
Rational Software Corporation

support@rational.com
http://www.rational.com

Rational®Testing Products
RATIONAL TEST SCRIPT SERVICES FOR VISUAL BASIC

VERSION: 2002.05.00

PART NUMBER: 800-025128-000

IMPORTANT NOTICE

COPYRIGHT
Copyright ©2000-2001, Rational Software Corporation. All rights reserved.

Part Number: 800-025128-000

Version Number: 2002.05.00

PERMITTED USAGE
THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH IS THE PROPERTY OF
RATIONAL SOFTWARE CORPORATION (“RATIONAL”) AND IS FURNISHED FOR THE SOLE
PURPOSE OF THE OPERATION AND THE MAINTENANCE OF PRODUCTS OF RATIONAL. NO PART
OF THIS PUBLICATION IS TO BE USED FOR ANY OTHER PURPOSE, AND IS NOT TO BE
REPRODUCED, COPIED, ADAPTED, DISCLOSED, DISTRIBUTED, TRANSMITTED, STORED IN A
RETRIEVAL SYSTEM OR TRANSLATED INTO ANY HUMAN OR COMPUTER LANGUAGE, IN ANY
FORM, BY ANY MEANS, IN WHOLE OR IN PART, WITHOUT THE PRIOR EXPRESS WRITTEN
CONSENT OF RATIONAL.

TRADEMARKS
Rational, Rational Software Corporation, the Rational logo, Rational the e-development company,
ClearCase, ClearQuest, Object Testing, Object-Oriented Recording, Objectory, PerformanceStudio,
PureCoverage, PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational Apex, Rational CRC, Rational
PerformanceArchitect, Rational Rose, Rational Suite, Rational Summit, Rational Unified Process, Rational
Visual Test, Requisite, RequisitePro, SiteCheck, SoDA, TestFactory, TestMate, TestStudio, and The Rational
Watch are trademarks or registered trademarks of Rational Software Corporation in the United States and
in other countries. All other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, DeveloperStudio, Visual C++, Visual
Basic, Windows, the Windows CE logo, the Windows logo, Windows NT, the Windows Start logo, and
XENIX are trademarks or registered trademarks of Microsoft Corporation in the United States and
other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

FLEXlm and GLOBEtrotter are trademarks or registered trademarks of GLOBEtrotter Software, Inc.
Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and utilities) into any product
or application the primary purpose of which is software license management.

PATENT
U.S. Patent Nos.5,193,180 and 5,335,344 and 5,535,329 and 5,835,701. Additional patents pending.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

GOVERNMENT RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational Software Corporation license agreement and as provided in DFARS 277.7202-1(a) and
277.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct. 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR
227-14, as applicable.

WARRANTY DISCLAIMER
This document and its associated software may be used as stated in the underlying license agreement.
Rational Software Corporation expressly disclaims all other warranties, express or implied, with respect to
the media and software product and its documentation, including without limitation, the warranties of
merchantability or fitness for a particular purpose or arising from a course of dealing, usage, or trade
practice.

Contents
Preface . xi
About This Manual . xi
Audience . xi
Other Resources. xi
Contacting Rational Technical Publications .xii
Contacting Rational Technical Support .xii

1 Introduction .1
About Visual Basic Test Script Services . 1

Using Test Script Services With Rational TestManager . 1
Using Test Script Services With Rational QualityArchitect 2
Summary of Services . 2

2 Working with Test Scripts. .5
About Visual Basic Test Scripts . 5
Creating Test Scripts. 5

Entry Points . 6
Registering Test Script Source Folders . 6
Test Script Components . 7
Updating the Project File . 7

Editing and Storing Test Scripts . 8
Test Script Names . 9

Compiling Test Scripts . 9
Name of the Compiled File . 10
Name-Checking at Playback . 10

Running Test Scripts . 10
Running Test Scripts in a TestManager Suite. 11
Running Test Scripts Outside TestManager . 11
Moving a Test Script to a Different Computer for Playback 14

Returning Information from Test Scripts . 14
Test Log . 14
Error File and Output File . 15
TestManager Shared Memory . 16

Trapping Errors . 16
Contents iii

3 Test Script Services Reference. 17
About Test Script Services . 17
Datapool Class . 17

Summary . 18
TSSDatapool.Close . 19
TSSDatapool.ColumnCount . 19
TSSDatapool.ColumnName . 20
TSSDatapool.Fetch . 21
TSSDatapool.Open . 22
TSSDatapool.Rewind . 25
TSSDatapool.RowCount. 26
TSSDatapool.Search . 27
TSSDatapool.Seek . 28
TSSDatapool.Value . 29

Logging Class . 31
Summary . 31
TSSLog.Event. 31
TSSLog.Message . 33
TSSLog.TestCaseResult . 35

Measurement Class . 37
Summary . 37
TSSMeasure.CommandEnd. 38
TSSMeasure.CommandStart . 40
TSSMeasure.EnvironmentOp. 41
TSSMeasure.GetTime . 50
TSSMeasure.InternalVarGet . 51
TSSMeasure.Think . 55
TSSMeasure.TimerStart. 56
TSSMeasure.TimerStop . 57

Utility Class . 58
Summary . 59
TSSUtility.ApplicationPid . 60
TSSUtility.ApplicationStart . 61
TSSUtility.ApplicationWait. 62
TSSUtility.Delay . 63
TSSUtility.ErrorDetail . 64
TSSUtility.GetComputerConfigurationAttributeList . 65
TSSUtility.GetComputerConfigurationAttributeValue . 66
iv Contents

TSSUtility.GetPath . 67
TSSUtility.GetScriptOption . 67
TSSUtility.GetTestCaseConfigurationAttribute . 68
TSSUtility.GetTestCaseConfigurationAttributeList . 69
TSSUtility.GetTestCaseConfigurationName . 70
TSSUtility.GetTestCaseName . 71
TSSUtility.GetTestToolOption . 72
TSSUtility.NegExp . 73
TSSUtility.Rand . 74
TSSUtility.SeedRand . 75
TSSUtility.StdErrPrint . 76
TSSUtility.StdOutPrint . 77
TSSUtility.Uniform . 78
TSSUtility.UniqueString . 79

Monitor Class . 80
Summary . 80
TSSMonitor.Display . 80
TSSMonitor.PositionGet . 81
TSSMonitor.PositionSet . 82
TSSMonitor.ReportCommandStatus . 84
TSSMonitor.RunStateGet. 85
TSSMonitor.RunStateSet . 86

Synchronization Class . 89
Summary . 89
TSSSync.SharedVarAssign . 90
TSSSync.SharedVarEval . 91
TSSSync.SharedVarWait . 92
TSSSync.SyncPoint . 95

Session Class. 96
Summary . 96
TSSSession.Connect . 97
TSSSession.Context . 98
TSSSession.Disconnect. 100
TSSSession.ServerStart . 100
TSSSession.ServerStop . 102
TSSSession.Shutdown . 103

Advanced Class . 103
Summary . 104
Contents v

TSSAdvanced.InternalVarSet. 104
TSSAdvanced.LogCommand . 105
TSSAdvanced.ThinkTime. 107

4 Extended Test Script Services Reference 109
About the Extensions . 109

Requirements for Using the Test Script Services Extensions. 109
LookUpTable Class . 109

Summary . 112
LookUpTable.Open . 113
LookUpTable.Close. 113
LookUpTable.Search . 113

TestLog Class . 114
Summary . 117
TestLog.Message . 118
TestLog.WriteError . 118
TestLog.WriteStubError . 119
TestLog.WriteStubMessage . 120

5 Verification Services . 121
Introduction to Verification Points . 121
About Verification Points . 121

Roles in Working with Verification Points . 122
How Data Is Verified . 123
Types of Verification Points . 124

Static Verification Points . 125
Dynamic Verification Points . 125
Manual Verification Points . 126

Verification Point Framework. 126
Verification Point Classes . 127

Setting Up Verification Points in Test Scripts. 129
Setting Up a Static Verification Point . 129

Step 1. Specify the Metadata for the Verification Point 129
Step 2. Execute the Verification Point . 130

Setting Up a Dynamic Verification Point . 131
Setting Up a Manual Verification Point . 131

6 Database Verification Point Reference. 133
About the Database Verification Point. 133

Requirements for Using the Database Verification Point 133
Components of the Database Verification Point . 133
vi Contents

Type Libraries. 133
Examples . 134

Example of a Static Database Verification Point . 134
Dynamic Database Verification Point Example . 134

IDatabaseVP Interface . 135
Summary . 135

IDatabaseVPData Interface . 136
Summary . 136

IVerificationPoint Interface . 137
Summary . 138

IVPFramework Interface . 139
Summary . 139
VPFramework.PerformTest . 140

7 Verification Point Framework Reference 143
About the Verification Point Framework . 143

Requirements for Using the Verification Point Framework 143
Verification Point Framework Components . 143
Type Libraries. 144

IVerificationPoint Interface . 144
Summary . 145
IVerificationPoint.CodeFactoryGetConstructorInvocation 147
IVerificationPoint.CodeFactoryGetExternalizedInputDecl 148
IVerificationPoint.CodeFactoryGetExternalizedInputInit. 149
IVerificationPoint.CodeFactoryGetNumExternalizedInputs 150
IVerificationPoint.CodeFactoryGetNumPropertySet. 151
IVerificationPoint.CodeFactoryGetPropertySet . 152
IVerificationPoint.DefineVP . 152

IVPFramework Interface . 153
Summary . 154
IVPFramework.PerformTest . 154

IVerificationPointComparator Interface . 156
IVerificationPointComparator.Compare . 156

IVerificationPointData Interface. 157
IVerificationPointData.FileExtension . 158

IVerificationPointDataProvider Interface . 159
IVerificationPointDataProvider.CaptureData . 160

IVerificationPointDataRenderer Interface . 161
IVerificationPointDataRenderer.DisplayAndValidateData. 162
Contents vii

IVPPlumbing Interface . 163
Summary . 164
IVPPlumbing.InitializeFramework . 165
IVPPlumbing.InitializeVP . 165

A Configuring Datapools, Synchronization Points, and Shared
Variables . 167

About Script Configuration . 167
Datapool Configuration . 167
Synchronization Point and Shared Variable Configuration 169

Adding String Table Data to a Resource File . 169

B RTCOM Support Class . 173
About RTCOM. 173

Summary . 173
ErrorArray . 174
GetDatapoolAccessFlags . 175
GetDatapoolOverrideList . 176
Monitor . 177
SetCMDID . 178

C Implementing a New Verification Point. 179
Introduction to Verification Point Implementation . 179
Fundamentals for Implementing a Verification Point . 180

Task Summary . 180
Interface for Your Verification Point Component . 180
The Verification Point Component . 181

Implementing the IVerificationPoint Interface . 183
Implementing the Methods in Your Verification Point Interface 193
Implementing the IPersistFile Interface . 193
Implementing the IVPFramework Interface . 196
Other Responsibilities of the Verification Point Component 198

Interface for Your Verification Point Data Component. 200
The Verification Point Data Component . 201

Implementing the IPersistFile Interface . 202
Implementing the FileExtension() Property Methods 205

The Verification Point Data Comparator Component . 205
The Verification Point Data Provider Component . 208
The Verification Point Data Renderer Component . 210

Integrating Your Verification Point with QualityArchitect . 211
viii Contents

D IDL Equivalents . 213

Index. 221
Contents ix

x Contents

Preface
About This Manual

This manual is a reference of the methods that you call to add a variety of testing
services to your test scripts — services such as datapool, logging, monitoring,
synchronization, and verification point capabilities, as well as stub services for testing
COM/DCOM components.

The Test Script Services described in this manual are designed to be used with
Rational TestManager and Rational QualityArchitect.

Audience

This manual is intended for test designers who write or edit test scripts in Visual
Basic. Your Visual Basic test scripts can be used for both performance and functional
testing.

Other Resources

■ To access an HTML version of this manual, click TSS for Visual Basic in the
following default installation path (ProductName is the name of the Rational
product you installed, such as Rational TestStudio):

Start > Programs > Rational ProductName > Rational Test > API

■ All manuals for this product are available online in PDF format. These manuals
are on the Rational Solutions for Windows Online Documentation CD.

■ For information about training opportunities, see the Rational University
Web site: http://www.rational.com/university.
xi

Contacting Rational Technical Publications

To send feedback about documentation for Rational products, please send e-mail to
our technical publications department at techpubs@rational.com.

Contacting Rational Technical Support

If you have questions about installing, using, or maintaining this product, contact
Rational Technical Support as follows:

Note: When you contact Rational Technical Support, please be prepared to supply the
following information:

■ Your name, telephone number, and company name

■ Your computer’s make and model

■ Your operating system and version number

■ Product release number and serial number

■ Your case ID number (if you are following up on a previously reported problem)

Your Location Telephone Facsimile E-mail

North America (800) 433-5444
(toll free)

(408) 863-4000
Cupertino, CA

(781) 676-2460
Lexington, MA

support@rational.com

Europe, Middle
East, Africa

+31 (0) 20-4546-200
Netherlands

+31 (0) 20-4545-201
Netherlands

support@europe.rational.com

Asia Pacific +61-2-9419-0111
Australia

+61-2-9419-0123
Australia

support@apac.rational.com
xii Preface

1Introduction
About Visual Basic Test Script Services

Rational Test Script Services are testing services that you can add to your Visual Basic
(VB) test scripts through the methods described in this reference. For example, you
can add logging, synchronization, timing, and datapool services to your test scripts.
You can also add verification services to validate the behavior of Visual Basic
COM/DCOM components.

Test Script Services can be used with either or both of the following products:

■ Rational TestManager

■ Rational QualityArchitect

Using Test Script Services With Rational TestManager

Rational TestManager is a product that lets you plan, design, implement, execute,
and analyze tests, including system-level and component tests of functionality and
performance.

TestManager fully supports Visual Basic test scripts enhanced with Test Script
Services functionality — for example:

■ TestManager will adhere to any synchronization and delay functionality in your
script when it plays back (executes) the script within a suite of scripts.

■ During script playback, a tester can monitor script runtime states through the
script monitoring methods.

■ TestManager reports display the results of timed operations.
1

About Visual Basic Test Script Services
■ TestManager test cases can be associated with Visual Basic scripts that contain
measurement inputs, such as verification methods for validating the behavior
of objects.

■ TestManager can run your Visual Basic scripts with scripts of other types, such as
Java, GUI, and VU scripts.

The Test Script Services used with TestManager are documented in Test Script Services
Reference on page 17.

Using Test Script Services With Rational QualityArchitect

Rational QualityArchitect is a product that lets you test objects such as COM/DCOM
components and EJB components. You can test, or verify, the behavior
of COM/DCOM components using the verification services documented in the
following sections:

■ Verification Services on page 121

■ Database Verification Point Reference on page 133

■ Verification Point Framework Reference on page 143

■ Implementing a New Verification Point on page 179

Note: This document is primarily a reference document. For information on how to
use Rational QualityArchitect, see the Rational QualityArchitect User’s Guide.

Summary of Services

The following table describes the categories of Test Script Services that are available
with TestManager and QualityArchitect. It also specifies the product(s) that the
categories of services are commonly used with.

Category Description Commonly Used With

Datapool Provide variable data to test scripts during
playback, allowing virtual testers to send
different data to the server with each
transaction.

TestManager,
QualityArchitect

Logging Log messages for reporting and analysis. TestManager,
QualityArchitect

Measurement Provide the means of fine tuning and
controlling your tests through operations such
as timing actions, setting think time delays, and
setting environment variables.

TestManager
2 Chapter 1

About Visual Basic Test Script Services
As indicated at the end of the preface, an HTML version of this manual is available
from the Start menu and a PDF version from the Rational documentation CD.

Utility Perform common test script operations such as
retrieving error information, controlling the
generation of random numbers, and printing
messages.

TestManager,
QualityArchitect

Monitor Monitor test script playback progress. TestManager,
QualityArchitect

Synchronization Synchronize multiple virtual testers running on
a single computer or across multiple computers.

TestManager

Session Manage test script session execution and
playback.

TestManager,
QualityArchitect

Advanced Perform advanced logging and timing
operations.

TestManager

Verification Point Validate the behavior of objects such as
COM/DCOM components.

QualityArchitect

Category Description Commonly Used With
Introduction 3

About Visual Basic Test Script Services
4 Chapter 1

2Working with Test Scripts
About Visual Basic Test Scripts

A Visual Basic test script is a set of Visual Basic source files used for testing
applications and components within the Rational test environment.

Visual Basic test scripts can be used in functional, performance, and component
testing, and they typically include calls to Test Script Services. Compiled Visual Basic
test scripts can be run either standalone or within a TestManager suite.

You work with test scripts by using both TestManager and your Visual Basic IDE, as
described in this chapter.

Creating Test Scripts

You can create a Visual Basic test script in any of these ways:

■ Generate a script with Rational Robot.

Rational Robot automatically generates Visual Basic test scripts from recorded
COM/DCOM traffic. Note that the COM session recorder works only with COM
applications that use either OLE32.dll or OLEAUT32.dll. For example, J-Integra
applications may use neither OLE32.dll nor OLEAUT32.dll, in which case no
traffic is recorded and no test scripts are generated for the session.

■ Generate a script from a Rational Rose model. If you create test scripts by this
method, you can begin testing components that are still in the design stage and not
yet fully implemented.

This type of script generation requires both Rational Rose and Rational
QualityArchitect.

■ Manually write a test script using the Visual Basic IDE. (For a list of versions
supported by Rational QualityArchitect, see your QualityArchitect
documentation.)
5

Creating Test Scripts
Entry Points

The entry point that you need to include in your test scripts varies, depending on
whether you intend to run the script inside or outside of TestManager. For more
information, see Running Test Scripts on page 10.

Registering Test Script Source Folders

If you create a test script in your IDE and manually code it, you must inform
TestManager of the root test script source folder where the script is stored. To do so:

1 Click Tools > Manage > Test Script Types.

2 Select VB Script, and then click Edit.

3 Click the Sources tab, and then click Insert.

4 On the General tab, type a name for the test script source folder.

This name will be added to TestManager’s File menus. You select this name when
creating, editing, and running test scripts stored in the source folder.

5 Click the Connect Info tab, and then type the full path of the test script source folder
in the Data path box. This will be the name of a project folder that you have created
using your IDE.

6 Type the following values into the Option name and Option value columns:

7 Click OK. The new source folder name appears in the Sources list.

Option name Option value

Type VB

Default Datastore 0
6 Chapter 2

Creating Test Scripts
Test Script Components

A test script contains the following source file types:

When compiled through TestManager, Visual Basic test scripts are compiled as .dll
files. When compiling a Rational QualityArchitect test script in Visual Basic, compile
the test script as a .exe file.

Updating the Project File

The project file must contain specific references.

Robot automatically inserts the required references into the project file when it records
a Visual Basic script.

If you are creating and coding a script manually, or if you are not using a
QualityArchitect template that contains the required references, you must insert the
references into the project file yourself.

To insert the references into the project file:

1 Click Project > References.

2 In the Available References list, select TestServices 1.0.

3 If you are creating a Rational QualityArchitect script, also select Rational
QualityArchitect Playback Type Library.

4 Click OK.

Source file type Description

ScriptName.vbp Project file. You reference this file and its location from your Visual
Basic IDE.

ScriptName.bas Standard module. This file initiates execution of a .cls test script file
by calling the .cls file.

ScriptName.cls Class module (test script file).

ScriptName.res Resource file. This is an optional file that contains information about
datapool, synchronization point, and shared variable configuration.

Resource files are compiled from .rc files.
Working with Test Scripts 7

Editing and Storing Test Scripts
Editing and Storing Test Scripts

All of your test script editing is done inside of your IDE. You can open a test script
directly from your IDE or from TestManager. If Visual Basic is installed anywhere
other than in the default location, make sure the location of the resource compiler is
specified in the PATH.

To open a test script in TestManager, click File > Open Test Script > type, where type is
one of the following:

■ VB - (Rational Test Datastore). Choose this type for scripts that were auto-generated
by Robot.

■ The name of the Visual Basic source folder that you created in section Registering
Test Script Source Folders on page 6. Choose this type for test scripts that you
manually created from your IDE.

Then select the script you want to open. TestManager checks the Windows Registry to
find the IDE associated with the test script.

When you save a test script, the location where you store the script and any
accompanying source files will vary, as follows:

■ If you record a script with Rational Robot, Robot automatically stores the script in
the TMS_Scripts folder of the current Rational project and datastore —
for example:

ProjectName\DatastoreName\DefaultTestScriptDatastore\TMS_Scripts

■ If you manually code a test script and you have not yet created a test script source
folder for the current project, do the following:

1 Create the folder where you want to store the test script source file.

2 Register the test script source folder using the instructions in the section
Registering Test Script Source Folders on page 6.

■ If you auto-generate a script with Rational QualityArchitect (through a Rose
model) and you have not yet created a test script source folder for the current
project, do the following:

1 Create the folder where you want to store the test script source file.

2 At script-generation time, you are prompted to specify the folder where you
want to store the test script being generated. Be sure to select a location that
everyone on the project can access.
8 Chapter 2

Compiling Test Scripts
Note: When specifying the folder, use a Universal Naming Convention (UNC)
path — for example: \\server-name\directory-path.

Any future scripts that you create for this project are stored in the same test
script source folder. This location cannot be changed once it is defined.

Only script files and any related source files can be stored outside of the Rational
project. TestManager stores other related files, such as any datapool and log files, as
well as references to the script files, within the current Rational project.

Test Script Names

When you generate a test script with Rational Robot, .vbp, .cls, and .rc files are created
for the script. The file name is assigned by the Robot user during the recording
operation.

When the test script is compiled in TestManager, a prefix is affixed to the name. For
information, see Name of the Compiled File on page 10.

The maximum name length of scripts stored inside the Rational datastore is 40
characters. Script names cannot contain spaces.

The maximum name length of scripts stored outside of the Rational datastore is
limited only by the constraints of the operating system.

Compiling Test Scripts

When running a test script, TestManager checks the timestamp of the .dll against the
.cls, .vbp, and .res files. If the .dll is out of date, TestManager compiles the script before
running it.

To compile a script, TestManager locates the Visual Basic compiler on your
computer’s system path. If TestManager can’t find a compiler, it generates an error.

For information about running scripts with TestManager, see the Rational TestManager
User’s Guide.

Compiled test scripts are stored as follows:

■ If you compile through TestManager or through the command-line Test Script
Execution Engine (TSEE), the script is compiled to a .dll file. This file is stored in an
exe subfolder below the location of the script file.

■ If you compile through QualityArchitect, the script is compiled to an .exe file
stored in the same folder as the script.
Working with Test Scripts 9

Running Test Scripts
Long test scripts may cause memory errors (because of a Visual Basic limitation). If
you encounter memory errors during compilation, we recommend that you generate
(or write) smaller test scripts.

Name of the Compiled File

When you compile a QualityArchitect test script in Visual Basic, standard Visual Basic
naming conventions apply to the resulting .exe file.

When your test script is compiled through TestManager, the .dll file is assigned a
name according to the following format:

mmm_sss

In this format, mmm is the name of the computer where the script was recorded and
generated, and sss is the user-assigned script name. For example, if you record a
script on a computer named echo and you name the script Test1, the full name of the
.dll file is as follows:

echo_Test1.dll

Name-Checking at Playback

Before TestManager plays back a compiled script with a name in the mmm_sss format,
it checks that the name of the computer where the compiled script will run matches
the computer name embedded in the .dll file name. If the names don’t match,
TestManager does not execute the script.

TestManager undertakes this name-checking to ensure that a script will be executed in
the same COM environment in which it was recorded. For more information, see
Moving a Test Script to a Different Computer for Playback on page 14.

Running Test Scripts

You can run test scripts either from within or outside of TestManager. Test scripts that
you execute from within TestManager can run on the local host or on an agent host.

Where you run a test script depends, in part, upon your reason for running it:

■ To run a test. With TestManager, you can run a single test script by itself (File > Run
Test Script), from within a test case (File > Run Test Case), or you can add the script to
a TestManager suite and run the suite.

Performance tests are typically run within TestManager. Component tests
conducted with QualityArchitect can be run either from within TestManager or
Visual Basic.
10 Chapter 2

Running Test Scripts
■ To debug a test script. If you are debugging a test script, run the script from Visual
Basic rather than from TestManager.

Running Test Scripts in a TestManager Suite

A TestManager suite is a collection of test scripts. In TestManager, you typically run
tests by running a single script or a number of scripts in a suite.

You can combine scripts of different types in the same suite — for example, you can
add your Visual Basic scripts to a suite that also contains Java, GUI, and VU scripts,
and even scripts of a custom test type.

For information about adding scripts to a TestManager suite, see Rational TestManager
User’s Guide.

A .cls test script that you want to run inside a suite must extend the TestScript class
and implement the ITestInterface_TestMain method. This method is the entry
point for the class.

The following is an example of the method declaration:

Public Function ITestinterface_TestMain(
Optional ByVal args As Variant) As Variant

Running Test Scripts Outside TestManager

How you run a test script from your IDE depends on whether you are using Rational
QualityArchitect.

If a QualityArchitect test script that you want to run from Visual Basic meets the
requirements described below, you can run it by clicking Run > Start.

■ The module file (.bas file) must include a Main entry point, and Main must
include a call to ITestInterface_TestMain in a .cls file. A sample .bas file is
shown below.

Option Explicit

Sub Main()

 On Error GoTo OnMainError

 Dim retval As Variant

 Dim objMoveMoneyPerform As ITestInterface

 Set objMoveMoneyPerform = New Perform

 'Invoke the TestMain method

 retval = objMoveMoneyPerform.TestMain(Command())

 Exit Sub

OnMainError:

 'TODO: uncomment below to implement error handling.
Working with Test Scripts 11

Running Test Scripts
 'Debug.Print ("Following error Occurred in " + Err.Source + ":"

+ Err.Description)

 'MsgBox ("Following error Occurred in " + Err.Source + ":" +

Err.Description)

End Sub

■ Your test script code in ITestInterface_TestMain must be preceded by calls
to LoginToTestRepository and StartTestServices, and concluded by a
call to EndTestServices. (These are methods of the TMSConnector class.) A
sample .cls file is shown below. As shown, the argument to StartTestServices
is a string parameter specifying the path of the test script relative to the test script
source directory.

Implements ITestInterface

Option Explicit

'Local variables

Private tms As TMSConnector 'TMS Connector Object.

Private Log As TestLog 'TestLog Object.

'Class Instance Intialize code.

Private Sub Class_Initialize()

 'Create the private member objects.

 Set tms = New TMSConnector

 Set Log = New TestLog

End Sub

'Class Instance Terminate code.

Private Sub Class_Terminate()

 'Free the private member objects.

 Set tms = Nothing

 Set Log = Nothing

End Sub

'TestScript.TestMain Function(ByVal Args As Variant) As Variant

'This method is the method test implementation. The Interface is

'defined to accept and return a Variant for flexiblity and

'convenience; there is no special processing or meaning for either

'the Input parameters or the return value.

Public Function ITestInterface_TestMain(Optional ByVal args As

Variant) As Variant

On Error GoTo OnTestMainError

12 Chapter 2

Running Test Scripts
 'Initialize test data store and log services

 tms.LoginToTestRepository

 tms.StartTestServices "unittests\COM\RQACOMSample Ver 1.0

(Rational QualityArchitect Sample for COM)\MoveMoneyPerform"

 'Test Code goes here

OnTestMainError:

 'If an error occurred, log it.

 If Err.Number <> 0 Then

 Dim Message As String

 Message = "Unexpected error" & "," & " " & CStr(Err.Number)

& " was raised."

 Log.Message Message, TSS_LOG_RESULT_FAIL, Err.Description

 End If

 'Shutdown test data store and log services

 tms.EndTestServices

End Function

To run a test script from your IDE when QualityArchitect is not involved, do the
following:

1 With the test script open in Visual Basic, click Run > Start.

The RTScript - Project Properties dialog box appears.

2 Click Start Program, and then click the browse button (containing three dots) to the
right of Start Program.

3 Select Rational\Rational Test\rttsee.exe in the Rational installation directory — for
example:

C:\Program Files\Rational\Rational Test\rttsee.exe

4 After rttsee.exe, type a space and the following bold text:

C:\Program Files\Rational\Rational Test\rttsee.exe -e rttseavb ScriptName

In the example, ScriptName is the name of your Visual Basic test script.

5 Click OK.
Working with Test Scripts 13

Returning Information from Test Scripts
Moving a Test Script to a Different Computer for Playback

When you record a test script with Rational Robot, the compiled .dll file includes the
name of the computer from which the script was recorded. At playback, TestManager
checks the name of the computer where playback is to occur against the name of the
computer embedded in the .dll name. If the names do not match, TestManager does
not compile and play back the .dll file.

TestManager undertakes this name-checking for the following reasons:

■ Test scripts are machine-dependent.

■ Test scripts must run within the same COM/DCOM environment in which they
were recorded with Rational Robot.

If you want to run a test script on a different computer than the one where it was
recorded, do the following:

■ Copy the .wch file associated with the test script to the new computer, and then
generate a script from the .wch file. Unlike script files, .wch files are not
machine-dependent.

For information about watch (.wch) files and generating scripts from .wch files, see
the Rational Robot online Help.

■ On the computer where the test script is to run, duplicate the COM/DCOM
environment just as it existed on the computer where the test script was recorded.

Returning Information from Test Scripts

Test Script Services calls can deposit information in any of these locations:

■ Test log

■ Error and output files

■ TestManager shared memory

The following sections describe these locations.

Test Log

TestManager uses the test log (or log) to list the test cases that have been run and
record whether they pass or fail. TestManager generates reports based on the logged
information.

You can also write pass/fail results to the log as well as log messages and report
errors.
14 Chapter 2

Returning Information from Test Scripts
The following are the Test Script Services logging methods:

■ TSSLog.Event on page 31

■ TSSLog.Message on page 33

■ TSSLog.TestCaseResult on page 35

■ TSSMeasure.CommandEnd on page 38

■ TSSMeasure.CommandStart on page 40

■ TSSAdvanced.LogCommand on page 105

■ TestLog.Message on page 118

■ TestLog.WriteError on page 118

■ TestLog.WriteStubError on page 119

■ TestLog.WriteStubMessage on page 120

For additional information about logging errors, see Trapping Errors on page 16.

TestManager determines the location of the log file as follows:

■ If the test script is running within TestManager, or if it is running outside of
TestManager but against a TSS Server through rttssee.exe, the location is
determined by the parent process, not by the test script.

■ If the test script is a Rational QualityArchitect test script running in Visual Basic,
the location is again determined by the parent process.

■ If the test script is running outside TestManager and the TSS Server is not running,
the location, by default, is relative to the current directory and is referenced as
./u000. Use TSSSession.Context to control the location of the log file.

Error File and Output File

As a development and debugging aid, you can write information to an error file and
an output file.

Use the utility methods StdErrPrint and StdOutPrint to write to the error and
output files.

TestManager determines the location of the error and output files as follows:

■ If the test script is running within TestManager, the location is determined by the
parent process, not by the test script.

■ If the test script is running outside TestManager but against a TSS Server through
rttssee.exe, the location is determined by command-line options you set.
Working with Test Scripts 15

Trapping Errors
❑ With no command-line options used, the error file is the system standard error
file, and the output file is the system standard output file.

❑ With the -r option, the error and output files are stored in the working directory.
The working directory is the system’s current working directory, unless a
different location is specified through the -d option.

Set the error file name with e<usernumber> and the output file name with
o<usernumber>. The variable <usernumber> defaults to 0 and is set by the -u
command-line option.

■ If the test script is running outside TestManager and the TSS Server is not running,
the error file is the system standard error file, and the output file is the system
standard output file.

TestManager Shared Memory

Shared memory is used to provide data for TestManager’s runtime console. Shared
memory is also used to pass information between test scripts.

To write data to shared memory, use the methods described in the following sections:

■ Monitor Class on page 80. Use the TSSMonitor methods to provide data that is
used during TestManager’s monitoring operations.

■ Synchronization Class on page 89. Use the TSSSync methods to allow concurrently
running scripts to share data.

These methods work only in test scripts that are run from TestManager.

Trapping Errors

If you trap errors in your test script, you are intercepting the errors before
TestManager can become aware of them. If you handle the error and take no other
action, the script continues to run, and TestManager could log a Pass result for the
script.

If an error occurs and the script does not contain error handling logic, the test script
stops running, the next script in the suite is run, and TestManager logs a Fail result for
the script and a description of the error.

If you want to trap certain errors, but you want the log to reflect a Fail result for the
test script, use one of the Test Script Services logging methods to log the Fail result.
16 Chapter 2

3Test Script Services
Reference
About Test Script Services

This chapter describes the Rational Test Script Services (TSS). It explains the methods
you use to give test scripts access to services such as datapools, measurement, virtual
tester synchronization, and monitoring. The methods are divided into the following
functional categories.

Datapool Class

During testing, it is often necessary to supply an application with a range of test data.
Thus, in the functional test of a data entry component, you may want to try out the
valid range of data, and also to test how the application responds to invalid data.
Similarly, in a performance test of the same component, you may want to test storage
and retrieval components in different combinations and under varying load
conditions.

Category Description

Datapool Provide variable data to test scripts during playback.

Logging Log messages for reporting and analysis.

Measurement Manage timers and test variables.

Utility Perform common test script functions.

Monitor Monitor test script playback progress.

Synchronization Synchronize virtual testers in multicomputer runtime environments.

Session Manage the test suite runtime environment.

Advanced Perform advanced logging and measurement functions.
17

Summary
A datapool is a source of data stored in a Rational project that a test script can draw
upon during playback, for the purpose of varying the test data. You create datapools
from TestManager, by clicking Tools > Manage > Datapools. For more information, see
the datapool chapter in the Rational TestManager User’s Guide. Optionally, you can import
manually created datapool information stored in flat ASCII Comma Separated Values
(CSV) files, where a row is a newline-terminated line and columns are fields in the
line separated by commas (or some other field-delimiting character).

