
Rational Software Corporation

support@rational.com
http://www.rational.com

Rational® PurifyPlus for Linux
ONLINE TUTORIAL

VERSION: 2002 RELEASE 2 - SR1

mailto:support@rational.com
http://www.rational.com

IMPORTANT NOTICE

COPYRIGHT
Copyright ©2000-2002, Rational Software Corporation. All rights reserved.

Part Number: 800-025997-000

Version: 2002 Release 2 - SR1

PERMITTED USAGE
THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF RATIONAL
SOFTWARE CORPORATION (“RATIONAL”) AND IS FURNISHED FOR THE SOLE PURPOSE OF THE
OPERATION AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS PUBLICATION
IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE REPRODUCED, COPIED, ADAPTED,
DISCLOSED, DISTRIBUTED, TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED
INTO ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN WHOLE OR IN
PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF RATIONAL.

TRADEMARKS
Rational, Rational Software Corporation, Rational the software development company, ClearCase, ClearQuest, Object
Testing, Purify, Quantify, Rational Apex, Rational Rose, Rational Suite, among others, are either trademarks or
registered trademarks of Rational Software Corporation in the United States and/or in othercountries.All other names
are used for identification purposes only, and are trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, Windows, Windows NT, Windows Me and Windows 2000 are trademarks or registered
trademarks of Microsoft Corporation in the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc. Licensee shall
not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into any product or application the
primary purpose of which is software license management.

PATENT
U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable Rational
Software Corporation license agreement and as provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14, as applicable.

WARRANTY DISCLAIMER
This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media and
software product and its documentation, including without limitation, the warranties of merchantability or fitness for a
particular purpose or arising from a course of dealing, usage, or trade practice.

1

Online Tutorial
Contents
Overview ... 3

C and C++ Track .. 3
Preparation ... 3
Goals of the Tutorial.. 4

Java Track ... 5
Preparation ... 5
JDK Installation... 6
Goals of the Tutorial.. 7

Runtime Analysis with Rational PurifyPlus for Linux..................................... 9

C and C++ Track ... 9
Runtime Analysis for C and C++... 9
Runtime Analysis with Rational PurifyPlus for Linux...................................... 9

Memory Profiling .. 9
Performance Profiling .. 10
Code Coverage Analysis ... 10
Runtime Tracing... 11

Runtime Analysis Exercises.. 12
Exercise One ... 13
Exercise Two ... 18
Exercise Three... 30

Conclusion.. 38
Command Line Usage of PurifyPlus for Linux... 38
Conclusion - with a Word about Process... 39

Java Track ... 40
Runtime Analysis for Java... 40
Runtime Analysis with Rational PurifyPlus for Linux.................................... 40

Memory Profiling .. 40
Performance Profiling .. 41

2

Code Coverage Analysis..42
Runtime Tracing ...42

Runtime Analysis Exercises.. 43
Exercise One ..45
Exercise Two ..51
Exercise Three ...64

Conclusion.. 72
Command Line Usage of PurifyPlus for Linux ...72
Conclusion - with a Word about Process ...76

Conclusion .. 79

Proactive Debugging.. 79
Questions?... 80

Technical Support .. 81

3

Overview 1
C and C++ Track

Preparation

In this tutorial, you will be working with a simulated mobile phone and
UMTS Base Station. Source files for the base station (the mobile phone
executable is provided) are located within the PurifyPlus for Linux
installation folder, in the folder \examples\BaseStation_C\src. (If you don't
have write permission to the installation location of PurifyPlus for Linux,
then you will need to copy the examples folder - and its contents - to a new
location. Otherwise, you will be unable to perform any part of the Tutorial
that creates/modifies files.)

UMTS - Universal Mobile Telecommunications System - is a Third
Generation (3G) mobile technology that will enable 2Mbit/s streaming not
only of voice and data, but also of audio and visual content. A UMTS base
station is a switching network device enabling the communication of
multiple UMTS-enabled mobile phones.

The mobile phone simulator consists of both a Graphical User Interface
(GUI) as well as of internal logic. The GUI is constructed from OS-
independent graphical C++ classes; the logic within the simulator is
constructed from OS-independent C and C++ code.

The mobile phone executable is located within the PurifyPlus for Linux
installation folder, in the folder \examples\BaseStation_C\MobilePhone\.
The name of the executable depends on your Linux distribution:

4

• Linux SuSE: MobilePhone.Linux

• Linux RedHat: MobilePhone.Linux_redhat

(A launcher shell script - MobilePhone.sh - is provided as well.)

The UMTS base station is fully operational, constructed from OS-
independent C and C++ code. You are provided with both the source code
and an executable for the base station. The UMTS base station executable is
located within the PurifyPlus for Linux installation folder, in the folder
\examples\BaseStation_C. The name of the executable depends on your
Linux distribution:

• Linux SuSE: BaseStation.Linux

• Linux RedHat: BaseStation.Linux_redhat

(A launcher shell script - BaseStation.sh - is provided as well.)

Since efforts are always being made to update or improve the tutorial - as
well as PurifyPlus for Linux itself - a customer-only webpage has been
created. This page, accessible via the PurifyPlus for Linux Help menu item
Latest News and Updates for Users, will contain news, patches, etc. for
current users. Feel free to check this page for updates before usage of this
tutorial.

Goals of the Tutorial

The UMTS base station has been pre-loaded with errors; your
responsibility, during the tutorial, will be to uncover:

• a memory leak

• a performance bottleneck

• a logic error in C code

• a logic error in C++ code

5

In addition, you will:

• analyze the code coverage achieved via UMTS base station interaction

• improve your understanding of the code via runtime tracing

To accomplish the above, you will manipulate the UMTS base station
through manual interaction with a mobile phone simulator.

To continue this tutorial, follow the C and C++ track in the lesson Runtime
Analysis with PurifyPlus for Linux.

Java Track

Preparation

In this tutorial, you will be working with a simulated mobile phone and
UMTS base station. Source files for the base station (the mobile phone
executable is provided) are located within the PurifyPlus for Linux
installation folder, in the folder \examples\BaseStation_Java\src. (If you
don't have write permission to the installation location of PurifyPlus for
Linux, then you will need to copy the examples folder - and its contents - to
a new location. Otherwise, you will be unable to perform any part of the
Tutorial that creates/modifies files.)

UMTS - Universal Mobile Telecommunications System - is a Third
Generation (3G) mobile technology that will enable 2Mbit/s streaming not
only of voice and data, but also of audio and visual content. A UMTS base
station is a switching network device enabling the communication of
multiple UMTS-enabled mobile phones.

The mobile phone simulator consists of both a Graphical User Interface
(GUI) as well as of internal logic. The GUI is constructed from OS-
independent graphical C++ classes; the logic within the simulator is
constructed from OS-independent J2SE-compliant code.

6

The mobile phone executable is located within the PurifyPlus for Linux
installation folder, in the folder \examples\BaseStation_C\MobilePhone\ -
that is, the executable is not located in the BaseStation_Java folder. The
name of the executable depends on your Linux distribution:

• Linux SuSE: MobilePhone.Linux

• Linux RedHat: MobilePhone.Linux_redhat

(A launcher shell script - MobilePhone.sh - is provided as well.)

The UMTS base station is fully operational, constructed from OS-
independent J2SE-compliant code. You are provided with both the source
code and an executable for the base station. The UMTS base station
executable is located within the PurifyPlus for Linux installation folder, in
the folder \examples\BaseStation_Java. The name of the executable
depends on your Linux distribution:

• Linux SuSE: BaseStation.Linux

• Linux RedHat: BaseStation.Linux_redhat

(A launcher shell script - BaseStation.sh - is provided as well.)

Since efforts are always being made to update or improve the tutorial - as
well as PurifyPlus for Linux itself - a customer-only webpage has been
created. This page, accessible via the PurifyPlus for Linux Help menu item
Latest News and Updates for Users, will contain news, patches, etc. for
current users. Feel free to check this page for updates before usage of this
tutorial.

JDK Installation

Performance of the demo assumes access to the J2SE 1.3.1 or 1.4.0 SDK.

If neither J2SE distribution is currently installed on your machine, you can
freely download them as follows:

7

NOTE: The following are the recommended J2SE distributions.
Technically, any SDK that is 100% J2SE 1.3.1 or 1.4.0 compliant can
be used with PurifyPlus for Linux. However, only the following
distributions have been verified as supported.

For J2SE 1.3.1 on Linux (both RedHat and SuSE):

1. Go to http://java.sun.com/j2se/1.3/download.html

2. Select the SDK download link for "Linux GNUZIP Tar shell script"

3. Download and install the SDK onto your machine

For J2SE 1.4.0 on Linux (both RedHat and SuSE)

1. Go to http://java.sun.com/j2se/1.4/download.html

2. Select the SDK download link for "Linux GNUZIP Tar shell script"

3. Download and install the SDK onto your machine

Goals of the Tutorial

The UMTS base station has been pre-loaded with errors; your
responsibility, during the tutorial, will be to uncover:

• poor memory management

• a performance bottleneck

• a logic error in Java code

In addition, you will:

• analyze the code coverage achieved via UMTS base station interaction

• improve your understanding of the code via runtime tracing

To accomplish the above, you will manipulate the UMTS base station

8

through manual interaction with a mobile phone simulator.

To continue this tutorial, follow the Java track in the next lesson: Runtime
Analysis with Rational PurifyPlus for Linux.

9

Runtime Analysis with Rational
PurifyPlus for Linux 2
C and C++ Track

Runtime Analysis for C and C++

Runtime analysis refers to the ability of PurifyPlus for Linux to monitor an
application as it executes. There are a variety of advantages to be gained
from this monitoring:

• memory profiling

• performance profiling

• code coverage analysis

• runtime tracing

Runtime Analysis with Rational PurifyPlus for Linux

Memory Profiling

Dynamically working with system memory can be quite a complicated
affair. If you're not careful, your code might either:

• Fail to free memory - referred to as a memory leak

• Mistakenly reference non-allocated memory - referred to as an array
bounds read or array bounds write

A memory leak detection utility monitors an application as it executes,
keeping an eye on memory usage to ensure the above problems don't occur.
If they do occur, the detection utility points out the sequence of events

10

leading up to the poor usage of memory, helping you deduce the cause of
the error and thereby repair your code.

This function is provided in Rational PurifyPlus for Linux by the memory
profiling feature for the C and C++ languages.

Performance Profiling

Optimal performance is, needless to say, crucial for business-critical
systems. Measuring performance can be quite difficult, however,
particularly when it comes to determining the specific functional
bottlenecks in your system.

That's where performance profiling monitors come in. These tools watch
your application as it executes, measuring statistics such as:

• How often a function is called

• How long it takes for that function to execute

• Which functions are the bottlenecks of your application

With this information you can optimize your code, ensuring all constraints
placed upon your system are accommodated.

This function is provided in Rational PurifyPlus for Linux by the
performance profiling feature for the C and C++ languages.

Code Coverage Analysis

One of the greatest difficulties a developer experiences is a failure to
determine the portions of code that have gone untested. For many systems,
failure is not an option, so every part of an application must be thoroughly
tested to ensure there is no unhandled scenario or dead code.

In addition, product managers need a concrete measurement to determine
where the team is in the development cycle - in particular, how much more

11

testing needs to be done. A decreasing number of defects does not
necessarily mean the product is ready; it might simply mean the portions of
code that have been tested appear to be ready.

Code coverage measurement tools monitor your running application,
flagging every line of code as it executes. Advanced tools - such as
PurifyPlus for Linux - are also able to differentiate different types of
execution, such as whether or not a do-while loop executed 0 times, 1 time,
or 2 or more times. These advanced measurements are crucial for software
systems upon which customer confidence relies.

This function is provided in Rational PurifyPlus for Linux by the code
coverage feature for the C and C++ languages.

Runtime Tracing

As all developers quickly learn, intentions don't necessarily translate into
reality. There can often be a vast difference between what you want to
happen and what actually happens as your application executes.

This problem becomes more severe when the code is inherited. Yes, you
could try to piece things together yourself, but system complexity might
just undercut your efforts at understanding the code.

And what about multi-threaded applications? If you've ever encountered
race conditions or deadlocks, you know how difficult it can be to uncover
the source of the problem.

This is where runtime tracing monitors come in. These utilities graphically
display the sequence of function or method calls in your running
application - as well as the active threads - illustrating through pictures
what is actually happening. With this information, unexpected exceptions
can be easily traced back to their source, complex procedures can be
distilled to their essence, threading conflicts can be resolved and inherited
code can jump off the page and display its inherent logic.

