
Rational Software Corporation ®
Rational Suite ®

Programmer’s Guide to Application Development
Rational Suite Extensibility

VERSION: 2002.05.00

PART NUMBER: 800-025143-000

WINDOWS
support@rational.com
http://www.rational.com

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1999-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-025143-000

Version Number: 2002.05.00

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company,
ClearCase, ClearCase Attache, ClearCase MultiSite, ClearDDTS, ClearQuest,
ClearQuest MultiSite, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
Design, Objectory, PerformanceStudio, ProjectConsole, PureCoverage, PureDDTS,
PureLink, Purify, Purify'd, Quantify, Rational, Rational Apex, Rational CRC, Rational
Rose, Rational Suite, Rational Summit, Rational Visual Test, Requisite, RequisitePro,
RUP, SiteCheck, SoDA, TestFactory, TestFoundation, TestMate, The Rational Watch,
AnalystStudio, ClearGuide, ClearTrack, Connexis, e-Development Accelerators,
ObjecTime, Rational Dashboard, Rational PerformanceArchitect, Rational Process
Workbench, Rational Suite AnalystStudio, Rational Suite ContentStudio, Rational
Suite Enterprise, Rational Suite ManagerStudio, Rational Unified Process, SiteLoad,
TestStudio, VADS, among others, are either trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in othercountries.All other
names are used for identification purposes only, and are trademarks or registered
trademarks of their respective companies.

Microsoft, the Microsoft logo, Active Accessibility, Active Channel, Active Client,
Active Desktop, Active Directory, ActiveMovie, Active Platform, ActiveStore,
ActiveSync, ActiveX, Ask Maxwell, Authenticode, AutoSum, BackOffice, the
BackOffice logo, BizTalk, Bookshelf, Chromeffects, Clearlead, ClearType, CodeView,
Computing Central, DataTips, Developer Studio, Direct3D, DirectAnimation,
DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow, DirectSound, DirectX,
DirectXJ, DoubleSpace, DriveSpace, FoxPro, FrontPage, Funstone, IntelliEye, the

IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
the Microsoft eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the
Microsoft Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, NetMeeting, NetShow, the Office logo, One
Thumb, OpenType, Outlook, PhotoDraw, PivotChart, PivotTable, PowerPoint,
QuickAssembler, QuickShelf, Realmation, RelayOne, Rushmore, SourceSafe,
TipWizard, TrueImage, TutorAssist, V-Chat, VideoFlash, Virtual Basic, the Virtual
Basic logo, Visual C++, Visual FoxPro, Visual InterDev, Visual J++, Visual SourceSafe,
Visual Studio, the Visual Studio logo, Vizact, WebBot, WebPIP, Win32, Win32s, Win64,
Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start
logo, and XENIX are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm
libraries and utilities) into any product or application the primary purpose of which is
software license management.

Portions Copyright ©1992-20xx, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and its
documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents

Preface. ix
Audience. ix

Other Resources . ix

Rational Suite Documentation Roadmap . xi

Contacting Rational Technical Support. xii

1 What Is RSE? . 13
Why Create RSE? . 13
Benefits of Using RSE . 13

RSE Implementation. 14
Using RSE . 15

RSE Clients . 16
RSE Adapters . 18

Conclusion . 19

2 RSE Object Model. 21
RSE Objects . 21

Object Model Diagram . 21
Session . 22
Adapter. 22
Artifacts . 23

ArtifactType . 23
Properties. 25

PropertyType . 25
Relationships . 26
Locators . 27

Artifact Arguments . 28
Artifact References . 29
RelativeID Artifact References. 31

Summary . 32
SoDA Application Example . 33
Referencing the RDSICore Type Library . 34
Contents v

3 Using RSE. 35
Supported Client Use Cases. 35

Client Access . 37
TestFramework . 38
Rose Ordersystem Model. 38

Finding an Artifact Type. 42
Finding an ArtifactType Test . 44
Code for Finding an ArtifactType . 44

Locating an Artifact . 45
Locating an Artifact Test . 50
Code for Locating an Artifact . 51

Retrieving Properties of an Artifact . 53
Retrieving Properties of an Artifact Test . 56
Retrieving the Value of a Property . 57
Code for Retrieving Properties of an Artifact . 57

Getting Related Artifacts . 58
Getting Related Artifacts Test . 61
Code for Getting Related Artifacts . 62

Displaying Artifacts . 63
Code for Displaying an Artifact . 64

Getting the Internal Object . 65

4 Creating RSE Clients . 67
Locating Artifacts . 68

Using an Artifact Locator . 68
Creating an Artifact Locator . 69
Initializing Locator Arguments . 69
Locating an Artifact . 71

Using an ArtifactID . 71
Getting an ArtifactID. 71
Locating an Artifact with an ArtifactID . 72

Using Relative Artifact IDs . 72
Getting a RelativeArtifactID . 73
Locating an Artifact with a RelativeArtifactID . 74

Authentication and Exception Handling . 75

Getting and Setting Properties . 78
Getting the Values of Properties. 78
Setting the Values of Properties . 79

Getting Related Artifacts . 81
vi Contents

Getting Relationship Types . 81
Getting Related Artifacts . 81
Using an Artifact Collection . 82

Iterating Through an Artifact Collection . 82
Looping Through an Artifact Collection . 83

Filtering and Sorting. 83
Initializing the Filter String . 84
Filtering Operators . 85

Using Collections . 92
Finding an Item in a Collection. 93
Maintaining a List of Artifacts . 94

Displaying Artifacts . 95
Determining if an Artifact Can be Shown . 95
Showing an Artifact in its Application . 95

Converting Between the Artifact Object and the Internal Object 95
Getting the Internal Object from an Artifact . 95

Creating and Deleting Artifacts . 96
Creating Artifacts . 96
Deleting Artifacts . 98

Index . 99
Contents vii

viii Contents

Preface
RSE delivers a comprehensive set of application programming interfaces (APIs) that
provide a single platform on which to develop client and server capabilities between
integrated products in Rational Suite.

This manual introduces the basic concepts of Rational Suite Extensibility (RSE) and
provides the details for developing applications using the COM client interfaces.

Audience

This manual is intended for administrators, project managers, and all members of the
software development team, including requirements developers, software architects
and developers, and quality engineers.

Other Resources

■ Other RSE documentation:

❑ COM Client API Reference

❑ Adapters Reference

❑ Programmer’s Guide to Adapter Development

■ Rational extensibility API references:

❑ ClearCase Reference Manual

❑ ClearQuest API Reference

❑ RequisitePro Extensibility Interface Online Help

RequisitePro extensibility information is documented in the RequisitePro
online help for the RequisitePro Extensibility Interface. It is available from the
Help menu on the ReqPro tool palette.

❑ Rose Extensibility Reference

❑ Team Manager Extensibility Reference

■ Online Help is available for Rational Suite.
ix

From a Suite tool, select an option from the Help menu.

■ All manuals are available online, either in HTML or PDF format. The online
manuals are on the Rational Solutions for Windows Online Documentation CD.

■ To send feedback about documentation for Rational products, please send e-mail
to techpubs@rational.com.

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.

■ For more information on training opportunities, see the Rational University Web
site: http://www.rational.com/university.
x Chapter - Preface

http://www.rational.com/documentation/
http://www.rational.com/university

Rational Suite Documentation Roadmap
Rational Suite Documentation Roadmap xi

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you
have applied

■ Product name and release number

■ Your case ID number (if you are following up on a previously reported problem)

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
xii Chapter - Preface

1What Is RSE?
Rational Suite delivers a comprehensive set of integrated tools that embody software
engineering practices and span the entire software development lifecycle. Each
individual application has its own API for retrieving stored information. Until now,
you’ve needed to use a separate API for programming access to each tool in Rational
Suite.

Rational Suite Extensibility (RSE) defines a set of interfaces that provides one unified
platform for retrieving information in any application within Rational Suite.

The vision of RSE is to provide unified access to Rational Suite. In a sense, RSE makes
it possible to view the Suite as a single application, not a collection of separate
applications.

The goal of RSE is to support existing integrated product extensibility and enhance
current capabilities by providing adaptable, platform-neutral, distributed availability.
The RSE interfaces are designed to support equivalent functionality for the platforms
that developers need.

Why Create RSE?

RSE supports the accelerating demand for Rational Suite by making it easier to
customize the Suite for particular customer situations. RSE satisfies the demand for
tighter integration and consistency between individual products in the Suite and
customer integrations. Rather than working with individual-product APIs, RSE
simplifies the process of writing applications that work with the Suite.

RSE is complementary to the integrated product APIs. This allows RSE code to
operate with code written specifically for a given integrated product interface.

Benefits of Using RSE

With RSE:

■ You can build client applications that access all integrated product applications,
including all Rational Suite products and integrations to the Suite. Access to each
integrated product application is through its associated RSE adapter.
13

■ You can build RSE adapters and install them on a system. Each adapter maps an
integrated product object model to the RSE object model. These adapters are
available to RSE Client Applications.

■ New client applications and adapters work with any Suite-enabled technology.

■ If a Rational partner writes an application that takes advantage of this technology,
it will instantly be capable of using new adapters without modifying code.

Without RSE:

Features must be built using each specific product’s extensibility interface. This
approach forces you to implement the same features for each product in the Suite. The
problem becomes worse as new products are added to the Suite.

RSE Implementation

RSE is implemented by the RSE Core. This core defines a set of interfaces (for
example, the RSE COM client interfaces) that provides Rational Suite extensibility.

Figure 1 shows the three-tiered architecture of an RSE client connecting to an
integrated product adapter in the Suite.
14 Chapter 1 - What Is RSE?

Figure 1 RSE Implementation

In Figure 1, the lower tier that includes the integrated products refers to the RSE
adapters for each integrated product, not the products themselves. For example,
ReqPro is the RSE adapter that maps RSE to RequisitePro.

As Figure 1 illustrates:

■ RSE client applications provide access to the integrated products in the Suite.

■ The RSE core maps the implementation of client interfaces to integrated product
RSE adapters. The RSE core provides the interface between client applications and
adapters. This implements the RSE client interfaces communicating with the RSE
adapters to retrieve information in each of the specific products.

■ Product-specific RSE adapters provide data retrieval from the RSE core to each
integrated product. Each adapter provides the mapping of an integrated product’s
data (objects) to an RSE generic object model. Artifacts are the RSE objects that
represent integrated product objects.

Using RSE

You can use RSE to create:

■ Clients
RSE Implementation 15

A client application allows you to retrieve data in the Suite and other integrated
products.

■ Adapters

An adapter provides access to the applications that contain the data. Adapters act
as servers to RSE clients and allow data to be integrated between individual
products in the Suite.

Individual adapters provide a consistent standard interface between the RSE core
and individual products. RSE provides an adapter for each product in the Suite
(for example, an adapter named ReqPro for RequisitePro) and also provides
adapters for common Microsoft applications. The RSE adapters are:

❑ Rational Administrator (RAdmin)

❑ Rational Rose (Rose)

❑ RequisitePro (ReqPro)

❑ Rational ClearQuest (ClearQuest)

❑ Rational ClearCase (ClearCase)

❑ Rational Test Manager (TeamTest)

❑ Microsoft Windows File System (FileSys)

❑ Microsoft Project (MSProject)

❑ Microsoft Word (Word)

RSE Clients

You can create client applications to retrieve data from any product in the Suite. RSE
can support multiple client interfaces. COM is currently the supported interface.

Figure 2 shows two client applications to Rational Suite. These applications can
retrieve data from any of the Suite products or other integrated products (through the
RSE adapters).
16 Chapter 1 - What Is RSE?

Figure 2 RSE Clients

Create client applications to:

■ Query Rational Suite for application objects (that map to RSE artifacts), using
filtering operators.

■ Perform simple artifact create, read, update, and delete operations.

■ Provide end-user ease of use for access to Rational Suite and other integrated
products.

RSE provides developers of client applications with:

■ A single data access API. This means that clients do not have to modify code to
access any RSE-enabled application. As more applications become RSE-enabled,
RSE clients automatically have access to new application data.
RSE Implementation 17

■ A consistent mechanism for relating objects within and across applications. Clients
can create and manage their own links between objects attaching any semantics to
the links that they choose. Clients can also get access to links created by any other
client applications, making it easy for clients to share information and implement
point-to-point integrations.

■ A tight integration with Rational Suite.

RSE Adapters

You can create adapters that enable applications to integrate with Rational Suite.
These applications then act as products in the Suite, supplying data that can be
retrieved by client applications.

The adapters connect to the RSE core. Adapters represent defined Rational artifacts
stored in each integrated product. Adapters map an integrated product object
hierarchy to the RSE artifact hierarchy. An adapter is created for each integrated
product. When you create an adapter for an existing application, that application
becomes an integration to the Suite, with its data available to all RSE clients.

Figure 3 shows a partner adapter that would allow that partner’s application to act as
part of the Suite. Data in the partner application would be defined as RSE artifacts in
the Partner Adapter and client applications (for example, SoDA) would be able to
retrieve this data.
18 Chapter 1 - What Is RSE?

Figure 3 RSE Adapters

Rational partners can create new adapters using RSE, enabling partner applications to
act as Suite members.

Adapters can conceptually be seen as server applications to RSE clients. Each adapter
can also be seen as a server to the other RSE adapters for each integrated product.

