
Rational Software Corporation ®
Rational Suite ®

Programmer’s Guide to Adapter Development
Rational Suite Extensibility

VERSION: 2002.05.00

PART NUMBER: 800-025144-000

WINDOWS
support@rational.com
http://www.rational.com

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1999-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-025144-000

Version Number: 2002.05.00

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company,
ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest,
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage, PureDDTS,
PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational CRC, Rational
Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite, RequisitePro,
RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The Rational Watch,
AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development Accelerators,
ObjecTime, Rational Dashboard, Rational PerformanceArchitect, Rational Process
Workbench, Rational Suite AnalystStudio, Rational Suite ContentStudio, Rational
Suite Enterprise, Rational Suite ManagerStudio, Rational Unified Process, SiteLoad,
TestStudio, VADS, among others, are either trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in othercountries.All other
names are used for identification purposes only, and are trademarks or registered
trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client,
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore,
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView,
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX,
DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the

IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint,
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe,
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-20xx, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents
Preface. ix

Audience. ix

Other Resources . ix

Rational Suite Documentation Roadmap . xi

Contacting Rational Technical Support. xii

1 What Is RSE? . 13
Why Create RSE? . 13
Benefits of Using RSE . 13

RSE Implementation. 14
Using RSE . 15

RSE Clients . 16
RSE Adapters . 18

Conclusion . 19

2 RSE Object Model. 21
RSE Objects . 21

Object Model Diagram . 21
Session . 22
Adapter. 22
Artifacts . 23

ArtifactType . 23
Properties. 25

PropertyType . 25
Relationships . 26
Locators . 27

Artifact Arguments . 28
Artifact References . 29
RelativeID Artifact References. 31

Summary . 32
SoDA Application Example . 33
Referencing the RDSICore Type Library . 34

3 Developing an RSE Adapter . 35
Architectural Overview . 35

Developing an Adapter Overview . 36

Setting Up an Adapter Project . 36
Opening a Workspace . 37
Contents v

Creating a New ATL Project . 38
Adding Dependency to the CPP Framework . 40
Modifying Project Settings . 40

Modifying the Code Generation Settings . 40
Modifying the Preprocessor Settings . 42

Defining an Adapter Instance . 45
Modifying the New IDL File. 48
Modifying the Registry File . 53
Modifying the New AdapterInstance.h . 55
Modifying the New AdapterInstance.cpp . 59
Modifying the New stdafx.h. 61
Building the New Adapter dll. 61

4 Using RSE Adapter Interfaces . 63
Overview . 63

RequisitePro Example . 65
Summary . 67

Registering Artifact Types . 68
Adapter Instance . 68
Declaring and Adding Artifact Types. 68
ReqPro Adapter Example. 69

Adding Artifact Types . 70
Dynamic Artifact Types . 71

Implementing Artifact Types for an Adapter . 72
Implementing a Class for each Artifact Type . 72
Registering a Property . 73
Registering a Relationship . 74
Registering a Locator . 76

Defining a Locator . 77
Defining Locator Arguments. 78
Defining a Collection of Artifact Locators . 80

Registering Creation Arguments . 83

Using the Maps Mechanism . 84
Registering Maps . 85
Declaring Artifact Types . 85
Defining Artifact Types . 86
Definition Registration Macros . 87

Registering Properties . 88
Registering Relationships . 89
Registering Graphics Format Types. 93
vi Contents

Handler Declaration Macros. 93
Pass-Through Property Definitions . 94

Internal Object to Integrated-Product Object . 95
Getting an Application Object . 96

Adapter Internals . 97
C++ Framework Classes . 97
Adapter Operations . 98
Adapter Interfaces . 100

5 Adapter Interface Methods . 101
InternalObjectTypeRegistrar . 101

FRWInternalObjectTypeRegistrar . 102
AddArtifactType . 102
AddCreationArgument . 103
AddCreationPropertyArgument . 104
AddDynamicProperty. 106
AddDynamicProperty_Readonly . 106
AddDynamicRelationshipType. 107

InternalObjectRegistrar. 108
FRWInternalObjectRegistrar . 108

Property Type Registration Methods . 109
AddOverrideProperty. 109
AddOverrideProperty_Readonly . 110
AddProperty. 110
AddProperty_Readonly . 112
FindPropertyTypeID. 113
RegisterRunningObjectTableKey . 113

Relationship Type Registration Methods . 115
AddFilteredRelationshipType. 115
AddOverrideFilteredRelationshipType . 117
AddOverrideRelationshipType . 117
AddRelationshipType. 118

Locator Registration Methods . 119
AddAbsoluteLocator . 120
AddCreationArgument . 121
AddCreationPropertyArgument . 122
AddKeyType. 124
AddLocatorArgument. 125
AddRelativeLocator . 127

Graphics Registration Methods . 130
AddGraphicsFormatType . 130
Contents vii

Using the Mapping Mechanism . 131

Index . 133
viii Contents

Preface
This guide introduces the basic concepts of Rational Suite Extensibility (RSE) and
provides the details for developing adapters using the C++ framework adapter
interfaces.

Audience

This guide is intended for administrators, project managers, and all members of the
software development team, including requirements developers, software architects
and developers, and quality engineers.

Other Resources

■ Other RSE documentation:

❑ Programmer’s Guide to Application Development

❑ Adapters Reference

❑ COM Client API Reference

■ Rational extensibility API references:

❑ ClearCase Reference Manual

❑ ClearQuest API Reference

❑ RequisitePro Extensibility Interface Online Help

RequisitePro extensibility information is documented in the RequisitePro
online help for the RequisitePro Extensibility Interface. It is available from the
Help menu on the ReqPro tool palette.

❑ Rose Extensibility Reference

❑ Team Manager Extensibility Reference

■ Online Help is available for Rational Suite.

From a Suite tool, select an option from the Help menu.
ix

■ All manuals are available online, either in HTML or PDF format. The online
manuals are on the Rational Solutions for Windows Online Documentation CD.

■ To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.
x Chapter - Preface

http://www.rational.com/documentation/
http://www.rational.com/university

Rational Suite Documentation Roadmap
Rational Suite Documentation Roadmap xi

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you
have applied

■ Product name and release number

■ Your case ID number (if you are following up on a previously reported problem)

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
xii Chapter - Preface

1What Is RSE?
Rational Suite delivers a comprehensive set of integrated tools that embody software
engineering practices and span the entire software development lifecycle. Each
individual application has its own API for retrieving stored information. Until now,
you’ve needed to use a separate API for programming access to each tool in Rational
Suite.

Rational Suite Extensibility (RSE) defines a set of interfaces that provides one unified
platform for retrieving information in any application within Rational Suite.

The vision of RSE is to provide unified access to Rational Suite. In a sense, RSE makes
it possible to view the Suite as a single application, not a collection of separate
applications.

The goal of RSE is to support existing integrated product extensibility and enhance
current capabilities by providing adaptable, platform-neutral, distributed availability.
The RSE interfaces are designed to support equivalent functionality for the platforms
that developers need.

Why Create RSE?

RSE supports the accelerating demand for Rational Suite by making it easier to
customize the Suite for particular customer situations. RSE satisfies the demand for
tighter integration and consistency between individual products in the Suite and
customer integrations. Rather than working with individual-product APIs, RSE
simplifies the process of writing applications that work with the Suite.

RSE is complementary to the integrated product APIs. This allows RSE code to
operate with code written specifically for a given integrated product interface.

Benefits of Using RSE

With RSE:

■ You can build client applications that access all integrated product applications,
including all Rational Suite products and integrations to the Suite. Access to each
integrated product application is through its associated RSE adapter.
13

■ You can build RSE adapters and install them on a system. Each adapter maps an
integrated product object model to the RSE object model. These adapters are
available to RSE Client Applications.

■ New client applications and adapters work with any Suite-enabled technology.

■ If a Rational partner writes an application that takes advantage of this technology,
it will instantly be capable of using new adapters without modifying code.

Without RSE:

Features must be built using each specific product’s extensibility interface. This
approach forces you to implement the same features for each product in the Suite. The
problem becomes worse as new products are added to the Suite.

RSE Implementation

RSE is implemented by the RSE Core. This core defines a set of interfaces (for
example, the RSE COM client interfaces) that provides Rational Suite extensibility.

Figure 1 shows the three-tiered architecture of an RSE client connecting to an
integrated product adapter in the Suite.
14 Chapter 1 - What Is RSE?

Figure 1 RSE Implementation

In Figure 1, the lower tier that includes the integrated products refers to the RSE
adapters for each integrated product, not the products themselves. For example,
ReqPro is the RSE adapter that maps RSE to RequisitePro.

As Figure 1 illustrates:

■ RSE client applications provide access to the integrated products in the Suite.

■ The RSE core maps the implementation of client interfaces to integrated product
RSE adapters. The RSE core provides the interface between client applications and
adapters. This implements the RSE client interfaces communicating with the RSE
adapters to retrieve information in each of the specific products.

■ Product-specific RSE adapters provide data retrieval from the RSE core to each
integrated product. Each adapter provides the mapping of an integrated product’s
data (objects) to an RSE generic object model. Artifacts are the RSE objects that
represent integrated product objects.

Using RSE

You can use RSE to create:

■ Clients
RSE Implementation 15

A client application allows you to retrieve data in the Suite and other integrated
products.

■ Adapters

An adapter provides access to the applications that contain the data. Adapters act
as servers to RSE clients and allow data to be integrated between individual
products in the Suite.

Individual adapters provide a consistent standard interface between the RSE core
and individual products. RSE provides an adapter for each product in the Suite
(for example, an adapter named ReqPro for RequisitePro) and also provides
adapters for common Microsoft applications. The RSE adapters are:

❑ Rational Administrator (RAdmin)

❑ Rational Rose (Rose)

❑ RequisitePro (ReqPro)

❑ Rational ClearQuest (ClearQuest)

❑ Rational ClearCase (ClearCase)

❑ Rational Test Manager (TeamTest)

❑ Microsoft Windows File System (FileSys)

❑ Microsoft Project (MSProject)

❑ Microsoft Word (Word)

RSE Clients

You can create client applications to retrieve data from any product in the Suite. RSE
can support multiple client interfaces. COM is currently the supported interface.

Figure 2 shows two client applications to Rational Suite. These applications can
retrieve data from any of the Suite products or other integrated products (through the
RSE adapters).
16 Chapter 1 - What Is RSE?

Figure 2 RSE Clients

Create client applications to:

■ Query Rational Suite for application objects (that map to RSE artifacts), using
filtering operators.

■ Perform simple artifact create, read, update, and delete operations.

■ Provide end-user ease of use for access to Rational Suite and other integrated
products.

RSE provides developers of client applications with:

■ A single data access API. This means that clients do not have to modify code to
access any RSE-enabled application. As more applications become RSE-enabled,
RSE clients automatically have access to new application data.
RSE Implementation 17

■ A consistent mechanism for relating objects within and across applications. Clients
can create and manage their own links between objects attaching any semantics to
the links that they choose. Clients can also get access to links created by any other
client applications, making it easy for clients to share information and implement
point-to-point integrations.

■ A tight integration with Rational Suite.

RSE Adapters

You can create adapters that enable applications to integrate with Rational Suite.
These applications then act as products in the Suite, supplying data that can be
retrieved by client applications.

The adapters connect to the RSE core. Adapters represent defined Rational artifacts
stored in each integrated product. Adapters map an integrated product object
hierarchy to the RSE artifact hierarchy. An adapter is created for each integrated
product. When you create an adapter for an existing application, that application
becomes an integration to the Suite, with its data available to all RSE clients.

Figure 3 shows a partner adapter that would allow that partner’s application to act as
part of the Suite. Data in the partner application would be defined as RSE artifacts in
the Partner Adapter and client applications (for example, SoDA) would be able to
retrieve this data.
18 Chapter 1 - What Is RSE?

Figure 3 RSE Adapters

Rational partners can create new adapters using RSE, enabling partner applications to
act as Suite members.

Adapters can conceptually be seen as server applications to RSE clients. Each adapter
can also be seen as a server to the other RSE adapters for each integrated product.

Conclusion

With RSE technology, data in any integrated product in Rational Suite becomes
available to an RSE client application through one API. RSE clients can retrieve data
from any integrated product in Rational Suite through RSE adapters. The RSE
technology provides both client interfaces and adapter interfaces.

■ The client interfaces are for creating new RSE client applications.
Conclusion 19

■ The adapter interfaces are for implementing the RSE adapters that are included
with Rational Suite and for defining new adapters. RSE adapters are defined for
each integrated product in the Suite in order to map individual-product object
structures to the RSE common object model.
20 Chapter 1 - What Is RSE?

2RSE Object Model
Rational Suite Extensibility uses a generic object model that maps the objects of each
integrated product to an RSE artifact hierarchy. This common object model enables
RSE client applications to retrieve data from any integrated product through one set
of interfaces. This mapping is defined in each individual integrated product adapter.

For example, a RequisitePro Project object is mapped to an equivalent RSE Project
artifact type in the ReqPro adapter. The Artifact object provides the standard
mechanisms to retrieve the properties (for example, Name and Description) of the
object and its relationships to other Artifacts (for example, Requirements).

RSE Objects

This section provides descriptions and examples of the objects in the generic object
model. The primary objects are:

■ Session

■ Adapter

■ Artifact

■ Property

■ Relationship

■ Locator

Object Model Diagram

Figure 4 shows the main objects in the RSE generic object model. As this figure shows,
the client point of entry into the RSE is through the Session object.
21

Figure 4 Main Objects in RSE

Session

A Session object provides access to the installed adapters. A Session object:

■ Is created to work with RSE.

■ Is the main object that is used to begin locating artifacts.

■ Enumerates the adapters that are installed on a system.

Adapter

An adapter provides access to artifact types supported for a given product. Each
adapter defines the mapping between a product’s objects and the RSE generic object
model representation.

An Adapter object:

■ Represents a specific product.

■ Contains the collection of artifacts supported in a product.

■ Allows you to enumerate all of the artifact types that are supported by an adapter.

Each adapter contains the collection of artifact types that map to objects in the
integrated product.

IRDSISession

IArtifactLocator

IAdapter

0..n0..n

IArtifactPropertyType IRelationshipType

IArtifactType

0..n0..n

Static Artifact Types

CreateLocator

0..n0..n
0..n0..n
22 Chapter 2 - RSE Object Model

Artifacts

Artifacts are used to retrieve specific information from an integrated product.

An Artifact object represents an object in an integrated product. For example, the Rose
RSE adapter defines a Class artifact to represent Class objects in a Rose model.

Artifacts:

■ Contain properties and other artifacts.

■ Provide access to related artifacts.

■ Have an artifact type that describes additional information

ArtifactType

An ArtifactType provides detailed information about an artifact type’s Locators,
Properties, and Relationships.

■ Locators are objects that retrieve artifacts

■ Properties are attributes of an artifact

■ Relationships are the associations between artifacts.

Every instance of an artifact has an artifact type. Examples of artifact types are:

■ In RequisitePro:

Project, Document, and Requirement artifact types.

■ In Rose:

Model, Package, and Class artifact types.

An actual instance of an artifact has a name and an artifact type. For example, in Rose,
a class named Order is represented as an artifact with name = Order and artifact
type = Class.

Static and Dynamic Artifact Types

The two kinds of RSE artifact types are static and dynamic.

The collection of static artifact types for each adapter includes all predefined artifact
types.

Static types are the global artifact definitions (defined in the RSE adapters). Static
types include the hierarchy of primary RSE objects that represent the objects in an
integrated product. For example, in the RequisitePro RSE adapter (ReqPro), there are
Project and Requirement artifact types.
RSE Objects 23

The collection of static artifact types for a given adapter includes all the defined
artifact types for that adapter’s integrated product. These definitions are global to all
top-level objects in an integrated product. The top-level object in an integrated
product maps to the root artifact in that product’s RSE adapter. In the ReqPro
example, a Project is the root artifact in both the product hierarchy and in the ReqPro
adapter.

There are also dynamic artifact types that typically represent user-defined artifact
types (for example a user-defined Requirement type in RequisitePro). The dynamic
types are registered within the artifact that corresponds to the integrated product
top-level object (for example, a ReqPro Project artifact). This top-level artifact is the
root artifact. The dynamic types may then be accessed through this root artifact.

Dynamic artifact types are registered within the RSE adapters, based on user-defined
information in an integrated product. These RSE objects represent instances of
user-defined objects in the integrated product (for example, an instance of a
user-defined RequisitePro RequirementType).

In RequisitePro, there can be different requirement types defined in the Project
properties. In the ReqPro adapter, this translates as dynamic artifact types. These
dynamic types become available as additional artifact types when you instantiate RSE
objects.

Defined in the RSE ReqPro adapter, there is a Requirement artifact type. This is a static
artifact type. One type of requirement is a Use Case requirement type. In the RSE
ReqPro adapter, a Use Case requirement is defined as a UCRequirement artifact. This
dynamic type is named within the adapter by concatenating the Requirement tag
prefix with the text ‘Requirement.’

The UCRequirement is a subclass of a Requirement artifact (a subclass is a derived
class). The subclass inherits the properties, relationships, and locator information of
its superclass (a superclass is a base class). The property types of a UCRequirement
artifact in the ReqPro adapter are created dynamically using the attribute types of the
Use Case requirement in RequisitePro.

The RSE adapters map the dynamic artifact type hierarchy and register the
appropriate artifact types, relationship types, and property types. The way in which
this information is retrieved is specific to each integrated product. The dynamic type
information is associated with a top-level object in the integrated product, such as a
RequisitePro Project object.

The dynamic types for each RSE adapter:

■ ReqPro:
24 Chapter 2 - RSE Object Model

Dynamic types are registered by any Project artifact. These types include
user-defined Document types, Requirement types, Attributes of those
Requirement types, and relationships to user defined Views defined in the Project.

■ ClearQuest:

Dynamic types are registered by the CQDatabase artifact. These include
user-defined Record artifact types (typically, artifact types like Defect and
ChangeRequest) including their relationships and properties (fields). The dynamic
types also include relationships from the CQDatabase artifact to records for each
Record type and to the results of all queries defined in the database. Retrieving the
related artifacts from a query relationship causes the query to be executed.
Similarly, each Query artifact has a Results relationship that also executes the
query.

■ Rose:

Dynamic types are registered by the Model artifact. These include properties for
each static artifact type that are registered upon locating a model (root artifact).

■ RAdmin, ClearCase, TeamTest, FileSys, and MSProject do not have dynamic types.

