
Rational Software Corporation®
Rational Suite®

Tutorial

VERSION: 2002.05.00

PART NUMBER: 800-025079-000

WINDOWS
support@rational.com
http://www.rational.com

IMPORTANT NOTICE

COPYRIGHT

Copyright ©1998-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-025079-000

Version Number: 2002.05.00

PERMITTED USAGE

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS
FURNISHED FOR THE SOLE PURPOSE OF THE OPERATION AND THE
MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART OF THIS
PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED,
TRANSMITTED, STORED IN A RETRIEVAL SYSTEM OR TRANSLATED INTO
ANY HUMAN OR COMPUTER LANGUAGE, IN ANY FORM, BY ANY MEANS, IN
WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN CONSENT OF
RATIONAL.

TRADEMARKS

Rational, Rational Software Corporation, Rational the e-development company,
ClearCase, ClearQuest, ClearQuest MultiSite, ProjectConsole, PureCoverage, Purify,
Quantify, Rational, Rational Rose, Rational Suite, RequisitePro, RUP, SoDA,
TestFactory, AnalystStudio, Rational Process Workbench, Rational Suite
AnalystStudio, Rational Suite ContentStudio, Rational Suite Enterprise,
Rational Unified Process, SiteLoad, TestStudio, among others, are either trademarks
or registered trademarks of Rational Software Corporation in the United States
and/or in other countries. All other names are used for identification purposes only,
and are trademarks or registered trademarks of their respective companies.

Microsoft, the Microsoft logo, FrontPage, the Microsoft Internet Explorer logo,
Visual C++, Visual Studio, Windows, the Windows logo, Windows NT, and the
Windows Start logo are trademarks or registered trademarks of Microsoft
Corporation in the United States and other countries.

The Sun J2EE Patterns are used with permission from the book "Core J2EE
Patterns" by Deepak Alur, John Crupi, and Danny Malks, published by Sun
Microsystems Press/Prentice Hall. Copyright 2001 Sun Microsystems, Inc.,
901 San Antonio Road, Palo Alto, CA 94303. All rights reserved. SUN
PROVIDES EACH J2EE PATTERN "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter
Software, Inc. Licensee shall not incorporate any GLOBEtrotter software (FLEXlm
libraries and utilities) into any product or application, the primary purpose of which
is software license management.

Portions Copyright ©1992-2001, Summit Software Company. All rights reserved.

PATENT

U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional
patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in the applicable Rational Software Corporation license agreement and as
provided in DFARS 277.7202-1(a) and 277.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 227-14,
as applicable.

WARRANTY DISCLAIMER

This document and its associated software may be used as stated in the underlying
license agreement. Rational Software Corporation expressly disclaims all other
warranties, express or implied, with respect to the media and software product and
its documentation, including without limitation, the warranties of merchantability or
fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents
Preface. xiii
Audience . xiii

Other Resources. xiii

Rational Suite Documentation Roadmap . xiv

Contacting Rational Technical Support . xv

1 Welcome to Rational Suite. .17
Principles of Software Development . 17

Rational Suite Can Help . 20

What Is Rational Suite? . 20
Tools That Unify Your Team . 21

Rational Suite Team Unifying Platform. 21
Tools for Analysts . 22

Rational Suite AnalystStudio . 22
Tools for Developers. 23

Rational Suite DevelopmentStudio . 23
Rational Suite DevelopmentStudio – RealTime Edition 24

Tools for Testers . 24
Rational Suite TestStudio . 24

Tools for Web Teams . 25
Rational Suite ContentStudio . 25

Rational Suite Enterprise . 26

Rational Suite: Summary . 27
For More Information . 28
What’s Next . 28

2 About This Tutorial .29
Prerequisites . 29

Determining Which Rational Suite Tools Are Installed . 29

ClassicsCD.com: The Tutorial Sample Application. 30
Tutorial Background . 30
Installing the Tutorial Sample Application and Related Files 30
Tip: Resetting the Tutorial. 31
v

Getting Started . 32
Registering the Project . 32
Associating the ClearQuest Database with the Project 33
A Note About the Application . 35
Ordering Compact Discs . 35
Finishing the Purchase . 36
Discovering What to Build . 37

How to Use This Tutorial . 38

Summary. 39
What You Learned in This Chapter . 39
What’s Next . 39

3 Learning About the Rational Unified Process. 41
Audience . 41

Getting Your Bearings . 41

What Is the Rational Unified Process (RUP)?. 41
The Rational Unified Process and Rational Suite. 42

Learning the Mechanics . 42

The Process at a Glance. 43

Key Concepts . 45

Exploring a Workflow . 46

Starting with Actors and Use Cases . 47

Tool Mentors: Implementing the Process Using Rational Tools 49

Learning About Web Applications . 50

Summary. 50
For More Information . 50
Cleaning Up . 50
What You Learned in This Chapter. 51
What’s Next . 51

4 Managing Change to Project Artifacts. 53
Audience . 53

What Is Unified Change Management? . 53
UCM Tools . 54

Using the Tools with UCM – ClearQuest and ClearCase LT. 55

Unifying Code and Content for Web Development . 57
vi Contents

Learning About Rational Suite ContentStudio . 57
Using Distributed Authoring to Accelerate Web Site Changes 57
Deploying Quickly and Confidently . 58

Using Rational Suite ContentStudio . 59

Summary . 60
For More Information . 60
What You Learned in This Chapter . 61
What’s Next . 61

5 Creating Requirements . 63
Audience. 63

Getting Your Bearings. 63

Why Worry About Requirements? . 65
Where Do Requirements Come From? . 65
Managing Requirements . 66
Using RequisitePro . 66

Starting with a Use Case . 66
Why Work with Use Cases?. 67
How Does RequisitePro Handle Requirements? . 69
Learning More About Use Cases . 69

Continuing Use Case Work Using Rose. 70

Working with a Use Case Diagram. 70
Associating the Rose Model with the RequisitePro Project 72

Creating a New Requirement . 73

Looking at Requirements in the Database . 74

Linking to Another Requirement . 75
Traceability Links and Suspect Links . 76

Other Requirement Types . 76

When Have You Finished Gathering Requirements? . 77

Extended Help . 77

Summary . 78
For More Information . 78
Cleaning Up . 78
What You Learned in This Chapter . 78
What’s Next . 78
Contents vii

6 Test Planning . 79
Audience . 79

Getting Your Bearings . 79

What Is Test Planning? . 80
Managing Risk . 80
Making a Plan and Measuring Progress. 80

Developing a Test Plan . 81
Organizing Your Test Plan . 81

Determining What to Test . 83

Working with Test Cases. 84
Test Inputs from Rational Rose . 85
Test Inputs from Rational RequisitePro . 85
Elaborating on Test Cases . 86
Understanding the Impact of Test Planning . 86

Continuing with Test Planning . 87
Risks and Resources . 87
Types of Tests to Perform. 88
Stages of Testing . 88
Project Scheduling . 89
More on Test Artifacts. 90

Summary. 91
For More Information . 91
Cleaning Up . 91
What You Learned in This Chapter. 91
What’s Next . 91

7 Modeling the Enhancement . 93
Audience . 93

Getting Your Bearings . 93

What Is Visual Modeling? . 94
Using Rational Rose. 94

Visual Modeling and the Tutorial . 94

Working with a Sequence Diagram. 95
Opening a Sequence Diagram . 95
Adding Messages for the Enhancement. 97

Publishing Part of the Model to the Web. 98
viii Contents

Continuing Work with the Sequence Diagram . 100
Refining the Objects. 100
Implementing Code . 100
Modeling Data . 101

Benefits . 101

Summary . 102
For More Information . 102
Cleaning Up . 102
What You Learned in This Chapter . 102
What’s Next . 102

8 Communicating Project Status . 103
Audience. 103

Getting Your Bearings. 103

Managing Project Status . 104
What Is SoDA?. 104

Using SoDA Templates . 104
Why Generate a Use Case Report? . 105
Creating the Use Case Report . 105

Working with SoDA Templates . 107
What Is ProjectConsole? . 107

Using the Project Web Site . 107
Working with Project Metrics .110
Analyzing Metrics .111

Summary .112
For More Information .112
Cleaning Up .112
What You Learned in This Chapter .112
What’s Next .112

9 Reliability Testing . 113
Audience. .113

Reliability Testing Tools .113

Learning About Rational TestFactory .114
Overview of Process .114
Instrumenting the Application. .114
Mapping the Application. .114
Running a Pilot. .115
Test Suites: Putting It All Together .115
Using TestFactory with Rational Robot .115
Contents ix

Run-Time Analysis Tools in Rational Suite . 116
Rational Purify . 116
Rational PureCoverage . 117
Rational Quantify . 118

Summary. 119
For More Information . 119
What You Learned in This Chapter. 119
What’s Next . 119

10 Functional Testing . 121
Audience . 121

Getting Your Bearings . 121

What Is Functional Testing? . 122
Working with Test Scripts . 122
Scripts and Modularity . 122
Getting to a Starting Point . 123
Working with Test Scripts . 123

Recording the Script . 125
Starting to Record the Script . 125
Creating a Verification Point . 126
Finishing the Recording Session . 128
Adding a Test Script to a Suite . 128

Playing Back the Script on a New Build . 130

Analyzing the Results . 131
Handling Failures . 131

Handling an Intentional Change. 132
Handling a Real Error. 133

Reporting the Error . 133

Summary. 135
For More Information . 135
Cleaning Up . 135
What You Learned in This Chapter. 135
What’s Next . 135
x Contents

11 Planning the Next Iteration . 137
Audience. 137

Getting Your Bearings. 137

Assessing the State of your Project . 138
Showing the Workload . 138
Working with Enhancement Requests . 141

Other Planning Activities . 142

What Will Happen in the Next Iteration?. 143

Summary . 144
For More Information . 144
Cleaning Up . 144
What You Learned in This Chapter . 144
What You Learned in This Tutorial . 145
What’s Next . 145

Glossary . 147

Index . 153
Contents xi

xii Contents

Preface
Rational Suite delivers a comprehensive set of integrated tools that embody software
engineering best practices and span the entire software development lifecycle. This
tutorial teaches you the basics of using Rational Suite to plan, design, implement, and
test applications. It also points you to additional information so that you can learn
more on your own.

Audience

Read this tutorial if you:

■ Are a member of a development team – an analyst, developer, tester, project
leader, or manager.

■ Have experience with some aspect of Windows-based application development.

You do not need prior experience with any Rational tools to use this tutorial.

Other Resources

■ All books are available online, either in Hypertext Markup Language (HTML) or
Portable Document Format (PDF). The online books are on the Rational Solutions
for Windows Online Documentation CD.

■ To send feedback about documentation for Rational products, please send e-mail
to: techpubs@rational.com.

■ For more information about Rational Software technical publications, see:
http://www.rational.com/documentation.

■ For more information on training opportunities, see the Rational University
Web site: http://www.rational.com/university.

■ For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network.
Click Start > Programs > <RationalSuiteProductName> > Logon to the Rational Developer
Network.
xiii

http://www.rational.com/documentation/
http://www.rational.com/university

Rational Suite Documentation Roadmap
xiv Chapter - Preface

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

■ Your name, company name, telephone number, and e-mail address.

■ Your operating system, version number, and any service packs or patches you
have applied.

■ Product name and release number.

■ Your case ID number (if you are following up on a previously reported problem).

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4546-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
Contacting Rational Technical Support xv

xvi Chapter - Preface

1Welcome to
Rational Suite
Think about your last software project. Was it delivered on time? Was it released
within its budget? Was communication between team members clear and timely? Did
your team maintain consistency throughout the project while it defined requirements,
developed designs, and wrote code? Was your build process repeatable? Did your
software meet requirements, satisfy users, and perform reliably?

Many project teams experience problems in these areas. In fact, many software
projects finish late (or not at all), and the results often don’t match the requirements.
Many projects uncover serious design flaws late in the process. Defects are often
found after the software ships, instead of during development.

How can you make your next project more successful?

Principles of Software Development

Rational Software Corporation helps organizations overcome many software
development issues while accelerating time to market and improving quality. The
Rational solution helps organizations develop software through a combination of:

■ Software engineering best practices.

■ Integrated tools that automate these best practices.

■ Professional services that accelerate the adoption and implementation of these best
practices and tools (see Figure 1).
17

Figure 1 The Rational Best Practices, Tools, and Services

Rational helps you increase your productivity and effectiveness by focusing on these
software development best practices:

Develop software iteratively. Iterative development means analyzing, designing, and
implementing incremental subsets of the system over the project lifecycle. The project
team plans, develops, and tests an identified subset of system functionality for each
iteration. The team develops the next increment, integrates it with the first iteration,
and so on. Each iteration results in either an internal or external release and moves
you closer to the goal of delivering a product that meets its requirements.

Developing iteratively helps you:

■ Make your project more predictable.
■ Collect feedback early.
■ Identify and eliminate risks early in the project.
■ Test continuously throughout the project lifecycle.

Manage requirements. A requirement is one criterion for a project’s success. Your
project requirements answer questions like “What do customers want?” and “What
new features must we absolutely ship in the next version?” Most software
development teams work with requirements. On smaller, less formal projects,
requirements might be kept in text files or e-mail messages. Other projects can use
more formal ways of recording and maintaining requirements.
18 Chapter 1 - Welcome to Rational Suite

Managing requirements means that you understand how changing requirements
affect your project and you can effectively communicate requirements to all team
members and to stakeholders. Effective requirements management helps your
organization ensure that its products meet its stated goals.

Use component-based architectures. Software architecture is the fundamental
framework on which you construct a software project. When you define an
architecture, you design a system’s structural elements and their behavior, and you
decide how these elements fit into progressively larger subsystems.

A component is a nontrivial, independent, and replaceable part of a system that
combines data and functions to fulfill a clear purpose. You can build components
from scratch, reuse components you previously built, or even purchase components
from other companies.

Designing a component-based architecture helps you reduce the size and complexity
of your application and enhance maintainability and extensibility so your systems are
more robust and resilient.

Model software visually. Visual modeling helps you manage software design
complexity. At its simplest level, visual modeling means creating a graphical
blueprint of your system’s architecture. Visual models can also help you detect
inconsistencies between requirements, designs, and implementations. They help you
evaluate your system’s architecture, ensuring sound design.

Visual models also improve communication across your entire team because they
represent a lot of information in a small amount of space (“A picture is worth a
thousand words”). More importantly, visual models improve communication
because they communicate in the Unified Modeling Language (UML), the
industry-standard language for visualizing and documenting software systems.

Continuously verify quality. Verifying software quality means testing what has been
built against defined requirements. Testing includes verifying that the system delivers
required functionality and verifying reliability and its ability to perform under load.

An important benefit of iterative development is that you can begin testing early in
the development process. Testing every iteration helps you discover problems early
and expose inconsistencies between requirements, designs, and implementations.
Principles of Software Development 19

Manage change. It is important to manage change in a trackable, repeatable, and
predictable way. Change management includes facilitating parallel development,
tracking and handling enhancement and change requests, defining repeatable
development processes, and reliably reproducing software builds.

As change propagates throughout the life of a project, clearly defined and repeatable
change process guidelines help facilitate clear communication about progress and,
more importantly, allows you to more effectively control risks associated with
change.

Rational Suite Can Help

To put these software development principles to work, Rational Software offers
Rational Suite, a family of market-leading software development tools supported by
the Rational Unified Process. These tools help you throughout the project lifecycle.

Rational Suite packages the tools and the process into several editions, each of which
is customized for specific practitioners on your development team, including
analysts, developers, and testers.

Alone, these tools have helped organizations around the world successfully create
software. Integrated into Rational Suite, they:

■ Unify your team by enhancing communication and providing common tools.

■ Optimize individual productivity with market-leading development tools
packaged in Suite editions that are customized for the major roles on your team.

■ Simplify adoption by providing a comprehensive set of integrated tools that
deliver simplified installation, licensing, and user support plans.

What Is Rational Suite?

Rational Suite editions are sets of tools customized for every member of your team.
Each Suite edition contains the tools from the Rational Suite Team Unifying Platform.
The Team Unifying Platform is a common set of tools that focus on helping your team
perform more effectively. Each Rational Suite edition also contains tools selected for a
specific practitioner on your development team. The following sections describe each
Suite edition and the tools they contain.
20 Chapter 1 - Welcome to Rational Suite

Tools That Unify Your Team

Rational Suite Team Unifying Platform

Rational Suite Team Unifying Platform unifies all members of a software development
team to maximize productivity and quality. It provides best practices and integrated
tools for managing change, building high-quality applications, and communicating
results from requirements to release.

Rational Suite Team Unifying Platform is useful to project members who need access
to common project information, but do not need any of the optimized, role-specific
tools found in the other Suite editions. For example, project and program managers,
project administrators, and development managers use the tools in this Suite edition.

The Team Unifying Platform is included in every Rational Suite edition. It contains
the following tools:

Rational Unified Process. An online collection of software best practices (pages 18 – 20
for an overview) that guide your team through the software development process.
The Rational Unified Process (also known as RUP) provides guidelines, templates,
and Tool Mentors (instructions for applying the guidelines to specific Rational tools)
for each phase of the development lifecycle.

Rational RequisitePro. Helps you organize, prioritize, track, and control changing
project requirements. With the RequisiteWeb interface, users can access, create, and
manage requirements from a Web browser.

Rational ClearQuest. Manages change activity associated with software development,
including enhancement requests, defect reports, and documentation modifications.
The ClearQuest Web interface provides all major ClearQuest operations, such as
submitting records, finding records, creating or editing queries and reports, and
creating shortcuts, from a Web browser. ClearQuest MultiSite helps you share change
request information across a geographically distributed team.

Rational SoDA. Automatically generates project documents by extracting information
from files you produce during project development, including: source code and files
produced with Rational tools. SoDA uses predefined templates or your own
customized templates to format the information. SoDA is integrated with Microsoft
Word for ease of use and easy customizing.

Rational ClearCase LT. Provides software configuration management and a built-in
process to track changes to all software project assets, including: requirements, visual
models, and code. It also provides a Web interface, allowing users to perform all
major ClearCase LT operations. ClearCase LT supports Unified Change Management,
Rational's best practices process for managing change and controlling workflow.
What Is Rational Suite? 21

Rational TestManager. Helps you create real-world functional and multiuser tests to
determine the reliability and performance of Web, multi-tier, and database
applications. TestManager tracks how many tests have been planned, scripted, and
carried out; which requirements have been covered; and the number of tests that have
passed and failed. TestManager allows your team to objectively assess project status,
and create and customize reports to communicate these findings to project
stakeholders.

Rational ProjectConsole. Helps you track project metrics by automatically generating
charts and gauges from data produced during software development. ProjectConsole
is integrated with Microsoft Project so that you can create a centralized project plan.
ProjectConsole helps you organize project artifacts on a central Web site so all team
members can view them.

Rational Developer Network. Helps you expand and hone professional skills, and stay
ahead of the technology curve. The Rational Developer Network is an online
community for software professionals, providing useful information, an opportunity
to exchange ideas with other software professionals, and best practices for software
development teams. The network delivers white papers, documentation, articles, and
training.

Tools for Analysts

An analyst’s role is to:

■ Determine what the system does.
■ Represent the user’s needs to the development organization.
■ Specify and manage requirements.

Rational Suite AnalystStudio

Rational Suite AnalystStudio supports the analysts on your team. It contains the
Team Unifying Platform and:

■ Rational Rose (Professional Data Modeler Edition). Enables visual modeling of
databases, architectures, and components using the industry-standard Unified
Modeling Language (UML). The UML is a language for specifying, visualizing,
constructing, and documenting software systems. This edition of Rose integrates
the modeling environment with the database design environment, mapping the
object and data models, tracking changes across business, application and data
models.
22 Chapter 1 - Welcome to Rational Suite

Tools for Developers

A developer’s role is to:

■ Determine how the system works.
■ Define the architecture.
■ Create, modify, manage, and test code.

Rational Suite offers two editions to support the developers and architects on your
team: Rational Suite DevelopmentStudio and Rational Suite DevelopmentStudio –
RealTime Edition.

Rational Suite DevelopmentStudio

Rational Suite DevelopmentStudio supports system developers, designers, and
architects. Rational Suite DevelopmentStudio contains the Team Unifying Platform
and:

■ Rational Rose (Enterprise Edition). Enables visual modeling of architectures,
components, and data using UML. Rational Rose can regenerate the framework of
your code in Java, C++, Microsoft Visual Basic, and other popular languages. Rose
is also tightly integrated with Microsoft Visual Studio and IBM VisualAge for Java.
The Rose round-trip engineering feature helps you automate the process of
maintaining consistency between a model and its implementation.

■ Rational QualityArchitect. This rational Rose add-in automates the mechanical
aspects of test code creation by generating test code from visual models. This
feature of Rose allows developers to automatically generate component tests by
building stubs and drivers before an application is complete. This is important
because early testing helps to reduce project risk. Your team can determine how a
potential system architecture meets functional and performance requirements,
before developing the design further. Rational QualityArchitect supports
Enterprise JavaBeans, COM, COM+, and DCOM models.

■ Rational PureCoverage. Identifies which parts of your Java, Visual C++, or Visual
Basic program have and have not been exercised. Exposes testing gaps so you can
prevent untested application code from reaching your users.

■ Rational Purify. Pinpoints run-time errors and memory leaks in Visual C++
application code, and errors related to garbage-collection in Java application code.

■ Rational Quantify. Profiles your Java, Visual C++, or Visual Basic application to
help you identify performance issues in your source code.
What Is Rational Suite? 23

Rational Suite DevelopmentStudio – RealTime Edition

Rational Suite DevelopmentStudio – RealTime Edition is the Rational Suite edition
designed for practitioners who focus on real-time and embedded development. This
Suite edition contains all the tools in Rational Suite DevelopmentStudio but replaces
Rational Rose Enterprise Edition with Rational Rose RealTime Edition.

Rational Rose (RealTime Edition). Delivers a powerful combination of notation,
processes, and tools to meet the challenges of real-time development. Using Rose
RealTime, you can:

■ Create executable models to compile, then observe simulations of your UML
designs on the host or target platform. As a result, you can refine your design early
and continually verify quality.

■ Generate complete, deployable executables in C or C++ directly from UML design
models targeted to real-time operating systems. Generating these applications
eliminates the need for manual translation and avoids costly design interpretation
errors.

This tutorial does not discuss Rose RealTime in detail. To learn more about Rose
RealTime, see the online tutorials available from the Rose RealTime Help menu.

Tools for Testers

A tester’s role is to:

■ Ensure that software meets all requirements.
■ Create, manage, and run tests.
■ Report results and verify fixes.

Rational Suite TestStudio

Rational Suite TestStudio is the Rational Suite edition designed for testers. It contains
the Team Unifying Platform and:

■ Rational Robot. Facilitates functional and performance testing by automating the
recording and playback of test scripts for both functional and performance testing.
Allows you to write, troubleshoot, and run tests, and to capture results for
analysis.