Conclusion

With RSE technology, data in any integrated product in Rational Suite becomes
available to an RSE client application through one API. RSE clients can retrieve data
from any integrated product in Rational Suite through RSE adapters. The RSE
technology provides both client interfaces and adapter interfaces.

■ The client interfaces are for creating new RSE client applications.
Conclusion 19

■ The adapter interfaces are for implementing the RSE adapters that are included
with Rational Suite and for defining new adapters. RSE adapters are defined for
each integrated product in the Suite in order to map individual-product object
structures to the RSE common object model.
20 Chapter 1 - What Is RSE?

2RSE Object Model
Rational Suite Extensibility uses a generic object model that maps the objects of each
integrated product to an RSE artifact hierarchy. This common object model enables
RSE client applications to retrieve data from any integrated product through one set
of interfaces. This mapping is defined in each individual integrated product adapter.

For example, a RequisitePro Project object is mapped to an equivalent RSE Project
artifact type in the ReqPro adapter. The Artifact object provides the standard
mechanisms to retrieve the properties (for example, Name and Description) of the
object and its relationships to other Artifacts (for example, Requirements).

RSE Objects

This section provides descriptions and examples of the objects in the generic object
model. The primary objects are:

■ Session

■ Adapter

■ Artifact

■ Property

■ Relationship

■ Locator

Object Model Diagram

Figure 4 shows the main objects in the RSE generic object model. As this figure shows,
the client point of entry into the RSE is through the Session object.
21

Figure 4 Main Objects in RSE

Session

A Session object provides access to the installed adapters. A Session object:

■ Is created to work with RSE.

■ Is the main object that is used to begin locating artifacts.

■ Enumerates the adapters that are installed on a system.

Adapter

An adapter provides access to artifact types supported for a given product. Each
adapter defines the mapping between a product’s objects and the RSE generic object
model representation.

An Adapter object:

■ Represents a specific product.

■ Contains the collection of artifacts supported in a product.

■ Allows you to enumerate all of the artifact types that are supported by an adapter.

Each adapter contains the collection of artifact types that map to objects in the
integrated product.

IRDSISession

IArtifactLocator

IAdapter

0..n0..n

IArtifactPropertyType IRelationshipType

IArtifactType

0..n0..n

Static Artifact Types

CreateLocator

0..n0..n
0..n0..n
22 Chapter 2 - RSE Object Model

Artifacts

Artifacts are used to retrieve specific information from an integrated product.

An Artifact object represents an object in an integrated product. For example, the Rose
RSE adapter defines a Class artifact to represent Class objects in a Rose model.

Artifacts:

■ Contain properties and other artifacts.

■ Provide access to related artifacts.

■ Have an artifact type that describes additional information

ArtifactType

An ArtifactType provides detailed information about an artifact type’s Locators,
Properties, and Relationships.

■ Locators are objects that retrieve artifacts

■ Properties are attributes of an artifact

■ Relationships are the associations between artifacts.

Every instance of an artifact has an artifact type. Examples of artifact types are:

■ In RequisitePro:

Project, Document, and Requirement artifact types.

■ In Rose:

Model, Package, and Class artifact types.

An actual instance of an artifact has a name and an artifact type. For example, in Rose,
a class named Order is represented as an artifact with name = Order and artifact
type = Class.

Static and Dynamic Artifact Types

The two kinds of RSE artifact types are static and dynamic.

The collection of static artifact types for each adapter includes all predefined artifact
types.

Static types are the global artifact definitions (defined in the RSE adapters). Static
types include the hierarchy of primary RSE objects that represent the objects in an
integrated product. For example, in the RequisitePro RSE adapter (ReqPro), there are
Project and Requirement artifact types.
RSE Objects 23

The collection of static artifact types for a given adapter includes all the defined
artifact types for that adapter’s integrated product. These definitions are global to all
top-level objects in an integrated product. The top-level object in an integrated
product maps to the root artifact in that product’s RSE adapter. In the ReqPro
example, a Project is the root artifact in both the product hierarchy and in the ReqPro
adapter.

There are also dynamic artifact types that typically represent user-defined artifact
types (for example a user-defined Requirement type in RequisitePro). The dynamic
types are registered within the artifact that corresponds to the integrated product
top-level object (for example, a ReqPro Project artifact). This top-level artifact is the
root artifact. The dynamic types may then be accessed through this root artifact.

Dynamic artifact types are registered within the RSE adapters, based on user-defined
information in an integrated product. These RSE objects represent instances of
user-defined objects in the integrated product (for example, an instance of a
user-defined RequisitePro RequirementType).

In RequisitePro, there can be different requirement types defined in the Project
properties. In the ReqPro adapter, this translates as dynamic artifact types. These
dynamic types become available as additional artifact types when you instantiate RSE
objects.

Defined in the RSE ReqPro adapter, there is a Requirement artifact type. This is a static
artifact type. One type of requirement is a Use Case requirement type. In the RSE
ReqPro adapter, a Use Case requirement is defined as a UCRequirement artifact. This
dynamic type is named within the adapter by concatenating the Requirement tag
prefix with the text ‘Requirement.’

The UCRequirement is a subclass of a Requirement artifact (a subclass is a derived
class). The subclass inherits the properties, relationships, and locator information of
its superclass (a superclass is a base class). The property types of a UCRequirement
artifact in the ReqPro adapter are created dynamically using the attribute types of the
Use Case requirement in RequisitePro.

The RSE adapters map the dynamic artifact type hierarchy and register the
appropriate artifact types, relationship types, and property types. The way in which
this information is retrieved is specific to each integrated product. The dynamic type
information is associated with a top-level object in the integrated product, such as a
RequisitePro Project object.

The dynamic types for each RSE adapter:

■ ReqPro:
24 Chapter 2 - RSE Object Model

Dynamic types are registered by any Project artifact. These types include
user-defined Document types, Requirement types, Attributes of those
Requirement types, and relationships to user defined Views defined in the Project.

■ ClearQuest:

Dynamic types are registered by the CQDatabase artifact. These include
user-defined Record artifact types (typically, artifact types like Defect and
ChangeRequest) including their relationships and properties (fields). The dynamic
types also include relationships from the CQDatabase artifact to records for each
Record type and to the results of all queries defined in the database. Retrieving the
related artifacts from a query relationship causes the query to be executed.
Similarly, each Query artifact has a Results relationship that also executes the
query.

■ Rose:

Dynamic types are registered by the Model artifact. These include properties for
each static artifact type that are registered upon locating a model (root artifact).

■ RAdmin, ClearCase, TeamTest, FileSys, and MSProject do not have dynamic types.

Properties

Each artifact type has a collection of properties associated with it. Property objects
correspond to the individual attributes defined in each integrated product object.
Properties are available from the Artifact object.

For example, the name and the stereotype of a Rose Class are properties of a Class
artifact type. The Name and Stereotype properties are available from the Class
artifact.

PropertyType

Every instance of a property has a corresponding property type. Each PropertyType
supported by any given Artifact is available from the Artifact's ArtifactType object.
This allows the properties supported by an Artifact to be listed without an instance of
that Artifact.

As Figure 5 illustrates, the Rose Class has a Property called 'Stereotype', and the
ArtifactType for the Rose Class has a PropertyType called 'Stereotype'.
RSE Objects 25

Figure 5 Rose Class Property Example

Examples of property and property types:

■ In RequisitePro:

A Requirement ArtifactType has a Text property. The RequisitePro adapter defines
a PropertyType named ‘Text’ for the Requirement ArtifactType.

■ In Rose:

A Package ArtifactType has a Documentation property. The Rose adapter defines a
PropertyType named ‘Documentation’ for the Package ArtifactType.

Property types are registered with artifact types. The set of adapters maps the
individual integrated-product property types to RSE artifacts and properties.

Each property type has a property ID. Property IDs are integer values assigned
sequentially as the properties of an artifact type are registered. They are used
internally by the RSE core to look up property definitions.

Relationships

Each artifact type defines a set of relationship types.

These relationship types are used to find related artifacts. For example:

■ In RequisitePro:

The Project artifact has a relationship to Requirements. This relationship (named,
Requirements) can be used to find the Requirement objects in a Project. A
Requirement has a relationship to AttributeValues (named, AttrValues). This
relationship enables you to find the AttrbuteValue objects of a Requirement.

■ In Rose:

RoseClass

StereotypeProperty

RoseClassType

StereotypePropertyType
26 Chapter 2 - RSE Object Model

The Package artifact has a relationship to Classes. This relationship (named,
Classes) can be used to find the Class objects in a Package. The Class artifact has a
relationship to Properties. This relationship (named, Properties) enables you to
find Property objects of a Class.

Relationships define the associations between artifacts. An artifact can be associated
with any number of relationships. Each relationship links two associated artifacts.

For example, in the ReqPro adapter, Project, Requirement and DocumentType
artifacts all have a Revisions relationship to 0–n Revision artifacts. Figure 6 shows
these relationships. It also illustrates the Project’s Documents relationship to
DocumentType and the Requirements relationship to Requirement. You can configure
methods for locating artifacts using these relationships. For instance, given a Project,
you can retrieve a Revision in the following ways:

■ Given the Revision

■ Given a DocumentType

■ Given a Requirement

Figure 6 ReqPro Relationships Example

Relationships can be of type peer, descendant, or child.

Locators

Locators are RSE objects that are used for finding specific instances of artifacts.

Locators provide a uniform platform for maintaining and resolving references to RSE
artifacts. This allows implementing integrations and maintaining references between
integrated products.

DocumentType
(from ReqPro)

Requirement
(from ReqPro)

Project
(f rom Req Pro)

Revision
(f rom Req Pro)

Documents

Requirements

Revisions

Revisions

Revisions
RSE Objects 27

An artifact locator:

■ Finds an artifact, given user-supplied input.

■ Can locate and return data from an integrated product.

The IArtifactLocator interface is used to locate artifacts and is capable of representing
the locator as a string format that can be persistently saved and resolved at a later
time. This artifact reference contains the series of arguments that identifies a specific
instance of an artifact. This string can be converted into an artifact locator without
loading integrated-product data.

The arguments necessary to locate a specific artifact in an integrated product are
defined by that product's RSE adapter. These properties are specific to that type of
artifact. The values of these properties are then passed on to the integrated product
using the extensibility interface of that product through the adapter. This code is
implemented in the adapter and is specific to that integrated product.

Artifact Arguments

Each locator type has a set of arguments for constructing an artifact. These arguments
are defined as artifact arguments. Artifact arguments are used to specify values for the
information that is needed to locate an artifact. An artifact locator returns an instance
of an artifact.

For example, in order to locate a Rose Class, you need the path of the model, the name
of the Package and the name of the Class. The artifact arguments for a Class locator
type are:

■ Model.Path

The file path to the Model

■ Package.Name

The name of the Package containing the class

■ Class.Name

The name of the Class

You can create an artifact locator to locate a Class by supplying values to these
arguments. For example, to locate a Class named Order in a Rose Model, the
arguments values are:

■ 'C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl'

■ 'Business Services'

■ 'Order'
28 Chapter 2 - RSE Object Model

Given these arguments, the locator returns an instance of the Order class. The locator
string that comprises these arguments is called an artifact reference.

Artifact References

An artifact reference is a string containing the arguments used to locate a specific
instance of an artifact (for example, a Rose Class named Order).

For example, the following is an artifact reference for the Rose Order class:

Rose|Model(Path='C:\Program Files\Rational\Rose\samples\ordersystem')|
Package(Name='Business Services')|Class(Name='Order')

In this example, the RSE core locates the model, then the package, and then the class.

Note: Artifact references are sometimes called locator strings or Artifact IDs.

Each artifact reference:

■ Serves as a unique identifier for locating a specific instance of an artifact.

■ Is a string composed of information about the artifact type to be located and a set
of parameters that specify an instance of the given type of artifact.

There are two types of artifact references, Display Name ID and Immutable ID. Each
type of artifact reference includes two different formats, one a more readable form
(DN) and a one shortened version (ID).

Note: Not all artifact types support all forms of artifact reference. See the Adapters
Reference manual for information on each RSE artifact type.

In the Rose Ordersystem model, the artifact references to the Order Class artifact are:

■ Display Name ID locator

The human readable Display Name format can be viewed and interpreted by the
end user. For example, the Display Name ID for a Rose Class named Order in the
Business Services Package in Ordersys.mdl is:

DN form:

Rose|Model(Path='C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl')|
Package(Name='Business Services')|Class(Name='Order')

or

ID form:

Rose|1.1.2|Class('C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl',
'Business Services','Order')

■ Immutable ID locator
RSE Objects 29

The persistent Identifier form maintains a persistent reference to an artifact. The
artifact arguments are Model path and the Class unique ID (UUID). The UUID is a
12 digit serial number. For example, the Immutable ID form of the Artifact ID for
the Rose Order class is:

DN form:

Rose|Model(Path='C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl')|
Class(UniqueID='3237F8CD03CD')

The UniqueID is a 12 digit serial number that identifies the Class specific to the
Rose Model.

or

ID form:

Rose|1.1|Class('C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl',
'3237F8CD03CD')

In most cases, implementing a GUI that allows users to enter arguments for locating
artifacts is preferred to presenting the raw display name string. These arguments can
then be used to construct the artifact reference. However, there may be some cases
when users may encounter the strings, for example, in ascii files. In this case, the more
readable format of the Display Name ID is far more appropriate than the ID form of
the artifact reference.