Properties

Each artifact type has a collection of properties associated with it. Property objects
correspond to the individual attributes defined in each integrated product object.
Properties are available from the Artifact object.

For example, the name and the stereotype of a Rose Class are properties of a Class
artifact type. The Name and Stereotype properties are available from the Class
artifact.

PropertyType

Every instance of a property has a corresponding property type. Each PropertyType
supported by any given Artifact is available from the Artifact's ArtifactType object.
This allows the properties supported by an Artifact to be listed without an instance of
that Artifact.

As Figure 5 illustrates, the Rose Class has a Property called 'Stereotype', and the
ArtifactType for the Rose Class has a PropertyType called 'Stereotype'.
RSE Objects 25

Figure 5 Rose Class Property Example

Examples of property and property types:

■ In RequisitePro:

A Requirement ArtifactType has a Text property. The RequisitePro adapter defines
a PropertyType named ‘Text’ for the Requirement ArtifactType.

■ In Rose:

A Package ArtifactType has a Documentation property. The Rose adapter defines a
PropertyType named ‘Documentation’ for the Package ArtifactType.

Property types are registered with artifact types. The set of adapters maps the
individual integrated-product property types to RSE artifacts and properties.

Each property type has a property ID. Property IDs are integer values assigned
sequentially as the properties of an artifact type are registered. They are used
internally by the RSE core to look up property definitions.

Relationships

Each artifact type defines a set of relationship types.

These relationship types are used to find related artifacts. For example:

■ In RequisitePro:

The Project artifact has a relationship to Requirements. This relationship (named,
Requirements) can be used to find the Requirement objects in a Project. A
Requirement has a relationship to AttributeValues (named, AttrValues). This
relationship enables you to find the AttrbuteValue objects of a Requirement.

■ In Rose:

RoseClass

StereotypeProperty

RoseClassType

StereotypePropertyType
26 Chapter 2 - RSE Object Model

The Package artifact has a relationship to Classes. This relationship (named,
Classes) can be used to find the Class objects in a Package. The Class artifact has a
relationship to Properties. This relationship (named, Properties) enables you to
find Property objects of a Class.

Relationships define the associations between artifacts. An artifact can be associated
with any number of relationships. Each relationship links two associated artifacts.

For example, in the ReqPro adapter, Project, Requirement and DocumentType
artifacts all have a Revisions relationship to 0–n Revision artifacts. Figure 6 shows
these relationships. It also illustrates the Project’s Documents relationship to
DocumentType and the Requirements relationship to Requirement. You can configure
methods for locating artifacts using these relationships. For instance, given a Project,
you can retrieve a Revision in the following ways:

■ Given the Revision

■ Given a DocumentType

■ Given a Requirement

Figure 6 ReqPro Relationships Example

Relationships can be of type peer, descendant, or child.

Locators

Locators are RSE objects that are used for finding specific instances of artifacts.

Locators provide a uniform platform for maintaining and resolving references to RSE
artifacts. This allows implementing integrations and maintaining references between
integrated products.

DocumentType
(from ReqPro)

Requirement
(from ReqPro)

Project
(f ro m Req Pro)

Revision
(f ro m Req Pro)

Documents

Requirements

Revisions

Revisions

Revisions
RSE Objects 27

An artifact locator:

■ Finds an artifact, given user-supplied input.

■ Can locate and return data from an integrated product.

The IArtifactLocator interface is used to locate artifacts and is capable of representing
the locator as a string format that can be persistently saved and resolved at a later
time. This artifact reference contains the series of arguments that identifies a specific
instance of an artifact. This string can be converted into an artifact locator without
loading integrated-product data.

The arguments necessary to locate a specific artifact in an integrated product are
defined by that product's RSE adapter. These properties are specific to that type of
artifact. The values of these properties are then passed on to the integrated product
using the extensibility interface of that product through the adapter. This code is
implemented in the adapter and is specific to that integrated product.

Artifact Arguments

Each locator type has a set of arguments for constructing an artifact. These arguments
are defined as artifact arguments. Artifact arguments are used to specify values for the
information that is needed to locate an artifact. An artifact locator returns an instance
of an artifact.

For example, in order to locate a Rose Class, you need the path of the model, the name
of the Package and the name of the Class. The artifact arguments for a Class locator
type are:

■ Model.Path

The file path to the Model

■ Package.Name

The name of the Package containing the class

■ Class.Name

The name of the Class

You can create an artifact locator to locate a Class by supplying values to these
arguments. For example, to locate a Class named Order in a Rose Model, the
arguments values are:

■ 'C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl'

■ 'Business Services'

■ 'Order'
28 Chapter 2 - RSE Object Model

Given these arguments, the locator returns an instance of the Order class. The locator
string that comprises these arguments is called an artifact reference.

Artifact References

An artifact reference is a string containing the arguments used to locate a specific
instance of an artifact (for example, a Rose Class named Order).

For example, the following is an artifact reference for the Rose Order class:

Rose|Model(Path='C:\Program Files\Rational\Rose\samples\ordersystem')|
Package(Name='Business Services')|Class(Name='Order')

In this example, the RSE core locates the model, then the package, and then the class.

Note: Artifact references are sometimes called locator strings or Artifact IDs.

Each artifact reference:

■ Serves as a unique identifier for locating a specific instance of an artifact.

■ Is a string composed of information about the artifact type to be located and a set
of parameters that specify an instance of the given type of artifact.

There are two types of artifact references, Display Name ID and Immutable ID. Each
type of artifact reference includes two different formats, one a more readable form
(DN) and a one shortened version (ID).

Note: Not all artifact types support all forms of artifact reference. See the Adapters
Reference manual for information on each RSE artifact type.

In the Rose Ordersystem model, the artifact references to the Order Class artifact are:

■ Display Name ID locator

The human readable Display Name format can be viewed and interpreted by the
end user. For example, the Display Name ID for a Rose Class named Order in the
Business Services Package in Ordersys.mdl is:

DN form:

Rose|Model(Path='C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl')|
Package(Name='Business Services')|Class(Name='Order')

or

ID form:

Rose|1.1.2|Class('C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl',
'Business Services','Order')

■ Immutable ID locator
RSE Objects 29

The persistent Identifier form maintains a persistent reference to an artifact. The
artifact arguments are Model path and the Class unique ID (UUID). The UUID is a
12 digit serial number. For example, the Immutable ID form of the Artifact ID for
the Rose Order class is:

DN form:

Rose|Model(Path='C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl')|
Class(UniqueID='3237F8CD03CD')

The UniqueID is a 12 digit serial number that identifies the Class specific to the
Rose Model.

or

ID form:

Rose|1.1|Class('C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl',
'3237F8CD03CD')

In most cases, implementing a GUI that allows users to enter arguments for locating
artifacts is preferred to presenting the raw display name string. These arguments can
then be used to construct the artifact reference. However, there may be some cases
when users may encounter the strings, for example, in ascii files. In this case, the more
readable format of the Display Name ID is far more appropriate than the ID form of
the artifact reference.

For example, in RequisitePro:

■ Display Name ID

The artifact arguments are Project path and Requirement tag. This information
is visible in RequisitePro.

■ Immutable ID

The artifact arguments are Project path and Requirement key. The key is the
record ID for the Requirement in the RequisitePro database. This information is
used internally by RequisitePro but is not displayable.

The primary method of creating a locator is to first enumerate through the list of static
artifact types, select a type, and create a locator for this artifact type. Then, you can
enumerate through the collection of artifacts for this type and select an artifact. Each
of these artifacts has a unique artifact ID.

The IArtiactLocator interface has the ability to enumerate and change the values of
the parameters for the locator. It is not necessary to parse the ArtifactID string in order
to enumerate the values, nor is it necessary to construct a string to locate an object.
30 Chapter 2 - RSE Object Model

In addition to allowing parameter values to be enumerated and changed, the
IArtifactLocator interface supports optional parameters and default values. This
allows capabilities for projects to be located using usernames and passwords, but also
allowing default access without specifying user information.

Default access does not require login authentication and thus prevents exceptions.
The IArtifact interface and the IArtifactType interface allow a Client to get the default
Display Name or Immutable ID locator.

For more information on authentication and exception handling, see the “Creating
RSE Clients” chapter of this manual.

RelativeID Artifact References

Relative IDs are shortened versions of artifact references that provide a method for
locating one artifact, given another artifact. Relative IDs enable you to permanently
save artifact references that allow you to reconstruct objects.

Given an artifact type you can create an artifact locator to locate an artifact. You can
also use a relative locator to get the artifact. For example, in Rose, you can locate a
Class, relative to a Model. The Class relative ID (relative to Model) includes the
Package name and Class name. With this relative locator string, you can locate the
Class artifact.

In Rose, the absolute locator string (artifact ID) for the Order class in ordersys.mdl is:

Rose|Model(Path=’c:\Ordersys.mdl’)|Package(Name=’Business
Services’)|Class(Name=’Order’).

The common information stored in this string can be stored once by a client and used
by the relative IDs for returning reconstructed artifacts.

For example:

■ Given the Package Name (Business Services), the Relative ID for Order is:

Class(Name=’Order’)

This relative ID is relative to the Business Services Package. Business Services is
the artifact that provides the context for this relative ID to Order.

■ Given the model, Ordersys, the relative ID for locating Order is:

Package(Name=’Business Services’)|Class(Name=’Order’)

This relative ID is relative to Model (Model is the context artifact).
RSE Objects 31

To resolve a Relative ID, you need the relative artifact that has the context information
(for example, Rose|Model(Name=’Ordersys’)). This minimizes the amount of
information needed to be stored by each object. Root artifact information is supplied
by the RSE and can be stored once by the client. This greatly reduces the amount of
information needed to be stored for each link (for example, if you were resolving
10,000 links that were all relative to one model object).

For more information on locating artifacts with relative IDs, see the “Creating RSE
Clients” chapter of this manual.

Summary

Figure 7 shows the main objects in the RSE object model for retrieving artifacts and
their properties.

The point of entry into the RSE is through the Session object. A Session object connects
to an Adapter object. From this Adapter object, you can get all of the static artifact
types supported by that adapter.

Each adapter provides the conversion between internal objects from a specific product
and the corresponding RSE artifacts. An adapter includes a defined class for each
artifact type. Each of these internal object classes defines properties, relationships, and
locators and makes available the associated objects in the integrated products.

When you have the collection of available artifact types in an adapter, you can:

■ Create artifact locators to locate artifact types, artifact collections, or specific
instances of artifacts.

■ Retrieve the available property types for a given artifact type, or retrieve specific
instances of artifact properties, for a given artifact.

■ Retrieve the relationships for a given artifact type, or use relationships to retrieve
artifacts that are related to a given artifact.
32 Chapter 2 - RSE Object Model

Figure 7 RSE Objects

SoDA Application Example

SoDA is a Rational client application that uses RSE to retrieve data from integrated
products in Rational Suite. The following code shows how SoDA gets the property
collection (all properties) of an object. This example creates a session, locates a ReqPro
Requirement artifact (artifact ID is the locator argument), and then retrieves the
properties of the Requirement artifact.

In C++:

IRDSISessionPtr theSession;

theSession->CreateInstance("RDSICore.Session");

IArtifactPtr theArtifact = theSession->LocateArtifact("ReqPro|

Project(Path=’<YOUR_PROJECT>’)|Requirement(FullTag=’<YOUR_REQ>’)”);

IArtifactPropertyCollectionPtr theProperties =

theArtifact->GetProperties();

IRDSISession

IArtifactLocator

IAdapter

0..n0..n

IArtifactPropertyType IRelationshipType

IArtifactType

0..n0..n

Static Artifact Types

CreateLocator

0..n0..n
0..n0..n

IArtifact

IArtifactLocator

LocateArtifact

IArtifactProperty

IArtifact 0..n0..n
RSE Objects 33

In VB:

Dim theSession as RDSISession

Dim theArtifact as Artifact

Dim theProperties as ArtifactPropertyCollection

Set theSession = new RDSISession

Set theArtifact =
theSession.LocateArtifact(“ReqPro|Project(Path=’<YOUR_PROJECT>’)|Requi
rement(FullTag=’<YOUR_REQ>’)”)

Set theProperties = theArtifact.Properties

Referencing the RDSICore Type Library

You must reference the RDSICore library into your project. The RDSICore type library
is located in Rational\common\RDSICore.dll

To reference the type library in Visual Basic:

1 Click Project > References

2 Check RDSICore 1.0 Type Library.

To reference the type library into a C++ project:

1 Click Tools > OLE/COM Object Viewer

2 In the OLE/COM Object Viewer dialog, click File > Bind To File

3 In the Open dialog, click Rational/common/RDSICore.dll
34 Chapter 2 - RSE Object Model

3Developing an RSE
Adapter
This chapter describes how to develop an RSE adapter. For example, you can create an
adapter to integrate a third-party tool with information in Rational Suite.

An Adapter can map a single source of information (for example, RequisitePro, Rose
or other application) or be a cross-product adapter that maps more than one product.

RSE Adapters are components that map an integrated product object hierarchy to the
RSE Artifact hierarchy. They define the RSE Artifact hierarchy and implement the
integration between the RSE and the associated integrated product. RSE client
applications retrieve information from integrated products through the RSE adapters.

Architectural Overview

There are two major tiers that allow adapters to be implemented with minimal
complexity:

■ Adapter interfaces

The set of interfaces that the RSE Core uses to communicate with each adapter.
The Adapter interfaces map from the conceptual organization of the RSE client
interfaces to the conceptual organization of the adapter implementer. This
mapping dramatically simplifies the complexity of the artifacts implemented in
each adapter. Conceptually, it allows adapters to be implemented in a variety of
development languages, including C++, Visual Basic, Visual J++, and pure Java.

Note: The current release only supports development of C++ adapters.

■ C++ Framework

The C++ Framework wraps the adapter interface implementation and provides a
default artifact behavior, further simplifying the task of implementing an adapter.

The C++ Framework simplifies the implementation of the artifact class. Modified
versions of the framework can be built to support specific types of internal objects,
such as IDispatch, generic COM, or CORBA.

From the adapter developer’s perspective, the C++ Framework serves as a
template from which you derive classes that map to your application’s objects.
35

Developing an Adapter Overview

The C++ Framework simplifies the development of new adapters by providing a
template of base classes in TemplateAdapter. You create a new adapter by deriving
new classes from the TemplateAdapter base classes. When you develop a new
adapter, follow these steps:

1 Unpack the files in RSEAdapter.zip (this chapter uses D:\Adapters as the target
directory). This zip file includes the ReqPro, FileSys, and Word RSE adapters.

2 Open a workspace and create a new adapter project (See the “Setting Up an
Adapter Project”). You must create your new adapter project in the same directory
as the included RSE adapters.

The following sections of this chapter describe these steps in more detail.

Once you have an adapter project, you can define and implement artifact types. The
following steps are described in the “Using RSE Adapter Interfaces” chapter of this
manual.

3 Define the artifact types.

4 Implement each artifact type. For each type, this includes:

❑ Register and implement locators

❑ Register and implement properties

❑ Register and implement relationships

Setting Up an Adapter Project

The first step in developing a new adapter is to create a new project in Microsoft
Visual C++ Version 6.0.

You set up a new adapter project by:

1 Opening a Workspace.

2 Creating a new ATL Project.

3 Creating the necessary project dependencies.

4 Modifying project settings.

5 Defining an adapter instance.

6 Modifying project files. This includes modifying the:

❑ IDL file
36 Chapter 3 - Developing an RSE Adapter

❑ Registry file

❑ Adapter instance .h and .cpp files

❑ Stdafx.h file

7 Building the adapter dll.

Opening a Workspace

1 Start Visual C++ and click File > Open Workspace .

2 Select RSEAdapter.dsw located in D:\Adapters\RSEAdapter\wsbu.src\rdsi.

This workspace includes the ReqPro, FileSys, and Word adapter projects.

Note: This location is correct if you unpacked the RSEAdapter.zip file to
D:\Adapters.
Setting Up an Adapter Project 37

Creating a New ATL Project

After you open the workspace, set up a new adapter project by creating a new ATL
project.

1 Click File > New.

2 On the Projects tab, select ATL COM AppWizard . Name the Project (MyApplication)
and enter the correct location for the project
(D:\ADAPTERS\RSEADAPTER\WSBU.SRC\RDSI\ADAPTERS\MyApplication).

Note: The location of your new adapter project must be in the same directory as
the other RSE adapters that are included in RSEAdapter.zip.

3 Click Add to current workspace .

4 Click OK.
38 Chapter 3 - Developing an RSE Adapter

5 On the ATL COM AppWizard, select Dynamic Link Library (DLL) . Click Finish, then
click OK in the next dialog box.

The new project is added to the current workspace. The ATL wizard generates the
source code. You then make changes to support the adapter namespace.

6 From the Visual C++ main menu, click File > View to display the new project.

At this point, source files have been added, but there no classes. The name of the
adapter is MyApplication.cpp.

7 Compile the project to create the dll file by clicking Build . This is the main entry
point into this new adapter. After building this dll, you add a dependency to the
CPP Framework and define the new adapter instance.
Setting Up an Adapter Project 39

Adding Dependency to the CPP Framework

To create the necessary dependency to the C++ Framework, you must add a
dependency to the CPP Framework project:
(D:\Adapters\RSEAdapter\wsbu.src\rdsi\adapters\CPP Framework\CPP Framework.dsp).

1 Click Project > Dependencies from the main menu.

2 Select the CPP Framework check box and click OK.

Modifying Project Settings
■ Modifying the Code Generation Settings

■ Modifying the Preprocessor Settings

■ Modifying the C++ Language Settings

Modifying the Code Generation Settings

In the current environment, you must modify the project settings for code generation.

1 Click Project > Settings .

2 In the Setting For dialog box, choose Multiple Configurations .
40 Chapter 3 - Developing an RSE Adapter

3 In the Select project configuration(s) to modify dialog box, check all the Win32
Debug options and click OK.
Setting Up an Adapter Project 41

4 In the Project Settings dialog box, on the C/C++ tab, in the Category list box, select
Code Generation .

5 Select Debug Multithreaded DLL in the Use run-time library list box and click OK.

6 Click Project > Settings .

7 In the Setting For dialog box, choose Multiple Configurations and check all the
Release configurations to modify.

8 Click OK.

9 In the Project Settings dialog box, on the C/C++ tab, in the Category list box, select
Code Generation . Select Multithreaded DLL in the Use run-time library list box and
click OK.

You must modify two additional project settings before compiling your project. This
includes the Preprocessor and C++ Language categories.

