
Rational Software Corporation

support@rational.com
http://www.rational.com

Rational® PurifyPlus for Linux
REFERENCE MANUAL

VERSION: 2002 RELEASE 2 - SR1

mailto:support@rational.com
http://www.rational.com

IMPORTANT NOTICE

COPYRIGHT
Copyright ©2000-2002, Rational Software Corporation. All rights reserved.

Part Number: 800-025997-000

Version: 2002 Release 2 - SR1

PERMITTED USAGE
THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF RATIONAL
SOFTWARE CORPORATION (“RATIONAL”) AND IS FURNISHED FOR THE SOLE PURPOSE OF THE
OPERATION AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS PUBLICATION
IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE REPRODUCED, COPIED, ADAPTED,
DISCLOSED, DISTRIBUTED, TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED
INTO ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN WHOLE OR IN
PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF RATIONAL.

TRADEMARKS
Rational, Rational Software Corporation, Rational the software development company, ClearCase, ClearQuest, Object
Testing, Purify, Quantify, Rational Apex, Rational Rose, Rational Suite, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or in othercountries.All other names
are used for identification purposes only, and are trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Windows, Windows NT, Windows Me and Windows 2000 are trademarks or registered
trademarks of Microsoft Corporation in the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc. Licensee shall
not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into any product or application the
primary purpose of which is software license management.

PATENT
U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14, as applicable.

WARRANTY DISCLAIMER
This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media and
software product and its documentation, including without limitation, the warranties of merchantability or fitness for a
particular purpose or arising from a course of dealing, usage, or trade practice.

 1

Reference Manual
Contents
About Online Documentation.. 3

Documentation Updates and Feedback .. 4

Command Line Reference ... 5

Java Instrumentation Launcher.. 6
Java Instrumentation Launcher for Ant .. 9
Java Instrumentor .. 12
C and C++ Instrumentor... 19
C and C++ Instrumentation Launcher.. 29
Code Coverage Report Generator ... 33
TDF Splitter .. 38
JVMPI Agent .. 40
Graphical User Interface .. 45
Dump File Splitter... 47
Test Process Monitor ... 49

Appendices... 53

GUI Macro Variables ... 54
Functions.. 55
Global Variables ... 55
Node Attribute Variables... 56

Instrumentation Pragmas .. 58
Environment Variables .. 61

Setting Environment Variables on a Linux Platform 65
File Types.. 66

2

 3

About Online Documentation 1
The entire documentation set for PurifyPlus for Linux is provided as a full-
featured online Help system.

This documentation was designed to be viewed with Netscape Navigator
4.5 or later on other operating systems.

Both environments provide contextual-Help from within the application, a
full-text search facility, and direct navigation through the Table of Contents
and Index panes on the left side of the Help window.

We welcome any feedback regarding this documentation.

4

Documentation Updates and Feedback

Documentation Updates

For the most recent documentation updates, please visit the Product
Support section of the PurifyPlus for Linux Web site at:

http://www.rational.com/products/purifypluslinux/index.jsp

Feedback

We do our best to provide you with first-rate user documentation, so your
feedback is essential for us to improve the quality of our products. If you
have any comments or suggestions about our online documentation, feel
free to contact us at techpubs@rational.com.

Keep in mind that this e-mail address is only for documentation feedback.
For technical questions, please contact Technical Support.

http://www.rational.com/products/purifypluslinux/index.jsp

 5

Command Line Reference 2
This section provides reference information to help you run the product's
runtime analysis features from a command line. This can be useful in
complex development environments to perform advanced software analysis
in the command line interface.

6

Java Instrumentation Launcher

Purpose

The Instrumentation Launcher instruments and compiles Java source files.
The Instrumentation Launcher is used by Performance Profiling, Runtime
Tracing and Code Coverage.

Syntax

javic [<options>] -- <compilation_command>

where:

• <compilation_command> is the standard compiler command line that you
would use to launch the compiler if you are not using the product

• "--" is the command separator preceded and followed by spaces

• <options> is a series of optional parameters for the Java Instrumentor.

Description

The Instrumentation Launcher (javic) fits into your compilation sequence
with minimal changes.

The Instrumentation Launcher is suitable for use with only one compiler
and only one Target Deployment Port. To view information about the
driver, run javic with no parameters.

The javic binary is located in the cmd subdirectory of the Target
Deployment Port.

The Java Instrumentation Launcher automatically sets the $ATLTGT
environment variable if it is not already set.

 7

The Instrumentation Launcher accepts all command line options designed
for the Java Instrumentor.

Command line options can be abbreviated to their shortest unambiguous
number of characters and are not case-sensitive.

Customization

The javic binary is a copy of the perllauncher (or perllauncher.exe) binary
located in <InstallDir>/bin/intel/linux.

The launcher runs the javic.pl perl script which is located in the cmd
subdirectory and produces the products.java file that contains the default
configuration settings. These are copied from
<InstallDir>/lib/scripts/BatchJavaDefault.pl.

The javic.pl included with the product is for the Sun JDK 1.3.1 or 1.4.0
compiler. This script can be changed in the TDP Editor, allowing you to
customize the default settings, which are based on the BatchJavaDefault.pl
script, before the call to PrepareJavaTargetPackage.

Example

The following command launches Runtime Tracing instrumentation of
program1.java and its dependencies, then compiles the instrumented
classes in the java.jir directory.

javic -trace -- javac program1.java

The following command launches Code Coverage instrumentation of
program2.java and program3.java, as well as their dependencies, and
generates the instrumented classes in the tmpclasses directory.

javic -proc=r -block=l -- javac program1.java
program2.java -d tmpclasses

8

In this example, tmpclasses will contain the compiled TDP classes only if
they are not already in the TDP directory. The -d option creates these TDP
.class files in the same location as the source files. Make sure that you set a
correct CLASSPATH when running the application.

 9

Java Instrumentation Launcher for Ant

Purpose

The Java Instrumentation Launcher (javic) for Ant provides integration of
the Java Instrumentor with the Apache Jakarta Ant build utility.

Description

This adapter allows automation of the instrumented build process for Ant
users by providing an Ant CompilerAdapter implementation called
com.rational.testrealtime.Javic.

The Java Instrumentation Launcher for Ant provided with the product
supports version 1.4.1 of Ant, but is delivered as source code, so that you
can adapt it to any release of Ant. Source code for the Javic class is available
at:

<InstallDir>/lib/java/ant/com/rational/testrealtime/Jav
ic.java

Javic uses the build.actual.compiler property to obtain the name of your
Java compiler. When using JDK 1.4.0, this name is modern. Please refer to
Ant documentation for other values.

In some cases -opp=<file> and -destdir=<dir> can not be set in the
Javi.options property:

• The .opp instrumentation file is automatically set in the -opp=<file>
option by the Javic class if and only if $ATLTGT/ana/atl.opp exists.

• The instrumented file repository directory, where the javi.jir
subdirectory is created, is automatically set by the Javic class if the
destdir attribute is set in the javac task.

-classpath=<classpath> cannot be set in the Javi.options property.

10

The classpath used by the Java Instrumentor is a merge of the classpath
attribute of the javac task with the $CLASSPATH and $EDG_CLASSPATH
contents.