■ Rational TestFactory. Automates testing by combining automatic test generation
with source-code coverage analysis. Tests an entire application, including all GUI
features and all lines of source code.
24 Chapter 1 - Welcome to Rational Suite

■ Rational PureCoverage. Identifies which parts of your Java, Visual C++, or Visual
Basic program have and have not been exercised. Uses test scripts to drive the
application and expose testing gaps so you can prevent untested application code
from reaching users.

■ Rational Purify. Pinpoints run-time errors and memory leaks in Visual C++
application code, and errors related to garbage-collection in Java application code.
Purify does this by using test scripts to drive the application.

■ Rational Quantify. Profiles your Java, Visual C++, or Visual Basic application to
help you identify performance bottlenecks in your code. Quantify does this by
using test scripts to drive the application.

Tools for Web Teams

A Web content manager’s role is to:

■ Empower non-technical content authors to submit, review, and approve content.
■ Be responsible for templates, Web site design, and editing.
■ Integrate, manage, and simultaneously deploy content and code.

A Web developer’s role is to:

■ Determine how the system works.
■ Define architecture.
■ Participate in parallel development of Web applications.
■ Securely version and test code.

Rational Suite ContentStudio

Rational Suite ContentStudio is optimized for Web application development teams,
particularly Web content managers and Web developers. This Suite provides an
integrated set of tools to unify code and content management for Web applications.
With Rational Suite ContentStudio, you can also leverage scalable processes and tools
to build high-quality Web applications at Internet speed. By integrating common
tools and processes in one powerful solution, Rational Suite ContentStudio unifies the
activities of everyone who contributes to your Web site — including project
managers, analysts, software developers, content managers, Web designers, and other
business specialists. It contains the Team Unifying Platform and:

■ Rational NetDeploy. Automates Web deployment of code and content, and
scheduling and expiration features.
What Is Rational Suite? 25

■ Rational SiteLoad. Simulates Internet traffic and provides developers with precise
real-time information on Web site performance. Using SiteLoad, Web teams can
avoid costly and highly visible Web site failures.

This tutorial does not discuss ContentStudio in detail. To learn more about
ContentStudio, go to http://www.rational.com/products/contman.jsp.

Rational Suite Enterprise

On some projects, team members may perform many types of tasks. For example, on
smaller projects, team members are likely to perform more than one role. On larger
projects, team members might move from task to task. It may therefore make sense to
equip all team members with a full complement of tools.

Rational Suite Enterprise contains all the tools in the Team Unifying Platform,
AnalystStudio, DevelopmentStudio, and TestStudio, so it can accommodate the needs
of all the members of your team.

Rational Suite Enterprise also offers a tool for organizations that need to make
extensive modifications to RUP.

Rational Process Workbench. Provides process customizing and publishing that
allows process engineers to accurately model their organization’s software
development process and fine tune the Rational Unified Process for their own use.
Rational Process Workbench uses the UML visual notation to customize a process
framework that provides development teams with a common vision of their team’s
software development best practices.
26 Chapter 1 - Welcome to Rational Suite

http://www.rational.com/products/contman.jsp

Rational Suite: Summary

This table shows which tools are included with each edition of Rational Suite.
Project

Leaders/
Managers

Analysts Developers Testers All Roles Web
Teams

Team
Unifying
Platform

Analyst
Studio

DevelopmentStudio DevelopmentStudio
RealTime Edition

TestStudio Enterprise Content
Studio

Windows Windows Windows UNIX Windows UNIX Windows Windows Windows

Tool

Te
am

 U
n

if
yi

n
g

P
la

tf
or

m

Rational
Unified Process

• • • • • • • • •

Rational
RequisitePro

• • • • WEB • •WEB • • •

Rational
ClearQuest

• • • • WEB • •WEB • • •

Rational SoDA • SW • SW • SW • SF • SW • SF • SW • SW • SW

Rational
ClearCase LT

• • • • • • • • •

Rational
TestManager

• • • • • • • • •

Rational
ProjectConsole

• • • • • • •

Rational Rose • M • E • U • RT •RT/U • E

Rational
PureCoverage

• • • • • •

Rational Purify • • • • • •
Rational
Quantify

• • • • • •

Rational Robot • •
Rational
TestFactory

• •

Rational
Process
Workbench

•

Rational
NetDeploy

•

Rational
SiteLoad

•

M = Professional Data Modeler Edition
E = Enterprise Edition
U= UNIX Edition
RT = RealTime Edition
SW = Rational SoDA for Word
SF= Rational SoDA for FrameMaker
WEB = Can also be accessed through the tool’s Web interface
Rational Suite: Summary 27

For More Information

For more information about Rational Suite and the principles of software
development, see the Rational Suite Introduction.

For more information about the Unified Modeling Language, visit the UML Resource
Center at: http://www.rational.com/uml. This Web site contains UML information, tips
about getting started with UML, and a bibliography for further reading.

What’s Next

In the next chapter, you will learn more about this tutorial, and you install and set up
the files you will use.
28 Chapter 1 - Welcome to Rational Suite

http://www.rational.com/uml

2About This Tutorial
This tutorial teaches you the basics of using Rational Suite to plan, design, implement,
and test applications. It also points you to additional information about Rational Suite
so that you can learn more on your own.

Prerequisites

Before continuing, make sure you have the following software installed on your
computer, and a valid license to use each:

■ A current edition of Rational Suite.

■ Microsoft Internet Explorer 4.01, with Service Pack 1, or later.

■ Microsoft Word 2000 or later, or Word 97, with Service Pack 2.

If any of these prerequisites are not met, you can still benefit from reading this
tutorial, but you may not be able to perform the exercises.

Determining Which Rational Suite Tools Are Installed

Table 1 shows which tools are included in Rational Suite.

Table 1 Rational Suite Tools

� Rational ClearCase LT � Rational Robot

� Rational ClearQuest � Rational Rose (circle your edition)

� Rational ProjectConsole DataModeler, RealTime, Enterprise

� Rational PureCoverage � Rational SoDA for Word

� Rational Purify � Rational TestFactory

� Rational Quantify � Rational TestManager

� Rational RequisitePro � Rational Unified Process
29

Exercise: Find out which tools are on your computer.

To determine whether a tool is installed:

1 Click Start.

2 Check to see if the tool’s name is in the Programs > <RationalSuiteProductName> menu.

(From now on, we’ll abbreviate these two steps as follows: “Start > Programs >
<RationalSuiteProductName>.”)

You may discover that some tools listed in Table 1 are not installed on your
computer. For example, a tool may be excluded because of the Suite edition you,
or your company, purchased. Or someone in your organization may have chosen
not to install certain tools.

3 Using Table 1 on page 29, place check marks next to the tools that are installed on
your computer.

4 Place a bookmark on page 29 so you can refer back to Table 1 later in this tutorial.

ClassicsCD.com: The Tutorial Sample Application

In this tutorial, you implement a small part of a large development project. Using the
Rational tools and process, you develop requirements, work with a visual model, and
test an application.

Tutorial Background

In this tutorial, you work for ClassicsCD, Inc., a growing online store that sells classical
music CDs. Your team is working on Version 2 of the ClassicsCD.com Web site, and
uses Rational Suite to plan, design, implement, and test this version of the Visual
Basic application. In this tutorial, you add one new enhancement to ClassicsCD.com.

Installing the Tutorial Sample Application and Related Files

Before you perform the tutorial exercises, you must install and set up the files you will
use. The Rational Suite Tutorial installation requires approximately:

■ 23 MB of disk space to download the setup application.

■ 72 MB of additional disk space to download the tutorial files.

Note: If you are using Windows NT, make sure you have Administrator privileges so
that you can complete the setup successfully.
30 Chapter 2 - About This Tutorial

Exercise: Install the tutorial application and files.

1 Start the tutorial installation now: click Start > Programs > <RationalSuiteProductName>
> Download Rational Suite Tutorial.

This path automatically connects you to the Documentation area of the
Rational Software Web site, http://www.rational.com/documentation.

2 Browse the site to find the link for the Rational Suite Tutorial, then click this link.

3 Log on to, or create, your Rational Member Profile.

If, after logging on, you are returned to the Rational home page, go to
http://www.rational.com/documentation to find the tutorial download link.

4 From the tutorial download page, scroll to the section, Version 2002 Tutorial, then
click Rational Suite Tutorial ReadMe File.

This page provides information and instructions about the tutorial installation and
set up process. Use this information to install the tutorial program files and
documentation.

5 After you read the information, click Back to return to the tutorial download page,
and if necessary, scroll to the section, Version 2002 Tutorial.

6 Click Rational Suite Tutorial Manual.

After the PDF file opens, we recommend that you print the book so you can refer
to it more easily. You may also want to save the book to your hard disk.

7 Return to the tutorial download page, and if necessary, scroll to the section
Version 2002 Tutorial.

8 Click Rational Suite Tutorial v2002.05.00 Kit.

Follow the instructions to install the tutorial files on your computer.

9 After you install the files, close your Web browser.

Tip: Resetting the Tutorial

If, after working on the tutorial, you decide to restart the tutorial from the beginning,
reset the sample application and related files by rerunning the installation procedure.
This time, it is important that you use the installation procedure to uninstall the
application and related files before reinstalling them.

After you restart the tutorial, it is not necessary to repeat the steps in this chapter. You
will be able to redo most of the exercises in this book.
ClassicsCD.com: The Tutorial Sample Application 31

http://www.rational.com/documentation/
http://www.rational.com/documentation
http://www.rational.com/documentation/
http://www.rational.com/documentation/

Getting Started

Now you are ready to start your work for ClassicsCD, Inc.! To understand how
Rational Suite fits into your development environment, we recommend that you work
through the entire tutorial. Follow the instructions for each exercise exactly as they are
printed, and make sure you complete all exercises in each chapter before attempting
to perform the exercises in subsequent chapters. Each series of exercises builds upon
the information and skills you learned in previous chapters.

Registering the Project

In a typical development environment, a project administrator sets up the Rational
software environment and creates a Rational project in the Rational Administrator.
Your project administrator uses the Rational Administrator to group a set of projects
associated with Rational Suite (for example, a RequisitePro database and a Rose
model). As a user, you register the project to your computer so that you can connect to,
and work with, the project on the network. In this tutorial, the Rational project has
been created for you.

Exercise: Register the Rational project you will use in this tutorial.

1 To start the Rational Administrator, click Start > Programs >
<RationalSuiteProductName> > Rational Administrator.

2 In the left pane of the Rational Administrator, right-click Projects. From the
shortcut menu that appears, click Register Existing Project (see Figure 2).

Figure 2 Registering a Project Using Rational Administrator

3 In the Select Rational Project dialog box, browse to C:\Classics\Projects\Webshop.

4 Click Webshop.rsp, then click Open.

The Rational Administrator adds Webshop under the Projects entry in the
tree browser. This is the project you will use throughout this tutorial.

5 In the left pane of the Rational Administrator, right-click Webshop, then click
Connect.
32 Chapter 2 - About This Tutorial

All assets and development information associated with the Webshop project
appear under the Webshop entry (see Figure 3), indicating that you have
successfully connected to the project.

Figure 3 Connecting to a Project Using Rational Administrator

Keep the Rational Administrator open for the next task.

Associating the ClearQuest Database with the Project

A Rational project associates software development information collected from
Rational tools that are installed on your computer. A Rational project points to
development information stored in a database or in a datastore, which consists of one
or more databases. A project administrator creating a Rational project can associate it
with various Rational product datastores, databases, and projects.

After the project administrator associates development assets with a Rational project,
you can link data from one database or datastore to another by using individual
product features.

In this tutorial, you work with:

■ A ClearQuest database that contains the project’s change requests (defects and
enhancement requests).

■ A RequisitePro database that contains the project’s business and system
requirements.

■ A Rational Test datastore that contains the project’s testing information (test
assets, logs, and reports).

■ Rational Rose models that contain the project’s visual models.
Getting Started 33

Exercise: Attach the ClearQuest database to your project.

1 Check whether Rational ClearQuest is installed on your computer by referring to
Table 1 on page 29. If it is installed, then you can proceed with this section’s
instructions. If it is not installed, you cannot use ClearQuest during this tutorial.

2 From the Rational Administrator menu bar, click Tools >
Rational ClearQuest Maintenance Tool.

3 From the ClearQuest Maintenance Tool menu bar, click Connection > New.

Note: The next few steps show you how to connect to a schema repository
supplied with this tutorial. If you have been using ClearQuest and a connection to
another schema repository, you must reconnect to it after you finish with the
tutorial. If you have any questions, contact your project administrator.

4 Under Schema Repository Properties for “2002.05.00:”

a Make sure the value in the Vendor box is MS_ACCESS.

b In the Physical Database Name box, click (the Browse button) and go to
C:\Classics\Projects\ChangeRequests.

c Click CQMaster.mdb, then click Open.

You have now entered the properties of the ClearQuest database to be used in
this tutorial (see Figure 4).

Figure 4 Attaching a ClearQuest Database Using Rational Administrator

d Click Finish.
34 Chapter 2 - About This Tutorial

5 Review Status messages to confirm that you have connected the ClearQuest
database to the project, then click Done.

6 Close the ClearQuest Maintenance Tool.

7 Quit the Rational Administrator.

Note: Typically, these tasks are completed by your project administrator. To work
with this tutorial, though, it is necessary that you complete these tasks.

A Note About the Application

In a real-world online store, Web pages would load dynamically, based on
information stored in databases, and in reaction to user input. The application you
work with during the tutorial, ClassicsCD.com, contains static Web pages. These
pages do not change in response to user input. In a typical project, you would create a
prototype using static pages and later change to using dynamic pages.

Ordering Compact Discs

Start by becoming familiar with ClassicsCD.com.

Note: In the following exercise, please follow the instructions exactly. If you diverge
from the prescribed path, the application may appear to malfunction. Because the
Web pages are static, they do not actually respond to your input.

Exercise: Start ClassicsCD.com and order two CDs.

1 To start the application, use Windows Explorer and go to
C:\Classics\ClassicsCD_com_sites\v1, then open index.html.

Your Web browser displays the first page of ClassicsCD.com.

2 On the home page, click Explore our storefront.

3 On the storefront page, click Catalog.

4 In the Beethoven section (composers are listed alphabetically), click
Beethoven: Symphonie Nr. 5 to view details of that album.

5 On the album’s page, click (the Shopping Cart button) to add the album to
your order.

The CD Catalog page reappears.

6 At the top of the page, click the Shopping Cart button next to
Bach: Brandenburg Concertos 1 + 3.
Getting Started 35

Finishing the Purchase

Exercise: Complete the purchase.

Now complete the purchase and provide feedback to ClassicsCD, Inc.

1 In the left column of the page, click Shopping Cart.

2 On the Shopping Cart page in the left column, click Cashier.

Before you can complete the order, you must log on.

3 In both the CustomerID and Password boxes, type jmoore, then click Submit. If
Windows prompts you to remember this password, click No.

Notice that the Checkout page summarizes your order but does not tell you when
the order will ship.

4 Scroll to the bottom of the page, then click Place Order.

5 Provide feedback to the company by clicking Your Feedback at the bottom of the
page.

6 On the feedback form, in the Dear ClassicsCD.com box:

a Type: When I place an order, I want to know when my order will ship.

b In the My e-mail box, type: jmoore@clicker.com.

c Click Send!.

7 Quit ClassicsCD.com, and if necessary, quit Windows Explorer.
36 Chapter 2 - About This Tutorial

Discovering What to Build

At the ClassicsCD, Inc. headquarters, someone in marketing received your feedback
and entered it into ClearQuest, the tool that manages change requests (see Figure 5).

Figure 5 Viewing Your Enhancement Request Using ClearQuest
I

In this tutorial, you learn how to implement this enhancement request using
Rational Suite. You develop a new requirement, work with a visual model, and
perform application testing.

In Chapter 11, Planning the Next Iteration, you work with ClearQuest.
Getting Started 37

How to Use This Tutorial

To understand how Rational Suite fits into your development environment, you can
work through the entire tutorial, or read only those chapters most appropriate to your
role. If you choose to complete the exercises in the tutorial, it is important that you
complete all exercises in each chapter before attempting to perform the exercises in
subsequent chapters, because each series of exercises builds upon the information and
skills you learned in previous chapters. If you choose only to read this tutorial, we
recommend that you start with Chapter 1, Welcome to Rational Suite, and this chapter.

Table 2 presents our recommendations if you choose only to read this tutorial.

Table 2 How to Use This Tutorial

Role Your Main Tasks Recommended Tutorial Chapters

Analyst Determine what the system
does

Represent the user

Specify and manage
requirements

 3
 4
 5
 8
 11

Learning About the Rational Unified Process
Managing Change to Project Artifacts
Creating Requirements
Communicating Project Status
Planning the Next Iteration

Developer Determine how the system
works

Define architecture

Create, modify, manage, and
test code

 3
 4
 5
 7
 8
 9
 11

Learning About the Rational Unified Process
Managing Change to Project Artifacts
Creating Requirements
Modeling the Enhancement
Communicating Project Status
Reliability Testing
Planning the Next Iteration

Tester Ensure requirements are met

Create, manage, and run
tests

Report results and verify
fixes

 3
 4
 6
 8
 9
 10
 11

Learning About the Rational Unified Process
Managing Change to Project Artifacts
Test Planning
Communicating Project Status
Reliability Testing
Functional Testing
Planning the Next Iteration

Manager
or Project
Leader

Identify and manage project
risks

Monitor team progress

Plan each iteration

 3
 4
 5
 6
 7
 8
 9
 10
 11

Learning About the Rational Unified Process
Managing Change to Project Artifacts
Creating Requirements
Test Planning
Modeling the Enhancement
Communicating Project Status
Reliability Testing
Functional Testing
Planning the Next Iteration
38 Chapter 2 - About This Tutorial

Summary

What You Learned in This Chapter

In this chapter, you learned how:

■ To determine which Rational Suite tools are installed on your computer.

■ To install and set up the files you will use in the tutorial.

■ A Rational project associates software development information collected from
Rational Suite tools that are installed on your computer.

What’s Next

In this tutorial, you will use the Classics CD Webshop project to implement an
enhancement request. The next chapter introduces you to the Rational Unified
Process. You use this process to learn about work you will do in subsequent chapters.

Let’s get started!
Summary 39

40 Chapter 2 - About This Tutorial

3Learning About the
Rational Unified Process
This chapter introduces you to the Rational Unified Process (RUP). In this chapter,
you familiarize yourself with RUP and read guidelines for the work you will perform
in the next chapter.

Audience

This chapter applies to all members of a software development team.

Getting Your Bearings

In this chapter, you use the Rational Unified Process. To determine whether RUP is
installed on your computer, refer to the tool chart you filled out in Table 1, Rational
Suite Tools, on page 29.

If RUP is not installed, you can still benefit from reading this chapter, but you will not
be able to perform the exercises.

If RUP is installed, start it now by clicking Start > Programs > <RationalSuiteProductName>
Rational Unified Process.

The RUP Overview page appears in your Web browser. A second page, Getting
Started, may also appear. If the Getting Started page does not appear, open it now by
clicking Getting Started at the top of the RUP Overview page.

What Is the Rational Unified Process (RUP)?

RUP is a process framework for developing software that helps you:

■ Coordinate the developmental responsibilities of the entire development team.
■ Produce high-quality software.
■ Meet the needs of your users.
■ Work within a set schedule and budget.
■ Leverage new technologies.
41

RUP serves as a personal and team-centered guide, leading you through best
practices for controlled, iterative software development. Many organizations
worldwide have successfully used it for both small- and large-scale development
efforts.

RUP is implemented as an online guide and knowledge base that you view with a
Web browser.

The Rational Unified Process and Rational Suite

The Rational Unified Process can help you and your team work more effectively. RUP
is a customizable framework providing development teams with a common vision of
software development best practices. You can use Rational Process Workbench to
adapt RUP to the specific needs of your projects and your team.

If your company has decided to use Rational Suite without adopting any of RUP, your
projects can still be successful. (You can also use RUP with projects that do not use
Rational Suite or its component tools.)

Even if you do not follow RUP, you can use it as a source of information about
software engineering. For example, it contains topics to help you better understand
UML concepts.

This tutorial follows the Rational Unified Process.

Learning the Mechanics

The Rational Unified Process guides you through the full software development
lifecycle: business modeling, requirements management, analysis and design,
implementation, testing, deployment, configuration and change management, project
management, and environment management.

Exercise: Learn the elements of RUP.

From the Getting Started page, you can go to other pages containing tips about the
mechanics of using RUP. You can also find pages that provide starting points for
learning about the process itself.

1 From the Getting Started page, click Navigating the Process.

Your Web browser displays the Navigating the Process page, which contains
elements of the RUP browser environment. Click this page to make it the active
window. If necessary, maximize the window.
42 Chapter 3 - Learning About the Rational Unified Process

2 Familiarize yourself with the user interface by moving the pointer over the graphic
elements, and reading the tool tips that are displayed (see Figure 6).

Figure 6 Elements of the Rational Unified Process Browser Environment

3 Minimize the Getting Started page and leave your Web browser open.

The Process at a Glance

The overview of the Rational Unified Process presents a rich visual representation
that can help you better understand RUP.

Exercise: Get an overview of the Rational Unified Process.

1 On the RUP Overview page, click Overview in the upper left corner of the tree
browser.

An overview diagram of the Rational Unified Process appears (see Figure 7).
The Process at a Glance 43

Figure 7 Rational Unified Process Overview

The diagram in Figure 7 illustrates that software development is best organized
into phases, each of which is performed in a series of iterations. Throughout each
phase, project team members from each of the primary software development roles
(analysts, developers, testers, project leaders) perform activities in one or more
disciplines. The diagram shows how emphasis on different disciplines varies with
each iteration.

Notice, for example, that most of the work associated with requirements happens
early in the development cycle, but continues throughout a project. Testing,
however, can start early in the project, but typically intensifies at the end of
construction.

The RUP Overview outlines the following important concepts:

❑ The software lifecycle of the Rational Unified Process is decomposed over time
into four sequential phases, each concluded by a major milestone. Each phase
is, essentially, a span of time between two major milestones.

❑ A development iteration is one complete pass through all the disciplines,
leading to a product release.

2 Optionally, click the terms Phases and Iterations in the Overview diagram to learn
more.

When you finish reading about these concepts, click Back in your Web browser to
return to the RUP Overview page.

3 Return to the Getting Started page and read about other aspects of RUP.

4 Leave your Web browser open.
44 Chapter 3 - Learning About the Rational Unified Process

Key Concepts

The Rational Unified Process provides a quick summary of its most important
components.

Exercise: Learn about key concepts.

1 In the tree browser, expand Overview by clicking the + to its left, then click
Key Concepts. (From now on, we’ll abbreviate steps like these as follows: “Go to
Overview > Key Concepts.”)