12

This function, using the industry standard Unified Modeling Language for
its graphical display, is provided in Rational PurifyPlus for Linux by the
runtime tracing feature for the C and C++ languages.

Runtime Analysis Exercises

The following exercises will walk you through a typical use case involving
the four runtime analysis features of PurifyPlus for Linux to which you
have just been introduced. Pay close attention not only to the capabilities of
these features but also to how they are used. The better you understand
these features, the more quickly you will be able to adopt them within your
own development process.

Reminders before you begin:

1. If you have never run this tutorial before, make sure your machine has a
temporary folder in which you can store the test project you will be
creating. For the tutorial, it is assumed that the test project will be stored
in a folder called tmp

2. During installation of Rational PurifyPlus for Linux, the user is
confronted by two interactive dialogs. These dialogs serve to clarify the
location of the local GNU compiler and (if present) local JDK. Only the
GNU compiler and JDK specified within these dialogs will be accessible
within PurifyPlus for Linux. Is the GNU compiler located during
installation of PurifyPlus for Linux the only GNU compiler installed on
your machine? If so, skip the rest of this section. If not - or if you are not
sure - then you should ensure the proper compiler will be accessible by
performing the following:

• From a command prompt, execute the shell script 'ConfigureGcc.sh'

• Follow the prompts until the proper GNU compiler is located

This shell script is located in the folder:

13

• Red Hat - (install dir)/releases/PurifyPlusForLinux.v2002R2/bin/
intel/linux_redhat

• SuSE - (install dir)/releases/PurifyPlusForLinux.v2002R2/bin/intel/
linux_suse

This shell script depends on a properly configured environment. If, for
some reason, your environment is not properly configured (indicated by
the interactive dialog):

• Set your current directory to the applicable shell script folder mentioned
above

• Execute the environment configuration shell script - '.ppluslinuxinit.sh'

3. If you have run this tutorial before, don't forget to undo the source file
edits you made the last time you ran through it. The following files are
modified during the tutorial:

• PhoneNumber.cpp

• UmtsCode.c

• UmtsServer.cpp

Exercise One

Introduction to Exercise One

In this exercise you will:

• create a new project in which the UMTS base station source code will be
referenced

If you need a refresher about the application you will be using during this
tutorial, look here; otherwise, please proceed.

14

Creating a Project

Typically, there is a one-to-one relationship between your current
development project and a PurifyPlus for Linux project. Although your
development project may consist of more than one application, these
applications often possess a common theme. Use the PurifyPlus for Linux
project to enforce that theme.

1. To start Rational PurifyPlus for Linux, type studio on the command line.

2. Select the Get Started link on the left-hand side of the PurifyPlus for
Linux user interface (UI). Two links will appear on the right-hand side of
the UI - one called New Project and one called Open Project. Select the
New Project link. You should now see the New Project Wizard.

3. In the Project Name field, enter BaseStation (no spaces). In the Location
field, select the button, browse to the folder in which you want the
BaseStation project to be stored and then select it. (This Tutorial will
assume that the project has been stored in the folder \usr\tmp) Click
the Next button.

4. Select, from the list of supported GNU distributions, the one you intend
to use.Note that GNU compilers support both C and C++.

5. Click the Finish button.

That's it. The project has been created - named BaseStation - and a project node
by the same name appears on the Project Browser tab of the Project Explorer
window on the right-hand side of the UI:

Creating a New Activity

Now that you have created a project, it is time to specify:

• your development project's source files

15

• the type of testing or runtime analysis activity you would like to
perform first

1. Once a project has been created, the user is automatically brought to the
Activities page. In this tutorial you are starting with a focus on the
runtime analysis features, so select the Runtime Analysis link. This will
bring up the Runtime Analysis Wizard.

2. In the window entitled Application Files, you must list all source files
for your current development project. For this tutorial, you will directly
select the source files. Select the Add button .

3. Browse to folder into which you have installed PurifyPlus for Linux and
then access the folder \examples\BaseStation_C\src

4. Make sure All C++ Files in the Files of Type dropdown box is selected,
then left-click-hold-and-drag over all of the eight C and C++ source files.
Now click the Open button. You should see these eight files listed in the
large listbox of the Application Files window. Click the Next button.

5. At this time, an analysis engine parses each source file - referred to as
tagging. This process recognizes extracts the various classes and
associated methods to simplify code browsing.

6. In the window entitled Selective Instrumentation you have the ability to
select those functions/procedures/methods/classes that should not be
instrumented for runtime analysis. Such selective instrumentation
ensures that the instrumentation overhead is kept to a minimum. For this
Tutorial, you will be monitoring everything, so simply click the Next
button.

7. You have now reached the window entitled Application Node Name.
Enter the name of the application node that will be created at the
conclusion of the Runtime Analysis Wizard; since you will be monitoring
execution of the UMTS base station, type the word BaseStation within
the text field labeled Name.

16

8. Click the Next button.

9. You are now confronted with the Summary window. Everything should
be in order, so click the Finish button.

The BaseStation application node has now been created. The Project
Browser tab of the Project Explorer window should appear as follows:

Conclusion of Exercise One

Have a look at the right side of your screen. This is the Project Explorer
window, and within it two tabs are visible.

The first - the Project Browser tab - contains a reference to all group,
application and test nodes created for the active project. The project node,
named BaseStation, contains an application node named BaseStation; the
application node contains a list of all of the source files required to build the
UMTS base station application. (Though the project and application nodes
have the same name, this is not a requirement.)

The second tab - the Asset Browser tab - lets you browse all of your source
and test files. If the selected Sort Method is By Files, you are presented
with a file-by-file listing of test scripts, source code and source code
dependents (such as header files). Note how each header file can be
expanded to display every class, function, and method declaration, while
each source file can be expanded to display every defined object and
method or function. Double-clicking any test script/source file/header file
node will open its contents within the PurifyPlus for Linux editor; double-
clicking any class declaration or method definition node will open the

17

relevant source file/header file to the very line of code at which the
definition/declaration occurs.

There are two other sort methods as well on the Asset Browser. The first, By
Objects, let's you filter down to classes and methods, independent of the
source files. The second, By Packages, is primarily applicable to Java
packages.

You may have noticed along one of the toolbars at the top of the UI that the
GNU compiler you selected in the New Project Wizard is listed in a
dropdown box. In fact, this is not a reference to the compiler ; rather, it is a
reference to a Configuration whose base compiler is the one you selected in
the wizard. (Configurations are initially named after their base compiler,
but this name can be changed.) Should you have multiple configurations for
the same project, use this dropdown box to select the active Configuration
for execution.

Finally, to the right of the Configuration dropdown list is the Build button
. This button is used to build your application for application nodes and

the test harness for test nodes. The test harness consists of:

• source files needed to build the application of interest

• stubs

• a test driver

The downward-facing arrow associated with the Build button lets the user
decide from which point the build process should initiate and what runtime
analysis features should be used. The runtime analysis features do not have
to be used at the same time; this Build options window provides a quick
and simple method for deselecting undesired runtime analysis features
immediately prior to execution of the build process.

Armed with this knowledge, proceed to Exercise Two.

18

Exercise Two

Introduction to Exercise Two

In this exercise you will:

• build and execute the UMTS base station application

• manually interact with the UMTS base station application

• view the runtime analysis reports derived from your interaction

Building and Executing the Application

1. When performing runtime analysis, your source code must be
instrumented. Instrumentation, by default, is enabled for all four
runtime analysis features - that is, for memory profiling, performance
profiling, code coverage analysis and runtime tracing. All four features
are turned on by default. In order to instrument, compile, link, and
execute the UMTS base station application in preparation for runtime
analysis, simply ensure the BaseStation application node is selected on
the Project Browser tab of the Project Explorer window, and then click
the build button . Do so now.

NOTE: More information about the source code insertion technology
can be found in the User Guide, in the chapter Product
Overview->Source Code Insertion.

2. Notice that in the Output Window at the bottom of the screen, on the
Build tab, you can watch the preprocessing, instrumentation,
compilation, and link phases of the build process as they occur. A
double-click on an error listed within any of the Output Window tabs
opens the relevant source code file to the appropriate line in the
PurifyPlus for Linux Editor.

3. The build process has completed, and the UMTS base station is running,
when the UML-based sequence diagram generated by the runtime

19

tracing feature appears. (More about this feature in a moment.)

4. Close the Project Explorer window on the right-hand side of the UI by
clicking its button.

Notice how the graphically displayed data in the Runtime Trace viewer
dynamically grows - this is because the UMTS base station is being actively
monitored. The UMTS base station endlessly searches for mobile phones
requesting registration; the Runtime Trace viewer reflects this endless loop.
If you wish, use the pause button on the toolbar to stop the dynamic
trace for a moment (the trace is still being recorded, just no longer displayed
in real time). In addition, use the zoom buttons on the toolbar to get a
better view of the graphical display (or right-click-hold within the Runtime
Trace viewer and select the Zoom In or Zoom Out options). Undo the Pause
when you're ready to proceed.

You'll look at the Runtime Trace viewer in more detail later. Of primary
importance right now is interaction with the UMTS base station. You'll do
this by using the mobile phone simulator mentioned earlier in the Overview
section of this tutorial. Through this manual interaction you will expose
memory leaks, performance bottlenecks, incomplete code coverage, and
dynamic runtime sequencing.

Interacting with the Application

1. Start the mobile phone by running the provided mobile phone
executable built for your operating system. The mobile phone
executable is located within the PurifyPlus for Linux installation folder
in the folder \examples\BaseStation_C\MobilePhone\. The name of the
executable is MobilePhone.Linux. (A launcher shell script -
MobilePhone.sh - is provided as well.)

2. Click the mobile phone's On button ().

3. Wait for the mobile phone to connect to the UMTS base station (if you

20

watched the Runtime Trace viewer closely, you would have noticed a
display of all the internal method calls of the UMTS base station that
occur when a phone attempts to register). The current system time
should appear in the mobile phone window when connection has been
established.

4. Once connected, dial the phone number 5550000, then press the
button to send this number to the UMTS base station (again, try to see
the Runtime Trace viewer update).

5. Unfortunately, the party you are dialing is on the line so you'll find the
phone is busy. Shut off the simulator by closing the mobile phone
window via the button in its upper right corner.

 The UMTS base station is designed to shut off when a registered phone
goes off line. Not a great idea for the real world, but it serves the
Tutorial's purposes well. Alternatively, you could have just used the
Stop Build/Execute button located next to the Build button on the
toolbar .

6. The UMTS base station has stopped running when the green execution
light next to the execution timer - located beneath the Project Explorer
window on the lower right-hand side of the UI - stops flashing

. Wait for it to stop flashing.

 Everything that occurred at the code level in the UMTS base station was
monitored by all four runtime analysis features. Once the UMTS base
station stopped (i.e. once the instrumented application stopped), all
runtime analysis information was written to user accessible reports that
are directly linked to the UMTS base station source code. In order to
look at these reports:

7. Reopen the Project Explorer window by selecting the menu item View-
>Other Windows->Project Window

21

8. In the Project Explorer window, on the Project Browser tab, double-click
the BaseStation application node. All four runtime analysis reports will
open. (Alternatively, right-click the BaseStation application node and
select View Report->All.)

9. Close the Project Explorer window and the Output Window (at the
bottom of the UI) to create room for the now-opened reports. You may
also want to resize the left-hand window to gain additional room.

Runtime Analysis - Runtime Tracing

1. Select the Runtime Trace tab.

2. As you recall, the Runtime Trace viewer displayed all objects and all
method calls involved in the execution of the UMTS base station code.
Using the toolbar buttons , zoom out from the tracing diagram
until you can see at least five vertical bars.

3. Make sure you are looking at the top of the runtime tracing diagram
using the slider bar on the right.

 What you are looking at is a sequence diagram of all events that occurred
during the execution of your code. This sequence diagram uses a
notation taken from the Unified Modeling Language, thus it can be
correctly referred to as a UML-based sequence diagram.

 The vertical lines are referred to as lifelines. Each lifeline represents
either a C source file or a C++ object instance. The very first lifeline,
represented by a stick figure, is considered the "world" - that is, the
operating system. In this UMTS base station tracing diagram, the next
lifeline to the right represents an object instance named Obj0, derived
from the UmtsServer class.

 Green lines are constructor calls, black lines are method calls, red lines
are method returns, and blue lines are destructor calls. Hover the mouse
over any method call to see the full text. Notice how every call and call
return is time stamped.

