Rational Software Corporation -«

Rational Suite

Programmer’s Guide to Adapter Development
Rational Suite Extensibility

VERSION: 2002.05.00

PART NUMBER: 800-025144-000

WINDOWS

R a t 1 <ona l support@rational.com

the software development company http://www.rational.com

IMPORTANT NOTICE

COPYRIGHT
Copyright ©1999-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-025144-000
Version Number: 2002.05.00

PERMITTED USAGE
THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE

PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS
Rational, Rational Software Corporation, Rational the e-development company,

ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest,
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage, PureDDTS,
PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational CRC, Rational
Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite, RequisitePro,
RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The Rational Watch,
AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development Accelerators,
ObjecTime, Rational Dashboard, Rational PerformanceArchitect, Rational Process
Workbench, Rational Suite AnalystStudio, Rational Suite ContentStudio, Rational
Suite Enterprise, Rational Suite ManagerStudio, Rational Unified Process, SiteLoad,
TestStudio, VADS, among others, are either trademarks or registered trademarks of
Rational Software Corporation in the United States and /or in othercountries.All other
names are used for identification purposes only, and are trademarks or registered
trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client,
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore,
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView,
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX,
DirectX], DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the

IntelliEye logo, IntelliMirror, IntelliSense,] /Direct, JScript, LineShare, Liquid Motion,
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint,
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, Truelmage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe,
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXIm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXIm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-20xx, Summit Software Company. All rights reserved.

PATENT
U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional

patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set

forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER
This document and its associated software may be used as stated in the underlying

license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents

Preface. IX
AUdIENCE. . . o ix
Other RESOUICES . ..o it e e e e e e iX
Rational Suite Documentation Roadmap i Xi
Contacting Rational Technical Support. e Xii

1 Whatls RSE? e 13
Why Create RSE? 13
Benefits of USINg RSE 13
RSE Implementation. 14
USiNg RSE 15
RSE Clients 16
RSE Adapters 18
CONCIUSION . .. e 19
2 RSEObjectModel. 21
RSE ObJeCtS . . ottt 21
Object Model Diagramo v 21
S SION ottt e e 22
Adapter. . . 22
ANifaCtS . . 23
ArtifactTYPe . .. 23
Properties. . . . 25
Property Type . . .o 25
Relationshipso 26
LOCalOrS . . . o e 27
Artifact ArgUMENES e 28
Artifact References 29
RelativelD Artifact References. i, 31
SUMMANY . o oot e 32
SoDA Application Example 33
Referencing the RDSICore Type Library 34
3 Developingan RSE Adapter 35
Architectural OVEIVIEW 35
Developing an Adapter OVEIVIEWottt e e 36
Setting Up an Adapter Project 36
Opening a WOrKSpaceot 37

Contents v

Creatinga New ATL Projectot e e e 38

Adding Dependency to the CPP Framework 40
Modifying Project Settingsot e 40
Modifying the Code Generation Settings 40
Modifying the Preprocessor Settings 42
Defining an Adapter Instance 45
Modifyingthe New IDL File. e 48
Modifying the Registry File 53
Modifying the New Adapterinstance.h 55
Modifying the New Adapterinstance.cpp, 59
Modifying the New stdafx.h. 61
Building the New Adapterdll. 61
4 Using RSE AdapterInterfaces 63

OV IV B . . oot e e 63
RequisitePro Example 65
SUMIMAY . .o e e e e e e 67
Registering Artifact TYpesS oo 68
Adapter INStance 68
Declaring and Adding Artifact Types.o i 68
RegPro Adapter Example. 69
Adding Artifact TYpeS o oo 70
Dynamic Artifact TYpesSot 71
Implementing Artifact Types for an Adapter 72
Implementing a Class for each Artifact Type 72
Registering a Propertyo 73
Registering a Relationshipo 74
Registering a Locator 76
Defininga Locator e e 77
Defining Locator Arguments.t 78
Defining a Collection of Artifact Locators. 80
Registering Creation Argumentst 83
Using the Maps Mechanism e 84
Registering Mapso 85
Declaring Artifact TYpes i e 85
Defining Artifact TYpesS oot 86
Definition Registration Macros 87
Registering Properties 88
Registering Relationships i 89
Registering Graphics Format Types. i 93

vi

Contents

Handler Declaration Macros. oottt e e e 93

Pass-Through Property Definitions 94
Internal Object to Integrated-Product Object 95
Getting an Application Object i 96
Adapter Internals 97
C++ Framework Classes oottt 97
Adapter Operationst 98
Adapter Interfaces 100
5 Adapter Interface Methods 101

InternalObjectTypeRegistrar.t 101
FRWiInternalObjectTypeRegistrar 102
AddArtifactTypeo 102
AddCreationArgument. 103
AddCreationPropertyArgument 104
AddDynamicProperty. e 106
AddDynamicProperty Readonly i, 106
AddDynamicRelationshipType. 107
InternalObjectReqistrar. 108
FRWiInternalObjectRegistrar 108
Property Type Registration Methods 109
AddOverrideProperty.o 109
AddOverrideProperty Readonly 110
AddProperty. 110
AddProperty Readonly 112
FindPropertyTypelD.o 113
RegisterRunningObjectTableKey. 113
Relationship Type Registration Methods 115
AddFilteredRelationshipType. 115
AddOverrideFilteredRelationshipType oot 117
AddOverrideRelationshipType. i 117
AddRelationshipType. 118
Locator Registration Methods e 119
AddAbsoluteLocatorc. . 120
AddCreationArgument.ot 121
AddCreationPropertyArgument 122
AdAKEY TYPE. .« .ot 124
AddLocatorArgumeNt. e 125
AddRelativeLocator 127
Graphics Registration Methods 130
AddGraphicsFormatType. 130

Contents vii

viii

Contents

Preface

This guide introduces the basic concepts of Rational Suite Extensibility (RSE) and
provides the details for developing adapters using the C++ framework adapter
interfaces.

Audience

This guide is intended for administrators, project managers, and all members of the
software development team, including requirements developers, software architects
and developers, and quality engineers.

Other Resources

Other RSE documentation:

o

o

o

Programmer’s Guide to Application Development
Adapters Reference

COM Client API Reference

Rational extensibility API references:

o

o

o

o

o

ClearCase Reference Manual
ClearQuest API Reference
RequisitePro Extensibility Interface Online Help

RequisitePro extensibility information is documented in the RequisitePro
online help for the RequisitePro Extensibility Interface. It is available from the
Help menu on the ReqPro tool palette.

Rose Extensibility Reference

Team Manager Extensibility Reference

Online Help is available for Rational Suite.

From a Suite tool, select an option from the Help menu.

= All manuals are available online, either in HTML or PDF format. The online
manuals are on the Rational Solutions for Windows Online Documentation CD.

+ To send feedback about documentation for Rational products, please send e-mail
totechpubs@ ati onal . com

+ For more information about Rational Software technical publications, see:
http://ww. rational.com docunentation.

» For more information on training opportunities, see the Rational University Web
site: htt p: // www. r at i onal . cond uni versity.

x Chapter - Preface

http://www.rational.com/documentation/
http://www.rational.com/university

Rational Suite Documentation Roadmap

R

Rational Suite® Introduction
Rational Suite® Tutorial

Rational® ClearCase® LT Introduction
Rational® ClearQuest® Introduction

The Rational Unified Process®, an Introduction
Rational® RequisitePro® Tutorial

Getting Started: Rational® ProjectConsole
Using Unified Change Management

with Rational Suite®

Rational® TestManager User’s Guide

Getting Started:
Rational Suite® AnalystStudio®

Rational Rose® Tutorial

Getting Started:

Rational® PurifyPlus, Rational® Purify®,

Rational® PureCoverage®,
Rational® Quantify®

Rational® Robot User’s Guide
Rational® TestFactory® User’s Guide

DEVELOPER

Getting Started:
Rational® PurifyPlus, Rational® Purify®,
Rational® PureCoverage®,
Rational® Quantify®

Rational Rose® Tutorial
Rational Rose® RealTime Tutorials
Rational® QualityArchitect User’s Guide

Rational Suite® License Management Guide
Rational Suite® Installation Guide
Rational Suite® Administrator’s Guide

Using Unified Change Management
with Rational Suite®

Rational® ProjectConsole Installation Guide
Rational Suite® Release Notes

RATIONAL SUITE

ADMINISTRATOR

Rational Suite Documentation Roadmap

Xi

Contacting Rational Technical Support

Xii

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

East, Africa

Netherlands

Netherlands

Your Location Telephone Facsimile E-mail
North America (800) 433-5444 (781) 676-2460 support@rational.com
(toll free) Lexington, MA
(408) 863-4000
Cupertino, CA
Europe, Middle +31 (0) 20-4546-200 |[+31 (0) 20-4546-201 |support@europe.rational.com

Asia Pacific

+61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

Your name, company name, telephone number, and e-mail address

Your operating system, version number, and any service packs or patches you

have applied

Product name and release number

Your case ID number (if you are following up on a previously reported problem)

Chapter - Preface

What Is RSE?

Rational Suite delivers a comprehensive set of integrated tools that embody software
engineering practices and span the entire software development lifecycle. Each
individual application has its own API for retrieving stored information. Until now,
you've needed to use a separate API for programming access to each tool in Rational
Suite.

Rational Suite Extensibility (RSE) defines a set of interfaces that provides one unified
platform for retrieving information in any application within Rational Suite.

The vision of RSE is to provide unified access to Rational Suite. In a sense, RSE makes
it possible to view the Suite as a single application, not a collection of separate
applications.

The goal of RSE is to support existing integrated product extensibility and enhance
current capabilities by providing adaptable, platform-neutral, distributed availability.
The RSE interfaces are designed to support equivalent functionality for the platforms
that developers need.

Why Create RSE?

RSE supports the accelerating demand for Rational Suite by making it easier to
customize the Suite for particular customer situations. RSE satisfies the demand for
tighter integration and consistency between individual products in the Suite and
customer integrations. Rather than working with individual-product APIs, RSE
simplifies the process of writing applications that work with the Suite.

RSE is complementary to the integrated product APIs. This allows RSE code to
operate with code written specifically for a given integrated product interface.

Benefits of Using RSE
With RSE:

You can build client applications that access all integrated product applications,
including all Rational Suite products and integrations to the Suite. Access to each
integrated product application is through its associated RSE adapter.

13

* You can build RSE adapters and install them on a system. Each adapter maps an
integrated product object model to the RSE object model. These adapters are
available to RSE Client Applications.

New client applications and adapters work with any Suite-enabled technology.

If a Rational partner writes an application that takes advantage of this technology,
it will instantly be capable of using new adapters without modifying code.

Without RSE:

Features must be built using each specific product’s extensibility interface. This
approach forces you to implement the same features for each product in the Suite. The
problem becomes worse as new products are added to the Suite.

RSE Implementation

RSE is implemented by the RSE Core. This core defines a set of interfaces (for
example, the RSE COM client interfaces) that provides Rational Suite extensibility.

Figure 1 shows the three-tiered architecture of an RSE client connecting to an
integrated product adapter in the Suite.

14 Chapter 1 - What Is RSE?

Figure 1 RSE Implementation

RSE Client Applications

{

RSE Core

{

RSE Adapters

In Figure 1, the lower tier that includes the integrated products refers to the RSE
adapters for each integrated product, not the products themselves. For example,
ReqPro is the RSE adapter that maps RSE to RequisitePro.

As Figure 1 illustrates:
RSE client applications provide access to the integrated products in the Suite.

The RSE core maps the implementation of client interfaces to integrated product
RSE adapters. The RSE core provides the interface between client applications and
adapters. This implements the RSE client interfaces communicating with the RSE
adapters to retrieve information in each of the specific products.

Product-specific RSE adapters provide data retrieval from the RSE core to each
integrated product. Each adapter provides the mapping of an integrated product’s
data (objects) to an RSE generic object model. Artifacts are the RSE objects that
represent integrated product objects.

Using RSE
You can use RSE to create:

Clients

RSE Implementation 15

A client application allows you to retrieve data in the Suite and other integrated
products.

+ Adapters

An adapter provides access to the applications that contain the data. Adapters act
as servers to RSE clients and allow data to be integrated between individual
products in the Suite.

Individual adapters provide a consistent standard interface between the RSE core
and individual products. RSE provides an adapter for each product in the Suite
(for example, an adapter named ReqPro for RequisitePro) and also provides
adapters for common Microsoft applications. The RSE adapters are:

o Rational Administrator (RAdmin)

o Rational Rose (Rose)

o RequisitePro (ReqPro)

o Rational ClearQuest (ClearQuest)

o Rational ClearCase (ClearCase)

o Rational Test Manager (TeamTest)

o Microsoft Windows File System (FileSys)
© Microsoft Project (MSProject)

o Microsoft Word (Word)

RSE Clients

You can create client applications to retrieve data from any product in the Suite. RSE
can support multiple client interfaces. COM is currently the supported interface.

Figure 2 shows two client applications to Rational Suite. These applications can
retrieve data from any of the Suite products or other integrated products (through the
RSE adapters).

16 Chapter 1 - What Is RSE?

Figure 2 RSE Clients

RSE Client Applications

Partner, Doc Tool
sitelEersSon]

Create client applications to:

Query Rational Suite for application objects (that map to RSE artifacts), using
filtering operators.

Perform simple artifact create, read, update, and delete operations.

» Provide end-user ease of use for access to Rational Suite and other integrated
products.

RSE provides developers of client applications with:

A single data access API. This means that clients do not have to modify code to
access any RSE-enabled application. As more applications become RSE-enabled,
RSE clients automatically have access to new application data.

RSE Implementation 17

= A consistent mechanism for relating objects within and across applications. Clients
can create and manage their own links between objects attaching any semantics to
the links that they choose. Clients can also get access to links created by any other
client applications, making it easy for clients to share information and implement
point-to-point integrations.

+ A tight integration with Rational Suite.

RSE Adapters

You can create adapters that enable applications to integrate with Rational Suite.
These applications then act as products in the Suite, supplying data that can be
retrieved by client applications.

The adapters connect to the RSE core. Adapters represent defined Rational artifacts
stored in each integrated product. Adapters map an integrated product object
hierarchy to the RSE artifact hierarchy. An adapter is created for each integrated
product. When you create an adapter for an existing application, that application
becomes an integration to the Suite, with its data available to all RSE clients.

Figure 3 shows a partner adapter that would allow that partner’s application to act as
part of the Suite. Data in the partner application would be defined as RSE artifacts in
the Partner Adapter and client applications (for example, SoDA) would be able to
retrieve this data.

18 Chapter 1 - What Is RSE?

Figure 3 RSE Adapters

RSE Client Applications

Hrmertianscle

RSE Core Java ‘

-

RSE Adapters

Rational partners can create new adapters using RSE, enabling partner applications to
act as Suite members.

Adapters can conceptually be seen as server applications to RSE clients. Each adapter
can also be seen as a server to the other RSE adapters for each integrated product.

Conclusion

With RSE technology, data in any integrated product in Rational Suite becomes
available to an RSE client application through one APIL RSE clients can retrieve data
from any integrated product in Rational Suite through RSE adapters. The RSE
technology provides both client interfaces and adapter interfaces.

The client interfaces are for creating new RSE client applications.

Conclusion 19

» The adapter interfaces are for implementing the RSE adapters that are included
with Rational Suite and for defining new adapters. RSE adapters are defined for
each integrated product in the Suite in order to map individual-product object
structures to the RSE common object model.

20 Chapter 1 - What Is RSE?

RSE Object Model

Rational Suite Extensibility uses a generic object model that maps the objects of each
integrated product to an RSE artifact hierarchy. This common object model enables

RSE client applications to retrieve data from any integrated product through one set
of interfaces. This mapping is defined in each individual integrated product adapter.

For example, a RequisitePro Project object is mapped to an equivalent RSE Project
artifact type in the ReqPro adapter. The Artifact object provides the standard
mechanisms to retrieve the properties (for example, Name and Description) of the
object and its relationships to other Artifacts (for example, Requirements).

RSE Objects

This section provides descriptions and examples of the objects in the generic object
model. The primary objects are:

Session
Adapter
Artifact
Property
Relationship

Locator

Object Model Diagram

Figure 4 shows the main objects in the RSE generic object model. As this figure shows,
the client point of entry into the RSE is through the Session object.

21

Figure 4 Main Objects in RSE

IRDSISession |Adapter

0..n
Static Artifact Types
0..n
lArtifactType
/
CreatelLocator
0..n
/ 0..n
IArtifactLocator IArtifactPropertyType | RelationshipType

Session
A Session object provides access to the installed adapters. A Session object:
= Is created to work with RSE.
+ Is the main object that is used to begin locating artifacts.

» Enumerates the adapters that are installed on a system.

Adapter

An adapter provides access to artifact types supported for a given product. Each
adapter defines the mapping between a product’s objects and the RSE generic object
model representation.

An Adapter object:

* Represents a specific product.

» Contains the collection of artifacts supported in a product.

= Allows you to enumerate all of the artifact types that are supported by an adapter.

Each adapter contains the collection of artifact types that map to objects in the
integrated product.

22 Chapter 2 - RSE Object Model

Artifacts
Artifacts are used to retrieve specific information from an integrated product.

An Artifact object represents an object in an integrated product. For example, the Rose
RSE adapter defines a Class artifact to represent Class objects in a Rose model.

Artifacts:
= Contain properties and other artifacts.
= Provide access to related artifacts.

+ Have an artifact type that describes additional information

ArtifactType

An ArtifactType provides detailed information about an artifact type’s Locators,
Properties, and Relationships.

» Locators are objects that retrieve artifacts
+ Properties are attributes of an artifact
= Relationships are the associations between artifacts.
Every instance of an artifact has an artifact type. Examples of artifact types are:
* In RequisitePro:
Project, Document, and Requirement artifact types.
* InRose:
Model, Package, and Class artifact types.

An actual instance of an artifact has a name and an artifact type. For example, in Rose,
a class named Order is represented as an artifact with name = Order and artifact
type = Class.

Static and Dynamic Artifact Types

The two kinds of RSE artifact types are static and dynamic.

The collection of static artifact types for each adapter includes all predefined artifact
types.

Static types are the global artifact definitions (defined in the RSE adapters). Static
types include the hierarchy of primary RSE objects that represent the objects in an

integrated product. For example, in the RequisitePro RSE adapter (ReqPro), there are
Project and Requirement artifact types.

RSE Objects 23

The collection of static artifact types for a given adapter includes all the defined
artifact types for that adapter’s integrated product. These definitions are global to all
top-level objects in an integrated product. The top-level object in an integrated
product maps to the root artifact in that product’s RSE adapter. In the ReqPro
example, a Project is the root artifact in both the product hierarchy and in the ReqPro
adapter.

There are also dynamic artifact types that typically represent user-defined artifact
types (for example a user-defined Requirement type in RequisitePro). The dynamic
types are registered within the artifact that corresponds to the integrated product
top-level object (for example, a ReqPro Project artifact). This top-level artifact is the
root artifact. The dynamic types may then be accessed through this root artifact.

Dynamic artifact types are registered within the RSE adapters, based on user-defined
information in an integrated product. These RSE objects represent instances of
user-defined objects in the integrated product (for example, an instance of a
user-defined RequisitePro RequirementType).

In RequisitePro, there can be different requirement types defined in the Project
properties. In the ReqPro adapter, this translates as dynamic artifact types. These
dynamic types become available as additional artifact types when you instantiate RSE
objects.

Defined in the RSE ReqPro adapter, there is a Requirement artifact type. This is a static
artifact type. One type of requirement is a Use Case requirement type. In the RSE
ReqPro adapter, a Use Case requirement is defined as a UCRequirement artifact. This
dynamic type is named within the adapter by concatenating the Requirement tag
prefix with the text ‘Requirement.’

The UCRequirement is a subclass of a Requirement artifact (a subclass is a derived
class). The subclass inherits the properties, relationships, and locator information of
its superclass (a superclass is a base class). The property types of a UCRequirement
artifact in the ReqPro adapter are created dynamically using the attribute types of the
Use Case requirement in RequisitePro.

The RSE adapters map the dynamic artifact type hierarchy and register the
appropriate artifact types, relationship types, and property types. The way in which
this information is retrieved is specific to each integrated product. The dynamic type
information is associated with a top-level object in the integrated product, such as a
RequisitePro Project object.

The dynamic types for each RSE adapter:
RegPro:

24 Chapter 2 - RSE Object Model

Dynamic types are registered by any Project artifact. These types include
user-defined Document types, Requirement types, Attributes of those
Requirement types, and relationships to user defined Views defined in the Project.

ClearQuest:

Dynamic types are registered by the CQDatabase artifact. These include
user-defined Record artifact types (typically, artifact types like Defect and
ChangeRequest) including their relationships and properties (fields). The dynamic
types also include relationships from the CQDatabase artifact to records for each
Record type and to the results of all queries defined in the database. Retrieving the
related artifacts from a query relationship causes the query to be executed.
Similarly, each Query artifact has a Results relationship that also executes the

query.
= Rose:

Dynamic types are registered by the Model artifact. These include properties for
each static artifact type that are registered upon locating a model (root artifact).