For example, in RequisitePro:

■ Display Name ID

The artifact arguments are Project path and Requirement tag. This information
is visible in RequisitePro.

■ Immutable ID

The artifact arguments are Project path and Requirement key. The key is the
record ID for the Requirement in the RequisitePro database. This information is
used internally by RequisitePro but is not displayable.

The primary method of creating a locator is to first enumerate through the list of static
artifact types, select a type, and create a locator for this artifact type. Then, you can
enumerate through the collection of artifacts for this type and select an artifact. Each
of these artifacts has a unique artifact ID.

The IArtiactLocator interface has the ability to enumerate and change the values of
the parameters for the locator. It is not necessary to parse the ArtifactID string in order
to enumerate the values, nor is it necessary to construct a string to locate an object.
30 Chapter 2 - RSE Object Model

In addition to allowing parameter values to be enumerated and changed, the
IArtifactLocator interface supports optional parameters and default values. This
allows capabilities for projects to be located using usernames and passwords, but also
allowing default access without specifying user information.

Default access does not require login authentication and thus prevents exceptions.
The IArtifact interface and the IArtifactType interface allow a Client to get the default
Display Name or Immutable ID locator.

For more information on authentication and exception handling, see the “Creating
RSE Clients” chapter of this manual.

RelativeID Artifact References

Relative IDs are shortened versions of artifact references that provide a method for
locating one artifact, given another artifact. Relative IDs enable you to permanently
save artifact references that allow you to reconstruct objects.

Given an artifact type you can create an artifact locator to locate an artifact. You can
also use a relative locator to get the artifact. For example, in Rose, you can locate a
Class, relative to a Model. The Class relative ID (relative to Model) includes the
Package name and Class name. With this relative locator string, you can locate the
Class artifact.

In Rose, the absolute locator string (artifact ID) for the Order class in ordersys.mdl is:

Rose|Model(Path=’c:\Ordersys.mdl’)|Package(Name=’Business

Services’)|Class(Name=’Order’).

The common information stored in this string can be stored once by a client and used
by the relative IDs for returning reconstructed artifacts.

For example:

■ Given the Package Name (Business Services), the Relative ID for Order is:

Class(Name=’Order’)

This relative ID is relative to the Business Services Package. Business Services is
the artifact that provides the context for this relative ID to Order.

■ Given the model, Ordersys, the relative ID for locating Order is:

Package(Name=’Business Services’)|Class(Name=’Order’)

This relative ID is relative to Model (Model is the context artifact).
RSE Objects 31

To resolve a Relative ID, you need the relative artifact that has the context information
(for example, Rose|Model(Name=’Ordersys’)). This minimizes the amount of
information needed to be stored by each object. Root artifact information is supplied
by the RSE and can be stored once by the client. This greatly reduces the amount of
information needed to be stored for each link (for example, if you were resolving
10,000 links that were all relative to one model object).

For more information on locating artifacts with relative IDs, see the “Creating RSE
Clients” chapter of this manual.

Summary

Figure 7 shows the main objects in the RSE object model for retrieving artifacts and
their properties.

The point of entry into the RSE is through the Session object. A Session object connects
to an Adapter object. From this Adapter object, you can get all of the static artifact
types supported by that adapter.

Each adapter provides the conversion between internal objects from a specific product
and the corresponding RSE artifacts. An adapter includes a defined class for each
artifact type. Each of these internal object classes defines properties, relationships, and
locators and makes available the associated objects in the integrated products.

When you have the collection of available artifact types in an adapter, you can:

■ Create artifact locators to locate artifact types, artifact collections, or specific
instances of artifacts.

■ Retrieve the available property types for a given artifact type, or retrieve specific
instances of artifact properties, for a given artifact.

■ Retrieve the relationships for a given artifact type, or use relationships to retrieve
artifacts that are related to a given artifact.
32 Chapter 2 - RSE Object Model

Figure 7 RSE Objects

SoDA Application Example

SoDA is a Rational client application that uses RSE to retrieve data from integrated
products in Rational Suite. The following code shows how SoDA gets the property
collection (all properties) of an object. This example creates a session, locates a ReqPro
Requirement artifact (artifact ID is the locator argument), and then retrieves the
properties of the Requirement artifact.

In C++:

IRDSISessionPtr theSession;

theSession->CreateInstance("RDSICore.Session");

IArtifactPtr theArtifact = theSession->LocateArtifact("ReqPro|

Project(Path=’<YOUR_PROJECT>’)|Requirement(FullTag=’<YOUR_REQ>’)”);

IArtifactPropertyCollectionPtr theProperties =

theArtifact->GetProperties();

IRDSISession

IArtifactLocator

IAdapter

0..n0..n

IArtifactPropertyType IRelationshipType

IArtifactType

0..n0..n

Static Artifact Types

CreateLocator

0..n0..n
0..n0..n

IArtifact

IArtifactLocator

LocateArtifact

IArtifactProperty

IArtifact 0..n0..n
RSE Objects 33

In VB:

Dim theSession as RDSISession

Dim theArtifact as Artifact

Dim theProperties as ArtifactPropertyCollection

Set theSession = new RDSISession

Set theArtifact =
theSession.LocateArtifact(“ReqPro|Project(Path=’<YOUR_PROJECT>’)|Requi
rement(FullTag=’<YOUR_REQ>’)”)

Set theProperties = theArtifact.Properties

Referencing the RDSICore Type Library

You must reference the RDSICore library into your project. The RDSICore type library
is located in Rational\common\RDSICore.dll

To reference the type library in Visual Basic:

1 Click Project > References

2 Check RDSICore 1.0 Type Library.

To reference the type library into a C++ project:

1 Click Tools > OLE/COM Object Viewer

2 In the OLE/COM Object Viewer dialog, click File > Bind To File

3 In the Open dialog, click Rational/common/RDSICore.dll
34 Chapter 2 - RSE Object Model

3Using RSE
This chapter provides a working example of using the client interfaces of RSE. It
shows how you locate and retrieve data with an RSE client application from an
integrated product in the Suite. The actual examples used in this chapter are:

■ TestFramework

A Visual Basic RSE client application

■ Rose adapter

The RSE Rose adapter that maps Rose objects to RSE artifacts

■ Rational Rose (ordersys.mdl)

Rose is the integrated product used in these examples. Ordersystem is a sample
application included in the Rose samples directory. Ordersys.mdl is the model
used for retrieving actual instances of Rose objects.

Supported Client Use Cases

RSE provides client interfaces for locating and retrieving information, including:

■ Navigating among artifacts

Navigating through an artifact hierarchy. Given one artifact, finding others in
some way, using artifact types and relationships.

■ Retrieving static and dynamic metadata

Static artifact types allow you to understand what types of objects are available
and what properties and relationships they contain, without having an integrated
product root object. For example, you can receive the collection of static artifact
types for the ReqPro adapter without having an actual RequisitePro Project.

The dynamic metadata is created after you load the root artifact. For example, once
you locate a ReqPro Project, the collection of dynamic (user-defined) Requirement
types for this Project are added to the Project artifact and created with dynamic
properties and relationships.
35

While static artifact type definitions are global to each integrated product,
dynamic types are local to a specific instance of a user-defined object in an
integrated product.

■ Locating artifacts

The ability (of the IArtifactLocator interface) to generically find and load artifact
information, given a set of arguments.

■ Getting and setting properties

Artifact properties map to the integrated product attributes of the objects.

RSE also enables you to perform more advanced functions including:

■ Using Relationships

This is a building block for the capability of finding artifacts. You can get a
collection of related artifacts using relationships.

■ Querying

Querying or filtering is the ability to get related artifacts, given a certain condition.
For example, get all related artifacts whose name = ‘User’, or whose stereotype =
‘actors’, or only artifacts whose artifact type = ‘Class’. These examples return a
subset of artifacts of a certain relationship. You can also sort them by name or type.

Note: Sorting is not currently implemented.

■ Supporting persistent references

Given a locator, you can get a persistent artifact ID. This is the immutable ID string
representation of an artifact locator.

■ Creating artifacts

The ability to create an integrated product object from an RSE client application.
The client application does this by creating the artifact that maps to integrated
product object. For example, creating a RequisitePro Requirement by creating an
RSE Requirement artifact through a client application.

■ Launching integrated products

An artifact can open an integrated product and display that artifact’s associated
object. For example, in Rose, an RSE Class Artifact can open Rose and show its
Class Specification box.

■ Obtaining product-specific interfaces
36 Chapter 3 - Using RSE

The ability to get an integrated product’s COM object. Getting this internal object
(the integrated product object) programmatically is an alternative to launching the
integrated product. For example, a client application getting an internal object
from RequisitePro through the ReqPro adapter returns the integrated product’s
object (not the RSE artifact) as if it was from RequisitePro’s COM server.

The COM interface to a RequisitePro requirement is no different than the COM
interface to an artifact, it just has a different set of properties. Conceptually, this is
similar to type casting. For example, given an artifact that is a Requirement, get the
actual Requirement.

■ Managing objects

Object (artifact) support is through the integrated product RSE adapters. The RSE
adapters manage the artifacts that map to the objects in the integrated products.
The RSE core manages which adapters are installed and running.

RSE provides adapter interfaces to manage the entire artifact creation, construction
and deployment process. For information on the adapter interfaces see the
Programmer’s Guide to Adapter Development manual.

This chapter provides descriptions and details for implementing some of these tasks.
For additional information see the “Creating RSE Clients” chapter of this manual.

For specific information on each adapter’s property types and the underlying
property data types in the integrated product, see the Adapters Reference manual or
consult each product’s extensibility user manual and extensibility reference manual.

Client Access

The client application in this chapter retrieves data from the order system model in
Rose (ordersys.mdl in the samples directory). It uses instances of artifacts in the RSE
Rose adapter that map to Rose (the integrated product) objects. This demonstrates
how an RSE client application:

■ Finds an artifact type

■ Locates an artifact

■ Retrieves properties of an artifact

■ Gets related artifacts

■ Displays artifacts

■ Creates an artifact

■ Converts artifacts to product-specific interfaces
Supported Client Use Cases 37

TestFramework

The TestFramework client application performs common retrieval operations, using
methods from the RSE client interfaces. Figure 8 shows the user interface of the
TestFramework application. The drop-down boxes allow you to click:

■ Test – the test you plan to run

■ Adapter – the RSE adapter for the integrated product you want to test

■ Artifact Type – the artifact type you want to work with

Figure 8 RSE TestFramework

Rose Ordersystem Model

As the “RSE Object Model” chapter of this manual describes, all integrated product
data maps to artifacts, locators, properties, and relationships in RSE adapters. For
example, in Rose, there are models (mdl files), packages, and classes. Model, Package,
and Class are artifact types defined in the Rose adapter. A Rose class contains
information that is converted to generic objects that a client application can retrieve.

For the Order System model:
38 Chapter 3 - Using RSE

■ The path of the model is Rational/Rose/samples/ordersystem/ordersys.mdl

■ The name of the model is ordersys.

■ The model contains these packages: User Services, Business Services, and Data
Services.

These packages are represented through the Rose adapter as artifacts. The artifacts
have an artifact type of Package.

The Business Services package contains these classes: Order, OrderRow, Customer,
and Customers. These classes are represented as artifacts of type Class.

Each of these classes contains properties that are represented as class artifact
properties in the Rose adapter. For example, in the Rose adapter, Class artifacts
include a defined property called Documentation.
Supported Client Use Cases 39

Figure 9 shows the Rose Order System model with the Business Services package and
the Order class diagrams displayed.

Figure 9 The Rose Ordersystem Model

Model, Package, and Class are Rose objects that are mapped to RSE artifacts. Figure 10
shows the mapping of these Rose objects to the RSE object model. This mapping is
implemented in the Rose adapter.

The adapter includes static definitions for Model, Package, and Class artifact types.
Ordersys.mdl, Business Services, and Order are actual instances of Rose objects.
40 Chapter 3 - Using RSE

As Figure 10 illustrates, the mapping between Rose object and RSE artifact for these
artifact types is:

■ An .mdl file is an artifact of artifact type Model.

Ordersys.mdl is an actual instance of a Model.

■ A package is an artifact of type Package.

Business Services is an actual instance of a Package.

■ A class is an artifact of type Class.

Order is an actual instance of a Class.

Each artifact type defines its properties and relationships. It also includes definitions
for locators that can locate each artifact or a collection of artifacts of a certain type. The
RSE client application uses the RSE core to gain access to this underlying structure,
defined in each integrated product RSE adapter.

Figure 10 Mapping Artifacts to Objects

Business Services
PackageOrdersys.mdlOrder Class

Class:Order

Package: Business
Services

Model:ordersys

Class Artifact

Package Artifact

Model Artifact

Defined Artifact
Types

Artifact Instances

In the Rose Adapter:

In Rational Rose:
Supported Client Use Cases 41

Finding an Artifact Type

You can find an artifact type as follows:

■ Specifying an adapter and calling StaticArtifactTypes to retrieve the collection of
artifact types available.

■ Enumerating through the static artifact type collection and selecting an artifact
type.

Figure 11 shows the object model for finding an artifact type.

Figure 11 Finding an Artifact Type

IArtifactType

0..n0..n

Static Artifact Types

0..n0..n

IAdapterIRDSISession
42 Chapter 3 - Using RSE

As the sequence diagram for finding an ArtifactType in Figure 12 illustrates:

■ The Client creates a session.