Applicability

Commonly used with TestManager and QualityArchitect.

Summary

Use the datapool methods listed in the following table to access and manipulate
datapools within your scripts. These are methods of class TSSDatapool.

Method Description

Close Closes a datapool.

ColumnCount Returns the number of columns in a datapool.

ColumnName Returns the name of the specified datapool column.

Fetch Moves the datapool cursor to the next row.

Open Opens the named datapool and sets the row access
order.

Rewind Resets the datapool cursor to the beginning of the
datapool access order.

RowCount Returns the number of rows in a datapool.

Search Searches a datapool for the named column with a
specified value.

Seek Moves the datapool cursor forward.

Value Retrieves the value of the specified datapool column.
18 Chapter 3

Datapool Class
TSSDatapool.Close

Closes a datapool.

Syntax

Close() As Long

Return Value

This method exits with one of the following results:

■ TSS_OK. Success.

■ TSS_NOSERVER.No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The datapool identifier is invalid.

Comments

Only one open datapool at a time is supported. A Close is thus required between
intervening Open calls. For a script that opens only one datapool, Close is optional.

Example

This example opens the datapool custdata with default row access and closes it.

Dim retVal As Long
Dim dp As New TSSDatapool
dp.Open "custdata"
retVal = dp.Close

See Also

Open

TSSDatapool.ColumnCount

Returns the number of columns in a datapool.

Syntax

ColumnCount () As Long

Return Value

On success, this method returns the number of columns in the open datapool.
Test Script Services Reference 19

TSSDatapool.ColumnName
Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The datapool identifier is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Example

This example opens the datapool custdata and gets the number of columns.

Dim columns as Long
Dim dp As New TSSDatapool
dp.Open "custdata"
columns = dp.ColumnCount

TSSDatapool.ColumnName

Gets the name of the specified datapool column.

Syntax

ColumnName (columnNumber As Long) As String

Return Value

On success, this method returns the name of the specified datapool column.

Element Description

columnNumber A positive number indicating the number of the column whose name you
want to retrieve. The first column is number 1.
20 Chapter 3

Datapool Class
Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The datapool identifier or column number is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Example

This example opens a three-column datapool and gets the name of the third column.

Dim colName as String
Dim dp as New TSSDatapool
if (dp.Fetch = True) Then

colName = dp.ColumnName 3
EndIf

TSSDatapool.Fetch

Moves the datapool cursor to the next row.

Syntax

Fetch () As Boolean

Return Value

This method returns True (success) or False (end-of-file).

Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The datapool identifier is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.
Test Script Services Reference 21

TSSDatapool.Open
Comments

This call positions the datapool cursor on the next row and loads the row into
memory. To access a column of data in the row, call Value.

The “next row” is determined by the assessFlags passed with the open call. The
default is the next row in sequence. See Open.

After a datapool is opened, a Fetch is required before the initial row can be accessed.

An end-of-file (TSS_EOF) condition results if a script fetches past the end of the
datapool, which can occur only if access flag TSS_DP_NOWRAP was set on the open
call. If the end-of-file condition occurs, the next call to Value results in a runtime
error.

Example

This example opens datapool custdata with default (sequential) access and
positions the cursor to the first row.

Dim retVal As Boolean
Dim dp As New TSSDatapool
dp.Open "custdata"
retVal = dp.Fetch

See Also

Open, Seek, Value

TSSDatapool.Open

Opens the named datapool and sets the row access order.

Syntax

Open (name As String, [accessFlags As Long], [overrides[] As
NamedValue])

Element Description

name The name of the datapool to open. If accessFlags includes
TSS_DP_NO_OPEN, no CSV datapool is opened; instead, name refers to
the contents of overrides specifying a one-row table. Otherwise, the
CSV file name in the Rational project is opened.
22 Chapter 3

Datapool Class
Error Codes

 This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

accessFlags Optional flags indicating how the datapool is accessed when a script is
played back. Specify at most one value from each of the following
categories:

1 Specify the sequence in which datapool rows are accessed:

TSS_DP_SEQUENTIAL – physical order (default)

TSS_DP_RANDOM – any order, including multiple access or no access

TSS_DP_SHUFFLE – access order is shuffled after each access

2 Specify what happens after the last datapool row is accessed:

TSS_DP_NOWRAP – end access to the datapool (default)

TSS_DP_WRAP – go back to the beginning

3 Specify whether the datapool cursor is shared by all virtual testers or
is unique to each:

TSS_DP_PRIVATE – virtual testers each work from their own
sequential, random, or shuffle access order (default)

TSS_DP_SHARED – all virtual testers work from the same access order

4 TSS_DP_PERSIST specifies that the datapool cursor is persistent
across multiple script runs. For example, with a persistent cursor, if
the row number after a suite run is 100, the first row accessed in a
subsequent run is numbered 101. Cannot be used with
TSS_DP_PRIVATE. Ignored if used with TSS_DP_RANDOM.

5 TSS_DP_REWIND specifies that the datapool should be rewound
when opened. Ignored unless used with TSS_DP_PRIVATE.

6 TSS_DP_NO_OPEN specifies that, instead of a CSV file, the opened
datapool consists only of column/value pairs specified in a local
array overrides[].

overrides A local, two-dimensional array of column/value pairs, where
overrides[n].name is the column name and overrides[n].value is
the value returned by Value for that column name.

Element Description
Test Script Services Reference 23

TSSDatapool.Open
■ TSS_INVALID. The accessFlags argument is or result in an invalid
combination.

■ TSS_NOTFOUND. No datapool of the given name was found.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

If the accessFlags argument is specified as 0 or omitted, the rows are accessed in
the default order: sequentially, with no wrapping, and with a private cursor. If
multiple accessFlags are specified, they must be valid combinations as explained
in the syntax table.

If accessFlags specified with Open contradict those specified with the datapool
configuration section (see Appendix A), the Open call fails with TSS_INVALID.
Otherwise, the two sets of access flags are combined.

If you close and then reopen a private-access datapool with the same accessFlags
and in the same or a subsequent script, access to the datapool is resumed as if it had
never been closed.

A test script executed by TestManager can open only one datapool at a time.

If multiple virtual testers access the same datapool in a suite, the datapool cursor is
managed as follows:

■ The first open that uses the TSS_DP_SHARED option initializes the cursor. In the
same suite run (and, with the TSS_DP_PERSIST flag, in subsequent suite runs),
virtual testers that subsequently use the same datapool opened with
TSS_DP_SHARED share the initialized cursor.

■ The first open that uses the TSS_DP_PRIVATE option initializes the private cursor
for a virtual tester. In the same suite run, a subsequent open that uses
TSS_DP_PRIVATE sets the cursor to the last row accessed by that virtual tester.

NamedValue is a dimensioned array of name/value pairs. For example, an array of
10 name/value pairs could be implemented as follows:

Dim NV(9,1) As String
NV(0,0)= "name1"
NV(0,1)= "value1"
NV(1,0)= "name2"
NV(1,1)= "value2"
...
24 Chapter 3

Datapool Class
Example

This example opens the datapool named custdata, with a modified row access.

Dim dp As New TSSDatapool
dp.Open "custdata",TSS_DP_SHUFFLE + TSS_DP_PERSIST

See Also

Close

TSSDatapool.Rewind

Resets the datapool cursor to the beginning of the datapool access order.

Syntax

 Rewind ()

Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The datapool identifier is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

The datapool is rewound as follows:

■ For datapools opened DP_SEQUENTIAL, Rewind resets the cursor to the first
record in the datapool file.

■ For datapools opened DP_RANDOM or DP_SHUFFLE, Rewind restarts the random
number sequence.

■ For datapools opened DP_SHARED, Rewind has no effect.

At the start of a suite, datapool cursors always point to the first row.

If you rewind the datapool during a suite run, previously accessed rows are fetched
again.
Test Script Services Reference 25

TSSDatapool.RowCount
Example

This example opens the datapool custdata with default (sequential) access, moves
the access to the second row, and then resets access to the first row.

Dim dp As New TSSDatapool
dp.Open "custdata"
dp.Seek (2)
dp.Rewind

TSSDatapool.RowCount

Returns the number of rows in a datapool.

Syntax

RowCount() As Long

Return Value

On success, this method returns the number of rows in the open datapool.

Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The datapool identifier is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Example

This example opens the datapool custdata and gets the number of rows in the
datapool.

Dim rows as Long
Dim dp As New TSSDatapool
dp.Open "custdata"
rows = dp.RowCount
26 Chapter 3

Datapool Class
TSSDatapool.Search

Searches a datapool for a named column with a specified value.

Syntax

Search (keys[] As NamedValue)

Error Codes

This method may generate one of the following error codes:

■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

■ TSS_EOF. The end of the datapool was reached.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The datapool identifier is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

When a row is found containing the specified values, the cursor is set to that row.

NamedValue is a dimensioned array of name/value pairs. For example, an array of
10 name/value pairs could be implemented as follows:

Dim NV(9,1) As String
NV(0,0)= "name1"
NV(0,1)= "value1"
NV(1,0)= "name2"
NV(1,1)= "value2"
...

Element Description

keys An array containing values to be searched for.
Test Script Services Reference 27

TSSDatapool.Seek
Example

This example searches the datapool custdata for a row containing the column
named Last with the value Doe:

Dim toFind(0,1) As String
toFind(0,0)= "Last"
toFind(0,1)= "Doe"
Dim dp As New TSSDatapool
dp.Open "custdata"
if (dp.Fetch = True) Then

dp.Search toFind
EndIf

TSSDatapool.Seek

Moves the datapool cursor forward.

Syntax

Seek(count As Long)

Return Value

Error Codes

This method may generate one of the following error codes:

■ TSS_EOF. The end of the datapool was reached.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The datapool identifier is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Element Description

count A positive number indicating the number of rows to move forward in the
datapool.
28 Chapter 3

Datapool Class
Comments

This call moves the datapool cursor forward count rows and loads that row into
memory. To access a column of data in the row, call Value.

The meaning of “forward” depends on the accessFlags passed with the open call;
see Open. This call is functionally equivalent to calling Fetch count times.

An end-of-file (TSS_EOF) error results if cursor wrapping is disabled (by access flag
TSS_DP_NOWRAP) and count moves the access row beyond the last row. If Value is
then called, a runtime error occurs.

Example

This example opens the datapool custdata with the default (sequential) access and
moves the cursor forward two rows.

Dim dp As New TSSDatapool
dp.Open "custdata"
dp.Seek 2

See Also

Fetch, Open, Value

TSSDatapool.Value

Retrieves the value of the specified datapool column in the current row.

Syntax

Value (columnName As String) As Variant

Return Value

On success, this method returns the value of the specified datapool column in the
current row.

Element Description

columnName The name of the column whose value you want to retrieve.
Test Script Services Reference 29

TSSDatapool.Value
Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

■ TSS_EOF. The end of the datapool was reached.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The specified columnName is not a valid column in the datapool.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

This call gets the value of the specified datapool column from the current datapool
row, which will have been loaded into memory either by Fetch or Seek.

By default, the returned value is a column from a CSV datapool file located in a
Rational datastore. If the datapool open call included the TSS_DP_NO_OPEN access
flag, the returned value comes from an override list provided with the open call.

Example

This example retrieves the value of the column named Middle in the first row of the
datapool custdata.

Dim colVal as Variant
Dim dp As New TSSDatapool
dp.Open "custdata"
if (dp.Fetch = True) Then

colVal = dp.Value "Middle"
EndIf

See Also

Fetch, Open, Seek
30 Chapter 3

Logging Class
Logging Class

Use the logging methods to build the log that TestManager uses for analysis and
reporting. You can log events, messages, or test case results.

A logged event is the record of something that happened. Use the environment
variable EVAR_LogEvent_control (page 43) to control whether or not an event is
logged.

An event that gets logged may have associated data (either returned by the server or
supplied with the call). Use the environment variable EVAR_LogData_control
(page 43) to control whether or not any data associated with an event is logged.

Applicability

Commonly used with TestManager and QualityArchitect.

Summary

Use the methods listed in the following table to write to the TestManager log. They are
methods of class TSSLog.

TSSLog.Event

Logs an event.

Syntax

Event (eventType As String, [result As Integer], [description
As String], [property[] As NamedValue])

Method Description

Event Logs an event.

Message Logs a message event.

TestCaseResult Logs a test case event.
Test Script Services Reference 31

TSSLog.Event
Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. An unknown result was specified.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Element Description

eventType Contains the description to be displayed in the log for this event.

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ TSS_LOG_RESULT_NONE (default: no notification)
■ TSS_LOG_RESULT_PASS

■ TSS_LOG_RESULT_FAIL

■ TSS_LOG_RESULT_WARN

■ TSS_LOG_RESULT_STOPPED

■ TSS_LOG_RESULT_INFO

■ TSS_LOG_RESULT_COMPLETED

■ TSS_LOG_RESULT_UNEVALUATED

0 specifies the default.

description Contains the string to be put in the entry’s failure description field.

property An array containing property name/value pairs, where
property[n].name is the property name and property[n].value is
its value.
32 Chapter 3

Logging Class
Comments

The event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR_LogData_control (page 43) or
EVAR_LogEvent_control (page 43) environment variables. Alternatively, the
logging preference can be set with the EVAR_Log_level (page 44) and
EVAR_Record_level (page 45) environment variables. The
TSS_LOG_RESULT_STOPPED, TSS_LOG_RESULT_COMPLETED, and
TSS_LOG_RESULT_UNEVALUATED preferences are intended for internal use.

NamedValue is a dimensioned array of name/value pairs. For example, an array of
10 name/value pairs could be implemented as follows:

Dim NV(9,1) As String
NV(0,0)= "name1"
NV(0,1)= "value1"
NV(1,0)= "name2"
NV(1,1)= "value2"
...

Example

This example logs the beginning of an event of type Login Dialog.

Dim scriptProp (1,1) As String
scriptProp(0,0)= "ScriptName"
scriptProp(0,1)= "Login"
scriptProp(1,0)= "LineNumber"
scriptProp(1,1)= "1"
Dim log As New TSSLog
log.Event "Login Dialog",0,"Login script failed",scriptProp

TSSLog.Message

Logs a message.

Syntax

Message (message As String, [result As Integer], [description
As String])
Test Script Services Reference 33

TSSLog.Message
Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR_LogData_control (page 43) or
EVAR_LogEvent_control (page 43) environment variables. Alternatively, the
logging preference can be set with the EVAR_Log_level (page 44) and
EVAR_Record_level (page 45) environment variables. The
TSS_LOG_RESULT_STOPPED, TSS_LOG_RESULT_COMPLETED, and
TSS_LOG_RESULT_UNEVALUATED preferences are intended for internal use.

Element Description

message Specifies the string to log.

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ TSS_LOG_RESULT_NONE (default: no notification)
■ TSS_LOG_RESULT_PASS

■ TSS_LOG_RESULT_FAIL

■ TSS_LOG_RESULT_WARN

■ TSS_LOG_RESULT_STOPPED

■ TSS_LOG_RESULT_INFO

■ TSS_LOG_RESULT_COMPLETED

■ TSS_LOG_RESULT_UNEVALUATED

0 specifies the default.

description Specifies the string to be put in the entry’s failure description field.
34 Chapter 3

Logging Class
Example

This example logs the following message: --Beginning of timed block T1--.

Dim log As New TSSLog
log.Message "--Beginning of timed block T1--"

TSSLog.TestCaseResult

Logs a test case result.

Syntax

TestCaseResult (testcase As String, [result As Integer],
[description As String], [property[] As NamedValue])

Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

Element Description

testcase Identifies the test case whose result is to be logged.

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ TSS_LOG_RESULT_NONE (default: no notification)
■ TSS_LOG_RESULT_PASS

■ TSS_LOG_RESULT_FAIL

■ TSS_LOG_RESULT_WARN

■ TSS_LOG_RESULT_STOPPED

■ TSS_LOG_RESULT_INFO

■ TSS_LOG_RESULT_COMPLETED

■ TSS_LOG_RESULT_UNEVALUATED

0 specifies the default.

description Contains the string to be displayed in the event of a log failure.

property An array containing property name/value pairs, where
property[n].name is the property name and property[n].value is
its value.
Test Script Services Reference 35

TSSLog.TestCaseResult
■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

A test case is a condition, specified in a list of property name/value pairs, that you are
interested in. This method searches for the test case and logs the result of the search.

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR_LogData_control (page 43) or
EVAR_LogEvent_control (page 43) environment variables. Alternatively, the
logging preference may be set by the EVAR_Log_level (page 44) and
EVAR_Record_level (page 45) environment variables. The
TSS_LOG_RESULT_STOPPED, TSS_LOG_RESULT_COMPLETED, and
TSS_LOG_RESULT_UNEVALUATED preferences are intended for internal use.

NamedValue is a dimensioned array of name/value pairs. For example, an array of
10 name/value pairs could be implemented as follows:

Dim NV(9,1) As String
NV(0,0)= "name1"
NV(0,1)= "value1"
NV(1,0)= "name2"
NV(1,1)= "value2"
...

Example

This example logs the result of a test case named Verify login.

Dim loginResult(0,1) As String
loginResult(0,0)= "Result"
loginResult(0,1)= "OK"
Dim log As New TSSLog
log.TestCaseResult "Verify login",0,NULL,loginResult
36 Chapter 3

Measurement Class
Measurement Class

Use the measurement methods to set timers and environment variables and to get the
value of internal variables. Timers allow you to gauge how much time is required to
complete specific activities under varying load conditions. Environment variables
allow for the setting and passing of information to virtual testers during script
playback. Internal variables store information used by the TestManager to initialize
and reset virtual tester parameters during script playback.

Applicability

Commonly used with TestManager.

Summary

The following table lists the measurement methods. They are methods of class
TSSMeasure.

Method Description

CommandEnd Logs an end-command event.

CommandStart Logs a start-command event.

EnvironmentOp Sets an environment variable.

GetTime Gets the elapsed time of a run.

InternalVarGet Gets the value of an internal variable.

Think Sets a think-time delay.

TimerStart Marks the start of a block of actions to be timed.

TimerStop Marks the end of a block of timed actions.
Test Script Services Reference 37

TSSMeasure.CommandEnd
TSSMeasure.CommandEnd

Marks the end of a timed command.

Syntax

CommandEnd ([result As Integer], [description As String],
[starttime As Long], [endtime As Long], [logdata As String],
[property[] As NamedValue])

Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

Element Description

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ TSS_LOG_RESULT_NONE (default: no notification)
■ TSS_LOG_RESULT_PASS

■ TSS_LOG_RESULT_FAIL

■ TSS_LOG_RESULT_WARN

■ TSS_LOG_RESULT_STOPPED

■ TSS_LOG_RESULT_INFO

■ TSS_LOG_RESULT_COMPLETED

■ TSS_LOG_RESULT_UNEVALUATED.

0 specifies the default.

description Contains the string to be displayed in the event of failure.

starttime An integer indicating a time stamp to override the time stamp set by
CommandStart. To use the time stamp set by CommandStart, specify as
0.

endtime An integer indicating a time stamp to override the current time. To use
the current time, specify as 0.

logdata Text to be logged describing the ended command.

property An array containing property name/value pairs, where
property[n].name is the property name and property[n].value is
its value.
38 Chapter 3

Measurement Class
■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

The command name and label entered with CommandStart are logged, and the run
state is restored to the value that existed before the CommandStartcall.

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR_LogData_control (page 43) or
EVAR_LogEvent_control (page 43) environment variables. Alternatively, the
logging preference can be set with the EVAR_Log_level (page 44) and
EVAR_Record_level (page 45) environment variables. The
TSS_LOG_RESULT_STOPPED, TSS_LOG_RESULT_COMPLETED, and
TSS_LOG_RESULT_UNEVALUATED preferences are intended for internal use.

NamedValue is a dimensioned array of name/value pairs. For example, an array of
10 name/value pairs could be implemented as follows:

Dim NV(9,1) As String
NV(0,0)= "name1"
NV(0,1)= "value1"
NV(1,0)= "name2"
NV(1,1)= "value2"
...

Example

This example marks the end of the timed activity specified by the previous
CommandStart call.

Dim measure As TSSMeasure
measure.CommandEnd TSS_LOG_RESULT_PASS, "Command timer failed", 0, 0,
"Login command completed", NULL

See Also

CommandStart, TSSAdvanced.LogCommand
Test Script Services Reference 39

TSSMeasure.CommandStart
TSSMeasure.CommandStart

Starts a timed command.

Syntax

CommandStart(label As String, name As String, state As Long)

Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

A command is a term or string, such as sock or deposit, that you expect to occur in
client/server conversations. By placing CommandStart and CommandEnd calls
around expected strings, you can record the time required to complete associated
actions.

During script playback, TestManager displays progress for different virtual testers.
What is displayed for a group of actions associated by CommandStart depends on
the run state argument. Run states are listed in the run state table starting on page 86.

Element Description

label The name of the timer to be started and logged, or NULL for an unlabeled
timer.

name The name of the command to time.

state The run state to log with the timed command. See the run state table starting
on page 86. You can enter 0 (MST_UNDEF) if you’re uninterested in the
run state.
40 Chapter 3

Measurement Class
CommandStartincrements IV_cmdcnt, sets the name, label, and run state for
TestManager, and sets the beginning time stamp for the log entry. CommandEnd
restores the TestManager run state to the run state that was in effect immediately
before CommandStart.

Example

This example starts timing the period associated with the string Login.

Dim measure As TSSMeasure
measure.CommandStart "initTimer", "Login", MST_WAITRESP

See Also

CommandEnd, TSSAdvanced.LogCommand

TSSMeasure.EnvironmentOp

Sets a virtual tester environment variable.

Syntax

EnvironmemtOp (envVar As EvarKey, envOp As EvarOp, envVal As
Variant)

Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

Element Description

envVar The environment variable to operate on. Valid values are described in the
environment variable table starting on page 42.

envOP The operation to perform. Valid values are described in the environment
operations table starting on page 49.

envVal The value operated on as specified by envOP to produce the new value for
envVar.
Test Script Services Reference 41

TSSMeasure.EnvironmentOp
■ TSS_INVALID. The timer label is invalid, or there is no unlabeled timer to stop.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

Environment variables define and control the environment of virtual testers. Using
environment variables allows you to test different assumptions or runtime scenarios
without re-writing your test scripts. For example, you can use environment variables
to specify:

■ A virtual tester’s average think time, the maximum think time, and how the think
time is mathematically distributed around a mean value

■ How long to wait for a response from the server before timing out

■ The level of information that is logged and available to reports

The following table describes the valid values of argument envVar. Note the
following about EVAR_LogData_control and EVAR_LogEvent_control:

■ They correspond to the check boxes in the TestManager TSS Environment
Variables dialog box. Use this dialog box to set logging and reporting options at
the suite rather than the script level.

■ They are more flexible alternatives to EVAR_Log_level and EVAR_Report_level.

Name Type/Values/(default) Contains

EVAR_Delay_dly_scale integer 0–2000000000
percent (100)

The scaling factor applied
globally to all timing
delays. A value of 100%,
which is the default, means
no change. A value of 50%
means one-half the delay,
which is twice as fast as the
original; 200% means twice
the delay, which is half as
fast. A value of zero means
no delay.
42 Chapter 3

Measurement Class
EVAR_LogData_control NONE,
PASS,
FAIL,
WARNING,
STOPPED,
INFORMATIONAL,
COMPLETED,
UNEVALUATED
ANYRESULT

Flags indicating the level of
detail to log. Specify one or
more. These result flags
(except the last, which
specifies everything)
correspond to flags entered
with the vent, essage,
estCaseResult,
ommandEnd, and
ogCommand . For example,
specifying FAIL selects
everything logged by that
specified flag FAIL.

EVAR_LogEvent_control NONE,
PASS,
FAIL,
WARNING,
STOPPED,
INFORMATIONAL,
COMPLETED,
UNEVALUATED,
TIMERS,
COMMANDS,
ENVIRON,
STUBS,
TSSERROR,
TSSPROXYERROR
ANYRESULT

Flags indicating the level of
detail to log for reports.
Specify one or more. The
first nine result flags
(NONE thru
UNEVALUATED)
correspond to flags
specified with the vent,
essage,
estCaseResult,
ommandEnd, and
ogCommand . The other
flags (TIMERS thru
TSSPROXYERROR)
indicate the event objects.
For example, FAIL plus
COMMANDS selects for
reporting all commands
that recorded a failed result.
ANYRESULTS selects
everything.

Name Type/Values/(default) Contains
Test Script Services Reference 43

TSSMeasure.EnvironmentOp
EVAR_Log_level string "OFF" ("TIMEOUT")
"UNEXPECTED" "ERROR"
"ALL"

The level of detail to log:
■ OFF – Log nothing.
■ TIMEOUT – Log

emulation command
time-outs.

■ UNEXPECTED – Log
time-outs and
unexpected responses
from emulation
commands.

■ ERROR – Log all
emulation commands
that set IV_error to a
nonzero value. Log
entries include
IV_error and
IV_error_text.

■ ALL – Log everything:
emulation command
types and IDs, script IDs,
source files, and line
numbers.

Name Type/Values/(default) Contains
44 Chapter 3

Measurement Class
EVAR_Record_level "MINIMAL" "TIMER"
"FAILURE" ("COMMAND")
"ALL"

The level of detail to log for
reporting:
■ MINIMAL – Record only

items necessary for
reports to run. Use this
value when you do not
want user activity to be
reported.

■ TIMER – MINIMAL plus
start_time and
stop_time emulation
commands. Reports do
not contain response
times for each emulation
command, emulation
command failure does
not show up, and the
result file for each virtual
tester is small. Use this
setting if you are not
concerned with the
response times or
pass/fail status of
individual emulation
commands.

■ FAILURE – TIMER
plus emulation
command failures and
some environment
variable changes. Use
this setting if you want
the advantages of a small
result file but you also
that no emulation
command failed.

■ COMMAND – FAILURE
plus emulation
command successes and
some environment
variable changes.

■ ALL – COMMAND plus all
environment variable
changes. Complete
recording.

Name Type/Values/(default) Contains
Test Script Services Reference 45

TSSMeasure.EnvironmentOp
EVAR_Suspend_check string ("ON") "OFF" Controls whether you can
suspend a virtual tester
from a Monitor view:
■ ON – A suspend request

is checked before
beginning the think time
interval by each send
emulation command.

■ OFF – Disable suspend
checking.

EVAR_Think_avg integer 0–2000000000 ms
(5000)

The average think-time
delay (the amount of time
that, on average, a user
delays before performing
an action).

EVAR_Think_cpu_dly_scale integer 0–2000000000 ms
(100)

The scaling factor applied
globally to CPU (processing
time) delays. Used instead
of
EVAR_Think_dly_scal
e if EVAR_Think_avg is
less than
EVAR_Think_cpu_thre
shold. Delay scaling is
performed before
truncation (if any) by
EVAR_Think_max.

EVAR_Think_cpu_threshold integer 0–2000000000 ms (0) The threshold value used to
distinguish CPU delays
from think-time delays.

Name Type/Values/(default) Contains
46 Chapter 3

Measurement Class
EVAR_Think_def string "FS" "LS" "FR" ("LR") "FC"
"LC"

The starting point of the
think-time interval:
■ FS – the submission time

of the previous send
emulation command

■ LS – the completion time
of the previous send
emulation command

■ FR – the time the first
data of the previous
receive emulation
command was received

■ LR – the time the last
data of the previous
receive emulation
command was received,
or LS if there was no
intervening receive
emulation command

■ FC – the submission
time of the previous
connect emulation
command (uses the
IV_fc_ts internal
variable)

■ LC – the completion time
of the previous connect
emulation command
(uses the IV_lc_ts
internal variable)

Name Type/Values/(default) Contains
Test Script Services Reference 47

TSSMeasure.EnvironmentOp
EVAR_Think_dist string ("CONSTANT")
"UNIFORM" "NEGEXP"

The think-time
distrubution:
■ CONSTANT – sets a

constant distribution
equal to Think_avg

■ UNIFORM – sets a
random think-time
interval distributed
uniformly in the range:
[EVAR_Think_avg -
EVAR_Think_sd,
EVAR_Think_avg +
EVAR_Think_sd]

■ NEGEXP – sets a random
think-time interval
approximating a bell
curve with
EVAR_Think_avg equal
to standard deviation

EVAR_Think_dly_scale integer 0 – 2000000000 ms
(100)

The scaling factor applied
globally to think-time
delays. Used instead of
EVAR_Think_cpu_dly_
scale if
EVAR_Think_avg is
greater than
EVAR_Think_cpu_thre
shold. Delay scaling is
performed before
truncation (if any) by
EVAR_Think_max.

EVAR_Think_max integer 0–2000000000 ms
(2000000000)

A maximum threshold for
think times that replaces
any larger setting.

EVAR_Think_sd integer 0–2000000000 ms (0) Where
EVAR_Think_dist is set
to UNIFORM, specifies the
think-time standard
deviation.

Name Type/Values/(default) Contains
48 Chapter 3

Measurement Class
Environment control options allow a script to control a virtual tester’s environment
by operating on the environment variables. Every environment variable has, instead
of a single value, a group of values: a default value, a saved value, and a current
value.

■ default – The value of an environment variable before any commands are applied
to it. Environment variables are automatically initialized to a default value, and,
like persistent variables, retain their values across scripts. The reset command
resets the default value, as listed in the following table.

■ saved – The saved value of an environment variable can be used as one way to
retain the present value of the environment variable for later use. The save and
restore commands manipulate the saved value.

■ current – TSS supports a last-in-first-out “value stack” for each environment
variable. The current value of an environment variable is simply the top element of
that stack. The current value is used by all of the commands. The push and pop
commands manipulate the stack.

The following table describes the valid values of envOP.

Example

This example turns off EVAR_Suspend_check before the start of a block of code and
then turns it back on at the end of the block.

Dim measure As New TESTSERVICESLib.TSSMeasure
measure.EnvironmentOP EVAR_Suspend_check, EVAR_pop, "OFF"
‘input emulation code
measure.EnvironmentOP EVAR_Suspend_check, EVAR_pop, "ON"

Operation Description

EVOP_eval Operate on the value at the top of the variable’s stack.

EVOP_pop Remove the variable value at the top of the stack.

EVOP_push Push a value to the top of a variable’s stack.

EVOP_reset Set the value of a variable to the default and discard any other values in the
stack.

EVOP_restore Set the saved value to the current value.

EVOP_save Save the value of a variable.

EVOP_set Set a variable to the specified value.
Test Script Services Reference 49

TSSMeasure.GetTime
TSSMeasure.GetTime

Gets the elapsed time since the beginning of a suite run.

Syntax

GetTime() As Long

Return Value

On success, this method returns the number of milliseconds elapsed in a suite run.

Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

For execution within TestManager, this call retrieves the time elapsed since the start
time shared by all virtual testers in all test scripts in a suite.

For a test script executed outside TestManager, the time returned is the milliseconds
elapsed since the call to TSSSession.Connect, or since the value of
CTXT_timeZero set by TSSSession.Context.

Example

This example stores the elapsed time in etime.

Dim etime As Long
Dim measure As New TSSMeasure
etime = measure.GetTime
50 Chapter 3

Measurement Class
TSSMeasure.InternalVarGet

Gets the value of an internal variable.

Syntax

InternalVarGet (internVar As IVKey, ivVal As Variant)

Error Codes

This method may generate one of the following error codes:

■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The timer label is invalid, or there is no unlabeled timer to stop.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

Internal variables contain detailed information that is logged during script playback
and used for performance analysis reporting. This function allows you to customize
logging and reporting detail.

The following table lists the internal variables that can be entered with the
internVar argument.

Element Description

internVar The internal variable to operate on. Valid values are described in the internal
variables table on page 51.

ivVal OUTPUT. The returned value of the specifiedinternVar.

Variable Contains

alltext Response text up to the value of Max_nrecv_saved. The same
as response.

cmd_id The ID of the most recent emulation command.
Test Script Services Reference 51

TSSMeasure.InternalVarGet
cmdcnt A running count of the number of emulation commands the
script has executed.

col The current column position (1-based) of the cursor (ASCII
screen emulation variable).

column_headers The two-line column header if Column_headers is ON.

command The text of the most recent emulation command.

cursor_id The last cursor declared by sqldeclare_cursor or opened by
sqlopen_cursor.

error The status of the last emulation command. Most values for
error are supplied by the server.

error_text The full text of the error from the last emulation command. If
error is 0, error_text returns . For an SQL database or
TUXEDO error, the text is provided by the server.

error_type If you are emulating a TUXEDO session and error is nonzero,
error_type contains one of the following values:

0 (no error)

1 VU/TUX Usage Error

2 TUXEDO System/T Error

3 TUXEDO FML Error

4 TUXEDO FML32 Error

5 Application under test Error

6 Internal Error

If you are emulating an IIOP session and error is nonzero,
error_type contains one of the following values:

0 (no error)

1 IIOP_EXCEPTION_SYSTEM

2 IIOP_EXCEPTION_USER

3 IIOP_ERROR

fc_ts The “first connect” time stamp for http_request and
sock_connect.

fr_ts The time stamp of the first received data of sqlnrecv,
http_nrecv, http_recv, http_header_recv, sock_nrecv,
or sock_recv. For sqlexec and sqlprepare, fr_ts is set to
the time the SQL database server responded to the SQL
statement.