RAdmin, ClearCase, TeamTest, FileSys, and MSProject do not have dynamic types.

Properties

Each artifact type has a collection of properties associated with it. Property objects
correspond to the individual attributes defined in each integrated product object.
Properties are available from the Artifact object.

For example, the name and the stereotype of a Rose Class are properties of a Class
artifact type. The Name and Stereotype properties are available from the Class
artifact.

PropertyType

Every instance of a property has a corresponding property type. Each PropertyType
supported by any given Artifact is available from the Artifact's ArtifactType object.
This allows the properties supported by an Artifact to be listed without an instance of
that Artifact.

As Figure 5 illustrates, the Rose Class has a Property called 'Stereotype', and the
ArtifactType for the Rose Class has a Propertylype called 'Stereotype'.

RSE Objects 25

Figure 5 Rose Class Property Example

RoseClass RaoseClassType

StereotypeProperty StereotypePropertyType

Examples of property and property types:
In RequisitePro:

A Requirement ArtifactType has a Text property. The RequisitePro adapter defines
a Propertylype named “Text’ for the Requirement ArtifactType.

In Rose:

A Package ArtifactType has a Documentation property. The Rose adapter defines a
PropertyType named ‘Documentation’ for the Package ArtifactType.

Property types are registered with artifact types. The set of adapters maps the
individual integrated-product property types to RSE artifacts and properties.

Each property type has a property ID. Property IDs are integer values assigned
sequentially as the properties of an artifact type are registered. They are used
internally by the RSE core to look up property definitions.

Relationships
Each artifact type defines a set of relationship types.
These relationship types are used to find related artifacts. For example:
In RequisitePro:

The Project artifact has a relationship to Requirements. This relationship (named,
Requirements) can be used to find the Requirement objects in a Project. A
Requirement has a relationship to AttributeValues (named, AttrValues). This
relationship enables you to find the AttrbuteValue objects of a Requirement.

In Rose:

26 Chapter 2 - RSE Object Model

The Package artifact has a relationship to Classes. This relationship (named,
Classes) can be used to find the Class objects in a Package. The Class artifact has a
relationship to Properties. This relationship (named, Properties) enables you to
find Property objects of a Class.

Relationships define the associations between artifacts. An artifact can be associated
with any number of relationships. Each relationship links two associated artifacts.

For example, in the ReqPro adapter, Project, Requirement and DocumentType
artifacts all have a Revisions relationship to 0-n Revision artifacts. Figure 6 shows
these relationships. It also illustrates the Project’s Documents relationship to
DocumentType and the Requirements relationship to Requirement. You can configure
methods for locating artifacts using these relationships. For instance, given a Project,
you can retrieve a Revision in the following ways:

* Given the Revision
* Given a DocumentType

Given a Requirement

Figure 6 RegPro Relationships Example

Project Requirements Requirement
(from ReqP) (from RegPro)
Revisions
Revisions Documents
Rewvision Revisions DocumentType
from ReqPmo) << (from RegPro)

Relationships can be of type peer, descendant, or child.

Locators
Locators are RSE objects that are used for finding specific instances of artifacts.

Locators provide a uniform platform for maintaining and resolving references to RSE
artifacts. This allows implementing integrations and maintaining references between
integrated products.

RSE Objects 27

An artifact locator:
+ Finds an artifact, given user-supplied input.
+ Can locate and return data from an integrated product.

The IArtifactLocator interface is used to locate artifacts and is capable of representing
the locator as a string format that can be persistently saved and resolved at a later
time. This artifact reference contains the series of arguments that identifies a specific
instance of an artifact. This string can be converted into an artifact locator without
loading integrated-product data.

The arguments necessary to locate a specific artifact in an integrated product are
defined by that product's RSE adapter. These properties are specific to that type of
artifact. The values of these properties are then passed on to the integrated product
using the extensibility interface of that product through the adapter. This code is
implemented in the adapter and is specific to that integrated product.

Artifact Arguments

Each locator type has a set of arguments for constructing an artifact. These arguments
are defined as artifact arguments. Artifact arguments are used to specify values for the
information that is needed to locate an artifact. An artifact locator returns an instance
of an artifact.

For example, in order to locate a Rose Class, you need the path of the model, the name
of the Package and the name of the Class. The artifact arguments for a Class locator
type are:

* Model Path

The file path to the Model
+ Package.Name

The name of the Package containing the class
+ Class.Name

The name of the Class

You can create an artifact locator to locate a Class by supplying values to these
arguments. For example, to locate a Class named Order in a Rose Model, the
arguments values are:

+ 'C:\Program Files\Rational \Rose\samples\ordersystem\ordersys.mdl'
* 'Business Services'

= 'Order’

28 Chapter 2 - RSE Object Model

Given these arguments, the locator returns an instance of the Order class. The locator
string that comprises these arguments is called an artifact reference.

Artifact References

An artifact reference is a string containing the arguments used to locate a specific
instance of an artifact (for example, a Rose Class named Order).

For example, the following is an artifact reference for the Rose Order class:

Rose|Model(Path="C:\Program Files\Rational\Rose\samples\ordersystem’)|
Package(Name='Business Services')|Class(Name="Order’)

In this example, the RSE core locates the model, then the package, and then the class.
Note: Artifact references are sometimes called locator strings or Artifact IDs.

Each artifact reference:

= Serves as a unique identifier for locating a specific instance of an artifact.

+ Isastring composed of information about the artifact type to be located and a set
of parameters that specify an instance of the given type of artifact.

There are two types of artifact references, Display Name ID and Immutable ID. Each
type of artifact reference includes two different formats, one a more readable form
(DN) and a one shortened version (ID).

Note: Not all artifact types support all forms of artifact reference. See the Adapters
Reference manual for information on each RSE artifact type.

In the Rose Ordersystem model, the artifact references to the Order Class artifact are:
= Display Name ID locator

The human readable Display Name format can be viewed and interpreted by the
end user. For example, the Display Name ID for a Rose Class named Order in the
Business Services Package in Ordersys.mdl is:

DN form:

Rose|Model(Path="C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl')|
Package(Name='Business Services')|Class(Name="Order’)

or
ID form:

Rose|1.1.2|Class('C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl’,
'‘Business Services','Order’)

= Immutable ID locator

RSE Objects 29

The persistent Identifier form maintains a persistent reference to an artifact. The
artifact arguments are Model path and the Class unique ID (UUID). The UUID is a
12 digit serial number. For example, the Immutable ID form of the Artifact ID for
the Rose Order class is:

DN form:

Rose|Model(Path="C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl')|
Class(UniquelD='3237F8CD03CD")

The UniquelD is a 12 digit serial number that identifies the Class specific to the
Rose Model.

or

ID form:

Rose|1.1|Class('C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl’,
'3237F8CD03CD")

In most cases, implementing a GUI that allows users to enter arguments for locating
artifacts is preferred to presenting the raw display name string. These arguments can
then be used to construct the artifact reference. However, there may be some cases
when users may encounter the strings, for example, in ascii files. In this case, the more
readable format of the Display Name ID is far more appropriate than the ID form of
the artifact reference.

For example, in RequisitePro:
+ Display Name ID

The artifact arguments are Project path and Requirement tag. This information
is visible in RequisitePro.

= Immutable ID

The artifact arguments are Project path and Requirement key. The key is the
record ID for the Requirement in the RequisitePro database. This information is
used internally by RequisitePro but is not displayable.

The primary method of creating a locator is to first enumerate through the list of static
artifact types, select a type, and create a locator for this artifact type. Then, you can
enumerate through the collection of artifacts for this type and select an artifact. Each
of these artifacts has a unique artifact ID.

The IArtiactLocator interface has the ability to enumerate and change the values of
the parameters for the locator. It is not necessary to parse the ArtifactID string in order
to enumerate the values, nor is it necessary to construct a string to locate an object.

30 Chapter 2 - RSE Object Model

In addition to allowing parameter values to be enumerated and changed, the
IArtifactLocator interface supports optional parameters and default values. This
allows capabilities for projects to be located using usernames and passwords, but also
allowing default access without specifying user information.

Default access does not require login authentication and thus prevents exceptions.
The IArtifact interface and the [ArtifactType interface allow a Client to get the default
Display Name or Immutable ID locator.

For more information on authentication and exception handling, see the “Creating
RSE Clients” chapter of this manual.

RelativelD Artifact References

Relative IDs are shortened versions of artifact references that provide a method for
locating one artifact, given another artifact. Relative IDs enable you to permanently
save artifact references that allow you to reconstruct objects.

Given an artifact type you can create an artifact locator to locate an artifact. You can
also use a relative locator to get the artifact. For example, in Rose, you can locate a
Class, relative to a Model. The Class relative ID (relative to Model) includes the
Package name and Class name. With this relative locator string, you can locate the
Class artifact.

In Rose, the absolute locator string (artifact ID) for the Order class in ordersys.mdl is:

Rose|Model(Path="c:\Ordersys.mdl')|Package(Name="Business
Services’)|Class(Name="Order’).

The common information stored in this string can be stored once by a client and used
by the relative IDs for returning reconstructed artifacts.

For example:
» Given the Package Name (Business Services), the Relative ID for Order is:
Class(Name='Order")

This relative ID is relative to the Business Services Package. Business Services is
the artifact that provides the context for this relative ID to Order.

* Given the model, Ordersys, the relative ID for locating Order is:
Package(Name='Business Services’)|Class(Name="Order’)

This relative ID is relative to Model (Model is the context artifact).

RSE Objects 31

To resolve a Relative ID, you need the relative artifact that has the context information
(for example, Rose | Model(Name="Ordersys’)). This minimizes the amount of
information needed to be stored by each object. Root artifact information is supplied
by the RSE and can be stored once by the client. This greatly reduces the amount of
information needed to be stored for each link (for example, if you were resolving
10,000 links that were all relative to one model object).

For more information on locating artifacts with relative IDs, see the “Creating RSE
Clients” chapter of this manual.

Summary

Figure 7 shows the main objects in the RSE object model for retrieving artifacts and
their properties.

The point of entry into the RSE is through the Session object. A Session object connects
to an Adapter object. From this Adapter object, you can get all of the static artifact
types supported by that adapter.

Each adapter provides the conversion between internal objects from a specific product
and the corresponding RSE artifacts. An adapter includes a defined class for each
artifact type. Each of these internal object classes defines properties, relationships, and
locators and makes available the associated objects in the integrated products.

When you have the collection of available artifact types in an adapter, you can:

+ Create artifact locators to locate artifact types, artifact collections, or specific
instances of artifacts.

* Retrieve the available property types for a given artifact type, or retrieve specific
instances of artifact properties, for a given artifact.

» Retrieve the relationships for a given artifact type, or use relationships to retrieve
artifacts that are related to a given artifact.

32 Chapter 2 - RSE Object Model

Figure 7 RSE Objects

IRDSISession |Adapter

0..n

Static Artifact Types

0..n
lArtifactType

Creyocator
/ o.n 0..n

|ArtifactLocator IArtifactPropertyType I RelationshipType
|
Locate,ﬁrtifact
\
|Artifact 0..n
\\; .
1 lArtifactProperty

SoDA Application Example

SoDA is a Rational client application that uses RSE to retrieve data from integrated
products in Rational Suite. The following code shows how SoDA gets the property
collection (all properties) of an object. This example creates a session, locates a ReqPro
Requirement artifact (artifact ID is the locator argument), and then retrieves the
properties of the Requirement artifact.

In C++:
| RDSI Sessi onPtr theSessi on;
t heSessi on- >Cr eat el nst ance(" RDSI Cor e. Sessi on") ;
lArtifactPtr theArtifact = theSession->LocateArtifact("ReqPro|
Pr oj ect (Pat h=" <YOUR_PRQJECT>’) | Requi r ement (Ful | Tag=" <YOUR_REQ>')");
| ArtifactPropertyCollectionPtr theProperties =
theArtifact->Get Properties();

RSE Objects 33

In VB:

Di m t heSessi on as RDSI Sessi on

DimtheArtifact as Artifact

DimtheProperties as ArtifactPropertyCollection
Set theSession = new RDSI Sessi on

Set theArtifact =
t heSessi on. Locat eArtifact (“ReqPro| Proj ect (Pat h=" <YOUR_PRQJIECT>') | Requi
rement (Ful | Tag=" <YOUR_REQ>')")

Set theProperties = theArtifact.Properties

Referencing the RDSICore Type Library

You must reference the RDSICore library into your project. The RDSICore type library
is located in Rational\common\RDSICore.dll

To reference the type library in Visual Basic:

1 Click Project > References

2 Check RDSICore 1.0 Type Library.

To reference the type library into a C++ project:

1 Click Tools > OLE/COM Object Viewer

2 Inthe OLE/COM Object Viewer dialog, click File > Bind To File

3 In the Open dialog, click Rational/common/RDSICore.dll

34 Chapter 2 - RSE Object Model

Developing an RSE
Adapter

This chapter describes how to develop an RSE adapter. For example, you can create an
adapter to integrate a third-party tool with information in Rational Suite.

An Adapter can map a single source of information (for example, RequisitePro, Rose
or other application) or be a cross-product adapter that maps more than one product.

RSE Adapters are components that map an integrated product object hierarchy to the
RSE Artifact hierarchy. They define the RSE Artifact hierarchy and implement the
integration between the RSE and the associated integrated product. RSE client
applications retrieve information from integrated products through the RSE adapters.

Architectural Overview

There are two major tiers that allow adapters to be implemented with minimal
complexity:
Adapter interfaces
The set of interfaces that the RSE Core uses to communicate with each adapter.
The Adapter interfaces map from the conceptual organization of the RSE client
interfaces to the conceptual organization of the adapter implementer. This
mapping dramatically simplifies the complexity of the artifacts implemented in

each adapter. Conceptually, it allows adapters to be implemented in a variety of
development languages, including C++, Visual Basic, Visual J++, and pure Java.

Note: The current release only supports development of C++ adapters.
C++ Framework

The C++ Framework wraps the adapter interface implementation and provides a
default artifact behavior, further simplifying the task of implementing an adapter.

The C++ Framework simplifies the implementation of the artifact class. Modified
versions of the framework can be built to support specific types of internal objects,
such as IDispatch, generic COM, or CORBA.

From the adapter developer’s perspective, the C++ Framework serves as a
template from which you derive classes that map to your application’s objects.

35

Developing an Adapter Overview

The C++ Framework simplifies the development of new adapters by providing a
template of base classes in TemplateAdapter. You create a new adapter by deriving
new classes from the TemplateAdapter base classes. When you develop a new
adapter, follow these steps:

1 Unpack the files in RSEAdapter.zip (this chapter uses D:\Adapters as the target
directory). This zip file includes the ReqPro, FileSys, and Word RSE adapters.

2 Open a workspace and create a new adapter project (See the “Setting Up an
Adapter Project”). You must create your new adapter project in the same directory
as the included RSE adapters.

The following sections of this chapter describe these steps in more detail.

Once you have an adapter project, you can define and implement artifact types. The
following steps are described in the “Using RSE Adapter Interfaces” chapter of this
manual.

3 Define the artifact types.

4 Implement each artifact type. For each type, this includes:
© Register and implement locators
© Register and implement properties

© Register and implement relationships

Setting Up an Adapter Project

The first step in developing a new adapter is to create a new project in Microsoft
Visual C++ Version 6.0.

You set up a new adapter project by:

1 Opening a Workspace.

2 Creating a new ATL Project.

3 Creating the necessary project dependencies.

4 Modifying project settings.

5 Defining an adapter instance.

6 Modifying project files. This includes modifying the:
o IDL file

36 Chapter 3 - Developing an RSE Adapter

o Registry file
© Adapter instance .h and .cpp files
© Stdafx.h file

7 Building the adapter dll.

Opening a Workspace
1 Start Visual C++ and click File > Open Workspace .
2 Select RSEAdapter.dsw located in D:\Adapters\RSEAdapter\wsbu.src\rdsi.
This workspace includes the ReqPro, FileSys, and Word adapter projects.

Note: This location is correct if you unpacked the RSEAdapter.zip file to
D:\Adapters.

Open Workspace Il
Mhl'_“ld!i j*—lilr_‘HE!*

_'Iudaq.ﬂer:-

| ComLkis

[ebrug

1 Truchuste

|| TestFramesork

Flename |RSEAdspie dow | Ooen |
Fibae: ol Sppes: I'ru'mhmln:nlmw e :J Canced |

Setting Up an Adapter Project 37

Creating a New ATL Project

After you open the workspace, set up a new adapter project by creating a new ATL
project.

1 Click File > New.

2 On the Projects tab, select ATL COM AppWizard . Name the Project (MyApplication)
and enter the correct location for the project
(D:\ADAPTERS\RSEADAPTER\WSBU.SRC\RDSINADAPTERS\MyApplication).

Note: The location of your new adapter project must be in the same directory as
the other RSE adapters that are included in RSEAdapter.zip.

3 Click Add to current workspace

bew 2=
Fie: Piech: Iwaupm| Dither Documents |

ATL COM Appiwizmd) Wi Shabe Livary Proyerd pame

] Chisien Reuacs Typs Wizerd [Mipphealon

) C usom Aot mad

st sbase Poject Logahory

Y- [O:\ADAPTERS\RSEALAPTER: .|
B slancded Sloeed Proo Wizaed

s | S0F Extervion Wizad

]-P Makefin ™ Cimsbe new workspacs
e MFL &ctive Contiobs'card - __h:E_.n':runuT_lE-

 MFC sppwicard (3] :
et 1 F L A]] . L |1 — j r
Mizay D ainbce Wizad I e S J

Win22 Console afion Ecre:
— snscts fppe |?'-.u'n1'¢'
| i

= 1 _coms |

4 Click OK.

38 Chapter 3 - Developing an RSE Adapter

ATL COM AppWizard - Step 1 of 1 d A

Thiz \Wizard creates an ATL project without arny
ifitial COM objects. After completing thiz Wizard,
Set az b uze the Hew ATL Object cormmand from
_ Clazsiew to zpecify the type of object you would
Mew Claz like to add to this project.

B L0E ATl

J_]_j-l O Mew Fold Server Type
i
- |_ Diacking £+ Diynamic Link Library [DLL]

Hide {~ Executable [EXE]
Prgpertie i Senvice [EXE]

? ? [T Zllow merging of prosy/stub code

e +,+ s ik [T Support MFC

v [T Support MTS

< Back | [et = | Finizh I Cancel

5 Onthe ATL COM AppWizard, select Dynamic Link Library (DLL) . Click Finish, then
click OK in the next dialog box.

The new project is added to the current workspace. The ATL wizard generates the
source code. You then make changes to support the adapter namespace.

6 From the Visual C++ main menu, click File > View to display the new project.

At this point, source files have been added, but there no classes. The name of the
adapter is MyApplication.cpp.

7 Compile the project to create the dll file by clicking Build . This is the main entry
point into this new adapter. After building this dll, you add a dependency to the
CPP Framework and define the new adapter instance.

Setting Up an Adapter Project 39

Adding Dependency to the CPP Framework

To create the necessary dependency to the C++ Framework, you must add a
dependency to the CPP Framework project:
(D:\Adapters\RSEAdapter\wsbu.src\rdsi\adapters\CPP Framework\CPP Framework.dsp).

1 Click Project > Dependencies from the main menu.

2 Select the CPP Framework check box and click OK.

2
Selacl piogsct 10 modiy
|h-:,-.n;:|1 oAb j
Diepandent o the folawirg peojsct|s

v i P™ Fiarmwaik
FileSys
11eM
Fegfo
Ternpilaes dapts
edtond

[]
_ Concd |

Modifying Project Settings
Modifying the Code Generation Settings
Modifying the Preprocessor Settings
Modifying the C++ Language Settings

Modifying the Code Generation Settings
In the current environment, you must modify the project settings for code generation.
1 Click Project > Settings .

2 In the Setting For dialog box, choose Multiple Configurations

40 Chapter 3 - Developing an RSE Adapter

x|

Seting: For. [Muhgie Cotipagber: =] | Gereal | Debug | e | Link | Resorct [5]
:§ gﬁulﬂﬂk Cabegy ICudt G s adion ﬂ et I
- =53 Souce Files = o Hhuary

@ Mydepbesioncep [Bler - =] [T -
M o, def .
E ku Ll corwenhion: Shuct member ghonment
|£] Il sl o 1o |—‘7*d ll |H Bdes © ﬂ
[4] Siddhe oo
= ‘3 Header Flex
|B] Bewoace
|B] Siddheh
) Aesowsce Files
CFP Framissactk: Common Oplons:
s MTd A2 G 3 A0d D NI D -I
1] LIEII m L1} m”nmllmll-umll
!.‘-E—mw'ﬂ- G2 e =
[T | cance |

3 In the Select project configuration(s) to modify dialog box, check all the Win32

Debug options and click OK.