To install the Javic class for Ant:
1. Download and install Ant v1.4.1 from http://jakarta.apache.org/ant/

2. Set ANT_HOME to the installation directory, for example:
/usr/local/jakarta-ant-1.4.1.

3. Add $ANT_HOME/bin in your PATH

4. Compile and install the Javic class. In the ant directory, type:
ant

This adds the javic.jar to the $ANT_HOME/lib directory.

Example

The files for the following example are located in
<InstallDir>/lib/java/ant/example.

The following command performs a standard build based on the build.xml
file

ant

This produces the following output:
Buildfile: build.xml
clean:
cc:
 [javac] Compiling 1 source file
all:
BUILD SUCCESSFUL
Total time: 2 seconds

To perform an instrumented build of the same build.xml, without
modifying that file:

ant -DATLTGT=$ATLTGT -
Dbuild.compiler=com.rational.testrealtime.Javic -
Dbuild.actual.compiler=modern -Djavi.options=-trace

 11

This produces the following output:
Buildfile: build.xml
clean:
 [delete] Deleting: Sample.class
cc:
 [javac] Compiling 1 source file
 [javi] Instrumenting 1 source file
 [javac] Compiling 1 source file
all:
BUILD SUCCESSFUL
Total time: 4 seconds

12

Java Instrumentor

Purpose

The SCI Instrumentor for Java inserts methods from a Target Deployment
Port library into the Java source code under test. The Java Instrumentor is
used for:

• Performance Profiling

• Code Coverage

• Runtime Tracing

Memory Profiling for Java uses the JVMPI Agent instead of source code
insertion (SCI) technology as for other languages.

Syntax

javi <src> {[,<src>]} [<options>]

where:

• <src> is one or several Java source files (input)

Description

The SCI Instrumentor builds an output source file from each input source
file by adding specific calls to the Target Deployment Port method
definitions. These calls are used by the product's runtime analysis features
when the Java application is built and executed.

The Java Instrumentor creates the output files in a javi.jir directory, which
is located inside the current directory. By default, this directory is cleaned
and rewritten each time the Instrumentor is executed.

 13

Although the Java Instrumentor can take several input source files on the
command line, you only need to provide the file containing a main method
for the Instrumentor to locate and instrument all dependencies.

When using the Code Coverage feature, you can select one or more types of
coverage at the instrumentation stage (see the User Guide for more
information). When you generate reports, results from some or all of the
subset of selected coverage types are available.

Options

-FILE=<file>[{,<file>}] | -EXFILE=<file>[{,<file>}]

-FILE specifies the only files that are to be explicitly instrumented, where
<file> is a Java source file. All other source files are ignored.

-EXFILE explicitely specifies the files that are to be excluded from the
instrumentation, where <file> is a Java source file. All other source files are
instrumented.

-FILE and -EXFILE cannot be used together.

-CLASSPATH=<classpath>

The -CLASSPATH option overrides the $CLASSPATH and
$EDG_CLASSPATH environment variables -in that order- during
instrumentation.

In <classpath>, each path is separated by a colon (":") on UNIX systems and
a semicolon (";") in Windows.

-OPP=<file>

The -OPP option allows you to specify an optional definition file. The <file>
parameter is a relative or absolute filename.

14

-DESTDIR=<directory>

The -DESTDIR option specifies the location where the javi.jir output
directory containing the instrumented Java source files is to be created. By
default, the output directory is created in the current directory.

-PROC [=RET]

The -PROC option alone causes instrumentation of all classes and method
entries. This is the default setting.

The -PROC=RET option instruments procedure inputs, outputs, and
terminal instructions.

-BLOCK=IMPLICIT | DECISION | LOGICAL

The -BLOCK option alone instruments simple blocks only.

Use the IMPLICIT or DECISION (these are equivalent) option to
instrument implicit blocks (unwritten else instructions), as well as simple
blocks.

Use the LOGICAL parameter to instrument logical blocks (loops), as well as
the simple and implicit blocks.

By default, the Instrumentor instruments implicit blocks.

-NOTERNARY

This option allows you to abstract the measure from simple blocks. If you
select simple block coverage, those found in ternary expressions are not
considered as branches.

-NOPROC

Specifies no instrumentation of procedure inputs, outputs, or returns, and

 15

so forth.

-NOBLOCK

Specifies no instrumentation of simple, implicit, or logical blocks.

-COUNT

Specifies count mode. By default, the Instrumentor uses pass mode. See the
User Guide.

-COMPACT

Specifies compact mode. By default, the Instrumentor uses pass mode. See
the User Guide.

-UNIT=<name>[{,<name>}] | -EXUNIT=<name>[{,<name>}]

-UNIT specifies Java units whose bodies are to be instrumented, where
<name> is an Java package, class or method which is to be explicitly
instrumented. All other units are ignored.

-EXUNIT specifies the units that are to be excluded from the
instrumentation. All other Java units are instrumented.

-UNIT and -EXUNIT cannot be used together.

-DUMPINCOMING=<service>[{,<service>}]

-DUMPRETURNING=<service>[{,<service>}]

-MAIN=<service>

These options allow you to precisely specify where the SCI dump must
occur. -MAIN is equivalent to -DUMPRETURNING.

-COMMENT=<comment>

Associates the text from either the Code Coverage Launcher (preprocessing

16

command line) or from you with the source file and stores it in the FDC file
to be mentioned in coverage reports. In Code Coverage Viewer, a
magnifying glass is put in front of the source file. Clicking this magnifying
glass shows this text in a separate window.

-NOCVI

Disables generation of a Code Coverage report that can be displayed in the
Code Coverage Viewer.

-METRICS

Provides static metric data for compatibility with old versions of the
product. Use the static metrics features of the Test Script Compiler tools
instead. By default, no static metrics are produced by the Instrumentors.

-JTEST | -NOJTEST

The -JTEST option provides UML sequence diagram output for Component
Testing for Java with Test RealTime. -NOJTEST disables this output.

-NOCLEAN

When this option is set, the Instrumentor does not clear the javi.jir directory
before generating new files.

-FDCDIR=<directory>

Specifies the destination <directory> for the .fdc correspondence file, which
is generated for Code Coverage after the instrumentation for each source
file. Correspondence files contain static information about each enumerated
branch and are used as inputs to the Code Coverage Report Generator. If
<directory> is not specified, each .fdc file is generated in the directory of the
corresponding source file. If you do not use this option, the default .fdc files
directory is the current working directory. You cannot use this option with
the -FDCNAME option.

 17

-FDCNAME=<name>

Specifies the .fdc correspondence file name <name> to receive
correspondence produced by the instrumentation. You cannot use this
option with the -FDCDIR option.

-NO_UNNAMED_TRACE

With this option, anonymous classes are not instrumented.

-PERFPRO

This option activates Performance Profiling instrumentation.

-TRACE

This option activates Runtime Tracing instrumentation. This produces
output for a UML sequence diagram.

-TSFNAME=<file>

Disables generation of a Code Coverage report that can be displayed in the
Code Coverage Viewer.