Variable Contains
52 Chapter 3

Measurement Class
fs_ts The time the SQL statement was submitted to the server by
sqlexec or sqlprepare, or the time when the first data was
submitted to the server by http_request or sock_send.

host The host name of the computer on which the script is running.

lc_ts The “last connect” time stamp for http_request and
sock_connect.

lineno The line number in source_file of the previously executed
emulation command.

lr_ts The time stamp of the last received data for sqlnrecv,
http_nrecv, http_recv, http_header_recv, sock_nrecv,
or sock_recv. For sqlexec and sqlprepare, lr_ts is set to
the time the SQL database server responded to the SQL
statement.

ls_ts The time the SQL statement was submitted to the server by
sqlexec or sqlprepare, or the time the last data was
submitted to the server by http_request or sock_send.

mcommand The actual (mapped) sequence of characters submitted to the
application under test by the most recent send or msend
command. For send commands, mcommand is always equivalent
to command.

ncnull The number of null characters in an application response
examined by the previous receive command in attempting to
match this response.

ncols The number of columns in the current screen (ASCII screen
emulation variable).

ncrecv The total number of nonnull characters from an application
response examined by the previous receive command in
attempting to match this response.

ncxmit The total number of characters transmitted to the application by
the previous send or msend command.

nkxmit The total number of “keystrokes” transmitted to the application
by the previous send or msend command. For send commands,
nkxmit is always equivalent toncxmit.

nrecv The number of rows processed by the last sqlnrecv, or the
number of bytes received by the last http_nrecv, http_recv,
sock_nrecv, or sock_recv.

nrows The number of rows in the current screen (ASCII screen
emulation variable).

Variable Contains
Test Script Services Reference 53

TSSMeasure.InternalVarGet
Example

This example stores the current value of the IVerror internal variable in IVVal.

Dim measure As New TSSMeasure
measure.InternalVarGet IV_error,IVVal

nusers The number of total virtual testers in the current TestManager
session.

nxmit The total number of characters contained in the SQL statements
transmitted to the server in the last sqlexec or sqlprepare
command, or the number of bytes transmitted by the last
http_request or sock_send.

response Same asrow.

row The current row position (1-based) of the cursor (ASCII screen
emulation variable).

script The name of the script currently being executed.

source_file The name of the file that was the source for the portion of the
script being executed.

statement_id The value assigned as the prepared statement ID, which is
returned by sqlprepare and sqlalloc_statement.

total_nrecv The total number of bytes received for all HTTP and socket
receive emulation commands issued on a particular connection.

total_rows Set to the number of rows processed by the SQL statements. If
the SQL statements do not affect any rows, total_rows is set to
0. If the SQL statements return row results, total_rows is set to
0 by sqlexec, and then incremented by sqlnrecv as the row
results are retrieved.

tux_tpurcode TUXEDO user return code, which mirrors the TUXEDO API
global variable tpurcode. It can be set only by the
tux_tpcall, tux_tpgetrply, tux_tprecv, and
tux_tpsend emulation commands.

uid The numeric ID of the current virtual tester.

user_group The name of the user group (from the suite) of the virtual tester
running the script.

version The full version string of TestManager (for example, 7.5.0.1045).

Variable Contains
54 Chapter 3

Measurement Class
TSSMeasure.Think

Puts a time delay in a script that emulates a pause for thinking.

Syntax

Think ([thinkAverage As Long])

Error Codes

This method may generate one of the following error codes:

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

A think-time delay is a pause inserted in a performance test script in order to emulate
the behavior of actual application users.

For a description of environment variables, see EnvironmentOp on page 41.

Example

This example calculates a pause based on the value stored in the environment variable
EVAR_Think_avg and inserts the pause into the script.

Dim measure As New TSSMeasure
measure.Think

See Also

TSSAdvanced.ThinkTime

Element Description

thinkAverage If specified as 0 or omitted, the number of milliseconds stored in the
EVAR_Think_avg environment variable is used as the basis of the
calculation. Otherwise, the calculation is based on the value specified.
Test Script Services Reference 55

TSSMeasure.TimerStart
TSSMeasure.TimerStart

Marks the start of a block of actions to be timed.

Syntax

TimerStart ([label As String], [timeStamp As Long])

Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

This call associates a starting time stamp with label for later reference by
TimerStop. The TestManager reporting system uses captured timing information for
performance analysis reports.

Example

This example times actions designated event1, logging the current time.

Dim measure As New TSSMeasure
measure.TimerStart "event1"
‘actions to be timed
measure.TimerStop "event1"

Element Description

label The name of the timer to be inserted into the log. If specified as NULL, an
unlabeled timer is created. Only one unlabeled timer is supported at a time.

timeStamp An integer specifying a time stamp to override the current time. If specified as
0, the current time is logged.
56 Chapter 3

Measurement Class
See Also

TimerStop

TSSMeasure.TimerStop

Marks the end of a block of timed actions.

Syntax

TimerStop (label As String, [timeStamp As Long], [rmFlag As Long])

Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The timer label is invalid, or there is no unlabeled timer to stop.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Element Description

label The name of the timer to be stopped and logged. If label does not match a
label entered with a previous Measure.TimerStart call, the most recent
unlabeled timer is stopped.

time stamp If specified as 0, the current time is recorded.

rmFlag Specify as 0(default) to stop the timer without removing it; otherwise, specify
as nonzero. A timer that is not removed can be stopped multiple times in
order to measure intervals comprising this timed event.
Test Script Services Reference 57

Utility Class
Comments

Normally, this call associates an ending time stamp with a label specified with
TimerStart. If the specifiedlabel was not set by a previous TimerStart but an
unlabeled timer exists, this call uses the start time specified with TimerStart for the
unlabeled timer. If rmFlag is specified as 0, multiple invocations of TimerStop are
allowed against a single TimerStart. This usage (see the example) allows you to
subdivide a timed event into separate timed intervals.

Example

This example stops an unlabeled timer without removing it.

Dim measure As New TSSMeasure
measure.TimerStart()
‘actions to be timed
measure.TimerStop "event1"
‘other actions to be timed
measure.TimerStop "event2"

See Also

TimerStart

Utility Class

Use the utility methods to perform actions common to many test scripts.

Applicability

Commonly used with TestManager and QualityArchitect.
58 Chapter 3

Utility Class
Summary

The following table lists the utility methods. They are methods of class TSSUtility.

Method Description

ApplicationPid Gets the process ID of an application.

ApplicationStart Starts an application.

ApplicationWait Waits for an application to terminate.

Delay Delays the specified number of milliseconds.

ErrorDetail Retrieves error information about a failure.

GetComputerConfiguration
AttributeList

Gets the list of computer configuration
attributes and their values.

GetComputerConfiguration
AttributeValue

Gets the value of a computer configuration
attribute.

GetPath Gets a pathname.

GetScriptOption Gets the value of a script playback option.

GetTestCaseConfiguration
Attribute

Gets the value of a test case configuration
attribute.

GetTestCaseConfiguration
AttributeList

Gets the list of test case configuration
attributes and their values.

GetTestCaseConfigurationName Gets the name of the configuration (if any)
associated with the current test case.

GetTestCaseName Gets the name of the test case in use.

GetTestToolOption Gets a test case tool option.

NegExp Gets the next negative exponentially
distributed random number with the specified
mean.

Rand Gets the next random number.

SeedRand Seeds the random number generator.

StdErrPrint Prints a message to the virtual tester’s error
file.

StdOutPrint Prints a message to the virtual tester’s output
file.
Test Script Services Reference 59

TSSUtility.ApplicationPid
TSSUtility.ApplicationPid

Gets the process ID of an application.

Syntax

ApplicationPid(appHandle As Long) As Integer

Return Value

On success, this method returns the system process ID of the specified application. On
failure, it returns 0: call ErrorDetail for information.

Comments

This method works for applications started by ApplicationStart.

A successful invocation does not imply that the application whose PID is returned is
still alive nor guarantee that the application is still running under this PID.

Example

This example returns the PID of application myApp.

Dim MyAppHandle As Long
Dim MyAppPID As Integer
Dim util As New TSSUtility
myAppHandle = util.ApplicationStart ("myApp", "d:\myDir", 0)
myAppPID = util.ApplicationPid (myAppHandle)

See Also

ApplicationStart, ApplicationWait

Uniform Gets the next uniformly distributed random
number in the specified range.

UniqueString Returns a unique text string.

Method Description

Element Description

appHandle The ID of the application whose PID you want to get. Returned by
ApplicationStart.
60 Chapter 3

Utility Class
TSSUtility.ApplicationStart

Starts an application.

Syntax

ApplicationStart(appHandle As String, [workingDir As String],
[flags As Long]) As Long

Return Value

On success, this method returns a handle for the started application. On failure, it
returns 0: call ErrorDetail for information.

Comments

Example

This example starts application myApp.

Dim myAppHandle As Long
Dim util As New TSSUtility
Long myAppHandle = util.ApplicationStart ("myApp", "d:\myDir", 0)

See Also

ApplicationPid, ApplicationWait

Element Description

appHandle The pathname of the application to be started, which can include options
and arguments. The file suffix can be omitted.

workingDir The directory in which to start the application. The current directory if not
specified.

flags Reserved for future use. Specify as 0.
Test Script Services Reference 61

TSSUtility.ApplicationWait
TSSUtility.ApplicationWait

Waits for an application to terminate.

Syntax

ApplicationWait(app As Long, [exitStatus As Integer], [timeout
As Integer])

Error Codes

This method may generate one of the following error codes:

■ TSS_FAIL. The application was still running when the time-out expired.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_SYSERROR. The system returned an error: call ErrorDetail for
information.

■ TSS_NOTFOUND. The process indicated by app was not found. It may have
terminated before this call or app may be an invalid handle.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

This method works for applications started by ApplicationStart.

If app is still running at the time this call returns, exitStatus contains NULL. If app
has terminated at the time of return, exitStatus contains its termination code.

Element Description

app The application that you are waiting for. Returned by ApplicationStart.

exitStatus OUTPUT. If not NULL, the exit status of app.

timeout The number of milliseconds to wait for app to terminate or 0 to return
immediately.
62 Chapter 3

Utility Class
Example

This example waits 600 milliseconds for application myApp to terminate.

Dim myAppHandle As Long
Dim termStatus As Integer
Dim util As New TSSUtility
myAppHandle = util.ApplicationStart ("myApp")
util.ApplicationWait (myAppHandle, termStatus, 600)

See Also

ApplicationPid, ApplicationStart

TSSUtility.Delay

Delays script execution for the specified number of milliseconds.

Syntax

Delay (msecs As Long)

Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

The delay is scaled as indicated by the contents of the EVAR_Delay_dly_scale
environment variable. The accuracy of the time delayed is subject to operating system
limitations.

Element Description

msecs The number of milliseconds to delay script execution.
Test Script Services Reference 63

TSSUtility.ErrorDetail
Example

This example delays execution for 10 milliseconds.

Dim util As New TSSUtility
util.Delay(10)

TSSUtility.ErrorDetail

Retrieves error information about a failure.

Syntax

ErrorDetail (errorText As String) As Long

Error Codes

This method returns TSS_OK if the previous call succeeded. If the previous call failed,
TSSUtility.ErrorDetail returns one of the error codes listed below and corresponding
errorText.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ ERROR_NO_ERROR_MESSAGE. An attempt was made to fetch a non-existent
message.

■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Element Description

errorText OUTPUT. Returned explanatory error message about the previous TSS call,
or an empty string ("") if the previous TSS call did not fail.
64 Chapter 3

Utility Class
Example

This example opens a datapool and, if there is an error, displays the associated error
message text.

Dim fetchRet As Boolean
Dim errorText As String
Dim dp As New TSSDatapool
Dim utility As New TSSUtility
dp.Open "custdata"
fetchRet = dp.Fetch
if (fetchRet = False) Then

utility.ErrorDetail(errorText)
MsgBox "Datapool fetch failed:", &errorText

EndIf

TSSUtility.GetComputerConfigurationAttributeList

Gets the list of computer configuration attributes and their values.

Syntax

GetComputerConfigurationAttributeList () As Variant

Return Value

On success, this method returns an array of computer configuration attribute names
and their values.

Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

You create and maintain computer configuration attributes from TestManager. This
call returns the current settings.

The returned Variant is an array of name/value pairs.
Test Script Services Reference 65

TSSUtility.GetComputerConfigurationAttributeValue
Example

This example returns the current computer configuration attribute list.

Dim config As Variant
Dim util As New TSSUtility
config = util.GetComputerConfigurationAttributeList()

See Also

GetComputerConfigurationAttributeValue

TSSUtility.GetComputerConfigurationAttributeValue

Gets the value of computer configuration attribute.

Syntax

GetComputerConfigurationAttributeValue (name As String) As
String

Return Value

On success, this method returns a handle for the started application. On failure, it
returns NULL: call ErrorDetailfor information.

Example

This example returns the value of the configuration attribute Operating System.

Dim OSVal As String
Dim util As New TSSUtility
OSVal = util.GetComputerConfigurationAttributeValue "Operating System"

See Also

GetComputerConfigurationAttributeList

Element Description

name The name of the computer configuration attribute whose value is to be
returned.
66 Chapter 3

Utility Class
TSSUtility.GetPath

Gets the pathname of a test asset.

Syntax

GetPath (pathKey As Long) As String

Return Value

On success, this method returns the pathname of the currently executing test script.
On failure, it returns NULL: call ErrorDetail for information.

Example

This example returns the path of the currently executing test script.

Dim scriptPath As String
Dim util As New TSSUtility
scriptPath = util.GetPath TSS_SOURCE_PATH

See Also

UniqueString

TSSUtility.GetScriptOption

Gets the value of a test script playback option.

Syntax

GetScriptOption(optionName As String) As String

Element Description

pathKey Specifies one of these values:
■ TSS_SOURCE_PATH to get the location of the source file for the

currently executing test script. On an agent, this is the root destination
to which files are copied from the local computer.

■ TSS_ATTACHED_LOG_FILE_PATH to get the location of files attached
to the log.
Test Script Services Reference 67

TSSUtility.GetTestCaseConfigurationAttribute
Return Value

On success, this method returns the value of the specified script option.

Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Example

This example gets the value of the script option repeat_count.

Dim optVal As Variant
Dim util As New TSSUtility
optVal = util.GetScriptOption "repeat_count"

TSSUtility.GetTestCaseConfigurationAttribute

Gets the value of the specified test case configuration attribute.

Syntax

GetTestCaseConfigurationAttribute (name As String) As Variant

Element Description

optionName The name of the script option whose value is returned.

Element Description

name Specifies the name of the configuration attribute to be returned.
68 Chapter 3

Utility Class
Return Value

On success, this method returns the value of the specified test case configuration
attribute.

Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

You create and maintain test case configuration attributes from TestManager. This call
returns the value of the specified attribute for the current test case.

The returned Variant is an array of name/operator/value triplets.

Example

This example returns the value of the configuration attribute Operating System.

Dim OSVal As Variant
Dim util As New TSSUtility
OSVal = util.GetTestCaseConfigurationAttribute "Operating System"

See Also

GetTestCaseConfigurationAttributeList

TSSUtility.GetTestCaseConfigurationAttributeList

Gets the list of test case configuration attributes and their values.

Syntax

GetTestCaseConfigurationAttributeList () As Variant
Test Script Services Reference 69

TSSUtility.GetTestCaseConfigurationName
Return Value

On success, this method returns an array of test case configuration attribute names,
base values, and operators.

Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

You create and maintain test case configuration attributes from TestManager. This call
returns the current settings for the current test case.

The returned Variant is an array of name/operator/value triplets.

Example

This example returns the current test case configuration attribute list.

Dim config As Variant
Dim util As New TSSUtility
config = util.GetTestCaseConfigurationAttributeList()

See Also

GetTestCaseConfigurationAttribute

TSSUtility.GetTestCaseConfigurationName

Gets the name of the configuration (if any) associated with the current test case.

Syntax

GetTestCaseConfigurationName() As String
70 Chapter 3

Utility Class
 Error Codes

This method may generate one of the following error codes:

■ ERROR_CREATE_SAVE_ARRAY. An attempt to create or destroy a SAFEARRAY
failed (which is likely a system rather than a script error).

■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

A test case specifies the pass criteria for something that needs to be tested. A
configured test case is one that TestManager can execute and resolve as pass or fail.

Example

This example retrieves the name of a test case configuration.

Dim tcConfig As String
Dim util As New TSSUtility
tcConfig = util.GetTestCaseConfigurationName

TSSUtility.GetTestCaseName

Gets the name of the test case in use.

Syntax

GetTestCaseName() As String

Return Value

On success, this method returns the name of the current test case.

Error Codes

This method may generate one of the following error codes:

■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.
Test Script Services Reference 71

TSSUtility.GetTestToolOption
■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

Created from TestManager, a test case specifies the pass criteria for something that
needs to be tested.

Example

This example stores the name of the test case in use in tcName.

Dim tcName As String
Dim util As New TSSUtility
tcName = util.GetTestCaseName

TSSUtility.GetTestToolOption

Gets the value of a test tool execution option.

Syntax

GetTestToolOption(optionName As String) As String

Return Value

On success, this method returns the value of the specified test tool execution option.
On failure, it returns NULL: call ErrorDetail for information.

Comments

If you develop adapters for a new test script type that support options, you can use
this call to get the value of a specified option.

Element Description

optionName The name of the test tool execution option whose value is returned.
72 Chapter 3

Utility Class
Example

This example returns the value of an option called persist.

Dim optval As String
Dim util As New TSSUtility
optval = util.GetTestToolOption "persist"

On success, this method returns a handle for the started application. On failure, it
returns NULL: call ErrorDetail for information.

TSSUtility.NegExp

Gets the next negative exponentially distributed random number with the specified
mean.

Syntax

NegExp (mean As Long) As Long

Return Value

This method returns the next negative exponentially distributed random number
with the specified mean.

Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Element Description

mean The mean value for the distribution.
Test Script Services Reference 73

TSSUtility.Rand
Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

Example

This example seeds the generator and gets a random number with a mean of 10.

Dim next As Long
Dim util As New TSSUtility
util.SeedRand 10
next = util.NegExp(10)

See Also

Rand, SeedRand, Uniform

TSSUtility.Rand

Gets the next random number.

Syntax

Rand() As Long

Return Value

This method returns the next random number in the range 0 to 32767.

Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.
74 Chapter 3

Utility Class
Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

Example

This example gets the next random number.

Dim next as Long
Dim util As New TSSUtility
next = util.Rand()

See Also

SeedRand, NegExp, Uniform

TSSUtility.SeedRand

Seeds the random number generator.

Syntax

SeedRand (seed As Long)

Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Element Description

seed The base integer.
Test Script Services Reference 75

TSSUtility.StdErrPrint
Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

SeedRand uses the argument seed as a seed for a new sequence of random numbers
to be returned by subsequent calls to the Rand routine. If SeedRand is then called
with the same seed value, the sequence of random numbers is repeated. If Rand is
called before any calls are made to SeedRand, the same sequence is generated as
when SeedRand is first called with a seed value of 1.

Example

This example seeds the random number generator with the number 10:

Dim util As New TSSUtility
util.SeedRand(10)

See Also

Rand, NegExp, Uniform

TSSUtility.StdErrPrint

Prints a message to the virtual tester’s error file.

Syntax

StdErrPrint (message As String)

Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

Element Description

message The string to print.
76 Chapter 3

Utility Class
■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and dos not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Example

This example prints to the error file the message Login failed.

Dim util As TSSUtility
util.StdErrPrint "Login failed"

See Also

TSSUtility.StdErrPrint

TSSUtility.StdOutPrint

Prints a message to the virtual tester’s output file.

Syntax

StdOutPrint (message As String)

Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Element Description

message The string to print.
Test Script Services Reference 77

TSSUtility.Uniform
Example

This example prints the message Login successful.

Dim util As TSSUtility
util.StdOutPrint "Login successful"

See Also

TSSUtility.StdErrPrint

TSSUtility.Uniform

Gets the next uniformly distributed random number.

Syntax

Uniform (low As Long, high As Long) As Long

Return Value

This method returns the next uniformly distributed random number in the specified
range, or –1 if there is an error.

Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Element Description

low The low end of the range.

high The high end of the range.
78 Chapter 3

Utility Class
Comments

The behavior of the random number generator routines is affected by the settings of
the Seed and Seed Flags options in a TestManager suite. By default, TestManager sets
unique seeds for each virtual tester, so that each has a different random number
sequence.

Example

This example gets the next uniformly distributed random number between –10 and
10.

Dim next As Long
Dim util As New TSSUtility
util.Uniform -10 10

See Also

Rand, SeedRand, NegExp

TSSUtility.UniqueString

Returns a unique text string.

Syntax

UniqueString() As String

Return Value

On success, this method returns a string guaranteed to be unique in the current test
script or suite run. On failure, it returns NULL: call ErrorDetail for information.

Comments

You can use this call to construct the name for a unique asset, such as a test script
source file.

Example

This example returns a unique text string.

Dim str As String
Dim util As New TSSUtility
str = util.UniqueString()
Test Script Services Reference 79

Monitor Class
Monitor Class

When a suite of test cases or test scripts is played back, TestManager monitors
execution progress and provides a number of monitoring options. The monitoring
methods support the TestManager monitoring options.

Applicability

Commonly used with TestManager and QualityArchitect.

Summary

The following table lists the monitoringmethods. They are methods of class
TSSMonitor.

TSSMonitor.Display

Sets a message to be displayed by the monitor.

Syntax

Display (message As String)

Method Description

Display Sets a message to be displayed by the monitor.

PositionGet Gets the script source file name or line number
position.

PositionSet Sets the script source file name or line number
position.

ReportCommandStatus Gets the runtime status of a command.

RunStateGet Gets the run state.

RunStateSet Sets the run state.

Element Description

message The message to be displayed by the progress monitor.
80 Chapter 3

Monitor Class
Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_NOOP. The TSS server is running proxy.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

This message is displayed until overwritten by another call to Display.

Example

This example sets the monitor display to Beginning transaction.

Dim monitor As Net TSSMonitor
monitor.Display "Beginning transaction"

TSSMonitor.PositionGet

Gets the test script file name or line number position.

Syntax

 PositionGet (srcFile As String , lineNumber As Long)

Element Description

srcFile OUTPUT. The name of a source file. After a successful call, this variable
contains the name of the source file that was specified with the most recent
PositionSetcall.

lineNumber OUTPUT. The name of a local variable. After a successful call, this variable
contains the current line position in srcFile .
Test Script Services Reference 81

TSSMonitor.PositionSet
Error Codes

 This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

TestManager monitoring options include Script View, causing test script lines to be
displayed as they are executed. PositionSet and PositionGet partially support this
monitoring option for TSS scripts: if line numbers are reported, they are displayed
during playback but not the contents of the lines.

The line number returned by this function is the most recent value that was set by
PositionSet. A return value of 0 for line number indicates that line numbers are not
being maintained.

Example

This example gets the name of the current script file and the number of the line to be
accessed next.

Dim scriptFile As String
Dim lineNumber As Long
Dim monitor as New TSSMonitor
monitor.PositionGet scriptFile, lineNumber

See Also

PositionSet

TSSMonitor.PositionSet

Sets the test script file name or line number position.

Syntax

PositionSet ([srcFile As String], [lineNumber As Long])
82 Chapter 3

Monitor Class
Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

TestManager monitoring options include Script View, causing test script lines to be
displayed as they are executed. PositionSet and PositionGet partially support this
monitoring option for TSS scripts: if line numbers are reported, they are displayed
during playback but not the contents of the lines.

Example

This example sets access to the beginning of test script checkLogin.

Dim monitor As New TSSMonitor
monitor.PositionSet "checkLogin",0

See Also

PositionSet

Element Description

srcFile The name of the test script, or NULL for the current test script.

lineNumber The number of the line in srcFile to set the cursor to, or 0 for the current
line.
Test Script Services Reference 83

TSSMonitor.ReportCommandStatus
TSSMonitor.ReportCommandStatus

Reports the runtime status of a command.

Syntax

ReportCommandStatus (status As Long)

Error Codes

This method may generate one of the following error codes:

■ TSS_NOOP. The TSS server is running proxy.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The entered status is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Example

This example reports a failure command status.

Dim monitor as New TSSMonitor
monitor.ReportCommandStatus TSS_CMD_STAT_FAIL

Element Description

status The status of a command. Can be one of the following:
■ TSS_CMD_STAT_FAIL

■ TSS_CMD_STAT_PASS

■ TSS_CMD_STAT_WARN

■ TSS_CMD_STAT_INFO
84 Chapter 3

Monitor Class
TSSMonitor.RunStateGet

Gets the run state.

Syntax

RunStateGet() As Long

Return Value

On success, this method returns one of the run state values listed in the run state table
starting on page 86.

Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

This call is useful for storing the current run state so you can change the state and then
subsequently do a reset to the original run state.

Example

This example gets the current run state.

Dim orig As Long
Dim monitor As New TSSMonitor
orig = monitor.RunStateGet

See Also

RunStateSet
Test Script Services Reference 85

TSSMonitor.RunStateSet
TSSMonitor.RunStateSet

Sets the run state.

Syntax

RunStateSet (state As Long)

Error Codes

This method may generate one of the following error codes:

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. Invalid run state.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

TestManager includes the option to monitor script progress individually for different
virtual testers. The run states are the mechanism used by test scripts to communicate
their progress to TestManager. Run states can also be logged and can contribute to
performance analysis reports.

The following table lists the TestManager run states.

Element Description

state The run state to set. Enter one of the run state values listed in the run state
table starting on page 86.

 Run State Meaning

MST_BIND iiop_bind in progress

MST_BUTTON X button action

MST_CLEANUP cleaning up

MST_CPUDLY cpu delay
86 Chapter 3

Monitor Class
MST_DELAY user-requested delay

MST_DSPLYRESP displaying response

MST_EXITED exited

MST_EXITSQABASIC exited SQABasic code

MST_EXTERN_C executing external C code

MST_FIND find_text find_point

MST_GETTASK waiting for task assignment

MST_HTTPCONN waiting for http connection

MST_HTTPDISC waiting for http disconnect

MST_IIOP_INVOKE iiop_invoke in progress

MST_INCL mask including above basic states

MST_INIT doing startup initialization

MST_INITTASK initializing task

MST_ITDLY intertask delay

MST_MOTION X motion

MST_PMATCH matching response (precv)

MST_RECV_DELAY line_speed delay in recv

MST_SATEXEC executing satellite script

MST_SEND httpsocket send

MST_SEND_DELAY line_speed delay in send

MST_SHVBLCK blocked from shv access

MST_SHVREAD V_VP: reading shared variable

MST_SHVWAIT user requested shv wait

MST_SOCKCONN waiting for socket connection

MST_SOCKDISC waiting for socket disconnect

MST_SQABASIC_CODE running SQABasic code

MST_SQLCONN waiting for SQL client connection

 Run State Meaning
Test Script Services Reference 87

TSSMonitor.RunStateSet
MST_SQLDISC waiting for SQL client disconnect

MST_SQLEXEC executing SQL statements

MST_STARTAPP SQABasic: starting app

MST_SUSPENDED suspended

MST_TEST test case, emulate

MST_THINK thinking

MST_TRN_PACING transactor pacing delay

MST_TUXEDO Tuxedo execution

MST_TYPE typing

MST_UNDEF user’s micro_state is undefined

MST_USERCODE SQAVu user code

MST_WAITOBJ SQABasic: waiting for object

MST_WAITRESP waiting for response

MST_WATCH interactive -W watch record

MST_XCLNTCONN waiting for http connection

MST_XCLNTCONN waiting for socket connection

MST_XCLNTCONN waiting for SQL client connection

MST_XCLNTCONN waiting for X client connection

MST_XCLNTDISC waiting for http disconnect

MST_XCLNTDISC waiting for socket disconnect

MST_XCLNTDISC waiting for SQL client disconnect

MST_XCLNTDISC waiting for X client disconnect

MST_XMOVEWIN X move window

MST_XQUERY X query function

MST_XSYNC X sync state during X query

MST_XWINCMP xwindow_diff comparing windows

MST_XWINDUMP xwindow_diff dumping window

 Run State Meaning
88 Chapter 3

Synchronization Class
Example

This example sets the run state to MST_WAITRESP.

Dim monitor As New TSSMonitor
monitor.RunStateSet MST_WAITRESP

See Also

RunStateGet

Synchronization Class

Use the synchronization methods to synchronize virtual testers during script
playback. You can insert synchronization points and wait periods, and you can
manage variables shared among virtual testers.

Applicability

Commonly used with TestManager.

Summary

The following table lists the synchronization methods. They are methods of class
TSSSync.

N_MST_INCL number of above states

 Run State Meaning

Method Description

SharedVarAssign Performs a shared variable assignment operation.

SharedVarEval Gets the value of a shared variable and operates on the
value as specified.

SharedVarWait Waits for the value of a shared variable to match a specified
range.

SyncPoint Puts a synchronization point in a script.
Test Script Services Reference 89

TSSSync.SharedVarAssign
TSSSync.SharedVarAssign

Performs a shared variable assignment operation.

Syntax

SharedVarAssign (name As String, value As Long, [op As Long]) As
Long

Error Codes

 This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The entered name is not a shared variable.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Element Description

name The name of the shared variable to operate on.

value The right-side value of the assignment expression.

op Assignment operator. Can be one of the following:
■ SHVOP_assign (default)
■ SHVOP_add

■ SHVOP_subtract

■ SHVOP_multliply

■ SHVOP_divide

■ SHVOP_modulo

■ SHVOP_and

■ SHVOP_or

■ SHVOP_xor

■ SHVOP_shiftleft

■ SHVOP_shiftright
90 Chapter 3

Synchronization Class
Comments

Shared variables require configuration. For details, see Appendix A.

Example

This example adds 5 to the value of the shared variable lineCounter and puts the
new value of lineCounter in returnval.

Dim returnVal as Long
Dim sync As New TSSSync
returnVal = sync.SharedVarAssign "lineCounter", 5, SHVOP_add

See Also

SharedVarEval, SharedVarWait

TSSSync.SharedVarEval

Gets the value of a shared variable and operates on the value as specified.

Syntax

SharedVarEval (name As String, value As Long, [op As Long]) As
Long

Error Codes

 This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

Element Description

name The name of the shared variable to operate on.

value OUTPUT. A local container into which the value of name is retrieved.

op Increment/decrement operator for the returned value: Can be one of the
following:
■ SHVADJ_none (default)
■ SHVADJ_pre_inc

■ SHVADJ_post_inc

■ SHVADJ_pre_dec

■ SHVADJ_post_dec
Test Script Services Reference 91

TSSSync.SharedVarWait
■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The entered name is not a shared variable.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

Shared variables require configuration. For details, see Appendix A.

Example

This example post-decrements the value of shared variable lineCounter and stores
the result in val.

Dim val, retVal as Long
Dim sync As New TSSSync
retVal = sync.SharedVarEval "lineCounter", val, SHVADJ_post_inc

See Also

SharedVarAssign, SharedVarWait

TSSSync.SharedVarWait

Waits for the value of a shared variable to match a specified range.

Syntax

SharedVarWait (name As String, min As Long, [max As Long],
[adjust As Long], [timeout As Long], [returnVal As Long]) As
Long

Element Description

name The name of the shared variable to operate on.

min The low range for the value of name.

max The high range for the value of name.
92 Chapter 3

Synchronization Class
Return Value

On success, this method returns 1 (condition was met before time-out) or 0 (time-out
expired before the condition was met).

Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The entered name is not a shared variable.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

This call provides a method of blocking a virtual tester until a user-defined global
event occurs.

adjust The value to increment/decrement the named shared variable by once it
meets the min – max range.

timeout The time-out preference (how long to wait for the condition to be met).
Enter one of the following:
■ A negative number for no time-out.
■ 0 to return immediately with an exit value of 1 (condition met) or 0 (not

met).
■ The number of milliseconds to wait for the value of name to meet the

criteria, before timing out with and returning an exit value of 1 (met) or 0
(not met).

returnVal OUTPUT. The value of name at the time of the return, before any possible
adjustment. If timeout expired before the return, the value is not adjusted.
Otherwise, returnVal is incremented/decremented by adjust.

Element Description
Test Script Services Reference 93

TSSSync.SharedVarWait
If virtual testers are blocked on an event using the same shared variable, TestManager
guarantees that the virtual testers are unblocked in the same order in which they were
blocked.

Although this alone does not ensure an exact multiuser timing order in which
statements following a wait are executed, the additional proper use of the arguments
min, max, and adjust allows control over the order in which multiuser operations
occur. (UNIX or Windows NT determines the order of the scheduling algorithms. For
example, if two virtual testers are unblocked from a wait in a given order, the tester
that was unblocked last might be released before the tester that was unblocked first.)

If a shared variable’s value is modified, any subsequent attempt to modify this
value — other than through SharedVarWait — blocks execution until all virtual
testers already blocked have had an opportunity to unblock. This ensures that events
cannot appear and then quickly disappear before a blocked virtual tester is
unblocked. For example, if two virtual testers were blocked waiting for name to equal
or exceed N, and if another virtual tester assigned the value N to name, then
TestManager guarantees both virtual testers the opportunity to unblock before any
other virtual tester is allowed to modify name.

Offering the opportunity for all virtual testers to unblock does not guarantee that all
virtual testers actually unblock, because if SharedVarWait is called with a nonzero
value of adjust by one or more of the blocked virtual testers, the shared variable
value changes during the unblocking script. In the previous example, if the first user
to unblock had called SharedVarWait with a negative adjust value, the event
waited on by the second user would no longer be true after the first user unblocked.
With proper choice of adjust values, you can control the order of events.

Shared variables require configuration. For details, see Appendix A.

Example

This example returns 1 if the shared variable inProgress reaches a value between
10 and 20 within 60000 milliseconds of the time of the call. Otherwise, it returns 0.
svVal contains the value of inProgress at the time of the return, before it is
adjusted. (In this case, the adjustment value is 0 so the value of the shared variable is
not adjusted.)

Dim retVal, svVal As Long
svVal = 0
Dim sync As New TSSSync
retVal = sync.SharedVarWait "inProgress",10,20,0,60000,svVal

See Also

SharedVarAssign, SharedVarEval
94 Chapter 3

Synchronization Class
TSSSync.SyncPoint

Puts a synchronization point in a script.

Syntax

SyncPoint (label As String)

Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_NOOP. The TSS server is running proxy.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The synchronization point label is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

A script pauses at a synchronization point until the release criteria specified by the
suite have been met. If the criteria are met, the script delays a random time specified
in the suite and then resumes execution.

Typically, it is better to insert a synchronization point into a suite from TestManager
rather than use the SyncPoint call inside a script.