■ Given a session, you can enumerate the adapters to find a specific adapter. All
installed adapters are available to the session.

■ Given an adapter, you can retrieve specific artifact types supported by the adapter.

The Rose adapter defines 47 artifact types. When you select the Rose adapter, all
artifact types supported by the Rose adapter become available. This set of static
artifact types is available in the Rose adapter ArtifactType collection.

When you instantiate objects, some artifacts have information in them that extends
what is available. These are dynamic artifact types. For example, in addition to the
static artifact types defined in the RequisitePro adapter (ReqPro), when you open a
Project (Project artifact type), this Project defines requirement types. These
requirement types become available as additional artifact types.

Figure 12 Client Interfaces for Finding an ArtifactType

IAdapter is the object that runs when you select a specific adapter. It is an instance of
an RSE adapter.

Client theSession :
IRDSISession

theAdapter :
IAdapter

Create

Get Adapters

Get Static Artifact Types
Finding an Artifact Type 43

The list of artifact types that can be returned is constructed dynamically. For example,
if you create a new RSE adapter for a Project Planner application, install it from the
client end and select this new adapter, all of the adapter’s artifact types appear.

Finding an ArtifactType Test

Figure 13 shows the TestFramework setup for finding the artifact types for a Rose
Model:

■ The Adapter drop-down list is initialized using the IRDSISession interface.

■ The ArtifactType drop-down list is initialized using the IAdapter interface.

Figure 13 Finding an ArtifactType

The TestFramework returns all the static artifact types registered by the current
adapter. It creates a new session, gets the adapters, and gets the static artifact types
from the selected adapter.

Code for Finding an ArtifactType

The Test Framework uses the following code to fill the adapter combo box with the
names of each adapter installed on the system:
44 Chapter 3 - Using RSE

 Set m_Session = New RDSISession

 Dim theAdapter As Adapter

 For AdapterID = 0 To m_Session.Adapters.Count – 1

 Set theAdapter = m_Session.Adapters.Item(AdapterID)

 RDSIAdapterList.AddItem theAdapter.Name

 Next AdapterID

Given an adapter, you can get the collection of artifact types defined by the adapter.
The Test Framework uses the following code to populate the artifact type list.

 Dim theAdapter As Adapter

Dim TypeID As Integer

Dim theArtifactType As ArtifactType

Dim ArtifactTypeList As ArtifactTypeCollection

 Set theAdapter = GetCurrentAdapter()

 If Not theAdapter Is Nothing Then

 For TypeID = 0 To theAdapter.StaticArtifactTypes.Count–1

 Set theArtifactType =

 theAdapter.StaticArtifactTypes.Item(TypeID)

 ArtifactTypeList.AddItem theArtifactType.Name

 Next TypeID

 End If

For more information on artifact types, see the “Creating RSE Clients” chapter of this
manual.

Locating an Artifact

To locate a specific artifact, you must first specify the artifact type. Given the type, you
can then construct a locator with the correct artifact arguments as described by the
type. You provide values for the artifact arguments. These arguments represent the
artifact reference. Given the artifact reference, the locator returns an instance of an
artifact.

The object model for locating an artifact is in Figure 14.
Locating an Artifact 45

Figure 14 Objects for Locating an Artifact

IArtifac tLocator

CreateLocator

IArtifactType

LocateArtifact

0..n0..n

IArtifactArgument IArtifact
46 Chapter 3 - Using RSE

As the sequence diagram for locating an Artifact in Figure 15 illustrates:

■ Given an ArtifactType, use the CreateLocator method to get a locator
(IArtifactLocator) for that object. Get the list of arguments for that locator type and
provide argument values (IArtifactArgument) to the locator.

■ Given an ArtifactLocator, use the LocateArtifact method to locate the artifact.
Given the locator, you can provide values for its arguments to find an artifact.
Locating an artifact returns an instance of an artifact.

Figure 15 Client Interfaces for Locating an Artifact

The following example shows how the Test Framework locates the Order class in the
Rose Order System model using the client interfaces shown in Figure 15.

theArtifact :
IArtifactType

theLocator :
IArtifactLocator

theArgument :
IArtifactArgument

Client

Create Locator

Get Arguments

Set Value

Locate Artifact
Locating an Artifact 47

The Order class is located and returned through the Rose adapter. The Rose class
object maps to an instance of a class artifact in the Rose adapter.

Figure 16 shows the Order class specification in Rose.

Figure 16 Order Class

The objects used in this example are:

■ ArtifactType

This example locates the class named Order. Its ArtifactType is named “Class”.

■ ArtifactLocator

The locator object for a Rose Class has three arguments. To locate the Order Class,
you need the path of the model, the name of the Package, and the name of the
Class.

■ ArtifactArgument
48 Chapter 3 - Using RSE

The artifact arguments specify the information needed to locate an artifact. For
example, in Rose the arguments are specific attributes in Rose and each is an
ArtifactArgument.

❑ The path of the Model

C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl

❑ The name of the Package containing the class

Business Services

❑ The name of the Class

Order

■ Artifact

Represents the Class named Order in Rose.
Locating an Artifact 49

Locating an Artifact Test

Figure 17 shows the TestFramework Sanity test for locating an artifact. When you
click Start in TestFramework, a Locate Class box appears.

Figure 17 Running the Sanity Test to Locate an Artifact

In this box, you can enter the three ArtifactArgument parameters for path (C:\Program

Files\Rational\Rose\samples\ordersystem\ordersys.mdl), package (Business Services) and
class (Order). Click OK and the TestFramework returns a message that it found the
Order class in Rose.

As another implementation possibility, you can also display a property page or table
and a user can enter the values to find a particular artifact in an integrated product.
50 Chapter 3 - Using RSE

Code for Locating an Artifact

The TestFramework application uses the following code to initialize the locator dialog
box used by the Sanity test. It uses the ArtifactType to create a locator. Given the
artifact type, two locators are created for the dialog box, a display name locator and an
immutable ID locator.

The display name locator contains information that is understandable to the user. The
immutable ID locator contains a persistent reference to an artifact that is
understandable to the system.

In this example:

■ theType is an instance of a Rose Class ArtifactType.

■ m_Locator is a locator for the Class ArtifactType.

Private Sub Initialize(theType As ArtifactType)

 Set m_Locator = theType.CreateLocator()

End Sub

The following code is used by the TestFramework to initialize the locator arguments
list in the locator dialog box.

Private Sub UpdateControls()

 Dim theArg As ArtifactArgument

 For ArgID = 0 To m_Locator.Arguments.Count - 1

 Set theArg = m_Locator.Arguments.Item(ArgID)

 Set theListItem = ListView.ListItems.Add(theArg.Value)

 theListItem.SubItems(1) = theArgument.ArgumentName

 theListItem.SubItems(2) = theArgument.ArtifactTypeName

 Next ArgID

End Sub

The following code saves the values in the locator dialog box by setting the
ArtifactArgument values belonging to an ArtifactLocator. It iterates through the
locator’s arguments, getting each argument from the collection of arguments and puts
each argument name, type, and argument value into the dialog box. Different objects
may contain different information but the same piece of code is initialized in this
dialog box for all integrated products.

Private Sub OKButton_Click()

 Dim theArguments As ArtifactArgumentCollection
Locating an Artifact 51

 Dim theArgument As ArtifactArgument

 For ItemID = 0 To ListView.ListItems.Count - 1

 Set theListItem = ListView.ListItems.Item(ItemID + 1)

 Set theArgument = m_Locator.Arguments.Item(ItemID)

 theArgument.Value = theListItem.Text

 Next ItemID

End Sub

TestFramework uses the following code to locate an Artifact. The LocateArtifact
method of the IRDSISession interface returns an instance of Order (the Rose Order
class).

In this example:

■ theLocator is a locator for the Class ArtifactType returned by the locator dialog.

■ LocateAnArtifact is the return value for the function. This is the Rose Class
Artifact named Order.

Function LocateAnArtifact(bPrintLocator As Boolean) As Artifact

 Dim theLocator As ArtifactLocator

 Set theLocator = GetALocator(True)

 Set LocateAnArtifact = theLocator.LocateArtifact()

End Function

LocateArtifact coordinates with the individual products in Rational Suite, each with
its own API but with RSE the above piece of code accomplishes this search
mechanism for all integrated products.

For more information on artifact types, see the “Creating RSE Clients” chapter of this
manual.
52 Chapter 3 - Using RSE

Retrieving Properties of an Artifact

You can retrieve the properties of an artifact after you have located the artifact by
calling the IArtifact Properties method. After you retrieve the collection of properties,
you can get or set values of specific properties.

Figure 18 shows the object model for retrieving the properties of an artifact.

Figure 18 Object Model for Retrieving Properties

IArt ifactLocator

IArt ifactProperty

IArtifact

LocateArtifact

0..n0..n
Retrieving Properties of an Artifact 53

As the sequence diagram in Figure 19 shows:

■ Given a specific artifact that has been located, you can then access that artifact’s
properties.

■ The artifact has a collection of properties, and each property has a value that can be
accessed. (Note: Some properties are not modifiable)

Figure 19 Retrieving Properties

The following example retrieves the properties of the Order class in the Rose Order
System model.

theArtifact :
IArt ifact

theProperty :
IArtifactProperty

Client

Get Properties

Get Value

Set Value
54 Chapter 3 - Using RSE

Figure 20 shows the Order class specification in Rose.

Figure 20 Order Class Specification
Retrieving Properties of an Artifact 55

Retrieving Properties of an Artifact Test

Figure 21 shows the TestFramework Get_Properties test for retrieving the properties
of the Order class in Rose. When you click Start in the TestFramework, a Locate Class
box appears. The Locator arguments are:

■ Path of the Model (C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl)

■ Name of the Package (Business Services)

■ Name of the Class (Order)

Click OK and the TestFramework returns the properties in the Order class in Rose.

Figure 21 Running the Artifact_GetProperties Test
56 Chapter 3 - Using RSE

Retrieving the Value of a Property

The name of the second listed property is Documentation. The value for
Documentation is the text string that includes the Documentation text.

In Rose, in the Class Specification for Order box, there is a General tab. At the bottom
of this box, is the Documentation property. This is defined as a Property in the Rose
adapter of data type Text. You can enter additional text in this section. In this example
the extra text ‘We were here!’ is added. Click Apply.

To retrieve this from the TestFramework, select the PropertyGet_Basic test for a Rose
Class. Click Start and OK on the Locate Class box. Scroll down to the Documentation
property and the Value includes the ‘We were here!’ at the end of the text string.

Code for Retrieving Properties of an Artifact

This method prints the values of all the properties of a given artifact (theArtifact).
theArtifact is the Rose Class Artifact named Order.

Sub PrintArtifactProperties(theArtifact As Artifact)

 Dim theProperties As ArtifactPropertyCollection

 Dim theProperty As ArtifactProperty

 Set theProperties = theArtifact.Properties

 PrintResults 0, "Artifact Type: " + theArtifact.Type.Name

 For i = 0 To theProperties.Count - 1

 Set theProperty = theProperties.Item(i)

 PrintResults 1, theProperty.Type.Name + " = " + _

 CStr(theProperty.Value) + _

 GetSemanticTypeName(theProperty.Type)

 Next i

End Sub

For more information on retrieving properties, see the “Creating RSE Clients” chapter
of this manual.
Retrieving Properties of an Artifact 57

Getting Related Artifacts

You can get the related artifacts of an artifact by specifying an artifact type and a
relationship type. The object types and the instances used in this section are:

■ Artifact

The Business Services Package.

■ ArtifactType

A Rose Package

■ RelationshipType

The Classes relationship type.

■ ArtifactCollection

The collection of Class Artifacts contained in the Business Services Package.

Figure 22 shows the object model for getting related artifacts.

Figure 22 Getting Related Artifacts Object Model

IArtifact IArtifactType

0..n0..n

IRelationshipType

0..n0..n

IArtifactCollection

GetRelatedArtifacts
58 Chapter 3 - Using RSE

As the sequence diagram in Figure 23 shows:

■ Given an artifact, you can get its type.

■ Given an ArtifactType, you can ask for it to get a specific relationship.
RelationshipType is the object that represents a relationship.

■ Given an artifact, you can get the collection of artifacts (IArtifactCollection) that is
related to an artifact.

Figure 23 Getting Related Artifacts

This example retrieves the related artifacts in the Business Services package in the
Order System model.

Client theArtifact :
IArt ifact

theType :
IArtifactType

Get Artifact Type

Get Relationship Type

Get Related Artifacts
Getting Related Artifacts 59

Figure 24 shows the classes in the Business Services package in Rose.

Figure 24 Business Services Package Overview

Business Services O verview

O rderR ow
<<Class M odule>>

Custom er
<<Class M odule>>

O rder
<<Class M odule>>

n

-O rderrow s

n

-m Purchaser

Custom ers
<<Class M odule>>
60 Chapter 3 - Using RSE

Getting Related Artifacts Test

Figure 25 shows the TestFramework GetRelatedArtifacts test for retrieving the
collection of related artifacts. In this example, the test is done for the Business Services
package in the Order System model. When you click Start in the TestFramework, a
Locate Package box appears. The Locator dialog arguments are:

■ Path of the Model (C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl)

■ Name of the Package (Business Services)

Figure 25 Running the GetRelatedArtifacts Test

Click OK and a Choose Relationship box appears.
Getting Related Artifacts 61

Select Classes. Click OK. The TestFramework returns the collection of artifacts for the
Classes relationship in the Business Services package. This includes the classes in the
Business Services package shown in Figure 24:

■ Order

■ OrderRow

■ Customer

■ Customers

Code for Getting Related Artifacts

This is the method that enumerates and prints the name and type of each Artifact
related to theArtifact by theRel.