Modifying the Preprocessor Settings

AdapterProtocol.tlb is imported in stdafx.h. To specify the path of
AdapterProtocol.tlb:
42 Chapter 3 - Developing an RSE Adapter

1 Click Project > Settings .

2 In the Settings For field, select All Configurations .

3 Click the C/C++ tab and select Preprocessor in the Category field.

4 Click the TemplateAdapter project and copy the Additional include directories
information.
Setting Up an Adapter Project 43

5 Click the MyApplication project and paste in the Additional include directories
information (..\, ..\..\, ..\..\Include\).

6 Click OK.

Modifying the C++ Language Settings

Finally, you must also modify the project settings for the C++ Language Category.

1 Click Project > Settings .

2 In the Settings For list box, select Win32 Debug .

3 On the C/C++ tab, select C++ Language in the Category list box.

4 Select the boxes for Enable exception handling and Enable Run-Time Type
Information .
44 Chapter 3 - Developing an RSE Adapter

Click OK.

Your project now has the necessary project settings.

Defining an Adapter Instance

Each adapter instance represents an RSE adapter. The adapter instance declares the
artifact types defined by this adapter. You define a new adapter instance for each new
adapter.

When implementing a new adapter, you derive an AdapterInstance object from the
Framework AdapterInstance class.

RSE clients retrieve information about the adapter and the static metadata available
from the adapter to the client from the RSE core AdapterInstance object. It can be
instantiated without creating an instance of the integrated product server.

An Adapter Instance:

■ Is an object that represents an instance of an adapter.

For example, ReqProAdapterInstance represents an instance of the ReqPro
adapter. The ReqProAdapterInstance class derives from the Framework
AdapterInstance class.
Setting Up an Adapter Project 45

■ Registers information with the RSE core and declares all static metadata available
from this adapter. This includes the hierarchy of all artifact types, properties,
relationships, and locators that are defined in this adapter.

■ Is an ATL COM object.

This class derives from the C++ Framework AdapterInstance class.

1 Click Insert > New ATL Object

2 Click Simple Object > Next .
46 Chapter 3 - Developing an RSE Adapter

3 On the Names tab, in the Short Name field, enter the name of the new adapter
instance. For example, MyApplicationAdapterInstance. This automatically fills in
the other fields.
Setting Up an Adapter Project 47

4 On the attributes tab, select Free in the Threading Model field and select Custom in
the Interface field.

Leave the other default values on the attributes tab. Click OK.

This generates the new AdapterInstance cpp file
(MyApplicationAdapterInstance.cpp) and the idl file that defines the internal stubs
for this new adapter.

Modifying the New IDL File

You must clean up the new idl file with the following code-specific modifications:

■ Import AdapterProtocol.idl.

■ Delete AdapterInstance object.

1 Importing AdapterProtocol.idl

AdapterProtocol.idl defines all of the adapter interfaces. You must add a reference
for AdapterProtocol.idl to your new adapter idl file.

Add the following line from TemplateAdapter.idl to your new adapter idl file,
below the import “ocidl.idl”; statement.

import "..\..\Include\AdapterProtocol.idl";
48 Chapter 3 - Developing an RSE Adapter

Setting Up an Adapter Project 49

2 Deleting the AdapterInstance Object

You must delete the new adapter instance object in this idl file. This code is directly
below the import line you just added.

3 You must also modify the coclass MyApplicationAdapterInstance definition from:

{

[default] interface IMyApplicationAdapterInstance;

};
50 Chapter 3 - Developing an RSE Adapter

to:

{

[default] interface IAdapterInstance;

interface ITypeContainer;

};

The correct code for this file should now be:

// MyApplication.idl : IDL source for MyApplication.dll

//

// This file will be processed by the MIDL tool to produce

// the type library (MyApplication.tlb) and marshalling code.

import "oaidl.idl";

import "ocidl.idl";

import "..\..\Include\AdapterProtocol.idl";

[

uuid(AA68ABA6-6F68-40E0-99CF-25C26D084978),

version(1.0),

helpstring("MyApplication 1.0 Type Library")

]

library MYAPPLICATIONLib

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

[

uuid(A5FE3DD9-FB73-4800-8094-4969D5163348),

helpstring("MyApplicationAdapterInstance Class")

]

coclass MyApplicationAdapterInstance

{

Setting Up an Adapter Project 51

[default] interface IAdapterInstance;

interface ITypeContainer;

};

};

This code correctly defines the new adapter instance.
52 Chapter 3 - Developing an RSE Adapter

Modifying the Registry File

The registry file (MyApplicationAdapterInstance.rgs) determines what goes into the
registry when the adapter registers itself.

The version program ID identifies and registers the adapter.

VersionIndependentProgID = s

'MyApplicationAdapter.MyApplicationAdapterInstance'

You must add additional information to the generated registry file.

1 Open the TemplateAdapterInstance.rgs file and select the following code.

HKLM

{

NoRemove SOFTWARE

{

'Rational Software'

{

RDSI

{

Adapters

{

ForceRemove Template

{

val Name = s 'Template'

val ConnectData = s 'TemplateAdapter.TemplateAdapterInstance'

}

}

}

}

}

}

2 Copy this code and paste it into the new adapter instance registry file at the end of
the file.

3 You must then rename the adapter information that you pasted into the registry
file from TemplateAdapter to the name of your adapter (MyApplication). The
value of ConnectData must be equal to VersionIndependentProgID.
Setting Up an Adapter Project 53

For example:

HKLM

{

NoRemove SOFTWARE

{

'Rational Software'

{

RDSI

{

Adapters

{

ForceRemove MyApplication

{

val Name = s 'MyApplication'

 val ConnectData = s 'MyApplication.MyApplicationAdapterInstance'

}

}

}

}

}

}

54 Chapter 3 - Developing an RSE Adapter

Modifying the New AdapterInstance.h

You must modify code in the new adapter instance header file.

First, you must include the base class AdapterInstance.h from the CPP Framework to
your new AdapterInstance.h file.

1 Copy the following line from TemplateAdapterInstance.h and add to
MyApplicationAdapterInstance.h just below the #include "resource.h"
statement:

#include "CPP Framework/AdapterInstance.h"

2 Replace the following code:

public CComObjectRootEx<CComSingleThreadModel>,

public CComCoClass<CMyApplicationAdapterInstance,
&CLSID_MyApplicationAdapterInstance>,

public IMyApplicationAdapterInstance

with:

public CComCoClass<CMyApplicationAdapterInstance,
&CLSID_MyApplicationAdapterInstance>,

public FRWAdapterInstance

As the above code illustrates, you:

❑ Remove the following lines:

public CComObjectRootEx<CComSingleThreadModel>,

public IMyApplicationAdapterInstance

❑ Add:

public FRWAdapterInstance

3 You must also delete the following lines from this file:

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CMyApplicationAdapterInstance)

COM_INTERFACE_ENTRY(IMyApplicationAdapterInstance)

END_COM_MAP()

// IMyApplicationAdapterInstance

public:
Setting Up an Adapter Project 55

You replace this code with code from TemplateAdapterInstance.h.

4 Copy the following code from TemplateAdapterInstance.h and paste it into your
new adapter instance header file.
56 Chapter 3 - Developing an RSE Adapter

The correct code is:

protected:

//

// IAdapterInstanceBase overrides

//

virtual HRESULT DeclareArtifactTypes

(FRWInternalObjectTypeRegistrar &ObjectTypeRegistrar);

public:

 // adapter retrieval

 static CTemplateAdapterInstance* GetAdapterInstance ()

 {

 return dynamic_cast<CTemplateAdapterInstance *>

(FRWAdapterInstance::FRWGetAdapterInstance ());

 }

This code defines the two required methods for this class:

❑ DeclareArtifactTypes

Declares all of the artifact types for this adapter

❑ GetAdapterInstance

Creates an instance of this adapter

5 Rename this code to your new adapter name. For example:

static CMyApplicationAdapterInstance* GetAdapterInstance ()

 {

 return dynamic_cast<CMyApplicationAdapterInstance *>

(FRWAdapterInstance::FRWGetAdapterInstance ());

 }

Here is the correct code in the new adapter instance.h file:

// MyApplicationAdapterInstance.h : Declaration of the
CMyApplicationAdapterInstance
Setting Up an Adapter Project 57

#ifndef __MYAPPLICATIONADAPTERINSTANCE_H_

#define __MYAPPLICATIONADAPTERINSTANCE_H_

#include "resource.h" // main symbols

#include "CPP Framework/AdapterInstance.h"

//
///////

// CMyApplicationAdapterInstance

class ATL_NO_VTABLE CMyApplicationAdapterInstance :

public CComCoClass<CMyApplicationAdapterInstance,
&CLSID_MyApplicationAdapterInstance>,

public FRWAdapterInstance

{

public:

CMyApplicationAdapterInstance()

{

}

DECLARE_REGISTRY_RESOURCEID(IDR_MYAPPLICATIONADAPTERINSTANCE)

protected:

//

// IAdapterInstanceBase overrides

//

virtual HRESULT DeclareArtifactTypes
(FRWInternalObjectTypeRegistrar &ObjectTypeRegistrar);

public:

 // adapter retrieval

 static CMyApplicationAdapterInstance* GetAdapterInstance ()

 {

 return dynamic_cast<CMyApplicationAdapterInstance *>
(FRWAdapterInstance::FRWGetAdapterInstance ());

 }

};

#endif //__MYAPPLICATIONADAPTERINSTANCE_H_
58 Chapter 3 - Developing an RSE Adapter

Modifying the New AdapterInstance.cpp

1 Copy the following line from TemplateAdapterInstance.cpp and paste it into your
new adapter instance cpp file after the other #include statements.

#include "CPP Framework/RDSI.h"

2 Implement the register method in MyApplicationAdapterInstance.cpp by copying
the following code from TemplateAdapterInstance.cpp and pasting it into
MyApplicationAdapterInstance.cpp.

HRESULT CTemplateAdapterInstance::DeclareArtifactTypes

(FRWInternalObjectTypeRegistrar &ObjectTypeRegistrar)

{

//ObjectTypeRegistrar.AddArtifactType (_T("SampleArtifactType"),

INTERNAL_OBJECT_FACTORY(CSampleArtifactType),

INTERNAL_OBJECT_REGISTRAR (CSampleArtifactType));

return S_OK;

}

3 Rename the instance as follows:

HRESULT CMyApplicationAdapterInstance::DeclareArtifactTypes

(FRWInternalObjectTypeRegistrar &ObjectTypeRegistrar)

{

//ObjectTypeRegistrar.AddArtifactType (_T("SampleArtifactType"),

INTERNAL_OBJECT_FACTORY(CSampleArtifactType),

INTERNAL_OBJECT_REGISTRAR (CSampleArtifactType));

return S_OK;

}

Setting Up an Adapter Project 59

The correct code for your new adapter instance cpp file is:

// MyApplicationAdapterInstance.cpp : Implementation of
CMyApplicationAdapterInstance

#include "stdafx.h"

#include "MyApplication.h"

#include "MyApplicationAdapterInstance.h"

#include "CPP Framework/RDSI.h"

//

// CMyApplicationAdapterInstance

HRESULT CMyApplicationAdapterInstance::DeclareArtifactTypes
(FRWInternalObjectTypeRegistrar &ObjectTypeRegistrar)

{

//ObjectTypeRegistrar.AddArtifactType (_T("SampleArtifactType"),
INTERNAL_OBJECT_FACTORY(CSampleArtifactType),
INTERNAL_OBJECT_REGISTRAR (CSampleArtifactType));

return S_OK;

}

60 Chapter 3 - Developing an RSE Adapter

DeclareArtifactTypes is where each artifact type is registered, using the
AddArtifactType method for each artifact type. See the ”Using RSE Adapter
Interfaces” chapter of this manual for more information.

Modifying the New stdafx.h

In the new adapter project’s stdafx.h file:

Add the following lines just below the #include <atlcom.h> statement:

#include "CPP Framework/rdsi.h"

#include "resource.h"

#import "include/AdapterProtocol.tlb" no_implementation

rename("GUID", "_GUID") rename_namespace("RDSIAdapterProtocol")

Note: You import your integrated product library in stdafx.h and you have to include
this line in stdafx.h. For example, in the MyApplication adapter:

#import MyApplication.tlb

You are now ready to build the new adapter dll.

Building the New Adapter dll

Click Build > Build MyApplication.dll

Your new adapter is now available from all RSE client applications. For example, run
the Test Framework sample application (TestFramework.exe) and the list box now
includes the new adapter.
Setting Up an Adapter Project 61

When you define artifact types, they are available from this client application.

You can now define and implement artifacts that map to objects in your integrated
product.
62 Chapter 3 - Developing an RSE Adapter

4Using RSE Adapter
Interfaces
This chapter provides information on implementing the artifact types for a given
adapter. This includes:

■ Registering artifact types in an AdapterInstance class

■ Implementing each artifact type in an InternalObject-derived class

For each artifact type, this includes defining and implementing the properties,
relationships, and locators. You also define the locator arguments for constructing
the locators. For a full listing of the methods for implementing artifact types, see
the “Adapter Interface Methods” chapter of this manual.

Additional topics include:

■ Registering creation arguments

■ Defining and implementing artifacts using the maps mechanism

■ Internal object to Integrated-Product object description

■ Adapter internals information

Overview

The RSE object model provides one unified API for access to all Rational
Suite-enabled integrated products. This common object model represents integrated
product-specific objects as artifact types. RSE enables this common object model
through adapters.

Figure 8 illustrates the architecture through which a client retrieves information from
an integrated product.
63

Figure 8 Retrieving Information from an Integrated Product

Clients request artifacts. Adapters map artifacts to integrated-product objects.

Adapters define artifacts as internal objects. An internal object is the implementation
class for a specific artifact type. The RSE core implements this architecture by creating
instances of the artifacts and returning them to the client.

Figure 9 illustrates the architecture by which an artifact type represents an
integrated-product object.

■ Each artifact type is represented by an internal object class that is defined in a
given adapter.

■ Each adapter links the internal objects to their corresponding integrated product
objects.
64 Chapter 4 - Using RSE Adapter Interfaces

Figure 9 Representing an Integrated Product Object

There is a one to one correspondence between artifacts and internal objects. Each
artifact is linked to an internal object through the RSE core. The front end of RSE Core
works with artifacts, the backend (CPP Framework and the adapters) works with
internal objects. Users of the client interfaces only see artifacts. Writers of adapters
work with internal objects. This separates functionality and isolates the RSE Core
from the adapters.

RequisitePro Example

Figure 10 illustrates a client application retrieving information from RequisitePro
through the RSE architecture.
Overview 65

Figure 10 RequisitePro Example

In this example, a client application retrieves RequisitePro objects through the ReqPro
adapter as follows:

■ The RSE core processes the client request and communicates with the ReqPro
adapter.

■ The ReqPro adapter links the RSE object model to the RequisitePro object model.
The adapter acts as a server to RSE clients. The RSE object model maps artifact
types to integrated-product objects, using internal object classes.

■ The ReqPro adapter gets the RequisitePro object and returns the corresponding
internal object. Each internal object class corresponds to an artifact type.

■ The RSE core creates the artifact instance and returns it to the client application.

If the client request is for a RequisitePro Project, then the association between objects
is as follows:

■ The client requests a Project artifact type, passing in the argument for the Project
Path in order to locate the Project.
66 Chapter 4 - Using RSE Adapter Interfaces

■ The ReqPro adapter locates the RequsitePro Project and returns an instance of the
associated internal object (CProject).

■ The RSE core creates the corresponding artifact instance and returns it to the client.

The ReqPro Project artifact type is defined as the CProject internal object class in the
ReqPro adapter. This internal object links to the actual RequisitePro Project object.
Figure 11 illustrates the architecture by which a Project artifact type represents a
RequisitePro Project object.

Figure 11 ReqPro Adapter Project Artifact Type

Summary

In review:

■ Artifacts represent objects in the integrated products. Internal object classes
implement this mapping.

■ Each artifact type corresponds to an internal object class.

■ Each internal object class maps to a specific object type in an integrated product.

For more information see the “Internal Object to Integrated-Product Object” section of
this chapter.
Overview 67

Registering Artifact Types

Once you have defined and set up an adapter (as the previous chapter of this manual
presents), you register the artifact types for the adapter in its AdapterInstance class.
The AdapterInstance associates each artifact type and its corresponding internal
object class.

■ The artifact types are registered and located by an adapter’s AdapterInstance
object.

■ For each artifact type, you define and implement an internal object class.

■ Each internal object class is a FRWInternalObject-derived subclass.

■ In each subclass, you define an artifact type’s properties, relationships, and
locators using InternalObject methods. You also define the artifact arguments for
the artifact references.

Adapter Instance

The adapter instance object:

■ Links an adapter to an integrated-product server.

■ Declares the artifact types in an adapter

The adapter instance object locates the internal objects for the integrated product. The
adapter instance makes these artifact types available to RSE client application
requests. The complete list of subclasses is what the client interface
Adapter.StaticArtifactTypes method returns.

The adapter instance creates an InternalObjectTypeRegistrar object in which it
declares its artifact types.

Declaring and Adding Artifact Types

Each adapter instance registers its artifact types with the DeclareArtifactTypes
method. Within this overridden method, each artifact type for an adapter is defined
with the AddArtifactType method of the InternalObjectTypeRegistrar class. This
registers the name of each artifact type and associates each implementation (internal
object) class with its artifact type. The actual registration is done by the static Register
method of each implementation class.

For an existing adapter, you can add functionality to an adapter in two ways:

■ Adding artifact types
68 Chapter 4 - Using RSE Adapter Interfaces

Defining and implementing additional internal object subclasses and associating
them with artifact type names using the AddArtifactType method.

■ Adding functionality to existing artifact types

Implementing additional specifications to existing internal object subclasses.

In the InternalObjectRegistrar object, you define method calls that make the calls
to an integrated product server. The RSE core implements the method calling
mechanism to the C++ Framework.

For descriptions of the available methods in the adapter interfaces, see the “Adapter
Interface Methods” chapter of this manual.

ReqPro Adapter Example

Figure 12 shows the FRWInternalCOMObject subclasses implemented by the ReqPro
adapter. (It is not a complete specification of the objects implemented by the ReqPro
adapter.) These internal objects map to the ReqPro artifact types that are declared and
registered in the ReqProAdapterInstance.