A new Web page appears. The diagram at the top of the page shows the
relationships among key concepts of RUP (see Figure 8).

Figure 8 Key Concepts in the Rational Unified Process

2 Click a symbol in the graphic to learn more about that concept (key excerpts
follow).

❑ A discipline shows all activities that produce a particular set of software assets.
RUP describes development disciplines at an overview level—including a
summary of all roles, workflows, activities, and artifacts that are involved.
Key Concepts 45

❑ A role is defined as the behavior and responsibilities of an individual or a group
of individuals on a project team. One person can act in the capacity of several
roles over the course of a project. Conversely, many people can act in the
capacity of a single role in a project. Roles are responsible for creating artifacts.

❑ A workflow is the sequence of activities that workers perform toward a common
goal. A workflow diagram serves as a high-level map for a set of related activities.
The arrows between activities represent the typical, though not required, flow
of work between activities.

❑ An activity is a unit of work that is performed by a particular role. It is a set of
ordered steps, like a recipe, for creating an artifact.

❑ An artifact is something a role produces as the result of performing an activity.
In RUP, the artifacts produced in one activity are often used as input into other
activities. An artifact can be small or large, simple or complex, formal or
informal. Examples of artifacts are: a test plan, a vision document, a model of a
system’s architecture, a script that automates builds, or application code.

3 Below the diagram, scroll to the first section, Software Engineering Process, and read
it for a quick summary of the Rational Unified Process.

Exploring a Workflow

Exercise: Explore the Requirements discipline.

RUP provides guidance on how to enhance existing systems. During this tutorial, you
use RUP guidelines to work on refining the online store application, ClassicsCD.com.

Display the workflow diagram for Requirements:

1 In the tree browser, go to Disciplines > Requirements to display the Requirements
workflow diagram, as shown in Figure 9.

Workflow detail diagrams show the roles involved, the artifacts used as input, the
resulting artifacts, and the activities that make up this part of the overall
workflow. For more information about any of these elements, click that area of the
diagram.

2 On the diagram, scroll to the bottom of the diagram, then click
Refine the System Definition to display workflow details (see Figure 9).
46 Chapter 3 - Learning About the Rational Unified Process

Figure 9 Requirements Overview in RUP

Starting with Actors and Use Cases

When you design or enhance a system, the Rational Unified Process recommends that
members of your team start by agreeing on the system’s high-level behavior. To do so,
you identify actors and use cases.

■ Actors are the entities that interact with your system. An actor is often a person (for
example, a sales clerk or administrator). An actor can also be an external hardware
or software system (for example, a cash register or credit card verification system
provided by a financial institution).

■ Use cases describe how an actor uses and interacts with the system. More formally,
a use case describes what services or features a system provides to a certain actor.
You define a use case by describing a complete sequence of actions that yields
observable results of value to an actor.

Use cases are a key concept in RUP and in the UML. They enhance communication
across development teams so that you can solve the right problem and define the
right system for your users.
Starting with Actors and Use Cases 47

Exercise: Learn about use cases.

1 Within the Workflow Detail: Refine the System Definition diagram, click
Detail a Use Case (see Figure 10).

Figure 10 Detailing a Use Case with RUP

The Rational Unified Process displays a page describing how to write a use case. It
includes details about the artifacts that you will need to get started and the
artifacts that result from the activity. It then provides a step-by-step description of
the activity.

2 To learn more about use cases, including how to write them, in the
Resulting Artifacts section, click Use Case.

This new page provides a good overview of use cases as artifacts, including a
description of how they’re used, an outline of a typical use case, and responsible
parties.

Near the top of the page, there’s a link to a use case template. When you create use
cases, we recommend that you use this template, or another template that your
group has designed, to ensure consistency and completeness in use case
development. This makes it easy for all stakeholders to locate and understand
important project information.

3 Click Back in your Web browser to return to the Activity: Detail a Use Case page.

4 At this point, you might want to understand where you are in the Rational Unified
Process hierarchy. Do one of the following:

❑ In the main window, click Where am I. The tree browser updates itself to show
your location – Roles and Activities > Analyst Role Set > Requirements Specifier >
Detail a Use Case.
48 Chapter 3 - Learning About the Rational Unified Process

❑ Or, look at the top of the displayed page to see a RUP visual that shows where
you are (see Figure 11). Use these features of RUP anytime you want to know
the location of the page displayed.

Figure 11 Knowing Where You Are in RUP

For more information on use cases, see Chapter 5, Creating Requirements.

Tool Mentors: Implementing the Process Using Rational Tools

The Rational Unified Process provides guidelines for all phases of software
development. It uses Tool Mentors to provide guidance on using Rational tools. Tool
Mentors give detailed descriptions of how to perform steps in the process, or produce
a particular artifact or report, using one or more tools.

In the next exercise, you use a Tool Mentor to get instructions for the work you will do
first: defining use cases.

Exercise: Work with a Tool Mentor.

Read a Tool Mentor to see how RUP integrates with Rational tools.

1 On the Activity: Detail a Use Case page, scroll down and find the Tool Mentors
section in the table.

2 Click Detailing a Use Case Using Rational RequisitePro.

RUP displays the Tool Mentor, showing a statement of Purpose and an Overview,
followed by a series of detailed Tool Steps.

3 Under Tool Steps, scroll to and then click Step 3, Create requirements in the detailed
Use-Case Specification.

Review the instructions; you will perform a subset of these steps in this tutorial.

 You are here.
Tool Mentors: Implementing the Process Using Rational Tools 49

Learning About Web Applications

The Rational Unified Process provides guidance for performing certain kinds of work,
including the work you will do in this tutorial with ClassicsCD.com.

Exercise: Learn about developing applications for the Web.

1 In the Rational Unified Process tree browser, go to Overview > Roadmaps >
e-business Solutions.

2 Scan the topics to learn more about developing Web applications.

Summary

For More Information

To learn more about the Rational Unified Process, click Getting Started at the top of any
RUP page. Then select and read the topics of interest.

Cleaning Up

After you finish using the Rational Unified Process, you may quit the application and
close the Getting Started page. Or, minimize the Rational Unified Process and use it as
a supplement to learn more about topics covered in this tutorial.
50 Chapter 3 - Learning About the Rational Unified Process

What You Learned in This Chapter

In this chapter, you learned that:

■ The Rational Unified Process provides customizable guidelines for best practices
for software development. In Rational Suite, RUP is recommended, but optional.

■ A workflow describes a set of related activities focused on meeting a goal. For each
activity, a role uses artifacts created in previous activities and produces other
artifacts.

■ Early in the requirements phase, you define actors (users and external systems that
interact with your system) and use cases (services that the system provides to
actors).

■ Tool Mentors provide explicit instructions for performing a RUP activity using the
appropriate Rational tool.

What’s Next

In the next chapter, you learn how Rational ClearCase LT helps you effectively
manage change throughout the software development lifecycle. You also learn how
using Rational Suite ContentStudio can help your Web team reliably manage and
deliver code and content.
Summary 51

52 Chapter 3 - Learning About the Rational Unified Process

4Managing Change
to Project Artifacts
In this chapter, you learn about the Rational approach to managing change during
software development using Rational ClearCase LT and Unified Change
Management (UCM). When used together, ClearCase LT and UCM help you
successfully manage changing project artifacts from requirements to release, through
multiple iterations.

Audience

This chapter applies to all team members.

What Is Unified Change Management?

Rational Software offers Unified Change Management (UCM) as the best approach for
managing change during software system development from requirements to release.
UCM focuses on these guiding concepts:

■ A UCM activity represents the work required to complete a development task.
UCM activities can be derived from a variety of sources, including a defect or an
enhancement request.

■ An artifact is an item that is produced, modified, or used in the software
development lifecycle as the result of performing an activity. In the Rational
Unified Process (RUP), the artifacts produced in one activity are often used as
input into other activities. Conceptually, artifacts can be requirements, visual
models, test cases, source code, documentation, or project plans. Artifacts are items
that are critical to the success of your project and should be placed under
configuration management, or version control. Usually, an artifact is represented by a
file or a set of files.

The key strength of UCM is that it unifies the activities used to plan and track
software development progress with the artifacts used to create, design, and build
software applications. Figure 12 shows a typical way to manage change using UCM.
53

Figure 12 Typical UCM Workflow

UCM Tools

A key aspect of the UCM model is that it unifies the activities used to plan and track
project progress and the artifacts undergoing change. The UCM model is realized by
both process and tools. Rational ClearQuest and Rational ClearCase LT provide tool
support for UCM. For example, ClearQuest manages the project’s tasks, defects, and
requests for enhancements (referred to generically as activities), and ClearCase LT
manages the artifacts produced by a software project. When used together, these tools
help your software team better manage changing requirements and development
complexity throughout the software development lifecycle.

Rational ClearQuest. Manages change activity associated with software
development, including enhancement requests, defect reports, and documentation
modifications. ClearQuest also offers charting and reporting features to track and
communicate project progress to all stakeholders.

Rational ClearCase LT. Uses the built-in UCM development process to track and
manage changes to all software project files, including requirements, visual models,
and source code.
54 Chapter 4 - Managing Change to Project Artifacts

Using the Tools with UCM – ClearQuest and ClearCase LT

As described in RUP, you typically use UCM with ClearQuest and ClearCase LT as
follows:

1 [one time] A project manager or administrator installs Rational software. This
individual sets up the ClearQuest and ClearCase LT environments, and creates a
Rational project. (A Rational project associates the data created and maintained by
Rational tools and enables integrations among them.) A project manager also
creates a UCM project to associate with the Rational project.

2 [one time] You identify yourself to the project by joining the project. As a result, a
private workspace (consisting of a development stream and a development view) is
created for you. You also gain access to a workspace available to your entire team.
This public workspace includes an integration stream; you can create a companion
integration view for your own use.

You use a view to select one version of each element in your workspace. In UCM,
your stream provides these configuration instructions to the view and tracks your
activities. When you join a project, UCM automatically configures your stream so
that you see the right version for your workspace (see Figure 13).

Figure 13 Exploring ClearCase LT Projects Using UCM

3 Your project manager uses ClearQuest to assign activities to you.

4 You run a ClearQuest query to find the activities assigned to you. This is your
to-do list. From this list, you decide which activity to work on.
Using the Tools with UCM – ClearQuest and ClearCase LT 55

5 You work with artifacts as usual. You use ClearCase LT in your private workspace
to:

❑ Check out artifacts. When you check out an artifact, ClearCase LT asks which
activity you want to work on. In the background, ClearCase LT keeps track of
the change set (the list of changed artifacts) associated with the activity.

❑ Edit and verify the changes.

❑ Check in the artifacts. When you check in an artifact, it is still part of your
private workspace. Your change does not become publicly available until you
deliver it, as described in Step 6.

6 After you finish work on the activity, you deliver changes for the entire activity (see
Figure 14). Because ClearCase LT keeps track of the change set, you don’t have to
specify the list of artifacts to deliver. Delivering the changes makes the changes
publicly available through the integration stream. It can also close the activity,
depending on the policies the project manager has established.

Figure 14 Delivering Changes to the UCM Project Using ClearCase LT

7 After developers deliver a set of activities, the project manager makes a baseline, a
new common starting place for all developers that includes the new activities or
modified artifacts. On your project, a new baseline can be created regularly,
perhaps even daily.

8 If the changes in the baseline are approved (through testing or through another
review process), the project manager promotes it, making it the recommended
baseline.

9 You rebase your development stream (work area) so that when you work on your
next activity, you start from the most recent recommended baseline. Restart with
Step 4 to select the next activity to work on.
56 Chapter 4 - Managing Change to Project Artifacts

Depending on the structure of your organization, your team may identify these roles
using different names, assign the responsibility of different roles to be performed by
one individual rather than several, or share the responsibility of a single role among
several team members, as defined by the Unified Process for UCM. No matter how
your team is structured, you can use UCM successfully because the model follows a
basic process for configuration and change management, and ClearCase LT helps to
automate much of the artifact and activity auditing.

Unifying Code and Content for Web Development

Although most of this tutorial discusses development concepts for traditional
software projects, many of the ideas, tools, and processes presented can also be
applied to Web applications. For example, as software applications and Web sites
grow in size, complexity, and strategic value, so does the need to control changes to
them.

Beyond these common characteristics, there are important distinctions to make
between Web-based and traditional software development. In Web applications:

■ Change happens at a considerably faster pace.

■ Many stakeholders in both technical and non-technical roles contribute to Web
sites.

■ The frequency of change and the broader spectrum of stakeholders increases the
likelihood of error.

Learning About Rational Suite ContentStudio

Rational Suite ContentStudio is optimized for Web development teams, particularly
content managers and developers. Rational Suite ContentStudio provides an
integrated set of tools to unify code and content management for complex Web
applications.

Using Distributed Authoring to Accelerate Web Site Changes

ContentStudio offers Web development teams distributed authoring and flexible
workflows to accelerate Web site changes. Using distributed authoring and
workflows helps to ensure site integrity and reduce the need for the Web team to be
involved in every site change.
Unifying Code and Content for Web Development 57

Distributed authoring helps content contributors add and update Web content while
maintaining a consistent look and feel for the site. Authorized content owners can
make changes to their material using pre-formatted templates that they access
through a standard Web browser. Web development teams use these templates to
separate the text and editable portions of a site from the design elements.

Web teams can also create workflows for site updates. Web development workflows
automate the circulation of proposed Web site changes to authorized reviewers for
approval or edits. These workflows are customizable, so Web teams can design them
to best reflect the way their organization operates. After a workflow cycle is complete,
content changes can be automatically posted to the Web site.

ContentStudio supports common authoring tools including Microsoft Office, Allaire
HomeSite, and Macromedia Dreamweaver. ContentStudio also supports common
IDEs including Microsoft Visual Studio, and IBM VisualAge for Java.

Deploying Quickly and Confidently

Rational NetDeploy, an integrated tool designed to automate deployment tasks,
helps Web teams automatically deploy related code and content. Rational NetDeploy
eliminates the manual process of file selection and deployment by recognizing tasks
associated with a particular change request, and deploying all associated artifacts
together. This ensures that all related code and content files are deployed
simultaneously. Rational NetDeploy also helps Web teams schedule automatic
deployments, and integrates with ClearCase LT to version and archive all Web site
artifacts— facilitating simple rollbacks to previous site versions.

Rational SiteLoad, a Web-based load testing tool, simulates Internet traffic to provide
precise real-time information on site performance. SiteLoad helps avoid costly — and
highly visible — Web site failures, and provides meaningful test results in minutes.
58 Chapter 4 - Managing Change to Project Artifacts

Using Rational Suite ContentStudio

Web teams typically use ContentStudio to manage the cycle for updating a Web site,
from request and implementation, to review, testing, and finally deployment. This
process is illustrated in Figure 15.

Figure 15 Managing Web Development Using Rational Suite ContentStudio

ContentStudio supports all members of your team:

■ Analysts use RequisitePro and ClearQuest to define and track Web site objectives.

■ Managers use ClearQuest to assign and track Web site activities.

■ Content contributors use templates to add or change Web content.

■ Developers use their preferred IDE to add or change code.

■ Editors use workflows to review and approve changes before publishing to the
Web.

■ Testers use TestManager to manage all test activities and artifacts, and SiteLoad to
identify where heavy visitor traffic problems can cause the application to stop
responding.

■ Project leaders use Rational NetDeploy to automate and schedule deployment of
artifacts to testing and production Web sites.
Using Rational Suite ContentStudio 59

■ All team members use ProjectConsole and SoDA to gather project metrics and create
project reports.

■ All team members use ClearCase LT to control changes to content and code as the
application evolves.

■ All team members use the Rational Unified Process (RUP) as a guide for software
development best practices, and as a source of information about software
engineering.

Your team may identify these roles using different names, assign the responsibility of
different roles to be performed by one individual rather than several, or share the
responsibility of a single role among several team members. No matter how your Web
team is structured, you can use ContentStudio successfully because the tools help
you:

■ Automate many of the steps involved in Web site changes.

■ Develop a process to manage, integrate, and deploy code and content.

Summary

For More Information

To get started with ClearCase LT, complete the ClearCase LT tutorial. To start the
tutorial, click Start > Programs > <RationalSuiteProductName> > Rational ClearCase LT Client
> Tutorial. In the Help Topics window, double click Tutorial, then double click
Rational ClearCase Tutorial. Read this tutorial to learn how to use ClearCase LT.

For more information about using Rational ClearCase LT and UCM with Rational
Suite, read Using Unified Change Management with Rational Suite.

For general information about Rational ClearCase LT with or without UCM, read the
Rational ClearCase LT Introduction.

To learn more about ContentStudio, go to:
http://www.rational.com/products/contman.jsp.
60 Chapter 4 - Managing Change to Project Artifacts

http://www.rational.com/products/contman.jsp

What You Learned in This Chapter

In this chapter, you learned:

■ UCM helps software teams manage change in software development, from
requirements to release.

■ ClearCase LT and ClearQuest are the foundations for UCM. ClearCase LT
manages the artifacts associated with a software development project. ClearQuest
manages the project activities. It offers charting and reporting features to track and
communicate project progress to all stakeholders.

■ Under UCM, team members use ClearCase LT to manage artifacts under source
control, they work on activities in their personal development workspaces, and
deliver modified artifacts to the integration stream after they complete an activity.

■ Rational Suite ContentStudio supports the work of everyone who contributes to
your Web site – including project managers, analysts, software developers, content
managers, Web designers, and other business specialists – enabling fast and
reliable deployment of site updates and changes.

What’s Next

Now you understand how ClearCase LT and UCM help you manage changing
artifacts throughout the development lifecycle. In the next chapter, you will work on
the Arrange Shipment use case for the enhancement request to ClassicsCD.com.
Summary 61

62 Chapter 4 - Managing Change to Project Artifacts

5Creating Requirements
In this chapter, you use Rational RequisitePro and Rational Rose to create a use case
for the enhancement you are implementing.

Audience

This chapter applies most directly to analysts, but is relevant for all team members.

Getting Your Bearings

In this chapter, you use RequisitePro and Rose. To determine whether these tools are
installed on your computer, refer to the tool chart you filled out in Table 1, Rational
Suite Tools, on page 29.

If they are not installed, you can still benefit from reading this chapter, but you will
not be able to perform some of the exercises.

If they are installed, start RequisitePro now as follows (you open Rose later in this
chapter):

Click Start > Programs > <RationalSuiteProductName> > Rational RequisitePro. RequisitePro
starts and the Open Project window appears. If the Let’s Go RequisitePro window
also appears, click Close.

Note: If this is your first time starting RequisitePro, the Enhanced RequisitePro
Environment page appears. Read this page to learn about the RequisitePro user
interface. You may want to print this page to keep as quick reference. Then close the
window prompting you to select a RequisitePro project to work with.
63

Exercise: Open the ClassicsCD.com Webshop Project.

1 In the Open Project window, click Add.

2 From the Add Project window, go to C:\Classics\Projects\Webshop\RequisitePro.

3 Click ClassicsWebShop.rqs, then click Open.

The RequisitePro database associated with the ClassicsCD Web Shop project
appear in the list of Existing projects (see Figure 16).

Figure 16 Opening the ClassicsCD Web Shop Project Using RequisitePro

4 Click OK. The Project Logon dialog box appears.

5 In the Username box, type terry, then click OK. It is not necessary to enter a
password for this exercise.
64 Chapter 5 - Creating Requirements

RequisitePro opens the project and displays project artifacts in a hierarchical tree
browser in the left pane (the Explorer window). A description of the artifact
selected in the Explorer window appears at the bottom. In the right pane,
RequisitePro displays the view of a selected artifact. (see Figure 17).

You can adjust these windows to better view your selection.

Figure 17 Working with RequisitePro

Why Worry About Requirements?

One definition of project success is that the product you deliver meets its
requirements. The formal definition of a requirement is a condition or capability to
which the system must conform. More informally, a requirement describes a feature
or behavior that a system must have.

Where Do Requirements Come From?

As an analyst, your job starts with gathering the needs of your stakeholders —
everyone who has an interest in your project. To determine those needs, you
interview users and other stakeholders, analyze enhancement requests, and work
with project team members. You then decide which of those needs will become
project requirements.

RequisitePro artifact description

Explorer window

display area
Why Worry About Requirements? 65

Managing Requirements

Managing requirements is a systematic approach to:

■ Finding, documenting, organizing, and tracking requirements.

■ Establishing and maintaining agreement between the customer and the project
team on the system’s requirements.

Requirements management is challenging because requirements change throughout a
project. For example, users can change their minds about essential features, or they
may not have articulated their wishes clearly in the first place. Competitors can
release new versions of their software and you must respond by changing project
plans midstream. Changing laws can affect your software. When you don’t manage
requirements, feature creep can slow down and complicate your project.

Using RequisitePro

RequisitePro makes it easy to write and manage requirements. It is integrated with
Microsoft Word and is packaged with Word templates to help you get started quickly.
RequisitePro is designed to work for your entire team:

■ Analysts use RequisitePro to document and maintain requirements.

■ Developers use requirements to design architecture and write more detailed
specifications.

■ Testers use requirements to design tests and check test coverage.

■ Project leaders and managers use RequisitePro to plan project work based on
available resources (for example, time, budget, and personnel).

Starting with a Use Case

In Chapter 2, About This Tutorial, you saw the enhancement request that was entered
in response to your feedback. One of your team members has started work on the use
case corresponding to the enhancement request.
66 Chapter 5 - Creating Requirements

Why Work with Use Cases?

Use cases describe system behavior in a common language that everyone on the team
can understand. Working with use cases is a key unifying mechanism in the Rational
Unified Process (RUP).

Use cases are important to everyone on the project:

■ Analysts use them to express how the system should behave and to verify planned
changes with stakeholders.

■ Developers and designers can start with human-language and graphical use cases.
They elaborate them first into architectural specifications and then into classes.

■ Testers develop test designs based on use cases.

■ System testers use them to validate system behavior starting as early as the design
phase.

■ Project leaders and managers use them to formally verify that the results of
requirements conform to the customer’s view of the system.

Exercise: Open the use case document.

1 In the Explorer window, go to ClassicsCD Web Shop > Use Cases > Arrange Shipment >
Arrange Shipment, then double-click this Word document entry (see Figure 18).

Figure 18 Opening a Use Case Document with RequisitePro
Starting with a Use Case 67

The RequisitePro Word document appears and displays the Arrange Shipment use
case. This document is based on a template provided with RUP. (In Chapter 3, you
saw, and may have clicked on, a link to this template.)

The RequisitePro toolbar also appears (see Figure 19). This is a standard Microsoft
Word toolbar that can float or be anchored. The default setting for this toolbar is
floating.

Figure 19 Working with Use Case Documents Using RequisitePro

2 In the document, scroll to page 4, Use Case Specification: Arrange Shipment.

Text with double-underlining identifies use case requirements. Identified by the
prefix UC, use case requirements are high-level requirements that describe the
system’s behavior.