■ theArtifact is the Rose Package Artifact named Bank.

■ theRel is the Classes Relationship.

Sub PrintRelatedArtifacts(theArtifact As Artifact, _

 theRel As RelationshipType)

 Dim theRelArtifacts As ArtifactCollection

 Dim theRelArtifact As Artifact

 Set theRelArtifacts = theArtifact.GetRelatedArtifacts(theRel)

 For ArtifactID = 0 To theRelArtifacts.Count - 1

 Set theRelArtifact = theRelArtifacts.Item(ArtifactID)

 PrintResults 2, theRelArtifact.Type.Name + _

 " named [" + theRelArtifact.Name + "]"

 Next ArtifactID

End Sub
62 Chapter 3 - Using RSE

Displaying Artifacts

You can invoke an integrated-product GUI by specifying an artifact and using the
Show method of the IArtifactGUI interface. This example uses the Order class in the
Business Services package of the ordersys model.

Figure 26 shows the TestFramework Artifact_Show test. The selected adapter is Rose
and the ArtifactType is Class. Click Start and the Locate Class box appears. The
arguments are the path of the model, the package and the class.

Figure 26 Running the Artifact_Show Test

Click OK and the Show method launches Rose and opens the Class specification for
Order, as shown in Figure 27.
Displaying Artifacts 63

IArtifactGUI.Show instructs the given artifact to make its GUI visible.

Figure 27 Displaying the Integrated-Product GUI

Code for Displaying an Artifact

Given an artifact, invoke the GUI by calling the Show method of the IArtifactGUI
interface.

m_ContextArtifact is the Rose Package Artifact named Bank.

Private Sub Test_RunTest()
64 Chapter 3 - Using RSE

 If m_ContextArtifact.GUI.CanShow() Then

 PrintResults 0, "Artifact can show...”

 m_ContextArtifact.GUI.Show

 Else

 PrintResults 0, "Artifact can't show...”

 End If

End Sub

Getting the Internal Object

You can convert artifacts to product-specific interfaces using the GetInternalObject
method of the IArtifact interface. This is useful for integrating RSE and specific
integrated-product extensibility APIs.

Figure 28 shows the GetInternalObject test for the Rose class named Order.

Figure 28 Running the Artifact_GetInternalObject Test

This method converts an artifact into a product-specific interface using the
GetInternalObject method. If a RoseItem is returned, Rose Extensibility Interface
supplied values are found and the test prints out the REI class name, the name of the
item and the name of the model.
Getting the Internal Object 65

m_ContextArtifact is the Rose Package Artifact named Model.

Code that represents a Rose object is in bold print. (This is the code that is different for
each integrated product API.)

Private sub test_RunTest()

 Dim theObject as object

 Set theObject = m_ContextArtifact.GetInternalObject()

 If not theObject is nothing then

 Dim theItem as RoseItem

 Set theItem = theObject

 If not theItem is nothing then

 PrintResults 0, “Found a Rose " & _

 theItem.IdentifyClass() & " named " & _

 theItem.Name & " from " & theItem.Model.Name

 End if

 End if

End sub

Using the Display Name ID for a Locator:

Rose|Model(Path='C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl')|
Package(Name='Business Services')|Class(Name='Order')

the test returns:

Found a Rose Class named Order from

C:\Program Files\Rational\Rose\samples\ordersystem\ordersys.mdl

For information on an integrated-product’s extensibility see that product’s
documentation. For example, for Rose, see the Rose Extensibility User’s Guide.
66 Chapter 3 - Using RSE

4Creating RSE Clients
This section demonstrates how RSE can be used to perform some typical client
application functions. Excerpts of source code are included to show specifically how
RSE can be used to implement client applications. For the purposes of simplicity, the
only integrated products discussed in this chapter are Rose and RequisitePro. The
examples provided are compatible with other products.

■ Locating Artifacts

Describes the methods for locating artifacts and provides information on artifact
IDs and artifact locator objects. There are also examples covering authentication
and error handling.

■ Getting and Setting Properties

Describes how to get and set an artifact’s property values.

■ Getting Related Artifacts

Provides information on Query interfaces for getting a collection of artifacts, given
an artifact.

■ Displaying Artifacts

Describes the Artifact Show method for an artifact launching an integrated
product and opening its associated object.

■ Converting Between Artifact Object and Internal Object

Covers the compatibility between Rational Suite Extensibility and integrated
product extensibility APIs.

■ Creating and Deleting Artifacts
67

Locating Artifacts

The methods for locating artifacts are:

■ Using an artifact locator

■ Using an artifact reference

You can locate an artifact directly, given an artifact ID. You can use the
LocateArtifact method if you have an artifact ID from a previous session and you
want to relocate an artifact.

Both methods require an artifact ID. This Artifact ID is an absolute ID and maps to the
root artifact for a given adapter. With this root artifact, you can also create relative IDs
using the CreateRelativeArtifactID method to store references to other artifacts. These
relative IDs can also be used to locate artifacts.

For locating an artifact:

■ Use ArtifactType.CreateLocator when prompting a user for data.

■ Use LocateArtifact when using an artifact ID from a previous session.

Using an Artifact Locator

The primary method for locating an artifact (as described in Chapter 3) is to select an
adapter and get the collection of static artifact types for that adapter. You then
enumerate through the types, select a type, and create an artifact locator for this type.

Given the locator, you can then set values for the locator arguments and locate an
artifact.

To locate an artifact using an artifact locator, you:

■ Create an artifact locator

■ Initialize the locator arguments

■ Locate the artifact
68 Chapter 4 - Creating RSE Clients

Creating an Artifact Locator

The following code creates a locator for the currently selected artifact type. It creates
the locator with these argument values.

Function GetLocator (AdapterName As String, ArtifactTypeName As
String) As ArtifactLocator

Dim theRDSISession As New RDSISession

Dim theAdapter As Adapter

Dim theType As ArtifactType

Dim theLocator As ArtifactLocator

Set theAdapter = theRDSISession.Adapters.Item(AdapterName)

Set theType = theAdapter.StaticArtifactTypes.Item (ArtifactTypeName)

Set theLocator = theType.CreateLocator
(LocatorType:=rsLocator_Display_Name)

Set GetLocator = theLocator

End Function

Initializing Locator Arguments

The IArtifactLocator interface enumerates the artifact arguments for a given locator
type. You can set values for these arguments or provide a GUI that allows a user to set
these values.

The following is an example of the locator arguments defined in an artifact locator
that locates a Rose Class. Table 1 lists the locator arguments (with their names and
values) in this example.

Table 1 Locator Arguments

The Locator.Arguments method returns the collection of arguments needed for a
given locator. The following code example sets the values for the arguments to create
a locator.

ArtifactType Argument Name Value

Model Path C:\Ordersys.mdl

Package Name Business Services

Class Name Order
Locating Artifacts 69

Using the Rose Class locator arguments above, you could call SetLocatorArg as
follows:

Sub InitializeRoseClassLocator (theLocator As ArtifactLocator)

SetLocatorArg(theLocator, “Model”, “Path”, “C:\Ordersys.mdl”)

SetLocatorArg(theLocator, “Package”, “Name”, “Business Services”)

SetLocatorArg(theLocator, “Class”, “Name”, “Order”)

End Sub

Sub SetLocatorArg (theLocator As ArtifactLocator,

ArtifactTypeName As String,

ArgumentName As String,

Value As Variant)

Dim theArguments As ArgumentCollection

Set theArguments = theLocator.Arguments

For i = 1 to theArguments.Count

If theArguments[i].ArtifactTypeName = ArtifactTypeName And

theArguments[i].ArgumentName = ArgumentName Then

theArguments[i].Value = Value

End If

Next i

End Sub

In this example the:

■ ArtifactTypeName arguments are Model, Package, and Class.

■ ArgumentName arguments are Path, Name (the Package name), and Name (the
Class name).

■ Value arguments are C:\Ordersys.mdl, Business Services, and Order.

In addition to allowing argument values to be enumerated and changed, the artifact
locator interface supports optional arguments and default values. This allows
capabilities for projects to be located using usernames and passwords, but also
allowing default access without specifying user information. For more information,
see Authentication and Exception Handling on page 75.
70 Chapter 4 - Creating RSE Clients

Locating an Artifact

Given the locator arguments, you call the ArtifactLocator.LocateArtifact method to
get the artifact. For example:

Dim theArtifact As Artifact

Dim theLocator As ArtifactLocator

Set theLocator = GetLocator (“Rose”,”Class”)

InitializeRoseClassLocator theLocator

Set theArtifact = theLocator.LocateArtifact()

Using an ArtifactID

An artifact ID is a string representation of an artifact locator. You can store these
strings and use them later to create locators and relocate artifacts.

The following ArtifactID is the string representation of the Rose Class locator object:

Rose|Model(Path=<c:\Ordersys.mdl>)|
Package(Name=’Business Services’)|Class(Name=’Order’)

To locate an artifact using an ArtifactID, you first get an ArtifactID and then use it as
an argument in the RDSISession.LocateArtifact method.

Getting an ArtifactID

You can get an ArtifactID:

■ from an artifact locator, using ArtifactLocator.GetArtifactID

■ from an artifact, using Artifact.GetDefaultArtifactID

With either of these methods, you can get the DisplayName or ImmutableID form of
the ArtifactID.

■ The display name form is the most descriptive and readable form of the
information needed to locate an artifact.

■ The ImmutableID is defined to be the best form for storing persistent references to
an artifact.

Getting an ArtifactID from an Artifact Locator

Given an artifact locator, you can get an Artifact ID using the
ArtifactLocator.GetArtifactID method. For example:

ArtifactID = theLocator.GetArtifactID (rsLocator_Display_Name)

You can also get the ImmutableID form:
Locating Artifacts 71

ArtifactID = theLocator.GetArtifactID(rsLocator_Immutable_ID)

Getting an ArtifactID from an Artifact

Given an artifact, you can get an Artifact ID using the Artifact.GetDefaultArtifactID
method. For example:

ArtifactID =

theArtifact.GetDefaultArtifactID(rsLocator_Display_Name)

You can also get the ImmutableID form:

ArtifactID =

theArtifact.GetDefaultArtifactID(rsLocator_Immutable_ID)

Locating an Artifact with an ArtifactID

Given an ArtifactID, you can locate the artifact with the RDSISession.LocateArtifact
method.

In the following example, for locating a Rose Model, the ArtifactID is:

Rose|Model(Path=’C:\Visual Models\myModel.mdl’)

■ The adapter name is Rose.

■ The artifact type is Model.

■ The path of the model is C:\Visual Models\myModel.mdl.

Clients use the RDSISession to establish a connection to the RSE core without any RSE
object as its context.

Dim theArtifact As Artifact

Dim ArtifactID As String

Dim theRDSISession As New RDSISession

ArtifactID = "Rose|Model(Path=’C:\Visual Models\myModel.mdl’)"

Set theArtifact = theRDSISession.LocateArtifact (ArtifactID)

Using Relative Artifact IDs

A relative artifact ID is a reference to an artifact given another artifact. This enables
simplified versions of the information needed to locate artifacts.

For example:

■ The absolute ArtifactID to the Rose Order Class is:

Rose|Model(Path=<C:\Ordersys.mdl>)|
Package(Name=’Business Services’)|Class(Name=’Order’)
72 Chapter 4 - Creating RSE Clients

The absolute artifact ID includes all information for an artifact, including its
location (path) and extra information such as username and flags.

■ The RelativeArtifactID for this object, relative to Package is:

Class(Name=’Order’)

You can use this shorter reference, given the ArtifactID for the Package. In this
example, Package is the context artifact.

Both forms of ID provide a method for storing references to artifacts that can be used
to relocate the artifacts later. RelativeArtifactIDs allow less information to be stored.

Getting a RelativeArtifactID

You get a RelativeArtifactID by:

■ Getting a context locator

■ Getting the RelativeArtifactID from the context locator

Getting a Context Locator

To get a RelativeArtifactID, you first need a context locator.

For example, to get the RelativeArtifactID for a Rose Class, relative to Package, you
first need the Package context locator. A context artifact provides the context to the
lower level artifacts.

■ Given an artifact, you can get an artifact locator. For example, given a Rose Class,
you can get a Class ArtifactLocator object using the Artifact.CreateLocator
method.

■ Given an artifact locator, you can get a context locator. The locator object calls
ArtifactLocator.ContextLocator to get a context locator object (for example a Rose
Model ArtifactLocator object).

■ From the context locator, you can get the context artifact ID by calling the
Locator.GetArtifactID method.

This context artifact information is then used for getting a relative artifact ID.

Getting a RelativeArtifactID from a Context Locator

From the context locator, can get the relative artifact ID with the
Locator.GetRelativeArtifactID(ContextLocator) method.