Select project conflguration]s) to modify

W' dZ Debug seans Brosme

"we'in 12 Debugluto

Wi A2 Wikl Fejeae
_Twefin 12 ekl Dhebisg

Tt Unicode Debug
#wtnds Aebase MG

i indZ Aeleass MirD sperdency
N a2 Unicods Aelease MinSaoe

#Tind2 Unicods Flelase MrDeperdency

Setting Up an Adapter Project

41

4 In the Project Settings dialog box, on the C/C++ tab, in the Category list box, select
Code Generation .

5 Select Debug Multithreaded DLL in the Use run-time library list box and click OK.

Xixl
Setings For: | Mulspin Cordipaatons =] | Genea | Debug CACes I Lirk | Resouc an
| CPF Frameswerk
o B8 (1o Category: [Code Genesaiion C
= " _
= Souce Files [~ - = Bs S
Il wloppbic stion, def §
ﬂ Mg ation i Lalirg corwention Shuct member ghgnment
|4] Mutppbcationc r—'-'f‘:"d' EI [E Bydes EI
2] Stdéhe cpp
= =4 Header Fiex
|§] Repoace h
|E] Sidateh
Aesoisce Files
% CFF Framessork Comnor Dplons
e MDD A3 07 S0 W2 D 'HDEBUG! D -
U iNDmeS A USRDLLY At ATL_MIN_CAT™
Siutsidali b FD fe ;I
[T | canca |

6 Click Project > Settings .

7 In the Setting For dialog box, choose Multiple Configurations and check all the
Release configurations to modify.

8 Click OK.

9 In the Project Settings dialog box, on the C/C++ tab, in the Category list box, select
Code Generation . Select Multithreaded DLL in the Use run-time library list box and
click OK.

You must modify two additional project settings before compiling your project. This
includes the Preprocessor and C++ Language categories.

Modifying the Preprocessor Settings

AdapterProtocol.tlb is imported in stdafx.h. To specify the path of
AdapterProtocol.tlb:

42 Chapter 3 - Developing an RSE Adapter

Click Project > Settings .

In the Settings For field, select All Configurations .

Click the C/C++ tab and select Preprocessor in the Category field.

Click the TemplateAdapter project and copy the Additional include directories

information.

Setiings For a0 Conbgusisns

Lol o

3 Source Fies
|£] Siddhe ocpp
[4] Templaetdapie cpp
[B] Templateddapien del
[4] Templaetdspie id
[2] Templatetdapien e =
[2] Templatetdaspiairatance o
=4 Header Files
[B] Bescwace b
|B] Sidaieh

J 1o

Fix|

Geresal | Debug | C/Cws | Lisk | Resouwc) (23]
Catagury IPltm:-:n:u ﬂ Eieset I
Preprogersor definalions
WINIZ,_WNDOWS, USAOLL
Liredebned sombolk: ™ Uraesfires 3 syriboby
I
bl rochajs e imas
™ g saedand chade paihe
Common Options

A3 GR B A A A =
* 4 Wincludeh D WINEE /0 WINDDWS" /D
LSRR A sda ke D e d

e]

Cancel |

Setting Up an Adapter Project

43

5 Click the MyApplication project and paste in the Additional include directories
information (..\, ..\..\, .\.\Include\).

Profect settings 2|

== Source Files
[4] Siddhe oo
:ﬂ T emplateddaples cpp
|B] Templaetdaple del
[4] Templateddapien id
[4] Templasetdapieic
[2] Templatetdapienratance. cpg

Gerasa | Debug CCes | Lok | Resoust [5]0]

Catagory |F"|-m:n:nm' j [Bset I

Paeprogessor defindions:
WINIZ_WNDOWS,_ USROLL

Lredefinad symbol: ™ Uradefire a1 syl

Addisonysl rchade dreclone:
[e

™ lgrom sardand rchade pate

=23 Header Fles Cominon Dpbons:
(] Foeouce b ﬁwﬂm NI D = WANDOWS™ /D &
[Sdais iy || U " b daf b FD e
L1 I;IJ [-
[T | canca |
6 Click OK.

Modifying the C++ Language Settings

Finally, you must also modify the project settings for the C++ Language Category.

1 Click Project > Settings .

In the Settings For list box, select Win32 Debug .

2
3 Onthe C/C++ tab, select C++ Language in the Category list box.
4

Select the boxes for Enable exception handling and Enable Run-Time Type

Information .

44 Chapter 3 - Developing an RSE Adapter

Project Settings 2|

Setings For: [\win32 Debug - Genessd | Debug CACes I Lirk | Resouc an
+ RegPin s ot |:''I'a""!i""""-i"'t j Lj
3 Templaleddate ~ Poinber dorimemnbes repeseniabon .

= Souce Files :
[#] Sidéicop Raprasantation metod:
2] Templateddapler cpp [Bus"Eam Sheggn © j
] Templatetdapier. cei LB e s
[2] Tenplahetdapies id ' -
2] Templabetdaples ic I —I
a1 :

i e | I R
(8] Fescuaceh " Erable FurrTme Type |niomation [RTTI)
|B] Siddheh ™ Dissbls cormnsction duplacenents
[B] Templaesdapleiratanceh — | Progect Optons

‘= Aasousce Filas
L [H] Templaesdapisratance g »

4| | ®

O Mncluded)” D WA D
"_REBUG" A wANDIS" MBS A

Jrzbogo AMDd A AGm AGH G 2 A0 A A A ﬂ
=

(o] _comel |

Click OK.

Your project now has the necessary project settings.

Defining an Adapter Instance

Each adapter instance represents an RSE adapter. The adapter instance declares the
artifact types defined by this adapter. You define a new adapter instance for each new
adapter.

When implementing a new adapter, you derive an AdapterInstance object from the
Framework AdapterInstance class.

RSE clients retrieve information about the adapter and the static metadata available
from the adapter to the client from the RSE core AdapterInstance object. It can be
instantiated without creating an instance of the integrated product server.

An Adapter Instance:
Is an object that represents an instance of an adapter.

For example, ReqProAdapterInstance represents an instance of the ReqPro
adapter. The ReqProAdapterInstance class derives from the Framework
AdapterInstance class.

Setting Up an Adapter Project 45

» Registers information with the RSE core and declares all static metadata available
from this adapter. This includes the hierarchy of all artifact types, properties,
relationships, and locators that are defined in this adapter.

Is an ATL COM object.
This class derives from the C++ Framework AdapterInstance class.

1 Click Insert > New ATL Object

ATL Object Wizard 2] .=l
Categon Objects
Contrals o ,I% r'__ll ‘ ! —
Mizcellaneous
Diata Access Simple Object JslEegn] =" Internet
Explor...
(X
Activex Server MMC Snapln 5
Component Tranzacti... _I
Mext > Cancel |

2 Click Simple Object > Next .

46 Chapter 3 - Developing an RSE Adapter

ATL Object Wizard Properties

Names | Attributes |

—C++

Shaork M ame: I |

Clazs: I

H File: I

CPP File: |

—COM

2=

CoClass: I

Interface: I

Type: I

Prog 1D I

|)% I Cancel

3 On the Names tab, in the Short Name field, enter the name of the new adapter
instance. For example, MyApplicationAdapterInstance. This automatically fills in

the other fields.
AT cbject wzardroperties TP
Pl ames |Aﬂuu|
e CaM

St Hame |rﬂ-dmhﬂr~='an~:4

Class: |I:I-I_-,1ﬁ.p-|:h:un-'|!|d-a
H i m

CPE Pl |Musppbcationddap

Collass: |Mwiopbcstionbdsps

il ace |IHMW
Tyme: [Muhgphcaionidapne

Fiog ID; |Muspphcation Hyipg

[ok] cues |

Setting Up an Adapter Project

47

4 On the attributes tab, select Free in the Threading Model field and select Custom in
the Interface field.

21x]
Threading Mods] | et Aggregsbon
I Singe (™ Dusl & Y
T Apsrtment = Cusgtom = Na
T Buth ™ Oriy
= Fran
[Suppert |SuppaiEnsiinia F¥ Fiea Thesadad Mathake
™ Suppot Connection Ponls
[ok | cuen |

Leave the other default values on the attributes tab. Click OK.

This generates the new AdapterInstance cpp file

(MyApplicationAdapterInstance.cpp) and the idl file that defines the internal stubs
for this new adapter.

Modifying the New IDL File
You must clean up the new idl file with the following code-specific modifications:
Import AdapterProtocol.idL.
Delete AdapterInstance object.
1 Importing AdapterProtocol.idl

AdapterProtocol.idl defines all of the adapter interfaces. You must add a reference
for AdapterProtocol.idl to your new adapter idl file.

Add the following line from TemplateAdapter.idl to your new adapter idl file,
below thei mport “ocidl.idl”; statement.

import "..\..\Include\AdapterProtocol.idl"

48 Chapter 3 - Developing an RSE Adapter

S HyRpplicationsd] *]

o Bud Took PureCoverage Purfy Quantfy Window Help

e L A ™

Sl bl =] 4 DiCanUniosdNow -] % - ”ﬁi TR EE R ||I-ﬁ|
/7 MyRpplication, 141 : IDL Scurce [or MYRpplicaticn,dll
£

F¢F This fi1la will ba procassed by thae HIDL bEool Eo
£ prodece tha typa library (Myhpplication.kblb) and marshalling «

imgport woaldl, 1810

imgpart raeidl, 14l

imgart v, L% Ineludet AdapterProtocol ddl
[

R = - St
wuld (Do FTa8 -4 FOeC-4 0AT-BETOT-CRGICTISCETR) |

halpstring (" IMyhppl icationhrdaptermstance mMterface=)
prolnter &elaul b (unbgqued
1

intarface IMyvApplicationhdapberinsktance : IUnknowm

E

Wl A (PR IEERE -4 PO =4 CZF-BR0R-CADEEPTIOLOO] |
varsianil. o),

helpstring ("Hyhpplicakion 1.0 Type Libraryv)
] 1
liorary MYRPPLICATIOMLID

importlib{isbasledz, E1b1)
ot i {restdalez, E1Dm)

[

il d (O TREEY ED-IDEL-4 CEF - P L4 B - AAGZEDGIGLOTI) |

= llsjoy

Setting Up an Adapter Project 49

2 Deleting the AdapterInstance Object
You must delete the new adapter instance object in this idl file. This code is directly

below the import line you just added.

L ++ - [0 =y fpolicationd] *]

ot Buld Took PureCovarage Purfy Quantfy Window Help

Dt |[m R Gy faeitact ™
=|[g DICanUnlosdNow N S) EA | S
dﬂ $ OPEVREED LAkl ol 141 IDL: irce [or '!ll:_-'?\.;-g.-'l At ian, Al 1 -
ojects & |
fF This filae will be processed by the HIDL bool ko
' produce tha typse library (MyApplication.tllh) and marshalling
import "oaldl, 14810,
img-srt rasiddl, 18l
imgeerk v, Y LN Insludet hdag e rProbacal | ddle;
pheilnai
pmlng ™
[
Wl A (PEAAEERE -4 POl =4 CZF=-BE0R-CADEERTADLIO0] |
varsionil . oh
helpstring ("Hyhpplicabion 1.0 T™vEe Libraryn)
i 1
library MYRPPLICATIOMLILD
i
' importlib (isEdcled®, E1bi) |
= imp-ortl i (nabdolez, E1E")
*] [
e]_ LAl G TS ED -3 DE L -4 CEF -2 L4 B -ARGEDGIGLCTE) |
_ Lol

3 You must also modify the coclass MyApplicationAdapterInstance definition from

{

[defaul t]

}s

50

interface | MyAppli cati onAdapt erl nst ance;

Chapter 3 - Developing an RSE Adapter

to:

[default] interface | Adapterlnstance;

interface | TypeContai ner;

}s
The correct code for this file should now be:
/'l MyApplication.idl : IDL source for MyApplication.dll
/1

/1 This file will be processed by the MDL tool to produce
/1 the type library (M/Application.tlb) and marshalling code.

import "oaidl.idl";
i mport "ocidl.idl";
import "..\..\Include\AdapterProtocol.idl";

uui d(AA6BABAG- 6F68- 40E0- 99CF- 25C26D084978) ,
version(1.0),
hel pstring("M/Application 1.0 Type Library")

]
l'ibrary MYAPPLI CATI ONLi b

{
i mportlib("stdol e32.tlb");

importlib("stdole2.tlb");

uui d(ASFE3DD9- FB73- 4800- 8094- 4969D5163348) ,
hel pstring("M/Appl i cati onAdapterlnstance C ass")

]

cocl ass MyAppli cati onAdapt erl nstance

{

Setting Up an Adapter Project

51

[default] interface | Adapterlnstance;

interface | TypeCont ai ner;

[05 ey Applicationsd] *]

et Buld Took PureCoverage Purfy Quanbfy Window Help

|2 o | m B | Gy fiaitact L™
B —— =] & DiCantinloadiow A=~ ||&SEEX A |”-ﬁ|

—al= A myRpplication. idl IDL Bource [or MYRpFlicatlon.dll
i
.i-i
F¢¥ This fi1la will ba procassed by tha HIDL Eool Eo
FF proodece tha typa library (Myhpplication.blb) and marshalling «

imgport voaidl, 141
imgart vosidl, 181,
gt v, L5 L L% Inslude’ Adag ke rProbacal | 4l ;

phidnist [

wuldihhdahBhdE -d Rl - L HEG- REF - 2EC2ED0EL DTR) |

versiors{l, o) ,

Ralpstring ("MyYRSElicabion 1,0 TYRe Libraryv)

1

s library EYAPPLICATIOMLLE

impcrtlibfistdola3x. E1h') ;

importlib{igtdolas. E1hit) ;

[

WElA(REFEIDD®-FETI -4 800 - B0y -4 PEFDS LG T4 B) |

i helpstring ("Myiopl icabionhdapternetance Class")
1l
d coclass MyhpplicationAdapterInstance
4

[fafawlt] intarfacse [Adapberinsbancs;
intarfacse ITyReConbalner;

This code correctly defines the new adapter instance.

52 Chapter 3 - Developing an RSE Adapter

Modifying the Registry File

The registry file (MyApplicationAdapterInstance.rgs) determines what goes into the
registry when the adapter registers itself.

The version program ID identifies and registers the adapter.

Ver si onl ndependent Progl D = s
" MyAppl i cati onAdapt er. MyAppl i cati onAdapt er | nst ance'

You must add additional information to the generated registry file.

1 Open the TemplateAdapterInstance.rgs file and select the following code.

HKLM
{
NoRenmove SOFTWARE
{
' Rational Software'
{
RDSI
{
Adapt ers
{
For ceRenpve Tenpl at e
{
val Name = s 'Tenpl at e’
val ConnectData = s ' Tenpl at eAdapt er. Tenpl at eAdapt er | nst ance'
}
}
}
}
}
}
2 Copy this code and paste it into the new adapter instance registry file at the end of
the file.

3 You must then rename the adapter information that you pasted into the registry
file from TemplateAdapter to the name of your adapter (MyApplication). The
value of Connect Dat a must be equal to Ver si onl ndependent Pr ogl D.

Setting Up an Adapter Project 53

For example:

HKLM
{
NoRenmove SOFTWARE
{
" Rational Software'
{
RDSI
{
Adapters
{
For ceRenove MyApplication
{
val Name = s ' MyApplication'
val ConnectData = s ' MyApplication. MyAppl i cati onAdapt er | nst ance’
}
}
}
}
}

54 Chapter 3 - Developing an RSE Adapter

Modifying the New Adapterinstance.h
You must modify code in the new adapter instance header file.

First, you must include the base class AdapterInstance.h from the CPP Framework to
your new AdapterInstance.h file.

1 Copy the following line from TemplateAdapterInstance.h and add to
MyApplicationAdapterInstance.h just below the #i ncl ude "resource. h"
statement:

#i ncl ude " CPP Framewor k/ Adapt er | nst ance. h"

2 Replace the following code:

publ i ¢ CConbj ect Root Ex<CConSi ngl eThr eadMvbdel >,

publ i c CComCoCl ass<CMyAppl i cati onAdapt er | nst ance,
&CLSI D_MyAppl i cati onAdapt er | nst ance>,

public | MyAppli cati onAdapterl nstance
with:

publ i c CComCoCl ass<CMyAppl i cati onAdapt er | nst ance,
&CLSI D_MyAppl i cati onAdapt er | nst ance>,

publ i c FRWAdapt er | nst ance

As the above code illustrates, you:

© Remove the following lines:
publ i ¢ CConfbj ect Root Ex<CConSi ngl eThr eadMbdel >,
public | MyApplicationAdapterlnstance

o Add:
publ i c FRWAdapt er | nst ance

3 You must also delete the following lines from this file:

DECLARE_PROTECT _FI NAL_CONSTRUCT()

BEG N_COM _MAP(CMyAppl i cat i onAdapt er | nst ance)
COM _| NTERFACE_ENTRY(| MyAppl i cati onAdapt er | nst ance)
END_COM_NAP()

/'l 1 MyAppl i cati onAdapt er| nst ance
public:

Setting Up an Adapter Project 55

You replace this code with code from TemplateAdapterInstance.h.

4 Copy the following code from TemplateAdapterInstance.h and paste it into your
new adapter instance header file.

[Template Adapler Instanceh]

T Pwecirmann ety Doy e ek
e EE%‘ {ﬁllmllhnl :j "
T 11 W)

EI: ' TamplatakdaptarInstance

Jlass KTL MO _VTHBELE <Tamplatahdaptarlinstanca
publ 1¢ SfomSodl asssCTamplatahdaptarinstancs, &OLIID Templatehdaphbe
pulsl 1o FRHRAsptarinstancs

|

Fukl i
crTamplatahdaptarIndtansa ()

EESLEAE _RESISTRY RESOURSE IG (IO _TEMDLATERSH T ER IMETAMOE)

#endif //__ TEWFLNT EACKFTER IKSTANCE_H

]|

56 Chapter 3 - Developing an RSE Adapter

The correct code is:

pr ot ect ed:
NN NN
/1 | Adapt er | nst anceBase overri des

FEEEEEE b b b rrd

virtual HRESULT Decl areArtifact Types
(FRW nt er nal Obj ect TypeRegi strar &j ect TypeRegi strar);

public:
/1 adapter retrieval

static CTenpl at eAdapt er | nst ance* Get Adapt erl nstance ()
{

return dynam c_cast <CTenpl at eAdapt er | nst ance *>
(FRWAdapt er | nst ance: : FRWGet Adapt er I nstance ());

}

This code defines the two required methods for this class:
= DeclareArtifactTypes
Declares all of the artifact types for this adapter
o GetAdapterInstance
Creates an instance of this adapter
5 Rename this code to your new adapter name. For example:
static CMyApplicationAdapterlnstance* Get Adapterlnstance ()
{

return dynam c_cast <CMyAppl i cati onAdapt er I nst ance *>
(FRWAdapt er | nst ance: : FRWGet Adapt er I nstance ());

}
Here is the correct code in the new adapter instance.h file:

/1 MyApplicationAdapterlnstance.h : Declaration of the
CW/Appl i cat i onAdapt er | nst ance

Setting Up an Adapter Project 57

#i fndef __ MYAPPLI CATI ONADAPTERI NSTANCE_H_
#define __ MYAPPLI CATI ONADAPTERI NSTANCE H_

#i nclude "resource. h" /1 main synbols
#i ncl ude " CPP Framewor k/ Adapt er | nst ance. h"

N NN NN NN NNy
1Hrrnr

/1 CWMyAppl i cati onAdapt er | nst ance
cl ass ATL_NO VTABLE CWAppl i cati onAdapt erl nstance :

publ i c CConmCoCd ass<CMyAppl i cati onAdapt er | nst ance,
&CLSI D_MyAppl i cati onAdapt er | nst ance>,

publ i c FRWAdapt er | nst ance

{

public:
CMy/Appl i cati onAdapt er | nst ance()
{

}
DECLARE_REG STRY_RESCURCEI D(| DR_MYAPPLI CATI ONADAPTERI NSTANCE)

pr ot ect ed:
NN
/'l 1 AdapterlnstanceBase overrides
NN

virtual HRESULT Decl areArtifact Types
(FRW nt er nal Obj ect TypeRegi strar &j ect TypeRegi strar);

public:
/1 adapter retrieval
static CMyAppli cati onAdapt erl nstance* Get Adapterlnstance ()
{

return dynam c_cast <CMyAppl i cati onAdapt er I nst ance *>
(FRWAdapt er | nst ance: : FRWGet Adapt er I nstance ());

}
b
#endi f //_ MYAPPLI CATI ONADAPTERI NSTANCE _H

58 Chapter 3 - Developing an RSE Adapter

Modifying the New Adapterinstance.cpp

1 Copy the following line from TemplateAdapterInstance.cpp and paste it into your
new adapter instance cpp file after the other #include statements.

#i ncl ude "CPP Franmewor k/ RDS| . h"
2 Implement the register method in MyApplicationAdapterInstance.cpp by copying

the following code from TemplateAdapterInstance.cpp and pasting it into
MyApplicationAdapterInstance.cpp.