If you insert a synchronization point into a suite, synchronization occurs at the
beginning of the script. If you insert a synchronization point into a script with
SyncPoint, synchronization occurs at the point of insertion. You can insert the
command anywhere in the script.

Shared variables require configuration. For details, see Appendix A.

Element Description

label The name of the synchronization point.
Test Script Services Reference 95

Session Class
Example

This example creates a sync point named BlockUntilSaveComplete.

Dim sync As New TSSSync
sync.SyncPoint "BlockUntilSaveComplete"

Session Class

This section documents functions that may be required by applications. They are not
typically used by test scripts.

A suite can contain multiple test scripts of different types. When TestManager
executes a suite, a separate session is started for each type of script in the suite. Each
session lasts until all scripts of the type have finished executing. Thus, if a suite
contains three Visual Basic test scripts and six VU test scripts, two sessions are started
and each remains active until all scripts of the respective types finish.

In a given suite run, a session can be run directly (inside the TestManager process
space) or by a separate TSS server process (proxy). The latter happens only if the
following two conditions are met:

■ The test script(s) is executed by a stand-alone process (outside of TestManager)
and is linked with the link library rttssremote.lib.

■ The first script of a given type in a suite that can be executed by a TSS proxy server
calls ServerStart.

Unlike most TSS methods, the Session methods do not generate error codes or throw
exceptions. Instead, they return status values indicating success or the cause of failure.

Applicability

Commonly used with TestManager.

Summary

Applications can use the session methods listed in the following table to manage
proxy TSS servers and sessions on behalf of test scripts. These methods are not needed
for sessions that are directly executed by TestManager. These are methods of class
TSSSession.
96 Chapter 3

Session Class
TSSSession.Connect

Connects to a TSS proxy server.

Syntax

Connect (host As String, port As Integer, id As Long) As Long

Return Value

This method exits with one of the following results:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_OK. Success.

■ TSS_NOOP. A connection and ID had already been established for this execution
thread.

■ TSS_NOSERVER. No TSS server was listening on port.

Method Description

Connect Connects to a TSS proxy server.

Context Passes context information to a TSS server.

Disconnect Disconnects from a TSS proxy server.

ServerStart Starts a TSS proxy server.

ServerStop Stops a TSS proxy server.

Shutdown Stops logging and initializes TSS.

Element Description

host The name (or IP address in quad dot notation) of the host on which the
proxy TSS server process is running.

port The listening port for the TSS server on host, or 0 (recommended) to let
TestManager select the port.

id The connection identifier.
Test Script Services Reference 97

TSSSession.Context
■ TSS_SYSERROR. A system error occurred. Call ErrorDetail for information.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

For scripts that are executed by a proxy process rather than directly by the TSEE, this
function must be called before any other TSS functions. This function is also required
when a script starts a new thread of execution.

The direct TSS DLL ignores host and port, and associates the id with the current
execution thread. If the thread already had an ID, id is ignored. (You cannot change
id.)

Example

This example connects to a TSS server running on host 192.36.25.107. The port is
defined in the example for ServerStart.

Dim session as New TSSSession
session.Connect "192.36.25.107",port ,0

See Also

ServerStart

TSSSession.Context

Passes context information to a TSS server.

Syntax

Context (ctx As ContextKey, value As String) As Long
98 Chapter 3

Session Class
Return Value

This method exits with one of the following results:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_OK. Success.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The specified ctx is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

This call is useful for test scripts that are executed by a stand-alone process — outside
the TestManager framework — and that also make TSS calls. The call passes
information, such as the log file name, that would be passed through shared memory
if the script were executed by TestManager.

Test scripts that are executed by a proxy TSS server process should make this call
immediately after TSSSession.Connect, before accessing any other TSS services.
Otherwise, inconsistent results can occur.

Element Description

ctx The type of context information to pass: Can be one of the following:
■ CTXT_workingDir
■ CTXT_datapoolDir
■ CTXT_timeZero
■ CTXT_todZero
■ CTXT_logDir
■ CTXT_logFile
■ CTXT_logData
■ CTXT_testScript
■ CTXT_style
■ CTXT_sourceUID

value The information of type ctx to pass.
Test Script Services Reference 99

TSSSession.Disconnect
Example

This example passes a working directory to the current proxy TSS server.

Dim session As New TSSSession
session.Context CTXT_workingDir,"C:\temp"

TSSSession.Disconnect

Disconnects from a TSS proxy server.

Syntax

Disconnect()

Return Value

None.

Comments

This call closes the connection established by TSSSession.Cconnect() and
performs any required cleanup operations.

Example

This example disconnects from the TSS server.

Dim session as New TSSSession
session.Disconnect

TSSSession.ServerStart

Starts a TSS proxy server.

Syntax

ServerStart (port As Integer) As Long

Element Description

port The listening port for the TSS server. If specified as 0 (recommended), the
system chooses the port and returns its number to port.
100 Chapter 3

Session Class
Return Value

This method exits with one of the following results:

■ TSS_OK. Success.

■ TSS_NOOP. A TSS server was already listening on port.

■ TSS_NOSERVER. Start failure. Call ErrorDetail for information.

■ TSS_SYSERROR. A system error occurred. Call ErrorDetail for information.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

No TSS server is started if one is already running. A test script that is to be executed
by a proxy server and that might be the first to execute, should make this call.

Example

This example starts a proxy TSS server on a system-designated port, whose number is
returned to port.

Dim port As Long
port = 0
Dim session as New TSSSession
session.ServerStart port

See Also

ServerStop
Test Script Services Reference 101

TSSSession.ServerStop
TSSSession.ServerStop

Stops a TSS proxy server.

Syntax

ServerStop (port As Integer) As Long

Return Value

This method exits with one of the following results:

■ TSS_OK. Success.

■ TSS_NOOP. No TSS server was listening on port.

■ TSS_INVALID. No proxy TSS server was found or stopped.

■ TSS_SYSERROR. A system error occurred. Call ErrorDetail for information.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

In a test suite with multiple scripts, only the last executed script should make this call.

Example

This example stops a proxy TSS server that was started by the example for
ServerStart.

session.ServerStop port

See Also

ServerStart

Element Description

port The port number that the TSS server to be stopped is listening on.
102 Chapter 3

Advanced Class
TSSSession.Shutdown

Stops logging and initializes TSS.

Syntax

Shutdown()

Return Value

This method exits with one of the following results:

■ TSS_OK. Success.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The specified ctx is invalid.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

Comments

This call stops logging functions, pauses a playback session, and initializes TSS to
resume logging and executing the next task.

Example

This example shuts down logging during session execution so that logging can be
restarted for the next task.

Dim session As New TSSSession
...
session.Shutdown

Advanced Class

You can use the advanced methods to perform timing calculations, logging
operations, and internal variable initialization functions. TestManager performs these
operations on behalf of scripts in a safe and efficient manner. As a result, the functions
need not and usually should not be performed by individual test scripts.

Applicability

Commonly used with TestManager.
Test Script Services Reference 103

Summary
Summary

The following table lists the advanced methods. They are methods of class
TSSAdvanced.

TSSAdvanced.InternalVarSet

Sets the value of an internal variable.

Syntax

InternalVarSet (internVar As IVKey, ivVal As Variant)

Error Codes

 This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_INVALID. The timer label is invalid, or there is no unlabeled timer to stop.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Method Description

InternalVarSet Sets the value of an internal variable.

LogCommand Logs a command event.

ThinkTime Calculates a think-time average.

Element Description

internVar The internal variable to operate on. Internal variables and their values are
listed in the table starting on page 51.

ivVal The new value for internVar.
104 Chapter 3

Advanced Class
Comments

The values of some internal variables affect think-time calculations and the contents
of log events. Setting a value incorrectly could cause serious misbehavior in a script.

Example

This example sets IV_cmdcnt to 0.

Dim advanced TSSAdvanced
advanced.InternalVarSet IV_cmdcnt,0

See Also

TSSMeasure.InternalVarGet

TSSAdvanced.LogCommand

Logs a command event.

Syntax

LogCommand (name As String, label As String, [result As
Integer], [description As String], [starttime As Long],
[endtime As Long], [logdata As String], [property[] As
NamedValue])

Element Description

name The command name.

label The event label.

result Specifies the notification preference regarding the result of the call. Can
be one of the following:
■ TSS_LOG_RESULT_NONE (default: no notification)
■ TSS_LOG_RESULT_PASS

■ TSS_LOG_RESULT_FAIL

■ TSS_LOG_RESULT_WARN

■ TSS_LOG_RESULT_STOPPED

■ TSS_LOG_RESULT_INFO

■ TSS_LOG_RESULT_COMPLETED

■ TSS_LOG_RESULT_UNEVALUATED

0 specifies the default.
Test Script Services Reference 105

TSSAdvanced.LogCommand
Error Codes

This method may generate one of the following error codes:

■ ERROR_CONVERT_BSTR. An encountered string cannot be converted.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

■ TSS_NOSERVER. No previous successful call to TSSSession.Connect.

■ TSS_ABORT. Pending abort resulting from a user request to stop a suite run.

If you handle one of these errors and do not log it, TestManager is not aware of the
error and does not log a Fail result for it. The script continues to run, and TestManager
could log a Pass result for the script.

Comments

The value of IV_cmdcnt is logged with the event.

The command name and label entered with TSSMeasure.CommandStart are logged,
and the run state is restored to the value that existed prior to the
TSSMeasure.CommandStart call.

An event and any data associated with it are logged only if the specified result
preference matches associated settings in the EVAR_LogData_control (page 43) or
EVAR_LogEvent_control (page 43) environment variables. Alternatively, the
logging preference may be set with the EVAR_Log_level (page 44) and

description Contains the string to be displayed in the event of failure.

starttime An integer indicating a time stamp. If specified as 0, the logged time
stamp is the later of the values contained in internal variables
IV_fcs_ts and IV_fcr_ts.

endtime An integer indicating a time stamp. If specified as 0, the time set by
CommandEnd() is logged.

logdata Text to be logged describing the ended command.

property An array containing property name/value pairs, where
property[n].name is the property name and property[n].value is
its value.

Element Description
106 Chapter 3

Advanced Class
EVAR_Record_level (page 45) environment variables. The
TSS_LOG_RESULT_STOPPED, TSS_LOG_RESULT_COMPLETED, and
TSS_LOG_RESULT_UNEVALUATED preferences are intended for internal use.

NamedValue is a dimensioned array of name/value pairs. For example, an array of 10
name/value pairs could be implemented as follows:

Dim NV(9,1) As String
NV(0,0)= "name1"
NV(0,1)= "value1"
NV(1,0)= "name2"
NV(1,1)= "value2"
...

Example

This example logs a message for a login script.

Dim advanced As TSSAdvanced
advanced.LogCommand "Login", "initTimer", TSS_LOG_RESULT_PASS,
"Command timer failed", 0, 0, "Login command completed", NULL

See Also

TSSMeasure.CommandStart, TSSMeasure.CommandEnd

TSSAdvanced.ThinkTime

Calculates a think-time average.

Syntax

ThinkTime ([thinkAverage As Long]) As Long

Return Value

On success, this method returns a calculated think-time average. A negative exit value
indicates an error. Callfor more information

Element Description

thinkAverage If specified as 0, the number of milliseconds stored in the ThinkAvg
environment variable is entered. Otherwise, the value specified overrides
ThinkAvg.
Test Script Services Reference 107

TSSAdvanced.ThinkTime
Error Codes

This method may generate the following error code.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

Comments

This call calculates and returns a think time using the same algorithm as
TSSMeasure.Think. But unlike TSSMeasure.Think, this call inserts no pause into a
script.

This function could be useful in a situation where a test script calls another program
that, as a matter of policy, does not allow a calling program to set a delay in execution.
In this case, the called program would use TSSMeasure.ThinkTime to recalculate the
delay requested by TSSMeasure.Thinkbefore deciding whether to honor the request.

Example

This example calculates a pause based on a think-time average of 5000 milliseconds.

ctime = ‘tsscmd GetTime‘
Dim pause, iv As Long
Dim advanced As New TSSAdvanced
Dim measure As New TSSMeasure
iv = measure.GetTime
advanced.InternalVarSet IV_fcs_ts, iv
advanced.InternalVarSet IV_lcs_ts, iv
advanced.InternalVarSet IV_fcr_ts, iv
advanced.InternalVarSet IV_lcr_ts, iv
pause = advanced.ThinkTime (5000)

See Also

TSSMeasure.Think
108 Chapter 3

4Extended Test Script
Services Reference
About the Extensions

This chapter describes two classes that extend some of the functionality of the
Rational Test Script Services (TSS):

■ LookUpTable Class on page 109

The LookUpTable class is designed for use with Rational QualityArchitect stubs.

■ TestLog Class on page 114

This class extends TSSLog. It is designed to let you log information from Rational
QualityArchitect test scripts and stubs. However, you can use this class to log
information from any program.

Requirements for Using the Test Script Services Extensions

The Test Script Services extensions described in this chapter require Rational
QualityArchitect.

LookUpTable Class

This class lets a method in a stub access a lookup table.

A lookup table lets you test a component whose operation depends upon an associated
component that is still in the development stages. To test the component, you first
provide a stub of the unfinished component that contains that component's methods.
When the component-under-test calls a method in the stub, the method simulates
operation by retrieving information from the lookup table — information that would
otherwise be generated during normal execution in the completed component. The
method then presents the retrieved information to the calling component-under-test.
109

LookUpTable Class
The information that a stub's method retrieves from the lookup table depends upon
the values that the component-under-test passes to the method. In other words, a
method finds the lookup-table row that contains the parameter values that the
component-under-test passed to it, and then retrieves the appropriate value (return
value or exception) from that same lookup-table row.

A lookup table typically has multiple rows, with each row representing a different set
of inputs and outputs. This allows a method in the component-under-test to be
executed multiple times against the stub, supplying different input values and
retrieving different output values each time.

In the following example of a lookup table for a mortgage calculation method,
amount, interest, and months are input values, while expectedReturn and
expectedError are the corresponding output values:

Typically, you create a lookup table for each stub method that is called during testing
of the component-under-test.

The underlying files used for both lookup tables and datapools are the same. As a
result, when it is time to replace the stub with the completed component, you can use
the lookup table as a datapool when you test the associated component-under-test.

Note: A stub is not a test script. Consequently, it does not require a TestMain()
method.

Overview

The items in this class are members of RTCOMVPLib.LookupTable.

Applicability

Commonly used with Rational QualityArchitect.

Rational QualityArchitect is required for use of this class.

amount interest months expectedReturn expectedError

100000 0.0700 240 775.30

125000 00725 300 -1

150000 0.0750 360 1048.83
110 Chapter 4

LookUpTable Class
LookUpTable Example

The following example opens the lookup table _Account_Info_L and searches for
the lookup table values ParamValues within the column names ParamNames. This
example also uses the TestLog methods WriteStubMessage and
WriteStubError to log status and error information about the lookup table
operations.

Private Function Post_LookUp(ParamNames As Variant, ByVal lAccountNo
As Long, ByVal lAmount As Long) As String

On Error Goto ErrorHandler_Post_LookUp

Dim luTable As LookupTable
Dim tLog As TestLog
Dim ParamValues As Variant
Set luTable = New LookupTable
Set tLog = New TestLog

Err.Clear

'TODO: For complex data types, code below will not be sufficient.
'You will need to add code to generate a meaningful lookup
'call.
ParamValues = Array(CStr(lAccountNo), CStr(lAmount))

luTable.Open "_Account_Post_L"

'TODO: For complex data types, code below will need to be Modified.
tLog.WriteStubMessage "Account stub, Post method. ",

"Entered with following values: " + CStr(lAccountNo) + ", "
+ CStr(lAmount)

luTable.Search ParamNames, ParamValues
Dim lErr As Long

lErr = luTable.ExpectedException
If lErr Then

tLog.WriteStubMessage "Account stub, Post method. ",
"Raising error: " + CStr(lErr)

On Error GoTo RaiseError_Post_LookUp
Err.Raise lErr, "RQA", "Error raised from stub for

Account.Post"
On Error GoTo ErrorHandler_Post_LookUp

Else
'TODO: For complex return types, code below will not be
'sufficient. You will need to add code to generate a meaningful
'return value.
Post_LookUp = luTable.ReturnValue

End If
luTable.Close
Exit Function

ErrorHandler_Post_LookUp:
tLog.WriteStubError Err.Number, Err.Source + ": "
Extended Test Script Services Reference 111

Summary
+ Err.Description
luTable.Close
Exit Function

RaiseError_Post_LookUp:
Err.Raise Err.Number, Err.Source, Err.Description, Err.HelpFile,

Err.HelpContext
luTable.Close

End Function

Summary

This class contains the following properties:

This class contains the following methods:

Property Description

ExpectedException Variant. A read-only value that represents the contents of
the ExpectedException column in the current lookup table
row.

ReturnValue Variant. A read-only value that represents the contents of
the ReturnValue column in the current lookup table row.

Value Variant. A read-only value that represents the contents of
the specified column ID or name in the current lookup table
row.

Method Description

Open Opens the specified lookup table.

Close Closes the lookup table.

Search Sets the cursor to the row in the current lookup table that
contains the column value(s) passed to it.
112 Chapter 4

LookUpTable.Open
LookUpTable.Open

Opens the specified lookup table.

Syntax

Open(TableName As String)

Comments

Only one lookup table can exist for a given instance of the LookUpTable class.

LookUpTable.Close

Closes the lookup table.

Syntax

Close()

Comments

This function only works if LookUpTable.Open has been called.

LookUpTable.Search

Sets the cursor to the row in the current lookup table that contains the column value(s)
passed to it.

Syntax

Search(ParamNamesArray() As String,ParamValuesArray() As
String) As Boolean

Element Description

TableName The name of the lookup table to open.

Element Description

ParamNamesArray An array containing one or more lookup-table column names.
Extended Test Script Services Reference 113

TestLog Class
Return Value

If TRUE, the cursor was successfully set to the row that matched the specified criteria.

If FALSE, a row could not be found that matched the specified criteria.

Comments

Subsequent value-retrieval methods act upon the row with the cursor.

If multiple rows contain the passed value(s), FALSE is returned.

TestLog Class

This class lets you log information from test scripts and stubs.

Overview

Extends TSSLog.

The items in this class are members of RTCOMVPLib.TestLog.

Applicability

Commonly used with Rational QualityArchitect.

Rational QualityArchitect is required for use of this class.

TestLog Example

The following example logs a number of status messages about the various stages of a
datapool operation.

Function ITestInterface_TestMain(ByVal args As Variant) As Variant

On Error GoTo MoveMoneyPerformScript_OnTestMainError

'Declare variables.
Dim lPrimeAccount As Long
Dim lSecondAccount As Long
Dim lAmount As Long

ParamValuesArray An array containing a value for each corresponding column
name passed to the method.

Element Description
114 Chapter 4

TestLog Class
Dim lTranType As Long
Dim actRet As String
Dim expRet As String
Dim dp As New TSSDataPool
Dim expErr As Variant
Dim NumRows As Integer
Dim Desc As String
Dim Message As String

'Set default values
NumRows = 0

'Initialize test data store and log services
tms.LoginToTestRepository
tms.StartTestServices "unittests\COM\RQACOMSample Ver 1.0

(Rational QualityArchitect Sample for COM)\MoveMoneyPerform"

'Create Object
Dim obj As Object
Set obj = CreateObject("RQACOMSample.MoveMoney")

'Open Datapool
dp.Open "_MoveMoney_Perform_D"

'Loop over datapool and perform test.
While dp.Fetch

'Keep counter of number of rows fetched.
NumRows = NumRows + 1

'Get the column data from the datapool.
lPrimeAccount = CLng(dp.Value("lPrimeAccount"))
lSecondAccount = CLng(dp.Value("lSecondAccount"))
lAmount = CLng(dp.Value("lAmount"))
lTranType = CLng(dp.Value("lTranType"))
expRet = CStr(dp.Value("expectedReturn"))
expErr = dp.Value("expectedError")

'Disable Default Error Handler
On Error Resume Next

'Clear the global error object in case it is set to something.
Err.Clear

'Call the method under test.
actRet = obj.Perform(lPrimeAccount, lSecondAccount,

lAmount, lTranType)

'Save the Error info
Dim actErr As Long
Dim actErrDesc As String
actErr = Err.Number
actErrDesc = Err.Description
Extended Test Script Services Reference 115

TestLog Class
'Enable Default Error Handler
On Error GoTo MoveMoneyPerformScript_OnTestMainError

'Evaluate the result of the method call
If IsEmpty(expErr) Then

If actErr <> 0 Then
'Not expecting an error and one occurred.
Desc = "Unexpected error" & "," & " " & CStr(actErr) &

" was raised." & vbCrLf & actErrDesc
Log.Message "Unexpected result", TSS_LOG_RESULT_FAIL, Desc

Else
'Not expecting an error and none occurred...
'Therefore, check the expected expRet = actRet.

If (expRet = actRet) Then
Log.Message "Expected result", TSS_LOG_RESULT_PASS,

"Call to Perform returned expected value"
Else

Log.Message "Unexpected result", TSS_LOG_RESULT_FAIL,
"Call to Perform returned unexpected value, "
& actRet & "."

End If

End If

Else

'expErr can represent Err.Number or Err.Description
If actErr = expErr Or actErrDesc = expErr Then

'Expecting an Error and the one raised matched
'the expected error.
Desc = "Expected error" & "," & " " & expErr

& " was raised."
Log.Message "Expected Error", TSS_LOG_RESULT_PASS, Desc

Else
'Expecting an Error and either none was raised or...
'the one raised was not the one we expected.
Desc = "Expected error" & "," & " " & expErr &

" was not raised."
Log.Message "Unexpected error", TSS_LOG_RESULT_FAIL, Desc

End If

End If

Wend

If NumRows = 0 Then
'Datapool did not contain any rows. Log a warning.
Desc = "Datapool " & """" & "MoveMoneyPerform" & """"

& " is empty."
Log.Message "Empty Datapool", TSS_LOG_RESULT_WARN, Desc

End If
116 Chapter 4

Summary
'Execution to this point indicates success, so clear
'any handled errors that may have occurred and continue.
Err.Clear

'Fall through to cleanup.
'No Error will be logged because Err.Number now equals zero.

MoveMoneyPerformScript_OnTestMainError:

'If an error occurred, log it.
If Err.Number <> 0 Then

Message = "Unexpected error" & "," & " " & CStr(Err.Number) &
" was raised."

Log.Message Message, TSS_LOG_RESULT_FAIL, Err.Description
End If

'Close the datapool
If Not dp Is Nothing Then

dp.Close
Set dp = Nothing

End If

'Shutdown test data store and log services
tms.EndTestServices

End Function

Summary

This class contains the following methods:

Note: In addition to these methods, you can also use the methods in the TSSLog class,
as summarized in the section Logging Class on page 31.

Method Description

Message Logs a message.

WriteError Logs an error that occurred during the execution of a test
script.

WriteStubError Logs information about an error that occurred during the
execution of a Rational QualityArchitect stub.

WriteStubMessage Logs a message relating to the execution of a Rational
QualityArchitect stub.
Extended Test Script Services Reference 117

TestLog.Message
TestLog.Message

Logs a message.

Syntax

Message (message As String, [result As Integer], [description
As String])

Example

For examples of this method, see TestLog Example on page 114.

TestLog.WriteError

Logs an error that occurred during the execution of a test script.

Syntax

WriteError(hr As Long, Description As String)

Comments

This method logs a Fail result for the test script.

The description appears in the Description area of the Log Event Properties dialog box.

Element Description

message Specifies the string to log.

result Specifies the notification preference regarding the result of the call. Valid
values: TSS_LOG_RESULT_NONE (default: no notification),
TSS_LOG_RESULT_PASS, TSS_LOG_RESULT_FAIL,
TSS_LOG_RESULT_WARN, TSS_LOG_RESULT_INFO. 0 specifies the
default.

description Specifies the string to be put in the entry’s failure description field.

Element Description

hr The error to log.

description A description of the error.
118 Chapter 4

TestLog.WriteStubError
TestLog.WriteStubError

Logs information about an error that occurred during the execution of a Rational
QualityArchitect stub.

Syntax

WriteStubError(hr as Long, description As String)

Comments

The description appears in the Description area of the Log Event Properties dialog box.

Example

For an example of this method, see LookUpTable Example on page 111.

Element Description

hr The error to log.

description A description of the error.
Extended Test Script Services Reference 119

TestLog.WriteStubMessage
TestLog.WriteStubMessage

Logs a message relating to the execution of a Rational QualityArchitect stub, and also
includes a description of the message.

Syntax

WriteStubMessage(bsMessage As String, Description As String)

Comments

The message appears in the Log Event column of the LogViewer. The description
appears in the Description field of the Log Event Properties dialog box.

Example

For examples of this method, see LookUpTable Example on page 111.

Element Description

bsMessage The message to insert into the log.

Description A description of the message. The description lets you expand
upon the logged message.
120 Chapter 4

5Verification Services
Introduction to Verification Points

This chapter provides the basic concepts involved in implementing verification points
and in adding verification points to test scripts. The chapter contains the following
topics:

■ About Verification Points on page 121

■ How Data Is Verified on page 123

■ Types of Verification Points on page 124

■ Verification Point Framework on page 126

■ Setting Up Verification Points in Test Scripts on page 129

For information about creating a new verification point type, see Implementing a New
Verification Point on page 179.

About Verification Points

A verification point is mechanism for testing, or verifying, the behavior of the
component-under-test.

Using Rational QualityArchitect, you can verify return values, the values of
input/output parameters, and side effects — that is, how the behavior of the
component-under-test affects the component itself as well as other objects. For
example, in a banking application, you might want to verify that a component
correctly calculates a monthly mortgage payment for a given set of inputs such as
loan amount, interest rate, and life of loan.

You establish verification points in your test scripts in either of the following ways:

■ The interfaces described in Database Verification Point Reference on page 133. You
typically use these are the interfaces when recording or writing scripts for testing
COM/DCOM interaction with a database.
121

About Verification Points
■ To perform any other type of automated verification, implement a new verification
point type. For example, if you want to verify the properties of an object, you must
first implement classes that capture, encapsulate, and compare the object’s
properties. A verification point implementer implements verification point classes
based on the abstract verification point interfaces described in Chapter 7,
Verification Point Framework Reference.

Roles in Working with Verification Points

The following testing team members use verification services. Depending upon the
requirements of your site, the same person or different persons perform the different
tasks.

■ The verification point implementer implements new verification point types based
on the verification point framework described in Verification Point Framework
Reference on page 143.

■ The test designer writes the scripts used for testing a component-under-test. In
component testing, test designers incorporate existing verification point types into
their test scripts — that is, the database verification point provided with Rational
QualityArchitect plus any verification point types created by the verification point
implementer.

■ The tester runs the test scripts that the test designer writes.
122 Chapter 5

How Data Is Verified
The following diagram illustrates the different roles of the test team:

How Data Is Verified

A verification point operates on two different types of data:

■ Data that is known to be correct.

For example, this data might be captured when the component is known to be
functioning correctly, or from a source that is known to contain the correct data.
Data that is known to be correct is called the expected data.

Expected data can be data that is explicitly specified (for example, a person’s
name, social security number, or account number), or data that is the result of
some calculation (for example, a monthly mortgage payment resulting from inputs
of loan amount, interest rate, and number of payments).

Standard verification point
(Database Verification Point)
ships with QualityArchitect Creates custom verification points

Verification point implementer

Test designer
Adds standard verification points

and / or one or more custom verification points
to test scripts

Tester
Runs test scripts
Verification Services 123

Types of Verification Points
■ Data whose validity is unknown and must be verified.

This data is always captured at test runtime and is called the actual data. A
verification point compares expected data and actual data. If the data matches (or,
optionally, satisfies some other condition, such as falling within an accepted
range), the verification point passes. Otherwise, the verification point fails.
Verification point results are logged automatically.

Note: If the test script sets the VPOPTION_EXPECT_FAILURE option through the
Options property of the IVerificationPoint interface, the verification point
passes only if the data comparison fails.

In the following figure, the account balance 935.49 is the expected data for a given
input (an account number). In three subsequent tests, the stored expected data is
compared against the actual data captured during each test. In this example, the
verification point passes if the expected data matches the actual data:

Types of Verification Points

The verification point framework provides for three types of verification points:

■ Static

■ Dynamic

■ Manual

acctBal = 935.49

Expected Data Actual Data Verification Point

Test 1:
acctBal = 935.49

Result

Test 2:
acctBal = 35.49

Test 3:
acctBal = 935.49

Pass

Pass

Fail

 (Stored) (Current Test)
124 Chapter 5

Types of Verification Points
The following table summarizes the differences between verification point types:

Static Verification Points

With static verification points, the first execution of the test script captures the
expected data object saves it in the datastore as the baseline for subsequent executions
of the test script. The expected data remains persistent unless and until new expected
data is explicitly replaces it. (To insert new expected data, click File > Replace Baseline
with Actual in the Grid Comparator.)

Each subsequent time the test script is run, it captures an actual data object from the
component-under-test. The script retrieves the expected data object from the datastore
and compares it with the actual data captured in the current test run. The results are
logged automatically.

Static verification points are regression-style tests — in other words, the successful
behavior of the component-under-test is implicitly defined by the component's
behavior during the earlier running of the test script, when the captured data was
known to be correct.

Dynamic Verification Points

With dynamic verification points, at test runtime, the expected data object is passed to
the verification point. The expected data object is not retrieved from the datastore
after having been captured in an earlier execution of the test script, nor is it managed
in any way by the verification point framework, as is the case with static verification
points.

How the expected data is passed to a verification point is up to you as the author of
the test script. For example, you might hard-code the data into the script, supply the
data through a datapool, or read the data from any file.

Verification Point Type Expected Data Object Actual Data Object

Static Captured when script is
first run

Captured at subsequent script
runs

Dynamic Test script passes to
verification point

Captured at script runtime

Manual Test script passes to
verification point

Test script passes to
verification point
Verification Services 125

Verification Point Framework
When executing a dynamic verification point, the expected data object is passed as a
parameter to the verification point's PerformTest method. The verification point
then captures the actual data object from the component-under-test, compares the
expected and actual data objects, and automatically logs the results.

Dynamic verification points differ from static verification points in that, with dynamic
verification points, you, the test script author, explicitly define the successful
operation of the component-under-test, rather than a previous behavior of the
component-under-test explicitly defining it.

Manual Verification Points

With manual verification points, both the expected and actual data objects are passed
to the verification point's PerformTest method at test runtime. The verification
point framework does not provide expected and actual data objects. In contrast, with
with static verification points, the framework provides both the expected and actual
data objects) and, with dynamic verification points, the framework provides actual
data objects only.

In other words, with manual verification points, you as the test designer are
responsible for providing both the expected and the actual data objects. This frees you
from relying on the framework's IVerificationPointDataProvider interface to
construct objects, allowing you to construct your own objects. The framework simply
compares the data objects you provide and logs the results.

Verification Point Framework

You use the pre-defined database verification point for verifying data in a database.
This is typically the verification point you use in writing scripts for COM/DCOM
testing.

If you need to use other kinds of verification points, the verification point
implementer must first extend and implement the class and interfaces in the
verification point framework.

The verification point framework contains the following interfaces:

■ IVerificationPoint

■ IVerificationPointData

■ IVerificationPointDataProvider

■ IVerificationPointDataRenderer

■ IVerificationPointComparator
126 Chapter 5

Verification Point Framework
■ IVPFramework

■ IVPPlumbing

For details about the framework, see Chapter 7, Verification Point Framework Reference.

Verification Point Classes

Conceptually, a verification point is made up of the following five classes:

■ A Verification Point class, which extends the framework's IVerificationPoint
interface.

This class contains the verification point's metadata — that is, the information that
determines the data to capture for this verification point. Examples of verification
point metadata include the list of properties for a user-defined object properties
verification point, or connection information and SQL statements for the database
verification point that is included in this package. This class is also responsible for
implementing its own serialization. By requiring your specific verification point
implementations to perform their own serialization, you can support all file
formats (such as INI and XML).

■ A Verification Point Data class, which implements the framework's
IVerificationPointData interface.

This class encapsulates and serializes a single snapshot of either expected or actual
data. The IVerificationPointDataProvider class implements the
CaptureData method to populate an instance of this class. Or, you can populate
it manually in the test script — for example, by literal values or by values from a
datapool. Each implementation of the IVerificationPointData interface is
required to provide its own serialization methods, once again for support of all
possible file formats.

Note: For the current Rational QualityArchitect release, Verification Point Data
classes must serialize to a .CSV file format. This restriction will be removed in a
future release of Rational QualityArchitect.

■ A Verification Point Data Provider class, which implements the framework's
IVerificationPointDataProvider interface.

This class is a pluggable link between a Verification Point class (which defines a
verification point’s metadata) and a Verification Point Data class (which stores
data for a verification point). Specifically, this class implements the
CaptureData method to populate a Verification Point Data object for a given
Verification Point object.
Verification Services 127

Verification Point Framework
■ A Verification Point Data Renderer class, which implements the framework's
IVerificationPointDataRenderer interface.

This class provides the capability of displaying the data stored in the Verification
Point Data class, allowing the tester to interactively accept or reject that data as a
baseline for a static verification point. To enable this capability, the test designer
specifies the VPOPTION_USER_ACKNOWLEDGE_BASELINE option in the
SetOptions method of the Verification Point class being implemented.

■ A Verification Point Comparator class, which implements the framework's
IVerificationPointComparator interface.

This class provides a method to compare two IVerificationPointData
objects and determine if the comparison succeeds or fails. The comparison can test
for equality between the expected and actual data, or it can test for some other
condition (for example, that the actual data falls within a given range).

The following figure summarizes the verification point classes:
128 Chapter 5

Setting Up Verification Points in Test Scripts
Setting Up Verification Points in Test Scripts

This section outlines the actions that you, the test designer, need to take to set up a
verification point in a test script.