3 Read the Brief Description and Flow of Events. Notice that the shipping date
feature was part of the original use case (it’s at the bottom of the page and it starts
with “The warehouse...”) but it has not yet been identified as a requirement.

This is a typical way of starting requirements work. You use the familiar
environment of Word to document your requirements. You use RequisitePro to
identify and elaborate on your project requirements. You also indicate which
requirements are related. RequisitePro then tracks how changes to the system
affect your requirements and how changes to requirements affect your system.

4 If Rose is not installed on your computer, minimize Word and RequisitePro. If
Rose is installed, quit Word, then click No if prompted to save your changes. Also
quit RequisitePro. When prompted to close the project, click Yes.
68 Chapter 5 - Creating Requirements

How Does RequisitePro Handle Requirements?

RequisitePro is both document-centric and database-centric and relies on the
strengths of the following:

■ The document features provide a familiar environment (Word) for creating
descriptions and communicating your work to project stakeholders. You can start
a requirements document either by importing existing Word files into
RequisitePro or by working in a RequisitePro Word document.

■ The database features help you organize your requirements, prioritize your work,
track requirements changes, and share information with other Rational tools. To
work with database features, you use RequisitePro Views.

In the use case document, the requirements text (with double-underlined characters
by default) exists in the document. The database also stores the requirements text,
along with attributes (such as priority and assigned-to) that help track the requirement.
Later in this chapter, you will work with RequisitePro database features.

Learning More About Use Cases

You frequently start requirements work by developing use cases. When working with
use cases, you work in Rose to incorporate the use case in your visual model, then
work in RequisitePro to add textual descriptions, attributes, and links.

RUP describes how to write a use case. It includes details about the artifacts that you
need to get started and the artifacts that result from the activity. It then provides a
step-by-step description of the activity, and offers a template for creating use cases.

This template provides guidelines about how to structure a use case. You can use it as
a starting point for defining use case requirements. We recommend that you use this
template, or another template designed by your group, to ensure consistency and
completeness in use case development. This makes it easy for all stakeholders to
locate and understand important project information.
Starting with a Use Case 69

Continuing Use Case Work Using Rose

Rational Rose helps analysts visualize the behavior of a system through use case
diagrams. These diagrams help you manage complexity because they allow you to see
the “big picture.” A use case diagram shows:

■ The behaviors of a system. The use cases describe what the system does.

■ The boundaries of a system. The actors represent external entities that interact
with the system.

■ The relationships between use cases and actors.

By using Rose to create use case diagrams, you provide a centralized, graphic
representation of the system’s use cases. This helps all stakeholders share a common
understanding of the project goals and expected deliverables.

Using Rose is also an effective way to continuously communicate the impact of
change throughout the development lifecycle. All team members can easily share and
revise use case diagrams because they are written in UML, an easily understood,
industry-standard language for designing software. For example, analysts use Rose to
create use case diagrams that describe a system at a high-level. Later on, you will see
how architects continue this work by using Rose to design the system in more detail.
As a result, your system diagram, architecture, and data are managed by one tool,
Rational Rose, and with one language, UML.

Working with a Use Case Diagram

In this section, you continue work on the Arrange Shipment use case for
ClassicsCD.com as the first step in implementing the enhancement.

Exercise: Start Rose.

1 From the Start menu, click Programs > <RationalSuiteProductName> > Rational Rose.

Rose starts and the Create New Model dialog box appears. Make sure that the
check box Don’t show this dialog in the future is cleared so you can easily open the
Rose model later in this tutorial.

2 Click Cancel to close the Create New Model dialog box.
70 Chapter 5 - Creating Requirements

3 Rational Rose lets you work with models moved or copied among workspaces. To
do this, you need to configure Rose:

a From the Rose menu bar, click File > Edit Path Map.

The Virtual Path Map window appears.

b In the Virtual Symbol to Actual Path Mapping list, look for $CURDIR. If you see this
symbol, close the Virtual Path Map window and proceed to Step 4.

c In the Symbol box, type CURDIR.

d In the Actual Path box, type &.

e Click Add.

f Click Close.

4 From the Rose menu bar, click File > Open and go to
C:\Classics\Projects\Webshop\Rose.

5 Click ClassicsCD_WinDNA.mdl, then click Open.

6 Rose prompts you to load subunits. Click Yes.

Rose displays a hierarchical tree browser in the upper-left pane (the Rose
browser). In the right pane (the diagram window), it displays the logical view of
the architecture showing how the top-level packages in the system interact. If
necessary, maximize the diagram window.

Exercise: View the use case diagram.

1 In the Rose browser, go to Use Case View > cdshop > Main, and double-click Main to
display the use case diagram (see Figure 20). If necessary, maximize the diagram
window within Rose.
Working with a Use Case Diagram 71

Figure 20 Viewing the ClassicsCD.com Use Case Diagram Using Rose

Associating the Rose Model with the RequisitePro Project

Earlier in this chapter, you opened the ClassicsCD.com Webshop project in
RequisitePro. In this section, you learn how to view the association between the
ClassicsCD.com Rose model with that project in RequisitePro. You also create the
requirement and link the use case with a requirement.

Exercise: View the association between the Rose model and the RequisitePro
project.

1 On the use case diagram, right-click the Arrange Shipment use case object. From the
shortcut menu, click View RequisitePro Association.

The RequisitePro Association dialog box appears and displays information about
the Arrange Shipment use-case document and the Arrange Shipment requirement
you saw earlier in this chapter.

2 After you finish reviewing the use case’s RequisitePro association, click OK.

The Arrange Shipment use case is represented both in text and by a visual model. The
use case is a single element because of the integration between Rose and RequisitePro.

Arrange Shipment use case
72 Chapter 5 - Creating Requirements

Creating a New Requirement

Arrange Shipment is an established use case, but you still need to identify a
requirement corresponding to the enhancement request to display an estimated ship
date for a customer’s order.

Exercise: Create the requirement.

1 If Rose is not installed on your computer, maximize Word and continue with
Step 2. If Rose is installed, continue working with this Rose model: right-click the
Arrange Shipment use case. From the shortcut menu, click Use Case Document > Open.

The RequisitePro Word document appears and you can work with the use case.

2 On page 4 of the use case document, go to the end of section 2.1, Basic Flow. Select
the entire sentence beginning with “The warehouse system responds...”

3 From the Word menu bar, click RequisitePro > Requirement > New. The Requirement
Properties dialog box appears.

4 To indicate that this new requirement is part of the basic flow of a use case, on the
Attributes tab, from the Property list, click Basic Flow.

5 On the Hierarchy tab:

a From the Parent list, click <choose parent>.

b From the Parent Requirement Browser, click UC7: Arrange Shipment, then click
OK.

6 On the Requirement Properties dialog box, click OK.

RequisitePro underlines the new requirement and labels it as a pending use case
requirement.
Creating a New Requirement 73

7 From the Word menu bar, click RequisitePro > Document > Save.

RequisitePro saves the document and finishes creating the requirement.

8 Go to page 4 to see the new requirement and verify that it has been assigned the
number UC7.2 (see Figure 21).

Figure 21 Updated Use Case Specification: Arrange Shipment (Excerpt)

Looking at Requirements in the Database

In this section, you use the RequisitePro database to view requirements related to the
enhancement you are working on. Whenever you work in a database, you use a view,
which filters data in a specific format. RequisitePro works the same way.

Exercise: View requirements using the RequisitePro database.

1 In the Word document, click RequisitePro > Show RequisitePro Explorer. RequisitePro
appears.

2 In the Explorer window, expand ClassicsCD Web Shop > Use Cases, then double-click
the attribute matrix, All Use Cases.

The use cases are organized hierarchically and each describes functional areas of
ClassicsCD.com. Child requirement use cases are listed under their respective
parent. Parent requirements are general, while child requirements describe
specific areas. To see children of a use case, you may need to expand the parent
requirement by clicking the + next to the use case’s name.
74 Chapter 5 - Creating Requirements

3 Scroll down to see UC7: Arrange Shipment. Verify that the requirement you
created on page 73 was added as a child requirement. If necessary, expand the
parent requirement (see Figure 22).

Figure 22 Viewing Requirements Using RequisitePro

4 To see each requirement’s attributes and properties, scroll to the right.

Linking to Another Requirement

So far, you have:

■ Decided to implement a new enhancement.
■ In Rose, reviewed the use case diagram.
■ Linked the model to the RequisitePro project.
■ Created a new use case requirement.
■ Added values to the requirement’s attributes.

You now want to link the use case requirement to another type of requirement, a
feature requirement. A system’s feature requirements are written at a very high-level
and form a foundation for the entire system.
Linking to Another Requirement 75

Exercise: Link the use case requirement to a feature requirement.

1 In the RequisitePro Explorer window, go to ClassicsCD Web Shop > Database Views >
Traceability Matrix Views, then double-click Use Cases to Features relationships.

RequisitePro displays this view, showing the entire hierarchy of requirements. To
see more details, you may need to move the horizontal and vertical dividers of the
matrix.

2 Scroll to UC7 and, if necessary, expand it to see the child requirements.

3 Right-click the cell at the intersection of FEAT1 and UC7. From the shortcut menu,
click Trace To.

An arrow symbol appears in the cell, showing the relationship. The Arrange
Shipment use-case requirement and its child requirements, including the
requirement you just added, are now linked to this feature.

4 Browse this view of the requirements using the scroll bars to learn more about the
relationships between use cases and features.

Traceability Links and Suspect Links

The matrix in the RequisitePro View shows some of the links between requirements.
These links describe dependencies between requirements.

An arrow with a line through it () indicates that the link is suspect. A link becomes
suspect after a requirement in the link relationship changes. An analyst must examine
the changes, and decide whether to modify one or both requirements before clearing
the suspect link.

Other Requirement Types

So far, we’ve discussed high-level feature requirements and more detailed use case
requirements. Some requirements do not lend themselves to use cases, so
RequisitePro supports other types of requirements. For example, you can define
supplemental requirements for performance targets and platform support. Additional
requirement types include: design requirements, business needs, and glossary
requirements.

You can also define new requirement types. RequisitePro can manage any type of
requirement that you need on your project.
76 Chapter 5 - Creating Requirements

When Have You Finished Gathering Requirements?

Requirements emerge from a series of communications between analysts and project
stakeholders (application users, members of the marketing team, and so on). As you
capture requirements, you check your work with the appropriate stakeholders. When
the stakeholders and your team come to agreement, your initial job of gathering
requirements is finished.

Of course, as the project progresses, you will continue to manage the requirements,
adding some, possibly removing others, and responding to changes.

Extended Help

Extended Help is a powerful feature of Rational Suite that provides links to RUP and
to other information. You use Extended Help directly from the tools you use to
accomplish your work.

Exercise: View Extended Help.

1 From the RequisitePro menu bar, click Help > Extended Help.

After a pause, the Rational Extended Help window appears. The window has two
panes. The left pane contains a tree browser and the right pane is blank.

2 In the left pane, click Tool Mentors > Detailing a Use Case.

Extended Help displays the same Tool Mentor that you viewed in Chapter 3,
Learning About the Rational Unified Process, on page 49. Read this Tool Mentor to
review the work you did in this chapter.

Extended Help provides information about the higher-level tasks you may want to
accomplish. It gives you direct access to RUP from the Rational Suite tools. In
addition, you can add your own organizational guidelines or standards to Extended
Help.

You can learn more about Extended Help from any Rational tool. From the tool’s
menu bar, click Help > Extended Help. The Extended Help window appears and lists
topics from the Rational Unified Process that are related to the Suite tool you are
using.

To learn more about working with Extended Help, in Extended Help click Help > Help,
then choose your topic of interest.
When Have You Finished Gathering Requirements? 77

Summary

For More Information

For more information on using RequisitePro, start with the tutorial. To start the
RequisitePro tutorial, from the RequisitePro menu bar, click Help > Tutorial.

For more information about Rose, see Modeling the Enhancement on page 93.

Cleaning Up

Quit Extended Help.

Quit RequisitePro by clicking File > Exit from the RequisitePro menu bar. RequisitePro
asks if you’re sure you want to close the project. Click Yes. If RequisitePro prompts
you to save changes, click Yes.

If necessary, quit Rose by choosing File > Exit from the Rose menu bar. If Rose prompts
you to save changes, click No.

What You Learned in This Chapter

In this chapter, you learned:

■ A requirement is a condition or capability to which the system must conform.

■ Managing requirements is a systematic approach to finding, documenting,
organizing, and tracking system features and attributes.

■ RequisitePro helps you manage your requirements and supports multiple
requirement types.

■ RequisitePro is both document-centric and database-centric, allowing your team to
benefit from the strengths of both.

■ When working with use cases, you work in Rose to incorporate the use case into
your visual model, then work in RequisitePro to add textual descriptions,
attributes, and links.

■ You have finished writing the first set of requirements when project stakeholders
and your team agree that you’re finished.

■ Extended Help gives you immediate access to process and task information. You
can add your own information to Extended Help.

What’s Next

In the next chapter, you use the requirements identified in this chapter to get started
on test planning.
78 Chapter 5 - Creating Requirements

6Test Planning
So far, you have defined requirements for the ClassicsCD.com enhancement. You
have not yet modeled or implemented code. However, you are ready to start test
planning with Rational TestManager.

Audience

This chapter applies to testers, quality assurance managers, and other team members
responsible for system testing.

Getting Your Bearings

In this chapter, you use Rational TestManager. To determine whether TestManager is
installed on your computer, refer to the tool chart you filled out in Table 1, Rational
Suite Tools, on page 29.

If TestManager is not installed, you can still benefit from reading this chapter, but you
will not be able to perform the exercises.

If TestManager is installed, start it now by clicking Start > Programs >
<RationalSuiteProductName> > Rational TestManager. The Rational Test Login dialog box
appears.

Exercise: Open the ClassicsCD.com Webshop Project

In the Rational Test Login dialog box, use the following values:

1 In the User Name and Password boxes, type pat.

2 Make sure the Project box displays Webshop.

3 Make sure the Location box displays C:\Classics\Projects\Webshop\Webshop.rsp.

4 Click OK.

TestManager opens the Webshop project. Make sure the Planning tab is selected to
see a tree browser in the left pane (the Test Asset Workspace). You can now work
with the project.
79

What Is Test Planning?

Test planning allows your team to effectively measure and manage test efforts over
the course of the project. During test planning, you identify the types of tests to
perform, the strategies for implementing and running those tests, and the resources
you will need during testing.

Test planning starts early in the development cycle, as soon as you understand the
initial set of requirements. Artifacts such as use case requirements, project schedules,
and visual models can be used as test inputs to help you determine what must be
tested. You create test cases with information contained within these inputs, and use
these throughout the test planning process as a “checklist” against which you
determine the acceptance criteria of your tests. You can also use test inputs to help
you define test configurations, attributes referring to a computer’s hardware and
software. These attributes can apply to your test cases.

As with development, test planning is an iterative process. You continue to plan
testing throughout a project lifecycle, as analysts change or elaborate on
requirements, and as developers design and implement code.

Managing Risk

The recommended strategy for test planning is to focus on the riskiest areas of the
project first. For example, you can identify risks by considering:

■ The consequences of not testing a specific part of an application.

■ The consequences if a particular part of the application does not work correctly.

■ The likelihood that an error will be discovered after the product ships.

■ The ramifications if a user, rather than a project member, discovers an error in the
application.

Making a Plan and Measuring Progress

You can use all types of project artifacts to plan, design, and run tests with Rational
TestManager. You can use requirements, visual models, and source code to create a
test plan so that you can test all aspects of your system, including product features,
system architecture, and code.

The integration between Rational tools enables sharing of project assets to help you
start testing for quality early in the development lifecycle.
80 Chapter 6 - Test Planning

Rational TestManager also:

■ Provides access to all test-related information and artifacts so your team can easily
assess project status.

■ Helps team members share information about the testing progress.

■ Helps you track how many tests have been planned, scripted, and carried out.

■ Shows which requirements have been covered by tests, and the number of tests
that have passed and failed.

Because TestManager is part of each Suite edition, team members can use it to
evaluate how well they are meeting project requirements, to monitor the project’s
overall status, and to more effectively share and discuss information about testing
activities with other project stakeholders.

Developing a Test Plan

In TestManager, a test plan can contain information about the purpose and goals of
testing within a Rational project, and the strategies to implement and run testing. You
can have one or more test plans in a project. A test plan can include properties such as
the test plan name, configurations associated with the test plan, and a time frame for
when a test plan must pass.

You can generate reports based on a test plan’s properties. For example, you can
create reports to determine which test cases are part of a test plan. Reports like this
can give you valuable information about the state of your testing project.

Organizing Your Test Plan

A project can contain one or more test plans. A test plan contains test case folders,
which in turn contain test cases. A test case is a testable and verifiable behavior in a
system. You can organize the test plan and test case folders in the way that makes
sense for your organization. For example, you can have a test case folder for each
tester in your department, for each phase of testing, or for each use case.
Alternatively, you can create a test plan for each testing type (see Figure 23).
Developing a Test Plan 81

Figure 23 Sample Test Plan Organization in TestManager

Test case folders have properties such as the name of the test case folder, and the
configurations and iterations associated with the test case folder.

Exercise: Understand the structure of the ClassicsCD.com test plan.

1 From the Planning tab in the Test Asset Workspace, expand Test Plans, then
double-click ClassicsCD.

The right pane displays the test case folders for ClassicsCD. In the ClassicsCD.com
Webshop project, test case folders are organized by use cases.

2 Notice that a test case folder does not exist for the Arrange Shipment use case.

You must create the test case folder so that you can develop a test case for the
enhancement requirement.

Exercise: Create a test case folder for the Arrange Shipment use case.

1 In the right pane of TestManager, right-click ClassicsCD and choose
Insert Test Case Folder.

The New Test Case Folder dialog box appears.

2 On the General tab:

a In the Name box, type Test for Arrange Shipment UC.

b In the Description box, type:

This use case generates the information needed to place and ship orders.

This description is paraphrased from the use case document describing the
Arrange Shipment Use Case.

c In the Owner box, make sure that pat is selected.
82 Chapter 6 - Test Planning

3 Click OK.

Test case folder Test for Arrange Shipment UC appears in the test plan hierarchy (see
Figure 24).

Figure 24 ClassicsCD.com Test Plan Hierarchy in TestManager

Determining What to Test

You continue test planning by identifying test cases for your application. Each test
case describes a specific area of the application to test. Each area can encompass a
broad class of situations that you must test. For example, in testing a cash sales
transaction, you would probably test:

■ Valid input (the customer pays the exact price; the customer pays more and needs
change).

■ Invalid input (the customer pays less than the sales price; the sales clerk enters an
invalid part number).

So how do you determine what to test? This part of test planning – test analysis and
design – often requires you to rely on your own intelligence and experience, using
existing project assets as a reference.

When you design tests, the first step is to understand how the system is supposed to
behave. During analysis, you identify the conditions you must test to verify that:

■ The application does what is intended.

■ The application does not do what is not intended.
Determining What to Test 83

Working with Test Cases

A test case describes the testable and verifiable behavior in a system. A test case can
also describe the extent to which you will test an area of the application. Existing
project artifacts, such as requirements, provide information about the application and
can be used as test inputs for your test cases. TestManager provides built-in test input
types, but almost any artifact can be used as a test input.

For example, here’s what the following artifacts offer as test inputs:

■ Requirements describe a condition or capability to which a system must conform.

■ Visual models provide a graphic representation of a system’s structure and
interrelationships.

You can also define custom test input types, such as source code, software builds, and
functional specifications.

After you identify your test inputs, you can create test cases and associate them with
test inputs. These associations allow you to respond if test inputs change. These
changes might require you to change the test cases or their implementations.

Exercise: Create a test case for the Arrange Shipment use case.

1 In the right pane of TestManager, right-click the Test for Arrange Shipment UC folder,
and from the shortcut menu click Insert Test Case.

The New Test Case dialog box appears. Information you include in these boxes
helps to define the test case which will be inserted under the test case folder.

2 On the General tab:

a In the Name box, type Display Estimated Ship Date.

b In the Description box, type:

Warehouse system gets order and responds with estimated ship date.

c In the Owner box, make sure that pat is selected.

3 Click OK.

The test case Display Estimated Ship Date appears in the test plan hierarchy (see
Figure 25).
84 Chapter 6 - Test Planning

Figure 25 ClassicsCD.com Test Plan with New Test Case in TestManager

Test Inputs from Rational Rose

If you have Rational Rose installed and licensed, then you can register Rose models
with TestManager and use Rose model elements as test inputs. You can view each
individual model element in the TestManager Test Input window, and create an
association between a model element and a test case.

Test Inputs from Rational RequisitePro

You can use RequisitePro requirements as test inputs. You or an administrator can
use the Rational Administrator to associate a RequisitePro project with a Rational
project. This association causes requirements to appear in the TestManager Test Input
window after you log on to that project. You can then create an association between a
requirement and a test case. The requirements, themselves, are created and managed
in RequisitePro, but you can modify the properties of the requirements in
TestManager.

Exercise: Associate a test input with a test case.

1 In the right pane of TestManager, right-click the test case Display Estimated Ship Date,
and from the shortcut menu click Associate Test Input.

While TestManager accesses artifacts associated with the Webshop project, you
may temporarily see Rational splash screens. If not, be patient. Soon, the
Test Input Selection dialog box appears (see Figure 26). You use this feature to
associate project artifacts to test cases.
Working with Test Cases 85

Figure 26 ClassicsCD.com Test Plan Input Selection in TestManager

2 Go to Rational RequisitePro > Rational Project - RequisitePro Project.

TestManager displays a progress indicator as it retrieves information from
RequisitePro. After a pause, TestManager displays the associated RequisitePro
assets in the Test Input Selection hierarchy.

3 Scroll through the list and go to UC7 Arrange Shipment > UC7.2. Select this entry and
click OK.

The use case requirement you created earlier in this tutorial is now associated with
this test case.

4 From the TestManager menu bar, click File > Save All.

Elaborating on Test Cases

As part of developing your test plan, you must design your tests. Test designs are
elaborations of test cases. They provide the detail needed for understanding how the
test case will be implemented. You can perform design work in conjunction with, or
after, you plan your test cases, depending on the needs of your project.

You design tests using the Design Editor. During this step, you capture the most basic
and probable flows in a test case and add validation criteria or verification points.

Understanding the Impact of Test Planning

So far, you have learned how to structure and organize a test plan. In Chapter 7,
Modeling the Enhancement, you add the Arrange Shipment enhancement into your
system’s structure for the Checkout user interface. After implementation is complete,
testing can begin. In Chapter 10, Functional Testing, you use the test case you created in
this chapter to perform functional tests on the enhancement.
86 Chapter 6 - Test Planning

Test planning helps you identify strategies for testing early and to communicate the
intent of testing activities to all stakeholders. Test planning in TestManager is
designed to work for your entire team:

■ Analysts use test plans to configure test inputs, define project iterations, and run
test coverage reports.