The GetRelativeArtifactID method returns a relative artifact ID that contains the
arguments and property values relative to the context artifact. This ID is stored and
can be used later.
Locating Artifacts 73

The following code example shows the relative locator capabilities of the
IArtifactLocator interface. It shows how you get a relative artifact ID from an object.

In this example, the context locator is the object one level up (for example, the context
locator for Class is Package; the context locator for Package is Model).

Function GetRelativeArtifactID (theLocator As ArtifactLocator) As
String

Dim theContextLocator As ArtifactLocator

Set theContextLocator = theLocator.ContextLocator()
GetRelativeArtifactID =

theLocator.GetRelativeArtifactID(theContextLocator,
 rsLocator_Display_Name)

End Function

Given a relative artifact ID, you can create a relative locator to locate an artifact. You
can also save both the ArtifactID and RelativeArtifactIDs in a file, close a client
application, then open it later, and use the IDs by creating locators with these IDs
(using the RDSISession.CreateArtifactLocator method) and locating the artifacts.

Locating an Artifact with a RelativeArtifactID

You can locate an artifact, given a context locator and a RelativeArtifactID. Given the
relative ID, you can create a locator using the ArtifactLocator.CreateRelativeLocator
method. You can use this relative locator to locate the artifact.

For example:

■ The ArtifactID of the Package context locator is:

Rose|Model(Path=<C:\Ordersys.mdl>)|
Package(Name=’Business Services’)

■ The RelativeArtifactID for the Class is:

Class(Name=’Order’)

To locate a Rose Class, given a Package:

■ Create a context locator, using the RDSISession.CreateArtifactLocator method.
This is a locator to the Package, since Package is the context artifact.

theContextLocator = theSession.CreateArtifactLocator(ContextID)

■ Given the RelativeArtifactID, create a relative locator to the Class.

The type of relative locator can be DisplayName or UniqueID.

Set theLocator =

theContextLocator.CreateRelativeLocator(RelativeArtifactID)
74 Chapter 4 - Creating RSE Clients

■ Use the relative locator to locate the artifact

Set theArtifact = theLocator.LocateArtifact()

You can also get the ArtifactID for the context locator and save both IDs, convert them
back to locators, and use the locators to locate the artifacts.

In the ReqPro adapter, given a Requirement artifact, with the following locator
arguments:

you can locate the Requirement, with a RelativeArtifactID, relative to Project.

■ The absolute ArtifactID for the Requirement is:

ReqPro|Project(Path='C:\ReqPro\Project 1\Project 1.rqs',
UserName='Admin',Password='',Flags='0')|Requirement(FullTag='REQA1')

■ The RelativeArtifactID (Relative to the Project artifact type) is:

Requirement(FullTag='REQA1')

Using the RelativeArtifactID, you create a Relative Locator from the Project to locate a
REQARequirement.

The ArtifactID for Project is:

ReqPro|Project(Path='C:\ReqPro\Project 1\Project 1.rqs',

UserName='Admin',Password='',Flags='0')

You can use this ID and the Requirement RelativeArtifactID to locate the Project and
the Requirement.

Authentication and Exception Handling

When locating artifacts, the following exceptions can be thrown:

 Name Value

Project.Path C:\ReqPro\Project 1\Project 1.rqs

Project.UserName Admin

Project.Password

Project.Flags 0

Requirement.FullTag REQA1
Locating Artifacts 75

■ E_ACCESSDENIED Authentication failed

This means that either an incorrect username or password was entered.

■ E_PENDING Authentication required

This means that a username and password are required.

If these exceptions are thrown when locating an artifact, you must resolve the locator
by providing user login information. This includes a valid username and password.

The following exception handler code resolves access denied and authentication
required errors. If this were a real GUI, then in either exception case, you would need
to display a login dialog, find the artifact argument that has a data type of UserName
or Password (get the UserName or Password from the locator), and prompt user for
the information. Then, enter this information back into the locator.

Function LocatorUtils_DoLocateArtifact(theLocator As ArtifactLocator)
As Artifact

 On Error GoTo HandleError

 Dim theArtifact As Artifact

TryAgain:

 Set theArtifact = theLocator.LocateArtifact()

 If theArtifact Is Nothing Then

 PrintError 0, "LocateArtifact did not find an artifact using: "
+ vbCrLf + theLocator.GetArtifactID(rsLocator_Display_Name)

 Exit Function

 End If

 Set LocatorUtils_DoLocateArtifact = theArtifact

 Exit Function

HandleError:

 ' Authentication Failed

 If Err.Number = &H80070005 Then

 If DisplayLoginDialog (theLocator) = False Then

 Exit Function

 End If

 GoTo TryAgain

 End If

76 Chapter 4 - Creating RSE Clients

 ' Authentication Required

 If Err.Number = &H8000000A Then

 If DisplayLoginDialog (theLocator) = False Then

 Exit Function

 End If

 GoTo TryAgain

 End If

 PrintRuntimeError 0, "LocateArtifact did not find an artifact."

End Function

Function DisplayLoginDialog (theLocator As ArtifactLocator) As Boolean

 Dim theLoginDialog As New LoginDialog

 ' Enumerates the arguments of the locator, looking for

' the one with SemanticDataType of UserName

 LoginDialog.UserName = GetUserName (theLocator)

 ' Enumerates the arguments of the locator, looking for

 ' the one with SemanticDataType of Password

 LoginDialog.Password = GetPassword (theLocator)

 LoginDialog.Show 1, Me

 If LoginDialog.Canceled = True Then

 DisplayLoginDialog = False

 End If

 ' Sets the UserName of the locator

 SetUserName theLocator, LoginDialog.UserName

 SetPassword theLocator, LoginDialog.Password

 DisplayLoginDialog = True

End Function
Locating Artifacts 77

Getting and Setting Properties

Given an artifact, you can retrieve actual property types, values, and names using
methods of the IArtifact interface. Before you set values, you must first check the
IArtifactPropertyType.SetAllowed method to verify that a property is allowed to be
set.

Getting the Values of Properties

In this example, the code displays a property sheet containing the values of all of the
properties of the Artifact.

The following example loads a property sheet. When the property sheet is initialized,
the properties of the specified artifact are enumerated and added to the list control.
This uses the Artifact's Properties member to enumerate through all of the properties
for the Artifact. For each property, the name is added to column 0 and the value to
column 1 of the list. The properties that are not allowed to be set are disabled.

Sub LoadProperties (theArtifact As Artifact)

Dim theProperty As ArtifactProperty

Dim PropID As Long

‘Enumerate all of the properties for the Artifact:

For PropID = 0 To theArtifact.Properties.Count - 1

Set theProperty = theArtifact.Properties (PropID)

‘Add a new row

RowID = thePropertyList.AddRow ()

‘ Initialize with property info

thePropertyList.Add RowID, 0, theProperty.Name

thePropertyList.Add RowID, 1, theProperty.Value

‘Disable the list elements that cannot be modified:

If theProperty.Type.SetAllowed () = False Then

ThePropertyList.EnableRow RoseID, False

End If

Next PropID

End Sub

For applications that require a set of properties to be used on a large number of
artifacts, there is an alternate approach that allows the code to execute with minimal
performance overhead. Imagine a report generator that lists the name and
documentation of each artifact in a collection. For large numbers of artifacts, the time
78 Chapter 4 - Creating RSE Clients

spent looking up the ArtifactProperty object in each artifact would add to the time
taken to execute the operation. By caching the IArtifactPropertyType for each
property to be set, this lookup only needs to happen once.

Sub PrintNameAndDocumentation (theArtifacts As ArtifactCollection,
theType As ArtifactType)

Dim theNamePropertyType As ArtifactPropertyType

Dim theDocumentationPropertyType As ArtifactPropertyType

Dim theArtifact As Artifact

Set theNamePropertyType = theType.PropertyTypes("Name")

Set theDocumentationPropertyType =
theType.PropertyTypes("Documentation")

For i = 0 to theArtifacts.Count - 1

Set theArtifact = theArtifacts (i)

Print theArtifact.GetPropertyValue (theNamePropertyType)

Print theArtifact.GetPropertyValue (theDocumentationPropertyType)

Next I

This approach can be used in order to optimize client tools performance.

Setting the Values of Properties

When the OK button is pressed, the SaveProperties method of the property sheet is
called. SaveProperties works by enumerating all of the rows of the list control and
looking up the property value for that name in the Artifact. If the values don't match,
then the IArtifact.SetPropertyValue method is called to update the Artifact.

Sub SaveProperties (theArtifact As Artifact)

Dim PropertyName As String

Dim theProperty As ArtifactProperty

Dim NewValue As Variant

For RowID = 0 to thePropertyList.Rows.Count - 1

‘ Get the name of the property stored in the first column

PropertyName = thePropertyList.GetValue (RowID, 0)

‘ Get the value of the property stored in the list

NewValue = thePropertyList.GetValue (RowID, 1)

‘ Get the property from the Artifact

Set theProperty = theArtifact.Properties (PropertyName)
Getting and Setting Properties 79

‘ Only set the property if the Domain is able to do so.

If theProperty.Type.SetAllowed () Then

‘ If the values don't match, update the Artifact

If theProperty.Value <> NewValue Then

theProperty.Value = NewValue

End If

End If

Next ListID

End Sub

This algorithm could be optimized. You could store a reference to each
ArtifactProperty object for each row of the list. The process of setting the property
values would become nothing more than iterating through all of the rows of the list
and checking values.

Sub OptimizedSaveProperties (theArtifact As Artifact)

Dim PropertyName As String

Dim NewValue As String

Dim theProperty As Property

For RowID = 0 to thePropertyList.Rows.Count - 1

‘ Get the value of the property stored in the list

NewValue = thePropertyList.GetValue (RowID, 1)

‘ Get the property object for this Row

Set theProperty = thePropertyList.GetObjectValue (RowID)

If Not theProperty Is Nothing Then

‘ If the values don't match, update the Artifact

If theProperty.Value <> NewValue Then

theProperty.Value = NewValue

End If

Else

‘ Deal with the error

End If

Next RowID

End Sub
80 Chapter 4 - Creating RSE Clients

Getting Related Artifacts

You can use relationships to get related artifacts for a given artifact or artifact type. For
a given:

■ ArtifactType, you can get its relationship types and the related artifact types.

■ Artifact, you can get the collection of related artifacts.

■ Artifact collection, you can iterate through the collection and find a specific item.

Getting Relationship Types

You can get a category of relationship types for a given artifact type using the
ArtifactType.GetRelationshipTypes method. You can get different related artifact
types by specifying a category of relationship type. The categories are:

❑ rsDescendant

❑ rsPeer

❑ rsChild

❑ rsAll

This allows you to filter for a specific category of relationship type.

The ArtifactType.GetRelationshipTypes method returns the collection of relationship
types associated with an artifact type. For example, the following code returns all
(rsAll) relationship types for theArtifact:

Set theRelationships =

theArtifact.Type.GetRelationshipTypes (rsAll)

For a given relationship type, you can get the related artifact type, using the
RelationshipType.GetRelatedArtifactType method.

Getting Related Artifacts

To retrieve a collection of related artifacts you use the Artifact.GetRelatedArtifacts
method and specify the relationship type.

The following code example is a function that returns a collection of all the artifacts
related to the theParentArtifact by the “ArtifactLinks” relationship.

Function GetLinks (theParentArtifact As Artifact) As
ArtifactCollection
Getting Related Artifacts 81

Dim theRelationships as RelationshipTypeCollection

Dim theLinksRelationship As RelationshipType

Set theRelationships =
theParentArtifact.Type.GetRelationshipTypes (rsAll)

Set theLinksRelationship = theRelationships.Item ("ArtifactLinks")

Set GetLinks =
theArtifact.GetRelatedArtifacts (theLinksRelationship)

End Function

Using an Artifact Collection

Given a collection of artifacts, you can search through the collection to find a specific
artifact:

■ Using an iterator

■ Using a For loop

For better performance with large artifact collections, using an iterator is more
efficient than a For loop.

Iterating Through an Artifact Collection

You can use the Iterator interface to iterate through a given artifact collection.

The IArtifactCollection GetIterator method returns a new instance of an
IArtifactIterator. Each iterator begins iteration from the beginning of the collection.

The iterator interface includes the following methods:

■ HasNext(BOOL *bHasNext);

■ Next(IArtifact **ppArtifact);

This allows the following code to be written to iterate the artifacts in a collection:

IterateArtifacts (theArtifacts As ArtifactCollection)

Dim Iterator As ArtifactIterator

Set Iterator = theArtifacts.GetIterator

While Iterator.HasNext ()

Set theArtifact = Iterator.Next ()

WEnd
82 Chapter 4 - Creating RSE Clients

The Iterator method allows ClearQuest artifacts to be enumerated efficiently. When
ClearQuest executes a query, it returns a record set. The record set can not return the
number of records in the set. It is only able to enumerate each of the records
sequentially, from the beginning of the set to the end.

It is guaranteed that every artifact collection is able to return an iterator. This supports
the principal that clients are able to write code once that works with all adapters. You
can also use the count based collection interface on ClearQuest, but it runs slower
than the iterator. Rational recommends that clients convert code as needed to use the
iterators, especially where performance is critical.

