ...

DESCRIPTION

The rmstream command deletes one or more streams.

RESTRICTIONS

Identities: You must have one of the following identities:

• Stream owner

• Project VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows only)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows only)

Locks: An error occurs if one or more of these objects are locked: stream.

Mastership: (Replicated VOBs only) Your current replica must master the stream.

Other: The following restrictions apply:

• The stream cannot contain activities.

• The stream can have no baselines other than the set of initial baselines associated with it.

• No views can be attached to the stream.

• A project’s integration stream cannot be removed while other project streams exist.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

Reference Pages 971

rmstream

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CONFIRMATION STEP. Default: Prompts for confirmation that the specified stream is to be deleted.

–f⋅orce
Suppresses the confirmation step.

SPECIFY THE STREAM TO BE REMOVED. Default: None.

stream-selector ..
Specifies one or more streams to delete.

You can specify the stream as a simple name or as an object selector of the form

[stream]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the stream resides in the project VOB associated with

the current view. If the current directory is a project VOB, then that project VOB is the

context for identifying the stream.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove a stream that has a view attached to it.

a. Issue the rmstream command. You are told that the stream cannot be removed because

a view is still attached to it:

cmd-context rmstream -f html_parser_int
cleartool: Error: Cannot remove stream that has a view
("html_parser_int_view") attached to it.

cleartool: Error: Unable to remove stream "html_parser_int".

972 Command Reference

rmstream

b. Display a description of the stream to see what views are attached to it:

cmd-context describe stream:html_parser_int stream "html_parser_int"
 created 11-Sep-99.11:27:01 by JFMuggs
 owner: jfm
 group: user
 project: html_parser
 title: html_parser_int
 contains activities:
 foundation baselines:
 views:
 html_parser_int_view

 Guarding: brtype:html_parser_int@/usr1/tmp/foo_project

c. Remove the view:

cmd-context rmview -tag html_parser_int_view
Removing references from VOB "/usr1/tmp/foo_project" ...

Removed references to view "/net/propane/usr1/tmp/html_parser_int.vws"
from VOB "/usr1/tmp/foo_project".

d. Reissue the rmstream command:

cmd-context rmstream -f html_parser_int
Removed stream "html_parser_int".

SEE ALSO

lsstream, mkstream

Reference Pages 973

rmtag

rmtag
Removes a view-tag or a VOB-tag from the networkwide storage registry

APPLICABILITY

SYNOPSIS

• ClearCase and Attache—Remove a view-tag:

rmtag –vie⋅w [–reg⋅ion network-region | –a⋅ll] view-tag ...

• ClearCase and Attache—Remove a VOB-tag:

rmtag –vob [–reg⋅ion network-region | –a⋅ll]
[–pas⋅sword tag-registry-password] vob-tag ...

• ClearCase LT—Remove a view- or VOB-tag:

rmtag { –vie⋅w view-tag ... | –vob vob-tag ... }

DESCRIPTION

The rmtag command removes one or more entries from the network’s view-tag registry or

vob-tag registry. See the Administrator’s Guide for a discussion of the registries. You cannot

remove a tag that is currently in use.

CleasrCase and Attache—Using rmtag

A VOB-tag is in use if the VOB is active on any host in the network region. Use the cleartool or

Attache umount command to deactivate a VOB on all hosts in the region before removing its tag.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

974 Command Reference

rmtag

A view-tag for a dynamic view is in use if any user process is set to the view specified by this tag,

or if any user process has a current working directory that is a view-extended pathname based

on this tag.

A VOB or view must always have a tag in its home region: the network region of the host where

the VOB or view storage directory physically resides. If you remove a home-region tag, create a

new one immediately.

You must supply the network’s VOB-tag password when deleting a public VOB-tag; if you don’t

use the –password option, you are prompted for the password. See the rgy_passwd reference

page for information on the VOB-tag password.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE KIND OF TAG. Default: None.

–vie⋅w
Removes one or more view-tags.

–vob
Removes one or more VOB-tags.

SPECIFYING A NETWORK REGION. Default: Removes tags that are defined for the local host’s

network region. (Use the hostinfo –long command to list a host’s network region.) See the

Administrator’s Guide for a discussion of network regions.

–reg⋅ion network-region
Removes a tag defined for the specified network region. An error occurs if the region

does not already exist.

–a⋅ll
Removes a tag from all network regions for which it is defined.

SPECIFYING THE VOB-TAG PASSWORD. Default: If you attempt to remove a public VOB-tag, rmtag
prompts you for the VOB-tag password. (See also rgy_passwd.)

–pas⋅sword tag-registry-password
Specifies the password on the command line.

CAUTION: This is a potential security breach, because the password remains visible on

your display buffer.

SPECIFYING THE TAGS. Default: None.

view-tag ..

One or more view-tags to be removed.

Reference Pages 975

rmtag

vob-tag ..

One or more VOB-tags to be removed.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• Remove the view-tag R2alpha from the view registry.

cmd-context rmtag –view R2alpha

• Remove the VOB-tag /vobs/tests from all network regions.

cmd-context rmtag –vob –all /vobs/tests

SEE ALSO

mktag, mkview, mkvob,rgy_passwd, rmview, rmvob

976 Command Reference

rmtrigger

rmtrigger
Removes trigger from an element or UCM object

APPLICABILITY

SYNOPSIS

• ClearCase and ClearCase LT only—Remove a trigger from an element or a UCM object:

rmtrigger [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
[–nin⋅herit | –nat⋅tach] [–r⋅ecurse]

trigger-type-selector { pname | ucm-object-selector } ...

• Attache only—Remove a trigger from an element:

rmtrigger [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery
| –cqe⋅ach | –nc⋅omment]
[–nin⋅herit | –nat⋅tach] [–r⋅ecurse] trigger-type-selector pname ...

DESCRIPTION

The rmtrigger command removes an attached trigger from one or more elements or UCM

objects. The specified trigger-type-selector is not affected by rmtrigger. To delete the trigger type,

use the rmtype command.

RESTRICTIONS

Identities: You must have one of the following identities:

• Object owner

• Object group member

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 977

rmtrigger

• VOB owner (for an element trigger)

• Project VOB owner (for a UCM object trigger)

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB (for an element trigger),

project VOB (for a UCM object trigger), object type, object, trigger type.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

MANIPULATING THE TRIGGER LISTS OF A DIRECTORY ELEMENT. Default: The trigger is removed

from both of a directory element’s trigger lists: its attached list and its inheritance list.

–nin⋅herit
(Directory element only) The trigger is removed from the directory’s attached list, but

remains on its inheritance list. The trigger does not fire when the monitored operation is

performed on the directory itself, but new elements created in that directory inherit the

trigger.

–nat⋅tach
(Directory element only) The trigger is removed from the directory’s inheritance list, but

remains on its attached list. The trigger continues to fire when the monitored operation

is performed on the directory itself, but new elements created in that directory do not

inherit the trigger.

REMOVING TRIGGERS FROM AN ENTIRE SUBDIRECTORY TREE. Default: If a pname argument names

a directory element, the trigger is removed only from the element itself, not from any of the

existing elements within it.

–r⋅ecurse
Processes the entire subtree of each pname that is a directory element (including pname
itself). UNIX VOB symbolic links are not traversed during the recursive descent into the

subtree.

978 Command Reference

rmtrigger

SPECIFYING THE TRIGGER TYPE. Default: None.

trigger-type-selector
The name of an existing element trigger type. Specify trigger-type-selector in the form

[trtype:]type-name[@vob-selector]

SPECIFYING THE ELEMENT. Default: None.

pname ...

One or more pathnames, specifying elements from which triggers (instances of the

specified trigger type) are to be removed.

SPECIFYING THE UCM OBJECT. Default: None.

ucm-object-selector ...

The name of the UCM object. Specify ucm-object-selector in the form

[ucm-object-type:]type-name[@vob-selector]

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

type-name Name of the trigger type

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

ucm-object-type Name of the UCM type

vob-selector UCM project VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the project VOB-tag

(whether or not the project VOB is

mounted) or of any file-system object

within the project VOB (if the project

VOB is mounted)

Reference Pages 979

rmtrigger

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Remove an attached trigger from hello.c.

cmd-context rmtrigger trig1 hello.c
Removed trigger "trig1" from attached list of "hello.c".

• Remove an attached trigger from the src directory’s attached list, but leave it in the

inheritance list.

cmd-context rmtrigger –ninherit trig1 src
Removed trigger "trig1" from attached list of "src".

• Remove an attached trigger from the release directory’s inheritance list, but leave it in the

attached list.

cmd-context rmtrigger –nattach trig1 release
Removed trigger "trig1" from inheritance list of "release".

SEE ALSO

describe, mktrigger, mktrtype, rmtype, unlock

980 Command Reference

rmtype

rmtype
Removes a type object from a VOB

APPLICABILITY

SYNOPSIS
rmtype [–ign⋅ore] [–rma⋅ll [–f⋅orce]]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

type-selector ...

DESCRIPTION

The rmtype command removes one or more type objects from a VOB.

The file vista.tjf records updates to the VOB that result from rmtype operations. vista.tjf can

grow very large. For information on limiting its size, read about the file db.conf in

theconfig_ccase reference page.

RESTRICTIONS

Identities: You must have one of the following identities:

• Type owner

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, type.

Mastership: (Replicated VOBs only) Your current replica must master the type.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 981

rmtype

Other: You cannot remove a type object if there are any instances of that type. For example, if any

version of any element is labeled REL1, you cannot remove the REL1 label type. You can bypass

this restriction by specifying the –rmall option.

You cannot remove an element type from a replicated VOB.

OPTIONS AND ARGUMENTS

REMOVING INSTANCES OF THE TYPE. Default: If there are any instances of a specified type object,

rmtype does not remove the type object.

–rma⋅ll
Removes all instances of a type, and then proceeds to remove the type object itself. If the

type object is a global type, or is a local copy of a global type, rmtype removes the global

type and all local copies of the type.

CAUTION: If the rmtype –rmall command fails for any reason, you must address the

causes of the failure and enter the command again. You must persist until the command

completes successfully and the type is removed. Failure to do so will result in

inconsistent metadata.

CAUTION: This option potentially destroys a great deal of data.

–f⋅orce (for use with –rmall only)

By default, rmtype prompts for confirmation when you use the –rmall option to request

removal of all instances of a type. The –force option suppresses the confirmation step.

–ign⋅ore (for use with trigger types only)

Removes a trigger type even if a previously defined preoperation trigger would

otherwise prevent it from being removed.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE TYPE OBJECTS TO BE REMOVED. Default: Removes types from the VOB that

contains the current working directory unless you specify another VOB with the @vob-selector
suffix.

type-selector ...

One or more names of existing type objects, of the specified kind. Specify type-selector in

the form type-kind:type-name[@vob-selector]

982 Command Reference

rmtype

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• Delete the branch type patch3.

cmd-context rmtype brtype:patch3
Removed attribute type "patch3".

• Delete the attribute type QA_date in the VOB \tests.

cmd-context rmtype attype:QA_date@\tests
Removed attribute type "QA_date".

type-kind oOne of

attype Attribute type

brtype Branch type

eltype Element type

hltype Hyperlink type

lbtype Label type

trtype Trigger type

type-name Name of the type object

vob-selector VOB specifier

Specify vob-selector in the form [vob:]pname-in-vob
pname-in-vob Pathname of the VOB-tag (whether or

not the VOB is mounted) or of any

file-system object within the VOB (if

the VOB is mounted)

Reference Pages 983

rmtype

• Delete all branches of type expmnt3 (along with all the versions on those branches and any

subbranches); then delete the expmnt3 branch type itself.

cmd-context rmtype –rmall brtype:expmnt3
There are 1 branches of type "expmnt3".
Remove branches (including all sub-branches and sub-versions)? [no] yes
Removed branches of type "expmnt3".
Removed branch type "expmnt3".

• Delete the hyperlink type design_doc.

cmd-context rmtype hltype:design_doc
Removed hyperlink type "design_doc".

• Remove all instances of the label type REL2; then delete the label type.

cmd-context rmtype –rmall lbtype:REL2
There are 7 labels of type "REL2".
Remove labels? [no] yes
Removed labels of type "REL2".
Removed label type "REL2".

• Delete the trigger type trig1. Use the –ignore option to ensure that the command executes

without interference from a previously defined trigger.

cmd-context rmtype –ignore trtype:trig1
Removed trigger type "trig1".

SEE ALSO

config_ccase, describe, lshistory, lstype, mkattype, mkbrtype, mkeltype, mkhltype, mklbtype,

mktrtype, rename

984 Command Reference

rmver

rmver
Removes a version from the version tree of an element

APPLICABILITY

SYNOPSIS
rmver [–f⋅orce] [–xbr⋅anch] [–xla⋅bel] [–xat⋅tr] [–xhl⋅ink] [–dat⋅a]

[–ver⋅sion version-selector | –vra⋅nge low-version high-version]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pname ...

DESCRIPTION

This command destroys information irretrievably. Using it carelessly may compromise your

organization’s ability to support old releases.

rmver deletes one or more versions from their elements. For each version, this entails the

following:

• Removal of the version object from the VOB database

• Removal of all metadata items (labels, attributes, hyperlinks, and triggers) that were

attached to the deleted version

• Removal of all event records for the deleted version

• (File elements only) Removal of the data containers that hold the deleted version’s file

system data

A destroy version event record is created for the element.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 985

rmver

In general, a removed version is physically deleted from the VOB source pool. However, a

removed version is logically deleted if it has a descendant and is managed by the

z_text_file_delta or text_file_delta type managers. See the type_manager reference page for

more information on the type managers.

Behavior in Snapshot Views

In a snapshot view, rmver does not unload the element, but leaves a view-private copy of the

element in the view. In other respects, rmver behaves the same in a snapshot view as it does in a

dynamic view.

Deleted Version-IDs

The version-ID of a deleted version is never reused. There is no way to collapse a branch to fill

the gaps left by deleted versions. If a deleted version was the last version on a branch (say,

version 6), the next checkin on that branch creates version 7.

A reference to a deleted version produces a not found or no such file or directory error.

Controlling the Size of the vista.tjf File

The file vista.tjf records updates to the VOB that result from rmver operations. vista.tjf can grow

very large. For information on limiting its size, read about the file db.conf in the config_ccase
reference page.

RESTRICTIONS

Identities: You must have one of the following identities:

• Version creator

• Element owner

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element,

branch type, branch, pool (non-directory elements only).

Mastership: (Replicated VOBs only) Your current replica must master the branch containing the

version you are removing.

Other: You cannot delete a version from which someone currently has a checkout. You cannot

delete version 0 on a branch, except by deleting the entire branch. (See rmbranch.)

986 Command Reference

rmver

OPTIONS AND ARGUMENTS

CONFIRMATION STEP. Default: rmver prompts for confirmation before deleting anything.

–f⋅orce
Suppresses the confirmation step.

DELETING INTERESTING VERSIONS. Default: rmver does not delete a version to which a version

label, attribute, or hyperlink is attached, or at which a branch begins.

–xbr⋅anch
Deletes a version even if one or more branches begin there. In the process, those branches

(including all their versions and subbranches) are also deleted.

–xla⋅bel
Deletes a version even if it has one or more version labels.

–xat⋅tr
Deletes a version even if it has one or more attributes.

–xhl⋅ink
Deletes a version even if it has one or more hyperlinks. This also destroys the hyperlink

object, thus modifying the other object to which the hyperlink was attached.

CAUTION: Using this option can delete merge arrows (hyperlinks of type Merge) created

by the merge command. This may destroy essential metadata.

DATA-ONLY DELETION. Default: rmver deletes both the version object in the VOB database along

with associated metadata, and the corresponding data container in a source storage pool.

–dat⋅a
Deletes only the data for the specified version, leaving the version object, its

subbranches, and its associated metadata intact. In particular, this option preserves

event records and enables continued access to the configuration record of a DO version.

CAUTION: Using this option implicitly invokes the –xbranch, –xlabel, –xattr, and –xhlink
options, as well. That is, the data container is deleted even if the version has a label,

attribute, or hyperlink attached or has a branch sprouting from it.

SPECIFYING THE VERSIONS TO BE REMOVED. Default: None.

–ver⋅sion version-selector
For each pname, removes the version specified by version-selector. This option overrides

both version-selection by the view and version-extended naming. See the

version_selector reference page for syntax details.

–vra⋅nge low-version high-version
For each pname, removes all versions between (but not including) the two specified

Reference Pages 987

rmver

versions. low-version and high-version must be on the same branch, and are specified in

the same way as version-selector.

pname ...

(Required) One or more pathnames, indicating versions to be removed:

Use –version or –vrange to override these interpretations of pname.

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Delete the version of msg.c in the view.

cmd-context rmver msg.c
Removing these versions of "msg.c":

/main/1
Remove versions? [no] yes
Removed versions of "msg.c".

• Delete version 1 on the rel2_bugfix branch of element util.c, using a version selector to

specify the version, suppressing confirmation prompts.

cmd-context rmver -force -version \main\rel2_bugfix\1 util.c
Removing these versions of "util.c":
 \main\rel2_bugfix\1
Removed versions of "util.c".

• A standard or view-extended pathname to an element specifies the version in the

view.

• A version-extended pathname specifies a version, independent of view.

988 Command Reference

rmver

• Delete version 3 on the main branch of element Makefile, even if it has labels and/or

attributes. Use a version-extended pathname to specify the version.

cmd-context rmver -xlabel -xattr Makefile@@/main/3
Removing these versions of "Makefile":
 /main/3 (has: labels, attributes)
Remove versions? [no] yes
Removed versions of "Makefile".

• Delete all versions between 0 and LATEST on the main branch of element hello.c.

cmd-context rmver -vrange \main\0 \main\LATEST hello.c
Removing these versions of "hello.c":
 \main\1
 \main\2
Remove versions? [no] yes
Removed versions of "hello.c".

• Delete version 2 on the main branch of util.c, even if there are one or more subbranches off

that version. (The subbranches, if any, are also deleted.)

cmd-context rmver -xbranch util.c@@/main/2
Removing these versions of "util.c":
 /main/2 (has: subbranches)
Remove versions? [no] yes
Removed versions of "util.c".

SEE ALSO

config_ccase, describe, lshistory, lsvtree, rmbranch, rmelem, rmname, type_manager

Reference Pages 989

rmview

rmview
Removes a view or removes view-related records from a VOB

APPLICABILITY

SYNOPSIS

• ClearCase and Attache—Remove a dynamic view and its related records:

rmview [–f⋅orce] { –tag dynamic-view-tag | dynamic-view-storage-pname }

• Remove a snapshot view and its related records:

rmview [–f⋅orce] { snapshot-view-pname | snapshot-view-storage-pname }

• Remove only view-related records from a VOB:

rmview [–f⋅orce] [–vob vob-selector | –avo⋅bs | –a⋅ll] –uui⋅d view-uuid

DESCRIPTION

The rmview command performs different, but related, tasks:

• Removing a view and its related records from a VOB

• Removing only the view-related records from a VOB

Removing a View and Its Related Records

Use this form of the command to remove a view completely. Complete removal of a view entails:

• Removing the view-storage directory

• Removing view-related records for that view from all accessible VOBs: checkout records,

derived object records (ClearCase and Attache dynamic views)

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

990 Command Reference

rmview

• Killing its associated view_server process, if the view is currently active

• For a snapshot view, also removing recursively the snapshot view’s root directory, which is

the directory tree of loaded versions and view-private objects

• For a dynamic view, removing its entry in the root directory.

• Removing the view’s information from the view registry

Be sure that the current working directory is not within the view storage area that you are

deleting.

By default, rmview refuses to delete a view if any element is checked out to that view. You can

override this behavior with the –force option.

rmview does not allow you to remove your current set view or working directory view (the view

in which you are executing rmview). However, you can remove a view (set view or working

directory view) that you are currently using if you issue the rmview command from a shell in

which you are not using the view.

NOTE TO UNIX USERS: If the view was created with mkview –ln, its view-private objects are stored

in a directory tree in an alternate location. rmview attempts to delete this directory tree; if it does

not succeed, an error occurs and the view storage area remains unaffected.

NOTE TO WINDOWS USERS: If you use the subst or net use commands to assign a drive letter to

the snapshot view directory, then use the corresponding subst /d or net use /delete command to

remove the assignment after you use rmview. Also, if you use the form, rmview
snapshot-view-storage-pname, the snapshot view directory is not deleted; use the form, rmview
snapshot-view-pname.

Purging View-Related Records Only

Use this form of the command in either of these situations:

• Complete purging of view-related records from all VOBs is not possible. (For example,

some of the VOBs may be offline when you remove the view.)

• A view storage area cannot be deleted with rmview, because it has become unavailable for

another reason: disk crash, accidental deletion with some operating system command, and

so on.

To remove view-related records only, use rmview and specify a view by its UUID (universal

unique identifier; see the View UUIDs section). Despite being invoked as rmview, this form of the

command has no effect on any view or view_server process, only on the specified VOBs.

Caution

Incorrect results occur if a VOB loses synchronization with its views. To avoid this problem:

• Never remove a view with any command other than rmview.

Reference Pages 991

rmview

• If a view still exists, do not use rmview –uuid to delete records relating to it from any VOB.

Make sure that the view need not be used again before using this command.

View UUIDs

Each view has a universal unique identifier. For example:

52000002.4ac711cb.a391.08:00:69:02:18:22

The listing produced by a describe –long vob: command includes the UUIDs of all views for

which the VOB holds checkout records and derived object records.

Controlling the Size of the vista.tjf File

The file vista.tjf records updates to the VOB that result from rmview operations. vista.tjf can

grow very large. For information on limiting its size, read about the file db.conf in the

config_ccase reference page.

RESTRICTIONS

Identities: You must have one of the following identities:

• View owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: No locks apply.

Mastership: (Replicated VOBs) No mastership restrictions.

OPTIONS AND ARGUMENTS

CONFIRMATION STEP. Default: Prompt for confirmation of the specified rmview operation.

–f⋅orce
Suppresses confirmation prompts for:

• Complete view removal: confirmation is needed to proceed if some elements are

checked out to the view. Proceeding has the effect of canceling the checkouts and

destroying the work items: rmview removes the checkout records from the

appropriate VOBs.

• Remove view-related records: confirmation is needed to proceed if the view still

exists.

992 Command Reference

rmview

SPECIFYING A VIEW. Default: None.

–tag dynamic-view-tag

Specifies the dynamic view to be removed. dynamic-view-tag specifies the view-tag of a

dynamic view. rmview removes the view storage directory and all relevant entries from

the network’s view registry.

dynamic-view-storage-dir-pname
Specifies the storage location directory where the dynamic view resides. Be sure that the

current working directory is not anywhere within this view storage area.

snapshot-view-pname
Specifies the path to your snapshot view. This is the directory in which you load your

files and do your work. rmview removes the view storage directory and all relevant

entries from the network’s view registry. Be sure that the current working directory is not

anywhere within this view storage area.

snapshot-view-storage-dir-pname
NOTE: This option is intended fordeleting view storage associated with a snapshot view

that was deleted using an operating system command. Only rmview effectively deletes

a view, and in normal circumstances, you should specify snapshot-view-pname rather than

this argument to delete a snapshot view.

Specifies the directory within a storage location where the snapshot view resides.

rmview removes the view storage directory and all relevant entries from the network’s

view registry. Be sure that the current working directory is not anywhere within this

view storage area.

SPECIFYING VIEW-RELATED RECORDS. Default: None.

–vob vob-selector
Specifies the VOB from which view-related records are to be removed. If you omit this

option, cleartool or Attache uses the VOB containing the current working directory.

Specify vob-selector in the form [vob:]pname-in-vob

–avo⋅bs
Specifies that view-related records are to be removed from the VOBs specified by the

environment variable CLEARCASE_AVOBS, or if this variable is unset, from all VOBs

mounted on the current host (ClearCase and Attache) or all VOBs residing on the

ClearCase LT server host.

pname-in-vob Pathname of the VOB-tag (whether or not the VOB is

mounted) or of any file-system object within the VOB (if the

VOB is mounted)

Reference Pages 993

rmview

–a⋅ll
Specifies that the view-related records are to be removed from all VOBs in which such

records can be found.

–uui⋅d view-uuid
Specifies the view whose records are to be removed from one or more VOBs.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Delete the view storage area at /view_store/Rel2.vws.

cmd-context rmview /view_store/Rel2.vws

• Delete the view storage area whose view-tag is anneRel2.

cmd-context rmview –tag anneRel2

• Delete the checkout and DO records for a deleted view from the current VOB. Suppress the

confirmation prompt.

cmd-context rmview –force –uuid 249356fe.d50f11cb.a3fd.00:01:56:01:0a:4f

Removed references to VIEW "host2:\users\vbstore\tut\old.vws"
from VOB "\users_hw".

• On a Windows system, delete the snapshot view, rdc_3.2, for which the root directory is

E:\library\rdc_3.2.

cmd-context rmview -tag E:\library\rdc_3.2

994 Command Reference

rmview

• On a UNIX system, remove the snapshot view test_ssview, even though it has checkouts.

cmd-context rmview -tag ~usr1/test_ssview.dir

VOB "/tmp/testvob" still has check-outs.
Remove view "/net/peroxide/export/home/usr1/test_ssview.dir/.view.stg"
anyway? [no] yes
Removing references from VOB "/tmp/testvob" ...
Removed references to view
"/net/peroxide/export/home/usr1/test_ssview.dir/.view.stg" from VOB
"/tmp/testvob".

SEE ALSO

config_ccase, env_ccase, lsview, mktag, mkview, rmtag, unregister, Administrator’s Guide

Reference Pages 995

rmvob

rmvob
Removes a VOB storage directory

APPLICABILITY

SYNOPSIS
rmvob [–f⋅orce] vob-storage-dir-pname ...

DESCRIPTION

The rmvob command deletes one or more VOB storage directories. Confirmation for each VOB

is required, unless you use the –force option. In addition to removing the VOB storage directory,

rmvob removes all relevant entries from the network’s VOB registry. However, rmvob does not

unmount the VOBs.

CAUTION: Be sure that the current working directory is not within the VOB storage area that you

are deleting.

NOTE: If you mistakenly remove a VOB storage area with operating system commands, you must

unregister the VOB with the rmtag and unregister commands.

Procedures for Removing VOBs

Refer to the Administrator’s Guide for the procedure for removing a nonreplicatedVOB. To remove

a replicated VOB, follow the procedure in the Administrator’s Guide for Rational ClearCase

MultiSite. rmvob fails if the VOB replica masters any objects, unless you specify the –force
option.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

996 Command Reference

rmvob

RESTRICTIONS

Identities: You must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: No locks apply.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

–f⋅orce
Suppresses the confirmation step. If the VOB is replicated, this option allows rmvob to

remove the VOB storage directory even if the replica masters any objects.

vob-storage-dir-pname ...

The pathnames of one or more VOB storage directories to be removed.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

On a UNIX system, unmount and delete the VOB storage area /usr/vobstore/project.vbs
mounted on /vobs/project.

cmd-context umount /vobs/project

cmd-context rmvob /usr/vobstore/project.vbs
Remove versioned object base "/usr/vobstore/project.vbs"? [no] yes
Removed versioned object base "/usr/vobstore/project.vbs".

Reference Pages 997

rmvob

• On a Windows system, unmount and delete the VOB storage area

c:\users\vbstore\project.vbs mounted on \project.

cmd-context umount \project

cmd-context rmvob c:\users\vbstore\project.vbs
Remove versioned object base "c:\users\vbstore\project.vbs"? [no] yes
Removed versioned object base "c:\users\vbstore\project.vbs".

SEE ALSO

mkvob, umount

998 Command Reference

rmws

rmws
Removes and unregisters a workspace

APPLICABILITY

SYNOPSIS
rmws [–f⋅orce] [ws-name]

DESCRIPTION

The rmws command removes the specified workspace and all of its local files and

subdirectories.The workspace’s storage directory is removed even if it is being shared with

another workspace. If the associated view still exists and was created with the mkws command,

it is removed as well. The –force option is applied to the rmview command; prompts are always

issued for removal of local writable files.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE WORKSPACE. Default: Current workspace.

ws-name
Specifies the workspace name or view-tag name of the workspace to be deleted

CONFIRMATION STEP. Default: If the view is being deleted, rmview prompts for confirmation

before deleting anything.

–f⋅orce
Automatically responds yes to confirmation requests that rmview would otherwise

make:

Product Command Type

Attache command

Platform

UNIX

Windows

Reference Pages 999

rmws

EXAMPLES

• Remove the current workspace. At an Attache prompt:

rmws

• Remove the workspace containing writable files, corresponding to the view with view-tag

jed_main. At an Attache prompt:

rmws jed_main
\tmp\agora_hw\src\hello.c may have been modified
\tmp\agora_hw\bin\hello.exe may have been modified
OK to remove \jed_main? [no] yes
Removing references from VOB “/tmp/agora_hw” . . .
Removed references to view “/net/agora/usr/jed/views/jed_main.vws” from
VOB “/tmp/agora_hw”.

SEE ALSO

attache_command_line_interface, attache_graphical_interface, mkws, lsws, rmview

• Deleting a view-storage directory: confirmation is needed to proceed if some

elements are checked-out to the view. Proceeding has the effect of canceling the

checkouts: rmview removes the checkout records from the appropriate VOBs.

1000 Command Reference

schedule

schedule
Schedules and manages jobs to be run one or more times

APPLICABILITY

SYNOPSIS

• ClearCase—Display information about jobs, tasks, or protection:

sched⋅ule [–f⋅orce] [–hos⋅t hostname] –get
[–sch⋅edule | –job job-id-or-name | –tas⋅ks | –acl]

• ClearCase—Edit a schedule or the scheduler’s protection information:

sched⋅ule [–f⋅orce] [–hos⋅t hostname] –edi⋅t [–sch⋅edule | –acl]

• ClearCase—Set a schedule or protection using definitions in a file:

sched⋅ule [–f⋅orce] [–hos⋅t hostname] –set
[–sch⋅edule | –acl] defn-file-pname

• ClearCase—Perform an operation on a scheduled job:

sched⋅ule [–f⋅orce] [–hos⋅t hostname]

[–del⋅ete | –run | –wai⋅t | –sta⋅tus] job-id-or-name

• ClearCase LT—Display information about jobs, tasks, or protection:

sched⋅ule [–f⋅orce] –get [–sch⋅edule | –job job-id-or-name | –tas⋅ks | –acl]

• ClearCase LT—Edit a schedule or the scheduler’s protection information:

sched⋅ule [–f⋅orce] –edi⋅t [–sch⋅edule | –acl]

• ClearCase LT—Set a schedule or protection using definitions in a file:

sched⋅ule [–f⋅orce] –set [–sch⋅edule | –acl] defn-file-pname

• ClearCase LT—Perform an operation on a scheduled job:

sched⋅ule [–f⋅orce] [–del⋅ete | –run | –wai⋅t | –sta⋅tus] job-id-or-name

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

Reference Pages 1001

schedule

DESCRIPTION

The schedule command creates and manages ClearCase and ClearCase LT-related jobs and

arranges to execute them at specified times. A job consists of an executable program, or task, that

the scheduler runs one or more times with a given set of arguments.

In ClearCase, the scheduler is available on any host that runs the albd_server. In ClearCase LT,

the scheduler is available on the ClearCase LT server host only.

NOTE: See the sections, UNIX FILES and WINDOWS FILES for the pathnames of the files and

directories describe in this section.

Task and Job Storage

The scheduler relies on two data repositories:

• A database of tasks available for scheduling

• A database of jobs, or scheduled tasks

A task must be defined in the task database before you can schedule it. The task database is a

single text file, task_registry. You can add task definitions to the task database by editing this file

using a text editor. You must not change the definitions of standard tasks, but you can add your

own task definitions at the end of the file. For more information, see Task Definition Syntax on

page 1008.

Standard tasks reside in the directory tasks. These tasks are not editable. Tasks that you define

can reside anywhere in the file system, but the recommended location is the directory tasks. This

directory contains a task, ccase_local_day, that is intended for user-defined operations to be run

daily. The directory contains another task, ccase_local_wk, that is intended for user-defined

tasks to be run weekly. You can customize these two tasks using a text editor or can create entirely

new tasks.

The database of jobs is the file db.This is a binary you read and edit using the schedule
command. When you use the schedule command to change the job database, you use the job

definition language described in Job Definition Syntax on page 1003.

Task and Job Database Initialization

ClearCase and ClearCase LT install a template for an initial task database, containing definitions

for standard tasks, as the file, task_registry. The albd_server uses this template to create the first

version of the actual task database, task_registry.

Templates are installed for two customized tasks, ccase_local_day and ccase_local_wk, in the

directory templates. The albd_server uses these templates to create initial versions of these tasks

in the directory tasks.

ClearCase and ClearCase LT install an initial set of job definitions as the text file

initial_schedule. These job definitions rely on task definitions in the task registry template. The

albd_server uses these job definitions to create the first version of the job database, db.