Figure 12 ReqPro Adapter Internal Objects

The following implementation classes define the static artifact types in the ReqPro
adapter:

■ CProject

■ CRequirement

CRequirementCRequirementType

CDiscussion CRelationshipCRevision CUserCAttributeValue

CGroupCProject

CReqDocument

CResponse CDocumentType

FRWInternalCOMObject
(f rom CPP Framework COM classes)
Registering Artifact Types 69

■ CRelationship

■ CRequirementType

■ CDiscussion

■ CResponse

■ CUser

■ CGroup

■ CAttributeValue

■ CReqDocument

■ CRevision

■ CDocumentType

■ CView

■ CPermission

Adding Artifact Types

The following code from the ReqPro adapter defines the Project and Requirement
ArtifactTypes. CProject and CRequirement are internal object subclasses. The
DeclareArtifactsTypes method overrides the method in the AdapterInstance base
class of the C++ framework.

HRESULT CReqProAdapterInstance::DeclareArtifactTypes
(FRWInternalObjectTypeRegistrar &ObjectTypeRegistrar)

{

Registrar.AddArtifactType (_T("Project"),

NULL,

INTERNAL_OBJECT_FACTORY(CProject),

INTERNAL_OBJECT_REGISTRAR (CProject)

false);

Registrar.AddArtifactType (_T("Requirement"),

NULL,

INTERNAL_OBJECT_FACTORY(CRequirement),

INTERNAL_OBJECT_REGISTRAR (CRequirement)

true);

The arguments for the AddArtifactType method are:

■ Artifact type
70 Chapter 4 - Using RSE Adapter Interfaces

The name of artifact type. For example, “Project”.

■ Superclass

The name of the superclass for an artifact type. NULL if there is not a superclass.

■ Implementation class

The internal object factory. This argument associates an internal object class and
the artifact type. The internal object factory instantiates the object. For example,
instantiate a CProject internal object.

■ Internal object registration method.

The Register method is passed the registration object context and constructs the
Project registrar object. The registrar object knows how to call methods of the
internal object (CProject).

This associates the internal object class and artifact type. For example, in the
ReqPro adapter instance, associate the Project artifact type with the CProject
internal object class. The implementation of this association is in the Register
method in Project.cpp.

■ Abstract

A Boolean for whether this is an abstract artifact type. For example, Project is not
an abstract class and Requirement is an abstract class.

An abstract artifact type is a type that serves as a Superclass only. An abstract
artifact type has no instances.

The DeclareArtifactTypes method registers all static artifact types for an adapter. This
registers the name and associates the implementation class with the type. The actual
registration of properties, relationships, and locators is done by the static Register
method of each implementation class.

Dynamic Artifact Types

Artifact types registered by the adapter namespace are available to all namespaces
within the adapter. Dynamic types can be registered using the
RegisterDynamicArtifactTypes method of other namespaces implemented by this
adapter.

Dynamic artifact types are user-defined artifacts that are instantiated within a
container artifact. For example, a ReqPro Project artifact is a dynamic artifact type
container for user-defined Requirement artifact types. These dynamic Requirement
types, as well as all dynamic Properties and Relationships, are instantiated when the
Project is instantiated. This dynamic registration occurs within the Project creation.
Registering Artifact Types 71

Each requirement type has a TagPrefix. The ReqPro adapter represents these types as
artifact types named "<TagPrefix>Requirement" (for example UCRequirement or
FEATRequirement). The base type for all of the user-defined requirement types is the
defined artifact type "Requirement". Any requirement can be viewed through this
type.

For more information on InternalObjectTypeRegistrar methods and defining dynamic
types, see the “Adapter Interface Methods” chapter of this manual.

Implementing Artifact Types for an Adapter

After defining the artifact types in the AdapterInstance Registrar object with the
AddArtifactType method, you implement each artifact type in an
InternalObject-derived class.

Implementing a Class for each Artifact Type

You implement an artifact type by defining the properties, relationships and locators
for that type in an InternalObject-derived class Registrar object. You first construct the
Registrar object for this class. For example:

FRWInternalObjectRegistrar<CRequirement> Registrar (Context);

The following code is from the ReqPro adapter. It implements the Requirement
artifact type.

class CRequirement : public FRWInternalCOMObject

{

public:

...

static void Register (const FRWRegistrationContext &Context);

...

};

Register is a static method implemented by FRWInternalObject subclasses. This
method registers all properties and relationships for the type.

Dynamic artifact type registration can be contained within a static artifact type class.
For example, in RequisitePro, a dynamic requirement type can be registered within
the Project registration. The information necessary to register dynamic types is
available from the Context argument.
72 Chapter 4 - Using RSE Adapter Interfaces

Registering a Property

Register the properties for this object using the AddProperty method of the Registrar
object. The Registrar object sets up the framework classes necessary to map requests
to get and set property values to the implementation methods.

Each property type registration returns a unique Property ID that you can use later,
for registering locator arguments or creation arguments. The property ID return value
is an integer.

The following code defines the Text property of a Requisitepro Requirement:

/*static*/ void CRequirement::Register (

 const FRWRegistrationContext &Context)

{

// Construct a Registrar object for this class

FRWInternalObjectRegistrar<CRequirement> Registrar (Context);

Registrar.AddProperty ("Text",

 GetText, SetText,

 VT_BSTR,

 frwDescription);

The arguments for the AddProperty method are:

■ Property Name

■ Get method

The name of the implementation method that retrieves this property from the
internal object. The argument for the Get method is a variant value or a null
pointer.

■ Set method (if not a read-only property)

The name of the implementation method that can modify this property. The
argument for the Set method is a variant value or a null pointer.

■ Data type

The data type of this property

■ Semantic data type
Implementing Artifact Types for an Adapter 73

The semantic data type, if any, of this property. A semantic data type is a
description of a data type. This provides extra information on a property's or
artifact argument's data type. The semantic data types are: rsDataObject,
rsDescription, rsDirectory, rsFileMoniker, rsFileOrDirectory, rsFilePath, rsName,
rsNone, rsPassword, rsURL, rsUserName.

■ Maximum size

The maximum size of this property.

The following code implements the Text property of a RequisitePro Requirement:

void CRequirement::GetText(_variant_t &Value)

{

Value = mInterfacePtr->GetText();

}

void CRequirement::SetText(_variant_t Value)

{

bstr_t bstrValue = (bstr_t)Value;

mInterfacePtr->PutText(bstrValue);

mInterfacePtr->Save ();

}

The Get method takes a variant reference argument value. The Set method takes a
variant argument value.

To add a property that cannot be modified, you can use the AddProperty_Readonly
method. For a complete listing of property type methods, see the “Adapter Interface
Methods” chapter of this manual.

Registering a Relationship

Register the relationships for this object using the AddRelationshipType method of
the Registrar object.

The following code defines the AttrValues relationship of a RequisitePro
Requirement:

/*static*/ void CRequirement::Register (

 const FRWRegistrationContext &Context)

{

// Construct a Registrar object for this class

FRWInternalObjectRegistrar<CRequirement> Registrar (Context);
74 Chapter 4 - Using RSE Adapter Interfaces

…

Registrar.AddRelationshipType (Child,

 "AttrValues",

 "AttributeValue",

 GetAttrValues,

 ZeroToMany);

The arguments for the AddRelationshipType method are:

■ Relationship type (RelationshipCategory eCategory)

For example, Peer, Child, Descendant, or Parent.

■ Relationship name

■ The artifact type name

The name of the artifact type that this relationship points to.

■ Get method (GetRelatedArtifactMethodPtr pGetMethod)

This method includes product specific code (for example, RequisitePro
extensibility (RPX)) that enumerates the attribute values and returns them in the
collection. The argument for the GetMethod is a pointer to the
FRWArtifactAdapterCollection.

■ Cardinality

For example, ZeroToMany or ZeroToOne.

■ Create method, if any

■ Delete method, if any

The arguments in the above example specify that the Requirement artifact type has a
Child relationship type named AttrValues to the AttributeValue artifact type. The
GetAttr Values method implements this relationship and there can be zero to many
attribute values for the Requirement.

The following code implements the AttrValues relationship of a RequisitePro
Requirement:

void CRequirement::GetAttrValues(FRWArtifactAdapterCollection *
pObjects)

{

long lCount = 0;

long lStartIndex = 1;
Implementing Artifact Types for an Adapter 75

// Get the collection object

_AttrValuesPtr lAttrColl = mInterfacePtr->GetAttrValues();

lCount = lAttrColl->GetCount();

int AttributeValueTypeID = FindArtifactTypeID("AttributeValue");

_AttrValuePtr lItemPtr;

for (long i = lStartIndex; i <= lCount; i++)

{

//Get the ith item from the collection

_variant_t lVar(i);

lItemPtr = lAttrColl->GetItem(lVar,eAttrValueLookup_Index);

if (lItemPtr == NULL) continue;

pObjects->Add(AttributeValueTypeID, lItemPtr, this);

}

}

A realtionship type can return the collection of arguments for creating an artifact.
These arguments are defined in the adapters as creation arguments.

For a complete listing of relationship type methods, see the “Adapter Interface
Methods” chapter of this manual.

Registering a Locator

Locators provide a uniform platform for maintaining and resolving references to RSE
artifacts. This creates a unified platform for implementing integrations and
maintaining references between integrated products.

The implementation of a locator consists of:

■ Locator registration

The locator registration defines the locator for the given artifact type being
registered. This registration defines the locator and the properties of the artifact
that are to be used as parameters. When developing new adapters, every locator
parameter must be registered as a property of the locator's artifact type. For the
existing Suite integrated product adapters, every locator parameter is registered as
a property of the artifact.

■ Locater resolution
76 Chapter 4 - Using RSE Adapter Interfaces

Artifact reference resolution is the mechanism that the adapters use to pass
references from artifacts to the RSE core. Locators provide consistent support for
use case management (UCM) references.

Defining a Locator

Register the locators and the locator arguments using the AddRelativeLocator (or
AddAbsoluteLocator) and AddLocatorArgument methods of the Registrar object.

You use the Add locator methods to define each locator for each artifact type. The
AddLocatorArgument method defines each argument for an artifact locator. These
arguments can map to artifact properties, be a defined argument such as UserName
or Password, or map to an internal property ID.

The following code defines the Display Name Locator of a RequisitePro Requirement.
This locator is a relative locator, relative to Project. Project is the context artifact.

/*static*/ void CRequirement::Register (

 const FRWRegistrationContext &Context)

{

// Construct a Registrar object for this class

FRWInternalObjectRegistrar<CRequirement> Registrar (Context);

…

Registrar.AddRelativeLocator (LOCATE_WITH_TAG,

 "Project",

 LocateWithTag,

 LOCATE_DEFAULT_DISPLAY_NAME);

Registrar.AddLocatorArgument (LOCATE_WITH_TAG, 1, "FullTag");

}

The arguments for the AddRelativeLocator method are:

■ Locator ID

The string definition for the locator. In the above example, LOCATE_WITH_TAG is
the locator ID.

■ Relative artifact type name

This is the context artifact type for a client application. Project is the relative
artifact type. In the above example, this locator is relative to Project.

■ Locate method
Implementing Artifact Types for an Adapter 77

The method that implements the locator. In the above example, LocateWith Tag is
the method that implements this locator.

■ Locator flag

In the above example, LOCATE_DEFAULT_DISPLAY_NAME is the locator flag,
specifying that this locator is a default display name locator.

The LOCATE_WITH_TAG Requirement type locator is a relative locator that has one
locator argument. FullTag is the artifact property that maps to this locator argument.

You can also define locators that are not relative to another artifact. These are defined
as Absolute locators. For more information, see the “Adapter Interface Methods”
chapter of this manual.

These are common combinations that may be used when registering locators:

#define LOCATE_DISPLAY_NAME_AND_ID

LOCATE_DISPLAY_NAME | LOCATE_IMMUTABLE_ID

#define LOCATE_DEFAULT_DISPLAY_NAME_AND_ID

LOCATE_DEFAULT_IMMUTABLE_ID | LOCATE_DEFAULT_DISPLAY_NAME

Defining Locator Arguments

The AddLocatorArgument method specifies the artifact arguments for constructing
the locator. There are three formats of this method:

■ Mapping an argument to an artifact property ID.

■ Mapping an argument to an artifact property name.

■ Specifying an argument that is not a property.

In the previous code example, for the display name locator definition of the
RequisitePro Requirement artifact type,

Registrar.AddLocatorArgument (LOCATE_WITH_TAG, 1, "FullTag")

the AddLocatorArgument defines a locator argument:

❑ LOCATE_WITH_TAG is the locator ID for this relative locator.

❑ “1” is the param argument. The "1" represents the ordinal of the parameter (that
is, first = 1, second = 2, third = 3, and so on).

This argument is mapped to the FullTag property. This allows the RSE Core to get
the proper argument value when it forms a locator for an existing Requirement
object.

❑ FullTag is the name of the artifact property that maps to this argument.
78 Chapter 4 - Using RSE Adapter Interfaces

The following code implements the Display Name Locator of the ReqPro
Requirement.

bool CRequirement::LocateWithTag (FRWInternalObject *pRelativeObject,

 const FRWArguments &Params,

 FRWInternalObjectReference &Context)

{

CProject *pProject = dynamic_cast<CProject*> (pRelativeObject);

_variant_t vtTag = Params.GetArg (1);

// Product specific code…

_ProjectPtr pInternalProject = pProject->GetInternalProjectPtr ();

int iTypeID;

_RequirementPtr pRequirement;

pRequirement = pInternalProject->GetRequirement(vtTag,

 ReqPro40::eReqLookup_Tag,

 ReqPro40::eReqWeight_Medium,

ReqPro40::eReqFlag_Empty)

if (pRequirement == NULL)

return false;

iTypeID =
pProject->FindArtifactTypeID(GetArtifactTypeName(pRequirement));

_ASSERT (iTypeID != 0);

if (iTypeID == 0)

return false;

Context.Attach(iTypeID, NewRequirement(pRequirement, pCProject));

return true;

}

The LocateWithTag method has three arguments:

■ pRelativeObject

This is the relative object. The locator locates an object starting at this context. In
this example, Project is the relative artifact.

■ Params
Implementing Artifact Types for an Adapter 79

The locator arguments. Params contains the parameters to the locator that are used
to find an object. In this case there is only one parameter, the tag.

■ Context

The context object is the object to be located. Context contains information that is
used to attach the located object (represented by an internal object) to an RSE
artifact that represents that object.

In the call to the Attach method, the internal object is created by the call to
NewRequirement. The iTypeID parameter identifies the type of artifact that is being
created.

The Attach method saves the parameter passed to it in a member variable of the object
type so that the object can access the corresponding integrated product object when
necessary.

Defining a Collection of Artifact Locators

When developing a new adapter, every locator argument must be registered as a
property of the locator’s artifact type. The locator arguments are necessary to
construct the artifact locator. For example, you need the Path of a Rose model in order
to construct a Model artifact locator that locates the Model.

This section shows how a portion of the Rose adapter could be implemented. Table 1
lists artifact types and the artifact arguments for each of these artifact type locators.

The adapter defines the Item class as a superclass of the Model, Package and Class.
Therefore, any Item locators also apply to the Model, Package and Class types.

Table 1 Locator Arguments

Artifact Type Artifact Locator Arguments

Model Path

Package Name

Qualified Name

Class Name

Item UniqueID
80 Chapter 4 - Using RSE Adapter Interfaces

Locator Definitions

This section provides locator definitions for a portion of the Rose adapter.

The Model registers one locator with one parameter, the path. The locator is
registered as an absolute locator. The following table describes the locator:

The Package registers two locators, one by Name and one by Qualified name. Each
locator is relative to the model. The following tables describe the locators:

Table 3 Locate Package by Name

Table 4 Locate Package by Qualified Name

The Class registers one locator relative to the Package. Since the Package has two
locators, the Class adds its relative definition to each. The following tables describe
the locators:

Table 2 Locate Model by Path

Model Locator Type Locator String

Display Name Rose|Model(Path="")

Immutable ID Rose|1|Model("")

Package Locator Type Locator String

Display Name Rose|Model(Path="")|Package(Name="")

Immutable ID Rose|1.1| Package ("","")

Package Locator Type Locator String

Display Name Rose|Model(Path="")|Package(QualifiedName="")

Immutable ID Rose|1.2| Package ("","")
Implementing Artifact Types for an Adapter 81

Table 5 Locate Class, Relative to Package Name

Table 6 Locate Class, Relative to Package Qualified Name

Lastly, the Item registers one locator relative to the Model. The following table
describes the locator:

Table 7 Locate Item, Relative to Model

As a result, the following display name locators are supported by the following
objects:

Table 8 Supported Display Name Locators

Class Locator Type Locator String

Display Name Rose|Model(Path="")|Package(Name="")|Class(Name="")

Immutable ID Rose|1.1.1|Class ("", "", "")

Class Locator Type Locator String

Display Name Rose|Model(Path="")|Package(QualifiedName="")|Class(Name=""
)

Immutable ID Rose|1.2.1|Class("","","")

Item Locator Type Locator String

Display Name Rose|Model(Path="")|Item("UniqueID="")

Immutable ID Rose|1.1|Model("", "")

Artifact Locator Type Locator String

Item Rose|Model(Path="")|Item("UniqueID="")

Model Rose|Model(Path="")

Package Rose|Model(Path="")|Package(Name="")

Rose|Model(Path="")|Package(QualifiedName="")

Rose|Model(Path="")|Item("UniqueID="")
82 Chapter 4 - Using RSE Adapter Interfaces

For a complete listing of locator methods and their arguments, see the “Adapter
Interface Methods” chapter of this manual.

Registering Creation Arguments

Creation arguments are any arguments required to create an artifact. This applies only
in cases where creation of new artifacts is supported. The client must specify the
values of these arguments when creating an artifact. The adapter uses these
arguments to create the artifact.

The situations where a new artifact is created can be:

■ Creation of a dynamic type contained within a static artifact type (for example, a
ReqPro dynamic Requirement type created within the Project artifact type)

■ Creation of an instance of a static artifact type (for example, creating a new Project
artifact).

In either of the two situations, the adapter is responsible for specifying what the
required arguments are by calling AddCreationArgument:

■ Creation of a dynamic type requires the arguments to be registered with
InternalObjectTypeRegistrar::AddCreationArgument.

■ Creation of a static type requires the arguments to be registered with
InternalObjectRegistrar::AddCreationArgument.

A creation method is registered through a call to a CreateArtifact method (for
example, CreateRequirement or CreateDynamicRelatedArtifact). The types of artifacts
created may be dynamic or static.