22

 Everything in the Runtime Trace viewer is hyperlinked to the monitored
source code. For example, if you click on the Obj0::UmtsServer lifeline,
the header file in which the UmtsServer class declaration appears is
opened for you, the relevant section highlighted. (Close the source file by
right-clicking the tab of the Text Editor and selecting Close.) All function
calls can be left-clicked as well in order to view the source code. Look at
the very top of the Obj0::UmtsServer lifeline. It's "birth" appears to
consist of a List() constructor first, then a UmtsServer() constructor. Why
a call to the List() constructor if the object is an instance of the
UmtsServer class? Click on the UmtsServer() lifeline again - see how the
UmtsServer() constructor inherits from the List() class? This is why the
List() constructor is called first. Click the two constructor calls if you
wish to pursue this matter further.

 Notice how the window on the left-hand side of the user interface -
called the Report Window - contains a reference to all classes and class
instances. Double-clicking any object referenced in this window will
jump you to its birth in the Runtime Trace viewer. This window can also
be used to filter the runtime tracing diagram.

4. In the left-hand window, close the node labeled NETWORKNODE.H -
notice how all objects derived from the NetworkNode class declared in
this header file are reduced to a single lifeline.

5. Reopen the node labeled NETWORKNODE.H.

 You've probably noticed the vertical graph with the green bar to the left
of the Runtime Trace viewer. This is the Coverage Bar. It highlights, in
synchronization with the trace diagram, the percentage of total code
coverage achieved during execution of the monitored application. The
Coverage Bar's caption states the percentage of code coverage achieved
by the particular interaction presently displayed in the Runtime Trace
viewer. Scroll down the trace diagram; note how code coverage
gradually increases until a steady state is achieved. This steady state is
achieved following the moment at which the mobile phone has

23

connected to the UMTS base station. Dialing the phone number
increases code coverage a bit; shutting off the phone creates a last burst
of code coverage up until the moment the UMTS base station is shut off.
Can you locate where, on the trace diagram, the mobile phone simulator
first connected to the UMTS base station? (The Coverage Bar can be
toggled on and off using the right-click-hold menu within the Runtime
Trace viewer.)

NOTE: If the C++ code in the UMTS base station spawned multiple
threads, the Coverage Bar would be joined by the Thread Bar,
a vertical graph highlighting the active thread at any given
moment within the trace diagram. A double-click on this bar
would open a threading window, detailing thread state
changes throughout your application's execution. This thread
monitoring feature is also available for the Java language.

NOTE: For Java only, the Coverage Bar would be accompanied by a
Memory Usage Bar, a vertical graph showing the total amount
of allocated memory at any given moment within the trace
diagram. Such a diagram would be used to expose memory
intensive parts of your program that may in fact be needless
churn that slows down overall execution time. You could
trigger garbage collection immediately prior to suspect
moments within your application, using the Runtime Trace
viewer to help you decide where the garbage collection should
occur, to see if memory usage has become excessive.

 Continue to look around the trace diagram. Can you locate the
repetitive loop in which the UMTS base station looks for attempted
mobile phone registration (it always starts with a call to the C function
tcpsck_data_ready)? You can filter out this loop using a couple of
methods. One is to simply hover the mouse over a method or function
call you wish to filter, right-click-hold and select Filter Message. An
alternative method would be to build your own filter. You will do both.

24

6. Hover the mouse over any call of the tcpsck_data_ready function, right-
click-hold and select Filter Message - the function call should disappear
from the entire trace.

7. Select the menu item Runtime Trace->Filters (you'll see the filter you
just performed listed here) Click the Import button, browse to the
installation folder and then the folder \examples\BaseStation_C, and
then Open the filter file filters.tft

8. Left-click the checkbox next to the just imported filter named
BaseStation Phone Search Filter.

9. Click the OK button.

 The loop has been removed.

 Not only can the runtime tracing feature capture standard
function/method calls, but it can also capture thrown exceptions.

10. View the very bottom of the runtime tracing diagram using the slider
bar.

 Do you see the icon for the catch statement - (you may have to
drag the slider bar slightly upward; closing the NETWORKNODE.H
node in the left-hand report window will also make things easier to
see)? This Catch Exception statement is preceded by a diagonal Throw
Exception. Why diagonal? Because when the exception was thrown,
prior to executing the Catch statement, the LostConnection constructor
and UmtsMsg destructor were called. Click various elements to view
the source code involved in the thrown exception and thus decipher the
sequence of events.

 This exception occurred by design, but it is clear how the runtime
tracing feature, through the power of UML, would be extremely useful
if you have:

• inherited old or foreign code

25

• unexpected exceptions

• questions about whether what you designed is occurring in practice

Further Work

Runtime Analysis- Memory Profiling

1. Select the Memory Profile tab.

The Memory Profile viewer displays a record of improper memory usage
within the application of interest. First, block and byte memory use is
summarized for you in a bar chart, immediately followed by a textual
description to the same information. What you have is a record of:

• total number of blocks/bytes allocated for the entire run

• total number of non-freed blocks/bytes allocated for the entire run

• total number of blocks/bytes in use at any one time

If any memory errors were detected, or if any warnings are warranted,
those comments are listed next. The Report Window on the left hand
side of the screen gives you a quick look at the contents of the report -
your manual interaction with the UMTS base station via the simulated
mobile phone has resulted in the creation of Test #1. If you click an item
in the Report Window, the memory profiling report will scroll to the
proper location.

2. On the Report Window, left-click the ABWL error.

Apparently, the memory profiling feature has detected a Late Detect
Array Bounds Write (ABWL) - in other words, the UMTS base station
code attempted to add data to an array element that does not exist. This
error report is followed by the call stack, with the last function in the call
stack listed first. Notice how each function is highlighted; clicking on
the functions in the call stack will jump you to the relevant source code.
Each source code file is highlighted at the line in which memory was

26

requested - in this particular case, some part of the UMTS base station
code overwrote an array, thereby causing the ABWL error.

The ABWL is followed by one File In Use (FIU)warning and five
Memory Leak (MLK)warnings. The File In Use warning references
<internal use> - in other words, the file is being used by the memory
profiling feature. As for the memory leaks - well it looks like you have
some work to do here. Although it is conceivable the memory leak
occurs by design (e.g. perhaps some clean-up code has not yet been
written), assuredly the UMTS base station is not meant to have any.

Finally, the exit code is printed - look for the informational/warning
note in the viewer starting with the words Program exit code. The
memory profile report lists the exit code as a warning if it is of any value
other than 0.

Notice how easily this information has been acquired; no work was
required on your part. A real advantage is that memory leak detection
can now be part of your regression test suite. Traditionally, if
developers looked for memory leaks at all, it was done while using a
debugger - a process that does not lend itself to automation and thus
repeatability. The memory profiling feature lets you automate memory
leak detection.

Further Work

Runtime Analysis - Performance Profiling

1. Select the Performance Profile tab.

The Performance Profile viewer displays the execution time for all
functions or methods executing within the application of interest,
thereby allowing the user to uncover potential bottlenecks. First, the
three functions or methods requiring the most amount of time are
displayed graphically in a pie chart (up to six functions will be
displayed if each is individually responsible for more than 5% of total

27

execution time). This is then followed by a sortable list of every function
or method, with timing measurements displayed.

 Notice how the function tcpsck_data_ready was responsible for around
45% to 50% of the time spent processing information in the UMTS base
station. By looking at the table, where times are listed in microseconds,
we can see that this function's average execution time was between 1 to
2 seconds (it will vary somewhat based on your machine) and that it has
no descendents - i.e. it never calls and then awaits the return of other
functions or methods (which explains why the Function time matches
the F+D time). Is this to be expected? If you wished, you could click on
the function name in the table to jump to that function to see if its
execution time can be reduced.

 Each column can be used to sort the table - simply click on the column
heading.

2. Click the column heading entitled F+D Time

 It is probably no surprise that the main() procedure - combined with its
descendents - takes the longest time to execute overall. Notice, though,
that the main() procedure itself only takes around 300us to execute - so
there doesn't appear to be any bottleneck here. The main() procedure
spends its life waiting for the UMTS base station to exit.

 As with the memory profiling feature, notice how easy it was to gather
this information. Performance profiling can now also be part of your
regression test suite.

 Further Work

Runtime Analysis - Code Coverage Analysis

1. Select the Code Coverage tab.

 And finally, here you have the code coverage analysis report. The code

28

coverage feature exposes the code coverage achieved either through
manual interaction with the application of interest or via automated
testing.

 On the left hand side of the screen, in the Report Window, you see a
reference to Root and then to all of the source and header files of the
UMTS base station. Root is a global reference - that is, to overall
coverage. For each individual source and header file, a small icon to the
left indicates the level of coverage (green means covered, red means not
covered).

 In the Code Coverage viewer, on the Source tab, a graphical summary of
total coverage is presented in a bar chart - that is, information related to
Root. Five levels of code coverage are accessible when the source code is
C++, and those five levels are represented here. (Four more levels of
coverage are accessible when working with the C language - up to and
including Multiple Conditions/Modified Conditions.) Notice how, on the
toolbar, there is a reference to these five possible coverage levels

.

2. Deselect Loops Code Coverage

 Notice how the bar chart is updated.

3. Reselect Loops Code Coverage

4. In the Report Window to the left, select the PhoneNumber.cpp node.

 The Source tab now displays the source code located in the file
PhoneNumber.cpp. This code is colored to reflect the level of coverage
achieved. Green means the code was covered, red means the code was
not covered.

5. In the Report Window, expand the PhoneNumber.cpp node and then
select the void PhoneNumber::clearNumber() child node

 The clearNumber() function should now be visible on the Source tab.

29

Notice how its for instruction is colored orange and sitting on a dotted
underline. This is because the for statement was only partially covered.

6. Click on the orange for keyword in the clearNumber() function

 As you can see, the for loop was only executed multiple times, not once
or zero times. Why should you care? Well some certification agencies
require that all three cases be covered for a for statement to be
considered covered. If you don't care about this level of coverage, just
deselect Loops Code Coverage:

7. On the toolbar, deselect Loops Code Coverage .

 Now the for loop is green. If you would like to add a comment to your
code indicating how this loop is not covered by typical use of the mobile
phone simulator, have a look at the code by right-clicking the for
statement and selecting Edit Source.

8. Select the Rates tab in the Code Coverage viewer

 The Rates tab is used to display the various coverage levels for

• the entire application

• each source file

• individual functions/methods

 Click various nodes in the Report Window in order to browse the Rates
tab. Note how a selection of the Root node gives you a summary of the
entire application.

9. Select the menu item File->Save Project

 Further Work

Conclusion of Exercise Two

With virtually minimal effort, you have successfully instrumented your

30

source code for all four runtime analysis features. Manual interaction (in
your case, via a mobile phone simulator) was monitored, and the
subsequent runtime analysis results were displayed for you graphically.
Source code is immediately accessible from these reports, so nothing
prevents the developer from using the results to correct possible anomalies.

In addition, using the Test by Test option provided with each runtime
analysis feature (introduced in the Further Work section for code coverage),
you can easily discern the effectiveness of a test, ensuring maximal reuse
without waste.

Your next step is to use the runtime analysis results to remove memory
leaks, improve performance, and increase code coverage.

Exercise Three

Introduction to Exercise Three

In this exercise you will:

• Improve the UMTS base station code by eliminating memory leaks and
by improving performance

• Increase code coverage

• Rerun your manual interaction to verify that the defects have been fixed

Using Memory Profiling to Remove Memory Leaks

By using the call stacks displayed in the Memory Profile viewer, you will
deduce the corrections that need to be made to eliminate memory errors.

1. Select the Memory Profile tab.

2. Select the ABWL error node in the Report Window on the left hand side
of the screen.

31

 Have a look at the call stack for the Late Detect Array Bounds Write
error. Three C++ methods are listed.

3. Select the last function first, the one that occurs inside main()

 Within the main() procedure a UmtsServer object is instantiated.
Nothing looks out of sorts here, so return to the call stack.

4. Close the source file for the main() procedure, and then click the second
function from the bottom in the call stack referenced by the ABWL error
- the UmtsServer constructor.

 The next function in the stack is the UmtsServer constructor. The line in
the constructor that is flagged, the creation of a NetworkNodes object, is
a call to the List constructor. Continue to follow the sequence of events.

5. Close the source file for the UmtsServer constructor, and then click the
top function in the call stack referenced by the ABWL error - the List
constructor.