1002 Command Reference

schedule

NOTE: Do not edit or delete any files in the directory tree whose root is scheduler.

Default Schedule

When no job database exists, the albd_server uses the initial set of job definitions in the file

initial_schedule to create a default schedule. This schedule consists of some jobs run daily and

other jobs run weekly.

Daily jobs:

• Scrub cleartext and derived object storage pools of all local VOBs, using scrubber.

• Copy the VOB database for all local VOBs that are configured for snapshots, using

vob_snapshot.

• Copy the ClearCase registry from the primary registry server host (when run on a backup

registry server host), using rgy_backup.

• Run user-defined daily operations in ccase_local_day.

• Generate and cache data on disk space used by all local views, using space.

• Generate and cache data on disk space used by all local VOBs, using space.

Weekly jobs:

• Scrub some logs (see the Administrator’s Guide).

• Scrub the databases of all local VOBs, using vob_scrubber.

• Run user-defined weekly operations in ccase_local_wk.

• Generate and cache data on disk space used by derived objects in all local VOBs, using

dospace.

The default schedule also includes three jobs to automate the synchronization of MultiSite

replicas. These jobs are designed to run daily but are disabled by default, whether or not

MultiSite is installed. For more information on these jobs and how to enable them for use with

MultiSite, see the Administrator’s Guide for Rational ClearCase MultiSite

Job Timing Options

You can arrange for a job to run under a variety of schedules:

• Run daily or every n days, starting at a specified time of day and possibly repeating at a

specified time interval during the day.

• Run weekly or every n weeks, on one or more days of each week, starting at a specified time

of day and possibly repeating at a specified time interval during the day.

• Run monthly or every n months, on a specified day of the month, starting at a specified time

of day and possibly repeating at a specified time interval during the day.

Reference Pages 1003

schedule

• Run immediately after another job finishes.

For daily, weekly, and monthly schedules, you can specify starting and ending dates for the job.

To run a job one time, you can specify a daily schedule with identical start and end dates.

Job Definition Syntax

The –edit and –set options create or modify jobs using a declarative job definition language. The

–get option displays a textual representation of currently defined jobs using the same language.

The job definition language has the following general features:

• Each statement must occupy a single line, though job descriptions and output messages can

occupy more than one line.

• The language is case insensitive.

• Leading white space, lines beginning with a number sign (#), and blank lines are ignored,

except within job descriptions.

• The quotation character is double quote (").

A job definition file consists of a sequence of job definitions. Each job definition begins with the

statement Job.Begin and ends with the statement Job.End. Between these statements are other

statements that define job properties. A statement that defines a job property has the following

form:

Job.property_name: value

Some properties have fields. In this case the definition of a property consists of a sequence of

statements, one for each field, with the following form:

Job.property_name.field: value

Some fields themselves have subfields.

The value portion of some property definitions can contain a sequence of individual values

separated by commas. No white space can appear before or after a comma that separates two

values in a sequence. For the Args property, individual values are separated by white space.

Job properties are of two types:

• Editable. You can define or modify the property. Some properties and fields are required;

others are optional and have default values. When you define or modify a property, you

must specify fields and subfields of that property in the order listed in Table 16 and

Table 17.

• Read-only. The scheduler defines the property, and you cannot define or modify it. When

you create a job definition, the scheduler ignores all definitions of read-only properties.

When you edit an existing job definition, the scheduler ignores all definitions of read-only

1004 Command Reference

schedule

properties except for Id. When you edit an existing job definition, the scheduler uses the Id,

if present (and if not present, the Name), to identify the job to modify.

Table 16 lists editable job properties.

Table 16 Editable Job Properties

Property Field Value Default

Name name_string (quoted if it contains white

space; must be unique across jobs)

No default; a

value is

required.

Description Begin desc_string (on subsequent lines only;

maximum 255 characters)

""

End (none)

Schedule (see Table 17) (see Table 17) No default; a

value is

required.

Task task_id (unsigned) | task_name (string) No default; a

value is

required.

Args arg_string [...]
(arg_string quoted if it contains white space)

No args

DeleteWhenCompleted TRUE | FALSE FALSE

NotifyInfo OnEvents JobBegin | JobEndOK |

JobEndOKWithMsgs | JobEndFail |
JobDeleted | JobModified [,...]

If no

NotifyInfo
field is

specified, no

notifications are

issued; if any

NotifyInfo
field is

specified, all

must be

specified.

Using email

Recipients address [,...]

Reference Pages 1005

schedule

Table 17 lists fields of the Schedule property. Schedules are of two types:

• Periodic. The job runs on one or more days specified by the Monthly, Weekly, or Daily
field.

• Sequential. The job runs following completion of another job specified by the Sequential
field.

The Monthly, Weekly, Daily, and Sequential fields are mutually exclusive; each job must have

one and only one of these fields.

The StartDate, LastDate, FirstStartTime, StartTimeRestartFrequency, and LastStartTime fields

are optional. One or more of these fields can appear along with a Monthly, Weekly, or Daily
field. StartDate and LastDate determine the first and last dates the job is eligible to run on its

monthly, weekly, or daily schedule. FirstStartTime determines what time the job first runs on

each day it is scheduled. StartTimeRestartFrequency specifies an interval to wait before running

the job again. LastStartTime is meaningful only with StartTimeRestartFrequency; it determines

the last time the job is eligible to run on each day it is scheduled. If StartTimeRestartFrequency
is specified for a job, the job will run every StartTimeRestartFrequency (for example, every two

hours) until midnight or LastStartTime, whichever is earlier.

All dates and times are local to the host on which the scheduler is running.

Table 17 Fields of the Job Schedule Property

Schedule Field Subfield Value Default

Monthly Frequency every_n_months (unsigned) No default; if

any Monthly
subfield is

specified, all

must be

specified.

Day day_number | ordinal_spec day_spec

(day_number ::= 1 ... 31)

(ordinal_spec ::= First | Second | Third |

Fourth | Last)

(day_spec ::= Mon | Tue | Wed | Thu | Fri |

Sat |Sun | Weekday | Weekendday | Day)

Weekly Frequency every_n_weeks (unsigned) No default; if

any Weekly
subfield is

specified, all

must be

specified.

Days Mon | Tue | Wed | Thu | Fri | Sat | Sun
[,...]

Daily Frequency every_n_days (unsigned) No default

1006 Command Reference

schedule

Table 18 lists read-only job properties. For the LastCompletionInfo property, ExitStatus is the

value returned by the wait() system call on UNIX or by the GetExitCodeProcess() function on

Windows. Only the first 511 bytes of standard output and error messages are displayed.

StartDate [d]d–month–[yy]yy

(month ::= January ... December | Jan ... Dec)

Today

LastDate StartDate | [d]d–month–[yy]yy

(month ::= January ... December | Jan ... Dec)

No last date

FirstStartTime [h]h:[m]m:[s]s (24-hour format) Now

StartTimeRestartFrequency [h]h:[m]m:[s]s (24-hour format) No restart

LastStartTime [h]h:[m]m:[s]s (24-hour format) Midnight

Sequential FollowsJob job_id (unsigned) | job_name (string) No default

Table 18 Read-Only Job Properties

Property Field Value

Id job_id (unsigned)

Predefined TRUE | FALSE

Created dd–month–yy.hh:mm:ss by user.group@host

LastModified dd–month–yy.hh:mm:ss by user.group@host

NextRunTime dd–month–yy.hh:mm:ss

RunningStatus ProcessId process_id (unsigned)

Started dd–month–yy.hh:mm:ss

Table 17 Fields of the Job Schedule Property

Schedule Field Subfield Value Default

Reference Pages 1007

schedule

Following is an example definition you can use with the –edit or –set option to create a job

scheduled to run daily:

Job.Begin
Job.Name: "Daily VOB Pool Scrubbing"
Job.Description.Begin:

Scrub the cleartext and derived object storage pools of all local VOBs.
Job.Description.End:
Job.Schedule.Daily.Frequency: 1
Job.Schedule.StartDate: 11-Mar-99
Job.Schedule.FirstStartTime: 04:30:00
Job.Task: "VOB Pool Scrubber"

Job.End

Following is an example definition the scheduler could display with the –get option for a job

scheduled to run sequentially, including job properties defined by the scheduler:

LastCompletionInfo ProcessId process_id (unsigned)

Started dd–month–yy.hh:mm:ss

Ended dd–month–yy.hh:mm:ss

ExitStatus exit_status (hexadecimal)

Begin output_and_error_messages (on subsequent

lines only)

End (None)

Table 18 Read-Only Job Properties

Property Field Value

1008 Command Reference

schedule

Job.Begin
Job.Id: 8
Job.Name: "Weekly VOB Database Scrubbing"
Job.Description.Begin:

Scrub the VOB database of all local VOBs.
Job.Description.End:
Job.Schedule.Sequential.FollowsJob: 7
Job.Schedule.Sequential.FollowsJob: "Weekly MVFS Log Scrubbing"
Job.DeleteWhenCompleted: FALSE
Job.Task: 4
Job.Task: "VOB DB Scrubber"
Job.Args:
Job.Created: 11-Mar-99.14:12:59 by fran@acme
Job.LastModified: 11-Mar-99.14:12:59 by fred@acme
Job.LastCompletionInfo.ProcessId: 394
Job.LastCompletionInfo.Started: 21-Mar-99.00:30:08
Job.LastCompletionInfo.Ended: 21-Mar-99.00:31:08
Job.LastCompletionInfo.ExitStatus: 0x0

Job.End

Task Definition Syntax

A task must be defined in the task database before you can schedule the task. The task database

is a text file, which you can edit using a text editor. The task database contains definitions that

use a declarative task definition language similar to the job definition language.

The task definition language has the following general features:

• Each statement must occupy a single line.

• The language is case insensitive.

• Leading white space, lines beginning with a number sign (#), and blank lines are ignored.

• The quotation character is double quote (").

The task database file consists of a sequence of task definitions. Each task definition begins with

the statement Task.Begin and ends with the statement Task.End. Between these statements are

other statements that define task properties. A statement that defines a task property has the

following form:

Task.property_name: value

In the task database, definitions of standard tasks appear first. You must not change or delete any

of these definitions. You can add task definitions of your own at the end of the task database file.

Reference Pages 1009

schedule

Table 19 lists task properties.

The scheduler uses the task Id property in a job definition to identify the task to run. If any

scheduled jobs use a task Id, you must be careful not to change the task’s Id property in the task

database without also changing all references to that property in the database of scheduled jobs.

The Pathname value is the pathname of the executable to be invoked when the task is run. The

pathname can be relative or absolute. If it is relative, the scheduler looks first for the task in

• UNIX—ccase-home-dir/config/scheduler/tasks

• Windows—ccase-home-dir\config\scheduler\tasks

and then in

• UNIX—/var/adm/atria/scheduler/tasks

• Windows—ccase-home-dir\var\scheduler\tasks

The optional UIInfo property describes the task’s command-line interface, such as the types of

arguments the task can take. This property is used internally by ClearCase and ClearCase LT; do

not specify it for a user-defined task.

Following is an example read-only definition for a standard task:

Task.Begin
Task.Id: 2
Task.Name: "View Space"
Task.Pathname: view_space.sh
Task.UIInfo: "view-spec"

Task.End

Table 19 Task Properties

Property Value

Id task_id (unsigned; must be unique across tasks; for

user-defined tasks, must be 100 or greater)

Name name_string (quoted if it contains white space; must be

unique across tasks)

Pathname pathname_string (quoted if it contains white space)

UIInfo info_string (private to ClearCase and ClearCase LT)

1010 Command Reference

schedule

Following is an example definition for a user-defined task:

Task.Begin
Task.Id: 100
Task.Name: "Daily Local Tasks"
Task.Pathname: ccase_local_day.sh

Task.End

Job Execution Environment

Each task runs in a separate process started by the albd_server. A task has the following

execution environment:

• The user identity of the task is the same as that of the albd_server (root on UNIX; typically,

the clearcase_albd account on Windows).

• The standard input stream is closed.

• Standard output and error messages are redirected to a file and captured by the scheduler

as part of the job’s LastCompletionInfo property.

• The current directory is undefined.

• Environment variables are those in effect for the albd_server. In addition, on Windows

systems, ATRIAHOME is set to ccase-home-dir.

RESTRICTIONS

The scheduler maintains a single access control list (ACL). The ACL determines who is allowed

access to the scheduler and to the ACL itself.

The –edit –acl and –set –acl options modify the ACL using a declarative ACL definition

language. The –get –acl option displays the current ACL.

The ACL definition consists of a sequence of ACL entries. Each ACL entry must occupy a single

line. Leading white space, lines beginning with number sign (#), and blank lines are ignored.

Each ACL entry has the following form:

identity_type:identity access_type

Table 20 lists the identity types and identities allowed in ACL entries. The identity types are case

insensitive.

Table 20 Identity Types and Identities in Scheduler ACL Entries

Identity Type Identity

Everyone (None)

Domain domain_name

Reference Pages 1011

schedule

In the identity portion of an ACL entry, the domain_name is an NIS domain for UNIX clients of the

scheduler and a Windows NT Server domain for Windows clients of the scheduler. Note that you

must supply a domain in the identity portion of a Group or User ACL entry. For an ACL entry

with a Windows NT Server domain, group_name must be a global group, and user_name must be

a domain user account. Names of domains, groups, and users are case insensitive for the

scheduler.

Note that no white space can appear anywhere in an identity_type:identity specification.

Table 21 lists the access types allowed in ACL entries. The access types are case insensitive.

Each combination of domain and group or of domain and user represents a single identity. (Note

that NIS domains differ from Windows NT Server domains, so a group or user in an NIS domain

represents a different identity from the same group or user in a Windows NT Server domain.)

Each single identity can have only one access type. However, access rights are inherited from

Everyone to Domain to Group to User in such a way that each user has the least restrictive of all

these access rights that apply to that user. For example, if a user’s ACL entry specifies Read
access but the ACL entry for the user’s group specifies Change access, the user has Change
access. The order of ACL entries is not significant.

• In ClearCase, root (UNIX) or a member of the ClearCase group (Windows) always has Full
access to the scheduler on the local host (the computer where that user is logged on).

• In ClearCase LT, Full access is granted to the local administrator of the ClearCase LT server

running on a Windows host or to root on a UNIX host

Group domain_name/group_name | domain_name\group_name

User domain_name/user_name | domain_name\user_name

Table 21 Access Types in Scheduler ACL Entries

Access Type Access to Schedule Access to ACL

Read Read only Read only

Change Read and write; can start jobs Read only

Full Read and write; can start jobs Read and write

Table 20 Identity Types and Identities in Scheduler ACL Entries

Identity Type Identity

1012 Command Reference

schedule

Access rights of these identities to a scheduler on a remote host are determined by the

scheduler’s ACL. The default ACL is as follows:

Everyone: Read

This means that by default, everyone can read the schedule, but only the highly privileged

identities logged on to the computer where the scheduler is running can modify the schedule or

the ACL.

Following is an example ACL definition:

NIS domain acme.com
Domain:acme.com Read
Windows NT Server domain acme
Domain:acme Read
Group:acme\users Change
User:acme.com\fran Full
User:acme\fran Full

OPTIONS AND ARGUMENTS

Specifying the Host

–hos⋅t hostname
Specifies the host whose schedule the command operates on. The ClearCase default is

the local host. The ClearCase LT default is the ClearCase LT server host.

Disabling Prompts for Confirmation

–f⋅orce
Suppresses all prompts to confirm changes. By default, the command asks for

confirmation before changing a schedule or ACL.

Displaying Information about Jobs, Tasks, or ACL

–get [–sch⋅edule]

Displays currently scheduled jobs using the scheduler’s job definition language. For

more information, see Job Definition Syntax on page 1003. This is the default action for the

–get option.

–get –job job-id-or-name
Displays the currently scheduled job identified by job-id-or-name, which is either a

number representing the job-ID or a string representing the job name. The job display

uses the scheduler’s job definition language. For more information, see Job Definition
Syntax on page 1003.

–get –tas⋅ks
Displays the tasks defined in the task database using the scheduler’s task definition

language. For more information, see Task Definition Syntax on page 1008.

Reference Pages 1013

schedule

–get –acl
Displays the scheduler’s access control list (ACL) using the scheduler’s ACL definition

language. For more information, see RESTRICTIONS on page 1010.

Editing a Schedule or ACL

–edi⋅t [–sch⋅edule]

Opens a text editor containing definitions of currently scheduled jobs using the

scheduler’s job definition language. You can use the editor to add, delete, or modify job

definitions. When you are finished, save the modified schedule and exit the text editor.

The scheduler then replaces the current schedule with the edited version. For more

information, see Job Definition Syntax on page 1003. This is the default action for the –edit
option.

–edi⋅t –acl
Opens a text editor containing current ACL entries using the scheduler’s ACL definition

language. You can use the editor to add, delete, or modify ACL entries. When you are

finished, save the modified ACL and exit the text editor. The scheduler then replaces the

current ACL with the edited version. For more information, see RESTRICTIONS on

page 1010.

Setting a Schedule or ACL Using Definitions in a File

–set [–sch⋅edule] defn-file-pname
Replaces all currently scheduled jobs with the jobs defined in the file whose pathname

is defn-file-pname. The definitions in the file use the scheduler’s job definition language.

For more information, see Job Definition Syntax on page 1003. This is the default action

for the –set option.

–set –acl defn-file-pname
Replaces the current ACL with the ACL defined in the file whose pathname is

defn-file-pname. The definitions in the file use the scheduler’s ACL definition language.

For more information, see RESTRICTIONS on page 1010.

Operating on a Scheduled Job

–del⋅ete job-id-or-name
Deletes the scheduled job identified by job-id-or-name, which is either a number

representing the job-ID or a string representing the job name.

–run job-id-or-name
Immediately executes the scheduled job identified by job-id-or-name, which is either a

number representing the job-ID or a string representing the job name. The job is run in

the scheduler’s job execution environment. For more information, see Job Execution
Environment on page 1010.

1014 Command Reference

schedule

–wai⋅t job-id-or-name
Waits for completion and displays status of the scheduled job identified by

job-id-or-name, which is either a number representing the job-ID or a string representing

the job name. This option has no effect if the job is not running.

–sta⋅tus job-id-or-name
Displays the status of the scheduled job identified by job-id-or-name, which is either a

number representing the job-ID or a string representing the job name. Displays the most

recent process-ID, start time, end time, and exit status for the job.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Display the scheduled job whose name is "Weekly VOB Database Scrubbing".

cmd-context schedule –get –job "Weekly VOB Database Scrubbing"
Job.Begin

Job.Id: 8
Job.Name: "Weekly VOB Database Scrubbing"
Job.Description.Begin:

Scrub the VOB database of all local VOBs.
Job.Description.End:
Job.Schedule.Sequential.FollowsJob: 7
Job.Schedule.Sequential.FollowsJob: "Weekly MVFS Log Scrubbing"
Job.DeleteWhenCompleted: FALSE
Job.Task: 4
Job.Task: "VOB DB Scrubber"
Job.Args:
Job.Created: 11-Mar-99.14:12:59 by fran@acme
Job.LastModified: 11-Mar-99.14:12:59 by fred@acme
Job.LastCompletionInfo.ProcessId: 394
Job.LastCompletionInfo.Started: 21-Mar-99.00:30:08
Job.LastCompletionInfo.Ended: 21-Mar-99.00:31:08
Job.LastCompletionInfo.ExitStatus: 0x0

Job.End

Reference Pages 1015

schedule

• Edit the scheduler ACL.

cmd-context schedule –edit –acl
Replace the ACL? [yes]

• Set the schedule on host acme1 from job definitions in the file jobdefs.txt.

cmd-context schedule –host acme1 –set jobdefs.txt
Replace the entire schedule? [yes]

• Display the status of the scheduled job whose ID is 1.

cmd-context schedule –status 1
Job is not currently running.

RunningJob.CompletionInfo.ProcessId: 380
RunningJob.CompletionInfo.Started: 25-Mar-99.04:30:01
RunningJob.CompletionInfo.Ended: 25-Mar-99.04:31:00
RunningJob.CompletionInfo.ExitStatus: 0x0

UNIX FILES

ccase-home-dir/config/scheduler/initial_schedule
ccase-home-dir/config/scheduler/tasks/templates/task_registry
ccase-home-dir/config/scheduler/tasks/templates/ccase_local_day.sh
ccase-home-dir/config/scheduler/tasks/templates/ccase_local_wk.sh
/var/adm/atria/scheduler/db
/var/adm/atria/scheduler/tasks/task_registry
/var/adm/atria/scheduler/tasks/ccase_local_day.sh
/var/adm/atria/scheduler/tasks/ccase_local_wk.sh

WINDOWS FILES

ccase-home-dir\config\scheduler\initial_schedule
ccase-home-dir\config\scheduler\tasks\templates\task_registry
ccase-home-dir\config\scheduler\tasks\templates\ccase_local_day.bat
ccase-home-dir\config\scheduler\tasks\templates\ccase_local_wk.bat
ccase-home-dir\var\scheduler\db
ccase-home-dir\var\scheduler\tasks\task_registry
ccase-home-dir\var\scheduler\tasks\ccase_local_day.bat
ccase-home-dir\var\scheduler\tasks\ccase_local_wk.bat

SEE ALSO

dospace, rgy_backup, scrubber, space, vob_scrubber, vob_snapshot

1016 Command Reference

schemes

schemes
X Window System resources for ClearCase and ClearCase LT Graphical User Interfaces (GUIs)

APPLICABILITY

SYNOPSIS

ClearCase and ClearCase LT GUIs use Common Desktop Environment (CDE) settings or can

read scheme files.

DESCRIPTION

Scheme files are collections of X Window System resource settings that control the geometry,

colors, and fonts used by application GUIs. By default, ClearCase and ClearCase LT do not

enable schemes. Instead, the GUIs use the settings that your Common Desktop Environment

(CDE) specifies. However, you can enable schemes and use the ClearCase and ClearCase LT

schemes mechanism by adding the following resource to your .Xdefaults file:

*useSchemes: all

All ClearCase and ClearCase LT GUIs except the following support the schemes mechanism:

• cleardescribe

• clearhistory

Product Command Type

ClearCase data structure

ClearCase LT data structure

Platform

UNIX

Reference Pages 1017

schemes

Each scheme is implemented as a separate directory. For example, the scheme Turner consists of

four files:

The two mnemonic map declaration files are combined, as are the two resource definition files.

If the same resource is specified in the standard file and the ClearCase or ClearCase LT file, the

specification in the ClearCase or ClearCase LT file is used. To add your own definitions, or to

replace existing ones, either edit one or both of the ClearCase and ClearCase LT-specific files, or

create your own scheme files and specify a scheme file search path as described in the section

Search Path for Schemes.

Note that the palette and ClearCasePalette files are not actually processed by cpp; they are

processed by the ClearCase or ClearCase LT GUI itself. The resources (Turner and ClearCase)

apply only to the program that reads them. They are not added to the RESOURCE_MANAGER

property of the root window and, therefore, do not affect other X applications.

Schemes are configured at two levels:

• Your display’s X resources enable scheme use and specify the name of a particular scheme.

• A search path capability supports maintenance of systemwide and personal schemes.

Turner/palette Defines mnemonic names for colors and fonts, using a subset of

standard cpp(1) syntax:

#ifndef GAMMA_1_0
#define TextForeground #fffff
#define BasicBackground #002e5c
#define ScrolledListBackground #623463
.
.
.

Turner/Turner Specifies resources for use by the X Toolkit widgets that make up

the GUI panels. These resources can be specified absolutely, or in

terms of the mnemonic names defined in the palette file:

*XmText*marginHeight: 4
.
.
.
*foreground: TextForeground
*background: BasicBackground

Turner/ClearCasepalette Extends and/or overrides the standard palette definitions.

Turner/ClearCase Extends and/or overrides the standard Turner file definitions,

1018 Command Reference

schemes

Resources for Schemes

The scheme resource specifies a scheme to be used by the ClearCase or ClearCase LT GUI. For

example:

If you enable scheme use but do not specify a particular scheme, the color scheme Lascaux or the

black-and-white scheme Willis is used. If you do not explicitly enable schemes, the CDE resource

settings are used.

Monochrome and Grayscale Schemes. A user working on a monochrome monitor gets the

Willis scheme automatically. A user working on a grayscale monitor gets the Print scheme

automatically. You can override these assignments with the resources *monoScheme and

*grayScheme , respectively. If you specify an alternative scheme, it must be located in the scheme

search path, which is described in the following section.

Search Path for Schemes

The GUIs use a search path to find scheme directories. The default search path is

/usr/lib/X11/Schemes:/usr/atria/config/ui/Schemes.

You can use the environment variable SCHEMESEARCHPATH to specify a colon-separated list of

directories to be searched instead. Each entry on this list must be in the following standard X

Toolkit form:

pathname/%T/%N%S

The GUIs always make these substitutions:

%T ➔ Schemes

%N ➔ scheme-name
%S ➔ (null)

For example, if your SCHEMESEARCHPATH value is

/netwide/config/ui/%T/%N%S:/home/gomez/%T/%N%S

and your .Xdefaults file includes the line

*scheme: Rembrandt

then the GUI reads resource schemes from these two directories:

/netwide/config/ui/Schemes/Rembrandt
/home/gomez/Schemes/Rembrandt

The GUI searches for the first instance of each scheme file (the standard map declaration file, the

standard resource definition file, and the versions of the standard files), and then concatenates

the files.

*scheme: Turner (specifies scheme for all GUI utilities)
xclearcase*scheme: Turner (specifies scheme for xclearcase)

Reference Pages 1019

schemes

NOTE: If the GUI does not find a complete set of scheme files, it returns an error. Therefore, we

recommend that you include the default search path in the SCHEMESEARCHPATH environment

variable.

International Language Support. If your site uses the language resource *xnlLanguage to

implement pathname substitutions based on national language and/or codeset, you may want

to expand customized SCHEMESEARCHPATH entries to use one or more of these optional

substitution parameters:

%L ➔ value of *xnlLanguage (language[_territory][.codeset])
%l ➔ language
%t ➔ territory (if any)

%c ➔ codeset (if any)

See X Windows System Toolkit documentation for more details on constructing directory trees

to store language-dependent application text files.

Platform-specific Support. On some platforms, there are specific requirements for the location

of the Schemes directory. See the Release Notes for information on platform-specific requirements.

FILES

ccase-home-dir/config/ui/Schemes/Gainsborough/*
ccase-home-dir/config/ui/Schemes/Lascaux/*
ccase-home-dir/config/ui/Schemes/Leonardo/*
ccase-home-dir/config/ui/Schemes/Monet/*
ccase-home-dir/config/ui/Schemes/Print/*
ccase-home-dir/config/ui/Schemes/Rembrandt/*
ccase-home-dir/config/ui/Schemes/Sargent/*
ccase-home-dir/config/ui/Schemes/Titian/*
ccase-home-dir/config/ui/Schemes/Turner/*
ccase-home-dir/config/ui/Schemes/VanGogh/*
ccase-home-dir/config/ui/Schemes/Whistler/*
ccase-home-dir/config/ui/Schemes/Willis/*

SEE ALSO

X Toolkit documentation, Common Desktop Environment documentation

1020 Command Reference

scrubber

scrubber
Removes data containers from VOB storage pools and removes DOs from VOB database

APPLICABILITY

SYNOPSIS
scrubber [–e | –f | –o] [–p pool[,...] | –k kind[,...]] [–a | vob-storage-dir-pname ...]

DESCRIPTION

The scrubber program deletes (scrubs) data container files from the cleartext storage pools and

derived object (DO) storage pools of one or more VOBs. It also deletes corresponding (DOs) from

a VOB database. Only cleartext pools and DO pools are affected; scrubbing is not defined for

source pools.

NOTE: DOs are associated with dynamic views only; they are not applicable to snapshot views.

Scrubbing Algorithms

scrubber implements the following scrubbing algorithms:

• Heuristic scrubbing

By default or with the –o option, scrubber uses a free-space-analysis heuristic: it compares

the current free-space level of a disk partition with a lower limit computed during its

previous execution. This lower limit is stored in file /var/adm/atria/cache/scrubber_fs_info
(UNIX) or ccase-home-dir\var\cache\scrubber_fs_info (Windows).

• If the free-space level is still above the computed limit, scrubber does no scrubbing in

that partition, regardless of the state of the storage pools within it. This performance

optimization allows a quick check to take place frequently (for example, once an hour),

without much system overhead.

Product Command Type

ClearCase command

ClearCase LT command

Platform

UNIX

Windows

Reference Pages 1021

scrubber

• If the free-space level has fallen below the limit, scrubber performs parameter-driven

scrubbing of each storage pool in the partition.

• Parameter-driven scrubbing

With the –f option, scrubber removes data container files from a storage pool according to

the pool’s scrubbing parameter settings. (The heuristic scrubbing algorithm can also fall

through to this algorithm.)

When a derived object pool or cleartext pool is created with mkvob or mkpool, its scrubbing

parameters are set to user-specified or default values:

Parameter-driven scrubbing proceeds as follows:

a. Files are removed from a pool only if its current size exceeds its maximum size setting. In

this case, scrubber begins deleting data containers that have not been referenced within

age hours, proceeding on a least-recently-referenced basis.

b. The data container for a derived object is deleted only if the DO’s reference count is zero.

In this case, the derived object in the VOB database is deleted, too. The associated

configuration record is also deleted if no other derived object is associated with it.

c. Cleartext data containers do not have reference counts; they are deleted solely on the

basis of recent use.

d. Scrubbing stops when the pool’s size falls below its reclaim size setting. But in no case

does scrubber delete any object that has been referenced within the last age hours.

A maximum size of zero is a special case: it instructs scrubber to delete all data containers

that have not been referenced within age hours, regardless of the reclaim size setting.

NOTE: The scrubber considers access time rather than modification time. If your backup

utility changes the access time on objects, scrubber does not delete the object if the backup

utility ran within the period of time specified by age.

• Everything-goes scrubbing

With the –e option, scrubber ignores a pool’s scrubbing parameters, and deletes these files:

• All files from each cleartext pool

• All files with zero reference counts from each derived object pool

maximum size Maximum pool size (specified in KB; default=0)

reclaim size Size to which scrubber attempts to reduce the pool (specified in KB;

default=0)

age Threshold to prevent premature scrubbing of recently referenced

objects (specified in hours; default=96)

1022 Command Reference

scrubber

To avoid deleting files that are currently being used, scrubber does not delete any file that

has been accessed in the preceding two minutes.

Automatic Scrubbing

By default, the scheduler runs scrubber periodically with the –f option, so that each pool is

examined individually. See the schedule reference page for information on describing and

changing scheduled jobs.

You can scrub one or more pools manually at any time.

Scrubber Log File

scrubber documents its work in the host’s scrubber log file,

• UNIX—/var/adm/atria/log/scrubber_log

• Windows—ccase-home-dir\var\log\scrubber_log

For example, the following partial report describes the results of scrubbing a derived object pool.

04/27/99 08:03:00 Stats for VOB betelgeuse:/usr1/vobstorage/orange.vbs
Pool ddft:

04/27/99 08:03:00 Get cntr tm 918.928979
04/27/99 08:03:00 Setup tm 10631.121127
04/27/99 08:03:00 Scrub tm 1207.099240
04/27/99 08:03:00 Total tm 12757.149346
04/27/99 08:03:00 Start size 404789 Deleted 3921 Limit size 0
04/27/99 08:03:00 Start files 20349 Deleted 121 Subdir dels 0
04/27/99 08:03:00 Statistics for scrub of DO Pool ddft:
04/27/99 08:03:00 DO’s 3671 Scrubs 121 Strands 1760
04/27/99 08:03:00 Lost refs 1790 No DO’s 20228
04/27/99 08:03:00 No fscntrs 2

The first six lines, which contain elapsed times and file statistics, are included in the report for

every pool. The last four lines are specific to DO pools.

Get cntr tm Elapsed time for first scrubbing phase: walk the file-system tree to get

pathname, size, and referenced-time information for each container in

the pool.

Setup tm Elapsed time for second scrubbing phase: perform setup processing

specific to the kind of storage pool. For a cleartext pool, no setup is

required. For a DO pool, setup is complicated; see Processing of Derived
Object Pools.

Scrub tm Elapsed time for third scrubbing phase: determine which containers to

delete, and then delete them.

Reference Pages 1023

scrubber

Processing of Derived Object Pools

For a DO pool, scrubber does more than delete old, unreferenced data containers.

• It finds and deletes all stranded DOs from the VOB database: DOs that were never shared,

and whose data containers have been deleted from view-private storage. (The VOB

database is not updated when the DO’s data file is removed or overwritten in the view, due

to implementation restrictions.) There are no data containers in the DO storage pool for

such DOs, because they were never shared. This occurs during the second phase of

scrubbing.