Looping Through an Artifact Collection

The following code example loops through an artifact collection and gets the name
and default ArtifactID for each artifact in the collection:

For ArtifactID = 0 To theArtifactCollection.Count - 1

Set theArtifact = theArtifactCollection.Item(ArtifactID)

ArtifactName = theArtifact.Name

ArtifactIDText =

theArtifact.GetDefaultArtifactID(rsLocator_Display_Name)

Next ArtifactID

Filtering and Sorting

Note: Sorting is not currently implemented.

The RSE filtering and sorting mechanism is complementary to the methods that you
have already seen for getting related artifacts from a context artifact. Filtering is
accomplished by passing an ArtifactFilter object to GetRelatedArtifacts. Sorting is
accomplished by passing an ArtifactSort object to either method. Both of these are
optional parameters in both methods.

This is the basic sequence:

1 Create an ArtifactFilter object

2 Initialize it with a filter string (for example, "Name = Bob and Status = Open")

3 Create an ArtifactSort object

4 Initialize it with a sort string (for example, "Ascending Name, Descending Status")

5 Pass these objects when calling GetRelatedArtifacts.
Getting Related Artifacts 83

The following code example shows how to define and execute a search for related
artifacts of a given type by filtering:

Function QueryRelatedArtifacts (theArtifact As Artifact, RelName As
String, FilterString As String) As ArtifactCollection

 Dim theRelationships As RelationshipTypeCollection

 Dim theRelationship As RelationshipType

 Dim theFilter As ArtifactFilter

 Set theRelationships = theArtifact.Type.GetRelationshipTypes(rsAll)

 Set theRelationship = theRelationships.Item(RelName)

 Set theFilter = theRelationship.CreateArtifactFilter

 theFilter.SetFilterString (FilterString)

 Set QueryRelatedArtifacts =
theArtifact.GetRelatedArtifacts(theRelationship, theFilter)

End Sub

Initializing the Filter String

You can filter for artifacts using the artifact Name or Key. When filtering, you must
surround the property name with single quotes for the parser to handle property
names with spaces. For example:

'Data ModelerIsTable' = 'False'

In the above example, DataModelerIsTable could be a Name or Key, comparing its
value to the string ‘False.’

The following rules apply for specifying a filter string:

■ IS legal:

'Data ModelerIsTable' = 'False'

■ IS NOT legal:

Data ModelerIsTable = 'False'

■ IS legal:

Name = 'Purchase Order'

■ IS legal:

'Name' = 'Purchase Order'
84 Chapter 4 - Creating RSE Clients

Filter String Example

You can use a filter string to filter for the collection of objects in a Rose model that
have a specific property value in common.

For example, to retrieve the collection of Class artifacts that all have the Boolean
DataModelerIsTable property set to False, you can filter for a collection of artifacts
using the Model.AllClasses relationship with the following filter string:

'Data ModelerIsTable' = 'False'.

Another example of a filter string for the AllClasses relationship is:

Stereotype = ‘Interfaces’

Using the AllClasses relationship, this filter string returns the Class artifacts with the
Stereotype property set to Interfaces.

Most queries start from the name of a property, followed by an operator and a value.
There can be any number of property names, values, and operators in a filter string.

Filtering Operators

Table 2 lists the relational operators that the IFilter interface supports:

Table 2 Filtering Operators

Operator Description Example

= Equal Position = ‘Manager’

<> Not equal Position <> ‘Manager’

!= Not equal Position =! ‘Manager’

< Less than Salary < 5000

> Greater than ParentObject.UniqueID > NULL

<= Less than or equal to Salary <= 5000

>= Greater than or equal to Salary >= 5000

AND Logical AND Salary > 5000 AND Benefits > 10000

OR Logical OR Salary > 5000 OR Benefits > 10000

LIKE Position LIKE (‘Manager’ OR ‘Staff’)

NOT LIKE Position NOT LIKE ‘Staff’
Getting Related Artifacts 85

The syntax rules for filter strings are:

■ If the value of the property is a string, include it in single quotes. For example,
Position = ‘Manager’

■ If the name of the unary relationship has spaces, enclose it in single quotes. For
example, ParentObject.‘Other Object’ = ‘Object Name’

■ If a logical statement includes a number of comparisons, use parentheses. For
example, Position = ‘Manager’ AND (Salary > 5000 OR Benefits > 10000)

It is possible to specify a chain of related objects to be extracted before the evaluation.
Each object is extracted from the previous object. The relationships must be unary and
the relationship names are separated by periods. For example,
ParentObject.ParentObjectOfParentObject.Status = ‘open’

For all of the operators, the last identifier in the chain of objects is a property name,
except for IsKindOf (for example, ParentObject.ParentObjectOfParentObject IsKindOf
‘document’).

Rose Adapter Filter String Examples

Some valid filter strings for the Package artifact type and the NestedSubPackages
relationship type:

Name IN ('Package1', 'Package3')

Name NOT IN ('Package3', 'Package5')

Name BETWEEN 'Package1' AND 'Package4'

Name NOT BETWEEN 'Package3' AND 'Package5'

Name != ‘Package1’

Name <> ‘Package1’

BETWEEN Salary BETWEEN 30000 AND 50000

NOT BETWEEN
Salary NOT BETWEEN 30000 AND
50000;

IN Position IN (‘Manager’, ‘Staff’)

NOT IN Position NOT IN (‘Manager’, ‘Staff’)

IsKindOf ParentObject IsKindOf ‘Item’

Operator Description Example
86 Chapter 4 - Creating RSE Clients

Name > ‘Package1’ AND Name =< ‘Package10’

Name >= ‘Package1’ OR UniqueID > ‘0’

For the Model artifact type and AllRelationships Relationship Type:

IsKindOf 'Role'

For the Model artifact type and Packages Relationship Type:

ParentPackage.Name = 'Bank'

Name LIKE 'Package'

Name NOT LIKE 'Package'

The LIKE Operator

The RSE LIKE operator searches the expression from its first character for the pattern
provided in LIKE. After this character is found, LIKE calls it a match, no matter what
follows after the match.

For example, Name LIKE 'b' returns anything starting with b.

Note: These operations are case sensitive. For example, getting the Rose Models from
the Rational Administrator adapter (RAdmin) with:

■ Path LIKE 'c:' returns nothing

■ Path LIKE 'C:' returns all models on C:\

You can use single quotes or double quotes.

■ Path LIKE "C:" returns nothing

■ Path LIKE "C:" returns all models on C:\

If your filter string contains quotes within it, then you must surround the entire string
with quotes.

LIKE Syntax

Literals

All characters are literals except those in the following list. These characters are
literals when preceeded by a "\".

■ \

■ .

■ *

■ ?
Getting Related Artifacts 87

■ +

■ (

■)

■ {

■ }

■ [

■]

■ ^

■ $

If you are specifying a path that includes backslashes ("\"), you must change them as
follows:

■ Path LIKE 'C:\' returns nothing

■ Path LIKE 'C:\\' returns all models on C:\

Wildcard

The dot character "." matches any single character.

Repeats

A repeat is an expression that is repeated an arbitrary number of times.

■ An expression followed by "*" can be repeated any number of times including zero
(0–n times). For example:

“Name LIKE ba*” matches anything that starts with be, ba, baa and other similar
examples.

“Name LIKE ba*t” returns baaatklklk, since it has the specified pattern at the
beginning.

■ An expression followed by "+" can be repeated any number of times, but at least
once (1–n times).

■ An expression followed by "?" may be repeated zero or one times only (0 or 1
time).

When it is necessary to specify the minimum and maximum number of repeats
explicitly, the bounds operator "{}" may be used, thus "a{2}" is the letter "a" repeated
exactly twice, "a{2,4}" represents the letter "a" repeated between 2 and 4 times, and
"a{2,}" represents the letter "a" repeated at least twice with no upper limit. Note that
88 Chapter 4 - Creating RSE Clients

there must be no white space inside the {}, and there is no upper limit on the values of
the lower and upper bounds. All repeat expressions refer to the shortest possible
previous sub-expression: a single character; a character set, or a sub-expression
grouped with "()" for example.

For example:

"ba*" matches all of "b", "ba", "baaa" etc.

"ba+" matches "ba" or "baaaa" for example but not "b".

"ba?" matches "b" or "ba".

"ba{2,4}" matches "baa", "baaa" and "baaaa".

Parenthesis

Parentheses serve two purposes, to group items together into a sub-expression, and to
mark what generated the match.

For example:

■ Name LIKE 'b{3,5}' returns baaa and also baaaaas since it has at least 3 a's.

"(ab)*" matches all of the string "ababab”. It matches 0–n ab’s.

“a(ab)+” matches “aabab”. It matches at least one ab.

Alternatives

Alternatives occur when the expression can match either one sub-expression or
another, each alternative is separated by a "|". Each alternative is the largest possible
previous sub-expression; this is the opposite behavior from repetition operators.

For example:

"a(b|c)" matches "ab" or "ac".

"abc|def" matches "abc" or "def".

Sets

A set is a set of characters that can match any single character that is a member of the
set. Sets are delimited by "[" and "]" and can contain literals, character ranges,
character classes, collating elements and equivalence classes. Set declarations that
start with "^" contain the complement of the elements that follow. These matches are
case sensitive.

■ Name LIKE '[a-d]'

Returns Packages that start from 'a' to 'd'
Getting Related Artifacts 89

For example:

■ Character literals:

"[abc]" matches either of "a", "b", or "c".

Name LIKE '[a-d]' returns Packages that start from 'a' to 'd'

"[^abc] matches any character other than "a", "b", or "c".

■ Character ranges:

"[a-z]" matches any character in the range "a" to "z".

"[^A-Z]" matches any character other than those in the range "A" to "Z".

Character classes are denoted using the syntax "[:classname:]" within a set declaration,
for example "[[:space:]]" is the set of all white-space characters.

For example, “Package[[:digit:]]” returns Package1, Package2, and Package3.’

For the Rose adapter, using the Package artifact type and NestedSubPackages
relationship type:

Name LIKE 'Package[[:digit:]]' returns Package1, Package3

Table 3 lists the available character classes.

Table 3 Character Classes

Name Description

Alnum Any alphanumeric character.

alpha Any alphabetical character a–z and A–Z. Other characters may also
be included depending upon the locale.

blank Any blank character, either a space or a tab.

cntrl Any control character.

digit Any digit 0-9.

graph Any graphics character.

lower Any lower case character a-z. Other characters may also be included
depending upon the locale.

print Any printable character.

punct Any punctuation character.
90 Chapter 4 - Creating RSE Clients

Table 4 lists some shortcuts that you can use in place of the character classes.

Table 4 Character Class Shortcuts

For example, in the Rose adapter, using the Package artifact type and
NestedSubPackages relationship type:

■ Name LIKE 'Package\d'

Returns Package1, Package3

■ Name LIKE 'Package\s'

Returns ‘Package 2.’ Returns nothing, if there are no Package names with a space
in the name.

space Any white-space character.

upper Any uppercase character A–Z. Other characters may also be included
depending upon the locale.

xdigit Any hexadecimal digit character, 0–9, a–f and A–F.

word Any word character –all alphanumeric characters plus the
underscore.

Shortcut Meaning

\w Equivalent to [[:word:]]

\W Equivalent to [^[:word:]]

\d Equivalent to [[:digit:]]

\D Equivalent to [^[:digit:]]

\s Equivalent to [[:space:]]

\S Equivalent to [^[:space:]]

\l Equivalent to [[:lower:]]

\L Equivalent to [^[:lower:]]

\u Equivalent to [[:upper:]]

\U Equivalent to [^[:upper:]]

Name Description
Getting Related Artifacts 91

■ Name LIKE 'Package\S'

Returns Package1, Package3

Single Character Escape Sequences

Table 5 lists the escape sequences that are aliases for character codes.

Table 5 Character Code Aliases

Using Collections

A collection of artifacts contains lists of related artifacts. There are client interfaces for
the following types of collections:

■ Artifact (IArtifactCollection)

■ Artifact type (IArtifactTypeCollection)

■ Property type (IArtifactPropertyTypeCollection)

Escape Sequence Character Code Meaning

\a 0x07 Bell character

\f 0x08 Form feed

\n 0x0A Newline character

\r 0x0D Carriage return

\t 0x09 Tab character

\v 0x0B Vertical tab

\e 0x1B ASCII Escape character

\0dd 0dd An octal character code, where dd is one or
more octal digits

\xXX 0xXX A hexadecimal character code, where XX is
one or more hexadecimal digits

\x{XX} 0xXX A hexadecimal character code, where XX is
one or more hexadecimal digits, optionally
a unicode character

\cZ z-@ An ASCII escape sequence control+Z,
where Z is any ASCII character greater than
or equal to the character code for '@'
92 Chapter 4 - Creating RSE Clients

■ Property (IArtifactPropertyCollection)

■ Relationship type (IRelationshipTypeCollection)

■ Adapter (IAdapterCollection)

■ Artifact argument (IArtifactArgumentCollection)

■ Artifact locator (IArtifactLocatorCollection)

■ Graphics format type (IArtifactGraphicsFormatTypeCollection)

These interfaces define various collections that are used throughout the RSE COM
APIs. They all implement a common set of methods which include the following:

■ Count

Returns the count of the items in the collection.

■ Item

Returns a reference to the object at the given index using its default interface.

■ Find

Returns a reference to the object with matching ’Name’ using its default interface.

■ IsModifiable

Returns TRUE if the client is able to modify the contents of the collection by
adding and removing items, FALSE otherwise. In general, only user-created
collections can be modified. Collections returned by RDSI objects are typically
read-only to the client.