HRESULT CTenpl at eAdapt er | nstance: : Decl areArti fact Types
(FRW nt er nal Obj ect TypeRegi strar &Obj ect TypeRegi strar)

{

/| bj ect TypeRegi strar. AddArtifact Type (_T(" Sanpl eArtifact Type"),
| NTERNAL_OBJECT_FACTORY(CSanpl eArti fact Type),
| NTERNAL_OBJECT_REQ STRAR (CSanpl eArtifact Type));

return S_OK;
}
3 Rename the instance as follows:

HRESULT CWAppl i cati onAdapt erl nstance: : Decl areArti fact Types
(FRW nt er nal Obj ect TypeRegi strar &Obj ect TypeRegi strar)

{

/| Obj ect TypeRegi strar. AddArtifact Type (_T("Sanpl eArtifact Type"),
| NTERNAL _OBJECT_FACTORY(CSanpl eArti f act Type),
| NTERNAL_OBJECT_REQ STRAR (CSanpl eArti fact Type));

return S_OK;

Setting Up an Adapter Project 59

| L ++ - [MyfApplicatinonidepterinst amcecpp]

EMMWHHMMH

|2 o DR Gfeie | ‘|
clazs membes| :Il clemsbiifectT ppe :Ia - ||@ ¥ H |T|!_-1 b ||-ﬂ|
_.‘]H FA MYREE] et onREas-CaT INBGans e . CRT g lementation of CHYRERL 1<
1 Hirclude nstdafs. hn
:ﬂ] Hincludse "Myhpplication.h"
i Hincluda "Evhpplicationidapterinstance . hY
Hinclwda Y"3IPP FramewoCk/RDEL R
____________________ YT Iy YTy
J =Y REE] lea b lonRdapbel Ebance
poeilnat
HEESULT yhpplicationidapberinsbance: :Declarehrti faceTypes [(FRHI
L]
O] et TypeRegistrar. Addhrt i factType [_T("SanplahTtlfactTyre
pheilnst ratumm 8 GK;
|
|
pzilnsi

The correct code for your new adapter instance cpp file is:

/1 MyApplicationAdapterlnstance.cpp : | nplenmentation of
CMy/Appl i cati onAdapt er | nst ance

#i ncl ude "stdaf x. h"

#i ncl ude "MyApplication.h"

#i ncl ude "M/ Appl i cati onAdapt er | nst ance. h"
#i ncl ude "CPP Franmewor k/ RDSI . h"

NN NNy
/1 CMyApplicati onAdapt er |l nst ance

HRESULT CWMyAppl i cati onAdapt er| nstance:: Decl areArtifact Types
(FRW nt er nal Obj ect TypeRegi strar &Mj ect TypeRegi strar)

{

/| Obj ect TypeRegi strar. AddArtifact Type (_T("Sanpl eArtifact Type"),
| NTERNAL_OBJECT_FACTORY(CSanpl eArti f act Type),
| NTERNAL_OBJECT_REG STRAR (CSanpl eArtifact Type));

return S_OK

60 Chapter 3 - Developing an RSE Adapter

DeclareArtifactTypes is where each artifact type is registered, using the
AddArtifactType method for each artifact type. See the “Using RSE Adapter
Interfaces” chapter of this manual for more information.

Modifying the New stdafx.h
In the new adapter project’s stdafx.h file:
Add the following lines just below the #i ncl ude <at| com h> statement:
#include "CPP Franework/rdsi.h"
#i nclude "resource. h"

#i nmport "include/ AdapterProtocol.tlb" no_inplenmentation
rename("GU D', "_GU D') renanme_nanespace(" RDSI Adapt er Prot ocol ")

Note: You import your integrated product library in stdafx.h and you have to include
this line in stdafx.h. For example, in the MyApplication adapter:

#i nport MyApplication.tlb

You are now ready to build the new adapter dll.

Building the New Adapter dll
Click Build > Build MyApplication.dll

Your new adapter is now available from all RSE client applications. For example, run
the Test Framework sample application (TestFramework.exe) and the list box now
includes the new adapter.

Setting Up an Adapter Project 61

meevenrk

Teoks Help
Tt |Sulitiact GetfielsindFiomdiitiact; =| Desciplon
This best restumre: & filsed sl of relsled sifilfacts for & given base
Adapier. [Aoee =] velationship type ared et sting
Batifach Tope EEELH =
Fuidrars
Fisgfea
Fimss
TeamTesl -
-
" [Wamings: O [Homa D WA dapber F SEAdaplerwaru srctadshT et ramescrk

When you define artifact types, they are available from this client application.

You can now define and implement artifacts that map to objects in your integrated
product.

62 Chapter 3 - Developing an RSE Adapter

Using RSE Adapter
Interfaces

This chapter provides information on implementing the artifact types for a given
adapter. This includes:

» Registering artifact types in an AdapterInstance class
* Implementing each artifact type in an InternalObject-derived class

For each artifact type, this includes defining and implementing the properties,
relationships, and locators. You also define the locator arguments for constructing
the locators. For a full listing of the methods for implementing artifact types, see
the “Adapter Interface Methods” chapter of this manual.

Additional topics include:
Registering creation arguments
Defining and implementing artifacts using the maps mechanism
Internal object to Integrated-Product object description

Adapter internals information

Overview

The RSE object model provides one unified API for access to all Rational
Suite-enabled integrated products. This common object model represents integrated
product-specific objects as artifact types. RSE enables this common object model
through adapters.

Figure 8 illustrates the architecture through which a client retrieves information from
an integrated product.

63

Figure 8 Retrieving Information from an Integrated Product

RSE Client Applications

!
I

RSE Adapters

A

Integrated Products

Clients request artifacts. Adapters map artifacts to integrated-product objects.

Adapters define artifacts as internal objects. An internal object is the implementation
class for a specific artifact type. The RSE core implements this architecture by creating
instances of the artifacts and returning them to the client.

Figure 9 illustrates the architecture by which an artifact type represents an
integrated-product object.

Each artifact type is represented by an internal object class that is defined in a
given adapter.

Each adapter links the internal objects to their corresponding integrated product
objects.

64 Chapter 4 - Using RSE Adapter Interfaces

Figure 9 Representing an Integrated Product Object

Adifact

!

Internal Object

!

Integrated-Product Object

There is a one to one correspondence between artifacts and internal objects. Each
artifact is linked to an internal object through the RSE core. The front end of RSE Core
works with artifacts, the backend (CPP Framework and the adapters) works with
internal objects. Users of the client interfaces only see artifacts. Writers of adapters
work with internal objects. This separates functionality and isolates the RSE Core
from the adapters.

RequisitePro Example

Figure 10 illustrates a client application retrieving information from RequisitePro
through the RSE architecture.

Overview 65

Figure 10 RequisitePro Example

RSE Client Applications

Integrated Products

In this example, a client application retrieves RequisitePro objects through the ReqPro
adapter as follows:

The RSE core processes the client request and communicates with the ReqPro
adapter.

The ReqPro adapter links the RSE object model to the RequisitePro object model.
The adapter acts as a server to RSE clients. The RSE object model maps artifact
types to integrated-product objects, using internal object classes.

The ReqPro adapter gets the RequisitePro object and returns the corresponding
internal object. Each internal object class corresponds to an artifact type.

The RSE core creates the artifact instance and returns it to the client application.

If the client request is for a RequisitePro Project, then the association between objects
is as follows:

The client requests a Project artifact type, passing in the argument for the Project
Path in order to locate the Project.

66 Chapter 4 - Using RSE Adapter Interfaces

» The ReqPro adapter locates the RequsitePro Project and returns an instance of the
associated internal object (CProject).

+ The RSE core creates the corresponding artifact instance and returns it to the client.

The ReqPro Project artifact type is defined as the CProject internal object class in the
ReqPro adapter. This internal object links to the actual RequisitePro Project object.
Figure 11 illustrates the architecture by which a Project artifact type represents a
RequisitePro Project object.

Figure 11 ReqPro Adapter Project Artifact Type

Project

Summary
In review:

Artifacts represent objects in the integrated products. Internal object classes
implement this mapping.

Each artifact type corresponds to an internal object class.
Each internal object class maps to a specific object type in an integrated product.

For more information see the “Internal Object to Integrated-Product Object” section of
this chapter.

Overview 67

Registering Artifact Types

Once you have defined and set up an adapter (as the previous chapter of this manual
presents), you register the artifact types for the adapter in its AdapterInstance class.
The AdapterInstance associates each artifact type and its corresponding internal
object class.

= The artifact types are registered and located by an adapter’s AdapterInstance
object.

+ For each artifact type, you define and implement an internal object class.
Each internal object class is a FRWInternalObject-derived subclass.

In each subclass, you define an artifact type’s properties, relationships, and
locators using InternalObject methods. You also define the artifact arguments for
the artifact references.

Adapter Instance
The adapter instance object:
Links an adapter to an integrated-product server.
Declares the artifact types in an adapter

The adapter instance object locates the internal objects for the integrated product. The
adapter instance makes these artifact types available to RSE client application
requests. The complete list of subclasses is what the client interface
Adapter.StaticArtifactTypes method returns.

The adapter instance creates an InternalObjectTypeRegistrar object in which it
declares its artifact types.

Declaring and Adding Artifact Types

Each adapter instance registers its artifact types with the DeclareArtifactTypes
method. Within this overridden method, each artifact type for an adapter is defined
with the AddArtifactType method of the InternalObjectTypeRegistrar class. This
registers the name of each artifact type and associates each implementation (internal
object) class with its artifact type. The actual registration is done by the static Register
method of each implementation class.

For an existing adapter, you can add functionality to an adapter in two ways:

Adding artifact types

68 Chapter 4 - Using RSE Adapter Interfaces

Defining and implementing additional internal object subclasses and associating
them with artifact type names using the AddArtifactType method.

* Adding functionality to existing artifact types
Implementing additional specifications to existing internal object subclasses.

In the InternalObjectRegistrar object, you define method calls that make the calls
to an integrated product server. The RSE core implements the method calling
mechanism to the C++ Framework.

For descriptions of the available methods in the adapter interfaces, see the “Adapter
Interface Methods” chapter of this manual.

ReqPro Adapter Example

Figure 12 shows the FRWInternal COMObject subclasses implemented by the ReqPro
adapter. (It is not a complete specification of the objects implemented by the ReqPro
adapter.) These internal objects map to the ReqPro artifact types that are declared and
registered in the ReqProAdapterInstance.

Figure 12 ReqPro Adapter Internal Objects

FRW InternalCOMObject

(from CPP Framework COM classes)

b

CAttributeValue CRegDocument CRevision CDiscussion CRelationship CUser

CRequirementType CResponse CDocumentType CProject CRequirement CGroup

The following implementation classes define the static artifact types in the ReqPro
adapter:

CProject

CRequirement

Registering Artifact Types 69

» CRelationship

* CRequirementType

+ CDiscussion
CResponse
CUser
CGroup

« CAttributeValue

+ CRegDocument
CRevision
CDocumentType
CView

= CPermission

Adding Artifact Types

The following code from the ReqPro adapter defines the Project and Requirement
ArtifactTypes. CProject and CRequirement are internal object subclasses. The
DeclareArtifactsTypes method overrides the method in the AdapterInstance base
class of the C++ framework.

HRESULT CReqPr oAdapterlnstance:: Decl areArtifact Types
(FRW nt er nal Obj ect TypeRegi strar &Obj ect TypeRegi strar)

{

Regi strar. AddArtifact Type (_T("Project"),
NULL,
| NTERNAL_OBJECT_FACTORY(CPr oj ect),
| NTERNAL_OBJECT_REG STRAR (CProj ect)
fal se);

Regi strar. AddArti fact Type (_T("Requirement"),
NULL,
| NTERNAL_OBJECT_FACTORY(CRequi r enent),
| NTERNAL_OBJECT_REG STRAR (CRequi renent)
true);

The arguments for the AddArtifactType method are:
Artifact type

70 Chapter 4 - Using RSE Adapter Interfaces

The name of artifact type. For example, “Project”.
* Superclass

The name of the superclass for an artifact type. NULL if there is not a superclass.
+ Implementation class

The internal object factory. This argument associates an internal object class and
the artifact type. The internal object factory instantiates the object. For example,
instantiate a CProject internal object.

*+ Internal object registration method.

The Register method is passed the registration object context and constructs the
Project registrar object. The registrar object knows how to call methods of the
internal object (CProject).

This associates the internal object class and artifact type. For example, in the
ReqPro adapter instance, associate the Project artifact type with the CProject
internal object class. The implementation of this association is in the Register
method in Project.cpp.

= Abstract

A Boolean for whether this is an abstract artifact type. For example, Project is not
an abstract class and Requirement is an abstract class.

An abstract artifact type is a type that serves as a Superclass only. An abstract
artifact type has no instances.

The DeclareArtifactTypes method registers all static artifact types for an adapter. This
registers the name and associates the implementation class with the type. The actual
registration of properties, relationships, and locators is done by the static Register
method of each implementation class.

Dynamic Artifact Types

Artifact types registered by the adapter namespace are available to all namespaces
within the adapter. Dynamic types can be registered using the
RegisterDynamicArtifactTypes method of other namespaces implemented by this
adapter.

Dynamic artifact types are user-defined artifacts that are instantiated within a
container artifact. For example, a ReqPro Project artifact is a dynamic artifact type
container for user-defined Requirement artifact types. These dynamic Requirement
types, as well as all dynamic Properties and Relationships, are instantiated when the
Project is instantiated. This dynamic registration occurs within the Project creation.

Registering Artifact Types 71

Each requirement type has a TagPrefix. The ReqPro adapter represents these types as
artifact types named "<TagPrefix>Requirement" (for example UCRequirement or
FEATRequirement). The base type for all of the user-defined requirement types is the
defined artifact type "Requirement". Any requirement can be viewed through this

type.

For more information on InternalObjectTypeRegistrar methods and defining dynamic
types, see the “Adapter Interface Methods” chapter of this manual.

Implementing Artifact Types for an Adapter

After defining the artifact types in the AdapterInstance Registrar object with the
AddArtifactType method, you implement each artifact type in an
InternalObject-derived class.

Implementing a Class for each Artifact Type

You implement an artifact type by defining the properties, relationships and locators
for that type in an InternalObject-derived class Registrar object. You first construct the
Registrar object for this class. For example:

FRW nt er nal Obj ect Regi st rar <CRequi renment > Regi strar (Context);

The following code is from the ReqPro adapter. It implements the Requirement
artifact type.

cl ass CRequi renent : public FRW nt er nal COMbj ect

{
public:

static void Register (const FRWRegi strati onContext &Context);

b
Register is a static method implemented by FRWInternalObject subclasses. This
method registers all properties and relationships for the type.

Dynamic artifact type registration can be contained within a static artifact type class.
For example, in RequisitePro, a dynamic requirement type can be registered within
the Project registration. The information necessary to register dynamic types is
available from the Context argument.

72 Chapter 4 - Using RSE Adapter Interfaces

Registering a Property

Register the properties for this object using the AddProperty method of the Registrar
object. The Registrar object sets up the framework classes necessary to map requests
to get and set property values to the implementation methods.

Each property type registration returns a unique Property ID that you can use later,
for registering locator arguments or creation arguments. The property ID return value
is an integer.

The following code defines the Text property of a Requisitepro Requirement:
/*static*/ void CRequirement::Register (

const FRWRegi strati onCont ext &Context)

/1 Construct a Registrar object for this class

FRW nt er nal Obj ect Regi st rar <CRequi renment > Regi strar (Context);

Regi strar. AddProperty ("Text",
Get Text, Set Text,
VT _BSTR,
frwDescription);

The arguments for the AddProperty method are:
* Property Name
* Get method

The name of the implementation method that retrieves this property from the
internal object. The argument for the Get method is a variant value or a null
pointer.

+ Set method (if not a read-only property)

The name of the implementation method that can modify this property. The
argument for the Set method is a variant value or a null pointer.

+ Data type
The data type of this property

+ Semantic data type

Implementing Artifact Types for an Adapter 73

The semantic data type, if any, of this property. A semantic data type is a
description of a data type. This provides extra information on a property's or
artifact argument's data type. The semantic data types are: rsDataObject,
rsDescription, rsDirectory, rsFileMoniker, rsFileOrDirectory, rsFilePath, rsName,
rsNone, rsPassword, rsURL, rsUserName.

* Maximum size
The maximum size of this property.

The following code implements the Text property of a RequisitePro Requirement:

voi d CRequiremnent:: Get Text (_variant _t &Val ue)

{
Val ue = minterfacePtr->Cet Text();
}
voi d CRequi renent:: Set Text (_variant _t Val ue)
{
bstr_t bstrValue = (bstr_t) Val ue;
m nt er f acePt r - >Put Text (bstr Val ue) ;
m nterfacePtr->Save ();
}

The Get method takes a variant reference argument value. The Set method takes a
variant argument value.

To add a property that cannot be modified, you can use the AddProperty_Readonly
method. For a complete listing of property type methods, see the “Adapter Interface
Methods” chapter of this manual.

Registering a Relationship

Register the relationships for this object using the AddRelationshipType method of
the Registrar object.

The following code defines the AttrValues relationship of a RequisitePro
Requirement:

/*static*/ void CRequirement::Register (
const FRWRegi strationContext &Context)

/1 Construct a Registrar object for this class
FRW nt er nal Obj ect Regi st rar <CRequi remrent > Regi strar (Context);

74 Chapter 4 - Using RSE Adapter Interfaces

Regi strar. AddRel ati onshi pType (Child,
"AttrVal ues",
"Attri buteVal ue",
Get Attr Val ues,
Zer oToMany) ;

The arguments for the AddRelationshipType method are:
» Relationship type (RelationshipCategory eCategory)
For example, Peer, Child, Descendant, or Parent.
* Relationship name
The artifact type name
The name of the artifact type that this relationship points to.
Get method (GetRelated ArtifactMethodPtr pGetMethod)

This method includes product specific code (for example, RequisitePro
extensibility (RPX)) that enumerates the attribute values and returns them in the
collection. The argument for the GetMethod is a pointer to the
FRWArtifactAdapterCollection.

Cardinality

For example, ZeroToMany or ZeroToOne.
Create method, if any

Delete method, if any

The arguments in the above example specify that the Requirement artifact type has a
Child relationship type named AttrValues to the AttributeValue artifact type. The
GetAttr Values method implements this relationship and there can be zero to many
attribute values for the Requirement.

The following code implements the AttrValues relationship of a RequisitePro
Requirement:

void CRequirenent:: GetAttrVal ues(FRMrtifact AdapterCollection *
pQoj ect s)

{
I ong | Count = O;
long | Startlndex = 1;

Implementing Artifact Types for an Adapter 75

/1 Get the collection object

_AttrVal uesPtr [AttrColl = mnterfacePtr->GetAttrVal ues();

| Count = | AttrColl->Get Count();

int AttributeVal ueTypel D = FindArtifact Typel D("AttributeVal ue");
_AttrVal uePtr |ltenPtr;

for (long i = IStartlindex; i <= 1Count; i++)
{
//Get the ith itemfromthe collection
_variant _t IVar(i);
Il1tenPtr = | AttrCol |l ->Cetlten(l Var, eAttrVal ueLookup_I ndex) ;
if (IltenPtr == NULL) continue;
pObj ect s- >Add(Attri buteVal ueTypel D, |ltenPtr, this);

}

A realtionship type can return the collection of arguments for creating an artifact.
These arguments are defined in the adapters as creation arguments.

For a complete listing of relationship type methods, see the “Adapter Interface
Methods” chapter of this manual.

Registering a Locator

Locators provide a uniform platform for maintaining and resolving references to RSE
artifacts. This creates a unified platform for implementing integrations and
maintaining references between integrated products.

The implementation of a locator consists of:
* Locator registration

The locator registration defines the locator for the given artifact type being
registered. This registration defines the locator and the properties of the artifact
that are to be used as parameters. When developing new adapters, every locator
parameter must be registered as a property of the locator's artifact type. For the
existing Suite integrated product adapters, every locator parameter is registered as
a property of the artifact.

= Locater resolution

76 Chapter 4 - Using RSE Adapter Interfaces

Artifact reference resolution is the mechanism that the adapters use to pass
references from artifacts to the RSE core. Locators provide consistent support for
use case management (UCM) references.

Defining a Locator

Register the locators and the locator arguments using the AddRelativeLocator (or
AddAbsoluteLocator) and AddLocatorArgument methods of the Registrar object.

You use the Add locator methods to define each locator for each artifact type. The
AddLocatorArgument method defines each argument for an artifact locator. These
arguments can map to artifact properties, be a defined argument such as UserName
or Password, or map to an internal property ID.

The following code defines the Display Name Locator of a RequisitePro Requirement.
This locator is a relative locator, relative to Project. Project is the context artifact.

/*static*/ void CRequirenent:: Register (

const FRWRegi strationCont ext &Context)
{
/1 Construct a Registrar object for this class

FRW nt er nal Obj ect Regi st rar <CRequi renment > Regi strar (Context);

Regi strar. AddRel ati veLocator (LOCATE_W TH_TAG
"Project”,
Locat eWt hTag,
LOCATE_DEFAULT_DI SPLAY_NAME) ;
Regi strar. AddLocat or Argunment (LOCATE_W TH_TAG, 1, "Full Tag");

}
The arguments for the AddRelativeLocator method are:

= Locator ID

The string definition for the locator. In the above example, LOCATE_W TH_TAGis
the locator ID.