Start size Total size (KB) of all the container files in the storage pool directory before

this scrubbing.

Deleted Amount of storage (KB) reclaimed by this scrubbing.

Limit size Desired size of the pool (KB), as specified by the pool’s maximum size
parameter.

Start files Total number of container files in the storage pool directory before this

scrubbing.

Deleted Number of container files deleted by this scrubbing.

Subdir dels Number of empty subdirectories of the storage pool directory deleted by

this scrubbing.

DO’s Total number of zero-reference-count DOs in the VOB database before

scrubbing.

Scrubs Total number of shared zero-reference-count DOs deleted by this

scrubbing. (This number equals the "Deleted" count, unless the scrubber
removed shared zero-reference-count DOs that were missing their

file-system containers.)

Strands Total number of stranded DOs deleted by this scrubbing. (These are

described below.)

Lost refs Total number of lost DO reference counts deleted by this scrubbing.

(These are described below.)

No DO’s Total number of containers in the DO pool before scrubbing that are not

associated with a zero-reference-count shared DO. (Each is presumably

associated with a DO that is still referenced by some view, and hence

cannot be scrubbed).

No fscntrs Total number of shared zero-reference-count DOs that were missing their

file-system containers.

This statistic is printed only when this condition occurs; also, the

scrubber_log displays warning messages like this one:
04/21/99 10:11:17 scrubber: Warning: Unable to remove
“d/do_pool2/21/5/73f1f66679f611cea15c080009935288”: No such
file or directory.

1024 Command Reference

scrubber

• It finds and deletes all lost DO reference counts from the VOB database. Such entries are an

implementation artifact; they correspond to files that were created during a build, but

deleted before the build completed. This occurs during the second phase of scrubbing.

• It deletes the derived object in the VOB database corresponding to the data container, and

possibly its associated configuration record as well. This occurs during the third phase of

scrubbing.

• It finds and deletes all stranded configuration records: CRs that do not correspond to any

existing derived object.

Derived Statistics

Some interesting results can be derived from these statistics:

• Total number of derived object data containers in this pool after scrubbing:

Start files - scrubs

• Total number of unreferenced data containers in this pool after scrubbing:

Start files - scrubs - No DO’s

• Total size (KB) of the storage pool after scrubbing:

Start size - deleted

Controlling the Size of the vista.tjf File

The file vista.tjf records updates to the VOB that result from scrubber operations. vista.tjf can

grow very large. For information on limiting its size, read about the file db.conf in the

config_ccase reference page.

OPTIONS AND ARGUMENTS

SPECIFYING THE SCRUBBING ALGORITHM. Default: Invokes the free-space-analysis heuristic

described above, instead of examining pools individually.

–f
Examines all specified pools individually, using the parameter-driven algorithm. This

does not guarantee that any objects will be removed from the pools.

–e
Examines all specified pools individually (as with –f), using the everything-goes

scrubbing algorithm.

–o
Same as default.

Reference Pages 1025

scrubber

SPECIFYING THE POOLS. Default: All of a VOB’s cleartext and derived object pools are scrubbed.

–p pool[,...]
Restricts scrubbing to pools with the specified names, which may occur in multiple

VOBs. The list of pool names must be comma-separated, with no white space.

–k kind[,...]

Restricts scrubbing to pools of the specified kinds. Valid kinds are do and cltxt. The list

of kinds must be comma-separated, with no white space.

SPECIFYING THE VOBS. Default: None.

–a
Scrubs all VOBs listed in the storage registry whose storage directories reside on the local

host. An error occurs if a VOB is listed in the registry, but cannot be found on the local

host.

vob-storage-dir-pname ...

One or more pathnames of VOB storage directories, indicating the particular VOBs to be

scrubbed.

EXAMPLES

• Force scrubbing of all mounted VOBs with a storage directory on the local host.

scrubber –f –a

• Scrub cleartext pools in the VOB whose storage directory is /usr/vobstore/project.vobs,

using the free-space analysis heuristic.

scrubber –o –k cltxt /usr/vobstore/project.vobs

• Force scrubbing of the default derived object pool (ddft) and the pool named do_staged in

all mounted VOBs with a storage directory on the local host.

scrubber –f –p ddft,do_staged –a

SEE ALSO

checkvob, config_ccase, schedule, view_scrubber, vob_scrubber

1026 Command Reference

setactivity

setactivity
Sets or unsets the activity for a view

APPLICABILITY

SYNOPSIS
setact⋅ivity [–c⋅omment comment | –cfi⋅le pname | –cq⋅uery | –nc⋅omment]

[–vie⋅w view-tag] { –none | activity-selector }

DESCRIPTION

The setactivity command sets or unsets a current activity for a view. The current activity is one

whose change set records your current work. Each view can have no more than one current

activity. When you check out an element, it is associated with the current activity.

Before resetting to another activity, the setactivity command determines whether any elements

of the current activity are checked out in the view and, if so, issues a warning before proceeding.

You can set an activity for a view while the activity is being delivered, but the changes made to

the activity are not delivered.

To clear the current activity, specify a new activity or use the –none option.

You cannot reset an integration activity that is in use as part of a deliver or rebase operation (nor

can you clear it with –none).

Behavior for Projects Enabled for ClearQuest

When executed in a view that is associated with a project enabled for ClearQuest, this command

takes an activity-selector that is a ClearQuest recordID (for example, SAMPL123456) of an existing

ClearQuest record. If the ClearQuest record is not already linked to an activity, the command

causes an activity to be created and linked to the ClearQuest record.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

Reference Pages 1027

setactivity

Stopping Work on an Activity

You can stop work on an activity in these ways:

• Deliver the activity to the project’s integration stream.

• Issue another setactivity command, specifying a different activity selector.

• Use the –none option to unset the current activity in your view.

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if one or more of these objects are locked: the project VOB, the activity.

Mastership: (Replicated VOBs only) Your current replica must master the activity.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

CHOOSING A VIEW. Default: Current view context.

–vie⋅w view-tag
Specifies a view and stream context for the command.

SPECIFYING THE ACTIVITY. Default: No default.

–none
Unsets the current activity, removing it from your work area.

activity-selector
Identifies the activity to be set.

You can specify an activity as a simple name or as an object selector of the form

[activity]:name@vob-selector, where vob-selector specifies a project VOB (see the cleartool
reference page). If you specify a simple name and the current directory is not a project

VOB, then this command assumes the activity resides in the project VOB associated with

the stream attached to the current view. If the current directory is a project VOB, then that

project VOB is the context for identifying the activity.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

1028 Command Reference

setactivity

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Unset the current activity.

cmd-context setactivity -none

Cleared current activity from view java_int.

• Set an activity to be the current activity.

cmd-context setactivity create_directories
Set activity "create_directories" in view "webo_integ".

SEE ALSO

chactivity, lsactivity, mkactivity, rmactivity

Reference Pages 1029

setcache

setcache
Changes cache settings

APPLICABILITY

SYNOPSIS

• Specify the cache size for a single view:

setcache –vie⋅w { –def⋅ault | –cac⋅hesize size } { –cvi⋅ew | view-tag }

• Specify the cache size for a host:

setcache –vie⋅w –hos⋅t { –def⋅ault | –cac⋅hesize size }

• Specify the site-wide view cache size:

setcache –vie⋅w –sit⋅e { –def⋅ault | –cac⋅hesize size }

[–pas⋅sword registry-password]

• ClearCase and Attache dynamic views—Specify MVFS cache sizes:

setcache –mvfs { –reg⋅dnc cnt | –noe⋅ntdnc cnt | –dir⋅dnc cnt
| –vob⋅free cnt | –cvp⋅free cnt | –rpc⋅handles cnt } ...

DESCRIPTION

The setcache command sets view cache sizes. Although both dynamic and snapshot views use

caches, cache size is more significant for a dynamic view than for a snapshot view.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

1030 Command Reference

setcache

ClearCase and Attache—View Caches

The dynamic view caches consist mostly of data retrieved from the VOB and enable the

view_server to respond faster to RPCs from client machines. When a view_server process is

started, it chooses its cache size from the first of the following sources to yield a value:

• The dynamic view’s cache size, which is set with mkview –cachesize or setcache –view
–cachesize and stored in the file view-storage-dir/.view (on the –cache line)

• The view_server host’s default cache size, which is set with setcache –view –host and

stored as a decimal number in the file /var/adm/atria/config/view_cache_size (UNIX) or

ccase-home-dir\var\config\view_cache_size (Windows)

• The site-wide cache default, which is set with setcache –view –site or setsite and stored in

the site config registry

• The default value: 500 KB on 32-bit platforms, 1 MB on 64-bit platforms

NOTE: If your view uses the host value or the site-wide value and that value is changed, your

view’s cache size does not change until you invoke setcache –view –default or restart the

view_server (with endview –server or a reboot).

The dynamic view cache size is allocated among the individual caches. When specifying a cache

size, keep the following guidelines in mind:

• The value cannot be smaller than 50 KB for 32-bit platforms or 100 KB for 64-bit platforms.

• Do not specify a value larger than the amount of physical memory on the server host that

you want to dedicate to this view.

• Values greater than approximately 4 MB do not help much in most cases.

• Verify your changes by using getcache to check the hit rates and utilization percentages

periodically to see whether they have improved.

ClearCase and Attache Dynamic Views—MVFS Caches

A host’s MVFS caches are used to optimize file-system performance:

• The directory name cache accelerates name translation. This cache is partitioned into three

areas, each of which can be tuned with one of the setcache –mvfs options:

• Directory files (–dirdnc)

• Nondirectory files (–regdnc)

• Names not found (ENOENT) (–noentdnc)

NOTE: If processes are actively using the directory name cache, you may see the following

error message when trying to resize it:

Reference Pages 1031

setcache

cleartool: Error: Operation “view_mfs_set_cache_sizes” failed: Device
busy.

Ask users to stop using ClearCase actively (that is, keep their view contexts, but stop

manipulating files) and enter the setcache command again.

• The attribute cache accelerates access to file metadata (for example, by the stat and access
system calls, which are frequently called during make or clearmake operations). The

–vobfree option sets the size of the attribute cache for VOB and view-private files that are

not currently open.

• The cleartext cache accelerates the open system call for files in a VOB and view-private files.

The –cvpfree option sets the size of this cache. This cache is never larger than the size of the

attribute cache.

• The RPC handles cache accelerates RPCs to the dynamic view. The –rpchandles option sets

the size of this cache; the value ought to be the maximum simultaneous number of RPCs

expected from your host. If this value is too small, the getcache –mvfs command

recommends that you adjust its size.

Values set with setcache –mvfs are reset when you reboot your machine. To change the values

permanently, see the Administrator’s Guide.

For more information on optimizing performance, see the chapters on performance tuning in the

Administrator’s Guide.

RESTRICTIONS

Identities:

• UNIX:

• For setcache –view, you must be root on the view_server host or the view owner.

• For setcache –view –host and setcache –mvfs, you must be root.

• Windows:

• For setcache –view, you must be the view owner.

• For setcache –view –host, you must have create/delete/write permissions on the file

ccase-home-dir\var\config\view_cache_size.

• For setcache –mvfs, you must be local administrator or a member of the Administrators

group.

• For setcache –view –site, you must know the registry password

Locks: No locks apply.

Mastership: (Replicated VOBs) No mastership restrictions.

1032 Command Reference

setcache

OPTIONS AND ARGUMENTS

SPECIFYING THE CACHE INFORMATION TO CHANGE. Default: None.

–vie⋅w
Sets the cache size for a single view. This immediately changes the cache size; you do not

need to kill and restart the view_server.

–vie⋅w –hos⋅t
Sets the default cache size for the current host.

–vie⋅w –sit⋅e
Sets the site-wide default size for view caches.

–mvfs
Temporarily sets cache sizes for the MVFS. These values are reset when you reboot your

machine.

SETTING THE CACHE SIZE. Default: None.

–def⋅ault
With –view: removes the –cache line from the .view file. This immediately sets the size

of the view cache to (in priority order) the host size, the site-wide size, or the default size,

as described in the DESCRIPTION section.

With –view –host: deletes the /var/adm/atria/config/view_cache_size (UNIX) or

ccase-home-dir\var\config\view_cache_size (Windows) file.

With –view –site: removes the value for the site-wide cache from the registry.

–cac⋅hesize size
Specifies a size for the view_server cache. size must be an integer value of bytes,

optionally followed by the letter k to specify kilobytes or m to specify megabytes; for

example, 800k or 3m.

SPECIFYING THE VIEW. Default: None.

–cvi⋅ew
Sets the cache size for the current view.

view-tag
Specifies the view for which the cache size is changed.

SPECIFYING THE REGISTRY PASSWORD. Default: When you set the site-wide view cache size with

–view –site, setcache prompts you for the registry password.

–pas⋅sword registry-password
Specifies the site-wide registry password.

Reference Pages 1033

setcache

SPECIFYING MVFS PARAMETERS (NOT APPLICABLE TO SNAPSHOT VIEWS). Default: None. You must

specify at least one option. cnt must be an integer value; see the Administrator’s Guide for

information on default and suggested values and instructions on setting the values permanently.

–reg⋅dnc cnt
Sets the number of regular file DNC entries.

–noe⋅ntdnc cnt
Sets the number of ENOENT (file not found) DNC entries.

–dir⋅dnc cnt
Sets the number of directory DNC entries.

–vob⋅free cnt
Sets the number of entries in the attribute cache.

–cvp⋅free cnt
Sets the number of entries in the cleartext cache.

–rpc⋅handles cnt
Sets the number of RPC handles cached by the MVFS.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Change the cache size for view smg_test.

cmd-context setcache –view –cachesize 800k smg_test
The new view server cache limits are:
Lookup cache: 78624 bytes
Readdir cache: 327680 bytes
File stats cache: 137592 bytes
Object cache: 275184 bytes
Total cache size: 819200 bytes

1034 Command Reference

setcache

• Set the site-wide cache size.

cmd-context setcache –view –site –cachesize 2m
Registry password: <enter registry password><ENTER>
...

• Set the number of RPC handles cached by the MVFS to 10 (dynamic views).

cmd-context setcache –mvfs –rpchandles 10

SEE ALSO

getcache, mvfscache, setsite, Administrator’s Guide

Reference Pages 1035

setcs

setcs
Sets the config spec of a view

APPLICABILITY

SYNOPSIS
setcs [–tag view-tag] { –cur⋅rent | –def⋅ault | pname | –stre⋅am }

DESCRIPTION

This command does not require a product license.

The setcs command changes the config spec of a view to the contents of a user-specified or

system-default file, or causes the view’s associated view_server process to flush its caches and

reevaluate the current config spec. The Attache workspace is not updated to reflect any changes

in the view’s contents.

• For UCM views, the setcs command checks that the view’s configuration matches the

configuration defined by the stream it is attached to and, if needed, reconfigures the view.

Load rules already in the view’s configuration are preserved.

• ClearCase on UNIX—If the working directory view differs from the set view (established

by the setview command), setcs displays a warning message and uses the working

directory view.

• In a snapshot view, setcs initiates an update -noverwrite operation for the current view and

generates an update logfile with the default name and location (see the update reference

page for information on this logfile).

• Attache—If the specified file has a corresponding local file in the workspace, it is uploaded

before the remote command is executed.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

1036 Command Reference

setcs

See the pwv reference page for more on view contexts. See the config_spec reference page for a

complete discussion of config specs.

UNIX—Export View Config Specs

If you change the config spec of a view that is being exported for non-ClearCase access, make

sure that all users who may currently have the view mounted for that purpose unmount and

remount the view. Unmounting and remounting the view ensures access to the correct set of files

as specified in the updated config spec.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE VIEW. Default: Reconfigures the current view.

–tag view-tag
The view-tag of any dynamic view; the view need not be active. To set the config spec of

a snapshot view,you must be in or under the snapshot view root directory (and

accordingly you do not use this option). However, you can use this option to set the

config spec of a dynamic view from within a snapshot view.

SPECIFYING THE KIND OF CHANGE. Default: None.

–cur⋅rent
Causes the view_server to flush its caches and reevaluate the current config spec, which

is stored in file config_spec in the view storage directory. This includes:

–def⋅ault
Resets the view’s config spec to the contents of default_config_spec, the host’s default

config spec (ClearCase and ClearCase LT) or the helper host’s default config spec

(Attache).

pname
Specifies a text file whose contents are to become the view’s new config spec.

–stre⋅am
For a UCM view, sets the view’s config spec to that defined by the stream it is attached

to. This operation preserves any load rules already in the view’s config spec.

• Reevaluating time rules with nonabsolute specifications (for example, now,

Tuesday)

• Reevaluating –config rules, possibly selecting different derived objects than

previously

• Re-reading files named in include rules

Reference Pages 1037

setcs

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Change the config spec of the current view to the contents of file cspec_REL3.

cmd-context setcs cspec_REL3

• Change the config spec of the view whose view-tag is jackson_vu to the default config spec.

cmd-context setcs –tag jackson_vu –default

• Have the view_server of the current view reread its config spec.

cmd-context setcs –current

SEE ALSO

attache_command_line_interface, catcs, config_spec, lsview, mktag, mkview, pwv, update

1038 Command Reference

setplevel

setplevel
Changes the list of promotion levels in a project VOB

APPLICABILITY

SYNOPSIS
setplevel [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –nc⋅omment]

[–inv⋅ob vob-selector] –def⋅ault default-promotion-level promotion-level ...

DESCRIPTION

The setplevel command allows you to redefine the list of baseline promotion levels for a project

VOB and to designate one of these levels as the default promotion level for new baselines.

Each project VOB includes an ordered set of promotion levels. Promotion levels are ordered from

lowest to highest and can be assigned to baselines to indicate the quality or degree of

completeness of the activities and versions represented by the baseline. When a project VOB is

created, it includes the following ordered set of promotion levels: REJECTED, INITIAL, BUILT,

TESTED, RELEASED. The default promotion level is INITIAL. This is the level that is assigned

to newly created baselines.

A baseline’s promotion level is used in computing a project’s list of recommended baselines. The

recommended baseline for a component is the latest baseline of that component in the project’s

integration stream that has a promotion level greater than or equal to the project’s recommended

promotion level (see the chproject reference page).

Ordered promotion levels can be used to filter lists of baselines. Promotion level is also used to

populate the default list of baselines during a rebase operation on a stream. Each project defines

a default rebase level. When a project is created, the default rebase level is set to the project VOB’s

default promotion level. For more information, see chproject.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

Reference Pages 1039

setplevel

When you delete a level that is in use, it is not completely removed from the project VOB. Instead,

its place in order is changed so that it is considered to be lower than the lowest defined level. You

can list information for baselines labeled with such a promotion level lsbl –level command.

The promotion levels available in a VOB can be listed by running the describe command on the

project VOB object. Promotion levels can be used to filter lsbl output (see the lsbl reference

page).

RESTRICTIONS

Identities: No special identity required.

Locks: An error occurs if there are locks on any of the following objects: the project VOB.

Mastership: (Replicated VOBs only) Your current replica must master the PromotionLevel
attribute type.

OPTIONS AND ARGUMENTS

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE PROJECT VOB. Default: The project VOB that contains the current working

directory.

–invo⋅b vob-selector
Specifies the project VOB for the project whose promotion levels are being modified.

SPECIFYING THE NEW PROMOTION LEVELS. Default: None.

–def⋅ault default-promotion-level
Specifies the new default promotion level. Project baselines are given the default

promotion level INITIAL when they are created. default-promotion-level must be one of

the specified promotion levels.

promotion-level ...
An ordered list of promotion levels that defines the promotion level set for a project

VOB. List elements are ordered from lowest to highest. All elements of the set must be

given.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

1040 Command Reference

setplevel

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• From the project VOB directory, modify a new project VOB’s set of promotion levels by

removing the INITIAL level and adding a START level. Change the default level for new

baselines to BUILT.

cmd-context setplevel -default BUILT REJECTED START BUILT TESTED

• Replace the promotion level UNIT_TEST with U_TEST.

a. Add the new level to the current set of promotion levels:

cmd-context setplevel -default NEW NEW BUILT UNIT_TEST U_TEST

b. Find baselines that use the old promotion level:

cmd-context lsbl -level UNIT_TEST mybaseline

c. Change the promotion level from UNIT_TEST to U_TEST:

cmd-context chbl -level U_TEST the-baselines-listed-by-step-b.

d. Remove the obsolete promotion level from the project VOB:

cmd-context setplevel -default NEW NEW BUILT U_TEST

SEE ALSO

chbl, chproject, describe, lsbl, mkproject

Reference Pages 1041

setsite

setsite
Sets or unsets site-wide properties in the site config registry

APPLICABILITY

SYNOPSIS

• Set a site-wide property:

setsite [–pas⋅sword registry-password] property-name=value ...

• Unset a property:

setsite [–pas⋅sword registry-password] property-name= ...

DESCRIPTION

The site config registry contains site-wide properties for ClearCase and ClearCase LT. ClearCase

and ClearCase LT use the value for a site-wide property when you perform an operation that

uses that property and you don’t specify the property’s value. For example, when you create a

view and do not specify one of the shareable DOs options, ClearCase uses the site-wide value.

If you don’t set a site-wide property in the registry, or you unset a property, the property’s default

value is used. To list the properties you can set and their default values, use the lssite –inquire
command.

You can set the following properties in the registry:

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Platform

UNIX

Windows

view_cache_size=value When a view_server process is started and cannot find a

cache size associated with the view or the view host, it

uses the value of view_cache_size.

value must be an integer value of bytes.

1042 Command Reference

setsite

view_interop_text_mode=value When a user creates a view through the Windows GUI

and does not specify the text mode, the value of

view_interop_text_mode is used.

value must be TRUE (equivalent to –tmode insert_cr) or

FALSE (equivalent to –tmode transparent).

NOTE: The value set for this property does not affect views

created on UNIX machines or through the MSDOS

command line.

view_shareable_dos=value When a user creates a view and does not specify one of

the options –nshareable_dos or –shareable_dos,

ClearCase uses the value of view_shareable_dos.

value must be either TRUE or FALSE.

NOTE: Changing the site-wide property for shareable DOs

does not change the property for existing views. To

change an existing view’s property, use the chview
command.

rfm_gui_visibility=value (ClearCase on Windows only; for use only if your site

uses MultiSite) This property controls the display of

request for mastership features in the graphical interface.

If value is FALSE, the Request Mastership menu item

does not appear on shortcut menus in the Version Tree

Browser, the Merge Manager, or the Find Checkouts

window, and you cannot use the Properties Browser to

request mastership. If value is TRUE, these features

appear in the graphical interface.

checkin_preserve_time=value Sets the default behavior for preserving the modification

time of a file being checked in through a GUI. If value is

TRUE, the default for GUI checkin operations is to

preserve the file modification time; if FALSE, the default

is to use the time of the checkin operation itself (see the

description of –ptime in the checkin reference page).

Note that this setting is ignored by the checkin
command.

Reference Pages 1043

setsite

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE REGISTRY PASSWORD. Default: setsite prompts you for the registry password.

–pas⋅sword registry-password
Specifies the site-wide registry password.

SETTING A PROPERTY’S VALUE. Default: None.

property-name=value
Sets property-name in the registry.

property-name=
Unsets property-name in the registry.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Set the site-wide view cache size to 2 MB.

cmd-context setsite –password p5d82xy9 view_cache_size=2m
Set site-wide default view_cache_size=2m.

checkout_preserve_time=value Sets the default behavior for preserving the modification

time of a file being checked out through a GUI. If value is

TRUE, the default for GUI checkout operations is to

preserve the file modification time; if FALSE, the default

is to use the time of the checkout operation itself (see the

description of –ptime in the checkout reference page).

Note that this setting is ignored by the checkout
command.

1044 Command Reference

setsite

• Set the site-wide view cache size to 4 MB, and set the site-wide value for DOs to

nonshareable.

cmd-context setsite view_cache_size=4m view_shareable_dos=FALSE
Registry password: p5d82xy9
Set site-wide default view_cache_size=4m.
Set site-wide default view_shareable_dos=FALSE.

• Unset the site-wide value for shareable DOs.

cmd-context setsite –password 9yx28d5p view_shareable_dos=
Unset site-wide default view_shareable_dos (was 'FALSE')

SEE ALSO

lssite, setcache, Administrator’s Guide

Reference Pages 1045

setview

setview
Creates a process that is set to a dynamic view

APPLICABILITY

SYNOPSIS
setview [–log⋅in] [–exe⋅c cmd-invocation] view-tag

DESCRIPTION

This command does not require a product license; also, it does not apply to snapshot views.

The setview command creates a process that is set to the specified dynamic view. The new

process is said to have a set view context. If you specify an inactive dynamic view—one whose

view-tag does not appear in the local host’s viewroot directory, view—a startview command is

invoked implicitly to activate that view.

After you set the dynamic view, you can take advantage of transparency: the ability to use

standard pathnames to access version-controlled objects. The associated view_server process

resolves a standard pathname to an element into a reference to one of the element’s versions. See

the pathnames_ccase reference page for further details.

Using setview in Interactive Mode

The shell command setview creates a subprocess. If you enter the setview command in

interactive mode (at the cleartool prompt), the new dynamic view is set in the current process.

To push to a subprocess of an interactive cleartool process, use setview –exec cleartool.

Whether or not you have set a dynamic view , a view-extended pathname is interpreted with

respect to the explicitly named dynamic view. For example, /view/bugfix/usr/project/foo.c
always specifies the version of element foo.c selected by the view bugfix.

RESTRICTIONS

None.

Product Command Type

ClearCase cleartool subcommand

Attache command

Platform

UNIX

1046 Command Reference

setview

OPTIONS AND ARGUMENTS

SHELL STARTUP PROCESSING. Default: Reads your .cshrc file, but does not read any shell login

startup files when starting a shell process.

–login
Reads in your shell startup file. No error occurs if this file is missing. Use this option to

gain access to your personal aliases, environment variable settings, and so on.

COMMAND TO EXECUTE IN VIEW CONTEXT. Default: A shell process is started, as indicated by your

SHELL environment variable; a Bourne shell (/bin/sh) is started if SHELL has a null value or is

undefined. The shell runs interactively until you exit from it.

–exe⋅c cmd-invocation
Starts a shell process, invokes the specified command line in the dynamic view specified

by view-tag, and then returns control to the parent process. This option does not set the

view-tag view in the parent process. This command inherits the environment of the shell

process.

SPECIFYING THE VIEW. Default: None.

view-tag
Any view-tag specifying a dynamic view that is registered for the current network

region. Use the lsview command to list registered view-tags.

EXAMPLES

• Create a shell process that is set to the dynamic view jackson_fix and run your shell startup

script.

cmd-context setview -login jackson_fix

• Create a subprocess that is set to the dynamic view jackson_fix and run a script named

/myproj/build_all.sh in that process. Note that the command string must be enclosed in

quotes.

cmd-context setview -exec "/myproj/build_all.sh" jackson_fix

• Start the ClearCase graphical user interface in the dynamic view test_vu.

cmd-context setview –exec xclearcase test_vu

SEE ALSO

cd, endview, lsview, mktag, pathnames_ccase, pwv, shell, startview

Reference Pages 1047

setws

setws
Selects a workspace

APPLICABILITY

SYNOPSIS
setws ws-name

DESCRIPTION

The setws command selects a workspace and an associated view. The initial working directory

is the workspace root. A username and password combination for the workspace helper host are

required. You are prompted for this information if it has not already been requested, or

previously stored using the Login info command on the Options menu.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

ws-name
Specifies the workspace name or the view-tag name of an existing workspace.

EXAMPLES

• List the existing workspaces and change to a different workspace. At a workspace prompt:

lsws
Workspace name Local storage directory Server host

jed_ws C:\users\jo\jed_ws agora
jo_main C:\users\jo\jo_main agora

setws jo_main

Product Command Type

Attache command

Platform

UNIX

Windows

1048 Command Reference

setws

SEE ALSO

attache_command_line_interface, attache_graphical_interface, mkws, lsws

Reference Pages 1049

shell

shell
Creates a subprocess to run a shell or other program

APPLICABILITY

SYNOPSIS
sh⋅ell | ! [command [arg ...]]

DESCRIPTION

The shell command creates a subshell.

UNIX—View Context

The subshell is created with the same view context as the current process. If the current process

is set to one view, but the working directory view is different, shell uses the working directory

view. (See the pwv reference page for more on this topic.)

The shell command is intended for use in cleartool and multitool interactive mode. If you are

using single-command mode, there is no need for this command.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

PROGRAM TO RUN IN SUBPROCESS. Default: Runs the shell program indicated by your SHELL

(UNIX) or ComSpec (Windows) environment variable (or /bin/sh (UNIX) or cmd.exe

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

MultiSite multitool subcommand

Platform

UNIX

Windows

1050 Command Reference

shell

(Windows), if your environment does not include SHELL/ComSpec). The shell runs interactively

until you exit from it.

NOTE TO WINDOWS USERS: Changing the ComSpec variable to a value other than cmd.exe may

have undesirable side effects elsewhere in your work environment. To avoid this problem, you

can invoke the alternative shell explicitly from cmd.exe, after executing shell.

command [arg ...]

Runs a noninteractive shell which, in turn, invokes the program command, (and,

optionally, passes it one or more arguments). The subshell exits immediately after

executing command.

EXAMPLES

UNIX

• Create a subshell that is set to the same view as the cleartool process.

cleartool> shell

• Create a subshell, and run a command within it.

% ! head -2 /etc/passwd

sysadm:*:0:0:System V Administration:/usr/admin:/bin/sh
diag:*:0:996:Hardware Diagnostics:/usr/diags:/bin/csh

Windows

• Create an interactive subshell, and then run a dir command in that shell.

cleartool shell

> dir *.c

...

> exit

• Create an noninteractive subshell that runs a dir command.

cleartool shell dir *.c

...

SEE ALSO

pwv, setview, csh(1), sh(1)

Reference Pages 1051

snapshot.conf

snapshot.conf
VOB snapshot configuration file

APPLICABILITY

SYNOPSIS
/var/adm/atria/config/snapshot.conf

DESCRIPTION

The file /var/adm/atria/config/snapshot.conf file stores information that ClearCase and

ClearCase LT use to notify interested parties of VOB database snapshot activity on the local VOB

host. Here are the parameters in snapshot.conf and their default values (which are established

at installation time):

NOTIFICATION_PROGRAM=/usr/atria/bin/notify
NOTIFICATION_LIST=root
CONFIRMATION_ON_SUCCESS=yes

NOTIFICATION_PROGRAM=email-program-pathname

The default electronic mail program specified in the configuration file supplied with ClearCase

and ClearCase LT is /usr/atria/bin/notify. (This program is also used if no

NOTIFICATION_PROGRAM entry exists.) This is an architecture-specific script that invokes a native

mail program.

NOTIFY_LIST=userid[,...]

A comma-separated list of user IDs to notify of VOB snapshot activity on the local VOB host. List

default is a single user-ID, root.

CONFIRMATION_ON_SUCCESS=yes | no

Specifies whether to notify the NOTIFY_LIST after successful VOB snapshot operations. Default

value is yes.

Product Command Type

ClearCase data structure

ClearCase LT data structure

Platform

UNIX

1052 Command Reference

snapshot.conf

SEE ALSO

vob_restore, vob_snapshot, vob_snapshot_setup

Reference Pages 1053

softbench_ccase

softbench_ccase
ClearCase and ClearCase LT Encapsulation for SoftBench

APPLICABILITY

SYNOPSIS
Invoked as needed by SoftBench Broadcast Message Server

DESCRIPTION

The ClearCase and ClearCase LT Encapsulation for SoftBench enables integration of ClearCase

and ClearCase LT with all of the SoftBench tools on the HP-UX 10.X, HP-UX 11, and Solaris

platforms. ClearCase and ClearCase LT service and broadcast all the messages prescribed for

CM systems in the document CASE Communique: Configuration Management Operation
Specifications from the historical standard.

ClearCase and ClearCase LT add a menu to the SoftBench Development Manager, providing

users with a familiar interface to the most important version control and configuration

management functions. Users can customize the SoftBench environment to add items to this

menu, accessing more sophisticated features. In SoftBench V6, this menu is made available

during SoftBench installation; it is also accessible from the main SoftBench window.

Users can configure the SoftBench Builder to use the ClearCase build tool, clearmake. All other

SoftBench tools (debugger, browser, static analyzer, and so on) work within ClearCase and

ClearCase LT environments by using the transparent file access capability.

ClearCase and ClearCase LT can broadcast SoftBench messages whenever they perform a CM

operation, no matter how that operation was requested: from the SoftBench or ClearCase or

ClearCase LT graphical user interfaces, from the ClearCase or ClearCase LT command line

interface, from the ClearCase API, from other SoftBench tools, and so on. This flexibility

accommodates a variety of working styles without sacrificing tool integration.