 The highlighted line is a call to malloc. A quick look at this function
shows that a return to the UmtsServer constructor is fairly quick, and
nothing seems unusual. You should continue to track the string of
events as they happened to see if the ABWL error shows itself. Return to
the UmtsServer constructor.

6. Close the source file for the List constructor, and then click the second
function from the bottom in the call stack referenced by the ABWL error
- the UmtsServer constructor.

 What happens next? The NetworkNodes object was assigned 3 List
objects in an array. Immediately following the call to the List
constructor, 4 elements are assigned to this array. Not good. The
NetworkNodes object should be an array of 4 List objects, not 3.

7. In the source code, change the line

32

networkNodes = new List(3);
to
networkNodes = new List(4);

8. Click the menu item File->Save. The revised file UmtsServer.cpp is
saved and both file tagging (that is, function/method/class extraction)
and static metrics recalculation are performed.

 This should fix the ABWL error. Before redoing you manual test to
verify if the memory error was fixed, move on to the Performance
Profile viewer and see if you can streamline the performance of the
UMTS base station code.

 As for the other memory warnings - that's for you to figure out!

Using Performance Profiling to Improve Performance

Now you will use information in the Performance Profile viewer to
determine if you can improve performance in the UMTS base station code.

1. Select the Performance Profile tab.

2. Within the table, left-click the column title Avg F Time (Average
Function Time) in order to sort the table by this column. (You may want
to scroll down the report a bit to view more data elements in the table.)

 For this exercise you have sorted by the Average Function Time - that is,
you're looking at functions that take, on average, the longest time to
execute. This is isn't the only potential type of bottleneck in an
application - for example, perhaps it is the number of times one function
calls its descendants that is the problem - but for this exercise, you will
look here first.

 As the developer of this UMTS base station, you would know that the C
function tcpsck_data_ready() does take a fair amount of time to execute
- so you won't look here first (although feel free to have a look if you
wish). Instead look at a different function in the table.

33

3. Select the link for the C function checkUmtsNetworkConnection()

 A quick look at the source code shows you that the developer treated
this as a dummy function, inserting a "time-waster" to make it appear as
if the function were executing. Simply comment out the line.

4. Change the code from
doSomeStuff(1);
to
// doSomeStuff(1);

5. Select the menu item File->Save

 This way, the checkUmtsNetworkConnection() method will do nothing
at all. The next time you perform the manual test, this C++ method
should have an execution time of 0.

 There is another UmtsServer class method that also needs to be
improved. Have a look, if you wish.

Using Code Coverage Analysis to Improve Code Coverage

You will now use the information gathered by the code coverage analysis
feature to modify the manual test in such a way as to improve code
coverage.

1. Select the Code Coverage tab.

2. If necessary, select the Source tab of the Code Coverage viewer

3. In the Report Window on the left-hand side of the screen, open the
UmtsConnection.cpp node and then select the processMessages() child
node

4. Drag the slider bar down slightly until you see the line:

 if (strcmp(msg->phoneNumber,"5550001")==0)

Notice how the if statement was never true - the else block is green, but the

34

if block is red. In order to improve coverage of this if statement, you need
to make the boolean expression evaluate to true.

According to this code, the if expression would evaluate to true if mobile
phone sends the phone number 5550001. You should do that.

You will now rerun the UMTS base station executable, restart the mobile
phone simulator, and dial this new phone number. When you have
finished, you will check the memory profiling, performance profiling, and
code coverage analysis reports to see if you have improved matters.

Redoing the Manual Test

You have changed some source code, so some of the UMTS base station
code will have to be rebuilt. The integrated build process of PurifyPlus for
Linux is aware of these changes, so you do not have to specify the particular
files that have been modified.

1. Select the menu item View->Other Windows->Project Window.

2. Select the Project Browser tab in the Project Explorer window that has
now appeared on the right-hand side of the UI.

3. Right-click the BaseStation application node and select Build (If you
select Rebuild, all files will be rebuilt. Build simply rebuilds those files
that have been changed. If no files had been changed, you could have
just selected Execute BaseStation.)

4. Once the UMTS base station is running (indicated by the appearance of
the Runtime Trace viewer), run the mobile phone simulator as before.

5. Click the mobile phone's On button .

6. Wait for the mobile phone to connect to the UMTS base station (if you
watch the dynamic trace closely, you'll notice a display of all the actions
that occur when a phone registers with the server). The time should

35

appear in the mobile phone window.

7. Once connected, dial the phone number 5550001, then press the
button again to send this number to the UMTS base station (again,
watch the dynamic trace update).

8. Success! You have connected to the intended party. Stop right here to
see the results of your work. Close the mobile phone window by
clicking the button on the right side of its window caption. As you
may recall, this action will shut down the UMTS base station as well.

9. The UMTS base station has stopped running when the green execution
light next to the execution timer - located beneath the Project Explorer
window on the lower right-hand side of the UI - stops flashing

. Wait for it to stop flashing.

10. In the Project Explorer window, on the Project Browser tab, double-click
the BaseStation application node. All four runtime analysis reports will
open with refreshed information. (Alternatively, right-click the
BaseStation node and select View Report->All.)

11. Close the Project Explorer window to the right and the Output Window
at the bottom.

So have you improved your code and increased code coverage?

Verifying Success

Was the memory leak eliminated?

1. Select the Memory Profile tab.

2. Maximize the window

3. In the Report Window on the left-hand side of the screen, look inside
the node labeled Test #2 - do you see the ABWL error anymore?

36

You successfully eliminated the ABWL error. Have you improved
performance?

4. Select the Performance Profile tab.

5. Select the menu option Performance Profile->Test by Test

6. In the Report Window on the left-hand side of the screen, left-click the
node labeled Test #2

7. Sort the table by Avg F Time - do you see the function
checkUmtsNetworkConnection()?

You successfully improved performance. Was code coverage improved?

8. Select the Code Coverage tab.

9. In the Report Window on the left-hand side of the screen, open the node
for UmtsConnection.cpp and then left-click the method
processMessages()

10. Scroll down until you can see the if statement for which you have
attempted to force an evaluation of true - did you? Has code coverage
been improved?

You successfully improved code coverage. Note, by the way, that you can
discern what this second manual interaction has gained you in terms of
code coverage.

11. Select the menu option Code Coverage->Test by Test

12. In the Report Window on the left-hand side of the screen, reselect the
method processMessages()

13. With your mouse anywhere within the Source tab of the Code Coverage
viewer, right-click and select CrossRef

37

14. Scroll the Code Coverage viewer to expose the line of code that has been
newly covered and then left-click it:
strcpy(response.command,cmd_accepted);

Notice that only Test #2 is mentioned. However, what tests are listed for the
if statement itself?

15. Left-click the line
if (strcm(msg->phoneNumber,"5550001")==0)

 Both Test #1 and Test #2 are listed. As further proof, do the following.

16. With your mouse anywhere on the Source tab of the Code Coverage
viewer, right-click and deselect Cross Reference

17. In the Report Window, on the left-hand side of the screen, open the
Tests node and deselect the checkbox next to Test #2.

Since you have deselected Test #2, all you are left with is the code coverage
that has resulted from running Test #1, and Test #1 never forced the if
statement to evaluate to true. Thus the newly covered code has become red
again - in other words, unevaluated.

Conclusion of Exercise Three

After correcting the UMTS base station code directly in the PurifyPlus for
Linux Text Editor, you simply rebuilt your application and used the mobile
phone simulator to initiate further interaction. A second look at the runtime
analysis reports validated the accuracy of your changes. Consider the speed
with which you could perform these monitoring activities once you are
familiar with the user interface...

38

Conclusion

Command Line Usage of PurifyPlus for Linux

Your experience with PurifyPlus for Linux has been focused on usage of its
Graphical User Interface. However, everything can equally be performed
from the command line.

The key to command line usage is the attolcc instrumentation launcher and
the attolcc1/attolccp instrumentor. Both perform the instrumentation
necessary for runtime analysis. attolcc provides the additional capability of
calling your compiler following instrumentation; attolcc1 and attolccp
simply instrument, leaving the compilation and linkage phase to you.

If you browse to the PurifyPlus for Linux installation folder, and then open
the folder examples\BaseStation_C\src, you will find a makefile within that
is configured to instrument and then build the UMTS base station. It is a
classic example of how to use attolcc.

NOTE - The Reference Manual can provide you with detailed information
about attolcc, attolcc1 and attolccp.

When you execute instrumented code from the command line, a single
runtime analysis output file is created in the build directory. This file -
named atlout.spt - is a multiplexed data file that must subsequently be split
into individual report files for each runtime analysis feature. This split is
performed by the function atlsplit:

atlsplit atlout.spt

NOTE - The Reference Manual can provide you with detailed information
about atlsplit.

The files created by the split are:

• .tio, .fdc - code coverage report files

39

• .tsf, .tdf - runtime tracing report files

• .tpf - memory profiling report files

• .tqf - performance profiling report files

To view the actual reports in PurifyPlus for Linux, simply pass these files to
the PurifyPlus for Linux binary:

studio *.tsf *.fdc *.tio *.tqf *.tdf *.tpf

Conclusion - with a Word about Process

Rational PurifyPlus for Linux has been built expressly with the
development of mission and business-critical software in mind. Effort has
been made to ensure that runtime analysis can be blended as seamlessly as
possible into your current development process; minimal overhead stands
between you and the use of a full complement of runtime analysis features.

So use them! It should be automatic - part of all your development and
regression testing efforts. As you have seen, these features are only a
mouse-click away so there is absolutely no drain on your time.

You may be concerned about the instrumentation - "But I don't want my
final product to be an instrumented application. Doesn't it have to be if I'm
testing instrumented code?" No, it does not have to be:

1. Using the code coverage feature, generate a series of tests that cover
100% of your code

2. Instrument that code for full runtime analysis

3. Uncover and address all reliability errors as you test (e.g. memory leaks,
overly slow functions, improper function flow, untested code)

4. Now uninstrument your code - that is, simply shut off all runtime
analysis features and rebuild your application

5. Run your regression suite of tests once more, this time looking only for

40

functional errors

6. No errors? Time to move on to the next iteration or - even better - ship.

Make it part of your development process, just another step before you
check in code for the night. Rational PurifyPlus for Linux simplifies runtime
analysis to such an extent that there is no longer a reason not to do it.

Java Track

Runtime Analysis for Java

Runtime analysis refers to the ability of PurifyPlus for Linux to monitor an
application as it executes. There are a variety of advantages to be gained
from this monitoring:

• memory profiling

• performance profiling

• code coverage analysis

• runtime tracing

Runtime Analysis with Rational PurifyPlus for Linux

Memory Profiling

One of the reasons for Java's success is its ability to perform memory
management - that is, Java is designed to ensure memory is properly
allocated and freed. Does this mean you, as a developer, no longer have any
responsibility regarding your software's usage of memory?

No.

There are two primary reasons for a developer to remain vigilant:

41

• Java applications CAN leak memory. Not in the traditional way, where
memory is no longer referenced by your application and yet not
accessible by the system OS - such a problem can not occur. However, if
you allocate memory, use it, then fail to free (i.e. dereference), then the
Java garbage collector will never reclaim it. Do this enough and your
system will still run out of memory.

• Excessive memory usage can result in application slowdown. Do you
know how much memory your application is using at any given time? If
you have access to limited memory, do you know how much your
application has allocated? Are there places in your code that could be
optimized to use less memory, thereby freeing systems resources for
other activities?

A memory profiling utility indicates a running tally of allocated memory as
well as those portions of your code that reference memory at a specified
moment in time (such as when the program exits). Such information can be
used to ensure all unnecessary memory has been dereferenced and that
memory usage has been optimized.

This function is provided in Rational PurifyPlus for Linux by the memory
profiling feature for the Java language.

Performance Profiling

Optimal performance is, needless to say, crucial for business and mission
critical systems. Measuring performance can be quite difficult, however,
particularly when it comes to determining the specific functional
bottlenecks in your system.

That's where performance profiling monitors come in. These tools watch
your application as it executes, measuring statistics such as:

• How often a function is called

• How long it takes for that function to execute

42

• Which functions are the bottlenecks of your application

With this information you can optimize your code, ensuring all real-time
constraints placed upon your system are accommodated.

This function is provided in Rational PurifyPlus for Linux by the
performance profiling feature for the Java language.

Code Coverage Analysis

One of the greatest difficulties a developer experiences is a failure to
determine the portions of code that have gone untested. For many
embedded systems, failure is not an option, so every part of an application
must be thoroughly tested to ensure there is no unhandled scenario or dead
code.