-TSFDIR=<directory>

Specifies the destination <directory> for the .tsf static trace file, which is
generated for Code Coverage after the instrumentation of each source file. If
<directory> is not specified, each .tsf static trace file is generated in the
directory of the corresponding source file. If you do not use this option, the
default .tsf static trace file directory is the current working directory. You
cannot use this option with the -TSFNAME option.

-TSFNAME=<file>

Specifies the <name> of the .tsf static trace file that is to be produced by the
instrumentation. You cannot use this option with the -TSFDIR option.

18

-INSTRUMENTATION=[FLOW|COUNT|INLINE]

Choose specifies the instrumentation mode. By default, count mode is
used, which is a compromise between the flow mode (everything is a call to
the Target Deployment Package) and the inline mode (when possible, the
code is directly inserted into the generated file).

Warning: Inline mode must be used only in pass mode. Do not use this
option if you want to know how many times a branch is reached.

-NOINFO

Asks the Instrumentor not to generate the identification header. This header
is normally written at the beginning of the instrumented file.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal error

All messages are sent to the standard error output device.

 19

C and C++ Instrumentor

Purpose

The two SCI instrumentors for C and C++ insert functions from a Target
Deployment Port library into the C or C++ source code under analysis. The
C and C++ Instrumentors are used for:

• Memory Profiling

• Performance Profiling

• Code Coverage

• Runtime Tracing

Syntax

attolcc1 <src> <instr> <def> [<options>]

attolccp <src> <instr> <hpp> <opp> [<options>]

where:

• <src> Preprocessed source file (input)

• <instr> Instrumented file (output)

• <def> Standard definitions file the C Instrumentor only

• <hpp> and <opp> are the definition files for the C++ Instrumentor only

The <src> input file must have been preprocessed beforehand (with macro
definitions expanded, include files included, #if, and directives processed).

When using the C Instrumentor, all arguments are functions. When using
the C++ Instrumentor, arguments are qualified functions, methods, classes,
and namespaces, for example: void C::B::f(int).

20

Description

The SCI Instrumentor builds an output source file from an input source file,
by adding special calls to the Target Deployment Port function definitions.

The C Instrumentor (attolcc1) supports preprocessed ANSI or K&R C
standard source code without distinction.

The C++ Instrumentor (attolccp) accepts preprocessed C++ files compliant
with the ISO/IEC 14882:1998 standard. Depending on the Target
Deployment Port, attolccp can also accept the C ISO/IEC 9899:1990 standard
and other C++ dialects.

In C++, the following minor restrictions apply:

• reinterpret_cast does not allow casting a pointer to a member of one
class to a pointer to a member of another class if the classes are
unrelated.

• Template template parameters are not accepted.

Both C and C++ versions of the Instrumentor accept either C or C++-style
comments.

Attol pragmas start with the # character in the first column and end at the
next line break.

The <def> and <header> parameters must not contain absolute or relative
paths. The Code Coverage Instrumentor looks for these files in the directory
specified by the ATLTGT environment variable, which must be set.

You can select one or more types of coverage at the instrumentation stage.

When you generate reports, results from some or all of the subset of
selected coverage types are available.

 21

General Options

Command line options can be abbreviated to their shortest unambiguous
number of characters and are not case-sensitive.

-FILE=<file>[{,<file>}] | -EXFILE=<file>[{,<file>}]

-FILE specifies the only files that are to be explicitly instrumented, where
<file> is a C/C++ source file. All other source files are ignored. Use this
option with multiple /C++ files that can be found in a preprocessed file
(#includes of files containing the bodies of C/C++ functions, lex and yacc
outputs, and so forth).

-EXFILE explicitely specifies the files that are to be excluded from the
instrumentation, where <file> is a C source file. All other source files are
instrumented. You cannot use this option with the option -FILE.

-FILE and -EXFILE cannot be used together.

-UNIT=<name>[{,<name>}] | -EXUNIT=<name>[{,<name>}]

-UNIT specifies units whose bodies are to be instrumented, where <name> is
a unit which is to be explicitly instrumented. All other functions are
ignored. Units can be functions, procedures or methods.

-EXUNIT specifies the units that are to be excluded from the
instrumentation. All other units are instrumented.

-UNIT and -EXUNIT cannot be used together.

Note These options replace the -SERVICE and -EXSERVICE options from
previous releases of the product.

-RENAME=<function>[,<function>]

22

For the C Instrumentor only. The -RENAME option allows you to change
the name of C functions <function> defined in the file to be instrumented.
Doing so, the f function will be changed to _atw_stub_f. Only definitions
are changed, not declarations (prototypes) or calls.

-NOINSTRDIR=<directory>[,<directory>]

Specifies that any C/C++ function found in a file in any of the <directories>
or a sub-directory are not instrumented.

Note You can also use the attol incl_std pragma with the same effect in the
standard definitions file.

-INSTANTIATIONMODE=ALL

C++ only. When set to ALL, this option enables instantiation of unused
methods in template classes. By default, these methods are not instantiated
by the C++ Instrumentor.

-DUMPCALLING=<name>[{,<name>]]

-DUMPINCOMING=<name>[{,<name>}]

-DUMPRETURNING=<name>[{,<name>}]

These options allow you to explicitly define when a trace dump must occur.
The -DUMPCALLING function is for the C Instrumentor only.

-NOPATH

Disables generation of the path to the Target Deployment Package directory
in the #include directive. This lets you instrument and compile on different
computers.

-NOINFO

Prohibits the Instrumentor from generating the identification header. This
header is normally written at the beginning of the instrumented file, to

 23

strictly identify the instrument used.

-NODLINE

Prohibits the Instrumentor from generating #line statements which are not
supported by all compilers. Use this option if you are using such a
compiler.

-TSFDIR[=<directory>]

Not applicable to Code Coverage (see FDCDIR). Specifies the destination
<directory> for the .tsf static trace file which is generated following
instrumentation for each source code file. If <directory> is not specified, each
.fdc file is generated in the corresponding source file's directory. If you do
not use this option, the .tsf files directory is the working directory (the
attolccl execution directory). You cannot use this option with the -
FDCNAME option.

-TSFNAME=<name>

Not applicable to Code Coverage (see FDCNAME). Specifies the .tsf file
name <name> to receive the static traces produced by the instrumentation.
You cannot use this option with the -TSFDIR option.

-NOINCLUDE

This option excludes all included files from the instrumentation process.
Use this option if there are too many excluded files to use the -EXFILE
option.

Code Coverage Options

The following parameters are specific to the Code Coverage runtime
analysis feature.

-PROC[=RET]

24

-PROC instruments procedure inputs (C/C++ functions). This is the default
setting.

The -PROC=RET option instruments procedure inputs, outputs, and
terminal instructions.

-CALL

Instruments C/C++ function calls.

-BLOCK=IMPLICIT | DECISION | LOGICAL

The -BLOCK option alone instruments simple blocks only.

Use the IMPLICIT or DECISION (these are equivalent) option to
instrument implicit blocks (unwritten else instructions), as well as simple
blocks.

Use the LOGICAL parameter to instrument logical blocks (loops), as well as
the simple and implicit blocks.

By default, the Instrumentor instruments implicit blocks.

-NOTERNARY

This option allows you to abstract the measure from simple blocks. If you
select simple blocks coverage, those found in ternary expressions are not
considered as branches.