Product Command Type

ClearCase command

ClearCase LT command

Platform

UNIX

1054 Command Reference

softbench_ccase

SoftBench tools communicate with ClearCase and ClearCase LT through the SoftBench

Broadcast Message Server (BMS), and two server processes:

• clearencap_sb — the ClearCase and ClearCase LT encapsulator for SoftBench

• sb_nf_server — the ClearCase and ClearCase LT notice forwarder for SoftBench

NOTE: The commands clearencap_sb –ver and sb_nf_server –ver print the version of SoftBench

that is installed.

After SoftBench has been configured to work with ClearCase or ClearCase LT, certain SoftBench

commands automatically invoke CM operations. When a SoftBench tool makes a configuration

management request, such as VERSION-CHECK-OUT, the BMS receives the message and passes it

on to the ClearCase/ClearCase LT encapsulator. (The BMS starts the encapsulator process if it is

not already running.) The encapsulator evaluates the message and invokes the appropriate tool,

such as cleartool checkout.

• If the operation succeeds, the encapsulator returns a message to the BMS.

• If the operation fails (that is, the tool exits with a nonzero exit status), the encapsulator

returns a failure message to the BMS.

In both cases, the BMS passes the final status message back to the SoftBench tool.

You can have ClearCase/ClearCase LT tools send the success messages described above, even if

the operation was not initiated by a SoftBench tool. To do so:

• Make sure that the tool and the BMS both have the environment variable DISPLAY set to the

same value.

• Run the tool in an environment with CLEARCASE_MSG_PROTO set to SoftBench.

An error occurs in a ClearCase/ClearCase LT tool that has its CLEARCASE_MSG_PROTO variable

set correctly, but not its DISPLAY variable.

NOTE: HP VUE users must add the $ATRIAHOME/bin directory to their search path by adding a

line like the following to the file /usr/lib/X11/vue/Vuelogin/Xconfig:

Vuelogin*userPath:
/usr/bin/X11:/bin:/usr/bin:/etc:/usr/contrib/bin:ccase-home-dir/bin:/usr/lib:/usr/lib/acct

Without this information, the encapsulator cannot find ClearCase/ClearCase LT utilities.

Reference Pages 1055

softbench_ccase

ENCAPSULATOR TRANSCRIPT PAD

Text output produced by encapsulator operations can be placed in a file (results_file in the

pseudo-syntax summaries in the next section). If a result file is not specified, output is directed

to the encapsulator’s dedicated transcript pad. The pad is created and appears on-screen the first

time output is directed to it. The transcript pad window has a single menu, with these choices:

ENCAPSULATION SUMMARY

The clearencap_sb program handles the SoftBench messages for the CM class listed in the

pseudo-code syntax summary below. These conventions apply:

• The context parameter is replaced by the pathname currently selected in the SoftBench tool.

• Virtually all other parameters are optional. A default action is taken if no value is supplied

for a given parameter, or if it has the string value "-" (except with comments, described in

the following item).

• Many messages take optional comments. If a comment is not supplied, clearencap_sb
prompts the user for a comment before acting on the message.

NOTE: The comment string “-” does not indicate a default action; it is a one-character

comment.

• Braces ({ ... }) indicate that a nondefault value from the message is substituted at that

location.

• DEFAULT indicates that the user either did not supply the parameter or specified the string

“-”.

Standard Messages

The following messages are specified in the historical standard:

VERSION-CHECK-IN context rev options keyword comment

if (keyword == "CO-LOCK")

cleartool checkin -c comment options context
cleartool checkout -nc context

else if (keyword == "CANCEL")

cleartool uncheckout { options | -keep } context

clear pad Removes the current contents of the pad.

cancel Interrupts the current encapsulator operation.

quit Removes the transcript pad window from the screen. The transcript pad

process continues to run and to collect output text. The window reappears on

the next operation that sends text to the pad, with the new output appended

to the existing contents of the pad.

1056 Command Reference

softbench_ccase

else

cleartool checkin -c comment options context

VERSION-CHECK-OUTcontext rev options keyword comment
if (keyword == "CO")

if (context{@@rev} not in current view)

fail

else

succeed

else

cleartool checkout -c comment options context{@@rev}

VERSION-COMPARE-REVScontext rev1 rev2 results_file
if (results_file != DEFAULT && results_file != "*")

if (rev1 == "-pred")

cleartool diff -pred context{@@rev2} > results_file
else

cleartool diff context{@@rev1} context{@@rev2} > results_file
else

if (rev1 == "-pred")

cleartool diff -graphical -pred context{@@rev2}

else

cleartool diff -graphical context{@@rev1} context{@@rev2}

VERSION-INITIALIZE context options comment

cleartool mkelem -c comment options context

VERSION-LIST-DIR context results_file keyword options
if (keyword == "RECURSIVE")

cleartool ls -r options context { > results_file }

else

cleartool ls options context { > results_file }

NOTE: If results_file is DEFAULT, output is sent to the transcript pad.

VERSION-SET-MASTERcontext configuration options
if (configuration == DEFAULT)

cleartool setcs -default options
else if (configuration == "*")

cleartool edcs

else

cleartool setcs options configuration

VERSION-SHOW-HISTORYcontext results_file options
cleartool lshistory options context { > results_file }

Reference Pages 1057

softbench_ccase

NOTE: If results_file is DEFAULT, output is sent to the transcript pad.

VERSION-UPDATE-DIRcontext keyword options
(no action needed with ClearCase/ClearCase LT — always succeeds)

Nonstandard Messages

The following messages are ClearCase and ClearCase LTextensions, not specified in the

historical standard.

VERSION-MAKE-DIR context keyword options comment
if (keyword == "QUERY")

prompt for directory-name
cleartool mkdir -c comment options context[/directory-name]

VERSION-MAKE-BRANCHcontext branch-type-name rev options comment
cleartool mkbranch {-version rev} -c comment options branch-type-name context

DERIVED-CAT-CONFIG-RECcontext do-extension results_file options
cleartool catcr options context{@@do-extension} { > results_file }

NOTE: If results_file is DEFAULT, output is sent to the transcript pad.

DERIVED-DIFF-CONFIG-REC context do-extension1 do-extension2 results_file options
cleartool diffcr options context{@@do-extension1}

context{@@do-extension2} { > results_file }

NOTE: If results_file is DEFAULT, output is sent to the transcript pad.

VERSION-MAKE-ATTRIBUTEcontext options attribute-type attribute-value comment
if (options include "-default")

cleartool mkattr -c comment options -default attribute-type context
else

cleartool mkattr -c comment options attribute-type attribute-value context

VERSION-GET-ATTRIBUTEcontext options attribute-type results_file
cleartool describe -short options -aattr attribute-type context { > results_file }

NOTE: If results_file is DEFAULT, output is sent to the transcript pad.

VERSION-MAKE-LABELcontext options label-type comment
cleartool mklabel -c comment options label-type context

START-VIEWcontext view_tag
cleartool startview view_tag

VERSION-DESCRIBEcontext options results_file
cleartool describe options context { > results_file }

NOTE: If results_file is DEFAULT, output is sent to the transcript pad.

1058 Command Reference

softbench_ccase

VERSION-LIST-CHECKOUTScontext options results_file
cleartool lscheckout options context { > results_file }

NOTE: If results_file is DEFAULT, output is sent to the transcript pad.

VERSION-SHOW-VTREEcontext options results_file
if (results_file = DEFAULT)

cleartool lsvtree -graphical options context
else

cleartool lsvtree options context > results_file

VERSION-COMPARE-FILEScontext file2 result-file
if (result-file != DEFAULT && result-file != "*")

cleartool diff context file2 > result-file
else

cleartool diff -graphical context file2

NOTE: If file2 is not supplied as part of the message, or is either – or *, then clearencap_sb
prompts the user for a file name (using the Motif file-selection dialog box).

VERSION-MERGE-REVScontext options rev
cleartool merge -graphical options –to context –version rev

DO-COMMANDcontext keyword command
if (command includes the string “<context>”

first substitute context for this string,

then execute the resulting command

else

cleartool command context

NOTE: If the keyword is DISPLAY, output is sent to the transcript pad.

FILES

SEE ALSO

Release Notes for your product

/var/adm/atria/log/ti_server_log error log for notice forwarder

Reference Pages 1059

space

space
Reports on disk space use for views, VOBs, or file-system files or directories

APPLICABILITY

SYNOPSIS

• ClearCase and Attache—Report disk space used by a view or VOB:

space { –vie⋅w | –vob } [–a⋅ll] [–upd⋅ate] [–reg⋅ion network-region]

{ –host hostname | tag ... }

• ClearCase LT—Report disk space used by a view or VOB:

space { –vie⋅w | –vob } [–a⋅ll] [–upd⋅ate]

• Report disk space used by file-system files or directories:

space –dir⋅ectory pname ...

• Generate and cache data on disk space use for local views or VOBs:

space { –vie⋅w | –vob } –gen⋅erate [–scr⋅ub days] [tag ...]

DESCRIPTION

The space command displays data on disk space use for views, VOBs, or file-system files or

directories. Reports are organized by disk partition, with disk-use statistics listed both in

absolute units (megabytes) and as a percentage of the capacity of the disk partition containing

the storage directory.

• The report for a view includes view-private storage and administration data, as well as the

space occupied by the view database. For a snapshot view, the report does not include the

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

1060 Command Reference

space

space occupied by the snapshot view directory tree. To display that information, use the

–directory option and specify the root directory of the snapshot view. The information

reported varies according to the availability of information on the view, as follows:

• If the view resides in the default region of the host on which space is run, the view-tag

is listed.

• If the view does not reside in the default region of the host on which space is run, the

view tag and its region are listed.

• If the view is not found in the registry, but the VOB database has a record of its location,

the view’s UUID, host, and host path are listed. Views in this state are likely candidates

for the rmview –uuid command.

• If the view is not found in the registry and the VOB database has no record of it, the

view’s UUID is listed. Views in this state are also likely candidates for the rmview –uuid
command.

• The report for a VOB includes disk use information for the VOB database and for each

storage pool. Among other statistics, it includes information on backup VOB databases left

behind when reformatvob was used.

With the –view or –vob option, space uses by default previously generated, cached data for a

view or VOB. The –update option generates fresh data and updates the cache before displaying

the report. With the –directory option, space does not use cached data.

The –generate option is intended for use by scheduled jobs. By default, the scheduler

periodically runs space with the –generate option to generate and cache data on disk space use

for all local views and VOBs. See the schedule reference page for information on describing and

changing scheduled jobs.

NOTE TO WINDOWS USERS: On Windows 95 and Windows 98 machines, output from the space
command is incorrect for disk volumes larger than 2 GB. The total file-system size is limited to

2048 MB, and the in-use value for the file system is wrong.

RESTRICTIONS

Identities: For the –update option, you must have Change or Full access in the scheduler ACL on

the host where each VOB storage directory resides (ClearCase and Attache), or the same access

in the scheduler ACL on the ClearCase LT server host (ClearCase LT). See the schedule reference

page.

For –vob –generate, you must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Reference Pages 1061

space

For –view –generate, you must have one of the following identities:

• View owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: No locks apply.

Mastership: (Replicated VOBs) No mastership restrictions.

OPTIONS AND ARGUMENTS

SPECIFYING THE DATA STRUCTURES. Default: If no –view, –vob, or –directory option is specified,

the default is –vob. For the –generate option with no specified view or VOB tag, the default for

is all local views or VOBs (ClearCase and Attache), or all views or VOBs (ClearCase LT).

–vie⋅w
ClearCase and Attache—Reports on one or more views, identified either as those whose

storage directories reside on the host specified by –host or as those indicated by the

specified tags.

ClearCase LT—Reports on all views.

 –vob
ClearCase and Attache—Reports on one or more VOBs, identified either as those whose

storage directories reside on the host specified by –host or as those indicated by the

specified tags.

ClearCase LT—Reports on all VOBs.

–host hostname
Reports on all views or VOBs whose storage directories reside on the specified host.

tag ...
One or more tags, interpreted as view tags if you specify –view or as VOB-tags if you

specify –vob. Each tag must be valid in the region specified by –region.

–reg⋅ion network-region
Specifies the network region in which each tag resides. The default is the region of the

local host.

–dir⋅ectory pname ...

One or more pathnames, specifying files or directories in a file system. On Windows 9.X

systems, space my be incorrectly reported as a negative value if the disk size is greater

than 2GB.

1062 Command Reference

space

REPORT FORMAT. Default: In a report on a view or VOB storage directory, storage items that are

known to be small are not listed. (The contribution of these files is still included in the disk-use

total.)

–a⋅ll
In addition to the default report, lists storage items known to be small, such as .identity
(UNIX) and .pid.

DISPLAYING AND CACHING UP-TO-DATE DATA. Default: Use cached data.

–upd⋅ate
Computes and caches data on disk-space use at the time the command is issued, instead

of using cached data, and then displays a report. The computation can take a few

minutes.

GENERATING, CACHING, AND SCRUBBING DATA. Default: None.

–gen⋅erate
Computes and caches data on disk space use at the time the command is issued but does

not display a report. The computation can take a few minutes. This option is intended to

be used by periodic jobs run by the scheduler.

ClearCase and Attache—The VOB or view storage directories for all specified VOBs or

views must reside on the local host. If no tag argument is specified, the command

generates data for all VOBs or views on the local host.

–scr⋅ub days
Deletes cached records of data on disk space use that are older than the specified number

of days. A value of –1 deletes cached records other than the one generated by the current

invocation of the command, if any. Although most records are deleted, one data set per

month is retained for historical purposes. This option is intended to be used in

conjunction with the –generate option by periodic jobs run by the scheduler. The default

scheduled job specifies a value of 30 for the –scrub option.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

Reference Pages 1063

space

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• Report disk space use for a VOB, using cached data.

cmd-context space –vob /projects/bigapp

Use(Mb) %Use Directory
190.1 2% source pool storage /usr1/vobs/bigapp_vob/s
366.7 4% derived object pool storage /usr1/vobs/bigapp_vob/d

48.3 1% cleartext pool storage /usr1/vobs/bigapp_vob/c
1452.2 17% VOB database /usr1/vobs/bigapp_vob/db

0.0 0% unknown item /usr1/vobs/bigapp_vob/vob_scrubber_params~
0.1 0% administration data /usr1/vobs/bigapp_vob/admin

48.3 1% cleartext pool /usr1/vobs/bigapp_vob/c/cdft
366.7 4% derived object pool /usr1/vobs/bigapp_vob/d/ddft
190.1 2% source pool /usr1/vobs/bigapp_vob/s/sdft

-------- ---- ---
2662.5 31% Subtotal
6466.2 76% Filesystem srv1:/usr1 (capacity 8501.5 Mb)

Total usage 28-Jul-99.05:03:02 for vob "/projects/bigapp" is 2662.5 Mb

• Report disk space use for all views on a host, using cached data.

cmd-context space –view –host machine1

1064 Command Reference

space

Use(Mb) %Use Directory
0.1 0% View private storage C:\Storage\kim_mainline.vws\.s
0.1 0% View database C:\Storage\kim_mainline.vws\db
0.0 0% View administration data C:\Storage\kim_mainline.vws\admin
1.4 0% View private storage C:\Storage\kim_v3.2.vws\.s
0.1 0% View database C:\Storage\kim_v3.2.vws\db
0.0 0% View administration data C:\Storage\kim_v3.2.vws\admin

103.8 5% View private storage C:\Storage\kim_win32_nt.vws\.s
0.3 0% Database dump file C:\Storage\kim_win32_nt.vws\db.dumped
0.4 0% View database C:\Storage\kim_win32_nt.vws\db
0.0 0% View administration data C:\Storage\kim_win32_nt.vws\admin
0.6 0% View private storage C:\Storage\kim_win32_nt2.vws\.s
0.0 0% View database C:\Storage\kim_win32_nt2.vws\db
0.0 0% View administration data

C:\Storage\kim_win32_nt2.vws\admin
0.0 0% View private storage C:\Storage\kim_mainline_snap\.s
0.3 0% View database C:\Storage\kim_mainline_snap\db
0.0 0% View administration data

C:\Storage\kim_mainline_snap\admin
-------- ---- ---

107.2 5% Subtotal
2000.9 98% Filesystem machine1:c:\ (capacity 2047.0 Mb)

Total usage 07-Jul-99.04:40:00 for view "kim_mainline" is 0.2 Mb
Total usage 07-Jul-99.04:40:00 for view "kim_v3.2" is 1.5 Mb
Total usage 07-Jul-99.04:40:01 for view "kim_win32_nt" is 104.6 Mb
Total usage 07-Jul-99.04:40:03 for view "kim_win32_nt2" is 0.6 Mb
Total usage 07-Jul-99.04:40:03 for view "kim_mainline_snap" is 0.3 Mb

• Generate and cache disk space use data for a view and then display a report.

cmd-context space –view –update fred_1

Updating space information for "fred_1" on host "machine1"
Job is running on host ("machine1"), waiting for it to finish.
......
Job completed successfully on host ("machine1").

Use(Mb) %Use Directory
17.1 7% View private storage /export/home/fred/ccstore/fred_1/.s

0.3 0% View database /export/home/fred/ccstore/fred_1/db
0.0 0% View administration data

/export/home/fred/ccstore/fred_1/admin
-------- ---- ---

17.4 7% Subtotal
220.6 92% Filesystem machine1:/export/home (capacity 240.7 Mb)

Total usage 05-Aug-99.10:14:03 for view "fred_1" is 17.4 Mb

Reference Pages 1065

space

• Report disk space use for a file-system directory.

cmd-context space –directory D:\users\sue

Use(Mb) %Use Directory
38.8 1% D:\users\sue

-------- ---- ---
38.8 1% Subtotal

2546.7 62% Filesystem machine1:d:\ (capacity 4086.8 Mb)

SEE ALSO

dospace, mkview, mkvob, reformatvob, schedule, df(1M), du(1M)

1066 Command Reference

startview

startview
Starts or connects to a dynamic view’s view_server process

APPLICABILITY

SYNOPSIS
startview view-tag ...

DESCRIPTION

Prerequisite: The dynamic view being started must already have a view-tag in the network’s

view-tag registry file. See the mkview and mktag reference pages.

The startview command enables processes on the local host to access a dynamic view, as follows:

• Establishes an RPC connection between the local host’s MVFS (ClearCase multiversion file

system) and the dynamic view’s view_server process.

• Creates a view-tag entry in the local host’s viewroot directory. If a view_server process is

not already running, startview invokes one on the host where the view storage area

physically resides.

The default name of the viewroot directory is

• UNIX—/view. (See the init_ccase reference page for more information.)

• Windows—M:\.

Thus, starting a dynamic view that has been registered with view-tag main creates the directory

entry /view/main or M:\main. After this directory entry is created, any process on the local host

can access the view through view-extended pathnames.

The dynamic view’s view-tag must already be registered, which is accomplished either at view

creation time (with a mkview command) or subsequently (with mktag –view).

Product Command Type

ClearCase cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 1067

startview

NOTE: startview is not applicable to a snapshot view. To activate a snapshot view, change to the

views’s view-storage directory and issue a ClearCase command.

When to Use startview

Both mkview and mktag invoke startview. Typically, startview is used to establish

view-extended naming access. There are two main cases:

• Because mkview and mktag invoke startview on the local host only, remote users who

want only view-extended naming access to the dynamic view must use startview.

• After your system has been stopped and restarted (see EXAMPLES on page 1067), both

local and remote users can use startview to reestablish view-extended naming access to a

dynamic view.

NOTE TO UNIX USERS: setview also invokes startview, if necessary. Therefore, it is rarely necessary

to invoke startview explicitly. startview is used to establish view-extended naming access

without creating a process that is set to the view (as happens with setview).

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

SPECIFYING THE VIEW. Default: None.

view-tag ...

One or more currently registered view tags (that is, view tags visible to lsview).

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• The dynamic view anne_Rel2 is registered, but its view_server process went down in a

system crash. Restart anne_Rel2, and make it the working directory view.

cmd-context startview anne_Rel2

C:\> M:

1068 Command Reference

startview

M:\> cd \anne_Rel2\vob_pr2

• Create a dynamic view on the local host, and establish view-extended naming access to the

view on host3.

cmd-context mkview –tag mainRel2 /view_store/mainRel2.vws
Created view.
Host-local path: host2:/view-store/mainRel2.vws
Global path: /net/host2/view-store/mainRel2.vws
It has the following rights:
User : anne : rwx
Group: dev :
% rsh host3 cleartool startview mainRel2

On host3, enter the following command:

cmd-context startview mainRel2

SEE ALSO

endview, lsview, setview, Administrator’s Guide

Reference Pages 1069

type_manager

type_manager
Program for managing contents of element versions

APPLICABILITY

SYNOPSIS

• UNIX—Type manager directory:

ccase-home-dir/lib/mgrs/manager-name

• Windows—Type manager map file:

ccase-home-dir\lib\mgrs\map

• Methods, some or all of which are supported by each type manager:

annotate, compare, construct_version, create_branch, create_element, create_version,

delete_branches_versions, get_cont_info, merge, xcompare, xmerge

DESCRIPTION

A type manager is a suite of programs that manipulates files with a particular data format;

different type managers process files with different formats. A directory type manager provides

programs that compare and/or merge versions of directory elements. ClearCase and

ClearCase LT provide several type managers. On UNIX, users can create additional ones.

Several version-control commands for file elements are implemented in two phases:

1. Updating of the VOB database. This phase is independent of the element’s data format, and

is handled directly by cleartool.

2. Manipulation of the element’s data. In this phase, the data format is extremely significant,

and so is handled by a particular type manager. The type manager is invoked as a separate

Product Command Type

ClearCase data structure

ClearCase LT data structure

Platform

UNIX

Windows

1070 Command Reference

type_manager

program, rather than as a subroutine. This provides flexibility and openness, allowing users

to integrate their own data-manipulation routines with ClearCase or ClearCase LT.

For example, checking in a text_file element involves:

• Storing information in the VOB database about who created the new version, when it was

created, and so on

• Computing and storing the delta (incremental difference) between the new version and its

predecessor.

For a different type of element—for example, a bitmap file—the delta is computed differently, or

not at all, and so requires a different type manager.

TYPE MANAGERS

These are the type managers:

Type Manager Function

whole_copy Stores any data. Stores a whole copy of each version in a separate data

container file.

z_whole_copy Stores any data. Stores each version in a separate, compressed data

container file using the gzip compression program.

Note that compressed files generally take more time to check in (because

they must be compressed), and reconstruct when first accessed (first

cleartext fetch).

text_file_delta Stores text files only (including those with multibyte text characters).

Stores all versions in a single structured data container file. (On UNIX,

similar to an SCCS s. file or an RCS ,v file.) Uses incremental file

differences to reconstruct individual versions on the fly.

z_text_file_delta Stores text files only. Stores all versions in a single structured data

container file, in compressed format using both the gzip compression

program and deltas.

binary_delta Stores any data. Stores each branch’s versions in a separate, structured

compressed data container file using gzip. Uses incremental file

differences to reconstruct individual versions on the fly. Version deltas are

determined by comparing files on a per-byte basis.

_html Stores HTML source. Stores information and reconstructs versions in the

same way as the text_file_delta manager from which it is derived. Has its

own compare, xcompare, merge and xmerge methods.

Reference Pages 1071

type_manager

USING A TYPE MANAGER

To have a particular file element use a particular type manager, you must establish two

connections:

file element ----> element type ----> type manager

1. Make sure the VOB has an element type that is associated with the desired type manager.

Use the lstype command to identify an existing element type. Alternatively, use the

mkeltype –manager command to create a new element type that is associated with the

desired type manager.

2. Create the file element, specifying the element type with the –eltype option. If the file

element already exists, use the chtype command to change its element type.

You can automate the assignment of the new element type to newly created elements using the

file-typing facility, driven by .magic files. See the cc.magic reference page for details.

TYPE MANAGER STRUCTURE

A type manager uses different methods to manipulate ClearCase and ClearCase LT data.

Methods are invoked at the appropriate time by a version-control command.

On UNIX, a type manager is a collection of programs in a subdirectory of ccase-home-dir/lib/mgrs;

the subdirectory name is the name by which the type manager is specified with the –manager
option in a mkeltype command. Each program in a type manager subdirectory implements one

_ms_word Stores Microsoft Word documents. Stores information and reconstructs

versions in the same way as the z_whole_copy manager from which it is

derived. On Windows, has its own xcompare and xmerge methods.

_rose Stores Rational Rose artifacts. Stores information and reconstructs

versions in the same way as the text_file_delta manager from which it is

derived. On Windows, has its own compare, xcompare, merge, and

xmerge methods for which it invokes a tool specialized for Rose files.

_xml Stores XML source. Stores information and reconstructs versions in the

same way as the text_file_delta manager from which it is derived. On

Windows, has its own compare, xcompare, merge, and xmerge methods

for which it invokes a tool specialized for XML files.

directory Not involved in storing/retrieving directory versions, which reside in the

VOB database, not in a source storage pool. This type manager compares

and merges versions of the same directory element.

Type Manager Function

1072 Command Reference

type_manager

method (data-manipulation operation). A method can be a compiled program, a shell script, or

a link to an executable. It is invoked at the appropriate time by a ClearCase or ClearCase LT

version-control command.

A type manager can include these methods:

A type manager need not implement every method. For example, a type manager for bitmap

graphics images may omit the merge method, because the operation doesn’t make sense for that

file format. In this case, the command cleartool merge produces an error when invoked on an

element that uses this type manager.

UNIX—Method Inheritance and Links

A type manager can use symbolic links to inherit one or more of its methods from another type

manager. A typical use of symbolic links is to have individual methods be links to a master type

manager program, which implements several (or all) of the methods. For an example, see

directory ccase-home-dir/lib/mgrs/z_whole_copy.

create_element Invoked by mkelem to create an element’s initial data

container.

create_branch Invoked by mkbranch to create a branch in an element’s

version tree.

create_version Invoked by checkin to store a new version of an element.

annotate Invoked by annotate to produce an annotated listing of a

version’s contents.

construct_version Invoked by a view’s view_server process when a file element

is opened, from versions stored in delta or compressed

format. This method constructs a readable, cleartext copy of a

particular version.

After the cleartext version is constructed, its line terminators

may be adjusted by the view_server, according to the view’s

text mode. See the mkeltype and mkview reference pages.

get_cont_info Invoked by checkvob to determine the contents of a

container. This method must be implemented to enable

checkvob to fix container problems for the type manager.

delete_branches_versions Invoked by rmver and rmbranch to delete versions of an

element.

compare, xcompare Invoked by diff to run a file-comparison program that is

specific to the element’s data format.

merge, xmerge Invoked by merge to run a file-merge program that is specific

to the element’s data format.

Reference Pages 1073

type_manager

A link to the cleardiff program can implement the compare and/or merge method for text files.

Similarly, a link to the xcleardiff program can implement the xcompare and/or xmerge method.

Again, see directory ccase-home-dir/lib/mgrs/z_whole_copy for an example.

Windows—The Type Manager Map File

The map file, located in the ccase-home-dir\lib\mgrs directory, associates type manager methods

with the programs that carry them out. A map file entry has three fields: type manager, method,

and program. Below are some example entries from the map file:

When a type manager is invoked by a ClearCase or ClearCase LT command, it scans through the

map file, finds the matching type manager and method in the first and second fields, then runs

the program specified in the third field. Note that the entry in the third field must be either a

pathname relative to ccase-home-dir\lib\mgrs; for example, ..\..\bin\cleardiff.exe, a Windows

Registry key under HKEY_LOCAL_MACHINE that points to an absolute pathname, or an absolute

pathname.

Data Containers

Type managers process data containers, each of which stores the actual data for one or more

versions of some element. (Although growth may cause a container to split, versions never span

container boundaries.) All data containers are files, and are stored in the VOB’s source pools,

which are directories. Only type managers deal with data containers directly; users always

manipulate data using the names of elements and UNIX links.

Performing the data manipulation for a version-control operation involves several programs. For

example, when ClearCase or ClearCase LT create a new version of an element:

1. The pathname (within a source pool) is generated for a new data container.

2. On the VOB host (where the VOB storage area resides), a vob_server process creates an

empty file at that pathname.

3. On the client host (where the user is working), the type manager fills the new data container

with the data for the new version. (If the type manager implements deltas, it writes the data

for one or more other versions to the new container, too.)

4. The vob_server changes the access mode of the new data container, making it unwritable.

5. The db_server updates the VOB database to reference the new container.

Type Manager Method Implementing Program

text_file_delta construct_version ..\..\bin\tfdmgr.exe
text_file_delta compare ..\..\bin\cleardiff.exe
z_whole_copy create_branch ..\..\bin\zmgr.exe
_rose xmerge HKEY_LOCAL_MACHINE\SOFTWARE\

Rational Software\Rose\AddIns\
Rose Model Integrator\Install Path

1074 Command Reference

type_manager

6. Using the MGR_DELETE_KEEP_JUST_NEW exit status returned by the type manager, the

vob_server deletes the old data container.

NOTE: Even with a type manager that implements deltas, a new data container is created each

time a new version is created. In this case, the old container (which may have stored 27 versions)

is replaced by the new container (which stores 28 versions). A type manager must never write to

an old container or delete a old container (it usually does not have rights to do so).

Source Pool Data Container Names

A container leaf name includes a type manager ID to aid checkvob in salvaging nonreferenced

containers. Here is the format of a source pool data container name (in s/sdft, for example):

./nn/nn/type-mgr-id–orig-oid-str–xx

type-mrg-id is a one-, two-, or three-character string. One-character values correspond to the

predefined type managers. Two-digit values correspond to type managers with names that begin

with underscore (_), and three-digit values are computed by hashing user-defined type manager

names.

NOTE: Names of user-defined type managers must not begin with underscore.

UNIX FILES

ccase-home-dir/lib/mgrs/*
ccase-home-dir/lib/mgrs/mgr_info.h
ccase-home-dir/lib/mgrs/mgr_info.sh

WINDOWS FILES

ccase-home-dir\lib\mgrs\map

SEE ALSO

cc.icon, cc.magic, mkelem, mkeltype, gzip

Reference Pages 1075

umount

umount
Deactivates a VOB

APPLICABILITY

SYNOPSIS
umount { vob-tag | –a⋅ll }

DESCRIPTION

The umount command deactivates one or more VOBs on your host by unmounting them as

operating-system-level file systems. A VOB is activated on a host by mounting it as a file system

of type MVFS (ClearCase multiversion file system type). The VOB-tag by which an individual

VOB is referenced is the same as the full pathname to its mount point.

NOTE TO UNIX USERS: umount calls the standard umount(1M) command.

Unmounting All VOBs

umount –all unmounts all public VOBs listed in the VOB registry and all private VOBs owned

by the user.

UNIX Only—Unmounting the View Root Directory

Except on Solaris, if you enter umount –all as root on a platform that supports the operating

system command umount –a, the viewroot directory (/view) is unmounted. To remount the

viewroot directory, you must stop and restart ClearCase.

RESTRICTIONS

Identities:

• UNIX— root can unmount any VOB; other users can unmount any public VOB, and private

VOBs they own.

Product Command Type

ClearCase cleartool subcommand

Attache command

Platform

UNIX

Windows

1076 Command Reference

umount

• Windows—Any user can unmount any VOB, public or private.

Locks: No locks apply.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

SPECIFYING THE VOB. Default: None.

vob-tag
Unmounts the VOB with this VOB-tag, which you must specify exactly as it appears in

the vob_tag registry file.

–a⋅ll
Unmounts all public VOBs listed in the VOB registry. On UNIX systems, also unmounts

all private VOBs owned by the user.

EXAMPLES

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Unmount the VOB storage directory that is registered with VOB-tag \rel4.

cmd-context umount \rel4

• Unmount all VOBs registered with public VOB-tags.

% su (become root user)

cmd-context umount –all (unmount all public VOBs)

• Unmount all VOBs.

cmd-context umount –all

SEE ALSO

lsvob, mkvob, mount, register, umount(1M), Administrator’s Guide

Reference Pages 1077

uncheckout

uncheckout
Cancels a checkout of an element

APPLICABILITY

SYNOPSIS
uncheck⋅out | unco [–kee⋅p | –rm] [–cact] pname ...

DESCRIPTION

The uncheckout command cancels a checkout for one or more elements, deleting the

checked-out version. Any metadata (for example, attributes) that you attached to a checked-out

version is lost. After you cancel a checkout:

• A dynamic view reverts to selecting a checked-in version of each element.

• A snapshot view performs an update operation for each unchecked-out element. (For

snapshot views, there is an exception for the canceling of a directory checkout; see Canceling
a Directory Checkout for more information).

In Attache, if –rm is not specified, any corresponding local files are uploaded before the

uncheckout command is executed remotely, so that they can be kept in the view if –keep is

specified or if the keep query receives a yes answer. Local files that correspond to canceled

checkouts are updated from the version selected by the view after the checkouts are canceled,

and are made read-only.

The checkout version event record for each element is removed from its VOB’s database. (There

is no uncheckout event record.) Reserve and unreserve records are also removed.