Use the actions outlined below as a guideline for setting up a verification point. You
may need to perform other actions to accommodate the requirements of a particular
verification point implementation.

Note that the verification point framework does much of the work that is required to
perform a verification point.

Setting Up a Static Verification Point

To set up a static verification point:

1 Specify the metadata for the verification point.

2 Execute the verification point.

The following sections provide information to help you perform these steps.

Step 1. Specify the Metadata for the Verification Point

The specialized IVerificationPoint class encapsulates a verification point’s
metadata. Metadata includes the following kinds of information:

■ Information that defines the kind of data that you want to capture and test. The
following are two examples of this type of metadata:

❑ With the pre-defined database verification point, the SQL statement that
retrieves data from a database. (For information about the database verification
point, see Chapter 6, Database Verification Point Reference.)

❑ If you are testing the properties of a component, the names of the particular
properties to capture.

■ Information needed to access the source of the data to capture (such as information
used to connect to a database).

■ Possibly, one or more verification point options, such as whether to require
case-sensitive matches of string data.

You can specify verification point metadata either explicitly or implicitly:

■ Metadata that is specified explicitly in the test script is specified through
user-defined set... methods in the specialized IVerificationPoint class.
Verification Services 129

Setting Up Verification Points in Test Scripts
Verification points that you generate through a Rational Rose model are defined
explicitly — that is, the metadata is set through calls to the verification point’s
set... methods.

Note: Because explicitly provided metadata can be assigned to test script
variables, you can use datapools to supply metadata information to your test
scripts.

■ Implicitly defined metadata is specified in either of these ways:

❑ If a verification point’s metadata is not fully specified when the verification
point is executed for the first time, the framework invokes the DefineVP
method. This method runs a user-defined UI that prompts the tester for the
metadata information. (The UI is developed by the verification point
implementer.) After the metadata is captured, the framework writes the
metadata to the datastore.

❑ In subsequent executions of the verification point, the framework retrieves the
metadata from the datastore and uses it as the metadata for the verification
point.

Note: Because implicitly provided metadata is retrieved from the datastore rather
than being assigned to test script variables, you cannot use datapools with this
type of metadata.

For more information about how to provide verification point metadata, see
IVerificationPoint Interface on page 144.

Step 2. Execute the Verification Point

To execute a verification point, call the PerformTest method in the specialized
IVerificationPoint class, as follows:

■ If the verification point operates on a component within your test script’s scope,
pass that object to the PerformTest method.

■ If the verification point operates on an external object (such as a deployed
COM/DCOM object or a recordset in a database), pass 0 to the PerformTest
method.

Using the metadata in the specialized IVerificationPoint class, the framework
captures the actual data for the test. The framework also checks the datastore for an
expected (baseline) data object to compare against the actual data:

■ If the expected data object exists, the framework compares the expected data object
with the actual data object, and then logs the result.
130 Chapter 5

Setting Up Verification Points in Test Scripts
■ If no expected data object exists, the framework attempts to store the captured data
as a baseline for future executions of the verification point.

However, if no expected data object exists and you have included the
VPOPTION_USER_ACKNOWLEDGE_BASELINE option in the SetOptions()
method, the framework first invokes an implementer-defined UI that prompts the
tester to verify that the captured data is correct.

If the tester accepts the displayed data as being correct, the framework stores the
data object in the datastore as the expected data for subsequent tests. If the tester
rejects the displayed data, the framework logs an error, and verification point
execution ends. No expected data object is stored.

For an example of a static verification point setup in a test script, see Example of a Static
Database Verification Point on page 134.

Setting Up a Dynamic Verification Point

Setting up a dynamic verification point is similar to setting up a static verification
point. However, before the test script executes the verification point, the test script
must create the expected data object. The framework is responsible for capturing and
building the actual data object, just as it does for a static verification point.

You create the expected data object using the appropriate implementation of the
IVerificationPointData interface.

After you create the expected data object, you can pass it to the PerformTest
method when you execute the verification point.

For an example of a dynamic verification point setup in a test script, see Dynamic
Database Verification Point Example on page 134.

Setting Up a Manual Verification Point

Setting up a manual verification point is similar to setting up a static verification
point. However, before the test script executes the verification point, the test script
must create both the expected and actual data objects.

You create the expected and actual data objects using the appropriate implementation
of the IVerificationPointData interface.

After you create the expected and actual data objects, you can pass them to the
PerformTest method when you execute the verification point.
Verification Services 131

Setting Up Verification Points in Test Scripts
132 Chapter 5

6Database Verification
Point Reference
About the Database Verification Point

A database verification point is a pre-constructed verification point used to verify data
in a data source. This is the verification point that you typically use in COM/DCOM
testing.

You can use this verification point within a test script to ensure that the changes that
the component-under-test makes to the data source are correct.

Note: To see Interface Definition Language (IDL) equivalents of the methods in this
chapter, see IDL Equivalents on page 213.

Requirements for Using the Database Verification Point

The database verification point requires Rational QualityArchitect.

Components of the Database Verification Point

The database verification point uses the following interfaces:

■ IDatabaseVP Interface on page 135

■ IDatabaseVPData Interface on page 136

■ IVerificationPoint Interface on page 137

■ IVPFramework Interface on page 139

Type Libraries

The interfaces in this chapter are defined in the type library RTIVP.TLB. Using the
Visual Basic OLE/COM object viewer, you can find information about this type
library under “Rational QualityArchitect COM Verification Point Interface Type Library”
(RTIVP in the Object Browser).

The coclasses in this chapter are implemented in the type library RTCOMVP.DLL.
Using the Visual Basic OLE/COM object viewer, you can find information about this
type library under “Rational Quality Architect Playback Type Library” (RTCOMVPLib in
the Object Browser).
133

About the Database Verification Point
RTIVP.TLB and RTCOMVP.DLL are located in the Rational\Rational
Test\QualityArchitect folder.

Examples

This section contains examples of how you can insert a static and a dynamic database
verification point into a test script.

Note that the verification point framework does much of the work for you. The test
script defines the verification point’s metadata and callis the PerformTest method
in the specialized Verification Point interface. Depending on whether you are
inserting a static, dynamic, or manual verification point, the test script might also
build the expected data object and the actual data object.

For an overview of the steps that are required to insert a verification point into a
script, see Setting Up Verification Points in Test Scripts on page 129.

Example of a Static Database Verification Point

In a static verification point, the PerformTest method does not pass data objects to
the verification point . As a result, the framework must provide both the expected
(baseline) and actual data objects.

Dim StaticVP As New DatabaseVP
StaticVP.VPname = "NewTest1"
StaticVP.SQL = "SELECT * FROM COFFEES"
StaticVP.ConnectionString =

"Provider=MSDASQL.1;Persist Security Info=False;
Data Source=COFFEEBREAK"

StaticVP.PerformTest 0

Dynamic Database Verification Point Example

In a dynamic verification point, the test script creates a DatabaseVPData object for
the expected data and passes the expected data object to the verification point through
the PerformTest method. As a result, the framework encapsulates only the actual
data object.

Dim DynamicVP As New DatabaseVP
Dim myExpected As New DatabaseVPData
Dim Columns(1 To 3) As String
Dim Row(1 To 3) As String
Dim result As VPResult

Columns(1) = "ID"
Columns(2) = "Brand"
Columns(3) = "Price"

Row(1) = "1"
134 Chapter 6

IDatabaseVP Interface
Row(2) = "Peets"
Row(3) = "5.5"

myExpected.Columns = Columns
myExpected.Row(0) = Row

DynamicVP.VPname = "DynamicVP"
DynamicVP.SQL = "SELECT * FROM COFFEES WHERE ID = 1"
DynamicVP.ConnectionString =

"Provider=MSDASQL.1;Persist Security Info=False;
Data Source=COFFEEBREAK"

result = DynamicVP.PerformTest(0, myExpected)

IDatabaseVP Interface

Implements a database verification point.

The DatabaseVP object contains the database verification point name. It also
contains options that affect the behavior of the verification point.

To execute the database verification point, call the PerformTest method. This
method is inherited from the implemented IVPFramework interface.

Overview

Extends IVerificationPoint.

IVerificationPoint extends IVPFramework.

IVPFramework extends IDispatch.

Applicability

Commonly used with Rational QualityArchitect.

Rational QualityArchitect is required for use of this interface.

Summary

This interface contains the following properties:

Property Description

ConnectionString String. The information needed to connect to the data source.

SQL String. The SQL statement to send to the data source.
Database Verification Point Reference 135

IDatabaseVPData Interface
In addition to these properties, you can also use the properties in the
IVerificationPoint interface (page 137) and IVPFramework interface
(page 139).

Note: This interface contains no methods of its own. However it does contain the
PerformTest method, which is contained in VPFramework. Call PerformTest to
run a database verification point. For information about PerformTest, see page 140.

IDatabaseVPData Interface

Using this interface, you can get and set properties relating to the rows and columns
in the captured data object. The data object is encapsulated in table form.

Overview

Extends IVerificationPointData.

IVerificationPointData extends IDispatch.

Applicability

Commonly used with Rational QualityArchitect.

Rational QualityArchitect is required for use of this interface.

Summary

This interface contains the following properties:

Property Description

NumCols Long. The number of columns in the table.

NumRows Long. The number of rows in the table.

Columns Variant. An array of column names.

Row Variant. An array of rows, each of which is an array of string
values.
136 Chapter 6

IVerificationPoint Interface
IVerificationPoint Interface

Provides methods and properties used for running a verification point.

Note: The only items documented in this section are those that you, the test script
designer, need when manually adding or modifying a database verification point in a
test script. Other properties and methods that a verification point implementer uses in
this interface are not shown here. Implementers can find the complete interface in
IVerificationPoint Interface on page 144.

Overview

Extends IVPFramework.

IVPFramework extends IDispatch.

Known subclass:
IDatabaseVP

Applicability

Commonly used with Rational QualityArchitect.

Rational QualityArchitect is required for use of this interface.
Database Verification Point Reference 137

Summary
Summary

This interface includes the following property:

Note: To turn on multiple options, use the OR operator. To remove an option after you
have set it, but leave all other options unchanged, use the AND and NOT operators.
Here are examples of turning options on and off:

■ Turn on two options:

MyVP.Options = VPOPTION_COMPARE_CASEINSENSITIVE Or

VPOPTION_EXPECT_FAILURE

■ Turn off the VPOPTION_EXPECT_FAILURE option, but leave all other options
unchanged:

MyVP.Options = MyVP.Options And (Not VPOPTION_EXPECT_FAILURE)

Property Description

Options Variant (implemented as Long). Options that affect the
behavior of the verification point when capturing data,
populating the data object, and comparing data objects.

Options include the following pre-defined options plus any
user-defined options:
■ DATABASEOPTION_TRIM_WHITESPACE. Captured values

should have whitespace trimmed from the right and left
sides.

■ The following options inherited from
IVerificationPoint:

❑ VPOPTION_COMPARE_CASEINSENSITIVE. Text
comparisons are not case-sensitive. By default, text
comparisons are case sensitive.

❑ VPOPTION_EXPECT_FAILURE. The verification point's
expected result is failure. If the comparison fails and this
option is set, the verification point succeeds.

❑ VPOPTION_USER_ACKNOWLEDGE_BASELINE. The first
run of a static verification point should display the
captured data for the tester to validate before storing it as
the expected (baseline) data object.
138 Chapter 6

IVPFramework Interface
IVPFramework Interface

Provides methods and properties used for running a database verification point.

Note: The only items documented in this section are those that you, the test script
designer, need when manually adding or modifying a database verification point in a
test script. Other properties and methods needed by a verification point implementer
for this interface are not shown. Implementers can find the complete interface in
IVPFramework Interface on page 153.

Overview

Extends IDispatch.

Known subclass:
IVerificationPoint.

Applicability

Commonly used with Rational QualityArchitect.

Rational QualityArchitect is required for use of this interface.

Summary

This interface includes the following property:

This interface includes the following method:

Property Description

VPName String. The name of the verification point.

Method Description

PerformTest Performs a static, dynamic, or manual verification point,
depending upon the parameters that are passed to it.
Database Verification Point Reference 139

VPFramework.PerformTest
VPFramework.PerformTest

Performs a static, dynamic, or manual verification point, depending upon the
parameters that are passed to it.

Syntax

PerformTest(Object As Variant, [ExpectedData As Variant],
[ActualData As Variant]) As Integer

Return Value

This method returns one of the following values:

Element Description

Object The component-under-test. If the verification point operates on a
component that is not directly accessible (for example, a remote
component or a database), the verification point object must
contain the information needed to find the component-under-
test, and the value of Object is ignored.

ExpectedData An optional parameter that, if it exists, represents the expected
data object. The test script can construct the expected data object,
or it can deserialize the expected data object from a file that is
not managed by the datastore.

ActualData An optional parameter that, if it exists, represents the actual data
object. This object was captured or constructed by code in the
test script.

Value Description

VERIFICATION_SUCCEEDED The verification point was performed, and the
comparison passed.

VERIFICATION_FAILED The verification point was performed, and the
comparison failed.

VERIFICATION_NO_RESULT The static verification point was run for the
first time, and a baseline (expected) data object
was successfully captured.

VERIFICATION_ERROR An error occurred, and the verification point
was not performed.
140 Chapter 6

VPFramework.PerformTest
Comments

The type of verification point that this method performs depends upon the
parameters that you pass to it:

■ Object only — static verification point.

This type of verification point performs and logs a regression-style verification. It
does so by checking the datastore for an expected (baseline) data object, and then
comparing the expected data object to the actual data object that is captured in this
call.

■ Object and ExpectedData — dynamic verification point.

This type of verification captures an actual data object from the
component-under-test, compares the actual data object to the expected data object
that was passed to the call, and logs the results of the comparison.

■ Object, ExpectedData, and ActualData — manual verification point.

This type of verification point allows a test script to capture or construct the actual
data object, rather than relying on the framework to create the actual data object.

A manual verification point simply compares the actual and expected data objects
that are passed to it and logs the results of the comparison.
Database Verification Point Reference 141

VPFramework.PerformTest
142 Chapter 6

7Verification Point
Framework Reference
About the Verification Point Framework

The verification point framework is the underlying software that executes and manages
a verification point. The framework serves two purposes:

■ It provides the base interfaces that a verification point implementer uses to create a
new verification point.

■ In a fully implemented verification point, it performs much of the functionality of
a verification point “under the covers,” shielding the test designer and the
verification point implementer from having to code this functionality explicitly.

Note: For guidance on using the methods in this chapter, see Implementing a New
Verification Point on page 179.

Note: To see Interface Definition Language (IDL) equivalents of the methods in this
chapter, see IDL Equivalents on page 213.

Requirements for Using the Verification Point Framework

The verification point framework requires Rational QualityArchitect.

Verification Point Framework Components

The framework contains the following interfaces:

■ IVerificationPoint Interface on page 144

■ IVPFramework Interface on page 153

■ IVerificationPointComparator Interface on page 156

■ IVerificationPointData Interface on page 157

■ IVerificationPointDataProvider Interface on page 159

■ IVerificationPointDataRenderer Interface on page 161

■ IVPPlumbing Interface on page 163
143

IVerificationPoint Interface
Type Libraries

The interfaces in this chapter are defined in the type library RTIVP.TLB. Using the
Visual Basic OLE/COM object viewer, you can find information about this type
library under “Rational QualityArchitect COM Verification Point Interface Type Library”
(RTIVP in the Object Browser).

The coclasses in this chapter are implemented in the type library RTCOMVP.DLL.
Using the Visual Basic OLE/COM object viewer, you can find information about this
type library under “Rational Quality Architect Playback Type Library” (RTCOMVPLib in
the Object Browser).

IVerificationPoint Interface

An implementation of this interface must contain the verification point's metadata —
that is, the information that determines the data to capture for this verification point.
Examples of verification point metadata include the connection string for connecting
to a target database and the SQL statement for querying the database.

Don’t confuse metadata with the data being verified. The data being verified is
encapsulated by an implementation of the interface IVerificationPointData.

A verification point’s metadata can be defined in either of these ways:

■ Explicitly, through user-defined set... methods in your specialized
IVerificationPoint interface.

■ Implicitly, through metadata retrieved from the datastore.

If the metadata has not been explicitly specified and no metadata exists for this
verification point in the datastore, the framework calls the DefineVP method in
your specialized IVerificationPoint interface. Your implementation of this
method should provide some means of retrieving the verification point’s
metadata— typically through some UI that prompts the tester for the information.
When the metadata is retrieved, the framework stores it in the datastore.

For more information about specifying metadata, see Step 1. Specify the Metadata for the
Verification Point on page 129.

An implementation of this interface must also implement its own serialization. By
requiring your specific verification point implementations to perform their own
serialization, you can support all file formats (such as INI and XML).

Note: The current release only supports the .vpm and .ini formats.
144 Chapter 7

Summary
Overview

Extends IVPFramework.

IVPFramework extends IVPDispatch.

Known subclass:
IDatabaseVP

Applicability

Commonly used with Rational QualityArchitect.

Rational QualityArchitect is required for use of this interface.

Summary

This interface contains the following property:

Property Description

Options Retrieves or sets options associated with the current
verification point. This property stores any options
that affect the behavior of
IVerificationPointComparator or
IVerificationPointDataProvider.

Options include the following pre-defined options plus
any user-defined options:
■ VPOPTION_COMPARE_CASEINSENSITIVE. Text

comparisons are not case sensitive. By default, text
comparisons are case sensitive.

■ VPOPTION_EXPECT_FAILURE. The verification
point's expected result is failure. If the comparison
fails and this option is set, the verification point
succeeds.

■ VPOPTION_USER_ACKNOWLEDGE_BASELINE. The
first run of a static verification point should display
the captured data for the tester to validate before
storing it as the expected (baseline) data object
Verification Point Framework Reference 145

Summary
This interface contains the following methods:

Note: For more information about these code factory methods, see The Code Factory
Methods on page 184.

Method Description

CodeFactory
GetConstructorInvocation

Declares a variable for the verification point being
constructed.

CodeFactory
GetExternalizedInputDecl

Declares a variable for each value being input
programmatically to the constructor.

CodeFactory
GetExternalizedInputInit

Initializes a variable for each value being input
programmatically to the constructor.

CodeFactory
GetNumExternalizedInputs

Specifies the number of responses (inputs) that a tester
provided when defining verification point metadata
interactively through a UI.

CodeFactory
GetNumPropertySet

Specifies the number of calls to
CodeFactoryGetPropertySet that are required
to fully specify the verification point’s definition.

CodeFactory
GetPropertySet

Sets a given property for the verification point.

DefineVP Provides a way to capture the metadata for the
verification point — typically, by presenting the tester
with a UI device, such as the Query Builder tool
provided with Rational QualityArchitect (for use with
the database verification point).
146 Chapter 7

IVerificationPoint.CodeFactoryGetConstructorInvocation
IVerificationPoint.CodeFactoryGetConstructorInvocation

Declares a variable for the verification point being constructed.

Syntax

CodeFactoryGetConstructorInvocation(Language As CTDScriptTypes)
As String

Return Value

A string containing a declaration for this verification point type. The declaration is
syntactically correct for the specified language.

Comments

This method is never called from the test script. This method is called when a test
script is generated from a Rose model.

This method provides a constructor call. This call plus the variables declared by
CodeFactoryGetExternalizedInputDecl and set by
CodeFactoryGetPropertySet allow the Rational QualityArchitect code generator
to create a fully specified verification point in the generated test script code.

For information about the QualityArchitect code generator, see the Generating Test
Assets in the Rational QualityArchitect online documentation.

Element Description

Language The language of your verification point implementation.
Valid values include:
■ CTD_SCRIPTTYPE_JAVA

■ CTD_SCRIPTTYPE_VB

■ CTD_SCRIPTTYPE_CPP
Verification Point Framework Reference 147

IVerificationPoint.CodeFactoryGetExternalizedInputDecl
IVerificationPoint.CodeFactoryGetExternalizedInputDecl

Declares a variable for each value being input programmatically to the constructor.

Syntax

CodeFactoryGetExternalizedInputDecl(Language As CTDScriptTypes,
InputNumber As Integer) As String

Return Value

A line of code that declares the variable indicated by InputNumber. The code is
syntactically correct for the specified language.

Comments

This method is never called from the test script. This method is called when a test
script is generated from a Rose model.

The Rational Rose scenario test generator calls this method in a loop that iterates as
many times as there are variables to declare (that is, the number retrieved from
CodeFactoryGetNumExternalizedInputs).

Variables declared with this method are used in the code generated by
CodeFactoryGetPropertySet and
CodeFactoryGetExternalizedInputInit.

Element Description

Language The language of your verification point implementation.
Valid values include:
■ CTD_SCRIPTTYPE_JAVA

■ CTD_SCRIPTTYPE_VB

■ CTD_SCRIPTTYPE_CPP

InputNumber A number that indicates the current variable to declare. The
number should start at 0 and increment by 1 in a loop.
148 Chapter 7

IVerificationPoint.CodeFactoryGetExternalizedInputInit
IVerificationPoint.CodeFactoryGetExternalizedInputInit

Initializes a variable for each value being input programmatically to the constructor.

Syntax

CodeFactoryGetExternalizedInputInit(Language As CTDScriptTypes,
InputNumber As Integer) As String

Return Value

A line of code that initializes the variable indicated by InputNumber. The code is
syntactically correct for the specified language.

Comments

This method is never called from the test script. This method is called when a test
script is generated from a Rose model.

The Rational Rose scenario test generator calls this method in a loop that iterates as
many times as there are variables to initialize (that is, the number returned from
CodeFactoryGetNumExternalizedInputs).

Variables initialized with this method are declared by
CodeFactoryGetExternalizedInputDecl and used by
CodeFactoryGetPropertySet.

Element Description

Language The language of your verification point implementation.
Valid values include:
■ CTD_SCRIPTTYPE_JAVA

■ CTD_SCRIPTTYPE_VB

■ CTD_SCRIPTTYPE_CPP

InputNumber A number that indicates the current variable to initialize. The
number should start at 0 and increment by 1 in a loop.
Verification Point Framework Reference 149

IVerificationPoint.CodeFactoryGetNumExternalizedInputs
IVerificationPoint.CodeFactoryGetNumExternalizedInputs

Specifies the number of responses (inputs) that a tester provided when defining
verification point metadata interactively through a UI. The UI was presented to the
tester through the DefineVP method.

Syntax

CodeFactoryGetNumExternalizedInputs(Language As CTDScriptTypes)
As Integer

Return Value

The number of tester inputs that require variable declarations to be made in the
specified language.

Comments

This method is never called from the test script. This method is called when a test
script is generated from a Rose model.

Element Description

Language The language of your verification point implementation.
Valid values include:
■ CTD_SCRIPTTYPE_JAVA

■ CTD_SCRIPTTYPE_VB

■ CTD_SCRIPTTYPE_CPP
150 Chapter 7

IVerificationPoint.CodeFactoryGetNumPropertySet
IVerificationPoint.CodeFactoryGetNumPropertySet

Specifies the number of CodeFactoryGetPropertySet calls that are required to
fully specify the verification point’s definition.

Syntax

CodeFactoryGetNumPropertySet(Language As CTDScriptTypes) As
Integer

Return Value

The number of calls that are required to CodeFactoryGetPropertySet.

Comments

NumProps represents the total number of properties that need to be set for the
verification point. Each property is set through a separate call to
CodeFactoryGetPropertySet in syntax appropriate for the specified language.

This method is never called from the test script. This method is called when a test
script is generated from a Rose model.

Element Description

Language The language of your verification point implementation.
Valid values:
■ CTD_SCRIPTTYPE_JAVA

■ CTD_SCRIPTTYPE_VB

■ CTD_SCRIPTTYPE_CPP
Verification Point Framework Reference 151

IVerificationPoint.CodeFactoryGetPropertySet
IVerificationPoint.CodeFactoryGetPropertySet

Sets a given property for the verification point.

Syntax

CodeFactoryGetPropertySet(Language As CTDScriptTypes,
InputNumber As Integer) As String

Return Value

A line of code that sets the property indicated by InputNumber. The code is
syntactically correct for the specified language.

Comments

This method is never called from the test script. This method is called when a test
script is generated from a Rose model.

The Rational Rose scenario test generator calls this method in a loop that iterates as
many times as there are properties to set (that is, the number retrieved by
CodeFactoryGetNumPropertySet).

IVerificationPoint.DefineVP

Provides a way to capture the metadata for the verification point — typically, by
presenting the tester with a UI device, such as the Query Builder tool provided with
Rational QualityArchitect (for use with the database verification point).

Syntax

DefineVP()

Element Description

Language The language of your verification point implementation.
Valid values:
■ CTD_SCRIPTTYPE_JAVA

■ CTD_SCRIPTTYPE_VB

■ CTD_SCRIPTTYPE_CPP

InputNumber A number that indicates the current property to set. The number
should start at 0 and increment by 1 in a loop.
152 Chapter 7

IVPFramework Interface
Comments

The framework automatically invokes this method if the verification point is not fully
defined when the PerformTest method is invoked.

When DefineVP is invoked, it should capture, presumably through some UI, any
information necessary to fully define the metadata for the verification point, and then
populate the verification point's attributes with the captured metadata. For example,
the DefineVP method included with the database verification point provided with
Rational QualityArchitect invokes the Query Builder software. Query Builder
captures the connection string for the target database plus a SQL statement, and then
populates the database verification point object with the captured metadata, resulting
in a fully defined verification point.

This method applies to the verification point metadata, not to the data itself that is
captured in accordance with the metadata. The specialized Verification Point Data
Provider interface uses the metadata to determine which data to capture.

If the verification point is being generated through a Rational Rose model, this
method is invoked at script generation time. The resulting verification point metadata
will automatically be provided to the test script. As a result, the DefineVP method
will not be invoked at script playback time.

Implement this method only if you are implementing a new verification point.

IVPFramework Interface

Provides the method that a test designer uses to verify a component.

Overview

Extends IDispatch.

Known subclass:
IVerificationPoint

Applicability

Commonly used with Rational QualityArchitect.

Rational QualityArchitect is required for use of this interface.
Verification Point Framework Reference 153

Summary
Summary

This interface contains the following properties:

This interface contains the following method:

IVPFramework.PerformTest

Performs a static, dynamic, or manual verification point, depending upon the
parameters that are passed to it.

Syntax

PerformTest(Object As Variant, [ExpectedData As Variant],
[ActualData As Variant]) As Integer

Property Description

VPname String. The name of the verification point.

VP For internal use only.

Plumbing For internal use only.

CodeFactorySuffix String. A unique identifier to variable names
assigned by the code factory methods. This unique
suffix prevents name conflicts when multiple
verification points are created in the same scope.

Method Description

PerformTest Performs a static, dynamic, or manual verification
point, depending upon the parameters that are passed
to it.

Element Description

Object The object-under-test. If the verification point operates on an
object that is not directly accessible (for example, a remote object
or a database), the verification point object must contain the
information needed to find the object-under- test, and the value
of objTarget is ignored.

The IVerificationPointDataProvider interface passes
this parameter to CaptureData() as its first parameter.
154 Chapter 7

IVPFramework.PerformTest
Return Value

This method returns one of the following values:

Comments

The type of verification point that this method performs depends upon the
parameters that you pass to it:

■ Object only — static verification point.

This type of verification point performs and logs a regression-style verification. It
does so by checking the datastore for an expected (baseline) data object, and then
comparing the expected data object to the actual data object that is captured in this
call.

■ Object and ExpectedData — dynamic verification point.

This type of verification captures an actual data object from the object-under-test,
compares the actual data object to the expected data object that was passed to the
call, and logs the results of the comparison.

ExpectedData An optional parameter which, if it exists, represents the expected
data object. The test script can construct the expected data object,
or it can deserialize the expected data object from a file that is
not managed by the datastore.

ActualData An optional parameter which, if it exists, represents the actual
data object. This object was captured or constructed by code in
the test script.

Element Description

Value Description

VERIFICATION_SUCCEEDED The verification point was performed, and the
comparison passed.

VERIFICATION_FAILED The verification point was performed, and the
comparison failed.

VERIFICATION_NO_RESULT The static verification point was run for the
first time, and a baseline (expected) data object
was successfully captured.

VERIFICATION_ERROR An error occurred, and the verification point
was not performed.
Verification Point Framework Reference 155

IVerificationPointComparator Interface
■ Object, ExpectedData, and ActualData — manual verification point.

This type of verification point allows a test script to capture or construct the actual
data object, rather than relying on the framework to create the actual data object.

A manual verification point simply compares the actual and expected data objects
that are passed to it, and it logs the results of the comparison.

IVerificationPointComparator Interface

An interface implementing this interface provides a method that compares two
VerificationPointData objects to determine if the comparison succeeds or fails.
The comparison can test for equality between the expected and actual data, or it can
test for some other condition (for example, that the actual data falls within a given
range).

This interface is passed into the constructor of the abstract VerificationPoint
interface and is used when that verification point needs to perform its comparison.

Overview

Extends IDispatch.

Applicability

Commonly used with Rational QualityArchitect.

Rational QualityArchitect is required for use of this interface.

IVerificationPointComparator.Compare

Compares an expected data object with an actual data object and determines whether
the test succeeds or fails.

compare(ExpectedData As IVerificationPointData, ActualData As
IVerificationPointData, Options As Variant,
FailureDescription As String) As Boolean

Element Description

ExpectedData The expected data object.

ActualData The actual data object.
156 Chapter 7

IVerificationPointData Interface
Return Value

A boolean value indicating whether the comparison passed or failed.

IVerificationPointData Interface

An interface implementing this interface encapsulates and serializes a single snapshot
of either expected or actual data. A Verification Point Data Provider interface
populates it through the CaptureData method , or it can be populated manually in
the test script — for example, by literal values or by values from a datapool.

Each implementation of the IVerificationPointData interface must provide its
own serialization methods. This enables support of all possible file formats. Use the
IPersistFile interface to implement serialization for the encapsulated data.

Note: For the current Rational QualityArchitect release, Verification Point Data
interfaces must serialize to a .CSV file format. This restriction will be removed in a
future release of Rational QualityArchitect.

In addition to implementing the methods defined by this interface, all Verification
Point Data interfaces should create member variables that encapsulate the data being
compared by the verification point. The data encapsulated in these member variables
should be exposed through public get... and set... methods that you
implement, thereby allowing a test script to create and populate an instance of the
interface for use in dynamic and manual verification points.

Options Options that are passed from the Verification Point interface to
qualify the comparison. Options can be pre-defined, such as
VPOPTION_COMPARE_CASEINSENSITIVE,
VPOPTION_EXPECT_FAILURE, and
VPOPTION_USER_ACKNOWLEDGE_BASELINE, or any
user-defined options.

FailureDescription INPUT / OUTPUT. A value that contains the differences between
the expected and actual data objects in a failed verification point.
The failure description is written to the log.

If you assign a value to this parameter, the method may change
the value.

Element Description
Verification Point Framework Reference 157

IVerificationPointData.FileExtension
Overview

Extends IDispatch.

Known subclass:
IDatabaseVPData

Applicability

Commonly used with Rational QualityArchitect.

Rational QualityArchitect is required for use of this interface.

IVerificationPointData.FileExtension

Retrieves or specifies the extension of the file used to store the data object.

Syntax

FileExtension() As String

FileExtension(newVal As String)

Return Value

The file extension currently used to store data objects.

Comments

The framework uses the file extension to determine the format to use when it
serializes files (for example, a .CSV extension indicates a comma-separated-value text
file).

In the current release, .CSV is the only supported file format. Other formats will be
supported in a future release.

Element Description

newVal A new file extension to use for storing data objects.
158 Chapter 7

IVerificationPointDataProvider Interface
IVerificationPointDataProvider Interface

An implementation of this interface creates a Verification Point Data object based on
the verification point metadata in the specialized Verification Point object.

A component implementing this interface is a pluggable link between a Verification
Point component (which defines a verification point’s metadata) and a Verification
Point Data component (which encapsulates and serializes the data for a verification
point).

When you implement a Verification Point Data interface from this interface, you
implement the CaptureData method for populating a Verification Point Data object
for a given Verification Point object. The Verification Point Data Provider interface
knows about the structure of both the Verification Point Data interface (which it is
building) and the Verification Point interface (which specifies the data to capture).

This is an important abstraction for general types of verification points (such as object
data or object properties), where many different objects may provide access to the
same type of data.

An implementation of this interface can be plugged into an existing verification point
implementation to provide verification point data from a new verification point data
source.

An implementation of this interface is used with static verification points (for
building expected and actual data objects) and with dynamic verification points (for
building actual data objects only).

Overview

Extends IDispatch.

Applicability

Commonly used with Rational QualityArchitect.

Rational QualityArchitect is required for use of this interface.
Verification Point Framework Reference 159

IVerificationPointDataProvider.CaptureData
IVerificationPointDataProvider.CaptureData

This method builds a VerificationPointData object.

Syntax

CaptureData(Object As Variant, VP As IVerificationPoint) As
IVerificationPointData

Return Value

An instance of the specialized IVerificationPointData interface populated with
the captured data.

Comments

This method captures data according to the metadata in the IVerificationPoint
interface. The framework may use the returned IVerificationPointData object
as either an expected or an actual data object.

Element Description

Object The object-under-test. The first parameter of the PerformTest
method provides the contents of this parameter.

VP The IVerificationPoint object that contains the verification
point’s metadata.
160 Chapter 7

IVerificationPointDataRenderer Interface
IVerificationPointDataRenderer Interface

An interface implementing this interface provides the capability of displaying the
data stored in the Verification Point Data interface, allowing the tester to interactively
accept or reject that data as the expected (baseline) data for a static verification point.

The test script uses the Options property to set the
VPOPTION_USER_ACKNOWLEDGE_BASELINE option.

Overview

Extends IDispatch.

Known subclass:
DatabaseVPDataRenderer

Applicability

Commonly used with Rational QualityArchitect.