-COND[=MODIFIED | =COMPOUND | =FORCEEVALUATION]

MODIFIED or COMPOUND are equivalent settings that allow measuring
the modified and compound conditions.

FORCEEVALUATION instruments forced conditions.

 25

When -COND is used with no parameter, the Instrumentor instruments
basic conditions.

-NOPROC

Specifies no instrumentation of procedure inputs, outputs, or returns, and
so forth.

-NOCALL

Specifies no instrumentation of calls.

-NOBLOCK

Specifies no instrumentation of simple, implicit, or logical blocks.

-NOCOND

Specifies no instrumentation of basic conditions.

-PASS | -COUNT | -COMPACT

Pass mode only indicates whether a branch has been hit. The default setting
is pass mode.

Count mode keeps track of the number of times each branch is exercised.
The results shown in the coverage report include the number of hits as well
as the pass mode information.

Compact mode. Compact mode is equivalent to pass mode, but each branch
is stored in one bit, instead of one byte as in pass mode. This reduces the
overhead on data size.

-EXCALL=<file>

For C only. Excludes calls to the C functions whose names are listed in
<file> from being instrumented. The names of functions (identifiers) must

26

be separated by space characters, tab characters, or line breaks. No other
types of separator can be used.

-FDCDIR=<directory>

Specifies the destination <directory> for the .fdc correspondence file, which
is generated for Code Coverage after the instrumentation for each source
file. Correspondence files contain static information about each enumerated
branch and are used as inputs to the Code Coverage Report Generator. If
<directory> is not specified, each .fdc file is generated in the directory of the
corresponding source file. If you do not use this option, the default .fdc files
directory is the working directory (the attolccl execution directory). You
cannot use this option with the -FDCNAME option.

-FDCNAME=<name>

Specifies the .fdc correspondence file name <name> to receive
correspondence produced by the instrumentation. You cannot use this
option with the -FDCDIR option.

-NOCVI

Disables generation of a Code Coverage report that can be displayed in the
Code Coverage Viewer.

-NOSOURCE

Replaces the generation of the colorized viewer source listing by a colorized
viewer pre-annotated report containing line number references.

-COMMENT=<comment>

Associates the text from either the Instrumentation Launcher (preprocessing
command line) or from the source file under analysis and stores it in the
.fdc correspondence file to be mentioned in coverage reports. In the Code
Coverage Viewer, a magnifying glass appears next to the source file,
allowing you to display the comments in a separate window.

 27

Memory Profiling Specific Options

The following parameters are specific to the Memory Profiling runtime
analysis feature.

-MEMPRO

Activates instrumentation for the Runtime Tracing analysis feature.

-NOINSPECT=<variable>[,<variable>]

Specifies global variables that are not to be inspected for memory leaks.
This option can be useful to save time and instrumentation overhead on
trusted code.

Performance Profiling Specific Options

The following parameters are specific to the Performance Profiling runtime
analysis feature.

-PERFPRO[=<os>|<process>]

Activates instrumentation for the Runtime Tracing analysis feature.

The optional <os> parameter allows you to specify a clock type. By default
the standard operating system clock is used.

The <process> parameter specifies the total CPU time used by the process.

The <os> and <process> options depend on target availability.

Runtime Tracing Specific Options

The following parameters are specific to the Runtime Tracing analysis
feature.

28

-TRACE

Activates instrumentation for the Runtime Tracing analysis feature.

-NO_UNNAMED_TRACE

For the C++ Instrumentor only. With this option, unnamed structs and
unions are not instrumented.

-NO_TEMPLATE_NOTE

For the C++ Instrumentor only. With this option, the UML/SD Viewer will
not display notes for template instances for each template class instance.

-BEFORE_RETURN_EXPR

For the C Instrumentor only. With this option, the UML/SD Viewer displays
calls located in return expressions as if they were executed sequentially and
not in a nested manner.

Return Codes

After execution, the program exits with the following return codes

 Code Description

0 End of execution with no errors

7 End of execution because of fatal error

9 End of execution because of internal error

 All messages are sent to the standard error output device.

 29

C and C++ Instrumentation Launcher

Purpose

The Instrumentation Launcher elaborates and compiles C and C++ source
files. The Instrumentation Launcher is used by Memory Profiling,
Performance Profiling, Runtime Tracing and Code Coverage.

Syntax

attolcc [<options>] -- <compilation_command>

where:

• <compilation_command> is the standard compiler command line that you
would use to launch the compiler if you were not running PurifyPlus
for Linux instrumentation.

• <target_deployment_port> lets you choose the Target Deployment Port to
use. <name> must be the name of a subdirectory of the ATLTGT
directory, and must contain object files with the same names as those in
ATLTGT.

• "--" is the command separator preceded and followed by spaces.

Description

The Instrumentation Launcher fits into your compilation sequence with
minimal changes.

The Instrumentation Launcher is suitable for use with only one compiler
and only one Target Deployment Port. To view information about the
driver, run attolcc with no parameters.

The attolcc binary is located in the /cmd directory of the Target Deployment

30

Port.

Note Some restricted Target Deployment Ports do not have an attolcc
binary. In this case, you cannot use Memory Profiling, Performance
Profiling, Runtime Tracing and Code Coverage.

General Options

The Instrumentation Launcher accepts all command line parameters for
either the C or C++ Instrumentor, including runtime analysis feature
options. This allows the Instrumentation Launcher to automatically compile
the selected Target Deployment Port.

In addition to Instrumentor parameters and Code Coverage parameters, the
following options are specific to the Instrumentation Launcher. Command
line options can be abbreviated to their shortest unambiguous number of
characters and are not case-sensitive.

-VERBOSE | -#

The -VERBOSE option shows commands and runs them. The "-#" option
shows commands but does not execute them.

-TRACE

-MEMPRO

-PERFPRO

These options activate specific instrumentation for the Runtime Tracing,
Memory Profiling and Performance Profiling runtime analysis feature.

-FORCE_TDP_CC

This option forces the Instrumentation Launcher to attempt to compile the
Target Deployment Port even if the link phase has not yet been reached;
before the TP.o or TP.obj is built.

 31

Code Coverage Options

The following parameters are specific to the Code Coverage runtime analysis
feature.

-PASS | -COUNT | -COMPACT

Pass mode only indicates whether a branch has been hit. The default setting
is pass mode.

Count mode keeps track of the number of times each branch is exercised.
The results shown in the coverage report include the number of hits as well
as the pass mode information.

Compact mode. Compact mode is equivalent to pass mode, but each branch
is stored in one bit, instead of one byte as in pass mode. This reduces the
overhead on data size.

-COMMENT | -NOCOMMENT

The comment option lets the user associate a comment string with the
source in the coverage reports and in Code Coverage Viewer.

By default, the Instrumentation Launcher sends the preprocessing
command as a comment. This allows you to distinguish the source file that
was preprocessed and compiled more than once with distinct options.

Use -NOCOMMENT to disable the comment setting.

Example
attolcc -- cc -I../include -o appli appli.c bibli.c -lm
attolcc -TRACE -- cc -I../include -o appli appli.c
bibli.c -lm

Return codes

32

The return code from the Instrumentation Launcher is either the first non-
zero code received from one of the commands it has executed, or 0 if all
commands ran successfully. Due to this, the Instrumentation Launcher is
fully compatible with the make mechanism.