If you checked out a file under an alternate name (checkout –out), you cannot use the alternate

name to cancel the checkout—you must use the element name listed by ls –vob_only.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

1078 Command Reference

uncheckout

Canceling a Checkout in an Inaccessible View

(ClearCase and ClearCase LT) You can cancel another dynamic view’s checkout by using a

view-extended pathname to the element. For a snapshot view, or in the case where a dynamic

view is no longer accessible (for example, it was deleted accidentally), a view-extended

pathname does not work. Instead, do the following:

1. Enter the command describe –long vob:pname-in-vob, where pname-in-vob is the VOB-tag of

the VOB containing the checked-out file. The output of this command includes a list of views

with checkouts in the VOB.

2. Look for the view-storage pathname of the inaccessible view, and note the view’s unique

identifier (UUID).

3. Use the uuid in the command rmview –uuid uuid to remove all of the view’s checkout

records from the VOB.

4. Repeat Step #3 in each VOB that may have been accessed with the view.

You can also change reserved checkouts in that view to unreserved. There is no way to cancel

checkouts in an inaccessible view.

Canceling a Directory Checkout

If you cancel a directory’s checkout after changing its contents, the changes made with rmname,

mv, and ln are lost. Any new elements that were created (with mkelem or mkdir) become

orphaned; such elements are moved to the VOB’s lost+found directory, stored under names of

this form:

element-name.UUID

uncheckout displays a message in such cases:

cleartool: Warning: Object "foo.c" no longer referenced.
cleartool: Warning: Moving object to vob lost+found directory as
 "foo.c.5f6815a0a2ce11cca54708006906af65".

RESTRICTIONS

Identities: You must have one of the following identities:

• Version creator

• Element owner

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element,

branch type, branch.

Reference Pages 1079

uncheckout

Mastership: (Replicated VOBs) No mastership restrictions.

OPTIONS AND ARGUMENTS

HANDLING OF THE FILE. Default: For file elements only, uncheckout prompts you to decide

whether to preserve a copy of the checked-out version of the element:

Save private copy of "util.c"? [yes]

A yes answer is equivalent to specifying the –keep option; a no answer is equivalent to

specifying the –rm option.

–kee⋅p
Preserves the contents of the checked-out version (in Attache, in the view) under a

file-name of the form element-name.keep (or, to prevent name collisions,

element-name.keep.1, element-name.keep.2, and so on). This file is not downloaded to the

Attache workspace.

–rm
Does not preserve the contents of the checked-out version. Thus, any edits that had been

made to the checked-out version are lost.

–cact
Cancels the checkout for each checked out version in the current activity.

SPECIFYING THE ELEMENT. Default: None.

pname ...

One or more pathnames, each of which specifies an element. The checkout in the current

view is canceled, unless you use a view-extended pathname to specify another view.

NOTE: Avoid using a version-extended pathname. For example, you cannot use

hello.c@@\main\sub1 to cancel another view’s checkout on the sub1 branch of element

hello.c.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

1080 Command Reference

uncheckout

• Cancel the checkout of file element util.c.

cmd-context uncheckout util.c

Save private copy of "util.c"? [yes] no
Checkout cancelled for "util.c".

• (Dynamic views) Cancel the checkout of file hello.h in the jackson_fix view, and delete the

view-private copy.

cmd-context uncheckout –rm /view/jackson_fix/usr/hw/src/hello.h

Checkout cancelled for "/view/jackson_fix/usr/hw/src/hello.h".

• Cancel the checkout of directory subd after creating a new element named conv.c.

cmd-context uncheckout subd

cleartool: Warning: Object “conv.c” no longer referenced.
cleartool: Warning: Moving object to vob lost+found directory as
 "conv.c.3d90000112fc11cba70e0800690605d8".
Checkout cancelled for "subd".

SEE ALSO

checkin, checkout, lscheckout, mkview, reserve, unreserve, update,

attache_command_line_interface, attache_graphical_interface

Reference Pages 1081

unlock

unlock
Unlocks an object

APPLICABILITY

SYNOPSIS
unlock [–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

{ [–pna⋅me] pname ... | object-selector ... }

DESCRIPTION

The unlock command removes an existing lock from an entire VOB, or from one or more objects,

type objects, or VOB storage pools. See the lock reference page for a description of locks.

RESTRICTIONS

See the lock reference page for a description of restrictions.

OPTIONS AND ARGUMENTS

See the lock reference page for a description of the options to the unlock command.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

1082 Command Reference

unlock

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Unlock the label types REL1 and REL2.

cmd-context unlock lbtype:REL1 lbtype:REL2

Unlocked label type "REL1".
Unlocked label type "REL2".

• Unlock the v3_bugfix branch.

cmd-context unlock cmd.h@@/main/v3_bugfix

SEE ALSO

lock, lshistory, lslock, protect

Reference Pages 1083

unregister

unregister
Removes an entry from the vob_object or view_object registry

APPLICABILITY

SYNOPSIS

• Unregister a VOB:

unreg⋅ister –vob { –uui⋅d uuid | vob-storage-dir-pname }

• Unregister a view:

unreg⋅ister –view { –uui⋅d uuid | view-storage-dir-pname }

DESCRIPTION

The unregister command removes the entry for a particular VOB or view from the network’s

vob_object or view_object registry. This does not affect VOB-tag or view-tag registry entries,

and it does not affect the contents of the physical storage directories. See the Administrator’s Guide
for a discussion of the registry.

If you remove a VOB or view storage directory with an operating system command instead of

rmvob or rmview, the VOB or view remains unregistered. In this case, you must use the –uuid
option to unregister the associated storage directory (and use rmtag to remove relevant tag

entries, if any still exist).

Other Commands that Affect Storage Registries

The mkview and mkvob commands add an entry to the appropriate registry; the rmview and

rmvob commands remove registry entries (and the actual storage directories as well). You can

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

1084 Command Reference

unregister

use the register command to update an existing entry, or to re-register a VOB or view that has

been unregistered.

The reformatvob command updates a VOB’s object registry entry (or creates one, if necessary),

but does not affect its tag registry entries.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

UNREGISTERING VIEWS AND VOBS. Default: None.

–vob vob-storage-dir-pname
–vob –uui⋅d vob-uuid

Use either form to specify the VOB whose vob_object registry entry is to be deleted. Use

the VOB replica UUID reported by lsvob –long (not the VOB family UUID).

–view view-storage-dir-pname
–view –uui⋅d view-uuid

Use either form to specify the view whose view_object registry entry is to be deleted.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• Unregister a VOB storage directory.

cmd-context unregister –vob /vobstore/vob2.vbs

• Unregister a view storage directory.

Reference Pages 1085

unregister

cmd-context unregister –view k:\vw_store\view5.vws

• Using the –uuid option, unregister a VOB storage directory that was mistakenly deleted

with UNIX rm –rf instead of rmvob. In this example, the VOB replica UUID (do not use the

VOB family UUID) is found in the output from lsvob –long. After unregistering the storage

directory, remove the VOB-tag. If the VOB has tag registry entries for more than one

network region, the –all option removes them all.

cmd-context lsvob –long /vobs/src (find the VOB replica uuid)

Tag: /vobs/src
 Global path: /net/neptune/vobstore/src.vbs

.

.

.

Vob replica uuid: cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3

ls /net/neptune/vobstore/src.vbs (verify storage directory was removed)

UX:ls: ERROR: Cannot access /net/neptune/vobstore/src.vbs: No such file or
directory

cmd-context unregister –vob –uuid cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3

cmd-context rmtag –vob –all /vobs/src

• As in the previous example, unregister a removed, but still registered, VOB storage

directory. In this example, the VOB-tag has already been removed. Therefore, use the

ccase-home-dir\log\scrubber_log, not lsvob, to find the VOB replica UUID. (lsvob lists only

VOBs that have registered VOB-tags.) The scrubber utility, which runs nightly by default,

reports the required UUID in an error message after failing to find the registered storage

directory.

Z:\> type "c:\Program Files\Rational\ClearCase\log\scrubber_log"

1086 Command Reference

unregister

.

.

.
05/27/99 04:30:58 scrubber: Error: Unable to get VOB tag registry
information for

replica uuid "cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3": ClearCase object
not found
05/27/99 04:30:58 scrubber: Error: unable to access VOB
\\neptune\vbstore\src.vbs:
 ClearCase object not found
05/27/99 04:30:58 scrubber: Warning: skipping VOB
\\neptune\vbstore\src.vbs errors
.
.
.

cmd-context unregister –vob –uuid cb4caf2f.f48d11cc.abfc.00:01:53:00:e8:c3

SEE ALSO

mktag, mkview, mkvob, mount, register, umount, Administrator’s Guide

Reference Pages 1087

unreserve

unreserve
Changes a reserved checkout to unreserved

APPLICABILITY

SYNOPSIS
unres⋅erve [–vie⋅w view-storage-dir-pname] [–cact]

[–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment]

pname ...

DESCRIPTION

The unreserve command changes the checkout status of a checked-out version of an element to

unreserved. A temporary unreserve checkout of version event record is written to the VOB

database.

RESTRICTIONS

Identities: You must have one of the following identities:

• Element owner

• Element group member

• VOB owner

• root (UNIX)

• Member of the ClearCase group (ClearCase on Windows)

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element,

branch type, branch.

Mastership: (Replicated VOBs only) No mastership restrictions.

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

1088 Command Reference

unreserve

OPTIONS AND ARGUMENTS

SPECIFYING THE VIEW. Default: The current view’s checkout is changed (unless you specify an

element with a view-extended pathname).

–vie⋅w view-storage-dir-pname
Specifies the view whose checkout is to be changed. For view-storage-dir-pname, use the

view storage directory pathname listed by the lscheckout –long command. (On UNIX

systems, the host: prefix is optional.)

EVENT RECORDS AND COMMENTS. Default: Creates one or more event records, with commenting

controlled by your .clearcase_profile file (default: –nc). See the comments reference page.

Comments can be edited with chevent.

–c⋅omment comment | –cfi⋅le comment-file-pname |–cq⋅uery | –cqe⋅ach | –nc⋅omment
Overrides the default with the option you specify. See the comments reference page.

SPECIFYING THE ELEMENTS. Default: None.

–cact
(UCM) Unreserves each checked-out version in the change set of the current activity in

your view.

pname ...
One or more pathnames, each of which specifies an element. The checkout in the current

view is changed, unless you use a view-extended pathname to specify another view.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Change the checkout status of an element to unreserved.

cmd-context unreserve util.c

Changed checkout to unreserved for "util.c" branch "/main".

Reference Pages 1089

unreserve

• Change the checkout status of an element in another view to unreserved. Note that the

view’s storage area is on a remote host.

cmd-context lscheckout –long hello.c

10-Aug-98.16:59:25 Ellie Jackson (jackson.user@oxygen)
checkout version “hello.c” from \main\37 (reserved)
by view: jackson_fix (“oxygen:C:\users\jackson\ccviews\fix.vws”)
“merge from bugfix branch”

cmd-context unreserve –view oxygen:C:\users\jackson\ccviews\fix.vws hello.c

Changed checkout to unreserved for "hello.c" branch "\main".

• Check out an element, check its status, and change its status to unreserved.

cmd-context co –nc edge.c

Checked out "edge.c" from version "/main/1".

cmd-context lscheckout edge.c

08-Dec.12:17 jackson checkout version "edge.c" from \main\1 (reserved)

cmd-context unreserve edge.c

Changed checkout to unreserved for "edge.c" branch "/main".

SEE ALSO

checkin, checkout, lscheckout, reserve, uncheckout

1090 Command Reference

update

update
Updates elements in a snapshot view or Attache workspace

APPLICABILITY

SYNOPSIS

• ClearCase and ClearCase LT—Update elements using the graphical update tool:

update –g⋅raphical [pname ...]

• ClearCase and ClearCase LT—Update elements from the command line:

update [–print] [–f⋅orce] [–ove⋅rwrite | –nov⋅erwrite | –ren⋅ame]

[–cti⋅me | –pti⋅me] [–log pname] [pname ...]

• ClearCase and ClearCase LT—Load elements from the command line by specifying one or

more load rules:

update –add⋅_loadrules [–print] [–f⋅orce] [–ove⋅rwrite | –nov⋅erwrite | –ren⋅ame]

[–cti⋅me | –pti⋅me] [–log pname] pname [pname ...]

• Attache:

update { [–print [–since date_time] |

[–all |–since date_time]

[–ove⋅rwrite | –nov⋅erwrite] [–pti⋅me] [–compress] }

[–r⋅ecurse] [–log pname] pname...

Product Command Type

ClearCase cleartool subcommand

ClearCase LT cleartool subcommand

Attache command

Platform

UNIX

Windows

Reference Pages 1091

update

DESCRIPTION

ClearCase and ClearCase LT—Updating Loaded Elements

For one or more loaded elements, the update command does the following:

• Reevaluates the config spec to select a versions of loaded elements in the VOB, and loads

them if they differ from the currently loaded element versions

• Unloads the file or directory from the view if a loaded element is no longer visible (that is, a

new directory version doesn’t have an entry for the element). To unload a directory

element, ClearCase and ClearCase LT

• Recursively delete all loaded elements

• Rename the directory to directory-name.unloaded if necessary, thus preserving all

view-private files and view-private directories.

• If the version in the snapshot view is different from the version in the VOB selected by the

config spec, copies the version selected by the config spec into the view. The version in the

view can be different if, for example, the selected version in the VOB is newer, or if a label is

attached to the selected version in the VOB, but not to the version in the view

update does not apply to files or directories that are checked out to the current view.

If update cannot access a VOB (perhaps due to problems in the network), any elements from that

VOB remain loaded, but are put in a special state (rule unavailable).

The update command accounts for the fact that VOB elements specified by your config spec may

change while an update is in progress. To avoid loading an inconsistent set of element versions,

update ignores versions that meet both of the following criteria:

• The version is selected by a config spec rule that specifies the LATEST version label.

• The version was checked in after the moment the update operation began.

update also accounts for the fact that the system clocks on different hosts may not be

synchronized.

When issued from a snapshot view,the following cleartool commands invoke update at the

completion of the command:

• edcs
• findmerge (only when used to merge versions of a directory)

• ln
• merge (only when used to merge versions of a directory)

• mkdir
• mkelem
• mv

1092 Command Reference

update

• rmname
• setcs
• uncheckout

ClearCase and ClearCase LT—Loading New Elements

The form of the update command that specifies the –add_loadrules option enables you to add

new load rules to your config_spec and load the elements that those rules specify.

Attache

This command downloads the specified files to the workspace.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

ClearCase and ClearCase LT

USING THE GRAPHICAL UPDATE TOOL. Default: The update is performed in the command window.

–g⋅raphical
Invokes the graphical update tool.

USING THE PREVIEW MODE. Default: None.

–print
Produces a preview of the update operation: instead of copying or removing files,

update prints a report to standard output of the actions it would take for each specified

element.

CONFIRMATION STEP. Default: update prompts for confirmation of the elements to be updated.

However, update does not in all circumstances prompt you to confirm all the elements to be

updated. Sometimes there are no confirmation prompts when you update elements, even though

you have not specified –force.

–f⋅orce
Suppresses the confirmation prompts.

HANDLING HIJACKED FILES. Default: Leaves all hijacked files in the view with their current

modifications (–noverwrite).

–ove⋅rwrite
Overwrites all hijacked files with the version selected by the config spec.

–nov⋅erwrite
Leaves all hijacked files in the view with their current modifications.

Reference Pages 1093

update

–ren⋅ame⋅
Renames hijacked files to filename.keep and copies the version in the VOB selected by the

config spec into the view.

DETERMINING THE MODIFICATION TIMESTAMP. Default: The initial default is set by the mkview
command. Thereafter, the most recently used time scheme is retained as part of the

view’s state and is used as the default behavior for the next update.

–cti⋅me
Sets the time stamp of a file element to the current time, that is, the time at which the

version is copied into the view. –ctime has no effect on directories (directories always use

the current time).

–pti⋅me
Sets the time stamp of a file element to the time at which the version was checked in to

the VOB. –ptime has no effect on directories. (Directories always use the current time.)

SPECIFYING A FILE TRANSFER LOG. Default: A log file named update.timestamp.updt that is written

to the root of the snapshot view directory.

–log pname
Specifies a log file for the operation. The log file lists the actions taken by the update
command, as well as an indication of any errors that occur during the operation. To

suppress generation of the log file, use –log /dev/null (UNIX) or -log NUL (Windows).

SPECIFYING NEW LOAD RULES. Default: None.

–add_loadrules
Specifies that the pname argument is a new load rule. The new rule is appended to the

view’s config spec, and the elements it specifies are loaded.

SPECIFYING THE ELEMENTS TO BE UPDATED OR ADDED. Default: If you do not specify

–add_loadrules, the current snapshot view; if you specify –add_loadrules, none.

pname ...

If you do not specify –add_loadrules, this argument specifies the files and/or

directories to update. All specified directories, including the root directory of the

snapshot view, are updated recursively.

If you specify –add_loadrules, this argument is interpreted as a new load rule. The

elements specified by the rule are loaded and the rule is appended to the config spec of

the current view. pname must be either a pathname relative to your current location in

the directory structure of the snapshot view or an absolute path that includes the

snapshot view path.

1094 Command Reference

update

Attache

SPECIFYING THE FILES TO BE UPDATED. Default: None.

pname...

Specifies the files, directories, and/or links to be updated. For a pname containing a

symbolic link, Attache updates a copy of the file or directory the link points to, rather

than the link itself. Wildcard patterns are expanded with reference to the view. In

addition, arguments of the form @pname can be used to add the contents of the local file

pname as pathname arguments. The pathname arguments can contain wildcards (most

useful for excluding particular files; see the wildcards reference page), and must be

listed in the file one per line, or also be of the form @pname. Specifying a relative

pathname for @pname begins from Attache’s start-up directory, not the working

directory, so a full local pathname is recommended.

–all
Specifies that all files are to be downloaded to the Attache workspace.

–since date_time
Downloads to the Attache workspace all files checked in since the time specified in

date_time.

DISPLAY FILES TO BE UPDATED. Default: None.

–print [–since date_time]

Displays the files that need updating, but does not update them in the Attache

workspace. If –print is used, a reference time must be specified. –since displays files

updated since date_time. A project config file which has been used to do an update can

also be specified. The config file is specified as @filename for the pname argument. For

each config file used to do an update, Attache remembers the last update time and uses

it for the next update with that config file.

SPECIFYING HOW THE FILES ARE TO BE UPDATED. Default: When a directory is specified, its file

contents are updated. If a destination file already exists that is identical in contents with the

source file, it is not overwritten. If an existing destination file is read-only and differs from the

source, it is always overwritten. If the destination file exists and is writable, an overwrite query

is issued.

–ove⋅rwrite
Suppresses the query and causes all writable files to be overwritten.

–nov⋅erwrite
Suppresses the query and causes no writable file to be overwritten.

–pti⋅me
Causes the last-modified time stamp of the destination file to be set to that of the source

file. –ptime has no effect on directories.

Reference Pages 1095

update

–compress
Causes files to be compressed while being uploaded and uncompressed after the

transfer to improve performance over slow communications lines.

HANDLING OF DIRECTORY ARGUMENTS. Default: For each pname that specifies a directory element,

update downloads to the Attache workspace the contents of that directory, but not the contents

of any of its subdirectories.

–r⋅ecurse
Includes files from the entire subtree below any subdirectory included in the top-level

listing. Directories are created as necessary and the current directory is taken into

account if relative patterns are given.

SPECIFYING A FILE TRANSFER LOG. Default: None.

–log pname
Specifies a log file for the operation. The log file lists the workspace-relative pathname

of each file transferred by the Attache update command, as well as an indication of any

errors that occur during the operation. Log file pathnames are absolute, not relative to

the current workspace root.

The log file can be used as an indirect file in a get command if there are errors which

prevent the updating of all files.

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

ClearCase and ClearCase LT

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

1096 Command Reference

update

• Preview an update of the view darren_3.2 and produce a log file in the C:\temp directory.

cmd-context update –print –log C:\temp E:\views\darren_3.2

• Update the file ./foo.c using the current time as the time stamp.

cmd-context update –ctime foo.c

• Update the current directory; if there are any hijacked files, rename them filename.keep and

copy the VOB versions specified by the config spec into the view.

cmd-context update –rename

• Load into the current view the new elements in .\vobs\doc\user_manual, adding the rule

load \vobs\doc\user_manual to the view’s config spec.

cmd-context update –add_loadrules \vobs\doc\user_manual

Attache

• Determine which files have been changed since yesterday in the /vobs/proj VOB.

cmd-context update –print –since yesterday –r /vobs/proj

• Update all files changed since yesterday in the \proj_vob VOB, overwriting any writable

files in the workspace.

cmd-context update –since yesterday –r –overwrite \proj_vob

• Download all files specified by the c:\users\jed\proj.ws project config file.

cmd-context update –all –r @c:\users\jed\proj.ws

• Update any files changed since the last update using the c:\users\jed\proj.ws project

config file, logging results to the c:\users\jed\proj.log file.

cmd-context update –r –log c:\users\jed\proj.log @c:\users\jed\proj.ws

SEE ALSO

checkin, checkout, clearviewupdate, config_spec, edcs, get, findmerge, ln, merge, mkdir,
mkelem, mv, rmname, setcs, uncheckout

Reference Pages 1097

version_selector

version_selector
Version-selector syntax

APPLICABILITY

SYNOPSIS

• UNIX:

branch-pathname/version-number
[branch-pathname]/ label
[branch-pathname/]{ query }

• Windows:

branch-pathname\version-number
[branch-pathname] \label
[branch-pathname\] { query }

DESCRIPTION

A version selector identifies a version of an element in a version tree. You can use it with the

–version command-line option, as part of a rule in a config spec, and as part of a

version-extended pathname. The version selector has three general forms. Each identifies a

version in a different way:

• By version-ID

• By the version label attached to it

• By a query on the meta-data attached to it, or some other version characteristic

Product Command Type

ClearCase general information

ClearCase LT general information

Attache general information

Platform

UNIX

Windows

1098 Command Reference

version_selector

A version selector selects one version of an element, no version of an element, or generates an

error, if ambiguous.

Branch Pathnames

The branch pathname in a version selector identifies the branch on which a version resides. A

branch pathname consists of a series of branch type names separated by slashes (UNIX) or

backslashes (Windows). The root of a version tree is the main branch (default name: main),

which must be the first entry in the branch pathname unless you use the ellipsis wildcard (not

valid in version-extended pathnames). Examples:

SELECTION BY VERSION-ID

Selects the version with the specified version-ID. This form requires a branch pathname.

Examples:

In a version-extended pathname, the version-ID follows the element name and extended naming

symbol (default: @@). For example:

RESTRICTION: In a version-extended pathname, you cannot use the ellipsis wildcard (...):

SELECTION BY VERSION LABEL

Selects the version with the specified label. The branch pathname is optional, but the slash or

backslash is required. Examples:

/main (main branch)
\main\bugfix (bugfix branch, off the main branch)
/main/motif/bugfix (bugfix branch, off the /main/motif branch)
\main\win32\bugfix\anne (jpb branch, off the \main\win32\bugfix branch)

/main/2 (version 2 on main branch)
/main/bugfix/5 (version 5 on bugfix branch off main branch)
/main/motif/bugfix/1 (version 1 on subbranch of /main/motif branch)

hello.c@@\main\4 (version 4 on main branch of file ’hello.c’)
include@@\main\4\hello.h\main\3 (version 3 on the main branch of file ’hello.h’, in

version 4 on the main branch of directory ’include’)

include.h@@/.../bugfix/REL2 (is not valid)

\main\LATEST (most recent version on main branch)
...\bugfix\REL2 (version labeled REL2 on a branch named bugfix, at

any branching level)
\main\bugfix\REL2 (version labeled REL2 on a bugfix branch that is a

subbranch of main)

Reference Pages 1099

version_selector

RESTRICTION: In a version-extended pathname, you cannot use the ellipsis wildcard (...):

The label LATEST is predefined; it evaluates to the most recent version on each branch of an

element. If the most recent version on the main branch is version 4, these two version selectors

identify the same version:

\main\LATEST
\main\4

A version selector can consist of a standalone label, such as REL2. Standalone labels can be

ambiguous, however. For example, /main/bugfix/REL2 and REL2 may or may not be equivalent

for a given element:

• If the REL2 label type was created as one-per-element (default), the two version selectors

must be equivalent.

• If REL2 was created with mklbtype –pbranch, however, the label can be used once per

branch. If the label is actually attached to two or more versions of an element, an error

occurs. No error occurs for elements that happen to have only one instance of a

one-per-branch label type.

Version Labels

Version labels appear as UNIX hard links or as additional Windows file-system objects in an

element’s directory tree in version-extended namespace. (See the pathnames_ccase reference

page.) If a version label was defined to be one-per-element, an additional link/filesystem-object

appears at the top level of an element’s directory tree. For example, if BL3 is a one-per-element

label, these version-extended pathnames are both unambiguous references to the same version:

hello.c@@/BL3
hello.c@@/main/bugfix/patch2/BL3

In effect, this feature allows you to reference a version without knowing its exact location in the

version tree.

If a label was defined with the –pbranch option, it does not appear in the element’s top-level

extended namespace directory (as implied earlier). Thus, if the one-per-element label, BL3, and

the one-per-branch label, TEST_LBT, was attached to version \main\1 of file hello.c, its

top-level extended namespace directory would look like this:

Z:\myvob\pr1> cd hello.c@@

\main\sunport\openlook\BUG3 (version labeled BUG3 on a particular third-level
branch)

REL2 (version labeled REL2 on any branch)

include.h@@/.../bugfix/REL2 (is not valid)

1100 Command Reference

version_selector

Z:\myvob\pr1> dir

BL3 main

SELECTION BY QUERY

Selects the version that satisfies the specified query. The branch pathname is optional.

The query expression consists of one or more query primitives and operators, organized

according to the syntax rules listed in the query_language reference page. Enclose the query

expression in braces ({ }).

UNIX—Quoting

Enclose the entire version selector in single quotes (’ ’)—or double quotes (" ") if it includes

spaces or characters that have special meaning to the shell. Use double quotes to set off string

literals within the query expression.

Windows—Quoting

Additional quoting and/or character escaping conventions must be used, depending on the

command interpreter you are using and whether or not you are using interactive mode cleartool.

The following examples assume interactive mode cleartool (cleartool> prompt), which

removes the command interpreter’s command-line processing behavior from consideration. In

general, enclose the entire version selector in quotes if it includes spaces, and make sure to

enclose string literals in double-quotes within the query expression.

/main/{TESTED=="yes"} (the latest version on the main branch for which the
’TESTED’ attribute has the value ’yes’)

{hltype”(design_spec,<-)”} (the version on any branch that is the ’to’ end of a
hyperlink of type ’design_spec’)

/main/bugfix/”{!lbtype(REL2)}” (on bugfix branch, the latest version that is not
labeled ’REL2)

“{created_by(jpb)&&pool(sr1)}” (the version on any branch created by user ’jpb’
which is stored in the ’sr1’ storage pool)

\main\{TESTED=="yes"} (the latest version on main branch for which
’TESTED’ attr has value ’yes)

“{hltype(design_spec,<-)}” (on any branch, version that’s the ’to’ end of a
hyperlink of type ’design_spec’)

\main\bugfix\”{!lbtype(REL2)}” (on bugfix branch, the latest version that is not
labeled ’REL2’)

“{created_by(anne)&&pool(sr1)}” (on any branch, the version created by user ’anne’
and stored in the ’sr1’ storage pool)

Reference Pages 1101

version_selector

Branch Pathnames

If the version selector includes a branch pathname, the view_server selects the latest version on

the branch that satisfies the query. If the version selector does not include a branch pathname,

the view_server selects the version on any branch that satisfies the query. However, without a

branch pathname, a query is ambiguous when more than one version of the element satisfies the

query; versions on different branches, or two versions on the same branch, for example.

The version-selection operation fails if the query selects no version or is ambiguous.

A version-extended pathname can include a query, but is subject to the same restrictions as other

version selectors of this form. That is, the query must select exactly one version to succeed. For

example, this command displays the most recent version that has an attribute of type TESTED:

% cat include.h@@/"{attype(TESTED)}"

Note the use of quotes to prevent interpretation of the brace and parenthesis characters. As an

alternative, you can quote the entire pathname:

Z:\vob_incl> type "include.h@@\{attype(TESTED)}"

If multiple branches have versions with a TESTED attribute, the version selector used in the

examples above is ambiguous, and an error occurs.

RESTRICTION: In a version-extended pathname, you cannot use both a branch pathname and a

query:

% cat "include.h@@/main/{attype(TESTED)}" (is not valid)

% cat "include.h@@/main/rel2_bugfix/{attype(TESTED)}" (is not valid)

On UNIX systems, you can use the describe command to work around this restriction:

% cat ‘ cleartool describe -s -ver /main/rel2_bugfix/"{attype(TESTED)}" include.h‘

SEE ALSO

config_spec, pathnames_ccase, query_language

1102 Command Reference

view_scrubber

view_scrubber
Remove derived object data containers from dynamic view storage

APPLICABILITY

SYNOPSIS

view_scrubber [–p | -a] [–k] [–n] [DO-pname ...]

DESCRIPTION

The view_scrubber program cleans a view’s private storage area by removing data containers

for derived objects (DOs). On Windows systems, view_scrubber scrubs only the files that are

piped to its stdin stream. On UNIX systems, the most common way to run the view_scrubber is

indirectly, by running the view_scrubber.sh script supplied with ClearCase.

NOTE: This command does not apply to snapshot views.

WARNING: This command modifies the way in which view-resident objects are combined with

VOB-resident objects to produce a virtual workspace. To avoid errors, make sure that no

application or development tool is using the view’s files when this command is executed.

Scrubbing is useful in the situations described in the following sections.

Cleaning Up after a Winkin

When a clearmake or omake build winks in a shareable DO for the first time, the DO’s data

container is copied from the private storage area of the view in which it was built to the VOB

storage pool. At this point:

• The view where the DO was originally built continues to use the data container in view

storage.

• Any other view to which the DO is subsequently winked in uses the data container in VOB

storage.

Product Command Type

ClearCase command

Platform

UNIX

Windows

Reference Pages 1103

view_scrubber

Running view_scrubber in the view where the DO was built simplifies the situation.

view_scrubber performs the following steps:

1. Removes the DO with an operating system command. This deletes the data container from

view storage.

2. Winks in the DO to the view, which establishes a link to the data container in VOB storage.

Now, all views that share the DO access the data container in VOB storage. This eliminates the

redundant, space-consuming data container in view storage.

Self-Winkin

By default, the data container for a nonshareable DO or an unshared DO remains in view storage

until the DO is deleted or overwritten. view_scrubber –p transfers the data container to VOB

storage, thus freeing space in the view storage area. In essence, this involves winking in the DO

to the same view. view_scrubber –p performs the following steps:

1. (Nonshareable DO only) Converts the DO to a shareable DO by writing information about

the DO into the VOB.

If the DO has any sub-DOs or siblings, view_scrubber –p or view_scrubber –a makes them

shareable. view_scrubber –a stops after this step is complete. view_scrubber –p executes the

following additional steps:

2. Promotes the data container from view storage to VOB storage.

3. Removes the DO with an operating system command, which deletes the data container from

view storage.

4. Winks in the DO to the view, which establishes a link to the data container in VOB storage.

You can also use the winkin command to accomplish this scenario.

NOTE: When a nonshareable DO is converted to a shareable DO, its DO-ID changes. For more

information, see Building Software.

OPTIONS AND ARGUMENTS

ADVERTISING AND PROMOTION. Default: view_scrubber removes view-resident data containers,

then restores the derived objects to the view through winkin. Requirement: The derived objects’

data containers must already be in VOB storage.

–a
Before performing the default processing described above, writes information about the

DO to the VOB to advertise its availability for winkin, but does not copy the DO to the

VOB.

–p
Before performing the default processing described above, writes information about the

DO to the VOB to advertise its availability for winkin, then promotes (copies) the

1104 Command Reference

view_scrubber

derived objects’ data containers from view storage to VOB storage. This removes the

requirement that the data containers be in VOB storage. (view_scrubber –p implies

execution of view_scrubber –a.)

ERROR RECOVERY. Default: view_scrubber aborts if it is unable to complete its work on any

derived object.

–k
Keeps going, even if one or more derived objects cannot be processed successfully.

NO-EXECUTE OPTION. Default: view_scrubber performs its work and displays appropriate

messages.

–n
Suppresses the actual processing of data containers. view_scrubber displays messages

describing the work it would have performed.

DERIVED OBJECTS TO PROCESS. Default: If you don’t specify any DOs as command arguments,

view_scrubber reads a one-per-line list of pathnames from stdin, which must be a pipe.

DO-pname ...

One or more standard pathnames of derived objects.