In the ReqPro adapter, the Project class provides examples of CreateArtifact and
CreateDynamicRelatedArtifact. There are creation arguments for both static and
dynamic artifact types. Note that CreateRequirement is specific to the ReqPro adapter
whereas CreateDynamicRelatedArtifact applies to adapters in general.

The CreateRequirement method takes three parameter arguments,
ArtifactTypeName, Name, and Text. These arguments are registered creation
arguments for creating a new requirement:

Class Rose|Model(Path="")|Package(Name="")|Class(Name="")

Rose|Model(Path="")|Package(QualifiedName="")|Class(Name="")

Rose|Model(Path="")|Item("UniqueID="")

Artifact Locator Type Locator String
Implementing Artifact Types for an Adapter 83

Registrar.AddCreationArgument(“Requirements”, 1, “TypeName”,

VT_BSTR, frwNone);

Registrar.AddCreationArgument(“Requirements”, 2, “Name”, VT_BSTR,

frwName, -1, “New Requirement”);

Registrar.AddCreationArgument(“Requirements”, 3, “Text”, VT_BSTR,

frwDescription, -1, “This is the text.”);

When you register creation arguments, each argument is assigned an ordinal
parameter id. For example, if three creation arguments (A, B, and C) are registered,
they are assigned parameter ids 1 (for A), 2 (for B), and 3 (for C).

CreateDynamicRelatedArtifact takes two parameter arguments, Name and Text.
These arguments are registered creation arguments for creating dynamic related
artifacts:

Registrar.AddCreationArgument(iProjectTypeID, bstrRelationshipName,

1, “Name”, VT_BSTR, frwName, -1, “New Requirement”);

Registrar.AddCreationArgument(iProjectTypeID, bstrRelationshipName,

2, “Text”, VT_BSTR, frwDescription, -1, “This is the text.”);

For more information, see the “Adapter Interface Methods” chapter of this manual.

Using the Maps Mechanism

The CPP Framework provides an alternative Maps mechanism that simplifies artifact
type registration and property implementation in adapters. You can register the
properties, relationships, and graphics format types for the artifact types in an
adapter, using the mapping mechanism that is provided in the C++ Framework. This
mechanism simplifies the registration for an adapter.

The Maps mechanism is supported by a collection of macros and declarations in the
include files Maps.h and InternalObject.h in the directory, rdsi\adapters\CPP Framework.
The Maps mechanism (referred to henceforth as just, Maps) is built on top of the
normal CPP Framework interfaces that register types. The primary advantages of
using Maps are that:

■ The registration of properties and relationships is more compactly achieved

■ Properties that simply return point product values "as is" are automatically
implemented.

■ The declaration of properties and relationshisp can be made more compact.
84 Chapter 4 - Using RSE Adapter Interfaces

The easiest way to use Maps is to emulate an existing example. The FileSys adapter
provides a simple example. The MSProject adapter provides a richer example. Note
that the MSProject adapter also demonstrates the value of defining new integrated
product-specific declaration macros. See the Root.h file in MSProject adapter project
as an example.

Registering Maps

Maps registration occurs in the Register function of an artifact type with the following
macro:

REGISTER_MAPS (typeName, Context)

The arguments are the artifact type name and the registration context.

The FileSys adapter Directory artifact type implementation class, CDirectory, uses
maps for its property and relationship registration. In the registration of this artifact
type, in Directory.cpp, the following statement registers these maps:

REGISTER_MAPS (Directory, Context)

The mapping functionality is included in the implementation classes with the include
statement:

#include "CPP Framework/Maps.h"

Declaring Artifact Types

Maps provides the following macros for declaring artifact types (usually used in the
adapter instance .cpp file):

■ DECL_ARTIFACT_TYPE (typeName)

■ DECL_ARTIFACT_SUBTYPE (typeName, superclassName)

where:

■ typeName – the name of the artifact type declared

■ superclassName – the super type for an artifact subtype

For example, in the FileSys adapter, Directory is a subtype of DirectoryObject. The
superclass declares itself as follows:

DECL_ARTIFACT_TYPE (DirectoryObject)

The DECL_ARTIFACT_SUBTYPE statement enables subtypes to inherit from the
superclass. The following statement enables Directory to inherit all of
DirectoryObject's properties and relationships.

DECL_ARTIFACT_SUBTYPE (Directory, DirectoryObject)
Using the Maps Mechanism 85

The arguments for this method are:

■ subclass

■ superclass

Defining Artifact Types

When using Maps, the implementation of an artifact type has the following structure:

DECL_ARTIFACT_TYPE (<artifact type name>)

BEGIN_PROPERTIES (<artifact type name>)

<property macro>...

END_PROPERTIES

BEGIN_OVERRIDE_PROPERTIES (<artifact type name>)

<property override macro>...

END_OVERRIDE_PROPERTIES

BEGIN_RELATIONSHIPS (<artifact type name>)

<relationship macro>...

END_RELATIONSHIPS

BEGIN_OVERRIDE_RELATIONSHIPS (<artifact type name>)

<relationship override macro>...

END_OVERRIDE_RELATIONSHIPS

BEGIN_GRAPHIC_FORMATS (<artifact type name>)

<graphic format macro>...

END_GRAPHIC_FORMATS

<remainder of implementation>

Note that the implementation is divided into a number of sections delimited by
BEGIN_<section name> and END_<section name>. Each of these sections is
required but may be empty. It is recommended that the comment “// none” be
86 Chapter 4 - Using RSE Adapter Interfaces

inserted in the event of an empty section. The <artifact type name> is the name
of the artifact being defined and is the same for each section. Within each section are
none or more calls to appropriate macros defined in the Maps.h file.

For example, in Directory.cpp:

DECL_ARTIFACT_TYPE (Directory, DirectoryObject)

BEGIN_PROPERTIES (Directory)

propertyRS (DirectoryPath, VT_BSTR, frwDirectory)

END_PROPERTIES

BEGIN_OVERRIDE_PROPERTIES (Directory)

// none

END_OVERRIDE_PROPERTIES

BEGIN_RELATIONSHIPS (Directory)

naryR (Contents, DirectoryObject, Child)

END_RELATIONSHIPS

BEGIN_OVERRIDE_RELATIONSHIPS (Directory)

// none

END_OVERRIDE_RELATIONSHIPS

BEGIN_GRAPHIC_FORMATS (Directory)

// none

END_GRAPHIC_FORMATS

Definition Registration Macros

The mapping mechanism provides macros for registering artifact type properties,
relationships and graphics format types. For properties and relationships there are
additional macros for overriding inherited properties and relationships.
Using the Maps Mechanism 87

Registering Properties

A <property macro> defines a property and can take any of the following forms:

■ property(name, dataType)

Register a property type.

■ propertyR(name, dataType)

Register a read-only property type.

■ propertyS(name, dataType, semType)

Register a semantic property type.

■ propertyRS(name, dataType, semType)

Register a read-only semantic property type.

The arguments are:

■ name – name of the property defined

■ dataType – VARIANT type of property (for example, VT_BSTR or VT_INT)

■ semanticType – the “frw” data type (for example, frwName) (frwNone when
omitted).

Each <property macro> defines a property with a specified name, data type, and
semantic type. The R indicates a read-only property is defined. S simply
distinguishes those macros that have the semanticType argument.

Note: The naming conventions for maps property macros are as follows:

❑ R is Read-only

❑ S is Semantic type

Registering Properties Example

The FileSys Directory artifact type registers the one property that is specific to
Directory as follows:

BEGIN_PROPERTIES (Directory)

propertyRS (DirectoryPath, VT_BSTR, frwDirectory)

END_PROPERTIES

The propertyRS method registers a read-ony property with a specified semantic type.
The arguments for this method are:

■ The property name
88 Chapter 4 - Using RSE Adapter Interfaces

■ The data type of this property

■ The semantic type of this property

The following getMethod implements the DirectoryPath property:

void CDirectory::GetDirectoryPath(_variant_t &Value)

{

CDirectoryObject::GetPath (Value);

}

Registering Override Properties

A property override is the registration of a property that overrides a property of an
object’s superclass. A <property override macro> overrides the implementation of an
inherited property and has the forms:

■ override_property(name)

■ override_propertyR(name)

where:

■ name is the property name

■ R designates a read-only property

Registering Relationships

An object can have a relationship to one (unary) or more than one (nary) instances of a
related artifact type.

■ Unary is a 0..1 relationship

■ Nary is a 0..n relationship

A <relationship macro> defines a relationship and unary or nary.

Note: The naming conventions for map relationship macros are as follows:

❑ F is Filtered

❑ R is Read-only

❑ S is Semantic type

Registering a Unary Relationship

A unary <relationship macro> can take any of the following forms:

■ unary(name, relatedType, relCategory)
Using the Maps Mechanism 89

Register a unary relationship type.

■ unaryF(name, relatedType, relCategory)

Register a filtered unary relationship type.

■ unaryR(name, relatedType, relCategory)

Register a read-only unary relationship type.

■ unaryS(name, relatedType, relCategory, semType)

Register a semantic unary relationship type.

■ unaryFR(name, relatedType, relCategory)

Register a filtered read-only unary relationship type.

■ unaryFS(name, relatedType, relCategory, semType)

Register a filtered semantic unary relationship type.

■ unaryRS(name, relatedType, relCategory, semType)

Register a read-only semantic unary relationship type.

■ unaryFRS(name, relatedType, relCategory, semType)

Register a filtered read-only semantic unary relationship type.

The arguments are:

■ name – name of the relationship defined

■ relatedType – artifact type of the related artifacts

■ card – cardinality (ZeroToOne or ZeroToMany)

■ semType – semantic type of relationship (usually frwNone)

relCategory – relationship category (such as, Child, Peer)

In the FileSys adapter DirectoryObject artifact type, is the following unary
relationship:

BEGIN_RELATIONSHIPS (DirectoryObject)

unaryR (ParentDirectory, Directory, Peer)

END_RELATIONSHIPS

The unaryR method registers a read-only relationship with Cardinality of zero to one
(unary). The arguments for this method are:

❑ The relationship name
90 Chapter 4 - Using RSE Adapter Interfaces

❑ The related artifact type

❑ The relationship type (relCategory)

Registering an nary Relationship

An nary <relationship macro> can take any of the following forms:

■ nary(name, relatedType, relCategory)

Register an nary relationship type.

■ naryF(name, relatedType, relCategory)

Register a filtered nary relationship type.

■ naryR(name, relatedType, relCategory)

Register a read-only nary relationship type.

■ naryS(name, relatedType, relCategory, semType)

Register a semantic nary relationship type.

■ naryFR(name, relatedType, relCategory)

Register a filtered read-only nary relationship type.

■ naryFS(name, relatedType, relCategory, semType)

Register a filtered semantic nary relationship type.

■ naryRS(name, relatedType, relCategory, semType)

Register a read-only semantic nary relationship type.

■ naryFRS(name, relatedType, relCategory, semType)

Register a filtered read-only semantic nary relationship type.

The arguments are:

■ name – name of the relationship defined

■ relatedType – artifact type of the related artifacts

■ card – cardinality (ZeroToOne or ZeroToMany)

■ semType – semantic type of relationship (usually frwNone)

■ relCategory – relationship category (such as Child, Peer)

For example, the relationships specific to Directory (there is only one called, Contents)
are listed as follows:

BEGIN_RELATIONSHIPS (Directory)
Using the Maps Mechanism 91

naryR (Contents, DirectoryObject, Child)

END_RELATIONSHIPS

This defines a Child relationship with cardinalityof one to many (0..n), named
Contents, pointing to DirectoryObject. The naryR method registers a read-only
relationship. The arguments for this method are:

■ The relationship name

■ The related artifact type

■ The relationship type (relCategory)

The following getMethod implements the Contents relationship:

void CDirectory::GetContents(FRWArtifactAdapterCollection *

pObjects)

{

GetSubFolders(pObjects);

GetFiles(pObjects);

}

Registering an Override Relationship

A relationship override is the registration of a relationship that overrides a
relationship of an object’s superclass. A <relationship override macro>
overrides the implementation of an inherited relationship and takes one of these
forms:

■ override_relationship(name)

Override a relationship

■ override_relationshipF(name)

Override a filtered relationship
92 Chapter 4 - Using RSE Adapter Interfaces

Registering Graphics Format Types

A <graphic format macro> defines a graphic format for an artifact that has an
image and has the form:

format(aspect,formatType,description)

The arguments are:

■ aspect

The type of object rendered, generally “File.”

■ formatType

The name of the graphic format. WMF, JPG, PNG, BMP, GIF, or ASIS.

■ description

A textual description of the rendering (for example, “Render file as WMF”)

For information on using the mapping mechanism for graphic formats type registra-
tion, see the “Adapter Interface Methods” chapter of this manual.

Handler Declaration Macros

The Maps mechanism also provides a number of macros used to declare the property
and relationship handler methods. These macros, defined in the file InternalObject.h,
are usually used in the “.h” file for the artifact type:

■ DECL_PROP(name)

Declare a read/write property.

■ DECL_PROPr(name)

Declare a read-only property.

■ DECL_NARYr(name)

Declare a read-only nary relationship.

■ DECL_NARY(name)

Declare a read/write nary relationship.

■ DECL_NARYfr(name)

Declare a filtered read-only nary relationship.
Using the Maps Mechanism 93

■ DECL_NARYf(name)

Declare a filtered read/write nary relationship.

■ DECL_UNARYr(name)

Declare a read-only unary relationship.

■ DECL_UNARY(name)

Declare a read/write unary relationship.

Pass-Through Property Definitions

When the property data returned by a point product is to be used “as is”, the handler
function(s) can be generated automatically by using one of the following declaration
macros instead of those described in the preceding section.

Note: The conventions for pass-through property definition macros are as follows:

❑ 0 (zero) indicates the type parameter ‘t’ (for type) is included

❑ r is Read-only

❑ m indicates that handler methods are to be called to get and set the property

■ DECL_PASS_THROUGH_PROP0(name, propName, t)

Declare a property with a property conversion type.

■ DECL_PASS_THROUGH_PROP0r(name, propName, t)

Declare a read-only property with a property conversion type.

■ DECL_PASS_THROUGH_PROP(name)

Declare a property type.

■ DECL_PASS_THROUGH_PROPr(name)

Declare a read-only property type.

■ DECL_PASS_THROUGH_PROP0m(name, getName, putName, t)

Declare a property using integrated-product handler methods and a property
conversion type.

■ DECL_PASS_THROUGH_PROP0mr(name, getName, t)

Declare a read-only property using integrated-product handler method.

■ DECL_PASS_THROUGH_PROPm(name)

Declare a property using integrated-product handler methods.
94 Chapter 4 - Using RSE Adapter Interfaces

■ DECL_PASS_THROUGH_PROPmr(name)

Declare a read-only property type using integrated-product handler method.

The arguments are:

■ name – the name of the property seen by the adapter user

■ propName – the point product name of the property (when different)

■ getName – the interface to call to get the data when not a point product property

■ putName – the interfact to call to put the data when not a point product property

■ t - the type to which the property is to be converted, if necessary (for example,
bool, int)

Internal Object to Integrated-Product Object

The internal objects represent the integrated-product objects that have their own
extensibility interface for access to them. Each instance of an internal object class
represents an actual integrated-product object. For example the CProject ReqPro
internal object links RSE to a RequisitePro Project through the RPX API.

Note: The adapter objects that represent integrated-product objects are referred to as
internal objects; product-specific objects are referred to as COM IUnknowns.

In most cases, there is a one to one mapping between artifacts in RSE and COM
objects in the point product's API. In the adapters, when you create an internal object
to represent an artifact, you also store a pointer in that internal object to the
corresponding COM object in the integrated product.

When an adapter receives a request for a particular property or relationship of an
artifact, the adapter accesses this pointer in the internal object and uses it to invoke the
COM object in the integrated product to retrieve the required property or relationship
data. When retrieving a:

■ Property - the data returned by the integrated product is a value, typically a string.

■ Relationship - the data returned by the point product is a collection of COM
pointers (or one COM pointer for a relationship with a cardinality of 0..1).

For each COM pointer in a collection, the adapter creates a new internal object to
represent the COM object and stores the COM pointer in it.
Internal Object to Integrated-Product Object 95

The linking between an internal object and the corresponding integrated-product
object (represented as an IUnknown for COM) occurs in the Attach method. This
method sets up the connection between the adapter and the integrated-product
server.

In the following example, from the ReqPro Project internal object class:

■ m_pProject is an RPX (a RequisitePro-specific API) pointer to a RequisitePro
Project (after it is set by the following routine). This is the pointer to the
corresponding COM object stored in the internal object and it is used to get data
from the point product.

■ pInternalObject is the value used to set m_pProject in the Attach method.

HRESULT CProject::Attach(IUnkown *pInternalObject)

{

 m_pProject = pInternalObject

 mFullName = (char*) m_pProject->GetRQSFilePath();

 LockProject();

 return FRWInternalCOMObject::Attach(pInternalObject);

}

The Project internal object class is created and is mapped to the object in the
integrated-product, referenced by m_pProject.

Getting an Application Object

An RSE client application can retrieve properties and relationships of an artifact type
through the IArtifact interface. It can also get the internal object that an artifact type
represents, using the Artifact.GetInternalObject method. With this internal
object, a client can call integrated-product API methods directly.

In order to rerieve an object in an integrated product, you must first get the product’s
application, or server, object.

In the following RequisitePro-specific extensibility (RPX) code, located in the
ReqProAdapterInstance class, RSE is calling the RPX connector class (getting an
instance of a connector object) and asking for the application object (COM server). In
this example:

■ mAppPtr is a pointer, of RequisitePro type _ApplicationPtr, to the RequisitePro
Application object.

■ connector is an instance of the connector object.
96 Chapter 4 - Using RSE Adapter Interfaces

■ ReqPro40 is the namespace for the COM server object.

_ApplicationPtr CReqProAdapterInstance::GetReqProApplication()

{

return GetAdapterInstance()->GetReqProApplicationInternal();

}

_ApplicationPtr CReqProAdapterInstance::GetReqProApplicationInternal()

{

try {

if (mAppPtr == NULL) {

ReqPro40::_ConnectorPtr connector("ReqPro40.Connector");

if (connector) {

VARIANT_BOOL bAutoStart = -1;

mAppPtr = connector->GetApplication(&bAutoStart);

connector = NULL;

}

}

return mAppPtr;

}}

Adapter Internals

This section provides a brief description of the communication between the RSE core
and the RSE adapters.

C++ Framework Classes

The C++ implementation of the adapter interfaces handles events by either calling
methods of the artifact implementation class, or by calling methods of the internal
COM object directly.