* Relative artifact type name

This is the context artifact type for a client application. Project is the relative
artifact type. In the above example, this locator is relative to Project.

= Locate method

Implementing Artifact Types for an Adapter 77

The method that implements the locator. In the above example, LocateWith Tag is
the method that implements this locator.

* Locator flag

In the above example, LOCATE_DEFAULT_DI SPLAY_NAME is the locator flag,
specifying that this locator is a default display name locator.

The LOCATE_W TH_TAGRequirement type locator is a relative locator that has one
locator argument. FullTag is the artifact property that maps to this locator argument.

You can also define locators that are not relative to another artifact. These are defined
as Absolute locators. For more information, see the “Adapter Interface Methods”
chapter of this manual.

These are common combinations that may be used when registering locators:

#defi ne LOCATE_DI SPLAY_NAVE_AND | D
LOCATE_DI SPLAY_NAME | LOCATE_| MWUTABLE. | D

#define LOCATE_DEFAULT DI SPLAY_NAVE_AND | D
LOCATE_DEFAULT_| MMUTABLE_| D | LOCATE_DEFAULT DI SPLAY_NAVE

Defining Locator Arguments

The AddLocatorArgument method specifies the artifact arguments for constructing
the locator. There are three formats of this method:

* Mapping an argument to an artifact property ID.
» Mapping an argument to an artifact property name.
» Specifying an argument that is not a property.

In the previous code example, for the display name locator definition of the
RequisitePro Requirement artifact type,

Regi strar. AddLocat or Argunent (LOCATE_W TH TAG, 1, "Full Tag")
the AddLocatorArgument defines a locator argument:
o LOCATE_W TH_TAGis the locator ID for this relative locator.

© “1”is the param argument. The "1" represents the ordinal of the parameter (that
is, first = 1, second = 2, third = 3, and so on).

This argument is mapped to the FullTag property. This allows the RSE Core to get
the proper argument value when it forms a locator for an existing Requirement
object.

¢ FullTag is the name of the artifact property that maps to this argument.

78 Chapter 4 - Using RSE Adapter Interfaces

The following code implements the Display Name Locator of the ReqPro
Requirement.
bool CRequirenent::LocateWthTag (FRWnternal Cbj ect *pRel ativeObject,
const FRWArgunents &Parans,
FRW nt er nal Obj ect Ref erence &Cont ext)
{
CProj ect *pProject = dynam c_cast <CProj ect*> (pRel ati veQbj ect);
_variant _t vtTag = Parans. GetArg (1);
// Product specific code...
_ProjectPtr plnternal Project = pProject->Getlnternal ProjectPtr ();
int i Typel D
_Requirenent Ptr pRequirenent;
pRequi rement = pl nt er nal Proj ect - >Get Requi r enent (vt Tag,
ReqPr 040: : eRegLookup_Tag,
ReqPr 040: : eRegWei ght _Medi um
ReqPr 040: : eReqFl ag_Enpty)
i f (pRequirenment == NULL)
return false;

i Typel D =
pProj ect->Fi ndArtifact Typel D(Get Arti f act TypeNanme(pRequirenent));

_ASSERT (i TypelD !'= 0);

if (i TypelD == 0)
return fal se;

Cont ext . Attach(i Typel D, NewRequi r ement (pRequi renent, pCProject));
return true;

}
The LocateWithTag method has three arguments:

» pRelativeObject

This is the relative object. The locator locates an object starting at this context. In
this example, Project is the relative artifact.

= Params

Implementing Artifact Types for an Adapter 79

The locator arguments. Params contains the parameters to the locator that are used
to find an object. In this case there is only one parameter, the tag.

= Context

The context object is the object to be located. Context contains information that is
used to attach the located object (represented by an internal object) to an RSE
artifact that represents that object.

In the call to the Attach method, the internal object is created by the call to
NewRequirement. The iTypelD parameter identifies the type of artifact that is being
created.

The Attach method saves the parameter passed to it in a member variable of the object
type so that the object can access the corresponding integrated product object when
necessary.

Defining a Collection of Artifact Locators

When developing a new adapter, every locator argument must be registered as a
property of the locator’s artifact type. The locator arguments are necessary to
construct the artifact locator. For example, you need the Path of a Rose model in order
to construct a Model artifact locator that locates the Model.

This section shows how a portion of the Rose adapter could be implemented. Table 1
lists artifact types and the artifact arguments for each of these artifact type locators.

Table 1 Locator Arguments

Artifact Type Artifact Locator Arguments
Model Path
Package Name
Qualified Name
Class Name
Item UniquelD

The adapter defines the Item class as a superclass of the Model, Package and Class.
Therefore, any Item locators also apply to the Model, Package and Class types.

80 Chapter 4 - Using RSE Adapter Interfaces

Locator Definitions
This section provides locator definitions for a portion of the Rose adapter.

The Model registers one locator with one parameter, the path. The locator is
registered as an absolute locator. The following table describes the locator:

Table 2 Locate Model by Path

Model Locator Type | Locator String

Display Name Rose | Model(Path="")

Immutable ID Rose |1 |Model(")

The Package registers two locators, one by Name and one by Qualified name. Each
locator is relative to the model. The following tables describe the locators:

Table 3 Locate Package by Name

Package Locator Type | Locator String

Display Name Rose | Model(Path="") | Package(Name="")

Immutable ID Rose | 1.1| Package ("","")

Table 4 Locate Package by Qualified Name

Package Locator Type | Locator String

Display Name Rose | Model(Path="") | Package(QualifiedName="")

Immutable ID Rose | 1.2| Package ("","")

The Class registers one locator relative to the Package. Since the Package has two
locators, the Class adds its relative definition to each. The following tables describe
the locators:

Implementing Artifact Types for an Adapter 81

Table 5 Locate Class, Relative to Package Name
Class Locator Type Locator String
Display Name Rose | Model(Path="") | Package(Name="") | Class(Name="")

Immutable ID

Rose|1.1.1| Class (", "™, ™)

Table 6 Locate Class, Relative to Package Qualified Name
Class Locator Type Locator String
Display Name Rose | Model(Path="") | Package(QualifiedName="") | Class(Name=""

Immutable ID

Rose|1.2.1| Class("™,"","")

Lastly, the Item registers one locator relative to the Model. The following table

describes the locator:

Table 7 Locate Item, Relative to Model
Item Locator Type Locator String
Display Name Rose | Model(Path="") | Item("UniquelD="")
Immutable ID Rose |1.1|Model("", ")

As a result, the following display name locators are supported by the following

objects:
Table 8 Supported Display Name Locators
Artifact Locator Type | Locator String
Item Rose | Model(Path="") | Item("UniqueID="")
Model Rose | Model(Path=""
Package Rose | Model(Path="") | Package(Name=")
Rose | Model(Path="") | Package(QualifiedName="")
Rose | Model(Path="") | Item("UniqueID="")

82 Chapter 4 - Using RSE Adapter Interfaces

Artifact Locator Type | Locator String

Class Rose | Model(Path="") | Package(Name="") | Class(Name="")

Rose | Model(Path="") | Package(QualifiedName="") | Class(Name="")

Rose | Model(Path="") | Ttem("UniqueID="")

For a complete listing of locator methods and their arguments, see the “Adapter
Interface Methods” chapter of this manual.

Registering Creation Arguments

Creation arguments are any arguments required to create an artifact. This applies only
in cases where creation of new artifacts is supported. The client must specify the
values of these arguments when creating an artifact. The adapter uses these
arguments to create the artifact.

The situations where a new artifact is created can be:

+ Creation of a dynamic type contained within a static artifact type (for example, a
ReqPro dynamic Requirement type created within the Project artifact type)

» Creation of an instance of a static artifact type (for example, creating a new Project
artifact).

In either of the two situations, the adapter is responsible for specifying what the
required arguments are by calling AddCreationArgument:

+ Creation of a dynamic type requires the arguments to be registered with
InternalObjectTypeRegistrar: AddCreationArgument.

» Creation of a static type requires the arguments to be registered with
InternalObjectRegistrar:: AddCreationArgument.

A creation method is registered through a call to a CreateArtifact method (for
example, CreateRequirement or CreateDynamicRelated Artifact). The types of artifacts
created may be dynamic or static.

In the ReqPro adapter, the Project class provides examples of CreateArtifact and
CreateDynamicRelated Artifact. There are creation arguments for both static and
dynamic artifact types. Note that CreateRequirement is specific to the ReqPro adapter
whereas CreateDynamicRelated Artifact applies to adapters in general.

The CreateRequirement method takes three parameter arguments,
ArtifactTypeName, Name, and Text. These arguments are registered creation
arguments for creating a new requirement:

Implementing Artifact Types for an Adapter 83

Regi strar. AddCr eat i onAr gunent (“Requi renments”, 1, “TypeNane”,
VT_BSTR, frwiNone);

Regi strar. AddCr eat i onAr gunent (“Requi renments”, 2, “Name”, VT_BSTR,
frwNane, -1, “New Requirement”);

Regi strar. AddCr eat i onArgunent (“Requi rements”, 3, “Text”, VT_BSTR,
frwDescription, -1, “This is the text.”);

When you register creation arguments, each argument is assigned an ordinal
parameter id. For example, if three creation arguments (A, B, and C) are registered,
they are assigned parameter ids 1 (for A), 2 (for B), and 3 (for C).

CreateDynamicRelated Artifact takes two parameter arguments, Name and Text.
These arguments are registered creation arguments for creating dynamic related
artifacts:

Regi strar. AddCr eat i onArgunent (i Proj ect Typel D, bstrRel ati onshi pNane,
1, “Nanme”, VT_BSTR, frwNanme, -1, “New Requirenent”);

Regi strar. AddCr eat i onArgunent (i Proj ect Typel D, bstrRel ati onshi pNane,
2, “Text”, VT_BSTR, frwbescription, -1, “This is the text.”);

For more information, see the “Adapter Interface Methods” chapter of this manual.

Using the Maps Mechanism

The CPP Framework provides an alternative Maps mechanism that simplifies artifact
type registration and property implementation in adapters. You can register the
properties, relationships, and graphics format types for the artifact types in an
adapter, using the mapping mechanism that is provided in the C++ Framework. This
mechanism simplifies the registration for an adapter.

The Maps mechanism is supported by a collection of macros and declarations in the
include files Maps.h and InternalObject.h in the directory, rdsi\adapters\CPP Framework.
The Maps mechanism (referred to henceforth as just, Maps) is built on top of the
normal CPP Framework interfaces that register types. The primary advantages of
using Maps are that:

+ The registration of properties and relationships is more compactly achieved

* Properties that simply return point product values "as is" are automatically
implemented.

+ The declaration of properties and relationshisp can be made more compact.

84 Chapter 4 - Using RSE Adapter Interfaces

The easiest way to use Maps is to emulate an existing example. The FileSys adapter
provides a simple example. The MSProject adapter provides a richer example. Note
that the MSProject adapter also demonstrates the value of defining new integrated
product-specific declaration macros. See the Root.h file in MSProject adapter project
as an example.

Registering Maps

Maps registration occurs in the Register function of an artifact type with the following
macro:

REG STER_MAPS (typeNane, Context)
The arguments are the artifact type name and the registration context.

The FileSys adapter Directory artifact type implementation class, CDirectory, uses
maps for its property and relationship registration. In the registration of this artifact
type, in Directory.cpp, the following statement registers these maps:

REA STER_MAPS (Directory, Context)

The mapping functionality is included in the implementation classes with the include
statement:

#i ncl ude " CPP Franmewor k/ Maps. h"

Declaring Artifact Types

Maps provides the following macros for declaring artifact types (usually used in the
adapter instance .cpp file):

DECL_ARTIFACT_TYPE (typeName)

DECL_ARTIFACT_SUBTYPE (typeName, superclassName)
where:

typeName — the name of the artifact type declared

superclassName — the super type for an artifact subtype

For example, in the FileSys adapter, Directory is a subtype of DirectoryObject. The
superclass declares itself as follows:

DECL_ARTI FACT_TYPE (DirectoryQObject)

The DECL_ARTI FACT_SUBTYPE statement enables subtypes to inherit from the
superclass. The following statement enables Directory to inherit all of
DirectoryObject's properties and relationships.

DECL_ARTI FACT_SUBTYPE (Directory, DirectoryQChject)

Using the Maps Mechanism 85

The arguments for this method are:

subclass

superclass

Defining Artifact Types

When using Maps, the implementation of an artifact type has the following structure:

DECL_ARTI FACT_TYPE (<artifact type nane>)

BEG N_PROPERTI ES (<artifact type name>)
<property macro>...

END_PROPERTI ES

BEG N_OVERRI DE_PROPERTI ES (<artifact type nane>)
<property override macro>...

END_OVERRI DE_PROPERTI ES

BEG N_RELATI ONSHI PS (<artifact type nane>)
<rel ationship macro>. ..

END_RELATI ONSHI PS

BEG N_OVERRI DE_RELATI ONSHI PS (<artifact type nane>)
<rel ati onship override macro>...

END_OVERRI DE_RELATI ONSHI PS
BEGA N_CGRAPHI C_FORVATS (<artifact type nane>)
<graphic fornat macro>...

END_GRAPH C_FORMATS

<remai nder of inplenentation>

Note that the implementation is divided into a number of sections delimited by
BEG N_<secti on nanme> and END_<secti on name>. Each of these sections is
required but may be empty. It is recommended that the comment “// none” be

86 Chapter 4 - Using RSE Adapter Interfaces

inserted in the event of an empty section. The<artifact type nane> isthe name
of the artifact being defined and is the same for each section. Within each section are
none or more calls to appropriate macros defined in the Maps.h file.

For example, in Directory.cpp:

DECL_ARTI FACT_TYPE (Directory, DirectoryQObject)

BEG N_PROPERTI ES (Directory)
propertyRS (DirectoryPath, VT_BSTR, frwDi r ect ory)
END_PROPERTI ES

BEG N_OVERRI DE_PROPERTI ES (Directory)
/! none

END_OVERRI DE_PROPERTI ES

BEG N_RELATI ONSHI PS (Di rectory)
naryR (Contents, DirectoryObject, Child)
END_RELATI ONSHI PS

BEG N_OVERRI DE_RELATI ONSHI PS (Direct ory)
/'l none

END_OVERRI DE_RELATI ONSHI PS

BEG N_CGRAPHI C_FORMATS (Directory)
/1 none

END_GRAPHI C_FORMATS

Definition Registration Macros

The mapping mechanism provides macros for registering artifact type properties,
relationships and graphics format types. For properties and relationships there are
additional macros for overriding inherited properties and relationships.

Using the Maps Mechanism 87

Registering Properties
A <property macro> defines a property and can take any of the following forms:
property(name, dataType)
Register a property type.
propertyR(name, dataType)
Register a read-only property type.
= propertyS(name, dataType, semType)
Register a semantic property type.
propertyRS(name, dataType, semType)
Register a read-only semantic property type.
The arguments are:
* name —name of the property defined
dataType — VARIANT type of property (for example, VIT_BSTR or VI_INT)

semanticType — the “frw” data type (for example, frwName) (frwNone when
omitted).

Each <property macro> defines a property with a specified name, data type, and
semantic type. The R indicates a read-only property is defined. S simply
distinguishes those macros that have the semanticType argument.

Note: The naming conventions for maps property macros are as follows:
© Ris Read-only

¢ Sis Semantic type

Registering Properties Example

The FileSys Directory artifact type registers the one property that is specific to
Directory as follows:

BEG N_PROPERTI ES (Directory)
propertyRS (DirectoryPath, VT_BSTR, frwDirectory)
END_PROPERTI ES

The propertyRS method registers a read-ony property with a specified semantic type.
The arguments for this method are:

The property name

88 Chapter 4 - Using RSE Adapter Interfaces

» The data type of this property
* The semantic type of this property

The following getMethod implements the DirectoryPath property:
void CDirectory::GetDirectoryPat h(_variant _t &Val ue)

{
CDirectoryQbject:: GetPath (Val ue);

}

Registering Override Properties

A property override is the registration of a property that overrides a property of an
object’s superclass. A <property override macro> overrides the implementation of an
inherited property and has the forms:

override_property(name)

override_propertyR(name)
where:

name is the property name

R designates a read-only property

Registering Relationships

An object can have a relationship to one (unary) or more than one (nary) instances of a
related artifact type.

Unary is a 0..1 relationship
Nary is a 0..n relationship
A <relationship macro> defines a relationship and unary or nary.
Note: The naming conventions for map relationship macros are as follows:
o Fis Filtered
© Ris Read-only

= Sis Semantic type

Registering a Unary Relationship
A unary <relationship macro> can take any of the following forms:

unary(name, relatedType, relCategory)

Using the Maps Mechanism 89

Register a unary relationship type.

* unaryF(name, relatedType, relCategory)

Register a filtered unary relationship type.
unaryR(name, relatedType, relCategory)

Register a read-only unary relationship type.
unaryS(name, related Type, relCategory, semType)
Register a semantic unary relationship type.

* unaryFR(name, relatedType, relCategory)

Register a filtered read-only unary relationship type.
unaryFS(name, relatedType, relCategory, semType)
Register a filtered semantic unary relationship type.

» unaryRS(name, related Type, relCategory, semType)
Register a read-only semantic unary relationship type.
unaryFRS(name, related Type, relCategory, semType)
Register a filtered read-only semantic unary relationship type.

The arguments are:
name — name of the relationship defined
relatedType — artifact type of the related artifacts
card — cardinality (ZeroToOne or ZeroToMany)
semType — semantic type of relationship (usually frwNone)
relCategory — relationship category (such as, Child, Peer)

In the FileSys adapter DirectoryObject artifact type, is the following unary
relationship:

BEG N_RELATI ONSHI PS (Di r ect or yObj ect)
unaryR (ParentDirectory, Directory, Peer)

END_RELATI ONSHI PS

The unar yRmethod registers a read-only relationship with Cardinality of zero to one
(unary). The arguments for this method are:

© The relationship name

90 Chapter 4 - Using RSE Adapter Interfaces

o The related artifact type
© The relationship type (relCategory)

Registering an nary Relationship
An nary <relationship macro> can take any of the following forms:
nary(name, relatedType, relCategory)
Register an nary relationship type.
* naryF(name, relatedType, relCategory)
Register a filtered nary relationship type.
naryR(name, relatedType, relCategory)
Register a read-only nary relationship type.
naryS(name, related Type, relCategory, semType)
Register a semantic nary relationship type.
naryFR(name, relatedType, relCategory)
Register a filtered read-only nary relationship type.
naryFS(name, relatedType, relCategory, semType)
Register a filtered semantic nary relationship type.
naryRS(name, related Type, relCategory, semType)
Register a read-only semantic nary relationship type.
naryFRS(name, relatedType, relCategory, semType)
Register a filtered read-only semantic nary relationship type.
The arguments are:
name — name of the relationship defined
related Type — artifact type of the related artifacts
card — cardinality (ZeroToOne or ZeroToMany)
semType — semantic type of relationship (usually frwNone)
relCategory — relationship category (such as Child, Peer)

For example, the relationships specific to Directory (there is only one called, Contents)
are listed as follows:

BEG N_RELATI ONSHI PS (Directory)

Using the Maps Mechanism 91

naryR (Contents, DirectoryQbject, Child)
END_RELATI ONSHI PS

This defines a Child relationship with cardinalityof one to many (0..n), named
Contents, pointing to DirectoryObject. The nar yRmethod registers a read-only
relationship. The arguments for this method are:

* The relationship name
The related artifact type
The relationship type (relCategory)

The following getMethod implements the Contents relationship:

void CDirectory:: Get Contents(FRWMrtifact AdapterCol |l ection *
pQj ect s)

{
Get SubFol der s(phj ects);

Get Fi | es(pObj ects);
}

Registering an Override Relationship

A relationship override is the registration of a relationship that overrides a
relationship of an object’s superclass. A <rel ati onshi p override nmacro>
overrides the implementation of an inherited relationship and takes one of these
forms:

override_relationship(name)
Override a relationship
override_relationshipF(name)

Override a filtered relationship

92 Chapter 4 - Using RSE Adapter Interfaces

Registering Graphics Format Types

A <graphic format macro> defines a graphic format for an artifact that has an
image and has the form:

f or mat (aspect, f or mat Type, descri pti on)
The arguments are:
= aspect

The type of object rendered, generally “File.”

formatType

The name of the graphic format. WMF, JPG, PNG, BMP, GIF, or ASIS.
» description

A textual description of the rendering (for example, “Render file as WMEF”)

For information on using the mapping mechanism for graphic formats type registra-
tion, see the “Adapter Interface Methods” chapter of this manual.

Handler Declaration Macros

The Maps mechanism also provides a number of macros used to declare the property
and relationship handler methods. These macros, defined in the file InternalObject.h,
are usually used in the “.h” file for the artifact type:

DECL_PROP(name)

Declare a read /write property.
DECL_PROPr(name)

Declare a read-only property.
DECL_NARYr(name)

Declare a read-only nary relationship.