In addition, product managers need a concrete measurement to determine
where the team is in the development cycle - in particular, how much more
testing needs to be done. A decreasing number of defects does not
necessarily mean the product is ready; it might simply mean the portions of
code that have been tested appear to be ready.

Code coverage measurement tools monitor your running application,
flagging every line of code as it executes. Advanced tools - such as
PurifyPlus for Linux - are also able to differentiate different types of
execution, such as whether or not a do-while loop executed 0 times, 1 time,
or 2 or more times. These advanced measurements are critical for software
certification in industries such as avionics.

This function is provided in Rational PurifyPlus for Linux by the code
coverage feature for the Java language.

Runtime Tracing

As all software developers quickly learn, intentions don't necessarily

43

translate into reality. There can often be a vast difference between what you
want to happen and what actually happens as your application executes.

This problem becomes more severe when the code is inherited. Yes, you
could try to piece things together yourself, but system complexity might
just undercut your efforts at understanding the code.

And what about multi-threaded applications? If you've ever encountered
race conditions or deadlocks, you know how difficult it can be to uncover
the source of the problem.

This is where runtime tracing monitors come in. These utilities graphically
display the sequence of function or method calls in your running
application - as well as the active threads - illustrating through pictures
what is actually happening. With this information, unexpected exceptions
can be easily traced back to their source, complex procedures can be
distilled to their essence, threading conflicts can be resolved and inherited
code can jump off the page and display its inherent logic.

This function, using the industry standard Unified Modeling Language for
its graphical display, is provided in Rational PurifyPlus for Linux by the
runtime tracing feature for the Java language.

Runtime Analysis Exercises

The following exercises will walk you through a typical use case involving
the four runtime analysis features of PurifyPlus for Linux to which you
have just been introduced. Pay close attention not only to the capabilities of
these features but also to how they are used. The better you understand
these features, the more quickly you will be able to adopt them within your
own development process.

Reminders before you begin:

1. If you have never run this tutorial before, make sure your machine has a
temporary folder in which you can store the test project you will be

44

creating. For the tutorial, it is assumed that the test project will be stored
in a folder called tmp

2. Do you have JDK 1.3.1 or 1.4.0 installed? This is necessary for
performance of the tutorial. See this page for more information.

3. During installation of Rational PurifyPlus for Linux, the user is
confronted by two interactive dialogs. These dialogs serve to clarify the
location of the local GNU compiler and local JDK. Only the GNU
compiler and JDK specified within these dialogs will be accessible within
PurifyPlus for Linux.
 Is the JDK located during installation of PurifyPlus for Linux the only
JDK installed on your machine? If so, skip the rest of this section. If not -
or if you are not sure, or if the JDK was installed after PurifyPlus for
Linux - then you should ensure the proper JDK will be accessible by
performing the following:

• From a command prompt, execute the shell script 'ConfigureJavac.sh'

• Follow the prompts until the proper JDK is located

 This shell script is located in the folder:

• Red Hat - (install dir/releases/PurifyPlusForLinux.v2002R2/bin/
intel/linux_redhat

• SuSE - (install dir)/releases/PurifyPlusForLinux.v2002R2/bin/intel/
linux_suse

 This shell script depends on a properly configured environment. If, for
some reason, your environment is not properly configured (indicated by
the interactive dialog):

• Set your current directory to the applicable shell script folder mentioned
above

• Execute the environment configuration shell script - '.ppluslinuxinit.sh'

4. If you have run this tutorial before, don't forget to undo the source file

45

edits you made the last time you ran through it. The following files are
modified during the tutorial:

• NetworkLoadMonitor.java

• LogServer.java

Exercise One

Introduction to Exercise One

In this exercise you will:

• create a new project in which the UMTS base station source code will be
referenced

If you need a refresher about the application you will be using during this
tutorial, look here; otherwise, please proceed.

Creating a Project

Typically, there is a one-to-one relationship between your current
development project and a PurifyPlus for Linux project. Although your
development project may consist of more than one application, these
applications often possess a common theme. Use the PurifyPlus for Linux
project to enforce that theme.

1. To start Rational PurifyPlus for Linux, type studio on the command
line.

2. Select the Get Started link on the left-hand side of the PurifyPlus for
Linux user interface (UI). Two links will appear on the right-hand side
of the UI - one called New Project and one called Open Project. Select
the New Project link. You should now see the New Project Wizard.

3. In the Project Name field, enter BaseStation_Java (no spaces).
 In the Location field, select the button, browse to the folder in which

46

you want the BaseStation project to be stored and then select it. (This
Tutorial will assume that the project has been stored in the folder
\usr\tmp) Click the Next button.

4. Select, from the list of supported JDK distributions, the one you intend
to use.

5. Click the Finish button.

That's it. The project has been created - named BaseStation_Java - and a
project node by the same name appears on the Project Browser tab of the
Project Explorer window on the right-hand side of the UI:

Creating a New Activity

Now that you have created a project, it is time to specify:

• your development project's source files

• the type of testing or runtime analysis activity you would like to
perform first

1. Once a project has been created, the user is automatically brought to the
Activities page. In this tutorial you are starting with a focus on the
runtime analysis features, so select the Runtime Analysis link. This will
bring up the Runtime Analysis Wizard.

2. In the window entitled Application Files, you must list all source files
for your current development project. For this tutorial, you will directly
select the source files. Select the Add button .

3. Browse to folder into which you have installed PurifyPlus for Linux and
then access the folder \examples\BaseStation_Java\src\baseStation

4. Make sure All Java Files in the Files of Type dropdown box is selected,
then left-click-hold-and-drag over all of the eleven Java source files.

47

Now click the Open button. You should see these eleven files listed in
the large listbox of the Application Files window. Click the Next
button.

5. At this time, an analysis engine parses each source file - referred to as
tagging. This process is used to extract the various methods and classes
located within each source file, simplifying code browsing within the
UI.

6. In the window entitled Selective Instrumentation you have the ability to
select those classes/methods that should not be instrumented for runtime
analysis. Such selective instrumentation ensures that the instrumentation
overhead is kept to a minimum. For this Tutorial, you will be monitoring
everything, so simply click the Next button.

7. In the window entitled Configuration Settings for Java, you need to
define your application's class path as well as the fully qualified name of
the main class for your application.

• In the Class path text box, click the button, then the button, and
then browse to and select the folder \examples\BaseStation_Java\ src
(located in the PurifyPlus for Linux installation folder). The package
used by the Java-based UMTS base station is named baseStation, and
it's located in the src folder you just referenced.

• In the Java main class text box, select the BaseStation class from the
dropdown list and then prepend that name with its package reference -
type baseStation. (including the final period) immediately before the
BaseStation reference. Your screen should look like this:

 Now click the Next button.

8. You have now reached the window entitled Application Node Name.
Enter the name of the application node that will be created at the

48

conclusion of the Runtime Analysis Wizard; since you will be monitoring
execution of the Java-based UMTS base station, type the word
BaseStation within the text field labeled Name.

9. You also need to make some minor changes to the way you would like
PurifyPlus for Linux to work with your JDK. These modifications are
specifically aimed at the memory profiling feature and are being used
simply to illustrate additional concepts within the Tutorial. At the
bottom of the Application Node Name window, click the Configuration
Settings button.

10. Expand the Runtime Analysis node on the left-hand side of the
Configuration Settings window, expand the Memory Profiling child
node, and then left-click the JVMPI child node.

11. PurifyPlus for Linux uses the JVMPI interface of supported JVMs to
acquire memory profiling information. The following custom changes
should be made to the Configuration for the purposes of this tutorial:

• On the right-hand side of the window, set the Value of the Take a
Snapshot setting to After Each Garbage Collection. Though it is
possible to interactively take memory snapshots during execution,
setting this option ensures you will have sufficient data to work with in
this tutorial.

• Set the Value of Display Only Listed Packages to baseStation (the
Value is case-sensitive, so enter it carefully). This setting ensures you
filter out references to objects derived from classes not explicitly defined
within the application-under-test.

• Set the Value of Collect Referenced Objects to Yes. By collecting
referenced objects, the memory profiling diff functionality will provide
greater visibility into whether or not the application-under-test is
properly allocating/deallocating objects.

12. In the Configuration Settings window, click the Apply button and then
the Ok button.

49

13. In the Application Node Name window, click the Next button.

14. You are now confronted with the Summary window. Everything should
be in order, so click the Finish button.

The BaseStation application node has now been created in the Project
Explorer window, on the Project Browser tab, located on the right-hand side
of the user interface. If you expand the BaseStation application node, you
should see the following:

(Why the in front of all but one .java file? This is because the build
process need only reference the source file containing the main Java class
when calling the Java compiler. This source file is BaseStation.java.)

Conclusion of Exercise One

Have a look at the right side of your screen. This is the Project Explorer
window, and within it two tabs are visible.

The first - the Project Browser tab - contains a reference to all group,
application and test nodes created for the active project. The project node,
named BaseStation_Java, contains an application node named BaseStation;
the application node contains a list of all of the source files required to build
the UMTS base station application.

The second tab - the Asset Browser tab - lets you browse all of your source

50

and test files. If the selected Sort Method is By Files, you are presented
with a file-by-file listing of test scripts, source code and source code
dependents (this last is applicable to C and C++ only). Note how each
source file can be expanded to display every class declaration and method
definition within them. Double-clicking any test script/source file node will
open its contents within the PurifyPlus for Linux editor; double-clicking
any class declaration or method definition node will open the relevant
source file/header file to the very line of code at which the
definition/declaration occurs. (To close a Text Editor window, right-click its
associated tab and select Close.)

There are two other sort methods as well on the Asset Browser. The first, By
Objects, lists classes and methods independent of their associated source
files. The second, By Packages, sorts source files based on their associated
Java packages.

You may have noticed along one of the toolbars at the top of the UI that the
JDK you selected in the New Project Wizard is listed in a dropdown box. In
fact, this is not a reference to the JDK; rather, it is a reference to the
Configuration whose base JDK was the one you selected in the wizard.
(Configurations are initially named after their base JDK, but this name can
be changed.) Should you have multiple configurations for the same project,
use this dropdown box to select the active Configuration for execution.

Finally, to the right of the Configuration dropdown list is the Build button
. This button is used to build your application for application nodes and

the test harness for test nodes. The test harness consists of:

• source files needed to build the application of interest

• stubs

• a test driver

The downward-facing arrow associated with the Build button lets the user
decide from which point the build process should initiate and what runtime

51

analysis features should be used. The runtime analysis features do not have
to be used at the same time; this Build options window provides a quick
and simple method for deselecting undesired runtime analysis features
immediately prior to execution of the build process.

Armed with this knowledge, proceed to Exercise Two.

Exercise Two

Introduction to Exercise Two

In this exercise you will:

• build and execute the UMTS base station application

• manually interact with the UMTS base station application

• view the runtime analysis reports derived from your interaction

Building and Executing the Application

1. When performing runtime analysis, your source code must be
instrumented. Instrumentation, by default, is enabled for all four runtime
analysis features - that is, for memory profiling, performance profiling,
code coverage analysis and runtime tracing. All four features are turned
on by default. In order to instrument, compile and execute the UMTS
base station application in preparation for runtime analysis, simply
ensure the BaseStation application node is selected on the Project
Browser tab of the Project Explorer window, and then click the build
button . Do so now.

NOTE: More information about the source code insertion technology
can be found in the User Guide, in the chapter Product
Overview->Source Code Insertion.

2. Notice that in the Output Window at the bottom of the screen, on the
Build tab, you can see the instrumentation and compilation phases of the

52

build process as they occur. A double-click on an error listed within any
of the Output Window tabs opens the relevant source code file to the
appropriate line in the PurifyPlus for Linux Text Editor.

3. The build process has completed, and the UMTS base station is running,
when the UML-based sequence diagram generated by the runtime
tracing feature appears. (More about this feature in a moment.)

4. Close the Project Explorer window on the right-hand side of the UI by
clicking its button; do the same for the Output Window at the bottom
of the UI.

Notice how the graphically displayed data in the Runtime Trace viewer
dynamically grows - this is because the UMTS base station is being actively
monitored. The UMTS base station endlessly searches for mobile phones
requesting registration; the Runtime Trace viewer reflects this endless loop.
If you wish, use the pause button on the toolbar to stop the dynamic
trace for a moment (the trace is still being recorded, just no longer displayed
in real time). In addition, use the zoom buttons on the toolbar to get a
better view of the graphical display (or right-click-hold within the Runtime
Trace viewer and select the Zoom In or Zoom Out options). Undo the Pause
when you're ready to proceed.