In the C++ framework, the adapter interfaces contain objects that optimize and
simplify the implementation of the artifact class, unifying all of the code necessary in
one class.

■ CAdapterInstance

This class uses the AdapterInstance COM object to communicate with the RSE
Core. When implementing adapters, developers derive the adapter instance
objects from this class.
Adapter Internals 97

■ CInternalObjectRegistrar

This class uses the ArtifactAdapter COM object to communicate with the RSE
Core. When implementing adapters, developers derive the artifact objects from
this class.

■ CArtifactRegistrar

This class uses the IArtifactRegistrar interface to communicate with the RSE Core.

■ CPropertyMap

The CArtifactAdapter uses this class to get and set the value of properties. It is a
virtual base class.

■ COverriddenPropertyMap

This class is able to call methods of the CArtifactAdapter subclasses to get and set
properties. It is derived from CPropertyMap.

■ CRelatedArtifactMap

The CArtifactAdaper uses this class to create, delete and get instances of artifacts.
It is a virtual base class.

■ COverriddenRelatedArtifactMap

This class is able to call methods of the CArtifactAdapter subclasses to create,
delete and get instances of artifacts. It is derived from CRelatedArtifactMap.

Adapter Operations

The RSE Core initializes the adapter by creating an instance of its adapter object. The
core then calls RegisterArtifactTypes, passing an instance of the IArtifactRegistrar
interface.

The type registration is simplified through the C++ framework interfaces. The
implementation of the adapter object calls the RegisterArtifactTypes method of its
CAdapterInstance class member. This method walks through a static artifact type
map in order to register the statically defined artifact types for the adapter.

Note: Dynamic types are registered when instances of the adapters are created. The
RegisterDynamicTypes method is called on the adapter at that time.

Table 9 summarizes the adapter interfaces operational model.
98 Chapter 4 - Using RSE Adapter Interfaces

Table 9 Adapter Operations

Operation Description

Initialization The RSE Core initializes the adapter by creating an instance of its
adapter object. The core then calls RegisterArtifactTypes, passing an
instance of the IArtifactRegistrar interface.

Static Artifact Type
Registration

The adapter calls the RegisterType method of the IArtifactRegistrar
interface when an adapter initializes.

Dynamic Artifact Type
Registration

The adapter calls the RegisterType method of the IArtifactRegistrar
interface when an adapter creates an ArtifactAdapter object. When
the RDSI core creates the ArtifactAdapter, the core calls the
RegisterDynamicTypes method of the ArtifactAdapter.

Static Property
Registration

The adapter calls the RegisterProperty method of the
IArtifactRegistrar interface when initializing the adapter.

Dynamic Property
Registration

The adapter calls the RegisterProperty method of the
IArtifactRegistrar interface when an adapter creates an
ArtifactAdapter object.

Getting the value of a
static or a dynamic
property

The Artifact Object calls the GetPropertyValue method of the
IArtifactAdapter interface. The implementation of this method
returns the value of the property.

Setting the value of a
static or dynamic
property

The Artifact Object calls the SetPropertyValue method of the
IArtifactAdapter interface.

Getting child or related
artifacts

The Artifact Object calls the GetArtifacts method of the
IArtifactAdapter interface.

Creating child or
related artifacts

The Artifact Object calls the CreateArtifact method of the
IArtifactAdapter interface.

Deleting child or
related artifacts

The Artifact Object calls the DeleteArtifact method of the
IArtifactAdapter interface.
Adapter Internals 99

Adapter Interfaces

The adapter interfaces provide the mechanism for communication between each
adapter and the RSE core. The following adapter objects are COM objects used by the
RSE Core to communicate with the adapter. This bridges the component boundary
between the RSE Core and the adapter.

■ AdapterInstance

This object returns information about the adapter and the static metadata available
from the adapter. It can be instantiated without creating an instance of the
integrated product server.

■ ArtifactAdapter

This object allows the IArtifact implementation in the RSE Core to communicate
with the integrated product. It is a translator between the RSE Client interfaces
and the integrated product interfaces.

■ ArtifactCollectionAdapter

This object interfaces with a integrated product collection to allow artifacts to be
created at the time the collection is iterated instead of during the
GetRelatedArtifacts or GetChildArtifacts call.

■ ArtifactRegistrar

This object allows the adapters to register artifact properties, related types and
child types in the RSE Core.
100 Chapter 4 - Using RSE Adapter Interfaces

5Adapter Interface
Methods
The methods for defining and implementing artifact types, and each artifact type’s
properties, relationships, and locator strings are in the following objects:

■ InternalObjectTypeRegistrar

Defines an artifact type and any contained dynamic types. This class also includes
the methods for defining dynamic properties and relationships for these dynamic
types.

■ InternalObjectRegistrar

Defines a static artifact type’s properties, relationships, and locator arguments.

InternalObjectTypeRegistrar

The InternalObjectTypeRegistrar class contains the methods for creating a registrar
object and defining the artifact types for an adapter.

Table 10 InternalObjectTypeRegistrar Methods

Method Description

AddArtifactType Defines an artifact type for an adapter.

AddCreationArgument Defines arguments that are needed for creating
artifact types by a dynamic relationship type. Maps a
creation argument to an Argument name.

AddCreationPropertyArgument Defines arguments that are needed for creating
artifact types by a dynamic relationship type. Maps a
creation argument to an artifact Property Name or
Property ID.

AddDynamicProperty Registers a property for a dynamic artifact type.

AddDynamicProperty_Readonly Registers a readonly property for a dynamic artifact
type.

AddDynamicRelationshipType Registers a relationship of a dynamic artifact type.
101

FRWInternalObjectTypeRegistrar

Constructs a registrar object to declare the artifact types for an adapter.

FRWInternalObjectTypeRegistrar(IFRWTypeContainerBase

*pTypeContainerBase)

For example:

HRESULT CReqProAdapterInstance::DeclareArtifactTypes

(FRWInternalObjectTypeRegistrar &ObjectTypeRegistrar)

AddArtifactType

Defines an artifact type for an adapter.

int AddArtifactType(const wchar_t *pTypeName,

const wchar_t *pSuperclassTypeName,

FRWInternalObjectFactory *pFactory,

FRWInternalObjectRegistrationMethod *pRegistrar

bool bAbstract = false)

Registers an artifact type. Associates an artifact type with a class. For example in the ReqPro,
this method associates a Project artifact type with a RequisitePro CProject object. The object
factory instantiates the object.

The arguments for the AddArtifactType method are:

■ Artifact type

The name of artifact type.

■ Superclass

The artifact type’s superclass artifact type name. NULL if there is not a superclass.

■ Implementation class

■ Internal object registration method.

The Register method is passed the registration object context and constructs the
Project registrar object. The registrar object knows how to call methods of the
internal object (CProject).

FRWInternalObjectTypeRegistrar Creates a registrar object.

Table 10 InternalObjectTypeRegistrar Methods

Method Description
102 Chapter 5 - Adapter Interface Methods

■ bAbstract

Specifies whether the artifact type is an abstract type or not. The default value is
false.

For example:

ObjectTypeRegistrar.AddArtifactType (_T("Project"),NULL,NULL,

INTERNAL_OBJECT_REGISTRAR (CProject));

AddCreationArgument

Defines arguments that are needed for creating artifact types by a dynamic
relationship type. Maps a creation argument to a registered artifact argument name.
This method is for defining arguments that are needed for creating artifacts.

bool AddCreationArgument (int iArtifactTypeID,

const wchar_t * pRelationshipTypeName,

int ParamID,

const wchar_t * ArgumentName,

int DataType,

SemanticDataType iSemanticDataType = frwNone,

int MaxSize = -1,

_variant_t vtDefaultValue = _variant_t(),

bool bRequired = true);

The arguments are:

■ Artifact type ID

■ Relationship type name

■ ParamID

The parameter id. This numeric index corresponds to the argument number (in a
list of registered locator arguments).

■ Property ID

■ Variant reference

■ bRequired

A boolean specifying whether this is a required argument for constructing the
dynamic type. The default value is TRUE.
InternalObjectTypeRegistrar 103

For example, in the ReqPro adapter, the Project artifact uses creation arguments to
create user-defined dynamic artifact types. The following argument determines what
requirement type to create. It is the name of the requirement type.

Registrar.AddCreationArgument (iProjectTypeID,

bstrRelationshipName,

1,

"Name",

VT_BSTR,

frwName,

-1,

"New Requirement");

AddCreationPropertyArgument

This method is for defining arguments that are needed for creating artifact types by a
dynamic relationship type. Maps a creation argument to a registered artifact property.
You can use this method with a property name or a property ID.

Using Property ID

An integer value Property ID is returned when you register a property.

bool AddCreationPropertyArgument (int iArtifactTypeID,

const wchar_t * pRelationshipTypeName,

int iParamID,

int PropertyID,

_variant_t vtDefaultValue = _variant_t(),

bool bRequired = true);

The arguments are:

■ Artifact type ID

■ Relationship type name

■ ParamID

The parameter id. This numeric index corresponds to the argument number (in a
list of registered locator arguments).

■ Property ID

■ Variant reference
104 Chapter 5 - Adapter Interface Methods

■ bRequired

A boolean specifying whether this is a required argument for constructing the
dynamic type. The default value is TRUE.

Using Property Name

Maps a creation argument to an artifact Property name. This method is for defining
arguments that are needed for creating artifact types from a dynamic relationship
type. For example, in the ReqPro adapter, the Project artifact uses creation arguments
to create user-defined dynamic artifact types.

bool AddCreationPropertyArgument (int iArtifactTypeID,

const wchar_t * pRelationshipTypeName,

int ParamID,

const wchar_t * PropertyName,

_variant_t vtDefaultValue = _variant_t(),

bool bRequired = true);

The arguments are:

■ Artifact type ID

■ Relationship type name

■ ParamID

The parameter id. This numeric index corresponds to the argument number (in a
list of registered locator arguments).

■ Property name

■ Variant reference

■ A boolean specifying that this is a required argument for constructing the dynamic
type. The default is true
InternalObjectTypeRegistrar 105

AddDynamicProperty

Registers a property for a dynamic artifact type.

int AddDynamicProperty(int iArtifactTypeID,

const wchar_t * PropertyName,

int DataType,

SemanticDataType iSemanticDataType = frwNone,

long MaxSize = -1);

The arguments for the AddDynamicProperty method are:

■ Artifact type ID

■ Property name

■ Data type

■ Semantic data type

The semantic data types are: rsDataObject, rsDescription, rsDirectory,
rsFileMoniker, rsFileOrDirectory, rsFilePath, rsName, rsNone, rsPassword, rsURL,
rsUserName. The default is frwNone.

■ Maximum size

The maximum size of this property. The default is -1 (no maximum).

For example:

Registrar.AddDynamicProperty (iArtifactTypeID,

(char*)sAttributeName.c_str(), VT_BSTR);

AddDynamicProperty_Readonly

Registers a readonly property for a dynamic artifact.

int AddDynamicProperty_Readonly(int iArtifactTypeID,

const wchar_t * PropertyName,

int DataType,

SemanticDataType iSemanticDataType = frwNone,

long MaxSize = -1);

The arguments for the AddDynamicProperty_Readonly method are:

■ Artifact type ID
106 Chapter 5 - Adapter Interface Methods

■ Property name.

■ Data type

■ Semantic data type

The semantic data types are: rsDataObject, rsDescription, rsDirectory,
rsFileMoniker, rsFileOrDirectory, rsFilePath, rsName, rsNone, rsPassword, rsURL,
rsUserName. The default is frwNone.

■ Maximum size

The maximum size of this property. The default is -1 (no maximum).

For example:

Registrar.AddDynamicProperty_Readonly (iArtifactTypeID,

(char*)sAttributeName.c_str(), VT_BSTR);

AddDynamicRelationshipType

Registers a relationship of a dynamic artifact type.

int AddDynamicRelationshipType(int iArtifactTypeID,

RelationshipCategory eCategory,

const wchar_t * pRelationshipTypeName,

const wchar_t * pChildTypeName,

RelationshipCardinality eCardinality = ZeroToMany,

bool bCreateDeleteSupported = false,

bool bMinimizeSpace = false);

The arguments for the AddDynamicRelationshipType method are:

■ Artifact type ID

■ Relationship category

■ Child artifact type name

■ Cardinality

ZeroToMany or ZeroToOne

■ bCreateDeleteSupported

The default is false

■ bMinimizeSpace

The default is false
InternalObjectTypeRegistrar 107

For example, the following code adds a dynamic relationship type from a ReqPro
Project to its user-defined Requirement dynamic artifacts. The relationship name is
the requirement Tag Prefix followed by the word Requirement (for example, a
user-defined use case requirement is UCRequirement). In this example,
UCRequirement is a dynamic relationship type name and a dynamic artifact type
name.

Registrar.AddDynamicRelationshipType(

iProjectTypeID, // base artifact type

Child, // relationship category

bstrRelationshipName, // name of relationship type

bstrArtifactTypeName, // name of target artifact type

ZeroToMany, // Cardinality

true); // Create/Delete supported

InternalObjectRegistrar

This class contains the methods for creating a registrar object and defining the
properties, relationships, and locators for an artifact type. Each artifact in an adapter
is defined in an internal object-derived class. If you can create an artifact type, then
you also define creation arguments for that type.

The types of methods in the InternalObjectRegistrar class includes:

■ Property type registration

■ Relationship type registration

■ Locator registration

■ Graphics format type registration

FRWInternalObjectRegistrar

Constructs a registrar object to implement properties, relationships, locators, and
locator arguments for each artifact. For example:

FRWInternalObjectRegistrar (const FRWRegistrationContext &Context)

:m_Context (Context)

{

}

For example:

FRWInternalObjectRegistrar<CProject> Registrar (Context);
108 Chapter 5 - Adapter Interface Methods

Property Type Registration Methods

Table 11 lists the property registration methods.

Table 11 InternalObjectRegistrar Property Methods

AddOverrideProperty

Adds a property that is an override from a base or parent object property. Override an
object if a subclass needs to register a different function for retrieving the property
declared in a superclass. You also need to implement a new Get method for this
override.

int AddOverrideProperty(wchar_t * PropertyName,

PropertyGetMethodPtr pGetMethod,

PropertySetMethodPtr pSetMethod);

For example, a Rose Item has a Name property. Model is a subclass of Item. If Model
also had a Name property that is preferred over the Item Name property, then the
Model’s name property overrides Item’s Name property. In defining this property for
the Model artifact type, you could use AddOverrideProperty to register this property
as an overridden property. For example:

Registrar.AddOverrideProperty("Name",GetName);

The GetName method implements this property. For example:

void cModel::GetName(_variant_t &Value) // override virtual

{

Value = mInterfacePtr->GetName();}

Method Description

AddOverrideProperty Adds a property that is an override from a base or
parent object property.

AddOverrideProperty_Readonly Adds a readonly property that is an override from a
base or parent object property.

AddProperty Registers a property for an artifact type.

AddProperty_Readonly Registers a readonly property for an artifact type.

FindPropertyTypeID Returns the property ID for an artifact property.

RegisterRunningObjectTableKey Registers key types that correspond to locator
arguments in the running object table.
InternalObjectRegistrar 109

AddOverrideProperty_Readonly

Adds a readonly property that is an override from a base or parent object property.
Override an object if a subclass needs to register a different function for retrieving the
property declared in a superclass. You also need to implement a new Get method for
this override.

int AddOverrideProperty_Readonly(wchar_t * PropertyName,

PropertyGetMethodPtr pGetMethod);

For example, in the ClearCase adapter, the Activity artifact type has a Name property
that is a readonly override from its virtual base type:

Registrar.AddOverrideProperty_Readonly ("Name", GetName);

The GetName method implements this property. This method takes a variant
reference argument.

void CActivity::GetName(_variant_t &Value) // override virtual

{

Value = mInterfacePtr->GetName();

}

AddProperty

Registers a property for an artifact type. An integer value Property ID is returned
when you register a property. You can use this method of finding a PropertyID for
optimizing registration.

int AddProperty(wchar_t * PropertyName,

PropertyGetMethodPtr pGetMethod,

PropertySetMethodPtr pSetMethod,

int DataType,

SemanticDataType iSemanticDataType = frwNone,

long MaxSize = -1);

The arguments for the AddProperty method are:

■ Property Name

■ Get method

The name of the implementation method that retrieves this property from the
internal object. The argument for the Get method is a variant value or a null
pointer.
110 Chapter 5 - Adapter Interface Methods

■ Set method

The name of the implementation method that can retrieve this property from the
internal object and modify it. The argument for the Set method is a variant value or
a null pointer.

■ Data type

The data type of this property

■ Semantic data type

A semantic data type is a description of a data type. This provides extra
information on a property's or artifact argument's data type. The semantic data
types are: rsDataObject, rsDescription, rsDirectory, rsFileMoniker,
rsFileOrDirectory, rsFilePath, rsName, rsNone, rsPassword, rsURL, rsUserName.
The default is frwNone.

■ Maximum size

The maximum size of this property. The default value is -1 (no maximum).

For example, in the ReqPro Requirement artifact, add the Name property:

Registrar.AddProperty("Name",GetName,SetName,VT_BSTR,frwName);

To implement this, use the get and set methods. These methods take a variant
reference argument. The GetName and SetName methods implement the Name
property:

void CRequirement::GetName(_variant_t &Value)

{

Value = mInterfacePtr->GetName();

}

void CRequirement::SetName(_variant_t Value)

{

bstr_t bstrValue = (bstr_t)Value;

mInterfacePtr->PutName(bstrValue);

mInterfacePtr->Save ();

}

InternalObjectRegistrar 111

AddProperty_Readonly

Registers a readonly property for an artifact type. An integer value Property ID is
returned when you register a property. You can use this method of finding a
PropertyID for optimizing registration.

int AddProperty_Readonly(wchar_t * PropertyName,

PropertyGetMethodPtr pGetMethod,

int DataType,

SemanticDataType iSemanticDataType = frwNone,

long MaxSize = -1);

The arguments for the AddProperty method are:

■ Property Name

■ Get method

The name of the implementation method that retrieves this property from the
internal object. The argument for the Get method is a variant value or a null
pointer.

■ Data type

The data type of this property

■ Semantic data type

The semantic data type, if any, of this property. The semantic data types are:
rsDataObject, rsDescription, rsDirectory, rsFileMoniker, rsFileOrDirectory,
rsFilePath, rsName, rsNone, rsPassword, rsURL, rsUserName. The default is
frwNone.