■ Developers can use test plans to perform unit tests and to verify that the test cases
are consistent with the implementation and development plans.

■ Testers use test plans to organize test cases (which are created from test inputs),
develop and run tests, and analyze test results.

■ Project leaders and managers use test plans to define project iterations, create custom
reports, and run test coverage reports.

Continuing with Test Planning

Building a test plan is an iterative process that starts early in the project. It continues
as analysts change requirements and elaborate on use cases, as developers design and
write code, and as testers revisit requirements and use cases, discovering more areas
or conditions to test. Test planning occurs in parallel with other development efforts,
including testing.

As you work on your own test plan, we suggest you consider at least the following
topics, described in the remainder of this section:

■ Risks and resources
■ Types of tests to perform
■ Stages of testing
■ Scheduling

Risks and Resources

Identifying risk is an important part of test planning. After you identify the available
testing resources, you must balance inevitable resource constraints with the project
and testing risks. As a result, you can refine the testing strategy.

We recommend that you prioritize tests as follows:

■ Must test (high) – You must run this test to avoid severe risk or to identify weak
project areas early in the development cycle. You cannot complete project testing
without completing this test.

■ Should test (medium) – You should schedule this test, but in a resource crunch,
might consider not running it.
Continuing with Test Planning 87

■ Might test (low) – This test might be useful to run, but is not essential to the
project. Run this test if you cannot make further progress on other, more
important, tests.

■ Won’t test (low) – This test is not part of the testing project. A test with this
priority defines the boundaries of the test plan and helps focus attention on what
will be tested.

Types of Tests to Perform

There are many types of tests to consider as you create a test plan, including, but not
limited to:

■ Reliability tests – Can the application function without errors? Use Rational
TestFactory, Purify, Quantify, and PureCoverage for reliability testing.

■ Functional tests – Does the application meet its functional requirements? Use
Rational Robot for functional testing.

■ Performance tests – Is the system's performance acceptable under varying
workloads? Use Robot to record performance tests. Use TestManager to run these
test scripts with different workloads, and to analyze the results of a test.

Stages of Testing

There are several stages of testing to consider as you create a test plan. These stages
progress from testing small components to testing completed systems and usually
apply to different stages of the system’s development cycle:

■ Unit testing – Verifies individual components, the smallest testable elements of
the software.

■ Integration testing – Ensures that the components in the implementation model
operate correctly when combined to run a test for a use case.

■ System testing – Ensures that the software is functioning as a whole.

■ Acceptance testing – Verifies that the software is ready for delivery and that it
meets its requirements.

Unit testing is typically performed by software developers. As a tester, your focus is
primarily on integration, system, and acceptance testing.
88 Chapter 6 - Test Planning

Project Scheduling

Part of creating a test plan involves developing a schedule. You work with team
leaders from other areas of the project to understand when their contributions will be
ready for testing. You then must balance your original schedule against the risks and
resources you identified in order to arrive at the most effective schedule for testing.
Each testing iteration presents an opportunity to validate one or more of your test
cases. Developing a testing schedule based on iterations helps you filter your test
cases so that you can more effectively design, implement, and run your tests for each
stage of software development.

If you prioritize your tests as described in Risks and Resources on page 87, make sure
you schedule at least the “must” (high priority) and “should” (medium priority) tests.
If resources become constrained over the course of the project, you can sacrifice tests
of lower priority without compromising the absolute quality objectives expressed by
the “must” tests.

TestManager comes with built-in iterations as defined in RUP, or you can create your
own. You can associate iterations with test cases, then run these test cases based on
iterations.

RequisitePro is integrated with Microsoft Project so that you can link requirements
and tasks on your project schedule. For more information, start RequisitePro as
follows:

1 Click Start > Programs > <RationalSuiteProductName> > Rational RequisitePro.
RequisitePro opens and the Open Project dialog box appears.

If, after starting RequisitePro, the Let’s Go RequisitePro window appears, click
Close.

1 In the Open Project window, click Cancel.

2 On the RequisitePro menu bar, click Help > Contents and Index.

3 In the RequisitePro Help Browser, on the Contents tab, go to (by double-clicking)
Wizards, Integrations and Components > RequisitePro Wizards >
MS Project Integration Wizard.

A Help topic appears, describing how to work with RequisitePro and
Microsoft Project.
Continuing with Test Planning 89

More on Test Artifacts

While working with every aspect of test planning is beyond the scope of this tutorial,
this section provides pointers to help you learn more about the artifacts involved.

Exercise: Learn more about test artifacts.

1 If RUP is still open, make it the active window. If RUP is not already started, click
Start > Programs > <RationalSuiteProductName> > Rational Unified Process. If necessary,
minimize the Getting Started page.

2 In your Web browser, go to Disciplines > Test to display the Test: Overview page.

The Test workflow diagram shows the typical activities that make up this part of
the overall test discipline. For more information about any of these activities, click
that area of the diagram.

3 Above the diagram at the top of that page, click Artifacts to display the
Test: Artifact Overview page.

This overview further details the roles involved in testing, the artifacts used as test
input, resulting artifacts, and activities that make up this part of the overall test
workflow. For more information about any of these elements, click that area of the
diagram.

4 When you have finished using RUP, you may quit the application and, if
necessary, close the Getting Started page. Or, if you would like to use RUP as you
work through this tutorial, learning more about the topics as you cover them,
minimize the Rational Unified Process so you can easily use it when you like.
90 Chapter 6 - Test Planning

Summary

For More Information

For more information about test planning:

■ Read about test plans in the Rational TestManager User’s Guide.

■ For a more in-depth treatment of test planning, read Testing Computer Software
(Vnr Computer Library) by Cem Kaner and others (ISBN: 1850328471).

Cleaning Up

Quit TestManager by choosing File > Exit from the TestManager menu bar.

If necessary, close the RequisitePro Help window and quit RequisitePro. If you are
prompted to quit, click Yes.

What You Learned in This Chapter

In this chapter, you learned:

■ You can start test planning early in the project, after initial requirements are
identified.

■ Test planning is an iterative process, encompassing project and testing risks,
evolving product requirements, available resources, and project schedule.

■ Part of test planning involves creating test cases and relating them to test inputs.

■ Analysis and design are important components of writing effective tests.

■ Prioritizing tests helps you focus your testing effort on the riskiest and most
important areas of the application to test.

What’s Next

In the next chapter, you include the Arrange Shipment enhancement request in the
visual model for ClassicsCD.com.
Summary 91

92 Chapter 6 - Test Planning

7Modeling the
Enhancement
So far, you have defined a use case requirement for the ClassicsCD.com enhancement.
The test organization has started test planning. In this chapter, you continue to
incorporate designs for the use case requirement into a ClassicsCD.com visual model
using Rational Rose.

Audience

This chapter applies to software designers and developers.

Getting Your Bearings

In this chapter, you use Rational Rose. To determine whether Rose is installed on your
computer, refer to the tool chart you filled out in Table 1, Rational Suite Tools, on page
29.

If Rose is not installed, you can still benefit from reading this chapter, but you will not
be able to perform the exercises.

If Rose is installed, start it now:

1 Click Start > Programs > <RationalSuiteProductName> > Rational Rose.

2 If you did not perform the exercises in Creating Requirements on page 63, perform
the steps to start Rose on page 70. Then skip to the following steps of this exercise.

3 In the Create New Model dialog box, click the Recent tab.

4 Click the ClassicsCD_WinDNA Rose model, then click Open. If Rose asks whether to
load subunits, click Yes.

Rose displays a hierarchical tree browser in the upper-left pane (the Rose browser).
In the right pane (the diagram window), it displays the logical view of the
architecture showing how the top-level packages in the system interact.
93

What Is Visual Modeling?

Visual modeling is the creation of graphical representations of your system’s
structure and interrelationships. The result is a blueprint of your system’s
architecture. This visual model:

■ Is graphical, rather than text-based, making it easier to understand complex
systems at a glance.

■ Allows you to see relationships between design components, so that you can
create cleaner designs and therefore write code that’s easier to maintain.

■ Helps you meet customer needs because you base the visual model on project
requirements.

■ Improves communication across your team because you use the Unified Modeling
Language, a standard graphical language, to convey the system’s architecture.

Using Rational Rose

You can create visual models of architectures, components, and data using the
industry-standard UML with Rational Rose. This helps you visualize, understand,
and refine your requirements and architecture before committing them to code. Using
Rose to develop visual models throughout the development life cycle helps ensure
that you're building the right system. The architecture model can be traced back to
both the business process model and the system requirements.

Visual Modeling and the Tutorial

In Chapter 5, Creating Requirements, you used Rose and RequisitePro to create a use
case requirement. In this chapter, you continue working on the design for the
requirement using Rational Rose.
94 Chapter 7 - Modeling the Enhancement

Working with a Sequence Diagram

A sequence diagram is a visual representation of the steps through one path in a use
case. Project members and other stakeholders can use a sequence diagram (graphical
representation), use case requirements (text description), or both to evaluate the
project direction and as a basis for their work.

A use case often contains more than one path. It always contains a basic flow which
describes the most common path through the use case. It may contain alternative
flows which describe other paths, including error conditions.

A sequence diagram shows how actors interact with the system, and in what order.
When you first work on a sequence diagram, you tend to use human-language labels.
As you refine the system design, you change the diagram so that it identifies:

■ Classes – Sets of objects that share a common structure and common behaviors.

■ Messages – Interactions between objects.

Opening a Sequence Diagram

Start by looking at an existing sequence diagram.

Exercise: Open the sequence diagram.

1 In the Rose browser, go to ClassicsCD_WinDNA > Logical View > WinDNA Realizations >
WinDNA: Checkout Realizations > Checkout. Double-click the sequence diagram
Checkout to open it (see Figure 27).

Figure 27 Opening the Sequence Diagram Using Rose
Working with a Sequence Diagram 95

Rose displays the Checkout sequence diagram (see Figure 28).

Figure 28 Checkout Sequence Diagram in Rose

2 Maximize the diagram, then resize it so you can see the entire diagram. If you
cannot see the entire diagram, click View > Fit in Window.

This sequence diagram shows how the actors and other objects in the application
communicate. A message symbol, a horizontal, solid arrow between two vertical,
dashed lifelines, illustrates how objects in a sequence diagram communicate with
each other. Items in a sequence diagram are arranged in chronological order.

The tutorial follows this naming convention for objects:

❑ Names begin with a lowercase letter.

❑ Names do not contain spaces.

❑ Within a name, the first letter of each word is capitalized.
96 Chapter 7 - Modeling the Enhancement

The diagram also details how the ClassicsCD.com server handles the checkout
process after a customer places an order. It shows that the Cashier Active Server Page
calls upon the Checkout façade to verify member logins, get payment information,
and confirm orders. Specifically, the first few messages mean that:

1 The Cashier Active Server requests a cookie to obtain the member’s ID.

2 The Cashier Active Server creates a façade object.

3 The Cashier Active Server sends the façade object a message to get the contents of
the member’s shopping cart.

Adding Messages for the Enhancement

In this section, you add messages to the sequence diagram. Your messages show how
objects in the system will communicate to implement the enhancement you are
working on.

Exercise: Add to the sequence diagram.

Starting on the sequence diagram:

1 On the diagram toolbox (between the Rose browser and the diagram window),
click (the Message to Self button).

2 To place the message, click the diagram on the façadeObject2:fcdCheckout lifeline
(the vertical line associated with the green Rose Object), just under Message 5,
CreateObject.

Notice that Rose renumbers the subsequent message.

3 While the newly inserted Message to Self object is still selected, type getShipDate,
then click anywhere in the background of the diagram (see Figure 29).

4 Click File > Save. If Rose prompts you to save subunits of the model, click Yes.
Working with a Sequence Diagram 97

Figure 29 The Finished Sequence Diagram in Rose

Publishing Part of the Model to the Web

Now that you have finished working on this part of the model, we recommend that
you create a Web version of it so that people on your team who have not installed
Rose can review the model and give you feedback.

With Rose Web Publisher, you can create a Web-based (HTML) version of a Rose
model that others can view using a standard Web browser. Rose Web Publisher
recreates Rose model elements, including diagrams, classes, packages, relationships,
attributes, and operations. After the version is published, you can use hypertext links
to explore the model as you would in Rose.
98 Chapter 7 - Modeling the Enhancement

Exercise: Publish the model to the Web.

1 From the Rose menu bar, click Tools > Web Publisher to open the Rose Web
Publisher dialog box.

2 In the Selections list, double-click the check boxes next to Use Case View and
Component View to completely clear them. Click the check box next to Deployment
View to clear it. Of the selections available, only Logical View should be selected (see
Figure 30).

Figure 30 Publishing Models to the Web Using Rose

3 Next to the HTML Root File Name box, click and go to C:\Classics\Web Publish.
Then type model in the File name box, and click Save.

The HTML Root File Name box displays this path (see Figure 30).

4 On the Rose Web Publisher dialog box, click Publish.

Rose displays a progress indicator as it accesses and converts the models to
HTML. This process may take a few minutes. When the progress indicator
disappears, the Web files are ready.

5 Click Preview.

Your Web browser displays a hierarchical tree browser in the upper-left pane (the
Rose browser). The Rose models are displayed in the right pane (the diagram
window).
Publishing Part of the Model to the Web 99

6 In the Rose Web Publisher browser go to Logical View > WinDNA Realizations >
<<use case realization>> WinDNA: Checkout Realizations > Checkout. Double-click this
entry to explore the sequence diagram you worked with in this chapter.

7 Finish reviewing the diagram, then do one of the following:

❑ If the Rational Unified Process (RUP) was open before you started this exercise,
click Back until you return to RUP. In Rose, on the Rose Web Publisher dialog
box, click Close.

❑ If RUP was not open before you started this exercise, close your Web browser.
Then on the Rose Web Publisher dialog box, click Close.

Continuing Work with the Sequence Diagram

Now that you have finished this part of the model, there are a few additional tasks to
perform. In this tutorial, we summarize the tasks, but do not expect you to perform
them.

Refining the Objects

In the sequence diagram, you identify the objects involved with the use case. You next
identify the classes to which the objects belong. You use Rose class diagrams to group
related classes and to elaborate on them.

For example, to see a class diagram, use the Rose browser to explore to Logical View >
ClassicsCD Site > Client Composition Diagrams. Double-click cashier_Client Diagrams. Each
representation of a class shows you the class attributes and operations. (Double-click
a class representation to see details about the class.)

After you identify classes, you revise the sequence diagram to use class and operation
names instead of the human-language names you originally assigned.

Implementing Code

You are now ready to implement code. From the diagrams you’ve created, Rose
Enterprise Edition can create a code skeleton that is consistent with the models you’ve
developed. This is called forward engineering. Starting from the generated code, you as
a developer fill in the details of the algorithm.

To generate new code or to update existing code, choose a command from the Rose
Tools menu. For example, to implement Java code for the enhancement you’ve been
working on, you would click Tools > Java / J2EE > Generate EJB JAR File, or
Generate WAR File.
100 Chapter 7 - Modeling the Enhancement

When you start changing code, your model may become out of date. It is tedious to
manually update the model whenever the code changes. It is also undesirable to
create a model that immediately becomes obsolete. Rose helps you keep the code and
the model consistent through a process called reverse engineering, where Rose
automatically updates the model from changes in the code. To reverse engineer after
updating source code, you would click Tools > Java / J2EE > Reverse Engineer.

As you can see from the Tools menu, Rose supports several languages in addition to
Java. These languages include ANSI C++ and Visual Basic.

Note: Rose Enterprise Edition and Rose Professional Data Modeler Edition can
generate code, update code, and update models. For database schemas, both editions
can generate code from a Rose visual model and update a Rose model from source
code through a process called round-trip engineering. However, Rose Professional
Data Modeler Edition only supports round-trip engineering to and from DDL scripts
and database schemas – not for other languages such as Java and Visual C++.

Modeling Data

You can use Rose to model relational databases. Rose Professional Data Modeler
Edition is a database modeling and design tool that uses UML. It helps you:

■ Support most specific database functions such as creating tables, columns,
indexes, relationships, keys (primary and foreign), stored procedures, and views.

■ Create column constraints, and both DRI (Declarative Referential Integrity) and RI
triggers.

■ Create custom triggers and their generated trigger code.

Benefits

The benefits of using Rose Professional Data Modeler are:

■ All your business, application, and data models are written in UML, the same
industry-standard language promoting consistency, traceability, and ease of
communication.

■ Both forward and reverse engineering of relational databases are supported,
facilitating the process of keeping database implementations and models
consistent.
Continuing Work with the Sequence Diagram 101

Summary

For More Information

For more information about Rational Rose, see the Rational Rose Tutorial, available on
the Rational Solutions for Windows – Online Documentation CD-ROM.

For information about Rational Rose RealTime, see the online tutorials available from
Rose RealTime Help. These tutorials address the needs of Rose RealTime users at all
levels.

For more information about object-oriented analysis and design, use Extended Help.
You can open Help by choosing Help > Extended Help. In the left pane of the
Extended Help browser, explore to a topic under Guidelines, for example,
Guidelines > Design Subsystem. Click the topic to open it.

Cleaning Up

If necessary, quit Extended Help.

Quit Rose. If you are prompted to save your changes, click Yes. If you are prompted to
save subunits, click Yes.

What You Learned in This Chapter

In this chapter, you learned:

■ Visual modeling means creating graphical representations of your system’s
structure and interrelationships.

■ In Rose, you use sequence diagrams to elaborate on paths through use cases.

■ Rational Rose helps you: create visual models for code and data, generate code
from visual models, and keep models synchronized with changed code.

■ You can use Rose to publish read-only copies of your models and diagrams to the
Web. This feature unifies the team by helping you create high-quality architecture
models that can be shared, ensuring that all team members have the same
understanding of the project.

■ Rose supports many languages, including ANSI C++, Visual Basic, Visual C++,
and Java.

What’s Next

The visual model for the enhancement is now complete. In the next chapter, you
create a report about the use case for the enhancement.
102 Chapter 7 - Modeling the Enhancement

8Communicating
Project Status
Now that you have elaborated the Arrange Shipment use case with the new
requirement, you want to communicate changes made to the requirements to all team
members and to stakeholders. To do this, you might want to generate a report
consolidating all the information about the use case. Such a report might contain the
sequence diagram from the visual model in Rational Rose and the corresponding
basic flow from the use case in Rational RequisitePro.

You also want to communicate the status of the project. You might want to gather
project metrics from Rational Suite tools to determine the progress made in this
iteration of the ClassicsCD.com project. Charts might help you determine trends and
gauges might help you compare data to predefined threshold values.

In this chapter, you use Rational SoDA to produce a use case report and Rational
ProjectConsole to view project artifacts, analyze metrics, and determine project status.

Audience

This chapter applies most directly to project leaders and managers, but is relevant for
all members of a software development team.

Getting Your Bearings

In this chapter, you use SoDA and ProjectConsole. Rose and RequisitePro must also
be installed on your computer. To determine whether these tools are installed on your
computer, refer to the tool chart you filled out in Table 1, Rational Suite Tools, on page
29.

If any of these tools are not installed, you can still benefit from reading this chapter,
but you will not be able to perform the exercises.

If these tools are installed, start SoDA now by clicking Start > Programs >
<RationalSuiteProductName> > Rational SoDA for Word.
103

Microsoft Word starts and automatically opens two blank documents, the second of
which contains an additional SoDA menu. But first:

■ If you see a warning about enabling macros, make sure that you click
Enable Macros. Otherwise, you cannot use SoDA.

■ If you do not see this warning, go to Tools > Macro > Security. The Security dialog
box opens. On the Security Level tab, make sure that your macro security level is
set to either Medium or Low. Otherwise, you cannot use SoDA. After you finish the
exercises in this chapter, you can reset your macro security level to a higher
setting.

Managing Project Status

Rational ProjectConsole and Rational SoDA provide tool support for managing
project status.

What Is SoDA?

SoDA automates software documentation, like status reports. It is tightly integrated
with many Rational tools so you can easily extract information to report on
requirements, designs, tests, and defect status. For example, you can use SoDA to
report on:

■ Versioning information with ClearCase LT
■ Reported defects with ClearQuest
■ Requirements with RequisitePro
■ Visual models and designs with Rose
■ Test scripts with TestManager
■ Information extracted from other documents created in the Windows environment
■ Information extracted from multiple Rational tools and other information sources

into a single, integrated document.

Using SoDA Templates

To generate reports and other documents, SoDA relies on a predefined template for
Word. The template gathers information and formats it into a report.

To add information manually to SoDA reports and documents, you simply use the
Microsoft Word or FrameMaker interface and add your text before you generate the
report or document. SoDA preserves your text through subsequent cycles of
generating the report or document.
104 Chapter 8 - Communicating Project Status

You can choose from the many templates provided with SoDA, or you can create your
own templates with the easy-to-use template creation tool in SoDA.

Why Generate a Use Case Report?

A use case report gathers into one document both text descriptions of expected
system behavior (as described in use case requirements) and diagrams that show how
the system interacts with actors. Use case reports are helpful to your entire team:

■ Analysts show the report to customers and other stakeholders. Together, they can
verify that the project is on the right track. These discussions can be held early in
the project, so that the analyst can address problems or gaps before, rather than
after, the project ships.

■ Developers use the report’s description of expected system behavior to start writing
engineering specifications and designing the system architecture.

■ Testers use the report to design tests for the use case. From the report, a tester can
identify the steps to test and determine which conditions to test.

■ Technical writers start planning documentation based on the report’s descriptions
of how users interact with the system.

■ Usability engineers use the report to design usability tests, possibly starting with
paper prototypes.

Creating the Use Case Report

To create the use case report, SoDA relies on a predefined template that gathers
information and formats it into a report. The report you create in this chapter includes
information from RequisitePro and Rose. Therefore, if you have not performed the
exercises in Chapter 5, Creating Requirements, and Chapter 7, Modeling the
Enhancement, you cannot create the use case report.

Exercise: Create the use case report by starting with the template.

1 In Word, open C:\Classics\Projects\Webshop\SoDA\RUP Use Case Report.doc.

If you reset your macro security levels at the beginning of this chapter, you may
see a warning about enabling macros. Make sure that you click Enable Macros.
Otherwise, you cannot use SoDA.

Word displays the SoDA template containing text, macro commands, and
annotations.
Managing Project Status 105

2 View the entire template by doing one of the following from the Word toolbar:

❑ Click . If your tool bar does not contain a Show/Hide button (), add it
in Word.

❑ Or, click Tools > Options. On the View tab, under Formatting marks (Word 2000 or
later) or Nonprinting Characters (Word 97), select the All check box. Click OK.

Pink and yellow Word annotations used by SoDA appear in the document to store
the SoDA commands (see Figure 31). It is important to see this hidden text when
working with SoDA for Word.

Figure 31 Viewing the Use Case Report Template Using SoDA (Excerpt)

Note: When working with SoDA, you should always have the Show/Hide
function turned on to display all hidden text. If you prefer not to see all formatting
marks when you work with Word outside of SoDA, remember to reset this option
later.