If an error occurs while the Instrumentation Launcher - or one of the
commands it handles - is running, the following message is generated:

ERROR : Error during C preprocessing

All messages are sent to the standard error output device.

 33

Code Coverage Report Generator

Purpose

The Report Generator creates code coverage reports from the Code
Coverage data gathered during the execution of the application under
analysis.

Syntax

attolcov {<fdc files>} {<traces>} [<options>]

where:

• <fdc files> The list of correspondence files for the application under
analysis, with one file generated for each source file during
instrumentation

• <traces> is a list of trace files. (default name attolcov.tio)

• <options> represents a set of options described below.

Parameters can use wild-card characters ('*' and '?') to specify multiple files.
They can also contain absolute or relative paths.

Description

Trace files are generated when an instrumented program is run. A trace file
contains the list of branches exercised during the run.

You can select one or more coverage types at the instrumentation stage.

All or some of the selected coverage types are then available when reports
are generated.

34

The Report Generator supports the following coverage type options:

-PROC[=RET]

The -PROC option, with no parameter, reports procedure inputs.

Use the RET parameter to reports procedure inputs, outputs, and terminal
instructions.

-CALL

Reports call coverage.

-BLOCK[=IMPLICIT | DECISION | LOGICAL | ATC]

The -BLOCK option, with no parameter, reports statement blocks only.

• IMPLICIT or DECISION (equivalent) reports implicit blocks
(unwritten else and default blocks), as well as statement blocks.

• LOGICAL reports logical blocks (loops, as well as statement and
implicit blocks.

• ATC reports asynchronous transfer control (ATC) blocks, as well as
statement blocks, implicit blocks, and logical blocks.

-COND[=MODIFIED|COMPOUND]

The -COND option, with no parameter, reports basic conditions only.

MODIFIED reports modified conditions as well as basic conditions.

COMPOUND reports compound conditions as well as basic and modified
conditions.

Explicitly Excluded Options

Each coverage type can also be explicitly excluded.

 35

-NOPROC

Procedure inputs, outputs, or returns are not reported.

-NOCALL

Calls are not reported.

-NOBLOCK

Simple, implicit, or logical blocks are not reported.

-NOCOND

Basic conditions are not reported.

Additional Options

The following options are also available:

-FILE=<file>{[,<file>]} | -EXFILE=<file>{[,<file>]}

Specifies which files are reported or not. Use -FILE to report only the files
that are explicitly specified or -EXFILE to report all files except those that
are explicitly specified. Both -FILE and -EXFILE cannot be used together.

-SERVICE=<service>{[,<service>]} | -
EXSERVICE=<service>{[,<service>]}

Specifies which functions, methods, and procedures are to be reported or
not. Use -SERVICE to report only the functions, methods and procedures
that are explicitly specified or -EXSERVICE to report all functions,
methods, and procedures except those that are explicitly specified. Both -
SERVICE and -EXSERVICE cannot be used together.

-OUTPUT=<file>

Specifies the name of the report file (<file>) to be generated. You can specify

36

any filename extension and can include an absolute or relative path.

-LISTING[=<directory>]

This option requires annotated listings to be generated from the source files.
Annotated listings carry the same name as their corresponding source files,
but with the extension .lsc. The optional parameter <directory> is the
absolute or relative path to the directory where the listings are to be
generated. By default, a listing file is generated in the directory where its
corresponding source file is located.

-BRANCH=COV

Reports branches covered rather than branches not covered. It does not
affect listings, where only branches not covered are indicated with the
source code line where they appear.

-SUMMARY=CONCLUSION | FILE | SERVICE

This option sets the verbosity of the summary:

• CONCLUSION reports only the overall conclusion.

• FILE reports only the conclusion for each source file, and the overall
conclusion.

• SERVICE reports only the levels of coverage for each source file, each
C function, and overall. The list of branches covered or not covered is
not included.

Return Codes

After execution, the program exits with the following return codes

Code Description

0 End of execution with no errors

7 End of execution because of fatal error

 37

9 End of execution because of internal error

All messages are sent to the standard error output device.

38

TDF Splitter

Purpose

For use with Runtime Tracing. The .tdf splitter (attsplit) tool allows you to
separate large .tdf dynamic trace files into smallermore manageablefiles.

Syntax

attsplit [<options>] <tcf file> <tsf_file> <tdf file>

where:

• <tcf_file> is always $TESTRTDIR/lib/tracer.tcf

• <tsf_file> is the name of the generated .tsf static trace file

• <tdf file> is the name of the original .tdf dynamic trace file

Description

Trace .tdf files that contain loops cannot be split.

Options

-p <prefix>

Specifies the filename prefix for the split .tdf files. By default, split .tdf
filenames start with att.

-s <bytes>

Sets the maximum file size for the split .tdf files. By default, the original .tdf
dynamic trace file is split into 1000 byte split .tdf files

Specifies

 39

-v | -vw

Activates verbose mode (-v) or verbose mode for written files only (-vw)

-nt

Disables the writing of time information. By default, time information is
written to the split .tdf files.

-fopt <filename>

Uses a text file to pass options to the attsplit command line.

40

JVMPI Agent

Purpose

The JVMPI Agent is a dynamic library that is part of the J2SE and J2ME
virtual machine distributions. The Agent ensure the memory profiling
functionality when using the Memory Profiling feature for Java.

Syntax

java -Xint -Xrunpagent[:<options>] <configuration>

where:

• <options> are the command line options of the JVMPI agent

• <configuration> is the configuration required to run the application

Description

Because of the garbage collector concept used in Java, Performance Profiling
for Java uses the JVMPI agent facility delivered by the JVM. This
differentiates Memory Profiling for Java from the SCI instrumentation
technology used with other languages.

To run the JVMPI Agent from the command line, add the -Xrunpagent
option to the Java command line.

The JVMPI Agent analyzes the following internal events of the JVM:

• Method entries and exits

• Object and primitive type allocations

The JVMPI Agent retrieves source code debug information during runtime.
When the Agent receives a snapshot trigger request, it can either execute an

 41

instantaneous JVMPI dump of the JVM memory, or wait for the next
garbage collection to be performed.

Note Information provided by the instantaneous dump includes actual
memory use as well as intermediate and unreferenced objects that are
normally freed by the garbage collection.

The actual trigger event can be implemented with any of the following
methods:

• A specified method entry or exit used in the Java code

• A message sent from the Snapshot button or menu item in the
graphical user interface

• Every garbage collection

The JVMPI Agent requires that the Java code is compiled in debug mode,
and cannot be used with Java in just-in-time (JIT) mode.

Options

The following parameters can be sent to the JVMPI Agent on the command
line.

-H_Cx=<size>

-H_Ox=<size>

Specifies the size of hashtables for classes (-H_Cx) or objects (-H_Ox) where
<size> must be 1, 3, 5 or 7, corresponding respectively to hashtables of 64,
256, 1024 or 4096 values.