■ Maximum size

The maximum size of this property. The default value is -1 (no maximum).

For example, a ReqPro example requirement has a HasParent property:

Registrar.AddProperty_Readonly ("HasParent",GetHasParent,VT_BOOL);

The GetHasParent method implements this property. This method takes a variant
reference argument.

void CRequirement::GetHasParent(_variant_t &Value)

{

long lCount;

Value = mInterfacePtr->GetHasParent(&lCount) ? true : false;}
112 Chapter 5 - Adapter Interface Methods

FindPropertyTypeID

Returns the property ID for an artifact property, given an artifact type ID and a
property name.

int FindPropertyTypeID (wchar_t *pPropertyName);

For example, from the ClearQuest adapter:

bool CQDatabase::PropertyExists(FRWInternalObjectTypeRegistrar

Registrar,

int ArtifactTypeID,

_bstr_t PropertyName)

{

return Registrar.GetCoreTypeContainer()->

FindPropertyTypeID (ArtifactTypeID, PropertyName)

 != 0;

}

RegisterRunningObjectTableKey

Registers the method for returning instances of a specific artifact type (internal object
type).

void RegisterRunningObjectTableKey (GetKeyMethodPtr pGetKeyMethod);

The running object table maps artifact pointers to artifact keys. You register all artifact
keys with the AddKeyType method if you want to register it the running object table.

Before calling this method, you must first register all the key types. The names of
these key types are the same as the registered locator arguments. Each locator should
have its locator types registered as key types in order to be registered in the running
object table.

If you register a locator argument as a key type, that argument should be used in all
locators for that artifact type. These arguments registered as key types should
uniquely identify an artifact type in the RunningObjectTable.

For example, in the ReqPro adapter Project artifact class there is a LocateWithPath
locator:

Registrar.AddAbsoluteLocator (LOCATE_WITH_PATH, LocateWithPath,

LOCATE_DEFAULT_IMMUTABLE_ID|LOCATE_DEFAULT_DISPLAY_NAME);

The arguments for this locator are:

Registrar.AddLocatorArgument (LOCATE_WITH_PATH, 1, "Path");
InternalObjectRegistrar 113

Registrar.AddLocatorArgument (LOCATE_WITH_PATH, 2, "UserName",

VT_BSTR, frwUserName, -1, "", false);

Registrar.AddLocatorArgument (LOCATE_WITH_PATH, 3, "Password",

VT_BSTR, frwPassword, -1, "", false);

Registrar.AddLocatorArgument (LOCATE_WITH_PATH, 4, "Flags",

VT_I2, frwNone, -1, _variant_t ((short)4, VT_I2), false);

The flags parameter contains information allowing the project to be opened
readonly or exclusive. The legal values are:

❑ 0 - Normal

❑ 1 - ReadOnly

❑ 2 - Exclusive

❑ 4 - FallbackToReadOnly

The default value is 4.

Each of these locator arguments is also registered as a key type for the running object
table. The parameter IDs and argument names correspond to the arguments in the
AddLocatorArgument registration above. The first key type (Path) is the only
argument that maps to a property type and thus is the only key type with the third
argument not set to NULL.

Registrar.AddKeyType(1, "Path", "Path");

Registrar.AddKeyType(2, "UserName", NULL);

Registrar.AddKeyType(3, "Password", NULL);

Registrar.AddKeyType(4, "Flags", NULL);

You first register key types for an artifact type using the AddKeyType method. You
can then call the RegisterRunningObjectTableKey method to enable running object
table support for this type.

Registrar.RegisterRunningObjectTableKey (GetRunningObjectTableKey);

The GetRunningObjectTableKey method implements the running object table key. It
returns a unique key that identifies each running instance of this artifact type.

void CProject::GetRunningObjectTableKey(FRWInternalObjectReference

&Context, FRWLocatorSinkPtr &pLocatorSink)

{

CProject* pCProject = (CProject*)Context.GetInternalObject();

_ASSERT(pCProject != NULL);

}

114 Chapter 5 - Adapter Interface Methods

Relationship Type Registration Methods

Table 12 lists the relationship type registration methods.

Table 12 InternalObjectRegisrar Relationship Methods

AddFilteredRelationshipType

Registers a filtered relationship for an artifact type.

int AddFilteredRelationshipType (RelationshipCategory eCategory,

wchar_t * pRelationshipTypeName,

wchar_t * pChildTypeName,

GetRelatedFilteredArtifactMethodPtr pGetFilteredMethod,

RelationshipCardinality eCardinality = ZeroToMany,

CreateRelatedArtifactMethodPtr pCreateMethod = NULL,

DeleteRelatedArtifactMethodPtr pDeleteMethod = NULL,

bool bMinimizeSpace = false);

For example, a ReqPro Project creates a filtered relationship from the Project to its
Requirements:

Registrar.AddFilteredRelationshipType(Child,

"Requirements",

"Requirement",

GetRequirements,

ZeroToMany,

CreateRequirement,

DeleteRequirement);

The GetRequirements method implement this relationship:

Method Description

AddFilteredRelationshipType Registers a filtered relationship for an artifact type.

AddOverrideFilteredRelationshipType Adds a filtered relationship that is an override from a
base or parent object relationship.

AddOverrideRelationshipType Adds a relationship that is an override from a base or
parent object relationship.

AddRelationshipType Registers a relationship for an artifact type.
InternalObjectRegistrar 115

void CProject::GetRequirements (FRWArtifactAdapterCollection *

pObjects, RDSIAdapterProtocol::IArtifactFilterSink * pFilter,

FWFilteringStatus* pFilteringStatus)

{

// Get the specific Requirement prefix (if any) from the filter.

string lReqTypePrefix = GetFilterReqTypePrefix(pFilter);

GetRequirements(lReqTypePrefix, pObjects, pFilter,

pFilteringStatus);

}

Create Method:

void CProject::CreateRequirement (FRWInternalObjectReference &

Context,

 const FRWArguments &Params)

// Params is the collection of artifact locator argument types.

{

_bstr_t bstrArtifactTypeName = Params.GetArg(1);

_bstr_t bstrName = Params.GetArg(2);

_bstr_t bstrText = Params.GetArg(3);

CreateRequirement(Context, bstrArtifactTypeName, bstrName,

bstrText);

}

void CProject::CreateRequirement(FRWInternalObjectReference & Context,

 _bstr_t bstrArtifactTypeName,

 _bstr_t bstrName,

 _bstr_t bstrText)

...

// Delete Method:

void CProject::DeleteRequirement(FRWInternalObject *

pInternalObjectToDelete, short iTypeID)

...
116 Chapter 5 - Adapter Interface Methods

AddOverrideFilteredRelationshipType

Adds a filtered relationship that is an override from a base or parent object
relationship. Override an object if a subclass needs to register a different function for
retrieving the related artifacts of the relationhip type declared in a superclass. You also
need to implement a new Get method for this override.

int AddOverrideFilteredRelationshipType(

wchar_t * pRelationshipTypeName,

GetRelatedFilteredArtifactMethodPtr pGetFilteredMethod,

CreateRelatedArtifactMethodPtr pCreateMethod = NULL,

DeleteRelatedArtifactMethodPtr pDeleteMethod = NULL);

The arguments are:

■ The relationship type name

■ The get method for gettings the related artifacts for this relationship type

■ Create method (NULL if there is no Create method)

■ Delete method (NULL if there is no Delete method)

For example, override the Reqro Requirements filtered relationship type:

Registrar.AddOverrideFilteredRelationshipType("Requirements",

GetRequirements,NULL,NULL)

AddOverrideRelationshipType

Adds a relationship that is an override from a base or parent object relationship.
Override an object if a subclass needs to register a different function for retrieving the
related artifacts of the relationship type declared in a superclass. You also need to
implement a new Get method for this override.

int AddOverrideRelationshipType (

wchar_t * pRelationshipTypeName,

GetRelatedArtifactMethodPtr pGetMethod,

CreateRelatedArtifactMethodPtr pCreateMethod = NULL,

DeleteRelatedArtifactMethodPtr pDeleteMethod = NULL);

The arguments are:

■ The relationship type name

■ The get method for gettings the related artifacts for this relationship type
InternalObjectRegistrar 117

■ Create method (NULL if there is no Create method)

■ Delete method (NULL if there is no Delete method)

For example, override the Rose AllClasses relationship type:

Registrar.AddOverrideRelationshipType("AllClasses",

GetAllClasses,NULL,NULL)

AddRelationshipType

Registers a relationship for an artifact type.

int AddRelationshipType (RelationshipCategory eCategory,

wchar_t * pRelationshipTypeName,

wchar_t * pChildTypeName,

GetRelatedArtifactMethodPtr pGetMethod,

RelationshipCardinality eCardinality = ZeroToMany,

CreateRelatedArtifactMethodPtr pCreateMethod = NULL,

DeleteRelatedArtifactMethodPtr pDeleteMethod = NULL,

bool bMinimizeSpace = false);

The arguments for the AddRelationshipType method are:

■ Relationship type (RelationshipCategory eCategory)

For example, Peer, Child, Descendant, or Parent.

■ Relationship name

■ The artifact type name

The name of the artifact type that this relationship points to.

■ Get method (GetRelatedArtifactMethodPtr pGetMethod)

This method includes product specific code (for example, RequisitePro
extensibility (RPX)) that enumerates the attribute values and returns them in the
collection. The argument for the GetMethod is a pointer to the
FRWArtifactAdapterCollection.

■ Cardinality

For example, ZeroToMany or ZeroToOne.

■ Create method, if any

■ Delete method, if any
118 Chapter 5 - Adapter Interface Methods

For example, the ReqPro adapter defines a Requirement artifact ParentProject
relationship type to its parent project:

Registrar.AddRelationshipType (Peer,"ParentProject","Project",

GetParentProject,ZeroToOne);

The GetParentProject method implement this relationship.

void CRequirement::GetParentProject(FRWArtifactAdapterCollection *

pObjects)

{

pObjects->Add ("Project", mpParent);

}

Locator Registration Methods

Table 13 lists the locator registration methods.

Table 13 InternalObjectRegistrar Locator Methods

These are common combinations that may be used when registering locators:

#define LOCATE_DISPLAY_NAME_AND_IDLOCATE_DISPLAY_NAME |

LOCATE_IMMUTABLE_ID

#define LOCATE_DEFAULT_DISPLAY_NAME_AND_ID

LOCATE_DEFAULT_IMMUTABLE_ID | LOCATE_DEFAULT_DISPLAY_NAME

Method Description

AddAbsoluteLocator Registers an artifact locator for an artifact type.

AddCreationArgument Registers an argument that is needed for calling a
create artifact method. Maps a creation argument to
an argument name (for example, a username or
password).

AddCreationPropertyArgument Registers an argument that is needed for calling a
create artifact method. Maps a creation argument to
an artifact Property Name or Property ID.

AddKeyType Registers a key type that matches a locator argument
for an atifact type.

AddLocatorArgument Registers a locator argument for an artifact locator.

AddRelativeLocator Registers a relative locator for an artifact type.
InternalObjectRegistrar 119

AddAbsoluteLocator

Registers an artifact locator for an artifact type.

bool AddAbsoluteLocator (int iLocatorID,

AbsoluteLocatorMethodPtr pLocateMethod,

unsigned long lFlags);

The arguments for the AddAbsoluteLocator method are:

■ Locator ID

All locators must use a distinct ID. Once these locators are in use, the IDs can not
be changed. For example, the IDs for the locators for the Item class in the ReqPro
adapter are:

#define LOCATE_WITH_KEY 1

#define LOCATE_WITH_TAG 2

■ Locate method

The method that implements this locator.

■ Locator flag

Specifies the format of this locator. The locator format types are:

❑ LOCATE_IMMUTABLE_ID

❑ LOCATE_DISPLAY_NAME

❑ LOCATE_DEFAULT_IMMUTABLE_ID | LOCATE_IMMUTABLE_ID

❑ LOCATE_DEFAULT_DISPLAY_NAME | LOCATE_DISPLAY_NAME

For example, the ReqPro Project defines an absolute locator:

Registrar.AddAbsoluteLocator (LOCATE_WITH_PATH, LocateWithPath,

LOCATE_DEFAULT_IMMUTABLE_ID|

LOCATE_DEFAULT_DISPLAY_NAME);

Registrar.AddLocatorArgument (LOCATE_WITH_PATH, 1, "Path");

The LocateWithPath method implements this locator definition as follows:

bool CProject::LocateWithPath (const FRWArguments &Params,

 FRWInternalObjectReference &Context)

{

_bstr_t bstrPath = Params.GetArg(1);
120 Chapter 5 - Adapter Interface Methods

_bstr_t bstrUserName = Params.GetArg(2);

_bstr_t bstrPassword = Params.GetArg(3);

int iFlags = (short)Params.GetArg(4);

ReqPro40::_ApplicationPtr pReqProApp;

ReqPro40::_ProjectPtr pProject;

CProject* pCProject = NULL;

Context.Attach("Project", pCProject);

return true;

}

The arguments for this Locate method include:

■ The parameters to the locator. Params is the collection of artifact locator argument
types for a given artifact type.

■ The context used to attach the located object

AddCreationArgument

Defines arguments that are needed for creating artifact types by a relationship type.
This registers the arguments that are needed for calling a CreateArtifact method. It
maps a creation argument to a registered argument name (for example, a username or
password). If there is a Create method (for example in the ReqPro adapter
CreateRequirement method, the adapter defines the creation arguments that are used
to create the artifact.

The adapter registers the Create method and the types of its arguments.

bool AddCreationArgument (wchar_t * pRelationshipTypeName,

int iParamID,

const wchar_t * ArgumentName,

int DataType,

SemanticDataType iSemanticDataType = frwNone,

int MaxSize = -1,

_variant_t vtDefaultValue = _variant_t(),

bool bRequired = true);

For example, in ReqPro adapter Project artifact type class, the following argument
determines what requirement type to create. TypeName is the name of the
requirement type:
InternalObjectRegistrar 121

Registrar.AddCreationArgument("Requirements", 1, "TypeName",

VT_BSTR, frwNone);

Two additional creation arguments are defined:

Registrar.AddCreationArgument("Requirements", 2, "Name",

VT_BSTR, frwName, -1, "New Requirement");

Registrar.AddCreationArgument("Requirements", 3, "Text",

VT_BSTR, frwDescription, -1, "This is the text.");

The CreateRequirement method takes these creation arguments to create a
requirement:

void CProject::CreateRequirement (FRWInternalObjectReference &

Context,

 const FRWArguments &Params)

{

_bstr_t bstrArtifactTypeName = Params.GetArg(1);

_bstr_t bstrName = Params.GetArg(2);

_bstr_t bstrText = Params.GetArg(3);

// Params is the collection of artifact locator argument types.

CreateRequirement(Context, bstrArtifactTypeName, bstrName,

bstrText);

}

AddCreationPropertyArgument

Defines arguments that are needed for creating artifact types by a relationship type.
This registers arguments that are needed for calling a CreateArtifact method. It maps
a creation argument to a registered artifact property. If there is a Create method (for
example in the ReqPro adapter CreateRequirement method, the adapter defines the
creation arguments that are used to create the artifact.

The adapter registers the create method and the types of its arguments. There are two
forms for this method

■ Using a property ID

■ Using a property name

Using Property ID

You can get a Property ID by saving the return value of the AddProperty method.
122 Chapter 5 - Adapter Interface Methods

bool AddCreationPropertyArgument (wchar_t * pRelationshipTypeName,

int iParamID,

int PropertyID,

_variant_t vtDefaultValue = _variant_t(),

bool bRequired = true);

Using Property Name

bool AddCreationPropertyArgument (wchar_t * pRelationshipTypeName,

int iParamID,

wchar_t * PropertyName,

int DataType,

SemanticDataType iSemanticDataType = frwNone,

int MaxSize = -1,

_variant_t vtDefaultValue = _variant_t(),

bool bRequired = true);

For example:

Registrar.AddCreationPropertyArgument("Packages", 1, "Name", VT_BSTR,
frwNone);

Registrar.AddLocatorArgument (PACKAGE_ID_LOCATE_WITH_NAME, 1, "Name");

When a client application calls a create artifact function that takes creation arguments,
it gets these arguments from a relationship type. The relationship returns the creation
arguments for a user to enter values and create an artifact. For example:

Dim theNewArtifact As Artifact

Dim theRelationship As RelationshipType

Dim theArgCollection As ArtifactArgumentCollection

Dim theArg As ArtifactArgument

Dim ArgumentID As Integer

Set theArgCollection = theRelationship.CreationArguments

For ArgumentID = 0 To theArgCollection.Count - 1

Set theArg = theArgCollection.Item(ArgumentID)

theArg.Value = InputBox("Please enter a value for argument " &

theArg.ArgumentName & ".", CStr(theArg.DefaultValue))
InternalObjectRegistrar 123

Next ArgumentID

Set theNewArtifact =

m_ContextArtifact.CreateArtifact(theRelationship)

Set CreateNewArtifact = theNewArtifact

AddKeyType

Registers a key type that matches a locator argument for an atifact type. Each locator
should have its locator types registered as a key type in order to be registered in the
running object table.

bool AddKeyType(int iParamID,

wchar_t * ArgumentName,

wchar_t * PropertyName);

The arguments are:

■ Parameter ID

An integer that uniquely identifies a key. The parameter ID matches the ID in the
AddLocatorArgument method.

■ Argument name

The name of the argument.

■ Property name

NULL if the argument does not correspond to an artifact property.

Before you register the method that implements the running object table key, you
register all the key types. The names of these key types are the same as the registered
locator arguments.

The following example registers UserName and Password as key types. UserName
and Password are also registered as locator arguments for this artifact type.

Registrar.AddLocatorArgument (LOCATE_WITH_PATH, 2, "UserName",

VT_BSTR, frwUserName, -1, "", false);

Registrar.AddLocatorArgument (LOCATE_WITH_PATH, 3, "Password",

VT_BSTR, frwPassword, -1, "", false);

Registrar.AddKeyType(2, "UserName", NULL);

Registrar.AddKeyType(3, "Password", NULL);
124 Chapter 5 - Adapter Interface Methods

See the RegisterRunningObjectTableKey method section of this chapter for more
information.