EXAMPLES

• On a UNIX system, make the view to be scrubbed the current working view, and move to

the directory of interest. Then scrub DO containers for the entire directory tree, using the

script ccase-home-dir/etc/view_scrubber.sh (which invokes the view_scrubber program)

% cleartool setview big_view

% cd /vobs/src

% ccase-home-dir/etc/view_scrubber.sh

• On a Windows system, make the view to be scrubbed the current working view, and move

to the directory of interest. Then scrub DO containers for the entire directory tree, using a

pipe.

C:\> Z: (change to a view drive)

Z:\> cd \vob_src\pr1

Z:\vob_src\pr1> dir /s /b *.obj | view_scrubber

• Scrub two DOs, promoting the data containers to VOB storage.

% ccase-home-dir/etc/view_scrubber –p /view/cep/vobs/dev/lib/cmd.h \
/view/smg/vobs/dev/lib/cmd_api.h

Reference Pages 1105

view_scrubber

SEE ALSO

clearmake, promote_server, scrubber, winkin

1106 Command Reference

vob_restore

vob_restore
Restores a VOB from backup media.

APPLICABILITY

SYNOPSIS
vob_restore [–restart restart-path] vob-tag

DESCRIPTION

The vob_restore command restores a damaged VOB. It prompts for all required input and

displays explanatory text at each step. If you quit vob_restore before it completes, you can use

the –restart option to resume VOB restoration at the point where you stopped it.

If the VOB is replicated, you must run the MultiSite restorereplica command immediately after

restoring the VOB from backup. For more information, see the Administrator’s Guide.

NOTE: We strongly recommend that you do not retrieve VOB storage from backup until

prompted to do so by vob_restore. If you get the VOB storage directory from backup media

before running vob_restore, you must either unregister the VOB before retrieving the backup or

stop ClearCase or ClearCase LT before retrieval and restart it afterward. If you wait until

prompted, vob_restore performs the necessary steps, safeguarding the integrity of your restored

VOB.

RESTRICTIONS

Identities: You must have one of the following identities:

• root (UNIX)

• Server host administrator (ClearCase on Windows)

• Member of the administrators’ group (ClearCase on Windows)

Product Command Type

ClearCase command

ClearCase LT command

Attache command

Platform

UNIX

Windows

Reference Pages 1107

vob_restore

• Local administrator of the ClearCase LT server host (ClearCase LT on Windows)

Locks: If the VOB is still accessible, lock it to prevent any further changes. vob_restore leaves the

VOB locked when it completes.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

If you do not specify all required command line arguments, vob_restore prompts for input.

SPECIFYING THE VOB. Default: None. You must supply a VOB-tag. vob_restore prompts for all

additional information.

vob-tag
The VOB’s VOB-tag, as specified in mkvob or mktag –vob.

SPECIFYING A RESTART FILE. Default: None. If you omit this option, vob_restore does not attempt

to find a restart-state file that may have resulted from an earlier, aborted vob_restore invocation

on the same VOB-tag.

–restart restart-path
Specifies the pathname of the restart file saved during a previous invocation. Always

record the restart-path that is reported by vob_restore when you stop VOB restoration

before it has completed.

EXAMPLES

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• Restore VOB /vobs/src. To complete the recovery, run checkvob to find and fix

inconsistencies between the restored VOB database and the restored VOB storage pools.

vob_restore prompts for all required information.

NOTE: In this example, as is recommended, the restored data is not retrieved from backup

media before running vob_restore.

/usr/atria/etc/vob_restore /vobs/src

SEE ALSO

checkvob, vob_snapshot, vob_snapshot_setup, Administrator’s Guide

1108 Command Reference

vob_scrubber

vob_scrubber
Remove event records and oplog entries from VOB database

APPLICABILITY

SYNOPSIS
vob_scrubber [–stats_only] [–long] [–nlog]

{ –lvobs | vob-storage-dir-pname ... }

DESCRIPTION

The vob_scrubber program deletes old event records and MultiSite oplog entries from a VOB

database. This retards VOB growth by logically deleting the items, freeing space in the VOB

database for storage of new event records and oplog entries. (Physical deletion requires

processing with the reformatvob command.)

The file vista.tjf records updates to the VOB that result from vob_scrubber operations. vista.tjf
can grow very large. For information on limiting its size, read about the file db.conf in the

config_ccase reference page.

vob_scrubber does not need to run in a view and does not require the VOB it processes to be

mounted.

CLEARCASE AND CLEARCASE LT EVENTS

ClearCase and ClearCase LT create a meta-data item called an event record in a VOB database

almost every time it modifies the database—for example, to record the checkin of a new version,

the attaching of an attribute to an element, or the creation of a new branch type. Each event

record consumes 300–400 bytes. Some event records, like those for element and version creation,

are valuable indefinitely; however, many minor event records are not. For example, the removal

of a version label from a collection of versions creates a minor event record for each affected

object. Over time, such minor event records occupy more space as they become less useful. (After

Product Command Type

ClearCase command

ClearCase LT command

Platform

UNIX

Windows

Reference Pages 1109

vob_scrubber

a month or a year, no one is likely to care who removed the version labels, especially if the label

type itself has also been deleted.)

Event Record Scrubbing

vob_scrubber marks certain event records as logically deleted. As with any metadata removal,

the deletion does not physically reduce the amount of disk space used by the VOB database; it

merely frees up space in the database, making it available for future use. To actually reduce the

size of the database, you must run reformatvob, which discards the logically deleted data as it

reconstructs the VOB database. Thus, regular use of vob_scrubber minimizes VOB database

growth, but does not recover disk space.

What Event Records Are Deleted

These obsolete event records are always deleted, regardless of scrubbing parameters:

• Creation event records for derived objects.

• Event records whose operations are mkattr, mkhlink, mklabel, mktrigger, rmlabel,
rmhlink, rmattr, or rmtrigger (if the type object associated with the event has been deleted

with rmtype).

These event records are never deleted:

• The most recent 1000 event records physically added to the VOB (regardless of logical event

time). These are needed by views for cache invalidation.

• The most recent lock event record (for an object that is locked).

• Event records for operations not annotated with an S in Table 7 in the events_ccase
reference page.

All other event records are preserved or deleted according to the configuration file specifications

described in VOB-SPECIFIC EVENT-RECORD SCRUBBING PARAMETERS.

MULTISITE OPLOG ENTRIES

In each replicated VOB, cleartool creates oplog (operation log) entries, which store all the

information required to repeat the changes in some other replica of the VOB.

Each oplog entry logically includes this information:

• The identity of the replica where the change originally took place.

• The VOB-database-level change—for example, creation of a new element, checkin of a new

version, attaching of an attribute, and so on.

• The storage-pool-level change, if any—for example, the contents of a new version.

• The event record generated for the change.

1110 Command Reference

vob_scrubber

• An integer sequence number—1 for the first change originating at a particular replica, 2 for

the next change, and so on. This is the epoch number of the oplog entry.

Like event records, oplog entries are stored in the VOB database and can be scrubbed.

WARNING: Oplog entries play an essential role in the MultiSite replica-synchronization scheme.

It is extremely important that oplog entries be retained until they are no longer needed for

synchronization. For this reason, the standard retention period for oplog entries is infinite (oplog
–keep forever).

MULTISITE EXPORT_SYNC ENTRIES

When you export an update packet from a replicated VOB, MultiSite creates one export_sync

record for each target replica. These records are stored in the VOB database and are used by the

recoverpacket command to reset a replica’s epoch matrix. You can scrub these records, but

scrubbing old records limits the date range over which recoverpacket can operate.

NOTE: export_sync records are distinct from exportsync events, which are listed by the lshistory
command and graphical History Browser. You can scrub export_sync records without losing

export history for a replica.

AUTOMATIC SCRUBBING

By default, the scheduler runs vob_scrubber periodically. See the schedule reference page for

information on describing and changing scheduled jobs. A configuration file,

vob_scrubber_params, provides control over which event records and oplog entries are deleted.

You can run vob_scrubber manually as needed.

OPTIONS AND ARGUMENTS

REPORT FORMAT. Default: Event statistics are listed briefly, categorized by kind of object. For

example, all event records for branch objects are grouped.

–long
Produces a detailed report of the event statistics, categorized by kind of object, kind of

event, and kind of operation.

REPORT DESTINATION. Default: The report is sent to the log file, vob_scrubber_log.

–nlog
Sends the report to stdout instead of the log file.

DELETION CONTROL. Default: Delete event/oplog records and report statistics on the number of

objects, the number of records before deletion, the number of records deleted, and the number of

records after deletion.

–stats_only
Suppresses deletion of records; the report includes statistics on the number of objects,

event records, and oplog entries in the VOB.

Reference Pages 1111

vob_scrubber

VOBS TO BE PROCESSED. Default: None.

–lvobs
Scrubs event records and oplog entries from all VOBs that reside on the local host.

vob-storage-dir-pname
Scrubs the VOB whose storage directory is at the specified pathname.

VOB-SPECIFIC EVENT-RECORD SCRUBBING PARAMETERS

A host-wide configuration file controls the operation of vob_scrubber; each VOB can have its

own configuration file, which overrides the systemwide settings (UNIX pathnames are shown,

but the Windows paths are the same (except for slash direction)):

The event-scrubbing configuration file is a text file. A line that begins with a number sign (#) is a

comment. All other lines control how one kind of event is to be scrubbed—how long to keep the

most recent one, and how long to keep other events of that kind:

event operation –keep_all { n | forever } [–keep_last { n | forever }]

These are the components of an event-scrubbing control line:

event
A keyword that indicates that the remaining components of the control line apply to the

event records created by a particular CM operation. (See the events_ccase reference page

for a list of operations and the associated object to which event records are attached.)

operation
Kind of event, specified by the operation that creates the event record. (See the

events_ccase reference page for a list of operations and the associated objects to which

event records are attached.)

–keep_all { n | forever }

For each object: keep event records created by the specified operation for at least n days,

or forever. If –keep_last is also specified, this period applies to all but the most recent

such event; otherwise, the period applies to all such events, including the most recent

one.

–keep_last { n | forever }

(Optional) For each object: keep the most recent event record created by the operation

for at least n days, or forever. The keep_last period must be at least as long as the

keep_all period. The meaning of “most recent event” depends on the operation; see the

events_ccase reference page for a list of operations and the associated objects to which

event records are attached.

Host-wide config file ccase-home-dir/config/vob/vob_scrubber_params
Per-VOB config file vob-storage-dir-pname/vob_scrubber_params

1112 Command Reference

vob_scrubber

OPERATION LOG AND EXPORT RECORD SCRUBBING

The vob_scrubber_params files also control scrubbing of oplog entries and export records. The

syntax for these lines follows. (Do not begin these lines with the keyword event.)

oplog –keep { n | forever }

Specifies the number of days an oplog entry is kept in the VOB database. You must

preserve oplog entries long enough to guarantee delivery of synchronization updates

based on them. The default is forever.

export_sync –keep { n | forever }

Specifies number of days an export synchronization record is kept in the VOB database.

By default, this line is not included in the vob_scrubber_params file, and the records are

scrubbed with the same frequency as the oplog entries.

SCRUBBING DEFAULTS

If the configuration file includes no control line for a particular operation, all event records

created by the operation are kept forever. Therefore, an empty configuration file preserves all

event records (except obsolete ones, which are always discarded; see What Event Records Are
Deleted). The calculated times are always compared to the logical event creation time (as shown

by lshistory), rather than the physical event creation time. These can differ if the event records

were created by an exporter, such as clearexport_pvcs.

If the configuration file includes no –oplog control line, then oplog entries are kept forever.

EXAMPLES

• For unlock events in all VOBs on the local host: keep the event record if the event occurred

within the past 7 days (but keep an event that occurred within the past 30 days if it is the

most recent event on a particular object). Otherwise, delete the event record.

In ’ccase-home-dir/config/vob/vob_scrubber_params’:

event unlock -keep_all 7 -keep_last 30

• In the VOB replica whose storage directory is G:\vobstore\tromba.vbs, retain oplog entries

for a year.

In G:\vobstore\tromba.vbs\vob_scrubber_params:

oplog -keep 365

UNIX FILES

ccase-home-dir/config/vob/vob_scrubber_params
/var/adm/atria/log/vob_scrubber_log

Reference Pages 1113

vob_scrubber

WINDOWS FILES

ccase-home-dir\config\vob\vob_scrubber_params
ccase-home-dir\var\log\vob_scrubber_log

SEE ALSO

config_ccase, events_ccase, lshistory, reformatvob, scrubber, schedule

1114 Command Reference

vob_sidwalk, vob_siddump

vob_sidwalk, vob_siddump
Reads or changes security identifiers in a schema version 54 VOB database

APPLICABILITY

SYNOPSIS

• Read or change security identifiers in a VOB database:

vob_sidwalk [–p⋅rofile profile-path] | [–s⋅idhistory] [–u⋅nknown]

[–m⋅ap mapfile-path] [–l⋅og logfile-path] [–e⋅xecute] [–delete⋅_groups] [-raw⋅_sid]

vob-tag SIDfile-path

• Recover VOB storage directory protections:

vob_sidwalk –recover⋅_filesystem vob-tag SIDfile-path

• Read security identifiers in a VOB database:

vob_siddump [–p⋅rofile profile-path] | [–s⋅idhistory] [–u⋅nknown] [-raw⋅_sid]

[–m⋅ap mapfile-path] [–l⋅og logfile-path] vob-tag SIDfile-path

DESCRIPTION

vob_sidwalk and vob_siddump are administrative utilities that can be used to read or change

security identifiers (Windows SIDs or UNIX UIDs and GIDs) stored in VOB databases that are

formatted with schema version 54. vob_sidwalk is installed only on hosts that are configured to

support local VOBs and views and to support VOB schema version 54. vob_siddump is installed

on all hosts.

The programs are typically needed for these tasks:

• Moving a VOB from one Windows domain to another Windows domain

• Migrating a Windows NT domain to an Active Directory domain

Product Command Type

ClearCase administrative command

ClearCase LT administrative command

Platform

UNIX

Windows

Reference Pages 1115

vob_sidwalk, vob_siddump

• Moving a VOB from a Windows host to a UNIX host or vice versa

vob_siddump is a read-only version of vob_sidwalk. It can be executed on the VOB server or

any client to list the security principal (user and group) names and SIDs stored in a VOB.

vob_sidwalk has all of the capabilities of vob_siddump and can also change SIDs in the VOB

database. In addition, vob_sidwalk can be executed with the -recover_filesystem option to reset

the protections on a VOB storage directory so that they are consistent with the SID of the VOB’s

owner and group.

RESTRICTIONS

vob_siddump has no restrictions. vob_sidwalk has the following restrictions:

Identities: You must have one of the following identities:

• VOB owner

• root (UNIX)

• Member of the ClearCase administrators group (ClearCase on Windows)

• Local administrator of the ClearCase LT server (ClearCase LT on Windows)

Locks: An error occurs if the VOB is locked.

Other: You must enter this command on the VOB server host.

OPTIONS AND ARGUMENTS

READ OR MAP SIDS Default: None. These options are allowed with both vob_sidwalk and

vob_siddump.

–s⋅idhistory
Generate a SID file of historical SID information stored in the VOB database. Write the

current name and SID for each account to the new-name and new-SID fields of SIDfile-path
and write the historical name and SID to the old-name and old-SID fields. If either

command is invoked without this option, it writes the current name and SID for each

account to the old-name and old-SID fields of SIDfile-path, and the new-name field is

always IGNORE.

–u⋅nknown
Map SIDs that cannot be resolved to an account in the domain. Any user SID that cannot

be resolved is mapped to the SID of the VOB owner. Any group SID that cannot be

resolved is mapped to the SID of the VOB’s primary group. The mappings are written to

the SID file.

–p⋅rofile profile-path
Write a list of all SIDs found in the VOB along with the database identifiers that describe

objects owned by each SID. The list is written to the file in profile-path. Each line of the file

has the format

1116 Command Reference

vob_sidwalk, vob_siddump

metatype,dbid,user-name,user-SID,group-name,group-SID,mode,container...

where each field has the form:

This option can generate a large file in profile-path and consume significant resources on

the VOB server host. This option cannot be used with any other option.

–m⋅ap mapfile-path
Force remapping of all SIDs in a VOB database as specified in the mapping file at

mapfile-path. Details about the SID remappings for the VOB at vob-tag are written to

SIDfile-path.

The mapping file contains one or more lines in the following format.

old-name,type,old-SID,new-name,type,new-SID

where each field has the form:

You can use a SID file from a previous run of vob_sidwalk or vob_siddump as the basis

of the mapping file. If you need to change the existing mapping (to reassign ownership

of objects), edit the file to make any of the following changes:

metatype The VOB metatype name, or one of the special names

ROOT, TREE, or FILE for file system objects that have no

dbid (database identifier)

dbid Database identifier for this VOB object

user-name User name of the object’s owner

user-SID String representation of user SID

group-name Group name of the object’s group

group-SID String representation of group SID

mode The object’s access mode

container... Pathname of the object’s container file, if applicable

old-name domain-name\account-name
new-name One of domain-name\account-name, IGNORE, DELETE
type One of USER, GROUP, GLOBALGROUP,

LOCALGROUPONDC, LOCALGROUP
old-SID, new-SID String representation of SID

• Change the new-name field to

IGNORE
No changes are made to this SID.

• Change the new-name field to

DELETE
The SID is changed to the SID of VOB

owner or, if it is a group SID, the SID

of the VOB’s primary group.

Reference Pages 1117

vob_sidwalk, vob_siddump

–raw⋅_sid
Write SIDs in raw (unformatted) style. Use this option when generating a SID file on

Windows in preparation for moving a VOB from Windows to UNIX.

UPDATE SIDS Default: Only read or map SIDs. Do not change anything in the VOB database unless

the -execute option is present. These options are not allowed with vob_siddump.

–e⋅xecute
Modify SIDs stored in the VOB database. Unless the -execute option is used,

vob_sidwalk logs, in the SID file, the changes that would have been made but does not

actually change anything in a VOB database.

–delete⋅_groups
Remove any historical SIDs found in the group list of an identity-preserving replica.

Historical SIDs are always removed from the group list of a non-replicated VOB or a

non-identity-preserving replica. The Administrator’s Guide provides details about how to

use this option.

LOGGING Default: No logging.

–l⋅og logfile-path
Write a log of SID reassignments. Each line of the file at logfile-path has the format

metatype,dbid,container,old-SID,reserved,new-SID

where each field has the form:

• Change the new-name field to the

name of a user or group and remove

the new-SID and second type fields.

Ownership of objects owned by the

user or group named in old-name is

reassigned to the user or group named

in new-name.
• Specify a different SID in the

new-SID-string field.

Ownership of objects owned by the

user or group named in old-SID is

reassigned to the user or group named

in new-SID (type fields must match).

metatype The VOB meta-type name, or one of the special names

ROOT, TREE, or FILE for file system objects that have no

dbid (database identifier)

dbid Database identifier for this VOB object

container Pathname of the object’s container file, if applicable

old-SID String representation of old SID

reserved Reserved for future use

new-SID String representation of new SID

1118 Command Reference

vob_sidwalk, vob_siddump

FIXING STORAGE DIRECTORY PROTECTIONS Default: Does not change protections.

–recover⋅_filesystem
Fix protections on VOB storage directory. This option is not supported with

vob_siddump. With vob_sidwalk, it cannot be used with any other option.

VOB-TAG Default: none

vob-tag
The VOB on which to operate.

SID FILE Default: none

SIDfile-path
A pathname at which the command should write the SID file. An error is returned if

SIDfile-path exists or is not specified. Each line of the SID file has the format:

old-name,type,old-SID,new-name,type,new-SID,count

where each field has the form:

You can use the SID file as the mapping file when running either command with the

-map option.

EXAMPLES

The Administrator’s Guide includes detailed procedures for using vob_sidwalk and

vob_siddump. We recommend that you read them before using either of these programs.

• Generate a SID file showing the old and new SIDs of security principals after a domain

migration, but do not change any SIDs.

vob_sidwalk -sidhistory vob-tag SIDfile-path

• Replace the historical SIDs stored in the VOB database with new ones that resolve to the

appropriate security principals in the Active Directory domain.

vob_sidwalk -sidhistory -execute vob-tag SIDfile-path

• Reassign ownership of objects in the VOB by mapping all existing SIDs to the new SIDs of

the VOB owner and group.

vob_sidwalk -unknown -execute vob-tag SIDfile-path

old-name domain-name\account-name
new-name One of domain-name\account-name, DELETE
type One of USER, GROUP, GLOBALGROUP,

LOCALGROUPONDC, LOCALGROUP
old-SID, new-SID String representation of SID

count Number of objects with this owner

Reference Pages 1119

vob_sidwalk, vob_siddump

NOTE: If you are using UCM, you may not want to reassign ownership with -unknown.

Reassigning an open activity to the VOB owner will make it unusable by its creator (unless

it was created by the VOB owner).

• Recover the ACLs on the VOB storage directory and container files, and also correct the

SIDs for the VOB’s supplementary group list.

vob_sidwalk -recover_filesystem vob-tag SIDfile-path

SEE ALSO

Administrator’s Guide

1120 Command Reference

vob_snapshot

vob_snapshot
Copies the VOB databases of all local VOBs or replicas configured for database snapshot

APPLICABILITY

SYNOPSIS
vob_snapshot

DESCRIPTION

The vob_snapshot command makes an on-disk copy of a local, locked VOB database. Using this

command reduces the amount of time a VOB database needs to be locked when you back up the

VOB. Later, as part of your standard system backup procedure, the VOB storage directory

(minus the VOB database directory) and the VOB database snapshot can be backed up without

locking the VOB. Because the database snapshot and VOB storage pool backups occur at

different times, they are likely to be slightly out of sync. To correct this skew, the checkvob utility

resynchronizes the VOB database and storage pools when you run vob_restore.

By default, the scheduler runs vob_snapshot periodically. See the schedule reference page for

information on describing and changing scheduled jobs. If no locally stored VOBs are configured

for database snapshot, vob_snapshot exits silently.

A local VOB’s database is copied only if snapshot parameters have been applied to it with the

vob_snapshot_setup utility. See Per VOB (or Replica) Snapshot Parameters.

UNIX Only—Per Host Snapshot Parameters

The file /var/adm/atria/config/snapshot.conf stores information used to notify interested parties

of VOB database snapshot activity on a particular host. Here are the parameters in snapshot.conf
and their default values:

Product Command Type

ClearCase command

ClearCase LT command

Attache command

Platform

UNIX

Windows

Reference Pages 1121

vob_snapshot

NOTIFICATION_PROGRAM=/usr/atria/bin/notify
NOTIFICATION_LIST=root
CONFIRMATION_ON_SUCCESS=yes

Per VOB (or Replica) Snapshot Parameters

When vob_snapshot runs on a VOB host, it checks each locally stored VOB for the existence of

a multipart string attribute that specifies snapshot parameters. An administrator uses the

vob_snapshot_setup utility to apply the vob_snapshot_parameters attribute to each VOB or

replica for which snapshots will be taken. The attribute string’s individual components specify

the following:

• Where to put the VOB database snapshot

A disk location that will store the snapshot. Typically, this location gets backed up later

(along with the VOB storage directory as part of normal backup operations), and it is

overwritten by the next snapshot.

• Whether to run db_check on the VOB database snapshot

The db_check utility performs fundamental database consistency and integrity checks.

(Later, at recover time, checkvob may examine the VOB database looking for ClearCase or

ClearCase LT anomalies.) The db_check pass occurs after all snapshots are complete on the

local host.

• UNIX only—Which users should be notified (receive mail) about snapshot operations on

this VOB

A list of user names to be notified when vob_snapshot processes this VOB. This per-VOB list

supplements the per-host notification list maintained in

/var/adm/atria/config/snapshot.conf. The snapshot.conf file also specifies the notification

program to be used.

See vob_snapshot_setup for more information on setting these parameters for a particular VOB.

Database Snapshot Details

When vob_snapshot encounters a VOB that is configured for database snapshot, it performs the

following steps (logging messages in the snapshot_log (UNIX) or

ccase-home-dir\var\log\snap_log (Windows) file along the way):

1. Verifies that the snapshot target directory exists and is writable.

2. Locks the VOB. If vob_snapshot cannot lock the VOB, it proceeds with the snapshot, but logs

the snapshot’s status as questionable.

3. Checks the VOB’s specified snapshot target directory for sufficient disk space.

4. Creates a subdirectory whose name is the VOB’s replica UUID. If a directory with that name

already exists, remove it first (that is, remove the previous snapshot).

1122 Command Reference

vob_snapshot

5. Copies the VOB database directory tree to the subdirectory created in Step #3.

6. Unlocks the VOB.

7. Repeats Step #1 through Step #6 for the next VOB.

8. Runs db_check on all VOBs configured for this check.

NOTE: If the log or UNIX notification mail reveals a failed db_check, check the log for

obvious errors. If you cannot resolve the problem, contact Rational Technical Support.

9. (UNIX) Sends mail to per VOB and per host notification lists.

If You Do Not Use vob_snapshot

You must lock the VOB and back up the entire VOB storage directory (and any remote UNIX

storage pools). Such a backup avoids the issue of skew between VOB database snapshot and

VOB storage pools (which are typically backed up some time after the snapshot), but it requires

that the VOB remain locked during the entire backup operation.

RESTRICTIONS

Identities: You must be root on UNIX. You must have an identity with the appropriate

permissions to lock the VOB on Windows.

Locks: The VOB must be locked to guarantee the integrity of a database snapshot. If

vob_snapshot cannot lock the VOB (because it is run with insufficient permissions, or another

user locked the VOB), it proceeds with the copy operation but logs the snapshot’s status as

questionable . This status is upgraded to successful if the optional post-snapshot db_check
pass succeeds.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

None.

THE SNAPSHOT LOG

vob_snapshot’s operation is recorded in the file /var/adm/atria/log/snapshot_log or

ccase-home-dir\var\log\snap_log. If UNIX snapshot notification mail indicates a problem with

any snapshot, consult the snapshot_log file. Here are some common error and status messages:

Successful snapshot messages:

NOTE: VobTag: /vobs/src
NOTE: Replica UUID: 0b9ccb24.8dc211cf.af59.00:01:80:73:db:6f
NOTE: Family UUID: 0b9ccb20.8dc211cf.af59.00:01:80:73:db:6f
NOTE: Dbcheck succeeded
NOTE: SNAPSHOT COMPLETED SUCCESSFULLY

Reference Pages 1123

vob_snapshot

The following messages may be generated when vob_snapshot runs on an unlocked VOB. If the

database check passes, the snapshot is upgraded from “questionable” to “successful.” You

should always lock a VOB before copying its VOB database with vob_snapshot.

ERROR: Could not lock the replica for the copy. Copied anyway.
ERROR: The snap was done without the vob lock in place.

ERROR: SNAPSHOT QUESTIONABLE
NOTE : The snap was done unlocked but the database checked ok

The following error occurs if the user account under which vob_snapshot executes does not have

permission to overwrite the directory supplied as a –snap_to argument to vob_snapshot_setup:

ERROR: The snap_to directory for vob /vobs/src is not writable

EXAMPLES

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• List all VOBs on the local host’s snapshot list (VOBs to which snapshot parameters have

been applied with vob_snapshot_setup modparam). Then, take VOB database snapshots

for all VOBs in the list.

/usr/atria/etc/vob_snapshot_setup lsvob

/vobs/src
/vobs/lib

/usr/atria/etc/vob_snapshot

• Add local VOB \vob_prj to the current host’s snapshot list. Then, take VOB database

snapshots for all VOBs in the list.

cd "c:\Program Files\Rational\ClearCase\etc"

vob_snapshot_setup modparam –dbcheck yes –snap_to \\saturn\bigdisk\snaps\proj1
\vob_prj1

vob_snapshot

UNIX FILES

/var/adm/atria/config/snapshot.conf
/var/adm/atria/log/snapshot_log

WINDOWS FILES

ccase-home-dir\var\log\snap_log

1124 Command Reference

vob_snapshot

WINDOWS NT REGISTRY KEYS

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\snapshot

SEE ALSO

checkvob, schedule, vob_restore, vob_snapshot_setup

Reference Pages 1125

vob_snapshot_setup

vob_snapshot_setup
Sets or displays VOB database snapshot parameters

APPLICABILITY

SYNOPSIS

• List local VOBs that are currently processed by vob_snapshot:

vob_snapshot_setup lsvob [–short | –long] [vob-tag ...]

• UNIX only—Configure a VOB for vob_snapshot processing:

ccase-home-dir/etc/vob_snapshot_setup modparam –snap_to snap-dir-pname
{ –dbcheck yes |–dbcheck no } –notify login-name[,...] vob-tag

• Windows only—Configure a VOB for vob_snapshot processing:

ccase-home-dir\etc\vob_snapshot_setup modparam –snap_to snap-dir-pname
{ –dbcheck yes |–dbcheck no } vob-tag

• Remove a VOB from the database snapshot list:

vob_snapshot_setup rmparam vob-tag

DESCRIPTION

Use vob_snapshot_setup to control VOB database snapshot activity on each VOB host. By

default, the scheduler runs vob_snapshot periodically. When vob_snapshot runs on a VOB

host, it checks each locally stored VOB for the existence of a multipart string attribute that

specifies snapshot parameters. A VOB’s database is copied by vob_snapshot only if this attribute

has been applied to the VOB with vob_snapshot_setup.

Product Command Type

ClearCase command

ClearCase LT command

Attache command

Platform

UNIX

Windows

1126 Command Reference

vob_snapshot_setup

Use vob_snapshot_setup lsvob to list the local VOBs currently processed by vob_snapshot and,

with –long, to display the snapshot parameters for each VOB in the list.

Use vob_snapshot_setup modparam to add a VOB to the database snapshot list, or to change

snapshot parameters for a VOB already on the list. (You cannot modify individual parameters

with modparam, but must replace them all.)

Use vob_snapshot_setup rmparam to remove a VOB from the snapshot list.

See also vob_snapshot and vob_restore.

WARNING: If you are using a homegrown or third-party type manager, code that implements the

get_cont_info method must be added to the type manager, or elements managed by the type

manager cannot be processed by checkvob at vob_restore time.

Setting VOB Snapshot Parameters

An administrator uses vob_snapshot_setup modparam to apply the following snapshot

parameters to each VOB or replica for which database snapshots are to be taken:

These parameters are combined to form a single string attribute of type

vob_snapshot_parameters, which vob_snapshot_setup attaches to the VOB.

Here is how these parameters may appear in a vob_snapshot_setup lsvob –long listing:

VobTag: /vobs/src
...
Dbcheck Enabled: yes
Notification List: root user,clearadm,anne
Snap To: /net/saturn/usr1/snapshots
...

See the –snap_to, –dbcheck, and –notify options for further details.

Disk Space Usage

The VOB snapshot backup/restore scenario requires additional disk space, both at restore time

and during daily operation:

• At restore time, checkvob may require substantial disk space. See the checkvob reference

page.

Parameter Legal Values Default Value

–snap_to existing, writable directory pathname no default

–dbcheck yes | no no

–notify (UNIX only) comma-separated list empty list

Reference Pages 1127

vob_snapshot_setup

• Enabling VOB snapshots for a VOB also enables a deferred source container deletion

mechanism, which typically increases source pool size. See the Administrator’s Guide for a

description of deferred deletion.

RESTRICTIONS

Identities: You must be VOB owner or root on UNIX. On Windows, no special identity is required.

Locks: With the modparam and rmparam operations, an error occurs if one or more of these

objects are locked: VOB, vob_snapshot_parameters attribute type.

Mastership: (Replicated VOBs only) The VOB replica must be self-mastering.

OPTIONS AND ARGUMENTS

VOB LISTING REPORT FORMAT. Default: vob_snapshot_setup lsvob lists the VOB-tag of each local

VOB currently configured for database snapshot.

–short
Same as default.

–long
In addition to the VOB-tag, vob_snapshot_setup lsvob lists each VOB’s snapshot

parameters and additional VOB identity details. If multiple VOBs use the same parent

–snap_to directory, use the replica UUID returned by –long to find a particular snapshot

in the parent directory.

vob-tag ...
Space-separated list of VOBs; restricts listing to one or more local VOBs.

SPECIFYING THE VOB. Default: None. modparam and rmparam operations require a VOB-tag

argument.

vob-tag
The VOB’s VOB-tag, as specified in mkvob or mktag –vob.

SETTING SNAPSHOT PARAMETERS. Default: With modparam, you must specify a VOB-tag; if you

specify no other options or arguments, modparam prompts for all necessary input and displays

explanatory text. If you specify both a VOB-tag and a snapshot target directory, modparam does

not prompt for additional parameters: vob_snapshot does not run the db_check operation, and

the notify list is empty.