3 Click SoDA > Generate Report.

Word closes and SoDA displays the Progress Indicator while retrieving the use
case document related information from the Rose model you worked with earlier.
This process may take a few moments. Then, SoDA for Word displays the report.

4 Browse through the report and go to page 4 to see the requirements you worked
on in Chapter 5, Creating Requirements. Go to page 6 of the report to see the visual
model you worked with in Chapter 7, Modeling the Enhancement.
106 Chapter 8 - Communicating Project Status

Working with SoDA Templates

Although working with SoDA templates is beyond the scope of this tutorial, this
section provides pointers to help you get started.

Optional Exercise: View the template tool for this SoDA template.

1 In Word, display the use case template, RUP Use Case Report.doc by clicking
Window > RUP Use Case Report.

2 Click SoDA > Template View to display the SoDA Template View tool.

3 Study how each line translates into the template’s macros.

4 Close the Template View, then quit SoDA for Word by choosing File > Exit. If you
are prompted to save your changes, click No.

What Is ProjectConsole?

ProjectConsole simplifies access to project information and helps you measure
progress and quality. It automatically collects project artifacts from all Rational Suite
tools and structures them into a project Web site that all Web-enabled team members
can use. In addition, ProjectConsole collects metrics about requirements, designs,
tests, and defect status so that you can easily understand the true status of your
project.

Using the Project Web Site

ProjectConsole improves team communication by providing one project Web site that
hosts project artifacts such as use case reports, defects, and metric reports.
ProjectConsole automatically extracts artifacts like these from Rational Suite or select
third-party tools. ProjectConsole displays the artifacts in a project Web site according
to the structure you have defined (see Figure 32).

This flexibility allows project leaders to easily adapt the Web site’s information
structure to best fit the needs of their team or organization. Project leaders decide
what information should be displayed and how it should be organized so that all
team members can easily find and access project artifacts. The project Web site can be
refreshed on demand and on a schedule, making sure that all team members are
always viewing the most current artifacts.
Managing Project Status 107

Figure 32 Example of ProjectConsole Web Site

Exercise: Explore the project Web site.

In this exercise, we introduce you to some features of ProjectConsole and teach you to
explore the project Web site for ClassicsCD.com. In a real online store, Web pages
would load dynamically, based on information stored in databases. The project Web
site you work with during this part of the tutorial is static. The pages do not change in
response to user input. On a typical project, you would use ProjectConsole to create a
prototype project Web site using static pages, and later change and use dynamic
pages.

1 Use Windows Explorer to start the project Web site. Go to
C:\Classics\Projects\Webshop\ProjectConsole\Static_Sample, then open index.html.

You may be prompted to install a version of the Java Plug-in, even if you already
have a version installed on your computer. This occurs because the version on
your computer differs from the version required by ProjectConsole. If you do not
install this particular version of the plug-in, you can still benefit from reading this
section, but you will not be able to perform the exercises.
108 Chapter 8 - Communicating Project Status

After the correct Java plug-in for this project Web site is installed, your Web
browser displays the first page of the ClassicsCD.com project site.

ProjectConsole displays a hierarchical tree browser in the upper-left pane. In the
right pane, it displays the selected contents of the Web site (see Figure 33).

Figure 33 Viewing Project Artifacts Hierarchy Using ProjectConsole

2 In the tree browser, go to Project Information > Vision.

Read the Vision Statement overview to learn more about how Vision Statements
are used on project Web sites. Optionally, you can use the Rational Unified Process
to learn more about writing vision statements.

3 Go to Developer > Design - Current View > Logical View.

A package of the Logical View referencing the Arrange Shipment use case model
that was originally created in Rose appears. Familiarize yourself with the contents
to understand the intended environment and functions of ClassicsCD.com.
Models like this are often used throughout development lifecycles to guide
software teams. ProjectConsole allows all team members to access models like
these even if Rose is not installed on their computer.

4 In the tree browser, go to CCB - Change Control Board > Change Request Queries >
Public Queries/All Enhancement Requests.

A table containing the results of this predefined ClearQuest query appears.
Review the contents of the table to find the enhancement request you are working
on in this tutorial.

5 Leave your Web browser open.
Managing Project Status 109

Working with Project Metrics

ProjectConsole extracts information from data produced throughout a software
development project and automatically generates graphics, such as charts and
gauges, either predefined or ones that you customize. These metrics allow you to
automatically collect information about the status of your project and share it with
members of your team. With ProjectConsole, you can also analyze data in a single,
integrated view collected from several Rational tools.

Table 3 shows you how ProjectConsole is used to measure progress and quality.

Exercise: View and analyze project metrics.

1 In the tree browser, go to Project Manager > Metrics Reports by Phase > Development >
Construction.

A page containing information about the Construction phase of ClassicsCD.com
Version 2 iteration appears. Read the introductory paragraphs. This information
explains what you are working on in this tutorial.

Table 3 Using ProjectConsole Metrics to Understand Project Status

Use ProjectConsole to by gathering data about using

Determine whether your
application or product is
stabilizing

Lines of code being added,
modified, or deleted

ClearCase LT

Visual models being added,
modified, or deleted

Rose

Reported defects ClearQuest

See how many additional
tasks must be performed in
this iteration

Open defects ClearQuest

Open features, use cases, and
requirements

RequisitePro

Open test cases TestManager

Assess the quality of your
application or product

Open defects by severity ClearQuest

Trend of test results TestManager
110 Chapter 8 - Communicating Project Status

2 Scroll to Trend Chart 1, Trend of Open Defects During Construction Iterations (see
Figure 34).

This chart shows the trend of open defects over time. From this trend, we
determine that the developers are successful at stabilizing the application by the
end of each construction iteration.

Figure 34 Working with Trend Charts Using ProjectConsole

3 Optional: Review the other trends charts on this page.

4 Quit the ClassicsCD.com project Web site.

Analyzing Metrics

ProjectConsole also provides a dynamic metric analysis tool, the Dashboard, which
helps you drill-down and perform root-cause analysis. Although working with the
Project Console Dashboard is beyond the scope of this tutorial, you can learn more
about it by reading Getting Started: Rational ProjectConsole.
Managing Project Status 111

Summary

For More Information

To learn more about SoDA, in SoDA for Word, click Help > Help on SoDA. A window
showing a list of SoDA topics opens. Choose your topic of interest.

For more information on using ProjectConsole, start with the tutorial. Click Start >
Program Files > <RationalSuiteProductName> > Rational ProjectConsole >
Rational ProjectConsole Tutorial.

To learn more about building templates with ProjectConsole, start ProjectConsole by
clicking Start > Program Files > <RationalSuiteProductName> > Rational ProjectConsole
Template Builder. Microsoft Word starts and automatically opens a blank document
which contains an additional ProjectConsole menu. From the Word menu bar, click
Help > Help on Template Builder. A window showing a list of topics opens (you may need
to maximize this window). Choose your topic of interest.

Cleaning Up

If necessary, quit Word. If you are prompted to save your changes, click No.

If necessary, also close your Web browser and quit Windows Explorer.

What You Learned in This Chapter

In this chapter, you learned:

■ SoDA automates software documentation by creating reports based on templates.
It contains an easy-to-use tool that assists you with template creation.

■ A use case report is useful to all members of your project.

■ ProjectConsole automatically collects project artifacts from all Rational Suite tools
and structures them into a project Web site that all Web-enabled team members
can use.

■ ProjectConsole automatically generates project metrics by extracting information
from data produced during software development. This provides you with an
accurate and objective assessment of the project status.

What’s Next

In the next chapter, you learn about using Rational TestFactory to perform reliability
tests.
112 Chapter 8 - Communicating Project Status

9Reliability Testing
The ClassicsCD.com enhancement is implemented and testing has been planned. You
are now ready to test the enhancement. In this chapter, we discuss testing for
reliability.

Audience

This chapter applies to testers, developers, and other team members responsible for
reliability testing.

Reliability Testing Tools

This chapter describes the following automated testing tools:

■ Rational TestFactory. Assists with testing by combining automatic test generation
with source-code coverage analysis. Tests an entire application, including all GUI
features and all lines of source code.

■ Rational Purify. Pinpoints run-time errors and memory leaks in Visual C++
application code, and errors related to garbage-collection in Java application code.

■ Rational PureCoverage. Identifies the parts of your Java, Visual C++, or Visual
Basic program that have and have not been exercised. Exposes testing gaps so you
can prevent untested application code from reaching your users.

■ Rational Quantify. Profiles your Java, Visual C++, or Visual Basic application to
help you identify performance bottlenecks in your code.
113

Learning About Rational TestFactory

TestFactory optimizes the productivity of developers and testers by reducing the
manual effort required to test software. TestFactory is an automated testing tool that
generates scripts to perform reliability testing of Visual Basic, C++, and Java
applications. These scripts discover defects and provide extensive code coverage.

You can start using TestFactory early in the development cycle, as soon as a user
interface is available to test. You use TestFactory throughout development to verify
the reliability of each new build.

Overview of Process

You can use TestFactory to:

1 Instrument the application to gather information about code coverage.

2 Map the application to create a hierarchical list of user interface (UI) controls.

3 Run a Pilot to automatically generate scripts that test the application.

The rest of this section discusses each of these steps and provides pointers for using
TestFactory as a complement to Rational Robot.

Instrumenting the Application

TestFactory helps you instrument an application to optimize the scripts it generates to
test the code of your application. During instrumentation, TestFactory creates a new
version of the application’s executable file but does not permanently alter source
code.

Anyone can instrument an application. The release engineer can create an
instrumented executable file for others to test.

Mapping the Application

After instrumenting the application, the next step is to create an application map. To
create a map, TestFactory thoroughly explores the application and gathers detailed
information about the user interface and its navigational pathways. TestFactory
builds a comprehensive hierarchical application map that it uses as the foundation for
automatic test generation.

You can map the entire application, or you can map it incrementally, as functional
areas of the application stabilize.

After the application map is complete, TestFactory displays a Mapping Summary
report that helps you identify changes to the user interface.
114 Chapter 9 - Reliability Testing

Running a Pilot

A TestFactory Pilot uses the instrumented application and the application map to
generate a test script, named best script, that exercises as much of the application as
possible. As it builds the best script, the Pilot automatically uncovers severe program
defects and generates defect scripts. You can play back a defect script to reproduce an
error in the application.

To create these scripts, TestFactory thoroughly explores the application’s user
interface and source code. After creating these test scripts, TestFactory shows exactly
which source code and which objects in a user interface the script tests.

After a Pilot run is completed, TestFactory displays summary results:

■ You can examine the best script both to read a human-language outline of the
script and also to see code coverage results.

■ You can use a defect script to quickly determine the line of code on which the
defect occurred and submit a defect report into ClearQuest.

Test Suites: Putting It All Together

Use a test suite to organize scripts and to run them automatically as a group. In a test
suite, you can include:

■ Scripts generated by TestFactory – best scripts and defect scripts.

■ Scripts you record or write in Robot.

You can run tests from a test suite locally on your own computer or you can use
TestManager Agents to distribute test scripts in a test suite to computers on a
network, for example, in a test lab.

Using TestFactory with Rational Robot

TestFactory complements and builds on Rational Robot features. By using both tools,
you can develop and run regression tests that validate specific, critical paths through
an application. TestFactory takes advantage of the advanced object recognition and
playback features of Robot to automatically generate scripts that test an entire
application. TestFactory also provides detailed coverage data on scripts created in
Robot.

As described in the next chapter, you use Robot to discover defects based on product
requirements. You can use Robot to add verification points to enhance an optimized
TestFactory script.
Learning About Rational TestFactory 115

Run-Time Analysis Tools in Rational Suite

Rational Purify

Run-time memory-reference errors and memory leaks are some of the most difficult
errors to locate and the most important to correct. They often remain undetected until
triggered by a random event, so that a program can appear to work correctly when
actually it’s not.

Rational Purify is a comprehensive run-time error detection tool that works with
Visual C++ and Java source code. Purify can find memory errors in every component
of your program, even if you don’t have the source code. If Purify detects an error in
an area of the application for which the source code is available, it identifies and
displays the command that caused the invalid memory reference. For Java programs,
Purify analyzes and reports memory usage.

Purify can also collect coverage data as you check your code for errors, pinpointing
the part of your program that you have not tested. You can use Purify's coverage data
to make sure that all your code is free of errors (see Figure 35).

Figure 35 Sample Error Detection Results from Rational Purify
116 Chapter 9 - Reliability Testing

Rational PureCoverage

To effectively test an application, you need to know which parts of the application
were exercised during a test and which ones were missed. Without this information,
you can waste valuable time editing, compiling, and debugging your software
without actually testing the critical problem areas.

With Rational PureCoverage, you can quickly and easily identify the gaps in your
testing of Visual C++, Visual Basic, and Java programs.

PureCoverage is especially useful as a companion to Rational Purify and Rational
Robot: it can tell you whether you are exercising your code sufficiently for Purify to
find all of your memory errors and for Robot to test all of your application’s
functionality (see Figure 36). It is essential to an automated testing environment.

Figure 36 Sample Test Coverage Results from Rational Quantify
Run-Time Analysis Tools in Rational Suite 117

Rational Quantify

Rational Quantify quickly locates performance bottlenecks in Visual C++, Visual
Basic, and Java programs. It takes the difficulty and guesswork out of performance
tuning by delivering accurate, repeatable timing data for all the components of your
program, even if you don’t have the source code.

Quantify gives you the insight you need to write more efficient code and make any
program work faster (see Figure 37). It can turn everyone on your team into a
performance engineer.

Figure 37 Sample Source Code Profiling from Rational Quantify
118 Chapter 9 - Reliability Testing

Summary

For More Information

For more information about:

■ TestFactory. Read Using Rational TestFactory and TestFactory Help.

■ Purify, PureCoverage, and Quantify. Read Getting Started: Rational PurifyPlus,
Rational Purify, Rational PureCoverage, Rational Quantify.

Rational books are available on the Rational Solutions for Windows – Online
Documentation CD-ROM, or online at http://www.rational.com/documentation.

For more information about TestFactory, Purify, PureCoverage, and Quantify, read
their respective Help systems.

What You Learned in This Chapter

In this chapter, you learned:

■ TestFactory automatically maps an application and generates best scripts (which
cover the most code in the least number of steps) and defect scripts (which
reproduce any errors that TestFactory finds).

■ Use TestFactory starting early in the development cycle to test for reliability and to
discover severe defects in your application.

■ Use test suites to organize test scripts and to run them automatically as a group.

■ Developer testing tools include Purify (finds run-time memory errors),
PureCoverage (detects testing coverage), and Quantify (identifies performance
bottlenecks).

What’s Next

In the next chapter, you perform functional testing on the ClassicsCD.com
enhancement. You use Robot to create a script, include the script in an existing test
suite, run the test suite, and handle errors discovered by the tests.
Summary 119

http://www.rational.com/documentation/

120 Chapter 9 - Reliability Testing

10Functional Testing
At this point in the development process, developers have implemented the
ClassicsCD.com enhancement, and testers have run initial reliability tests (this work
was completed outside of the tutorial). In this chapter, you use Rational Robot to
implement the test case you created in Chapter 6, Test Planning, for functional testing
of the enhancement requirement. You also use Rational TestManager to analyze the
results of your implementation.

Audience

This chapter applies to testers and other team members responsible for functional
testing.

Getting Your Bearings

In this chapter, you start by using Rational TestManager. To determine whether
TestManager is installed on your computer, refer to the tool chart you filled out in
Table 1, Rational Suite Tools, on page 29.

If TestManager is not installed, you can still benefit from reading this chapter, but you
will not be able to perform the exercises.

If Robot is not installed, you can still benefit from reading this chapter, but you will
not be able to perform the exercises.

If TestManager is installed, start it now:

1 Click Start > Programs > <RationalSuiteProductName> > Rational TestManager.

2 If the Rational Test Login dialog box opens, use these values:

a In the User Name and Password boxes, type pat.

b Make sure the Project box displays Webshop.

c Make sure the Location box displays C:\Classics\Projects\Webshop\Webshop.rsp.

d Click OK.
121

TestManager opens the Webshop project and displays the Test Asset Workspace in
the left window pane. Make sure you can read the tabs at the bottom of the Test
Asset Workspace. Move your pointer over the symbol on each tab to see its name,
then expand the workspace using the vertical divider until you can clearly see the
tab names. You are now ready to work with the project.

What Is Functional Testing?

Functional testing helps you determine whether a system behaves as intended. The
most natural way to test a system’s behavior is to use the application’s GUI to validate
that the system responds appropriately to user input. Testing can focus on both the
operation and the appearance of GUI objects. TestManager provides built-in support
for implementing and running functional tests created in Robot.

Working with Test Scripts

During test planning, you write test cases, as described in Chapter 6, Test Planning. A
test case describes the extent to which you will test an area of the application. It can
list the preconditions for performing a test, the input to provide during testing, the
variables you will examine, and the expected results of each test.

To implement a test, you start with a test case and create test scripts. You then
associate the test case with a test script. A test script has the following components:

■ A set of properties, such as the name and purpose of the script.

■ A file containing scripting language commands. You generate a script file when
you record activities with Robot or other scripting languages and tools.

Scripts and Modularity

You can record a test script that starts an application and proceeds through several
steps to achieve a certain end result. If a particular activity must be performed in
many test scripts, it makes sense to create a script that performs only this common
activity.

Instead, you can create a set of test scripts that all start with the same steps and
conclude by testing different parts of the application. Using Robot, you can create
short modular test scripts, which you can then combine and sequence into a suite in
TestManager. With this technique, you can reuse the same script in different tests, or
run these suites repeatedly against successive builds of your product. Or, you can
reuse a test script that has already been recorded to get an application to an
appropriate starting place for recording a subsequent script.
122 Chapter 10 - Functional Testing

For example, you might create a test script for each of the following:

■ Logging onto the system
■ Selecting an item to purchase
■ Completing a purchase
■ Logging off the system

You can then run each test script individually, or run all scripts at once, in succession,
by combining them into a suite.

Getting to a Starting Point

Recall that in Chapter 6, Test Planning, you created the Display Estimated Ship Date test
case for your enhancement requirement. In this chapter, you reuse a test script that
was recorded to get the ClassicsCD.com application to an appropriate starting place
for recording a new test script for your test case.

Exercise: Prepare to use Robot.

1 Start Robot from TestManager by clicking Tools > Rational Test > Rational Robot.

2 In Robot, click Tools > GUI Playback Options.

3 On the GUI Playback Options dialog box, on the Log tab, make sure that the
following options are selected:

❑ Output playback results to log

❑ View log after playback

❑ Specify log information at playback

4 Click OK.

5 Quit Robot by choosing File > Exit.

Working with Test Scripts

You can record and playback a test script for this tutorial only if Microsoft Internet
Explorer is installed on your computer. (It does not need to be the default browser.) If
Microsoft Internet Explorer is not installed on your computer, continue reading this
chapter and resume performing the exercises starting with Playing Back the Script on a
New Build on page 130.
What Is Functional Testing? 123

Exercise: Playback a script that completes a sale.

1 From the Execution tab in the Test Asset Workspace in TestManager (the tree
browser in the left pane), expand Suites, and double-click ClassicsCD Buy Beethoven
Bach v1a.

Test scripts for this suite of the ClassicsCD.com Webshop project appear in the
right window (see Figure 38).

Figure 38 Viewing Test Scripts Using TestManager

2 In the Test Asset Workspace, right-click ClassicsCD Buy Beethoven Bach v1a. From
the shortcut menu, click Run.

The TestManager Run Suite dialog box opens.

In the Build list, make sure that Build 1 is selected. (Use the defaults for the other
values.) If Build 1 is not selected, click Change, and from the Build list click Build 1.

3 In the TestManager Run Suite dialog box, click OK. If TestManager prompts you to
overwrite a test log, click No and either save or delete any open test logs. Then
resume this exercise at Step 2.

Do not interact with the ClassicsCD.com application while TestManager processes
your request to run the script and Robot plays back the scripts in the suite! If you
see a Windows message box that starts Do you want Windows to remember...,
wait. Robot will eventually continue.

The script transacts a sale with two line items and a payment. At certain points, the
script compares values in the application to a baseline value. When the script
finishes, TestManager displays the results of the test in the Test Log window. (If
necessary, minimize ClassicsCD.com to see the test results.) All or almost all the
comparisons (the verification points) pass.
124 Chapter 10 - Functional Testing

In the Test Log window, you can learn more about the results by expanding the
scripts in the Event Type hierarchy. In some cases, you may see a warning next to
a line that says Unexpected Active Window. This warning means that during the
playback, an extra window opened on your screen (for example, the message box
that starts Do you want Windows to remember...). Robot noticed the window
but the window did not interfere with the test results. If Robot returned the
warning, double-click the warning line to see a screenshot of the unexpected
displayed in the Image Comparator window. After you finish, close the
Image Comparator window.

4 Close the Test Log window.

5 Leave your Web browser open.

Recording the Script

You use Robot to record a script while exercising parts of your application’s GUI.
During recording, Robot translates the activities you perform into scripting language
commands. (Robot uses SQABasic for its scripting language. SQABasic resembles
Microsoft Visual Basic and contains additional commands tailored for automated
testing.) After you record a script, you can reuse it, for example, in regression tests
and in suites.

Starting to Record the Script

You have just run a prerecorded script to get the application to a known, consistent
starting place. You are now ready to create and record a new test script for the test
case Display Estimated Ship Date that you created in Chapter 6, Test Planning.

Exercise: Get ready to record the script.

Start recording the script from the point where the ClassicsCD Buy Beethoven Bach
v1a suite finished.

1 In TestManager, click (the Record GUI Script button).

Rational Robot starts and the Record GUI dialog box opens.

2 In the Name box, type Display Estimated Ship Date, then click OK.

The GUI Record toolbar appears (see Figure 39).
Recording the Script 125

Figure 39 The GUI Record Toolbar

3 On the GUI Record toolbar, click , so that Robot does not record the next few
steps.

4 Click the title bar of Microsoft Internet Explorer to make the Checkout page of
ClassicsCD.com the active window.

5 Scroll to the bottom of the Checkout page so that you can see Place Order. Notice
that the estimated ship date is now displayed.

Creating a Verification Point

For this test script, you must create a verification point to establish a baseline value for
object properties or data in a specific part of the application. When you play back a
test script, Robot compares the value it finds to the baseline value you establish. You
can include any number of verification points in a test script.

Exercise: Record the script and create the verification point.

1 On the GUI Record toolbar, start recording by clicking .

2 Click .

3 On the GUI Insert toolbar, click (the Object Data button). The Verification Point
Name dialog box appears.

4 In the Name box, type Verify Ship Date, then click OK.

The Select Object dialog box appears.