You'll look at the Runtime Trace viewer in more detail later. Of primary
importance right now is interaction with the UMTS base station. You'll do
this by using the mobile phone simulator mentioned earlier in the Overview
section of this tutorial. Through this manual interaction you will expose
careless memory usage, performance bottlenecks, incomplete code
coverage, and dynamic runtime sequencing.

Interacting with the Application

1. Start the mobile phone by running the provided mobile phone
executable built for your operating system. The mobile phone executable
is located within the PurifyPlus for Linux installation folder in the folder

53

\examples\BaseStation_C\MobilePhone\. The name of the executable is
MobilePhone.Linux. (A launcher shell script - MobilePhone.sh - is
provided as well.)

2. Click the mobile phone's On button ().

3. Wait for the mobile phone to connect to the UMTS base station (if you
watched the Runtime Trace viewer closely, you would have noticed a
display of all the internal method calls of the UMTS base station that
occur when a phone attempts to register). The current system time
should appear in the mobile phone window when connection has been
established.

4. Once connected, dial the phone number 5550000, then press the
button to send this number to the UMTS base station (again, try to see
the Runtime Trace viewer update).

5. Unfortunately, the party you are dialing is on the line so you'll find the
phone is busy. Shut off the simulator by closing the mobile phone
window via the button in its upper right corner.

 The UMTS base station is designed to shut off when a registered phone
goes off line. Not a great idea for the real world, but it serves the
Tutorial's purposes well. Alternatively, you could have just used the Stop
Build/Execute button located next to the Build button on the toolbar

.

6. The UMTS base station has stopped running when the green execution
light next to the execution timer - located beneath the Project Explorer
window on the lower right-hand side of the UI - stops flashing

. Wait for it to stop flashing.

 Everything that occurred at the code level in the UMTS base station was
monitored by all four runtime analysis features. Once the UMTS base
station stopped (i.e. once the instrumented application stopped), all
runtime analysis information was written to user accessible reports that

54

are directly linked to the UMTS base station source code. In order to look
at these reports:

7. Reopen the Project Explorer window by selecting the menu item View-
>Other Windows->Project Window

8. In the Project Explorer window, on the Project Browser tab, double-click
the BaseStation application node. All four runtime analysis reports will
open. (Alternatively, right-click the BaseStation application node and
select View Report->All.)

9. Close the Project Explorer window to create room for the now-opened
reports. You may also want to resize the left-hand window to gain
additional room.

Runtime Analysis - Runtime Tracing

1. Select the Runtime Trace tab.

2. As you recall, the Runtime Trace viewer displayed all objects and all
method calls involved in the execution of the UMTS base station code.
Using the toolbar buttons , zoom out from the tracing diagram
until you can see at least four vertical bars.

3. Make sure you are looking at the top of the runtime tracing diagram
using the slider bar on the right.

4. Right-click within the runtime tracing diagram and select Hide Memory
Usage Bar. Repeat in order to select Hide Coverage Bar and Hide
Thread Bar. You will return to these bars in a moment.

 What you are looking at is a sequence diagram of all events that
occurred during the execution of your code. This sequence diagram uses
a notation taken from the Unified Modeling Language, thus it can be
correctly referred to as a UML-based sequence diagram.

 The vertical lines are referred to as lifelines. Each lifeline represents a

55

Java object instance. The very first lifeline, represented by a stick figure,
is considered the "world" - that is, the operating system. In this UMTS
base station tracing diagram, the next lifeline to the right represents an
object instance named Obj0, derived from the UmtsServer class.

 Green lines are constructor calls, black lines are method calls, red lines
are method returns, and blue lines are destructor calls. Hover the mouse
over any method call to see the full text. Notice how every call and call
return is time stamped.

 Everything in the Runtime Trace viewer is hyperlinked to the monitored
source code. For example, if you click on the Obj0::UmtsServer lifeline,
the source file in which the UmtsServer class definition appears is
opened for you, the relevant section highlighted. (Close the source file
by right-clicking the tab of the Text Editor and selecting Close.) All
function calls can be left-clicked as well in order to view the source
code. Look at the very top of the Obj0::UmtsServer lifeline. It's "birth"
consists of a UmtsServer() constructor. Left-click the constructor if you
wish to view the steps that occur when an object of the UmtsServer class
is instantiated.

 Notice how the window on the left-hand side of the user interface -
called the Report Window - contains a reference to all classes and class
instances. Double-clicking any object referenced in this window will
jump you to its birth in the Runtime Trace viewer. This window can also
be used to filter the runtime tracing diagram; closing a node associated
with a source file or class will collapse all of the associated lifelines into
a single, consolidated lifeline.

 Continue to look around the trace diagram. Can you locate the
repetitive loop in which the UMTS base station looks for attempted
mobile phone registration (it always starts with a call to the method
baseStation.LogServer.checkLog())? You can filter out this loop using a
couple of methods. One is to simply hover the mouse over a method or
function call you wish to filter, right-click-hold and select Filter

56

Message. An alternative method would be to use a predefined filter.
You will do both.

5. Hover the mouse over any call of the baseStation.LogServer.checkLog()
method, right-click-hold and select Filter Message - the function call
should disappear from the entire trace.

6. Select the menu item Runtime Trace->Filters (you'll see the filter you
just performed listed here) Click the Import button, browse to the
installation folder and then the folder \examples\BaseStation_Java, and
then Open the filter file filters.tft

7. Left-click the checkbox next to the just imported filter named
BaseStation Phone Search Filter.

8. Click the OK button.

 The loop has been removed.

9. Using the Zoom Level dropdown list on the toolbar, select a level of
50%:

10. Right-click-hold in the Runtime Trace viewer and select Show Memory
Usage Bar.

 You can now see, along the left-hand side of the runtime tracing
diagram, a red, vertical bar. This bar is the Memory Usage Bar, and it is
a graphical representation of the amount of memory allocated by the
monitored application at any moment represented within the runtime
tracing diagram. The caption of the Memory Usage Bar indicates the
maximum amount of allocated memory that occurred during execution,
while the mouse tool tip can be used to discern the amount of allocated
memory at any moment along the graph. (Depending on your JVM, you
may also notice garbage collection, indicated by areas where there is a

57

sudden drop in the number of allocated bytes.)

 This diagram can be used to expose memory intensive parts of your
program that may in fact be needless churn that slows down overall
execution time. You could trigger garbage collection immediately prior
to suspect moments within your application, using the Runtime Trace
viewer to help you decide where the garbage collection should occur, to
study whether or not memory usage has become excessive. Note that
this feature is specific to Java support.

11. Right-click-hold in the Runtime Trace viewer and select Hide Memory
Usage Bar.

12. Right-click-hold in the Runtime Trace viewer and select Show Coverage
Bar.

 Now you are looking at the Coverage Bar. It highlights, in
synchronization with the runtime tracing diagram, the percentage of
total code coverage achieved during execution of the monitored
application. The Coverage Bar's caption states the overall percentage of
code coverage achieved by the particular interaction presently
displayed in the Runtime Trace viewer. Scroll down the runtime tracing
diagram; note how code coverage gradually increases until a steady
state is achieved. This steady state is achieved following the moment at
which the mobile phone has connected to the UMTS base station.
Dialing the phone number increases code coverage a bit; shutting off the
phone creates a last burst of code coverage up until the moment the
UMTS base station is shut off. Can you locate where, on the runtime
tracing diagram, the mobile phone simulator first connected to the
UMTS base station? Note that the Coverage Bar is available for all
supported languages.

13. Right-click-hold in the Runtime Trace viewer and select Hide Coverage
Bar.

58

14. Right-click-hold in the Runtime Trace viewer and select Show Thread
Bar.

 Now you are looking at the Thread Bar. The UMTS base station is
actually a multi-threaded application; the Thread Bar graphically
indicates the active thread at any given moment within the runtime
tracing diagram. (Hovering your mouse over the Bar reveals the name
of the active thread within a tool tip.) A left-click on the Thread Bar
opens a threading window, detailing thread state changes throughout
your application's execution. Pressing the Filter button in this detail
window specifies the state of each thread within the region of the
Thread Bar that was double-clicked. Note that this thread monitoring
feature is also available for the C++ language.

15. Right-click-hold in the Runtime Trace viewer and select Hide Thread
Bar.

 Not only can the runtime tracing feature capture standard
function/method calls, but it can also capture thrown exceptions.

16. View the very bottom of the runtime tracing diagram using the slider
bar.

 Do you see the icons for the catch statement - ? The first Catch
Exception statement is preceded by a diagonal Throw Exception. Why
diagonal? Because when the exception was thrown, prior to executing
the Catch statement, the UmtsException constructor was called. Click
various elements to view the source code involved in the thrown
exception and thus decipher the sequence of events.

 This exception occurred by design, but it is clear how the runtime
tracing feature, through the power of UML, would be extremely useful
if you have:

• inherited old or foreign code

59

• unexpected exceptions

• questions about whether what you designed is occurring in practice

 Further Work

Runtime Analysis- Memory Profiling

1. Select the Memory Profile tab.

2. Select the menu item Memory Profile->Hide/Show Data->Hide/Show
Referenced Objects.

The Memory Profile viewer displays a memory usage report for the
application of interest. The Report Window on the left-hand side of the UI
displays a list containing each memory snapshot and the time at which they
occurred; as you may recall, the Configuration was updated so that a
snapshot would occur immediately following each garbage collection. The
Memory Profile tab contains a sortable table (i.e. sortable via a left-click on a
column header) with the following information:

• Method - Each method that, when called, resulted in the instantiation of
an object. A left-click on any method names brings you to the portion of
source code in which this method has been defined.

• Referenced Object Class - If any method in the first column continues
to reference an object at the time of the snapshot, the object is listed in
this column. Of course, many objects are allocated and deallocated
before a snapshot - in this case, the object allocation is recorded but the
object reference is not.

• Allocated Objects- Total number of objects created by a method
throughout execution of the monitored application.

• Allocated Bytes - Total number of bytes associated with the objects
created by a method.

• L + D Allocated Objects - Total number of objects created by the "local"

60

method and by any descendant methods - that is, by any method that
was called as a result of the specified method.

• L + D Allocated Bytes - Total number of bytes associated with the
objects created by the "local" method and by any descendant methods.

Note how this table is referred to as a "snapshot" at the very top. A user is
able to predefine moments at which a memory snapshot should take place -
this is done via Configuration Settings. At each snapshot, the JVMPI
interface of the targeted JVM is queried and information about each
individual method is acquired. For example, if you have designed a
particular, cyclic portion of your code to deallocate all unnecessary memory
prior to each iteration, set a snapshot to occur each time the cycle is entered.
The Memory Profile report contains diff functionality - you will explore this
capability later - that can tell you if additional memory remains allocated
when the cycle is reentered.

Notice how easily this information has been acquired; no work was
required on your part. A real advantage is that memory profiling can now
be part of your regression test suite. Traditionally, if embedded developers
looked for careless memory allocation/deallocation at all, it was done while
using a debugger - a process that does not lend itself to automation and
thus repeatability. The memory profiling feature lets you automate memory
leak detection.

Further Work

Runtime Analysis - Performance Profiling

1. Select the Performance Profile tab.

 The Performance Profile viewer displays the execution time for all
methods executing within the application of interest, thereby allowing
the user to uncover potential bottlenecks. First, the one or more methods
requiring the most amount of time are displayed graphically in a pie
chart (up to six functions will be displayed if each is individually

61

responsible for more than 5% of total execution time. This is then
followed by a sortable list of every method, with timing measurements
displayed.

 Notice how the function readString() was responsible for around 75% to
85% of the time spent processing information in the UMTS base station.
By looking at the table, where times are listed in microseconds, we can
see that this function's average execution time was between 6 to 7
seconds (it will vary somewhat based on your machine) and that it has
no descendents - i.e. it never calls and then awaits the return of other
functions or methods (which explains why the Function time matches
the F+D time). Is this to be expected? If you wished, you could click on
the function name in the table to jump to that function to see if its
execution time can be reduced.

 Each column can be used to sort the table - simply click on the column
heading.

2. Click the column heading entitled F+D Time

 Interestingly, though readString() clearly uses the largest amount of
execution time, it is not the "slowest" method when considering
descendants. That distinction goes to readMsg(); though quick by itself,
it's execution time when including descendants is the slowest of all.
However, a quick investigation of the readMsg() function would reveal
that this function calls - and that awaits the return of - readString(),
which explains why the execution time of readMsg() takes longer than
readString().