–snap_to snap-dir-pname
A disk location to store the snapshot. vob_snapshot appends the VOB’s replica UUID to

the –snap_to directory to create a subdirectory, then copies the VOB database to the

subdirectory (after checking for sufficient disk space).

The replica UUID subdirectory that stores a VOB’s database snapshot is overwritten the

next time vob_snapshot processes that VOB.

1128 Command Reference

vob_snapshot_setup

Typically, the –snap_to directory gets backed up as part of normal backup operations

some time after the snapshots are taken.

–dbcheck yes
–dbcheck no

Specifies whether to run the db_check utility on each snapshot.

vob_snapshot runs db_check to perform fundamental database consistency and

integrity checks. (Later, at restore time, checkvob may examine the VOB database

looking for ClearCase and ClearCase LT anomalies.) The db_check pass occurs after all

snapshots are completed on the local host. Because this check can be time-consuming, it

is disabled by default.

If vob_snapshot cannot lock the database and db_check is disabled, db_check runs on

the snapshot at vob_restore time. Running db_check earlier, at snapshot time, may

expose problems you would prefer not to encounter at recover time.

–notify login-name[,...]
A list of user-IDs to be notified when vob_snapshot processes this VOB or replica. This

VOB-specific list supplements the per host notification list maintained in

/var/adm/atria/config/snapshot.conf. The snapshot.conf file also specifies the

notification program to be used. If you do not want to supply a list of user IDs to be

notified, specify –notify "''" on the command line.

EXAMPLES

NOTE: In the UNIX examples that follow, arguments and output that show multicomponent VOB

tags are not applicable to ClearCase LT, which recognizes only single-component VOB tags. In

this manual, a multicomponent VOB tag is by convention a two-component VOB tag of the form

/vobs/vob-tag-leaf—for example, /vobs/src. A single-component VOB tag consists of a leaf only—

for example, /src. In all other respects, the examples are valid for ClearCase LT.

• List all VOBs on the local host that are currently configured for processing by

vob_snapshot.

/usr/atria/etc/vob_snapshot_setup lsvob
/vobs/src
/vobs/lib

Reference Pages 1129

vob_snapshot_setup

• Same as previous example, but expand the output to include each VOB’s replica UUID and

snapshot parameters.

cd c:\Program Files\Rational\ClearCase\etc
vob_snapshot_setup lsvob –long
VobTag: \vob_src
Replica Name: original
Replica Uuid: 4a6bbe5d88d511cfa9b400018073db6f
Family Uuid: 4a6bbe5988d511cfa9b400018073db6f
Dbcheck Enabled: yes
Snap To: \\saturn\bigdisk\snapshot
Deferred Deletes: Enabled

VobTag: \vob_lib
Replica Name: original
Replica Uuid: 5fec90f48db911cfab9800018073db6f
Family Uuid: 5fec90f08db911cfab9800018073db6f
Dbcheck Enabled: no
Snap To: \\saturn\bigdisk\snapshot
Deferred Deletes: Enabled

• Add VOB \vob_src to the local host’s snapshot list.

cd c:\Program Files\Rational\ClearCase\etc

vob_snapshot_setup modparam –dbcheck yes
–snap_to \\saturn\bigdisk\snaps\vob_src \vob_src

• Add /vobs/src to the local host’s snapshot list, as in the previous example, but this time run

vob_snapshot_setup modparam in interactive mode.

vob_snapshot_setup modparam /vob/src

Supply a directory to contain the snapshot data for this vob. The
directory must exist and be writable.
(Full pathname: there is no default) /net/saturn/usr1/snaps/src

Supply a comma separated list of those users to be notified of events
during the snapshot of this vob.
(Comma separated user id list: default no one): root,clearadm,anne

Do you want a data base check to be performed on this vob after all
snapshot operations on this host are completed?
Valid responses are (yes,no)
The default is no: yes

• Remove VOB \vob_src from the local host’s snapshot list.

cd c:\Program Files\Rational\ClearCase\etc

vob_snapshot_setup rmparam \vob_src

1130 Command Reference

vob_snapshot_setup

UNIX FILES

/var/adm/atria/config/snapshot.conf
/var/adm/atria/log/snapshot_log

WINDOWS FILES

ccase-home-dir\var\log\snap_log

WINDOWS NT REGISTRY KEYS

HKEY_LOCAL_MACHINE\SOFTWARE\Atria\ClearCase\CurrentVersion\snapshot

SEE ALSO

checkvob, schedule, vob_restore, vob_snapshot

Reference Pages 1131

wildcards

wildcards
Pattern-matching characters for Attache pathnames

APPLICABILITY

NOTE: For ClearCase and ClearCase LT, see the wildcards_ccase reference page.

SYNOPSIS

? * ~ [...] ... ~username

DESCRIPTION

Attache recognizes wildcard (pattern-matching) characters in these contexts:

• Attache commands — Attache expands wildcards in command pathnames with respect to

the view, except in three cases—import, lslocal, and put—in which wildcards are expanded

with respect to the workspace. In addition, various commands accept pattern arguments

that can include wildcards; for example, see find –name, and lsvob vob-tag-pattern. In one of

these arguments, a wildcard pattern must be quoted to protect it from evaluation by the

command processor itself. For example:

• Config spec rules — The pathname pattern in a config spec rule is interpreted by a view’s

associated view_server process.

Attache recognizes these wildcard characters:

Product Command Type

Attache general information

Platform

UNIX

Windows

cmd-context lsvob –region "dev*" "*src*" (“pattern” arg; quotes required)
cmd-context ls *.c (standard pname arg; no quotes required)

? Matches any single character.

* Matches zero or more characters.

~ Indicates your home directory on the helper host, except for put, import, and

lslocal commands.

1132 Command Reference

wildcards

See the config_spec reference page for more information, including restrictions.

~username
(UNIX only

Indicates username’s home directory on the helper host (except for put, import,
and lslocal commands).

[xyz] Matches any of the listed characters.

[x-y] Matches any character whose ASCII code falls between that of x and that of y,

inclusive.

. . . (Ellipsis, a ClearCase extension) Matches zero or more directory levels.

For example:

foo/.../bar matches any of the following pathnames:

foo/bar
foo/usr/src/bar
foo/rel3/sgi/irix5/bar

and

foo\... matches the foo directory itself, along with the entire directory tree

under it.

Reference Pages 1133

wildcards_ccase

wildcards_ccase
Pattern-matching characters for ClearCase and ClearCase LT pathnames

APPLICABILITY

NOTE: For Attache, see the wildcards reference page.

SYNOPSIS

? * ~ [...] ...

DESCRIPTION

Wildcard (pattern-matching) characters are recognized in these contexts:

• UNIX—cleartool single-command mode—The operating system shell, not cleartool,
interprets pathnames and expands wildcards. With some cleartool commands (catcr
–select, find –name, lsvob), you can specify a pathname pattern as a quoted argument;

these are always interpreted by cleartool:

cleartool catcr –select "bug?.o" bgrs@@04-Mar.22:54.426

• Windows—cleartool single-command mode—The command shell, not cleartool, interprets

pathnames and expands wildcards. Therefore, unless you are using a command shell that

expands pathname wildcards (cmd.exe does not), these wildcards are disallowed. You can,

however, use wildcards in special pattern arguments in some cleartool subcommands (catcr
–select, find –name, and lsvob). For example:

Product Command Type

ClearCase general information

ClearCase LT general information

Platform

UNIX

Windows

Z:\> cleartool ls *.c (fails; command shell does not understand wildcards)
Z:\> cleartool lsvob *src* (“pattern” arg wildcards OK; no quotes required because

cleartool does not expand the command line)

1134 Command Reference

wildcards_ccase

• cleartool interactive mode—cleartool expands wildcards in pathnames. In cleartool
commands that accept pattern arguments (catcr –select, find –name, and lsvob), you must

quote a wildcard pattern to protect it from evaluation by cleartool itself. For example:

• Config spec rules — The pathname pattern in a config spec rule is interpreted by a view’s

associated view_server process.

ClearCase and ClearCase LT recognize these wildcard characters:

See the config_spec reference page for more information, including restrictions.

cleartool> lsvob –region "dev*" "*src*" (“pattern” arg; quotes required)
cleartool> ls *.c (standard pname arg; no quotes required)

? Matches any single character.

* Matches zero or more characters.

~ Indicates your home directory.

[xyz] Matches any of the listed characters.

[x-y] Matches any character whose ASCII code falls between that of x and that of y,

inclusive.

. . . Ellipsis; matches zero or more directory levels.

For example:

foo/.../bar matches any of the following pathnames:

foo/bar
foo/usr/src/bar
foo/rel3/sgi/irix5/bar

and:

foo\... matches the foo directory itself, along with the entire directory tree

under it.

Reference Pages 1135

winkin

winkin
Accesses one or more derived objects (DOs) from a dynamic view, or converts a nonshareable

derived object to a shareable (promoted) derived object

APPLICABILITY

SYNOPSIS

• Wink in a single DO or a list of explicitly named DOs:

winkin [–pri⋅nt] [–nov⋅erwrite] [–sib⋅lings [–adi⋅rs]]

[–out pname] do-pname ...

• Recursively wink in a DO and all of its subtargets:

winkin [–pri⋅nt] [–nov⋅erwrite] [–r⋅ecurse [–adi⋅rs] [–sel⋅ect do-leaf-pattern] [–ci]]
do-pname ...

DESCRIPTION

The winkin command enables you to access the data of any existing DO, even if it does not

match your view’s build configuration (and, thus, would not be winked in by a clearmake build).

Note that you cannot access a DO’s file-system data directly, using a version-extended

pathname, such as hello@@21-Dec.16:18.397. Instead, you must wink it in to a dynamic view,

and then access it using that view.

winkin also converts nonshareable DOs to shareable (promoted) DOs. If you specify a

nonshareable DO, winkin first advertises the DO by writing information about it to the VOB,

and then promotes it by copying its data container into the VOB and moving its configuration

record into the VOB. Because a shareable DO cannot have nonshareable sub-DOs or sibling DOs,

winking in a nonshareable DO also advertises its sub-DOs and siblings, converting them to

shareable DOs. With –siblings, winkin advertises and promotes the DO’s siblings.

Product Command Type

ClearCase cleartool subcommand

Attache command

Platform

UNIX

Windows

1136 Command Reference

winkin

NOTE: When a nonshareable DO is converted to a shareable DO, its DO-ID changes. For more

information, see Building Software.

Effect on View-Resident DO Data Containers

If you specify a shared DO while working in the view where it was originally built, and if a

view-resident data container for the DO in that view still exists, then the view-resident data

container is scrubbed, and your view accesses the shared data container in VOB storage. This is

equivalent to executing a view_scrubber command.

If you specify an unshared DO or nonshareable DO in your view, the data container is promoted

to the VOB. The view-resident data container is scrubbed, and your view accesses the data

container in VOB storage. This is equivalent to executing a view_scrubber –p command.

When you need to process a large number of DOs, use view_scrubber rather than winkin.

RESTRICTIONS

At the file-system level, you must have read permission on the DO to be winked in.

NOTE: On UNIX, if you are overwriting an existing DO in your view (perhaps one that was

winked in previously), you must have write permission on the existing DO. See the clearmake
reference page.

OPTIONS AND ARGUMENTS

LISTING RESULTS INSTEAD OF PERFORMING THE WINKIN. Default: The listed derived objects are

winked in.

–pri⋅nt
Lists the names of DOs that would be winked in without winking them in. This option

is useful for previewing what will happen before committing to a winkin operation that

could overwrite a large number of derived objects in the view.

PRESERVING UNSHARED DERIVED OBJECTS IN YOUR VIEW. Default: winkin overwrites any

unshared DOs in your view.

–nov⋅erwrite
Preserves the unshared DOs in your view. Unshared DOs are often a result of

checked-out source files. This option is useful to help limit winkins over DOs that were

created from those source files.

WINKING IN SIBLING DERIVED OBJECTS. Default: Only the listed DOs are winked in, without their

siblings (DOs created by the same build script that created the DO to be winked in). Note that

you do not need to use –siblings with –recurse, which always winks in siblings.

–sib⋅lings
Winks in the siblings of this derived object in addition to the derived object itself.

Reference Pages 1137

winkin

WINKING IN DERIVED OBJECT SUBTARGETS. Default: Only the listed derived objects are winked in,

without any derived objects that are subtargets of these objects. Only derived objects in

directories rooted at the current working directory are winked in.

–r⋅ecurse
Recursively winks in all subtargets of the listed derived objects (subject to the

restrictions specified by other options). This option works by recursively walking the

configuration records containing those DOs, gathering information about which

subtargets to wink in, and weeding out duplicates. The gathered names are then winked

in.

If multiple versions of the same object appear in a derived object’s configuration, only

the most recent version is winked in. A warning tells you which version is being

skipped.

winkin –recurse keeps going even if the winkin of one or more of the items in the

configuration record hierarchy fails, though the command issues errors for the ones that

failed.

Because this command winks in derived objects without regard to any makefile

information, it is usually a good idea to run clearmake after performing this operation,

to bring everything up to date.

–adi⋅rs
Allows winkin to directories other than those rooted at the current directory.

–adirs only has effect with –recurse or –siblings.

–sel⋅ect do-leaf-pattern
(For use in recursive winkins only) Starts gathering the list of files to wink in at the

subtargets of do-pname that match the specified pattern. do-leaf-pattern can be a pattern

(see the ClearCase wildcards_ccase or Attache wildcards reference pages) that matches

a simple filename; it must not include a slash (/) or the ellipsis wildcard (...).
Alternatively, it can be a standard pathname of a derived object.

This option is useful for isolating a derived object that was built as a dependency of

another one. For example, this command winks in derived objects starting at the

hello.obj that was used to build hello.exe in the current view:

cmd-context winkin –recurse –select hello.obj hello.exe

–select only has effect with –recurse.

–ci
(For use in recursive winkins only) By default, recursive winkins stop at DO versions:

DOs that have been checked in as versions of elements, and used as sources during the

1138 Command Reference

winkin

build. This option allows you to recurse into the CRs of DO versions. –ci only has effect

with –recurse.

SPECIFYING AN ALTERNATIVE PATHNAME. Default: A derived object is winked in to your view at

the pathname you specify with a DO-pname argument, minus any DO-ID. For example, if you

specify the DO-pname ../src/hello@@21-Dec.16:18.397, then by default, it is winked in at

pathname ../src/hello. Any object at the destination pathname is overwritten, subject to standard

permissions-checking. (Overwriting a shared DO decrements its reference count; no file system

data is actually deleted.)

–out pname
An alternative pathname at which to wink in the DO. You must specify exactly one DO

in this case, and pname must be in the same VOB as the DO being winked in.

In either case, an error occurs if an object already exists at the destination. –out only has

effect without the –recurse option.

NOTE: You must use –out if you are not using –recurse and specify another view’s DO,

using a view-extended pathname, and you intend to wink in the DO to your own view.

SPECIFYING THE DERIVED OBJECT. Default: None.

do-pname ...

One or more pathnames that specify derived objects. A standard pathname names a DO

in the current view; you can also use a view-extended pathname and/or a

VOB-extended pathname. For example, on UNIX systems:

and on Windows systems:

EXAMPLES

The UNIX examples in this section are written for use in csh. If you use another shell, you may

need to use different quoting and escaping conventions.

• If pname is a directory, the DO is winked in to that directory, with the same leaf

name as the original DO.

• Otherwise, pname is treated as a file name.

/view/george/users_hw/hello (view-extended pathname)
hello@@21-Dec.16:18.397 (VOB-extended pathname,

including DO-ID)
/view/george/users_hw/hello@@05-Jan.09:16:788 (combination)

m:\george\users_hw\hello.exe (view-extended pathname)
hello.exe@@21-Dec.16:18.397 (VOB-extended pathname,

including DO-ID)
m:\george\users_hw\hello.exe@@05-Jan.09:16:788 (combination)

Reference Pages 1139

winkin

The Windows examples that include wildcards or quoting are written for use in cleartool
interactive mode. If you use cleartool single-command mode, you may need to change the

wildcards and quoting to make your command interpreter process the command appropriately.

In cleartool single-command mode, cmd-context represents the UNIX shell or Windows

command interpreter prompt, followed by the cleartool command. In cleartool interactive

mode, cmd-context represents the interactive cleartool prompt. In Attache, cmd-context represents

the workspace prompt.

• Wink in another view’s DO into your view, using a view-extended pathname. The –out
option is required in this case.

cmd-context winkin –out . /view/george/usr/hw/hello.o
Winked in derived object "hello.o"

• Wink in a DO, using its DO-ID, and saving it under another file name.

cmd-context lsdo hello.exe
02-Mar.20:02 "hello.exe@@02-Mar.20:02.376"
01-Mar.09:06 "hello.exe@@01-Mar.09:06.365"

cmd-context winkin –out hello.March1 hello.exe@@01-Mar.09:06.365
Promoting unshared derived object "hello.exe@@01-Mar.09:06.365"
Winked in derived object "hello.March1"

• Create a new derived object and promote it to VOB storage.

clearmake

cc -c hello.c
cc -c util.c
cc -o hello hello.o util.o

cmd-context winkin hello
Promoting unshared derived object "hello"
Winked in derived object "hello"

• Wink in derived object main.obj and all of its siblings.

cmd-context lsdo main.obj
04-Sep.16:14 “main.obj@@04-Sep.16:14.49”

cmd-context winkin –siblings main.obj@@04-Sep.16:14.49
Promoting unshared derived object “\mg_test\main.obj”.
Winked in derived object “\mg_test\main.obj”
Promoting unshared derived object “\mg_test\sibling.exe”.
Winked in derived object “\mg_test\sibling.exe”

1140 Command Reference

winkin

• Recursively wink in derived object main.exe and all of its subtargets.

cmd-context winkin –recurse main@@04-Sep.16:03.34
Promoting unshared derived object “/vobs/mg_test/main”
Winked in derived object “/vobs/mg_test/main
Promoting unshared derived object “/vobs/mg_test/main.o”
Winked in derived object “/vobs/mg_test/main.o”
Promoting unshared derived object “/vobs/mg_test/sibling”
Winked in derived object “/vobs/mg_test/sibling”
Promoting unshared derived object “/vobs/mg_test/test.o”
Winked in derived object “/vobs/mg_test/test.o”

NOTE: When you use –recurse, you can also specify the DO to wink in by using its

view-extended pathname. The DO and its subtargets are recursively winked in to the current

(dynamic) view. For example:

cmd-context winkin –recurse m:\cep\mg_test\main.exe

• List the DOs that would be winked in during a recursive winkin of derived object main.exe.

cmd-context winkin –print –recurse main@@04-Sep.16:03.34
Would wink in derived object “/vobs/mg_test/main”
Would wink in derived object “/vobs/mg_test/main.o”
Would wink in derived object “/vobs/mg_test/test.o”

• Recursively wink in derived object main.exe and all of its subtargets, preserving the

unshared DOs in your view.

cmd-context winkin –noverwrite –recurse \testvw\mg_test\main.exe
Winked in derived object “\mg_test\main.exe”
Winked in derived object “\mg_test\main.obj”
Winked in derived object “\mg_test\sibling.exe”
Will not wink in over unshared derived object “\mg_test\test.obj”

SEE ALSO

clearmake, scrubber, view_scrubber

Reference Pages 1141

ws_helper

ws_helper
Server process connecting an Attache workspace to a ClearCase view

APPLICABILITY

SYNOPSIS
Invoked on the helper host by the albd_server as a result of the mkws or setws commands

DESCRIPTION

The workspace helper program is the process managing the connection between the Attache

workspace and ClearCase views and VOBs. There is a one-to-one mapping between Attache

workspace users and workspace helper processes. Executing a mkws or setws command starts

ws_helper on the helper host, which remains active until you exit the workspace. The –shost
option of the mkws command specifies the host on which ws_helper runs. By default this is the

view host, if the view can be found in the ClearCase registry.

ws_helper provides the following basic services:

• ClearCase command execution

• File transfer between the workspace and the view

• Wildcard lookup

• Other file-system support

ws_helper is invoked by the albd_server and inherits its environment. Then ws_helper assumes

the identity of the user whose identity you provide; however, it does not acquire the user’s

environment automatically.

On UNIX hosts, ws_helper sets its umask to zero, adds the directory ccase-home-dir/bin to the

PATH environment variable, and sets the HOME, LOGNAME, USER, and SHELL environment

variables after a user has been successfully authorized. On Windows NT hosts, ws_helper adds

the directory ccase-home-dir\bin to the PATH environment variable, and sets the HOME

Product Command Type

Attache command

Platform

UNIX

Windows

1142 Command Reference

ws_helper

environment variable (if the user’s domain account specifies a home directory and the HOME

environment variable is not already set as a system variable).

CONFIGURING THE HELPER ENVIRONMENT

You can create a program or script in the bin subdirectory of ccase-home-dir on the helper host

to set up and configure the environment in which the Attache helper is invoked. On a UNIX host,

the program or script must be named ws_startup; on a Windows NT host, the program or script

must be named ws_startup.ext, where ext is bat, com, exe, or any other extension that cmd.exe
recognizes to be executable. This program or script can be used to perform security checks, config

spec validation, or to set the environment variables needed by any program ws_startup invokes.

NOTE: If ws_startup is a UNIX script, it must be executable for all Attache users, and the first line

must be: #! shell, where shell is the path name to the appropriate shell, for example, /bin/csh.

ws_startup can also make use of the environment variables set before it is run, namely:

• ATTACHE_USER, the authorized user’s user name

• ATTACHE_VIEW_TAG, the view tag (or workspace name) to which the helper has been set

• ATTACHE_ENV_PN, the name of the temporary file in which a user’s environment variables

can be set

To set user-specific environment variables, for example, those needed to run triggers, you must

have a properly configured file on the helper host:

• If there is a predefined set of environment variables, you can create a file named

.attache.env in the user’s home directory.

On Windows NT, the helper determines where the user’s home directory is by going to the

domain controller, which validates the logon and checks the user’s profile for a directory

path under “Home Directory”. For the helper to get to the user’s home directory, the

directory must be a UNC path because the user’s home directory is not necessarily local to

the helper host.

• If the information is dynamic, you can have ws_startup create the temporary file whose

name can be read from ATTACHE_ENV_PN, and write the environment variables to it.

The workspace helper program attempts to read environment settings first from the file named

in ATTACHE_ENV_PN and, only if that file does not exist, from .attache.env.

Entries in the file must appear one per line. For each environment variable ENV_NAME you want

to set to the value val, add an entry of the form ENV_NAME=val. For each environment variable

you want to unset, add an entry of the form ENV_NAME=.

For UNIX helper hosts, you can also control the umask of the helper process by adding an entry

of the form umask=val, where val must be expressed in C integer constant format. That is, val can

be a decimal number beginning with the integers 1–9, an octal number beginning with zero, or a

Reference Pages 1143

ws_helper

hexadecimal number beginning with 0x or 0X (a zero followed by an “x”). Instead of setting an

environment variable, the helper sets its own umask to val. On Windows NT helpers, this entry

type is ignored.

RESTRICTIONS

Certain identities are required to use the ws_helper program on Windows NT:

• The identity under which the albd_server (Atria Location Broker) runs must have local

Administrator privileges. This is necessary so that the helper program can create services

with the Service Control Manager.

• Any authorization identity given to Attache by a client must have “logon as a service”

privileges on the helper host.

See the Installation and Release Notes for details.

ERROR LOG

The ws_helper sends warning and error messages to the event log on Windows NT hosts, or to

/var/adm/atria/log/ws_helper_log on UNIX hosts.

SEE ALSO

attache, mkws, setws, Administrator’s Guide

1144 Command Reference

wshell

wshell
Executes a local shell in the current working directory of the workspace

APPLICABILITY

SYNOPSIS
wsh⋅ell [command [arg ...]]

DESCRIPTION

The wshell command executes a local shell in the current working directory; this directory must

exist locally. An initial command can be specified. The shell runs interactively until you exit from

it. On Windows 3.x, the wshell command invokes attache-home-dir\etc\wshell.pif which can be

customized to run the shell of your choice. On Windows NT and Windows 95, wshell looks for

an environment variable named COMSPEC. If found, the value of the COMSPEC environment

variable is used as the name of the shell program to run. Otherwise, wshell runs cmd.exe, which

must be found on your PATH.

RESTRICTIONS

None.

OPTIONS AND ARGUMENTS

Initial Command. Default: wshell runs no initial command by default.

command [arg ...]

The interactive shell invokes the program command, (and, optionally, passes it one or

more arguments). The shell remains after the command is executed.

Product Command Type

Attache command

Platform

UNIX

Windows

Reference Pages 1145

wshell

EXAMPLES

• Create a new window running an interactive shell.

/vob/src> pwd
/vob/src
/vob/src> wshell

• Create a new window running an interactive shell that runs a dir command.

/vob/src> pwd
/vob/src

/vob/src> wshell dir *.c

SEE ALSO

shell, make, attache_command_line_interface

1146 Command Reference

xclearcase

xclearcase
Primary ClearCase and ClearCase LT graphical interface utility

APPLICABILITY

SYNOPSIS

• Start in File Browser:

xclearcase [X-options] [–file] [–ngraph] pname ...

• Start in Version Tree Browser:

xclearcase [X-options] –vtree [–all] [–nme⋅rge] [–nco]

[–lab⋅el] [–ngraph] [–tag view-tag[,...]] pname ...

• Start in Hyperlink Tree Browser:

xclearcase [X-options] –htr⋅ee [–dir⋅ect | { –nel⋅ement | –nbr⋅anch | –nve⋅rsion }] ...

[–inc⋅lude hlink-type[,...] | –exc⋅lude hlink-type[,...]] [–to_only | –fro⋅m_only]

[–tex⋅t] [–ngraph] pname ...

• Start inType Browser:

xclearcase [X-options] { –att⋅ype | –brt⋅ype | –elt⋅ype | –hlt⋅ype | –lbt⋅ype | –trt⋅ype }

DESCRIPTION

The xclearcase command invokes the ClearCase or ClearCase LT GUI (graphical user interface).

xclearcase is implemented as an X Window System application using a standard window system

toolkit. See your X Window System documentation for a description of mouse and keyboard

conventions.

RESTRICTIONS

None.

Product Command Type

ClearCase command

ClearCase LT command

Platform

UNIX

Reference Pages 1147

xclearcase

OPTIONS AND ARGUMENTS

SELECTING A BROWSER. Default: Starting xclearcase brings up the main panel, an enhanced file

browser. (xclearcase –file has the same effect.)

–file [–ngraph] dir-pname ...

Starts a separate file browser on each of the specified VOB directories (or a single

browser on the current working directory). Using –ngraph starts non-graphical

browsers; objects are listed by name instead of being displayed as icons.

–att⋅ype , –brt⋅ype , –elt⋅ype , –hlt⋅ype , –lbt⋅ype , –trt⋅ype
Starts a single type browser.

–vtr⋅ee [–all] [–nme⋅rge] [–nco] [–tag view-tag[,...]] pname ...

Similar to the cleartool lsvtree –graphical command. See the lsvtree reference page for

details on the –all, –nmerge, and –nco options. Read the section X RESOURCES for

information on the –tag option.

–htr⋅ee [options]

Starts a Hyperlink Tree Browser. By default, the browser starts in inheritance mode; use

–direct to start it in direct mode.

By default, there is no filtering of hyperlinks by kind of file-system object; use

–nelement, –nbranch, and/or –nversion to exclude links whose left ends are connected

to certain kinds of objects.

By default, there is no filtering of hyperlinks by direction; use –from_only or –to_only
to restrict the display to hyperlinks from/to the specified pname.

By default, hyperlinks of all types except Merge are displayed; use –include or –exclude
to specify exactly which types to display.

By default, annotations to hyperlinks are indicated by a single quote (’); use –text to
display full annotations.

By default, the browser uses a graphical display (icons); use –ngraph to have the

browser start in text mode.

X WINDOW SYSTEM OPTIONS. Default: None.

X-options
xclearcase accepts all the standard X Toolkit command-line options (for example,

–display), as described in the X(1) reference page. Quote the option string if it includes

white space.

1148 Command Reference

xclearcase

X RESOURCES

Following are the shell instance names for the xclearcase browsers and transcript pad:

xclearcase.vtree
xclearcase.metatype
xclearcase.file
xclearcase.viewtag
xclearcase.vob
xclearcase.username
xclearcase.string
xclearcase.list
xclearcase.pool
xclearcase*transcript

The vtreeTagColors resource takes a comma-separated list of colors. For example:

xclearcase.vtreeTagColors: DarkOliveGreen4,Blue,IndianRed2

The colors on this list are used for the view-tag annotations specified by the –tag option.

You can use the useSmallFonts resource to increase the density of the File Browser’s display,

both when displaying file names and when displaying icons:

xclearcase.useSmallFonts: True

EXAMPLES

• Start the graphical user interface.

% xclearcase

• Start the graphical user interface in view test_vu.

% cleartool setview –exec xclearcase test_vu

• Display the version tree for element base.c, annotating the version selected by view dvt_vu
in blue, and the version selected by view fix_vu in red.

% xclearcase -xrm "xclearcase.vtreeTagColors: blue,red" -vtree -tag dvt_vu,fix_vu base.c

SEE ALSO

X(1)

Reference Pages 1149

xcleardiff

xcleardiff
Compares or merges text files graphically

APPLICABILITY

SYNOPSIS

• Compare files:

xcleardiff [–b⋅lank_ignore] [–tin⋅y] [–html] [–hst⋅ack | –vst⋅ack] [X-options] pname1
pname2 ...

• Merge files:

xcleardiff –out output-pname [–bas⋅e pname] [–tin⋅y] [–html]
[–hst⋅ack | –vst⋅ack]

[–q⋅uery | –qal⋅l | –abo⋅rt] [X-options] contrib-pname ...

DESCRIPTION

xcleardiff is a graphical diff and merge utility for text files. It implements the xcompare and

xmerge methods for the text_file and compressed_text_file type managers, as well as the

graphical portions of these methods for the directory and _html type managers. On color display

monitors, xcleardiff uses different colors to highlight changes, insertions, and deletions from one

or more contributing files. During merge operations, contributors are processed incrementally

and, when necessary, interactively, to visibly construct a merge results file. You can edit this ts

file directly in the merge results pane as it is being built to add, delete, or change code manually,

or to add comments.

xcleardiff is implemented as an X Window System application using a standard Motif toolkit.

See your X Window System documentation for a description of general mouse and keyboard

conventions.

Product Command Type

ClearCase command

ClearCase LT command

Platform

UNIX

1150 Command Reference

xcleardiff

INVOKING xcleardiff

You can invoke xcleardiff directly from the command line, specifying files or versions to

compare or merge. Invoking xcleardiff directly bypasses the type managers, so invoke xcleardiff
directly only when you are working with text files that are not stored in a VOB.

The following cleartool subcommands, when applied to text files, also invoke xcleardiff:

• diff –graphical

• merge –graphical

• findmerge (with options –graphical or –okgraphical)

The findmerge command includes the advantage of some extra command options—optional

preprocessing—in the same way that diff and merge offer more flexibility than direct calls to the

character-based cleardiff utility. See findmerge –ftag, for example.

Various buttons and commands in the xclearcase graphical interface also invoke xcleardiff.

NOTE: When comparing/merging HTML files, if the machine on which you execute xcleardiff is

not the machine on which you run your HTML browser, your browser may not be able to find

the pathname to the files being compared/merged.

CHANGING THE DEFAULT HTML BROWSER

xcleardiff invokes a script to determine which HTML browser to use when comparing or

merging files of type html. By default, xcleardiff invokes the Netscape browser through the

script display_url.sh. To change the default values, use the following environment variables:

CCASE_WEB_SCRIPT (Default value: $ATRIAHOME/etc/display_url.sh)

Invokes the script specified, which designates the browser to use.

CCASE_NETSCAPE (Default value: “netscape”)

Changes the default version of the Netscape browser to the specified version. If the

Netscape browser is accessible through $PATH, you need only specify the executable

name; if it is not in your path specification, you must specify a full pathname.

CCASE_NETSCAPE_OPT (Default value: NULL)

Provides additional command-line options to the Netscape browser through the script,

for example, –install to force the Netscape browser to use a private colormap.

RESTRICTIONS

See the diff and merge reference pages.

Reference Pages 1151

xcleardiff

OPTIONS AND ARGUMENTS

HANDLING OF WHITE SPACE. Default: When comparing files, xcleardiff pays attention to changes

in white space.

–b⋅lank_ignore
(Valid only when comparing files, not when merging) Causes xcleardiff to ignore extra

white space characters in text lines: leading and trailing white space is ignored; internal

runs of white-space characters are treated like a single <SPACE> character.

FONT SIZE. Default: xcleardiff uses the font specified by the resource xcleardiff*diffFontSet .

–tin⋅y
Uses a smaller font, to increase the amount of text displayed in each pane.