-JVM <prefix>

By default, the Agent waits for the virtual machine (VM) to be fully
initialized before it starts collecting data. This usually relates to the

42

spawning of the first user thread. With the -JVM option, data collection
starts on the first memory allocation, even if the VM is not fully initialized.

-N_O

With the -N_O option, the Agent only counts the number of allocated
objects and ignores any further object data. The existence of the objects after
garbage collection cannot be verified. Use this option to reduce Performance
Profiling overhead or to obtain a quick summary.

-D_O_N

Delete Object No. By default, the Agent only collects and presents method
data on the latest call to that method. Any further calls to the method
replaces existing call data.

Use the -D_O_N option to display all referenced objects.

-D_GC

This option requests a JVMPI dump after each garbage collection

-D_PGC

When using a dump request method, this option makes the Agent wait
until the next garbage collection before performing the dump.

-D_M[[<method>,<class>,<mode>],[,<method>,<class>,<mode>]]

Activates "Dump Method" mode.

Use this option to perform a snapshot on entry or exit of the specified
methods, where <mode> may be 0 or 1:

• 0 performs the method dump upon exit

• 1 performs the method dump on entry

 43

<class> must be the fully qualified name of a class, including the entire
package name.

-O_M[[<method>,<class>],[<method>,<class>]]

Activates "Observe Method" mode.

Use this option to store the call stack when the specified methods are called.
The stack is loaded from 0 to 10 (max).

-U_S=[<name>]

User name

This option adds the name of the user to the JVMPI dump data. The name
must be specified between brackets ("[]").

-D_U=[<string>]

This option specifies a start date that is used by the JVMPI dump data. The
stringr must be specified between brackets ("[]").

-F_M[[<method>,<class>],[<method>,<class>]]

Filter mode.

Use this option to produce JVMPI data only on the specified method(s). All other
methods are ignored.

-H_N=[<hostname>]

Hostname.

Use this option to specify a hostname for the JVMPI Agent to communicate
with the graphical user interface on the local host. The hostname must be
specified between brackets ("[]").

44

-P_T=[<port_number>]

Port number. Use this option to specify a port number for the JVMPI Agent
to communicate with the graphical user interface on the local host. The port
number must be specified between brackets ("[]").

-OUT=[<filename>]

Output filename.

This option specified the name of the trace dump file produced by the
JVMPI Agent. Use the Dump file splitter on this output file to produce a .tsf
static trace file for the GUI Memory Profiling Viewer.

Examples

The following examples launches the JVMPI Agent by dumping the
exportvalues and exportvalues2 methods of the com.rational.Th class:

java -Xint -Xrunpagent:-JVM-
D_M[[exportvalues,com.rational.Th,0],[exportvalues2,com
.rational.Th,0]] -classpath $CLASSPATH Th

 45

Graphical User Interface

Purpose

The Graphical User Interface (GUI) of the product is an integrated
environment that provides access to all of the capabilities packaged with the
product.

Syntax

studio [-r <node>] [<filename>{,<filename>}]

where:

• <filename> can be an .rtp project or .rtw workspace file, as well as any
text or report file that can be opened by the GUI.

• <node> is a project node to be executed.

Description

The studio command launches the GUI.

The -r option launches the GUI and automatically executes the specified
node. Use the following syntax to indicate the path in the Project Explorer
to the specified node:

<workspace_node>{[.<child_node>]}

Nodes in the path are separated by period ('.') symbols. If no node is
specified, the GUI executes the entire project.

When using the -r option, an .rtp project file must be specified.

Example

46

The following command opens the project.rtp project file in the GUI, and
runs the app_2 node, located in app_group_1 of user_workspace:

studio -r user_workspace.app_group_1.app_2 project.rtp

 47

Dump File Splitter

Purpose

The dump file splitter (atlsplit) tool separates the unique multiplexed trace
data file generated by the runtime analysis command line tools into specific
trace files that can be processed by the runtime analysis feature Report
Generators.

Syntax

atlsplit <trace_file>

where:

• <trace_file> is the name of the generated trace file (atlout.spt)

Description

The dump file splitter actually launches a perl script. You must therefore
have a working perl interpreter such as the one provided with the product
in the /bin directory.

Alternatively, you could use the following command line:
perl -I<installdir>/lib/perl
<installdir>/lib/scripts/BatchSplit.pl atlout.spt

where <install_dir> is the installation directory of the product.

The script automatically detects which runtime analysis feature was used to
generate the file and produces as many output files.

After the split, depending on the selected runtime analysis feature, the
following file types are generated:

48

• .tio Code Coverage report files: view with Code Coverage Viewer

• .tdf Dynamic trace files: view with UML/SD Viewer

• .tpf Memory Profiling report files: view with Memory Profiling
Viewer

• .tqf Performance Profiling report files: view with Performance
Profiling Viewer

 49

Test Process Monitor

Purpose

Use the Test Process Monitor tool (tpm_add) to create and update Test
Process Monitor databases from a command line.

Syntax

tpm_add -metric=<metric> [-file=<filename>] [-user=<user>]
{[<value_field>]}

where:

• <metric> is the name of the metric.

• <filename> contains the name of the file under analysis to which the
metric applies. This allows metrics for several files to be saved within
the same database.

• <user> is the name of the product user who performed the measured
value.

• <value_field> are the values attributed to each field

Description

The Test Process Monitor (TPM) provides an integrated monitoring feature
that helps project managers and test engineers obtain a statistical analysis of
the progress of their development effort.

Metrics generated by a runtime analysis feature are stored in their own
database. Each database is actually a three-dimensional table containing:

• Fields: Each database contains a fixed number of fields. For example a
typical Code Coverage database records.

50

• Values: Each field contains a series of values.

• Filenames: Values can be attributed to a filename, such as the name of
the file under analysis. This way, the TPM Viewer can display result
graphs for any single filename as well as for all files, allowing detailed
statistical analysis.

Each field contains a set of values.

Note Although you specify a filename for the file under analysis, the TPM
Viewer currently only displays a unique FileID number for each file.

The TPM database is made of two files that use the following naming
convention:

<metric>.<user>.<nb_fields>.idx
<metric>.<user>.<nb_fields>.tpm

where <nb_fields> is the number of fields contained in the database.

In the GUI, the Test Process Monitor gathers the statistical data from these
database file and generates a graphical chart based on each field.

There are 3 steps to using TPM:

• Creating a database for the metric

• Updating the database

• Viewing the results in the GUI

Creating a Database

Before opening the Test Process Monitor in the product, you must create a
database.

Database files are created by using the tpm_add command line tool.

 51

If you are using Code Coverage from the GUI, it automatically creates and
updates a TPM code-coverage database.

If you are using the product in the command line interface you can invoke
tpm_add from your own scripts.

To create a new metric database with tpm_add:
• Type the following command:

tpm_add -metric=<name> -file=<filename> <value1>[{<value2>...
}]

where <name> is the name of the new metric and <value> represents the
initial value of each field in the database. <filename> is the name of the
source file to which these values are related.

Updating a Database

The Test Process Monitor adds a record to the database each time it
encounters an existing database.

To add a new record to this database:
• Type the tpm_add command:

tpm_add -metric=<name> <value1>[{<value2>... }]

where <name> is the name of the new metric and <value> represents the
initial value of each field in the database. The number of values must be the
consistent with the number of fields in the table.