 Of course, since this is a multi-threaded application, it is possible for one
function to reveal itself as the slowest performer while, overall, the
monitored application is typically busy doing other things. This would
explain why the runtime tracing diagram does not indicate
monopolization of UMTS base station execution following a call to the
readString() method (have a look; search for *readString* using the
option on the toolbar), and thus why performance profiling is such a

62

valuable supplement to code optimization.

 As with the memory profiling feature, notice how easy it was to gather
this information. Performance profiling can now also be part of your
regression test suite.

 Further Work

Runtime Analysis - Code Coverage Analysis

1. Select the Code Coverage tab.

 And finally, here you have the code coverage analysis report. The code
coverage feature exposes the code coverage achieved either through
manual interaction with the application of interest or via automated
testing.

 On the left hand side of the screen, in the Report Window, you see a
reference to Root and then to all of the source files of the UMTS base
station. Root is a global reference - that is, to overall coverage. For each
individual source file, a small icon to the left indicates the level of
coverage (green means covered, red means not covered).

 In the Code Coverage viewer, on the Source tab, a graphical summary
of total coverage is presented in a bar chart - that is, information related
to Root. Five levels of code coverage are accessible for Java, and those
five levels are represented here. (Four more levels of coverage are
accessible when working with the C language - up to and including
Multiple Conditions/Modified Conditions.) Notice how, on the toolbar,
there is a reference to these five possible coverage levels .

2. Deselect Loops Code Coverage .

 Notice how the bar chart is updated.

3. Reselect Loops Code Coverage .

4. In the Report Window to the left, select the HardwareMonitor.java

63

node.

 The Source tab now displays the source code located in the file
HardwareMonitor.java. This code is colored to reflect the level of
coverage achieved. Green means the code was covered, red means the
code was not covered.

 Within the run() method you should see a while statement that is
colored orange and sitting on a dotted underline. This is because the
while statement was only partially covered.

5. Click on the orange while keyword in the run() method.

 As you can see, the while loop was only executed multiple times, not
once or zero times. Why should you care? Well some certification
agencies require that all three cases be covered for a while loop to be
considered covered. If you don't care about this level of coverage, just
deselect Loops Code Coverage:

6. On the toolbar, deselect Loops Code Coverage .

 Now the while loop is green. If you would like to add a comment to
your code indicating how this loop is not covered by typical use of the
mobile phone simulator, access the code by right-clicking the while
statement and selecting Edit Source.

7. Select the Rates tab in the Code Coverage viewer

 The Rates tab is used to display the various coverage levels for

• the entire application

• each source file

• individual methods

 Click various nodes in the Report Window in order to browse the Rates
tab. Note how a selection of the Root node gives you a summary of the

64

entire application.

8. Select the menu item File->Save Project

 Further Work

Conclusion of Exercise Two

With virtually minimal effort, you have successfully instrumented your
source code for all four runtime analysis features. Manual interaction (in
your case, via a mobile phone simulator) was monitored, and the
subsequent runtime analysis results were displayed for you graphically.
Source code is immediately accessible from these reports, so nothing
prevents the developer from using the results to correct possible anomalies.

In addition, using the Test by Test option provided with each runtime
analysis feature (introduced in the Further Work section for code coverage),
you can easily discern the effectiveness of a test, ensuring maximal reuse
without waste.

Your next step is to use the runtime analysis results to remove memory
leaks, improve performance, and increase code coverage.

Exercise Three

Introduction to Exercise Three

In this exercise you will:

• Improve the UMTS base station code by correcting memory usage
errors and by improving performance

• Increase code coverage

• Rerun the manual test to verify that the defects have been fixed

65

Using Memory Profiling to Remove Memory Leaks

By using the diff functionality of the memory profiling feature, you will
uncover poor object allocation/deallocation practice within the code.

1. Select the Memory Profile tab.

2. If you performed the Further Work section for memory profiling, skip
this step; otherwise, select the menu item Memory Profile->Show/Hide
Data->Diff with Previous Snapshot.

 Two new columns have appeared - Referenced Objects Diff AUTO
and Referenced Bytes Diff AUTO. These columns contain a diff
between each snapshot and the previous snapshot for every listed
method; the word "referenced" refers to those objects for which a
reference exists following a snapshot. It is also possible for the user to
diff any two selected snapshots; this custom diff would be labeled USER
to differentiate it from the AUTO diff you will be studying. (Note that a
blank cell in any diff column means the object did not exist in the
previous snapshot.)

 Recall that the snapshots for this Tutorial occurred immediately after
each garbage collection. This means that any object references
uncovered by a diff are suspicious; referenced objects can not be
deallocated by the garbage collector. Although, from one perspective,
memory leaks are not possible with Java, failure to dereference objects
will still, in the end, monopolize memory and potentially cause
problems with your software.

3. Sort by the column Referenced Objects Diff AUTO by clicking on the
column header.

4. Search the various snapshots for a method that recurrently is
responsible for continuously referenced objects.

 Have you noticed that the GetChannels() method reappears

66

throughout? Perhaps you should look at the code to understand why
this method is so often associated with continuously referenced objects.

5. Left-click any reference to the GetChannels() method in the first column
of the table.

6. Scroll the Text Editor until you can view the GetChannels() method.

 Inspection of the GetChannels() function reveals that it creates ten new
channels each time it is called - which means ten channels should be
removed (i.e. dereferenced) elsewhere in the code. This dereferencing is
the responsibility of the ReleaseChannels() method, located right below
the definition of GetChannels(), and the for statement of this method
has been improperly written. Currently, the ReleaseChannels() method
only dereferences nine objects. You need to fix the code.

7. Modify the for statement of the ReleaseChannels() method as follows
(you are adding an =):

 Change the code from
for (i=0;i<10;i++)
to
for (i=0;i<=10;i++)

8. Select the menu item File->Save. The source file will be retagged - that
is, analyzed. You may close the Output Window at the bottom of the UI
if you wish.

9. Right-click the tab for the source file you have just modified and select
Close.

 This should fix the problem. Before redoing you manual test to verify if
the memory error was fixed, move on to the Performance Profile viewer
and see if you can streamline the performance of the UMTS base station
code.

 As for the other methods that appear to continuously reference objects

67

following garbage collection - are they also leaking? That's for you to
figure out!

Using Performance Profiling to Improve Performance

Now you will use information in the Performance Profile viewer to
determine if you can improve performance in the UMTS base station code.

1. Select the Performance Profile tab.

2. Within the table, left-click the column title Function Time in order to
sort the table by this column.

 For this exercise you have sorted by the Function Time - that is, you're
looking at functions that take the longest time, overall, to execute. This
is isn't the only potential type of bottleneck in an application - for
example, perhaps it is the number of times one function calls its
descendants that is the problem - but for this exercise, you will look
here.

 As the developer of this UMTS base station, you would know that the
method read_string() takes a fair amount of time to execute - so you
won't look here first (although feel free to have a look if you wish).
Instead look at the second function in the table.

3. Select the link for the method checkLog().

 A quick look at the source code shows you that the developer has added
an inexplicable loop - perhaps a dummy function to act as a "time-
waster". Simply comment out the line.

4. Change the code from
for (x=1,y=100000;x<=100000;x++) y=y/x;
to
// for (x=1,y=100000;x<=100000;x++) y=y/x;

5. Select the menu item File->Save.

68

6. Right-click the tab for the source file you have just modified and select
Close.

You have now eliminated a loop that was adding significant execution time
to the checkLog() method.

Using Code Coverage Analysis to Improve Code Coverage

You will now use the information gathered by the code coverage analysis
feature to modify the manual test in such a way as to improve code
coverage.

1. Select the Code Coverage tab.

2. If necessary, select the Source tab of the Code Coverage viewer.

3. In the Report Window on the left-hand side of the screen, open the
UmtsConnection.java node, then open the
baseStation.UmtsConnection child node, and then select the run() child
node.

4. Drag the slider bar down slightly until you see the line:

 case_connected:

Notice how the if statement was never true - only the else block is green,
but the if block is red. In order to improve coverage of this if statement, you
need to make the boolean expression evaluate to true.

According to this code, the if expression would evaluate to true if mobile
phone sends the phone number 5550001. You should do that.

You will now rerun the UMTS base station executable, restart the mobile
phone simulator, and dial this new phone number. When you have
finished, you will check the memory profiling, performance profiling, and
code coverage analysis reports to see if you have improved matters.

69

Redoing the Manual Test

You have changed some source code, so some of the UMTS base station
code will have to be rebuilt. The integrated build process of PurifyPlus for
Linux is aware of these changes, so you do not have to specify the particular
files that have been modified.

1. Select the menu item View->Other Windows->Project Window.

2. Select the Project Browser tab in the Project Explorer window that has
now appeared on the right-hand side of the UI.

3. Right-click the BaseStation application node and select Build (If you
select Rebuild, all files will be rebuilt. Build simply rebuilds those files
that have been changed. If no files had been changed, you could have
just selected Execute BaseStation.)

4. Once the UMTS base station is running (indicated by the appearance of
the Runtime Trace viewer), run the mobile phone simulator as before.
(Note how the runtime trace appears to stop - this is because the filter is
still applied and thus the recurrent loop is not visible.)

5. Click the mobile phone's On button .

6. Wait for the mobile phone to connect to the UMTS base station (if you
watch the dynamic trace closely, you'll notice a display of all the actions
that occur when a phone registers with the server). The time should
appear in the mobile phone window.

7. Once connected, dial the phone number 5550001, then press the
button again to send this number to the UMTS base station (again,
watch the dynamic trace update).

8. Success! You have connected to the intended party. Stop right here to
see the results of your work. Close the mobile phone window by
clicking the button on the right side of its window caption. As you

70

may recall, this action will shut down the UMTS base station as well.

9. The UMTS base station has stopped running when the green execution
light next to the execution timer - located beneath the Project Explorer
window on the lower right-hand side of the UI - stops flashing

. Wait for it to stop flashing.

10. In the Project Explorer window, on the Project Browser tab, double-click
the BaseStation application node. All four runtime analysis reports will
open with refreshed information. (Alternatively, right-click the
BaseStation node and select View Report->All.)

11. Close the Project Explorer window to the right and the Output Window
at the bottom.

So have you improved your code and increased code coverage?

Verifying Success

Was the memory leak eliminated?

1. Select the Memory Profile tab.

2. In the Report Window on the left-hand side of the UI, left-click the first
snapshot for Test #2.

3. Select the column header for Reference Bytes Diff AUTO, then select
the column header for Reference Objects Diff AUTO.

4. Scroll down and study each of the snapshots for Test #2 - is the
GetChannels() method still responsible for referenced objects?

You successfully eliminated the memory leak. Have you improved
performance?

5. Select the Performance Profile tab.

71

6. Select the menu option Performance Profile->Test by Test

7. In the Report Window on the left-hand side of the screen, left-click the
node labeled Test #1 in order to deselect it.

8. Sort the table by Function Time is it is not sorted by this value already.

9. Do you see the function checkLog()?

You successfully improved performance. Was code coverage improved?

10. Select the Code Coverage tab.

11. In the Report Window on the left-hand side of the screen, open the node
for UmtsConnection.java, open the baseStation.UmtsConnection child
node, then left-click the run() node.

12. Select the menu option Code Coverage->Test by Test.

13. Scroll down until you can see the if statement for which you have
attempted to force an evaluation of true - did you? Has code coverage
been improved?

You successfully improved code coverage. Note, by the way, that you can
discern what this second manual interaction has gained you in terms of
code coverage.

14. With your mouse anywhere within the Source tab of the Code
Coverage viewer, right-click and select CrossRef

15. Scroll the Code Coverage viewer to expose the line of code that has been
newly covered and then left-click it:
message.setCommand(UmtsMsg.ACCEPTED);

Notice that only Test #2 is mentioned. However, what tests are listed for the
if statement itself?

16. Left-click the line

72

if (message.getPhoneNumber().equals("5550001"))

 Both Test #1 and Test #2 are listed. As further proof, do the following.

17. With your mouse anywhere on the Source tab of the Code Coverage
viewer, right-click and deselect Cross Reference

18. In the Report Window, on the left-hand side of the screen, open the
Tests node and deselect the checkbox next to Test #2.

 Since you have deselected Test #2, all you are left with is the code
coverage that has resulted from running Test #1, and Test #1 never
forced the if statement to evaluate to true. Thus the newly covered code
has become red again - in other words, unevaluated.