INVOKING THE TYPE MANAGER FOR HTML FILES. Default: When xcleardiff is invoked directly, the

type manager is bypassed. When xcleardiff is invoked indirectly (through cleartool or the

graphical interface), the type manager is used.

–html
Starts the _html type manager.

CONTRIBUTOR PANE STACKING. Default: Each of the two or more files being compared or merged

is displayed in a separate subwindow, or contributor pane. By default, these panes are displayed,

or stacked, horizontally (side by side), with the base contributor on the left.

–vst⋅ack
Stacks the contributor panes vertically, with the base contributor at the top.

–hst⋅ack
Displays the contributor panes horizontally (the default behavior).

MERGE RESULTS FILE. Default: None. You must specify a merge results file with the –out option.

–out output-pname
(Merge only; required) Specifies the merge results file, either a checked-out version or a

standard operating-system file.

SPECIFYING A BASE CONTRIBUTOR FOR A MERGE OPERATION. Default: xcleardiff does not calculate

a base contributor (see the merge reference page). The first contributor named on the command

line becomes the base contributor, against which the one or more additional contributors are

compared. Query on All mode (–qall) is in effect by default, but can be deactivated from the

graphical interface.

–bas⋅e pname
(merge only) Makes pname the base contributor for a merge. Using –base turns off

“Query on All” mode, unless –qall is explicitly supplied. See also Merge Automation.

1152 Command Reference

xcleardiff

MERGE AUTOMATION. Default: If you do not specify a base contributor with –base, Query on All

mode is enabled. In this mode, xcleardiff prompts you to accept or reject each change, insertion,

or deletion found in contributors 2 through n on the command line. The options described in this

subsection have no effect.

If you specify a base contributor with –base, xcleardiff performs the merge automatically,

prompting only if two or more contributors modify the same section of the base contributor. If

all changes can be merged automatically, xcleardiff prompts you before saving the merge results

file.

–q⋅uery
–qal⋅l
–abo⋅rt (mutually exclusive)

–query turns off automatic merging for nontrivial merges (where two or more

contributors differ from the base file) and prompts you to proceed with every change in

the from-versions. Changes in the to-version are accepted unless a conflict exists.

–qall turns off automatic acceptance of changes in which only one contributor differs

from the base file. In this mode, xcleardiff prompts you to accept or reject each

modification (relative to the base file) in each contributor, as it does when two or more

contributors differ from the base contributor. You can switch this mode interactively

during the xcleardiff session.

–abort is intended for use with scripts or batch jobs that involve merges. It allows

completely automatic merges to proceed, but aborts any merge that would require user

interaction.

X WINDOW SYSTEM OPTIONS. Default: None.

X-options
xcleardiff accepts all the standard X Toolkit command-line options (for example,

–display), as described in the X(1) reference page. If the option string includes white

space, enclose it in quotes.

DIFF/MERGE CONTRIBUTORS. Default: None. You must specify at least two files for a diff
operation, and at least one file for a merge operation (two, if a base contributor is not supplied

with –base).

contrib-pname ...

The files to be compared or merged. If a merge operation does not explicitly include a

base contributor with –base, the first contrib-pname becomes the base contributor. For a

diff operation, xcleardiff does not calculate a common ancestor (see the diff reference

page); the first contrib-pname is the base contributor against which subsequent

contributors are compared.

Reference Pages 1153

xcleardiff

EXAMPLES

• Compare two files in different directories.

% xcleardiff test.c ~jpb/my_proj/test_NEW.c

• Compare two HTML files and invoke the type manager for HTML files.

% xcleardiff –html my_new_source.html my_old_source.html

SEE ALSO

cleardiff, diff, merge, schemes, type_manager

1154 Command Reference

xmldiffmrg

xmldiffmrg
Parses, compares, and merges XML file versions

APPLICABILITY

SYNOPSIS

• Start the GUI without specifying an operation:

xmldiffmrg

• Parse one file:

xmldiffmrg [–xvi⋅ew] [–vis⋅ible_blank] [pname1]

• Compare files:

xmldiffmrg –xco⋅mpare [–b⋅lank_ignore –vis⋅ible_blank] [–hst⋅ack |–vst⋅ack]

[pname1 ... pname7]

• Merge files:

xmldiffmrg –xme⋅r⋅ge [–out pname | –to to-version] [–q⋅uery | –abo⋅rt | –qal⋅l]

[–enc⋅oding { utf-16 | utf-8 | iso-8859-1 | ascii }]

[–hst⋅ack |–vst⋅ack] [–vis⋅ible_blank]

[–bas⋅e base_contributor] [pname1 ... pname7]

DESCRIPTION

The xmldiffmrg command starts a GUI in which you compare and merge versions of XML

elements. xmldiffmrg parses XML, which enables you to do the following:

• Compare and merge XML structure and content without understanding XML markup.

• Expand, collapse, browse, and filter the data tree resulting from a comparison or merge

operation.

Product Command Type

ClearCase command

ClearCase LT command

Platform

Windows

Reference Pages 1155

xmldiffmrg

For general information on comparing and merging element versions, see Developing Software.

RESTRICTIONS

Identities: For all operations except creating a merge arrow, no special identity is required. To

create a merge arrow, you must have one of the following identities:

• Element owner

• Element group member

• VOB owner

• Member of the ClearCase group (ClearCase)

• Local administrator of the ClearCase LT server host (ClearCase LT)

Locks: An error occurs if one or more of these objects are locked: VOB, element type, element,

branch type, branch, hyperlink type.

Mastership: (Replicated VOBs only) No mastership restrictions.

OPTIONS AND ARGUMENTS

SPECIFYING THE OPERATION TO BE PERFORMED. Default: For a single pname argument, –xview; for

multiple contributors, none.

–xvi⋅ew
Parses a single contributor.

–xco⋅mpare
Compares contributors.

–xme⋅r⋅ge
Merges contributors.

TREATMENT OF WHITE SPACE. Default: The default behavior differs according to whether the

nodes contain white space only, or both white space and other characters, as follows:

• In white-space-only nodes, white space is ignored unless there’s a difference in the nodes

being compared or merged.

• In nodes that contain white space and other characters, a white-space character is treated

the same as any other character.

–visible_blank
White-space characters are made visible by alternate glyphs representing the white

space.

–blank_ignore
Ignores white-space characters in white-space-only nodes. This option does not affect

the comparison of nodes that contain both white space and other characters.

1156 Command Reference

xmldiffmrg

CONTRIBUTOR PANE STACKING. Default: –hstack.

–hst⋅ack
Each contributor being compared or merged is displayed in a separate contributor pane

that is stacked horizontally (side by side), with the base contributor on the left.

–vst⋅ack
Specifies contributor panes are to be stacked vertically, with the base contributor on top.

DESTINATION OF THE MERGE OUTPUT. Default: None; the GUI prompts for a destination if none is

specified in the command line.

–out pname
Specifies the pathname to which the merge output is written after all conflicts are

resolved. Use this option to perform a merge that does not overwrite any of its

contributors.

–to to-version
Specifies the file that is to be the merge target. to-version is both a contributor to the merge

and the destination of the merged output.

CONTROLLING USER INTERACTION. Default: Performs merges as automatically as possible,

prompting you to make a choice only when two or more contributors differ from the base

contributor.

–q⋅uery
Changes in the to-version are automatically accepted unless a conflict exists. Turns off

automatic merging for nontrivial merges and prompts you to proceed with every change

in the other contributors.

–abo⋅rt
Cancels the command instead of engaging in a user interaction; a merge takes place only

if it is completely automatic. If two or more contributors differ from the base contributor,

a warning is issued and the command is canceled. This command is useful in shell

scripts that batch many merges (for example, all file elements in a directory) into a single

procedure.

–qal⋅l
Turns off automated merging. You are prompted to make a choice every time a

contributor differs from the base contributor. This option is turned on when xmldiffmrg
cannot determine a common ancestor (or other base contributor), and you do not use

–base.

CHARACTER ENCODING. Default: None.

–enc⋅oding { utf-16 | utf-8 | iso-8859-1 | ascii }

If an output file is generated, use the specified (case-insensitive) encoding type. The

Reference Pages 1157

xmldiffmrg

generated output contains an XML Declaration statement containing the specified

encoding attribute if required. If a character code cannot be represented in the specified

encoding, it is written out as an XML character reference in the form

&xnnnn;

where nnnn is a hexadecimal character index.

SPECIFYING THE BASE CONTRIBUTOR. Default: pname1.

–bas⋅e base_contributor
Specifies the base contributor; typically, but not always, this is the closest common

ancestor of the contributors.

SPECIFYING THE CONTRIBUTORS. Default: None; if no contributor is specified on the command

line, a dialog box prompts for contributors.

pname1 ... pname7
Specifies the contributors. A maximum of seven contributors may be specified, inclusive

of a contributor specified by –base.

SEE ALSO

cleardiff, diff, findmerge, merge, rmmerge, type_manager, Developing Software

1158 Command Reference

xmldiffmrg

Index 1159

/vobs/doc/ccase/ref/cc_refIX.fm — September 13, 2001 11:25 am

Index

A

ACLs
mastership requests 897

activities
changing 66
creating 591
deleting 919
listing 450
setting 1026
unsetting 1026

Attache
command line interface 17, 22, 41
creating elements 423
general information 19
graphical interface 29
list of reference pages 7
quitting 861
shell 1144
uploading files to view 845
wildcards 1131

Attache workspace
connecting to view 1141
creating 762
deleting 998
downloading files to 401
listing 545
listing files in 483
moving 796
selecting 1047
updating 1090

attache-home-dir directory vi

attribute types, creating 604

attributes
attaching to objects 594
removing from objects 922

B

baselines
changing 69
comparing 146, 309
creating 610
deleting 926

listing 453
setting promotion level of 1038

branch types, creating 622

branches
creating 617
deleting 928
requesting mastership of 896

builds
auditing 135
build options specification (BOS) file 214
clearmake 207
omake 798

C

caches
changing settings 1029
displaying 406
MVFS 777

ccase-home-dir directory vi

checkin 72

checkout 79
cancelling 1077
changing status from reserved to unreserved 1087
converting unreserved to reserved 903
listing 456

ClearCase version information, displaying 229

ClearCase LT version information, displaying 229

clients of server hosts, displaying 462

command
formatting output of 384
help 415
quitting interactive session 861
reference pages 579

command information
administration reference pages 6
build-related reference pages 5
developer reference pages 5
displaying 15
object-type independent commands 2
of general interest 2
summary of cleartool 229

1160 Command Reference

/vobs/doc/ccase/ref/cc_refIX.fm — September 13, 2001 11:25 am

UCM commands 3
UNIX GUIs 3

comments 243

components
creating 626
deleting 931
listing 465

configuration files 246

configuration records
comparing 313
displaying 44

configuration specifications
displaying 52
editing 326
setting 1035

conventions, typographical vi

credentials 271, 273

CVS files, converting to elements 154

D

defect, reporting 139

derived objects
deleting 934
listing 468
promoting 831
removing 1102
reporting on disk space used 320
winking in 1135

directory
changing 63
printing working 848

documentation
online help description vii

E

element types
creating 637
determining 356

elements
changing the type of 128
creating 629, 632
deleting 938
importing into a VOB 195
moving 773
moving to another VOB 886
removing name of 956

environment variables 333

event records
changing comments in 98
general information 345

F

feature level, raising 104

file
converting to element 189
determining element type of 356

file type
icon mapping rules 54
rules used to determine 56

folders
changing 107
creating 644
deleting 943
listing 473

G

graphical user interface 1146

H

help 415, 421, 579

host, configuration information 418

hyperlink types, creating 654

hyperlinks
attaching to an object 647
deleting 946

I

interop text mode support 771

J

job scheduling 1000

L

label types, creating 665

labels
attaching to versions 659
deleting from versions 949

licenses
displaying and controlling 204

links
creating 429
moving 773

locks
listing 485

Index 1161

/vobs/doc/ccase/ref/cc_refIX.fm — September 13, 2001 11:25 am

removing 1081

logs
displaying 193, 410
MVFS 781

M

make program 547, 798

makefiles
AIX compatibility 548
general information 550
Gnu compatibility 565
IRIX pmake compatibility 571
IRIX smake compatibility 573
SunOS compatibility 576

man pages, displaying 579

master replica, setting access control for 896

mastership
changing 109

MVFS
caches 777
logging 781
statistics, displaying 783
storage, listing 787
time statistics, generating 790
version, displaying 795

O

object types, listing 524

objects
attribute, attaching 594
deleting attributes 922
displaying history of 194, 476
listing 141, 287, 443
listing view-private 498
locking 435
protection 833
querying for 854
renaming 891
searching for 359
unlocking 1081

online help, accessing vii

P

Perl module 275

permissions 821

pools
changing 116
creating and modifying 670

deleting 960
deleting contents of 1020
listing 495

projects
browsing 222
changing 120
creating 677
deleting 963
joining 202
listing 504

prompt, controlling 224

PVCS files, converting to elements 161

R

RCS files, converting to elements 168

regions
listing 508
registering 682
unregistering 966

registry
backup 906
changing password 913
checking for inconsistencies 909
switching backup and primary 916

replicas
listing 510
listing objects mastered by 490

S

SCCS files, converting to elements 175

shells, creating 1049

site
defaults 1041
listing 514

SoftBench 1053

SourceSafe files, converting to elements 182

startup/shutdown script 426

streams
changing 125
creating 690
deleting 970
delivering changes 278
listing 519
reconfiguring 863

1162 Command Reference

/vobs/doc/ccase/ref/cc_refIX.fm — September 13, 2001 11:25 am

T

technical support vii

trigger types, creating 708

triggers
attaching to objects 703
removing from elements 976

type manager 1069

types
copying 267
deleting 980

typographical conventions vi

U

user profiles 828

V

version selector syntax 1097

version trees
listing 541
removing merge arrows from 953

versions
annotating 8
checking in 72
checking out 79
comparing 142, 300, 1149
copying to a snapshot view 401
deleting 984
merging 142, 218, 369, 582, 1149, 1154

view storage locations
creating 684
listing 516
unregistering 968

view tags
creating 697
deleting 973

views
cache, changing settings 1029
changing properties of 132
configuration specifications 249
creating 736
deactivating 330
deleting 989
listing 531
pathnames to 806
printing working 850
recovering 871
reformatting 875
registering 883
reporting disk space used by 1059

scrubbing 1102
setting 1045
starting 1066
unregistering 1083
updating snapshot, 240, 1090

VOB snapshots
configuring 1051
parameters for 1125

VOB storage locations
creating 684
listing 516
unregistering 968

VOB tags
creating 697
deleting 973

VOBs
administering 242
backing up 1120
changing owner and groups 840
checking and fixing 88
copying 1120
creating 750
deleting 995
exporting to other VOBs 148
importing elements to 195
interop text mode support in 771
listing 536
mounting 765, 769
NFS access to, 352, 354
pathnames to 806
protecting 840, 1114
reformatting 878
registering 883
reporting disk space use by 1059
restoring 1106
scrubbing 1108
unmounting 1075
unregistering 1083

W

wildcards 1133

X

X Window System resources 1016

	Command Reference (M–Z)
	Contents
	Tables
	Preface
	About This Manual
	ClearCase Documentation Roadmap
	ClearCase�LT Documentation Roadmap
	Typographical Conventions
	Online Documentation
	Technical Support

	make
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	makefile_aix
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Compatibility

	SEE ALSO

	makefile_ccase
	APPLICABILITY
	DESCRIPTION
	Build Options Specification Files
	Format of Makefiles
	Special Targets
	Using Makefiles in UNIX Snapshot Views
	Sharing Makefiles Between UNIX and Windows
	Using Makefiles on Windows
	BOS File Entries

	SEE ALSO

	makefile_gnu
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	VPATH Separator Character
	Using UNIX-Style Command Shells in Your Windows makefile
	Compatibility

	SEE ALSO

	makefile_pmake
	APPLICABILITY
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Compatibility

	SEE ALSO

	makefile_smake
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Compatibility
	Limitations

	SEE ALSO

	makefile_sun
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Compatibility
	VPATH: Searches for Both Targets and Dependencies
	Limitations

	SEE ALSO

	man
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	CLEARCASE, CLEARCASE�LT, AND MULTISITE ON UNIX—USE OF MANPATH
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	merge
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearCase and ClearCase�LT
	Attache

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkactivity
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Behavior for Projects Enabled for ClearQuest

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkattr
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Restrictions on Attribute Use
	Referencing Objects by Their Attributes

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkattype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Attributes as Name/Value Pairs
	Predefined Attribute Types

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkbl
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Initial Baseline
	Creating a Baseline for an Unmodified Component
	Creating Baselines That Include a Set of Activities
	Creating a New Composite Baseline with Existing Dependency Relationships
	Creating or Changing Dependency Relationships for a Composite Baseline
	Creating a Baseline by Importing a Label
	Baseline Names
	Baseline Labels
	Promotion Levels

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkbranch
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Auto-Make-Branch

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkbrtype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Instance Constraints
	Recommended Naming Convention

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkcomp
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkdir
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	UNIX File Modes
	Converting View-Private Directories

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkelem
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkeltype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Setting Merge Behavior for an Element Type
	Element Supertypes
	Predefined Element Types
	Text Files, Cleartext, and a View’s Text Mode

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkfolder
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkhlink
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Contrast with Other Kinds of Metadata
	Hyperlink-IDs
	Hyperlink Inheritance

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkhltype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Predefined Hyperlink Types
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mklabel
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mklbtype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Instance Constraints
	Recommended Naming Convention

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkpool
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Pool Allocation and Inheritance
	Scrubbing
	Getting Information on Storage Pools

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkproject
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Project Policies
	Using Rational ClearQuest with Projects

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkregion
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	UNIX FILES
	WINDOWS FILES
	SEE ALSO

	mkstgloc
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Other Uses for mkstgloc
	Default Selection of Server Storage Locations During View and VOB Creation
	ClearCase—File System Connectivity Considerations
	ClearCase—Derived and Explicitly Specified Client Accessibility Information
	ClearCase�LT—File System Connectivity and Client Accessibility

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkstream
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Stream Policies

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mktag
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearCase and Attache—Using mktag
	ClearCase�LT—Using mktag

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mktrigger
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Element Trigger Inheritance

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mktrtype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	TRIGGER FIRING
	Interactive Trigger Action Scripts
	Multiple Trigger Firings
	Suppressing Trigger Firing
	Trigger Interoperation

	PREOPERATION AND POSTOPERATION TRIGGERS
	RESTRICTION LISTS AND INCLUSION LISTS
	TRIGGER ENVIRONMENT VARIABLES
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	TRIGGER OPERATIONS AND TRIGGER ENVIRONMENT VARIABLES
	Trigger Operations for Type Trigger Types
	Trigger Operations for Element and All-Element Trigger Types
	Trigger Operations for UCM Objects and All-UCM-Object Trigger Types
	Trigger Environment Variables

	EXAMPLES
	SEE ALSO

	mkview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	DISCONNECTED USE OF SNAPSHOT VIEWS
	INTEROP TEXT MODES
	VIEWS AND UCM STREAMS
	SETTING THE CACHE SIZE FOR VIEWS
	RECONFIGURING A VIEW
	BACKING UP A VIEW
	DELETING A VIEW
	INFORMATION SPECIFIC TO PRODUCTS, VIEW TYPES AND PLATFORMS
	ClearCase and Attache Dynamic Views—Using Express Builds
	ClearCase and Attache Dynamic Views on UNIX—Marking a View for Export
	ClearCase and Attache Dynamic Views on UNIX—Activating a View
	ClearCase and Attache Dynamic Views on Windows—Activating a View
	ClearCase, Attache, and ClearCase�LT Snapshot Views—Activating a View
	ClearCase, Attache, and ClearCase�LT on UNIX—View Creator Identity and umask Permissions
	ClearCase and Attache—View Storage Directory on a Network Attached Storage Device.

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mkvob
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	VOB DIRECTORY ELEMENTS
	DEFAULT STORAGE POOLS
	ACCESS PERMISSIONS
	UNIX VOBs
	Windows VOBS

	INTEROP TEXT MODE SUPPORT
	CLEARCASE AND ATTACHE—REGIONAL TAGS
	CLEARCASE AND ATTACHE DYNAMIC VIEWS—PUBLIC AND PRIVATE VOBS
	UNIX—Public VOB Tags
	UNIX—Private VOB Tags
	Windows—Public VOB Tags
	Windows—Private VOB Tags
	UNIX and Windows—Private-to-Public VOB Conversion

	CLEARCASE, CLEARCASE�LT, AND ATTACHE SNAPSHOT VIEWS—ACCESSING PUBLIC AND PRIVATE VOBS
	CLEARCASE AND ATTACHE DYNAMIC VIEWS—ACTIVATING THE VOB
	CLEARCASE ON UNIX—MARKING A VOB FOR EXPORT
	CLEARCASE AND ATTACHE—LOCATION OF THE VOB DATABASE DIRECTORY
	CLEARCASE AND ATTACHE—VOB STORAGE DIRECTORY ON A NETWORK ATTACHED STORAGE DEVICE.
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES�
	UNIX Examples
	Windows Examples

	SEE ALSO

	mkws
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Attache’s Client Process Startup Directory

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mount
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Mounting All VOBs
	UNIX—Mounting of Public and Private VOBs
	Windows—Mounting of Public and Private VOBs

	VOB-TAGS AND THE VOB STORAGE REGISTRY
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mount_ccase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	msdostext_mode
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	SEE ALSO

	mv
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Moving in Attache
	Moving in Snapshot Views
	Moving View-Private or Attache Workspace Objects

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mvfscache
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mvfslog
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	SEE ALSO

	mvfsstat
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	MVFS CACHE STATISTICS
	Directory Name Lookup Cache (dnlc)
	Attribute Cache

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	SEE ALSO

	mvfsstorage
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mvfstime
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mvfsversion
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	mvws
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	omake
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Related Reference Pages
	View Context Required

	omake AND MAKEFILES
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	MAKE MACROS AND ENVIRONMENT VARIABLES
	Conflict Resolution

	BUILD REFERENCE TIME AND BUILD SESSIONS
	EXIT STATUS
	EXAMPLES
	FILES
	SEE ALSO

	pathnames_ccase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	DYNAMIC VIEW CONTEXTS
	WINDOWS ONLY—DYNAMIC VIEW ACCESS MODEL
	KINDS OF PATHNAMES
	UNIX Only—Standard Pathnames
	Windows Only—Standard Pathnames
	Windows Only—Absolute VOB Pathnames
	Extended Pathnames

	VIEW-EXTENDED PATHNAMES
	UNIX Only—The Viewroot Directory / View-Tags
	Windows Only—The MVFS Directory / View-Tags

	SYMBOLIC LINKS AND THE VIEW-EXTENDED NAMESPACE
	VOB-EXTENDED PATHNAMES
	Extended Namespace for Elements, Branches, and Versions
	Extended Naming Symbol
	Version Labels in Extended Namespace
	Pathnames Involving More Than One Element
	Reading and Writing in the Extended Namespace
	Extended Namespace for Derived Objects
	Navigating the VOB-Extended Namespace

	SEE ALSO

	permissions
	APPLICABILITY
	DESCRIPTION
	None
	one of: element group member, element owner, VOB owner, root, member of the ClearCase group, loca...
	one of: version creator, element owner, VOB owner, root, member of the ClearCase group, local adm...
	one of: element owner, VOB owner, root, member of the ClearCase group, local administrator of the...
	one of: user associated with event, object owner, VOB owner, root, member of the ClearCase group,...
	one of: branch creator, element owner, VOB owner, root, member of the ClearCase group, local admi...
	one of: type owner, VOB owner, root, member of the ClearCase group, local administrator of the Cl...
	one of: pool owner, VOB owner, root, member of the ClearCase group
	one of: DO group member, DO owner, VOB owner, root, member of the ClearCase group
	one of: view owner, root, member of the ClearCase group, local administrator of the ClearCase�LT ...
	one of: owner, VOB owner, root, member of the ClearCase group, local administrator of the ClearCa...
	one of: owner, project VOB owner, root, member of the ClearCase group, local administrator of the...
	one of: owner, stream owner, root, member of the ClearCase group, local administrator of the Clea...
	one of: owner, VOB owner, root, member of the ClearCase group
	one of: VOB owner, root, member of the ClearCase group
	one of: VOB owner, root, member of the ClearCase group, local administrator of the ClearCase�LT s...
	VOB owner
	view owner
	root, member of the ClearCase group, local administrator of the ClearCase�LT server host
	root, local administrator of the ClearCase VOB server host, local administrator of the ClearCase�...
	same permissions as those for creating the corresponding type object
	permissions controlled by the scheduler ACL

	SEE ALSO

	profile_ccase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	HOW cleartool SELECTS A RULE
	RULE SYNTAX
	COMMENT RULES
	RULES FOR CHECKED-OUT VERSION STATES
	RULE FOR INTERACTIVE RESOLUTION OF CHECKOUT PROBLEMS
	EXAMPLES
	SEE ALSO

	promote_server
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	protect
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	View-Private Objects
	Owner Setting
	Group Setting
	Read and Execute Permissions
	Write Permission
	Protection of Global Types and Local Copies

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	protectvob
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	put
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	pwd
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	UNIX—The version-Extended Namespace

	RESTRICTIONS
	EXAMPLES
	SEE ALSO

	pwv
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Dynamic Views
	Snapshot Views

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	query_language
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Queries in Version Selectors
	Queries in the find and findmerge Commands

	QUERY PRIMITIVES
	COMPOUND QUERIES
	OPERATOR PRECEDENCE
	EXAMPLES
	SEE ALSO

	quit
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	EXAMPLES
	SEE ALSO

	rebase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Rules for Development Streams
	Rules for Integration Streams
	Handling of Elements of Non-default Merge Types

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	recoverview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Automatic Recovery
	Possible Data Loss

	RECOVERING VIEW-PRIVATE FILES: VIEW LOST+FOUND DIRECTORY
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	reformatview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Possible Data Loss

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	UNIX FILES
	WINDOWS FILES
	SEE ALSO

	reformatvob
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	reformat_vob Internals

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	register
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Other Commands That Affect Registries

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	relocate
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	FILES
	SEE ALSO

	rename
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	reqmaster
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SETTING ACCESS CONTROLS
	REQUESTING MASTERSHIP OF A BRANCH OR BRANCH TYPE
	TROUBLESHOOTING
	RESTRICTIONS
	Setting Access Controls
	Requesting Mastership of a Branch:
	Requesting Mastership of a Branch Type:

	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	reserve
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rgy_backup
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	UNIX Systems Only—Designating a Backup Registry Host
	Windows Systems Only—Designating a Backup Registry Host
	Changing the Backup Registry Server Host

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	UNIX FILES
	WINDOWS FILES
	WINDOWS REGISTRY KEYS
	SEE ALSO

	rgy_check
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	General Problems
	Registration Anomalies
	Region-Related Problems
	Storage-Related Problems

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rgy_passwd
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	UNIX Systems
	Windows Systems

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	UNIX FILES
	DIAGNOSTICS
	EXAMPLE
	SEE ALSO

	rgy_switchover
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	To Re-Initialize the Tag Registry Password

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	UNIX FILES
	WINDOWS FILES
	WINDOWS REGISTRY KEYS
	SEE ALSO

	rmactivity
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmattr
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmbl
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmbranch
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmcomp
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmdo
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SCRUBBING OF DERIVED OBJECTS
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmelem
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Deleting a Directory Element
	Deleting Elements and Symbolic Links from the lost+found Directory

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmfolder
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmhlink
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmlabel
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmmerge
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Renaming the Merge Hyperlink Type

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmname
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Undoing the rmname Command

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmpool
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Reassigning Elements
	Deleting Derived Object Pools

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmproject
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Projects Enabled for ClearQuest

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmregion
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	UNIX FILES
	WINDOWS FILES
	SEE ALSO

	rmstgloc
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmstream
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmtag
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	CleasrCase and Attache—Using rmtag

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmtrigger
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmtype
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmver
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Behavior in Snapshot Views
	Deleted Version-IDs
	Controlling the Size of the vista.tjf File

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Removing a View and Its Related Records
	Purging View-Related Records Only
	Caution
	View UUIDs
	Controlling the Size of the vista.tjf File

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmvob
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Procedures for Removing VOBs

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	rmws
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	schedule
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Task and Job Storage
	Task and Job Database Initialization
	Default Schedule
	Job Timing Options
	Job Definition Syntax
	Task Definition Syntax
	Job Execution Environment

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	Specifying the Host
	Disabling Prompts for Confirmation
	Displaying Information about Jobs, Tasks, or ACL
	Editing a Schedule or ACL
	Setting a Schedule or ACL Using Definitions in a File
	Operating on a Scheduled Job

	EXAMPLES
	UNIX FILES
	WINDOWS FILES
	SEE ALSO

	schemes
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Resources for Schemes
	Search Path for Schemes

	FILES
	SEE ALSO

	scrubber
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Scrubbing Algorithms
	Automatic Scrubbing
	Scrubber Log File
	Processing of Derived Object Pools
	Derived Statistics
	Controlling the Size of the vista.tjf File

	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setactivity
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Behavior for Projects Enabled for ClearQuest
	Stopping Work on an Activity

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setcache
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearCase and Attache—View Caches
	ClearCase and Attache Dynamic Views—MVFS Caches

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setcs
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	UNIX—Export View Config Specs

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setplevel
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setsite
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Using setview in Interactive Mode

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	setws
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	shell
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	UNIX—View Context

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	UNIX
	Windows

	SEE ALSO

	snapshot.conf
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	softbench_ccase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ENCAPSULATOR TRANSCRIPT PAD
	ENCAPSULATION SUMMARY
	Standard Messages
	Nonstandard Messages

	FILES
	SEE ALSO

	space
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	startview
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	When to Use startview

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	type_manager
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	TYPE MANAGERS
	USING A TYPE MANAGER
	TYPE MANAGER STRUCTURE
	UNIX—Method Inheritance and Links
	Windows—The Type Manager Map File
	Data Containers

	UNIX FILES
	WINDOWS FILES
	SEE ALSO

	umount
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Unmounting All VOBs
	UNIX Only—Unmounting the View Root Directory

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	uncheckout
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Canceling a Checkout in an Inaccessible View
	Canceling a Directory Checkout

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	unlock
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	unregister
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Other Commands that Affect Storage Registries

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	unreserve
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	update
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	ClearCase and ClearCase�LT—Updating Loaded Elements
	ClearCase and ClearCase�LT—Loading New Elements
	Attache

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	ClearCase and ClearCase�LT
	Attache

	EXAMPLES
	ClearCase and ClearCase�LT
	Attache

	SEE ALSO

	version_selector
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Branch Pathnames

	SELECTION BY VERSION-ID
	SELECTION BY VERSION LABEL
	Version Labels

	SELECTION BY QUERY
	UNIX—Quoting
	Windows—Quoting
	Branch Pathnames

	SEE ALSO

	view_scrubber
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Cleaning Up after a Winkin
	Self-Winkin

	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	vob_restore
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	vob_scrubber
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	CLEARCASE AND CLEARCASE�LT EVENTS
	Event Record Scrubbing
	What Event Records Are Deleted

	MULTISITE OPLOG ENTRIES
	MULTISITE EXPORT_SYNC ENTRIES
	AUTOMATIC SCRUBBING
	OPTIONS AND ARGUMENTS
	VOB-SPECIFIC EVENT-RECORD SCRUBBING PARAMETERS
	OPERATION LOG AND EXPORT RECORD SCRUBBING
	SCRUBBING DEFAULTS
	EXAMPLES
	UNIX FILES
	WINDOWS FILES
	SEE ALSO

	vob_sidwalk, vob_siddump
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	vob_snapshot
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	UNIX Only—Per Host Snapshot Parameters
	Per VOB (or Replica) Snapshot Parameters
	Database Snapshot Details
	If You Do Not Use vob_snapshot

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	THE SNAPSHOT LOG
	EXAMPLES
	UNIX FILES
	WINDOWS FILES
	WINDOWS NT REGISTRY KEYS
	SEE ALSO

	vob_snapshot_setup
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Setting VOB Snapshot Parameters
	Disk Space Usage

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	UNIX FILES
	WINDOWS FILES
	WINDOWS NT REGISTRY KEYS
	SEE ALSO

	wildcards
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION

	wildcards_ccase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION

	winkin
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	Effect on View-Resident DO Data Containers

	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	ws_helper
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	CONFIGURING THE HELPER ENVIRONMENT
	RESTRICTIONS
	ERROR LOG
	SEE ALSO

	wshell
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	xclearcase
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	X RESOURCES
	EXAMPLES
	SEE ALSO

	xcleardiff
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	INVOKING xcleardiff
	CHANGING THE DEFAULT HTML BROWSER
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	EXAMPLES
	SEE ALSO

	xmldiffmrg
	APPLICABILITY
	SYNOPSIS
	DESCRIPTION
	RESTRICTIONS
	OPTIONS AND ARGUMENTS
	SEE ALSO

	Index