DECL_NARY(name)

Declare aread/write nary relationship.
DECL_NARYfr(name)

Declare a filtered read-only nary relationship.

Using the Maps Mechanism 93

» DECL_NARYf(name)

Declare afiltered read/write nary relationship.
DECL_UNARYr(name)

Declare a read-only unary relationship.

» DECL_UNARY(name)

Declare aread/write unary relationship.

Pass-Through Property Definitions

When the property data returned by a point product is to be used “as is”, the handler
function(s) can be generated automatically by using one of the following declaration
macros instead of those described in the preceding section.

Note: The conventions for pass-through property definition macros are as follows:

0 (zero) indicates the type parameter ‘t’ (for type) is included

=]

r is Read-only

¢ m indicates that handler methods are to be called to get and set the property
DECL_PASS_THROUGH_PROPO(name, propName, t)

Declare a property with a property conversion type.
DECL_PASS_THROUGH_PROPOr(name, propName, t)

Declare a read-only property with a property conversion type.
DECL_PASS_THROUGH_PROP(name)

Declare a property type.

DECL_PASS_THROUGH_PROPr(name)

Declare a read-only property type.
DECL_PASS_THROUGH_PROPOm(name, getName, putName, t)

Declare a property using integrated-product handler methods and a property
conversion type.

DECL_PASS_THROUGH_PROPOmr(name, getName, t)
Declare a read-only property using integrated-product handler method.
DECL_PASS_THROUGH_PROPm(name)

Declare a property using integrated-product handler methods.

94 Chapter 4 - Using RSE Adapter Interfaces

» DECL_PASS_THROUGH_PROPmr(name)
Declare a read-only property type using integrated-product handler method.
The arguments are:
name — the name of the property seen by the adapter user
propName — the point product name of the property (when different)
+ getName - the interface to call to get the data when not a point product property
+ putName — the interfact to call to put the data when not a point product property

t - the type to which the property is to be converted, if necessary (for example,
bool, int)

Internal Object to Integrated-Product Object

The internal objects represent the integrated-product objects that have their own
extensibility interface for access to them. Each instance of an internal object class
represents an actual integrated-product object. For example the CProject ReqPro
internal object links RSE to a RequisitePro Project through the RPX API.

Note: The adapter objects that represent integrated-product objects are referred to as
internal objects; product-specific objects are referred to as COM IUnknowns.

In most cases, there is a one to one mapping between artifacts in RSE and COM
objects in the point product's API. In the adapters, when you create an internal object
to represent an artifact, you also store a pointer in that internal object to the
corresponding COM object in the integrated product.

When an adapter receives a request for a particular property or relationship of an
artifact, the adapter accesses this pointer in the internal object and uses it to invoke the
COM object in the integrated product to retrieve the required property or relationship
data. When retrieving a:

Property - the data returned by the integrated product is a value, typically a string.

Relationship - the data returned by the point product is a collection of COM
pointers (or one COM pointer for a relationship with a cardinality of 0..1).

For each COM pointer in a collection, the adapter creates a new internal object to
represent the COM object and stores the COM pointer in it.

Internal Object to Integrated-Product Object 95

The linking between an internal object and the corresponding integrated-product
object (represented as an IUnknown for COM) occurs in the Attach method. This
method sets up the connection between the adapter and the integrated-product
server.

In the following example, from the ReqPro Project internal object class:

m_pProject is an RPX (a RequisitePro-specific API) pointer to a RequisitePro
Project (after it is set by the following routine). This is the pointer to the
corresponding COM object stored in the internal object and it is used to get data
from the point product.

pInternalObject is the value used to set m_pProject in the Attach method.
HRESULT CProj ect:: Attach(lUnkown *pl nternal Cbject)

{
m pProj ect = plnternal Obj ect
nFul | Nane = (char*) m pProject->Get RQSFi | ePat h() ;
LockProj ect();
return FRW nt er nal COMbj ect: : Attach(pl nternal Obj ect);
}

The Project internal object class is created and is mapped to the object in the
integrated-product, referenced by m_pProject.

Getting an Application Object

An RSE client application can retrieve properties and relationships of an artifact type
through the IArtifact interface. It can also get the internal object that an artifact type
represents, using the Art i f act . Get | nt er nal Obj ect method. With this internal
object, a client can call integrated-product API methods directly.

In order to rerieve an object in an integrated product, you must first get the product’s
application, or server, object.

In the following RequisitePro-specific extensibility (RPX) code, located in the
RegProAdapterInstance class, RSE is calling the RPX connector class (getting an
instance of a connector object) and asking for the application object (COM server). In
this example:

MAPpPPt r is a pointer, of RequisitePro type _ApplicationPtr, to the RequisitePro
Application object.

connect or is an instance of the connector object.

96 Chapter 4 - Using RSE Adapter Interfaces

* ReqPr 040 is the namespace for the COM server object.
_ApplicationPtr CReqProAdapterlnstance:: Get ReqProApplication()

{
return Get Adapterl nstance()->Get ReqProApplicationlnternal ();
}
_ApplicationPtr CReqProAdapterlnstance:: Get ReqProApplicationlnternal ()
{
try {
if (mAppPtr == NULL) {
ReqPr 040: : _ConnectorPtr connect or (" ReqPro040. Connector");
if (connector) {
VARI ANT_BOOL bAutoStart = -1;
MAppPtr = connect or - >CGet Appl i cati on(&AutoStart);
connector = NULL;
}
}
return mAppPtr;
1}

Adapter Internals

This section provides a brief description of the communication between the RSE core
and the RSE adapters.

C++ Framework Classes

The C++ implementation of the adapter interfaces handles events by either calling
methods of the artifact implementation class, or by calling methods of the internal
COM object directly.

In the C++ framework, the adapter interfaces contain objects that optimize and
simplify the implementation of the artifact class, unifying all of the code necessary in
one class.

CAdapterInstance

This class uses the AdapterInstance COM object to communicate with the RSE
Core. When implementing adapters, developers derive the adapter instance
objects from this class.

Adapter Internals 97

* ClInternalObjectRegistrar

This class uses the ArtifactAdapter COM object to communicate with the RSE
Core. When implementing adapters, developers derive the artifact objects from
this class.

CArtifactRegistrar
This class uses the IArtifactRegistrar interface to communicate with the RSE Core.
+ CPropertyMap

The CArtifactAdapter uses this class to get and set the value of properties. Itisa
virtual base class.

COverriddenPropertyMap

This class is able to call methods of the CArtifactAdapter subclasses to get and set
properties. It is derived from CPropertyMap.

CRelated ArtifactMap

The CArtifactAdaper uses this class to create, delete and get instances of artifacts.
It is a virtual base class.

COverriddenRelated ArtifactMap

This class is able to call methods of the CArtifactAdapter subclasses to create,
delete and get instances of artifacts. It is derived from CRelated ArtifactMap.

Adapter Operations

The RSE Core initializes the adapter by creating an instance of its adapter object. The
core then calls RegisterArtifactTypes, passing an instance of the IArtifactRegistrar
interface.

The type registration is simplified through the C++ framework interfaces. The
implementation of the adapter object calls the RegisterArtifactTypes method of its
CAdapterInstance class member. This method walks through a static artifact type
map in order to register the statically defined artifact types for the adapter.

Note: Dynamic types are registered when instances of the adapters are created. The
RegisterDynamicTypes method is called on the adapter at that time.

Table 9 summarizes the adapter interfaces operational model.

98 Chapter 4 - Using RSE Adapter Interfaces

Table 9

Adapter Operations

static or a dynamic
property

Operation Description

Initialization The RSE Core initializes the adapter by creating an instance of its
adapter object. The core then calls RegisterArtifactTypes, passing an
instance of the IArtifactRegistrar interface.

Static Artifact Type The adapter calls the RegisterType method of the IArtifactRegistrar

Registration interface when an adapter initializes.

Dynamic Artifact Type | The adapter calls the RegisterType method of the IArtifactRegistrar

Registration interface when an adapter creates an ArtifactAdapter object. When
the RDSI core creates the ArtifactAdapter, the core calls the
RegisterDynamicTypes method of the ArtifactAdapter.

Static Property The adapter calls the RegisterProperty method of the

Registration IArtifactRegistrar interface when initializing the adapter.

Dynamic Property The adapter calls the RegisterProperty method of the

Registration IArtifactRegistrar interface when an adapter creates an
ArtifactAdapter object.

Getting the value of a | The Artifact Object calls the GetPropertyValue method of the

IArtifactAdapter interface. The implementation of this method
returns the value of the property.

Setting the value of a
static or dynamic

property

The Artifact Object calls the SetPropertyValue method of the
IArtifactAdapter interface.

Getting child or related
artifacts

The Artifact Object calls the GetArtifacts method of the
IArtifactAdapter interface.

Creating child or
related artifacts

The Artifact Object calls the CreateArtifact method of the
IArtifactAdapter interface.

Deleting child or
related artifacts

The Artifact Object calls the DeleteArtifact method of the
IArtifactAdapter interface.

Adapter Internals 99

Adapter Interfaces

The adapter interfaces provide the mechanism for communication between each
adapter and the RSE core. The following adapter objects are COM objects used by the
RSE Core to communicate with the adapter. This bridges the component boundary
between the RSE Core and the adapter.

AdapterInstance

This object returns information about the adapter and the static metadata available
from the adapter. It can be instantiated without creating an instance of the
integrated product server.

ArtifactAdapter

This object allows the IArtifact implementation in the RSE Core to communicate
with the integrated product. It is a translator between the RSE Client interfaces
and the integrated product interfaces.

ArtifactCollectionAdapter

This object interfaces with a integrated product collection to allow artifacts to be
created at the time the collection is iterated instead of during the
GetRelated Artifacts or GetChild Artifacts call.

ArtifactRegistrar

This object allows the adapters to register artifact properties, related types and
child types in the RSE Core.

100 Chapter 4 - Using RSE Adapter Interfaces

Adapter Interface
Methods

The methods for defining and implementing artifact types, and each artifact type’s
properties, relationships, and locator strings are in the following objects:

» InternalObjectTypeRegistrar

Defines an artifact type and any contained dynamic types. This class also includes
the methods for defining dynamic properties and relationships for these dynamic

types.
InternalObjectRegistrar

Defines a static artifact type’s properties, relationships, and locator arguments.

InternalObjectTypeRegistrar

The InternalObjectTypeRegistrar class contains the methods for creating a registrar
object and defining the artifact types for an adapter.

Table 10 InternalObjectTypeRegistrar Methods

Method Description
AddArtifactType Defines an artifact type for an adapter.
AddCreationArgument Defines arguments that are needed for creating

artifact types by a dynamic relationship type. Maps a
creation argument to an Argument name.

AddCreationPropertyArgument

Defines arguments that are needed for creating
artifact types by a dynamic relationship type. Maps a
creation argument to an artifact Property Name or
Property ID.

AddDynamicProperty

Registers a property for a dynamic artifact type.

AddDynamicProperty_Readonly

Registers a readonly property for a dynamic artifact
type.

AddDynamicRelationshipType

Registers a relationship of a dynamic artifact type.

101

Table 10 InternalObjectTypeRegistrar Methods

Method Description

FRWInternalObjectTypeRegistrar Creates a registrar object.

FRWInternalObjectTypeRegistrar

Constructs a registrar object to declare the artifact types for an adapter.

FRW nt er nal Obj ect TypeRegi st rar (I FRWypeCont ai ner Base
*pTypeCont ai ner Base)

For example:

HRESULT CReqPr oAdapterl|nstance:: Decl areArtifact Types
(FRW nt er nal Obj ect TypeRegi strar &Obj ect TypeRegi strar)

AddArtifactType

Defines an artifact type for an adapter.

int AddArtifact Type(const wchar_t *pTypeNane,
const wchar _t *pSupercl assTypeNane,
FRW nt er nal Obj ect Factory *pFactory,
FRW nt er nal Obj ect Regi strati onMet hod *pRegi strar

bool bAbstract = fal se)

Registers an artifact type. Associates an artifact type with a class. For example in the ReqPro,
this method associates a Project artifact type with a RequisitePro CProject object. The object
factory instantiates the object.

The arguments for the AddArtifactType method are:
Artifact type
The name of artifact type.
Superclass
The artifact type’s superclass artifact type name. NULL if there is not a superclass.
Implementation class
Internal object registration method.

The Register method is passed the registration object context and constructs the
Project registrar object. The registrar object knows how to call methods of the
internal object (CProject).

102 Chapter 5 - Adapter Interface Methods

= DbAbstract

Specifies whether the artifact type is an abstract type or not. The default value is
fal se.

For example:

Ooj ect TypeRegi strar. AddArti fact Type (_T("Project"), NULL, NULL,
| NTERNAL_OBJECT_REQ STRAR (CProj ect));

AddCreationArgument

Defines arguments that are needed for creating artifact types by a dynamic
relationship type. Maps a creation argument to a registered artifact argument name.
This method is for defining arguments that are needed for creating artifacts.

bool AddCreati onArgument (int iArtifactTypelD,

const wchar _t * pRel ati onshi pTypeNane,
i nt Paranl D,
const wchar _t * Argunent Nanme,
i nt DataType,
Semant i cDat aType i Senanti cDat aType = frwNone,
int MaxSize = -1,
_variant _t vtDefaultValue = _variant_t(),
bool bRequired = true);

The arguments are:

= Artifact type ID

* Relationship type name

= ParamID

The parameter id. This numeric index corresponds to the argument number (in a
list of registered locator arguments).

* Property ID
* Variant reference
* bRequired

A boolean specifying whether this is a required argument for constructing the
dynamic type. The default value is TRUE.

InternalObjectTypeRegistrar 103

For example, in the ReqPro adapter, the Project artifact uses creation arguments to
create user-defined dynamic artifact types. The following argument determines what
requirement type to create. It is the name of the requirement type.

Regi strar. AddCreati onArgunent (i Proj ect Typel D,

bstr Rel at i onshi pNane,
1,

VT_BSTR,

f rwNane,

-1,

"New Requirement");

AddCreationPropertyArgument

This method is for defining arguments that are needed for creating artifact types by a
dynamic relationship type. Maps a creation argument to a registered artifact property.
You can use this method with a property name or a property ID.

Using Property ID

An integer value Property ID is returned when you register a property.

bool AddCreationPropertyArgunment (int iArtifactTypelD,

The arguments are:
» Artifact type ID
* Relationship type name

= ParamlID

const wchar _t * pRel ati onshi pTypeNane,
i nt i Parani D,
int PropertylD,

_variant _t vtDefaultValue = _variant_t(),

bool bRequired = true);

The parameter id. This numeric index corresponds to the argument number (in a
list of registered locator arguments).

+ Property ID

= Variant reference

104 Chapter 5 - Adapter Interface Methods

* bRequired

A boolean specifying whether this is a required argument for constructing the
dynamic type. The default value is TRUE.

Using Property Name

Maps a creation argument to an artifact Property name. This method is for defining
arguments that are needed for creating artifact types from a dynamic relationship
type. For example, in the ReqPro adapter, the Project artifact uses creation arguments
to create user-defined dynamic artifact types.

bool AddCreationPropertyArgunment (int iArtifactTypelD,

const wchar _t * pRel ati onshi pTypeNane,
i nt Paranl D,
const wchar_t * PropertyNane,
_variant _t vtDefaultValue = _variant_t(),
bool bRequired = true);

The arguments are:

= Artifact type ID

* Relationship type name

= ParamlD

The parameter id. This numeric index corresponds to the argument number (in a
list of registered locator arguments).

+ Property name
= Variant reference

» A boolean specifying that this is a required argument for constructing the dynamic
type. The default is true

InternalObjectTypeRegistrar 105

AddDynamicProperty
Registers a property for a dynamic artifact type.
i nt AddDynam cProperty(int iArtifactTypel D,
const wchar_t * PropertyNane,
i nt DataType,
Semant i cDat aType i Senmanti cDat aType = frwNone,
l ong MaxSize = -1);
The arguments for the AddDynamicProperty method are:
Artifact type ID
Property name
Data type
Semantic data type

The semantic data types are: rsDataObject, rsDescription, rsDirectory,
rsFileMoniker, rsFileOrDirectory, rsFilePath, rsName, rsNone, rsPassword, rsURL,
rsUserName. The default is frwNone.

Maximum size
The maximum size of this property. The default is -1 (no maximum).
For example:

Regi strar. AddDynami cProperty (i Artifact Typel D,
(char*)sAttributeName.c_str(), VT_BSTR);

AddDynamicProperty Readonly
Registers a readonly property for a dynamic artifact.
i nt AddDynam cProperty_Readonly(int iArtifactTypelD,
const wchar _t * PropertyNane,
i nt DataType,
Semant i cDat aType i Semanti cDat aType = frwNone,
l ong MaxSize = -1);
The arguments for the AddDynamicProperty_Readonly method are:
Artifact type ID

106 Chapter 5 - Adapter Interface Methods

+ Property name.
+ Data type
* Semantic data type

The semantic data types are: rsDataObject, rsDescription, rsDirectory,
rsFileMoniker, rsFileOrDirectory, rsFilePath, rsName, rsNone, rsPassword, rsURL,
rsUserName. The default is frwNone.

* Maximum size
The maximum size of this property. The default is -1 (no maximum).

For example:

Regi strar. AddDynam cProperty_Readonly (i ArtifactTypel D,
(char*)sAttributeName.c_str(), VT_BSTR);

AddDynamicRelationshipType

Registers a relationship of a dynamic artifact type.
i nt AddDynami cRel ati onshi pType(int iArtifactTypel D,
Rel at i onshi pCat egory eCat egory,
const wchar _t * pRel ati onshi pTypeNane,
const wchar _t * pChil dTypeNane,
Rel ati onshi pCardinality eCardinality = ZeroToMany,
bool bCreateDel et eSupported = fal se,

bool bM ni mi zeSpace = fal se);
The arguments for the AddDynamicRelationshipType method are:
Artifact type ID
Relationship category
Child artifact type name
Cardinality
ZeroToMany or ZeroToOne
bCreateDeleteSupported
The default is false
bMinimizeSpace

The default is false

InternalObjectTypeRegistrar 107

For example, the following code adds a dynamic relationship type from a ReqPro
Project to its user-defined Requirement dynamic artifacts. The relationship name is
the requirement Tag Prefix followed by the word Requirement (for example, a
user-defined use case requirement is UCRequirement). In this example,
UCRequirement is a dynamic relationship type name and a dynamic artifact type
name.
Regi strar. AddDynam cRel ati onshi pType(

i Proj ect Typel D, /'l base artifact type

Chi | d, /1 relationship category

bstrRel ati onshi pNane, // nanme of relationship type

bstrArtifact TypeNane, // name of target artifact type

Zer oToMany, /1 Cardinality

true); /1 Create/Delete supported

InternalObjectRegistrar

This class contains the methods for creating a registrar object and defining the
properties, relationships, and locators for an artifact type. Each artifact in an adapter
is defined in an internal object-derived class. If you can create an artifact type, then
you also define creation arguments for that type.

The types of methods in the InternalObjectRegistrar class includes:
Property type registration
Relationship type registration
Locator registration

Graphics format type registration

FRWInternalObjectRegistrar

Constructs a registrar object to implement properties, relationships, locators, and
locator arguments for each artifact. For example:

FRW nt er nal Obj ect Regi strar (const FRWRegi strati onCont ext &Context)
:m_Cont ext (Context)

{
}

For example:

FRW nt er nal Obj ect Regi strar <CProj ect > Regi strar (Context);

108 Chapter 5 - Adapter Interface Methods

Property Type Registration Methods
Table 11 lists the property registration methods.
Table 11 InternalObjectRegistrar Property Methods

Method Description

AddOverrideProperty Adds a property that is an override from a base or
parent object property.

AddOverrideProperty_Readonly Adds a readonly property that is an override from a
base or parent object property.

AddProperty Registers a property for an artifact type.

AddProperty_Readonly Registers a readonly property for an artifact type.

FindPropertyTypelD Returns the property ID for an artifact property.

RegisterRunningObjectTableKey Registers key types that correspond to locator

arguments in the running object table.