Conclusion of Exercise Three

After correcting the UMTS base station code directly in the PurifyPlus for
Linux Text Editor, you simply rebuilt your application and used the mobile
phone simulator to initiate further interaction. A second look at the runtime
analysis reports validated the accuracy of your changes. Consider the speed
with which you could perform these monitoring activities once you are
familiar with the user interface...

Conclusion

Command Line Usage of PurifyPlus for Linux

Your experience with PurifyPlus for Linux has been focused on usage of its
Graphical User Interface. However, everything can be equally performed
from the command line.

The key to command line usage is the javic instrumentation launcher, the
javi instrumentor, the JVMPI Agent (named pagent) and a javic Java class
for those interested in using ant. Both javic and javi perform the
instrumentation necessary for runtime analysis. javic provides the

73

additional capability of calling your compiler following instrumentation;
javi simply instruments, leaving the compilation phase to you. The JVMPI
agent is a dynamic library associated with most J2SE-compliant JVM
distributions - it is used to enable memory profiling. The javic Java class
implements javic for use with ant, the Java-based build tool provided by
the Jakarta Project (http://jakarta.apache.org/ant).

NOTE: For specific information about javic, javi, the JVMPI agent (pagent)
and the javic Java class, see the Reference Manual.

Before going into further detail about using PurifyPlus for Linux from the
command line, note the following regarding data acquisition:

When you execute instrumented code from the command line, a single
runtime analysis output file is created in the build directory. This file -
named atlout.spt - is a multiplexed data file that must subsequently be split
into individual report files for each runtime analysis feature. This split is
performed by the function atlsplit:

atlsplit atlout.spt

NOTE - The Reference Manual can provide you with detailed information
about atlsplit.

The files created by the split are:

• tio, .fdc - code coverage report files

• tsf, .tdf - runtime tracing report files

• jpt - memory profiling report files

• tqf - performance profiling report files

Four use cases will be outlined below regarding work from the command
line. The source files for the UMTS base station, which will be the subject of
the following examples, are located in the PurifyPlus for Linux installation
folder, in the folder examples\BaseStation_Java\src. This folder contains the

74

baseStation package which, in turn, contains the Java source files.

Compilation and Execution of the UMTS BaseStation -
Not Instrumented for Runtime Analysis

• Compilation of UMTS base station

1. Make sure the working directory is
(...)/BaseStation_Java/src/baseStation

2. Compile the UMTS base station.
javac BaseStation.java -classpath
(...)/BaseStation_Java/src

• Execution of UMTS base station

1. Move up one directory to (...)/BaseStation_Java/src

2. Execute the UMTS base station.

java baseStation.BaseStation -classpath (...)
/BaseStation_Java/src

• Execute the mobile phone simulator to interact with the UMTS base
station

1. Move to the directory (...)/examples/BaseStation_C/MobilePhone

2. Launch the mobile phone.

Compilation and Execution of the UMTS BaseStation -
Instrumented for Runtime Analysis

• Compilation of UMTS base station

1. Make sure the working directory is
(...)/BaseStation_Java/src/baseStation

2. Compile the UMTS base station
javic -perfpro -trace -proc=ret -block=logical -- javac

75

BaseStation.java -classpath (...)/BaseStation_Java/src

• Execute the UMTS base station and turn on the JVMPI agent

1. Move down one directory to
(...)/BaseStation_Java/src/baseStation/javi.jir This folder, created by
javic, contains instrumented source files.

2. Execute the UMTS base station and turn on the JVMPI agent
java baseStation.BaseStation -classpath
(...)/BaseStation_Java/src/baseStation/javi.jir -Xint -
Xrunpagent:-OUT=["../BaseStation.jpt"]-H_C1-H_O5-D_GC-
P_M[[,baseStation]]-D_O_N-U_S["c"]-N_U["BaseStation"]

• Execute the mobile phone simulator to interact with the UMTS base
station

1. Move to the directory (...)/examples/BaseStation_C/MobilePhone

2. Launch the mobile phone.

• Split the multiplexed runtime analysis data file

1. Make sure working directory is (...)/BaseStation_Java/src/baseStation

2. Split the data file
atlsplit atlout.spt

• Open the runtime analysis reports in PurifyPlus for Linux

1. Run PurifyPlus for Linux, passing the report files as parameters
studio *.tsf *.fdc *.tio *.tqf *.tdf *.jpt

Building with Ant and Not Instrumenting for Runtime Analysis

• Build the UMTS base station using ant

1. Make sure the working directory is (...)/BaseStation_Java/src

2. Execute ant (which uses the file build.xml, located in the working
directory)
ant

76

Building with Ant and Instrumenting for Runtime Analysis

• Build the UMTS base station using ant and instrument for runtime
analysis

1. Make sure the working directory is (...)/BaseStation_Java/src

2. Execute ant (which uses the file build.xml, located in the working
directory)
ant -DATLTGT=$ATLTGT -
Dbuild.compiler=com.rational.testrealtime.Javic -
Dbuild.actual.compiler=modern -Djavi.options="-perfpro -
trace -proc=ret -block=logical "

NOTE: For specific information about javic, javi, the JVMPI agent (pagent)
and the javic Java class, see the Reference Manual.

Conclusion - with a Word about Process

Rational PurifyPlus for Linux has been built expressly with the
development of mission and business-critical software in mind. Effort has
been made to ensure that runtime analysis can be blended as seamlessly as
possible into your current development process; minimal overhead stands
between you and the use of a full complement of runtime analysis features.

So use them! It should be automatic - part of all your development and
regression testing efforts. As you have seen, these features are only a
mouse-click away so there is absolutely no drain on your time.

You may be concerned about the instrumentation - "But I don't want my
final product to be an instrumented application. Doesn't it have to be if I'm
testing instrumented code?" No, it does not have to be:

1. Using the code coverage feature, generate a series of tests that cover
100% of your code

2. Instrument that code for full runtime analysis

77

3. Uncover and address all reliability errors as you test (e.g. memory leaks,
overly slow functions, improper function flow, untested code)

4. Now uninstrument your code - that is, simply shut off all runtime
analysis features and rebuild your application

5. Run your regression suite of tests once more, this time looking only for
functional errors

6. No errors? Time to move on to the next iteration or - even better - ship.

Make it part of your development process, just another step before you
check in code for the night. Rational PurifyPlus for Linux simplifies runtime
analysis to such an extent that there is no longer a reason not to do it.

78

79

Conclusion 3
Proactive Debugging

As software complexity increases, developers must become more
responsible for their contribution to the overall development project. It is
becoming harder and harder for the developer to consider robust, end-to-
end testing of their code an unachievable luxury.

In fact, developers need to proactively debug - that is, treat testing and
runtime analysis as an integral part of the development process, rather than
waiting for defects to force their hand. Such practice is preached by agile
movements such as Extreme Programming and Rational's own Rational
Unified Process.

And why should this not be achievable? The advantage of proactive
debugging is that it is manageable - testing and runtime analysis are only
performed on the code known intimately well by the developer (barring the
case of inherited code, where the runtime tracing feature plays such a
crucial role). There is little chance for confusion, so the time spent
developing and deploying your code are optimized. Defects are eliminated
early, ensuring that any system level defects that have slipped through the
nets won't find their origin deep in the code.

Matters improve further when one considers the built-in integration that
PurifyPlus for Linux possesses with other products in Rational's software
development arsenal. PurifyPlus for Linux is integrated with:

• ClearCase - Out-of-the-box integration with ClearCase, the industry's
clear market leader for version control software. Click here for access to

80

the Rational ClearCase website.

• ClearQuest - Out-of-the-box integration to ClearQuest, the premier
change management utility for diversified software teams. Submit
context-sensitive defect reports directly from the PurifyPlus for Linux
interface. Click here for access to the Rational ClearQuest website.

PurifyPlus for Linux can play a crucial role your in your responsibilities as a
developer, helping you manage complexity and deliver optimized, quality
code at all stages of the software development lifecycle. Code smarter and
finish faster.

Questions?

Questions or comments? Want to share tips? Feel free to send us an e-mail
at testrt-info@rational.com. Useful information will be shared on the Latest
News and Updates page, accessible to PurifyPlus for Linux customers from
the Help menu.

We hope you found this tutorial informative.

 81

Technical Support 4
When contacting Rational Technical Support, please be prepared to supply
the following information:

• Name, telephone number, and company name

• Product name and version number

• Operating system and version number (for example, RedHat 7.2)

• Computer make and model

• Your case id (if you're calling about a previously reported problem)

• A summary description of the problem, related errors, and how it was
made to occur

If your organization has a designated, on-site support person, please try to
contact that person before contacting Rational Technical Support.

You can obtain technical assistance by sending e-mail to the appropriate
address. E-mail is acknowledged immediately and is usually answered
within one working day of its arrival at Rational. When sending an e-mail,
place "PurifyPlus for Linux" in the subject line, and include a description of
your problem in the body of your message.

Note: When sending e-mail concerning a previously-reported problem,
please include in the subject field: "CaseID: <number>", where
<number> is the CaseID number of the issue. For example:
CaseID: v0176528 New data on PurifyPlus for Linux install
issue

Sometimes Rational technical support engineers will ask you to fax
information to help them diagnose problems. You can also report a

82

technical problem by fax if you prefer. Please mark faxes "Attention:
Technical Support" and add your fax number to the information requested
above.

North America:

Rational Software,
18880 Homestead Road,
Cupertino, CA 95014
voice: (800) 433-5444
fax: (408) 863-4001
e-mail: support@rational.com

Europe, Middle East, and Africa:

Rational Software,
Beechavenue 30,
1119 PV Schiphol-Rijk,
The Netherlands
voice: +31 20 454 6200
fax: +31 20 454 6201
e-mail: support@europe.rational.com

Asia Pacific:

Rational Software Corporation Pty Ltd,
Level 13, Tower A, Zenith Centre,
821 Pacific Highway,
Chatswood NSW 2067,
Australia
voice: +61 2-9419-0111
fax: +61 2-9419-0123
e-mail: support@apac.rational.com

	Rational® PurifyPlus for Linux - Online Tutorial
	Contents
	Overview
	C and C++ Track
	Preparation
	Goals of the Tutorial

	Java Track
	Preparation
	JDK Installation
	Goals of the Tutorial

	Runtime Analysis
	C and C++ Track
	Runtime Analysis for C and C++
	Runtime Analysis with Rational PurifyPlus for Linux
	Memory Profiling
	Performance Profiling
	Code Coverage Analysis
	Runtime Tracing

	Runtime Analysis Exercises
	Exercise One
	Introduction to Exercise One
	Creating a Project
	Creating a New Activity
	Conclusion of Exercise One

	Exercise Two
	Introduction to Exercise Two
	Building and Executing the Application
	Interacting with the Application
	Runtime Analysis - Runtime Tracing
	Runtime Analysis- Memory Profiling
	Runtime Analysis - Performance Profiling
	Runtime Analysis - Code Coverage Analysis
	Conclusion of Exercise Two

	Exercise Three
	Introduction to Exercise Three
	Using Memory Profiling to Remove Memory Leaks
	Using Performance Profiling to Improve Performance
	Using Code Coverage Analysis to Improve Code Coverage
	Redoing the Manual Test
	Verifying Success
	Conclusion of Exercise Three

	Conclusion
	Command Line Usage of PurifyPlus for Linux
	Conclusion - with a Word about Process

	Java Track
	Runtime Analysis for Java
	Runtime Analysis with Rational PurifyPlus for Linux
	Memory Profiling
	Performance Profiling
	Code Coverage Analysis
	Runtime Tracing

	Runtime Analysis Exercises
	Exercise One
	Introduction to Exercise One
	Creating a Project
	Creating a New Activity
	Conclusion of Exercise One

	Exercise Two
	Introduction to Exercise Two
	Building and Executing the Application
	Interacting with the Application
	Runtime Analysis - Runtime Tracing
	Runtime Analysis- Memory Profiling
	Runtime Analysis - Performance Profiling
	Runtime Analysis - Code Coverage Analysis
	Conclusion of Exercise Two

	Exercise Three
	Introduction to Exercise Three
	Using Memory Profiling to Remove Memory Leaks
	Using Performance Profiling to Improve Performance
	Using Code Coverage Analysis to Improve Code Coverage
	Redoing the Manual Test
	Verifying Success
	Conclusion of Exercise Three

	Conclusion
	Command Line Usage of PurifyPlus for Linux
	Conclusion - with a Word about Process

	Conclusion
	Proactive Debugging
	Questions?