5 Click the check box command so that this dialog box will automatically close after
you choose a verification point.

Pause Recording

Stop Recording

Open Robot Window

Display GUI Insert Toolbar
126 Chapter 10 - Functional Testing

6 Move the hand pointer to the line on the Checkout page that starts: We estimate

that your order... (see Figure 40) using a drag-and-drop operation.

Figure 40 Creating a Test Verification Point Using TestManager and Robot

7 The Object Data Tests dialog box appears, indicating that you have captured the
Contents of the HTML table. Click OK to view the captured text.

8 On the Object Data Verification Point dialog box:

a From the Verification method list, click Find Sub String Case Sensitive.

b Under Select the range to test, scroll to line 26 (We estimate that...), then click
it so that it is the only line selected (see Figure 41).

c Click OK to close the dialog box.

Figure 41 Working with Test Verification Points Using TestManager

You have now created a verification point and you have almost finished recording
this test script. The next time this script runs, it will verify that the text you captured is
still displayed. You can include any number of verification points in a script. This
script has only one.
Recording the Script 127

Finishing the Recording Session

You can now finish the recording session.

Exercise: Perform the final steps in the script.

1 On the Checkout page, click Place Order.

2 On the GUI Record toolbar, click to stop recording.

Robot shows the Display Estimated Ship Date script you just recorded.

3 Read the script and notice how the commands correspond to the actions you
performed as you recorded the script.

4 Quit Robot and close ClassicsCD.com.

Adding a Test Script to a Suite

Recall that before you recorded the Display Estimated Ship Date script, you set up the
application by running the test suite ClassicsCD Buy Beethoven Bach v1a. In future
testing, you need to replay the new Display Ship Date script repeatedly. However,
you want to avoid going through manual steps to set up the application each time.

Instead, you can add the Display Ship Date script to an existing test suite that calls
other scripts to set up and shut down the application.

Exercise: Add the new script to a test suite.

1 From the Execution tab in the Test Asset Workspace in TestManager, go to Suites >
ClassicsCD Shop for CDs v1b, then double-click this entry.

Test cases and scripts for this suite of your project appear in the right pane (see
Figure 42).

Figure 42 Viewing a Test Suite Hierarchy Using TestManager
128 Chapter 10 - Functional Testing

2 In this view, right-click the Purchase Items: 1 time(s) test case. On the shortcut menu,
click Insert > Test Script.

The Run Properties of Test Script dialog box appears.

3 In the Test script source box, click GUI-(Rational Test Datastore).

4 In the Select section of the dialog box, scroll to and click the test script
Display Estimated Ship Date.

5 Click OK.

The Display Estimated Ship Date test script appears in the hierarchy.

6 Choose File > Save.

The test script is now associated with this test suite.

The scripts and suites you develop form a set of regression tests that you run after
every software build. The outcome of a particular test can change during subsequent
iterations as old defects are fixed and new defects and other changes are introduced.

Incorporating a Test Script into Your Test Plan

After you create and record a test script, and associate it with one or more suites, it is
important that you incorporate it into your test plan. Recall that in the ClassicsCD test
plan, test case folders are organized by use cases. In Chapter 6, Test Planning, you
created the test case folder Arrange Shipment and the test case Display Estimated
Ship Date. In the next exercise, you will associate the new test script with this test
case.

Exercise: Add the new script to a test case.

1 On the Planning tab of the Test Asset Workspace in TestManager, go to Test Plans >
ClassicsCD, then double-click ClassicsCD.

The ClassicsCD test plan hierarchy appears.

2 In this window, go to ClassicsCD > Test for Arrange Shipment UC > Display Estimated
Ship Date.

3 Right-click Display Estimated Ship Date, then click Properties on the shortcut menu.

The Properties dialog box for your test case opens.
Recording the Script 129

4 On the Implementation tab, under Automated implementation click Select, then click
GUI - (Rational Test Datastore) from the drop-down menu.

The Select Test Script dialog box appears.

5 Scroll to and click Display Estimated Ship Date, then click OK.

6 In the Test Case Properties window, click OK.

7 Choose File > Save All.

The test script is now associated with the test case.

Playing Back the Script on a New Build

Testers and developers can work in parallel. So, while testers build test scripts and
suites, developers are typically creating new builds of the application. You recorded a
script against Build 1, but now the developers have delivered Build 2 with changes to
the UI. It is important that you run your suites on the newest build.

Testers or other members of your team may want to run test cases early in the project.
Team members can right-click any test case in your test plan and run it from the
shortcut menu.

For the purpose of this exercise, and because we are in the testing phase of Version 2
of the ClassicsCD.com development project, we will run the test script from the suite
itself.

Exercise: Run the test suite on the newest build.

1 From the Execution tab in the Test Asset Workspace of TestManager, right-click
ClassicsCD Shop for CDs v1b, then click Run on the shortcut menu.

The TestManager Run Suite dialog box appears. Notice that Build 1 is selected in
the Log Information area.

2 Click Change. From the Build list, click Build 2. (Use the defaults for the other
values.) Click OK.
130 Chapter 10 - Functional Testing

3 Click OK in the Run Suite dialog box.

Note: Do not interact with the ClassicsCD.com application while TestManager
processes your request to run the script and Robot plays back the scripts in the test
suite! If you see a Windows message box that starts Do you want Windows to
remember..., wait. Robot will eventually continue.

Robot starts the application, interacts with it, captures properties and data at
verification points, and quits the application. When it has finished running the
script, it displays the results on the Details tab of a new test log.

4 In the Test Log window, click the Details tab to view the test results.

Analyzing the Results

TestManager shows which verification points passed and which failed. If a
verification point fails, then its script also fails. You can inspect the test log in
TestManager and decide how to handle any failures.

The script you recorded, Display Estimated Ship Date, passes despite the UI changes
in Build 2. However, notice that other scripts have failed on this new build.

Handling Failures

The outcome of a particular test can change during subsequent iterations as old
defects are fixed and new defects and other changes are introduced. There are two
types of script failures:

■ An intentional change is one in which the script fails due to planned changes in the
application. In this case, you want to change the baseline for the verification point.

■ A real error is one in which the script fails with a correct baseline. To report a real
error, submit a defect record using Rational ClearQuest, which is integrated with
Rational TestManager.
Analyzing the Results 131

Handling an Intentional Change

Exercise: Inspect the first failure.

1 In the Details tab of the Test Log window, go to Computer Start (Shop for CDs v1b [1])
> TestCase Start (Purchase Items) > Script Start (Catlg-Purchase Items) (see Figure 43).

Figure 43 Selecting the First Failure Using TestManager

2 Double-click the failure, Verification Point (Page Header - Object Data).

The Grid Comparator for the page header appears, showing that the page header
changed from Checkout to Cashier. It turns out that this was a planned change and
results from UI modifications.

In this case, you want to change the baseline so that the next time the script plays
back, it compares the page header to the new value. (You change the baseline if a
test fails because of an intentional change in the application.)

3 Click File > Replace Baseline with Actual.

The Grid Comparator displays a box asking if you want to confirm the
replacement.

4 Click Yes.

The Grid Comparator updates the baseline and reports that there are no
differences.

5 Close the Grid Comparator.
132 Chapter 10 - Functional Testing

Handling a Real Error

Exercise: Inspecting another failure

1 In the Test Log window, double-click the next failure, Verification Point (Order
Summary - Object Data).

The Grid Comparator appears.

On line 2, the baseline shows that you were expecting to purchase a Beethoven
Symphony, but the actual item placed into your shopping cart was a Mozart
Symphony. This is a real error. Because these CDs are priced differently, this error
generates a different purchase amount.

2 Close the Grid Comparator.

Reporting the Error

To report the error, use ClearQuest and its integration with TestManager.

Exercise: Report the error

1 Right-click Verification Point (Order Summary - Object Path), then choose Submit Defect
on the shortcut menu.

If this menu command appears dimmed, ClearQuest is not installed on your
computer and you cannot complete this exercise.

If ClearQuest is installed on your computer, the ClearQuest Login dialog box
appears.

Note: Before you continue, make sure you completed the exercise on page 34,
when you attached the ClearQuest database for the Webshop project.

2 In the ClearQuest Login dialog box:

a In both the User Name and Password boxes, type pat.

b From the Database list, ensure that CLSIC is the selected Database. If not, click
CLSIC: Rational Demo from the list.

CLSIC is the name of the database that contains the change requests (defects and
enhancement requests) for ClassicsCD.com.

c Click OK.
Analyzing the Results 133

ClearQuest opens a Submit Defect dialog box and automatically assigns a number
to your defect. Red items indicate boxes where an entry is required: you cannot
submit a defect until all required boxes contain valid values.

3 In the Headline box, type Wrong item in shopping cart.

4 From the Severity list, click 2-Major (see Figure 44).

Figure 44 Submitting a defect using ClearQuest

5 Go to the Test Data tab. Notice that TestManager has already filled in boxes related
to the test script for this defect.

6 Click OK to close the Submit Defect dialog box.

7 In the Test Log window, scroll to the right to see that this defect is associated with
the failed test script in TestManager as well.

You have finished testing this iteration of ClassicsCD.com.
134 Chapter 10 - Functional Testing

Summary

For More Information

For more information about testing strategy, click Help > Extended Help from any
Rational Test tool. In the Extended Help browser, read the articles under Concepts.

To get started with Rational Test tools, see the Rational TestManager User’s Guide and
the Rational Robot User’s Guide, both available on the Rational Solutions for Windows –
Online Documentation CD-ROM.

Cleaning Up

Quit TestManager. If prompted to save the test log, click Yes.

Quit ClassicsCD.com.

What You Learned in This Chapter

In this chapter, you learned:

■ Functional testing helps you determine whether a system behaves as intended.

■ Rational TestManager helps you plan, develop, run, and analyze functional tests.

■ You develop test scripts by interacting with the application using Rational Robot
and including verification points in your scripts.

■ You can develop modular scripts, then use suites to call those scripts. You reuse
scripts each time developers deliver a new software build.

■ Robot makes it easy to address problems that are discovered during testing.

■ The Rational ClearQuest integration with TestManager automates much of the
error reporting process.

What’s Next

Now that you have learned how to test an application for an iteration of development,
you are nearly finished with the tutorial! In the next chapter, you plan the next
iteration of ClassicsCD.com.
Summary 135

136 Chapter 10 - Functional Testing

11Planning the
Next Iteration
The ClassicsCD.com enhancement is now complete. You have finished work on this
iteration. This chapter describes the steps you take to begin planning the next
iteration.

Audience

This chapter applies to all members of a software development team.

Getting Your Bearings

In this chapter, you use Rational ClearQuest. To determine whether ClearQuest is
installed on your computer, refer to the tool chart you filled out in Table 1, Rational
Suite Tools, on page 29.

If ClearQuest is not installed, you can still benefit from reading this chapter, but you
will not be able to perform the exercises.

If ClearQuest is installed, make sure you completed the exercise on page 34, when
you attached the ClearQuest database for the Webshop project. Then:

1 Click Start > Programs > <RationalSuiteProductName> > Rational ClearQuest.

2 In the ClearQuest Login dialog box:

a In both the User Name and Password boxes, type pat.

b From the Database list, ensure that CLSIC is the selected Database. If not, click
CLSIC: Rational Demo from the list.

CLSIC is the name of the database that contains the change requests (defects and
enhancement requests) for ClassicsCD.com.

c Click OK.

ClearQuest displays two panes. The left pane lists a hierarchy of charts and reports
you can view. The right pane is blank.
137

Assessing the State of your Project

In Chapter 10, Functional Testing, you used ClearQuest to report a defect in the
software. In this chapter, you learn how using ClearQuest helps you to assess the state
of your project.

ClearQuest is a change request management tool that helps you track and manage all
activities (such as defects and enhancement requests) associated with a project.

ClearQuest stores its information in a user database, and comes with a ready-to-use
schema repository. A schema repository describes the fields in the user database.
ClearQuest is easy to change; an administrator can customize and define queries,
records, fields, activities, and states specific to your development process.

Showing the Workload

At the end of an iteration, you want to review each project member’s workload so that
you can most effectively allocate work for the next iteration. Using ClearQuest, you
can display a workload chart. From a workload chart, you can drill down to
information about a specific team member’s workload. This feature can be helpful if
you are interested in learning about the defects and related details assigned to an
individual.

Exercise: Display a chart showing workload.

1 In the left pane of ClearQuest, go to Public Queries > Distribution Charts- All Projects >
Defects by Owner.

2 Double-click the State entry (see Figure 45).

Figure 45 Choosing Query Views Using ClearQuest
138 Chapter 11 - Planning the Next Iteration

ClearQuest displays the workload chart. If necessary, maximize the chart to see the
details more clearly. The turquoise bar on the left represents unassigned defects
(see Figure 46).

Figure 46 Viewing Defects and Workloads Using ClearQuest

3 Click on Dana’s bar to learn more about the assigned state and number of defects.

4 Double-click the turquoise bar (the leftmost bar) to list the defects summarized in
that bar. These are defects that have not yet been assigned to team members.

ClearQuest displays a confirmation asking if you want to create a query.

5 Click OK.

ClearQuest lists the defects on the Result Set tab and displays details about the
selected defect, so you can quickly drill down to details about a specific defect, and
modify it as needed. This ClearQuest feature helps you plan a new iteration. For
example, using this ClearQuest query, you can:

❑ View the unassigned defects

❑ Assign a defect (from the Main tab)

❑ Link them to requirements (from the Requirements tab).
Assessing the State of your Project 139

6 Notice that defect id CLSIC00000112, submitted in Chapter 10, Functional Testing, is
included in this list (see Figure 47).

Figure 47 Viewing Defects Using ClearQuest
140 Chapter 11 - Planning the Next Iteration

Working with Enhancement Requests

Recall that you started the tutorial by looking at an enhancement request that you
later implemented. In the next exercise, you find more enhancement requests to
implement in the next iteration.

Exercise: Examine the enhancement requests.

1 In the left pane of ClearQuest, go to Public Queries > ClassicsCD Web Project, then
double-click All Project Enhancement Requests.

2 In the right pane near the top of the list, click CLSIC00000036, Need to notify
customer via email when order ships to display details about this enhancement
request. Notice that the enhancement request is in the Submitted state, but it has not
yet been assigned. Click the History tab to learn more about the request and its
history.

3 Now click CLSIC00000031, Need to notify customer via e-mail when order ships to
display its details. Notice that the enhancement request is in the Assigned state. To
see who is assigned to this request, click the Analysis tab.

Notice that both ClearQuest entries request the same enhancement for the online
store. It is typical for several entries with a very similar, if not identical,
enhancement request or defect to be stored in a ClearQuest database. This allows
project teams to evaluate, or triage, each ClearQuest entry. Team members can
determine more than just to whom requests or defects should be assigned, but also
identify those entries which are duplicates of existing or new requirements,
modify them to detail the duplication, and close them with this resolution
description.
Assessing the State of your Project 141

Exercise: Modify an enhancement request.

1 Go back to the previous enhancement request you looked at (CLSIC00000036,
Need to notify customer via email when order ships). Since we know that a similar
request has already been assigned, we’ll close this request as a duplicate.

2 On the Main tab, click Actions, then click Duplicate.

3 In the Mark as Duplicate dialog box, enter CLSIC00000031, then click Find to make
sure you have identified the correct record to which CLSIC00000036 is a duplicate.

4 Click OK to return to the defect you are modifying.

On tabs where you must fill in a box, a red square appears.

5 Go to the Analysis tab.

a The Owner box is marked red, indicating that a value is mandatory. Recall that
you logged in as pat and you are determining the resolution for this entry. So
from the Owner list, click pat.

6 Go to the Resolution tab. Notice that TestManager has already filled in boxes
related to the duplicate of this record.

7 Click Apply. You may need to click Run Query from the toolbar to refresh the query
results.

You will see that enhancement request CLSIC00000036 is now in the Duplicate
state.

Other Planning Activities

During an iteration, you usually work both to correct defects and to implement
enhancements. As part of planning, you might also use ClearQuest or RequisitePro to
identify the work to do in the next iteration.

During iteration planning, you can produce a Rational SoDA report showing the
defects and enhancements planned for the next iteration. You can also use
ProjectConsole to automatically generate charts and gauges with metrics gathered
from tools like RequisitePro and ClearQuest. This report helps you analyze the status
of your next project and share it with members of your team.
142 Chapter 11 - Planning the Next Iteration

What Will Happen in the Next Iteration?

The next iteration will proceed much as this one has. After it’s planned, the following
activities will transpire:

■ All team members use the Rational Unified Process (RUP) throughout the project as
a guide for software development best practices, and as a source of information
about software engineering.

■ All team members use Unified Change Management (UCM) throughout the project
to manage change in their system’s development.

■ All team members use the Rational Developer Network to access targeted
development content, skill-building resources, and an online community of
Rational Suite users.

■ Analysts discuss planned enhancements with stakeholders. Using RequisitePro
and Rose, the analyst creates one or more use cases and supplies step-by-step
details, including basic flow and alternative flows.

■ Testers use Rational TestManager to plan the tests for this iteration. The engineers
create test plans, develop test requirements, and design tests.

■ Developers use visual modeling techniques available in Rose to describe how
planned enhancements fit within the system architecture.

■ All team members use Unified Software Project Management (USPM) to compile
information so they can assess status, trends, quality, and other aspects critical to
project management and reporting.

■ All team members use ProjectConsole and SoDA to gather project metrics and create
project reports. Information presented in charts, gauges, and reports is useful
during discussions with stakeholders and in design sessions.

■ Developers use Rose to initiate implementation of the enhancement.

■ Developers and testers use TestFactory, Purify, Quantify, and PureCoverage to
verify the iteration’s reliability.
What Will Happen in the Next Iteration? 143

■ Testers use TestManager and Robot to verify that the enhancements meet
requirements, that defects are fixed, and that no regression failures have occurred.

■ All team members use ClearCase LT to make changes to project artifacts. Project
members each work in private development workspaces. When team members
finish their work, they deliver artifacts to the team’s public integration workspace.

■ Project leaders and managers use ProjectConsole, ClearQuest, SoDA, and
RequisitePro to assess that state of the project from requirements through release.
Later, they use these tools to plan subsequent iterations.

Summary

For More Information

To learn more about specific topics described in this book, consider taking a Rational
University course. In these courses, you can get hands-on experience with a specific
Rational tool, or you can learn more about software engineering principles. To learn
more about these courses, see http://www.rational.com/university.

Cleaning Up

When you are ready, quit ClearQuest.

If the Rational Unified Process is still open, either close it now or leave it open and use
it as a supplement to learn more about Rational Suite on your own.

What You Learned in This Chapter

In this chapter, you learned:

■ ClearQuest is a powerful tool that helps you manage and monitor change requests
on your project.

■ How the next iteration will proceed, and the activities that will transpire after
planning the project.
144 Chapter 11 - Planning the Next Iteration

http://www.rational.com/university/
http://www.rational.com/university/

What You Learned in This Tutorial
■ Rational Suite unifies your team by enhancing team communication.

■ Rational Suite optimizes individual team member productivity by providing
market-leading development tools for each member of a software development
team.

■ Rational Suite simplifies adoption by providing a comprehensive set of integrated
tools that have simple installation, licensing, and user support.

■ Rational Suite supports the entire development lifecycle and the primary roles on
a development team – analysts, developers, testers, and managers.

What’s Next

Congratulations! You have finished the Rational Suite tutorial. We hope that by using
Rational Suite to plan, design, implement, and test applications, your team will
successfully meet the challenges of rapidly developing high-quality software.

Your next job is to learn more about the tools you will use on your next project and get
to work!

Optional Activity: Join the Rational Developer Network

To access articles, discussion forums, and Web-based training courses on developing
software with Rational Suite, we recommend that you join the Rational Developer
Network.

1 If a current version of Rational Suite is installed on your computer, click Start >
<RationalSuiteProductName> > Logon to the Rational Developer Network and follow the
registration instructions.

2 If a current version of Rational Suite is not installed on your computer, from your
Web browser go to http://www.rational.net and follow the registration instructions.

After you register and log in to the Rational Developer Network, scan the Web site
to learn more about the targeted resources, communication, and collaboration
resources available. Using the Rational Developer Network will help you get
started on your own projects using Rational Suite.
Summary 145

http://www.rational.net/

146 Chapter 11 - Planning the Next Iteration

Glossary

activity. A unit of work that a team member performs.

actor. Someone or something, outside the system or business, that interacts with the system or business.

analyst. A person who determines what the system does, specifies and manages requirements, and
represents the user’s needs to the development organization.

artifact. A piece of information that is produced, modified, or used by a process; defines an area of
responsibility; and is subject to version control. There are many types of artifacts, including
requirements, models, model elements, documents, and source code.

automated testing. A testing technique wherein you use software tools to replace repetitive and
error-prone manual work. Automated testing saves time and enables a reliable, predictable, repeatable,
and accurate process.

baseline. A consistent set of artifact versions that represent a stable configuration for a project’s
components.

class. In object-oriented analysis and design, a set of objects that share the same responsibilities,
relationships, operations, attributes, and semantics.

component. A nontrivial, nearly independent, and replaceable part of a system that fulfills a clear
function in the context of a well-defined architecture.

component-based architecture. A design technique in which a software system is decomposed into
individual components.

configuration management. Helps teams control their day-to-day management of software
development activities as software is created, modified, built, and delivered. Comprehensive software
configuration management includes version control, workspace management, build management, and
process control to provide better project control and predictability.

developer. A person who determines how the system works; defines the architecture; and creates,
modifies, tests, and manages the code.

discipline. The summary of all activities you can go through to produce a particular set of artifacts.

edition. Sets of Rational Suite tools that are customized for each functional area of a software
development team.

element. An object that encompasses a set of versions for software project artifacts. Elements can be
either files or directories.

Extended Help. A powerful feature of Rational Suite that provides links from Rational Suite products to
the Rational Unified Process and any customized information you want to add.

feature creep. A term used by software development teams to describe the tendency to add unplanned
changes to product features throughout (and often late in) the development process.

forward engineering. The process of generating code from a Rational Rose visual model. See visual
model.
Glossary 147

implementation. The process of testing developed components as units and integrating the results into
an executable system.

instrumentation. The process that tracks the number of lines of code in the application under test, and
which of those lines have been tested. You use TestFactory to start an application by running a test
script. Instrumentation allows TestFactory to see the application’s lines of code and determine which
lines are being run during the script. The process varies depending on the programming language of the
application.

iterative development. The process of delivering a distinct sequence of executable files according to a
plan and evaluation criteria over the course of a project. Each executable file is more robust or contains
more features than the previous executable file; each new iteration moves you closer to the goal of
delivering a successful project.

mapping. The process of identifying all windows and controls in an application, actions taken against
those elements, and the results of those actions, using Rational TestFactory.

method. In object-oriented analysis and design, the implementation of an operation or procedure.

metrics. The measurements of project activity.

object. In object-oriented analysis and design, a software component that contains a collection of data
and methods (procedures) for operating on that data.

phase. The time between two major project milestones, during which a well-defined set of objectives is
met, artifacts are completed, and decisions are made to move or not move into the next phase.

project. A project is a temporary endeavor undertaken to create a unique product or service. Temporary
means that every project has a definite beginning and a definite ending. Unique means that the product
or service is different in some distinguishing way from all similar products and services. Projects are
often critical components of the performing organizations' business strategy. Projects are performed by
people, constrained by limited resources, and planned, executed, and controlled.

project leader. A person who allocates resources, shapes priorities, coordinates interactions with the
customers and users, and generally tries to keep the project team focused on the right goal. A project
leader also establishes a set of practices that ensures the integrity and quality of project activities and
artifacts.