Rational QualityArchitect is required for use of this interface.
Verification Point Framework Reference 161

IVerificationPointDataRenderer.DisplayAndValidateData
IVerificationPointDataRenderer.DisplayAndValidateData

Presents the tester with a visual representation of the data object as it exists before
expected (baseline) data is stored for this static verification point.

Syntax

DisplayAndValidateData(Data As IVerificationPointData) As
Boolean

Return Value

The return values is either:

■ true if the tester accepts the displayed data

■ false if the tester rejects the data.

Comments

This method is invoked by the verification point framework when the following
conditions exist:

■ The test script uses the Options property to set the
VPOPTION_USER_ACKNOWLEDGE_BASELINE option.

■ No expected data object exists in the datastore when the test script calls the
CaptureData method of the Verification Point interface for a static verification
point.

When the method is invoked, it presents the tester with a visual representation of the
data, and allows the tester to accept or reject the data:

■ If the tester accepts the data, the verification point passes, and the framework adds
the data to the datastore as the expected data for subsequent test runs.

■ If the tester rejects the data, the framework logs the failure, and no expected data is
stored for the verification point. The next time the tester runs the script, the script
again prompts the tester to accept the data.

Element Description

Data INPUT / OUTPUT. The data to present to the tester for
confirmation.

The method may change this value after it is passed in.
162 Chapter 7

IVPPlumbing Interface
IVPPlumbing Interface

Identifies the components of this verification point.

Overview

Extends IDispatch.

Applicability

Commonly used with Rational QualityArchitect.

Rational QualityArchitect is required for use of this interface.
Verification Point Framework Reference 163

Summary
Summary

This interface contains the following properties:

This interface contains the following methods:

Property Description

IsDefined Boolean. If true, the verification point's metadata is
fully specified. If false when a PerformTest
method is invoked, the framework will call the
DefineVP method on behalf of the test script in an
attempt to get a full set of verification point metadata
from the tester.

Note that this property applies to the verification point
metadata, not to the data itself that is captured in
accordance with the metadata.

IsValid Boolean. If true, indicates that the verification point
was correctly instantiated, successfully captured, and is
in a valid state — otherwise false.

VPComparator String. The progID of the
IVerificationPointComparator component for
this verification point.

VPData String. The progID of the
IVerificationPointData component for this
verification point.

VPDataProvider String. The progID of the
IVerificationPointDataProvider component
for this verification point.

VPDataRenderer String. The progID of the
IVerificationPointDataRenderer component
for this verification point.

Method Description

InitializeFramework Specifies to the verification point framework the IDs of
the components used by this verification point.

InitializeVP For internal use only.
164 Chapter 7

IVPPlumbing.InitializeFramework
IVPPlumbing.InitializeFramework

Specifies to the verification point framework the IDs of the components used for this
verification point.

Syntax

InitializeFramework(VPComparator As String, VPData As String,
VPDataProvider As String, VPDataRenderer As String)

IVPPlumbing.InitializeVP

For internal use only.

Syntax

InitializeVP()

Element Description

VPComparator The progID of the IVerificationPointComparator
component.

VPData The progID of the IVerificationPointData component.

VPDataProvider The progID of the IVerificationPointDataProvider
component.

VPDataRenderer The progID of the IVerificationPointDataRenderer
component.
Verification Point Framework Reference 165

IVPPlumbing.InitializeVP
166 Chapter 7

AConfiguring Datapools,
Synchronization Points,
and Shared Variables
About Script Configuration

During execution of a test script that uses datapools, synchronization points, or
shared variables, TestManager must be able to access and apply values at different
points in the script, for different virtual testers. In this manual, the procedures that
allow TestManager to do this efficiently are referred to as configuration. This appendix
describes the configuration procedures.

Datapool Configuration

When you record a session, you indicate whether a script generated from the session
will use datapools. A generated script that uses a datapool will include a block of code
opening the datapool such as the following:

tssPool.Open LoadResString(testscript1), _
rtCOM.GetDatapoolAccessFlags, _
rtCOM.GetDatapoolOverrideList

The datapool name testscript1 will be the same as the script name. Create and
populate the actual datapool you want your test script to use, and replace
testscript1 with the datapool’s name. Now, when your script plays back, it will
retrieve configuration information from the project resource (.res) file regarding this
datapool. So you need to edit the .res file as explained below.

Go to the project directory and double-click the project resource (.res) file. Note: if the
file does not open when you double-click the .res file, this indicates that the Visual
Basic resource editor was not installed on the local machine. In this case, install the
resource editor and configure it to start up with Visual Basic.
167

Datapool Configuration
When the resource file opens, you will see a display such as the following:

Click the + by the String Table folder to open it, and double-click on the String Table
file inside. When the String Table opens, you will see a display such as the following:

By default, on playback, the script will not use the datapool. This is because every
field is set to EXCLUDE. So, for every field that should be populated from a datapool
column of the same name, change EXCLUDE to INCLUDE by doing the following.

1 Click the line you want to change.

Inspect the string between EXCLUDE and the comma. It is a concatenation of these
names: class, interface, method, and parameter. This string indicates an input field
whose value may be supplied from a corresponding datapool column.

2 Right-click and select Properties: the String Properties dialog appears:

3 In the Caption panel, click EXCLUDE and change it to INCLUDE.

You can also change EXCLUDE to OVERRIDE. If you do this, the value in quotes at
the end of the line will be inserted into the field on playback, rather than values
from the corresponding datapool column.

4 End the String Properties dialog (click x in the upper right corner). The modified
.res file is saved.

Now, when you run the script, the datapool will be used as indicated. To supply a
different datapool configuration, re-edit the resource file and run the script again.
168 Appendix A

Synchronization Point and Shared Variable Configuration
Finally, you may add access flags for the datapool: see TSSDatapool.Open on page 22
for a description of access flags. If you add access flags to the resource file, and do not
specify any with the Open call, the access flags named in the resource file will be used
for the datapool. Add access flags to the DATAPOOL_CONFIG line (62000), following
the instructions above. For example, to specify the default datapool access flags,
modify line 62000 as follows:

DATAPOOL_CONFIG DP DP_WRAP DP_SEQUENTIAL DP_SHARED

Note that, in the resource file, datapool access flags are specified without the TSS_
prefix. They are otherwise identical to the access flags described for the Open method.

Synchronization Point and Shared Variable Configuration

Generated scripts that use synchronization points or shared variables will include
ordinary synchronization point and shared variable method statements (see
Synchronization Class on page 89). In addition, the .res files for those scripts will
include String Table data. For example, suppose a generated script named IE5test
includes these statements:

tssSync.SyncPoint "BlockUntilSaveComplete"
....
tssSync.SharedVarAssign "lineCounter",val,SHVOP_ADD

If you go to the project directory and open IE5test.res, you’ll see String Table
information similar to the following:

For generated scripts such as in this example, no action is required. However, for any
synchronization points or shared variables that you manually insert into a script, you
must insure that the .res file contains information such as that shown above.

Adding String Table Data to a Resource File

If you manually write a Visual Basic script that uses datapools, synchronization
points, or shared variables, or if you manually add method statements for any of these
to a generated script, you must add String Table data to the project resource file. The
procedures are summarized below.
Configuring Datapools, Synchronization Points, and Shared Variables 169

Synchronization Point and Shared Variable Configuration
A generated Visual Basic project (.vbp) file contains the lines shown below. If you
create a Visual Basic project from the IDE, you must add these reference lines to the
project file.

A Visual Basic script must be compiled into a .dll file. When you do this, a .rc file is
produced. To get a .res file, you then compile the .rc file with the resource compiler.

When you open the .res file for a hand-written script (or for a generated script that
included no datapool, synchronization point, and shared variable statements), you
see an empty file.

To add content to this file:

1 Select Insert > Resource. The Insert Resource dialog appears.

2 Select String Table and click New. An empty string table row (darkened) appears.

Reference=*\G{00020430-0000-0000-C000-000000000046}#2.0#0#..\..\..\..\..
\WINNT\System32\stdole2.tlb#OLE Automation

Reference=*\G{175F8B42-FB70-11D3-99A4-00C04F5E9877}#1.0#0#..\..\..\..\..
\Program Files\Rational\Rational Test\rttsscom.dll#TestScriptServices
170 Appendix A

Synchronization Point and Shared Variable Configuration
3 Place your cursor on the darkened row, click button 3, and select Properties. The
String Properties dialog appears.

4 In the ID field, enter an ID number. In the Caption field, enter a value. For example,
to configure a synchronization point named sync1, enter sync1. Then click the x on
the upper right corner. This saves the String table entry as shown below.

Repeat the steps above until the resource file contains entries for all manually-inserted
datapool, synchronization points, and shared variables.
Configuring Datapools, Synchronization Points, and Shared Variables 171

Synchronization Point and Shared Variable Configuration
172 Appendix A

BRTCOM Support Class
About RTCOM

The Rational Test Component Object Model (RTCOM) class provides functions
specific to the COM protocol. Visual Basic scripts that are generated from COM
sessions use RTCOM class methods for error handling, datapool configuration, object
monitoring, and logging operations.

Summary

In generated scripts, RTCOM methods are invoked via rtcom, a variable holding an

object reference instantiated as follows:

Private RTCOM As New TestScriptServicesLib.RTCOMSupport

This is not shown in the examples.

The following table lists and describes the RTCOM member functions.

Function Description

ErrorArray Specifies the list of expected errors for the
application under test.

GetDatapoolAccessFlags Gets datapool access flags from the resource file.

GetDatapoolOverrideList Gets datapool override column name/values from
the resource file.

Monitor Controls COM object monitoring.

SetCMDID Sets the command ID for a COM method call.
173

ErrorArray
ErrorArray

Specifies the list of expected error for the application under test.

Syntax

ErrorArray (errList as Long)

Error Codes

This method generates one of the following status codes:

■ S_OK. Success.

■ ERROR_TSS_ABORT. Abort in progress, probably resulting from a user request.

■ ERROR_INVALID_PARM. A required argument is missing or invalid.

■ ERROR_GET_TLS_INDEX. An internal storage error (unrecoverable) occurred.

■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

Comments

When a method completes, the COM interception mechanism within TSS needs to
decide whether the method succeeded or failed. Without guidance, the mechanism
will consider any HRESULT that has the error bit on to be a failure. It is possible that,
for the application under test, certain HRESULTs that have the error bit set do not
indicate failure. Use ErrorArray to pass any such HRESULTs to the interception
mechanism so that it will not consider them failures for the application under test.

Example

This example passes three HRESULT values to the interception mechanism, so that it
will not consider them to indicate failure.

Dim expectedErrs(2) As Long
expectedErrs(0) = 0
expectedErrs(1) = &H80040001
expectedErrs(2) = &H80040123
rtcom.ErrorArray expectedErrs

Element Description

errList An array of Longs specifying HRESULT values that should not be
regarded as errors.
174 Appendix B

GetDatapoolAccessFlags
GetDatapoolAccessFlags

Gets datapool access flags from the resource file.

Syntax

GetDatapoolAccessFlags() As Long

Return Value

A 32-bit integer containing the access flags. If the resource file specifies multiple
access flags, their bitmasks are merged in the integer.

Error Codes

This method generates one of the following status codes:

■ S_OK. Success.

■ ERROR_TSS_ABORT. Abort in progress, probably resulting from a user request.

■ ERROR_GET_TLS_INDEX. An internal storage error (unrecoverable) occurred.

■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

Comments

This call parses the resources associated with the script, extracts the datapool access
flags, and returns them in a form suitable for passing to TSSDatapool.Open.

Example

This first example returns the datapool access flags in the resource file to flags. The
second example invokes TSSDatapool.Open, whose arguments are passed by the
LoadResString (a built-in function) from the resource file.

Dim Flags as Long
flags = rtcom.GetDatapoolAccessFlags

tssPool.Open LoadResString(TSSRES_datapoolname), _
rtCOM.GetDatapoolAccessFlags, _
rtCOM.GetDatapoolOverrideList
RTCOM Support Class 175

GetDatapoolOverrideList
GetDatapoolOverrideList

Gets datapool override column name/values from the resource file.

Syntax

GetDatapoolOverrideList() as Variant

Return Values

A two-dimensional array of name/value pairs containing the datapool override list.

Error Codes

This method generates one of the following status codes:

■ S_OK. Success.

■ ERROR_TSS_ABORT. Abort in progress, probably resulting from a user request.

■ ERROR_GET_TLS_INDEX. An internal storage error (unrecoverable) occurred.

■ ERROR_OUT_OF_MEMORY. An attempt to allocate dynamic memory failed.

Comments

This call parses the resources associated with the script, extracts any datapool
override name/value pairs, and returns them in a form suitable for passing to
TSSDatapool.Open.

Example

This example invokes TSSDatapool.Open, whose arguments are passed by the
LoadResString (a built-in function) from the resource file.

tssPool.Open LoadResString(TSSRES_datapoolname), _
rtCOM.GetDatapoolAccessFlags, _
rtCOM.GetDatapoolOverrideList
176 Appendix B

Monitor
Monitor

Controls object monitoring and reporting.

Syntax

Monitor (toggle As String, [class As Variant], [method As
Variant], [instance As Variant])

Error Codes

This method generates one of the following status codes:

■ S_OK. Success.

■ ERROR_TSS_ABORT. Abort in progress, probably resulting from a user request.

Comments

By default, the COM interception mechanism monitors all non-TSS objects in order to
keep track of them. This call allows you to exclude objects that should not be
monitored. You can specify an object to exclude/include by specifying its class,
method, instance, or a combination.

Example

This example excludes from monitoring all methods and instances of the class ADODB.

rtcom.Monitor "OFF", "ADODB"

Element Description

toggle ON (monitor) or OFF (exclude from monitoring).

class The name of a class include/exclude.

method The name of a method in class to include/exclude.

instance The instance of class to include/exclude.
RTCOM Support Class 177

SetCMDID
SetCMDID

Sets the command ID for a COM method call.

Syntax

SetCMDID (cid As String)

Error Codes

This method generates one of the following status codes:

■ S_OK. Success.

■ ERROR_TSS_ABORT. Abort in progress, probably resulting from a user request.

Comments

Command IDs appear in logs in order to improve their readability.

Example

This example sets the command ID for a method call to test001.

rtcom.SetCMDID "test001"

Element Description

cid The command ID.
178 Appendix B

CImplementing a New
Verification Point
Introduction to Verification Point Implementation

The verification point framework is an open architecture. Using it, you can implement
your own verification point types and execute them within the framework.

This appendix describes the steps necessary to implement a new verification point
type. It has the following topics:

■ Fundamentals for Implementing a Verification Point on page 180 describes the
components you must implement.

■ Integrating Your Verification Point with QualityArchitect on page 211 explains how
your implemented components interact with the verification point framework and
with the Rational QualityArchitect code generator to provide complete verification
point services.

This appendix is intended only for implementers of new verification point types. If
you are a test designer who is adding existing verification points to your scripts, you
can skip this appendix. This appendix assumes a sound working knowledge of
COM/DCOM as well as an understanding of verification points.

In addition, this appendix assumes that you are implementing your new
COM/DCOM verification point type in Visual C++. The examples and terminology in
this appendix are targeted towards experienced C++ developers. If you want to
implement a new verification point type in Visual Basic, you can use this appendix as
a conceptual guide.

Note: To see Interface Definition Language (IDL) equivalents of the methods and
properties you use to implement a new verification point type, see IDL Equivalents on
page 213.
179

Fundamentals for Implementing a Verification Point
Fundamentals for Implementing a Verification Point

Rational QualityArchitect provides a framework for implementing COM/DCOM
verification points. This framework includes interfaces for all of the components you
must implement, as well as a VPFramework component that provides much of the
required implementation for all verification points.

Any verification point type that you implement should inherit the VPFramework
component’s implementation. Since COM does not support implementation
inheritance, you acccomplish this task through COM containment. With COM
containment, methods and properties inherited from the framework appear as part of
your verification point type. This minimizes the amount of code that a test designer
has to write to perform a simple verification point, plus it eliminates the need for a
QueryInterface operation.

For more information, see Essential COM by Don Box.

Task Summary

To implement a new verification point type, you must implement the interfaces and
components documented in the following sections:

■ Interface for Your Verification Point Component on page 180

■ The Verification Point Component on page 181

■ Interface for Your Verification Point Data Component on page 200

■ The Verification Point Data Component on page 201

■ The Verification Point Data Comparator Component on page 205

■ The Verification Point Data Provider Component on page 208

■ The Verification Point Data Renderer Component on page 210

Interface for Your Verification Point Component

Your verification point component’s interface must contain properties or methods for
defining the verification point. This interface must inherit from the
IVerificationPoint interface — for example:

[
object,
uuid(7C4870B0-6E1A-11D4-9A26-0010A4E86989),
dual,
helpstring("IDatabaseVP Interface"),
pointer_default(unique)

]
interface IDatabaseVP : IVerificationPoint
180 Appendix C

Fundamentals for Implementing a Verification Point
{
[propget, helpstring("property ConnectionString")]

HRESULT ConnectionString([out, retval] BSTR *pVal);
[propput, helpstring("property ConnectionString")]

HRESULT ConnectionString([in] BSTR newVal);
[propget, helpstring("property SQL")] HRESULT SQL([out, retval]

BSTR *pVal);
[propput, helpstring("property SQL")] HRESULT SQL([in] BSTR newVal);

};

The Verification Point Component

Your specialized verification point must perform the following tasks:

■ Define and maintain the metadata that describes the verification to be performed.

■ Supply a UI that allows a tester to specify the metadata.

■ Provide serialization services for the metadata.

■ Serve as a “code factory” for the Rational QualityArchitect code generator. The
code factory methods generate source code that can be inserted into a test script to
create the instance of your verification point.

To enable your specialized Verification Point component to perform these tasks, you
must implement the following interfaces:

■ All of the methods in the IVerificationPoint interface (because your
Verification Point interface inherits from this interface).

■ Your Verification Point interface, which you defined in Interface for Your Verification
Point Component on page 180.

■ The IPersistFile interface.

■ All of the methods in the IVPFramework interface (because the
IVerificationPoint interface inherits from IVPFramework).

Your IVPFramework methods should pass the calls through to a contained
VPFramework object, thus inheriting the implementation through containment.

Here is an example class declaration for a Verification Point component:

class ATL_NO_VTABLE CDatabaseVP :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CDatabaseVP, &CLSID_DatabaseVP>,
public IDispatchImpl<IDatabaseVP, &IID_IDatabaseVP,

&LIBID_RTCOMVPLib>,
public IPersistFile

{
public:

CDatabaseVP()
{

Implementing a New Verification Point 181

Fundamentals for Implementing a Verification Point
}

DECLARE_REGISTRY_RESOURCEID(IDR_DATABASEVP)
DECLARE_PROTECT_FINAL_CONSTRUCT()

HRESULT FinalConstruct();

BEGIN_COM_MAP(CDatabaseVP)
COM_INTERFACE_ENTRY(IDatabaseVP)
COM_INTERFACE_ENTRY(IVerificationPoint)
COM_INTERFACE_ENTRY2(IDatabaseVP, IDispatch)
COM_INTERFACE_ENTRY(IPersistFile)

END_COM_MAP()

// IVerificationPoint
public:

STDMETHOD(CodeFactoryGetConstructorInvocation)
(CTDScriptTypes Language, BSTR * Code);

STDMETHOD(CodeFactoryGetNumExternallizedInputs)
(CTDScriptTypes Language, short * NumInputs);

STDMETHOD(CodeFactoryGetExternalizedInputDecl)
(CTDScriptTypes Language, short InputNumber, BSTR * Code);

STDMETHOD(CodeFactoryGetExternalizedInputInit)(/*[in]*/
CTDScriptTypes Language, /*[in]*/ short InputNumber,
/*[out, retval]*/ BSTR *Code);

STDMETHOD(CodeFactoryGetNumPropertySet)(/*[in]*/
CTDScriptTypes Language, /*[out, retval]*/
short *NumProps);

STDMETHOD(CodeFactoryGetPropertySet)(/*[in]*/
CTDScriptTypes Language, /*[in]*/ short InputNumber,
/*[out, retval]*/ BSTR *Code);

STDMETHOD(DefineVP)();

// IDatabaseVP
public:

STDMETHOD(get_SQL)(/*[out, retval]*/ BSTR *pVal);
STDMETHOD(put_SQL)(/*[in]*/ BSTR newVal);
STDMETHOD(get_ConnectionString)(/*[out, retval]*/ BSTR *pVal);
STDMETHOD(put_ConnectionString)(/*[in]*/ BSTR newVal);

// IPersistFile
public:

STDMETHOD(GetCurFile)(LPOLESTR *ppszFileName);
STDMETHOD(SaveCompleted)(LPCOLESTR pszFileName);
STDMETHOD(Save)(LPCOLESTR pszFileName, BOOL fRemember);
STDMETHOD(Load)(LPCOLESTR pszFileName, DWORD dwMode);
STDMETHOD(IsDirty)();
STDMETHOD(GetClassID)(CLSID *pClassID);

// IVPFramework
public:
// STDMETHOD(InitializeFramework)(BSTR Name, BSTR VPComparator,

BSTR VPData, BSTR VPDataProvider, BSTR VPDataRenderer);
STDMETHOD(PerformTest)(/*[in]*/ VARIANT Object, /*[optional, in]*/
182 Appendix C

Fundamentals for Implementing a Verification Point
VARIANT ExpectedData, /*[optional, in]*/
VARIANT ActualData, /*[out, retval]*/ enum VPResult *Result);

STDMETHOD(get_VPname)(/*[out, retval]*/ BSTR *pVal);
STDMETHOD(put_VPname)(/*[in]*/ BSTR newVal);
STDMETHOD(get_Options)(/*[out, retval]*/ VARIANT *pVal);
STDMETHOD(put_Options)(/*[in]*/ VARIANT newVal);
STDMETHOD(get_VP)(IDispatch ** ppVP);
STDMETHOD(put_VP)(IDispatch * pVP);
STDMETHOD(get_Plumbing)(IDispatch ** ppPlumbing);
STDMETHOD(put_Plumbing)(IDispatch * pPlumbing);
STDMETHOD(get_CodeFactorySuffix)(BSTR* pVal);
STDMETHOD(put_CodeFactorySuffix)(BSTR newVal);

private:
HRESULT CalcIsDefined();
CComPtr<IVPFramework> m_pFramework;
LONG lOptions;
_bstr_t bstConnectionString;
_bstr_t bstSQL;

};

Implementing the IVerificationPoint Interface

This section describes the implementation of the following parts of the
IVerificationPoint interface:

■ The DefineVP() method

■ The code factory methods

■ The Options property

The DefineVP() Method

The DefineVP() method in the IVerificationPoint interface invokes a UI to
capture the metadata definition of the verification point. When the tester dismisses
the UI, this method should populate the verification point object with the metadata it
captured.

The method should return S_OK if the metadata was successfully captured, and
E_VP_UNDEFINED if it was not — for example:

STDMETHODIMP CDatabaseVP::DefineVP()
{

...

// Invoke some GUI to capture the VP’s definition, in this case,
// the QueryBuilder.

...

pQB->DoModal();
Implementing a New Verification Point 183

Fundamentals for Implementing a Verification Point
pQB->get_Accepted(&vAccepted);
if (vAccepted.vt == VT_BOOL && vAccepted.boolVal == VARIANT_TRUE)
{

pQB->get_Connection(&vConnection);
pQB->get_SQL(&vSQL);
if (vConnection.vt == VT_BSTR && vSQL.vt == VT_BSTR)
{

bstConnectionString = vConnection.bstrVal;
bstSQL = vSQL.bstrVal;

}
else
{

bDefined = false;
}
if (*((LPCWSTR)bstConnectionString) == L'\0' ||

*((LPCWSTR)bstSQL) == L'\0')
{

bDefined = false;
}

}
else // User canceled, or internal error in Query Builder component.
{

bDefined = false;
}

if (bDefined == false)
return E_VP_UNDEFINED;

else
return S_OK;

}

The Code Factory Methods

The code factory methods generate source code that is capable of creating instances of
your verification point type.

The code factory methods are similar in function to ActiveX controls that provide
additional design-time behavior that integrates with the Visual C++ or Visual Basic
environments.

The Rational QualityArchitect code generator uses the code factory methods to insert
verification points into generated test scripts. If a tester using QualityArchitect wants
to insert one of your verification points into a generated test script, the
QualityArchitect code generator creates an instance of your verification point, and
then calls the DefineVP() method to present the tester with the UI you have created.
Once the tester supplies the metadata through your UI, the code generator invokes
the code factory methods to return source code. When the returned source code is
inserted into the test script, a verification point is created from the metadata that the
tester supplied.
184 Appendix C

Fundamentals for Implementing a Verification Point
For information about how the QualityArchitect code generator uses the code factory
methods, see Integrating Your Verification Point with QualityArchitect on page 211.

Following are the code factory methods that you implement:

■ CodeFactoryGetConstructorInvocation() returns a line of code that
invokes your verification point’s constructor. The code is syntactically correct for
the given language.

■ CodeFactoryGetNumExternalizedInputs() returns the number of
externalized input variables required for code generation of this verification point.

■ CodeFactoryGetExternalizedInputDecl() returns a line of code that
declares the specified externalized input for this verification point. The code is
syntactically correct for the given language.

■ CodeFactoryGetExternalizedInputInit() returns a line of code that
initializes the specified externalized input for this verification point. The code is
syntactically correct for the given language.

■ CodeFactoryGetNumPropertySet() returns the number of property-set calls
required to fully specify the metadata for this verification point.

■ CodeFactoryGetPropertySet() returns a line of code that sets the specified
property for this verification point. The code is syntactically correct for the given
language.

There are also CodeFactorySuffix property methods. The framework implements
these methods — you only pass them through. You use the suffix when constructing
the externalized variables that are returned by the following methods:

■ CodeFactoryGetPropertySet()

■ CodeFactoryGetExternalizedInputDecl()

■ CodeFactoryGetExternalizedInputInit()

The suffix ensures that externalized variable names from multiple verification points
in the same scope are unique. If the Rational QualityArchitect code generator sets the
suffix, append the suffix to each externalized variable that is declared, initialized, and
set by these methods. This allows the Rational Quality Architect code generator to
insert more than one verification point into a test script without risk of variable name
conflicts.
Implementing a New Verification Point 185

Fundamentals for Implementing a Verification Point
Example of Code Factory Methods

The following code listing illustrates the use of the code factory methods:

STDMETHODIMP CDatabaseVP::get_CodeFactorySuffix(BSTR *pVal)
{

return m_pFramework->get_CodeFactorySuffix(pVal);
}

STDMETHODIMP CDatabaseVP::put_CodeFactorySuffix(BSTR newVal)
{

return m_pFramework->put_CodeFactorySuffix(newVal);
}

STDMETHODIMP
CDatabaseVP::CodeFactoryGetConstructorInvocation(CTDScriptTypes
Language, BSTR * Code)
{

if (Code == NULL)
return E_POINTER;

// Create a line of code which constructs this type of VP.
_bstr_t bsCode;
BSTR bsName = NULL;
BSTR bsSuffix = NULL;

get_VPname(&bsName);
get_CodeFactorySuffix(&bsSuffix);

if (bsName == NULL)
{

return E_INVALIDARG;
}

switch (Language)
{
case CTD_SCRIPTTYPE_VB: // VB

bsCode = L"Dim ";
bsCode += bsName;
if (bsSuffix) bsCode += bsSuffix;
bsCode += L" As New DatabaseVP";
break;

default:
return E_INVALIDARG;

}

*Code = bsCode.copy();

return S_OK;
}

STDMETHODIMP
186 Appendix C

Fundamentals for Implementing a Verification Point
CDatabaseVP::CodeFactoryGetNumExternallizedInputs(CTDScriptTypes
Language, short * NumInputs)

{
if (NumInputs == NULL)

return E_POINTER;

// Only VB is supported currently
if (Language != CTD_SCRIPTTYPE_VB)

return E_INVALIDARG;

if (lOptions == 0)
*NumInputs = 3;

else
*NumInputs = 4;

return S_OK;
}

STDMETHODIMP
CDatabaseVP::CodeFactoryGetExternalizedInputDecl(CTDScriptTypes

Language, short InputNumber, BSTR * Code)
{

if (Code == NULL)
return E_POINTER;

// Only VB is supported currently
if (Language != CTD_SCRIPTTYPE_VB)

return E_INVALIDARG;

_bstr_t bsCode;
BSTR bsSuffix = NULL;

get_CodeFactorySuffix(&bsSuffix);

switch (InputNumber)
{
case 1: // VPName

bsCode = L"Dim VPname";
if (bsSuffix) bsCode += bsSuffix;
bsCode += L" As String";
break;

case 2: // Connection String
bsCode = L"Dim VPConnectString";
if (bsSuffix) bsCode += bsSuffix;
bsCode += L" As String";
break;

case 3: // SQL Statement
bsCode = L"Dim VPSQL";
if (bsSuffix) bsCode += bsSuffix;
bsCode += L" As String";
break;
Implementing a New Verification Point 187

Fundamentals for Implementing a Verification Point
case 4: // Options
bsCode = L"Dim VPOptions";
if (bsSuffix) bsCode += bsSuffix;
bsCode += L" As Integer";
break;

default:

break;
}

*Code = bsCode.copy();

return S_OK;
}

STDMETHODIMP CDatabaseVP::CodeFactoryGetExternalizedInputInit(/*[in]*/
CTDScriptTypes Language, /*[in]*/ short InputNumber,
/*[out,retval]*/ BSTR *Code)

{
if (Code == NULL)

return E_POINTER;

// Only VB is supported currently
if (Language != CTD_SCRIPTTYPE_VB)

return E_INVALIDARG;

_bstr_t bsCode;
BSTR bsName = NULL;
BSTR bsSuffix = NULL;

get_VPname(&bsName);
get_CodeFactorySuffix(&bsSuffix);

if (bsName == NULL)
{

// TODO: Enum this error condition!
return E_INVALIDARG;

}

switch (InputNumber)
{
case 1: // VPname

bsCode = L"VPname";
if (bsSuffix) bsCode += bsSuffix;
bsCode += L" = \"";
bsCode += bsName;
bsCode += L"\"";
break;

case 2: // Connection String
bsCode = L"VPConnectString";
if (bsSuffix) bsCode += bsSuffix;
bsCode += L"= \"";
188 Appendix C

Fundamentals for Implementing a Verification Point
bsCode += bstConnectionString;
bsCode += L"\"";
break;

case 3: // SQL Statement
bsCode = L"VPSQL";
if (bsSuffix) bsCode += bsSuffix;
bsCode += L" = \"";
bsCode += bstSQL;
bsCode += L"\"";
break;

case 4: // Options
bsCode = L"VPOptions";
if (bsSuffix) bsCode += bsSuffix;
bsCode += L" = ";
bsCode += L"VPOptions";
break;

default:

break;
}

*Code = bsCode.copy();

return S_OK;

}

STDMETHODIMP CDatabaseVP::CodeFactoryGetNumPropertySet(/*[in]*/
CTDScriptTypes Language, /*[out, retval]*/ short *NumProps)

{
return CodeFactoryGetNumExternallizedInputs(Language, NumProps);
}

STDMETHODIMP CDatabaseVP::CodeFactoryGetPropertySet(/*[in]*/
CTDScriptTypes Language, /*[in]*/ short InputNumber,
/*[out, retval]*/ BSTR *Code)

{
if (Code == NULL)

return E_POINTER;

// Only VB is supported currently
if (Language != CTD_SCRIPTTYPE_VB)

return E_INVALIDARG;

_bstr_t bsCode;
BSTR bsName = NULL;
BSTR bsSuffix = NULL;

get_VPname(&bsName);
Implementing a New Verification Point 189

Fundamentals for Implementing a Verification Point
get_CodeFactorySuffix(&bsSuffix);

if (bsName == NULL)
{

// TODO: Enum this error condition!
return E_INVALIDARG;

}

switch (InputNumber)
{
case 1: // VPname

bsCode = bsName;
if (bsSuffix) bsCode += bsSuffix;
bsCode += L".VPname = ";
bsCode += L"VPname";
if (bsSuffix) bsCode += bsSuffix;
break;

case 2: // Connection String
bsCode = bsName;
if (bsSuffix) bsCode += bsSuffix;
bsCode += L".ConnectionString = ";
bsCode += L"VPConnectString";
if (bsSuffix) bsCode += bsSuffix;
break;

case 3: // SQL Statement
bsCode = bsName;
if (bsSuffix) bsCode += bsSuffix;
bsCode += L".SQL = ";
bsCode += L"VPSQL";
if (bsSuffix) bsCode += bsSuffix;
break;

case 4: // Options
bsCode = bsName;
if (bsSuffix) bsCode += bsSuffix;
bsCode += L".Options = ";
bsCode += L"VPOptions";
if (bsSuffix) bsCode += bsSuffix;
break;

default:

break;
}

*Code = bsCode.copy();

return S_OK;

}

190 Appendix C

Fundamentals for Implementing a Verification Point
Sample Code Factory Output

The following example illustrates the output produced by calling the code factory
methods for a database verification point on a fully specified database verification
point object.

In this example, the caller performed these preliminary steps:

■ Created a DatabaseVP object and set its VPname property to Simple.

■ Set its code factory suffix to 1.

■ Called the DefineVP() method.

This is consistent with the behavior you see with the Rational QualityArchitect code
generator. In the QueryBuilder invoked by the DefineVP() method, the caller
specified an ODBC data source called COFFEEBREAK, and built the SQL statement
"SELECT * FROM COFFEES".

The following samples show what the code factory methods return when they are
invoked for this database verification point object:

■ Returned from CodeFactoryGetConstructorInvocation():

Dim Simple1 As New DatabaseVP

■ Returned from CodeFactoryGetNumExternalizedInputs():

3

■ Returned from CodeFactoryGetExternalizedInputDecl():

Dim VPname1 As String

Dim VPConnectString1 As String

Dim VPSQL1 As String

■ Returned from CodeFactoryGetExternalizedInputInit():

VPname1 = "Simple"

VPConnectString1= "Provider=MSDASQL.1;Persist Security Info=False;

Data Source=COFFEEBREAK"

VPSQL1 = "select * from coffees"

■ Returned from CodeFactoryGetPropertySet():

Simple1.VPname = VPname1

Simple1.ConnectionString = VPConnectString1

Simple1.SQL = VPSQL1
Implementing a New Verification Point 191

Fundamentals for Implementing a Verification Point
The Options Property

Several flags are pre-defined for all verification points (see the property table in
Summary on page 145), but you can add additional flags for your new verification
point type. If you do so, use a single bit to represent each option, with the first
available bit being the fourth bit (0x8).