AddOverrideProperty

Adds a property that is an override from a base or parent object property. Override an
object if a subclass needs to register a different function for retrieving the property
declared in a superclass. You also need to implement a new Get method for this
override.

int AddOverri deProperty(wchar_t * PropertyNane,
Pr opert yGet Met hodPt r pGet Met hod,
PropertySet Met hodPt r pSet Met hod) ;

For example, a Rose Item has a Name property. Model is a subclass of Item. If Model
also had a Name property that is preferred over the Item Name property, then the
Model’s name property overrides Item’s Name property. In defining this property for
the Model artifact type, you could use AddOverrideProperty to register this property
as an overridden property. For example:

Regi strar. AddOverri deProperty(" Nane", Get Nane) ;
The GetName method implements this property. For example:
voi d cModel : : Get Nane(_variant _t &Val ue) /1 override virtual

{
Val ue = minterfacePtr->CGet Nane();}

InternalObjectRegistrar 109

AddOverrideProperty Readonly

Adds a readonly property that is an override from a base or parent object property.
Override an object if a subclass needs to register a different function for retrieving the
property declared in a superclass. You also need to implement a new Get method for
this override.

int AddOverri deProperty_Readonl y(wchar _t * PropertyNane,
Pr opert yGet Met hodPtr pGet Met hod) ;

For example, in the ClearCase adapter, the Activity artifact type has a Name property
that is a readonly override from its virtual base type:

Regi strar. AddOverri deProperty_Readonly ("Name", GetNane);

The GetName method implements this property. This method takes a variant
reference argument.

void CActivity:: GetName(_variant_t &Value) // override virtual

{
Val ue = m nterfacePtr->CGet Nane();
}
AddProperty

Registers a property for an artifact type. An integer value Property ID is returned
when you register a property. You can use this method of finding a PropertyID for
optimizing registration.
i nt AddProperty(wchar_t * PropertyNane,
Pr opert yGet Met hodPt r pGet Met hod,
Pr opertySet Met hodPt r pSet Met hod,
i nt DataType,
Semant i cDat aType i Semanti cDat aType = frwNone,
| ong MaxSize = -1);
The arguments for the AddProperty method are:
Property Name
Get method

The name of the implementation method that retrieves this property from the
internal object. The argument for the Get method is a variant value or a null
pointer.

110 Chapter 5 - Adapter Interface Methods

= Set method

The name of the implementation method that can retrieve this property from the
internal object and modify it. The argument for the Set method is a variant value or
a null pointer.

* Data type
The data type of this property
* Semantic data type

A semantic data type is a description of a data type. This provides extra
information on a property's or artifact argument's data type. The semantic data
types are: rsDataObject, rsDescription, rsDirectory, rsFileMoniker,
rsFileOrDirectory, rsFilePath, rsName, rsNone, rsPassword, rsURL, rsUserName.
The default is frwNone.

* Maximum size

The maximum size of this property. The default value is -1 (no maximum).
For example, in the ReqPro Requirement artifact, add the Name property:

Regi strar. AddProperty(" Nane", Get Nane, Set Name, VT_BSTR, f r wNane) ;

To implement this, use the get and set methods. These methods take a variant
reference argument. The GetName and SetName methods implement the Name

property:
voi d CRequi renent:: Get Nane(_vari ant _t &Val ue)

{
Val ue = minterfacePtr->Cet Nanme();
}
voi d CRequirenent:: Set Name(_vari ant _t Val ue)
{
bstr_t bstrValue = (bstr_t) Val ue;
m nt er f acePt r - >Put Nane(bst r Val ue) ;
m nterfacePtr->Save ();
}

InternalObjectRegistrar 111

AddProperty _Readonly

Registers a readonly property for an artifact type. An integer value Property ID is
returned when you register a property. You can use this method of finding a
PropertylD for optimizing registration.

i nt AddProperty_Readonl y(wchar _t * PropertyNane,
Pr opert yGet Met hodPt r pGet Met hod,
i nt DataType,
Semant i cDat aType i Semanti cDat aType = frwNone,
| ong MaxSize = -1);
The arguments for the AddProperty method are:
* Property Name
Get method

The name of the implementation method that retrieves this property from the
internal object. The argument for the Get method is a variant value or a null
pointer.

Data type
The data type of this property
Semantic data type

The semantic data type, if any, of this property. The semantic data types are:
rsDataObject, rsDescription, rsDirectory, rsFileMoniker, rsFileOrDirectory,
rsFilePath, rsName, rsNone, rsPassword, rsURL, rsUserName. The default is
frwNone.

Maximum size
The maximum size of this property. The default value is -1 (no maximum).
For example, a ReqPro example requirement has a HasParent property:
Regi strar. AddProperty_Readonly ("HasParent", Get HasPar ent, VT_BOQL) ;

The GetHasParent method implements this property. This method takes a variant
reference argument.

voi d CRequi renent:: Get HasParent (_vari ant _t &Val ue)

{
| ong | Count;

Value = minterfacePtr->CGet HasParent (& Count) ? true : false;}

112 Chapter 5 - Adapter Interface Methods

FindPropertyTypelD

Returns the property ID for an artifact property, given an artifact type ID and a
property name.

i nt FindPropertyTypel D (wchar _t *pPropertyNane);
For example, from the ClearQuest adapter:

bool CQDat abase: : Propert yExi st s(FRW nt er nal Obj ect TypeRegi strar
Regi strar,

int ArtifactTypel D,
_bstr_t PropertyNane)

{
return Regi strar. Get CoreTypeCont ai ner()->
Fi ndPropertyTypel D (Artifact Typel D, PropertyNane)
1= 0;
}

RegisterRunningObjectTableKey

Registers the method for returning instances of a specific artifact type (internal object
type).
voi d Regi st er Runni ngQbj ect Tabl eKey (Get KeyMet hodPtr pGet KeyMet hod) ;

The running object table maps artifact pointers to artifact keys. You register all artifact
keys with the AddKeyType method if you want to register it the running object table.

Before calling this method, you must first register all the key types. The names of
these key types are the same as the registered locator arguments. Each locator should
have its locator types registered as key types in order to be registered in the running
object table.

If you register a locator argument as a key type, that argument should be used in all
locators for that artifact type. These arguments registered as key types should
uniquely identify an artifact type in the RunningObjectTable.

For example, in the ReqPro adapter Project artifact class there is a LocateWithPath
locator:

Regi strar. AddAbsol ut eLocat or (LOCATE_W TH_PATH, Locat eWt hPat h,
LOCATE_DEFAULT_| MMUTABLE_| D] LOCATE_DEFAULT_DI SPLAY_NAME) ;

The arguments for this locator are:

Regi strar. AddLocat or Argunent (LOCATE_W TH_PATH, 1, "Path");

InternalObjectRegistrar 113

Regi strar. AddLocat or Argunent (LOCATE_W TH_PATH, 2, "User Nane",
VT_BSTR, frwUserNane, -1, "", false);

Regi strar. AddLocat or Argunent (LOCATE_W TH_PATH, 3, "Password",
VT_BSTR, frwPassword, -1, "", false);

Regi strar. AddLocat or Argunent (LOCATE_W TH_PATH, 4, "Flags",
VT_| 2, f rwNone, -1, _variant_t ((short)4, VT_l2), false);

The flags parameter contains information allowing the project to be opened
readonly or exclusive. The legal values are:

o 0-Normal

© 1-ReadOnly

o 2-Exclusive

o 4 - FallbackToReadOnly
The default value is 4.

Each of these locator arguments is also registered as a key type for the running object
table. The parameter IDs and argument names correspond to the arguments in the
AddLocatorArgument registration above. The first key type (Path) is the only
argument that maps to a property type and thus is the only key type with the third
argument not set to NULL.

Regi strar. AddKeyType(1, "Path", "Path");
Regi strar. AddKeyType(2, "UserNane", NULL);
Regi strar. AddKeyType(3, "Password", NULL);
Regi strar. AddKeyType(4, "Flags", NULL);

You first register key types for an artifact type using the AddKeyType method. You
can then call the RegisterRunningObjectTableKey method to enable running object
table support for this type.

Regi strar. Regi st er Runni ngObj ect Tabl eKey (Get Runni ngQbj ect Tabl eKey) ;

The Get Runni ngQbj ect Tabl eKey method implements the running object table key. It
returns a unique key that identifies each running instance of this artifact type.

voi d CProj ect:: Get Runni ngQbj ect Tabl eKey(FRW nt er nal Obj ect Ref er ence
&Cont ext, FRW.ocat or Si nkPtr &plLocat or Si nk)

{
CProject* pCProject = (CProject*)Context.Getlnternal Object();

_ASSERT(pCProj ect != NULL);

114 Chapter 5 - Adapter Interface Methods

Relationship Type Registration Methods
Table 12 lists the relationship type registration methods.
Table 12 InternalObjectRegisrar Relationship Methods

Method Description

AddFilteredRelationshipType Registers a filtered relationship for an artifact type.

AddOverrideFilteredRelationshipType | Adds a filtered relationship that is an override from a
base or parent object relationship.

AddOverrideRelationshipType Adds a relationship that is an override from a base or
parent object relationship.

AddRelationshipType Registers a relationship for an artifact type.

AddFilteredRelationshipType
Registers a filtered relationship for an artifact type.
int AddFilteredRel ati onshi pType (Rel ati onshi pCat egory eCat egory,

wchar _t * pRel ati onshi pTypeNane,
wchar _t * pChil dTypeNane,
Get Rel atedFi l teredArtifact MethodPtr pGetFilteredMet hod,
Rel ati onshi pCardinality eCardinality = ZeroToMany,
Creat eRel atedArtifact Met hodPtr pCreateMet hod = NULL,

Del et eRel at edArti fact Met hodPtr pDel et eMet hod NULL,

bool bM ni m zeSpace = fal se);

For example, a ReqPro Project creates a filtered relationship from the Project to its
Requirements:

Regi strar. AddFi | t er edRel ati onshi pType(Chil d,
"Requi renment s",
"Requi rement ",
Get Requi renent s,
Zer oToMany,
Cr eat eRequi r enent,

Del et eRequi renent) ;

The GetRequirements method implement this relationship:

InternalObjectRegistrar 115

void CProject:: GetRequirements (FRWArtifact Adapt erCol | ection *
phj ects, RDSI AdapterProtocol::1ArtifactFilterSink * pFilter,
FWFi | teri ngStatus* pFilteringStatus)

{
/1l Get the specific Requirement prefix (if any) fromthe filter.
string | ReqTypePrefix = GetFilterReqTypePrefix(pFilter);

Get Requi renent s(| ReqTypePrefix, pOojects, pFilter,
pFi |l teringStatus);

}
Create Met hod:

voi d CProject:: CreateRequi rement (FRW nternal Obj ect Reference &
Cont ext ,

const FRWArgunents &Par ans)
// Params is the collection of artifact |ocator argunment types.
{
_bstr_t bstrArtifact TypeNane = Parans. Get Arg(1);
_bstr_t bstrNanme = Parans. Get Arg(2);
_bstr_t bstrText = Parans. Get Arg(3);

Cr eat eRequi renent (Context, bstrArtifact TypeNane, bstrNane,
bstrText);

}

voi d CProject:: Creat eRequi rement (FRW nt er nal Obj ect Ref erence & Cont ext,
_bstr_t bstrArtifact TypeNane,

_bstr_t bstrNane,
_bstr_t bstrText)

/1 Del ete Method:

voi d CProject:: Del et eRequi renent (FRW nt er nal Cbj ect *
pl nt er nal Obj ect ToDel ete, short i Typel D)

116 Chapter 5 - Adapter Interface Methods

AddOverrideFilteredRelationshipType

Adds a filtered relationship that is an override from a base or parent object
relationship. Override an object if a subclass needs to register a different function for
retrieving the related artifacts of the relationhip type declared in a superclass. You also
need to implement a new Get method for this override.

int AddOverrideFilteredRel ati onshi pType(
wchar _t * pRel ati onshi pTypeNane,
Get Rel atedFi |l teredArtifact MethodPtr pGetFilteredMet hod,
Creat eRel at edArti fact Met hodPtr pCreat eMet hod

NULL,
Del et eRel at edArti fact Met hodPtr pDel et eMet hod = NULL);

The arguments are:
The relationship type name
The get method for gettings the related artifacts for this relationship type
Create method (NULL if there is no Create method)
Delete method (NULL if there is no Delete method)
For example, override the Reqro Requirements filtered relationship type:
Regi strar. AddOverri deFi |l t eredRel ati onshi pType(" Requi rement s",
Get Requi renent s, NULL, NULL)

AddOverrideRelationshipType

Adds a relationship that is an override from a base or parent object relationship.
Override an object if a subclass needs to register a different function for retrieving the
related artifacts of the relationship type declared in a superclass. You also need to
implement a new Get method for this override.

i nt AddOverri deRel ati onshi pType (
wchar _t * pRel ati onshi pTypeNane,
Get Rel at edArti fact Met hodPtr pGet Met hod,
Creat eRel at edArti fact Met hodPtr pCreat eMet hod = NULL,
Del et eRel at edArti fact Met hodPtr pDel et eMet hod = NULL);
The arguments are:

The relationship type name

The get method for gettings the related artifacts for this relationship type

InternalObjectRegistrar 117

» Create method (NULL if there is no Create method)
* Delete method (NULL if there is no Delete method)
For example, override the Rose AllClasses relationship type:

Regi strar. AddOverri deRel ati onshi pType("Al | C asses",
Get Al | O asses, NULL, NULL)

AddRelationshipType

Registers a relationship for an artifact type.
i nt AddRel ati onshi pType (Rel ati onshi pCat egory eCategory,

wchar _t * pRel ati onshi pTypeNane,
wchar _t * pChil dTypeNane,
Get Rel at edArti fact Met hodPtr pGet Met hod,
Rel ati onshi pCardinality eCardinality = ZeroToMany,
Creat eRel at edArti fact Met hodPtr pCreateMet hod = NULL,
Del et eRel at edArti fact Met hodPtr pDel et eMet hod = NULL,

bool bM ni ni zeSpace = fal se);

The arguments for the AddRelationshipType method are:
Relationship type (RelationshipCategory eCategory)
For example, Peer, Child, Descendant, or Parent.
Relationship name
The artifact type name
The name of the artifact type that this relationship points to.
Get method (GetRelated ArtifactMethodPtr pGetMethod)

This method includes product specific code (for example, RequisitePro
extensibility (RPX)) that enumerates the attribute values and returns them in the
collection. The argument for the GetMethod is a pointer to the
FRWArtifactAdapterCollection.

Cardinality
For example, ZeroToMany or ZeroToOne.
Create method, if any

Delete method, if any

118 Chapter 5 - Adapter Interface Methods

For example, the ReqPro adapter defi
relationship type to its parent project:

Regi strar. AddRel ati onshi pTyp
Get Par ent Proj ect, Zer oToOne) ;

nes a Requirement artifact ParentProject

e (Peer,"ParentProject","Project",

The Get Par ent Pr oj ect method implement this relationship.

voi d CRequi renent: : Get Par ent
pQoj ect s)

{
pQbj ect s->Add (" Project",

Locator Registration Methods

Proj ect (FRWArti fact Adapt erCol | ection *

npPar ent) ;

Table 13 lists the locator registration methods.

Table 13 InternalObjectRegistrar Locator Methods

Method Description
AddAbsoluteLocator Registers an artifact locator for an artifact type.
AddCreationArgument Registers an argument that is needed for calling a

create artifact method. Maps a creation argument to
an argument name (for example, a username or
password).

AddCreationPropertyArgument

Registers an argument that is needed for calling a
create artifact method. Maps a creation argument to
an artifact Property Name or Property ID.

AddKeyType Registers a key type that matches a locator argument
for an atifact type.

AddLocatorArgument Registers a locator argument for an artifact locator.

AddRelativeLocator Registers a relative locator for an artifact type.

These are common combinations that

#def i ne LOCATE_DI SPLAY_NAME_
LOCATE_| MMUTABLE_| D

#def i ne LOCATE_DEFAULT_DI SPL
LOCATE_DEFAULT_I MMUTABLE | D

may be used when registering locators:

AND_| DLOCATE_DI SPLAY_NAME |

AY_NAME_AND | D
| LOCATE_DEFAULT DI SPLAY_NAME

InternalObjectRegistrar 119

AddAbsoluteLocator

Registers an artifact locator for an artifact type.
bool AddAbsol uteLocator (int iLocatorlD,
Absol ut eLocat or Met hodPtr pLocat eMet hod,

unsi gned | ong | Fl ags);
The arguments for the Add AbsoluteLocator method are:
* Locator ID

All locators must use a distinct ID. Once these locators are in use, the IDs can not
be changed. For example, the IDs for the locators for the Item class in the ReqPro
adapter are:

#define LOCATE_WITH_KEY 1
#define LOCATE_WITH_TAG 2
* Locate method
The method that implements this locator.
Locator flag
Specifies the format of this locator. The locator format types are:
¢ LOCATE_IMMUTABLE_ID
¢ LOCATE_DISPLAY_NAME
¢ LOCATE_DEFAULT_IMMUTABLE_ID | LOCATE_IMMUTABLE_ID
¢ LOCATE_DEFAULT_DISPLAY NAME | LOCATE_DISPLAY NAME

For example, the ReqPro Project defines an absolute locator:

Regi strar. AddAbsol ut eLocat or (LOCATE_W TH_PATH, Locat eWt hPat h,
LOCATE_DEFAULT_| MMUTABLE_|I D|

LOCATE_DEFAULT_DI SPLAY_NAME) ;
Regi strar. AddLocat or Argunent (LOCATE_W TH _PATH, 1, "Path");

The LocateWithPath method implements this locator definition as follows:
bool CProject::LocateWthPath (const FRWArgunents &Parans,
FRW nt er nal Obj ect Ref erence &Cont ext)

_bstr_t bstrPath = Parans. Get Arg(1);

120 Chapter 5 - Adapter Interface Methods

_bstr_t bstrUserNanme = Parans. Get Arg(2);
_bstr_t bstrPassword = Parans. Get Arg(3);

i nt i Fl ags

ReqPro40: : _ApplicationPtr pReqProApp;

ReqPro40:: _ProjectPtr pProject;

CProject* pCProject = NULL;

Cont ext . Attach("Project", pCProject);
return true;

}

The arguments for this Locate method include:

(short) Parans. Get Arg(4);

+ The parameters to the locator. Params is the collection of artifact locator argument

types for a given artifact type.

* The context used to attach the located object

AddCreationArgument

Defines arguments that are needed for creating artifact types by a relationship type.

This registers the arguments that are needed for calling a CreateArtifact method. It

maps a creation argument to a registered argument name (for example, a username or
password). If there is a Create method (for example in the ReqPro adapter
CreateRequirement method, the adapter defines the creation arguments that are used

to create the artifact.

The adapter registers the Create method and the types of its arguments.

bool AddCreationArgunment (wchar_t * pRel ati onshi pTypeNane,

int iParam D,

const wchar _t * Argument Nanme,

i nt DataType,

Semant i cDat aType i Semanti cDat aType = frwNone,

int MaxSize = -1,

_variant _t vtDefaultVal ue

bool bRequired = true);

For example, in ReqPro adapter Project artifact type class, the following argument

= _variant_t(),

determines what requirement type to create. TypeName is the name of the

requirement type:

InternalObjectRegistrar

121

122

Regi strar. AddCr eat i onArgunent (" Requi renments”, 1, "TypeNane",
VT_BSTR, frwNone);
Two additional creation arguments are defined:
Regi strar. AddCr eat i onAr gunent (" Requi renments”, 2, "Name",
VT_BSTR, frwName, -1, "New Requirenent");
Regi strar. AddCr eat i onAr gunent (" Requi renments”, 3, "Text",
VT_BSTR, frwDescription, -1, "This is the text.");

The CreateRequirement method takes these creation arguments to create a
requirement:

voi d CProject:: Creat eRequi rement (FRW nt ernal Obj ect Reference &
Cont ext ,

const FRWArgunents &Par ans)

_bstr_t bstrArtifact TypeNane = Parans. Get Arg(1);
_bstr_t bstrName = Parans. Get Arg(2);
_bstr_t bstrText = Parans. Get Arg(3);
/1 Paranms is the collection of artifact |ocator argunent types.

Cr eat eRequi renent (Context, bstrArtifact TypeNane, bstrNane,
bstrText);

}

AddCreationPropertyArgument

Defines arguments that are needed for creating artifact types by a relationship type.
This registers arguments that are needed for calling a CreateArtifact method. It maps
a creation argument to a registered artifact property. If there is a Create method (for
example in the ReqPro adapter CreateRequirement method, the adapter defines the
creation arguments that are used to create the artifact.

The adapter registers the create method and the types of its arguments. There are two
forms for this method

» Using a property ID

* Using a property name

Using Property ID

You can get a Property ID by saving the return value of the AddProperty method.

Chapter 5 - Adapter Interface Methods

bool AddCreationPropertyArgunment (wchar_t * pRel ati onshi pTypeNane,
i nt i Parani D,
int PropertylD,
_variant _t vtDefaultValue = _variant_t(),

bool bRequired = true);

Using Property Name

bool AddCreationPropertyArgunment (wchar_t * pRel ati onshi pTypeNane,
i nt i Parani D,
wchar _t * PropertyNane,
i nt DataType,
Semant i cDat aType i Senanti cDat aType = frwNone,
int MaxSize = -1,
_variant _t vtDefaultValue = _variant_t(),

bool bRequired = true);
For example:

Regi strar. AddCr eati onPropert yAr gunent (" Packages”, 1, "Nane", VT_BSTR
f rwiNone) ;

Regi strar. AddLocat or Argunent (PACKAGE_| D_LOCATE_W TH_NAME, 1, "Nane");

When a client application calls a create artifact function that takes creation arguments,
it gets these arguments from a relationship type. The relationship returns the creation
arguments for a user to enter values and create an artifact. For example:

Di mtheNewArtifact As Artifact

Di mtheRel ati onshi p As Rel ati onshi pType

Di mtheArgColl ection As Artifact Argunent Col | ection
DimtheArg As Artifact Argunent

Di m Argunent| D As | nteger

Set theArgCol | ection = theRel ati onshi p. Creati onArgunents
For Argument!D = 0 To theArgCol |l ection. Count - 1
Set theArg = theArgCollection.|tem Argunentl D)

t heArg. Val ue = | nput Box("Pl ease enter a value for argument " &
t heArg. Argunment Name & ".", CStr(theArg. Defaul tVal ue))

InternalObjectRegistrar 123

Next Argunent| D

Set theNewArtifact =
m Context Artifact. CreateArtifact(theRel ationship)

Set CreateNewArtifact = theNewArtifact

AddKeyType

Registers a key type that matches a locator argument for an atifact type. Each locator
should have its locator types registered as a key type in order to be registered in the
running object table.

bool AddKeyType(int i Param D,
wchar _t * Argunent Nane,
wchar _t * PropertyNane);
The arguments are:

= Parameter ID

An integer that uniquely identifies a key. The parameter ID matches the ID in the
AddLocatorArgument method.