Note It is important to remain consistent and supply the correct number of
fields for your database. If you run the tpm_add command on an
existing metric, but with a different number of fields, the feature
creates a new database.

tpm_add -metric=stats 5 -6 5.4 3 0

Viewing TPM Reports

52

Use the Test Process Monitor menu in the product to display database.
Please refer to the User Guide for further information.

Examples

The following command creates a user metric called stats, made up of five
fields, containing initial values 1, 0.03, 0, 3 and -4.7.

tpm_add -metric=stats -file=/project/src/myapp.c 1 0.03
0 3 -4.7

The new database is contained in the following files:
stats.user.5.idx
stats.user.5.tpm

The following line adds a new record to the stats database, pertaining to the
myapp.c source file:

tpm_add -metric=stats -file=/project/src/myapp.c 5 -6
5.4 3 0

The following line adds a new set of values to the stats database, this time
related to the mylib.c source file:

tpm_add -metric=stats -file=/project/src/mylib.c 5 -6
5.4 3 0

The metrics related to myapp.c and mylib.c are stored in the same database
and can be viewed either jointly or separately in the product Test Process
Monitor Viewer.

If the following command is issued:
tpm_add -metric=stats -file=myapp.c 5 -6 3 0

A new database is created with four fields:
stats.user.4.idx
stats.user.4.tpm

 53

Appendices 3
This section provides extra reference information that may be necessary
when using the product.

54

GUI Macro Variables

Some parts of the graphical user interface (GUI) allow you to specify
command lines, such as in the Tools menu or in User Command nodes.

To enhance the usability of this feature, the product includes a macro
language, allowing you to pass system and application variables to the
command line.

Usage

Macro variables are preceded by $$ (for example: $$WSPNAME).

Macro functions are preceded by @@ (for example: @@PROMPT).

Environment variables are also accessible, and start with $ (for example:
$DISPLAY).

When specifying a command line, variables and functions are replaced with
their value.

Node variables are context-sensitive: the variable returned relates to the
node selected in the Project Explorer. Multiple selections are supported. If a
node variable is invoked when there is no selection, no value is returned by
the variables.

Macro variables and functions are case-insensitive. For clarity, they are
represented in this document in upper case characters.

Language Reference

• Global variables: not node-related, include Workspace and application
parameters.

 55

• Node attribute variables: general attributes of a node.

• Functions: return a value to the command line after an action has been
performed.

Functions

Functions process an input value and return a result. Input values are
typically a global or node variable.

Environment Variable Description

@@PROMPT('<message>') Opens a prompt dialog box, allowing the user to enter a line of
text.

The optional <message> parameter allows you to define a prompt
message, surrounded by single quotes (').

@@EDITOR(<filename>) Opens the product Text Editor.

@@OPEN(<filename>) Opens <filename>. <filename> must be a file type recognized by the
product. This is the equivalent of selecting Open from the File
menu.

Global Variables

Global variables always return the same value throughout the Workspace.

Environment Variable Description

$$PRJNAME Returns the name of the current .rtp Project file

$$PRJDIR Returns the directory name of the current .rtp Project file

$$PRJPATH Returns the absolute path of the current .rtp Project file

$$VCSDIR Returns the local repository for files retrieved from Rational
ClearCase, as specified in the ClearCase Preferences dialog box

$$CPPINCLUDES Returns the directory of C and C++ include files, as specified in
the Directories Preferences dialog box

56

$$PERL Returns the full command-line to run the PERL interpreter
included with the product

$$CLIPBOARD Returns the text content of the clipboard

$$VCSITEMS Returns a list of installed configuration management system
(CMS) tools

Node Attribute Variables

These variables represent the attributes of a selected node. If no node is
selected, these variables return an empty string.

Environment Variable Description

$$NODENAME Returns the name of the node. In the case of files, this is the node's
short filename

$$NODEPATH Returns the absolute path and filename of the selected node

$$CFLAGS Returns the compilation flags

$$LDLIBS Returns the filenames of link definition libraries

$$LDFLAGS Returns the flags used for link definition

$$ARGS Returns all arguments sent to the command line

$$OUTDIR Returns the name of the product features output directory

$$REPORTDIR Returns name of the text report output directory

$$TARGETDIR Returns the absolute path to the current Target Deployment Port

$$BINDIR Returns the binary directory where the product is installed

$$OBJECTS Returns a list of .o or .obj object files generated by the compiler

$$TIO Returns the name of the current .tio trace file generated by Code
Coverage

$$TSF Returns the name of the current UML/SD .tsf static file generated
by Runtime Tracing

 57

$$TDF Returns the name of the current UML/SD .tdf dynamic file
generated by Runtime Tracing

$$TDC Returns the name of the current Code Coverage .tdc
correspondence file

$$ROD Returns the name of the current .rod report file

$$FDC Returns the name of the current .fdc correspondence files for
Code Coverage

58

Instrumentation Pragmas

The Runtime Tracing feature allows the user to add special directives to the
source code under analysis, known as pragma directives. When the source
code is instrumented, the Instrumentor replaces pragma directives with
dedicated code.

Usage

#pragma attol <pragma name> <directive>

Example:
int f (int a)
{
#pragma attol att_insert if (a == 0) _ATT_DUMP_STACK
 return a;
}

This code will be replaced, after instrumentation, with the following line:
/*#pragma attol att_insert*/ if (a == 0)
_ATT_DUMP_STACK

Note Pragma directives are implemented only if the routine in which it is
used is instrumented.

Instrumentation Pragma Names

#pragma attol insert <directive>

replaced by the instrumentation to be:
/*#pragma attol insert*/ <directive>

if any of Code Coverage, Runtime Tracing, Memory Profiling or
Performance Profiling is/are selected.

#pragma attol atc_insert <directive>

 59

replaced by the instrumentation to be:
/*#pragma attol atc_insert*/ <directive>

if Code Coverage is selected.

#pragma attol att_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol att_insert*/ <directive>

if Runtime Tracing is selected.

#pragma attol atp_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol atp_insert*/ <directive>

if Memory Profiling is selected.

#pragma attol atq_insert <directive>

replaced by the instrumentation to be:
/*#pragma attol atq_insert*/ <directive>

if Performance Profiling is selected.

Code Coverage, Memory Profiling and Performance Profiling
Directives

_ATCPQ_DUMP(<reset>)

where <reset> is 1 if internal tables reset is wanted or 0 if not.

This macro ATCPQ_DUMP does nothing if Code Coverage, Memory
Profiling, or Performance Profiling are not selected.

Runtime Tracing Directives

60

When using this mode, the Target Deployment Package only sends
messages related to instance creation and destruction, or user notes. All
other events are ignored. See the section on Partial Message Dump in the
User Guide for more information about this feature.

_ATT_START_DUMP

_ATT_STOP_DUMP

These directives activate and deactivate the partial message dump mode.

_ATT_TOGGLE_DUMP

This directive toggles the dump mode on and off. _ATT_TOGGLE_DUMP
can be used instead of _ATT_START_DUMP and _ATT_STOP_DUMP.

_ATT_DUMP_STACK

When invoked, this directive dumps the contents of the call stack at that
moment.