The Options property is defined in the IVerificationPoint interface as a
Variant, but it is implemented as a Long bitfield.

The following example shows a mechanism for creating new options:

STDMETHODIMP CDatabaseVP::get_Options(/*[out, retval]*/ VARIANT *pVal)
{

pVal->vt = VT_I4;
pVal->lVal = lOptions;
return S_OK;

}

STDMETHODIMP CDatabaseVP::put_Options(/*[in]*/ VARIANT newVal)
{

switch (newVal.vt)
{
case VT_I4:

lOptions = newVal.lVal;
break;

case VT_I2:
lOptions = (LONG) newVal.iVal;
break;

case VT_UI4:
lOptions = (LONG) newVal.ulVal;
break;

case VT_UI2:
lOptions = (LONG) newVal.uiVal;
break;

case VT_UINT:
lOptions = (LONG) newVal.uintVal;
break;

case VT_INT:
lOptions = (LONG) newVal.intVal;
break;

default:
return S_FALSE;

}

return S_OK;
}

192 Appendix C

Fundamentals for Implementing a Verification Point
Implementing the Methods in Your Verification Point Interface

Your verification point component’s interface contains properties or methods for
defining the verification point’s metadata— for example:

STDMETHODIMP CDatabaseVP::get_ConnectionString(BSTR *pVal)
{

if (pVal == NULL)
return E_POINTER;

*pVal = SysAllocString(bstConnectionString);
return S_OK;

}

STDMETHODIMP CDatabaseVP::put_ConnectionString(BSTR newVal)
{

bstConnectionString = newVal;
CalcIsDefined();
return S_OK;

}

STDMETHODIMP CDatabaseVP::get_SQL(BSTR *pVal)
{

if (pVal == NULL)
return E_POINTER;

*pVal = SysAllocString(bstSQL);
return S_OK;

}

STDMETHODIMP CDatabaseVP::put_SQL(BSTR newVal)
{

bstSQL = newVal;
CalcIsDefined();
return S_OK;

}

Implementing the IPersistFile Interface

The framework uses the following two IPersistFile interface methods to serialize
your verification point’s metadata. The other IPersistFile methods can simply
return E_NOTIMPL:

■ Load(). loads your verification point’s metadata from a verification point
metafile (.vpm file). The framework calls this method if a test script calls the
PerformTest() method when the verification point is not yet fully defined (that
is, when one or more required pieces of metadata are missing).

■ Save(). saves your verification point’s metadata to a .vpm metafile. The
framework calls this method when both of the following conditions exist:

❑ No metafile currently exists.
Implementing a New Verification Point 193

Fundamentals for Implementing a Verification Point
❑ The PerformTest() method is called when the verification point is not yet
fully defined.

When these conditions exist, the framework first calls the DefineVP() method to
prompt the tester for the metadata, and then calls Save() to store the metadata for
future runs of this verification point.

The framework also calls Save() to write a copy of the metafile to the Log folder
for use by the Grid Comparator.

The following example illustrates metadata serialization:

STDMETHODIMP CDatabaseVP::GetClassID(CLSID *pClassID)
{

return E_NOIMPL;
}

STDMETHODIMP CDatabaseVP::IsDirty()
{

return E_NOIMPL;
}

STDMETHODIMP CDatabaseVP::SaveCompleted(LPCOLESTR pszFileName)
{

return E_NOIMPL;
}

STDMETHODIMP CDatabaseVP::GetCurFile(LPOLESTR *ppszFileName)
{

return E_NOIMPL;
}

STDMETHODIMP CDatabaseVP::Load(LPCOLESTR pszFileName, DWORD dwMode)
{

TCHAR szBuffer[4096];
_bstr_t bstFile(pszFileName);
long lReadOptions = 0;

GetPrivateProfileString(_T("Definition"), _T("Case ID"), _T("\n"),
szBuffer, 4096, (LPCTSTR) bstFile);

// Verify that the file exists and that there is at least a VP name.
if (_tcscmp(szBuffer, _T("\n")) == 0)

return E_VP_FILENOTFOUND;
else

put_VPname(_bstr_t(szBuffer));

GetPrivateProfileString(_T("Definition"),
_T("Verification Method"), _T("\n"), szBuffer, 4096,
(LPCTSTR) bstFile);

// Check to see if comparison is Case Insensitive
if (_tcscmp(szBuffer, _T("CaseInsensitive")) == 0)
194 Appendix C

Fundamentals for Implementing a Verification Point
lReadOptions |= VPOPTION_COMPARE_CASEINSENSITIVE;

GetPrivateProfileString(_T("Definition"), _T("Expected Result"),
_T("\n"), szBuffer, 4096, (LPCTSTR) bstFile);

// Check to see if expected result is failure
if (_tcscmp(szBuffer, _T("Failure")) == 0)

lReadOptions |= VPOPTION_EXPECT_FAILURE;

GetPrivateProfileString(_T("DatabaseVP"), _T("Connection String"),
_T("\n"), szBuffer, 4096, (LPCTSTR) bstFile);

// Connection String is a required field.
if (_tcscmp(szBuffer, _T("\n")) == 0)

return E_VP_BADFILE;
else

put_ConnectionString(_bstr_t(szBuffer));

GetPrivateProfileString(_T("DatabaseVP"), _T("SQL"), _T("\n"),
szBuffer, 4096, (LPCTSTR) bstFile);

// SQL is a required field.
if (_tcscmp(szBuffer, _T("\n")) == 0)

return E_VP_BADFILE;
else

put_SQL(_bstr_t(szBuffer));

GetPrivateProfileString(_T("DatabaseVP"), _T("Trim Whitespace"),
_T("\n"), szBuffer, 4096, (LPCTSTR) bstFile);

// Check to see if we should trim whitespace
if (_tcscmp(szBuffer, _T("1")) == 0)

lReadOptions |= DATABASEVPOPTION_TRIM_WHITESPACE;

lOptions = lReadOptions;

CalcIsDefined();

return S_OK;
}

STDMETHODIMP CDatabaseVP::Save(LPCOLESTR pszFileName, BOOL fRemember)
{

BSTR bsName = NULL;

get_VPname(&bsName);
_bstr_t bstName(bsName);
_bstr_t bstFile(pszFileName);

// Write [Definition] section
WritePrivateProfileString(_T("Definition"), NULL, NULL,

(LPCTSTR)bstFile);
WritePrivateProfileString(_T("Definition"), _T("Case ID"),

(LPCTSTR)bstName, (LPCTSTR)bstFile);
Implementing a New Verification Point 195

Fundamentals for Implementing a Verification Point
WritePrivateProfileString(_T("Definition"), _T("Type"),
_T("Object Data"), (LPCTSTR)bstFile);

WritePrivateProfileString(_T("Definition"), _T("Data Test"),
_T("Contents"), (LPCTSTR)bstFile);

if (lOptions & VPOPTION_COMPARE_CASEINSENSITIVE)
WritePrivateProfileString(_T("Definition"),

_T("Verification Method"), _T("CaseInsensitive"),
(LPCTSTR)bstFile);

else
WritePrivateProfileString(_T("Definition"),

_T("Verification Method"), _T("CaseSensitive"),
(LPCTSTR)bstFile);

if (lOptions & VPOPTION_EXPECT_FAILURE)
WritePrivateProfileString(_T("Definition"),

_T("Expected Result"), _T("Failure"), (LPCTSTR)bstFile);

// Write [DatabaseVP] section
WritePrivateProfileString(_T("DatabaseVP"), NULL, NULL,

(LPCTSTR)bstFile);
WritePrivateProfileString(_T("DatabaseVP"),

_T("Connection String"), (LPCTSTR)bstConnectionString,
(LPCTSTR)bstFile);

WritePrivateProfileString(_T("DatabaseVP"), _T("SQL"),
(LPCTSTR)bstSQL, (LPCTSTR)bstFile);

if (lOptions & DATABASEVPOPTION_TRIM_WHITESPACE)
WritePrivateProfileString(_T("DatabaseVP"),

_T("Trim Whitespace"), _T("1"), (LPCTSTR)bstFile);

return S_OK;
}

Implementing the IVPFramework Interface

IVPFramework is the base class for IVerificationPoint, and
IVerificationPoint is the base class for your verification point’s interface.
Consequently, you must provide entry points for all of the methods in the
IVPFramework interface.

Since the implementation of the IVPFramework methods is provided in the
VPFramework component, your class must simply construct a VPFramework object,
and then pass each of the IVPFramework methods to that VPFramework object.
196 Appendix C

Fundamentals for Implementing a Verification Point
This form of implementation inheritance is called containment, and it is illustrated in
the following example:

STDMETHODIMP CDatabaseVP::get_VPname(BSTR *pVal)
{

return m_pFramework->get_VPname(pVal);
}
STDMETHODIMP CDatabaseVP::put_VPname(BSTR newVal)
{

return m_pFramework->put_VPname(newVal);
}

STDMETHODIMP CDatabaseVP::get_VP(IDispatch ** ppVP)
{

return m_pFramework->get_VP(ppVP);
}

STDMETHODIMP CDatabaseVP::put_VP(IDispatch * pVP)
{

return m_pFramework->put_VP(pVP);
}

STDMETHODIMP CDatabaseVP::get_Plumbing(IDispatch ** ppPlumbing)
{

return m_pFramework->get_Plumbing(ppPlumbing);
}

STDMETHODIMP CDatabaseVP::put_Plumbing(IDispatch * pPlumbing)
{

return m_pFramework->put_Plumbing(pPlumbing);
}

STDMETHODIMP CDatabaseVP::get_CodeFactorySuffix(BSTR *pVal)
{

return m_pFramework->get_CodeFactorySuffix(pVal);
}

STDMETHODIMP CDatabaseVP::put_CodeFactorySuffix(BSTR newVal)
{

return m_pFramework->put_CodeFactorySuffix(newVal);
}

STDMETHODIMP CDatabaseVP::PerformTest(/*[in]*/ VARIANT Object,
/*[optional, in]*/ VARIANT ExpectedData, /*[optional, in] */
VARIANT ActualData, /*[out, retval]*/ enum VPResult *Result)

{
return m_pFramework->PerformTest(Object, ExpectedData,

ActualData, Result);
}

Implementing a New Verification Point 197

Fundamentals for Implementing a Verification Point
Other Responsibilities of the Verification Point Component

In addition to the implementation tasks already described in this section, your
verification point component must also do the following:

■ Create the FinalConstruct() method

■ Maintain the IsDefined flag

These tasks are described in the following subsections:

Creating the FinalConstruct() Method

You create a FinalConstruct() method to initialize your verification point objects.
The FinalConstruct() method must be defined with a
DECLARE_PROTECT_FINAL_CONSTRUCT() statement in the class header file, as
illustrated in the example in the section The Verification Point Component on page 181.

The FinalConstruct() method must perform the following tasks:

■ Create the VPFramework object that your verification point contains.

■ Put a reference to the verification point object in the VPFramework object.

■ Initialize any properties that your verification point uses to store its metadata.

■ Provide the VPPlumbing class with a ProgID for each component in your
verification point.

The following is an example of a FinalConstruct() method:

HRESULT CDatabaseVP::FinalConstruct()
{

HRESULT hrRetVal =
m_pFramework.CoCreateInstance(L"RTComVP.VPFramework");

CComQIPtr<IVPPlumbing, &IID_IVPPlumbing> plumbing;
LPDISPATCH pTemp;
_bstr_t bsComparator(L"RTComVP.DatabaseVPComparator");
_bstr_t bsData(L"RTComVP.DatabaseVPData");
_bstr_t bsDataProvider(L"RTComVP.DatabaseVPDataProvider");
_bstr_t bsDataRenderer(L"RTComVP.DatabaseVPDataRenderer");

m_pFramework->get_Plumbing(&pTemp);
plumbing = pTemp;

m_pFramework->put_VP(this);
plumbing->InitializeFramework(bsComparator, bsData,

bsDataProvider, bsDataRenderer);

lOptions = 0;
bstConnectionString = "";
bstSQL = "";
198 Appendix C

Fundamentals for Implementing a Verification Point
_com_error e(hrRetVal);
_bstr_t bsError = e.ErrorMessage();

return S_OK;
}

Maintaining the IsDefined Flag

The VPPlumbing class contains the boolean property IsDefined. The framework
uses this property to determine if a verification point’s metadata is fully specified
when PerformTest() is invoked. If IsDefined is set to VARIANT_FALSE, the
framework calls DefineVP() to prompt the tester for the missing metadata.

Your verification point implementation is responsible for coordinating the value of
this property with the state of the metadata in your verification point object. The
Load() method and the property-set methods should update the IsDefined value
if they result in a change in the verification point’s definition (that is, the verification
point’s metadata becomes fully specified or becomes no longer fully specified).

Note that the DatabaseVP component implements a private method named
CalcIsDefined(). This method determines the state of the verification point’s
metadata and sets the IsDefined flag accordingly. All methods that might change
the state of a verification point’s metadata can invoke CalcIsDefined().

Here is an example of IsDefined flag maintenance:

HRESULT CDatabaseVP::CalcIsDefined()
{

CComQIPtr<IVPPlumbing, &IID_IVPPlumbing> plumbing;
LPDISPATCH pTemp;

m_pFramework->get_Plumbing(&pTemp);
plumbing = pTemp;

BSTR bsName;
get_VPname(&bsName);
_bstr_t bstName(bsName);

BSTR bsConn;
get_ConnectionString(&bsConn);
_bstr_t bstConnectionString(bsConn);

BSTR bsSQL;
get_SQL(&bsSQL);
_bstr_t bstSQL(bsSQL);

if (bstName.length() != 0 && bstConnectionString.length() != 0 &&
bstSQL.length() != 0)

plumbing->put_IsDefined(VARIANT_TRUE);
else
Implementing a New Verification Point 199

Fundamentals for Implementing a Verification Point
plumbing->put_IsDefined(VARIANT_FALSE);

return S_OK;
}

Interface for Your Verification Point Data Component

You must define an interface for your verification point data component. This
interface must inherit from IVerificationPointData.

Your verification point data component that implements this interface contains a
snapshot of the data being verified. That data can be either expected data or actual
data.

The test designer should be able to use this interface to populate a Verification Point
Data component for use with dynamic or manual verification points (for information,
see Types of Verification Points on page 124).

The following is an example of an implementation of your verification point data
component:

[
object,
uuid(7C4870B3-6E1A-11D4-9A26-0010A4E86989),
dual,
helpstring("IDatabaseVPData Interface"),
pointer_default(unique)

]
interface IDatabaseVPData : IVerificationPointData
{

[propget, helpstring("property NumCols")] HRESULT NumCols(
[out, retval] long *pVal);

[propput, helpstring("property NumCols")] HRESULT NumCols(
[in] long newVal);

[propget, helpstring("property NumRows")] HRESULT NumRows(
[out, retval] long *pVal);

[propput, helpstring("property NumRows")] HRESULT NumRows(
[in] long newVal);

[propget, helpstring("property Columns")] HRESULT Columns(
[out, retval] VARIANT *pVal);

[propput, helpstring("property Columns")] HRESULT Columns(
[in] VARIANT newVal);

[propget, helpstring("property Row")] HRESULT Row([in] long Index,
[out, retval] VARIANT *pVal);

[propput, helpstring("property Row")] HRESULT Row([in] long Index,
[in] VARIANT newVal);

};
200 Appendix C

Fundamentals for Implementing a Verification Point
The Verification Point Data Component

Your verification point data component implements the methods defined in your
verification point data interface — for example:

STDMETHODIMP CDatabaseVPData::get_NumCols(long *pVal)
{

*pVal = lCols;
return S_OK;

}

STDMETHODIMP CDatabaseVPData::put_NumCols(long newVal)
{

lCols = newVal;
return S_OK;

}

STDMETHODIMP CDatabaseVPData::get_NumRows(long *pVal)
{

*pVal = lRows;
return S_OK;

}

STDMETHODIMP CDatabaseVPData::put_NumRows(long newVal)
{

lRows = newVal;
return S_OK;

}

STDMETHODIMP CDatabaseVPData::get_Columns(VARIANT *pVal)
{

VariantInit(pVal);
pVal->vt = (VT_ARRAY | VT_BYREF | VT_BSTR);

...
// Copy the array and return it to the caller.
...
return S_OK;

}

STDMETHODIMP CDatabaseVPData::put_Columns(VARIANT newVal)
{

pvColumns = new VARIANT;
VariantInit(pvColumns);
pvColumns->vt = (VT_ARRAY | VT_BSTR);
SafeArrayCopy(newVal.parray, &(pvColumns->parray));
put_NumCols(newVal.parray->rgsabound[0].cElements);

return S_OK;
}

STDMETHODIMP CDatabaseVPData::get_Row(long Index, VARIANT *pVal)
{

Implementing a New Verification Point 201

Fundamentals for Implementing a Verification Point
VariantInit(pVal);
pVal->vt = (VT_ARRAY | VT_BYREF | VT_BSTR);

if (paRows != NULL)
{

...
// Copy the row into the output array
...

}
return S_OK;

}

STDMETHODIMP CDatabaseVPData::put_Row(long Index, VARIANT newVal)
{

...
// Copy this row into our data structure
...

return S_OK;
}

In addition, your verification point data component must implement the following:

■ The IPersistFile interface to provide for its own serialization

■ The FileExtension() property methods

The following sections describe these tasks.

Implementing the IPersistFile Interface

Your verification point class must implement its own serialization to a verification
point data file by implementing the IPersistFile interface.

As with your verification point class, you only need to implement the Load() and
Save() methods, and you may return E_NOTIMPL for the other methods.

Because the Grid Comparator in the current version of the product also accesses your
metadata and data files, you must use a .ini metafile format and a .csv data file format.
In a future release, you will be able to create your own comparator applications to
read from and write to files of any data file format you choose.

The following is an example of data file serialization:

STDMETHODIMP CDatabaseVPData::GetClassID(CLSID *pClassID)
{

return E_NOTIMPL;
}

STDMETHODIMP CDatabaseVPData::IsDirty()
{

return E_NOTIMPL ;
}

202 Appendix C

Fundamentals for Implementing a Verification Point
STDMETHODIMP CDatabaseVPData::SaveCompleted(LPCOLESTR pszFileName)
{

return E_NOTIMPL ;
}

STDMETHODIMP CDatabaseVPData::GetCurFile(LPOLESTR *ppszFileName)
{

return E_NOTIMPL;
}

STDMETHODIMP CDatabaseVPData::Load(LPCOLESTR pszFileName,
DWORD dwMode)

{
SAFEARRAY *psaColumns = NULL;
SAFEARRAY *psaRow = NULL;
wstring buffer;
HRESULT hr = S_OK;
wchar_t delim = L'\n';
long lNumVals = 0;

_bstr_t bsFile = pszFileName;
wifstream stream(bsFile);

getline(stream, buffer, delim);
if (buffer.empty() != true)
{

lNumVals = GetNumElementsFromCSVString(buffer.c_str());

hr = BuildBSTRSafeArrayFromCSVString(buffer.c_str(),
&psaColumns, lNumVals, 0);

if (hr == S_OK)
{

pvColumns = new VARIANT;
VariantInit(pvColumns);

pvColumns->vt = (VT_ARRAY | VT_BSTR);
pvColumns->parray = psaColumns;
put_NumCols(lNumVals);

}
else
{

return E_INVALIDARG;
}

}
else
{

put_NumCols(0);
put_NumRows(0);
return S_OK;

}

getline(stream, buffer, delim);
for (long l = 0; true != buffer.empty(); l++)
Implementing a New Verification Point 203

Fundamentals for Implementing a Verification Point
{
hr = BuildBSTRSafeArrayFromCSVString(buffer.c_str(), &psaRow,

lNumVals, 0);
if (hr == S_OK)
{

VARIANT vRow;
VariantInit(&vRow);
vRow.vt = (VT_ARRAY | VT_BSTR);
vRow.parray = psaRow;
put_Row(l, vRow);
VariantClear(&vRow);

}
else
{

return E_INVALIDARG;
}
getline(stream, buffer, delim);

}

return S_OK;
}

STDMETHODIMP CDatabaseVPData::Save(LPCOLESTR pszFileName,
BOOL fRemember)

{
SAFEARRAY *psaColumns = NULL;
SAFEARRAY *psaRow = NULL;
FILE *pfOut = NULL;

// Validate parameters
if (pszFileName == NULL)

return E_POINTER;

if (*pszFileName == L'\0')
return E_INVALIDARG;

if (pvColumns == NULL || pvColumns->vt != (VT_ARRAY | VT_BSTR))
return E_INVALIDARG;

psaColumns = pvColumns->parray;

 // If there's nothing to write -- don't write anything...
lCols = psaColumns->rgsabound[0].cElements;

 if (lCols == 0)
 return S_OK;

// Open the file
pfOut = _wfopen(pszFileName, L"wt");

if (pfOut == NULL)
return E_INVALIDARG;

// Write out the file!
204 Appendix C

Fundamentals for Implementing a Verification Point
// First print out a line with all the column names.
WriteBSTRSafeArrayToCSVFile(pfOut, psaColumns);

 for (long l=0; l < lRows; l++)
 {

psaRow = paRows[l].parray;

if (psaRow != NULL)
WriteBSTRSafeArrayToCSVFile(pfOut, psaRow);

 }

fclose(pfOut);
return S_OK;

}

Implementing the FileExtension() Property Methods

Your verification point data component must implement the following
FileExtension() property methods:

■ get_FileExtension

■ put_FileExtension).

In the current release of Rational QualityArchitect, set this property to csv. In a future
release, this property should contain the file extension associated with the data file
format used by your verification point data component — for example, csv, dat, or
xml.

The verification point framework creates a unique data file name and passes it to the
Load() and Save() methods. The FileExtension() property method tells the
framework the file extension to use for this verification point data type.

The Verification Point Data Comparator Component

Your specialized Verification Point Data Comparator component must implement the
IVerificationPointComparator interface. This interface has only one method,
Compare().

The Compare() method compares an expected data object and an actual data object,
both of type IVerificationPointData, and determines whether the test succeeds
or fails.
Implementing a New Verification Point 205

Fundamentals for Implementing a Verification Point
The following is an example of a data comparison:

STDMETHODIMP CDatabaseVPComparator::Compare(
/*[in]*/ IVerificationPointData *ExpectedData,
/*[in]*/ IVerificationPointData *ActualData,
/*[in]*/ VARIANT Options, /*[out]*/ BSTR *FailureDescription,
/*[out, retval]*/ VARIANT_BOOL *Result)

{
CComQIPtr<IDatabaseVPData, &IID_IDatabaseVPData> vpdExpected;
CComQIPtr<IDatabaseVPData, &IID_IDatabaseVPData> vpdActual;

vpdExpected = ExpectedData;
vpdActual = ActualData;
*Result = VARIANT_FALSE;
long lNumCols = 0;
bool bCaseInsensative = false;
BSTR bsFoo;

// Allow for NULL FailureDescription
if (FailureDescription == NULL)
{

// assign to throwaway local
FailureDescription = &bsFoo;

}

// First compare the column names.
VARIANT vExpColumns;
VARIANT vActColumns;
SAFEARRAY *psaExpColumns;
SAFEARRAY *psaActColumns;

vpdExpected->get_Columns(&vExpColumns);
vpdActual->get_Columns(&vActColumns);

if (vExpColumns.vt == (VT_ARRAY | VT_BYREF | VT_BSTR) &&
 vActColumns.vt == (VT_ARRAY | VT_BYREF | VT_BSTR))

{
psaExpColumns = *(vExpColumns.pparray);
psaActColumns = *(vActColumns.pparray);

lNumCols = psaExpColumns->rgsabound[0].cElements;
if ((unsigned long)lNumCols !=

psaActColumns->rgsabound[0].cElements)
{

*FailureDescription = SysAllocString(L"Expected and Actual
resultsets had different number of columns.");

return S_OK;
}

if (!CompareBstrSafeArray(psaExpColumns, psaActColumns,
NULL, bCaseInsensative))

{
*FailureDescription = SysAllocString(L"Expected and Actual
206 Appendix C

Fundamentals for Implementing a Verification Point
resultsets had different column names.");
return S_OK;

}
}

// Now loop over each of the adjacent rows and compare them.

long lNumExpRows = 0;
long lNumActRows = 0;
vpdExpected->get_NumRows(&lNumExpRows);
vpdActual->get_NumRows(&lNumActRows);

if (lNumExpRows != lNumActRows)
{

*FailureDescription = SysAllocString(L"Expected and Actual
resultsets had different number of rows.");

return S_OK;
}

VARIANT vExpRow;
VARIANT vActRow;
SAFEARRAY *psaExpRow;
SAFEARRAY *psaActRow;

for (long lIndex = 0; lIndex < lNumExpRows; lIndex++)
{

vpdExpected->get_Row(lIndex, &vExpRow);
vpdActual->get_Row(lIndex, &vActRow);

if (vExpRow.vt == (VT_ARRAY | VT_BYREF | VT_BSTR) &&
 vActRow.vt == (VT_ARRAY | VT_BYREF | VT_BSTR))

{
psaExpRow = *(vExpRow.pparray);
psaActRow = *(vActRow.pparray);

if (!CompareBstrSafeArray(psaExpRow, psaActRow,
FailureDescription, bCaseInsensative))

{
// FailureDescription filled in by CompareBstr rountine.
return S_OK;

}

}
else
{

...
// Problem with data objects -- handle error
...

}

Implementing a New Verification Point 207

Fundamentals for Implementing a Verification Point
}

*Result = VARIANT_TRUE;
return S_OK;

}

The Verification Point Data Provider Component

Your specialized Verification Point Data Provider component must implement the
IVerificationPointDataProvider interface. This interface has only one
method, CaptureData().

The CaptureData() method reads the verification point’s definition from the
supplied verification point object, captures the data required by the verification point,
and returns the data in a new IVerificationPointData object.

The following example illustrates an implementation of the
IVerificationPointDataProvider interface:

STDMETHODIMP CDatabaseVPDataProvider::CaptureData (
/*[in]*/ VARIANT Object, /*[in]*/ IVerificationPoint *VP,
/*[out, retval]*/ IVerificationPointData **Data)

{

// QI for DatabaseVP interface
...

dbVP->get_ConnectionString(&bsConnection);
_bstr_t bstConnection(bsConnection, false);
dbVP->get_SQL(&bsSQL);
_bstr_t bstSQL(bsSQL, false);

// Attempt to connect to the OLE DB using the connection string
// stored in the VP object.
...

long lNumCols = rs->Fields->Count;

if (lNumCols > 0)
{

CComQIPtr<IDatabaseVPData, &IID_IDatabaseVPData> dataReturn;
_bstr_t bstDataProgID = "rtComVP.DatabaseVPData";
dataReturn.CoCreateInstance(bstDataProgID);

VARIANT v;
v.vt = VT_I4;

SAFEARRAYBOUND rgsaBound[1];
rgsaBound[0].lLbound = 0;
rgsaBound[0].cElements = lNumCols;
SAFEARRAY *psaColumns = SafeArrayCreate(VT_BSTR, 1, rgsaBound);
208 Appendix C

Fundamentals for Implementing a Verification Point
for (long l=0; l < lNumCols; l++)
{

v.lVal = l;
BSTR bsColumn = SysAllocString(rs->Fields->Item[v]->Name);
SafeArrayPutElement(psaColumns, &l, bsColumn);

}

VARIANT vColumns;
VariantInit(&vColumns);
vColumns.vt = (VT_ARRAY | VT_BSTR);
vColumns.parray = psaColumns;

dataReturn->put_Columns(vColumns);

rs->MoveLast();
long lNumRows = rs->RecordCount;
rs->MoveFirst();

dataReturn->put_NumRows(lNumRows);

for (l=0; !rs->EOF; l++,rs->MoveNext())
{

SAFEARRAY *psaRow = SafeArrayCreate(VT_BSTR, 1, rgsaBound);
for (long j = 0; j < lNumCols; j++)
{

v.lVal = j;
_bstr_t Temp = rs->Fields->Item[v]->Value;
BSTR bsData = SysAllocString(Temp);
SafeArrayPutElement(psaRow, &j, bsData);

}

VARIANT vRow;
VariantInit(&vRow);
vRow.vt = (VT_ARRAY | VT_BSTR);
vRow.parray = psaRow;
dataReturn->put_Row(l, vRow);

}

dataReturn->QueryInterface(IID_IVerificationPointData,
(void **) Data);

(*Data)->AddRef();

}

// Clean up memory
...

return S_OK;

}

Implementing a New Verification Point 209

Fundamentals for Implementing a Verification Point
The Verification Point Data Renderer Component

Your specialized Verification Point Data Renderer component must implement the
IVerificationPointDataRenderer interface. This interface has only one
method, DisplayAndValidateData().

DisplayAndValidateData() displays the data in an IVerificationPointData
object, allowing the tester to accept or reject that data as being correct.

The framework calls this method when both of the following conditions exist:

■ A static verification point is invoked for the first time (that is, when the expected
data is first captured).

■ The test designer has set VPOPTION_USER_ACKNOWLEDGE_BASELINE in the Options
property of the IVerificationPoint component.

If the tester accepts the displayed data, the data is stored as the expected data for the
static verification point. If the tester rejects the data, no expected data is stored, and
the process is repeated the next time the verification point is executed.

The following example illustrates an implementation of the
IVerificationPointDataRenderer interface:

STDMETHODIMP CDatabaseVPDataRenderer::DisplayAndValidateData(
/*[in, out]*/ IVerificationPointData **Data,
/*[out, retval]*/ VARIANT_BOOL *Valid)

{

CComQIPtr<_clsDatabaseVPDataRenderer,
&IID__clsDatabaseVPDataRenderer> pRend;

CComQIPtr<IDatabaseVPData, &IID_IDatabaseVPData> pDBdata;
VARIANT vCols;
VARIANT vRow;
VARIANT vAccepted;

// Create an instance of the GUI data renderer.
pRend.CoCreateInstance(L"rtCOMVpGui.clsDatabaseVPDataRenderer");

// Get a DatabaseVPData COM pointer.
pDBdata = *Data;

if (pDBdata == NULL || pRend == NULL)
{

return S_FALSE;
}

// Put the columns from the data object into the GUI.
pDBdata->get_Columns(&vCols);
pRend->put_Columns(vCols);

long lNumRows;
210 Appendix C

Integrating Your Verification Point with QualityArchitect
pDBdata->get_NumRows(&lNumRows);

// Put the rows from the data object into the GUI.
for (long l = 0; l < lNumRows; l++)
{

pDBdata->get_Row(l, &vRow);
pRend->put_Row(vRow);

}

// Invoke the GUI dialog.
pRend->DoModal();

// Pass back the result.
pRend->get_Accepted(&vAccepted);

if (vAccepted.vt == VT_BOOL && vAccepted.boolVal == VARIANT_TRUE)
{

*Valid = VARIANT_TRUE;
}
else
{

*Valid = VARIANT_FALSE;
}

return S_OK;
}

Integrating Your Verification Point with QualityArchitect

Once you have implemented a verification point, you should integrate the verification
point into the QualityArchitect environment. After you do so, testers will be able to
insert your verification point into a test script when they generate a test script from a
Rational Rose model.

To integrate your verification point with QualityArchitect, do the following:

1 Register the verification point in the rqalocvp.ini file. This file lists custom
verification point types in the section COM VP in the format vptype = progID —
for example:

[COM VP]
DatabaseVP=RTComVP.DatabaseVP

The rqalocvp.ini file is located in the Rational datastore in the folder
DefaultTestScriptDataStore.