AddLocatorArgument

Registers a locator argument for constructing an artifact locator. There are three forms
of the AddLocatorArgument method:

■ Using a property ID

■ Using a property name

■ Defining an argument that does not map to an artifact property

Using Property ID

Registers a locator argument for constructing an artifact locator using an artifact
property ID. Each property type has a Property ID. You can get a Property ID as a
return value when you register a property (for example, PropertyID =
Registrar.AddProperty_Readonly).

bool AddLocatorArgument (int iLocatorID,

int iParamID,

int PropertyID,

_variant_t vtDefaultValue = _variant_t(),

bool bRequired = true);

Using Property Name

Registers a locator argument for constructing an artifact locator using an artifact
property name.

bool AddLocatorArgument (int iLocatorID,

int iParamID,

const wchar_t * PropertyName,

_variant_t vtDefaultValue = _variant_t(),

bool bRequired = true);

For example, in ReqPro register a Project artifact type locator argument, that maps to
the Path property:

Registrar.AddLocatorArgument (LOCATE_WITH_PATH, 1, "Path");

In this example:

■ LOCATE_WITH_PATH is the locator id
InternalObjectRegistrar 125

■ 1 is the parameter id for this (Path) locator argument, since it’s the first locator
argument for this artifact type.

■ Path is the name of the Property this locator argument maps to.

Defining a New Argument

Registers a locator argument for constructing an artifact locator using an argument
that does not map to a property.

Use this method to add arguments that do not correspond to properties. These
arguments will not be initialized when locators are created for existing artifacts.

bool AddLocatorArgument(int iLocatorID,

int iParamID,

const wchar_t * ArgumentName,

int DataType,

SemanticDataType iSemanticDataType = frwNone,

long MaxSize = -1,

_variant_t vtDefaultValue = _variant_t(),

bool bRequired = true);

For example, in ReqPro, add UserName as a locator argument for constructing a
locator to a Project:

Registrar.AddLocatorArgument (LOCATE_WITH_PATH,

2,

"UserName",

VT_BSTR,

frwUserName,

-1,

"",

false);

In this example:

■ LOCATE_WITH_PATH is the locator id
126 Chapter 5 - Adapter Interface Methods

■ The parameter id for UserName is 2. This integer value represents the ordinal
argument number. UserName is the second artifact argument for constructing the
locator for this artifact type. (Path is the first argument and thus the parameter ID
for Path is 1. Password is the third argument and thus the parameter ID for
Password is 3.)

■ UserName is the argument name

■ Data type is VT_BSTR

■ frwUserName is the semantic data type. A semantic data type is a description of a
data type. This provides extra information on a property's or artifact argument's
data type. The semantic data types are: rsDataObject, rsDescription, rsDirectory,
rsFileMoniker, rsFileOrDirectory, rsFilePath, rsName, rsNone, rsPassword, rsURL,
rsUserName. The default is frwNone.

■ Maxsize is -1 (this is the default value)

■ vtDefaultValue is set to “ “.

■ bRequired is set to false making these arguments not required. The default value is
TRUE.

AddRelativeLocator

Registers a relative locator for an artifact type. There are two forms of the
AddRelativeLocator method. One uses a RelativeArtifactTypeID and the other uses
RelativeArtifactTypeName.

The arguments for the AddRelativeLocator method are:

❑ Locator ID

❑ Relative artifact type name or relative artifact type ID

This is the context artifact type

❑ Locate method

❑ Locator flag

Specifies the format of this locator. The locator format types are:

➑ LOCATE_IMMUTABLE_ID

➑ LOCATE_DISPLAY_NAME

➑ LOCATE_DEFAULT_IMMUTABLE_ID | LOCATE_IMMUTABLE_ID

➑ LOCATE_DEFAULT_DISPLAY_NAME | LOCATE_DISPLAY_NAME
InternalObjectRegistrar 127

Using RelativeArtifactTypeID

bool AddRelativeLocator (int iLocatorID,

int RelativeArtifactTypeID,

RelativeLocatorMethodPtr pLocateMethod,

unsigned long lFlags);

The following ReqPro example registers a relative locator for a ReqDocument artifact
type using a relative artifact type ID. In this example the ReqDocument locator is
relative to Project, using document ID:

Registrar.AddRelativeLocator (DOCUMENT_ID_LOCATE_WITH_KEY,

"Project",

LocateWithKey,

LOCATE_DEFAULT_IMMUTABLE_ID);

Registrar.AddLocatorArgument (DOCUMENT_ID_LOCATE_WITH_KEY, 1,

"DocumentID");

In this example:

■ DOCUMENT_ID_LOCATE_WITH_KEY is the locator id

■ Project is the relative artifact

■ LocateWithKey is theLocate method for this relative locator

■ LOCATE_DEFAULT_IMMUTABLE_ID is the locator type

The LocateWithKey method implements this locator:

bool CReqDocument::LocateWithKey(FRWInternalObject

*pRelativeObject,

const FRWArguments &Params,

FRWInternalObjectReference &Context)

{

CProject* pCProject = dynamic_cast<CProject*> (pRelativeObject);

_ASSERT (pCProject != NULL);

_bstr_t bDocumentID = Params.GetArg (1);

string sDocumentID = (const char*)bDocumentID;

long iDocumentID = atoi(sDocumentID.c_str());

_variant_t spvtIndex(iDocumentID);
128 Chapter 5 - Adapter Interface Methods

_variant_t dummy;

ReqPro40::_DocumentsPtr pDocuments =

pCProject->GetInternalProjectPtr()->GetDocuments();

if (pDocuments == NULL) return false;

ReqPro40::_DocumentPtr pDocument = pDocuments->GetItem(spvtIndex,

ReqPro40::eDocLookup_Key);

if (pDocument == NULL) return false;

Context.Attach("ReqDocument", NewReqDocument(pDocument,

pCProject));

return true;

}

The arguments for this Locate method:

■ pRelativeObject

The relative object is Project.

■ Params

The one locator argument is DocumentID. Params is the collection of artifact
locator argument types for a given artifact type.

■ Context

The context is the information used to attach the located RequisitePro
ReqDocument IUnkown (referenced by pDocument) to the RSE ReqDocument
internal object.

Using RelativeArtifactTypeName

bool AddRelativeLocator (int iLocatorID,

const wchar_t * pRelativeArtifactTypeName,

RelativeLocatorMethodPtr pLocateMethod,

unsigned long lFlags);

For example, in ReqPro, register a ReqDocument relative locator, relative to Project.
Locate with name as the argument.

Registrar.AddRelativeLocator (LOCATE_WITH_NAME,

"Project",
InternalObjectRegistrar 129

LocateWithName,

LOCATE_DEFAULT_DISPLAY_NAME);

Registrar.AddLocatorArgument (LOCATE_WITH_NAME, 1, "Name");

The LocateWithName method implements this locator:

bool CReqDocument::LocateWithName(FRWInternalObject

*pRelativeObject,

 const FRWArguments &Params,

 FRWInternalObjectReference &Context)

{

CProject* pCProject = dynamic_cast<CProject*> (pRelativeObject);

_ASSERT (pCProject != NULL);

...

Context.Attach("ReqDocument", NewReqDocument(pDocument,

pCProject));

return true;

}

Graphics Registration Methods

The graphics registration method is AddGraphicsFormatType .

AddGraphicsFormatType

Registers graphics format types.

int AddGraphicsFormatType(wchar_t * pGraphicsTypeName,

 wchar_t * pDescription,

 wchar_t * pGraphicsFormatName,

 RenderToFileMethodPtr pRenderMethod);

The arguments are:

■ pGraphicsTypeName

The name used by clients to access the graphic file.

■ pDescription

A human readable description of the graphic file format.

■ pGraphicsFormatName
130 Chapter 5 - Adapter Interface Methods

The name of the graphic format.

■ pRenderMethod

The method called to retrieve the graphic in this particular format.

In general, a graphic may be rendered in any of several formats, so there are often
multiple calls to AddGraphicsFormatType with the same Name argument but
different Type arguments. For example, from the FileSys adapter, the File artifact type
registers the following graphics format types:

Registrar.AddGraphicsFormatType (L"Graphic",L"Graphic - wmf",

L"wmf",RenderGraphic_wmf);

Registrar.AddGraphicsFormatType (L"Graphic",L"Graphic - jpg",

L"jpg",RenderGraphic_jpg);

Registrar.AddGraphicsFormatType (L"Graphic",L"Graphic - png",

L"png",RenderGraphic_png);

Registrar.AddGraphicsFormatType (L"Graphic",L"Graphic - bmp",

L"bmp",RenderGraphic_bmp);

Registrar.AddGraphicsFormatType (L"Graphic",L"Graphic - gif",

L"gif",RenderGraphic_gif);

Registrar.AddGraphicsFormatType (L"Graphic",L"Graphic - asis",

L"asis",RenderGraphic_asis);

The RenderGraphic methods implement these format type definitions. For example,
the RenderGraphic method for the wmf format type:

_bstr_t cFile::RenderGraphic_wmf(_bstr_t bstrFileName, _bstr_t

bstrParameters)

{

if (! mpGraphic) {

mpGraphic = new FRWGraphic();

mpGraphic->LoadFromFile(mPathName);

}

return mpGraphic->RenderWMFToFile(bstrFileName, bstrParameters);

}

Using the Mapping Mechanism

You can use the C++ Framework mapping mechanism to streamline the registration
of graphics formats types. For example, register the graphics formats types for the
FileSys adapter File artifact type as follows:
InternalObjectRegistrar 131

BEGIN_GRAPHIC_FORMATS (File)

format (File, WMF , Render file as WMF)

format (File, JPG , Render file as JPG)

format (File, PNG , Render file as PNG)

format (File, BMP , Render file as BMP)

format (File, GIF , Render file as GIF)

format (File, ASIS, Pass file as is)

END_GRAPHIC_FORMATS

The arguments for each of the format method calls are:

■ Aspect

The name used by clients to access the graphic file.

■ Format type

The name of the graphic format.

■ Description

A human readable description of the graphic file format.

As in the standard registration for adding graphics format types, each format type has
a render method. For example, the render method for wmf format is as follows:

_bstr_t CFile::RenderFileInWMF(_bstr_t bstrFileName, _bstr_t
bstrParameters)

{

if (! mpGraphic) {

mpGraphic = new FRWGraphic();

mpGraphic->LoadFromFile(mPathName);

}

return mpGraphic->RenderWMFToFile(bstrFileName, bstrParameters);

}

For more information on using the Maps mechanism, see the “Using RSE Adapter
Interfaces” chapter of this manual.
132 Chapter 5 - Adapter Interface Methods

Index

A
Absolute locator 120
Adapter

architecture 35
framework classes 35
instance 45
interfaces 35
operations 98
overview 35
project 36
ReqPro 69

AdapterInstance 45, 100
creating 68
modifying code 55
modifying cpp file 59
object 50
registry file 53

AdapterProtocol.idl 48
Adapters 16, 18, 22
AddAbsoluteLocator 119, 120
AddArtifactType 68, 101, 102
AddCreationArgument 101, 103, 119, 121
AddCreationPropertyArgument 101, 119, 122
AddDynamicProperty 101, 106
AddDynamicProperty_Readonly 101, 106
AddDynamicRelationshipType 101, 107
AddFilteredRelationshipType 115
AddGraphicsFormatType 130
AddKeyType 119, 124
AddLocatorArgument 77, 78, 119, 125

Locator
arguments 77

AddOverrideFilteredRelationshipType 115, 117
AddOverrideProperty 109
AddOverrideProperty_Readonly 109
AddOverrideRelationshipType 115, 117
AddProperty 109, 110
AddProperty_Readonly 109, 112
AddRelationshipType 74, 115, 118

AddRelativeLocator 77, 119, 127
Application object 96
Applications 16
Architecture 14
Arguments

artifact 28
locator 28

Artifact 23
arguments 28
internal object 68
references 29
relative id 31

Artifact locator
collections 80

Artifact type 23
add 101, 102
creation arguments 83, 121
creation property arguments 122
defining locator arguments 78
dynamic 23, 71
implementing a class 72
locator registration 119
property 110
registering a locator 76
registering a property 73
registering a relationship 74
registering a type 102
relative locator 127
static 23

ArtifactAdapter 100
ArtifactCollectionAdapter 100
ATL Project 38
Attach 80

C
C++ framework 35

creating a dependency 40
C++ language settings 40, 44
Client applications 15, 16
Code generation

settings 40
Collections

artifact locators 80
133

COM server 96
Creating

adapter instance 68
ATL project 38

Creation argument 83, 121
add 101, 103
parameter id 84

Creation property argument
add 101

D
DeclareArtifactTypes 68
Defining

a new locator argument 126
adapter instance 45
locator 77
locator arguments 78
locators 80
relationship types 115

Dependencies
C++ Framework 40

Developing an adapter 36
Dynamic

add property 101
add relationship type 101
artifact types 23, 71
property 106
relationship type 107

F
Filtered relationship

add 115
FindPropertyTypeID 109, 113
Framework classes 35
FRWInternalObject subclasses 72
FRWInternalObjectRegistrar 108
FRWInternalObjectTypeRegistrar 102

G
Graphics

registration methods 130
using maps registration 93

H
Handler 93
Handler declaration macros

maps 93

I
ID

property 26
property id 113

IDL file 48
Implementing

artifact type 72
Importing

AdapterProtocol.idl 48
Integrated-product

server object 96
Internal object 68, 95, 96

factory 71
registration 71

InternalObjectRegistrar 101, 108
InternalObjectTypeRegistrar 101

K
Key type 124

L
Locating

internal object 68
Locator

arguments 28, 125
defining 77
defining a new argument 126
defining arguments 78
registering 76
registering a 120
registering a relative locator 127
134 Index

registration methods 119
Locators 27

relative id 31

M
Maps

handler declaration macros 93
registering 85
registering artifact types 85
registering graphics format types 93
registering properties 88
registering relationships 89

Maps mechanism 84
Modifying

code generation settings 40
code in new AdapterInstance.h file 55
IDL file 48
new AdapterInstance.cpp file 59
registry file 53
stdafx.h file 61

O
Object

AdapterInstance 50
Object table 109
Objects 21
Override

property 109
relationship type 117

Overview 35

P
Parameter ID 84
Preprocessor settings 40, 42
Product server 96
Project

setting up 36
settings 40

Property 25
add 109

add override 109
dynamic 101
id 26, 109, 113
registering 73
registering a 110
registration methods 109
type 25

R
RDSICore

type library 34
Readonly

property 112
References

relative id 31
type library 34

Register 72
method 71

Registering
a property 110
an artifact type 102
creation arguments 83
dynamic types 71
graphics 130
internal object 108
locator 76
locator arguments 78, 125
locators 119
maps 85
property 73, 109
relationship 74
relationship types 115
relative locator 127
using maps 84

RegisterRunningObjectTableKey 109, 113
Registrar

internal object 108
internal object type 102

Registry file
modifying 53

Relationship 26
add filtered 115
add override filtered 117
135

registering 74
Relationship type

add 101, 118
dynamic types 107
override 117
registration methods 115

Relative id 31
Relative locator

registering a 127
RelativeArtifactTypeID 128
ReqPro adapter 69

internal objects 69
RPX 75
RSE

adapters 16
objects 21

Running object table 113
AddKeyType 124

S
Server object 96
Session 22

Setting up
adapter project 36

Settings
code generation 40

SoDA 33
Static

artifact types 23
Stdafx.h

modifying 61
subclass 24
superclass 24

T
Type library

referencing 34

U
Using

RSE 15
136 Index

	Rational Suite®
	Preface
	Audience
	Other Resources
	Rational Suite Documentation Roadmap
	Contacting Rational Technical Support

	What Is RSE?
	Why Create RSE?
	Benefits of Using RSE
	RSE Implementation
	Using RSE
	RSE Clients
	RSE Adapters

	Conclusion

	RSE Object Model
	RSE Objects
	Object Model Diagram
	Session
	Adapter
	Artifacts
	ArtifactType

	Properties
	PropertyType

	Relationships
	Locators
	Artifact Arguments
	Artifact References
	RelativeID Artifact References

	Summary
	SoDA Application Example
	Referencing the RDSICore Type Library

	Developing an RSE Adapter
	Architectural Overview
	Developing an Adapter Overview
	Setting Up an Adapter Project
	Opening a Workspace
	Creating a New ATL Project
	Adding Dependency to the CPP Framework
	Modifying Project Settings
	Modifying the Code Generation Settings
	Modifying the Preprocessor Settings

	Defining an Adapter Instance
	Modifying the New IDL File
	Modifying the Registry File
	Modifying the New AdapterInstance.h
	Modifying the New AdapterInstance.cpp
	Modifying the New stdafx.h
	Building the New Adapter dll

	Using RSE Adapter Interfaces
	Overview
	RequisitePro Example
	Summary

	Registering Artifact Types
	Adapter Instance
	Declaring and Adding Artifact Types
	ReqPro Adapter Example
	Adding Artifact Types

	Dynamic Artifact Types

	Implementing Artifact Types for an Adapter
	Implementing a Class for each Artifact Type
	Registering a Property
	Registering a Relationship
	Registering a Locator
	Defining a Locator
	Defining Locator Arguments
	Defining a Collection of Artifact Locators

	Registering Creation Arguments

	Using the Maps Mechanism
	Registering Maps
	Declaring Artifact Types
	Defining Artifact Types
	Definition Registration Macros
	Registering Properties
	Registering Relationships
	Registering Graphics Format Types

	Handler Declaration Macros
	Pass-Through Property Definitions

	Internal Object to Integrated-Product Object
	Getting an Application Object

	Adapter Internals
	C++ Framework Classes
	Adapter Operations
	Adapter Interfaces

	Adapter Interface Methods
	InternalObjectTypeRegistrar
	FRWInternalObjectTypeRegistrar
	AddArtifactType
	AddCreationArgument
	AddCreationPropertyArgument
	AddDynamicProperty
	AddDynamicProperty_Readonly
	AddDynamicRelationshipType

	InternalObjectRegistrar
	FRWInternalObjectRegistrar
	Property Type Registration Methods
	AddOverrideProperty
	AddOverrideProperty_Readonly
	AddProperty
	AddProperty_Readonly
	FindPropertyTypeID
	RegisterRunningObjectTableKey

	Relationship Type Registration Methods
	AddFilteredRelationshipType
	AddOverrideFilteredRelationshipType
	AddOverrideRelationshipType
	AddRelationshipType

	Locator Registration Methods
	AddAbsoluteLocator
	AddCreationArgument
	AddCreationPropertyArgument
	AddKeyType
	AddLocatorArgument
	AddRelativeLocator

	Graphics Registration Methods
	AddGraphicsFormatType
	Using the Mapping Mechanism

	Index
	A
	C
	D
	F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U