_ATT_FLUSH_ITEMS

When in Target Deployment Package buffer mode, this directive flushes the
buffer. All buffered trace information is dumped. Flushing the buffer be
useful before entering a time-critical phase of the trace.

_ATT_USER_NOTE(<text>)

This directive associates a text note to the function or method instance.
<text> is a user-specified alphanumeric string containing the note text of
type char*. The length of <text> must be within the maximum note length
specified in the Runtime Tracing Settings dialog box.

 61

Environment Variables

Mandatory Environment Variables

The following environment variables MUST be set to run the product:

• TESTRTDIR for the graphical user interface

• ATLTGT in the command line interface

Environment Variable List

Environment Variable Description

TESTRTDIR A mandatory environment variable that points to the
installation directory of the product.

ATTOLSTUDIO_VERB
OSE

Setting this variable to 1 forces the product GUI to display
verbose messages, including file paths, in the Build Message
Window.

Runtime Analysis Features

The Runtime Analysis Features use the following environment variables:

 Environment Variable Description

ATLTGT A mandatory environment variable that points to the Target
Deployment Port directory when you are using the product in
the command line interface.

When you are using the Instrumentation Launcher or the
product GUI, you do not need to set ATLTGT manually, as it
is calculated automatically.

62

ATL_TMP_DIR

Indicates the location for temporary files. By default, they are
placed in /tmp for Linux.

ATL_EXT_SRC

This variable allows you to instrument additional files with
filename extensions other than the defaults (.c and .i). The .c
extension is reserved for C source files that require
preprocessing, while .i is for already preprocessed files. All
other extensions supported by this variable are assumed to be
of source files that need to be preprocessed.

ATL_EXT_OBJ Lets you specify an alternative extension to .o for object files.

ATL_EXT_ASM Lets you specify more than .s extension for assembler source
files when the compiler offers an option to generate an
assembler listing without compiling it to the object file.

ATL_EXT_SRCCP The variable lets you add C++ source file extensions (defaults
are .C, .cpp, .c++, .cxx, .cc, and .i) to specify the C++ source files
to be instrumented. Extensions .C to .cc in the list are reserved
for source files under analysis. The .i extension is reserved for
those to be processed, if the ATL_FORCE_CPLUSPLUS
variable is set to ON. Any other extension implies that pre-
processing is to be performed.

ATL_FORCE_CPLUSP
LUS

If set to ON, this variable allows you to force C++
instrumentation whether the file extension is .c, .i, or any
added extension.

Test Process Monitor

The Test Process Monitor uses the following environment variables.

Environment variable Description

ATTOL_TPM_ROOT This variable indicates the directory where Test Process
Monitor databases are located for a project.
ATTOL TPM ROOT is a mandatory variable and must be set

 63

when a project is created. It should be a shared directory
accessible by all users who work on a project.

ATTOL_TPM_USER This optional variable specifies the name of the user. If this
variable is not set, the Test Process Monitor uses the current
user, if possible.

Instrumentation Launcher

The Instrumentation Launcher uses the following additional variables:

Environment variable Description

ATTOLBIN If set, this variable must contain the path to the Instrumentor
binaries. If not, this path is determined automatically from the PATH
variable. This variable can be useful if the Target Deployment Port
has been moved to a non-standard location.

ATTOLOBJ If set, this variable points to a valid directory where the products.h
file is generated and the Target Deployment Port (TP.o or TDP.obj)
is compiled. By default, these files are generated in the current
directory.

ATL_OVER_SET This variable must indicate the path to a copy of the
BatchCCDefaults.pl file if you want to change any Target
Deployment Port compilation flags contained in that file.

ATL_EXT_LIB Lets you specify additional alternative extensions for library files. By
default .a or .lib are used.

ATL_FORCE_C_TDP If set to ON, the tp.ini file is used instead of the tpcpp.ini file (used
for C++ language). If the Target Deployment Port supports only C
language, the tp.ini file is always used.

ATL_OVER_SET As an alternative to using the --settings of the Instrumentation
Launcher, you can copy and modify the
<InstallDir>/lib/scripts/BatchCCDefaults.pl file. In this case, set
ATL_OVER_SET to the directory and filename of the new copy of
this file.

Ada Tools

64

The Ada Link File Generator and Ada Unit Maker use the following
additional variables:

Environment Variable Description

ATTOLCHOP Selects the default naming convention. The following values can be
used:

ATTOLCHOP="APEX" : for Rational Apex naming.

ATTOLCHOP="GNAT" : for Gnat naming

All other values end with a fatal error. By default, Gnat naming is
used.

ATTOLALK_EXT Specifies allowed extensions separated by the semicolon (':') character
on Linux systems.
By default, the allowed extension list is ".ada:.ads:.adb"

 65

ATTOLALK_NOEXT Specifies forbidden extensions separated by the ':' character on Linux
systems.

By default, the forbidden extension list is empty.

LD_LIBRARY_PATH Specifies the location of libraries required by the Ada Link File
Generator. By default, these libraries are located in the /lib directory
of the installation directory.

Setting Environment Variables on a Linux Platform
To set an environment variable with a csh shell:

1. Open a shell window

2. Type the following command:
setenv <variable> <value>

To set an environment variable with a sh, ksh, Bash, or Bourne shell:
1. Open a shell window

2. Type the following commands:
<variable>=<value>
export <variable>

66

File Types

This table summarizes all the file types generated and used by GUI.

File Type Default
Extension

Generated By Used By

Code Coverage
Correspondence File

.fdc Instrumented application
(Code Coverage)

Code Coverage
 Report Generator

Metrics File .met GUI GUI Metrics Viewer

Project File .rtp GUI GUI

Workspace File .rtw GUI GUI

Target Output File .spt Target Deployment Port GUI

UML/SD
Dynamic Trace File

.tdf Instrumented application
(Runtime Tracing)

GUI UML/SD Viewer

Code Coverage
Intermediate File

.tio Instrumented application
(Code Coverage)

Code Coverage
 Report Generator

Memory Profiling
Dynamic Trace File

.tpf Instrumented application
(Memory Profiling)

GUI Memory Profiling
Viewer

Performance Profiling
Dynamic Trace File

.tqf Instrumented application
(Performance Profiling)

GUI Performance
Profiling Viewer

Static Trace File .tsf C and C++ Instrumentor GUI UML/SD Viewer

Target Deployment Port
Customization File

.xdp TDP Editor TDP Editor

	Rational® PurifyPlus for Linux - Reference Manual
	Contents
	About Online Documentation
	Documentation Updates and Feedback

	Command Line Reference
	Java Instrumentation Launcher
	Java Instrumentation Launcher for Ant
	Java Instrumentor
	C and C++ Instrumentor
	C and C++ Instrumentation Launcher
	Code Coverage Report Generator
	TDF Splitter
	JVMPI Agent
	Graphical User Interface
	Dump File Splitter
	Test Process Monitor

	Appendices
	GUI Macro Variables
	Functions
	Global Variables
	Node Attribute Variables

	Instrumentation Pragmas
	Environment Variables
	Setting Environment Variables on a Linux Platform

	File Types

	pplx-ref.pdf