2 Register the .dll file containing your verification point component.
Implementing a New Verification Point 211

Integrating Your Verification Point with QualityArchitect
212 Appendix C

DIDL Equivalents
This appendix presents the verification point methods in Information Definition
Language (IDL) format. You might find IDL format useful if you are implementing
new verification point types in C++.

import "oaidl.idl";
import "ocidl.idl";
import "..\..\CTDatastore\CTDatastore.idl";

import "..\..\..\src\shlib\dcom\sqavuservices\vuservices.idl";

[
object,
uuid(F1DCD5A5-4F40-11D4-99DE-000000000000),
dual,
helpstring("IVerificationPointData Interface"),
pointer_default(unique)

]

interface IVerificationPointData : IDispatch
{

[propget, id(1), helpstring("This property specifies the file
extension used by the VerificationPointData's disk representation.
The correct extension is necessary for correct Comparator
behavior.")]
HRESULT FileExtension([out, retval] BSTR *pVal);

[propput, id(1), helpstring("This property specifies the file
extension used by the VerificationPointData's disk representation.
The correct extension is necessary for correct Comparator
behavior.")]
HRESULT FileExtension([in] BSTR newVal);
};

[
object,
uuid(F1DCD5AA-4F40-11D4-99DE-000000000000),
dual,
helpstring("IVerificationPointComparator Interface"),
pointer_default(unique)

]

interface IVerificationPointComparator : IDispatch
{

213

[id(1), helpstring("This method compares two objects impementing the
IVerificationPointData interface. It should be invoked only by the
VP framework.")]
HRESULT Compare([in] IVerificationPointData *ExpectedData,

[in] IVerificationPointData *ActualData, [in] VARIANT Options,
[in, out] BSTR *FailureDescription,
[out, retval] VARIANT_BOOL *Result);

};

[
object,
uuid(F1DCD5AC-4F40-11D4-99DE-000000000000),
dual,
helpstring("IVerificationPointDataRenderer Interface"),
pointer_default(unique)

]

interface IVerificationPointDataRenderer : IDispatch
{

[id(1), helpstring("method DisplayAndValidateData")]
HRESULT DisplayAndValidateData(

[in, out] IVerificationPointData **Data,
[out, retval] VARIANT_BOOL *Valid);

};

[
object,
uuid(3E21F5BA-B4FF-46C2-9E35-8A784497DC91),
dual,
helpstring("IVPFramework Interface"),
pointer_default(unique)

]

interface IVPFramework : IDispatch
{

[propget, id(1), helpstring("The name of the Verification Point")]
HRESULT VPname([out, retval] BSTR *pVal);

[propput, id(1), helpstring("The name of the Verification Point")]
HRESULT VPname([in] BSTR newVal);

[id(2), helpstring("This method performs the verification. The
default verification is static. To perform a dynamic verification,
pass an expected data object. To perform a manual verification,
pass expected and actual data objects.")]
HRESULT PerformTest([in] VARIANT Object,

[in,optional] VARIANT ExpectedData, [in,optional] VARIANT
ActualData, [out, retval] enum VPResult *Result);

[hidden, propget, id(3), helpstring("For internal use only.")]
HRESULT VP ([out, retval] LPDISPATCH *pVP);
214 Appendix D

[hidden, propput, id(3), helpstring("For internal use only.")]
HRESULT VP ([in] LPDISPATCH newVP);

[hidden, propget, id(4), helpstring("For internal use only.")]
HRESULT Plumbing([out, retval] LPDISPATCH *pVal);

[hidden, propput, id(4), helpstring("For internal use only.")]
HRESULT Plumbing([in] LPDISPATCH newVal);

[hidden, propget, id(5), helpstring("A unique identifer to append to
a VP's code factory variable names. This allows the code factory
methods to prevent name collisions when multiple VPs are created in
the same scope.")]
HRESULT CodeFactorySuffix([out, retval] BSTR *pVal);

[hidden, propput, id(5), helpstring("A unique identifer to append to
a VP's code factory variable names. This allows the code factory
methods to prevent name collisions when multiple VPs are created in
the same scope.")]
HRESULT CodeFactorySuffix([in] BSTR newVal);
};

[
object,
uuid(F1DCD5A3-4F40-11D4-99DE-000000000000),
dual,
helpstring("IVerificationPoint Interface"),
pointer_default(unique)

]

interface IVerificationPoint : IVPFramework
{

[hidden, id(15), helpstring("This method invokes a GUI to capture
the VP's definition.")]
HRESULT DefineVP();

[hidden, id(16), helpstring("This method returns a syntactically
valid constructor invocation (for a given language) which can be
inserted into a recorded or generated script.")]
HRESULT CodeFactoryGetConstructorInvocation([in] CTDScriptTypes

Language, [out, retval] BSTR *Code);

[hidden, id(17), helpstring("This method returns the number of
externalized input variables required for code generation of this
VP for a given language.")]
HRESULT CodeFactoryGetNumExternallizedInputs([in] CTDScriptTypes

Language, [out, retval] short *NumInputs);

[hidden, id(18), helpstring("This method returns a line of
syntactically correct code (for a given language) declaring the nth
externalized input for this VP.")]
HRESULT CodeFactoryGetExternalizedInputDecl([in] CTDScriptTypes
IDL Equivalents 215

Language, [in] short InputNumber, [out, retval] BSTR *Code);

[hidden, id(19), helpstring("This method returns a line of
syntactically correct code (for a given language) initializing the
nth externalized input for this VP.")]
HRESULT CodeFactoryGetExternalizedInputInit([in] CTDScriptTypes

Language, [in] short InputNumber, [out, retval] BSTR *Code);

[hidden, id(20), helpstring("This method returns the number of
property set calls required to fully specify this VP's definition
for code generation of this VP for a given language.")]
HRESULT CodeFactoryGetNumPropertySet([in] CTDScriptTypes Language,

[out, retval] short *NumProps);

[hidden, id(21), helpstring("This method returns a line of
syntactically correct code (for a given language) setting the nth
property for this VP.")]
HRESULT CodeFactoryGetPropertySet([in] CTDScriptTypes Language,

[in] short InputNumber, [out, retval] BSTR *Code);

[propget, id(22), helpstring("This property stores any Options which
affect the behavior of the DataProvider or the Comparator.")]
HRESULT Options([out, retval] VARIANT *pVal);

[propput, id(22), helpstring("This property stores any Options which
affect the behavior of the DataProvider or the Comparator.")]
HRESULT Options([in] VARIANT newVal);
};

[
object,
uuid(F1DCD5A8-4F40-11D4-99DE-000000000000),
dual,
helpstring("IVerificationPointDataProvider Interface"),
pointer_default(unique)

]

interface IVerificationPointDataProvider : IDispatch
{

[id(1), helpstring("This method reads the VP's definition from the
supplied VP object, captures the data required by the VP, and
returns that data in a new IVerificationPointData object.")]
HRESULT CaptureData([in] VARIANT Object,[in] IVerificationPoint *VP,

[out, retval] IVerificationPointData **Data);
};

[
object,
uuid(15937740-5F7E-11d4-9A07-000000000000),
dual,
helpstring("IVPPlumbing Interface"),
pointer_default(unique)

]

216 Appendix D

interface IVPPlumbing : IDispatch
{

[/*id(6),*/ helpstring("This method informs the VP Framework of the
helper components used by this VP type.")]
HRESULT InitializeFramework([in] BSTR VPComparator,

[in] BSTR VPData, [in] BSTR VPDataProvider,
[in] BSTR VPDataRenderer);

[/*id(1),*/ helpstring("This method deserializes the VP from the
repo if necessary, calls the VPs defineVP method if required, and
serializes the resulting VP definition.")]
HRESULT InitializeVP();

[propget, id(1), helpstring("This property specifies whether or not
the VP has been fully specified. An incompletely specified VP will
have defineVP invoked by the Framework.")]
HRESULT IsDefined([out, retval] VARIANT_BOOL *pVal);

[propput, id(1), helpstring("This property specifies whether or not
the VP has been fully specified. An incompletely specified VP will
have defineVP invoked by the Framework.")]
HRESULT IsDefined([in] VARIANT_BOOL newVal);

[propget, id(2), helpstring("This property specifies whether or not
the VP is in a valid state for PerformTest to be invoked.")]
HRESULT IsValid([out, retval] VARIANT_BOOL *pVal);

[propput, id(2), helpstring("This property specifies whether or not
the VP is in a valid state for PerformTest to be invoked.")]
HRESULT IsValid([in] VARIANT_BOOL newVal);

[propget, id(3), helpstring("This property contains the ProgID of
the VPComparator class for this VP")]

HRESULT VPComparator([out, retval] BSTR *pVal);

[propput, id(3), helpstring("This property contains the ProgID of
the VPComparator class for this VP")]
HRESULT VPComparator([in] BSTR newVal);

[propget, id(4), helpstring("This property contains the ProgID of
the VPData component for this VP")]
HRESULT VPData([out, retval] BSTR *pVal);

[propput, id(4), helpstring("This property contains the ProgID of
the VPData component for this VP")]
HRESULT VPData([in] BSTR newVal);

[propget, id(5), helpstring("This property contains the
VPDataProvider component for this VP.")]
HRESULT VPDataProvider([out, retval] BSTR *pVal);

[propput, id(5), helpstring("This property contains the
IDL Equivalents 217

VPDataProvider component for this VP.")]
HRESULT VPDataProvider([in] BSTR newVal);

[propget, id(6), helpstring("This property contains the
VPDataRenderer component for this VP.")]
HRESULT VPDataRenderer([out, retval] BSTR *pVal);

[propput, id(6), helpstring("This property contains the
VPDataRenderer component for this VP.")]
HRESULT VPDataRenderer([in] BSTR newVal);
};

[
object,
uuid(7C4870B0-6E1A-11D4-9A26-0010A4E86989),
dual,
helpstring("IDatabaseVP Interface"),
pointer_default(unique)

]

interface IDatabaseVP : IVerificationPoint
{

[propget, helpstring("property ConnectionString")]
HRESULT ConnectionString([out, retval] BSTR *pVal);

[propput, helpstring("property ConnectionString")]
HRESULT ConnectionString([in] BSTR newVal);

[propget, helpstring("property SQL")]
HRESULT SQL([out, retval] BSTR *pVal);

[propput, helpstring("property SQL")]
HRESULT SQL([in] BSTR newVal);
};

[
object,
uuid(7C4870B3-6E1A-11D4-9A26-0010A4E86989),
dual,
helpstring("IDatabaseVPData Interface"),
pointer_default(unique)

]

interface IDatabaseVPData : IVerificationPointData
{

[propget, helpstring("property NumCols")]
HRESULT NumCols([out, retval] long *pVal);

[propput, helpstring("property NumCols")]
HRESULT NumCols([in] long newVal);

[propget, helpstring("property NumRows")]
218 Appendix D

HRESULT NumRows([out, retval] long *pVal);

[propput, helpstring("property NumRows")]
HRESULT NumRows([in] long newVal);

[propget, helpstring("property Columns")]
HRESULT Columns([out, retval] VARIANT *pVal);

[propput, helpstring("property Columns")]
HRESULT Columns([in] VARIANT newVal);

[propget, helpstring("property Row")]
HRESULT Row([in] long Index, [out, retval] VARIANT *pVal);

[propput, helpstring("property Row")]
HRESULT Row([in] long Index, [in] VARIANT newVal);
};

[
uuid(20346813-4073-11D4-99CD-0010A4E86989),
version(1.0),
helpstring("Rational QualityArchitect COM Verification Point

Interface Type Library")
]

library RTIVP
{

importlib("stdole32.tlb");
importlib("stdole2.tlb");

enum VPResult
{

VERIFICATION_NO_RESULT = 0, // TSS_LOG_RESULT_NONE
VERIFICATION_SUCCEEDED = 1, // TSS_LOG_RESULT_PASS
VERIFICATION_FAILED = 2, // TSS_LOG_RESULT_FAIL
VERIFICATION_ERROR = 3, // TSS_LOG_RESULT_WARN

};

enum VPOptions
{
/** Specifies that the verification should be case insensitive. */

VPOPTION_COMPARE_CASEINSENSITIVE = 1,

/** Specifies that the first run of a static verification point
should display the captured data for the tester to validate before
storing it as the expected (baseline) data object. */

VPOPTION_USER_ACKNOWLEDGE_BASELINE = 2,
VPOPTION_EXPECT_FAILURE = 4

};

enum DatabaseVPOptions
{

DATABASEVPOPTION_TRIM_WHITESPACE = 8
};
IDL Equivalents 219

interface IVerificationPoint;
interface IVerificationPointData;
interface IVerificationPointDataProvider;
interface IVerificationPointDataRenderer;
interface IVerificationPointComparator;
interface IVPFramework;
interface IVPPlumbing;
interface IDatabaseVP;
interface IDatabaseVPData;

};
220 Appendix D

Index
A
actual data

about 124
comparing 156

advanced
list of class methods 104
Test Script Services 3, 129

IV_alltext internal variable 51, 52
application

get process id 60
start 61
wait for termination id 62

ApplicationPid 60
ApplicationStart 61
ApplicationWait 62
attributes

of computers 65
of test cases 68, 69

B
base files 7
baseline. See expected data
block on shared variable 92

C
calculate think-time 107
CaptureData 160, 208
class files 7
Close 19
close

datapool 19
cls files 7, 9
code factory methods

about 184
example 186
sample output 191

summary 185
code generator 147, 184
CodeFactoryGetConstructorInvocation 147
CodeFactoryGetExternalizedInputDecl 148
CodeFactoryGetExternalizedInputInit 149
CodeFactoryGetNumExternalizedInputs 150
CodeFactoryGetNumPropertySet 151
CodeFactoryGetPropertySet 152
ColumnCount 19
ColumnName 20
columns, lookup table 136
COM containment 180
COM testing 2

recreating on a new computer 14
command runtime status, report 84
command timer

start 40
stop 38

command, log 105
CommandEnd 38
CommandStart 40
Compare 156, 205
compiled scripts

files 7, 9
naming convention 10
storing 9

compiling test scripts 9
component tests 10
components, verifying 121
computer configuration attribute list, get 65
computer configuration attribute value, get 66
computers

name checking at playback 10
configuration attributes

of computers 65
of test cases 68, 69

configure
datapool 167
shared variable 169
synchronization point 169
221

Connect 97
connecting to

TSS server 97
containment 180
Context 15, 98
context information, pass to TSS server 98
creating test scripts 5
IV_cursor_id internal variable 52

D
data

capturing 160, 208
comparing 156, 205
serializing 127, 202
verifying at runtime 123, 162, 210
See also metadata

DATABASEOPTION_TRIM_WHITESPACE 138
datapools

access order during playback 23
close 19
configure 167
get column name 20
get column value 29
get number of columns 19
get number of rows 26
list of class methods 18
lookup tables 109
open 22
overview 18
reset access 25, 28
rewind 25
search for column/value pair 27
set row access 21
Test Script Services 2

datastore 8, 130
DCOM testing 2

recreating on a new computer 14
debugging test scripts 11
DECLARE_PROTECT_FINAL_CONSTRUCT 1

98
DefineVP 130, 152, 183
Delay 63
delay script execution 63

disconnect from TSS server 100
Display 80
DisplayAndValidateData 162
dll files

naming conventions 10
test scripts compiled as 7

dynamic verification points
about 125
example 134
setting up in scripts 131

E
edit

.res file 169

.vbp file 170
editing test scripts 8
EJB testing 2
entry point

ITestInterface_TestMain 11
Main 11

EnvironmemtOp 41
environment control commands 49

eval 49
pop 49
push 49
reset 49
restore 49
save 49
set 49

environment variables
current 49
default 49
list 42
operations, defined 49
reporting

Max_nrecv_saved 51
saved 49
set 41
setting values of 49

error file 15
IV_error internal variable 52
error trapping 16
IV_error_text internal variable 52
222

IV_error_type internal variable 52
ErrorArray 174
ErrorDetail 64
errors

get details 64
print message 76

Essential COM 180
eval environment control command 49
EVAR_Delay_dly_scale 42, 43, 44, 46, 47, 48
EVAR_Log_level 44
EVAR_LogData_control 43
EVAR_LogEvent_control 43
EVAR_Record_level 45
EVAR_Suspend_check 46
EVAR_Think_avg 46
EVAR_Think_cpu_dly_scale 46
EVAR_Think_cpu_threshold 46
EVAR_Think_def 47
EVAR_Think_dist 48
EVAR_Think_dly_scale 48
EVAR_Think_max 48
EVAR_Think_sd 48
Event 31
event log 31
example 111
exe files

test scripts compiled as 7
executing a verification point 130
executing scripts. See running
expected data 125

about 123
comparing 156
verifying at runtime 162, 210

F
Fail result 16
IV_fc_ts internal variable 52
Fetch 21
file formats 158
FileExtension 158
FileExtension property methods 205
FinalConstruct 198
folder. See test script source folder

IV_fr_ts internal variable 52
framework 126, 143
IV_fs_ts internal variable 53

G
generating test scripts 5
get

application process id 60
computer configuration attribute list 65
computer configuration attribute value 66
elapsed runtime 50
error details 64
exponentially distributed random

number 73
internal variable value 51
name of datapool column 20
number of datapool columns 19
number of datapool rows 26
pathname 67
random number 74
run state 85
script option 67
script source file position 81
test case configuration 70
test case configuration attribute list 69
test case configuration attribute value 68
test case name 71
test tool execution option 72
uniformly distributed random number 78
unique text string 79
value of datapool column 29
value of shared variable 91

GetComputerConfigurationAttributeList 65
GetComputerConfigurationAttributeValue 66
GetDatapoolOverrideList 176
GetPath 67
GetScriptOption 67
GetTestCaseConfiguration 70
GetTestCaseConfigurationAttribute 68
GetTestCaseConfigurationAttributeList 69
GetTestCaseName 71
GetTestToolOption 72
GetTime 50
223

H
handling errors 16
IV_host internal variable 53
http_header_recv emulation command

bytes received 54
http_nrecv emulation command

bytes processed by 53
bytes received 54

http_recv emulation command
bytes processed by 53
bytes received 54

http_request emulation command
bytes sent to server 54

I
IDatabaseVP interface 135
IDatabaseVPData interface 136
implementer 122

about 122
responsibilities 179

implementing 200
FileExtension property methods 205
interface for your Verification Point

component 180
IPersistFile interface 193, 202
IVerificationPoint interface 183
IVPFramework interface 196
Verification Point component

Verification Point component 181
Verification Point Data Comparator

component 205
Verification Point Data component 201
Verification Point Data Provider

component 208
Verification Point Data Renderer

component 210
Verification Point interface 193
verification points 179

implicit metadata 130
Information Definition Language (IDL) 213
inheritance 180
InitializeFramework 165

integrating new verification points with
RQA 211

interface for your Verification Point Data
component 200

internal variables
get value of 51
IV_alltext 51, 52
IV_cmd_id 51
IV_cmdcnt 52
IV_col 52
IV_column_headers 52
IV_cursor_id 52
IV_error 52
IV_error_text 52
IV_error_type 52
IV_fc_ts 52
IV_fr_ts 52
IV_fs_ts 53
IV_host 53
IV_lc_ts 53
IV_linend 53
IV_lr_ts 53
IV_ls_ts 53
IV_mcommand 53
IV_ncnull 53
IV_ncols 53
IV_ncrecv 53
IV_ncxmit 53
IV_nkxmit 53
IV_nrecv 53
IV_nrows 53
IV_nusers 54
IV_nxmit 54
IV_response 54
IV_row 54
IV_script 54
IV_source_file 54
IV_statement_id 54
IV_total_nrecv 54
IV_total_rows 54
IV_tux_tpurcode 54
IV_uid 54
IV_user_group 54
IV_version 54
list 51
224

set value of 104
InternalvarGet 51
InternalvarSet 104
IPersistFile interface 193, 202
IsDefined flag 199
ITestInterface_TestMain entry point 11
IV_cmd_id internal variable 51
IV_cmdcnt internal variable 52
IV_col internal variable 52
IV_column_headers internal variable 52
IVerificationPoint interface 144, 183
IVerificationPointComparator interface 156
IVerificationPointData interface 157
IVerificationPointdataProvider interface 159
IVerificationPointDataRenderer interface 161
IVPFramework interface 139, 153, 196
IVPPlumbing interface 163

L
IV_lc_ts internal variable 53
length of test script names 9
IV_linend internal variable 53
log

about 14
command 105
event 31
file location 15
message 33
test case result 35
writing to 14

LogCommand 105
logging

list of class methods 31
Test Script Services 2

lookup tables 109, 111
LookUpTable class 109
IV_lr_ts internal variable 53
IV_ls_ts internal variable 53

M
Main entry point 11
manual verification points 131

about 126
Max_nrecv_saved environment variable 51
IV_mcommand internal variable 53
measurement

list of class methods 37
Test Script Services 2

Message 33, 118
message

log 33
print 77

metadata 183
explicit and implicit 129
IsDefined flag 199
serializing 193
specifying 129
supplying at runtime 130, 152

Monitor 177
monitor

list of class methods 80
Test Script Services 3

monitor display message, set 80
moving test scripts 14

N
name checking 10
names

compiled scripts 10
test scripts 9

IV_ncnull internal variable 53
IV_ncols internal variable 53
IV_ncrecv internal variable 53
IV_ncxmit internal variable 53
NegExp 73
IV_nkxmit internal variable 53
IV_nrecv internal variable 53
IV_nrows internal variable 53
IV_nusers internal variable 54
IV_nxmit internal variable 54

O
objects, verifying 121
Open 22, 113
225

open
datapool 22
test scripts 8

OPTION_EXPECT_FAILURE 157
OPTION_USER_ACKNOWLEDGE_BASELINE

157
options

constants 138, 145
reversing a set option 138
setting 138, 157
verification points 138, 157, 192

output file 15

P
Pass/Fail result 16
pathname, get 67
performance tests 10
PerformTest 130, 140, 154
playing back scripts. See running
pop environment control command 49
PositionGet 81
PositionSet 82
print

error message 76
message 77

project file
edit 170
references in 7
script component 7

proxy TSS server
start 100
stop 102

proxy TSS server process
pass context information to 98

push environment control command 49

Q
QualityArchitect. See Rational QualityArchitect

R
Rand 74
random numbers

get 74
get (exponentially distributed) 73
get (uniform) 78
seed 75

Rational QualityArchitect
code generator 147, 184
integration with verification points 211
Test Script Services and 2

Rational Robot 5
Rational Rose 5
Rational TestManager

running scripts 10
shared memory 16
suites 11
Test Script Services and 1

rc files 7, 9
recording test scripts 5
references in the project file 7
registering the test script source folder 8
regression tests 125, 141, 155
replacing 125
report, command runtime status 84
ReportCommandStatus 84
reporting environment variables

Max_nrecv_saved 51
res files 7
reset

datapool access 25, 28
reset environment control command 49
resource file 7

edit 169
resource files 7
IV_response internal variable 54
restore environment control command 49
Rewind 25
rewind

datapool 25
Rose. See Rational Rose
IV_row internal variable 54
RowCount 26
rows
226

lookup table 136
RQA. See Rational QualityArchitect
rqalocvp.ini 211
RTCOM class support functions 173
RTCOMVP.DLL 133, 144
RTIVP.TLB 133, 144
run states

get 85
list of 86
set 86

running
test scripts 10
test scripts in TestManager 11
test scripts outside TestManager 11
verification points 130

RunStateGet 85
RunStateSet 86

S
save environment control command 49
script option, get 67
IV_script internal variable 54
script writer 122
scripts. See test scripts
Search 27, 113
search

datapool 27
lookup table 113

seed
random number generator 75

SeedRand 75
Seek 28, 103
serializing

data 127, 202
metadata 193

ServerStart 100
ServerStop 100, 102
session

list of class methods 96
Test Script Services 3

set
command timer start point 40
command timer stop point 38

datapool row access 21
environment variable 41
monitor display message 80
run state 86
script execution delay 63
script source file position 82
synchronization point 95
think-time delay 55
timer end point 57
timer start point 56
value of internal variable 104
value of shared variable 90
verification point options 138

set environment control command 49
set... methods 129
SetCMDID 178
SetOptions 131
setting up in scripts 131
shared memory 16
shared variable

configure 169
shared variables

assignment operations 90
block on 92
get value of 91
set value of 90

SharedVarAssign 90
SharedVarEval 91
SharedVarWait 92
sock_nrecv emulation command

bytes processed by 53
sock_recv emulation command

bytes processed by 53
sock_send emulation command

bytes sent to server 54
source folder. See test script source folder
IV_source_file internal variable 54
sqlalloc_statement emulation function

statement_id returned by 54
sqlexec emulation command

number of characters sent to server 54
sets rows processed to 0 54

sqlnrecv emulation command
increments total rows processed 54
rows processed by 53
227

sqlprepare emulation command
number of characters sent to server 54
statement_id returned by 54

stand-alone TSS server process
pass context information to 98
start 100
stop 102

standard input 15
standard output 15
start

application 61
command timer 40
timer 56
TSS server process 100

IV_statement_id internal variable 54
static verification points

about 125
example 134
setting up in scripts 129

StdErrPrint 76
StdOutPrint 77
stop

command timer 38
timer 57
TSS server process 102

storing
compiled scripts 9
test scripts 8

stubs
lookup tables 109

suites 11
summary of RTCOM class methods 173
supplying at runtime 183
synchronization

list of class methods 89
Test Script Services 3

synchronization point

set 95
configure 169

SyncPoint 95

T
test case

get configuration 70
get name 71
log result 35

test case configuration attribute list, get 69
test case configuration attribute value, get 68
test designer 122
test log. See log
Test Script Services

about 1
summary of services 2

test script source folder
auto-generated scripts 8
compiled 9
manually coded scripts 8
registering 8

test scripts
about 5
block on shared variable 92
compiling 9
components 7
creating 5
debugging 11
editing 8
generating 5
get line position 81
get shared variable value 91
location 8, 9
maximum name length 9
moving 14
names 9
opening 8
recording 5
running 10
running in TestManager 11
running outside TestManager 11
set line position 82
set shared variable value 90
set synchronization point 95
source folder 8
storing 8
storing when compiled 9

test tool option, get 72
228

TestCaseResult 35
tester 122

verifying captured data 162, 210
testing objects 121
TestLog class 114
TestManager. See Rational TestManager
Think 55
think time

calculate 107
set 55

ThinkTime 107
timer

calculate think-time 107
get elapsed runtime 50
set think time 55
start 40, 56
stop 38, 57

TimerStart 56, 57
TMS_Scripts folder

test scripts
TMS_Scripts folder 8

IV_total_nrecv internal variable 54
IV_total_rows internal variable 54
trapping errors 16
TSS server process

connect to 97
disconnect from 100
pass context information to 98
start 100
stop 102

TSSAdvanced methods 104
TSSDatapool methods 18
TSSLog methods 31
TSSMeasure methods 37
TSSMonitor methods 80
TSSSession methods 96
TSSSync methods 89
TSSUtility methods 59
tux_tpcall emulation command

sets TUXEDO user return code 54
tux_tpgetrply emulation command

sets TUXEDO user return code 54
tux_tprecv emulation command

sets TUXEDO user return code 54
tux_tpsend emulation command

sets TUXEDO user return code 54
IV_tux_tpurcode internal variable 54
type libraries 133, 144

U
IV_uid internal variable 54
Uniform 78
UniqueString 79
Universal Naming Convention path 9
update, shared variable 90
IV_user_group internal variable 54
utility

list of class methods 59
Test Script Services 3

V
validating data 162, 210
Value 29
vbp files 7, 9
Verification Point component 198
Verification Point component interface 180
Verification Point Data Comparator

component 205
Verification Point Data component 200, 201
Verification Point Data Provider component 208
Verification Point Data Renderer component 210
Verification Point interface 193
verification point methods in IDL 213
verification points

about 121
actual data 124
baseline 125
classes, overview 127
dynamic 125
executing 130
expected data 123
framework 126, 143
implementer 122
implementing 179
integrating with Rational

QualityArchitect 211
manual 126
229

metadata 129
options 138, 157, 192
performing 130
performing dynamic 131
performing manual 131
performing static 129
running 130
setting up in scripts 129
static 125
Test Script Services 3
types 124
verifying captured data at runtime 162, 210

IV_version internal variable 54
Visual Basic scripts. See test scripts

VPOPTION_COMPARE_CASEINSENSITIVE 1
38, 145, 157

VPOPTION_EXPECT_FAILURE 138, 145
VPOPTION_USER_ACKNOWLEDGE_BASELIN

E 131, 138, 145

W
wait

for application termination id 62
watch files 14
wch files 14
WriteError 118
WriteStubError 111, 119
WriteStubMessage 111, 120
230

	Rational®Testing Products Rational Test Script Services for Visual Basic
	IMPORTANT NOTICE
	Contents
	Preface
	About This Manual
	Audience
	Other Resources
	Contacting Rational Technical Publications
	Contacting Rational Technical Support

	Introduction
	About Visual Basic Test Script Services
	Using Test Script Services With Rational TestManager
	Using Test Script Services With Rational QualityArchitect
	Summary of Services

	Working with Test Scripts
	About Visual Basic Test Scripts
	Creating Test Scripts
	Entry Points
	Registering Test Script Source Folders
	Test Script Components
	Updating the Project File

	Editing and Storing Test Scripts
	Test Script Names

	Compiling Test Scripts
	Name of the Compiled File
	Name-Checking at Playback

	Running Test Scripts
	Running Test Scripts in a TestManager Suite
	Running Test Scripts Outside TestManager
	Moving a Test Script to a Different Computer for Playback

	Returning Information from Test Scripts
	Test Log
	Error File and Output File
	TestManager Shared Memory

	Trapping Errors

	Test Script Services Reference
	About Test Script Services
	Datapool Class
	Summary
	TSSDatapool.Close
	TSSDatapool.ColumnCount
	TSSDatapool.ColumnName
	TSSDatapool.Fetch
	TSSDatapool.Open
	TSSDatapool.Rewind
	TSSDatapool.RowCount
	TSSDatapool.Search
	TSSDatapool.Seek
	TSSDatapool.Value

	Logging Class
	Summary
	TSSLog.Event
	TSSLog.Message
	TSSLog.TestCaseResult

	Measurement Class
	Summary
	TSSMeasure.CommandEnd
	TSSMeasure.CommandStart
	TSSMeasure.EnvironmentOp
	TSSMeasure.GetTime
	TSSMeasure.InternalVarGet
	TSSMeasure.Think
	TSSMeasure.TimerStart
	TSSMeasure.TimerStop

	Utility Class
	Summary
	TSSUtility.ApplicationPid
	TSSUtility.ApplicationStart
	TSSUtility.ApplicationWait
	TSSUtility.Delay
	TSSUtility.ErrorDetail
	TSSUtility.GetComputerConfigurationAttributeList
	TSSUtility.GetComputerConfigurationAttributeValue
	TSSUtility.GetPath
	TSSUtility.GetScriptOption
	TSSUtility.GetTestCaseConfigurationAttribute
	TSSUtility.GetTestCaseConfigurationAttributeList
	TSSUtility.GetTestCaseConfigurationName
	TSSUtility.GetTestCaseName
	TSSUtility.GetTestToolOption
	TSSUtility.NegExp
	TSSUtility.Rand
	TSSUtility.SeedRand
	TSSUtility.StdErrPrint
	TSSUtility.StdOutPrint
	TSSUtility.Uniform
	TSSUtility.UniqueString

	Monitor Class
	Summary
	TSSMonitor.Display
	TSSMonitor.PositionGet
	TSSMonitor.PositionSet
	TSSMonitor.ReportCommandStatus
	TSSMonitor.RunStateGet
	TSSMonitor.RunStateSet

	Synchronization Class
	Summary
	TSSSync.SharedVarAssign
	TSSSync.SharedVarEval
	TSSSync.SharedVarWait
	TSSSync.SyncPoint

	Session Class
	Summary
	TSSSession.Connect
	TSSSession.Context
	TSSSession.Disconnect
	TSSSession.ServerStart
	TSSSession.ServerStop
	TSSSession.Shutdown

	Advanced Class
	Summary
	TSSAdvanced.InternalVarSet
	TSSAdvanced.LogCommand
	TSSAdvanced.ThinkTime

	Extended Test Script Services Reference
	About the Extensions
	Requirements for Using the Test Script Services Extensions

	LookUpTable Class
	Summary
	LookUpTable.Open
	LookUpTable.Close
	LookUpTable.Search

	TestLog Class
	Summary
	TestLog.Message
	TestLog.WriteError
	TestLog.WriteStubError
	TestLog.WriteStubMessage

	Verification Services
	Introduction to Verification Points
	About Verification Points
	Roles in Working with Verification Points

	How Data Is Verified
	Types of Verification Points
	Static Verification Points
	Dynamic Verification Points
	Manual Verification Points

	Verification Point Framework
	Verification Point Classes

	Setting Up Verification Points in Test Scripts
	Setting Up a Static Verification Point
	Step 1. Specify the Metadata for the Verification Point
	Step 2. Execute the Verification Point

	Setting Up a Dynamic Verification Point
	Setting Up a Manual Verification Point

	Database Verification Point Reference
	About the Database Verification Point
	Requirements for Using the Database Verification Point
	Components of the Database Verification Point
	Type Libraries
	Examples
	Example of a Static Database Verification Point
	Dynamic Database Verification Point Example

	IDatabaseVP Interface
	Summary

	IDatabaseVPData Interface
	Summary

	IVerificationPoint Interface
	Summary

	IVPFramework Interface
	Summary
	VPFramework.PerformTest

	Verification Point Framework Reference
	About the Verification Point Framework
	Requirements for Using the Verification Point Framework
	Verification Point Framework Components
	Type Libraries

	IVerificationPoint Interface
	Summary
	IVerificationPoint.CodeFactoryGetConstructorInvocation
	IVerificationPoint.CodeFactoryGetExternalizedInputDecl
	IVerificationPoint.CodeFactoryGetExternalizedInputInit
	IVerificationPoint.CodeFactoryGetNumExternalizedInputs
	IVerificationPoint.CodeFactoryGetNumPropertySet
	IVerificationPoint.CodeFactoryGetPropertySet
	IVerificationPoint.DefineVP

	IVPFramework Interface
	Summary
	IVPFramework.PerformTest

	IVerificationPointComparator Interface
	IVerificationPointComparator.Compare

	IVerificationPointData Interface
	IVerificationPointData.FileExtension

	IVerificationPointDataProvider Interface
	IVerificationPointDataProvider.CaptureData

	IVerificationPointDataRenderer Interface
	IVerificationPointDataRenderer.DisplayAndValidateData

	IVPPlumbing Interface
	Summary
	IVPPlumbing.InitializeFramework
	IVPPlumbing.InitializeVP

	Configuring Datapools, Synchronization Points, and Shared Variables
	About Script Configuration
	Datapool Configuration
	Synchronization Point and Shared Variable Configuration
	Adding String Table Data to a Resource File

	RTCOM Support Class
	About RTCOM
	Summary
	ErrorArray
	GetDatapoolAccessFlags
	GetDatapoolOverrideList
	Monitor
	SetCMDID

	Implementing a New Verification Point
	Introduction to Verification Point Implementation
	Fundamentals for Implementing a Verification Point
	Task Summary
	Interface for Your Verification Point Component
	The Verification Point Component
	Implementing the IVerificationPoint Interface
	Implementing the Methods in Your Verification Point Interface
	Implementing the IPersistFile Interface
	Implementing the IVPFramework Interface
	Other Responsibilities of the Verification Point Component

	Interface for Your Verification Point Data Component
	The Verification Point Data Component
	Implementing the IPersistFile Interface
	Implementing the FileExtension() Property Methods

	The Verification Point Data Comparator Component
	The Verification Point Data Provider Component
	The Verification Point Data Renderer Component

	Integrating Your Verification Point with QualityArchitect

	IDL Equivalents
	Index