* Argument name
The name of the argument.
* Property name
NULL if the argument does not correspond to an artifact property.

Before you register the method that implements the running object table key, you
register all the key types. The names of these key types are the same as the registered
locator arguments.

The following example registers UserName and Password as key types. UserName
and Password are also registered as locator arguments for this artifact type.

Regi strar. AddLocat or Argunent (LOCATE_W TH_PATH, 2, "User Nane",

VT_BSTR, frwUserNane, -1, "", false);
Regi strar. AddLocat or Argunent (LOCATE_W TH_PATH, 3, "Password",
VT_BSTR, frwPassword, -1, "", false);

Regi strar. AddKeyType(2, "UserName", NULL);
Regi strar. AddKeyType(3, "Password", NULL);

124 Chapter 5 - Adapter Interface Methods

See the RegisterRunningObjectTableKey method section of this chapter for more
information.

AddLocatorArgument

Registers a locator argument for constructing an artifact locator. There are three forms
of the AddLocatorArgument method:

* Using a property ID
* Using a property name

* Defining an argument that does not map to an artifact property

Using Property ID

Registers a locator argument for constructing an artifact locator using an artifact
property ID. Each property type has a Property ID. You can get a Property ID as a
return value when you register a property (for example, PropertylD =

Registrar. AddProperty_Readonly).

bool AddLocat or Argunent (int iLocatorlD,
int iParam D,
int Propertyl D,
_variant _t vtDefaultValue = _variant_t(),

bool bRequired = true);

Using Property Name

Registers a locator argument for constructing an artifact locator using an artifact
property name.

bool AddLocat or Argunment (int iLocatorlD,
i nt i Parani D,
const wchar _t * PropertyNane,
_variant _t vtDefaultValue = _variant_t(),

bool bRequired = true);

For example, in ReqPro register a Project artifact type locator argument, that maps to
the Path property:

Regi strar. AddLocat or Argunent (LOCATE_W TH_PATH, 1, "Path");
In this example:

» LOCATE_W TH_PATHis the locator id

InternalObjectRegistrar 125

» 1is the parameter id for this (Path) locator argument, since it’s the first locator
argument for this artifact type.

+ Path is the name of the Property this locator argument maps to.

Defining a New Argument

Registers a locator argument for constructing an artifact locator using an argument
that does not map to a property.

Use this method to add arguments that do not correspond to properties. These
arguments will not be initialized when locators are created for existing artifacts.

bool AddLocat or Argument (i nt i Locatorl D,
i nt i Parani D,
const wchar _t * Argument Nanme,
i nt DataType,
Semant i cDat aType i Senmanti cDat aType = frwNone,
| ong MaxSi ze = -1,
_variant _t vtDefaultValue = _variant_t(),

bool bRequired = true);

For example, in ReqPro, add UserName as a locator argument for constructing a
locator to a Project:

Regi strar. AddLocat or Argunent (LOCATE_W TH_PATH,
2,
"User Nane",
VT_BSTR,
frwUser Nane,
-1,

nwun
)

fal se);
In this example:

» LOCATE_W TH_PATHis the locator id

126 Chapter 5 - Adapter Interface Methods

The parameter id for UserName is 2. This integer value represents the ordinal
argument number. UserName is the second artifact argument for constructing the
locator for this artifact type. (Path is the first argument and thus the parameter ID
for Path is 1. Password is the third argument and thus the parameter ID for
Password is 3.)

UserName is the argument name
Data type is VI_BSTR

frwUserName is the semantic data type. A semantic data type is a description of a
data type. This provides extra information on a property's or artifact argument's
data type. The semantic data types are: rsDataObject, rsDescription, rsDirectory,
rsFileMoniker, rsFileOrDirectory, rsFilePath, rsName, rsNone, rsPassword, rsURL,
rsUserName. The default is frwNone.

Maxsize is -1 (this is the default value)

vtDefaultValue is set to

bRequired is set to false making these arguments not required. The default value is
TRUE.

AddRelativelLocator

Registers a relative locator for an artifact type. There are two forms of the
AddRelativeLocator method. One uses a RelativeArtifactTypelD and the other uses
RelativeArtifactTypeName.

The arguments for the AddRelativeLocator method are:
o Locator ID
= Relative artifact type name or relative artifact type ID
This is the context artifact type
¢ Locate method
o Locator flag
Specifies the format of this locator. The locator format types are:
» LOCATE_IMMUTABLE_ID
» LOCATE_DISPLAY_NAME
» LOCATE_DEFAULT_IMMUTABLE_ID | LOCATE_IMMUTABLE_ID
> LOCATE_DEFAULT_DISPLAY_NAME | LOCATE_DISPLAY_NAME

InternalObjectRegistrar 127

Using RelativeArtifactTypelD
bool AddRel ativelLocator (int iLocatorlD,
int RelativeArtifactTypel D,
Rel ati velLocat or Met hodPtr pLocat eMet hod,
unsi gned | ong | Fl ags);

The following ReqPro example registers a relative locator for a ReqDocument artifact
type using a relative artifact type ID. In this example the ReqDocument locator is
relative to Project, using document ID:

Regi strar. AddRel ati veLocat or (DOCUMENT_I| D_LOCATE_W TH_KEY,
"Project",
Locat eWt hKey,
LOCATE_DEFAULT | MVUTABLE I D) ;

Regi strar. AddLocat or Argunent (DOCUMENT_| D_LOCATE_W TH_KEY, 1,
"Docunent | D");

In this example:

= DOCUMENT_| D_LOCATE_W TH_KEY is the locator id

= Project is the relative artifact

= Locat eWt hKey is theLocate method for this relative locator
» LOCATE_DEFAULT_| MMUTABLE_I Dis the locator type

The LocateWithKey method implements this locator:

bool CReqDocunent:: Locat eWt hKey(FRW nt er nal Obj ect
*pRel at i vebj ect ,

const FRWArgunents &Par ans,

FRW nt er nal Obj ect Ref erence &Cont ext)

CProj ect* pCProj ect
_ASSERT (pCProject !

dynami c_cast <CProj ect *> (pRel ati ve(bj ect);
NULL) ;

_bstr_t bDocunent| D = Parans. GetArg (1);
string sDocunent| D = (const char*)bDocunent | D;
| ong i Docunent| D = atoi (sDocunent|ID.c_str());

_variant _t spvtlndex(i DocunentlD);

128 Chapter 5 - Adapter Interface Methods

_variant _t dumy;

ReqPro40: : _Docunent sPtr pDocunments =
pCProj ect - >Get I nt ernal Proj ect Pt r()->Get Docunent s();

i f (pDocunments == NULL) return fal se;

ReqPr 040: : _Docunent Ptr pDocunment = pDocunent s->Cet |t en(spvt | ndex,
ReqPr 040: : eDocLookup_Key) ;

if (pDocurment == NULL) return fal se;

Cont ext . Att ach(" RegDocunent ", NewReqDocunent (pDocunent,
pCProj ect));

return true;
}
The arguments for this Locate method:
+ pRelativeObject
The relative object is Project.
* Params

The one locator argument is DocumentID. Params is the collection of artifact
locator argument types for a given artifact type.

= Context

The context is the information used to attach the located RequisitePro
ReqDocument IUnkown (referenced by pDocument) to the RSE ReqDocument
internal object.

Using RelativeArtifactTypeName
bool AddRel ativelLocator (int iLocatorlD,
const wchar_t * pRelativeArtifact TypeNane,
Rel ati veLocat or Met hodPtr pLocat eMet hod,

unsi gned | ong | Fl ags);

For example, in ReqPro, register a ReqDocument relative locator, relative to Project.
Locate with name as the argument.

Regi strar. AddRel ati veLocat or (LOCATE_W TH_NANE,

"Project",

InternalObjectRegistrar 129

Locat eW t hNane,
LOCATE_DEFAULT_DI SPLAY_NAME) ;
Regi strar. AddLocat or Argunent (LOCATE_W TH_NAME, 1, "Nanme");

The LocateWithName method implements this locator:

bool CReqgDocunent: : Locat eW t hNanme(FRW nt er nal Qbj ect
*pRel ati vebj ect,

const FRWArgunents &Parans,

FRW nt er nal Obj ect Ref erence &Cont ext)

CProj ect* pCProject = dynam c_cast <CProj ect*> (pRel ati veQbj ect);
_ASSERT (pCProject != NULL);

Cont ext . Att ach(" RegDocunent”, NewReqDocunent (pDocunent,
pCProj ect));

return true,

Graphics Registration Methods
The graphics registration method is AddGraphicsFormatType .

AddGraphicsFormatType
Registers graphics format types.
i nt AddG aphi csFor mat Type(wchar _t * pG aphi csTypeNane,
wchar _t * pDescription,
wchar _t * pG aphi csFor mat Nane,
Render ToFi | eMet hodPt r pRender Met hod) ;
The arguments are:
pGraphicsTypeName
The name used by clients to access the graphic file.
pDescription
A human readable description of the graphic file format.

pGraphicsFormatName

130 Chapter 5 - Adapter Interface Methods

The name of the graphic format.
* pRenderMethod
The method called to retrieve the graphic in this particular format.

In general, a graphic may be rendered in any of several formats, so there are often
multiple calls to AddGraphicsFormatType with the same Name argument but
different Type arguments. For example, from the FileSys adapter, the File artifact type
registers the following graphics format types:
Regi strar. AddG aphi csFor mat Type (L" G aphic",L"Gaphic - wrf",
L"wnf", Render G aphi c_wnf) ;
Regi strar. AddG aphi csFor mat Type (L" G aphic",L"Gaphic - jpg",
L"j pg", Render G aphi c_j pg) ;
Regi strar. AddG aphi csFor mat Type (L" G aphic",L"G aphic - png",
L"png", Render Gr aphi ¢c_png) ;
Regi strar. AddG aphi csFor mat Type (L" G aphic",L"G aphic - bmp",
L"bnp", Render G aphi ¢_bmp) ;
Regi strar. AddG aphi csFor mat Type (L" G aphic",L"Gaphic - gif",
L"gi f", Render Graphi c_gif);
Regi strar. AddG aphi csFor mat Type (L" G aphic",L"G aphic - asis",
L"asi s", Render G aphi c_asi s);

The RenderGraphic methods implement these format type definitions. For example,
the RenderGraphic method for the wmf format type:

_bstr_t cFile::Render G aphic_wnf(_bstr_t bstrFileNane, _bstr_t
bst r Par anet er s)

{
if (! mpGaphic) {
nmpG aphi ¢ = new FRWG aphi c();
npG aphi c- >LoadFr onfi | e(nPat hNane) ;
}
return npG aphi c- >Render WFToFi | e(bstrFi |l eName, bstrParaneters);
}

Using the Mapping Mechanism

You can use the C++ Framework mapping mechanism to streamline the registration
of graphics formats types. For example, register the graphics formats types for the
FileSys adapter File artifact type as follows:

InternalObjectRegistrar 131

BEG N_CGRAPHI C_FORMATS (Fil e)
format (File, WW , Render file as WW)
format (File, JPG, Render file as JPQ
format (File, PNG, Render file as PNG
format (File, BMP , Render file as BMP)
format (File, G F, Render file as G F)
format (File, ASIS, Pass file as is)

END_GRAPHI C_FORMATS

The arguments for each of the format method calls are:
Aspect
The name used by clients to access the graphic file.
Format type
The name of the graphic format.
Description
A human readable description of the graphic file format.

As in the standard registration for adding graphics format types, each format type has
a render method. For example, the render method for wmf format is as follows:

_bstr_t CFile::RenderFilel nWWF(_bstr_t bstrFileNane, _bstr_t
bstr Par anet er s)

{
if (! mpGaphic) {
npG aphi ¢ = new FRWGr aphi c();
npG aphi c- >LoadFr onFi | e(mPat hNane) ;
}
return npG aphi c- >Render WWFToFi | e(bstr Fi | eNane, bstrParamneters);
}

For more information on using the Maps mechanism, see the “Using RSE Adapter
Interfaces” chapter of this manual.

132 Chapter 5 - Adapter Interface Methods

Index

A

Absolute locator 120
Adapter

architecture 35

framework classes 35

instance 45

interfaces 35

operations 98

overview 35

project 36

RegPro 69
AdapterInstance 45, 100

creating 68

modifying code 55

modifying cpp file 59

object 50

registry file 53
AdapterProtocol.idl 48
Adapters 16, 18, 22
AddAbsoluteLocator 119, 120
AddArtifactType 68, 101, 102
AddCreationArgument 101, 103, 119, 121
AddCreationPropertyArgument 101, 119, 122
AddDynamicProperty 101, 106
AddDynamicProperty_Readonly 101, 106
AddDynamicRelationshipType 101, 107
AddFilteredRelationshipType 115
AddGraphicsFormatType 130
AddKeyType 119, 124
AddLocatorArgument 77, 78, 119, 125

Locator

arguments 77

AddOverrideFilteredRelationshipType 115, 117
AddOverrideProperty 109
AddOverrideProperty_Readonly 109
AddOverrideRelationshipType 115, 117
AddProperty 109, 110
AddProperty_Readonly 109, 112
AddRelationshipType 74, 115, 118

AddRelativeLocator 77, 119, 127
Application object 96
Applications 16
Architecture 14
Arguments
artifact 28
locator 28
Artifact 23
arguments 28
internal object 68
references 29
relativeid 31
Artifact locator
collections 80
Artifact type 23
add 101, 102
creation arguments 83, 121
creation property arguments 122
defining locator arguments 78
dynamic 23, 71
implementing a class 72
locator registration 119
property 110
registering a locator 76
registering a property 73
registering a relationship 74
registering a type 102
relative locator 127
static 23
ArtifactAdapter 100
ArtifactCollectionAdapter 100
ATL Project 38
Attach 80

C

C++ framework 35
creating a dependency 40
C++ language settings 40, 44
Client applications 15, 16
Code generation
settings 40
Collections
artifact locators 80

133

COM server 96
Creating
adapter instance 68
ATL project 38
Creation argument 83, 121
add 101, 103
parameter id 84
Creation property argument
add 101

D

DeclareArtifactTypes 68
Defining
anew locator argument 126
adapter instance 45
locator 77
locator arguments 78
locators 80
relationship types 115
Dependencies
C++ Framework 40
Developing an adapter 36
Dynamic
add property 101
add relationship type 101
artifact types 23, 71
property 106
relationship type 107

F

Filtered relationship

add 115
FindPropertyTypelD 109, 113
Framework classes 35
FRWInternalObject subclasses 72
FRWInternalObjectRegistrar 108
FRWIinternalObjectTypeRegistrar 102

G
Graphics

134 Index

registration methods 130
using maps registration 93

H

Handler 93
Handler declaration macros
maps 93

1D
property 26
property id 113
IDL file 48
Implementing
artifact type 72
Importing
AdapterProtocol.idl 48
Integrated-product
server object 96
Internal object 68, 95, 96
factory 71
registration 71
InternalObjectRegistrar 101, 108
InternalObjectTypeRegistrar 101

K

Key type 124

L

Locating
internal object 68
Locator
arguments 28, 125
defining 77
defining a new argument 126
defining arguments 78
registering 76
registeringa 120
registering a relative locator 127

registration methods 119
Locators 27
relative id 31

M

Maps
handler declaration macros 93
registering 85
registering artifact types 85
registering graphics format types 93
registering properties 88
registering relationships 89

Maps mechanism 84

Modifying
code generation settings 40
code in new AdapterInstance.h file 55
IDL file 48
new AdapterInstance.cpp file 59
registry file 53
stdafx.h file 61

O

Object
AdapterInstance 50
Object table 109
Objects 21
Override
property 109
relationship type 117
Overview 35

P

Parameter ID 84
Preprocessor settings 40, 42
Product server 96
Project

setting up 36

settings 40
Property 25

add 109

add override 109
dynamic 101

id 26, 109, 113
registering 73
registeringa 110
registration methods 109
type 25

R

RDSICore

type library 34
Readonly

property 112
References

relative id 31

type library 34
Register 72

method 71
Registering

a property 110

an artifact type 102

creation arguments 83

dynamic types 71

graphics 130

internal object 108

locator 76

locator arguments 78, 125

locators 119

maps 85

property 73, 109

relationship 74

relationship types 115

relative locator 127

using maps 84
RegisterRunningObjectTableKey 109, 113
Registrar

internal object 108

internal object type 102
Registry file

modifying 53
Relationship 26

add filtered 115

add override filtered 117

135

registering 74
Relationship type

add 101, 118

dynamic types 107

override 117

registration methods 115
Relativeid 31
Relative locator

registeringa 127
RelativeArtifactTypelD 128
ReqPro adapter 69

internal objects 69

RPX 75

RSE
adapters 16
objects 21

Running object table 113
AddKeyType 124

S

Server object 96
Session 22

136 Index

Setting up

adapter project 36
Settings

code generation 40
SoDA 33
Static

artifact types 23
Stdafx.h

modifying 61
subclass 24
superclass 24

T

Type library
referencing 34

Using
RSE 15

	Rational Suite®
	Preface
	Audience
	Other Resources
	Rational Suite Documentation Roadmap
	Contacting Rational Technical Support

	What Is RSE?
	Why Create RSE?
	Benefits of Using RSE
	RSE Implementation
	Using RSE
	RSE Clients
	RSE Adapters

	Conclusion

	RSE Object Model
	RSE Objects
	Object Model Diagram
	Session
	Adapter
	Artifacts
	ArtifactType

	Properties
	PropertyType

	Relationships
	Locators
	Artifact Arguments
	Artifact References
	RelativeID Artifact References

	Summary
	SoDA Application Example
	Referencing the RDSICore Type Library

	Developing an RSE Adapter
	Architectural Overview
	Developing an Adapter Overview
	Setting Up an Adapter Project
	Opening a Workspace
	Creating a New ATL Project
	Adding Dependency to the CPP Framework
	Modifying Project Settings
	Modifying the Code Generation Settings
	Modifying the Preprocessor Settings

	Defining an Adapter Instance
	Modifying the New IDL File
	Modifying the Registry File
	Modifying the New AdapterInstance.h
	Modifying the New AdapterInstance.cpp
	Modifying the New stdafx.h
	Building the New Adapter dll

	Using RSE Adapter Interfaces
	Overview
	RequisitePro Example
	Summary

	Registering Artifact Types
	Adapter Instance
	Declaring and Adding Artifact Types
	ReqPro Adapter Example
	Adding Artifact Types

	Dynamic Artifact Types

	Implementing Artifact Types for an Adapter
	Implementing a Class for each Artifact Type
	Registering a Property
	Registering a Relationship
	Registering a Locator
	Defining a Locator
	Defining Locator Arguments
	Defining a Collection of Artifact Locators

	Registering Creation Arguments

	Using the Maps Mechanism
	Registering Maps
	Declaring Artifact Types
	Defining Artifact Types
	Definition Registration Macros
	Registering Properties
	Registering Relationships
	Registering Graphics Format Types

	Handler Declaration Macros
	Pass-Through Property Definitions

	Internal Object to Integrated-Product Object
	Getting an Application Object

	Adapter Internals
	C++ Framework Classes
	Adapter Operations
	Adapter Interfaces

	Adapter Interface Methods
	InternalObjectTypeRegistrar
	FRWInternalObjectTypeRegistrar
	AddArtifactType
	AddCreationArgument
	AddCreationPropertyArgument
	AddDynamicProperty
	AddDynamicProperty_Readonly
	AddDynamicRelationshipType

	InternalObjectRegistrar
	FRWInternalObjectRegistrar
	Property Type Registration Methods
	AddOverrideProperty
	AddOverrideProperty_Readonly
	AddProperty
	AddProperty_Readonly
	FindPropertyTypeID
	RegisterRunningObjectTableKey

	Relationship Type Registration Methods
	AddFilteredRelationshipType
	AddOverrideFilteredRelationshipType
	AddOverrideRelationshipType
	AddRelationshipType

	Locator Registration Methods
	AddAbsoluteLocator
	AddCreationArgument
	AddCreationPropertyArgument
	AddKeyType
	AddLocatorArgument
	AddRelativeLocator

	Graphics Registration Methods
	AddGraphicsFormatType
	Using the Mapping Mechanism

	Index
	A
	C
	D
	F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U