Rational Administrator. Tool that manages Rational projects and associates repositories to define a
Rational project. For more information, see Using the Rational Administrator.

Rational ClearCase LT. Provides comprehensive configuration management, including version control,
workspace management, and process control.

Rational ClearQuest. A highly customizable change request management tool that helps users track any
type of change activity − defects and fixes, enhancement requests, documentation changes, and so on −
throughout the software development lifecycle. The ClearQuest Web interface allows users to perform
all major ClearQuest operations.

Rational ClearQuest MultiSite. A highly customizable Windows and Web-based change request
management tool that helps geographically distributed users track any type of change activity − defects
and fixes, enhancement requests, documentation changes, and so on − throughout the software
development lifecycle by easily replicating a centralized database to each remote site and then
synchronizing the changes made at each site with changes made at other sites.
148 Glossary

Rational Developer Network. A Web-enabled, searchable knowledge base that aggregates best
practices, reusable artifacts and assets, and Web-based training to help software professionals expand
their professional skills. The Rational Developer Network is available to Rational customers as a
component of Rational Suite.

Rational NetDeploy. Automates Web deployment of code and content with scheduling and expiration
features.

Rational Process Workbench. A highly customizable, Web-enabled, searchable knowledge base that
enhances team productivity and delivers company-specific best practices using guidelines, templates,
and Tool Mentors for critical software development activities.

Rational ProjectConsole. A highly customizable project management tool that helps users select and
deploy best practices, plan and carry out iterative projects, and measure progress and quality
throughout the software development lifecycle.

Rational PureCoverage. Automatically pinpoints areas of code that have not been tested.

Rational Purify. Automatically pinpoints hard-to-find runtime memory errors in Windows NT
applications.

Rational Quantify. Automatically pinpoints performance bottlenecks in Visual Basic, Visual C++, and
Java applications.

Rational RequisitePro. Helps teams easily and comprehensively organize, prioritize, track, and control
changing requirements of a system or application. Rational RequisitePro does this through a deep
integration with Microsoft Word and a secure, multiuser database. The RequisiteWeb interface allows
users to perform all major RequisitePro operations.

Rational Robot. Helps with functional testing by automating record and playback of test scripts. Helps
you organize, write, and run suites, and capture and analyze the results.

Rational Rose. The world’s leading visual component modeling and development tool; helps you model
software applications that meet current business needs.

Rational SiteLoad. Enables Web teams to pinpoint the places where heavy visitor traffic problems can
cause their Web application to stop responding.

Rational SoDA (for Word). Software Documentation Automation – Overcomes the obstacles of
consolidating data from different development tools. Helps you automate the creation of comprehensive
software, systems, and project documents from multiple sources.

Rational Suite. An easy-to-adopt-and-support solution that unifies software teams and optimizes the
productivity of analysts, developers, testers, and project managers.

Rational Suite AnalystStudio. Edition of Rational Suite optimized for system definition. Contains the
Team Unifying Platform and Rational Rose (Professional Data Modeler Edition).

Rational Suite ContentStudio. Edition of Rational Suite optimized for companies managing content
and code in complex Web applications. Contains the Team Unifying Platform, Rational NetDeploy and
Rational SiteLoad.

Rational Suite DevelopmentStudio. Edition of Rational Suite optimized for software development.
Contains the Team Unifying Platform plus Rational Rose (Enterprise Edition), Rational Purify, Rational
Quantify, and Rational PureCoverage.
Glossary 149

Rational Suite DevelopmentStudio – RealTime Edition. Edition of Rational Suite optimized for system
developers and designers of real-time or embedded systems. Contains the Team Unifying Platform plus
Rational Rose RealTime, Rational Purify, Rational Quantify, and Rational PureCoverage.

Rational Suite Enterprise. Edition of Rational Suite containing all Rational Suite tools.

Rational Suite Team Unifying Platform. Edition of Rational Suite optimized for all members of
software development teams to maximize productivity and quality. This Suite edition includes the
Rational Unified Process, RequisitePro, ClearCase LT, ClearQuest, SoDA, TestManager, and
ProjectConsole.

Rational Suite TestStudio. Edition of Rational Suite optimized for testers. Contains the
Team Unifying Platform and Rational PureCoverage, Rational Purify, Rational Quantify, Rational Robot,
and Rational TestFactory.

Rational TestFactory. Automates reliability testing by combining automatic test generation with source
code coverage analysis.

Rational TestManager. Provides management and control of all test activities from a single, central
point, including the ability to control and view legacy and proprietary test assets. It improves team
productivity by making test results and progress toward goals immediately available to all team
members.

Rational Unified Process. A Web-enabled, searchable knowledge base that enhances team productivity
and delivers software best practices through guidelines, templates, and Tool Mentors for critical
software development activities.

real-time application. An application or system with stringent requirements for latency, throughput,
reliability, and availability. Typically understood as representing operations which happen at the same
rate as human perceptions of time.

requirement. A condition or capability of a system, either derived directly from user needs or stated in a
contract, standard, specification, or other formally imposed document.

requirements management. A systematic approach to eliciting, organizing, and documenting a system’s
changing requirements, and establishing and maintaining agreement between the customer and the
project team.

reverse engineering. The process of creating or updating a Rose visual model from existing code, so that
the visual model and code are kept in sync. See visual model.

risk. The probability of adverse project impact (for example, schedule, budget, or technical).

risk management. Consciously identifying, anticipating, and addressing project risks and devising
plans for risk mitigation, as a way of ensuring the project’s success.

role. The behavior and responsibilities of an individual, or a set of individuals working together as a
team, within the context of a software engineering organization. Traditional roles on a software
development team include analysts, developers, testers, and managers or project leaders.

round-trip engineering. The ability to generate code from a Rose visual model (see forward engineering),
and to update a Rose model file from source code (see reverse engineering).

running a pilot. The process of generating automated scripts with TestFactory to test a mapped
application (see mapping), ensuring the maximum amount of code is exercised.

stream. In UCM, this provides configuration instructions for your view (see view), and tracks activities
and baselines (see baselines).
150 Glossary

test case. A set of test inputs that describe a testable and verifiable behavior in a system, the extent to
which you will test an area of an application, and the results of each test.

test configuration. The sequence of attributes for potential organizational structures of the system that
you will apply to your test cases.

tester. A person who creates, manages, and executes tests; ensures that the software meets all its
requirements; and reports the results and verifies fixes.

test input. Any artifact used to develop a system, and can be used to influence testing.

test plan. Contains information about the purpose and goals of testing within a project, and the
strategies to be used to implement testing.

Tool Mentor. Step-by-step instructions on how to use specific Rational tools to perform activities as
described in the Rational Unified Process.

traceability. The ability to trace one project element to other, related project elements.

Unified Change Management (UCM). The Rational approach to managing change in software
development, from requirements to release. UCM spans the development lifecycle, defining how to
manage changes to requirements, design models, documentation, components, test cases, and source
code.

Unified Modeling Language (UML). The industry-standard language for specifying, visualizing,
constructing, and documenting software systems. It simplifies software design, and communication
about the design.

use case. A sequence of actions a system performs that yields observable results of value to a particular
actor. A use case specification contains the main, alternate, and exception flows.

Unified Software Project Management (USPM). The Rational approach to managing software projects,
from requirements to release. USPM spans the development lifecycle, focusing on compiling information
to assess status, trends, quality, and other aspects critical to project management and articulation of
progress.

version control. The process of tracking the revision history of files and directories.

view. A ClearCase LT object that provides a work area for one or more users to modify source versions.

vision document. A document that contains a high-level view of the user’s or customer’s understanding
of the system to be developed.

visual model. A graphic representation of a system’s structure and interrelationships.

workflow. The sequence of activities performed by roles within a discipline to attain an observable
value.
Glossary 151

152 Glossary

Index
A
activity 46, 53, 147

and ClearCase LT 56
actor 47, 147
analyst 22, 147

tools 72
AnalystStudio 22, 149
architecture

component-based 19
visual modeling 94

artifact 46, 53, 69, 80, 147
and ClearCase LT 56
managing change 53

automated testing 113, 147

B
baseline 56, 147

promoting 56
best script (TestFactory) 115
budget and predictability 41
builds 20

C
change control 20
change set 56
change, managing 20
child requirement 74
class 147

class diagram 100
identifying (Rose) 100

ClassicsCD.com
installing 30
overview 30
running 35

ClearCase LT 21, 53, 54, 104, 110, 148
and ClearQuest 55
and UCM 55
Web interface 21

ClearQuest 21, 37, 54, 104, 110, 137, 148
and ClearCase LT 55
and Robot 131, 133
assessing project status 138
attaching database to a Rational project 33
starting 137
Web interface 21

ClearQuest MultiSite 21, 148
code, implementing 100
component 19, 147
component-based architecture 147

designing (Rose) 19
configuration management 21, 53, 147
ContentStudio 25, 57, 149

D
database (RequisitePro) 69
defect reporting 131, 133
defect script (TestFactory) 115
designing tests 86
designing component-based architecture 19
developer 23, 147

tools 72
developing software

See software development
development stream (ClearCase LT) 55
development view (ClearCase LT) 55
DevelopmentStudio 23, 149

RealTime Edition 150
diagram window (Rose) 71, 93, 100
discipline 45, 147
document (RequisitePro) 69
Index 153

E
edition 147
element 147
Enterprise Edition

Rational Suite 150
Rose 23

error reporting 131, 133
Extended Help 77, 147

F
feature creep 147
forward engineering 147
functional testing 121, 122

G
GUI Record toolbar 125

H
Help, Extended 77, 147

I
implementations, in test 84, 148
implementing code 100
installing tutorial sample application 30
instrumentation (TestFactory) 114
integration stream (ClearCase LT) 55
integration view (ClearCase LT) 55
iteration 44
iterative development 18, 148

and Rational Unified Process 43

J
Java

and PureCoverage 117
and Quantify 118
and Rose 101

joining a project 55

L
link

requirements and defects 139
suspect, RequisitePro 76
traceability, RequisitePro 76

M
managing 104
managing change 20, 53
managing requirements

See requirement, managing
managing risk 80
managing software changes 20
mapping an application (TestFactory) 114
measuring

project status 104
memory leaks 116
method 148
metrics 148
Microsoft Project (RequisitePro) 89
Microsoft Visual Basic

and PureCoverage 117
and Quantify 118
and Rose 101

Microsoft Visual C++
and PureCoverage 117
and Purify 116
and Quantify 118
and Rose 101

Microsoft Word
and RequisitePro 68
154 Index

O
object 148

identifying in Rose 100

P
parent requirement 74
performance testing 24

code 23
system 24, 88

performance testing, code 118
phase 44, 148
Pilot, running (TestFactory) 115
planning a script, TestManager 125
playing back a script 130
prerequisites of tutorial 29
process

See Rational Unified Process
Professional Data Modeler Edition

Rose 22
project 148
project leader 148
project metrics (ProjectConsole) 107
project state, assessing 138
project status 104
ProjectConsole 107, 149

Dashboard 111
PureCoverage 23, 88, 113, 117, 149

and Java 117
and Microsoft Visual Basic 117
and Microsoft Visual C++ 117

Purify 23, 88, 113, 116, 149
and Microsoft Visual C++ 116

Q
quality engineer, role of 24
quality, verifying

See testing
QualityArchitect 23

Quantify 23, 88, 113, 118, 149
and Java 118
and Microsoft Visual Basic 118
and Microsoft Visual C++ 118

R
Rational Administrator 148

attaching ClearQuest database to a Rational
project 33

registering a Rational project 32
Rational ClearCase LT

See ClearCase LT
Rational ClearQuest

See ClearQuest
Rational Developer Network 22, 145, 149
Rational NetDeploy 25, 58, 149
Rational Process Workbench 26, 149
Rational project 32, 55

datastore 34
register 32

Rational PureCoverage
See PureCoverage

Rational Purify
See Purify

Rational Quantify
See Quantify 23

Rational Robot
See Robot

Rational Rose 72
See Rose

Rational SiteLoad 26
Rational SoDA

See SoDA
Rational Software, mission 17
Rational Suite 149

AnalystStudio 22, 149
benefits 20
ContentStudio 25, 149
DevelopmentStudio 23, 149
DevelopmentStudio - RealTime Edition 150
Index 155

Rational Suite, cont’d
Enterprise Edition 150
summary table 27
Team Unifying Platform 21, 150
TestStudio 24, 150
tools 20, 29

Rational Synchronizer 150
Rational TestFactory

See TestFactory
Rational TestManager 150

See TestManager
Rational Unified Process 20, 21, 41, 150

Extended Help 77
overview 41
phases and iterations 43
starting 41
Tool Mentor 49

real-time application 150
rebasing a stream (UCM) 56
registering a Rational project 32
reports, creating (SoDA) 104
requirement 65, 150

and change 66
and vision document 66
child 74
managing 18, 63, 66, 150
parent 74
types 76

RequisitePro 63, 85, 104, 110, 149
and Rose 72
database features 69
document features 69
Explorer 65
integration with Microsoft Project 89
starting 63, 89
test planning 79
Tool Palette 63
Views 69
Web interface 21
Word document 68, 69

resetting tutorial 31
reverse engineering 150

risk management 80, 150
roadmap,

Rational Suite Documentation xiv
tutorial 38

Robot 24, 88, 117, 121, 149
and ClearQuest 131, 133
and TestFactory 115
GUI Record toolbar 125
playing back a script, Robot 130
reviewing test results 131
starting 123

role 46, 150
roles 44
Rose 72, 85, 93, 101, 104, 110, 149

and RequisitePro 72
browser 71, 93, 100
class diagram 100
diagram window 71, 93, 100
Enterprise Edition 23
Java 101
Microsoft Visual Basic 101
Microsoft Visual C++ 101
Professional Data Modeler Edition 22
RealTime 24
starting 70, 93
Web publishing 98

round-trip engineering 150
run-time errors 116
RUP

See Rational Unified Process

S
schedule

predictability 41
test efforts 89

script
and TestFactory 115
defect script 115
planning (TestManager) 125
playing back, Robot 130
shell 128
156 Index

sequence diagram 95
and use case 95
class 95
message 95, 96
object 96

shell script 128
SiteLoad 26, 58, 149
SoDA 21, 22, 103, 104, 149

starting 103
template 107

software 20
software development

common problems 17
component-based architecture 19
controlling change 20
iterative development 18
managing requirements 18
verifying quality 19

software engineer, role of 23
SQABasic 125
stream, in ClearCase LT 150
suspect link (RequisitePro) 76
system performance 24
system testing 24

T
Team Unifying Platform 21, 150
test

suite 122
test case 80, 81, 83, 84, 122, 151

designing 86
folder 81, 83

test configuration 80, 151
test input 80, 151
test plan 81, 151
test planning 79

creating scripts 125
identifying risks and resources 87
scheduling 89
test types 88

test script 122
tester 24, 151

TestFactory 24, 88, 113, 114, 115, 150
and Robot 115
instrumentation 114
mapping an application 114
running a Pilot 115

testing
code performance 23, 118
coverage 117
functional 121, 122
memory leaks 116
reliability 113
run-time errors 116
system performance 24, 88
verification point 126
verifying quality 19

TestManager 22, 80, 84, 88, 104, 110, 121,
122, 150

and Robot 131
starting 121

tests
types of 88

TestStudio 24, 150
This 26
Tool Mentor 49, 151
Tool Palette (RequisitePro) 63
tools (Rational Suite) 20
tools in Rational Suite 29
traceability 151

links 76
tutorial

ClassicsCD.com 30
prerequisites 29
resetting 31
roadmap 38
sample application 30
setting up 30
tool checklist 29

U
UML, See Unified Modeling Language 22
Unified Change Management 21, 151, 53
Unified Modeling Language 19, 22, 28, 70, 94,

151
Index 157

Unified Process, See Rational Unified Process
use case 47, 151

and sequence diagram 95
and visual modeling 67
benefits to team 67
report 103, 105

use case diagram 70
working with 71

use case requirement 69

V
verification point 126
verifying software quality, See testing
version control 151
view (RequisitePro) 74

vision document 151
visual model 151

Web version (Rose) 98
visual modeling 93, 94

implementing code 100
maintaining consistency with code 101

W
Web content manager, role of 25
Web developer, role of 25
Web Development 57

distributed authoring 57
Word document (RequisitePro) 69
workflow 46, 151
158 Index

	Rational Suite®
	Preface
	Audience
	Other Resources
	Rational Suite Documentation Roadmap
	Contacting Rational Technical Support

	Welcome to Rational�Suite
	Principles of Software Development
	Rational Suite Can Help
	What Is Rational Suite?
	Tools That Unify Your Team
	Rational Suite Team Unifying Platform

	Tools for Analysts
	Rational Suite AnalystStudio

	Tools for Developers
	Rational Suite DevelopmentStudio
	Rational Suite DevelopmentStudio – RealTime Edition

	Tools for Testers
	Rational Suite TestStudio

	Tools for Web Teams
	Rational Suite ContentStudio

	Rational Suite Enterprise

	Rational Suite: Summary
	For More Information
	What’s Next

	About This Tutorial
	Prerequisites
	Determining Which Rational Suite Tools Are Installed
	ClassicsCD.com: The Tutorial Sample Application
	Tutorial Background
	Installing the Tutorial Sample Application and Related Files
	Tip: Resetting the Tutorial

	Getting Started
	Registering the Project
	Associating the ClearQuest Database with the Project
	A Note About the Application
	Ordering Compact Discs
	Finishing the Purchase
	Discovering What to Build

	How to Use This Tutorial
	Summary
	What You Learned in This Chapter
	What’s Next

	Learning About the Rational Unified Process
	Audience
	Getting Your Bearings
	What Is the Rational Unified Process (RUP)?
	The Rational Unified Process and Rational Suite

	Learning the Mechanics
	The Process at a Glance
	Key Concepts
	Exploring a Workflow
	Starting with Actors and Use Cases
	Tool Mentors: Implementing the Process Using Rational Tools
	Learning About Web Applications
	Summary
	For More Information
	Cleaning Up
	What You Learned in This Chapter
	What’s Next

	Managing Change to�Project Artifacts
	Audience
	What Is Unified Change Management?
	UCM Tools

	Using the Tools with UCM – ClearQuest and ClearCase LT
	Unifying Code and Content for Web Development
	Learning About Rational Suite ContentStudio
	Using Distributed Authoring to Accelerate Web Site Changes
	Deploying Quickly and Confidently

	Using Rational Suite ContentStudio
	Summary
	For More Information
	What You Learned in This Chapter
	What’s Next

	Creating Requirements
	Audience
	Getting Your Bearings
	Why Worry About Requirements?
	Where Do Requirements Come From?
	Managing Requirements
	Using RequisitePro

	Starting with a Use Case
	Why Work with Use Cases?
	How Does RequisitePro Handle Requirements?
	Learning More About Use Cases

	Continuing Use Case Work Using Rose
	Working with a Use Case Diagram
	Associating the Rose Model with the RequisitePro Project

	Creating a New Requirement
	Looking at Requirements in the Database
	Linking to Another Requirement
	Traceability Links and Suspect Links

	Other Requirement Types
	When Have You Finished Gathering Requirements?
	Extended Help
	Summary
	For More Information
	Cleaning Up
	What You Learned in This Chapter
	What’s Next

	Test Planning
	Audience
	Getting Your Bearings
	What Is Test Planning?
	Managing Risk
	Making a Plan and Measuring Progress

	Developing a Test Plan
	Organizing Your Test Plan

	Determining What to Test
	Working with Test Cases
	Test Inputs from Rational Rose
	Test Inputs from Rational RequisitePro
	Elaborating on Test Cases
	Understanding the Impact of Test Planning

	Continuing with Test Planning
	Risks and Resources
	Types of Tests to Perform
	Stages of Testing
	Project Scheduling
	More on Test Artifacts

	Summary
	For More Information
	Cleaning Up
	What You Learned in This Chapter
	What’s Next

	Modeling the Enhancement
	Audience
	Getting Your Bearings
	What Is Visual Modeling?
	Using Rational Rose
	Visual Modeling and the Tutorial

	Working with a Sequence Diagram
	Opening a Sequence Diagram
	Adding Messages for the Enhancement

	Publishing Part of the Model to the Web
	Continuing Work with the Sequence Diagram
	Refining the Objects
	Implementing Code
	Modeling Data
	Benefits

	Summary
	For More Information
	Cleaning Up
	What You Learned in This Chapter
	What’s Next

	Communicating Project�Status
	Audience
	Getting Your Bearings
	Managing Project Status
	What Is SoDA?
	Using SoDA Templates

	Why Generate a Use Case Report?
	Creating the Use Case Report
	Working with SoDA Templates

	What Is ProjectConsole?
	Using the Project Web Site
	Working with Project Metrics
	Analyzing Metrics

	Summary
	For More Information
	Cleaning Up
	What You Learned in This Chapter
	What’s Next

	Reliability Testing
	Audience
	Reliability Testing Tools
	Learning About Rational TestFactory
	Overview of Process
	Instrumenting the Application
	Mapping the Application
	Running a Pilot
	Test Suites: Putting It All Together
	Using TestFactory with Rational Robot

	Run-Time Analysis Tools in Rational Suite
	Rational Purify
	Rational PureCoverage
	Rational Quantify

	Summary
	For More Information
	What You Learned in This Chapter
	What’s Next

	Functional Testing
	Audience
	Getting Your Bearings
	What Is Functional Testing?
	Working with Test Scripts
	Scripts and Modularity
	Getting to a Starting Point
	Working with Test Scripts

	Recording the Script
	Starting to Record the Script
	Creating a Verification Point
	Finishing the Recording Session
	Adding a Test Script to a Suite

	Playing Back the Script on a New Build
	Analyzing the Results
	Handling Failures
	Handling an Intentional Change
	Handling a Real Error

	Reporting the Error

	Summary
	For More Information
	Cleaning Up
	What You Learned in This Chapter
	What’s Next

	Planning the Next�Iteration
	Audience
	Getting Your Bearings
	Assessing the State of your Project
	Showing the Workload
	Working with Enhancement Requests

	Other Planning Activities
	What Will Happen in the Next Iteration?
	Summary
	For More Information
	Cleaning Up
	What You Learned in This Chapter
	What You Learned in This Tutorial
	What’s Next

	Glossary
	Index