■ Remove

Call this to remove the object at the specified index from the collection.

■ Add

Appends the specified object to the end of the collection.

■ AddCollection

Appends the contents of the specified collection to this collection.

Finding an Item in a Collection

You can search for an artifact in a collection by the artifact’s Name or Key, using the
Item method. You can also use the Name or Key property to find a property type or
relationship type. A Key is the parsed version of Name with spaces and punctuation
removed.
Using Collections 93

Item is a method in each collection interface. You use Item by passing an integer or an
artifact Name or Key (as a variant data type).

■ If the argument in Item contains a string then it searches for an item by the given
Name or Key.

Item takes the Name or Key and returns the corresponding object in the collection.
Name or Key corresponds to a string.

■ If the argument is an integer, then it returns the object corresponding to that ID.

For example, Item(0) returns the object in the first location in the collection, Item(1)
returns the object in the second location in the collection.

For example, in the Rose model Order System, there is a package named Business
Services. To find this Package artifact, you can:

■ Get the item by number:

Set theArtifact = theArtifactCollection.Item(3)

■ Get the item by Name:

Set theArtifact = theArtifactCollection.Item(‘Business Services’)

■ Get the item by Key:

Set theArtifact = theArtifactCollection.Item(‘BusinessServices’)

Maintaining a List of Artifacts

Maintaining your own list of artifacts is easily solved using RSE. Because all
collections can be created, RSE clients can use the ArtifactCollection to store
references to artifacts. For example:

Private RootArtifacts As ArtifactCollection

Sub Construct

Set RootArtifacts = New ArtifactCollection

End Sub

Sub AddRootArtifact (theRootArtifact As Artifact)

RootArtifacts.Add theRootArtifact

End Sub

The Artifact instance passed to AddRootArtifact is now a registered Artifact in the
ArtifactCollection.
94 Chapter 4 - Creating RSE Clients

Displaying Artifacts

The following code displays the Artifact in its native application. This capability is not
always available, so client code must check before invoking the Show method.

Determining if an Artifact Can be Shown

Determine if an artifact can be shown by calling the CanShow method of the
IArtifactGUI interface. For example:

Function CanDisplayArtifact (theArtifact As Artifact) As Boolean

CanDisplayArtifact = theArtifact.GUI.CanShow ()

End Function

Showing an Artifact in its Application

If an artifact can be shown, you show the Artifact by calling the Show method of the
IArtifactGUI interface. If the Artifact is not able to be shown, this method will do
nothing.

Sub DisplayArtifact (theArtifact As Artifact)

theArtifact.GUI.Show

End Sub

Converting Between the Artifact Object and the Internal Object

The RSE is intended to be complementary to each point product server. Therefore, the
RSE interfaces are defined to allow this conversion to be done with minimal effort and
overhead.

Getting the Internal Object from an Artifact

This conversion is very straightforward. The GetInternalObject method returns a
pointer to the internal object. Then, given this pointer, you can call any integrated
product interface functions.

The following example is a function that returns the RoseItem corresponding to an
Artifact. If the artifact is a Rose artifact, then the internal object will be a RoseItem. The
assignment between the IUnknown returned by GetInternalObject and the RoseItem
return value causes QueryInterface to be called on the IUnknown. If the internal
object is a RequisitePro requirement, for example, then the result will be a return
value of Nothing, the Visual Basic version of NULL.
Displaying Artifacts 95

Function GetInternalRoseItem (theArtifact As Artifact) As RoseItem

Set GetInternalRoseItem = theArtifact.GetInternalObject ()

End Function

This provides the ability to plug RSE code into an integrated-product-specific code.
This allows developers to work at the appropriate level of abstraction for the problem
at hand, and allows RSE code to integrate with legacy code written to the specific
integrated-product COM interface.

Creating and Deleting Artifacts

RSE provides interfaces for creating new artifacts and deleting artifacts. In both
instances, you must first check if the action is permitted using the Boolean
IsCreateDeleteAllowed method.

Creating Artifacts

Create an artifact using the CreateArtifact method to set values before the object is
actually created. CreateArtifact has an optional parameter of type ArtifactArguments
list to specify an initial set of property values for the new artifact. The following
example initializes a GUI with the list of required creation properties.

Function LoadParameters (ParentArtifact As Artifact,
 theRelationshipType As RelationshipType,
 Name As String) As ArtifactArgumentCollection

Dim theArtifactArguments As ArtifactArgumentCollection

Dim theChildType As ArtifactType

Dim theArgument As ArtifactArgument

Get the ArtifactArguments from the relationship type. If any of the arguments are
mandatory, they will be in the objects Arguments property. This collection can be
iterated if necessary. The legal arguments are in the Arguments.Type.PropertyTypes
collection, which is the same as theChildType.PropertyTypes.

Set theArtifactArguments =
 theRelationshipType.CreateArtifactArguments()

RowID = 0

For PropID = 0 To ArtifactArguments.Count - 1

Set theArgument = theArtifactArguments (PropID)
96 Chapter 4 - Creating RSE Clients

PropertyName = thePropertyList.GetValue (RowID, 0)

thePropertyList.Add RowID, 0, theArgument.ArgumentName

thePropertyList.Add RowID, 1, theArgument.Value

RowID = RowID + 1

Next PropID

Set LoadParameters = theArtifactArguments

End Sub

This function uses the property values from the GUI to initialize values in the
ArtifactArguments list that will be used to create the new Artifact object.

Function CreateChildArtifact (ParentArtifact As Artifact,
theRelationshipType As RelationshipType) As Artifact

Dim ArtifactArguments As ArtifactArgumentCollection

Dim theRelationshipType As RelationshipType

Dim theArgument As ArtifactArgument

‘ Check the metadata to see if the type can be created before trying

If theRelationshipType.IsCreateDeleteAllowed () Then

Exit Function

End If

Set CreateArguments = theRelationshipType.CreateArtifactArguments ()

For RowID = 0 to thePropertyList.Rows.Count - 1

ArgumentName = thePropertyList.GetValue (RowID, 0)

ArgumentValue = thePropertyList.GetValue (RowID, 1)

Set theArgument = CreateArguments.Arguments (ArgumentName)

theArgument.Value = PropertyValue

Next RowID

The properties in the Arguments object are used to initialize the artifact:

Set CreateChildArtifact =
ParentArtifact.CreateArtifact(theRelationshipType, ArtifactArguments)

End Function
Creating and Deleting Artifacts 97

Deleting Artifacts

Artifacts are deleted using an ArtifactRelationshipType and the context artifact
corresponding to that relationship. The following code will delete an artifact if it is
allowed.

Sub DeleteArtifact (ContextArtifact As Artifact, RelationshipName As
String, theArtifact As Artifact)

Dim AllRelationships As RelationshipCollection

Set AllRelationships = ParentArtifact.Type.GetRelationships (All)

Set theRelationshipType = AllRelationships.Item (RelationshipName)

If theRelationshipType.CreateAndDeleteAllowed () Then

ContextArtifact.DeleteArtifact(theRelationshipType, theArtifact)

End If

End Sub
98 Chapter 4 - Creating RSE Clients

Index

A
Adapters 16, 18, 22
Add 93
AddCollection 93
Aliases

character codes 92
Alternatives

filtering 89
Application object 95
Applications 16
Architecture 14
Arguments

artifact 28
locator 28

Artifact 23
arguments 28, 75
collection 82
collections 81
filtering 84
internal object 95
iterating child types 82
LocateArtifact method 72
locating an 45
locator 69
properties 53, 78
references 29
relationship types 81
relative id 31
setting locator arguments 69
Show 63
static types 43

Artifact type 23
dynamic 23
locating 42
static 23

ArtifactArgument 49
ArtifactID

display name 72
immutable id 72

relative id 72
Artifacts

child 81
creating 96
deleting 98
descendant 81
displaying 63, 95
getting related 58, 81
locating 68
maintaining a list 94
peer 81
using collections 92

ArtifactType collection 43
Authentication 75

C
Character codes

aliases 92
Child

artifacts 81
types 82

Client applications 15, 16
Code

displaying an artifact 64
finding an artifact type 44
getting related artifacts 62
locating an artifact 51
retrieving properties 57

Collection
finding an item 83
maintaining a list of artifacts 94

Collections 81
using 92

Count 93
Creating

an artifact locator 69
artifacts 36, 96

D
Deleting artifacts 98
Descendant artifacts 81
Displaying artifacts 63, 95
Index 99

Dynamic
artifact types 23

E
Error handling 75
Escape sequences

filtering 92
Examples

filter string 86
LIKE operator 87

Exception handling 75

F
Filtering 83

character codes 92
examples 86
LIKE 87
operators 85

Find 93
Finding

an artifact type 42
items 83

G
GetInternalObject 95
Getting

child artifacts 81
descendant artifacts 81
internal object 65
peer artifacts 81
properties 78
related artifacts 58, 81
relationship types 81

I
ID

property 26
Internal object 65, 95
IsModifiable 93

Item 93
finding an 83

Iterating
artifact collection 82
child types 82

K
Key 94

L
LIKE operator 87
Literals 87
LocateArtifact 72
Locating

an artifact 45, 72
an artifact type 42
artifacts 68
items 83

Locator
arguments 28, 69, 75
creating 69

Locators 27
relative id 31, 72
resolving 75

M
Maintaining a list of artifacts 94

N
Name 94

O
Objects 21

internal 95
Operators

filtering 85
LIKE 87
100 Index

P
Parenthesis

LIKE syntax 89
Parsing 85
Password 75
Peer artifacts 81
Persistent references 36, 72
Product-specific interfaces 36
Property 25, 78

getting a value 78
id 26
retrieving 53
retrieving a value 57
setting a value 79
type 25

Q
Querying 36, 83

R
RDSICore

type library 34
References

relative id 31
type library 34

Regular expressions
examples 86
LIKE operator 87

Related artifacts
getting 58
using collections 92

Relationship 26
child 81
descendant 81
peer 81

Relationship types
getting 81

Relative expressions 85
Relative id 31, 72
Remove 93
Repeats 88

Resolving locators 75
Retrieving

artifact properties 53
data 37
properties 78

RSE
adapters 16
objects 21

S
Sequence diagram

getting related artifacts 59
retrieving properties 54

Session 22, 43
Sets

filtering 89
Setting

locator arguments 69
properties 78

Show 95
Single character escape sequences 92
SoDA 33
Sorting 83
Static

artifact types 23, 43
subclass 24
superclass 24

T
TestFramework 38
Throwing exceptions 75
Type library

referencing 34

U
Use cases 35
Username 75
Using

collections 92
RSE 15
Index 101

V
Variant 94

W
Wildcard 88
102 Index

	Rational Suite®
	Preface ix
	1

	What Is RSE? 13
	2

	RSE Object Model 21
	3

	Using RSE 35
	4

	Creating RSE Clients 67
	Index 99

	Preface
	Audience
	Other Resources
	Rational Suite Documentation Roadmap
	Contacting Rational Technical Support

	What Is RSE?
	Why Create RSE?
	Benefits of Using RSE
	RSE Implementation
	Using RSE
	RSE Clients
	RSE Adapters

	Conclusion

	RSE Object Model
	RSE Objects
	Object Model Diagram
	Session
	Adapter
	Artifacts
	ArtifactType

	Properties
	PropertyType

	Relationships
	Locators
	Artifact Arguments
	Artifact References
	RelativeID Artifact References

	Summary
	SoDA Application Example
	Referencing the RDSICore Type Library

	Using RSE
	Supported Client Use Cases
	Client Access
	TestFramework
	Rose Ordersystem Model

	Finding an Artifact Type
	Finding an ArtifactType Test
	Code for Finding an ArtifactType

	Locating an Artifact
	Locating an Artifact Test
	Code for Locating an Artifact

	Retrieving Properties of an Artifact
	Retrieving Properties of an Artifact Test
	Retrieving the Value of a Property
	Code for Retrieving Properties of an Artifact

	Getting Related Artifacts
	Getting Related Artifacts Test
	Code for Getting Related Artifacts

	Displaying Artifacts
	Code for Displaying an Artifact

	Getting the Internal Object

	Creating RSE Clients
	Locating Artifacts
	Using an Artifact Locator
	Creating an Artifact Locator
	Initializing Locator Arguments
	Locating an Artifact

	Using an ArtifactID
	Getting an ArtifactID
	Locating an Artifact with an ArtifactID

	Using Relative Artifact IDs
	Getting a RelativeArtifactID
	Locating an Artifact with a RelativeArtifactID

	Authentication and Exception Handling

	Getting and Setting Properties
	Getting the Values of Properties
	Setting the Values of Properties

	Getting Related Artifacts
	Getting Relationship Types
	Getting Related Artifacts
	Using an Artifact Collection
	Iterating Through an Artifact Collection
	Looping Through an Artifact Collection

	Filtering and Sorting
	Initializing the Filter String
	Filtering Operators

	Using Collections
	Finding an Item in a Collection
	Maintaining a List of Artifacts

	Displaying Artifacts
	Determining if an Artifact Can be Shown
	Showing an Artifact in its Application

	Converting Between the Artifact Object and the Internal Object
	Getting the Internal Object from an Artifact

	Creating and Deleting Artifacts
	Creating Artifacts
	Deleting Artifacts

	Index
	A
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

